PL/M-386
Programmer’s Guide

Order Number: 611052-002

In the United States, additional copies of this manual or other Intel literature may be obtained by writing:
Literature Distribution Center
Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641
Or you can call the following toll-free number: 1-800-548-4725

In locations outside the United States, obtain additional copies of Intel documentation by contacting your local
Intel sales office. For your convenience, international sales office addresses are printed on the last page of
this document. Contact your local sales office to obtain the latest specifications before placing your order.

Intel Corporation (Intel) makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel assumes no
responsibility for any errors that may appear in this document. Intel makes no commitment to update nor to
keep current the information contained in this document. No part of this document may be copied or
reproduced in any form or by any means without prior written consent of Intel. Intel retains the right to make
changes to these specifications at any time, without notice.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement.
U.S. GOVERNMENT RESTRICTED RIGHTS: These software products and documentation were
developed at private expense and are provided with "RESTRICTED RIGHTS." Use, duplication, or
disclosure by the Government is subject to restrictions as set forth in FAR 52.227-14 and

DFAR 252.227-7013 et seq. or its successor.

The Intel logo, i960, Pentium, and iRMX are registered trademarks of Intel Corporation, registered in the
United States of America and other countries. Above, i287, i386, i387, i486, Intel287, Intel386, Intel387,
Intel486, Intel487 and EtherExpress are trademarks of Intel Corporation.

Adaptec is a registered trademark of Adaptec, Inc. AT, IBM and PS/2 are registered trademarks and PC/XT
is a trademark of International Business Machines Corporation. All Borland products are trademarks or
registered trademarks of Borland International, Inc. CodeView, Microsoft, MS, MS-DOS and XENIX are
registered trademarks of Microsoft Corporation. Comtrol is a registered trademark and HOSTESS is a
trademark of Comtrol Corporation. DT2806 is a trademark of Data Translation, Inc. Ethernet is a registered
trademark of Xerox Corporation. Hayes is a registered trademark of Hayes Microcomputer Products.
Hazeltine and Executive 80 are trademarks of Hazeltine Corporation. Hewlett-Packard is a registered
trademark of Hewlett-Packard Co. MIXO is a registered trademark of MIX Software, Incorporated. MIX is an
acronym for Modular Interface eXtension. MPI is a trademark of Centralp Automatismes (S.A.). NetWare
and Novell are registered trademarks of Novell Corp. NFS is a trademark of Sun Microsystems, Inc. Phar
Lap is a trademark of Phar Lap Software, Inc. Soft-Scope is a registered trademark of Concurrent Sciences,
inc. TeleVideo is a trademark of TeleVideo Systems, Inc. UNIX is a registered trademark in the United
States and other countries, licensed exclusively through X/Open Company Limited. VAX is a registered
trademark and VMS is a trademark of Digital Equipment Corporation. Visual Basic and Visual C++ are
trademarks of Microsoft Corporation. All Watcom products are trademarks or registered trademarks of
Watcom International Corp. Windows, Windows 95 and Windows for Workgroups are registered trademarks
and Windows NT is a trademark of Microsoft in the U.S. and other countries. Wyse is a registered trademark
of Wyse Technology. Zentec is a trademark of Zentec Corporation. Other trademarks and brands are the
property of their respective owners.

Copyright © 1992 and 1995 Intel Corporation, All Rights Reserved

REVISION HISTORY DATE
-001 Original Issue 08/92
-002 Update for Release 2.2 of the OS 11/95

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.
Chapter 8.
Chapter 9.

Chapter 10.

Chapter 11.
Chapter 12.
Chapter 13.
Chapter 14.
Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.
Appendix H.

Index

Introduction

Language Elements

Quick Contents

Data Declarations, Types, and Based Variables

Arrays and Structures
Expressions and Assignments
Flow Control Statements
Block Structure and Scope

Procedures

Built-In Procedures, Functions, and Variables

Features Involving the Target CPU and Numeric

Coprocessor

Compiler Invocations and Controls

Sample Program

Extended Segmentation Models

Error and Warning Messages

PL/M Reserved Words and Predeclared Identifiers
PL/M Program Limits

Grammar of the PL/M Language

Differences Between PL/M Compilers
Character Set

Linking to Modules Written in Other Languages
Run-time Interrupt Processing

Run-time Support for PL/M Applications

Service Information

PL/M-386 Programmer's Guide

Notational Conventions

The following notational conventions are used throughout this manual.

Monospace Type indicates literal command syntax, and other actual
input/output.

italics indicate variable expressions and filenames. Substitute a
value or a symbol.

directory refers to a user-created directory. A forward slash (/) is used
for iRMX directory paths. A backward slash (\) is used for
DOS directory paths.

pathname represents a fully-qualified reference to a file.

All numbers are decimal unless otherwise stated. Hexadecimal numbers include
theH radix character (for exampleFFH). Binary numbers include theradix
character (for example;1011000B).

Contents

Introduction

Product DefinitioN........ccuuuiiiiiiiii e
Compatible Assemblers, Debuggers, and Utilities...............vvvvvviviiinnnn.
Advantages of Using the PL/M Languageuuveveeneenieeeerinnnnnnnn
The Structure of a PL/IM Program ...
Overview Of PL/M Stat@mMentscceeeiiiiiiiiiiiiieeeeeeeeeeee e
Declaration StatemMeNtS.......uuuueiiiiiiiiiiiee e
Executable StatementS..........oovvvviiiiiiiiiiie e
Built-in Procedures and Variablescccccceviiiiiiiiiiiiie,
Overview of PL/M EXPreSSiONSccoooviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee
INPUL @NA OULPUL ...

Language Elements

(01 a1 = To (=] Y= AP TSP
Tokens, Separators, and the Use of Blanks................uvvvviviiiiiiiiininnnn.
Identifiers and Reserved WOrdsS..........covvvvvveeiiiiieiieeeee e
(O] 1151 7= U g1 K>3 PSP
Whole-number CONSTANTScccvviiiiiiieiiie e eeaan
Floating-point CONSLANTS.uuuiiiiiiiiieie e
Character StHNGS.....uuueeiiiiiiie e ee e
(070] 2010 41T £ TSP

Data Declarations, Types, and Based Variables

Variable Declaration StatementSccociviieiiiieiiiei e,
Sample DECLARE Statements.........cccceeeviviiiiiieieiiiieeien
Results of Variable Declarationsccccccuvvviiiiiniciiiiiieeieee e,
Combining DECLARE Statements............cccovvvvvvevivvveieieeieeeeeininnnns

INIEIAIZALIONS .oeveeeee e e e e
The Implicit DiIimension SPECIfier..........uuuuriieiiiiiiiiiieiiiieeeeeee e
Names for Execution Constants: the Use of DATAcooeeeevvnnen.

PL/M-386 Programmer’s Guide Contents

19

20
22
23

24
24
25
25
26

27
29
30
30

33
33

36
36
37

38

39
42

43

Types of Declaration StatemMeNtScevvvviiviiiiiiiiiiiiiiii 44

Compilation Constants (Text Substitution): The Use of LITERALLY . 44
Declarations of Names for Labels.............uuuuiiiiiiiiiiiiiiiiiiiiieieeeeeeeenn 46
Results of Label Declarations...............uuuvvvviiiiiiiiiiiiiiiiiiiiiineens 46
Declaration for ProCeAUIEScovviiiiiiiiiieiiiiiiiieeiieeeeieeeeseeeeeeeeeeeennanes 47
DaALA TYPOS .t eietie ettt ettt ettt e e e e e eea e aen 48
Unsigned Binary Number Variables: Unsigned Arithmetic................. 50
INTEGER Variables: Signed Arithmetic............ccccoeeeiii, 51
Signed ArthMELIiC. . ..uuuii e 51
REAL Variables: Floating-point Arithmetic.............ccccoeeeee, 51
Examples of Binary Scientific Notation..............ccoooeeeiii, 52
POINTER Variables and Location References 54
RN L G @] o 1] = 1o] PR UUUST 55
Storing Strings and Constants via Location References................. 56
OFFSET Data Type and the Dot Operatorcccocvvvieiieeeeeeevveeninnnnnn. 57
SELECTOR Variables........coooiiiiiiiieees e 57
Based Variables. ... 5¢
Location References and Based Variablesccccccoeeiiiiiiiii, 60
The AT AHFDULE. ... e 61
WORD32 | WORD16 TYPe MaPPINGevvuuummmiiiiiinaaaaaaeeaeeeeeeeeeeeeeeeeeeeeaeeeens 64
Choosing WORD32 or WORDLB.......cuiiiiiiiiiieeeeiiee e e e 65
Arrays and Structures
N £ =\ T TP PPPR 67
Subscripted Variables............cccoe e 68
SEITUCTUIES ..ttt e e et e e e e e e e e e aa e e eaaaeeees 6¢
AIrays Of STTUCTUIES.....coiiiiiii e eeeemmm e 69
Arrays Within StruCtUIeScooovviiieiiieee e 70
Arrays of Structures With Arrays Inside the Structures..............cccvvveee 70
NeStEd SIHUCIUMES...uuueiiiiii e m e e 71
References to Arrays and StrUCIUIeScoooviviiiiiiiiiiieeceeeeeeeeeeeeeeeeeeeaaees 7:
Fully Qualified Variable References............ccccccvvvvviiiiiiiiiiiieiiiiiiiiiiiinns 72
Unqualified and Partially Qualified Variable References..................... 73
Expressions and Assignments
(O] 01T 2= 10 o - ST 75
(00014 153 =1 o1 > TP 76
Whole-number Constants in Unsigned Context.............oooeeeecmnenens 76
Whole-number Constants in Signed Context..............ccceeevvieannenn. 76
SENG CONSLANTS ..uvvviiiiiiiiiiii e e eennnn e 76
Variable and Location RefErenCEeS..........oovvvvviiiiiiiiiiiiieee e 78

Contents

SUBDEXPIESSIONS....cciiiieiiiiii ettt e e e e e e e e ae et aeaeeaeaeeerennes
Compound OPEIANS.........cevviiiiiiiiiiiie et e e e e e
ArtMEtIC OPEIALOrS......cevvvviiiiiiiiiie et e e e e e e e e e e e e eeeeaeen
The +, -, *, and / OPEratorsS..........ccvvvvuiiuiiiiiiiiiiiiiaas e eeeeeeeeeeeeeeeeeeeeees
The MOD OPEIALOruvvviiiiiiiieiiiieeeeeeeeeee e e e e e e e e e e eeeeeeeeeeeseneeeneeeenees 82
Relational OPEratorsoviiee i e e e
(oo ot I @] 1] = Lo] ¢TSRS
EXPression EValuation..............ouuuiiiiiiiiiiiiiiisinis e eeeeeeeeeaneeees
Precedence of Operators: Analyzing an EXPressioncccccccvvvvveeeenn.
Compound Operands Have TYPES......covvviiiiiiiie e
Relational Operators Are Restricteduuvvueieiiiiiiiiiiiiiiieeie e
Order of Evaluation of Operands...............uvvvviviiiiiiiiiiiiiiiiiiiiinnes
Choice of Arithmetic: Summary of RUles.............oooviviiiiiiiiiiiiieiiiiiies
Special Case: Constant EXpresSsionS.........covvvvvvvviivieiiieiiiieeeeeevivviiiieenenns
ASSIGNMENT STALEMENTS ...t e e
IMPIIicit TYPE CONVEISIONS ...uvvuieeieiiiii e eeeeiie e e e e eeeaaaens
CoNStaNt EXPreSSION ...uuuuieiiieiiii e e e ceeiiiie e e e e et e e e e e e et s o 99
MuUltiple ASSIGNMENTuiii i e
Embedded ASSIGNMENTScooiiiiiiiiie e 100

6 Flow Control Statements
DO and END Statements: DO BIOCKS........c.cccoveiiiiiiiiiiiecieeeeeeee e
SIMPIE DO BIOCKS. . ..ottt s
DO CASE BlOCKS......uuiiiiiiiiie it

DO WHILE BIOCKSveiiiiiiieeeii ittt mmmmmen e 108

Iterative DO BIOCKS.iiiiiieii et
END Statement
Y t= 1 (=T 0 =] o |

NeSted IF StAtEMENTS.. ... ciiiii i e e e b

Sequential IF StatementS..........ooviiiiiiiiiii e
GOTO StAtEMENLS ...t e e e et e e et e eaeeens
The CALL and RETURN StatementS........oeiiivieiiiiiiieiiiieeeeeieeeeve e

7 Block Structure and Scope
Names Recognized Within BIOCKSccooiuuiiiiiiiiiiiii e
Restrictions on Multiple Declarations................uevvvvvviuviiviriiiiniiiiini.
Extended Scope: The PUBLIC and EXTERNAL Attributes.......................
Scope of Labels and Restrictions on GOTOS.........ccvvvvvviviiiiiiiiiiiiiiiiiieeieeee

PL/M-386 Programmer’s Guide Contents 7

120
122
123
126

Procedures

Procedure DeCIarations.ooooiieiiiiiiiiiieeieeeeeee e 131
ParameterS......ccvviiii i 132
Typed Versus Untyped Proceduresccccvvvvviiiiiiiiiiiiiiiiieaee 134

Activating a Procedure: Function References and CALL Statements......... 135
Indirect Procedure ACHIVALIONcoeuiiiiiiiiiiiiiie e 136
COode EXAMPIES.. ..ottt 138

Exit from a Procedure: The RETURN Statement............cccccceeeiviiiiiiiennenn. 139

The ProCedure BOOYuuuuiiiiiiiiiiee e e e e e e e e e e e e e e eeeeeeaannee 141
EXAMPIES ... 141

The Attributes: PUBLIC and EXTERNAL, INTERRUPT, REENTRANT 143
Interrupts and the INTERRUPT Attribute.........cccovvvvvviiiiiiiiiiiiiiiin, 144
Reentrancy and the REENTRANT Attributevvvvvvivviviviiiiiiininnnn. 146

Built-in Procedures, Functions, and Variables

Obtaining Information About Variables................coiiiiiiiiiiiiii e, 150
The LENGTH FUNCHONiiiii e eeae e 150
The LAST FUNCHION. ...t 151
The SIZE FUNCHION ...t e e 151

Explicit Type and Value CONVErSIONS........ccooeeeeeieiieeieeeeee, 152
The PL/M-386 LOW, HIGH, and DOUBLE Functions........................ 159
The FLOAT FUNCHONciit et e s 160
The FIX FUNCLON ...ocvicc et e 160
The INT FUNCHONcvii e 161
The SIGNED FUNCLON ..uuiiiiici e+ sossennn 161
The UNSIGN FUNCHION......ciiiiiiiie e 162
The Unsigned Binary Data Type Built-in Functionsccceeeeee 163
Signed Integer Data Type Built-in Functionccccccceinnnnnnn. 163
REAL BUilt-in FUNCLIONS......ccoviiiiiiiiee e i e 164
The SELECTOR Built-in FUNCHION........oiiiiiiiiiiiieeeeeeceeee e, 164
The POINTER BUilt-in FUNCLIONcooiiiiiiiiiiii e 164
The OFFSET Built-in FUNCLIONooiviiiii e 165
The ABS and IABS FUNCHONScuviiiiiieeeeeeeeeeeeeeee e 165

Shift and Rotate FUNCLIONSvuiiiiiiiicii e 166
ROtation FUNCLIONSciiiiiiiiiie e 166
Logical-shift FUNCLIONS.........coovviiiiii e 167
Algebraic-shift FUNCLONScoouiiiii e 168
Concatenate FUNCHIONS.........i i 166

Contents

String Manipulation Procedures and FUNCLIONS.............cvvvvvvvviiiiiiiiiiiiiiinnenn, 170
The Copy String in Ascending Order Procedureccccccoeeeeiiiiiiennn. 171
The Copy String in Descending Order Procedurecccccccvvvvviinnnnnn... 171
The Compare String FUNCLION...........ooooeiiiiiieee 172
The Find Element FUNCLONS. ... 173
The Find String Mismatch FUNCtion ... 174
The Translate String ProCcedure ... 175
The Set String to Value ProCedUre.............uuvvvviiiiiiiiiiiieeeeese e 176

PL/M-386 Bit Manipulation BUilt-iNS..............ccoiiiiiiiiinie e 177
The Copy Bit String Procedure...........ccooeieiiiiieeeeeeeeeeeeeeee 177
The Find Set Bit FUNCHONuuiiiiiiiiiiieeeeeceee e 177

Miscellaneous BUIlt-INS.........cccoiiiiiiiiiiiiee e 179
The Move BYteS ProCEAUIEuuvviiiiiiiiiiiiiiee e 179
The Time Delay ProCeaUre.......coivuiiii i 180
The LOCK Set FUNCHON ...ttt 180
The LOCK Bit FUNCHONScuiiiiiiiiiiiieeeeeee it 182

POINTER and SELECTOR-related FUNCLIONS............ccceeeer s mummmmmn e 183
The Return POINTER Value FUNCHONcoovviiiiiiiiiiiiieee e 183
The Return Segment Portion of POINTER Function................cceeeeeees 183
The Return Offset Portion of POINTER Functioncccccceevvvinneeen. 183
The Set POINTER Bytes to Zero Variablecccooooovvvviiiiiiieens 184

WORD16 BUilt-in MaPPing ...cceevveiiieeiieeiiie e e e e s 184

10 Features Involving the Target CPU and Numeric

Coprocessor

Microprocessor Hardware-dependent Statements............cceveivieeeeennnnn. 185
The ENABLE and DISABLE Statements..........ccoeveeeiiiiiiiiiiiiieeeeeeeees 185
The CAUSESINTERRUPT Statement.........cceeeiiiiiiiiiiieeieeiiieee 186
The HALT Statement.......cc.uuiiiiiiiiiiieeeeee et e e e 186

Microprocessor Hardware FlagsSueeeeiiiiiiiiieiie e 187
Optimization and the Hardware Flags.........ccccooviiiiiiiiee 187
The CARRY, SIGN, ZERO, and PARITY Functionscccccevcvueen. 188
The PLUS and MINUS Operators..........cuuvueviiiiiiieeeneeeeeeieeeiiiiiiennens 188
Carry-rotation FUNCLONS........ccoooiiiiieieeeeeeeeeeeeee e, 188
The Decimal Adjust FUNCLION........coooieiiiiieeeeeee 189

Microprocessor Hardware ReQISterSccuvvvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 189
The Flags Register Access Variablecccoooiii 189

The STACKPTR and STACKBASE Variables..........c..ccooeevvvnv e, 190

PL/M-386 Programmer’s Guide Contents 9

Microprocessor Hardware /Occooooveeiiiiiiiieee e 191

The Find Value in Input Port FUNCLION............uuuiiiiiisiceeeeeeeeeeen 191
The Access OULPUL POI AITAYuueeeiiiiieieee et 191
The Read and Store String Procedureccoooeeeeieiieiiee 197
The Write String ProCedure ... 193
The Hardware Protection MOdel............ooovviiiiiiiiiiiiiiiiieeee e 193
The Task REQISIEI......ccciiiiiieeee s 193
The TASKSREGISTER Variable.........cccccccveeeeiiiiiiiiiicieeee e, 193
The Global Descriptor Table Register..........ccccevviiiiiie, 194
The SAVE$SGLOBALSTABLE Procedure............cccccvvvveeeeenns 195
The RESTORE$GLOBALS$TABLE Procedure........ccccccveeeviinnnnen. 195
The Interrupt Descriptor Table Register..........cccoeeveiiii, 196
The SAVESINTERRUPTSTABLE Procedurecccccceevvvvvvennnnn. 196
The RESTORESINTERRUPTS$TABLE Procedure.............ccouuee.. 197
The Local Descriptor Table Register.......ccoovveviiviiiiiiiiiiiceiiee e, 197
The LOCALSTABLE Variable............ccccccviiiiiiiiieeee e 197
The Machine Status ReQIStErviviiiiiiiii e 198
The MACHINESSTATUS Variable..........ccccovveeeviiiiiiie e, 198
The CONTROL$REGISTER, DEBUG$REGISTER, and
TESTSREGISTER BUIlt-in ArraysS........ccooecvvveveeeeiiiiiieeees i 198
The CLEARSTASKS$SWITCHEDS$FLAG Procedure................ 200
Segment INformation ... 200
The GETSACCESSSRIGHTS Function.........ccccveevvvvinneen e, 200
The GET$SEGMENTSLIMIT FUNCHON ..vvvvevviiee e e 201
Segment ACCESSIDIItYccvveiii i 202
The SEGMENT$READABLE Function..........cccceeevviivvvvaceaee. 202
The SEGMENT$WRITABLE Function............coooecvvvveivicccee.. 202
Adjusting the Requested Privilege Levelcccoovvevvvviiiiiiiiiiceeeeeee, 203
The ADJUSTSRPL FUNCHON.......ciiiieieiiiieieeiee e 203
The REAL Math FaCility..........ooiiiiiiiiiiiiiiiieee e 204
Built-ins Supporting the REAL Math Unit...........cccccoiii, 207
The INITSREALSMATHSUNIT Procedure.........coooeeeeeeeiiiiiiiiiiiinns 207
The SETSREALSMODE Procedureccoevvvieeeeeeieeeeceeeeeeeeeee. 207
The GETSREALSERROR FUNCLONccvvviiiiiiiiiiiiiii e 208
Saving and Restoring REAL StatusScccooeriiiiiininieeeeeeeeeeeeeeeeee 208
The SAVESREALSSTATUS Procedure.......ccceeeviieeeeeeeieeeniennnns 209
The RESTORE$SREALSSTATUS Procedurecccccvvvvvvveeeeenennnn. 210
INEErTUPL PrOCESSING....ciiiiiiiiiiiiiiiiiiiie e eeeee e e e e 210
The WAITSFORSINTERRUPT Procedure ..., 210
WORD16 Mapping for BUIlE-INS.........coouuuiiiiiiiieeeieceeeeiii e 211
INtel486 Processor BUilt-iNS...........uuiiiiiiiiiiiiie e e 211

10 Contents

11 Compiler Invocation and Controls

Invocation Syntax on iIRMX SYSIEMScciiiiiiiiiiieeieeii e 213
Invocation Examples and Sign-on/Sign-off Messages
under the IRMX OS ... e e e e e 215
Invocation Syntax on DOS SYSIEMSuiiiiiiiiiiiiiiiie e 216
Invocation Examples and Sign-on/Sign-off Messages under.DQS 216
File Usage under DOS and the IRMX OS........ccccoiuiriirrvmmmmmeeens e eeeeeen 217
INPUE FILES et e e e e e e e e e e 217
WOTK FIlES it e e e e e e e e e 217
[T B 1 =P 218
ODBJECE FIlES .ttt 218
Executable Programs ... 220
Introduction to Compiler CONIOIS........uu i 221
INPULt FOrMat CONLIOL........uueiiiiiiiiee e 226
Code Generation and Object File Controlsccceeeveeeiiiveiiiiicien e, 226
Segmentation CONLIOISiiii i e 226
Listing Selection and Content CoNntrolscccceeevvviiiiiiieeccieiiiiee e, 227
Listing Format Controlscoouuiiiiiiiiiiiii e s 227
Source INCIUSION CONLIOIS.......cooeiiiiiiii e 227
Conditional Compilation CONtrolS........cccuvvviiiiieiiiiiiiie e 228
Language Compatibility Control...........ccciiviiiiiiiiii e 231
Predefined SWILCNES ... 231
Compiler Control Encyclopedia..........ccovvuiiiiiiiiieiiiiie e 232
CODE | NOCODKEcuttiiiiiiieieeeeeeeeeeee e 232
COND | NOCONND.....cccttiiiiiiiiniae ettt 232
DEBUG | NODEBUG........uuuiiiiiiiiciiieeiii e 233
] = O PR STSR 233
IF | ELSE | ELSEIF | ENDIF ..o 233
INCLUDEo 235
INTERFACEot 236
I A] 241
LIST | NOLIST ittt e e e e e e e e e e e e e eeenneeees 241
IMODBB.ceeeeeeeeeee ettt ettt et e e e e e e e e e e e e e s e e e e 242
OBJECT | NOOBUJECT.... .ottt e et e e e e e e e e e e e 242
OPTIMIZEot e e e e e eaaaans 243
OVERFLOW | NOOVERFLOW.......cuttiiiiiiiiiiiiiiiiieaee e es e 258
PAGELENGTH. ...ttt e e e e e 258
PAGEWIDTH. ..ottt e e e e e e e e eaeaanes 259
PAGING | NOPAGING......ccotiiiiiiiiiaae et 259
PRINT | NOPRINT...cittttttiiee ettt e e e e e e et e e 259
RAM | ROM... i e e e 260
SAVE | RESTORE ...t 260

PL/M-386 Programmer’s Guide Contents 11

SET | RESET ...ttt 261

SMALL | COMPACT | MEDIUM | LARGE | FLAT.....covvvvviiiieeeee, 262
SMALL oot ——————— 262
COMPACT ..ttt e e e e e e e e eaaaaaeas 263
MEDIUM ...t e e e e e e e e e e s s e s aeae e e 265
LARGEo 265
L AT ettt e e e e et rr ittt e e e e aaaaaaaaaan 265

SUBTITLE c.ooieiiiiieeee ettt a e e e e e e e e e 266

SYMBOLS | NOSYMBOLS......cootiiiiiiieeeeeeee e 266

TITLE oo ——————————— 267

TYPE | NOTYPE.... ..ttt ee s s e e e e e e aaaaaaae s 267

WORDS32 | WORDIG......cuviiiiiiiiiiiiiieeeeeeeeeeeseseetstaeaaseeeereeaaeaaaeaaeas 267

XREF | NOXRERF......ccii ittt ettt 270

0T [ir= U g T I 1] o TSP 271

Sample Program LiStiNgccuiiiiiiiiiiiiiiie e 271

Symbol and Cross-reference Listingccooevvviiiiiiiieieccenecceiinne, 275

Compilation SUMMATY.........oiiiiiii e e 277

12 Sample Program
INEFOTUCTION. ...t 279
FREQ MOAUIE. ...ttt 279
OPEN MOAUIE. ...ttt e et e e e e 283
PRINT MOGUIE. ...ttt 288
INCIUAE FHlES ... e e e e 294
13 Extended Segmentation Models
OVBIVIBW ...ttt e e e e e et e e et et et bbb r e e e e e e e eeeeennnenes 297
INEFOAUCTION. ...ttt e e e e e e e e e e e 298
Segmentation Controls Architecture OVerview..........cccccceeeeeeeeiieeeeeeeee, 299
USING SUDSYSIEMIS.....ciiiiiiiiiiiiiie et e e e et eaaaeeae s 303
OPEN SUDSYSIEMS.....uviiiiiiiieeee et e et e e e e e 308
CloSed SUDSYSIEMIS. .. .uiiiieeiiiiiieee e e e e e eeeeees 309
Communication Between SubSysStems.........ccccevvviiiiiee, 310
5} 1= G ORI 310
Placement of Segmentation CONtrolSuvvvviieiiiiiiiiiiiiiiiieeeeeeeeens 313
EXPOrting ProCEAUIESuuvueiiiiiiii e s 314
Large MatriX EXamPle........coovuiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 316
12 Contents

14

Error and Warning Messages

PL/M Program Error and Warning Messagesc..uueieeeeeeieeniennnnnnn.
Fatal Command Tail and Control Error Messagescccceeeveeeeeenn.
Fatal Input/Output Error MESSages......cooovveeeeiiiieeeeeeeeeeeeeeeeeeeeeeeeeee
Fatal Insufficient Memory Error MeSSages.........ccccvvvvveviiiiiiiiiiiieeeeeen
Fatal Compiler Failure Error MESSAgESuuvuvrrrrrmrrmmmiiinnniiinnnneeens
Insufficient Memory Warning MesSagesccoovvvvviiiiiiiiiiieeeeeeeeeeeeeeenn

PL/M Reserved Words and Predeclared Identifiers

(o]0 [UTo11To] o NN

PL/M Program Limits

343

Grammar of the PL/M Language

LeXiCal EIBMENTScceieiiiiee e e e e

S (1] 00 1= TP
PL/M Text Structure: Tokens, Blanks, and Comments..................
Modules and the Main Programi............ccccoceooiiininnniineeeeeeeeeeeeeee e
DECIAIALIONS ..vui it
DECLARE Statement.......c.oiiviiiiiiiie e
Variable EIemMeNtS.......cociviiiiiiieee e
Label EI@MENT. ...t
Literal EIEMENES ...
Factored Variable Element..........cocoovviiiiiiiiiiiieeeieeeeeeee e,
Factored Label Elementoovviiiiiiiiiiie e,
The StrUCIUIE TY P it
Procedure Definitioncooeiiiiiiiiiiie e
ALTIDULES ..o

INTERRUPT. ..ottt
INAlIZALION e

PL/M-386 Programmer’s Guide Contents

13

321
335

336
336
337
337

339

[01 R 352
BaSIC STAtEMENTS ...vvuiiiiiiiiiii et 357
Assignment StatemMeNtooviiiiiiiii e 352
CALL Statement... ..o 352
GOTO StatEmMENT .. .o e e 352
NUIL STAtEMENT.. ..ot e 352
RETURN Statementccoviiiiiiiici et s 352
Microprocessor-dependent StatementS.............uveveeeeviiiiiieieeiiiiininn 353
SCOPING STALEMENLS ...oiiiiiiieiiieieieei it e e e e e e e e e e e e e ee e e e eeeeeanene 354
Simple DO StateMENTcevvvviiiiiiiiiiiiee e e e e e e 354
DO-CASE Statement.......ccouiiiiiiii e 354
DO-WHILE Statementccoovviiiiiiiici e 354
Iterative DO StatemMeNtcvviiiiiiiciie e 354
END Statement......cccuiiiiiiiiciiee e 354
Procedure Statement........cooocuviiiiiieeeiie e 354
ConditioNal ClAUSEuuiiiiieiiee e 355
(D 1@ =1 (o lod PPN 355
SIiMple DO BIOCKS ...t e 355
DO-CASE BIOCKS.ttt 355
DO-WHILE BIOCKSciiviiiiieeee e e 355
Iterative DO BIOCKS.......uiiiiiiiiiii et 355
0] (=TS T] 0] = 356
PSS et 356
(O] 1] 1= 1 356
Variable RefErenCeS......ccocvvii i, 356
Location REfEIENCEScovviiieieeeee e 356
L0 o= =1 (0] = 356
Structure Of EXPreSSIONS ...uvuiii it e e 357
D Differences Between PL/M Compilers
Differences between PL/M-86 and PL/M-80.........c.ccoeevieiiiiiiieiinnciineenn. 359
Compatibility of PL/M-80 Programs and the PL/M-86 Compiler................ 360
Differences between PL/M-286 and PL/IM-86...........c.cccccvvviiiiiiiiiinneninnns. 360
Compatibility of PL/M-86 Programs and the PL/M-286 Compiler.............. 361
Differences between PL/M-386 and PL/M-286...........cccccoveeviveeeiinnnnnnn, 361
Compatibility of PL/M-286 Programs and the PL/M-386 Compiler...... 362
E Character Set 363

14

Contents

F Linking to Modules Written in Other Languages
INEFOTUCTION .t e e 369
(01|11 o IR T=To [T=Y o o] = TR 371
Procedure ProlOQUEuuuuuiiiiiiiiiiiiieiiieee e ee e s e 373
Procedure EPIlOQUEoouviiiiiiiiiiii et e e e e e e e e eeeaaae 375
REGISTEI USAQE ..o iiiiiiiiiieeeiite ettt a et a e e e e e e e e e eeeeeeeeaernees 376
Segment Name CONVENLIONSccevvviiiiiiiiiiiiiiiiiesnase e e e e e e e e e e e enmmmoneee 379
C Language Compatibilitycooeeeiiiiiiiiiiiieeei e 380
DeSIgN GUIAEIINES ..ottt e e e 381
Code EXaMPIE......cooviiiiiiiiiee e 381
Compiling C and PL/M MOAUIES.............uuuuiimiiiiiiiiieeses e aa e 385
G Run-time Interrupt Processing
General INfOrMatioNoooiiiiiiii e 387
The Interrupt Descriptor Tableuvviiiiiiiiiiiiii e s 388
Procedures and Tasks 388
Interrupt Procedure Prologue and Epiloguecovvvvvviviviviiiiiiiiiiiiiiiieeee, 389
INEEITUPE TASKS ...ttt e e e e e e e e e e aeeees 392
Exception Conditions in REAL ArithmetiCccceeeeeeeee 394
Invalid Operation EXCEPLION..........ccovvvvviiiiiiiiiiiiiiiiiiieiee e 396
Denormal Operand EXCEPLIONcooviiiiiiiiiiiiiiiiiiiiiiir e 397
Zer0 Divide EXCEPLIONvvveiiiiiiiiiiiiie ettt e e e e 397
OVErflOW EXCEPLION ..uuiiiiiiiii i 397
Underflow EXCEPLIONovvviiiiiiiiiiiieiis e 398
PrecisSion EXCEPLION......uuuuiiii ettt e e e e e eeeeeaeeees 398
Writing a Procedure to Handle REAL INterrupts ..., 399
H Run-time Support for PL/M Applications
Numeric Coprocessor Support Libraries...........covviiiiiiiiiiiieei e 405
PL/M SUPPOIt LIDFAri©S......cevvivveeeiiiviiiiiiiiiesiise s e e e e e e e e e eeeaeeeeeeeeeeeeeeessesnene 406
Index 407
Service Information ..., Inside Back Cover

PL/M-386 Programmer’s Guide Contents 15

Tables

1-1.
2-1.
3-1.
3-2.
3-3.
5-1.
5-2.
5-3.
9-1

11-1.
11-4.
11-5.
13-1.
13-2.
13-3.

E-1.
F-1.
F-2.
F-3.
F-4.
G-1.

16

Assemblers, Debuggers, and ULIlItIeS ...
PL/M Special CharacCters.............ouvviiiiiiiiiiiiiiiiiiiiinsae e ee e e e eaeeaaaaaaaeaaeeenees
Declaration EIEMENTSoiiee i
DLz B Y 1T PP PTTUPPTTRUPIN
WORD32 | WORD16 Data Type Mapping..........ceeeeeeerererremmnaaaeereeeens 64
OPperator PreCEUBNCEcooeeiiieiieeee ettt e e e
Summary of Expression Rules for PL/IM-386..............ccuvviiiiiiiiiieeeeeennn, 92
Implicit Type Conversions in Assignment Statements for PL/M-386... 97
Value and Type Conversions for PL/IM-386...............ccvieeiiiiiiiiieeeneeeeennns 153
ComMPIIEr CONLIOIS ...t
WORD32 | WORD16 Data Type Mappingccceeeeeeeeenmmemmnnnnnnneennnn 268
WORD32 | WORD16 Built-in Mappingccooeveeeieeiieiieeeeeeee e 269
Segmentation Controls and Memory Partitions............ccccvvvvviiiiiiiiieeeeeennnn.
Segmentation Controls, Register Addresses and Pointer Values..................
Intel386 and Intel486 Microprocessor-specific ES Register

Segmentation Controls, Register Addresses and Pointer Values..............
(O g T U= Tod (=] 1= OSSR
Stack Representation for PL/M Parameters........cccoeveevvvviiiiiiieeveeeiiiie e
Summary of the Intel386 Microprocessor Register Usage...........ccccevvvvvvnnnn.
Registers Used to Hold Simple Data TYpesccceeveeeeiivviiiiiiie e,
Summary of PL/M-386 Segment Names.........cccoovveevviiiiiiie e eeeeeenen
Exception and RESPONSE SUMMAIYccovviiiiiiiee e eeeee e e e e

Contents

Figures

1-1. 32-bit Protected Mode iRMX Application Development............ccccceeenene.
3-1. Successive Byte References of a StrUCIUIevvvvvvviviviiiiiiiiiiiinn
7-1. INclusive EXtent of BIOCKScoooiiiiiiiieeeee e
7-2. Sample Program Modules lllustrating Valid GOTO Usage........ccccccceveeennnn..
7-3. Sample Program Modules lllustrating Valid GOTO Transfers...........cccc.uue.
10-1. The Hardware Flags RegiSter.........coooeviiiiiiiiiiieeeeeeeeeeeeeeeeeae 190
10-2. The REAL EITOr BYte ...uuiiiii it
10-3. The REAL MOAE WOI.......ccceiiiiiiiieeii et
11-1. Sample Program Using Conditional Compilation (SET control)..................
11-2. Sample Program Showing the NOCOND Control..........ccccccceeees . 230
11-3. Sample Program Showing the OPTIMIZE(0) Controlcccoccvvvvvvvnnnen.
11-4. Sample Program Showing the OPTIMIZE(1) Controlccuvvevveveeeennnnnn.
11-5. Sample Program Showing the OPTIMIZE(2) Control............ccccvvvvvvivivnnnnns
11-6. Sample Program Showing the OPTIMIZE(3) Controlcuvveevveeeeennnnnn.
A = o To = 1 ¢ I] (1 o PP
11-9. Cross-reference LiStiNgG.......ccovuiiiiiiiiiii e
11-10. Compilation SUMMATYccooiiiiii e e
12-1. Source Code for FREQ MOdUIE........ccoieiiiiiiiii e
12-2. Source Code for OPEN Moduleoooeiiiiiiiiieeeeei
12-3. Source Code for PRINT MOAUIEuuuuiiiiiiiiieiieeee e
12-4. Include File -- defNS.iNC ..o
12-5. INCIUdE File == UiNC..ceiiiiiiiiiiiiiiiiee e
F-1. Stack Layout at Point Where a Non-interrupt Procedure is Activated..........
F-2. Stack Layout During Execution of a Non-interrupt Procedure Body............
G-1. Stack Layout at Point Where an Interrupt Procedure Gains Control.............
G-2. Stack Layout during Execution of Interrupt Procedure Body..........ccccc........
G-3. LI To YAV A o o I o] 4= |

G-4. Memory Layout of the REAL Save Area in Protected Mode for the Intel386

Microprocessor...........

PL/M-386 Programmer’s Guide

Contents

21
62
121
128
129

204
205
229

244
247
253
256
272
275
277
280
284
289
294
295
372
374
390
391
401

403

Introduction

This chapter introduces the PL/M-386 compiler and explains the process of
developing software for execution by an Intel38ér Intel486"
microprocessor-based system.

Product Definition

The PL/M-386 compiler is a software tool that translates PL/M source code into a
relocatable object module. The object modules (in OMF386 format) are
compatible with all other Intel OMF386-producing translators, such as ASM386,
iC-386, and Fortran-386.

The PL/M-386 compiler translates a PL/M source text file into an object module
and a listing file. Parts or all of a program can be compiled in a single compilation.
Object modules can then be linked or bound in various combinations to form
different applications. These applications can be run on a DOS host or as part of
the iRMX® Operating System (OS) or its Human Interface layer.

The PL/M-386 compiler also provides a listing output, error messages, and a
number of compiler controls that aid in developing and debugging programs.

|:| Note

For information on invoking the compiler, see Chapter 11,
Compiler Invocation and Controls. That chapter covers
invocation on both iRMX and DOS-hosted systems.

PL/M-386 Programmer's Guide Chapter 1 19

Compatible Assemblers, Debuggers, and Utilities

Table 1-1 shows the compatible Intel assemblers, debuggers, and utilities.
Figure 1-1 shows the role of these software tools in developing an iRMX
application.

Table 1-1. Assemblers, Debuggers, and Utilities

Name for Intel386 and

Tool Intel486 Processors
assembler ASM386

C compiler iC-386

FORTRAN compiler Fortran-386

debuggers System Debugger (SDB)

System Debug Monitor (SDM)
Soft-Scope Il Debugger

binder BND386
librarian LIB386
cross-reference MAP386

These tools support modular application development. Refer to the following
publications for further information:

+ ASMB386 -ASM386 Macro Assembler Operating Instructiansl ASM386
Assembly Language Reference

+ 1C-386 -iC-386 Compiler User's Guide

« Fortran-386 fortran 386 Compiler User's Guide

« SDB and SDM iRMX System Debugger Reference

« Soft-Scope Il DebuggerSoft-ScopeDebugger User's Guide
- BND386 -Intel386 Family Utilities User's Guide

- LIB386 -Intel386 Family Utilities User's Guide

« MAP386 -Intel386 Family Utilities User's Guide

20 Chapter 1 Introduction

Write Source
File With

Text Editor
E

O

l

Translate
With

ASM386

Source
Code

v
O

PL/M-386

O
0

Create and Maintain
Libraries With

Fortran-386-

O

»

0

Correct Errors Found During Translation

Correct Errors Found During Debugging

Combine Into
iRMX 1Il Operating
System With

ICU386 |

LIB386 Bound
@ Modules
0 Bind Object A
A Files With Using
Linkable BND386 | ’(‘)0'0_3"
tion
~. [OMF386 N P
- Object - @ Using
Code D load
Option
Debug Application Y
Software on Target
With
Soft-Scope
n iRMX Target
) System
U > -
———

O Kk

0 Build

Application
System With

BLD386 |,

O
0

(BLD386 Automatically
Invoked by Submit File)

9

Correct Errors Found During Debugging

iRMX
Application
System with
32-bit First
Level
or I/0 Job

Load for On-target
Assembly-language
Debugging Using SDB/SDM
With

Bootstrap
Loader

0

Load for On-target
Symbolic Debugging With

Bootstrap J Sof!-Scope.
Loader 1

> O
i i

Load for Cross-hosted

iRMX
Target System

Symbolic Debugging
With

Soft-Scope §
1]

—>

0

Load into Emulation and Analysis
Tools for Cross-hosted Debugging

= ICU-configurable systems only.

W-3359

Figure 1-1. 32-bit Protected Mode iRMX Application Development

PL/M-386 Programmer's Guide

Chapter 1

21

Advantages of Using the PL/M Language

22

PL/M programs are portable, which means that they are easily transferred from one
microprocessor to another. When using PL/M, you need not be concerned with the
instruction set of the target processor. Additionally, there is no need to be
concerned with other details of the target processor, such as register allocation or
assigning the proper number of bytes for each data item. The PL/M-386 compiler
does these functions automatically. PL/M keywords and phrases are close to
natural English, and many operations (including arithmetic and Boolean
operations) can be combined into expressions. This enables the execution of a
sequence of operations with just one program statement. Data types and data
structures have functional attributes. For instance, in PL/M, the program can be
written in terms of Boolean expressions, characters, and data structures, in additior
to bytes, words, and integers.

Coding programs in a high-level language rather than assembly language involves
thinking closer to the level used when planning the overall system design.
Following is a list of the advantages of using PL/M, and the applications for which
PL/M is best suited:

e PL/M block structure and control constructs aid and encourage structured
programming.

« PL/M has facilities for data structures such as structured arrays and
pointer-based dynamic variables.

- PL/Mis atyped language. The compiler does data type compatibility
checking during compilation to help detect logic errors in programs.

« PL/M data structuring facilities and control statements are designed in a
logically consistent way. Thus, PL/M is a good language for expressing
algorithms for systems programming.

- PL/Mis a standard language used for application development on Intel
systems. PL/M programs are compatible across the Intel386 and Intel486
family of microprocessors.

- PL/M was designed for programmers (generally systems programmers) who
need access to the microprocessor's features such as indirect addressing and
direct 1/O for optimum use of all system resources.

In comparison with other languages, PL/M has more features than BASIC and is a
more general-purpose language than either FORTRAN (best suited for scientific
applications) or COBOL (designed for business data processing). PL/M accesses
the microprocessor hardware features more easily than C. Additionally, in
comparison to C, PL/M offers the ability to nest procedures and the program
structure is easier to maintain.

Chapter 1 Introduction

The Structure of a PL/M Program

PL/M is a block-structured language; every statement in a program is part of at
least one block. A block is a well-defined group of statements that begins with a
DOstatement or a procedure declaration and ends wiEiNBstatement.

A module is a labeled simpizOblock. A module must begin with a labele®
statement and end with &NDstatement. Between t®statement and tHeND
statement other statements provide the definitions of data and processes that make
up the program. These statements are said to be part of the block, contained within
the block, or nested within the block. A module can contain other blocks but is
never itself contained within another block. See Chapter 6 for a description of
DOblocks.

Every PL/M program consists of one or more modules, separately compiled, each
consisting of one or more blocks. The two kinds of block®arklocks and
procedure definition blocks.

A procedure definition block is a set of statements beginning with a procedure
declaration and ending with &@NDstatement. Other declarations and executable
statements can be placed between these points, and are used later when the
procedure is actually invoked or called into execution. The definition block is a
further declaration of everything the procedure will use and do.

PL/M-386 Programmer's Guide Chapter 1 23

Overview of PL/M Statements

The two types of statements in PL/M are declarations and executable statements.
All PL/M statements end with a semicolan.(

Declaration Statements

The following is a simple example of a declaration statement:
DECLARE WIDTH BYTE;

This statement introduces the identiM@iDTHand associates it with the contents
of 1 byte (8 bits) of memory. Now, rather than having to know the memory
address of this byte, you can refer to it by the narmzTH

A group of statements intended to perform a function (i.e., a subprogram or
subroutine) can be given a name by declaring them to be a procedure:

ADDER_UPPER: PROCEDURE (BETA) BYTE;

The statements that define the procedure follow the semicolon. This block of
PL/M statements is invoked from other points in the program, and may involve
passing parameters to the program. When a procedure has finished executing,
control is returned immediately to the main program. This capability is the major
feature enabling modular program construction.

Executable Statements

24

The following is an example of an executable statement:
CLEARANCE = WIDTH + 2;

The two identifiersCLEARANCEINdWIDTH must be declared prior to this
executable statement, which produces machine code to retrieinevalue
from memory. Once the/IDTHvalue is obtained, 2 is added to it and the sum is
stored in the memory location fGLEARANCE

For most purposes, it is unnecessary to think in terms of memory locations when
programming in PL/M.CLEARANCENdWIDTHare variables, and the assignment
statement assigns the value of the expressi@TH + 2 to the variable

CLEARANCE The compiler automatically generates all the machine code necessary
to retrieve data from memory, to evaluate the expression retrieved, and to store the
result in the proper location.

Chapter 1 Introduction

Executable statements are discussed in the following chapters:

Assignment Statement Chapter 5
CALL Statement Chapter 8
CAUSESINTERRUPT Statement Chapter 10
DISABLE Statement Chapter 10
DO CASE Statement Chapter 6
DO WHILE Statement Chapter 6
ENABLE Statement Chapter 10
END Statement Chapter 6
Executable Functions Chapter 9
GOTO Statement Chapter 6
HALT Statement Chapter 10
IF Statement Chapter 6
Iterative DO Statement Chapter 6
Nested IF Statement Chapter 6
RETURN Statement Chapter 8
Simple DO Statement Chapter 6

Built-in Procedures and Variables

PL/M provides a variety of built-in procedures and variables. These include
functions such as shifts and rotations, data type conversions, executable functions,
block I/O, real math, and string manipulation (see Chapters 9 and 10).

Overview of PL/M Expressions

A PL/M expression is made up of operands and operators, and resembles a
conventional algebraic expression.

Operands include numeric constants (such as 3.78 or 105) and variables (as well as
other types discussed in Chapters 3 and 5). The operators inchndie for

addition and subtraction,and/ for multiplication and division, ansiOCfor

modular arithmetic.

As in an algebraic expression, elements of a PL/M expression can be grouped with
parentheses.

PL/M-386 Programmer's Guide Chapter 1 25

An expression is evaluated using unsigned binary arithmetic, signed integer
arithmetic, and/or floating-point arithmetic, depending on the types of operands in
the expression (see Chapters 3 and 5).

Input and Output

PL/M does not provide formatted I/O capabilities like those of FORTRAN, BASIC,
or COBOL. However, PL/M does provide built-in functions for direct I/O that do
not require operating system run-time support. The PL/M-386 compiler has
built-in functions which allow for single-byte, half-word or word 1/O, as well as for
block I/O (for strings of bytes, half-words, or single-words). For detailed
information on these 1/O functions, see Chapter 10.

26 Chapter 1 Introduction

Language Elements

PL/M-386 programs are free-form, meaning there are no restrictions on where you
place a statement on a line. You can use as many blanks (spaces) as necessary to
format your program for readability.

Character Set

The PL/M-386 source program character set is the following subset of the ASCII
character set:

A.Z
a.z
0..9

and the following special characters:
= /()+-"*, <>, @8 _

and the blank (space), tab, carriage-return and line-feed characters. (Appendix E
indicates if each ASCII character is a member of the PL/M character set and, if so,
the hexadecimal value.)

PL/M does not distinguish between uppercase and lowercase letters, except in
string constants. For example, the variable natyesandXYZ are the same. (In
this manual, all PL/M syntax is uppercase, by convention.)

PL/M-386 Programmer's Guide Chapter 2 27

Special characters have particular meaning in PL/M, as explained throughout this
manual. Table 2-1 summarizes the meaning of special characters in PL/M.

Table 2-1. PL/M Special Characters

Symbol Name Use

= equal sign Two distinct uses:
(1) assignment operator
(2) relational test operator

= assign embedded assignment operator
@ at-sign location reference operator
dot Three distinct uses:

(1) decimal point
(2) structure member qualification
(3) address operator

/ slash division operator

I* beginning-of-comment delimiter

* end-of-comment delimiter

(left parenthesis left delimiter of lists, subscripts, some expressions
) right parenthesis right delimiter of lists, subscripts, some expressions
+ plus addition or unary plus operator

- minus subtraction or unary minus operator

' apostrophe string delimiter

* asterisk Two distinct uses:

(1) multiplication operator
(2) implicit dimension specifier

< less than relational test operator

> greater than relational test operator

<= less or equal relational test operator

>= greater or equal relational test operator

<> not equal relational test operator

: colon label terminator

; semicolon statement terminator

, comma list element delimiter

_ underscore significant character in identifier

$ dollar sign Two distinct uses:
(1) non-significant character embedded within number
of identifier
(2) significant as the first character on a control line in a
source file

28 Chapter 2 Language Elements

The PL/M compiler treats multiple contiguous blanks in PL/M source programs as
single blanks, by ignoring all the blanks except the first one.

The compiler produces an error or warning message whenever it encounters a
character other than those described above in a source program.

In addition to the source character set, PL/M allows the use of special character sets
(such as Kaniji characters), located from 0080H through 00FFH (excluding 0081H).

Tokens, Separators, and the Use of Blanks

The smallest meaningful unit of a PL/M statement is a token. Every token belongs
to one of the following classes:

« Identifiers
 Reserved words

- Simple delimiters (all of the special characters, except the dollar sign, are
simple delimiters)

« Compound delimiters (combinations of two special characters):
<> <=, > =[x H

« Numeric constants

« Character string constants

It is usually clear where one token ends and the next one begins. For example, in
the assignment statement:

EXACT=APPROX*(HEIGHT-3)/SCALE;

EXACT APPROXHEIGHT, andSCALEare identifiers3 is a numeric constant, and
all the other characters are simple delimiters.

If a delimiter (simple or compound) does not naturally occur between two tokens,
you must separate them with one or more blank(s).

A comment can also be used as a separator.

Blanks can be inserted around any token without changing the meaning of the
PL/M statement. Thus, the assignment statement:

EXACT = APPROX * (HEIGHT - 3) / SCALE;
is equivalent to:

EXACT=APPROX*(HEIGHT-3)/SCALE;

PL/M-386 Programmer's Guide Chapter 2 29

Identifiers and Reserved Words

Identifiers name variables, procedures, symbolic constants, and statements.
Statement identifiers are called labels. Identifiers can be up to 31 characters long.
The first character must be alphabetic or the underscprar(d the remaining
characters may be alphabetic, numeric, or the underscore.

You can use the dollar sign character to improve the readability of an identifier or
constant, but the dollar character is not meaningful to the compiler. An identifier
or constant containing a dollar sign is equivalent to the same identifier without the
dollar sign. Note that you must not use a dollar character in a procedure name
within a subsystem definition. See Chapter 13.

Examples of valid identifiers are:

INPUT_COUNT

X

GAMM

LONGIDENTIFIERNUMBER3
LONG$$$IDENTIFIER$$$SNUMBER$$$3
_MAIN

INPUT$COUNT

INPUTCOUNT

The long identifiers are identical to the compil@®MPUT$COUNTandINPUTCOUNT
are interchangeable, but are different frddRUT_COUNT

Identifiers must be distinct from reserved words. If you want to use PL/M built-in
procedures and variables, the identifiers in your source program must be distinct
from the built-ins' predefined identifiers. Appendix A lists the reserved words and
predefined identifiers.

Constants

30

A constant is a value that does not change during a program'’s execution. The thre
types of constants are whole-number constants, floating-point constants, and
character strings.

Chapter 2 Language Elements

Whole-number Constants

Whole-number constants can be binary, octal, decimal, or hexadecimal numbers.
Specify the base of these constants by append®@aD, or H suffix. The

compiler interprets numbers without a base suffix as decimal numbers. When they
encounter characters that are invalid in the specified (or assumed) base, the
compiler produces appropriate messages. If a constant contains characters invalid
in the designated number base, it will be flagged as an error.

In PL/M-386, a whole-number constant can be an 8-bit, 16-bit or 32-bit value. It
can also be a 64-bit value. The range of whole-number constants is non-negative.
(The minus sign in front of a whole-number constant is not part of the constant.)

The first character of a hexadecimal number must be a numeric digit to avoid
looking like an identifier. For example, write the hexadecimal form of the decimal
value 163 as 0A3H (rather than A3H); otherwise the compiler will interpret it as an
identifier.

Examples of valid whole-number constants are:
12AH 2 33Q 1010B 55D 0BF3H 65535 7770 3EACH OF76CO5H
Examples of invalid whole-number constants are:

12AF Hexadecimal digits used without arsuffix, and invalid in the default
decimal interpretation.

12AD The finalD could be a suffix but tha is not a decimal digit. If
hexadecimal is intended, a firtals needed.

11A2B A and2 are not valid binary digits. If hexadecimal is intended, a final
His necessary.

2ADGH Gs not a valid hexadecimal digit.

For example, the maximum whole-number 16-bit constant is:
2%%16-1 = 1111$1111$1111$1111B = 177777Q = 65535D = OFFFFH

The maximum whole-number 32-bit constant is:

2032-1=1111$1111$1111$1111$1111$1111$1111$1111B
= 37777777777Q
= 4294967295D
= OFFFFFFFFH

PL/M-386 Programmer's Guide Chapter 2 31

Floating-point Constants

The presence of a decimal point in a decimal constant creates a floating-point
constant. Floating-point constants are representBé i precision (see Duty
Types). Only decimal real constants are allowed.

At least one decimal digit (e.g., 0) must precede the decimal point. A fractional
part is optional after the decimal point, as is the base-ten exponent, which is
indicated by the letter E. This exponent must have at least one digit. Note that no
fractional exponents are possible.

In PL/M-386, the range is -2**(+128) to -2**(-126), zero, +2**(-126) to
+2**(+128). This range is approximately -3.4 x 10**38 to -8.4 x 10**(-37), zero,
and 8.4 x 10**(-37) to 3.4 x 10**38.

The following are examples of valid floating-point constants:
530 176.0 1.88 3.14159 16. 222.2

53.0E-1 1.760E2 0.188E1 314159.E-5 1.6E+1 2.222E+2

Note that plus signs do not change the meaning of exponents.
The following are examples of invalid floating-point constants:

6 No decimal point

1.3AH Hexadecimal not allowed in floating-point constants
10.011B Binary not allowed

7.52Q Octal not allowed

4.8E1AH/2 Only decimal constants in exponents; no hexadecimal, no expressions,
no fractions

32 Chapter 2 Language Elements

Character Strings
Character strings are printable ASCII characters enclosed within apostrophes.
There are two types of character strings: 1) string constants and 2) character
constants. A string constant is used to initialize variables or to pass a pointer. The
maximum length of a string constant is 255. A character constant is used in
expressions, and its value should fit into a double or machine word (32 bits). A
string used as a character constant can contain from one to four characters.

To include an apostrophe in a string, write it as two apostrophes (e.g., the string

"Q' comprises 2 characters, an apostrophe followed by a Q). Values 0080H
through O0FFH (excluding 0081H) can be used in a quoted character string. Spaces
are allowed but line-feeds are not. The compiler represents character strings in
memory as ASCII codes, one 7-bit character code to each 8-bit byte, with a
high-order zero bit. Strings of length 1 translate to single-byte values. Character
constants of length 2 translate to 16-bit values, and those of length 3 or 4 translate
to 32-bit values. For example:

'A' is equivalent t@l1H

'AG' is equivalent t@1147H

'AGR' is equivalent t@14752H
'AGRX' is equivalent t@1475258H

Therefore, character constants can be used as 8-bit, 16-bit, or 32-bit values.
Character constants longer than 4 characters exceed the 32-bit capacity.

See also Appendix E, Character Set.

Comments

In PL/M, a comment is a sequence of characters delimited on the left by the
character paif and on the right by the character pair These delimiters

instruct the compiler to ignore any text between them and to consider such text as
not part of the program.

A comment can contain any printable ASCII or special character and can also
include space, carriage-return, line-feed, and tab characters. If you embed a
comment in a character string constant, it becomes part of the constant. A
comment can appear anywhere that a blank character can appear except embedded
within a token.

The following is an example of a PL/M comment:

[*This procedure copies one structure to another.*/

In this manual, comments are presented in lowercase to distinguish them visually
from program code, which is presented in uppercase.

[

PL/M-386 Programmer's Guide Chapter 2 33

Data Declarations, Types, 3
and Based Variables

In PL/M-386, you can declare symbolic names for variables, constants, procedures
and statements (labels). For each symbolic name, there must be one declaration at
the beginning of the block containing the name, or in an outer, enclosing block. A
declaration consists of an identifier, type, attributes and/or location. Multiple
declarations of a name in a block are invalid. Required and optional declaration
elements are shown in Table 3-1.

Table 3-1. Declaration Elements

Declaration Must Use Can Use
Variable BYTE, INTEGER, CHARINT, linkage attributes:** PUBLIC or
Names SHORTINT, LONGINT, EXTERNAL; or location
OFFSET, WORD, QWORD, attributes: AT (location
HWORD, DWORD, REAL, reference) variable initialization
STRUCTURE, ADDRESS* attribute: INITIAL (value-list)
Constant type, as above, and constant linkage attributes as above
Names initialization attribute: DATA
(value-list)
Label Names LABEL linkage attributes as above
Macros LITERALLY 'string'

*

ADDRESS is equivalent to the OFFSET data type.
Placement is important (see Variable Declaration Statements).

The declaration of a variable or constant identifier must precede use of the
identifier in an executable statement. Although it is not good programming
practice, you can call a reentrant procedure before defining it. You can either
explicitly declare a statement label, or implicitly declare it by attaching it to an
executable statement with a colon character.

PL/M-386 Programmer's Guide Chapter 3 35

Variable Declaration Statements

A DECLAREstatement is a honexecutable statement that introduces some object or
collection of objects, associates names (and sometimes values) with them, and
allocates storage if necessary. The most important UBEQIfARES for declaring
variables.

A variable can be a scalar (i.e., a single quantity), an array, or a structure.

A scalar variable is a single object whose value may not be known at compile time
and may change during the execution of the program.

An array is a list of scalars of the same data type, referred to by one identifier and
distinguished by the subscript associated with each scalar.

A structure is an aggregate of scalars, arrays and/or structures with the same main
identifier. The members of a structure are differentiated from each other by their
own member-identifiers or field names. For exampPLOYEES.NAM&ould

refer to theNAMHield within the structur&MPLOYEES

Sample DECLARE Statements

36

Note that when using linkageBLIC/EXTERNAL) and initialization
(DATA/INITIAL) attributes, the order of declaration is critical. Place linkage
attributes before the initialization attribute, and after the type declaration.

For example:
DECLARE a$p BYTE PUBLIC INITIAL(4);
The following statements declare scalars:

DECLARE APPROX REAL;
DECLARE (OLD, NEW) BYTE;
DECLARE POINT WORD, VAL12 BYTE;

The first example declares a single scalar variable of R, with the identifier
APPROX

The second example declares two scaar®andNEWboth of typeBYTE This
kind of statement is called a factored declaration, which is similar to the sequence:

DECLARE OLD BYTE;
DECLARE NEW BYTE;

A factored declaration (for structures and arrays) guarantees that the bytes will be
contiguously located in memory, which may be useful in real-time applications
(see also Combining DECLARE Statements). Separate declaration statements do
not guarantee this.

Chapter 3 Data Declarations, Types, and Based Variables

The third example declares two scalars of different typ&aNT is of typeWORP
andVAL12 is of typeBYTE

The following statements declare arrays:

DECLARE DOMAIN (128) BYTE;
DECLARE GAMMA (19) DWORD;

The first example declares the arIyMAIN with 128 scalar elements of type

BYTE These elements are distinguishable by subscripting the D@maIN using

the range 0 to 127 for the subscripts. For example, the third elen2otvaiN

can be referred to &0OMAIN(2). The first element of every array has subscript 0.

The second example declares the agawMAwith 19 scalar elements of type
DWORDThe subscripts for this array can range from 0 to 18.

The third example declares a structure with two scalar members:
DECLARE RECORD STRUCTURE (KEY BYTE, INFO WORD);

The two members areBYTEscalar that can be referred toRISCORD.KEYand a
WORDBcalar that can be referred toRISCORD.INFO The word named by
RECORD.INFQis the second and third bytes of this structure.

Structures are discussed in further detail in Chapter 4.

Results of Variable Declarations
Valid variable declarations result in the following:
- The name is given a unique address.
« The variable is considered to have the attributes declared.

All subsequent uses of the variable in the block where it is declared refer to the
same address (except for based variables, discussed in Based Variables).

A valid variable declaration also requires all references to the variable to conform
to the rules for the current attributes (i.e., those attributes having priority in the
current block). Thus, the compiler can flag a large variety of errors caused by
incompatible references within the current block. The variable reference must be
consistent with the variable declaration.

PL/M-386 Programmer's Guide Chapter 3 37

Combining DECLARE Statements

A separat®ECLAREstatement is not required for each declaration. For example,
instead of writing the tw@ECLAREStatements:

DECLARE CHR BYTE INITIAL ('A’);
DECLARE COUNT INTEGER;

Both declarations can be written in a singEECLAREstatement, as follows:
DECLARE CHR BYTE INITIAL (‘A"), COUNT INTEGER;

This declare statement contains two declaration elements, separated by a comma.
A declaration element is the text for declaring one identifier (or one factored list of
identifiers). EveryDECLAREStatement contains at least one declaration element.

If a DECLAREstatement contains more than one declaration element, they are
separated by commas.

Most of the examples shown previously have only one declaration element in each
DECLAREstatement. In the preceding example, the@e BYTE INITIAL
(A is one declaration element; the t&UNT INTEGERS another.

Another way of combining declaration elements is called a factored declaration as
indicated above in this section. For example, the non-factored declarations:

DECLARE A BYTE, B BYTE;
DECLARE C WORD, D WORD;
DECLARE E DWORD, F DWORD;

can be combined as:
DECLARE (A,B) BYTE, (C,D) WORD, (E,F) DWORD;

In each factored declaration, the allocated locations are contiguous. Elements
declared in a nonfactored declaration statement are not necessarily contiguous.

Use factored declarations if the order in which variables are allocated is important.

Variables declared in a factored declaration (i.e., variables within a parenthesized
list that are not based, are not used as parameters, or @€TERNAL, are stored
contiguously in the order specified. (If a based variable occurs in a parenthesized
list, the variable is ignored when storage is allocated.)

The declaration elements in a sin@IECLAREStatement are independent of each
other, as if they were declared in sepaBEE€LAREtatements.

38 Chapter 3 Data Declarations, Types, and Based Variables

Initializations

Initialization guarantees that the variables being initialized have a particular value
before program execution begins. Every constant should be initialized. Variables
can also be initialized. There are no default values for constants or variables. Of
course, variables can be initialized by an assignment statement such as the
following:

Pl =3.1415927; /* Pl must first be declared REAL */
VAR13 = 10; /* VAR13 must be declared earlier */

However, in PL/M-386, the compiler can set up these values during the
compilation rather than using both instruction space and execution time to initialize
variables in the program.

There are two kinds of compile-time initialization®lITIAL , used with variables,
andDATA used for constantsDATAIs explained in greater detail later in this
section.) In both initializations, the initialization attribute is placed after the type
in the declaration. For example:

DECLARE FAMILY WORD INITIAL (2);

Additionally, when using a linkage attributeUBLIC/EXTERNAL), place the
linkage attribute after the type declaration and before the initialization attribute.

INITIAL causes initialization to occur during program loading for variables that
have storage allocated for them. Such variables can subsequently be changed
during execution (just as any other variable). These variables will not be
reinitialized on a program restart.

The following rules apply to botiNITIAL andDATA
« INITIAL andDATAcannot be used together in the same declaration.

e INITIAL can occur only in declarations at the outer level of a moda.A
however, can occur in declarations at any level.

« No initializations are permitted with based variables, formal parameters (see
Chapter 8), or with thEXTERNALattribute (see Chapter 7).

« EitherINITIAL or DATAcan follow use of thaT attribute. However, if this
use OfINITIAL or DATAcauses multiple initializations, the result cannot be
predicted.

PL/M-386 Programmer's Guide Chapter 3 39

- The initializing value should fit into the space allocated by the data type. The
only exception is initialization diwORBhen the offset is derived with a dot
operator. For example:

DECLARE HH HWORD INITIAL (.B)

In this case, the real offset is truncated to give the lower 16 bits. A warning
message is issued when@RFSETvalue is truncated.

The general form of theNITIAL attribute is as follows:
INITIAL (value-list)
Where:
value-list is a sequence of values separated by commas.

Values are taken one at a time from the value list and used to initialize the
individual scalars being declared. The initialization is performed in the same
manner as an assignment. Initial values for members of an array or structure must
be specified explicitly. For character string constants, the characters are taken one
at a time to initialize an 8-bit scalar, two at a time to initialize a 16-bit scalar, four
at a time to initialize a 32-bit scalar, and eight at a time to initialize a 64-bit scalar.

The expressions used with tiTIAL attribute have the following restrictions:

« For real variables only: An expression, which can contain a unary + or -
operator, can only be a single floating-point constant which can be used to
initialize aREALscalar only.

« ForPOINTERvariables only: A restricted expression can be a location
reference formed with th@operator, which must refer to a variable already
declared or to a constant list.

« For all other types (exceBELECTOR A restricted expression can be a
constant expression containing no operators except + or -. A constant
expression has only whole-number constants as operands (e.g., 2048, 256+5),
as explained in Chapter 5. The constant expression is evaluated as if it were
being assigned to the scalar being initialized, using the rules described in
Chapter 5.

« ForOFFSETor WORDMariables only: A constant expression containing only the
+ and - operators, and operands that can be whole-number constants.&nd/or "
location references. If the expression contains a "." location reference, only
the + operator can precede it. Any combination of + and - operators can

follow the "." location reference. For exampbe:xyz-10

Chapter 3 Data Declarations, Types, and Based Variables

The declaration:

DECLARE THRESHOLD BYTE INITIAL (48);
declares th&YTEscalarTHRESHOL@NA initializes the scalar to a value of 48.
The declaration:

DECLARE EVEN (5) BYTE INITIAL (2, 4, 6, 8, 10);

declares th&YTEarrayEVENand initializes its five scalar elements to 2, 4, 6, 8,
and 10, respectively.

The declaration:

DECLARE COORD STRUCTURE (HIGH$BOUND WORD,
VALUE (3) BYTE,
LOW$BOUND BYTE) INITIAL (302, 3, 6, 12, 0);

declares the structu@OORM@Nd initializes it as follows:

COORD.HIGH$BOUNM 302
COORD.VALUE(0) to 3
COORD.VALUE(1)t0 6
COORD.VALUE(2) to 12
COORD.LOW$BOUN®O

If a string occurs in the value list, it is taken apart from left to right and the pieces
are stored in the scalars being initialized. One character is stored in each BYTE
scalar, two characters in each WORD scalar, and four in each DWORD scalar. For
example:

DECLARE GREETING (5) BYTE AT (@HI) INITIAL (HELLOY);

CausesGREETING(0) to be initialized with the ASCII code for GREETING(1)
with the ASCII code for E, and so on.

All the examples shown previously have had value lists that match up one-for-one
with the scalars being declared. The value list can have fewer elements than are
being declared. Thus:

DECLARE DATUM (100) BYTE INITIAL (3, 5, 7, 8);

will work. The first four elements of the arr@ATUMare initialized with the four
elements in the value list, and the remainder of the array is left uninitialized.
However, the value list cannot have more elements than are being declared.

PL/M-386 Programmer's Guide Chapter 3 41

The Implicit Dimension Specifier

Often, when initializing an array, you want the array to have the same number of
elements as the value list. This can be done conveniently by using the implicit
dimension specifier in place of an ordinary dimension specifier (a parenthesized
constant). The implicit dimension specifier has the form:

*)
Also use the implicit dimension specifier to define an external or based array

whose precise number of elements is either unknown or insignificant. Thus the
declaration:

DECLARE FAREWELL(*) BYTE PUBLIC INITIAL (GOODBYE, NOW");

declares a publiBYTEarray,FAREWEL| with enough elements to contain the
string'GOODBYE, NOW'(namely 12), and initializes the array elements with the
characters of the string. To reference this array in another program module,
declare it as follows:

DECLARE FAREWELL(*) BYTE EXTERNAL;
See Chapter 7 for more information abBUBLIC andEXTERNALattributes.

Note that theNITIAL andDATAvalue-lists must not be present when the
implicit dimension specifier is used with an external array; othermsBAL
andDATAvalue-lists are required. Also, theENGTH LAST, andSIZE

built-ins cannot be used on an external array that was declared with the implicit
dimension specifier.

The following is an example of an implicit dimension in a based declaration:
DECLARE X BASED P(*) BYTE;

The implicit dimension specifier cannot be used after the parenthesized list of
identifiers in a factored declaration (unless it is decl&€TERNAL. Additionally,

an implicit dimension specifier cannot be used to specify an array that is a member
of a structure.

The implicit dimension specifier can be used with any value list; it is not restricted
to strings.

42 Chapter 3 Data Declarations, Types, and Based Variables

Names for Execution Constants: the Use of DATA

A variable is the name of a single data item intended to be used and altered by a
program. If the variable is not altered during execution, it is a constant.

For example, the formula for the circumference of a ciiRlbe 2 x pi) or (radius x 2
x pi) could be written in PL/M as:

C=R*2.0*3.14159;

in which C andR would be variables. The declarations @andR would have to
precede the executable statement, and could appear as:

DECLARE (C, R) REAL;

If pi is used often enough, simplify writing of statements by uBintp declare a
symbolic name with that value as follows:

DECLARE Pl REAL DATA (3.1415927);

An array of constants requires a list of values. For example:

DECLARE FIBONACCI(9) BYTE DATA (0,1,1,2,3,5,8,13,21);

The form and use of tHeATAinitialization is identical to that dNITIAL except
for the following differences:

DATAcauses storage to be allocated in the program's constant data segment.
The content and meaning of the name cannot be changed during execution.
The name should never appear on the left-hand side of an assignment
statement. This is not the case WRINTIAL

DATAInitializations can be used in declarations at any block level in the
program.INITIAL can occur only at the module level, that is, inside the
DGblock that is the module itself, and outside any sub-blocks that the module
may contain.

If the keywordDATAIs used in @UBLIC declaration when compiling with the
ROM option,DATAmMust also be used in tEXTERNALdeclaration of program
modules that reference it. However, vadue-ist can be used since the
data is defined elsewher&NITIAL cannot be combined wWiEXTERNAL

Use of the AT attribute forces a name to be associated with a specific memory
location, which can defeat the purpose of g Ainitialization. This will not
happen withNITIAL unless the variables and locations are explicitly

redefined using multiplaTs.

If the first declaration has a data initialization, then the variable tiAat tisat
location is also referred to @\TA i.e., cannot have a value assigned into it.

PL/M-386 Programmer's Guide Chapter 3 43

Types of Declaration Statements

Compilation Constants (Text Substitution):
The Use of LITERALLY

If the program is large enough to have many declarations, declaring a compilation
constant will save time at the keyboard, as follows:

DECLARE DCL LITERALLY 'DECLARE?;

Thereafter, during compilation, every tid€Lappears alone (not as part of a
word), the full stringDECLAREWill be substituted by the compiler. Subsequent
declarations can be written as follows:

DCL AREA REAL;
DCL SIZE WORD;

A declaration using the reserved wai@ERALLY defines a parameterless macro

for expansion at compile-time. Declare an identifier to represent a character string,
which will then be substituted for each occurrence of the identifier in subsequent
text. This expansion will not take place in strings or constants. The form of the
declaration is:

DECLARE identifier LITERALLY "' string

Where:
identifier is any valid PL/M identifier.
string is a sequence of arbitrary characters (limited by the size of the

symbol table) from the PL/M set (except an apostrophe).

An apostrophe can be included in a string by writing it as two consecutive
apostrophes.

44 Chapter 3 Data Declarations, Types, and Based Variables

The following example illustrates another us@IGERALLY :

DECLARE TRUE LITERALLY 'OFFH', FALSE LITERALLY "0

DECLARE ROUGH BYTE;
DECLARE (X, Y, DELTA, FINAL) REAL;

ROUGH = TRUE;
DO WHILE ROUGH,;
X = SMOOTH (X, Y, DELTA);
[* SMOOTH is a procedure declared elsewhere. */
IF (X-FINAL) < DELTA THEN
ROUGH = FALSE;
END;

This example of &ITERALLY declaration defines the Boolean values TRUE and
FALSE in a manner consistent with the way PL/M handles relational operators (see
Chapter 5). Literal substitution for fixed values makes a program more readable.

LITERALLYs can also be used to declare quantities that are fixed for one
compilation, but are subject to change from one compilation to the next. Consider
the following example:

DECLARE BUFFERS$SIZE LITERALLY ‘32,
DECLARE PRINT$BUFFER(BUFFER$SIZE) WORD;

PRINT$BUFFER(BUFFERS$SIZE - 10) = 'G';

A future change tBUFFER$SIZE can be made in one place, at the first
declaration, and the compiler will propagate the change throughout the program
during compilation. This eliminates the need to search the program for the
occurrences of 32 that aB&IFFER$SIZE references and not some other reference
to 32.

PL/M-386 Programmer's Guide Chapter 3 45

Declarations of Names for Labels

A label marks the location of an instruction. Labels are permitted only on
executable statements, not on declarations.

A name can be declared as a label both explicitly and implicitly. Explicit label
declarations are used mainly to enable module-to-module references (see
Chapter 7). The three explicit label declarations have the following formats:

DECLARE PART3 LABEL,;
DECLARE START1 LABEL PUBLIC; /* for intermodule reference */
DECLARE PHASE2 LABEL EXTERNAL; /* for intermodule reference */

The rules for explicit label declarations are discussed in detail in Chapter 7.

In implicit label declarations (used more commonly than explicit label
declarations), the name is placed at the very beginning of the executable statemen
to which the name is supposed to point. For example:

START2: ALPHA =127;

This statement defines the lal$glART2as pointing to the location of the PL/M
instruction shown. If this block has no explicit declaratioBPART2 such as the
following:

DECLARE START2 LABEL;

then the compiler takes the definition®fART2as an implicit declaration as well

as a definition, as if the declaration had occurred at the start of the last Bibaule
procedure statement. If there is an explicit declaration, then the actual placement
of the label remains simply a definition.

Labels are used to indicate significant instructions or the starting point of
instruction sequences. Labels can be useful reference points for understanding the
parts of a program, or targets for the transfer of control during execution (as
discussed undesOTCGandCALL in Chapter 6).

Results of Label Declarations

46

Valid label declarations result in the following:
« The declared name can be used to point to an executable instruction.
« The use of the declared name as a variable in its block is disallowed.

- Ifthe label is also defined in its block by appearing in an executable statement,
the address of that statement will be assigned as the value of the label.

Chapter 3 Data Declarations, Types, and Based Variables

Declaration for Procedures
To declare a procedure, give its name with a statement of the form:
name PROCEDURE

followed optionally by parameters, type and/or attributes. The definition of the
procedure then follows. The procedure definition is the set of statements declaring
items used in the procedure (including any parameters) and the executable
statements of the procedure itself. The definition ends wittN@statement,

optionally including the procedure name.

The complete declaration of a procedure includes all the statements from the
PROCEDURS&tatement through tteNDstatement. This definition/declaration must
appear before the procedure name is used in an executable statement, just as
variable and constant names must be declared before their use.

The only exceptions arise when the full definition may appear in another separately
compiled module where it is declaredBLIC, or when a procedure has been
declaredREENTRANT A PUBLIC procedure can be used (called) only if the calling
module meets the following requirements:

1. The procedure has been declared withrEKEERNALattribute (so the linker or
binder will search for it).

2. Each formal parameter the procedure uses has been declared so the compiler
can verify correct usage when this module invokes the procedure. End this
local declaration with aBNDstatement.

For example:

SUMMER: PROCEDURE (A, B) EXTERNAL;
DECLARE A WORD, B BYTE;
END SUMMER,;

See Chapter 7 for details on intermodule references. See Chapter 8 for details on
procedure definition and use.

PL/M-386 Programmer's Guide Chapter 3 47

Data Types

Data types apply not only to variables, but to every value processed by a PL/M
program. This includes values returned by procedures as well as values calculated
by processing expressions. Data type specifications determine the value an object
can have, how this value is stored in memory, and the operations that can be used
on the value.

The PL/M-386 compiler recognizes five classes of data, each of which has one or
more data types.

There are several unsigned binary number tygaSE (8-bit number)HWORD

(16-bit number)WORD32-bit number), andWOR64-bit number). ThOFFSET

type is a 32-bit number that represents the offset portion of a pointer, which has its
own type:POINTER (ThePOINTERtype itself is also recognized.) Note that the
compiler controlsVORD3andWwORD1&utomate mapping 32- and 16-bit types.
These controls are discussed in Chapter 11.

There are four signed integer data typ®$TEGER (32-bit number)CHARINT
(8-bit number);SHORTINT(16-bit number).

PL/M-386 recognizes the floating-point data tygteAL, for signed 32-bit numbers.

Throughout this manual, the data types are referenced according to the data type
class. Table 3-2 summarizes the data type classes for the Intel386 and Intel486
microprocessors. See the sections at the end of this chapter for a discussion on th
PL/M-386 compiler's"ORD32|WORD1®apping.

|:| Note

Although the PL/M-386 compiler assumes a 32-bit word it also
accepts PL/M-286 code as input. PL/M-286 code can take
advantage of the 32-bit data type provided by the Intel386 and
Intel486 microprocessors when compiled with the PL/M-386
compiler.

48 Chapter 3 Data Declarations, Types, and Based Variables

Table 3-2. Data Types

Data Type and Value

Unsigned Binary
Number

Description

BYTE

8-bit number ranging from 0 to 255.
Occupies one byte of memory.

HWORD

Occupies two contiguous bytes of memory.
The least significant 8 bits are stored in the lower address.

WORD

32-bit number ranging from 0 to 4,294,967,295.
Occupies two contiguous HWORDs of memory.
The least significant 16 bits are stored in the lower address.

DWORD

64-bit number ranging from 0 to (2**64) -1.
Occupies two contiguous WORDs of memory.
The least significant 32 bits are stored in the lower address.

OFFSET

32-bit number that represents the offset portion of a POINTER.
(ADDRESS supported by PL/M-80 and PL/M-86/286, is equivalent to
OFFSET.)

SHORTINT

16-bit number from -32768 to +32767 occupies contiguous bytes of
memory. The least significant 8 bits are stored in the low address.
Internally stored in two's complement notation.

INTEGER

32-bit number ranging from -2,147,483,648 to +2,147,483,647.
Occupies four contiguous bytes of memory. The least significant 16
bits are stored in the low address. Internally stored in two's
complement notation. WORD32's LONGINT is equivalent to
INTEGER.

CHARINT

8-bit number ranging from -128 to +127. Occupies one byte of
memory. Internally stored in two's complement notation.

Real Numbers

Description

REAL

Signed, floating-point number. Occupies four contiguous bytes of
memory.

Pointers Description
POINTER The value is the address of the memory storage location.
Consists of a segment selector portion and an offset portion.
Selectors Description
SELECTOR The value is equivalent to the segment selector portion of a POINTER.

Can be used as the base of a based variable.

PL/M-386 Programmer's Guide

Chapter 3

49

Unsigned Binary Number Variables: Unsigned Arithmetic

Unsigned arithmetic is used to perform any arithmetic operation on unsigned binary
number variables. All of the PL/M operators can be used with these data types.
Arithmetic and logical operations on such variables yield a result of one of the
unsigned binary number types, depending on the operation and the operands.
Relational operations always yield a true or false result ofByf&

With unsigned arithmetic, if a large value is subtracted from a smaller one, the
result is the two's complement of the absolute difference between the two values.
For example, if 8YTEvalue of 1 (00000001 binary) is subtracted froByaE

value of 0 (00000000 binary), the result iB¥TEvalue of 255 (11111111 binary).

Also, the result of a division operation is always truncated (rounded down) to a
whole number. For example, if &twORDalue of 7 (0000000000000111 binary)
is divided by eBYTEvalue of 2 (00000010 binary), the result issaMORDalue of

3 (0000000000000011 binary).

When declaring a variable that may be used to hold or produce a negative result, it
is advisable to make the variable either a signed integer or real. If the variable is
supposed to hold or produce a non-integer, it must be declareEhas Use of the
appropriate data types will reduce the occurrences of incorrect results from
arithmetic operations (see Chapter 5).

50 Chapter 3 Data Declarations, Types, and Based Variables

INTEGER Variables: Signed Arithmetic

The sign bit is O if th&€\TEGERvalue is positive or zero, and 1 if the value is
negative. The magnitude is given in two's complement notation.

Signed Arithmetic

For the Intel386 and Intel486 microprocessors, arithmetic operations on signed
variables use 32-bit signed arithmetic to hold signed intermediate or final results.
Thus, addition and subtraction always produce mathematically correct results if
overflow does not occur. (See also the OVERFLOW control in Chapter 11.)
Relational operations are signed arithmetic comparisons that yield a true or false
result of typeBYTE

However, as with unsigned binary number operands, division produces only an
INTEGERresult. The result is rounded toward zero (i.e., down if the result is
positive, up if the result is negative).

Only the arithmetic and relational operators can be used with signed operands.
Logical operators are not allowed except for constant expressions within cast
parentheses (see Chapter 5).

REAL Variables: Floating-point Arithmetic

The value of &EALvariable is a signed floating-point number that occupies four
contiguous bytes of memory, which may be viewed as 32 contiguous bits in the
single precision format. The bits are divided into fields as follows:

SIGN

EXPONENT SIGNIFICAND

3130 24 23 16 15 8 7 0

0OSD567

The byte with the lowest address contains the least significant 8 bits of the
significand, and the byte with the highest address contains the sign bit and the most
significant 7 bits of the exponent field.

The sign bit is 0 if th&@EALvalue is positive or zero, and 1 if tREALvalue is
negative.

The exponent field contains a value offset by 127. In other words, the actual
exponent can be obtained from the exponent field value by subtracting 127. This
field is all Os if theREALvalue is zero.

PL/M-386 Programmer's Guide Chapter 3 51

The significand contains the binary digits of the fractional part oR&rdvalue
when this part is represented in binary scientific notation. This field is all Os if the
REALvalue is zero.

Operations omREAL operands use signed floating-point arithmetic to yield a result
of typeREAL The implementation guarantees that the result of each operation is
the closest floating-point number to the mathematical real-number result (if
overflow or underflow does not occur). The relational operators and the arithmetic
operatorsr, -, *, and/ can be used witREALoperands: th&lODoperator and the
logical operators are not allowed. Arithmetic operations yield a result of type
REAL and relational operations yield a true or false result of Byf¥E

The PL/M compiler extends the utility of tiREAL data types by holding

intermediate results in the numeric coprocessor's temporary-real format (80-bit).
This format preserves 64 bits of precision and the full range of representable
numbers. The exponent in this format is 15 bits instead of 8 in the single precision
format.

The increased exponent range greatly reduces the likelihood of underflow and
overflow, and eliminates roundoff as a source of error until the final assignment of
the result is performed. Underflow, overflow, and roundoff errors are probable for
intermediate computations as well as in the final result. For example, an
intermediate underflow result might later be multiplied by a very large factor,
providing a final result of acceptable magnitude.

Examples of Binary Scientific Notation

52

1. Consider the following binary number (which is equivalent to the decimal
value 10.25):

1010.01B

The dot (.) in this number is a binary point. The same number can be
represented as:

1.01001B * 2**3

This is binary scientific notation, with the binary point immediately to the right
of the most significant digit. The digits 01001 are the fractional part, and 3 is
the exponent. This value would be represented in the single precision format
as follows:

- The sign bit would be 0, because the value is positive.
« The exponent field would contain the binary equivalent of 127+3=130.

« The leftmost digits of the fraction field would be 01001, and the remainder
of this field would be all Os.

Chapter 3 Data Declarations, Types, and Based Variables

The complete 32-bit representation would be:
0 10000010 010010 00000000000000000

and the contents of the four contiguous memory bytes would be as

follows:

highest address: 01000001
00100100
00000000

lowest address: 00000000

Note that the most significant digit is not actually represented, because by
definition it is a 1 unless theEALvalue is zero. If thREALvalue is zero,
the entire 32-bit representation is all Os.

2. Consider the fraction 1/16, or 0.0625. In binary, it is:
1.0000B * 2**(-4)

In single precision format, the actual exponent -4 would be represented as 123
(127-4), and the fraction field would contain all Os.

In the single precision format, the largest possible value for a valid exponent
field is 254, which corresponds to an actual exponent of 127. Therefore, the
largest possible absolute value for a positive or negatve value is:

1.111111212222222111111111B * 2**127
or approximatelys.37 * 10**38

The lowest permissible exponent field value for a non-R&aL value is 1,
which corresponds to an actual exponent of -126. Therefore, the smallest
possible absolute value for a positive or nega®iEgaL value is:

1.0B * 2**(-126)
or approximatelys.43 * 10**(-37)

PL/M-386 Programmer's Guide Chapter 3 53

POINTER Variables and Location References

54

The value of @OINTERvariable is the address of the microprocessor's storage
location and consists of a segment selector portion (see Chapter 9) and an offset
portion.

The bits are divided as follows:

}7 SELECTOR 7‘

I I I
INDEX -:- RPL OFFSET % S
| | |
v

a7

40 39 34333231 2423 0

0SD577

POINTERvariables are important as bases for based variables.

Only the relational operators for equality and inequaditgr(< >) can be used with
POINTERoOperands, yielding a true or false result of tgy@E No arithmetic or
logical operations are allowed (see Chapter 5).

A POINTERcan be viewed as a structureSELECTORANdOFFSETrather than a
scalar. Therefore, arithmetic wiHDINTERS(e.g.,PTR+1) is illegal.

The value of @OINTERvariable can be created or changed in the following ways:

« The variable can be initialized when declared, us\WgIAL or DATAwith an
address created with .

« The variable can be assigned an address created \@ofierator (described
in the following section). This is the most commonly used method.

« The variable can be assigned the value ROBNTERVariable or function
(includingNIL , described in Chapter 9).

- The variable can be assigned a value generated IBUthB$PTR function
(also described in Chapter 9).

+ POINTERtype conversion (cast). Changing from one value to another is
different from thePOINTERDbuilt-in function (see Chapter 9).

« In SMALLRAMmMOodel, thePOINTERIs actually the offset portion only. In this
case, all operations on the PL/M-38B6FSETdata type can be used, including
arithmetic.

Chapter 3 Data Declarations, Types, and Based Variables

The @ Operator

A location reference is formed with ti@operator. A location reference has a
value of typePOINTER that is, a location address. An important use of location
references is to supply values falbINTERvariables.

The basic form of a location reference is as follows:
@ variable-ref
Where:
variable-ref is the name of a variable.
The value of this location reference is the actual run-time location of the variable.

The variable-ref may also refer to an unqualified array or structure name. The
pointer value is the location of the first element or member of the array or
structure.

Consider the following declarations:

DECLARE RESULT REAL;

DECLARE XNUM(100) BYTE;

DECLARE RECORD STRUCTURE (KEY BYTE,
INFO(25) BYTE,
HEAD POINTER);

DECLARE LIST(128) STRUCTURE (KEY BYTE,
INFO(25) BYTE,
HEAD POINTERY);

The @RESULTs the location of thREALscalaRESULT and@XNUM(5)is the
location of the 6th element of the arafUM @XNUI& the location of the
beginning of the array, that is, the location of the first element (element 0).

The RECORISTRUCTUREeclares a byte callecEY followed by 25 bytes called
INFO(0) , INFO(1) , and so on, followed by tHEOINTERVvariable name#iEAD
Becaus&EY, INFO, andHEADare all declared part of tlRECORBtructure, their
contents must be referred toRBECORD.KEYRECORD.INFO(0), . . . ,
RECORD.INFO(24) , andRECORD.HEAD

Refer to the addresses of these elements aiE@ORBtructure by using th@
operator. @RECORD.HEAB the location of the POINTER scaRECORD.HEAD
and@RECORIB the location of the structure, which is the same as that 8ivthe
scalarRECORD.KEY @RECORD.INF@s the location of the first element of the
25-byte arrayRECORD.INFQ whereas@RECORD.INFO(7)is the location of the
8th element of the same array.

PL/M-386 Programmer's Guide Chapter 3 55

LIST is an array of structures. The location refere@t¢ST(5).KEY is the
location of the scalarlST(5).KEY . Note that@LIST.KEY is illegal because it
does not identify a unique location (i.e., k&Y of whichLIST).

The location referenc@LIST(0).INFO(6) is the location of the scalar
LIST(0).INFO(6) . Also,@LIST(0).INFO is the location of the first element of
the same array (i.e., the location of the array itself).

A special case exists when the identifier usedaaable-ref is the name of a
procedure. This procedure must be declared at the outer level of the program
module. No actual parameters can be given (even if the procedure declaration
includes formal parameters). The value of the location reference in this case is the
location of the entry point of the procedure. (See Chapter 8 and Appendices F
and G.)

Storing Strings and Constants via Location References

56

Another form of location reference is the following:
@ (constant list)
Where:

constant list
is a sequence of one or M@¥TE constants separated by commas
and enclosed by parentheses.

When this type of location reference is made, space is allocated for the constants.
The constants are stored in this space (contiguously, in the order given by the list),
and the value of the location reference is the location of the first const®rMmid
specified on the compiler invocation command, constants are storeddATRAe
segment. IROMs specified on the compiler invocation command, constants are
placed in thecODEsegment (see Chapters 11 and 13).

Values in the constant list are treated as if they weresiviT& array initialization
list.

Strings can be included in the list. For example, if the operand:
@('NEXT VALUE))

appears in an expression, it causes the sMBYT VALUE' to be stored in

memory (one character per byte, thus occupying 10 contiguous bytes of storage).
The value of the operand is the location of the first of these bytes; in other words, it
is a pointer to the string.

Chapter 3 Data Declarations, Types, and Based Variables

OFFSET Data Type and the Dot Operator

A dot operator is provided for compatibility with PL/M-80 programs. The dot
operator (.) is similar to th@operator, but produces an address of #@RD This
address represents an offset in the current data segment (for variables) or in the
current code segment (for procedures). Use this address with caution, because it
can produce unexpected results in a PL/M program that contains more than one
data segment or more than one code segment.

In a PL/M-386 program, whereveérORZan be used)FFSETcan also be used.
The main difference between the two types is in casting.

To create or change the value ofGFFSETvariable, it can be assigned @RFSET
variable or function, or assigned the result of the built-in func@PRSET$OFE or
OFFSETtype conversion, or the dot operator (see Chapter 9).

SELECTOR Variables

The value of &ELECTORvariable is equivalent to the segment selector portion of
aPOINTER and can also be used as the base of a based variable.

In PL/M-386, the bits of theELECTORportion of aPOINTERare shown below:

T RPL

INDEX |
| |

a7

41 40 343332
0OSD578
The sections of this diagram are discussed in detail in Chapter 10.

Only the logical and relational operators for equality and inequaljty, and
<>) can be used witBELECTORoperands, yielding a true or false result of type
BYTE No arithmetic operations are allowed (see Chapter 5).

To create or change the value BLECTORvariable it can be assigned a
SELECTORvariable or function, or assigned the result of the built-in function
SELECTOR$Or SELECTORype conversion (see Chapter 9).

The results of th@&@and dot operators cannot be assigned directhet&CTOR
variables. They must first be converted to $i#t ECTORype with the built-in
functionsSELECTOR$ORNASELECTOR

PL/M-386 Programmer's Guide Chapter 3 57

Based Variables

58

Sometimes, the address of a variable is not known until the program is actually run.
For instance, if a procedure is written to swap two bytes and this procedure is
called from various places in the code, the addresses of the two bytes are not
known when writing the procedure definition.

For this type of manipulation, PL/M uses based variables. A based variable is one
that is pointed to by another variable called its base. This means the base contains
the address of the desired (based) variable. A variable is made BASED by
inserting in its declaration the word BASED and the identifier of the base (which
must already have been declared).

A based variable is not allocated storage by the compiler. At different times during
program execution the based variable may actually refer to different places in
memory, because the variable's base may be changed by the program.

To declare an address based variable, first declare its base, which must be of type
POINTER SELECTORWORPor OFFSET Next, declare the based variable itself as
follows:

DECLARE | BYTE;
DECLARE ITEM$PTR POINTER;
DECLARE ITEM BASED ITEM$PTR BYTE;

In these declarations, a referencéT®M is, in effect, a reference to tB¥TE
value pointed to by the current valuelBEM$PTR. Thus, the sequence:

ITEM$PTR = @I;
ITEM = 77H;

loads theBYTEvalue of 77 (hex) into the variahle

PL/M supports more than one level of based variable, so variables can be based or
based variables.

For example, the following declarations are valid:

DECLARE PTR1 POINTER;
DECLARE PTR2 BASED PTR1 POINTER;
DECLARE STR1 BASED PTR2 STRUCTURE (
X REAL,
Y REAL);

Chapter 3 Data Declarations, Types, and Based Variables

The following restrictions apply to bases:
« No initializations are permitted with based variables.

e The base must be of typ®INTER SELECTORWORPor OFFSET However,
use a base of typeFFSETor WORMvith caution because it does not contain a
full microprocessor addresQFFSET or WORfhased variables are addressed
relative to the current DS register.

« The base cannot be subscripted. That is, it cannot be an array element.

The wordBASEDmust immediately follow the name of the based variable in its
declaration, as in the following examples:

DECLARE (AGE$PTR, INCOMES$PTR, RATING$PTR, CATEGORY$PTR) POINTER;
DECLARE AGE BASED AGE$PTR BYTE;

DECLARE (INCOME BASED INCOMES$PTR, RATING BASED RATING$PTR) WORD;
DECLARE (CATEGORY BASED CATEGORY$PTR)(100) WORD;

In the firstDECLAREstatement, thEeOINTERvariablesSAGE$SPTRINCOMES$SPTR
RATING$PTR andCATEGORY$PTRre declared. They are used as bases in the
next threeDECLAREStatements.

In the secon®ECLAREstatement, 8Y TEvariable calledrGEis declared. The
declaration implies that whenevw&GEis referenced by the running program, its
value will be found at the location given by the current value oPGISITER
variableAGE$PTR

The thirdDECLAREstatement declares two based variables, both of type WORD.

The fourthDECLAREstatement defines a 100-elem&r®R@rray called
CATEGORYbased oiItATEGORY$PTRWhen any element afATEGORYs
referenced at run time, the current valu€ATEGORY$PTI® the location of the
arrayCATEGORYi.e., its first element).

The other elements follow contiguously. The parentheses around the tokens
CATEGORBASEDCATEGORY$PTRiake the statement more readable, but are not
required.

|:| Note

Debug information is available for only the first level of
indirection when using variables basedB#SEDvariables.

PL/M-386 Programmer's Guide Chapter 3 59

Location References and Based Variables

60

An important use of location references is to supply values for bases. Tha@s, the
operator, together with the based variable concept, gives PL/M a very powerful
facility for manipulating pointers.

For example, to refer to the three differRHAL variablesNORTH$ERRQR
EAST$ERRORandHEIGHT$ERRORt different times with the single identifier
ERRORwrite:

DECLARE (NORTH$ERROR, EAST$ERROR, HEIGHT$ERROR) REAL,;
DECLARE ERROR$PTR POINTER;

DECLARE ERROR BASED ERROR$PTR REAL;

ERROR$PTR = @NORTH$ERROR;

The value 0ERRORS$PTHRs the location oNORTH$ERRORA reference t&RROR
is, in effect, a reference MORTH$ERRORLater in the program, write:

ERROR$PTR = @HEIGHT$ERROR;

Now a reference tBRRORS, in effect, a reference HEIGHT$SERROR In the same
way, the value of the pointer can be made the locati@8T$ERRORand a
reference tERRORcan be made a referenceBAST$SERROR

This technique is useful for manipulating complicated data structures and for
passing locations to procedures as parameters. Examples are given in Chapter 8.

Chapter 3 Data Declarations, Types, and Based Variables

The AT Attribute

TheAT attribute causes the address of a variable to be the specified location. The
AT attribute has the form:

AT (location)
Where:
location must be a location reference formed with @@perator.

AT must refer to a nonbased variable that has already been declared. If there is a
subscript expression, it must be a constant expression containing no operators
except+ and- .

The following are examples of val&ir attributes:

AT (@BUFFER)
AT (@BUFFER(128))
AT (@NAMES(INDEX + 1))

In the last exampleNDEX represents a whole-number constant that has been
previously declared with ATERALLY declaration. The compiler replaces this
name with the declared whole-number constant, thus satisfying the restrictions
previously mentioned.

The first nonbased variable in a factored declaration containingrthéribute
will have the address specified logation . Other variables in the same
declaration will, in sequence, refer to successive locations thereafter.

For example, the declaration:
DECLARE (CHARS$A, CHAR$B, CHARS$C) BYTE AT (@BUFFER);

causes th8YTEvariableCHARS$ALO refer to the location UFFER The variables
CHAR$BandCHARSCare located in the next two bytes afltARSA

The declaration:

DECLARE T(10) STRUCTURE (X(3) BYTE,
Y(3) BYTE,
Z(3) BYTE) AT (@DATA$BUFFER);

sets up structure references to 90 bytes. They are organized so that each of the 10
members of refers to nine bytes. The first three use the nantlee second three
Y, and the last threa Figure 3-1 illustrates this structure.

PL/M-386 Programmer's Guide Chapter 3 61

T(0).X(0)
T(0).X(1)

T(0).X(2)
T(0).Y(0)

T(0).Y(1)
T(0).Y(2)

T(0).2(0)
T(0).2(1)

T(0).2(2)
T(1).X(0)

T(1).X(1)
T(1).X(2)

T(1).Y(0)
T(1).Y(1)

And So On
0OSD533

Figure 3-1. Successive Byte References of a Structure

Chapter 3 Data Declarations, Types, and Based Variables

The preceding declaration, using the AT attribute, causes the beginning of the
structureT, namely the scalar(0).X(0) , to be located at the same location as a
previously declared variable callehATA$BUFFER The other scalars making up
the structure will follow this location in logical ordef(0).X(1) , T(0).X(2) ,

and so on up t©(9).Z(2) , which is the last scalar, located in the 89th byte after
the location oDATA$BUFFER

However, no memory locations for these 90 scalars are allocated by this
declaration. You determine the contents of the memory space beginning at
@DATA$BUFFER

The following rules apply to th&T attribute:
e AT cannot be used with variables that are baS8EBERNAI or parameters.

e AT can be used with tHeUBLIC attribute, if it immediately follows the word
PUBLIC. However, the location cannot be a location reference to a variable
that iISEXTERNAL

TheAT attribute can be used to make variables equivalent, providing more than one
way of referring to the same information. For example:

DECLARE DATUM HWORD;
DECLARE ITEM BYTE AT (@DATUM);

causesTEM to be declared BYTEvariable at the same location that has just been
allocated for theiwORDariableDATUM Thus, any reference OEM is, in effect,

a reference to the low-order bytemiTUMbecausélWORDalues are stored with
the low-order 8 bits preceding the high-order 8 bits).

The following is another example using &eattribute:

DECLARE VECTOR (6) BYTE;

DECLARE SHORT$VECTOR STRUCTURE (FIRST (3) BYTE,
SECOND (3) BYTE)
AT (@VECTORY);

In this example, a six-elemeBYTEarray called/ECTORSs declared.
Additionally, a structure of two three-byte arragslORT$VECTOR.FIRSTand
SHORT$VECTOR.SECONI3 declared.

The first scalar of this structur8HORT$VECTOR.FIRST(0), is located at the
same location as the first element of the auBg TOR

Thus, there are two ways to refer to the same six bytes. For example, the fifth byte
in the group can be referenced as eitHEBCTOR(4) or
SHORT$VECTOR.SECOND(1).

When a variable is declared with th& attribute, the compiler does not optimize
the machine code generated to access that variable.

PL/M-386 Programmer's Guide Chapter 3 63

WORD32 | WORD16 Type Mapping

64

The PL/M-386 compiler supports two primary contrél€)RD32andWORD16for
unsigned binary number and signed integer data types, which provide some basic
data type and language semantics compatibility for the Intel386 and Intel486
family of microprocessors. These controls specify the hasiBBize and thus

affect the representation of certain data types. The default for PL/M-386 is
WORD32 TheWORD1&ontrol does not specify 16-bit code (a parameter pushed on
the stack is still four bytes), but maps the names of some data types into others.
Internally, all processing is the same (e.g., signed arithmetic is 32-bit for both
WORD16 and WORD32). To accommodate existing 16-bit code where data type
representation is criticalyORD1&an be used to map word size to the convention
used in earlier versions of the PL/M compiler. Table 3-3 lists the data type
representation foWORD3AaNdWORD16

Table 3-3. WORD32 | WORD16 Data Type Mapping

Unsigned Binary WORD32
Number Data Types (default) WORD16
BYTE 8-bit 8-bit
HWORD 16-bit 8-bit
WORD 32-bit 16-bit
DWORD 64-bit 32-bit
QWORD 64-bit 64-bit
Signed Integer
Data Types WORD32 WORD16
CHARINT 8-bit 8-bit
SHORTINT 16-bit 8-bit
INTEGER 32-bit 16-bit
LONGINT 32-bit 32-bit

|:| Note

In PL/M-386,ADDRESSs equivalent to th©@FFSETdata type.
OFFSETis a 32-bit data type that represents the offset portion of a
POINTER The size oDFFSETIs not affected by the
WORD3RVORD1&ompiler control.

Chapter 3 Data Declarations, Types, and Based Variables

When writing new PL/M code, or when updating existing PL/M code, it is best to
declare variables used for local addressing (i.e., those that are assigned from or
initialized to the dot operator location references, assigned fro@RRBET$OF
function, or used with thBUILD$PTR function or theSTACK$PTRbuilt-in) as
OFFSET(or ADDRESH

In PL/M-386,WORIs the natural 32-bit data type of the language on which all
operations are available. However, in ASM38&@R0s 16 bits and 8WORIs
32 bits.

Choosing WORD32 or WORD16

TheWORD32|WORD1&mpiler control determines how the data types in the source
code are interpreted by the PL/M-386 compiler. See Chapter 11 for a description
of theWORD32|WORD1gontrol and syntax.

When compiling new PL/M-386 source code, ws@RD320 take full advantage of
the Intel386 or Intel486 microprocessors' features.

When recompiling existing PL/M-86 or PL/M-286 code, consider the source code
to determine which compiler control to us&#ORD3s usually preferable. Use
WORD16f one of the conditions listed below applies to the source code. Note that
thewWORD1&ontrol does not have any effect on the CMPB instruction. This
always remains as a 32-bit instruction.

« Scalar types are mapped to external data, SUSMRYCTURE& defined to
represent data records read from a peripheral device. The format of the data
from the peripheral device will not change regardless of the microprocessor
processing it.

- Data is overlaid, for example:

DECLARE W HWORD (B1,B2) BYTE AT (@W);
DECLARE P POINTER, B BASED P (2) BYTE, WW BASED P WORD;

In this example, code may depend on the fact thaBi¥ESoverlaying the
HWORDonstitute both halves of tWeOR@ompletely. Similarly, code can
depend on the fact that thewor HIGH of anHWORDeturns 8 bits.

« Loops depend on the size ofWDRDype. Operations dependent on a variable
overflow could produce unexpected results.

PL/M-386 Programmer's Guide Chapter 3 65

Arrays and Structures

Arrays

For increased efficiency, it is often desirable to use a single identifier to refer to a
whole group of scalars, and to distinguish the individual scalars by means of a
subscript (i.e., a value enclosed in parentheses). Such a list, in which the scalars
are all the same type, is called an array.

An array is declared by using a dimension specifier. The dimension specifier is a
nonzero whole-number constant enclosed in parentheses. The value of the constant
specifies the number of array elements (individual scalar variables) making up the
array. For example:

DECLARE ITEMS (100) BYTE;

causes the identifieTEMS to be associated with 100 array elements, each of type
BYTE One byte of storage is allocated for each of these scalars.

The elements of an array are stored contiguously, with the first element in the
lowest location and the last element in the highest location. No storage is allocated
for a based array, but the elements are considered to be contiguous in memory.

The declaration:
DECLARE (WIDTH, LENGTH, HEIGHT) (100) REAL;
is similar to the following sequence:

DECLARE WIDTH (100) REAL;
DECLARE LENGTH (100) REAL;
DECLARE HEIGHT (100) REAL;

The difference between the two declarations is that contiguous storage is
guaranteed for variables declared in a single parenthesized list, whereas variables
declared in consecutive declarations are not necessarily stored contiguously.

This causes each of the three identifigvfDTH LENGTH andHEIGHT, to be

associated with 100 array elements of tRga\L, so that 300 elements of type
REALhave been declared in all. For each of these scalars, four contiguous bytes of
storage are allocated.

PL/M-386 Programmer's Guide Chapter 4 67

Subscripted Variables

To refer to a single element of a previously declared array, use the array name
followed by a subscript enclosed in parentheses. This construct is called a
subscripted variable.

For example, as a result of the followibgCLAREStatement:
DECLARE ITEMS (100) BYTE;

each byte can be referenced as an individual item UBEMS(0) , ITEMS(1) ,
ITEMS(2) , and so on up torEMS(99) .

Notice that the first element of an array has subscript 0, not 1. Thus, the subscript
of the last element is 1 less than the dimension specifier.

To add the third element of the arf@gMS to the fourth, and store the result in the
fifth, write the PL/M assignment statement as follows:

ITEMS(4) = ITEMS(2) + ITEMS(3);

The subscript of a subscripted variable need not be a whole-number constant. It
can be another variable, or any PL/M expression that yieB¢T&, HWORDNVORP
OFFSET SHORTINT, CHARINT, or INTEGERVvalue.

Thus, the construction:
VECTOR(ITEMS(3) + 2)

refers to some element of the ark&5CTOR Which element this construction
refers to depends on the expressitEMS(3) + 2 . This value, in turn, depends
on the value stored ITEMS(3) , the fourth element of arrayEMS, at the time
when the reference is processed by the running programENMIS(3) contains the
value 5, thenTEMS(3) + 2 is equal to 7 and the reference i&¥ECTOR?), the
eighth element of the arrajfeCTOR

The following sequence of statements will sum the elements of the 10-element
arrayNUMBER®Y using an index variable namegwhich takes values from

O0to9:
DECLARE SUM BYTE; /* To avoid overflow, */
DECLARE NUMBERS(10) BYTE; /* SUM should add up */
DECLARE | BYTE; /* to less than 255 */
SUM = 0;
DOI=0TOY;
SUM = SUM + NUMBERS(I);
END;

Subscripted array variables can be used anywhere a variable can be used, includin
the left side of an assignment statement if the array elements are of a scalar type.

68 Chapter 4 Arrays and Structures

Structures

Just as an array enables one identifier to refer to a collection of elements of the
same type, a structure enables one identifier to refer to a collection of structure
members that may have different data types. Each member of a structure has a
member identifier.

A structure member can be another structure; these nested structures are described
in the section titled, Nested Structures.

The following is an example of a structure declaration:

DECLARE AIRPLANE STRUCTURE (
SPEED REAL,
ALTITUDE REAL);

This statement declares tREAL scalars, both associated with the identifier
AIRPLANE. Once this declaration has been made, the first scalar can be referred to
asAIRPLANE.SPEEDand the second #8RPLANE.ALTITUDE. These names are

also called the members of this structure.

A structure can have many members (see Appendix B for the correct limit). The
members of a structure are stored contiguously in the order in which they are
specified. (No storage is allocated for a based structure, but the members are
considered to be contiguous in memory.)

Individual structure members cannot be based and cannot have any attributes (see
Chapter 3).

Arrays of Structures

With PL/M, arrays of structures can be created. The folloWlBQLAREstatement
creates an array of structures that can be used toSft@EDandALTITUDE for 20
AIRPLANES instead of one:

DECLARE AIRPLANE (20) STRUCTURE (
SPEED REAL,
ALTITUDE REAL);

This statement declares 20 structures associated with the array identifier
AIRPLANE, each distinguished by subscripts from 0 to 19. Each of these structures
consists of twiREAL scalar members. Thus, storage is allocated f&rEKL

scalars.

To refer to theALTITUDE of the 17thAIRPLANE, write
AIRPLANE(16).ALTITUDE .

PL/M-386 Programmer's Guide Chapter 4 69

Arrays Within Structures
An array can be used as a member of a structure, as follows:

DECLARE PAYCHECK STRUCTURE (
LAST$NAME(15)BYTE,
FIRST$NAME(15)BYTE,

MI BYTE,
AMOUNT REAL);

This structure consists of two 15-elemBNTEarrays,PAYCHECK.LASTSNAMENd
PAYCHECK.FIRST$NAMEtheBYTE scalalPAYCHECK.M| and theREAL scalar
PAYCHECK.AMOUNT

To refer to the fourth element of the arrRyYCHECK.LAST$SNAMBEwrite
PAYCHECK.LAST$NAME(3)

Arrays of Structures With Arrays Inside the Structures

Given that an array can be made up of structures, and a structure can have arrays
members, the two constructions can be combined to write:

DECLARE FLOOR (30) STRUCTURE (
OFFICE (55) BYTE);

The identifierFLOORrefers to an array of 30 structures, each of which contains one
array of 55BYTEscalars. This could be thought of as a 30-by-55 matiy ot

scalars. To reference a particular scalar value (for example, element 46 of structur
25) writeFLOOR(24).OFFICE(45) . Note that the scalar elements of each

OFFICE array are stored contiguously, and @fFICE arrays are elements of the
FLOORarray and are stored contiguously.

Alter the precedin@AYCHECHKstructure declaration to make it an array of
structures, as follows:

DECLARE PAYROLL (100) STRUCTURE (
LAST$NAME(15)BYTE,
FIRST$NAME(15) BYTE,

MI BYTE,
AMOUNT REAL);

This is an array of 100 structures, each of which can be used during program
execution to store the last name, first name, middle initial, and amount of pay for
one employee LASTSNAMEANAFIRSTSNAMEIN each structure are 15-byte arrays
for storing the names as character strings.

70 Chapter 4 Arrays and Structures

To refer to thekth character of the first name of thh employee, write:
PAYROLL(N-1).FIRSTSNAME(K-1)

whereN andK are previously declared variables to which appropriate values have
been assigned. This might be convenient in a routine for printing out payroll
information.

Nested Structures

A member of a structure can also be another structure; this is called a nested
structure.

Nested structures are subject to the same rules as all structures. They can contain
their own member identifiers, whether these are scalars, arrays, or structures.

The following example shows nested structures:

DECLARE EMPLOYEE (100) STRUCTURE (
ID WORD,
NAME STRUCTURE (
LAST$NAME (15) BYTE,
FIRST$NAME (15) BYTE,
MI BYTE),
AGE BYTE,
JOB WORD,
PAY STRUCTURE (
RATE REAL,
OTRATE REAL,
BENEFITS STRUCTURE (
OPTIONS REAL,
CHOSEN BYTE)
)
);
The preceding declaration statement is for an array (n&vedOYE]Eof 100
structures. Each of the 100 element&PLOYEES a structure with the following

members: &/ORBcalar nameth , a nested structure callsdhME aBYTE scalar
namedAGE a WORD scalar namelDB, and a nested structure nanfraxy.

TheNAMEBstructure has two arraysASTSNAMEaNdFIRSTSNAME of 15 bytes
each for members, as well aB¥TEscalar namewil.

ThePAY structure has twBEAL scalars RATEandOTRATE for members, as well
as a nested structure nanBENEFITS. BENEFITS has theREAL scalarOPTIONS
and theBYTE scalarCHOSENs members.

PL/M-386 Programmer's Guide Chapter 4 71

The preceding example contains two levels of nested structures. The structures
NAMEandPAY are at the first level of nesting; the structBENEFITS is at the
second level of nesting. See Appendix B for the maximum limit on nested
structures.

References to Arrays and Structures

A variable reference is the use, in program text, of the identifier of a variable that
has been declared. A variable reference can be fully qualified, partially qualified,
or unqualified.

Fully Qualified Variable References

72

A fully qualified variable reference specifies a single scalar. For example, given
the following declarations:

DECLARE AVERAGE REAL,;
DECLARE ITEMS (100) BYTE;

DECLARE RECORD STRUCTURE (
KEY BYTE,
INFO WORD);

DECLARE NODE (25) STRUCTURE (
SUBLIST (100) BYTE,
RANK BYTE);

thenAVERAGEITEMS(5) , RECORD.INFQ andNODE(21).SUBLIST(32) are all
fully qualified variable references. Each refers unambiguously to a single scalar.

Note that qualification can only be applied to variables that have been
appropriately declared. A subscript can only be applied to an identifier that has
been declared with a dimension specifier. A member-identifier can be applied only
to an identifier declared as a structure identifier. The compiler flags violations of
these rules as errors.

Chapter 4 Arrays and Structures

Unqualified and Partially Qualified Variable References

Unqualified and partially qualified variable references can be used only in location
references (see Chapter 3) and in the built-in proced@eGTH LAST, andSIZE
(see Chapter 9).

An unqualified variable reference is the identifier of a structure or an array, without
a member-identifier or subscript. For example, with the declarations in the
previous sectionTEMS andRECOR@re unqualified variable references. An
unqualified variable reference is a reference to the entire array or structure.
@ITEMSis the location of the entire arréfEMS (the location of its first byte).
Similarly, @RECORIB the location of the first byte of the struct®@ECORD

A partially qualified variable reference does not refer to a single scalar even using a
subscript and/or member-identifier with an identifier.

For example, in the declaration in the previous secN@DE(15) and
NODE(12).SUBLIST are partially qualified variable references.

When used with th@operator, partially qualified variable references are taken to
mean the first byte that fits the description. Th@sIODE(15)is the location of the
first byte of the structurSODE(15), which is an element of the arrBpDE

Similarly, @NODE(12).SUBLIST is the location of the first byte of the array
NODE(12).SUBLIST , which is a member of the structiM®@DE(12), which is an
element of the arrajODE

Because it is ambiguou®@NODE.SUBLISTcannot be used. In a location reference
referring to an array consisting of structures, a subscript must be given before a
member-identifier can be added to the reference. The rule is different for partially
qualified variable references in connection with the built-in procediER&TH

LAST, andSIZE, as explained in Chapter 9.

PL/M-386 Programmer's Guide Chapter 4 73

Expressions and Assignments

A PL/M expression consists of scalar operands (values) combined by arithmetic,
logical, and relational operators. For example:

A+B

A+B-C
A*B + C/D

A*(B + C) - (D - E)/IF

where+, -, *, and/ are arithmetic operators for addition, subtraction,
multiplication, and division, and, B, C, D, E, andF represent operands. The
parentheses group operands and operators to control the order of evaluation.

This chapter describes the rules governing PL/M expressions. Although these rules
may appear complex, most of the expressions used in actual programs are simple.
In particular, when the operands of arithmetic and relational operators are all of the
same type, the resulting expression is easy to understand.

Operands

Operands are the building blocks of expressions. An operand is a quantity with a
value at run time on which an arithmetic, logical, or relational operation is
performed by an operator. In the preceding examples;,C, etc., are identifiers

of scalar variables that have values at run time.

Operands in expressions can also be numeric constants and fully qualified variable
references. The following sections describe all of the types of operands that are
permitted.

PL/M-386 Programmer's Guide Chapter 5 75

Constants

A numeric constant can be an operand in an expression. However, its type must b
appropriate, as discussed in the following paragraphs.

A numeric constant that contains a decimal point is of BjeL A numeric
constant that does not contain a decimal point is a whole-number constant.

You can use a whole-number constant in either signed context or unsigned context
In unsigned context, a whole-number constant is treated as an unsigned binary
number data type. In signed context, a whole-number constant is treated as a
signed integer data type (see Table 3-2).

Whole-number Constants in Unsigned Context

In PL/M-386, if thewORD3zontrol is in effect, a whole number constant in
unsigned context is treated as follows:

- As aBYTEvalue if it ranges from 0 to 255

- As aHWORDalue if it ranges from 256 to 65,535

- As awORDalue if it ranges from 65,536 to 4,294,967,295 (i.e., 2**32-1)
« As aDWORDalue if it ranges from 2**32 to 2**64-1

Whole-number Constants in Signed Context

In signed context, a whole-number constant is always treatedMSEGERVvalue.

In PL/M-386, the range is -2,147,483,648 to 2,147,483,647. Additionally, small
integer values are extended into 32-bit values with no change to the arithmetic
value.

String Constants

76

A string constant containing not more than four characters can also be used as an
operand. If a string constant has only one character, it is treate®livag aonstant
whose value is the 8-bit ASCII code for the character. If a string constant is a
two-character string, it is treated asH\iWORDonstant in PL/M-386. The value of

the two-character string is formed by stringing together the ASCII codes for the
two characters, with the code for the first character forming the most significant 8
bits of the 16-bit number.

Chapter 5 Expressions and Assignments

In PL/M-386, if thewORD3Zzontrol is in effect, a three- or four-character string
constant is treated asnOR@onstant whose value is formed by stringing together
the ASCII codes for all of the characters. The first character represents the high 8
bits, the second character represents the second most significant 8 bits, and so on.
If the string has three characters, the ASCIlI NUL character is inserted in front of
the first character to form a four-character string.

Strings of more than four characters are illegal as operands in expressions, and can
be used in only two contexts: as initialization values for an array or as part of a
location reference that points to the location at which the string constant is stored
(see Chapter 3).

PL/M-386 Programmer's Guide Chapter 5 77

Variable and Location References

As described in Chapter 4, fully qualified variable references uniquely specify a
single scalar value. (Partially qualified references, also discussed in Chapter 4,
have very restricted uses.) Any fully qualified variable reference can be used as ar
operand in an expression. When the expression is evaluated, the reference is
replaced by the value of the scalar.

A function reference is the name of a typed procedure that has been declared
previously, along with any parameters required by the procedure declaration. The
value of a function reference is the value returned by the procedure.

For example, in the statement:
I =J+ ABS(L);

the absolute value af will be returned by the functioABSand then added to the
value ofJ before being stored in If L is -27, the result will be the same as
writing:

I=J+27;

For a complete discussion of procedure and function references, see Chapter 8.
Location references are described in Chapter 3.

Subexpressions

A subexpression is an expression enclosed in parentheses, which can be used as &
operand in an expression. A subexpression can be used to group portions of an
expression together, just as in ordinary algebraic notation.

Compound Operands

78

All the operand types previously described are primary operands. An operand can
also be a value calculated by evaluating some portion of the total expression. For
example, in the expression:

A+ B*C

(whereA, B, andC are variable references), the operands of thperator ar® and
C. The operands of theoperator aré, and the result of the compound operand
* C. Notice that this expression is evaluated as if it had been written as follows:

A+ (B*C)

This analysis of an expression to determine which operands belong to which
operators, and which groups of operators and operands form compound operands,
discussed in Expression Evaluation. Table 5-1 lists operator precedence.

Chapter 5 Expressions and Assignments

Table 5-1. Operator Precedence

Operator Class Operator Interpretation
Precedence () Controls order of evaluation: expressions within
parentheses are evaluated before the action of any
outside operator on the parenthesized items
Unary +, - Single positive operator, single negative operator
Arithmetic * [, MOD Multiplication, division, modulo (remainder) division,
+, - addition, subtraction
Relational <, <=, <> Less than, less than or equal to, not equal to, =,
>=, > equals, greater than or equal to, greater than
Logical NOT Logical negation
AND Logical conjunction
OR, XOR Logical inclusion disjunction, logical exclusive
disjunction

Arithmetic Operators
PL/M has the following five principal arithmetic operators:
+-*/MOD

These operators are used as in ordinary algebra to combine two operands. Each
operand can have an unsigned binary number data type value; a signed integer data
type value; or ®EALnumber data type value (except tREAL operands cannot

be used with th&ODoperator).

Arithmetic operations cannot be used WHbDINTERandSELECTORvariables.

The +, -, *, and / Operators

The operators +, -, *, and / perform addition, subtraction, multiplication, and
division on operands of any data type excepPOINTERandSELECTOR]ata
types. The following rules govern these operations.

« Both operands must be of the same class (i.e., both operands must be unsigned,
signed, or real). Mixing operands of different classes is illegal. However, an
operand of one class can be converted, in an expression, to another class with
the use of a built-in conversion function (see Chapter 9).

PL/M-386 Programmer's Guide Chapter 5 79

« Unsigned Arithmetic
— Unsigned Addition and Subtraction

If both operands are of the same data type, the result is of the same data
type (e.g.BYTE+ or -BYTEproduces 8YTEresult).

If the operands are of different data types, the smaller operand is extended
with high-order 0 bits to the size of the larger operand; the addition or
subtraction is then performed as though both operands are of the same
type. For example, f@YTE+ or -WORPtheBYTEoOperand is
zero-extended by 8 bits WWORBize; then the operation is performed with
thewWORDperands to produceveéORDesult. For 8YTE+ or -DWOREhe
BYTEoperand is zero-extended by 24 bitDWORBIze; then the

operation is performed with tiBWORDperands to produceDAWORD

result. FOMWORDE- or -DWOROheWORMDperand is zero-extended by 16
bits toDWORBIze; then the operation is performed with BWORD
operands producing@wWORDPesult.

— Unsigned Multiplication and Division

AssumingwORD32if both operands are of ty@YTE the * and /
operations produce afWwORDesult; if both operands are of tyd@/ORD
the * and / operations producawDRDesult. If both operands are of type
WORDthe * and / operations produc&@®RDesult. If both operands are
of type OFFSET the * and / operations produce @RFSETresult. If both
operands are of tyg@wORDhe * and / operations produc®&ORD
result.

For mixed unsigned operands, the same rules as for addition and
subtraction apply. The smaller operand is zero-extended to the size of the
larger operand, then the multiplication or division is performed as though
both operands are of the same type. The results are as described in the
preceding paragraph.

If one operand is a whole-number constant or a string constant, it is treated
as aHWORDr WORMDepending on its value (see Whole-number Constants
in Unsigned Context and String Constants).

All arithmetic for signed operands is 32-bit signed integer arithmetic. The
names of the storage type (e@4ARINT) do not imply what type of
arithmetic is performed, only the size of storage assigned for the variable.

80 Chapter 5 Expressions and Assignments

During signed arithmetic an expression can overflow only if it overflows
the machine word (32 bits). However, overflow is possible when the value
is assigned to a variable wi#HORTINTor CHARINT data type. If the

value is assigned ©©OHARINT, 24 high-order bits are truncated to form the
CHARINTvalue. If the value is assignedSHORTINT, 16 high-order bits

are truncated to form th®HORTINTvalue. If the value is assigned to
INTEGER it is not changed.

Assignment overflow is detected using the OVERFLOW control (see
Chapter 11).

Constants are always represented as integer constants, regardless of their
value.

— Real arithmetic

Both operands are always of tyReAL Thus, ther, -, *, and/
operations produce a result of tyREAL

If one operand is a constant, it must be typed as a floating-point constant,
that is, it must have a decimal point. MixiRgGAL operands with
whole-number constants is not allowed. For example, if RREA

variable, R+1.0 is a legal expression, but R+1 is illegal. Also, 1.0+1 is
illegal, because it mixesREAL constant with a whole-number constant.

— Arithmetic expressions containing operands of yBeECTOROr
POINTERare illegal.

— If both operands are whole-number constants, the operation depends on the
context in which it occurs, as explained in Special Case: Constant
Expressions.

— The result of division by 0 is undefined, exceptH@ALvalues (see
Appendix G).

A unary - operator is also defined in PL/M. It takes a single operand, to which it is
prefixed. A minus sign that has no operand to the left of it is taken to be a unary
minus.

A unary - operator makes (-A) equivalent to (0-A), where A is any operand. The 0
is aBYTEvalue if A is an unsigned binary number data type. The OliSEEGER

value if A is a signed integer data type; ak@ALvalue if A is a real number data

type. If Ais a whole-number constant, its type and the unary - operation depend on
the context as explained in Special Case: Constant Expressions. In unsigned
context, (-1) is assigned a BYTE value (0-1) which is equivalent to OFFH. In

signed context, (-1) is assigned an INTEGER value (0-1) which is equivalent to
OFFFFFFFFH for PL/M-386.

Finally, a unary + has no effect; (+A) is equivalent to (A).

PL/M-386 Programmer's Guide Chapter 5 81

The MOD Operator

82

MODperforms division, except the result is not the quotient, but rather the
remainder left after integer division. The result has the same sign as the operand
on the left side of thetODoperator.

REAL operands cannot be used with th@Doperator; only unsigned or signed
operands can be used.

For example, iA andB areINTEGERVvariables with values of 35 and 16,
respectively, them MOIB yields anNTEGERresult of 3, andA MOD B yields -3.

Unlike the/ operator, th&1ODoperator must be separated from surrounding letters
and digits by blanks or other separators.

Chapter 5 Expressions and Assignments

Relational Operators

The following relational operators are used to compare operands of the same type:

< less than

> greater than

<= less than or equal to

>= greater than or equal to
<> not equal to

= equal to

Relational operators are always binary operators, taking two operands, to yield a
BYTEresult. Relational operators can be used with all types.

If both operands are unsigned, then unsigned arithmetic will be used to compare the
two values. As with the arithmetic operators, mixing unsigned data types are
allowed, with the smaller operand being zero-extended to the size of the larger
operand.

Whole-number and string constant operands are trea@dT&HWORDNVORDoOr
OFFSET Unsigned data types are primarily used to represent positive values.
Negative numbers are represented by two's complement in the smallest unsigned
data type that can hold the value. For example, -2 is representecBg Ehealue

of OFEH. IfBis aBYTEvariable, then the relational expressi®x=-2 is TRUE

only if B has the value of 254 or 255, because the expression -2 (when evaluated
unsigned) has BYTEvalue of 254.

In PL/M-386, if both operands are signed, then signed 32-bit integer arithmetic is
used to compare the two valugSHARINTor SHORTINTare sign extended to
INTEGERvalues. The calculated value is then assigned to the specified data type.

If both operands are real, floating point arithmetic will be used to compare the two
values. Only floating-point constants (i.e., constants containing a decimal point)
can be mixed witlREALoperands.

Two POINTERoOperands can be compared for equality but greater than, less than,
and inequality operations cannot be used. In PL/M-386 onlyPtINTERs are

equal only if they are bitwise equal (i.e., if both segment selector portions are equal
and both offset portions are equal).

Two SELECTORoperands can be compared for equality, inequality, less than, and
greater than.

Since constants cannot be typedP@NTERoOr SELECTORcomparison between
POINTEROr SELECTORoperands and constants is illegal.

PL/M-386 Programmer's Guide Chapter 5 83

84

As with arithmetic operations, operands of different classes cannot be mixed
together in relational operations. An operand of one class can be converted, in an
expression, to another class using a built-in conversion function (see Chapter 9).

If the specified relation between the operands is tra;T& value of OFFH (or
1111$1111B) is returned. Otherwise, the resultds B value of O0OH (or
0000$0000B). Thus, in all cases, the result is of BY9EE with all 8 bits set to 1
for a true condition, or to O for a false condition. For example:

(6>5) result is OFFH (true)
(64<=4) result is O0H (false)

Values of true and false resulting from relational operations are useful in
conjunction withDOWHILE statements ani@ statements, as described in

Chapter 6. In the context of®DWHILE statement oiF statement, only the least
significant bit of a true or false value is used. Thus, each value with the least
significant bit set (including OFFH) is considered true and each value with the least
significant bit O is considered false. BXTEvalue is returned.

Chapter 5 Expressions and Assignments

Logical Operators
PL/M has the following four logical (Boolean) operators:
NOT AND OR XOR

These operators are used with the unsigned binary number data type, or
whole-number or string constant operands to perform logical operations on 8, 16, or
32 bits.

NOTis a unary operator, taking one operand only. It produces a result of the same
type as its operand: each bit of the result is the one's complement of the
corresponding bit of the original value.

The remaining operatoralQ OR XOR each take two operands, and perform

bitwise and, or, and exclusive or, respectively. The bits @fiNDresult are 1 only

when the corresponding bit in each operand is 1. The bits@Regsult are 1

when the corresponding bit of either operand is 1, and 0 only when both operands
are 0. The bits of axORresult are 0 only when the corresponding bits of the

operand are the same (i.e., both 1 or both 0); the result has a 1 when one operand is
1 and the corresponding bit of the other operand is O.

When both operands are of the same type, the result is the same type as the
operands.

As with the arithmetic and relational operators, unsigned data types can be mixed
in any combination for logical operations. Whole-number operands are treated as
BYTE HWORDor WORDMalues in PL/M-386. The only exception is an expression
composed only of whole numbers within the cast parentheses; then the constants
have integer context and the numbers are extended to the 16-bit signed value. The
usual bitwise logical operation then takes place (as explained above for 16-bit
numbers for bitwise operations). Mixi@FFSETwith WORProduces a@FFSET

result.

The following are examples of logical operations:

NOT 11001100B result is 00110011B
10101010B AND 11001100B result is 10001000B
10101010B OR 11001100B result is 11101110B

10101010B XOR 11001100B result is 01100110B

PL/M-386 Programmer's Guide Chapter 5 85

86

Note that true and false values resulting from relational operations can be
combined with logical operators:

NOT (6>5) result is OOH (false)
(6>5) AND (1>2) result is O0H (false)
(6>5) OR (1>2) result is OFFH (true)

(LIM =Y) XOR (Z<2) result is OFFH (true) if LIM =Y and Z<2 or if LIM<>Y and
Z<2, but result is O0H (false) if both relations are true or
both false

Note that in the statement:
A = (NOT B)

parentheses must be used as indicated. Failure to do so will result in a syntax errol
because relational operatorg bave higher precedence than logical operators

(NOT.

The following are examples of whole numbers. In this example the parentheses
enclose items to be converted (casted).

OFFSET(10101010B AND 11001100B) givesOFFSET(010001000B) . This is
the 16-bit result obtained with the simple logical operation written above, except
that the offset type is returned. PL/M-386 extends the result to 32 bits.

HWORD (-4 AND 7) giveSHWORD (OFFFFFFFCH AND 00000007H) which
givesHWORD(4)or the unsigned 16-bit value of 4.

Chapter 5 Expressions and Assignments

Expression Evaluation

Precedence of Operators: Analyzing an Expression

In PL/M, operators have an implied order that determines how operands and
operators are grouped and analyzed during compilation.

The PL/M operators are listed in Table 5-1 (page 5-79) from highest to lowest
precedence; those that take effect first are listed first. Operators in the same line
are of equal precedence and are evaluated as they are encountered in a left to right
reading of an expression.

The order of evaluation in an expression is controlled first by parentheses, then by
operator precedence, and finally by left to right order.

The compiler first evaluates operands and operators enclosed in paired parentheses
as subexpressions, working from the innermost to the outermost pairs of
parentheses. The value of the subexpression is then used as an operand in the
remainder of the expression.

Parentheses are also used around both subscripts and the parameters of function or
procedure references. These are not subexpressions, but they too must be evaluated
before the remainder of the expressions or references can be evaluated at a higher
level.

When there is more than one operator in an expression, evaluate the results by
beginning with the operator with the highest precedence. If the operators are of
equal precedence, evaluate them left to right, as follows:

Example Reason
(A+B)*CisnotthesameasA+B*C Parentheses form subexpressions
A + B * C means the same as A + (B * C) Operator precedence

A/B * C means the same as (A/B) * C Left to right, equal precedence

PL/M-386 Programmer's Guide Chapter 5 87

88

The following are examples of precedence ranking:

A+B*C is equivalentto A + (B * C)
A+B-C*D is equivalent to (A + B) - (C * D)
A+B+C+D is equivalentto ((A+B)+C)+D
A/B*C/D is equivalentto ((A/B)*C)/D
A > B AND NOT B<C-1 is equivalent to (A > B) AND

(NOT(B<(C<1)))

In the last four examples, the application of the left-to-right rule for operators with
the same precedence is shown. In the second, third, and fifth examples, the
left-to-right rule for operators of equal precedence makes no difference in the value
of the expression. But in the fourth example, the left-to-right rule is critical.

The following example shows the action of the rules of precedence on a longer
expression:

(-B+SQRT (B*B-4.0*A*C))/(2.0*A)

AssumeA, B, andC are variables of typREAL, andSQRTis a procedure of type
REALwhich returns the square root of the value passed to it as a parameter. In this
case, the parameter is the expressiomB -4.0 * A* C . Floating point
constants4.0, 2.0) are used rather than whole-number constargs)(because

it is invalid to combine whole-number constants vREPAL variables.

The compiler first analyzes the portions of the expressions within the innermost
parentheses, then the procedure parameter and the subexpzdgssion . (The
subexpression is also called a compound operand because its result is used in
evaluating the whole expression.)

In a left-to-right scan, the two operands of the firgiperator are both equal to the
value ofB. The operands of the secondperator aré.0 and the value ok. The
operands of the thirtl operator are the results of the second evaluation (i.e., the
compound operangl0 * A) and the value of. The operands of the fourth
operator are.0 and the value oA

The subexpressiah0 * A is now completely analyzed, but the parameter
expression still contains a minug Eperator that has not been analyzed. The
operands of this operator are the result of evalu&ing and the result of
evaluatingd.0 *A*C . Once the evaluations are done, the parameter
expression is analyzed and its value can be calculated.

This value does not become an operand in the overall expression. It is passed to
the procedur&QRT which returns the square root of the parameter. This returned
value then becomes an operand in the remainder of the full original expression:

(-B + returned value)/ (2.0*A)

Chapter 5 Expressions and Assignments

Now that the innermost subexpressions have been analyzed and evaluated, a
division operator whose left operand must be evaluated further remains. This outer
subexpression i8 + the returned square root: there are two operators. The first is
a unary minus-() and its operand is the value®f The second is the binary plus

(+) operator, with two operands: the value®fand the value GBQRT(B * B -

40* A*C) . -B hasthe same meaning@B , which is to be added to the

known value of the square root indicated. The final operator is divisjpwiiose

two operands are known: the valug-&+ SQRT(B*B-4.0*A*C))

and the value of2(0 *A).

Three important points must be emphasized about expression evaluation, as
discussed in the next three sections.

Compound Operands Have Types

Compound operands have types as do primary operands. All of the primary
operands used in the preceding example were ofREpé, which results in
compound operands of tygEAL It is always valid for all the operands in an
arithmetic expression to be of the same type, and the result will be that type also.
CombiningBYTEvalues can validly createvéORDr HWORDalue. Combining a
signed integer data type value always createsBBGERvalue.

In an expression containing mixed data types, any combinations can be used as
long as the types belong to the same class (i.e., unsigned binary number, signed
integer, real, pointer, or selector). Data types (of the same class) can be mixed as
operands in expressions, whether they are constants or variables.

Mixing types of different classes in arithmetic, logical, or relational expressions is
invalid. For example, if andG areINTEGERVvariables andi andK areREAL
variables, then the expressidhs K andH + G are invalid.

Due to operator precedence, some combinations can occur validly in the same
expression without being directly combined. In the following logical expression:

(F > G AND H < K)

the subexpressiadh> G yields aBYTEvalue, as does the subexpressionk .
Then theBYTEvalues aréANDedtogether. This expression is legal despite an
apparent mixing of typesG andH could not be the operands for two reasons:

1. The relational operators are of higher precedence thaxNtheperator.

2. Only unsigned operands are legal with logical operators.

PL/M-386 Programmer's Guide Chapter 5 89

Relational Operators Are Restricted

In the absence of parentheses denoting a subexpression, the result of a relational
operation (comparison) cannot become an operand in another relational operation.
Thus, the expression:

A<=X<=B

is invalid in PL/M because the secowd operator would have to use the result of
the first<= operator as one of its operands.

In PL/M the valid expression is as follows:
A<=XAND X<=B

Parentheses also could have created a valid expression; for example:
(A<=X)<=B

However, in this expression the result does not have the desired meaning
becomes a byte of value Oalfis greater thax, OFFH ifA is not greater thax.
Thus, ifAis 0,Xis 1, andB s 2:

(0<=1)<=2
evaluates to:
(OFFH) <=2

and yields a FALSE value. This is contrary to the original intention.

Order of Evaluation of Operands

Operators and operands are not bound in the same order as the order in which
operands are evaluated.

The rules of analysis specify which operands are bound to each operator. The
following example shows how operands are bound to operators:

A+B*C

B andcC are the operands of theoperator, and and the value a8 * C are the
operands of the operator.B andC must be evaluated before th@peration can
be performed, and the compound operaricc must be evaluated before the
operation is performed.

However, it is not obvious whethBwill be evaluated before or vice versaA
could be evaluated before eitlgor C, and its value stored until theoperation is
performed.

90 Chapter 5 Expressions and Assignments

The rules of PL/M do not specify the order in which subexpressions or operands are
evaluated in each statement. This flexibility enables the compiler to optimize the
object code it produces, as described in Chapter 11. In most cases, the order of
evaluation makes no difference. However, certain embedded assignments (see
Assignment Statements) or function references (see Chapter 8) change the value of
an operand in the same expression.

Choice of Arithmetic: Summary of Rules

As described in Chapter 3, PL/M uses three distinct kinds of arithmetic: unsigned,
signed, and floating-point. Whenever an arithmetic or relational operation is

carried out, PL/M uses one of these types of arithmetic, depending on the types of
the operands.

Table 5-2 is a summary of the rules that determine which type of arithmetic is used
in each case. The table also lists the data type of the result for each kind of
arithmetic operation. The notes following the table provide additional information.
(see Relational Operators and Logical Operators for rules governing relational and
logical operations.)

In PL/M-386,0FFSEToperands are always 32-bit unsigned operands.

In expressions, whole-number constants are always converted to the value of the
equivalent data type.

PL/M-386 Programmer's Guide Chapter 5 91

Table 5-2. Summary of Expression Rules for PL/M-386

Variable Kind of
Type Arithmetic Operand Type Operation Result Notes
BYTE Unsigned BYTE w/BYTE +or- BYTE range: O to 255
HWORD * [or MOD HWORD 0 to 65,535
WORD HWORD +or- HWORD range: 0-65,535
DWORD w/HWORD * [or MOD WORD 0 to 2**32-1
BYTE wWHWORD +or- HWORD BYTE is extended with
becomes HWORD */or MOD WORD 8 high-order zeros to
w/HWORD an HWORD value
WORD w/WORD any WORD range:
arithmetic 0 to 2**32-1
BYTE w/WORD any WORD BYTE is extended with
becomes arithmetic 24 high-order zeros
WORD w/WORD to a WORD value
HWORD w/WORD any WORD HWORD is extended
becomes arithmetic with 16 high-order
WORD w/WORD zeros to a WORD
value
DWORD any DWORD range:
w/DWORD arithmetic 0-2**63-1
BYTE w/DWORD any DWORD BYTE is extended
becomes DWORD arithmetic with 56 high-order
w/DWORD zeros to a DWORD
value
HWORD any DWORD HWORD is extended
w/DWORD arithmetic with 48 high-order
becomes DWORD zeros to a DWORD
w/DWORD value
WORD w/DWORD any DWORD WORD is extended
becomes DWORD arithmetic with 32 high-order
w/DWORD zeros to a DWORD
value
continued
92 Chapter 5 Expressions and Assignments

Table 5-2. Summary of Expression Rules for PL/M-386 (continued)

OFFSET Unsigned OFFSET any OFFSET range:
W/OFFSET arithmetic 0 to 2**32-1
BYTE w/OFFSET any OFFSET BYTE is extended with
becomes OFFSET arithmetic 24 high-order zeros to
W/OFFSET an OFFSET value
HWORD any OFFSET HWORD is extended
W/OFFSET arithmetic with 16 high-order
becomes OFFSET zeros to an OFFSET
W/OFFSET value
WORD w/OFFSET any OFFSET range: O to 2**32-1
becomes OFFSET arithmetic
w/OFFSET
OFFSET any DWORD OFFSET is extended
w/DWORD arithmetic with 32 high-order
becomes DWORD zeros to a DWORD
w/DWORD value

CHARINT Signed INTEGER +or - INTEGER -2**31to

SHORTINT W/INTEGER * [or MOD +2*%31-1

INTEGER

REAL Floating REAL w/REAL +-*or/ REAL

Point

POINTER POINTER = BYTE 0 or OFFH
w/POINTER

SELECTOR Unsigned SELECTOR =, <>, BYTE 0 or OFFH
W/SELECTOR <, or >

Note: CHARINT and SHORTINT are sign extended to INTEGER before expression evaluation.

The combinations of operands shown in Table 5-2 are the only usable combinations
of arithmetic operations and operands. For example, an operand of the signed
integer data type cannot be combined with an operand of the unsigned binary
number data type. However, explicit conversion can be coded in-line using the
PL/M built-ins described in Chapter 9.

PL/M-386 Programmer's Guide Chapter 5 93

Special Case: Constant Expressions
The rules already given explain expressions like:
A+3*B
where there is a single whole-number constant. However, if there is an expression
like:
3-5+A

then the kind of arithmetic that will be used to evaldat® must be considered,
because both operands are whole-number constants.

The answer, in this case, depends on the type of oparalidi is an unsigned
binary number, thed -5 is considered to be in unsigned context. Unsigned
arithmetic is used to evaluae 5 |, giving aBYTEresult of 254. Unsigned
arithmetic is then used to add this resulato

For PL/M-386, ifA is a signed integer, th&r 5 is in signed context. Signed
32-bit arithmetic is used to evalu@e5 . Signed 32-bit arithmetic is then used
to add this result ta.

If Ais of typeREAL POINTER or SELECTORthe expression is illegal.

Any compound operand, subexpression, or expression that contains only
whole-number constants as primary operands is called a constant expression.
Floating-point constants are of typeALand are treated as the valueRBAL
variables.

In this expression:
3-5+500+A

3-5 is a constant expression that forms part of the larger constant expression
3-5+500

If the constant expression is not the entire expression, its value is an operand in the
expression. The context is created by the other operand of the same operator.

In the preceding example, suppose the opesamas aBYTEvalue. Then the
constant expressidh- 5 + 500 is in unsigned context. The constakisnds
are treated aBYTEvalues, an®00 is treated as WORDr HWORDalue. The
operation3 -5 gives aBYTEresult of 254, and this is extended to/@RDr
HWORDalue of 254 before adding 500. This results WiGRDr HWORDalue of
754. Itis exactly as if the expression had been written as follows:

754 + A

94 Chapter 5 Expressions and Assignments

If A had aSHORTINTvalue, the constast+5- 500 would be in signed context;
signed 32-bit arithmetic is used for the operatiors + 500 . The result (498)
is added to the value of to form a 32-bit signed temporary result.

In summary, if the context is created by an unsigned binary number data type
operand, the constant expression is in unsigned context. If the context is created by
a signed integer data type operand, the constant expression is in signed context.
Note that if the context is created by a real number, pointer or selector data type
operand, the constant expression is illegal.

If the constant expression is the entire expression, then it belongs in one of the
categories listed below. For additional information, see Assignment Operators.

- Constant expression as right-hand part of an assignment statement: context is
created by the variable to which the expression is being assigned.

- Constant expression as subscript of an array variable: evaluated as if being
assigned to alNTEGERvariable.

- Constant expression in tfe part of anF statement: evaluated as if being
assigned to 8YTEvariable.

- Constant expression inlODWHILE statement: evaluated as if being assigned
to aBYTEvariable.

- Constant expression as start, step, or limit expression in an itedative
statement: evaluated as if being assigned to a variable of the same type as the
index variable in the same iteratid©statement.

- Constant expression inCBEDCASEstatement: evaluated as if being assigned to
aWORDariable.

- Constant expression as an actual parameteC#la statement or function
reference: evaluated as if being assigned to the corresponding formal
parameter in the procedure declaration.

« Constant expression inRETURNstatement: evaluated as if being assigned to
a variable of the same type as the (typed) procedure that contaRETHEN
statement.

- Constant expression inside an explicit type conversion (cast built-ins);
evaluated as if being assigned taMNEGERVvariable, shorter values are
extended to 16 bits or 32 bits. The only exception is that relational operators
can be used and are performed bitwise on 16-bit or 32-bit constant values.

PL/M-386 Programmer's Guide Chapter 5 95

Assignment Statements

Results of computations can be stored as values of scalar variables. At any given
moment, a scalar variable has only one value; however, this value can change with
program execution. The PL/M assignment statement changes the value of a
variable. Its simplest form is:

variable =expression ;

where expression is any PL/M expression, as described in the preceding sections.
This expression is evaluated, and the resulting value is assigned to (that is, stored
in) the variable. This variable can be any fully qualified variable reference except
a function reference. The old value of the variable is lost.

For example, following execution of the statement:
RESULT = A + B;

the variableRESULTwill have a new value, calculated by evaluating the expression
A+B .

Implicit Type Conversions

In an assignment statement, if the type of the value of the right-hand expression is
not the same as the type of the variable on the left side of the equal sign, then eithe
the assignment is illegal or an implicit type conversion occurs. For PL/M-386, all
unsigned binary number, signed integer and real data type values are converted
automatically. Chapter 9 includes a description of built-in functions that, when
invoked, perform explicit conversions for use in expressions or assignments.

For implicit type conversions, the data type of the value on the right-hand side of
the assignment statement is always forced to equal the data type of the value on th
left-hand side of the assignment statement. This is done either by extending the
value of the expression, or by truncating the value of the expression by the
appropriate number of high-order bits so that the data types of both sides of the
assignment statement are the same.

The implicit type conversions that occur for assignment statements are summarizec
in Table 5-3.

96 Chapter 5 Expressions and Assignments

Table 5-3. Implicit Type Conversions in Assignment Statements for PL/M-386
Expression Variable on Left of
Result Type Assignment Statement Conversion
BYTE HWORD BYTE value is extended by 8 high-order 0
bits to HWORD value
WORD BYTE value is extended by 24 high-order 0
bits to WORD value
DWORD BYTE value is extended by 56 high-order 0
bits to DWORD value
OFFSET BYTE value is extended by 24 high-order 0
bits to OFFSET value
HWORD* BYTE 8 high-order bits of HWORD value are
truncated to convert it to a BYTE value
WORD HWORD value is extended by 16 high-order
0 bits to convert it to a WORD value
DWORD HWORD value is extended by 48 high-order
0 bits to convert it to a DWORD value
OFFSET HWORD value is extended by 16 high-order
0 bits to convert it to an OFFSET value
WORD* BYTE 24 high-order bits of WORD value are
truncated to convert it to a BYTE value
HWORD 16 high-order bits of WORD value are
truncated to convert it to a HWORD value
DWORD WORD value is extended by 32 high-order 0
bits to convert it to a DWORD value
OFFSET No conversion (both WORD and OFFSET
are 32-hits)
DWORD* BYTE 56 high-order bits of DWORD value are
truncated to convert it to BYTE value
HWORD 48 high-order bits of DWORD value are
truncated to convert it to HWORD value
WORD 32 high-order bits of DWORD value are
truncated to convert it to WORD value
OFFSET 32 high-order bits of DWORD value are

truncated to convert it to OFFSET value

* Assuming WORD32.

PL/M-386 Programmer's Guide

continued

Chapter 5

97

Table 5-3. Implicit Type Conversions in Assignment Statements for PL/M-386
(continued)

Expression Variable on Left of
Result Type Assignment Statement Conversion
OFFSET** BYTE 24 high-order bits of OFFSET value are
truncated to convert it to a BYTE value
HWORD 16 high-order bits of OFFSET value are
truncated to convert it to a HWORD value
WORD No conversion is necessary (both WORD
and OFFSET are 32 bits)
DWORD OFFSET value is extended by 32-high-order
0 bits to convert it to a DWORD value
INTEGER* CHARINT 24 high-order bits of INTEGER value are
truncated to convert it to CHARINT value
SHORTINT 16 high-order bits of INTEGER value are
truncated to convert it to SHORTINT value
REAL REAL Automatically converted to 32-bit value

* Assuming WORD32.
** A warning message is issued if OFFSET values are truncated.

Note that implicit conversion is not performed R®DINTEROr SELECTORvalues.
For assignment statements WROINTEROr SELECTORexpressions, the left side of
the assignment statement would be of the same type as the expression.

98 Chapter 5 Expressions and Assignments

Constant Expression

BYTEvariable on the left: The constant expression is evaluated in unsigned
context. If the resulting value is equal to or greater than 0 and equal to or less than
255, it is treated asBYTEvalue and no conversion is necessary. If the resulting
value is greater than 255, it is truncated to ®pEEby dropping all except its 8
low-order bits.

INTEGERVvariable on the left: The constant expression is evaluated in signed
context. No conversion is necessary.

REALvariable on the left: The assignment is illegal unless all values on the right
are floating-point constants. If the value of the constant expression is out of the
range forREALvariables, an overflow exception occurs (see Chapter 10 and
Appendix G).

HWORBWariable on the left: The constant expression is evaluated in unsigned
context. If the resulting value is equal to or greater than 0 and equal to or less than
65,535, it is treated as &twORDalue, and no conversion is necessary. If the
resulting value is greater than 65,535, it is truncated toHypeRDy dropping all
except its 16 low-order bits.

WORDMariable on the left: The constant expression is evaluated in unsigned
context. No conversion is necessary.

DWORDWariable on the left: The constant expression is evaluated in unsigned
context and is zero-extended tD@WORDalue.

OFFSETvariable on the left: The constant expression is evaluated in unsigned
context. No conversion is necessary.

CHARINTvariable on the left: The constant expression is evaluated in 32-bit
INTEGERarithmetic. If the value is less than -128 or greater than +127, it is
truncated to 8 bits.

SHORTINTvariable on the left: The constant expression is evaluated in 32-bit
INTEGERarithmetic. If the value is outside the given rangeStéORTINT
(-32,768 to +32,767), it is truncated to 16 bits.

Constants cannot be assigne@@NTERor SELECTORvariables.

Type conversion built-ins can be used to change the type of a constant expression
to the type required for assignment. The entire expression within the type
conversion is evaluated in signed context.

PL/M-386 Programmer's Guide Chapter 5 99

Multiple Assignment

It is often convenient to assign the same value to several variables at the same tim
This is accomplished in PL/M by listing all the variables to the left of the equal
sign, separated by commas. The variablsT, CENTERandRIGHT can all be set
to the value of the expressioMiT + CORRwith the single assignment statement:

LEFT, CENTER, RIGHT = INIT + CORR,;

The variables on the left-hand side of a multiple assignment must be all of the sam¢
class, that is, all unsigned, all signed,PEIINTER all SELECTORoOr allREAL

Then the conversion rules described previously in this chapter are applied
separately to each assignment.

|:| Note

The order in which the assignments are performed is not
guaranteed. Therefore, if a variable on the left side of a multiple
assignment also appears in the expression on the right side, the
results are undefined.

Embedded Assignments

100

A special form of assignment can be used within PL/M expressions. The form of
this embedded assignment is:

variable := expression

and can appear anywhere an expression is allowed. The expression (everything to
the right of the= assignment symbol) is evaluated and stored in the variable on
the left. Parentheses are used to specify the limits of an embedded assignment
within an assignment statement. The value of the embedded assignment is the
same as that of its right half. For example, the expression:

ALT + (CORR := TCORR + PCORR) - (ELEV := HT/SCALE)
results in exactly the same value as:
ALT + (TCORR + PCORR) - (HT/SCALE)

except that the intermediate resUlGORR +PCORRaNdHT/SCALE are stored in
CORRandELEV, respectively. These names for intermediate results can then be
used at a later point in the program without recalculating their values. The names
must have been declared earlier.

Chapter 5 Expressions and Assignments

The rules of PL/M do not specify the order in which subexpressions or operands are
evaluated. When an embedded assignment changes the value of a variable that also
appears elsewhere in the same expression, the results cannot be guaranteed.

For example, the following expression:
A = (X:i=X+4) + Y*Y + X;
could mean either of the following interpretations:

Al = (X+4) + Y*Y + (X+4);
A2 = (X+4) + Y*Y + X;

Avoid this ambiguity by removing the embedded assignment from the expression
and using a separate assignment statement to achieve the desired effect as follows:

X=X +4;
AL =X+ Y*Y + X;

X=X+4;
A2 =X+ Y*Y + X - 4

A3 =X+4+Y*Y + X;
X=X+4;

PL/M-386 Programmer's Guide Chapter 5 101

Flow Control Statements

This chapter describes statements that alter the sequence of PL/M statement
execution and that group statements into blocks.

DO and END Statements: DO Blocks

Procedures andOblocks are the basic building units of modular programming in
PL/M. (Procedures are discussed in Chapter 8.)

This chapter discusses all four kindsbafblocks. EaclbOblock begins with @0
statement and includes all subsequent statements through the ElBing
statement. The four kinds DOblocks are as follows:

e SimpleDOblock

DO; /* all statements executed, each in order */
statement-0;
statement-1;
statement-2;

END;
« DO CASEblock

DO CASE select_expression; /* one statement executed */
case-0-statement; * executed if select_expression = 0 */
case-1-statement;/* executed if select_expression = 1 */

END;
e DO WHILE block

DO WHILE expression_true;

statement-0; /* all executed repeatedly if expression */
statement-1; /* true, none executed if false. */
END;

PL/M-386 Programmer's Guide Chapter 6 103

« lterativeDOblock

DO counter = start-expr TO limit-expr BY step-expr;
statement-0; /* all statements executed a number */
statement-1; /* of times depending on comparison */

[* of counter with limit expression */

END;
The last two blocks are also referred td@doops because the executable

statements within them can be executed repeatedly (in sequence) depending on thi
expressions in theOstatement.

Any DOstatement can have multiple labels on it, and only the last of these can
appear between the word END and the next semicolon. For example:

A: B: C: D: EM: DO;

END EM ; /* end of block EM; */
/* A, B, C, D also end here. */

As mentioned in Chapter 3, the placement of declarations is restricted. Except for
use in procedures, declarations are permitted only at the top of a Sidipleck,

before any executable statements of the block. ([@disan, of course, be nested
within otherDGs or procedures. Chapter 7 discusses the scope of declared names.)

EachDOblock can contain any sequence of executable statements, including other
DOblocks. Each block is considered by the compiler as a unit, as if it were a single
executable statement. This fact is particularly useful iDth@ASEblock and the

IF statement, both discussed in this chapter.

The discussions that follow describe the normal flow of control within each kind of
DOblock. The normal exit from the block passes througlEtiestatement to the
statement immediately following. These discussions assume that none of the
statements in the block causes control to bypass that procesST@statement

with the target outside the block would be one such byp&3T@ are discussed

later in this chapter.)

104 Chapter 6 Flow Control Statements

Simple DO Blocks

A simpleDOblock merely groups, as a unit, a set of statements that will be
executed sequentially (except for the effecGOIT@ orCALLS):

DO;
statement-0;
statement-1;

statement-n;
END;

For example:

DO;
NEWS$VALUE = OLD$VALUE + TEMP;
COUNT = COUNT + 1;

END;

This simpleDOblock adds the value aEMPto the value 0DLD$VALUEand stores
it in NEW$VALUE It then increments the value ©UNTby one.

DOblocks can be nested within each other as shown in the following example:

ABLE: DO;
statement-0;
statement-1;

BAKER: DO;

statement-a;
statement-b;
statement-c;
END BAKER;
statement-2;
statement-3;
END ABLE;

The firstDOstatement and the secoBlDstatement bracket one simpi®block.

The secondOstatement and the firENDstatement bracket a differebOblock

inside the first one. Notice how indentation (using tabs or spaces) can be used to
make the sequence more readable, so that it can be seen at a glancenbat one
block is nested inside another. It is recommended that this practice be followed in
writing PL/M programs. See Appendix B for the numbeboblocks that can be
nested.

A simpleDOblock can delimit the scope of variables, as discussed in Chapter 7.

PL/M-386 Programmer's Guide Chapter 6 105

DO CASE Blocks

A DOCASEDblock begins with ®OCASEstatement, and selectively executes one of
the statements in the block. The statement is selected by the value of an
expression. The maximum number of cases is given in Appendix B. The form of
the DOCASEDlock is:

DO CASE select_expression;
statement-0;
statement-1;

statement-n;
END;

In theDOCASESstatementselect_expression must yield an unsigned binary
number (excludin@WORor a signed integer value. If the expression is a

constant expression, it is evaluated as if it were being assignatid®@ariable.

The value (call the valu€) must be between 0 andinclusive. K is used to select

one of the statements in tb©CASEblock, which is then executed. The first case
(statement-0) corresponds t& = O; the seconds{atement-1) corresponds to

K=1, and so forth. Only one statement from the block is selected. This statement i
then executed (only once). Control then passes to the statement followigthe
statement of thBOCASEDblock.

|:| Note

If the run-time value of the expression in @CASEstatement

is less than O or greater tharfwheren + 1 is the number of
statements in thBOCASEDblock), the effect of thBOCASE

statement is undefined. This may have disastrous effects on
program execution. Therefore, if there is any possibility that this
out-of-range condition may occur, tb©CASEblock should be
contained within anF statement that tests the expression to

make sure that it has a value that will produce meaningful results.

106 Chapter 6 Flow Control Statements

An example of DOCASEblock is:
DO CASE SCORE;

; /* case 0 */
CONVERSIONS=CONVERSIONS + 1; [*case 1*
SAFETIES = SAFETIES + 1; [* case 2 */
FIELDGOALS = FIELDGOALS + 1; /* case 3 */

; /* case 4 */

; /* case 5 */
TOUCHDOWNS=TOUCHDOWNS + 1; /* case 6 */

END;

When execution of thiSASEstatement begins, the variall€OREnust be in the
range 0 to 6. IBCORHSs 0, 4, or 5 then a null statement (consisting of only a
semicolon, and having no effect) is executed; otherwise the appropriate statement
is executed, causing the corresponding variable to be incremented.

A more compleXDOCASEDblock is the following:

SELECT = COUNT - 5;
IF SELECT <=2 AND SELECT >= 0 THEN
DO CASE SELECT;

X=X+1; /* Case 0 */
DO; /* Begin Case 1 */
X=Y +10;
Y=Y+1;
END; /* End Case 1 */

DO I =LAST$HI + 1 TO TOP - 6; /* Begin Case 2 */
Z()=X*Y +1;
w(l) = z(1) * z(1);
V(1) = w(l) - Z(1);

END; /* End Case 2 */

END; /* End DO CASE block */
ELSE CALL ERROR;

If SELECTandCOUNTareINTEGERvariables, negative values could occur. Diee
CASEDblock is placed within alF statement to guarantee that execution obibe
CASEblock will not be attempted if the value SELECTIs less than O or greater
than 2. Instead, a procedure calfRRORdeclared previously) will be activated.

PL/M-386 Programmer's Guide Chapter 6 107

The preceding example illustrates the use of a sibpPlelock as a single PL/M
statement. ThBOCASEstatement can select Case 1 or Case 2 and cause multiple
statements to be executed. This is only possible because they are grouped as a
simpleDOblock, which acts as a single statement.

DO WHILE Blocks

108

DOWHILEandIF statements examine only the least significant bit of the value of
the expression. If the value is an odd number (least significant bit = 1), it will be
considered true. If itis even (least significant bit = 0), it will be considered false.
If the expression is relational, e.gsB, the result will have a value of 00H or
OFFH, but this is incidental; it may have any unsigned value.

A DOWHILE block begins with ®OWHILE statement, and has the following form:

DO WHILE expression; [* expression must yield */
statement-0; /* an unsigned value */
statement-1;

statement-n;
END;

The effect of this statement is as follows:

1. First the unsigned expression following the reserved WitLE is evaluated.
If the rightmost bit of the result is 1, then the sequence of statements up to the
ENDis executed.

2. When theENDis reached, the expression is evaluated again, and again the
sequence of statements is executed only if the value of the expression has a
rightmost bit of 1.

3. The block is executed over and over until the expression has a value whose
rightmost bit is 0. Execution then skips the statements in the block and passes
to the statements following tlENDstatement.

Consider the following example:

AMOUNT = 1;

DO WHILE AMOUNT <= 3;
AMOUNT = AMOUNT + 1;

END;

The statememMOUNE AMOUNT 1 is executed exactly 3 times. The value of
AMOUNTWhen program control passes out of the block is 4.

Chapter 6 Flow Control Statements

Iterative DO Blocks

An iterativeDOblock begins with an iteration statement and executes each
statement in the block, in order, repeating the entire sequence. The form of the
iterativeDODblock is:

DO counter = start-expr TO limit-expr BY step-expr ;
statement-0 ;
statement-1 ;

END ;
TheBY step-expr phrase is optional; if omitted, a step of 1 is the default.

For PL/M-386, the counter must be a non-subscripted variable of unsigned type:
BYTE HWORDNORPor OFFSET or a signed integer data typ®NTEGER
CHARINT, or SHORTINT

An example of an iterativeOblock is:

DO I1=1TO 10;
CALL BELL;
END;

whereBELL is the name of a procedure that causes a bell to ring. The bell will ring
ten times.

Another example shows how the index-variable can be used within the block:

AMOUNT = 0;
DO I=1TO 10;

AMOUNT = AMOUNT + |,
END;

The assignment statement is executed 10 times, each time with a new value for
The result is to sum the numbers from 1 to 10 (inclusive) and leave the sum
(namely, 55) as the value AMOUNT

The next example usesep-expr

/* Compute the product of the first N odd integers */
PROD =1;
DO I=1TO (2*N-1) BY 2;
PROD = PROD*I;
END;

PL/M-386 Programmer's Guide Chapter 6 109

The type of counter (signed or unsigned) affects the following factors in the
execution flow of iterativ®Gs:

« Whenstep-expr is evaluated.
« What causes execution to exit theblock.

The following steps constitute the general execution sequence of an itexative
block, with both signed and unsigned variables and expressionsDoitself.

Type is mentioned only for steps in which actions or consequences vary according
to type. Where the signed case is different, it is described in parentheses. The
discussion following this description summarizes the rules and their results for
signed and unsigned data types.

1. Thestart-expr is evaluated and assigned to counter.

2. Thelimit-expr is evaluated and compared with counter. (If counter and
limit-expr are of signed type, thestep-expr is also newly evaluated at
this time.)

a. |If counter is greater thaimit-expr ~ , execution exits thBOand passes
to the statement following the nextD(unlessstep-expr is a negative
signed value; if so, the exit occurs only if counter is less than
limit-expr).

b. Otherwise, the statements within th@block are executed in order until
the ENDstatement is reached.

c. AttheEND astep-expr of unsigned typeBYTE HWORDor WORDor
PL/M-386) is newly evaluated.

3. The counter is incremented by the valustef-expr . For unsigned
counters, if the new value is less than the old value (due to modulo arithmetic
as explained next), the loop is exited immediately. Otherwise, control returns
to step 2.

An 8-bitBYTEcan represent numbers no larger than 11111111B (255 decimal).
The largest number a 16-bitORor HWORcan represent is
111212111111212111B, which is 65535 decimal. The largest number a\®24Rid
can represent is OFFFF$FFFFH, which is 4,294,967,295 decimal. Adding 1 to
these values gives a result of 0. Thus, the new counter can be less than the old.

110 Chapter 6 Flow Control Statements

These rules and their consequences can be summarized in two broad cases:

1. Starting with a non-negatiwgep-expr , the loop is exited as soon as any one
of the following conditions become true:

a. The new counter is greater the rinit-expr

b. A signedstep-expr becomes negative and the new counter is still less
than the nevimit-expr

c. Anunsignedtep-expr causes a lower counter than the one just used.

2. When starting with a negative and sigsagh-expr , then the loop is exited
as soon as either of the following two conditions occurs:

a. The new counter is less than the fieit-expr

b. The newstep-expr becomes non-negative and the new counter is
greater than the nelmit-expr

Upon exit from the iterativBOblock:
1. In all casestep-expr has been reevaluated.

2. In all but one casiémit-expr has been reevaluated. When an unsigned
counter has just gone over and become sméttérexpr is unchanged
from its value during the last loop.

3. Inall casesounter has been changed, but the step value that was added to it
varies. If signedgounter has been incremented by the former step value
before it was reevaluated. For unsigned counters, the newer step has been
used.

The following distinctions are important:

« In every casestart-expr is evaluated only once atihit-expr is
evaluated before any execution.

« Asignedstep-expr is evaluated in step 2; oth&ep-expr s are evaluated
in step 3.

< With an unsigned counter, there cannot be a negative step. Furthermore,
stepping down to Bmit-expr that is less thastart-expr is not possible
because the loop will be exited immediately.

PL/M-386 Programmer's Guide Chapter 6 111

END Statement

An ENDstatement must terminate Bibblocks. AnENDstatement has the
following syntax:

END [namd;
Where:

name is the optional name that (if present) should match the label of the
correspondingOstatement.

IF Statement

ThelF statement provides conditional execution of statements. It takes the form:

IF expression THEN statement-a;
ELSE statement-b; [*optional*/

The reserved worfiIHENand the statement following it are required. The reserved
word ELSE and the statement following it are optional.

ThelF statement has the following effect: fiestpression is evaluated as if it
were being assigned to a variable of tiy@E If the result is true (rightmost bit is
1) thenstatement-a is executed. If the result is false (rightmost bit is 0), then
statement-b is executed. Following execution of the chosen alternative, control
passes to the next statement followinglthestatement. Thus, of the two
statementssfatement-a andstatement-b) only one is executed.

Consider the following program fragment:

IF NEW > OLD THEN RESULT = NEW;
ELSE RESULT = OLD;

Here,RESULTIs assigned the value REWor the value oDLDQ whichever is

greater. This code causes exactly one of the two assignment statements to be
executed.RESULTalways gets assigned some value, but only one assignment to
RESULTIs executed.

In the event thattatement-b is not needed, thELSE part may be omitted
entirely. Such aiF statement takes the form:

IF expression THEN statement-a;

112 Chapter 6 Flow Control Statements

Here,statement-a is executed if the value of expression has a rightmost bit of 1.
Otherwise, nothing happens, and control immediately passes on to the next
statement following th&= statement.

For example, the following sequence of PL/M statements will assigtDEX

either the number 5, or the valueT®fRESHOLDwhichever is larger. The value of
INIT will change during execution of thie statement only iTHRESHOLIs
greater than 5. The final value IbfiT is copied tdNDEX in any case:

INIT =5;
IF THRESHOLD > INIT THEN INIT = THRESHOLD;
INDEX = INIT,;

The power of théF statement is enhanced by usihgblocks in therTHENand
ELSE parts. Since BOblock can be used wherever a single statement can be used,
each of the two statements inl&nstatement may be@Oblock. For example:

IFA=BTHEN
DO;
EQUALSEVENTS = EQUALSEVENTS + 1;
PAIR$VALUE = A;
BOTTOM = B;
END;
ELSE
DO;
UNEQUALS$EVENTS = UNEQUALSEVENTS + 1;
TOP = A;
BOTTOM = B;
END;

DOblocks nested within aif statement can contain further nesbgblocks,|IF
statements, variable and procedure declarations, and so on.

PL/M-386 Programmer's Guide Chapter 6 113

Nested IF Statements

Any IF statement (including theL SE part, if any) can be considered a single
PL/M statement (although it is not a block). Thus, the statement to be executed in
aTHENor anELSE clause may in fact be another statement.

An IF statement inside BHENclause is called a nestéd. Nesting may be
carried to several levels without needing to enclose any of the nesttdtements
in DOblocks, as in the following construction:

IF expression-1 THEN
IF expression-2 THEN
IF expression-3 THEN statement-a;

Here are three levels of nesting. Note thatement-a will be executed only if
the values of all three expressions are true. Thus, the preceding example is
equivalent to:

IF expression-1 AND expression-2 AND expression-3
THEN statement-a;

Notice that the preceding example of nesting does not hakeStpart. When
using nestedF statements, it is important to understand the following rule of
PL/M:

« Asetof nestetk statements can have only dEIESE part, and it belongs to
the innermost (that is, the last) of the neskedtatements.

This rule could also be restated as follows:

« When anF statement is nested within tBlENpart of an outelr statement,
the outenF statement may not have BnSE part.

For example, the construction:

IF expression-1 THEN
IF expression-2 THEN statement-a
ELSE statement-b;

is legal and means that if the values of boghression-1 andexpression-2
are true, thestatement-a will be executed. If the value ekpression-1 s
true and the value afpression-2 s false, thestatement-b will be
executed. If the value ekpression-1 is false, neithestatement-a nor
statement-b will be executed, regardless of the valuexiression-2

114 Chapter 6 Flow Control Statements

The preceding construction is equivalent to:

IF expression-1 THEN
DO;
IF expression-2 THEN statement-a;
ELSE statement-b;
END;

This construction is much more readable and offers less opportunity for error.

If the intention is for th&LSE part to belong to the outé¥ statement, then the
nesting must be done by means afGblock:

IF expression-1 THEN
DO;
IF expression-2 THEN statement-a;
END;
ELSE statement-b;

Note that the meaning of this construction differs completely from the previous
one.

Finally, consider the following:

IF expression-1 THEN
IF expression-2 THEN
IF expression-3 THEN statement-a;
ELSE statement-b;
ELSE statement-c; /* illegal statement */
ELSE statement-d; /* illegal statement */

This construction is illegal because only @eE part is allowed. If the intention
is for theELSE parts to match thi& parts as indicated by the indenting, the
nesting must be done withOblocks, as follows:

IF expression-1 THEN
DO;
IF expression-2 THEN
DO;
IF expression-3 THEN statement-a;
ELSE statement-b;
END;
ELSE statement-c;
END;
ELSE statement-d;

PL/M-386 Programmer's Guide Chapter 6 115

Sequential IF Statements

116

Consider the following example. An ASCIl-coded character is storeB¥TE
variable name@HAR If the character is an Atatement-a should be executed.
If the character is a Btatement-b should be executed. If the character is a C,
statement-c ~ should be executed. If the character is not A, B, or C,
statement-x ~ should be executed. The code for doing this could be written as
follows, usinglF statements that are completely independent of one another:

IF CHAR ='A' THEN statement-a;

IF CHAR ="'B' THEN statement-b;

IF CHAR ='C' THEN statement-c;

IF CHAR <>'A' AND CHAR <> 'B'and CHAR <> 'C'
THEN statement-x;

This sequence is inefficient because all fifurstatements (six tests in all) will be
carried out in every case, which is wasteful when one of the earlier tests succeeds.

A must be tested for in all cases. Howe®emgeds to be tested only if the test for

A fails andC needs to be tested only if both previous tests fail. Finally, if the tests
for A, B, andC all fail, no further tests are needed aredement-x ~ must be
executed. To improve the code, rewrite it as follows:

IF CHAR ='A' THEN statement-a;
ELSE IF CHAR = 'B' THEN statement-b;
ELSE IF CHAR ='C' THEN statement-c;
ELSE statement-x;

Notice that this sequence is not a case of nastexfatements as described in the
preceding sectionlF statements are nested only when Bnetatement is inside
theTHENpart of another. In the next example,statements are inside tBeSE
parts of othetF statements. This construction is called sequelftigtatements.
It is equivalent to the following:

IF CHAR ='A' THEN statement-a;
ELSE DO;
IF CHAR ='B' THEN statement-b;
ELSE DO;
IF CHAR ='C' THEN statement-c;
ELSE statement-x;
END;
END;

SequentialF statements are useful whenever a set of tests is to be made, but the
remaining tests should be skipped whenever one of the tests succeeds. This
construction works in such cases because all the remaining tests arglLiBkhe

part of the current test.

Chapter 6 Flow Control Statements

GOTO Statements

A GOTGstatement alters the sequential order of program execution by transferring
control directly to a labeled statement. Sequential execution then resumes,
beginning with the target statement. T@TGstatement has the following form:

GOTOlabel
For example:
GOTO ABORT;

The appearance ¢dbel in aGOTGstatement is called a label reference, not a
label definition.

The reserved wor@OTCcan also be writte@OTO, with an embedded blank.

For reasons discussed in Chaptet®@;T Cstatements are restricted. The only
possibleGOTCransfers are the following:

« From aGOTGstatement in the outer level of some block to a labeled statement
in the outer level of the same block.

+ From aGOTGstatement in an inner block to a labeled statement in the outer
level of an enclosing block (not necessarily the smallest enclosing block).
However, if the inner block is a procedure block, the transfer can only be to a
statement in the outer level of the main program module.

- From any point in one program module to a labeled statement in the outer level
of the main program module. To jump to such a label, the label must be
declared to have extended scope, (i.e., decl&@BLIC in the main module
andEXTERNALN the module containing th@OTQ.

The use ofOTG is hecessary in some situations. However, in most situations
where control transfers are desired, the use of an iteOVBOWHILE, DOCASE

IF , or a procedure activation (see Chapter 8) is preferable. Indiscriminate use of
GOT@® will result in a program that is difficult to understand, correct, and maintain.

PL/M-386 Programmer's Guide Chapter 6 117

The CALL and RETURN Statements

118

The CALL andRETURNstatements are mentioned here only for completeness, since
they control the flow of a program. However, they are discussed in detail in
Chapter 8.

The CALL statement is used to activate an untyped procedure (one that does not
return a value).

TheRETURNstatement is used within a procedure body to cause a return of control
from the procedure to the point from which it was activated.

Chapter 6 Flow Control Statements

Block Structure and Scope

This chapter explains the meaning of outer level and the concept of scope,
including the use of the linkage attributeg)BLIC andEXTERNAL

The outer level of a block means statements (or labels) contained in the block but
not contained in any nested blocks. The term exclusive extent also has this
meaning. The inner level, or inclusive extent, includes this outer level and all
nested blocks as well.

A block at the same level as another block means that both blocks are contained by
exactly the same outer blocks.

The scope of an object means those parts of a program where its name, type, and
attributes are recognized (i.e., handled according to a given declaration). An object
means a variable, label, procedure, or symbolic (hamed) constant (i.e., a
compilation constant or execution constant as discussed in Chapter 3). A program
is the complete set of modules that are ultimately executed as a unit.

PL/M-386 Programmer's Guide Chapter 7 119

Names Recognized Within Blocks

120

As shown throughout this manual, PL/M is a block-structured language that enables
design implementation for problem solving, data processing, and hardware control.

PL/M is used to create blocks of code containing declarations followed by
executable statements. These blocks are ordered and nested in such a way as to
simplify and clarify the flow of data and control. (See Appendix B for maximum
block nesting.) A collection of these blocks that performs a single function, or a
small set of related functions, is usually compiled as one module, as discussed in
Chapter 1.

Beyond the advantages of modularity, simplicity, and clarity, the nesting of blocks
serves another very basic purpose: names declared at an outer level are known to
all statements of all nested blocks as well.

A new meaning can be declared for any such name within a nested Bibwle
procedure block, thereby cutting off its earlier meaning for this block. But if this
option is not chosen, its meaning is established by a single declaration at an outer
level. (The only objects that do not require declarations prior to use are labels and
reentrant procedures.)

In Figure 7-1, everything inside the figure (except the title) constitutes the inclusive
extent of blockvMMin this case, modul&M)l KK is known throughout this block,
including all nested blocks.

Everything inside the large box constitutes the inclusive extent of BIORK JJ
andll are known throughout this block, but not outsidel.andll are not
known before the lab&lORTor after theENDSORTstatement.

Everything inside the small box constitutes the inclusive extent of Blottk.
Since this is not a simp@Oor procedure block, declarations are not allowed. All
prior declarations shown are available for use wiEiND.

Chapter 7 Block Structure and Scope

MMM: DO; [* Beginning of module */
DECLARE RECORD (128) STRUCTURE
(KEY BYTE,
INFO WORD);
DECLARE CURRENT STRUCTURE
(KEY BYTE,
INFO WORD);
DECLARE KK BYTE;
KK =127,
[* Instructions here would read in data. */

SORT: | DO;

DECLARE (3J,ii) INTEGER;

DO JJ=1TO 127,

CURRENT.KEY = RECORD(JJ).KEY;
CURRENT.INFO = RECORD(JJ).INFO;
=237

FIND: [DO WHILE Il > 0 AND
RECORD(II-1).KEY > CURRENT.KEY:
RECORD(I).KEY = RECORD(lI-1).KEY;
RECORD(II).INFO = RECORD(II-1).INFO;
= 1-1;

END FIND;

RECORD(II).KEY = CURRENT.KEY;
RECORD(II).INFO = CURRENT.INFO;
END;

END SORT,

/* Instructions here would write out data from the records.
*/
END MMM; /* End of module */

Figure 7-1. Inclusive Extent of Blocks

PL/M-386 Programmer's Guide Chapter 7

121

In Figure 7-1, the area within the large box and outside the small box is the
exclusive extent (the outer level) of blo8®WRT The area within the small box is
the exclusive (and inclusive) extent of blgaD. To the instructions within the
FIND block,SORTs exclusive extent is an outer level. The outermost level (or
module level) is the area outside the large box enclosing@rablock.

Restrictions on Multiple Declarations

In any given block, a known name cannot be redeclared at the same level as its
original declaration. A new declaration is permitted inside a nested shogle
procedure block, where it automatically identifies a new object despite the
existence of the same name at a higher level. The new object will be the only one
known by this name within its block, and it will be unknown outside its block,
where the prior name maintains its meaning. These observations also apply when
name is redeclared in another block at the same level as the block containing the
original declaration.

When a name is declared only in a separate block at the same level, there is no we
to access it except in that block where it is declared. The definition is not at an
outer level to the current block. Any local declaration that is supplied establishes a
new separate object whose values bear no relation to those of the other.

The reason for these rules, as for many in programming, is that there must be no
ambiguity about what address/location is meant by each name in the program. The
preceding declaration rules give freedom to choose names appropriate to a given
block, without interfering with exterior uses of them. But when a name is
redeclared, its outer-level meaning is inaccessible until execution exits the block
containing the new declaration. For example:

A: DO;
DECLARE X, Y, ZBYTE;
L1: X =2;
Y =X;
Z=X;
B: DO;
DECLARE X, Y BYTE;
X=3;
Y =X;
L2: Z=X;
END B;
L3: [* At this point, X=2, Y=2, Z=3, because */
[* the value of the redeclared X was used */
/* to fill Z. If statement L2 were outside */
/* the loop labeled B, then Z would be 2 */
[* because the outer X value would be used */

122 Chapter 7 Block Structure and Scope

Extended Scope: The PUBLIC and EXTERNAL
Attributes

ThePUBLIC andEXTERNALattributes permit the scope of names to be extended
for all objects except modules; a module name cannot be declared with either
attribute.

To extend the scope means to make the names available for use in modules other
than the one where they are defined. (The names are already available to nested
blocks in this module.) Extended scope includes names for variables, labels,
procedures, and execution constants.

For example, the statement:
DECLARE FLAG BYTE PUBLIC;

causes a byte nam€edAGto be allocated, and its address made known to any other
module where the following declaration occurs:

DECLARE FLAG BYTE EXTERNAL;
Similarly, if one module has a procedure declaration block that begins:

SUMMER: PROCEDURE (A,B) WORD PUBLIC;
DECLARE (A,B) BYTE;
/* other declarations can go here */
/* executable statements go here, */
/* defining the procedure */

END SUMMER,;

then any other module may invoR&IMMEH it first declares:

SUMMER: PROCEDURE (A,B) WORD EXTERNAL; /* A,B can be any */
DECLARE (A,B) BYTE; /* names but these names must */
/* match them and each type must */
END SUMMER; /* match its public definition */

PL/M-386 Programmer's Guide Chapter 7 123

124

The use oPUBLIC andEXTERNALMust follow a strict set of rules to prevent
ambiguity of location or definition. These rules are as follows:

1.

These attributes can be used only in a declaration at the outermost level of a
module (i.e., never in a nested block).

Only one can appear in any declaration, no more than once. Thus:

DECLARE ZETA BYTE PUBLIC EXTERNAL; [* error */
DECLARE RHO WORD PUBLIC PUBLIC; * error */

and similar constructs are all invalid.

Names can be declaredBLIC no more than once. THRUJBLIC declaration

is the defining declaration: the address it creates is used in each procedure or
module where the same name is decl@&¢TERNAL Do not create more than
onePUBLIC address for any name.

Names can be declarEdTERNALonly if they are also declarédUBLIC in a
different module of the program. TEXTERNALattribute is essentially a
request to use RUBLIC address. AEXTERNALwithout aPUBLIC is a dead
letter. Lack of a definition elsewhere will result in a link-time error.

Where the name is declarBHTERNAL it must be given the same type as
where it is declareBUBLIC. Any contradiction of type would violate the
intention to use the location(s) and content(s) defined elsewhere. If the name
is declaredPUBLIC and has th®ATAattribute, alEXTERNALdeclarations

must also usBATA but cannot assign a value to the constant being declared.

Similarly, names declar&eKTERNALmMust not be given a location (using the

AT clause), or an initialization (usi@ATAOr INITIAL). Such usage would
contradict the fact that names are being defined in another module. However,
in the module where this name is declap&BLIC, the use 0AT, DATA(with
initialization values present), @WITIAL is allowed.

NeitherPUBLIC norEXTERNALcan be applied to a name that is based. For
example:

DECLARE PTR1 POINTER;
DECLARE V1 BASED PTR1 PUBLIC;

is invalid. The reason: by definitiowl has no home of its own; its location is
always determined bJTRL Thus, to declargl PUBLIC or EXTERNALdoes
not permit the correct assignment of addres®a®R1, on the other hand,
always contains the current addres¥ of Declaring the base, in this case
PTR1, to bePUBLIC or EXTERNALIS always permissible since it permits valid
results.

Chapter 7 Block Structure and Scope

|:| Note

The PL/M compiler will generate external records only for items
that are actually referenced in the program.

8. When extending the scope of a name withPthBLIC attribute andATAor
INITIAL , the placement in thBECLAREstatement is criticalPUBLIC must
be placed after the type declaration and befor®#fw®aor INITIAL attribute.
For example:

DECLARE a$p BYTE PUBLIC INITIAL(4);

(Additional restrictions on the use PUBLIC andEXTERNALprocedures are
described in Chapter 8.)

Following these rules will enable consistent and reliable execution of programs
using names with extended scopePWBLIC definition occurring in one module

will then be used by all related references to that name in separate modules; that is,
references which declare the naB¥TERNAL The following diagram illustrates

this:

MOD1: DO;
DECLARE V1 BYTE PUBLIC;

END MOD1;
MOD2: DO;
DECLARE V1 BYTE EXTERNAL;
QQ4: PROCEDURE PUBLIC;

END QQ4;
END MOD?2;

PL/M-386 Programmer's Guide Chapter 7 125

Both references tg1 will use the same definition (location) fét, namely, the
definition in moduleMOD1 Similarly, if any module needed to call procedQr@4
it would first need a declaration like this:

QQ4:PROCEDURE EXTERNAL;
END QQ4;

so that a subsequebALL QQ4would correctly pass control to that procedure in
MOD?2

Scope of Labels and Restrictions on GOTOs

Labels are subject to exactly the same rules of scope previously discussed.

A label is unknown outside the block where it is declared. As discussed in

Chapter 1, a label is either declared explicitly at the beginning of a sivoale
procedure block, or the compiler considers it to be declared there as soon as it is
defined by use anywhere in the block. Therefore, the discussion of what names are
known in which blocks applies directly to labels as well as to other names.

The label on a block is not part of the block it names. For example, the name on
theDOenclosing the module itself is not part of @ it merely names it. For

nested blocks, a label is again not part of the block it names, but belongs instead tc
the outer level as part of that first enclosing block.

If a name used as a label on a block is defined inside that block, it will name a new
item, be it label, variable, or constant. There will be no confusion with the outer
label name. This fact leads to important restrictions on the use Gbhe

statement:

1. Itis impossible for &OTCo0 transfer control from an outer block to a labeled
statement inside a nested block.

2. Moreover, a&50TCcan transfer control from one block to another in the same
module only if the target block encloses the one containing@w®e(and only
if the name of that target label is not declared in the nested block).

Furthermore, a label with trRUBLIC attribute is permitted only in the main
module. This has the interesting consequence of forcing all other transfers of
control (i.e., those not involving a return to the main module) to use procedure
calls. This favors the development of orderly, modularized, traceable programs.

126 Chapter 7 Block Structure and Scope

Only fourGOTQransfers are possible; these are as follows:

1. From one point in a block to another statement also in the same level of the
same block.

2. From an inner, nesté&bblock (not a nested procedure) to a statement in the
outer level of any enclosing block.

3. From a procedure to a statement in the outer level of the main program in the
same module.

4. To a main-program label that is declar&BLIC, from any point in any
module that declares that lalEXTERNAL

Recall that only labels at the outer level of a main program can be declared
PUBLIC.

Program structure and declarations are shown in Figure 7-2. Figure 7-3 illustrates
the only legalcOTQransfers that are permitted among the given labels in

Figure 7-2. A single-headed arrow means the transfer is valid only in the direction
shown. A double-headed arrow means th@abaCcan be used in either direction.

PL/M-386 Programmer's Guide Chapter 7 127

MAIN: DO;
DECLARE (LAB33, LAB77) LABEL PUBLIC;
DECLARE IT BYTE;

LAB33:...;
DO;

END;
LAB77:...;
DO WHILE IT > 0;
END;
END MAIN;
MOD1: DO;
DECLARE (LAB33,LAB77) LABEL EXTERNAL;
P1: PROCEDURE;
L1:...;
DO;
DECLARE KO BYTE;
P2: PROCEDURE;

L2;...;
END P2;
END;
L3:...;

END P1;
END MOD1;
MOD2: DO;

DECLARE (LAB33,LAB77) LABEL EXTERNAL;
P4: PROCEDURE;

L4:...;

L5:...;

DO;

L6:...;
END;

L7:...;
END P4;
LB: ...

END MOD2;

Figure 7-2. Sample Program Modules lllustrating Valid GOTO Usage

128 Chapter 7 Block Structure and Scope

L4

L2

LAB33

OR

LAB77

L5

L6

L4

/
\

i

™~

L3

L1

L7

0OSD534

Figure 7-3. Sample Program Modules Illustrating Valid GOTO Transfers

PL/M-386 Programmer's Guide

Chapter 7

129

Procedures

A procedure is a section of PL/M code that is declared without being executed, and
then activated from other parts of the program. A function referencalar

statement activates the procedure, even if it is physically located elsewhere.
Program control is transferred from the point of activation to the beginning of the
procedure code, and the code is executed. Upon exit from the procedure code,
program control is passed back to the statement immediately after the point of
activation.

The use of procedures forms the basis of modular programming. It facilitates
making and using program libraries, eases programming and documentation, and
reduces the amount of object code generated by a program. The following sections
review how to declare and activate procedures.

Procedure Declarations

A procedure must be declared, just as variables must be declared. Thereafter, any
reference to a procedure must occur within the scope defined by the procedure
declaration. Also, a procedure cannot be used (called, or invoked in an expression)
until after theENDstatement of the procedure declaration unless it is reentrant.

A procedure declaration consists of three parBR@CEDURStatement, a
sequence of statements forming the procedure body, aEdstatement.

The following is a simple example:

DOOR$CHECK: PROCEDURE;
IF FRONT$DOORS$LOCKED AND SIDE$DOOR$LOCKED THEN
CALL POWERS$ON;
ELSE CALL DOORS$ALARM;
END DOOR$CHECK;

wherePOWER$OBNADOORS$ALARMre procedures declared previously in the same
program.

PL/M-386 Programmer's Guide Chapter 8 131

|:| Note

The name©OOR$CHECK aPROCEDURS&tatement has the same
appearance as a label definition, but it is not considered a label
definition, and a procedure name is not a lalF{OCEDURE
statements cannot be labeled.

The nameOOR$CHECIHs a PL/M identifier, which is associated with this
procedure. The scope of a procedure is governed by the placement of its
declaration in the program text, just as the scope of a variable is governed by the
placement of itDECLAREstatement (see Chapter 7 for a detailed description).
Within this scope, the procedure can be activated by the name used in the
PROCEDURS&tatement.

A procedure declaration, like@Oblock, controls the scope of variables as
described in Chapter 7. Also, like a simpi@block, a procedure declaration can
containDECLAREstatements, which must precede the first executable statement in
the procedure body.

As in aDOblock, the identifier in th&NDstatement has no effect on the program,
but helps legibility and debugging. If used, it should be the same as the procedure
name.

The parameter list and the type are discussed in the following two sections.

Parameters

132

Formal parameters are non-based scalar variables declared within a procedure
declaration; their identifiers appear in the parameter list irPROCEDURE
statement. The identifiers in the list are separated by commas and the list is
enclosed in parentheses. No subscripts or member-identifiers can be used in the
parameter list.

If the procedure has no formal parameters, the parameter list (including the
parentheses) is omitted from thRROCEDUREtatement.

Each formal parameter must be declared as a non-based scalar variable in a
DECLAREstatement preceding the first executable statement in the procedure body.
However, procedure parameters are not stored according to the same rules as othe
declared variables. In particular, do not assume that a parameter is stored
contiguously with other variables declared in the same factored variable
declaration.

When a procedure that has formal parameters is activatedathestatement or
function reference contains a list of actual parameters. Each actual parameter is a
expression whose value is assigned to the corresponding formal parameter in the
procedure before the procedure begins to execute.

Chapter 8 Procedures

For example, the following procedure takes four parameters, eated, LOWER
andUPPER It examinedN contiguously storeBYTEvariables. The parametefR

is the location of the first of these variables. If any of these variables is less than
the parametetOWEPRr greater than the paramet#?PER theERRORSET

procedure (declared previously in the program) is activated:

RANGES$CHECK: PROCEDURE(PTR, N, LOWER, UPPER);
DECLARE PTR POINTER;
DECLARE (N, LOWER, UPPER, I) BYTE;
DECLARE ITEM BASED PTR(1) BYTE;

DOI=0TON-1;
IF ITEM(l) < LOWER) OR (ITEM(l) > UPPER)
THEN CALL ERRORSET;
/* ERRORSET is a procedure declared previously */
END;
END RANGES$CHECK;

Notice that the arraffEM is declared to have only one element. Since it is a based
array, a reference to any element®EM is really a reference to some location
relative to the location representedmiyR In writing the procedure

RANGE$CHEGHK dimension specifier that is any arbitrary number greater than zero
must be supplied fdTEM so that references toEM can be subscripted. But it

does not matter what the dimension specifier is (1 is arbitrarily used here).

Having made this declaration, suppose that 25 variables are stored contiguously in
an array calleQUANTS To check that all of these variables have values within the
range defined by the values of two otB&fTE variables SMALLandLARGE write:

CALL RANGE$CHECK (@QUANTS, 25, SMALL, LARGE);
When thisCALL statement is processed, the following sequence occurs:

« The four actual parameters in thaLL statemen{@QUANTS25, SMALL and
LARGH are assigned to the formal paramef¥fR N, LOWERandUPPER
which were declared within the proced®RBNGE$SCHECKSINCEITEM is
based oPTRand the value d#TRis @QUANT %®very reference to an element
of ITEM becomes a reference to the corresponding eleme&uWARNTS

« The executable statements of the proce@MRGESCHECHre executed. If
any of the values are less than the valugMiLLor greater than the value of
LARGE the procedurERRORSETs activated.

« Finally, control returns to the statement following @re_L statement.

Notice how the use of a based variable, with the base passed as a parameter, allows
the procedure to have its own unchanging ndEM) for a set of variables which
may be a different set each time the procedure is activated.

PL/M-386 Programmer's Guide Chapter 8 133

Parameters are placed on the stack in left-to-right order. The stack grows from
higher locations to lower locations, so the first parameter occupies the highest

position on the stack, and the last parameter occupies the lowest position. For
more information, see Appendix F.

|:| Note

PL/M does not guarantee the order in which multiple actual
parameters will be evaluated when the procedure is activated. If
one actual parameter changes another actual parameter, the
results are undefined. This can occur if an expression used as an
actual parameter contains an embedded assignment or function
reference that changes another actual parameter for the same
procedure.

Typed Versus Untyped Procedures

134

The precedinqRANGE$CHECHKrocedure is an untyped procedure. No type is given
in thePROCEDUREtatement, and it does not return a value. An untyped procedure
is activated by using its name irCALL statement.

A typed procedure, also called a function, has a type PRECEDURS&tatement:

an unsigned binary number, signs@EGER REALnumberPOINTEROr

SELECTORdata type. Such a procedure returns a value of this type, which is used
in an expression or stored as the value of a variable. The procedure is activated by
using its name as an operand in an expression; this special type of variable
reference is called a function reference.

When the expression is processed at run time, the function reference causes the
procedure to be executed. The function reference itself is then replaced by the
value returned by the procedure. The expression containing the function reference
is then evaluated, and program execution continues in normal sequence.

Like an untyped procedure, a typed procedure can have parameters. They are
handled as described in the previous section.

The body of a typed procedure can contaREAURNstatement with an expression,
as explained later in this chapter.

|:| Note

The body of a typed procedure can contain code (such as an
assignment statement) that changes the value of some variable
declared outside the procedure. This is called a side effect.

Chapter 8 Procedures

Recall that PL/M does not guarantee the order in which operands in
an expression are evaluated. Therefore, if a function used in an
expression changes the value of another variable in the same
expression, the value of the expression depends on whether the
function reference or the variable is evaluated first.

If the analysis of the expression does not force one of these operands
to be evaluated before the other, then the value of the expression is
undefined.

This situation can be avoided by using parentheses to segregate any
typed procedure that has a side effect, or by using this procedure in an
assignment statement first to create an unambiguous sequence.

Activating a Procedure: Function References and
CALL Statements
The two forms of procedure activation depend on whether the procedure is typed or

untyped. An untyped procedure is activated by mean<al a statement, which
has the form:

CALL name
or

CALL name(parameter list);
For example:

CALL REORDER (@RANKS$TABLE,3);
(An alternate form of th€ALL statement is discussed later.)

A typed procedure is activated by means of a function reference, which is an
operand in an expression. A function reference has the form:

name
or

name (parameter list)

PL/M-386 Programmer's Guide Chapter 8 135

This occurs as an operand in an expression, as in the following example:
TOTAL = SUBTOTAL + SUM$ARRAY (@ITEMS,COUNT);

whereSUM$ARRAYS a previously declared typed procedure. The value added to
SUBTOTALwill be the value returned IBUM$ARRAYISINg the actual parameters
(@I TEMSCOUNY.

In both forms of procedure activation, the elements of the parameter list are called
actual parameters to distinguish them from the formal parameters of the procedure
declaration. At the time of activation, each actual parameter is evaluated and the
result is assigned to the corresponding formal parameter in the procedure
declaration. Then, the procedure body is executed. Any PL/M expression may be
an actual parameter if its type is the same as that of the corresponding formal
parameter.

The actual parameter list in a procedure activation must also match the formal
parameter list in the procedure declaration. That is, it must contain the same
number of parameters of the same type (except as described in the next paragraph
in the same order. If the procedure is declared without a formal parameter list, ther
no actual parameter list can be used in the activation.

As in expression evaluation and assignment statements (see Chapter 5), a few type
conversions are performed automatically when necessary in activating and
returning from a procedure. The built-in explicit type conversion procedures
described in Chapter 9 can also be used to force the value of an expression to a
desired type.

Indirect Procedure Activation

The CALL statement, in the form shown in the preceding section, activates an
untyped procedure by its name. It is also possible to activate an untyped procedur:
by its location. This is done by means @/LL statement with the form:

CALL identifier [. member-identifier 1[(parameter list);

The identifier cannot be subscripted; however it can be a structure reference. The
identifier must be a fully qualifieBOINTERor WORDype variable reference for
PL/M-86 and PL/M-286, and a fully qualifie@DINTER OFFSET, or WORDype

variable reference for PL/M-386. Its value is assumed to be the location of the
entry-point of the procedure being activated.

136 Chapter 8 Procedures

|:| Note

Calls through 48-biPOINTERs will be translated into long calls
whereas calls through 32-l09FFSE®, WORS, orPOINTERS (in

the SMALLcase) will be translated into short calls (relative to the
current code segment).

The identifier for the indirect procedure activation cannot be an
HWORDTherefore, all variables used for indirect calling in
programs that are recompiled from PL/M-286 and use the
WORD1&ontrol should havBWORDDFFSET(or ADDRES)data

types.

A normalCALL uses the name of the procedure; the compiler checks to make sure
that the correct number of parameters is supplied and performs automatic type
conversion on the actual parameters.

When theCALL statement uses a location, the compiler does not check the number
of parameters or perform type conversion. However, type conversion is performed
if the actual argument is a constant expression. The constant expression is
evaluated in unsigned context, as described in Chapter 5. If the number of
parameters is wrong or if an actual parameter is not of the same type as the
corresponding formal parameter, the results are unpredictable.

PL/M-386 Programmer's Guide Chapter 8 137

Code Examples

138

The following code examples illustrate an indirect call for the COMPACT model.
The first example is a procedure which, when compiled, generates warnings.

1 $COMPACT

2

3 CALLF:DO;

4 DECLARE dummy word,
5 inner_p pointer,

6 main_p pointer;

7

8 functl:PROCEDURE;
9 DECLARE i WORD;
10 i=0;

11 RETURN;

12 END functl;

13 funct:PROCEDURE;
14 DECLARE i WORD;
15 i=0;

16 inner_p = @functl,
17 call inner_p;

18 RETURN;

19 END funct;

20

21 dummy = .funct;

22 CALL dummy;

23 main_p = @funct;

24 CALL main_p;

25 END callf;

Warnings are generated at lines 16 and 23. The warnings occur because of
conflicts in FAR and NEAR calls. In most cases of using the COMPACT
segmentation model, indirect function calls are NEAR calls. The "@" operator
causes FAR function calls. Therefore, indirectly activating a function using the
"@" operator in a COMPACT model causes a FAR call, however, the function will
execute a NEAR return. This causes the compiler to generate a warning.

The warning is based on stack corruption. A long call pushes the segment selector
and offset addresses onto the stack. COMPACT functions do a NEAR RETURN
(unless they are on the EXPORT list). Therefore, only the OFFSET for the
RETURN address is popped. This leaves the previously pushed segment selector
on the stack.

Chapter 8 Procedures

The following example properly demonstrates indirect procedure calls in the
COMPACT model. This method uses the "." operator to generate a NEAR call.
This operator is similar to the "@" operator except it generates an address of the

type WORD.

1 $COMPACT

2

3 CALLF: DO;

4 DECLARE dummy WORD;
5

6 funct:PROCEDURE;
7 DECLARE i WORD;
8 i=0;

9 RETURN;

10 END funct;

11

12 dummy=funct;

13 CALL dummy;
14 END CALLF;

|:| Note

Do not use the "." operator when using a pointer to a function as
required by certain iRMX system calls. These calls, such as
rg_create_taskandrg_create_job, expect a pointer to a task

address, not just the offset. The interface to iIRMX system
libraries requires a 32-bit pointer as a parameter. The "@"
operator must be used when the pointer to the start address of the
task is passed to the iIRMX system call. No compiler warning is
generated because the task never returns, causing no stack
corruption.

Exit from a Procedure: The RETURN Statement

The execution of a procedure is terminated in one of three ways:

- By execution of ®ETURNstatement within the procedure body. A typed
procedure must terminate witrRETURNstatement that has an expression.

« By executing &s0TQo0 a statement outside the procedure body. The target of
theGOTQmust be at the outer level of the main program (see Chapter 7).

« By reaching th&NDstatement that terminates the procedure declaration.

PL/M-386 Programmer's Guide Chapter 8 139

The RETURNstatement takes one of two forms:
RETURN;
or

RETURN expression

1

The first form is used in an untyped procedure. The second form is used in a typec
procedure. The value of the expression becomes the value returned by the
procedure. Itis evaluated as if it were being assigned to a variable of the same
type as used on ttRROCEDURS&tatement.

140 Chapter 8 Procedures

The Procedure Body

The statements within the procedure body can be any valid PL/M statements,
including CALL statements as well as nested procedure declarations.

Examples
1. The following is a typed procedure declaration:

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X + Y)/2.0;

END AVG;

This procedure could be used as follows:

SMALL = 3.0;
LARGE = 4.0;
MEAN = AVG (SMALL, LARGE);

The effect would be to assign the value 3.5EAN
2. The following is an untyped procedure:

AOUT: PROCEDURE (ITEM);
DECLARE ITEM WORD;
IF ITEM >= OFFH THEN COUNTER = COUNTER + 1;
RETURN;

END AOUT,;

HereCOUNTERs some variable declared outside the procedure (i.e., itis a
global variable). This procedure could be activated as follows:

CALL AOUT (UNKNOWN);

If the value of the variableNKNOWiS greater than or equal to OFFH, the
value of COUNTERvill be incremented.

PL/M-386 Programmer's Guide Chapter 8 141

142

This example demonstrates an important use of based variables:

SUMS$ARRAY: PROCEDURE (PTR,N) BYTE;
DECLARE PTR POINTER,
ARRAY BASED PTR(1) BYTE,
(N,SUM,)BYTE;
SUM =0;
DOI=0TON;
SUM = SUM + ARRAY(l);
END;
RETURN SUM,;
END SUM$ARRAY;

This procedure returns the sum of the fivst 1 elements (from the zeroth to
theNth) of aBYTEarray pointed to b TR Notice thatARRAYis declared to

have 1 element. Since itis a based variable, no space is allocated for it. It
must be declared as an array (with a non-zero dimension) so that it can be
subscripted in the iterativ@Oblock. The choice of 1 as the constant in the
dimension specifier is arbitrary and does not restrict the value of N that may be
supplied when the procedure is activated.

The procedure could be used as follows to sum the elements of a 100-element
BYTEarray name®®RICE, and to assign the sum to the varialda AL

TOTAL = SUM$SARRAY(@PRICE,99);

Chapter 8 Procedures

The Attributes: PUBLIC and EXTERNAL,
INTERRUPT, REENTRANT

ThePUBLIC andEXTERNALattributes can be included RROCEDUREtatements to
give procedures extended scope. Extended scope is discussed in Chapter 7.

A procedure declaration with tlRJBLIC attribute is called a defining declaration.
A procedure declaration with tlEXTERNALattribute is called a usage declaration.
Most of the rules foPUBLIC andEXTERNALappear in Chapter 7. The following
additional rules apply to the use of tBeTERNALattribute in a procedure
declaration:

1. TheEXTERNALattribute cannot be used in the sePROCEDUREtatement as a
PUBLIC or REENTRANRttribute. Note, however, that the defining declaration
of a procedure may have tREENTRANttribute.

2. A usageEXTERNA declaration of a procedure should have the same number
of parameters as the definir@UBLIC) declaration. Variable types and
dimension specifiers should match up in the same sequence in both
declarations. The names of the parameters need not be the same. Note that a
discrepancy between the parameter lists in the defining declaration and in a
usage declaration will not be automatically detected (see Chapter 11 for a
description of th@YPEcontrol to detect such an error at module linkage time).

3. The procedure body of a usage declaration cannot contain anything except the
declarations of the formal parameters. The formal parameters must be
declared with the same types as in the defining declaration.

4. No labels can appear in a usage declaration.

|:| Note

The PL/M compiler will generate external records only for items
that are actually referenced in the program.

For example, the procedu& G(from example 1 in "The Procedure Body") can be
altered by giving it th@UBLIC attribute:

AVG: PROCEDURE (X,Y) REAL PUBLIC;
DECLARE (X,Y) REAL;
RETURN (X + Y)/2.0;

END AVG;

Another module would have a usage declaration, as follows:

AVG: PROCEDURE (X,Y) REAL EXTERNAL;
DECLARE (X,Y) REAL;
END AVG;

PL/M-386 Programmer's Guide Chapter 8 143

Now, in the module with the usage declaratidviGcan be referenced in an
executable statement:

MIDDLE = AVG (FIRST, LATEST);

thereby activating the procedus®Gas declared in the first module.

Interrupts and the INTERRUPT Attribute

TheINTERRUPTattribute enables definition of a procedure to handle some
condition signaled by a microprocessor interrupt (e.g., from a peripheral device).
A procedure with this attribute is activated when the corresponding interrupt signal
is received in the target system. The PL/M stater@@ISESINTERRUPT

(constant) can also be used to initiate an interrupt signal (see Chapter 10).

Note that the following discussion applies only to interrupt procedures; interrupt
tasks are discussed in Appendix G.

TheINTERRUPTattribute can be used only in declaring an untyped procedure with
no parameters at the outermost level of a program module. It must be declared
PUBLIC or EXTERNAL(and optionallyREENTRAN) The form is:

INTERRUPT
At build time, an interrupt vector is assigned to each interrupt procedure.

The following discussion of the microprocessor interrupt mechanism clarifies how
interrupt procedures work. Additional information can be found in Appendix G.

The microprocessor interrupt mechanism has two states: enabled or disabled.
With the ENABLEstatement, interrupts can take effect. DI®ABLE statement
prevents interrupts from having any effect. H#.T statement also enables
interrupts. (The state of the microprocessor interrupt mechanism upon
initialization is determined by the operating system.)

144 Chapter 8 Procedures

When some peripheral device sends an interrupt to the CPU, it is ignored if the
interrupt mechanism is disabled. If interrupts are enabled, the interrupt is
processed as follows:

1. The CPU completes any instruction currently in execution.

2. The CPU sends an acknowledge interrupt signal, then the interrupting device
sends its interrupt number.

3. The interrupt mechanism is disabled. This prevents any other device from
interfering.

4. Control passes to the interrupt procedure whose number matches the number
sent by the peripheral device. If no such procedure has been established, the
results are undefined (since the vector that transfers control may be
uninitialized).

5. When the procedure is through (by executing a RETURN or reaching the END
of the procedure), the interrupt mechanism is enabled so other devices can be
serviced, and control returns to the point where the interrupt occurred.

It is possible (as with other untyped procedures) for the procedure to terminate by
executing asOTOwith a target outside the procedure in the outer level of the main
program module. In this case, control will never be returned to the point where the
program was interrupted, and interrupts will not be enabled automatically.

The following is an example of an interrupt procedure for a system where a
peripheral device initiates an interrupt whenever the temperature of a device
exceeds a certain threshold. The interrupt procedure turns on the annunciator light,
updates a status word, and returns control to the program:

HITEMP: PROCEDURE INTERRUPT 100 PUBLIC;
CALL ANNUNCIATOR(1);
/* This will result in an output from the microprocessor
to turn on annunciator light number 1, the
high-temperature warning. */

ALERT = ALERT OR 00000010B;
/* This puts a 1 in one of the bit positions
of ALERT, which contains a bit pattern
representing current alerts. */

END HITEMP;

PL/M-386 Programmer's Guide Chapter 8 145

Reentrancy and the REENTRANT Attribute

146

With theREENTRANRttribute, a procedure can suspend execution temporarily,
restart with new parameters, and then later complete the original execution
successfully as if there had been no interruption.

This ability is desirable in two circumstances: (1) if the procedtROC)

activates itself (called direct recursion), or (2) if the procedure activates another
procedure BROC2 that will reactivatePROC1beforePROC1has finished its

original processing (called indirect recursion).

Without theREENTRANRttribute, storage for procedure variables is allocated
statically, in fixed locations within the data segment of the object module.
Re-entering such a procedure would write over the earlier contents of such
locations making it impossible to complete the original suspended execution.

When the attributREENTRANTS used in declaring a procedure, its variables are
not stored with other variables in the data section, but are stored on the stack. Thu
preserved, each set can be used independently by each invocation of the procedur

Hence, multiple sets of variables might need to be stored on the stack during
recursive use of such procedures. A stack size must be specified (when binding th
program module) that is large enough for all such storage needed by all multiple
invocations that may be active at one time.

A procedure with th@ EENTRANRttribute may be activated before it is declared.
This permits direct recursion, where the procedure activates itself and permits
indirect recursion, where the procedure activates a second procedure and the
second procedure activates the first, or activates a third procedure, which activates
a fourth, and so forth, with the result that the first procedure is activated before it
terminates.

The following rules summarize the use of REENTRANRttribute:

« Any procedure that can be interrupted and is also activated from within an
interrupt procedure should have REENTRAN ttribute.

Note that this may apply to an interrupt procedure that runs with interrupts enabled
because it contains &NABLEstatement. If there is any possibility that it will be
interrupted by its own interrupt, it should have REENTRANRttribute. This

situation is equivalent to recursion.

« Any procedure that is directly recursive (activates itself) should have the
REENTRAN®ttribute.

« Any procedure that is indirectly recursive (activates another procedure and is
activated itself as a result) should haveREENTRAN ttribute.

Chapter 8 Procedures

« Any procedure that is activated by a reentrant procedure should also have the
REENTRAN ttribute. In other words, if there is any possibility that a
procedure can be activated while it is already running, it should be
REENTRANT

- TheREENTRANT ttribute cannot be used in the same declaration as the
EXTERNALattribute. (It may be used with tR&BLIC attribute.)

« TheREENTRANH ttribute can only be used irPROCEDURS&tatement at the
outer level of a module.

« A procedure declaration with tlREENTRANRttribute cannot have a nested
procedure declaration.

PL/M-386 Programmer's Guide Chapter 8 147

Built-in Procedures, Functions,
and Variables

Built-in procedures, functions, and variables are already declared in the PL/M
code. This makes it unnecessary to write code to perform the particular functions
that built-ins are designed to perform. The following built-in procedures,
functions, and variables are discussed in this chapter:

LENGTHLAST, andSIZE functions — these functions return information
concerning variables. For example, 812E function returns the number of
bytes occupied by a scalar, array, or structure.

Explicit type and value conversion functions — these functions provide explicit
conversion for types and values.

Shift and rotate functions — these functions move bits using a pattern of 8, 16,
or 32 bits.

String manipulation procedures and functions — these procedures and functions
move strings, compare strings, search strings for a match or a mismatch,
translate strings, and set strings to a specified value.

Bit manipulation procedures — these functions copy (and move) a bit string and
search bit strings for a set bit.

MOVEbytes — this procedure moves a specified number of bytes from one
location to another.

Time delay — this procedure causes a time delay.
Lock set — this function enables a software synchronization lock.
Lock bit — this function enables a memory location lock.

POINTERandSELECTORunNctions — these functions enable the manipulation
of location addresses in the microprocessor's memory.

The identifiers for these built-ins are subject to the rules of scope (described in
Chapter 7). This means that the name of a built-in procedure or variable can be
declared to have a local meaning (scope) within the program. Within the scope of
such a declaration, the built-in is unavailable. This distinguishes these identifiers
from reserved words (listed in Appendix A), which cannot be used as identifiers in
declarations.

PL/M-386 Programmer's Guide Chapter 9 149

No built-in procedure can be used within a location reference (e.g.,
@LENGTH(LIST)). No built-in variable can be used within a location reference,
except as specifically noted in the following sections.

Obtaining Information About Variables

PL/M has three built-in procedures that take variable names as actual parameters
and return information based on the declarations of the variaERSTH LAST,
andSIZE.

The LENGTH Function

150

LENGTHis a built-inwORDunction that returns the number of elements in an array;
it is activated by a function reference with the form:

LENGTH (variable-ref)
Where:
variable-ref must be a non-subscripted reference to an array.

The array can be a member of a structure; it cannot BXEBRNALarray using
the implicit dimension specifier (see Chapter 3).

The value returned is the number of elements assigned to the array in the
declaration statement (i.e., the value of the dimension specifier).

If the array is not a structure member, then the reference must be an unqualified
variable reference. If the array is a structure member, then the reference is a
partially qualified variable reference. For example, given the declaration:

DECLARE RECORD STRUCTURE (KEY BYTE,
INFO(3) WORD);

LENGTH(RECORD.INFO)is a valid function reference and return&¢/@Ralue
of 3.

If the array is a member of a structure, and that structure is an element of an array,
a special case arises. Given the declaration:

DECLARE LIST (4) STRUCTURE (KEY BYTE,
INFO (3) WORD);

then all of the following function references are correct and return the value 3:

LENGTH(LIST(0).INFO)
LENGTH(LIST(1).INFO)
LENGTH(LIST(2).INFO)
LENGTH(LIST(3).INFO)

Chapter 9 Built-in Procedures, Functions, and Variables

In other words, the subscript for the arta$T is irrelevant when a

member-identifier is supplied, because the arrays within the structures are all the
same length. PL/M has a shorthand form of partially qualified variable reference in
the LENGTHLAST, andSIZE function references. For example:

LENGTH(LIST.INFO)

is a valid function and returns the value 3.

The LAST Function

LAST is a built-inwORDunction that returns the subscript of the last element in an
array. Itis activated by a function reference with the form:

LAST (variable)
Where:
variable must be a non-subscripted reference to an array.

The array can be a member of a structure; it cannot BXEBRNALarray using
the implicit dimension specifier (see Chapter 3).

The value returned is the subscript of the last element of the array. For a given
array,LAST will always be one less tha®ENGTH When used with a based

variable LAST returns the value assigned in the declaration statement. This is not
necessarily the actual value.

As in theLENGTHfunction, a shorthand form of partially qualified variable
reference is allowed in the case where the array is a member of a structure that is
also an array element.

The SIZE Function

SIZE is a built-inwORDunction that returns the number of bytes occupied by a
scalar, array or structure. It is activated by a function reference with the form:

SIZE (variable)
Where:

variable is a fully qualified, partially qualified, or unqualified reference to any
scalar, array, or structure. The variable cannot EEXaERNAL
declaration that uses the implicit dimension specifier (see Chapter 3).

The value returned is the number of bytes required by the variable referenced.
When used with a based variat#¢ZE returns the value assigned in the
declaration statement. This is not necessarily the actual (current) value.

PL/M-386 Programmer's Guide Chapter 9 151

If the reference is fully qualified, it refers to a scalar, and the value is the number
of bytes required for the scalar. If the reference is unqualified, it refers to an entire
structure or array, and the value is the total number of bytes required for the
structure or array.

If the reference is partially qualified, it refers either to a structure member that is an
array or nested structure, or to an array element that is a structure. The value is th
number of bytes required for the array or structure.

As in theLENGTHfunction, a shorthand form of partially qualified variable
reference is allowed in the case where the array or scalar is a member of a structur
and the structure is an array element.

Explicit Type and Value Conversions

152

The functions in this section provide explicit conversion from one data type to
another and from signed values to or from absolute magnitudes.

Explicit type and value conversion functions are invoked as:
function-name (expression)

In Tables 9-1 and 9-2, each function name is followed by the expression type
expected, the purpose of the function, and the nature of the value it returns to the
expression that invoked it. For each function there is only one possible class of
expressions (e.gHIGH accepts only unsigned values) that can be converted. For
the type conversion8¢YTE WORPDWORDNTEGER REAL POINTER and
SELECTOROFFSET HWORDCHARINT, andSHORTINT), the context of the entire
expression is always a signed integer value. Table 9-1 gives the value and type
conversions for PL/M-386 when tigORD3Zontrol is in effect.

Chapter 9 Built-in Procedures, Functions, and Variables

Table 9-1. Value and Type Conversions for PL/M-386

Procedure Parameter
Name Type Function Result Returned
LOW BYTE BYTE value unchanged
HWORD Converts HWORD value to Low-order BYTE of HWORD
BYTE value
WORD or Converts WORD or OFFSET Low-order HWORD of WORD
OFFSET value to HWORD value or OFFSET
DWORD Converts DWORD value to Low-order WORD of DWORD
WORD value
HIGH BYTE zero
HWORD Converts HWORD value to High-order BYTE of HWORD
BYTE value
WORD or Converts WORD or OFFSET High-order HWORD of WORD
OFFSET value to HWORD value or OFFSET
DWORD Converts DWORD value to High-order WORD of DWORD
WORD value
DOUBLE BYTE Converts BYTE value to HWORD, by appending 8
HWORD value high-order zero bits
HWORD Converts HWORD value to WORD, by appending 16
WORD value high-order zero bits
WORD or Converts WORD or OFFSET DWORD, by appending 32
OFFSET value to DWORD value high-order zero bits
DWORD DWORD value unchanged
FLOAT CHARINT Converts signed integer Same value of type REAL
SHORTINT value to REAL value
INTEGER
FIX REAL Converts REAL value to Same value of type INTEGER
INTEGER value if within range -2**31 to
+(2**31)-1 otherwise undefined
INT BYTE Converts unsigned binary Same value of type INTEGER
HWORD value to INTEGER value, if within range -2**31 to
WORD interprets parameter as +(2**31)-1 otherwise
positive
SIGNED BYTE Converts unsigned integer BYTE value is extended with
value to INTEGER value 24 high-order zeros
HWORD HWORD value is extended with
16 high-order zeros
WORD WORD value unchanged

PL/M-386 Programmer's Guide

continued

Chapter 9 153

Table 9-1. Value and Type Conversions for PL/M-386 (continued)

Procedure Parameter
Name Type Function Result Returned
UNSIGN CHARINT Converts INTEGER value to Signed INTEGER value is
SHORTINT WORD value interpreted as unsigned WORD
INTEGER value
ABS REAL Converts negative real value Absolute value of parameter:
to positive real value value unchanged if positive
-(value) if negative. Result
type is same as parameter
type.
IABS CHARINT Converts negative integer to Absolute value of parameter:
SHORTINT positive integer value unchanged if positive -
INTEGER (value) if negative. If -(value) is
out of range, result is
undefined. Result type is same
as parameter type.
BYTE any Converts any unsigned type BYTE value, by truncation
unsigned to BYTE
type
any signed Converts any signed type to BYTE value, by truncation
type BYTE
REAL Converts any REAL typeto BYTE (CHARINT (real))
BYTE
SELECTOR Converts SELECTOR to BYTE value, by truncation
BYTE
POINTER Converts offset portion of BYTE (OFFSET$OF (pointer))
POINTER to BYTE
continued
154 Chapter 9 Built-in Procedures, Functions, and Variables

Table 9-1. Value and Type Conversions for PL/M-386 (continued)

Procedure Parameter

Name Type Function Result Returned
HWORD any Converts any unsigned type HWORD value, by truncation or
unsigned to HWORD zero extension

any signed Converts any signed type to HWORD value, by truncation or

type HWORD sign extension

REAL Converts any real type to HWORD (SHORTINT (real))
HWORD

SELECTOR Converts SELECTOR to HWORD type, value
HWORD unchanged

POINTER Converts offset portion of HWORD (OFFSET$OF
POINTER to HWORD (pointer))

WORD any Converts any unsigned type WORD value, by truncation or

unsigned to WORD zero extension

type

any signed Converts any signed type to WORD value, by sign

type WORD extension

REAL Converts any real type to WORD (INTEGER (real))
WORD

SELECTOR Converts SELECTOR to WORD value, by zero
WORD extension

POINTER Converts offset portion of WORD (OFFSET$OF
POINTER to WORD (pointer))

continued

PL/M-386 Programmer's Guide Chapter 9 155

Table 9-1. Value and Type Conversions for PL/M-386 (continued)

Procedure Parameter

Name Type Function Result Returned
DWORD any Converts any unsigned type DWORD value, by zero
unsigned to DWORD extension
type
any signed Converts any signed type to DWORD value, by sign
type DWORD extension
REAL Converts any real type to DWORD (INTEGER (real))
DWORD
SELECTOR Converts SELECTOR to DWORD value, by zero
DWORD extension

POINTER Converts offset portion of DWORD (OFFSET$OF
POINTER to DWORD (pointer))

CHARINT any Converts any unsigned type CHARINT value, by truncation
unsigned to CHARINT

any signed Converts any signed type to CHARINT value, by sign-

type CHARINT extension

REAL Converts any real type to CHARINT (FIX(real))
CHARINT

SELECTOR Converts SELECTOR to CHARINT value, by truncation
CHARINT

POINTER Converts offset portion of CHARINT (OFFSET$OF
POINTER to CHARINT (pointer))

continued

156 Chapter 9 Built-in Procedures, Functions, and Variables

Table 9-1. Value and Type Conversions for PL/M-386 (continued)

Procedure Parameter

Name Type Function Result Returned
SHORTINT any Converts any unsigned type SHORTINT value, by zero
unsigned to SHORTINT extension or truncation
type
any signed Converts any signed type to SHORTINT value, by sign
type SHORTINT extension
REAL Converts any real type to SHORTINT (FIX (real))
SHORTINT
SELECTOR Converts SELECTOR to SHORTINT value
SHORTINT

POINTER Converts offset portion of SHORTINT (OFFSET$OF

POINTER to SHORTINT (pointer))

INTEGER any Converts any unsigned type INTEGER value, by zero
unsigned to INTEGER extension or truncation
type
any signed Converts any signed type to INTEGER value, by sign
type INTEGER extension
REAL Converts any real type to INTEGER (FIX (real))

INTEGER
SELECTOR Converts SELECTOR to INTEGER value, by zero
INTEGER extension
POINTER Converts offset portion of INTEGER (OFFSET$OF
POINTER to INTEGER (pointer))
REAL any Converts any unsigned type REAL (SIGNED (unsigned))

unsigned to REAL
type (except

OFFSET)

any signed Converts any signed type to FLOAT (signed)
type REAL

REAL value unchanged

continued

PL/M-386 Programmer's Guide Chapter 9 157

Table 9-1. Value and Type Conversions for PL/M-386 (continued)

Procedure Parameter

Name Type Function Result Returned
SELECTOR any Converts any unsigned SELECTOR value, by zero
unsigned binary type to SELECTOR extension or truncation
binary type
OFFSET Current data segment selector
any Converts any signed integer SELECTOR value by sign
unsigned data type to SELECTOR extension or truncation
integer data
type
POINTER Selector portion of the
POINTER
REAL Cannot be used
OFFSET any Converts any unsigned type OFFSET, by zero extension or
unsigned OFFSET truncation
type
any signed Converts any signed type to OFFSET, by sign extension
type OFFSET
SELECTOR zero (0)
POINTER OFFSETS$OF (pointer)
POINTER any Converts value of any BUILD$PTR (DS, OFFSET
unsigned unsigned type to POINTER (unsigned)) (DS is selector of
type current data segment)

any signed Converts value of any signed BUILD$PTR (DS, OFFSET
type type to POINTER (signed)) (DS is selector of
current data segment)

SELECTOR BUILD$PTR (SELECTOR, 0)

OFFSET BUILD$PTR (DS, OFFSET)
(DS is selector of current data
segment)

Notes:
Conversions from REAL to OFFSET, or POINTER, and vice versa, are not allowed. Under WORD32 (the default),
LONGINT is equivalent to INTEGER. ADDRESS is equivalent to OFFSET.

158 Chapter 9 Built-in Procedures, Functions, and Variables

The PL/M-386 LOW, HIGH, and DOUBLE Functions

The PL/M-386LOWbuilt-in function convert®WORDalues toNORNalues WORD
or OFFSETvalues ttHWORDalues, antHWORDalues taBYTEvalues. LOWsS
activated using the following form:

LOW (expression)
Where:
expression has an unsigned binary number type.

If expression has aDWORWDalue,LOWreturns the value of the low-order (least
significant)WORDf theexpression value. Ifexpression has awORDr
OFFSETvalue,LOWreturns the value of the low-order (least significaiwORDf
the expression value. Ifexpression has arHWORDalue,LOWreturns the
value of the low-order (least significa®y TE of theexpression value. If
expression has aBYTEvalue,LOWreturns this value unchanged.

The PL/M-386HIGH built-in function convert®wWORDalues toNVORalues WORD
or OFFSETvalues ttHWORDalues, antHWORDalues to 8YTEvalues. HIGH is
activated using the following form:

HIGH (expression)
Where:
expression has an unsigned binary number type.

If expression has aDWORDalue,HIGH returns the value of the high-order (most
significant)WORDf theexpression value. Ifexpression has awORDr
OFFSETvalue,HIGH returns the value of the high-order (most signific&w)ORD

of theexpression value. Ifexpression has arHWORDalue,HIGH returns the
value of the high-order (most significaBty TE of theexpression value. If
expression has aBYTEvalue, therHIGH will return a zero.

PL/M-386 Programmer's Guide Chapter 9 159

The PL/M-386DOUBLBbuilt-in function convert8 YTE values taHWORDalues,
HWORDalues toNVORIalues, andVORDr OFFSETvalues tabDWORDalues.
DOUBLHS activated using the following form:

DOUBLE (expression)
Where:
expression has an unsigned binary number type.

If expression has aBYTEvalue, theDOUBLHunction appends 8 high-order zero
bits to convert thexpression to anHWORDalue and returns thiswORDalue.

If expression has arHWORDalue, theDOUBLEunction appends 16 high-order
zero bits to convert thexpression to awORDMalue and returns thiwORMalue.

If expression has aWORDr OFFSETvalue, theDOUBLEunction appends 32
high-order bits to convert it toBWORDalue and returns thBwORDalue. |If
expression has aDWORDalue, theDOUBLEuNction returns thipwORDalue
unchanged.

The FLOAT Function

FLOATIs a built-inREAL function that converts a signed integer to the real number
data type. Itis activated by a function reference with the following form:

FLOAT (expression)
Where:
expression is a signed integer.

FLOAT converts the signed integer to the corresponding real number data type and
returns the real numbeFLOAT can be replaced with
REAL(expression).

The FIX Function

160

FIX is a built-inINTEGERfunction that converts REALvalue to anNTEGER
value. Itis activated by a function reference with the following form:

FIX (expression)
Where:
expression has aREALvalue.

FIX rounds theREALvalue to the neareBITEGER If bothINTEGERvalues are
equally nearFIX rounds to the even value. The resuliNRGEGERvalue is then
returned.

Chapter 9 Built-in Procedures, Functions, and Variables

For example:

FIX(1.4) /* would result in the INTEGER value 1, */
FIX(-1.8) [*in -2, %

FIX(3.5) /*in 4, and */

FIX(6.5) /*in6. */

If the result calculated biyiX is not within the implemented rangeIlNTEGER
values, the result is undefined.

|:| Note

FIX is affected by the rounding mode; see Chapter 10. The
default mode (round to the nearest or even value) is used in the
previous examples.

FIX can be replaced witlhNTEGER(expression) .

The INT Function

INT is a built-inINTEGERfunction that converts an unsigned binary value,
excludingDWORDalues, to the signed integer data type. It is activated by a
function reference with the following form:

INT (expression)
Where:
expression has an unsigned binary data type, excludiagORD

INT interprets thexpression value as a positive number and returns the
correspondingNTEGERVvalue.

If the result calculated BT is not within the implemented rangeINTEGER
values, the result is undefined (see Chapter 5 for rang&@$TTBGERVvalues).

The SIGNED Function

For PL/M-386,SIGNEDis a built-inINTEGERfunction that converts BYTE
HWORDor WORDalue to aNTEGERVvalue. SIGNEDis activated by a function
reference with the following form:

SIGNED (expression)
Where:

expression has an unsigned binary number data type, exclUtNd@QRD

PL/M-386 Programmer's Guide Chapter 9 161

If expression has aBYTEor HWORDalue, it will be extended by 24 or 16
high-order 0 bits, respectively, to produce/@ralue.

SIGNEDinterprets th&wvORMalue as a 32-bit two's-complement number and
returns the corresponding integer value.

If the highest-order (most significant) bit of th@OR»alue is a 0SIGNED
interprets thavORDalue as a positive number and returns the corresponding
INTEGERvalue. For example:

SIGNED (0000$0000$0000$0100B)
returns anNTEGERvalue of 4.

If the highest-order bit of th&#ORMalue is a 1SIGNEDreturns a negative
INTEGERvalue whose absolute magnitude is the two's complement BfQiRD
value. For example:

SIGNED(1111$1111$1111$1100B)
returns anNTEGERvalue of -4.

SIGNEDcan be replaced bNTEGER(expression).

The UNSIGN Function

162

The UNSIGNbuilt-in function converts a signed integer te/@RMalue. It is
activated by a function reference with the following form:

UNSIGN (expression)
Where:
expression is a signed integer.
UNSIGNconverts theNTEGERvalue to aNORMalue.

If the INTEGERVvalue is positive, thevORMalue will be numerically the same as
theINTEGERvalue. However, if theNTEGERvalue is negative, th&# ORalue
will be the two's complement of the absolute magnitude ofN\TREGERvalue. For
example:

UNSIGN(-4)
returns aNORMalue of:
1111$1111$1111$1100B
UNSIGNcan be replaced byORD (expression) .

Chapter 9 Built-in Procedures, Functions, and Variables

The Unsigned Binary Data Type Built-in Functions

The unsigned binary data type built-in functions convert any expression to the
specified unsigned binary data type. For exampleywb&m@ndDWORDuIlt-in
functions convert any expression tiv@RDr DWORDalue, respectively.

The built-in functions are activated with the form:

built-in (expression)

Where:

built-in is the name of the data type to which the given expression is
converted (e.gBYTEoOr WORpP

expression has any value.

For exampleWORD (INT1) converts the value oNT1 to awORDNalue.

If expression is an unsigned binary number, it is converted by truncation or zero
extension, if necessary. dkpression is a signed integer, it is converted by
truncation or sign extension, if necessaryexffression is a selector, it is
converted by truncation or zero extensionexpression is a pointer, the offset
portion of the pointer is converted by truncation or zero extension; the selector
portion of the pointer is discarded. elfpression is a real number, it is first
converted to a signed integer using the numeric coprocessor's real to integer
conversion, then the resulting value is converted to the unsigned binary number
data type by truncation, if necessary.

Signed Integer Data Type Built-in Function

The signed integer data type built-in function converts any expression to a signed
integer data type. It has the form:

INTEGER (expression)
For example:
INTEGER (D)
converts the value @ to anINTEGERvalue within thdNTEGERrange.

If expression is an unsigned binary number or selector, it is converted by
truncation or zero extension. dkpression is a pointer, the offset portion of the
pointer is converted by truncation or zero extension; the selector portion of the
pointer is discarded. Hxpression is a real number, it is converted using the
numeric coprocessor's real to integer conversion.

Specific to PL/M-386, ifexpression s a signed type, it is converted by sign
extension. Shorter data types are converted into longer data types by sign

PL/M-386 Programmer's Guide Chapter 9 163

extending the shorter data type value. Longer data types are converted into shorte
data types by sign extension of the bits equivalent to the shorter data type. For
example, if &CHARINTbuilt-in is used to convert daNTEGERVvalue, the least
significant 8 bits are sign extended and the value returned is guaranteed to be in th
CHARINTrange.

REAL Built-in Functions

TheREALbuilt-in function converts an expression tRBALvalue. Expressions of
type SELECTOROFFSET andPOINTERcannot be converted. The conversion is
done using the numeric coprocessINEEGERto REAL conversion. If the
expression is an unsigned binary number it is zero extended, if necessary, and
interpreted as a signed value.

The SELECTOR Built-in Function

The SELECTOPRbuilt-in function converts any expression (except the real number
data type) to 8ELECTORvalue. If the expression is any unsigned binary number,
exceptOFFSET it is truncated or zero extended to 16 bits. If the expression is a
signed integer, it is truncated or sign extended to 16 bits. If the expression is of
type POINTER the selector portion of the pointer is returned. If the expression is
of type OFFSET the current data segment selector is returned. Expressions of type
REALcannot be converted.

The POINTER Built-in Function

The POINTERDbuilt-in function converts any expression (except real numbers) to a
POINTERvalue. If the expression is any unsigned binary number or signed integer,
it is converted to typ©FFSETby truncation, zero, or sign extension, if necessary.
This OFFSETvalue is combined with theEL ECTORvalue of the current data

segment to create tiIROINTERvalue. If the expression is of tyB&LECTORIt is
combined with alOFFSETvalue of zero to create tR®INTERvalue. Expressions

of typeREAL cannot be converted.

164 Chapter 9 Built-in Procedures, Functions, and Variables

The OFFSET Built-in Function

The OFFSETbuilt-in function converts any expression (except real numbers) to an
OFFSETvalue. If the expression is any unsigned binary number or signed integer
data type, it is converted to ty@&FSETby truncation, or by zero or sign

extension. If the expression is of typELECTORanOFFSETvalue of zero is
returned. If the expression is of tyPOINTER the offset portion of the pointer is
returned. ADDRES%alues are equivalent @FFSET Expressions of typREAL

cannot be converted.

The ABS and IABS Functions

The ABSbuilt-in function returns the absolute value of a real number. Itis
activated by a function reference with the following form:

ABS (expression)
Where:
expression is a real number.

If the value ofexpression is positive, ABSreturns it unchanged. If the value of
expression IS negativeABSreturns ¢ expression).

ThelABS built-in function returns the absolute value of a signed integer. Itis
activated by a function reference with the following form:

IABS (expression)
Where:
expression is a signed integer.

If the value ofexpression is positive JABS returns it unchanged. If the value of
expression IS negative|ABS returns -éxpression).

PL/M-386 Programmer's Guide Chapter 9 165

Shift and Rotate Functions

With the shift and rotate functions, bit patterns can be moved to the right and to the
left. In a shift, bits moved off one end of the pattern are lost, and zero bits move
into the pattern from the other end (except in the case of the algebraic shift right
function,SAR. In a rotate, bits moved off one end of the pattern are moved onto
the other end of the pattern. It is not possible to perform a rotate on a signed
integer algebraic pattern.

In PL/M-386, a value is handled as a pattern of 8 bits B¥&Eor CHARINT

value, 16 bits for ’\WORDr SHORTINTvalue, 32 bits foWwORPOFFSET or
INTEGERVvalues, or 64 bits for BWORDalue. The pattern is moved to the right or
left by a specified number of bits called the bit count.

Rotation Functions

The type of the rotate IefROL) and rotate rightROR built-in functions depends
on the type of expression given as an actual parameter. These built-ins are
activated by function references with the following forms:

ROL (pattern , count)
ROR (pattern , count)

Where:
pattern andcount are unsigned binary numbers.

If count is any unsigned binary number data type exB&pt all but the
low-order bits will be dropped to produc&#TEvalue. If the value of count is 0O,
no rotation occurs.

The value opattern is handled as an 8-bit, 16-bit, 32-bit, or 64-bit quantity. The
type ofpattern determines which of the unsigned binary number data types is
used. This, in turn, determines the valupatfern . The number of bit positions
by whichpattern is rotated is specified bgount .

The following are examples of the action of these procedures:

ROR (10011101B, 1) returns a value of 11001110B
ROL (10011101B, 2) returns a value of 01110110B
ROR (1101011010011010B, 9) returns a value of 0100110101101011B

166 Chapter 9 Built-in Procedures, Functions, and Variables

Logical-shift Functions

The type of the logical-shift lefSHL) and logical-shift right§HR built-in
functions depends on the type of the expression given as an actual par&mreter.
andSHRare activated by function references with the forms:

SHL (pattern , count)
SHR (pattern , count)

Where:
pattern andcount are expressions using an unsigned binary number data type.

If count is any unsigned binary number data type exB&ptE all but the 8
low-order bits will be dropped to produc®@#TEvalue. If the value ofount is 0,
no shift occurs.

The value opattern can be 8YTE HWORDNVORPDor DWORDalue and the value
will not be converted. lpattern is aBYTEvalue, the function will return BYTE
value. Ifpattern is anHWORDalue, the function will return anwORDalue. If
pattern is aWORDMalue, the function will return WORDMalue; ifpattern is a
DWORDWalue, the function will return BWORDalue.

The value opattern is shifted left (bySHL) or right (bySHR), with the bit count
given bycount .

A shift operation can force one bit out of the pattern. For example:
SHL(1000$0001B,1)

returns 0000$0010B, losing the former high-order bit, and:
SHR(1000$0001B,1)

becomes 0100$0000B, losing the former low-order bit.

If the specifiedoattern andcount do not lose information, a shift of one bit
position has the effect of multiplication by two for a left shift, or division by two
for a right shift. For example, suppose tiaRis aBYTEvariable with a value of
eight. This is represented as 0000$1008BL(VAR,1) would return
0001$0000B, which represents 16, &R(VAR,1) would return 0000$0100B,
which represents four.

Casting can be used to ensure that no information is lost in a shift, as in the
following example:

SHL(WORD(LIT$MASK),3)

PL/M-386 Programmer's Guide Chapter 9 167

Algebraic-shift Functions

The type of the algebraic-shift leBAL) and algebraic-shift righSAR built-in
functions depends on the type of the expression given as an actual paragagter
andSARare activated by function references with the following forms:

SAL (pattern , count)
SAR (pattern , count)

Where:
pattern is an expression using a signed integer data type.
count is an expression using an unsigned binary data type.

If count is any unsigned binary data type exd@pTrE, all but the 8 low-order bits
will be dropped to producemyTEvalue. If the value ofount is zero, no shift
occurs.

For PL/M-386, the type ddattern can be &HARINT, SHORTINT, or INTEGER
value. All values are convertedIdTEGERbefore the shift operations, and an
INTEGERVvalue is returned.

In a left shift EAL), zero-bits move into the pattern from the right (aSHit and
SHR.

In a right shift 6AR), either zero-bits or one-bits move into the pattern from the
left. If the original value of pattern is positive, the sign bit (leftmost bit) is a 0, and
zero-bits move in from the left. If the original value is negative, the sign bitis a 1,
and one-bits move in from the left.

In some instances (as in logical shifts), an algebraic shift of one bit position can
have the effect of multiplication by two for a left shift or division by two for a right
shift. For example, suppose tvaiL is anINTEGERvariable with a value of -8.

This value is 1111$1111$1111$1000BAL(VAL,1) would return
1111$1111$1111$0000B, which is -16, @#R(VAL,1) would return
1111$1111$1111$1100B, which is -4.

168 Chapter 9 Built-in Procedures, Functions, and Variables

Concatenate Functions

The concatenate functionSHLDandSHRD are built-inwOR@ouble-shift
functions that concatenate twORMalues to form a 64-bit string, shift the
concatenated pattern le8HLD or right GHRD by count bits, and return the
destinationWwORD These built-ins are activated by function references with the
following form:

keyword (high pattern , low pattern , count)
Where:

keyword is SHLDor SHRD

high pattern
is awORDMalue.

low pattern
is awORDMalue.

count is aBYTE HWORDr WORDMalue that determines how many bits to
shift the concatenated pattern.

SHLDconcatenates the bit pattern of W@RNaluehigh pattern with the bit
pattern of thevORMaluelow pattern to form a 64-bit string high pattern

is placed in the high 32 bits atav pattern is placed in the low 32 bits. The
concatenated pattern is shifted left by the number of bits givendsy MODULO
32. These operands are tak@@DUL@B2 to provide a number between 0 and 31
by which to shift. This has the effect of shifting the high order bitsvof

pattern into the low order bits afigh pattern . SHLDreturns the high 32 bits
of the shifted pattern.

SHRDconcatenates the bit pattern of W@RMaluehigh pattern with the bit
pattern of thavORMaluelow pattern to form a 64-bit string high pattern is
placed in the high 32 bits aav pattern is placed in the low 32 bits. The
concatenated pattern is shifted right by the number of bits given by m@miLO
32. These operands are take@DULO 32to provide a number between 0 and 31
by which to shift. This has the effect of shifting the low order bitsgsf

pattern into the high order bits dbw pattern . SHRDreturns the low 32 bits
of the shifted pattern.

PL/M-386 Programmer's Guide Chapter 9 169

String Manipulation Procedures and Functions

170

The term string is used here in a broader sense than previously, in which string was
used to refer to BYTEstring. In this section, a string is any contiguously stored

set of unsigned binary number data type values (exclmimQRBNAOFFSET. A

string can be regarded as if it were an unsigned binary number type (excluding
DWORRNAOFFSET) array, and the array items can be referred to as elements.

The word index refers to the position of a given element within a string. The index
is similar to the subscript of an array reference. Thus, the index of the first element
of a string is 0, the index of the second element is 1, and so on.

In the following descriptions, the location of a string always means the location of
its first element. In each string manipulation procedure, the location of a string is
specified by a parameter calledurce or destination , which is an expression
with aPOINTERvalue. Thesource points to the lowest element. For example,
with MOVBandMOVWhe lowest element (element 0) is the first element to be
processed. WitMOVRENdMOVRWhe lowest element is the last element to be
processed, as discussed in the following sections.

The length of a string is the number of elements it contains. In each string
manipulation procedure, the number of elements to be processed is specified by a
parameter calledount .

|:| Note

If the source or destination string address is IBELECTORor
WORDorm, use the@operator of a variable based on the address.
Otherwise, the built-in functioBUILD$PTR can be used to
construct the pointer-parameter for the string built-in.

In PL/M-386, each of the string-manipulation procedures described in the
following sections (exceptLAT) is available foBYTE HWORDANdWORIDBtrings.

Chapter 9 Built-in Procedures, Functions, and Variables

The Copy String in Ascending Order Procedure

MOWx is an untyped procedure that copies a string of letgtht from one
location to another. It is activated by aLL statement with the following form:

CALL keyword (source , destination , count);

Where:
keyword MOVB, MOVHW, MOVW

source anddestination
expressions witlPOINTERvalues

count expression witlBYTE HWORDDFFSET or WORDNalue

MOVEBcopies aBYTE string, MOVHWOpies atHWORDBtring, andMOV\VEopies a
WORDBtring.

The string elements are copied in ascending order (i.e., element 0 is copied first,
then element 1, etc.). This order is significant if¢herce string and the

destination string overlap. If the value afestination is higher than the

value ofsource , and the two strings overlap, elements in the overlap area will be
overwritten before they are copied. To avoid the overwritingM@®¢Rx instead

of MOWx.

The Copy String in Descending Order Procedure

MOVRx is an untyped procedure that copies a string of lecigtht from one
location to another. It is activated by a call statement with the following form:

CALL keyword (source , destination , count);

Where:
keyword MOVRB, MOVRHW, MOVRW

source anddestination
expressions witlPOINTERvalues

count expression witlBYTE, HWORD, OFFSET, or WORIMalue

PL/M-386 Programmer's Guide Chapter 9 171

The MOVRBUIlt-in procedure is similar to theOVBprocedure except that the
elements in th&1OVRBource string are copied to theestination ~ string in
descending order (i.e., element (count-1) is copied first, then element (count-2),
and so on, with element 0 copied last). This order is significant when the two
strings overlap. If the value abstination is higher than the value eburce ,

and an overlap exists, elements in the overlap area will not be overwritten until
they have been copied. However, if the valusanfce is higher than the value

of destination , elements in the overlap area will be overwritten before they are
copied.

MOVHWerforms the same function BI®VREXxcept thamOVHWopies atHWORD
string.

MOVRWerforms the same function BI®VRBexceptMOVRWopies aNVORBtring
instead of 8YTESstring.

|:| Note

If two strings overlap, use a procedure such as the following to
make the correct choice betwed®VvBandMOVRB This ensures
that elements in the overlap area will not be overwritten until
after they have been copied.
MOVBYTES: PROCEDURE (SRC, DST, CNT);
DECLARE (SRC, DST) POINTER, CNT HWORD;
IF (OFFSET(SRC)) > (OFFSET(DST)) THEN
CALL MOVB (SRC, DST, CNT);
ELSE CALL MOVRB (SRC, DST, CNT);
END MOVBYTES;

This procedure can be activated without the need to consider whether overlap may
occur or whethesource or destination is higher.

The Compare String Function

172

CMRx is a built-inwORDunction that compares two strings of lengtiunt . Itis
activated by a function reference with the following form:

keyword (sourcel , source2 , count)

Where:
keyword CMPB, CMPHW, CMPW

sourcel source2
expressions witlPOINTERvalues

count expression witlBYTE HWORDDFFSET or WORDNalue

Chapter 9 Built-in Procedures, Functions, and Variables

CMPBcompares tw®YTEstrings of lengtltount whose locations arsourcel
andsource2 . It remains a 32-bit instruction even if h®RD1@&ontrol is in
effect.

If every element in the string aburcel is equal to the corresponding element in
the string asource2 , CM&x returns aNORDMalue, OFFFFFFFFH, for PL/M-386.
Otherwise CMRx returns the index (position within the strings) of the first pair of
elements found to be unequal.

CMPHWerforms the same function @sIPB except thaCMPHWoOmMpares two
HWORBLtrings. CMPW performs the same as function@4PB except thaCMPW
compares twWORDBtrings instead of twBYTEstrings.

The Find Element Functions

FIND is a built-inwORDunction that searches a string to find an element that has a
specified value. It is activated by a function reference of the following form:

keyword (source , target , count)
Where:
keyword FINDB, FINDHW, FINDW, FINDRB, FINDRHW, FINDRW
source expression witlPOINTERvalue
target expression witlBYTE, HWORD, or WORMalue
count expression witlBYTE, HWORD, OFFSET, or WORIMalue

FINDB examines each element of the source string (in ascending order) until it
finds an element whose value matchesBW&E value oftarget , or until count
elements have been searched, with none of them having matchedéhe . If

the search is successfBINDB returns the index of the first element of the string
that matchegarget . If the search is unsuccessfelNDB returns avORDalue.

FINDHWperforms the same function BINDB, except thaFINDHWsearches an
HWORBLring. Iftarget has aBYTEvalue, it is extended by 8 high-order, 0-bits to
produce amrHWORDalue. Iftarget has awORDMalue, it is truncated by 16
high-order bits to produce atwORDalue.

FINDWperforms the same function BNDB, except thaFINDWsearches &ORD
string. Iftarget has aBYTEor HWORDalue,target is extended appropriately to
produce avORDMalue.

PL/M-386 Programmer's Guide Chapter 9 173

FINDRB performs the same function BINDB, except thaFINDRB searches the
source string in descending order. Thus, if each search is succedsfDRB
returns the index of the last (highest subscript) element that matchzgTihe
value oftarget . FINDRHWperforms the same function BMNDRB, except that
FINDRHWsearches aHWORDBLring (in descending orderfFINDRWsearches a
WORDBtring (in descending order).

The Find String Mismatch Function

174

SKIPB is a built-inwORDunction that searches tB& TE string of lengthcount at

a specified location (given bsource) for the firstBYTEvalue that does not match
the targeBYTE This search begins with the fiBYTEvalue of the string. The
result is aWORDMalue, either OFFFFFFFFH if the string contains XY Evalues
equal to the targ®YTE equal to the index of the firByTEvalue not equal to the
targetBYTE

The function is activated by a function reference of the following form:

keyword (source , target , count)
Where:
keyword SKIPB, SKIPHW, SKIPW, SKIPRB, SKIPRHW, SKIPRW
source expression witlPOINTERvalue
target expression witlBYTE, WORD, or HWORDalue
count expression witlBYTE, HWORD, OFFSET, or WORIMalue

SKIPWperforms the same function 8KIPB, except thaSKIPWsearches WORD
source string to find the first element that does not matcwrMalue of

target . SKIPHWperforms the same function 8KIPB, except thaSKIPHW
searches aHWORBource string to find the first element that does not match the
HWORDalue oftarget

SKIPRB searches BYTEstring of the length specified lapunt , at the location
given bysource , for the lasBYTEvalue that does not match the targetTE

This search begins with the I&tTEvalue in the string. The result is\\ODRD
value (OFFFFFFFFH) if the string contains oBlyTE values equal to the target
BYTE or the index of the lagYTEvalue, if the lasBYTEvalue in the string is not
equal to the targ@®YTE

SKIPRWperforms the same function 8KIPRB, except thaSKIPRWsearches for
the last element in th&#ORBource string that does not match WeRmalue of
the target.SKIPRHWsearches for the last element in HW@ORBource string that
does not match thewORDalue of the target.

Chapter 9 Built-in Procedures, Functions, and Variables

The Translate String Procedure

XLAT is an untyped procedure that uses a translation table to tranBMT& atring
to produce anoth@YTEstring. It is activated by @ALL statement of the form:

CALL XLAT (source , destination , count , table)
Where:
source , destination , table
expressions witlPOINTERvalues
count expression witlBYTE HWORDDFFSET or WORDNalue

XLAT translates theount BYTEelements in theource string, placing the
translated elements in thestination ~ string. The value afble is assumed to
be the location of BYTEstring of up to 256 elements. This string is used as a
translation table.

The value of an element in teeurce string is used as an index into the
translation table. The index selects one element from the translation table; this
element is then copied into thestination string.

For example, if the fifth element in tseurce string is 202, then 202 is used as an
index for the translation table. The 203rd element of the table is copied into the
fifth position in thedestination ~ string.

The elements of theource string are translated into tlvestination string in
ascending order.

PL/M-386 Programmer's Guide Chapter 9 175

The Set String to Value Procedure

176

The SET built-in is an untyped procedure that sets each elemerBdTEstring,
the length of which is specified lypunt , to a single specified valuSET is
activated by & ALL statement with the following form:

CALL keyword (newvalue , destination , count)

Where:
keyword SETB, SETHW, SETW

newvalue expression witlBYTE, HWORD, OFFSET, or WORMalue -- the
high-order bits are dropped to producgYaE WORD,or HWORDalue

destination
expression witlPOINTERvalue

count expression witlBYTE, HWORD, OFFSET, or WORIMalue
SETBassigns th8YTEvalue ofnewvalue to each element of BYTEstring.

SETWperforms the same function 8ETB except thaBETWassigns a singd/ORD
value to each element oM#gORBtring. Ifnewvalue has aBYTEor anHWORD
value, it will be extended by 24 or 8 high-order 0 bits, respectively, to produce a
WORDMalue.

For information onWwORD32|WORD1apping, see Tables 9-3, 10-1, and 11-3.

Chapter 9 Built-in Procedures, Functions, and Variables

PL/M-386 Bit Manipulation Built-ins

The Copy Bit String Procedure

MOVBITis an untyped built-in procedure that copies a bit string of leswtht
from one location to anotheMOVBITis activated by &ALL statement with the
following form:

CALL MOVBIT (sbase, sbitoffset , dbase, dbitoffset , count);
Where:

sbase anddbase

are expressions withOINTERvalues.
sbitoffset

are expressions witBYTE HWORDDFFSET

dbitoffset andcount
areWORDMalues.

TheMOVBITbuilt-in procedure moves the number of bits specifieddat from
the bit location given by the base addrsfssse , and the bit offsesbitoffset
to the location given by the base addrgfssse and the bit offsetibitoffset
These bits are moved beginning with the low-order bit (least significant bit).

The MOVRBITbuilt-in procedure performs the same functiomi@s/BIT, except
thatMOVRBITmoves bits in descending order, beginning with the high-order bit
(most significant bit).

The Find Set Bit Function

SCANBIT is a built-inwORDunction that searches a bit string to find a set bit (i.e.,
a bit with the value of 1)SCANBIT is activated by a function reference with the
following form:

SCANBIT (sbase, sbitoffset , count)
Where:
sbase is an expression withROINTERvalue.

sbitoffset andcount
are expressions witBYTE HWORDDFFSET or WORDMalues.

PL/M-386 Programmer's Guide Chapter 9 177

178

The SCANBIT built-in function searches the bit string of lengtlunt at the bit
location given by the base addresase and the bit offsetbitoffset for the

first set bit, beginning with the low-order bit (least significant bit) in the string.
The result oSCANBIT is either aWORMalue of OFFFFFFFFH if the string contains
all 0 bits, or the index of the first set bit.

SCANRBITperforms the same function 8SANBIT, except thaBCANRBITstarts at
the high-order bit (most significant bit) in the string and searches for a set bit, in
descending order, and returns the location of the first set bit it encounters. The
result of SCANRBITis either aWORMalue of OFFFFFFFFH if the string contains all
0-bits, or the index of the first set bit encountered.

Chapter 9 Built-in Procedures, Functions, and Variables

Miscellaneous Built-ins

The Move Bytes Procedure

MOVHSs an untyped procedure that moves the number of bytes speciicedrsy
to the location given by the value @dstination , starting at the location given
by the value obource . If thesource anddestination fields overlap, the
result is undefinedMOVHSs provided for compatibility with PL/M-80 programs.
MOVHS activated by &ALL statement with the following form:

CALL MOVE (count , source , destination)
Where:
count expression witlBYTE HWORDDFFSET or WORDNalue

source anddestination
expressions witloFFSETvalues

If either source or destination is a value other than the valO&FSET the
value will be extended by high-order 0 bits to producediReSETvalue. The
values ofsource anddestination are assumed to be the addresses of the
source string and thelestination string.

The operation of th®iOVEprocedure differs from thdOVBprocedure, as follows:

e Thesource anddestination parameters must E-FSETvalues or they
will be converted.POINTERVvalues cannot be used, nor can values be supplied
with the @operator. ThusyiOVEcan handle only strings whose locations can
be expressed @3FFSETaddresses.

* The parameter order is different from the one used by the other built-in string
functions.

* The results are always undefined if #weirce anddestination strings
overlap.

PL/M-386 Programmer's Guide Chapter 9 179

The Time Delay Procedure

TIME is an untyped built-in procedure that causes a time delay specified by its
actual parameterTIME is activated by &ALL statement with the following form:

CALL TIME (expression);

where theexpression is converted, if necessary, to ldwORQuantity. The

length of time measured by the procedure is a multiple of 100 microseconds. If the
actual parameter evaluatesrtahen the delay caused by the procedure i 100
microseconds. For example, the statement:

CALL TIME (45);

causes a delay of 4.5 milliseconds. For PL/M-386, the maximum delay is 12 hours.
If required, longer delays can be obtained by repeated activations. The following
block takes one second to execute:

DO | = 1 TO 40;
CALL TIME (250);
END;

TheTIME procedure is based on the microprocessor's CPU cycle timedsiIMiBe
procedure assumes 16 MHz for Intel386 and Intel486 microprocessors.

Note that in generating code for a calM®IE, the computer generates a loop
rather than using interrupt processing. If a task containing a time delay is swapped
out in a multi-tasking environment, the time delay of that task stops executing.

The Lock Set Function

180

LOCKSETIs a built-inBYTEfunction that enables implementation of a simple
software synchronization lock. It is called by a function reference with the
following form:

LOCKSET (lockptr , newvalue)
Where:
lockptr expression witlPOINTERvalue
newvalue expression witlBYTE HWORDor WORIalue -- the high-order bits are
dropped to produceBYTEvalue

The action oLOCKSETis as follows: thdockptr parameter is used as a pointer
to aBYTEvariable; the value afewvalue is assigned to this variable, and
LOCKSETreturns the original value of the variable. During this transaction, the
CPU prevents any other process from accessing the same memory location.

Chapter 9 Built-in Procedures, Functions, and Variables

To see how this facility can be used, assume a system has more than one
microprocessor using the same memory, and has a program in one of these
microprocessors. This program uses memory locations that are also used by other
microprocessors in the system.

Within certain critical regions of the program, it is critical that no other
microprocessor can access the shared memory locations. To achieve this, declare a
globalBYTEvariable called OCK and establish a convention that@CK=Q any
microprocessor in the system can access the shared memory locations. However, if
LOCK=1 no microprocessor can access the shared memory locations except for the
microprocessor that seOCKto 1.

Write the function referendeDCKSET(@LOCK,1). The value 1 will be assigned

to LOCK If the value returned hyOCKSETis 0, therLOCKhas not been set, and

this microprocessor is the one that set it. At the end of the critical region, the lock
must be released by writingdCK=0

If LOCKSETreturns a value of 1, thei©CKhas been set and this microprocessor
was not the one that deDCK Wait until aLOCKSET(@LOCK,1)function
reference returns a value of 0 before accessing the shared memory locations.

PL/M-386 Programmer's Guide Chapter 9 181

Thus, the program could contain the following construction:

/*Begin critical region*/
DO WHILE LOCKSET(@LOCK,1);
/*Do nothing but repeat until LOCKSET returns 0*/
END;
/*Now LOCK has been set to 1 by this microprocessor*/

[*Critical region of program, where shared
memory locations are accessed*/
LOCK=0;
[*End critical region*/
In the simple case just described, only one software lock is used. It is represented
by the variable.OCK If more than one set of memory locations need protection at

different times, it is possible to establish as many different software locks as
necessary, with each lock using a diffe®WTEvariable.

Also, note that a software lock can be used for purposes other than protecting
memory locationsLOCKSETprovides a mechanism that can be used to implement
various types of synchronization in a multiprocessor system.

The Lock Bit Functions

182

TheBITLOCK functions are built-iBYTEfunctions similar to theOCKSETbuilt-in
described in the previous section. They are called by a function reference with the
form:

keyword (bbase, boffset)

Where:

keyword iSs BITLOCKSET, BITLOCKRESET or BITLOCKCOMPLEMENT
bbase is an expression withROINTERvalue.

boffset is an expression with BYTE HWORDor WORMalue.

The action oBITLOCKSET s as follows: thébase andboffset parameters are
used as the base address and bit offset to point to a certain bit in memory. The
value 1 is assigned to this variable, @&OLOCKSETreturns 88YTE The returned
value is TRUE (OFFH) if the original content of the bit was 1, otherwise it is
FALSE. During this transaction, the CPU prevents any other process from
accessing the same memory locati@8iTLOCKRESETperforms the same function
asBITLOCKSET, except thaBITLOCKRESETassigns the value 0 to the bit variable.
BITLOCKCOMPLEMENTerforms the same function BELOCKSET, except that
BITLOCKCOMPLEMENJomplements thBYTEvariable; that is, if the value was
initially 0, it is set to 1 and vice versa.

Chapter 9 Built-in Procedures, Functions, and Variables

POINTER and SELECTOR-related Functions

With the following built-in functions, programs can manipuR@NTERand
SELECTORralues that serve as location addresses in the microprocessor's memory.

The Return POINTER Value Function

BUILD$PTR s a built-inPOINTERfunction that takes the specified segment and
offset value and returnsRDINTERvalue. It is activated by a function reference
with the following form:

BUILD$PTR (segment, offset)
Where:
segment expression WitlSELECTORvalue

offset expression wittDFFSETvalue

The Return Segment Portion of POINTER Function

SELECTORS$OF#s a built-inSELECTORunction that returns the segment portion of
aPOINTER It is activated by a function reference with the following form:

SELECTORS$OF (pointer)
Where:

pointer is an expression withROINTERvalue.

The Return Offset Portion of POINTER Function

OFFSET$OReturns the offset portion of ROINTER For PL/M-386 OFFSET$OF
is a built-inOFFSETfunction. It is activated by a function reference with the
following form:

OFFSET$OF (pointer)
Where:

pointer is an expression withROINTERvalue.

PL/M-386 Programmer's Guide Chapter 9 183

The Set POINTER Bytes to Zero Variable

NIL is a built-inPOINTERpseudo-variable that represents a pointer with all bytes
set to zero.NIL is activated by a function reference with the following form:

NIL

The pointer valu@liL points to no object. The valb8L can be assigned to a
pointer to indicate, for instance, the end of a linked list.

Note that pointer values equalNd. cannot be used to de-reference data values.
For example, if a program contains the following statements:

DECLARE P POINTER;
DECLARE B BASED P BYTE;
P = NIL;

any subsequent referencestare invalid and will cause a trap.
TheNIL POINTERVvariable also has the property ti@nILis equal taNIL .

POINTERvariables can be initialized tdL by using@NIL with INITIAL . For
example:

DECLARE ENDOFLIST POINTER
INITIAL (@NIL);

initializesENDOFLISTwith the value oNIL (i.e., all zeros).OFFSET$OF(NIL)
and.NIL are also equal to zero.

WORD16 Built-in Mapping

The native machine word for Intel386 and Intel486 microprocessaroRD3%a
32-bitWORp ThewORD1&ontrol affects the semantics of some data types and
built-ins as listed in Table 3-3. In PL/M-38&0ORD1&eywords are mapped to the
equivalentwORD3%eyword. SELECTORPOINTER OFFSET(ADDRES})are the
same under botttORD3andWORD16 Table 11-5 in the discussion of the
WORD32|WORD1@ontrols shows the correspondence between de¥dOIRD3p
built-ins and those available wh&rORD16s in effect. For example, Table 11-5
shows thaHWORDNderwORD3zZorresponds t&/ORDINderwORD16

184 Chapter 9 Built-in Procedures, Functions, and Variables

Features Involving the Target CPU
and Numeric Coprocessor

The PL/M features described in this chapter make direct or indirect use of the
target microprocessor and numeric coprocessor hardware.

Microprocessor Hardware-dependent Statements

The ENABLE and DISABLE Statements

These statements enable and disable the microprocessor interrupt mechanism.
The ENABLEstatement has the following form:
ENABLE;

ENABLEgenerates a8Tl instruction, causing the microprocessor to enable
interrupts after the next machine instruction is executed.

TheDISABLE statement has the following form:
DISABLE;

DISABLE generates €Ll instruction, causing the microprocessor to disable
interrupts.

PL/M-386 Programmer's Guide Chapter 10 185

The CAUSESINTERRUPT Statement

The CAUSES$INTERRUPBtatement causes a software interrupt to be generated. It
has the form:

CAUSESINTERRUPT (constant);
Where:
constant is a whole-number constant in the range 0 to 255.

CAUSES$INTERRUPTenerates aiNT instruction with the constant as the interrupt
type, causing the microprocessor to transfer control to the appropriate interrupt
vector. Appendix G contains more information on run-time interrupt processing.

The HALT Statement
TheHALT statement causes a microprocessor halt. It has the form:
HALT,

HALT generates afT! instruction followed by aRILT instruction, causing the
microprocessor to halt with interrupts enabled.

186 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

Microprocessor Hardware Flags

Optimization and the Hardware Flags

To produce an efficient machine-code program from a PL/M source program,

PL/M compilers perform extensive optimizations of the machine code. This means
that the exact sequence of machine code produced to implement a given sequence
of PL/M source statements cannot be predicted.

Consequently, the state of the microprocessor hardware flags cannot be predicted
for any given point in the program. For example, suppose that a source program
contains the following fragment:

SUM = SUM + 250;

Where:
SUM is aBYTEvariable.

Now, if the value oSUMbefore this assignment statement is greater than five, the
addition will cause an overflow and the hardware CARRY flag will be set.

If there were no optimization of the machine code, this assignment statement could
be followed with one of the PL/M features described in the following sections.

This would ensure that the feature would operate in a certain fashion depending on
whether or not the addition caused the CARRY flag to be set. However, because of
the optimization, some machine code instructions could occur immediately after

the addition and change the CARRY flag. It cannot be safely predicted whether
this will happen or not.

|:| Note

Accordingly, any PL/M feature that is dependent on the CARRY
flag (or any of the other hardware flags) can cause the program to
run incorrectly. These features must therefore be used with
caution, and any program that uses them must be checked
carefully to make sure that it operates correctly.

PL/M-386 Programmer's Guide Chapter 10 187

The CARRY, SIGN, ZERO, and PARITY Functions

These built-iBBYTEfunctions return the logical values of the microprocessor
hardware flags. These functions take no parameters, and are activated by function
references with the following forms:

CARRY
ZERO
SIGN
PARITY

An occurrence of one of these activations (in an expression) generates a test of the
corresponding condition flag. If the flag is set (=1), a value of OFFH is returned. If
the flag is clear (=0), a value of 0 is returned.

The PLUS and MINUS Operators

In addition to the arithmetic operators described in Chapter 5, PL/M has two more:
PLUSandMINUS

PLUSandMINUSperform similarly to + and -, and have the same precedence.
However,PLUSsums two numbers and adds the CARRY bit to the result and
MINUS subtracts two numbers and subtracts the CARRY bit from the result.

Carry-rotation Functions

188

SCL andSCRare built-in rotation functions whose types depend on the type of the
expression given as an actual parameter. They are activated by function reference
with the following forms:

keyword (pattern , count);

Where:
keyword SCL, SCR
pattern andcount

expressions witBYTE, HWORD, WORD, OFFSET, or DWORDalue
-- for count the high-order bits are dropped to prodXEE values

If the value ofcount is 0, no shift occurs.

For PL/M-386, the value gdattern is handled as an 8-bit, 16-bit, 32-bit, or

64-bit binary quantity. This quantity is rotated to the left$ly) or to the right

(by SCR. This is similar to th@OLandRORfunctions described in Chapter 9.

The type ofpattern determines the type of rotate that is performed. The number
of bit positions by which the value phttern is rotated is specified bgount .

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The bit rotated off one end of pattern is rotated into the CARRY flag, and the old
value of CARRY is rotated to the other end of pattern. In efgit,andSCR
perform 9-bit rotations on 8-bit values, 17-bit rotations on 16-bit values, and so on.

For example, if the value of CARRY is 0, then:
SCL(110010108B, 2) returns a value of 00101001B and CARRY is setto 1
SCR(110010108B, 1) returns a value of 01100101B and CARRY remains O

The Decimal Adjust Function

DECIis a built-inBYTEfunction that performs a decimal adjust operation on the
actual parameter value and returns the result of this operation. For PL/ME336,
uses the value of the hardware AUXILIARY CARRY flag internally. It is
activated by a function reference with the following form:

DEC (expression);
Where:

expression is converted, if necessary, t®#TEvalue.
Microprocessor Hardware Registers

The Flags Register Access Variable

FLAGSIs a built-inwORDMariable that provides access to the microprocessor's
hardware flags register (see Figure 10-1, which also has flags registers for the 8086
and 286 registers for comparison). The hardware flags register contains the
hardware flags that are altered by the execution of various instructions. The
hardware flags register for the Intel386 and Intel486 microprocessors are 32 bits
long.

TheFLAGSregister is assigned to change the setting of the various flags. It can
also be read to determine the current flag settings.

For more information on setting the hardware register flags, see the appropriate
microprocessor programmer's reference manual.

PL/M-386 Programmer's Guide Chapter 10 189

|x|x | ><|x |OF|DF|IF|TF|SF|ZF|X |AF|X [pe| x [cr| 8086

|X|NT| 1oPL |OF|DF|IF|TF|SF|ZF|X |AF|X|PF|)< |CF| 286

XX

x [] x [wr] orL Jor[or [[v [se]z¢ [x [ar [x [P] x [or] 386

Carry Flag

Parity Flag

L——— Auxiliary Carry Flag

Zero Flag

Sign Flag

Single-step Trap Flag

Interrupt Enable

Direction

Overflow

I0PL

Nested Task

Resume Flag
Virtual 8086 Mode

X Denotes Intel Reserved

0OSD535

Figure 10-1. The Hardware Flags Register

The STACKPTR and STACKBASE Variables

190

For PL/M-386,STACKPTRS anOFFSETvariable anSTACKBASHS aSELECTOR
variable. They provide access to the microprocessor's hardware stack pointer and
stack base registers.

When setting these registers (that is, uSmMgCKPTRor STACKBASEN the left

side of an assignment), care must be exercised because this takes control of the
stack away from the compiler. Thus, the compile-time checks on stack overflow
and assumptions by the compiler about the run-time status of the stack may be
invalid.

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

Microprocessor Hardware 1/0

Input from an 1/O port of a singBYTE HWORDDFFSET or WORDs performed by

the input built-ins as a function invocation in an expression on the right-hand side
of an assignment statement. Sing¥rE HWORDDFFSET or WORDuUtput is

achieved by filling the appropriate element of the output array corresponding to the
desired output port of the target microprocessor.

Multiple BYTE HWORDDFFSET, or WORDNput is performed as a procedure
invocation, reading in a string from the microprocessor's CPU port and storing it in
a user-specified memory location. Multif® TE HWORDBDFFSET or WORDuUtput

is also performed as a procedure invocation, usibgla statement to send a

string from memory into the target microprocessor port.

The Find Value in Input Port Function

The following built-in functions return the values in the specified input port. They
are activated by function references with the form:

keyword (expression);

Where:
keyword INPUT, INHWORD INWORD
expression expression wittlBYTE, HWORDor WORIMalue

The value ofexpression specifies one of the input ports of the target
microprocessor.

The value returned byeyword is theexpression quantity found in the specified
input port.

PL/M-386 also has annDWORDunction when th&/ORD1&ontrol is used.

The Access Output Port Array

For PL/M-386,0UTPUTOUTHWORRNAOUTWORaYre built-inBYTE HWORDand
WORIM@rrays, respectively. They are activated by a function reference with the
following form:

keyword (expression);

Where:
keyword OUTPUT, OUTHWORD, OUTWORD
expression expression wittlBYTE, HWORD, or WORMalue

PL/M-386 Programmer's Guide Chapter 10 191

These functions can access any port from 0 to 65,535, corresponding to the numbe
of output ports on the target CPU. References to these arrays cause the specified
expression quantity to be latched to the specified hardware output port.

A reference teyword is legal only as the left part of an assignment statement or
embedded assignment. For PL/M-386, the right-hand side of the assignment must
have aBYTE HWORDor WORDMalue.

SpecifyingOUTPUTIn the assignment statement placesBWeE value of the

expression on the right side of the assignment into the specified output port. (Since
OUTPUTis aBYTEDbuilt-in, the value of the expression is converted automatically

to aBYTEtype if necessary.)

SpecifyingOUTWORID the assignment statement placesw@RDor OFFSET)
value of the expression on the right side of the assignment into the specified output
port.

Similarly, of OUTHWORHlaces théiwORDalue of the expression on the right side
of the assignment into the corresponding output port. PL/M-386 also has an
OUTDWORIlt-in when theWORD1&ontrol is used.

The Read and Store String Procedure

192

The read and store string procedures are built in. For PL/M-386, these built-ins
read theBYTE HWORDDFFSET or WORDBtring values latched to the specified
hardware input port. The read values, of the length specifieddsy , are then
stored at the location specified bystination . These procedures are activated
by aCALL statement with the following form:

CALL keyword (port , destination , count);
Where:
keyword BLOCKINPUT, BLOCKINHWORD, BLOCKINWORD

port expression witlBYTE or HWORDalue
destination
expression witlPOINTERvalue

count expression witlBYTE, HWORD, OFFSET or WORMalue

The keyword specifies the type of string found in the specified input port. The
value ofport specifies one of the input ports of the CPU. dbstination

specifies the location (in memory) at which to store the string. The vahueaf
specifies the length of the string.

PL/M-386 also has BLOCKINDWORprocedure when th&#ORD1gontrol is used.

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The Write String Procedure

The write string procedures are built-in procedures. For PL/M-386, these built-ins
write aBYTE HWORDDFFSET or WORDBtring to the specified output hardware
port. These built-ins are activated bgalLL statement with the following form:

CALL keyword (port , source , count);

Where:

keyword BLOCKOUTPUT, BLOCKOUTHWORD, BLOCKOUTWORD
port expression witlBYTE or HWORDalue

source expression witlPOINTERvalue

count expression witlBYTE, HWORD, OFFSET, or WORMalue

The keyword specifies the type of string. The valuepoft specifies one of the
output ports of the microprocessor CPU. Fharce value specifies the location
(in memory) where the string is currently stored. The valuswit specifies the
string length.

PL/M-386 also has BLOCKOUTDWORBbcedure when th&yORD1&ontrol is used
(see Chapter 10).

The Hardware Protection Model

The Intel386 and Intel486 microprocessors' protection mechanism provides up to
four privilege levels within each task. The highest privilege level (level 0) is
reserved for the operating system kernel. Below the kernel level, systems can be
configured to include a system service level (level 1), an applications service level
(level 2), and an application program level (level 3).

The following hardware protection built-in procedures and variables allow access
to the protection architecture of these microprocessors.

The Task Register

The TASK$REGISTER Variable

TASK$REGISTERSS a built-inSELECTORvariable that provides access to the task
state register. This register points to a task state segment for the currently
executing task.

PL/M-386 Programmer's Guide Chapter 10 193

The format of the task register for the Intel386 microprocessor is:

INDEX T RPL
|

31 24 23 16 15 8 7 210

0OSD579

Values are assigned T&SK$REGISTERO reset the task state segment for the
current task or to enter the protected mode of the microprocessor. However, the
selector stored IMASK$REGISTERMuSt point to a valid task state segment. Note
that values can be assignedriSK$REGISTERonly if the program is executed in
protection mode at level 0.

TASK$REGISTERcan also be read to determine the task state segment of the
currently executing task.

The Global Descriptor Table Register

The global descriptor table register (GDTR) is a system-wide register used for
protected virtual address mode. The GDTR describes a memory area that contains
an array of descriptors for the global address space. The register occupies 6 bytes

Its format for Intel386 and Intel486 microprocessors follows:

I [
BASE LIMIT
| | | |
47 39 38 32 31 24 23 16 15 8 7 0

0OSD580

LIMIT size of the GDT segment (up to 64K bytes)
BASE physical memory base address of the GDT segment
ACCESS access control byte

194 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The SAVE$SGLOBALS$TABLE Procedure

SAVE$GLOBALSTABLEs a built-in procedure. It is activated bgaLL statement
with the form:

CALL SAVE$GLOBALS$TABLE (location);
Where:
location is an expression withROINTERvalue.
SAVE$GLOBALSTABLBaves the contents of the hardware global descriptor table
register in the 6-byte save area pointed tdobstion
The RESTORE$GLOBALS$TABLE Procedure

RESTORE$GLOBALS$TABLIE a built-in procedure. It is activated bgaLL
statement with the form:

CALL RESTORES$SGLOBALS$TABLE (ocation);
Where:
location is an expression withROINTERvalue.

RESTORE$GLOBALS$TABLIEStores the contents of the hardware global descriptor
table register from the save area pointed tébgtion . This save area can be
the same area used in a preceding ca8IAGESGLOBALSSTATUS.

SAVE$GLOBALSTABLBaves the value of the GDTR in a 6-byte memory area.
RESTORE$GLOBALS$TABLIEStores the value of the GDTR.

PL/M-386 Programmer's Guide Chapter 10 195

The Interrupt Descriptor Table Register

The interrupt descriptor table register (IDTR) is a system-wide register that is used
for interrupt processor management. The IDTR describes a segment that contains
the linear base address and the size of the interrupt descriptor table (IDT), and a

segment containing an array of gate descriptors for the interrupt handlers. The
register occupies 6 bytes.

Its format for Intel386 and Intel486 microprocessors follows:

I [
BASE LIMIT
| | | |
47 39 38 32 31 24 23 16 15 8 7 0

0SD580

LIMIT size of the segment (up to 64K bytes)

BASE physical memory base address of the IDT segment
ACCESS access control byte

The SAVESINTERRUPTS$TABLE Procedure

SAVES$INTERRUPTS$TABLES a built-in procedure that is activated b@AiLL
statement with the following form:

CALL SAVES$INTERRUPTS$TABLE (/ocation);
Where:
location is an expression withROINTERvalue.

SAVES$INTERRUPT$TABLEaves the contents of the hardware interrupt descriptor
table register in the 6-byte save area pointed tvdation

196 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The RESTORES$INTERRUPT$TABLE Procedure

RESTORES$INTERRUPTS$TABLIS a built-in procedure that is activated bgAiLL
statement with the following form:

CALL RESTORESINTERRUPTS$TABLE (ocation);
Where:
location is an expression withROINTERvalue.

RESTORES$INTERRUPTSTABLEEStOres the contents of the hardware interrupt
descriptor table register from the save area pointed tachyon . This save
area can be the same area used in a preceding 6aVESINTERRUPT$TABLE

A descriptor can be built that will initialize the interrupt processor operations.
RESTORE$GLOBAL$STATUSN then be called with a pointer to this descriptor.

The user must ensure that the save area contains a valid descriptor. Note that
values can be assigned to the IDTR only if the program is executed in protection
mode at level 0.

The Local Descriptor Table Register

The LOCALS$TABLE Variable

LOCALSTABLEiIs a built-inSELECTORvariable that provides access to the local
descriptor table register (LDTR). The format of the register is a selector pointing
to an LDT in the GDT. The use of the local descriptor table is like the use of the
GDTR, except that it defines the local address space.

By assigning a value t10OCAL$TABLE the local address space of the current task
is altered. If a task switch occurs, the new contents are not saved in the task state
segment. (To ensure proper operation, interrupts must be disabled.)

LOCALSTABLEcan be read to determine the current active descriptor array segment
for the current task.

The user must ensure that the selectt’QGAL$TABLEpoints to a valid descriptor
segment. Note that values can be assigned to the LDTR only when the program is
executed in protection mode at level 0.

PL/M-386 Programmer's Guide Chapter 10 197

The Machine Status Register

The MACHINE$STATUS Variable

For PL/M-386,MACHINES$STATUSs a built-inHWORDariable. MACHINE$STATUS
provides access to the machine status word (MSW). The MSW register defines the
current status of the processor protection model and the real math unit support.
The format ofMACHINE$STATUSs:

|X| X .. X|TS|EM|MP|PE|
15 14 4 3 2 1 O

L Protection Enable

Real Math Unit (iIAPX 287) Present

Emulation Mode

Task Switched

(Reserved)

(Reserved)

(Reserved) 0SD536

MACHINE$STATUS®nNnables access to the protected mode of the microprocessor.
When a value is assigned to this register, the compiler generates a short jump to th
next instruction to clear the instruction queue. (Note, however, that values can be
assigned ttMACHINESSTATUSNy if the program is executed in protection mode

at level 0.)

The contents ofIACHINE$STATUSan also be read to determine the current status
of various system components.

The CONTROL$REGISTER, DEBUG$REGISTER, and TEST$REGISTER
Built-in Arrays

The CONTROL$REGISTE#R a built-inwORRrray that provides access to the
Intel386 and Intel486 microprocessors' 32-bit control registers that define the
current status of the processor and contain page table and page fault information.

198 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The format of CONTROL$REGISTER (0) is:

I
P d EITIE/MP
G | Reserve‘ | TIsimlPlE
31 24 23 16 15 8 7 4 3210

0OSD575
where:

PG = paging enabled

ET = extension type

TS = task switched

EM = emulate coprocessor

MP = numeric coprocessor present
PE = protection enable

MSW is contained in the low-order 16 bits@ONTROL$REGISTER (0).
However, assigning a value to tidCHINESSTATUSDUIlt-in does not change the
ET (extension type) bit.

CONTROLS$REGISTER (2) contains the 32-bit linear address that caused the last
detected page fault.

CONTROLS$REGISTER (3) contains the physical page base address for the first
level of the page table structure. This address is in the high 20 bits (bits 12 to 31)
of CONTROLS$REGISTER (3). The lower 12 bits are ignored when assigning to
CONTROLS$REGISTER (3) and are undefined when read@@NTROL$REGISTER

(3) . Note that the control registers are accessible only during execution at
protected mode level 0. Also note tiK?@NTROLSREGISTER (1) is not

accessible.

The DEBUGS$REGISTERUIlt-in WORRrray provides access to six of the eight

32-bit debug register§EBUG$REGISTER(4)andDEBUG$REGISTER(5)are not
accessible. The debug registers are accessible only during execution at protected
mode level 0.

TEST$REGISTERIS a built-inwORRrray that provides access to the 32-bit test
registers of the microprocessor. Of these test registersTBBIBSREGISTER (6)
andTEST$REGISTER (7) are accessible; these registers are accessible only when
executing in protection mode at level 0.

PL/M-386 Programmer's Guide Chapter 10 199

The CLEAR$TASK$SWITCHEDS$FLAG Procedure

CLEARS$TASK$SWITCHEDS$FLAIS a built-in procedure that is activated bgALL
statement with the form:

CALL CLEARS$TASK$SWITCHEDS$FLAG;

This procedure is used to clear the task switched flag in the machine status word.
The processor sets the task switched flag every time a task switch occurs. It can b
used to manage the sharing of the math coprocessor.

CLEAR$TASK$SWITCHEDS$FLAGan be called only when the program is executed
in protection mode at level 0.

Segment Information

The GET$ACCESSS$RIGHTS Function

GET$ACCESS$RIGHT® a built-inwORDunction; it is activated by a function
reference with the form:

GET$ACCESS$RIGHTS Gelector);
Where:
selector is an expression with SELECTORvalue.

If the segment pointed to elector is visible at the current privilege level, then
the hardware ZERO flag is set an@®RMalue is returned. If the segment is not
visible, or if it is of the wrong type, the hardware ZERO flag is reset, and the
returned value is undefined.

|:| Note

The setting of the ZERO flag is guaranteed only if it is tested
immediately, before being altered by another operation. (For
example, if the value of the function is assigned to an array
element indexed by an expression, the value of the ZERO flag
may be incorrect.)

200 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

Specific to Intel386 and Intel486 microprocessors, the format of the return value is:

2 0 oeo‘o§x‘x‘x‘x ACCESS 0 0
31 2423 16 15 8 7 0
OSD576
X reserved
G granularity bit
AVL available for software use

ACCESS access rights byte

The following example illustrates how tBETSACCESS$RIGHT&unction can be
used:

DECLARE RIGHTS WORD;
DECLARE SEGMENT SELECTOR,;
RIGHTS = GET$ACCESS$RIGHTS (SEGMENT);
IF ZERO THEN
[* The segment pointed to by SEGMENT is visible */
/* and RIGHTS contains the proper access
[* rights to it. */
ELSE
[* SEGMENT is not visible and the contents of */
[* RIGHTS is undefined. */

The GET$SEGMENTSLIMIT Function

For PL/M-386,GET$SEGMENTS$LIMITis a built-inOFFSETfunction.
GET$SEGMENTS$LIMITIs activated by a function call of the form:

GET$SEGMENTS$LIMIT (selector);
Where:
selector is an expression with SELECTORvalue.

If the segment pointed to elector is visible at the current protection level,

then the hardware ZERO flag is set and the value returned by
GET$SEGMENTS$LIMITIs the size of the segment. If the segment is not visible, the
ZERO flag is reset and the returned value is undefined.

Set the ZERO flag with caution. See the note in section for the
GET$ACCESSS$RIGHTunction.

PL/M-386 Programmer's Guide Chapter 10 201

The following example illustrates how tlET$SEGMENTS$LIMITfunction can be
used:

DECLARE LIMITS OFFSET;
DECLARE SEGMENT SELECTOR,;
LIMITS = GET$SEGMENTS$LIMIT (SEGMENT);
IF ZERO THEN
[* The segment pointed to by SEGMENT is visible */
/* and LIMITS contains its proper size.*/
ELSE
[* SEGMENT is not visible and the contents of*/
[* LIMITS is undefined.*/

Segment Accessibility

It is sometimes helpful to know if the segment pointed to by a selector is readable
or writable from the current address space. This becomes particularly important
when the selector is a parameter that is passed to the current task.

If an attempt is made to access a segment that is inaccessible, an interrupt will
occur. To avoid this interrupt, segment readability and writability can be tested
before the segment is accessed.

The SEGMENT$READABLE Function

SEGMENT$READABLE a built-inBYTEfunction. It is activated by a function
reference with the form:

SEGMENT$READABLESelector);
Where:
selector is an expression with SELECTORvalue.

SEGMENT$READABLUEturns a value of TRUE (OFFH) if the segment pointed to by
selector is reachable and readable from the current privilege level; FALSE (0), if it
is not.

The SEGMENT$WRITABLE Function

202

SEGMENT$WRITABLIS a built-inBYTEfunction. It is activated by a function
reference with the form:

SEGMENT$WRITABLE §elector);
Where:

selector is an expression with SELECTORvalue.

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

SEGMENT$WRITABLEeturns a value of TRUE (OFFH) if the segment pointed to by
selector is reachable and writable from the current privilege level; FALSE (0), if
it is not.

Adjusting the Requested Privilege Level

The ADJUST$RPL Function

ADJUST$RPLIs a built-inSELECTORunction that returns the argument of the
adjusted requested privilege level (RPL). It is activated by a function reference
with the form:

ADJUSTS$RPL (selector),
Where:
selector is an expression with SELECTORvalue.

If the requested privilege level (RPL) field of the argument selector is less than the
RPL field of the code segment selector for the routine calling the procedure that
invokedADJUSTS$RPL then the hardware ZERO flag is set and the value returned
is the argument of an adjusted RPL field. Otherwise, the ZERO flag is reset, and
the value returned is the original value of the argument.

Setting the ZERO flag should be done cautiously; see the note in section on the
GET$ACCESSS$RIGHT&unction.

The following example illustrates how tA®JUST$RPLfunction can be used:

P: PROCEDURE (SEGMENT);
DECLARE SEGMENT SELECTOR;

SEGMENT = ADJUST$RPL (SEGMENT);
IF ZERO THEN
/* The RPL of SEGMENT was less than the RPL of*/
/* the routine that called P; SEGMENT now has*/
/* the RPL of the caller.*/
ELSE
/* The RPL of SEGMENT was not less than the RPL */
[* of the routine that called P; SEGMENT is unchanged */
END P;

PL/M-386 Programmer's Guide Chapter 10 203

The REAL Math Facility

REALmath support for PL/M is provided by the numeric coprocessor. In relation to
the program, th@EAL math facility consists of the following:

* TheREALstack, used to hold operands and results dirizd_operations.

 TheREALerror byte (see Figure 10-2), consisting of seven exception flags
initialized to all 0s. (The reserved bit is set to 1 by the numeric coprocessor.)

The first six bits in this byte correspond to the possible errors that can arise
duringREAL operations (see Appendix G). When an error occurs, the facility
sets the corresponding bit to 1. A program can invoke a built-in procedure
(described in the next section) that reads and clearREAEerror byte.

The exception/error categories are discussed in Appendix G.

« TheREALmMode word (see Figure 10-3), consisting of 16 bits initialized to
03FFH (or 7FFH for the Intel387numeric coprocessor).

1. Bits 0-7 determine whether the corresponding error condition is to be
handled with the default recovery (described next) or with the
programmer-supplied exception procedure (see Appendix G for details on
writing these). When the bit is 1, the default is used; when it is 0, the user
routine is used. In either case, the facility records the error by setting the
corresponding bit of thREAL error byte. For most uses, the default
recovery is appropriate and less work.

7 0
||R | |PE|UE|OE|ZE|DE| IE | Exception Flags (1 = Exception Has Occurred)

Invalid Operation

Denormalized Operand

Zerodivide

Overflow

Underflow

Precision

(Reserved)

Interrupt Request 0SD537

Figure 10-2. The REAL Error Byte

204 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

15

7

0

. |IC| RIC | PIC |IEM|

|PM | UM | oM | M |DM| M | Exception Masks (1 = Exception is Masked)

PL/M-386 Programmer's Guide

@ Interrupt - Enable Mask:
0 Interrupts Enabled
1 Interrupts Disabled (Masked)

@ Precision Control:

00 24 Bits

01 (Reserved)

10 53 Bits
11 64 Bits

@) Rounding Control:
00 Round To Nearest Or Even
01 Round Down (Toward ~ o)
10 Round Up (Toward ~ <o)
11 Chop (Truncate Toward Zero)

) Infinity Control:
0 Projective

1 Affine

Invalid Operation
Denormalized Operand
Zerodivide

Overflow

Underflow

Precision

(Reserved)
Interrupt-Enable Maskl(IEM)
Precision Control
Rounding Control :
Infinity Control N

(Reserved)

Figure 10-3. The REAL Mode Word

Chapter 10

0OSD539

205

This mode word is often called a mask; that is, it lets some signals through
(to interrupt processing), but not others. If one of the bits 0-5 is a 0, the
corresponding error is said to be unmasked (see the next section for setting
the mode word).

If the interrupt is enabled (IEM = 0), one of the masked bits is 0, and the
corresponding error occurs during floating point processing, theRERE
math facility interrupts the host CPU. The numeric coprocessor's interrupt
number is dependent on the internal configuration. The exception
condition is thus reported and control is passed to the user-written error
handling routine. This situation is called an unmasked error. Chapter 8
and Appendix G discuss aspects of interrupt procedures.

Conversely, a masked error means the mode bit corresponding to that errol
is 1. Masked errors do not cause an interrupt, but are handled as describe
in Appendix G.

2. Bits 8 and 9 control precision. All intermediate results are held in an
internal format of 64-bit precision. The most-significant 24 bits of the
final result are returned (plus sign and 7-bit exponent) as the PL/M
answer, and rounded, if needed, according to the user-specified control.
The default precision setting preserves extended precision and operates
slightly faster than the other settings.

3. Bits 10 and 11 control rounding. Rounding introduces an error of less than
one unit in the last place to which the result was rounded. Statistically, the
default provides the most accurate and unbiased estimate of the true result
(i.e., the 64-bit result). In all rounding modes except round down,
subtracting a number from itself yields +0; round down yields -O0.

4. Bit 12 controls how infinity is handled, as shown below.

O
— 0O + oo
+ oL l >0
0
Affine Closure
0
Projective Closure 0SD538

Bits 13, 14, and 15 are reserved and are not for PL/M use.

206 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

Built-ins Supporting the REAL Math Unit

The INITSREALSMATHSUNIT Procedure

INITSREAL$SMATHS$UNIT is a built-in untyped procedure activated b L
statement, as follows:

CALL INITSREAL$SMATHSUNIT;
This call is required as the first access to the math coprocessor.

This call initializes the&REAL math unit for subsequent operations. This includes
setting a default value into the contreEAL mode) word, namely 03FFH or
0000001111111111B. This setting masks all exceptions and interrupts, sets
precision to 64 bits, and sets the rounding mode to nearest, with even preferred.
This means no interrupts will occur from tREAL math facility regardless of what
errors are detected.

Procedures activated after this call has taken effect do not need to do such
initialization.

The SET$REAL$MODE Procedure

This procedure should only be invoked to change the default mode word
(for example, to unmask the invalid exception).

SET$REAL$MODI a built-in untyped procedure, activated byALL statement
with the following form:

CALL SET$REAL$SMODE (modeword);
Where:
modeword expression wittHWORDalue

The value ofnodeword becomes the new contents of BeALmode word (see

Figure 10-3). The suggested value Aardeword is 033EH,

(0000001100111110B). This value provides maximum precision, default rounding,
and masked handling of all exception conditions except an invalid operation, which
can alert the user to errors of initialization or stack usage (see Appendix G for facts
and references on writing an interrupt handling procedure).

PL/M-386 Programmer's Guide Chapter 10 207

The GET$REAL$ERROR Function

GET$REALS$ERROIR a built-inBYTEfunction activated by a function reference
with the following form:

GET$REAL$ERROR

TheBYTEvalue returned is the current contents ofREAL error byte (see Figure
10-2). This function also clears the error byte inREAL math facility.

Saving and Restoring REAL Status

208

If an interrupt procedure performs any floating-point operation, it will change the
REALstatus. If such an interrupt procedure is activated during a floating-point
operation, the program will be unable to continue the interrupted operation
correctly after returning from the interrupted procedure. Therefore, it is first
necessary for any interrupt procedure that performs a floating-point operation to
save theREAL status and subsequently restore it before returning. The built-in
procedureSAVESREAL$STATUSNARESTORES$SREALSSTATUSake this possible.
SAVE$REAL$STATUSISO initializes the numeric coprocessor.

Additionally, these procedures can be used in a multi-tasking environment where a
running task using the numeric coprocessor can be preempted by another task that
also uses the numeric coprocessor. The preempting task must call
SAVE$SREAL$STATU®efore it executes any statements that affect the numeric
coprocessor, that is, before calllB§TSREALSMODENd before any arithmetic or
assignment oREALS (other thalGET$REALSERRQRf needed).

New vectors will be required for the interrupt handlers appropriate to each new task
(e.g., to handle unmasked exception conditions). These vectors must be initialized
by the operating system.

After its processing is complete and it is ready to terminate, the preempting task
must callRESTORE$REAL$STATU® reload the state information that applied at

the time the former running task was preempted. This enables that task to resume
execution from the point where it relinquished control.

|:| Note

REALfunctions withouREAL parameters should not call
GET$REAL$ERRORSI SAVESREAL$STATUDefore executing at
least one floating-point instruction. To do so may result in loss of
processor synchronization.

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

The SAVE$SREAL$STATUS Procedure

SAVE$REAL$STATUSs a built-in untyped procedure activated byAiL statement
with the form:

CALL SAVE$REALS$STATUS (location);
Where:

location is a pointer to a memory area 108 bytes long whergmHag¢ status
information will be saved.

TheREALstatus is saved at the specified location, andRe._stack and error
bytes are reinitialized.

If the state of th&@EALmath unit is unknown to this procedure when it is called, as
in the case previously mentioned for preempting tasks, then an initialization will
destroy existing error flags, masks, and control settings. To avoid this, the
appropriate action (except for error-recovery routines, discussed in Appendix G) is
to issue:

CALL SAVE$SREALSSTATUS (@location_1);
before any\REAL math usage, and
CALL RESTORES$SREAL$STATUS (@location_1);

prior to the procedure's return. The save automatically reinitializes the math unit
and the error byte.

This protects the status of preempted tasks or prior procedures and establishes a
known initialization state for the current procedure's actions. The microprocessor
interrupts are disabled during the save.

|:| Note

The microprocessor must be able to acknowledge numeric
coprocessor interrupts or loss of synchronization occurs.

PL/M-386 Programmer's Guide Chapter 10 209

The RESTORE$REAL$STATUS Procedure

RESTORE$REAL$STATUIS a built-in untyped procedure activated by L
statement with the form:

CALL RESTORE$REAL$STATUS (ocation);
Where:

location is a pointer to a memory area where REAL status information was
previously saved by a call to S VE$SREAL$SSTATUSprocedure.

This procedure should be called prior to returning from an interrupt procedure
where the real math unit's status was saved SNWESREALSSTATUS

Interrupt Processing

The WAITSFORSINTERRUPT Procedure

WAITSFORS$INTERRUPTS a built-in procedure that is activated b@AiLL
statement with the form:

CALL WAIT$FORSINTERRUPT;

This procedure is used to generate an IRET instruction in a nested interrupt task; if
it is used elsewhere, the results are undefined. The IRET instruction causes the
microprocessor to perform a task switch, saving the status of the outgoing task in
its TSS. The next time the interrupt task is activated, execution will begin at the
instruction immediately following the IRET, with all the registers unchanged.

The following example illustrates how tieAI TSFORSINTERRUPProcedure can
be used:

NEWSINTERRUPT:
CALL INITIALIZESINTERRUPTSLIST;
/* Start of a list of interrupts */
DO WHILE 1;
CALL WAIT$FORSINTERRUPT;
[* Wait for next interrupt within list */
CALL PROCESSS$INTERRUPT;
IF ENDOFINTERRUPTS$LIST THEN DO;
CALL WAIT$FORSINTERRUPT;
/* Wait for start of next interrupt sequence */
GOTO NEWSINTERRUPT;
END;
END;

210 Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

WORD16 Mapping for Built-ins

Table 11-5, in the discussion of the®ORD32|WORD1&ontrol, shows the
correspondence between defawidRD3pPmachine built-ins and those available
whenwWORD16s in effect. For example, Table 11-5 shows H&WORDPNVORD3P
corresponds t&VORINderwORD16

Intel486 Processor Built-ins

The following are built-ins specific to the Intel486 processor. Specifithie486
control for the PL/M-386 compiler to use these functions:

* BYTE$SWAP This function generates an Intel486 processor instruction that
swaps bytes in a 32-bit expression to convert between big and little endian.
TheBYTE$SWARuUNction takes a 32-bit expression and returns a value of the
same data type as the argument. An argument of less than 32 bits produces a
semantic error. To pass a pointer value, use a data typeRDr OFFSET
instead ofPOINTER

Invoke BYTE$SWARS in the following example:
DECLARE (a, b) WORD;
a=BYTE$SWAP(b);
b =BYTE$SWAP(b + 10);

TEST$REGISTER This variable is an array of 8 elements. Each element is a
32-bit unsigned scalar data type. The available registaiBIf$SREGISTER
include elements (6) and (7). When the compiler com@b486is specified,
elements (3) through (5) are also available.

UseTEST$REGISTERas in the following example:
DECLARE a WORD;
a=TEST$REGISTER (4);

See also: Test Registergl86 Microprocessor Programmer's Reference
Manual

* INVALIDATE$DATA$CACHE This function generates the Intel486 processor
instruction to clear the entire data cache.

Invoke INVALIDATE$DATA$CACHEaS in the following example:
CALL INVALIDATE$DATA$CACHE;

PL/M-386 Programmer's Guide Chapter 10 211

212

WBS$INVALIDATE$DATA$CACHEThis function generates the Intel486
processor instruction to first write out all changed lines to memory and then
clear the entire data cache.

Invoke WBS$INVALIDATE$DATASCACHES in the following example:
CALL WBSINVALIDATE$DATAS$CACHE;

INVALIDATESTLBENTRY: This function generates the Intel486 processor
instruction to clear a specified entry in the paging cache (TLB). Specify the
entry to be cleared as an argument, preceded ®sam.

Invoke INVALIDATESTLBENTRY as in the following example:
DECLARE a(10) BYTE;
DECLARE b WORD;
CALL INVALIDATES$STLB$ENTRY (@a(5));
CALL INVALIDATESTLB$ENTRY (@b);

Chapter 10 Features Involving the Target CPU and Numeric Coprocessor

Compiler Invocation
and Controls

This chapter describes compiler controls, optimization, and invocation. There are
differences in invocation, depending on whether you are running on iRMX or DOS.
This chapter covers both operating systems.

Invocation Syntax on IRMX Systems
The general form of the invocation command is:
[:logical_name: JPLM386 filename [control]...

Where:

:logical_name:
is the optional logical name for the directory or device containing the
PL/M-386 compiler.

PLM386 is the name of the compiler.

filename is the full filename (with directory path) of the file containing the
source code. The compiler accepts only one source file per
invocation.

control is zero or more of the compiler controls described later in this chapter.
Separate multiple controls with spaces to extend the invocation
command over multiple lines, use the ampersahdg a continuation
character.

TheINCLUDE control must be the last control.

Errors detected in the invocation command cause the compiler to abort without
processing the source file.

The portion of the path set off with colons (;) is an iRMX logical name. A logical
name identifies the directory or device that contains the compiler files. In the
examples used here, the compiler resides inlaing: directory. The subdirectory
mydir resides in the directoigource sourceresides inhome: When you are
logged on as the usemorld, :home:is the logical name for the directory
luser/world

PL/M-386 Programmer's Guide Chapter 11 213

214

If the logical name is omitted from the invocation command, the operating system
automatically searches several directories for the invocation command. The
directories searched and the order of the search are defined in the operating syster
configuration.

Slashes/() and carets?), which are also called circumflexes, are used to move up
or down the directory tree. To identify a file, start with a logical name (or assume
the default). Continue through the directory tree using the slash to search down

one level or the caret to search up one level.

For example, if the source fitextfile.plmis in directorysource andsourceis in
the directory identified by logical namieome; use the following pathname:

- :HOME:SOURCE/TEXTFILE.PLM

If the default directory ishome:source/mydjthen the same source file can be
identified by specifying the path name as follows:

- "TEXTFILE.PLM
The caret instructs the operating system to go up one level to find the file.

When you continue an invocation command over multiple lines by entering an
ampersand&) before the line-feed character, the next line automatically appears
with the continuation prompt{). The ampersand can also be used to insert
comments. The PL/M-386 compiler ignores characters that appear after an
ampersand. For example:

- PLM386 :HOME:SOURCE/TEXTFILE.PLM & Run compiler
** TITLE ("PROJECT SUPERVISOR") & for this file.
* OPTIMIZE(2) CODE XREF

Chapter 11 Compiler Invocation and Controls

Invocation Examples and Sign-on/Sign-off Messages under
the IRMX OS

The following example specifies compilation of a PL/M-386 source file named
myprog.src The list file is sent tanyprog.Ist with the headin@EST 24 on each
new page of output. Both the list and object files are written to the directory
luser/world/source

- :LANG:PLM386 /JUSER/WORLD/SOURCE/MYPROG.SRC &
* TITLE("TEST 24")

The logical namehome:can be used in place of the directory pathname
/user/worldif you are currently logged on as the ugsgRLD One of these two
specifications must be used if your current directory igussr/world If your
default, or current, directory isser/world/sourcenly the actual file name, not
including the directory pathname, must be specified in the invocation command.
To change the default directory, use MT @ ACHFILE command. Refer to the

iIRMX System Call Referenfmr additional information on th&aTTACHFILE
command.

The:lang: logical name can be omitted if the default iRMX search path is used
(which automatically searchdang: for commands).

When invoked, the compiler signs on with the following message:

host PL/M-386 COMPILERV x.y

Copyright Intel Corporation, years
Where:
host identifies the host system.
X.y identifies the compiler version.
years are the copyright years.

When compilation is complete, the compiler signs off with the following message:
PL/M-386 COMPLETE. n WARNINGS, mERRORS.

wheren andmare the numbers of warning and error messages generated during
compilation.

PL/M-386 Programmer's Guide Chapter 11 215

Invocation Syntax on DOS Systems

The general form of the invocation command is:

PLM386 filename [control]...
Where:
PLM386 is the name of the compiler. The directory containing the compiler
should be in your DOBATH
filename is the full filename (with directory path) of the file containing the
source code. The compiler accepts only one source file per
invocation, unless you use ti¢CLUDE control.
control is zero or more of the compiler controls described later in this chapter.
Separate multiple controls with spaces.
Note that DOS limits the command line to 128 characters. You can extend the
command over multiple lines with the ampersagidcpntinuation character.
TheINCLUDE control (if used) must be the last control. Subsystem controls and
certain other controls, identified in this chapter, cannot be part of the invocation
command.

Invocation Examples and Sign-on/Sign-off Messages under

DOS

216

The first example specifies compilation of a PL/M-386 source module called
progl TheXREFcontrol is used.

PLM386 PROG1.SRC XREF

The second example specifies compilation of a PL/M-386 source module called
myprog The list file is sent tothrfile.Ist, in which the headinGEST 24 appears
on each new page of output.

PLM386 MYPROG TITLE('TEST 24') PRINT(OTHRFILE.LST)
When invoked, the compiler signs on with the following message:

host PL/M-386 COMPILERV x.y

Copyright Intel Corporation, years
Where:
host identifies the host system.
X.y identifies the compiler version.
years are the copyright years.

Chapter 11 Compiler Invocation and Controls

When compilation is complete, the compiler signs off with the following message:

PL/M-386 COMPLETE. n WARNINGS, mERRORS.

wheren andmare the numbers of warning and error messages generated during
compilation.

File Usage under DOS and the IRMX OS

The PL/M-386 compiler accepts a single source file as input. The compiler creates
and deletes work files, as further described below. By default, the compiler creates
two files: a print (or list) file and an object file.

Input Files

The pathname used in the invocation command identifies the source file to be
compiled. Other files containing source code can be included with¢h&/DE
control. The source file name and format must follow the file conventions of the
os.

Work Files

The PL/M-386 compiler uses temporary work files that are deleted after
compilation. All of these files are located on the dew¢e®RK: under the iRMX

0OS. Under DOS, use tlsetcommand for selecting an alternate drive for the work
files. The following example specifies that the work files be sent to diredtory

SET :WORK: = d:\

|:| Note

Using thesetcommand to relocate work files is useful when the
DOS device driver has created a virtual disk. To change the
default location of work files, place the work files drive
specification command in thetoexec.bafile.

All work files have atmpextension. Avoid usingmpas the extension on any
device used by the compiler. It is possible that an existing file witha
extension could be deleted or overwritten by the compiler.

The space required for work files is approximately equal to the space required for
the source file plus any included files. Be sure that the selected device provides
adequate disk space for the compiler work files.

PL/M-386 Programmer's Guide Chapter 11 217

Print Files

The list file (also called the print file) contains a listing of the source program, the
messages collected during compilation, and other printed output specified by the
listing selection controls. By default, the list file has the same base name as the
source file and arst extension. Unless otherwise specified, the list file is located
on the same drive and in the same directory as the source file.

When thePRINT control is used, the compiler creates a list file with the same base
name as the source file. If another file exists with the same name, the existing file
is overwritten. To save the existing file use BRINT control with a parameter;

this saves the new list file under another file name.

Object Files

The obiject file (also called the object code file or object module) contains the
object module format translation of the source code. By default, the object file has
the same base name as the source file anabfaxtension. Unless otherwise
specified, the object file is located on the same drive and in the directory as the
source file.

The output of a PL/M-386 compiler is an object file containing a compiled module.
This object module may be linked with other object modules using the appropriate
linker or binder. A knowledge of the makeup of an object module is not necessary
for PL/M programming, but can aid in understanding the controls for program size
and linkage.

Object modules output by the PL/M-386 compilers contain three sections:
* Code Section

« Data Section

» Stack Section

These sections can be combined in various ways into memory segments for
execution, depending on the size of the program.

218 Chapter 11 Compiler Invocation and Controls

Code Section

This section contains the instruction code generated for the source program. If
either theLARGEcontrol or theROMcontrol is used, this section also contains all
variables initialized with th®ATAattribute, allREALconstants, and all constant
lists.

In addition, the code section for the main program module contains a main program
prologue generated by the compiler. This code precedes the code compiled from
the source program, and sets the microprocessor for program execution by
initializing various registers.

Data Section

All variables are allocated space in this section with the exception of parameters,
based variables, and variables located withaattribute or local to REENTRANT
procedure. If th&®AMcontrol is used, this section also contains all variables
initialized with theDATAattribute, as well as aREAL constants and all constant
lists.

If a nested procedure refers to any parameter of its calling procedure, then all
parameters of that calling procedure will be placed in the data section during
execution. The compiler reserves enough space during compilation to prepare for
this.

Stack Section

The stack section is used in executing procedures, as explained in Appendices F
and G. ltis also used for any temporary storage used by the program but not
explicitly declared in the source module (such as temporary values generated by
the compiler).

The exact size of the stack is automatically determined by the compiler except for
possible multiple invocations of reentrant procedures. You can override this
computation of stack size and explicitly state the stack requirement during the
binding (linking) process.

|:| Note

When using reentrant procedures or interrupt procedures, be sure
to allocate a stack section large enough to accommodate all
possible storage required by multiple invocations of such
procedures. The stack space requirement of each procedure is
shown in the listing produced by tB& MBOLSr XREFcontrol.

This information can be used to compute the additional stack
space required for reentrant or interrupt procedures.

PL/M-386 Programmer's Guide Chapter 11 219

Executable Programs

220

After the source file is compiled, related object modules must to be combined to
form executable modules. The libraries that provide the necessary run-time suppot
for the application must also be combined with the object modules. To do this you
use the BND386 utility, described in th@el386 Family Utilities User's Guide

DOS offers two ways of automatically invoking and executing multiple programs:
batch files and command files. For more information, refer to your DOS operating
system manuals.

Chapter 11 Compiler Invocation and Controls

Introduction to Compiler Controls

Use the compiler controls described in this chapter either in the command that
invokes the compiler or as control lines in the source input file.

A control line contains a dollar sig#)(in the left margin. Normally, the left

margin is set at column one, but you can change this withBEREMARGINcontrol.
Control lines allow selective control over sections of the program. For example, it
may be desirable to suppress the listing for certain sections of the program, or to
cause page ejects at certain places.

A line in a source file is considered to be a control line by the compiler if there is a
dollar sign in the left margin, even if the dollar sign appears to be part of a PL/M
comment or character string constant. Control lines within the source code must
begin with a dollar sign and can contain one or more controls, each separated by at
least one blank. Only the left margin column of a control line should contain a
dollar sign.

The following are examples of control lines:

$NOCODE XREF
$EJECT CODE

There are two types of controls: primary and general. Primary controls must occur
either in the invocation command or in a control line that precedes the first
noncontrol line of the source file. Primary controls cannot be changed within a
module. General controls can occur either in the invocation command or in a
control line anywhere in the source input, and can be changed freely within a
module. Certain controls can be negated by prefacing the control word Mith a
The control descriptions in this chapter indicate that option by showing both
options in the headings.

Many controls are available, but a set of defaults is built into the compilers. The
controls are summarized in alphabetic order in Table 11-1.

A control consists of a control-name and, in some cases, a parameter. Parameters
in control lines must be enclosed in parentheses. Enclosing control parameters on
the invocation line in parentheses may be illegal, depending on the host operating
system.

PL/M-386 Programmer's Guide Chapter 11 221

222

The rest of this chapter is organized in the following manner:

Controls, default settings, abbreviations, and effects are listed in Table 11-1.

Compiler controls are categorized and an overview for each of the categories is
provided.

Compiler control descriptions are provided in alphabetical order, as listed in
Table 11-1. For example, thNOSYMBOLS8escription is located with the
SYMBOLSIescription.

A sample program listing is provided with a description of the listing.

Chapter 11 Compiler Invocation and Controls

Table 11-1. Compiler Controls

Control Default Abbreviation Effect

CODE NOCODE CcO Enables or disables listing of

NOCODE NOCO pseudo-assembly code.

COND COND none Determines whether text skipped

NOCOND none during compilation appears in the
listing.

*DEBUG NODEBUG DB Generates debug records in the

*NODEBUG N ODB object module.

EJECT automatic paging EJ Forces a new print page.

IF not applicable none Enables the conditional

ELSEIF compilation capability by testing

ELSE for conditions that use the value

ENDIF of compile-time switches.

INCLUDE not applicable IC Includes other source files as
input to the compiler.

“INTERFACE none ITF Enables calls to other high-level

languages and to source code
translators.

LEFTMARGIN LEFTMARGIN(1) LM Specifies that only input
beginning at position n should be
processed by the compiler.

LIST LIST LI Enables or disables listing of

NOLIST NOLI source program.

*MOD486 none none Enables use of the Intel486
instruction set.

“OBJECT OBJECT 0J Specifies a filename for an object

*NOOBJECT (source.obj) NOOQOJ module, or prevents creation of
an object module.

“OPTIMIZE OPTIMIZE(2) oT Determines the optimization level
during code generation.

* Denotes primary control continued

PL/M-386 Programmer's Guide Chapter 11 223

Table 11-1. Compiler Controls (continued)

Control Default Abbreviation Effect

OVERFLOW NOOVERFLOW oV Enables or disables overflow

NOOVERFLOW NOOV detection during signed
arithmetic.

*PAGELENGTH PAGELENGTH(60) PL Specifies the maximum number
of lines per page.

“PAGEWIDTH PAGEWIDTH(120) PW Specifies the maximum number
of characters per line.

PAGING PAGING PI Specifies whether the program

NOPAGING NOPI listing should be page formatted
with a heading that identifies the
compiler and page number. A
user-specified title can also be
included (see TITLE).

PRINT PRINT PR Enables or disables printed

NOPRINT NOPR output, or selects the device or
file to receive the printed output.

“‘RAM “*RAM none Specifying RAM places the

*ROM CONSTANT section within the
DATA segment in all
segmentation. Specifying ROM
places constants in the CODE
segment.

SAVE none SA Enables the settings of certain

RESTORE RS controls to be saved on the
stack and restores the control
settings after the included file.

SET RESET(0) none Controls the value of switches.

RESETaaa SET establishes a value.

RESET restores the value to 0.

* Denotes primary control

224 Chapter 11

continued

Compiler Invocation and Controls

Table 11-1. Compiler Controls (continued)

Control Default Abbreviation Effect

“SMALL SMALL SM Determines the segmentation

*COMPACT cp model.

"FLAT MD

*MEDIUM FL

*LARGE LA

*SUBTITLE no subtitle ST Puts a subtitle on each page of
printed output and causes a page
eject.

“SYMBOLS NOSYMBOLS SB Specifies to the compiler whether

*NOSYMBOLS NOSB or not to produce a listing of
identifiers and attributes.

*TITLE module name in TT Places a title on each page of the

the source code printed output.

“TYPE TYPE TY Specifies whether or not to

*NOTYPE NOTY include type records in the object
module.

*WORD16 WORD32 w16 Defines the data type

*WORD32 W32 terminology.

*XREF NOXREF XR Enables or disables a

“‘NOXREF NOXR cross-reference listing of source

program identifiers.

* Denotes primary control

PL/M-386 Programmer's Guide

Chapter 11 225

Input Format Control

The LEFTMARGINcontrol specifies the left margin of the source file.

Code Generation and Object File Controls

These controls determine what type of object file is to be produced and in which
directory it is to appear. Object file controls include the following:

DEBUG|NODEBUG

INTERFACE

MODA486

OBJECT|NOOBJECT

OPTIMIZE

OVERFLOW|NOOVERFLOW

RAM|ROM
SMALL|COMPACT|FLAT|MEDIUM|LARGE
TYPE|NOTYPE

WORD32|WORD16

Segmentation Controls

226

For PL/M-386, the segmentation controls influence how locations are referenced in
the compiled program, which leads to certain programming restrictions for each of
the segmentation controls. These are primary controls. They have the following
form:

SMALL

COMPACT

MEDIUM

LARGE

FLAT

The segmentation contraMALLandCOMPACTetermine the maximum allowable
size of the segments produced in the object program as well as the grouping of
object types (code, data, constants, and stack). These controls affect the operatior
of the compiler in various ways and impose certain constraints on the source
module being compiled.

The MEDIUMcontrol is equivalent to ti@MALLcontrol. TheLARGEcontrol is
equivalent to th€OMPACTontrol except whebARGEIs used to indicate a
subsystem whose name is unknown at compile time.

TheFLAT control generates an object module containing separate code, data, and
stack segments, with constants in the code segment. You can use the BLD386
FLAT control to link the segments together in a single segment up to 4 GB.

Chapter 11 Compiler Invocation and Controls

For maximum efficiency of the object code, the smallest possible size should be
used for any given program. Also, all modules of a program should be compiled
with the same segmentation control.

The segmentation controls are described later in this chapter; extensions to these
controls, i.e., the use of subsystems, are described in Chapter 13.

Listing Selection and Content Controls

These controls determine what types of listings are produced and where they
appear. The controls are as follows:

CODE|NOCODE
LIST|NOLIST
PRINT|NOPRINT
SYMBOLS|NOSYMBOLS
XREF|NOXREF

Listing Format Controls

Format controls determine the format of the listing output of the compiler. These
controls are as follows:

EJECT
PAGELENGTH
PAGEWIDTH
PAGING|NOPAGING
SUBTITLE

TITLE

Source Inclusion Controls

With these controls, the input source can be changed to a different file. The
controls are:

INCLUDE
SAVE|RESTORE

PL/M-386 Programmer's Guide Chapter 11 227

Conditional Compilation Controls

These controls cause selected portions of the source file to be skipped by the
compiler if specified conditions are not met. Figure 11-1 shows an example

program using conditional compilation and Figure 11-2 shows the same example
program using th&lOCONBontrol.

The conditional compilation controls are:

COND|NOCOND
IF|ELSEIF|ELSE|ENDIF
SET|RESET

228 Chapter 11 Compiler Invocation and Controls

PL/M-386 COMPILER EXAMPLE mmdd/ yy hh: mmss

system-id PL/IM-386V x.y COMPILATION OF MODULE EXAMPLE
OBJECT MODULE PLACED IN cex.obj
COMPILER INVOKED BY: plm386 cex.src PW(78) SET(DEBUG=3)
1 EXAMPLE: DO
2 1 DECLARE BOOLEAN LITERALLY 'BYTE',
TRUE LITERALLY 'OFFH’,
FALSE LITERALLY '0

PAGE 1

3 1 PRINT$DIAGNOSTICS: PROCEDURE (SWITCHES, TABLES) EXTERNAL;

4 2 DECLARE (SWITCHES, TABLES) BOOLEAN;
5 2 END PRINT$DIAGNOSTICS;

6 2 DISPLAY$PROMPT: PROCEDURE EXTERNAL; END DISPLAY$PROMPT;

8 2 AWAIT$CR: PROCEDURE EXTERNAL; END AWAIT$CR;

$IF DEBUG =1
CALL PRINT$DIAGNOSTICS (TRUE, FALSE);
$ RESET (TRAP)
$ELSEIF DEBUG = 2
CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
$ RESET (TRAP)
$ELSEIF DEBUG = 3
10 1 CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
1 1 CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
$ SET (TRAP)
SENDIF

$IF TRAP
12 1 CALL DISPLAY$PROMPT;
131 CALL AWAITSCR;
$ENDIF

14 1 END EXAMPLE;

Figure 11-1. Sample Program Using Conditional Compilation (SET control)

PL/M-386 Programmer's Guide

Chapter 11

229

PL/M-386 COMPILER EXAMPLE mmdd/ yy hh: mmss PAGE 1

system-id PL/IM-386V x. y COMPILATION OF MODULE EXAMPLE
OBJECT MODULE PLACED IN cex.obj
COMPILER INVOKED BY: plm386 cex.src PW(78) SET(DEBUG=3) NOCOND

1 EXAMPLE: DO;

2 1 DECLARE IS LITERALLY 'LITERALLY",
BOOLEAN IS 'BYTE',
TRUE IS 'OFFH'
FALSE IS '0";
3 1 PRINT$DIAGNOSTICS: PROCEDURE (SWITCHES, TABLES) EXTERNAL;
4 2 DECLARE (SWITCHES, TABLES) BOOLEAN;
5 2 END PRINT$DIAGNOSTICS;

6 2 DISPLAY$PROMPT: PROCEDURE _EXTERNAL; END DISPLAY$PROMPT;
8 2 AWAIT$CR: PROCEDURE EXTERNAL; END AWAIT$CR;

$IF DEBUG = 1
$ELSEIF DEBUG = 3
10 1 CALL PRINT$DIAGNOSTICS (TRUE, TRUE):
11 1 CALL PRINT$DIAGNOSTICS (TRUE, TRUE);
$ SET (TRAP)
$ENDIF

$IF TRAP
12 1 CALL DISPLAY$PROMPT;
13 1 CALL AWAIT$CR;
$ENDIF
14 1 END EXAMPLE;

Figure 11-2. Sample Program Showing the NOCOND Control

230 Chapter 11 Compiler Invocation and Controls

Language Compatibility Control

TheINTERFACEcontrol enables PL/M to call procedures written in other
languages and vice versa. For PL/M-386, this control also enables the use of
external procedures compiled with PL/M-286 (or another OMF286 compiler).

Predefined Switches

If one of the switch names (in the following list) appears itFanr ELSEIF
condition and has not been explicitly assigned a value usirggther RESET
control, its default value is its primary control value.

SMALL MEDIUM WORD16

COMPACT RAM WORD32

LARGE ROM

If a predefined switch is assigned a value usings#ieor RESETcontrol, it
functions from that point on like any other switch. A primary control value is not
affected by setting or resetting the predefined switch with the same name.

The four model switches are distinct. Even though the primary costvsLand
MEDIUMhave the same control interpretation, specifyingME®IUMcontrol sets
the MEDIUMswitch only, and specifying tt@MALLcontrol sets th&MALLswitch
only (similarly forCOMPAC&NdLARGE.

For example, given the following sequence of PL/M-386 control lines:
$RAM WORD16 MEDIUM ; line 1
$IF RAM :line 2

$ELSEIF WORD32
$ELSEIF SMALL
$ENDIF

$SET (SMALL, WORD32) ; line x

At line 2, the switcheRAMandWORD1@re true and their counterpaR®nMand
WORD3are false. The switdMEDIUMis true and the switch&MWALL COMPACT
andLARGEare false. Therefore, thie condition is true and the tweLSEIF
conditions are false. After line x, the switcles\ WORD16MEDIUM SMALL and
WORD3are trueROMCOMPACTandLARGEremain false. The setting SMALL
andwWORD3zompile time switches (whether set or reset) does not affect the
existing segmentation control or any of the other switches.

PL/M-386 Programmer's Guide Chapter 11 231

Compiler Control Encyclopedia

The following sections present each of the PL/M-386 compiler controls. Note that
the segmentation controls are grouped undegstihsLLcontrol.

CODE | NOCODE

Form CODE|NOCODE
Default NOCODE
Type General

The CODEcontrol specifies that listing of the generated object code in
pseudo-assembly language format is to begin. This listing is placed at the end of
the program listing in the listing file. Note that tW@DEcontrol cannot override a
NOPRINTcontrol.

TheNOCODEontrol specifies that listing of the generated object code is to be
suppressed until the next occurrence, if any, @baecontrol.

COND | NOCOND

232

These controls determine whether text within an IF element will appear in the
listing if it is skipped during compilation.

Form COND|NOCOND
Default COND
Type General

The CONDcontrol specifies that any text that is skipped is to be listed (without
statement or level numbers). Note th&GNDcontrol cannot override OLIST
or NOPRINTcontrol, and that @ONDcontrol will not be processed if it is within
text that is skipped.

The NOCONRontrol specifies that text within aR element that is skipped is not

to be listed; however, the controls that delimit the skipped text will be listed. This
provides an indication that something has been skipped. NoteNkst@ND

control will not be processed if it is within text that is skipped.

Figure 11-1 shows an example in which the program was compiled usia@ iz

(by default) anBET controls with theSET switch assignmemEBUG=3 Figure

11-2 is the same program, but it was compiled usingi@@ONBontrol. These

figures demonstrate the use of conditional compilation. See also the description of
SET|RESET.

Chapter 11 Compiler Invocation and Controls

DEBUG | NODEBUG
Form DEBUG|NODEBUG
Default NODEBUG
Type Primary

TheDEBU®ontrol specifies that the object module is to contain the statement
number and relative address of each source program statement, information about
each local symbol (including based symbols and procedure parameters), and block
information for each procedure. This information may be used later by a source
level debugging tool.

|:| Note

OPTIMIZE(0) is the only level of optimization that does not
optimize code between program lines. Thus, it is the only one
that gives guaranteed results when debugging programs.

EJECT
Form EJECT
Default None
Type General

EJECT stops printing on the current page and starts a new page of printed output.

IF | ELSE | ELSEIF | ENDIF

These controls provide conditional compilation capability based on the values of
switches.

These controls cannot be used in the invocation of the compiler, and each must be
the only control on its control line. There are no default settings or abbreviations
for these controls.

PL/M-386 Programmer's Guide Chapter 11 233

An IF control and an ENDIF control delimit an IF element, which can have several
different forms. The simplest form of an IF element is:

$IF condition
text
$ENDIF

Where:

condition is a limited form of a PL/M expression in which the only valid
operators ar®R XOR NOT, AND <, <=, =, < >, >=, and>, and the
only valid operands are switches and whole-number constants with a
range of 0 to 255. If the switch does not appeardgrcontrol, a
value of false (0) is assumed (except for predefined switches).
Parenthesized subexpressions cannot be used. Within these
restrictionscondition is evaluated according to the PL/M rules for
expression evaluation. Note thatdition must be followed by an
end-of-line.

text is text that will be processed normally by the compiler if the least
significant bit of the value ofondition is a 1, or skipped if the bit
is a 0. Note that text can contain any mixture of PL/M source and
compiler controls. If the text is skipped, any controls within it are not
processed.

The second form of the IF element contains an ELSE element:

$IF condition
text 1
$ELSE
text 2
$ENDIF

In this constructiontext 1 will be processed if the least significant bit of the
value ofcondition isa 1, andext2 will be skipped. If the bitis a @ext 1
will be skipped andext 2 will be processed.

Only one ELSE control can be used within an IF element.

234 Chapter 11 Compiler Invocation and Controls

With the most general form of the IF element, one or more ELSEIF controls can be
introduced before the ELSE (if any):

$IF condition 1

text 1

$ELSEIF condition 2
text 2

$ELSEIF condition 3
text 3

$ELSEIF condition n
text n
$ELSE
text n+1l
$ENDIF

where any of th€LSEIF elements can be omitted, as canEh8E element.

The conditions are tested in sequence. As soon as one of them yields a value with
a 1 as its least significant bit, the associated text is processed. All other text in the
IF element is skipped. If none of the conditions yields a least significant bit of 1,
the text in theELSE element (if any) is processed and all other text infhe

element is skipped.

Parentheses cannot be used on a conditional control line. For example, the
following line is illegal:

$IF A+(B+C)

INCLUDE
Form INCLUDE(pathname)
Default None
Type General

An INCLUDE control must be the right-most control in a control line or in the
invocation command.

TheINCLUDE control causes the specified file to be included during compilation.
Input continues from this file until an end-of-file is detected, and then processing
resumes in the file containing theCLUDE control.

An included file may also contalNCLUDE controls. Note that such nesting of
included files cannot exceed the depth given in Appendix B.

PL/M-386 Programmer's Guide Chapter 11 235

INTERFACE

INTERFACEIs a primary control that enhances the compatibility of PL/M with

other programming languages. TIREERFACEcontrol enables PL/M programs to

call procedures written in other languages, such as iC-386, if those procedures use
the variable parameter list (VPL) calling convention. Additionally, with the
INTERFACEcontrol, procedures written in PL/M can be called by procedures
written in other languages. The calling conventions for procedures written in
Pascal, FORTRAN, and PL/M are identical.

There are two types of calling conventions in iC-386. One is the FPL and the other
is VPL. The fixed parameter list (FPL) type is the default calling convention of the
iC-386 compiler. So whenever the C procedures are defined to be FPL, no special
designation is needed. But whenever the C procedure is defined to follow the VPL
convention, you must use ti¢TERFACEcontrol. Note thatNTERFACEcannot

be part of an invocation command.

For PL/M-386,INTERFACEIs a primary control that enables PL/M-386 programs
to call or be called by procedures compiled with an Intel386 translator, such as
iC-386 or ASM386. It can also be used to provide compatibility with procedures
compiled by a 286 translator, such as Fortran-286 or Pascal-286.

TheINTERFACEcontrol has the following form:

Form INTERFACE(lang [/ machine [/ model [[ram|rom]]]
[=id [id]..])
Default None
Type Primary
Where:
lang is the name of the language, eg. C, that requires a different calling

convention for VPL procedures.

machine is Intel386 when calling VPL iC-386 procedures, and 286 when
calling VPL procedures compiled using a 286 translator. Only
references to 286 ids from Intel386 modules are supported; Intel386
ids cannot be referenced from 286 modules. Thereforegdhine is
286 then all the identifiers in the list must be declareEXTERNAL
If machine is 286 and ard is PUBLIC, it is an error.

236 Chapter 11 Compiler Invocation and Controls

model is SMALL COMPACTMEDIUM or LARGEand defines the model of
segmentation for the specifiédls. model/ determines whether
Intel386POINTER variables are offset-only or select-offset, as
defined by the PL/M-386 models of segmentation (see Chapter 13,
Table 13-1). Ifmachine is 286,model defaults td ARGE mode/
should be specified as the same model of segmentation used to
compile the 286 code being referencedmdthine is Intel386,
model is ignored.

ram|rom is RAMor ROMand defines the placement of constant variables in
either the code or data segment. When used witBNtae L model,
ramfrom also defines wheth&OINTERVvariables are offset-only or
selector-offset. The default®AMunlessmode! is LARGE in which
case the default BOM ramfrom is ignored ifmachine is Intel386.

id specifies the procedures and variables that are implemented using the
specified language interface convention.

When theNTERFACEcontrol is used to call procedures compiled with a 286
translator, the program switches from using 32-bit stack offsets to 16-bit offsets.
Therefore, the stack pointer for the called procedure must point within the lowest
64K of the stack segment, or else a gate must be used to switch to such a stack
segment. Parameters must fit within this boundary as well.

Except as noted above, the calling conventions for Intel386-based languages other
than VPL iC-386 procedures are identical to PL/M-386 and therefore do not require
the use of théeNTERFACEcontrol. Because the calling conventions differ for
iC-386,INTERFACEmust be used to call or to be called for VPL iC-386

procedures. The C (VPL) interface convention differs from the PL/M calling
convention in the following ways:

« Parameters are evaluated and pushed onto the stack in reverse order.

e A parameter whose size is less than two bytes (for Intel386 and Intel486
processors, four bytes) is zero-extended or sign-extended according to its type.

» Real parameters for iC-386 are always 64-bit double floating-point numbers
and are passed on its stack.

e The caller clears the parameters off the stack after return and the callee does
not pop parameters off the stack.

PL/M-386 Programmer's Guide Chapter 11 237

238

If you define a function to be a C calling convention procedure, you can call it with
more arguments than the number of parameters you specify in the external
declaration. Thus, you can make variable parameter list (VPL) procedure calls to
functions such as the C functiprintf . This feature is similar to the ANSI C
prototyped function declarations using ellipges . Type checking occurs for
arguments passed to the parameters you specify in the external declaration, not for
any additional arguments. For example, no type checking is done on a call to a
procedure declared with no parameters.

For example, the following is valid:

[* Define SAMP as a C Calling Convention procedure. */
$INTERFACE (C=SAMP)
[* Declare SAMP; specify a parameter of type WORD. */
SAMP: PROCEDURE (P) EXTERNAL;
DECLARE P WORD;
END SAMP;
[* Declare variables to pass to SAMP. *
DECLARE (A, B, C) WORD;
[* Pass arguments to SAMP. Type checking occurs */
[* for the argument A (parameter P) but not for */
[* arguments B and C. */
CALL SAMP (A, B, C);

Chapter 11 Compiler Invocation and Controls

Constant arguments are typed as in PL/M. This typing can affect the value of an
argument passed to a C routine, as demonstrated in the following example, where
SAMP2andSAMP3are C interface functions:

SAMP2: PROCEDURE (D) EXTERNAL;
DECLARE D INTEGER;

END SAMP2;

SAMP3: PROCEDURE EXTERNAL;

END SAMP3;

CALL SAMP2 (113);
[* passes 113 as an INTEGER since D is
declared as type INTEGER. */

CALL SAMP3 (115);
[* passes 115 as a BYTE
(since 0 < 115 < 255), but high
byte(s) are undefined since C
does integer promotion, even if
the first argument of SAMP3 is
an unsigned char argument stack. */

CALL SAMP3 (INTEGER(115));
[* uses an explicit cast to
ensure the constant is passed correctly. */

The following example demonstrates the use ofNTERFACEcontrol to call a
PL/M-386 procedure:

$WORD32
$INTERFACE(PLM/386/FLAT/ROM=EXAMP)

EXAMP:PROCEDURE(A,B)EXTERNAL;
DECLARE A WORD, B POINTER;

END EXAMP;

DECLARE X WORD, Y POINTER,;

CALL EXAMP(X,Y);

PL/M-386 Programmer's Guide Chapter 11 239

In the preceding example, theTERFACEcontrol specifies the procedlEXAMP
to be defined as Intel386-compatible. The actual paranmetardy will be
automatically converted to a 32-BOR@Nd an Intel386 (48-biDOINTER
respectively.

Variables and formal parameters of Intel386-based procedures should be declared
the same as in the PL/M-386 code. The PL/M-386 compiler is also able to
interpret the terms in 286 context and perform the following mapping:

Term Used Maps to Data Type

BYTE 8-bit, unsigned

HWORD 8-bit, unsigned

WORD 16-bit, unsigned

DWORD 32-bit, unsigned

QWORD 32-bit, unsigned

CHARINT 8-bit (interpretation dependent on 286 code)
SHORTINT 8 bit (interpretation dependent on 286 code)
INTEGER 16-bit, signed integer

LONGINT 32-bit(interpretation dependent on 286 code)
REAL 32-bit, real

SELECTOR 16-bit, selector

POINTER see the following paragraphs

OFFSET 16-bit, unsigned

The PL/M-386 compiler converts Intel386-style 48-bit IRQNTERs to 286
POINTERS by truncating the offset portion to 16 bits. SMALLRAM aPOINTERIs
the same as aDFFSET and is treated as such by the compiler.

Note that this mapping is independeniddRD16|WORD3@lefined in Tables 9-3
and 11-4). This means that there is a third mapping of scalar terms to scalar data

types.

240 Chapter 11 Compiler Invocation and Controls

LEFTMARGIN

This is the only control for specifying the format of the source input.

Form LEFTMARGIN()
Default LEFTMARGIN(1)
Type General

All characters to the left of positionon subsequent input lines are not processed
by the compiler (but do appear on the listing). The first character on a line is in
column 1.

The new setting of the left margin takes effect on the next input line. It remains in
effect for all input from this source file and any included files until it is reset by
anothe. EFTMARGINcontrol.

Note that a control line is one that contains a dollar sign in the column specified by
the most recetEFTMARGINcontrol.

LIST | NOLIST
Form LIST|NOLIST
Default LIST
Type General

TheLIST control specifies that listing of the source program is to resume with the
next source line read. The PL/M-386 compiler numbers all source lines,
incrementing the line number for each new-line character. Note thatsthe

control cannot override MOPRINTcontrol. IfNOPRINTIs in effect, no listing is
produced.

TheNOLIST control specifies that listing of the source program is to be suppressed
until the next occurrence, if any, oL&T control.

WhenLIST is in effect, all input lines (from the source file or from an included
file), including control lines, are listed, provided there is niO®@RINTcontrol in
effect. WherNOLIST is in effect, only source lines associated with error messages
are listed.

PL/M-386 Programmer's Guide Chapter 11 241

MODA486

TheMOD486control, recognized by only the PL/M-386 compiler, is a switch
governing the instruction set available to the compiler. Use this control to compile
source text containing the following built-ins specific to the Intel486 processor:

NAME USAGE

BYTE$SWAP Byte swap function to convert between big and little
endian. The endian of a stored value indicates
whether the most-significant bit is in the highest
(big endian) or lowest (little endian) address of the

location.
TEST$REGISTER Built-in variable extending the number of available
TEST$REGISTER elements
INVALIDATE$DATA$CACHE Function to clear the entire data cache

WBSINVALIDATESDATASCACHE Function to write-back changed lines to memory
and to clear the data cache

INVALIDATESTLBSENTRY Function to invalidate a single entry in the paging
cache

OBJECT | NOOBJECT

Form OBJECT (pathname)
NOOBJECT

Default OBJECT(sourcefilename .0BJ)
Type Primary

The OBJECTcontrol specifies that an object module is to be created during
compilation. Thepathname is a standard host operating systeathname that
specifies the file to receive the object module. If the control is absent or if an
OBJECTcontrol appears without@athname , the object module is directed to a
file that has the same name as the source input file, but with the extedBion

TheNOOBJECTontrol specifies that no object module is to be produced.

242 Chapter 11 Compiler Invocation and Controls

OPTIMIZE

This control governs the level of optimization to be performed in generating object
code. Ther parameter can be 0-3, representing the lowest to highest levels of
optimization. Figures 11-3 to 11-6 illustrate the different levels of optimization.
The same program was compiled for each level, but the source file was printed
only for OPTIMIZE(0) .

Form OPTIMIZE(n)
Where: n=0,1,2 or3
Default OPTIMIZE(1)

Type Primary

OPTIMIZE(0) specifies only folding of constant expressions. Folding means
recognizing, during compilation, operations that are superfluous or combinable,
and removing or combining them so as to save memory space or execution time.
Examples include addition with a zero operand, multiplication by one, and logical
expressions with true or false constants.

OPTIMIZE(0) is the only level of optimization that is guaranteed to not optimize
code between lines. Figure 11-3 illustrates@r&IMIZE(0) level of
optimization.

PL/M-386 Programmer's Guide Chapter 11 243

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 1

system-id PL/M-386V x.y COMPILATION OF MODULE
EXAMPLES_OF_OPTIMIZATIONS

OBJECT MODULE PLACED IN example.obj

COMPILER INVOKED BY: plm386 example.src PW(78) FLAT CODE
OPTIMIZE(0)

EXAMPLES_OF_OPTIMIZATIONS: DO;
DECLARE (A,B,C) WORD,
D(100) WORD,
(PTR_1, PTR_2) POINTER,
ABASED BASED PTR_1 (10) WORD;
DO WHILE D(A+B) < D(A+B+1);
IF (OFFSET(PTR_1) < (OFFSET(PTR_2)) THEN DO;
A=A*2;
ABASED(A) = ABASED(B);
03 ABASED(B) = ABASED(C);
13 END;
12 2 ELSEA=A+1;
32
1

I

©oO~NOOUNWN
WWN R R R R

END;
END EXAMPLES_OF_OPTIMIZATIONS;

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

00000000 8BEC MOV EBP,ESP
@1:

00000002 8B0500000000 MOV EAX,A

00000008 030504000000 ADD EAX,B

0000000E 8BOD00000000 MOV ECX,A

00000014 030D04000000 ADD ECX,B

0000001A 41 INC ECX

0000001B 8B04850C000000 MOV EAX,D[EAX*4]

00000022 3B048D0OC0O00000 CMP EAX,D[ECX*4]

00000029 OF8375000000 JAE @2
 STATEMENT # 7

0000002F 8B059C010000 MOV EAX,PTR_1

00000035 8BODA0010000 MOV ECX,PTR_2

Figure 11-3. Sample Program Showing the OPTIMIZE(O) Control

244 Chapter 11 Compiler Invocation and Controls

0000003B
0000003D

00000043
00000049
0000004B

00000051
00000057
0000005D
00000060
00000066
0000006C

0000006F
00000075
0000007B
0000007E
00000084
0000008A
0000008D

00000092
00000098
00000099

0000009F

3BC1 CMP EAX,ECX
OF834F000000 JAE @3
; STATEMENT # 8
8B0500000000 MOV EAXA
D1EO SHL EAX1
890500000000 MOV AEAX
; STATEMENT # 9

8B059C010000 MOV EAX,PTR_1

8BOD04000000 MOV ECX,B

8B0488 MOV EAX,[EAX].ABASED[ECX*4]

8BOD9C010000 MOV ECX,PTR_1

8B1500000000 MOV EDX,A

890491 MOV [ECX].ABASED[EDX*4],EAX
: STATEMENT # 10

8B059C010000 MOV EAX,PTR_1

8BOD08000000 MOV ECX,C

8B0488 MOV EAX,[EAX].ABASED[ECX*4]

8BOD9C010000 MOV ECX,PTR_1

8B1504000000 MOV EDX,B

890491 MOV [ECX].ABASED[EDX*4],EAX
E90DO0OOOOO0 JMP @4
; STATEMENT # 12
@3:
8B0500000000 MOV EAXA
40 INC EAX
890500000000 MOV AEAX
; STATEMENT # 13
@4
E95EFFFFFF JMP @1
@2:

; STATEMENT # 15

Figure 11-3. Sample Program Showing the OPTIMIZE(O) Control (continued)

PL/M-386 Programmer's Guide Chapter 11

245

OPTIMIZE(1) specifies strength reduction, elimination of common subexpressions
and short-circuit evaluation of some Boolean expressions, as well as the
optimizations of level (0).

Strength reduction means substituting quick operations (e.g., shifting by 1 instead
of multiplying by 2). This instruction requires less space and executes faster.
Adding identical subexpressions may also generate left shift instructions.

Elimination of common subexpressions means that if an expression reappears in th
same block, its value is re-used rather than recomputed. The compiler also
recognizes commutative forms of subexpressions (e.g., A+ B and B + A are seen
as the same). Intermediate results during expression evaluation are saved in eithe
registers or on the stack for later use. For example:

A=B+C*D/3;

C=E+D*C/3;

The value ofc*D/3 will not be recomputed for the second statement.

Optimizing the evaluation of Boolean expressions uses the fact that in certain case:
some of the terms are not needed to determine the value of the expression. For
example, in the expression:

(A>BANDI>J)

if the first term (A>B) is false, the entire expression is false, and it is not necessary
to evaluate the second term. The use of PL/M built-in procedures does not change
this optimization. However, if a user-written function or an embedded assignment
is part of the expression, this short evaluation is not done. For example:

(A>BAND (UFUN (A)>J))

is evaluated in full.

Figure 11-4 illustrates thePTIMIZE(1) level of optimization.

246 Chapter 11 Compiler Invocation and Controls

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 1

system-id PL/M-386V x.y COMPILATION OF MODULES

EXAMPLES_OF_OPTIMIZATIONS

OBJECT MODULE PLACED IN example.obj

COMPILER INVOKED BY: plm386 example.src PW(78) FLAT MODE
OPTIMIZE(1) NOLIST

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 6
00000000 8BEC MOV EBP,ESP
@1:
00000002 8B0500000000 MOV EAX,A
00000008 8BOD04000000 MOV ECX,B

0000000E 03C1 ADD EAX,ECX
00000010 50 PUSH EAX ;1
00000011 40 INC EAX

00000012 5A POP EDX ;1

00000013 8B14950C000000 MOV EDX,D[EDX*4]
0000001A 3B14850C000000 CMP EDX,D[EAX*4]
00000021 OF8356000000 JAE @2

; STATEMENT # 7
00000027 8B059C010000 MOV EAX,PTR_1
0000002D 8B15A0010000 MOV EDX,PTR_2

00000033 3BC2 CMP EAX,EDX
00000035 OF8337000000 JAE @3
. STATEMENT # 8
0000003B 8B0500000000 MOV EAX,A
00000041 D1EO SHL EAX,1
00000043 890500000000 MOV A EA
. STATEMENT # 9
00000049 8B159C010000 MOV EDX,PTR_1
0000004F 8BOCS8A MOV ECX,[EDX].ABASED[ECX*4]
00000052 890C82 MOV [EDX].ABASED[EAX*4],ECX
: STATEMENT # 10

00000055 8B059C010000 MOV EAX,PTR_1
0000005B 8BOD08000000 MOV ECX,C

Figure 11-4. Sample Program Showing the OPTIMIZE(1) Control

PL/M-386 Programmer's Guide Chapter 11 247

00000061 8BOCSS MOV ECX,[EAX].ABASED[ECX*4]
00000064 8B1504000000 MOV EDX,B

0000006A 890C90 MOV [EAX].ABASED[EDX*4],ECX
0000006D E906000000 JMP @4
; STATEMENT # 12
@3:
00000072 FF0500000000 INC A
; STATEMENT # 13
@4:
00000078 E985FFFFFF JMP @1
@2:
; STATEMENT # 15

MODULE INFORMATION:
CODE AREA SIZE = 0000007DH 125D

CONSTANT AREA SIZE = 00000000H 0D
VARIABLE AREA SIZE = 000001A4H 420D
MAXIMUM STACK SIZE = 00000004H 4D

15 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY:
410KB MEMORY AVAILABLE

8KB MEMORY USED (1%)
OKB DISK SPACE USED

END OF PL/M-386 COMPILATION
Figure 11-4. Sample Program Showing the OPTIMIZE(1) Control (continued)

248 Chapter 11 Compiler Invocation and Controls

OPTIMIZE(2) includesOPTIMIZE(0) andOPTIMIZE(1) , plus the following:
* Machine code optimizations (e.g., short jumps, moves)

« Elimination of superfluous branches

e Reuse of duplicate code

* Removal of unreachable code and reversal of branch conditions

Optimizing machine code means saving space by using shorter forms for identical
machine instructions. This is possible because some instructions have multiple
forms. For example:

MOV RESLT1,AX; /* move accumulator value to location RESLT1*/

can be generated by using three or four bytes for PL/M-86 and PL/M-286, and
using five or six bytes for PL/M-386. The former choice saves a byte of storage for
the program. Similarly, jumps that the compiler can recognize as within the same
segment or closer (within 127 bytes) permit the use of fewer byte instructions.

Elimination of superfluous branches means optimizing consecutive or multiple
branches into a single branch. For example:

JZ LAB1; /* jump on zero to LAB1 */
JMP LAB2; /* unconditional jump to LAB2 */
LABL: ...

LAB2: ...

will be transformed into:

IJNZ LAB2; /* jump on non-zero to LAB2 */
LAB1 ...

Similarly, multiple branches like the following are eliminated:
LABO:JMP LAB1

LAB1:JPM LAB2

PL/M-386 Programmer's Guide Chapter 11 249

and transformed into:

LABO:JMP LAB2

LAB1:JMP LAB2

Reuse of duplicate code can refer to identical code at the end of two converging
paths. In such a case, the code is inserted in only one path, and a jump to that pat
is inserted in the other path. For example:

DECLARE A BYTE, SPOT POINTER,;
DECLARE S BASED SPOT STRUCTURE (B BYTE, C BYTE);

IFA=1THEN

S.C = INPUT (OF7H) AND 07FH,;

ELSE

S.C = INPUT (OF9H) AND 07FH,;

Before After
CMP A, 1H CMP A, 1H

JZ & +5H JMP @1

JMP @1

IN OF7H IN OF7H

AND AL, 7FH JMP @2

MOV BX, SPOT
MOV S [BX+1H], AL

JMP @2

@1: IN OF9H @1:IN OF9H
AND AL, 7FH @2: AND AL, 7FH
MOV BX, SPOT MOV BX, SPOT
MOV S [BX+1H], AL MOV S [BX+1H],AL
@2:

250 Chapter 11 Compiler Invocation and Controls

Reuse of duplicate code can also refer to machine instructions, immediately
preceding a loop, that are identical to those ending the loop. A branch can be
generated to reuse the code generated at the beginning of the loop. For example:

Before After
ADD AX, BX LABO: ADD AX, BX
MOV ANS, AX MOV ANS, AX
LABO: MOV AL, DUM1 MOV AL, DUM1
CMP AL, DUM2 CMP AL, DUM2
JNZ LAB1 JNZ LAB1
ADD AX, BX JMP LABO
MOV ANS, AX LAB1: ...
JMP LABO
LAB1: ...

This is safe so long a8\BO is not the target of a jump instruction. The compiler
normally handles a whole procedure at a time, and is aware of such a condition.
This optimization cannot be safely applied to labels in the outer level of the main
program module. This optimization will not change the program and will save
code space.

Second level optimization removes unreachable code, takes a second look at the
generated object code, and finds areas that can never be reached due to the control
structures created earlier.

For example, if the following code were generated before optimization:

MOV AX, A
RCR AL, 1
JB @1
JMP @2

@1: MOV AX, OFFFFH

OUTW OF6H
JMP @2
MOV AX,B
ADD A, AX
JMP @3
@2: ...
@3:

PL/M-386 Programmer's Guide Chapter 11 251

Then the removal of unreachable code would produce:

MOV AX, A
RCR AL, 1
JB @1
JMP @2

@1: MOV AX, OFFFFH

OUTW OF6H
IJMP @2
@2: ...
@3:

This can be further optimized by reversing the branch condition in the third
instruction and removing the unnecessang @2

MOV AX, A
RCR AL, 1
JNB @2

@1. MOV AX, OFFFFH
OUTW OF6H
@2: ...

Figure 11-5 illustrates thePTIMIZE(2) level of optimization.

252 Chapter 11 Compiler Invocation and Controls

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 1

system-id PL/M-386V x.y COMPILATION OF MODULES

EXAMPLES_OF_OPTIMIZATIONS

OBJECT MODULE PLACED IN example.obj

COMPILER INVOKED BY: plm386 example.src PW(78) FLAT MODE
OPTIMIZE(2) NOLIST

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 6
00000000 8BEC MOV EBP,ESP
@1:
00000002 A100000000 MOV EAXA
00000007 8BOD04000000 MOV ECX,B

0000000D 03C1 ADD EAX,ECX
0000000F 50 PUSH EAX ;1
00000010 40 INC EAX

00000011 5A POP EDX ;1

00000012 8B14950C000000 MOV EDX,D[EDX*4]
00000019 3B14850C000000 CMP EDX,D[EAX*4]
00000020 7348 JNB @2

; STATEMENT # 7
00000022 A19C010000 MOV EAX,PTR_1
00000027 8B15A0010000 MOV EDX,PTR_2

0000002D 3BC2 CMP EAX,EDX
0000002F 7331 INB @3
: STATEMENT # 8
00000031 A100000000 MOV EAX,A
00000036 D1EO SHL EAX,1
00000038 A300000000 MOV A EAX
: STATEMENT # 9
0000003D 8B159C010000 MOV EDX,PTR_1
00000043 8BOCSA MOV ECX,[EDX].ABASED[ECX*4]
00000046 890C82 MOV [EDX].ABASED[EAX*4],ECX

: STATEMENT # 10
00000049 A19C010000 MOV EAX,PTR_1
0000004E 8BOD08000000 MOV ECX,C
00000054 8BOCS8 MOV ECX,[EAX].ABASED[ECX*4]

Figure 11-5. Sample Program Showing the OPTIMIZE(2) Control

PL/M-386 Programmer's Guide Chapter 11 253

00000057 8B1504000000 MOV
0000005D 890C90 MOV
00000060 EBAO JMP @1

; STATEMENT # 12

EDX,B

@3:
00000062 FF0500000000 INC A
; STATEMENT # 13
00000068 EB98 JMP @1
@2:
; STATEMENT # 15

MODULE INFORMATION:

CODE AREA SIZE = 0000006AH 106D

CONSTANT AREA SIZE = 00000000H 0D
VARIABLE AREA SIZE = 000001A4H 420D
MAXIMUM STACK SIZE = 00000004H 4D

15 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY:
410KB MEMORY AVAILABLE
8KB MEMORY USED (1%)
OKB DISK SPACE USED

END OF PL/M-386 COMPILATION

[EAX].ABASED[EDX*4],ECX

Figure 11-5. Sample Program Showing the OPTIMIZE(2) Control (continued)

254 Chapter 11

Compiler Invocation and Controls

OPTIMIZE(3) includes all of the preceding optimizations. It also optimizes
indeterminate storage operations (e. g., those using based variables or variables
declared with theT attribute).

|:| Note

The assumption validating this new optimization is that based
variables (0AT variables) do not overlay other user-declared
variables.

On this optimization level, all Boolean expressions are short-circuited except those
containing embedded assignments. (For a description of how this optimization
occurs, Se®PTIMIZE(1) .)

The benefits of this optimization level include more efficient use of code space
only if needed values are not overlaid.

Caution in variable-declaration and usage is essential. For example, the sequence:

DECLARE (I, J) WORD;

DECLARE THETA (19) AT (@!);
DECLARE A BASED J (10);
STRUCTURE (FI BYTE, F2 WORD);

J=.1;

;A.\(I).Fl =7
A(l).F2 = 99;
THETA(I) = 31;

violates this caution because it causes the values being used as pointers and
subscripts to be overlaid. The compiler normally takes steps to avoid the
difficulties implied here. But, i®PTIMIZE(3) , these steps are omitted due to the
implicit requirement that such situations must not be present at this level of
optimization.

Figure 11-6 illustrates thePTIMIZE(3) level of optimization.

PL/M-386 Programmer's Guide Chapter 11 255

PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 1

system-id PL/M-386V x.y COMPILATION OF MODULES
EXAMPLES_OF_OPTIMIZATIONS
OBJECT MODULE PLACED IN example.obj
COMPILER INVOKED BY: plm386 example.src PW(78) FLAT MODE
OPTIMIZE(3) NOLIST
PL/M-386 COMPILER EXAMPLES_OF_OPTIMIZATIONS date time PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT # 6
00000000 8BEC MOV EBP,ESP
@1:
00000002 A100000000 MOV EAXA
00000007 8BOD04000000 MOV ECX,B

0000000D 03C1 ADD EAX,ECX
0000000F 50 PUSH EAX ;
00000010 40 INC EAX
00000011 5A POP EDX ;1

00000012 8B14950C000000 MOV EDX,D[EDX*4]
00000019 3B14850C000000 CMP EDX,D[EAX*4]
00000020 733C JNB @2

; STATEMENT # 7
00000022 A19C010000 MOV EAX,PTR_1
00000027 8B15A0010000 MOV EDX,PTR_2

0000002D 3BC2 CMP EAX,EDX
0000002F 7325 JNB @3
. STATEMENT # 8
00000031 A100000000 MOV EAX,A
00000036 D1EO SHL EAX1
00000038 A300000000 MOV A EAX
: STATEMENT # 9
0000003D 8B159C010000 MOV EDX,PTR_1
00000043 8B1C8A MOV EBX,[EDX].ABASED[ECX*4]
00000046 891C82 MOV [EDX].ABASED[EAX*4],EBX
: STATEMENT # 10
00000049 A108000000 MOV EAX,C
0000004E 8B0482 MOV EAX,[EDX].ABASED[EAX*4]
00000051 89048A MOV [EDX].ABASED[ECX*4],EAX
00000054 EBAC IMP @1

Figure 11-6. Sample Program Showing the OPTIMIZE(3) Control

256 Chapter 11 Compiler Invocation and Controls

; STATEMENT # 12

@3:
00000056 FF0500000000 INC A
; STATEMENT # 13
0000005C EBA4 JMP @1
@2:
; STATEMENT # 15

MODULE INFORMATION:

CODE AREA SIZE = 0000005EH 94D

CONSTANT AREA SIZE = 00000000H 0D
VARIABLE AREA SIZE = 000001A4H 420D
MAXIMUM STACK SIZE = 00000004H 4D

15 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY:
410KB MEMORY AVAILABLE
8KB MEMORY USED (1%)
OKB DISK SPACE USED

END OF PL/M-386 COMPILATION
Figure 11-6. Sample Program Showing the OPTIMIZE(3) Control (continued)

PL/M-386 Programmer's Guide Chapter 11 257

OVERFLOW | NOOVERFLOW

Form OVERFLOW|NOOVERFLOW
Default NOOVERFLOW
Type General

These controls specify whether to detect overflow when performing signed
arithmetic. If theNOOVERFLOw®oNtrol is specified, no overflow detection is
implemented in the compiled module and the results of overflow in signed
arithmetic are undefined. If tt@VERFLOWoOnNtrol is specified, overflow in signed
arithmetic results in a nonmaskable interrupt 4, and it is the programmer's
responsibility to provide an interrupt procedure to handle the interrupt. Failure to
provide such a procedure may result in unpredictable program behavior when
overflow occurs.

If this control is nested within a program statement, overflow detection will begin
when the next complete statement is evaluated.

Note that the use of th@vERFLOWoOnNtrol results in some expansion of the object
code.

Specific to the Intel386 and Intel486 microprocessors, in-line checking code is
inserted for detecting machine overflow (32-bit arithmetic overflow) on signed
expressions, and value overflow on assignmenSHORTINTor CHARINT
variables.

To save code space and execution time, avoid B#@RTINTandCHARINTwhen
compiling with theOVERFLOWontrol.

PAGELENGTH

258

Form PAGELENGTH()
Default PAGELENGTH(60)
Type Primary

Pagelength is a non-zero, unsigned number specifying the maximum number of
lines to be printed per page of listing output. This number includes the page
headings printed on the page.

The minimum value fon is 5; the maximum value is 255.

Chapter 11 Compiler Invocation and Controls

PAGEWIDTH
Form PAGEWIDTH()
Default PAGEWIDTH(120)
Type Primary

Pagewidth is a non-zero, unsigned number specifying the maximum line width, in
characters, to be used for listing output. The minimum value ®60; the
maximum value is 132.

PAGING | NOPAGING
Form PAGING|NOPAGING
Default PAGING
Type Primary

The PAGINGcontrol specifies that the listed output is to be formatted onto pages.
Each page carries a heading identifying the compiler and a page number, and
possibly a user-specified title.

The NOPAGINGontrol specifies that page ejecting, page heading, and page
numbering are not to be performed. Thus, the listing appears on one long page as
would be suitable for a slow serial output deviceNOPAGINGSs specified, a page
eject is not generated if @IECT control is encountered.

PRINT | NOPRINT

Form PRINT(pathname)
NOPRINT

Default PRINT(sourcefilename .LST)
Type Primary

ThePRINT control specifies that printed output is to be produced. The parameter
is a standard host operating system pathname that specifies the file to receive the
printed output. Any output-type device, including a disk file, can also be given. If
the control is absent, or ifRRINT control appears without a pathname, printed
output is sent to a file that has the same name as the source input file but with the
extensionLST .

TheNOPRINTcontrol specifies that no printed output is to be produced, even if
implied by other listing controls such B ST andCODE

PL/M-386 Programmer's Guide Chapter 11 259

RAM | ROM

Form RAM|ROM
Default RAM
Type Primary

For PL/M-386, theRAMsetting places theONSTANBection within theATA
segment in all segmentation models.

For all targets, theOMsetting places constants in th@DEsegment. Under this
setting, thdNITIAL attribute on a variable produces a warning message. Do not
use the dot operator for variable references under@moption because constants
and variables will be relative to different segment registerSMKLLIs specified

with theROMcontrol, then PL/M-386 pointers will be six bytes instead of four (see
also Appendix F).

If the keywordDATAIs used in @UBLIC declaration when compiling with theOM
control,DATAmust also be used in tBEXTERNALdeclaration of program modules
that reference it. However, no value list is then permitted because the data is
defined elsewhere.

SAVE | RESTORE

260

Form SAVE|RESTORE
Default None
Type General

With these controls the settings of certain general controls can be saved on a stack
and then restored. The main usage of these controls is saving the controls before :
included file and restoring them after inclusion of that file is complete. The
controls whose settings are saved and restored are:

CODE|NOCODE
COND|NOCOND
LEFTMARGIN

LIST|NOLIST
OVERFLOW|NOOVERFLOW

The SAVEcontrol saves all of these settings on a stack. The maximum capacity of
this stack corresponds to the maximum nesting depth foN@ieUDE control (the
maximum nesting depth is given in Appendix B).

The RESTOREoONtrol restores the most recently saved set of control settings from
the stack.

Chapter 11 Compiler Invocation and Controls

SET | RESET
These are general controls. T&T control has the following general form:
SET (switch_assignment_list)

Where:

switch_assignment_list
consists of one or more switch assignments separated by commas.

A switch assignment has the form:

switch [= value]

Where:

switch is a name which is formed according to the PL/M rules for identifiers.
Note that a switch name exists only at the compiler control level, and
therefore a switch can have the same name as an identifier in the
program; no conflict is possible. Note however that no PL/M reserved
word other than a predefined switch can be used as a switch name.

value is a whole-number constant in the range 0 to 255. This value is

assigned to the switch. If the value and the equal sigaré omitted
from the switch assignment, the default value OFFH (true) is assigned
to a switch.

The following is an example of SET control line:
$SET(TEST,ITERATION = 3)

This example sets the switCEST to true (OFFH) and the swit¢hRERATION to 3.
Switches do not need to be declared.

Figure 11-1 and 11-2 are examples of a program that was compiled us8gjthe
control.

TheRESETcontrol has the form:
RESET (switch_list)
Where:

switch_list
consists of one or more switch names that have already occurred in
SET controls.

Each switch in the switch list is set to false (0).

PL/M-386 Programmer's Guide Chapter 11 261

SMALL | COMPACT | MEDIUM | LARGE | FLAT

SMALL

262

The following sections describe tB&#ALL COMPACTMEDIUM LARGEandFLAT
controls (also called the segmentation controls). For application development
under the iRMX Operating System, see the note undeZ@E4PACT model
description.

Form SMALL
Default SMALL
Type Primary

Modules compiled with th8MALLcontrol have three sections: code, data, and

stack (see th@BJECTcontrol). When these modules are bound (linked), similar
sections from each module are combined to form two segments: code and data. F¢
the Intel386 and Intel486 microprocessors, the maximum size of each segment is
4G bytes.

In the defaulSMALLcase RAN), the code sections from all modules are allocated
space within the code segment, which is addressed relative to the CS register.
Constants are combined with all the data and stack sections in the data segment.
For the Intel386 and Intel486 microprocessors, this segment is addressed relative t
the DS register, with an identical copy in the SS and ES registers. None of the
segment registers are changed during the course of program execution except ES,
which is used to perform string operations, and FS and GS, which are used to
address data exported by another subsystem. Subsystems are described in
Chapter 13.

Therefore, th&SMALLcontrol can be used only if the total size of all code sections
does not exceed 4G bytes. The total size of the constants plus all data and stack
sections also cannot exceed 4G bytes.

If the ROMcontrol is used, the constants from all the modules are placed with the
code in the code segment. The data segment then contains only the data and stac
sections from all the modules.

Because only one code segment exists, its segment selector (the CS register) is
never updated during program execution. (However, an interrupt will update the
CS register.) Likewise, whe®AMis used, only one segment exists for all constant,
data, and stack sections. The segments' selectors (the DS and SS registers) are
never updated (except when an interrupt occurs, as explained in Appendix G).
Therefore, when any location is referenced, a 32-bit offset is calculated and used ir
conjunction with the appropriate segment selecRINTERvalues in theSMALL

(RAN case are 32-bit values for the Intel386 and Intel486 microprocessors.

Chapter 11 Compiler Invocation and Controls

The following restrictions must be observed:

1. Do not use th@and dot operations with variables based8hECTOR For
example:
DECLARE SEL SELECTOR;
DECLARE R BASED SEL BYTE;
DECLARE PO POINTER;
PO = @R; /* invalid under SMALL RAM */

2. Do not use the built-in functidBUILD$PTR (see Chapter 9).
COMPACT

|:| Note

The iRMX Operating System supports only @®®MPACT
model.

Form COMPACT
Default SMALL
Type Primary

Modules compiled with theOMPACTontrol have three sections: code, data, and
stack (see th@BJECTcontrol). When these modules are linked, similar sections
from each module are combined to form three segments: code, data, and stack.
The maximum size of each segment is 4G bytes for the Intel386 and Intel486
Microprocessors.

In the defaulCOMPACTase RAN), the code sections from all modules are

allocated space within the code segment, which is addressed relative to the CS
register. Constants and all data sections are combined in the data segment, which
is addressed relative to the DS register and an identical copy is stored in the ES
register. The stack is addressed relative to SS. None of the segment registers are
changed, except ES, which is used to perform string operations, as well as FS and
GS, which are used to address data exported by another subsystem.

If the ROMcontrol is used, the constants from all the modules are placed with the
code in the code segment. The data segment then contains only the data sections
from all the modules.

Since the code, data, and stack segments are fully defined by the time the program
is loaded, the segment selectors in the CS and SS registers are never changed.

PL/M-386 Programmer's Guide Chapter 11 263

All six segment registers are initialized by the loader, with ES, FS, and GS
initialized to DS. The DS and ES registers are also saved and reinitialized in each
interrupt procedure prologue and epilogue to enable distinct interrupt
environments. The FS and GS registers are volatile after initialization. References
to any location require only a 32-bit offset against these segment selectors.

Observe the following restrictions when ust@QMPACT

1. When an exported procedure is indirectly activat&DIAITERvariable must
be used in th€ALL statement. For example:

$COMPACT(SUBSYS HAS MOD1, MOD2, MOD3; EXPORTS PROC)
MOD: DO

DECLARE P POINTER, W WORD;

PROC: PROCEDURE PUBLIC;

END PROC,;

P = @PROC; CALL P; /* POINTER must be used */
W = .PROC; CALL W; /* not allowed */
END MOD1;

2. When a procedure that is not exported is indirectly activatedFB8ET
variable must be used. Note tletFSETvariables do not range over the
entire microprocessor address space, but are restricted to offsets within the
current code segment. For example:

DECLARE P POINTER, O OFFSET;

LPROC: PROCEDURE; /* local */

END LPROC;

P = @LPROC; CALL P; /* not allowed */

O = .LPROC; CALL O; /* OFFSET must be used */

264 Chapter 11 Compiler Invocation and Controls

MEDIUM

Form MEDIUM
Default SMALL
Type Primary

For PL/M-386, thevEDIUMcontrol is provided for PL/M-86 and PL/M-286
compatibility. TheMEDIUMcontrol is interpreted exactly like tissALLcontrol.
For more information, refer to ttf®MALLcontrol entry in this chapter.

LARGE

FLAT

Form LARGE
Default SMALL
Type Primary

TheLARGEcontrol is provided for PL/M-86 and PL/M-286 compatibility. The
LARGEcontrol is interpreted exactly like ti@®MPACTontrol in most cases. For
more information, refer to theOMPACTontrol entry in this chapter. When the
LARGEcontrol is used in a PL/M-386 subsystem definition, it behaves differently
from theCOMPACTontrol. For more information about subsystems, see
Chapter 13.

TheFLAT control is a member of the group of segmentation controls including
SMALLandCOMPACT Compiling with the=LAT control generates an object

module containing separate code, data, and stack segments, with constants included
in the code segment. TReAT control overrides thBAMor ROMcontrol. Using
the-CONST IN CODE- or-CONST IN DATA- attribute for extended segmentation
definition does not result in an error when you specifyRb&T control; however,

-CONST IN CODE- is redundant an€CONST IN DATA- is ignored wWherFLAT is

in effect.

Linking object modules compiled with ti&AT control produces the following
linked segments:

+ Asingle code segmentODE32 containing all the code segments of the
object modules

» Asingle data segmenbATA32) containing all the data segments of the object
modules

* Asingle stack segmens{ACK containing all the stack segments of the object
modules

PL/M-386 Programmer's Guide Chapter 11 265

Use the BLD386-LAT control to map the three linked segments together to a
single segment of up to 4 Gigabytes.

Since only one segment exists during run-time, all pointers are short (a 32-bit offset
with no selector).. Also, compiling the following code with EMAT control does

not result in the semantic error generated when compiling this code wikiothe
control and any other segmentation control:

DECLARE B WORD;
DECLARE A WORD AT (@B) DATA (10);

SUBTITLE

Form SUBTITLE(" subtitle ")
Default No subtitle
Type General

The subtitle character sequence (truncated on the right to fit, if necessary) is printe
on the subtitle line of each page of listed output. Note that a subtitle specified on
the invocation line must be enclosed in quotation marks.

The maximum length for subtitle is 60 characters, but a narrow pagewidth may
restrict this number.

When aSUBTITLE control appears before the first noncontrol line in the source
file, it causes the specified subtitle to appear on the first page and all subsequent
pages until anothe8UBTITLE control appears.

A subsequenBUBTITLE control causes a page eject, and the new subtitle appears
on the next page and all subsequent pages until the&So8TLE control.

SYMBOLS | NOSYMBOLS

266

Form SYMBOLS|NOSYMBOLS
Default NOSYMBOLS
Type Primary

The SYMBOLZontrol specifies that a listing of all identifiers in the PL/M source
program and their attributes is to be produced in the listing file.

TheNOSYMBOLSontrol suppresses such a listing.
Note that thesSYMBOLSontrol cannot override MOPRINTcontrol.

Chapter 11 Compiler Invocation and Controls

TITLE

TYPE

Form TITLE(" title)
Default TITLE (" modulename")

Type Primary

The title character sequence, truncated on the right to fit, if necessary, is placed on
the title line of each page of listing output. Note that the character sequence for a
title must be enclosed in quotation marks when entered on the invocation line.

The maximum length for the title is 60 characters, but a narrow pagewidth may
restrict this number.

| NOTYPE
Form TYPE|NOTYPE
Default TYPE

Type Primary

TheTYPEcontrol specifies that the object module is to contain information on the
variable types output in symbol recorderPErecords provide a mechanism for
promoting type compatibility between subprograms. This information may be used
later for type checking when the program modules are combined, or by a debugger.

TheNOTYPEcontrol specifies that such type definitions are not to be placed in the
object module.

WORD32 | WORD16

Form WORD32|WORD16
Default WORD32

Type Primary

TheWORD32|WORD16ontrol determines how the compiler interprets the unsigned
binary number and signed integer scalar types (as well as the built-ins that specify
these data types) in the code being compiled.

When compiling PL/M-286, PL/M-86, or PL/M-80 source code with the PL/M-386
compiler, there are several points to consider before accepting the default
(WORD3por choosingvVORD16 See Chapter 3 for a discussion of these points.

PL/M-386 Programmer's Guide Chapter 11 267

Table 11-4 lists the data types as interpreted by the compiler wi@eb32and
WORD16 TheWORD1&ontrol does not mean creating PL/M-286 code, but rather
that PL/M-386 data types are mapped to the equivalent PL/M-286 data type. It
affects only the data types, it does not affect the operation of PL/M-386 functions.

Table 11-4. WORD32 | WORD16 Data Type Mapping

Unsigned Binary Number WORD32

Data Types (default) WORD16
BYTE 8-bit 8-bit
HWORD 16-bit 8-bit
WORD 32-bit 16-bit
DWORD 64-bit 32-bit
QWORD 64-bit 64-bit
Signed Integer

Data Types WORD32 WORD16
CHARINT 8-bit 8-bit
SHORTINT 16-bit 8-bit
INTEGER 32-bit 16-bit
LONGINT 32-bit 32-bit

Note that all built-ins that specify data types are differen?™"fORD16 Table 11-5
lists thewORD32|WORD1fapping for these built-ins. For example, HWORD
built-in is a 16-bit, unsigned binary number und#RD32whereas undetORD16
the 16-bit, unsigned binary typeWsORD

268 Chapter 11 Compiler Invocation and Controls

Table 11-5. WORD32 | WORD16 Built-in Mapping

WORD32 WORD16

(type conversions) (type conversions)

BYTE BYTE, HWORD

HWORD WORD

WORD DWORD

DWORD, QWORD QWORD

CHARINT SHORTINT, CHARINT

SHORTINT INTEGER

INTEGER LONGINT

BLOCKINPUT BLOCKINPUT

BLOCKOUTPUT BLOCKOUTPUT

MOVB MOVB, MOVHW

MOVRB MOVRB, MOVRHW

FINDB FINDB, FINDHW

FINDRB FINDRB, FINDRHW

INPUT INPUT, INHWORD

OUTPUT OUTPUT, OUTHWORD

SKIPB SKIPB, SKIPHW

SKIPRB SKIPRB, SKIPRWH

CMPB CMPB, CMPHW

SETB SETB, SETHW

BLOCKINHWORD BLOCKINWORD

BLOCKOUTHWORD BLOCKOUTWORD

MOVHW MOVW

MOVRHW MOVRW

FINDHW FINDW

FINDRHW FINDRW

INHWORD INWORD

OUTHWORD OUTWORD

SKIPHW SKIPW

SKIPRHW SKIPRW

CMPHW CMPW

SETHW SETW

continued

PL/M-386 Programmer's Guide Chapter 11

269

Table 11-5. WORD32 | WORD16 Built-in Mapping (continued)

WORD32 WORD16

(type conversions) (type conversions)
BLOCKINWORD BLOCKINDWORD
BLOCKOUTWORD BLOCKOUTDWORD
MOVW MOVD

MOVRW MOVRD

FINDW FINDD

FINDRW FINDRD

INWORD INDWORD
OUTWORD OUTDWORD
SKIPW SKIPD

SKIPRW SKIPRD

CMPW CMPD

SETW SETD

XREF | NOXREF
Form XREF|NOXREF
Default NOXREF
Type Primary

The XREFcontrol specifies that a cross-reference listing of source program
identifiers is to be produced in the listing file.

The NOXREFontrol suppresses the cross-reference listing.

Note that thexREFcontrol cannot override FOPRINTcontrol.

270 Chapter 11 Compiler Invocation and Controls

Program Listing

Sample Program Listing

During the compilation process, a listing of the source input is produced. Each
page of the listing carries a numbered page-header that identifies the compiler,
prints a time and date as designated by the host operating system, and optionally
gives a title and a subtitle, and/or a date (see Figure 11-7).

The first part of the listing contains a summary of the compilation, beginning with
the compiler identification and the name of the source module being compiled.
The next line names the file receiving the object code. The next line contains the
command used to invoke the compiler. The listing of the program itself is shown
in Figure 11-7.

The listing contains a copy of the source input plus additional information. Two
columns of numbers appear to the left of the source image. The first column
provides a sequential numbering of PL/M statements. (Note that the PL/M-386
compiler treats each new-line character as a line terminator; therefore, blank lines
are counted.) Error messages, if any, refer to these statement numbers. The second
column gives the block nesting depth of the corresponding statement.

Lines included with théNCLUDE control are marked with an equal sig) just to

the left of the source image. If the included file contains anttt@rUDE control,

lines included by this nesteédlCLUDE are marked with anl. For yet another

level of nestings2 is used to mark each line, and so forth up to the compiler's limit
of nesting levels (see Appendix B). These markings make it easy to see where
included text begins and ends.

PL/M-386 Programmer's Guide Chapter 11 271

PL/M-386 COMPILER Stack Module date

time PAGE 1

system-id PL/M-386V x. y COMPILATION OF MODULE STACK

OBJECT MODULE PLACED IN stack.obj

COMPILER INVOKED BY: plm386 stack.src CODE XREF TITLE("Stack

Module")
1 STACK: DO;
2 /* This module implements a BYTE stack with

push and pop */
DECLARE S(100) BYTE,
[* Stack Storage */

Figure 11-7. Program Listing

4 1 T BYTE PUBLIC INITIAL(-1);
[* Stack Index */

51 PPUSH: PROCEDURE (B) PUBLIC;
/* Pushes B onto the stack */

6 2 DECLARE B BYTE;

7 2 S(T:=T+1)=B;
/* Increment T and store B */

8 2 END PPUSH;

9 1 PPOP: PROCEDURE BYTE PUBLIC;
/* Returns value popped from stack */

10 2 RETURN S((T:=T-1)+1);
/* Decrement T, return S(T+1) */

11 2 END PPOP;

12 1 END STACK;
/* Module ends here */

272 Chapter 11

Compiler Invocation and Controls

Should a source line be too long to fit on the page in one line, it is continued on the
following line. Such continuation lines are marked with a hyphgjuét to the
left of the source image.

The CODEcontrol can be used to obtain the assembly code produced in the
translation of each PL/M statement. Figure 11-8 shows the assembly code listing
for the program given in Figure 11-7. This code listing appears in six columns of
information in a pseudo-assembly language format:

1.

ok

Location counter (hexadecimal notation)
Resultant binary code (hexadecimal notation)
Label field

Opcode mnemonic

Symbolic arguments

Comment field

PL/M-386 Programmer's Guide Chapter 11 273

PL/M-386 COMPILER Stack Module date time PAGE 2
ASSEMBLY LISTING OF OBJECT CODE

; STATEMENT #5
PPUSH PROC NEAR
00000000 55 PUSH EBP
00000001 8BEC MOV EBP,ESP
; STATEMENT # 7
00000003 8A0564000000 MOV AL, T
00000009 FECO INC AL
0000000B 880564000000 MOV T,AL
00000011 OFB6CO MOVZX EAX,AL
00000014 8A4D08 MOV CL,[EBP].B
00000017 888800000000 MOV [EAX].S,CL
; STATEMENT # 8
0000001D 5D POP EBP
0000001E C20400 RET 4H
PPUSH ENDP
; STATEMENT # 9
PPOP PROC NEAR
00000024 55 PUSH EBP
00000025 8BEC MOV EBP,ESP
; STATEMENT # 10
00000027 8A0564000000 MOV AL, T
0000002D FEC8 DEC AL
0000002F 880564000000 MOV T,AL
00000035 FECO INC AL
00000037 OFB6CO MOVZX EAX,AL
0000003A 8A8000000000 MOV AL,[EAX].S
00000040 5D POP EBP
00000041 C3 RET
; STATEMENT # 11
PPOP ENDP
; STATEMENT # 12

Figure 11-8. Code Listing (continued)

Not all six of the columns will appear on all lines of the code listing. Compiler
generated labels (e.g., those that mark the beginning and endimoivaiLE
loop) are preceded by &T sign (@. The comments appearing BaSHandPOP
instructions indicate the stack depth associated with the stack instruction.

274 Chapter 11 Compiler Invocation and Controls

Symbol and Cross-reference Listing

Specifying thexREFor SYMBOLSontrol adds a summary of all identifier usage in
the program listing. Figure 11-9 shows the cross-reference listing of the program
given in Figure 11-7. The addressegipDRhave four leading zeros.

PL/M-386 COMPILER Stack Module date time PAGE 3
CROSS-REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

5 0008H 1B....... BYTE IN PROC(PPUSH) PARAMETER AUTOMATIC 67
9 0024H 30 PPOP..... PROCEDURE BYTE PUBLIC STACK=00000004H

5 0000H 33 PPUSH..... PROCEDURE PUBLIC STACK=00000008H

3 0000H 100 S....... BYTE ARRAY(100) 7*10

1 0000H STACK. MODULE STACK=00000000H

3 0064H 1T....... BYTE PUBLIC INITIAL 7 7* 10 10*

Figure 11-9. Cross-reference Listing

Depending on whether ti8'MBOLSr XREFcontrol was used to request the
identifier usage summary, five or seven types of information are provided in the
symbol or cross-reference listing. They are as follows:

1. Statement number where the identifier was defined.
Relative address associated with the identifier.

Size of the object identified (in bytes).

The identifier.

o~ N

Attributes of the identifier (including expansion fdaTERALLY s and scoping
information for local variables and parameters). These attributes reflect the
WORD32|WORDli&rminology of the source file.

6. Statement numbers where the identifier was referen¢geRcontrol only).

7. Statement numbers where the identifier was assigned a X&&€&control
only).

PL/M-386 Programmer's Guide Chapter 11 275

276

A single identifier can be declared more than once in a source module (i.e., an
identifier defined twice in different blocks). Each such unique object, even though
named by the same identifier, appears as a separate entry in the listing.

The address given for each object is the location of that object relative to the start
of its associated section. The object's attributes determine which section is
applicable.

Identifiers in theSYMBOLSr XREFlisting are given in alphabetical order with the
following exception: members of structures are listed, in order of declaration,
immediately following the entry for the structure itself. Indentation is used to
differentiate between these entries.

The XREFlisting differentiates between items 6 and 7 by adding the asterisk
character to statement numbers where a value is assigned. For example, if
statement 17 reads as follows:

I=1+1;

The list of statement numbers fowould includel7 and17*, indicating a
reference and an assignment in statement 17.

The AUTOMATICattribute indicates that the identifier was declared as a parameter
or as a local variable inREENTRANProcedure and therefore is allocated
dynamically on the stack.

Chapter 11 Compiler Invocation and Controls

Compilation Summary
Following the listing (or appearing aloneNOLIST is in effect) is a compilation
summary. Eight pieces of information are provided:

« Code area size gives the size in bytes of the code section of the output module
(not including constants, if any).

» Constant area size gives the size in bytes of the constant area. The constant
area will be included with either the code or data section in the output module,
depending on the specified compiler controls.

« Variable area size gives the size in bytes of the data section of the output
module (not including constants, if any).

e Maximum stack size gives the size, in bytes, of the stack section allocated for
the output module.

» Lines read gives the number of source lines processed during compilation.

e Program warnings give the number of warning messages issued during
compilation.

« Program errors give the number of error messages issued during compilation.

« Dictionary summary gives the actual memory and disk space used by the
dictionary during compilation.

Figure 11-10 is an example of the compilation summary.
MODULE INFORMATION:

CODE AREA SIZE = 00000042H 66D

CONSTANT AREA SIZE = 00000000H 0D
VARIABLE AREA SIZE = 00000065H 101D
MAXIMUM STACK SIZE = 00000008H 8D

12 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY:

410KB MEMORY AVAILABLE
8KB MEMORY USED (1%)
OKB DISK SPACE USED

END OF PL/M-386 COMPILATION
Figure 11-10. Compilation Summary

[

PL/M-386 Programmer's Guide Chapter 11 277

Sample Program 1 2

Introduction

This chapter discusses a sample program consisting of three modulesAriqed
OPEN andPRINT. The purpose of this program is to illustrate the use of the PL/M
language. The program is written in PL/M-386 and compiled with the PL/M-386
compiler.

The program takes an input file, counts the uppercase and lowercase alphabetic
characters, and determines the percentage of use for each character. This is printed
either to the screen or, if one is specified, to an output file. The program's output
lists the number of times each character is used (for uppercase, for lowercase, and
for both uppercase and lowercase), and the percentage of use for each character.
The source program listings are shown in Figures 12-1 through 12-3.

In addition to the main program modules (FREQ, OPEN, and PRINT), this program
also has two include files. The include fildefns.incandudi.inc (see Figures

12-4 and 12-5), contain definitions that are used in the program modules. The
defns.indnclude file consists of global variable definitions. Thi.inc include

file consists of the universal development system interface (UDI) definitions. The
UDI definitions are used for operating system interfaces (e.g., file manipulation).
Figure 12-6 is an example of the program output.

The following sections describe the source code in each of the program modules.
The line numbers in the figures are not part of the source code; they have been
added to simplify the discussion of the source code.

FREQ Module

FREQIs the main module. The source code is shown in Figure 12-1. As indicated,
the line numbers in the figure have been added to simplify the discussion of the
source code.

The program lines that begin with a dollar sighdre compiler control lines.

Lines that begin with a dollar sign instruct the compiler and are not part of the
source program. In any position other than the first character (or the position
specified with the. EFTMARGINcontrol), the dollar sign is an insignificant

character and can be used as a separator to simplify the reading of variable names.

PL/M-386 Programmer's Guide Chapter 12 279

1 $DEBUG PW(75)
2 freq:DO;

3 $INCLUDE (defns.inc)

4 $NOLIST

5 [*** LIST of UDI procedures is in OPEN.PLM ***/
6 $INCLUDE (udi.inc)

7 $LIST

8 open$files:PROCEDURE EXTERNAL;
9 END open$files;

10 print$stats:PROCEDURE(arr$ptr, arr$len) EXTERNAL;
11 DECLARE arr$ptr POINTER;

12 DECLARE arr$len WORD;

13 END print$stats;

14 DECLARE buf(80) BYTE;

15 DECLARE console CONNECTION EXTERNAL,;
16 DECLARE i BYTE;

17 DECLARE infile CONNECTION EXTERNAL;
18 DECLARE Ifreq(26) Freq_Struc;

19 DECLARE num$read BYTE;

20 DECLARE outfile CONNECTION EXTERNAL,;
21 DECLARE quit$time BYTE INITIAL(False);

22 DECLARE status WORD;

23 DECLARE total WORD PUBLIC INITIAL (0);

Figure 12-1. Source Code for FREQ Module

280 Chapter 12

Sample Program

24
25
26

27

28
29
30
31
32
33
34
35
36

37
38

39
40
41
42
43

44

45

46

47

48

49

$EJECT
main:
CALL open$files;

CALL init$real$math$unit;

DO i =0 to LENGTH(lfreq);

Ifreq(i).let.low = O;

Ifreq(i).let.up = 0;

Ifreq(i).percent = 0.0;
END;

/*** Now, read the files ***/

read$file:DO WHILE (NOT quit$time);

num$read = dg$read(infile, @buf, LENGTH(buf), @status);

IF num$read <> LENGTH(buf) THEN quit$time = True;

DO i = 0 to num$read;

total = total + 1; [*** Total keeps track of ALL

characters ***/
[*** Read, not just the letters. ***/
sh_which_letter:IF (buf(i) >='A" AND buf(i) <= 'Z") THEN
[freq(buf(i)-'A").let.up = Ifreq(buf(i)-'A").let.up + 1,

ELSE IF (buf(i) >="a" AND buf(i) <= "z") THEN
[freq(buf(i)-'a’).let.low = Ifreq(buf(i)-'a’).let.low +
1

END; /*** Loop i = 0 to num$read ***/
read$file:END;
stats:

CALL print$stats(@Ifreq,LENGTH(lfreq));

CALL dgsexit(0);

END freq;
Figure 12-1. Source Code for FREQ Module (continued)

PL/M-386 Programmer's Guide Chapter 12

281

282

Line 1 specifies th®@EBU®ontrol and the pagewidth. TB&BUGonNtrol instructs

the compiler to collect debug information such as the statement number and
relative address of each source program module. PW(75) specifies an output page
75 characters wide.

Line 2 names the module and establishes the beginning of the maubitdtek.
As stated in Chapter 1, a module must begin with a lalzbedatement and end
with anENDstatement.

Lines 3 through 6 specify the include files to be used in the program module. Line
4 indicates to the compiler to not list anything until ti&T control is
encountered, which happens at line 7.

Line 5 is a user comment and will not be interpreted by the compiler. User
comment lines begin with a slash/asterigk)(combination and end with an
asterisk/slast() combination.

Lines 8 through 23 are the procedure and variable declarations use&REtDe
module. Note thEXTERNALdeclarations in lines 8 through 13. These procedures
are declare@XTERNAL which means that the procedure is defined in another
module. The calling module must declare the proceduEXB8ERNAL The

module in which these procedures are defined must declare the procedures as
PUBLIC.

The variable declarations (see lines 15, 17, and 20) ar€4I&RNAL The same
rules apply for variables as for procedures. The calling module must declare the
variable aEXTERNALand the defining module must declare the variable as
PUBLIC. If the variable definition is included in the calling module, the definition
must be identical to the definition in the declaring module.

Line 18 declares thi&eq structure, which is declared in thefns.inc ~ file (see
Figure 12-4). Line 21 declargsit$time as a variable (with thelITIAL

attribute) of typeBYTE In an initialization, the initialization attribute must be
placed after the variable attributes. In line®&l is declared as a variable of
typeBYTE Note also th®UBLIC declaration. This indicates that this variable can
be used by other modules within the program (if it is declarERNALwithin

the module which uses it).

Line 24 specifies the beginning of a new page (used when the program listing is
printed).

The program begins at line 25. Line 26 callsdpen$files procedure (declared
asEXTERNALIN line 8). This procedure opens the input file, and if one is
specified, the output file. Line 27 calls the compiler built-in procedure,
initsreal$mathunit . This call is required to initialize tHREAL math facility
for subsequent operations.

Chapter 12 Sample Program

Lines 28 through 32 consist of more initializations. These lines set (or reset) the
values of the structure variable used in the modateg_struc is an array of
nested structures (see Chapter®eq_struc is a 26 element array (one element
for each letter in the alphabet). Each element ofrtlyestruc array contains
thelet structure, which consists of a letter and a percent. Nested witH#t the
structure is another structutevf andup). This structure holds the count of
uppercase and lowercase characters. To sedrém@wtruc is declared, refer to
Figure 12-4.

Lines 34 through 45 show an example of a nebteblock. With PL/M,DOblocks
can be nested up to 18 levels. Line 37 begins a s&m®hbbck within theDO
block that begins at line 34. Th®block nested within the fir@Oblock ends at
line 44. The firsDOblock ends at line 45.

Lines 34 through 36 use the UDI functiaiaqgread , to read from a fileiffile).

A specified number of characters are read from the file into an array. The array is
buf and the number of characters readdsIGTH(buf) . The value obuf was set

in line 14. LENGTHis a built-in function (see Chapter 11) that returns the number
of elements in an array. The UDI functiaiy$read , returns the number of
characters reathim$read) and an error codatétus).

The nested loop (lines 37 through 44) keeps totals for all the characters read, the
uppercase letters read, and the lowercase characters read. This entire loop repeats
until the number of characters read in from the input file is less than 80 (this
indicates that the input file is empty).

Line 47 calls the external procedymént$stats . This procedure is defined in
the PRINT module. Line 48 calls a UDI procedudggexit . Finally, line 49
ends theFREQmodule.

OPEN Module

The OPENmodule takes care of the majority of the file-handling procedures for the
program. This module makes extensive use of the UDI procedures provided by the
run-time support library. The source code is shown in Figure 12-2. Note that the
line numbers in the figure are not part of the source code, nor are they the line
numbers that the compiler would assign. The line numbers have been added to
simplify the discussion of the source code.

PL/M-386 Programmer's Guide Chapter 12 283

1 $DEBUG PW(75)
2 open:DO;

3 $NOLIST
4 $INCLUDE (defns.inc)
5 $LIST

6 SEJECT
7 $INCLUDE(udi.inc)

8 $EJECT

9 DECLARE console CONNECTION PUBLIC;
10 DECLARE infile CONNECTION PUBLIC;
11 DECLARE outfile CONNECTION PUBLIC;

12 DECLARE NeedFile(*) BYTE INITIAL('Enter input file name: ");
13 DECLARE OpenError(*) BYTE INITIAL ('Error opening input
file',CR,LF);

14 opensfiles:PROCEDURE PUBLIC;

15 DECLARE delim BYTE;

16 DECLARE console$in CONNECTION;
17 DECLARE buffer(80) BYTE;

18 DECLARE status WORD;

19 DECLARE in$buf(81) BYTE;

20 DECLARE iBYTE;

21 DECLARE num$read BYTE;

22 console = dg$create(@(4,:CO:'), @status);
23 CALL dg$open(console,WriteOnly,0,@status);

24 [*** Process the command line. It consists of three parts,

25 1) the program name (If.exe)

26 2) the input file name, if this is not present then
27 ask for it

28 3) the output file name, if this is not present then
29 the output goes to the console ***/

Figure 12-2. Source Code for OPEN Module

284 Chapter 12

Sample Program

30
31
32

33
34
35
36
37
38
39

40

41
42
43
44
45
46
47

48
49
50
51

52

53
54
55
56
57

58
59

[*** Read past the program name ***/
delim = dggetargument(@buffer, @status);
/*** Find out name of the input file ***/

IF delim = CR THEN

DO;

/*** No input file specified, ask for it ***/
CALL dg$write(console,@NeedFile, LENGTH(NeedFile), @status);
console$in = dg$attach(@(4,":Cl:"), @status);
CALL dg$open(console$in,ReadOnly,0,@status);
sch001:num$read =

dg$read(console$in, @in$buf, LENGTH(in$buf), @status);

CALL dg$close(console$in,@status);

/*** Convert the read in buffer to the infile buffer ***/
sh_infile:buffer(0) = num$read,;
DO i = 0 to num$read;
IF (in$buf(i) <> CR) AND (in$buf(i) <> LF)
THEN buffer(i+1) = in$buf(i);

ELSE
buffer(0) = buffer(0) - 1; /*** Adjust count for
CRI/LF **/
END; /*** End of DO loop to Convert buffer ***/
END;
ELSE

delim = dggetargument(@buffer, @status);
/*** END; get file name to process ***/

/*** Open input file ***/

infile = dg$attach(@buffer,@status);
CALL dg$open(infile,ReadOnly,2, @status);
IF status <> E$3OK THEN DO;

CALL dg$write(console,@OpenError,LENGTH(OpenError),
@status);

CALL dg$exit(1);

END; [** Status is not ok **/

Figure 12-2. Source Code for OPEN Module (continued)

PL/M-386 Programmer's Guide Chapter 12

285

60 /*** Find out if an output file was specified. If so, ***/

61 [*** open it, if not use the console output ***/
62 IF delim = CR THEN

63 outfile = console;

64 ELSE DO;

65 delim = dggetargument(@buffer, @status);
66 outfile = dg$create(@buffer, @status);

67 CALL dg$open(outfile,WriteOnly,2, @status);
68 END;

69 END open$files;
70 END open,;

Figure 12-2. Source Code for OPEN Module (continued)

286 Chapter 12 Sample Program

Line 1 instructs the compiler to collect debug information and sets the page width
for printed output. Line 2 names the module and establishes the beginning of the
module'sDOblock. Lines 3 through 8 specify the inclusion of the program's
include files, turn the listing function on and off, and specify a few new pages for
printed output$EJECT).

Lines 9 through 11 define and declare s¢o8LIC variables. Because these
variables are declare@UBLIC, they can be used in another module. The calling
module must declare the variableE2TERNAL The variable definition is included
in the calling module, and it is the same as the definition in the defining module.

Lines 12 and 13 are error messages to be used lppPtmodule if the necessary
information is not included in the invocation line (which causes an error). Note the
use of the asterisk in each of these lines. The asterisk is used as an implicit
dimension specifier. The implicit dimension specifier can be used when the size of
the array is either unknown or insignificant. In this instance, the size of the array is
unknown. The implicit dimension specifier in lines 12 and 13 specifies that the
NeedFile array and th®penError array will have the same number of elements

as the value list (the number of characters in the message).

Line 14 begins thepens$files procedure. This procedure is declare@@BLIC
(it is called by th&eREQmodule) and continues until the end of the module
(line 69).

Lines 22 and 23 get and open a connection with the console using predefined UDI
procedures. Note the use of theperator in these two lines. The fi@bperator

in line 22 allocates storage for the constanéd:CO: . The othex@operators are

for location references. This means that the value of the reference (e.g., the value
of @status) is the actual run-time location of the variable.

Lines 31 through 51 use the UDI proceduitghget$argument , to parse the input
line. Line 31 gets the first part of the command line, as well as the delimiter used
to separate this part of the command line from the next part (if there is any). Line
33 tests the delimiter. If the delimiter is a carriage return then lines 34 through 49
are processed. Lines 34 through 49 request a file name. If the delimiter is not a
carriage return thedggetargument is called again. This routine is also called
by lines 62 through 68 to determine whether the program output should go to a file
or to the console.

Line 31 passes the invocation line to the followWiFHEN/ELSE construct (lines

33 through 51). Thee/THEN/ELSE construct checks for an input file name. If no
input file is specified, line 36 uses tNeedFile string declared in line 12. This
prompts the user to enter an input file name. If no input file name is specified in
response to the prompt, the program aborts. Otherwise, the string is converted as
discussed in the preceding paragraph.

PL/M-386 Programmer's Guide Chapter 12 287

Lines 43 through 48 convert the file name to a UDI call.
Lines 50 and 51 are tl# SE clause ofF delim =CR.

Lines 53 through 59 open the input file. Lines 62 through 68 open an output file, if
one is specified. Otherwise, the program data is sent to the console.

Line 69 is theENDstatement for thepens$files procedure and line 70 is tE&D
statement for th©PENmodule.

PRINT Module

288

ThePRINT module performs the program calculations and prints the information
(either to the console or to the specified output file). The source code is shown in
Figure 12-3.

Chapter 12 Sample Program

1 $DEBUG PW(75)
2 print:DO;

3 $NOLIST

4 $INCLUDE (defns.inc)
5 $INCLUDE (udi.inc)

6 $LIST

7 DECLARE BLANK$OUTSLINE LITERALLY

8 'DOj=0TO LENGTH(line);line(j) = SPACE;END";
9 DECLARE LETTER LITERALLY '3';

10 DECLARE LOWER LITERALLY '24;

11 DECLARE PCT LITERALLY '33';

12 DECLARE SUM LITERALLY '8

13 DECLARE UPPER LITERALLY '16';

14 DECLARE outfile CONNECTION EXTERNAL,;

15 DECLARE topline(*) BYTE INITIAL

16 (LETTER TOTAL UPPER LOWER % ',CR,LF);

17 /**(A 00000 00000 00000 000.0 i)

18 [** (1123456789 123456789 123456789 123456789 123456789 ***/
19 DECLARE total WORD EXTERNAL;

20 DECLARE total$str (5) BYTE INITIAL (TOTAL');

21 int2asc:PROCEDURE(number,stg$ptr,count) BYTE;
22 DECLARE number WORD;

23 DECLARE stg$ptr POINTER;

24 DECLARE count BYTE;

25 DECLARE i BYTE, j BYTE;

26 DECLARE max DWORD;

27 DECLARE string BASED stg$ptr(1) BYTE;
28 DECLARE tmpstg(10) BYTE;

29 max=1;

30 DOi=1TO count;
31 max = 10 * max;
32 END;

33 max=max-1;

34 DO i=0TO LAST(tmpstg);
35 tmpstg(i) = SPACE;

36 END;

Figure 12-3. Source Code for PRINT Module

PL/M-386 Programmer's Guide Chapter 12

289

37 IF number <= max THEN DO;

38 i=0;

39 loop:

40 tmpstg(i) = (number MOD 10) " '0";
41 i=i"1;

42 number = number/10;

43 IF number 0 THEN GOTO loop;

44 DO j=0TO count;

45 string(count-j) = tmpstg(j);
46 END;

47 END;

48 ELSE DO;

49 DO i =0 to count;

50 string(i) = "™*';

51 END;

52 END;

53 RETURN(i);
54 END int2asc;

55 real2asc:PROCEDURE(number,stg$ptr,count);
56 DECLARE number REAL;

57 DECLARE stg$ptr POINTER,;

58 DECLARE count WORD;

59 DECLARE i BYTE, j BYTE;

60 DECLARE int$len BYTE;

61 DECLARE string BASED stg$ptr(1) BYTE;
62 DECLARE tmpnum DWORD;

63 DECLARE tmpstg(10) BYTE;

64 /*** Convert the number to an INTEGER to convert
it, assume one ***/
65 decimal place ***/

66 tmpnum = DWORD(number*10.0);
Figure 12-3. Source Code for PRINT Module (continued)

290 Chapter 12 Sample Program

67
68

69
70
71
72
73
74
75

76
77

78
79
80
81
82
83
84
85
86
87
88

89

90

91
92
93
94

95
96

97

98
99

int$len = int2asc(tmpnum, @tmpstg,LAST (tmpstg));
IF int$len = 1 THEN DO; /*** Handle the case where
the number ***/
[*** js less than 1.0 ***/
int$len = 2;
tmpstg(LAST(tmpstg)-1) ='0";
END;
DO i=0TO int$len-2;
string(count-i) = tmpstg(LAST (tmpstg)-i);
END;

string(count-int$len) ="
string(count-int$len-1) = tmpstg(LAST(tmpstg)-int$len+1);

END real2asc;
$EJECT
print$stats:PROCEDURE (arr$ptr, arr$len) PUBLIC;
DECLARE arr$ptr POINTER;
DECLARE arr$len WORD;
DECLARE array BASED arr$ptr(1) Freq_Struc;
DECLARE i BYTE, j BYTE;
DECLARE line(50) BYTE;
DECLARE status WORD,;
DECLARE tmp BYTE;
DECLARE ii BYTE;

call dg$write(outfile,@topline, LENGTH(topline), @status);

printlines:DO ii = 0 TO arr$len-1;

BLANK$OUTSLINE;
line(LETTER) =ii + 'A";
I*** Get the total and convert number to ascii ***/
tmp = int2asc (array(ii).let.low + array(ii).let.up),
@line(SUM),5);
tmp = int2asc (array(ii).let.low, @line(LOWER),5);
tmp = int2asc (array(ii).let.up, @line(UPPER),5);

array(ii).percent = REAL((array(ii).let.low) +

(array(ii).let.up)) /
REAL(total) * 100.0;

CALL real2asc (array(ii).percent, @line(PCT),5);
Figure 12-3. Source Code for PRINT Module (continued)

PL/M-386 Programmer's Guide Chapter 12

291

100
101

102

103

104

105

106

107

108

109

line(LAST(line)-1) = CR;
line(LAST(line)) = LF;

CALL dg$write(outfile,@line,LENGTH(line), @status);
END printlines; [*** print loop ***/
BLANK$OUTSLINE;
DO i =0 TO LAST(total$str);

line(LETTER-2")) = total$str(i);
END;

tmp = int2asc(total, @line(SUM),5);

call dg$write(outfile, @line, LENGTH(line),@status);

110 END print$stats;

111 END print;

292

Figure 12-3. Source Code for PRINT Module (continued)

Line 1 instructs the compiler to collect debug information and sets the page width
for printed output. Line 2 names the module and establishes the beginning of the
module'sDOblock. Lines 3 through 6 specify the inclusion of the program's
include files and turn the listing function on and off.

Lines 7 through 13 are a groupliodrally definitions; each one creates an
alternate name for a sequence of characters. Lines 7 and 8 declare
BLANKS$OUTSLINEas the alternate name for theloop used to blank out the

output line buffer. Additionally, after line 13, the number 16 will referaseBPER

(for uppercase character). This is a useful function to eliminate keystrokes, to
make the program more readable, and to declare quantities that may be fixed in on
module, but subject to change in another module.

Lines 14 through 20 contain more declarations, as well as the header string for the
output (line 16).

Lines 21 through 54 perform an integer-to-ASCII translation. Lines 55 through 78
convert real numbers to ASCII characters.

Chapter 12 Sample Program

Line 80 is the beginning of theint$stats procedure. Therint$stats

procedure is called by ttRREQmodule, therefore it is declar@lBLIC in this

module. Note the based variable in line 83. In this instance, the locationyof

is based on the addressaof$ptr , which is passed into theint$stats

procedure. The size of the array is unknown (except through the parameter). The 1
enclosed in parentheses enables the use$dftr as an array (any number can

be used).

Line 89 calls a UDI procedure that writes to an external connection declared in the
OPENmodule. Note the use BEANK$OUTSLINEIN line 91.

Lines 90 through 103 areDloop that is repeated for each letter in the alphabet.
For each character, tliee(LETTER) array is filled with the letter, the total, the

total uppercase, the total lowercase, and the percent. This information is then sent
to the specified output device (the console or a file).

Lines 93 through 96 call the procedure to convert the total into ASCII characters.
Lines 97 and 98 figure the percentage of use for each character. Line 99 calls the
procedure to convert the percentage to ASCII characters. Lines 100 and 101 insert
a carriage return and a line feed in the console display or in the output file.

Line 110 ends therint$stats procedure and line 111 ends #RINT module.

PL/M-386 Programmer's Guide Chapter 12 293

Include Files

As stated earlier, there are two include files with this program (see Figures 12-4
and 12-5).

DECLARE DCL LITERALLY 'DECLARE?;
DCL LIT LITERALLY 'LITERALLY",

DCL CR LITERALLY 'ODH'
DCL LF LITERALLY '0AH";

DCL True LITERALLY 'OFFH';
DCL False LITERALLY '000H";

DCL Freq_Struc LITERALLY 'STRUCTURE (let STRUCTURE
(low WORD, up WORD),
percent REAL)';

DCL SPACE LITERALLY '020H";

Figure 12-4. Include File -- defns.inc

Figure 12-4 is thelefns.indfile. It contains definitions for terms used in common

by all of the modules in the program (excluding the UDI definitions). Note the
declaration of a structure in this include file (Freq_Struc). This structure is used in
the PRINT module and the FREQ module. This structure declaration illustrates
several levels of nesting. Structures can be nested up to 32 levels.

Figure 12-5 is thadi.incfile. It contains UDI definitions that are used throughout
the modules. The UDI is a predefined set of procedure calls that enables use of
operating system functions.

294 Chapter 12 Sample Program

DECLARE CONNECTION literally 'WORD';
DECLARE ReadOnly LITERALLY '1;
DECLARE WriteOnly LITERALLY '2'
DECLARE E$OK LITERALLY 'OH';

dg$attach:procedure (path$p,except$p) CONNECTION external;
declare path$p pointer; declare except$p pointer;
end dg$attach;

dg$close:procedure (aftn,exception$ptr) external;
declare aftn CONNECTION, exception$ptr pointer;
end dg$close;

dg$create:procedure (path$p,exception$ptr) CONNECTION external;
declare (path$p,exception$ptr) pointer;
end dg$create;

dg$exit:procedure (completion$code) external;
declare completion$code word;
end dg$exit;

dggetargument:PROCEDURE (argptr, exptr) BYTE EXTERNAL;
declare arg$ptr POINTER, ex$ptr POINTER,;
END dggetargument;

dg$open:procedure (aftn,mode,num$buf,exception$ptr) external;
declare aftn CONNECTION, exception$ptr pointer;
declare (mode,num$buf) byte;
end dq$open;

dg$read:PROCEDURE(aftn,buf$ptr,count,ex$ptr) WORD EXTERNAL;
declare aftn CONNECTION;
declare buf$ptr POINTER,;
declare count WORD;
declare ex$ptr POINTER;
END dg$read;

dg$write:procedure (aftn,buffer,count,exception$ptr) external;
declare aftn CONNECTION;
declare count word;
declare (buffer,exception$ptr) pointer;
end dg$write;

Figure 12-5. Include File -- udi.inc

[

PL/M-386 Programmer's Guide Chapter 12

295

Extended Segmentation Models

Overview

Program segmentation is the division of a program into memory segments. Itis a
technique used to optimize the code produced by the compiler. The segmentation
controls COMPACTLARGE MEDIUM SMALL, andFLAT) manage program
segmentation by defining the physical relationship in memory of a program's code,
data, constants, and stack. They determine which (if any) segments get combined.
For example, specifying tf®&VMALLsegmentation control for a program module
locates all of the module's code, data, constants, and stack in two segroeHs,
andDATA When the program's modules are combined, sections from the
separately compiled modules are combined into segments according to the
specified segmentation controls. This optimizes code because references to
locations in the same memory segment are more efficient.

Extended segmentation models are a super-set of the segmentation controls. The
extended segmentation models (which consist o§thalLL, COMPACTandLARGE
subsystems) provide enhanced program speed and aid in the construction of large
programs. An extended segmentation model consists of a number of subsystems.
A subsystem is a collection of program modules that use the same segmentation
controls. A program is made up of one or more subsystems. With subsystems,
program modules that are compiled with different segmentation controls can be
combined.

This chapter defines the use of extended segmentation models, and contains the
following sections:

* Introduction

e Segmentation controls architecture overview
e Using subsystems

e Syntax

e Exporting procedures

e Large matrix example

PL/M-386 Programmer's Guide Chapter 13 297

Introduction
Extended segmentation models provide the following programming advantages:
« Efficient use of memory.
* Access to the microprocessor's segmented architecture.
» Storage reduction for external references to pointers and code.
* Increased program execution speed for intersegment calls and data access.

Additionally, to simplify the development of large programs, the segmentation
controls can be used to partition the program into a collection of related
subsystems.

Partitioning a large program into a series of subsystems isolates code references
within the same segment. The compiler processes each program module
individually, assigning code, data and stack segments for each module (according
to the specified segmentation control). As a source file is translated, the compiler
generates 8TACKsegment for the program stack, as well ag\@Asegment for

the program data andGDDEsegment for the program's executable code. When

the program modules are combined, @@DEDATAandSTACKsegments from all

of the individual program modules are combined. Use of the segmentation controls
ensures that the segment names generated by the compiler are combined accordin
to the overall structure of the program.

A subsystem is either open or closed. An extended segmentation model can have
only one open subsystem, but any number of closed subsystems.

An open subsystem does not have a name and claims the program modules that a
not claimed by another subsystem. Effectively, a program that uses only the
segmentation controls is an open subsystem. Modules can be added to the open
system without having to change the subsystem definition.

A closed subsystem has a name and, optionally, a list of program modules used in
the subsystem. To add a module to a closed subsystem, the subsystem definition
must be changed.

298 Chapter 13 Extended Segmentation Models

Segmentation Controls Architecture Overview

The segmentation controls described in Chapter 11 define the physical relationship
in memory of program code, data, constants, and stack during program execution.
When a PL/M source file is compiled, an object module conforms to a particular
extended segmentation model.

There are three extended segmentation mo8#&laLL, COMPACTandLARGE For
Intel386 and Intel486 microprocessors, each segment can be as large as 4G bytes.

There are two submodels within each modekMandROM SpecifyingRAMplaces
the program constants in tbaTAsegment. SpecifyingOMplaces the program
constants in theODEsegment.

Tables 13-1 and 13-2 define the memory partitions and the placement of pointers in
the various architectural models available with the segmentation controls. Table
13-1 shows how memory is partitioned. Table 13-2 defines the register addresses
and the pointer values. Table 13-3 defines the register addresses and the pointer
values for the Intel386 and Intel486 microprocessor-specific ES register. Note that
the POINTERvariable value for these microprocessors, when usinghi#.LROM
extended segmentation controls, is 6 bytes.

PL/M-386 Programmer's Guide Chapter 13 299

300

Table 13-1. Segmentation Controls and Memory Partitions

Segment Name

Control CODE DATA STACK
SMALL RAM code data
constants
stack
SMALL ROM constants data stack
code
COMPACT RAM code data stack
constants
COMPACT ROM constants data stack
code
MEDIUM RAM* separate CODE data
segment for each constants
module's code stack
MEDIUM ROM* separate CODE data
segment for each stack
module's code
and constants
LARGE RAM* separate CODE separate DATA stack
segment for each segment for
module's code each module's
data and
constants
LARGE ROM* separate CODE separate DATA stack

segment for each
module's code
and constants

segment for each
module's data

The Intel386 and Intel486 microprocessors use only the SMALL and COMPACT

segmentation controls. For the segmentation controls (not subsystems), MEDIUM is

equivalent to SMALL and LARGE is equivalent to COMPACT.

Chapter 13

Extended Segmentation Models

Table 13-2. Segmentation Controls, Register Addresses and Pointer Values

Register Address
Pointer

Control CS DS SS Variable Value
SMALL CODE seg. DATA seg. DATA seg. 4-byte offset
RAM Offset-reference Offset-reference Has same value only

relative to DS relative to DS as DS

Offset-reference

SMALL CODE seg. DATA seg. DATA seg. 6-byte selector-
ROM Constant reference Offset reference Has same value offset

requires selector- as DS

offset containing CS Offset-reference

value and offset

within CODE

segment Code

reference requires

offset-reference

relative to DS
COMPACT CODE seg. DATA seg. STACK seg. 6-byte
RAM Selector-offset Selector-offset Selector-offset selector-offset

reference reference reference
COMPACT CODE seg. CODE seg. STACK seg. 6-byte
ROM Selector-offset Selector-offset Selector-offset Selector-offset

reference reference reference
MEDIUM Current CODE seg. DATA seg. DATA seg. 6-byte
RAM Selector-offset Selector-offset Selector-offset Selector-offset

reference reference reference

Updated when

PUBLIC or

EXTERNAL

procedure is

activated

continued
PL/M-386 Programmer's Guide Chapter 13 301

Table 13-2. Segmentation Controls, Register Addresses and Pointer Values

(continued)

Register Address
Pointer
Control Cs DS SS Variable Value
MEDIUM Current CODE seg. DATA seg. DATA seg. 6-byte
ROM Selector-offset Selector-offset Selector-offset Selector-offset
reference Updated reference reference
when PUBLIC or
EXTERNAL
procedure is
activated
LARGE Current CODE seg. Current DATA STACK seg. 6-byte
RAM Selector-offset seg. Selector- Selector-offset Selector-offset
reference Updated offset reference reference
when PUBLIC or Updated when
EXTERNAL PUBLIC or
procedure is EXTERNAL
activated procedure is
activated
LARGE Current CODE seg. Current CODE STACK seg. 6-byte
ROM Selector-offset seg. Selector- Selector-offset Selector-offset
reference Updated offset reference reference
when PUBLIC or Updated when
EXTERNAL PUBLIC or
procedure is EXTERNAL
activated procedure is
activated

The values given in Tables 13-1 and 13-2 are identical for Intel386 and Intel486
microprocessors. Additionally, these microprocessors have the ES register addres:
Table 13-3 states the values for the ES register.

302 Chapter 13 Extended Segmentation Models

Table 13-3. Intel386 and Intel486 Microprocessor-specific ES Register Segmentation
Controls, Register Addresses and Pointer Values

Control ES Register Address POINTER Variable Value

SMALL RAM DATA seg. 4-byte offset only
Offset reference

SMALL ROM DATA seg. 6-byte selector offset
Offset reference

COMPACT RAM DATA seg. 6-byte selector-offset
Selector-offset reference

COMPACT ROM DATA seg. 6-byte selector-offset
Selector-offset reference

The SMALL RAMsegmentation control is the most efficient. Because all of the

code resides in one segment, jumps and calls are always within the same segment
(intrasegment). However, tI®MALL RAMsegmentation control provides less
protection and cannot be used to pass pointers to library procedures unless the
library procedure is alsoSMALL RAMmodel.

Use theCOMPACEegmentation control€OMPACRAMandCOMPACRON| for

separate management of the code, data, and stack, or to improve segment-limit
protection. To reference stack-based variablesC@@PACEegmentation controls

use selector-offset references. This is less efficient than using offset-only
references. However, data and constant references widtni@ ACEegmentation
control module are within the same segment (intrasegment). Note that if a
COMPACTProgram must pass a data address to a procedure in a different subsystem,
it must use a selector-offset reference.

Using Subsystems

Subsystems offer an efficient way to manage programs with large amounts of data,
to share data between program modules, and to communicate with other programs.

For example, subsystems are useful when several programmers are each writing a
separate module for a highly structured program in which sharing data between
modules is accomplished with parameter passing, by value only. To maintain the
integrity of each section's data requires that each section have i@ awn

segment. In this way, code in one module of the program cannot mistakenly
destroy data belonging to another section of the program. In this instance, each
module could be @OMPACSubsystem, with its owdODEandDATAsegments.

PL/M-386 Programmer's Guide Chapter 13 303

304

As another example, a program performing 1/0 usually requires operating system
support routines. In many cases, the operating system will operate at a higher
protection level than the application program. Thus, operating system procedure
calls are intersegment calls. The application program views the operating system
as a separate subsystem. Usually, operating system interface libraries are suppliec
to application programmers; these libraries perform the inter-subsystem
communication details. If a program needs to make a direct operating system call
without using a presupplied library, the program itself must define the necessary
subsystem environments at compile time.

It is usually more efficient to structure a large program with subsystems. With
subsystems the code and data can be partitioned into manageable pieces bigger
than one module. Within each subsystem, calls and jumps are near (4 byte offset),
references can be offset only, and the data of each subsystem is protected from
being overwritten by other subsystems. Calls and jumps between subsystems are
still far, and references between subsystems need to be selector-offset. In general,
a program's structure is such that it is possible to break the program into pieces
with a minimum number of intersegment calls, jumps, and references.

For example, consider a program consisting of 10 modules, 1 through

mod_10. Modules 1 through 3 deal with input and initial processing. Modules 4
through 8 do the main data processing. Modules 9 and 10 output the data. The
following figure illustrates the structure of the program:

data data
flow flow
input «» «» «»
INPUT PROCESS OUTPUT
(mod_1 (mod_4 (mod_9
mod_2 mod_5 mod_10)
mod_3) mod_6
mod_7
mod_8)

Chapter 13 Extended Segmentation Models

The total code space required by this program exceeds 64K bytes, and the total data
space also exceeds 64K bytes. TABGEsegmentation control can be used. This
control provides each module with its o@@DEandDATAsegment. For this

example, this results in a total of 21 segmentsO@0OE 10DATA and 1STACK.

For theLARGEsegmentation control, all calls and jumps are far, and all

intermodule references must be through selector-dfiQEMTERS.

If, for example COMPACSubsystems are used instead ofLthRGEsegmentation
control, modules 1 through 3 can form one subsystem, which you could call
SUB_INPUT. Modules 4 through 8 can form subsystedB_PROCESSFinally,
modules 9 and 10 can form subsyst&uaB_OUTPUT The number of segments has
been reduced to seven:CBDE 3DATA and 1STACK Since most of the calls,
jumps, and references now take place within only one of the subsystems, the
program is much more efficient. The only far calls and jumps, and the only
selector-offset references needed are those in the interfaces between the
subsystems.

A typical program does not require subsystems. The code space of 4 Gigabytes and
the data space of 4 Gigabytes is quite sufficient for most programs. However,
consider a program that processes a large amount of data such as a
10x1,000,000,00@EAL matrix. AREALscalar consists of 4 bytes, so the total

memory needed is 40 billion bytes. Rows could be used to partition the matrix.
Each row would be 4 billion bytes, which would fit into a singkTrAsegment.

TenCOMPACSuUbsystems (ham&bW1ROW?2etc.) could be created, each
containing a 1-billion elememEALarray. Procedures to store and retrieve
particular matrix elements can be written and called from the normal matrix
processing code. An example of such a program is shown later in this chapter.

It is not just dividing a program into subsystems that increases its efficiency. If all
the even numbered modules had been placed in one subsystem, for instance, and all
the odd numbered ones into another, the efficiency of the program would not have
improved as it did when the modules were grouped into subsystems according to

the logical structure of the program.

PL/M-386 Programmer's Guide Chapter 13 305

306

Note also the following points:

1. Not all subsystems must use the same segmentation control. For instance, if
SUB_PROCES#H the preceding example is small enough, it could &AL L
subsystem.

2. If aSMALLsubsystem is mixed with subsystems using other segmentation
controls, the main program must beSMALL This is because anything
compiled inSMALLassumes that DS and SS are identical. This will be so only
if the main program iSMALL Notice that in this case, tisd ACKsegment
resulting from thecOMPACandLARGEsubsystems will not be used, since the
stack of the main program is in the combimedrA-STACKsegment of the
SMALLmodel.

3. SMALL RAMsubsystems have the limitation that §MALLSegmentation
control uses short (offset only) pointers.SMALLRAMsubsystem cannot
receive a pointer from another subsystem, because it cannot save the selector
portion. ASMALLRAMsubsystem can, however, pass a pointer to a subsystem
that is notSMALLRAM because its own DS is known to it. HowevesMaLL
RAMsubsystem cannot pass a pointer (which points to a procedure), since DS is
assumed as the selector to all pointers.

4. MEDIUMis a segmentation control only, not an extended segmentation model.

Later sections describe the memory layouts of programs using the standard
segmentation controlsLAT|COMPACT|LARGE|MEDIUM|SMALL To understand
the memory layouts of programs structured with subsystems, it is necessary to
make the distinction between compiling modules and combining modules into a
program.

The compiler compiles only one module at a time. When modules are combined
into a program, mangODEDATAandSTACKsegments, which were generated

during separate compilations, are combined. When combining program modules,
all segments with the same name are combined. The segmentation controls work
by controlling the names of the segments generated by the compiler. This ensures
that the segment names will be combined as desired when the modules are
combined into a program.

The standaréMALLsegmentation control causes the compiler to name@mE
segmenCODE and theDATA-STACKsegmenDATA Since under the standard
SMALLmodel allCODEsegments have the same name, andAllA-STACK

segments have the same name, they are combined when the modules are combine

Chapter 13 Extended Segmentation Models

A module belonging to 8MALLsubsystem, on the other hand, takes the name of its
CODEsegment from the name of the subsystem. The nameDATS-STACK

segment is stilDATA Thus, aSMALLsubsystem nameglJB1contains on€0ODE
segment namefUB1_CODEand oneDATA-STACKsegment namedATA A
SMALLSsubsystem nameslJB2contains on€ODEsegment namedUB2_CODE

and oneDATA-STACKsegment namedATA When the program modules are
combined, all segments with the same name are combined.

The memory layout of the loaded program containing the two subsySte®is
andsuUB2is as follows (it is assumed that both subsystemSire L RAN):

HIGH | SUB1 & SUB2
CODE CODE PROGRAM
SUB1_CODE SUB2_CODE STACK
DATA
PROGRAM PROGRAM SEGMENT
CODE CODE SUBL & SUB2
OF OF PROGRAM
SUBSYSTEM SUBSYSTEM DATA &
SUB1 SUB2 CONSTANTS
SS
..CS LOW ... DS

Note that a program using tMEDIUMsegmentation control is equivalent to a
program in which each module is declared to be in a urstywe_Lsubsystem.

A module belonging to @OMPACSubsystem takes the name ofdt3DEsegment
and the name of iBATAsegment from the subsystem name. SORPACT
subsystem name®lUB1 contains on€ODEsegment namesUB1_CODEONeDATA
segment name8UB1_DATA and oneSTACKsegment nameSTACK A COMPACT
subsystem name®lUB2 contains on€ODEsegment namesUB2_CODEONEDATA
segment namedUB2_DATA and oneSTACKsegment name8TACK The loaded
program will contain five segments, Mo@DEsegments, twdATAsegments, and
oneSTACKsegment. Note that a program usinglthRGEsegmentation control is
equivalent to a program in which each module is declared to be in a unique
COMPACSuUbsystem.

PL/M-386 Programmer's Guide Chapter 13 307

A LARGEsubsystem can be simulated b @VPACSubsystem containing only
one module. HoweveLARGEsubsystems are useful for the following reason. A
LARGEsubsystem nameglJB1, which contains the modul@&0OD1MOD2 and

MOD3 has thre€ODEsegments namedOD1_CODRBOD2_COQENdMOD3_CODE
and threebDATAsegments namedOD1_DATAMOD2_DATAandMOD3_DATA As
usual, it contains oN8TACKsegment name8TACK It is possible to uselsARGE
subsystem instead of inventing names for ma@PACSubsystems, each
containing only one module. Note that the segment name IrAR@Esubsystem
is derived from the module names and not from the subsystem name.

TheLARGEsegmentation control is identical to th@MPACEegmentation control.
However, there is a difference betweRGEandCOMPACTubsystems. In a
LARGEsubsystem, the external definition of all symbols inBKEORTSist have

their segment field set to an unknown value. This enables the creation of external
far objects with public locations that are unknown at compile time. In all other
respects, AARGEsubsystem is identical toGODMPACSubsystem.

Open Subsystems

308

Compiling files using only the segmentation controls and using no other subsystem
controls produces open subsystems. When object modules are combined, all
modules created from compilations specifying a particular segmentation control are
automatically combined. Segments are created according to the rules for the
segmentation control. A list of modules belonging to an open subsystem is
therefore not needed at compile time. Modules can be freely added to or deleted
from an open subsystem at any time during program development.

Note that bottRAMandROMmModules are combined into the single open subsystem.
For aSMALLsubsystem, be careful when combinigMandROMmModules,
particularly concerning the passing of pointer parameters and the accessing of
constants not in the current module.

It is not possible to pass pointer parameters bet@®.LRAMandSMALL ROM
modules, because pointers are defined differently in each submodel. Also, it is not
possible to directly reference constants definedRosmodule from &RAM

module, and vice versa, beca®¥evmodules define constants to be in the data
segment, ang&OMmodules define constants to be in the code segment.

In the COMPACTodel, passing pointer parameters betwe&kandROMmModules
is not a problem, because pointers are always long. 8lAuL the restriction on
direct reference to constants applies.

Chapter 13 Extended Segmentation Models

The names of the segments in bsthALLandCOMPACTodels are identical:
CODE32for the code segmerbATAfor the data segment. This means that if
SMALLandCOMPACTModules are combined, they will also be combined to form a
single open subsystem consisting of @@DE32 DATA andSTACKsegments. Care
must be taken regarding stack references, becans®ACTefines a separate

stack segment ar@MALLdoes not. For more information on Intel386
microprocessor segment combining, see the binder chapterlmeai836 Family
Utilities User's Guide

Closed Subsystems

A closed subsystem differs from an open subsystem in two ways: it has a name and
it consists of a specific list of modules. The compiler must know the name of the
subsystem and the modules belonging to the subsystem in order to create a closed
subsystem.

The need for a closed subsystem name is simply to differentiate a particular closed
subsystem from another closed subsystem or from the open subsystem. This is
done as follows: the name of the subsystem is added to the beginning of the
segment names to create unigue code and data segments.

For example, if a subsystem is nanmethSE] then the code sections from all
modules belonging to ttHASE1subsystem are combined into a single code
segment calle@HASE1_CODE32similarly for COMPACSubsystems the data
sections are combined into a single data segment ¢aa8E1_DATA When
usingCOMPACThowever, the stack sections are still combined into a segment
calledSTACKbecause only one execution-time stack is usually necessary. Using
SMALLall data and stack segments are combined in one segmentDzEilgdis
usual.

A closed subsystem module list is needed for differentiation. For instance, if the
compiler is not informed that moduBCANNERelongs to subsysteRHASE] then
the compiler has no choice but to assume that m@&itheNNERelongs to the

open subsystem.

Thus, every module in a program either is specified as part of a closed subsystem

or, by default, becomes part of the open subsystem. A program can consist of only
closed subsystems, or of both closed subsystems and the open subsystem, or of only
the open subsystem (by default). There is only one open subsystem per program;

all open subsystems are treated as one subsystem by the utility used to combine the
program modules.

PL/M-386 Programmer's Guide Chapter 13 309

Communication Between Subsystems

Within a subsystem there can be code and/or data items (procedures and variables
that must be known by other subsystems; that is, they are meant to be referenced
from other subsystems. Such items are said to be exported. The export of a
symbol is not directed at any one particular subsystem; it is directed at all
subsystems in the program, including its own subsystem.

It is important to realize that the subsystem definitions are additions to normal
intermodulePUBLIC/EXTERNAL definitions, not replacements.

For instance, modulgOD1belongs to subsysteBUBland makes a reference to
symbolSYM2 SYM2belongs to subsysteBUB2 SYM2must be declared as
EXTERNALN MOD1 as usual, and must also be declared# IC and exported
from SUB2 Using this information, the compiler generates an intersegment
reference t&YM2

Syntax

310

Defining subsystems means telling the compiler what extended segmentation
model each subsystem uses, and which modules belong to each subsystem. In
addition, it means telling the compiler which procedures and data are accessible
from outside the subsystem.

Making everything available to all subsystems defeats the purpose of subsystems.
For example, if a procedure is declared to be accessible from outside the
subsystem, it is a far procedure. This means that all calls are far calls, even if the
procedure is never actually accessed from outside its subsystem.

Each subsystem in a PL/M program has one extended segmentation model
definition, which takes one of the following forms:

1. $ model (subsystem-id [submodel][x])

2. $ model ([submodel 1[x])

3. $ model (submodel [x])

where[x] is of the form;

[HAS module-list]

or

[HAS module-list ; EXPORTS public-list |
or

[EXPORTS public-list |

Chapter 13 Extended Segmentation Models

Where:

model is SMALL COMPACTor LARGEand specifies the extended
segmentation model for the subsystem. All modules in the subsystem
must be compiled with the same extended segmentation model.

submodel is-CONST IN CODE- or-CONST IN DATA- and specifies the
placement of constantsCONST IN CODE- corresponds to thROM
submodel:CONST IN DATA- corresponds to thRAMsubmodel.

The default depends on the segmentation control and corresponds to
the defaults oRAM|ROMor each model. The use of tReMandROM
controls (see Chapter 11) can create conflicts when subsystems are
defined. RAMis specified byCONST IN DATA- ; ROMs specified by
-CONST IN CODE- .

subsystem-id
is any PL/M identifier that can be used as a module name, and
specifies the name of the subsystem. This ID does not conflict with
any IDs used within the program. A subsystem control without
subsystem-id defines the open subsystem.

HAS module-list
is a list of module names, separated by commas, specifying the
modules belonging to the subsystem. These module names must
exactly match the module names from each source file comprising the
subsystem. (A module name is the name of the outeadsbck of
a source file.) A particular module name can appear in only one
module-list . There are no default modules in thedule-list
Any module for which a name does not appear rirodule-list
becomes part of the open subsystem.

EXPORT Sublic-list
is a list of procedure, variable, and constant IDs, specifying the code
and data objects exported by the subsystem (i.e., accessible outside of
the subsystem). Using a dollar sign in a procedure name within a
subsystem definition will cause an error. Any symbol in the exports
list may be declareBUBLIC in at most one of the modules belonging
to the subsystem, and should be decl&¢tERNALN all modules in
and out of the subsystem that access the symbol.

A particular exported symbol can appear in only pm@ic-list

The public-list is exhaustive. Only the symbols in the

public-list can be referenced from other subsystems. Symbols in
the subsystem declar@BLIC but not appearing in the

public-list are accessible only from within the subsystem itself.
ConverselyPUBLIC symbols that are not intended to be referenced
from outside the subsystem should not appear ipahéc-list

These symbols are called domestic symbols.

PL/M-386 Programmer's Guide Chapter 13 311

In most applications of the subsystem controlsHh8andEXPORTSists will

have several dozen entries apiece. To accommodate lists of this length, a
subsystem control may be continued over more than one control line. (The
continuation lines must be contiguous, and each must begin with a dollas)sign (
in the first column.) Keep in mind that using a dollar sign in a procedure name
within a subsystem definition will cause an error. Also, note that any number of
HASandeEXPORTJists can appear in a control, in any order. This enables
formatting of the subsystem specification so it can be easily read and maintained.

Consider the following subsystem definition:

$COMPACT(SUB_INPUT -CONST IN CODE- HAS mod_1, mod_2, mod_3; EXPORTS input)
$SMALL(SUB_PROCESS HAS mod_4, mod_5, mod_6, mod_7, mod_8)
$COMPACT(SUB_OUTPUT HAS mod_9, mod_10; EXPORTS format, output)

This sample program contains three subsystewB; INPUT, SUB_PROCESSand
SUB_OUTPUT SUB_INPUTandSUB_OUTPUTIse theCOMPACExtended
segmentation modelSUB_PROCES8Sses th&SMALLextended segmentation

model. Constants are stored with the codgUB_INPUT. TheSUB_INPUT

subsystem contains the modutesd_1, mod_2, andmod_3, and exports one
symbol,input . SUB_PROCESS&ontains modules 4 through 8UB_PROCESS
contains the main program, as it must, since it is the Svip Lsubsystem in the
program. (Recall that when mixil®MALLwith other models, the main program
must beSMALL) For this reason it does not need to export any symbols. A
subsystem containing the main program can export symbols (for instance, global
variables). But other subsystems must export at least one symbol, otherwise they
are totally unaccessible to the main program, and therefore useless to the program
of which they are a part.3UB_OUTPUBuUpplies two symbols called format and
output.

The preceding subsystem definition should appear in all 10 modudes X
throughmod_10), even though not all the exported symbols are used by all
subsystems. It is recommended that the subsystem definition be kept in an include
file, then included in each module compiled. This avoids any problems in
maintaining consistency between the subsystem definitions of all source modules.

Consider another example, this time containing an open subsystem. Start from an
existingCOMPACProgram that does not use extended segmentation models, but
whose code has grown too large. Assume that the following modules from the
original program ATTACH OPEN CLOSE ERRORSALLOCATE FREE) were

compiled with the following segmentation control:

$COMPACT

312 Chapter 13 Extended Segmentation Models

If the modulesALLOCATEandFREEare factored out from the original program,
creatingSUBSYS1 the subsystem definition is as follows:

$COMPACT(SUBSYS1 HAS ALLOCATE, FREE)

Now, suppose that the modules remaining in the open subsystem reference entry
pointsAllocBuff andFreeBuff in SUBSYS1 These must be exported from
SUBSYS1as follows:

$COMPACT(SUBSYS1 HAS ALLOCATE, FREE;
$ EXPORTS AllocBuff, FreeBuff)

or
$COMPACT(SUBSYS1 HAS ALLOCATE; EXPORTS AllocBuff:
$ HAS FREE; EXPORTS FreeBuff)

The second form illustrates how multipldSandEXPORTSists can be used to
document the items exported from each module.

If a routine inSUBSYS1references the proceduretalError in the module
ERRORSthe definition of the open subsystem is as follows:

$COMPACT (EXPORTS FatalError)

No data structures need to be changed, because data reference values can be two
bytes. All procedures excepliocBuff — andFreeBuff use the short call and
return mechanism.

Placement of Segmentation Controls

The segmentation controls have special restrictions associated with their
placement. These rules are as follows:

e The segmentation controls are primary controls. They must appear before the
DOstatement of the module name.

e Only the definition of the open subsystem (with no submodel al=kKRORTS
list) can be placed on the invocation line; definitions of all other subsystems
must occur inside the source program.

The subsystem definitions for the entire program can be included in the
compilation of each module using ttNCLUDE control. The compiler extracts the
information needed to correctly and efficiently compile each module's
intrasubsystem and inter-subsystem references.

PL/M-386 Programmer's Guide Chapter 13 313

Exporting Procedures

314

A symbol included in a subsyster®XPORTdist must be declare®UBLIC in one

of the modules in that subsystem. The symbol, called an exported symbol, can be
referenced by modules in other subsystem®URBLIC symbol defined within a
subsystem but not listed in EXPORT4ist is called a domestic symbol. It should

be referenced only by modules within the same subsystem.

A procedure should be exported only if it must be referenced outside the defining
subsystem, because accessing exported procedures will, in general, require more
code and time than is required for domestic procedures.

Exported procedures have the following characteristics:
e The long form of call and return is used.
e The caller's DS and ES registers are saved and restored upon entry and exit.

« The DS and ES registers are loaded with the associated data segment upon
entry.

Note that if aSSMALLor MEDIUMmModule calls a procedure that is exported from a
COMPACTDr LARGEsubsystem, the stack sections of the two will not be combined
when the modules are combined because the segments containing them have
different names (see Chapter 11). To get the proper stack siB&GsZE

control on the utility used to combine the program modules must be used to
increase the size of tlIATAsegment. This segment must be increased by the sum
of the stack requirements for both SiALLor MEDIUMmModule and the

subsystem.

Chapter 13 Extended Segmentation Models

The SMALLRAMsegmentation control uses short pointers. Therefore, care must be
taken when calling procedures that have pointer parameters and are exported from
aSMALLsubsystem. In these cases, the compiler always uses the value of the
current DS register as the selector portion of the long pointer. This means that
passing a pointer to any data items declared isthe_Lmodule will produce the
proper result, but the following restrictions must be observed for the special cases:

1. If the actual parameter is the NIL pointer, DS:0 will be passed to the exported
procedure. Consequently, the procedure executes differently if it is called
from aSMALLmodule than if it had been called fronc@VPACTMEDIUM or
LARGEmModule. For example:]

$COMPACT (FOO HAS N; EXPORTS FOO)
$SMALL
M: DO;
DECLARE PTR POINTER,;
FOO: PROCEDURE (P) EXTERNAL;
DECLARE P POINTER;
END FOO;
CALL FOO (NIL); /* Wrong, will pass DS:0 */
PTR = NIL;
CALL FOO (PTR); /* Wrong, will pass DS:0 */
END M;
$COMPACT (FOO HAS N; EXPORTS FOO)
N: DO;
FOO: PROCEDURE (P) PUBLIC;
DECLARE P POINTER;
DECLARE B BYTE;
B = (P=NIL); /* Will assign FALSE (000H) to B */
/* if FOO is called from SMALL; Will */
/* assign TRUE (OFFH) to B otherwise */
END FOO;
CALL FOO (NIL); /* Right, will pass 0:0 */
END N;

PL/M-386 Programmer's Guide Chapter 13 315

2. If the actual parameter is a pointer to a procedure, the compiler extends the
short pointer with DS and then passes the value of DS:(offset of procedure) to
the exported procedure. This situation should be avoided because the result of
any reference through such a pointer is undefined. For example:
$COMPACT (FOO HAS N; EXPORTS FOO)
$SMALL
M: DO;

DECLARE PTR POINTER;

DECLARE TABLE(10) BYTE;

FOO: PROCEDURE (P) EXTERNAL;
DECLARE P POINTER;

END FOO;

BAZ: PROCEDURE;

END BAZ;

CALL FOO (@BAZ2); /* Wrong, will pass */
/* DS:offset-of-BAZ */
PTR = @BAZ;
CALL FOO (PTR); /* Wrong, will pass DS:PTR */
CALL FOO (@TABLE), /* Right, will pass pointer */
END M; /*to TABLE */

Large Matrix Example

The largeREAL matrix example can now be fully developed (see Using
Subsystems). Recall that one module for each row is needed, with each module
containing a 1-billion elememEALarray. Running such an application is possible
only on systems having virtual memory management for supporting such large
data. The first module could be:

ROWO_MOD: DO; /* ROWO0_MOD is the module name */
DECLARE ROWO (1000000000) REAL PUBLIC;
END ROWO0_MOD;

316 Chapter 13 Extended Segmentation Models

The modules forROW1hroughROWSre similar. The subsystem definition at this
point is:

$COMPACT (ROWO_SYS HAS ROW0_MOD; EXPORTS ROWO)
$COMPACT (ROW1_SYS HAS ROW1_MOD; EXPORTS ROW1)
$COMPACT (ROW2_SYS HAS ROW2_MOD; EXPORTS ROW?2)
$COMPACT (ROW3_SYS HAS ROW3_MOD; EXPORTS ROWS3)
$COMPACT (ROW4_SYS HAS ROW4_MOD; EXPORTS ROW4)
$COMPACT (ROW5_SYS HAS ROW5_MOD; EXPORTS ROWS5)
$COMPACT (ROW6_SYS HAS ROW6_MOD; EXPORTS ROW6)
$COMPACT (ROW7_SYS HAS ROW7_MOD; EXPORTS ROW7)
$COMPACT (ROW8_SYS HAS ROW8_MOD; EXPORTS ROWS)
$COMPACT (ROW9_SYS HAS ROW9_MOD; EXPORTS ROW9)

Now define the program:

MATRIX_MOD: DO;

DECLARE ROWO (1000000000) REAL EXTERNAL;
DECLARE ROW1 (1000000000) REAL EXTERNAL;
DECLARE ROW2 (1000000000) REAL EXTERNAL;
DECLARE ROWS3 (1000000000) REAL EXTERNAL;
DECLARE ROW4 (1000000000) REAL EXTERNAL;
DECLARE ROWS5 (1000000000) REAL EXTERNAL;
DECLARE ROWS®6 (1000000000) REAL EXTERNAL;
DECLARE ROW?7 (1000000000) REAL EXTERNAL;
DECLARE ROWS (1000000000) REAL EXTERNAL;
DECLARE ROWS9 (1000000000) REAL EXTERNAL;

PL/M-386 Programmer's Guide Chapter 13 317

DECLARE ROW_POINTERS (10) POINTER INITIAL (
@ROWO0, @ROW1, @ROW2, @ROW3, @ROW4,
@ROW5, @ROW6, @ROW7, @ROWS8, @ROW9);
RETRIEVE_ELEMENT: PROCEDURE (ROW,COL) REAL PUBLIC;
DECLARE (ROW,COL) WORD;
DECLARE ROW_PTR POINTER,
ROW_ARRAY BASED ROW_PTR (1) REAL;
ROW_PTR = ROW_POINTERS (ROW);
RETURN ROW_ARRAY (COL);
END RETRIEVE_ELEMENT;
STORE_ELEMENT: PROCEDURE (ROW,COL,VAL) PUBLIC;
DECLARE (ROW,COL) WORD;
DECLARE VAL REAL,
DECLARE ROW_PTR POINTER,
ROW_ARRAY BASED ROW_PTR (1) REAL;
ROW_PTR = ROW_POINTERS (ROW);
ROW_ARRAY (COL) = VAL;
END STORE_ELEMENT;
[* the matrix processing code inserted here */
END MATRIX_MOD;

Now assume that other modules will be added to this program later. In this case, it
is better to puMATRIX_MOand these other modules in tt®@ MPACT OPEN
subsystem. This way modules can freely be added or deleted without having to
redefine the overall subsystem structure. Also assume the need to calculate sines
and cosines of various matrix elements. The functB»E andCOSINEare

supplied in an external math package. The only thing known about this package is
that all its routines require long calls.

The final subsystem definition is now:

$LARGE (EXPORTS SINE, COSINE)

$COMPACT (ROWO_SYS HAS ROW0_MOD; EXPORTS ROWO)
$COMPACT (ROW1_SYS HAS ROW1_MOD; EXPORTS ROW1)
$COMPACT (ROW2_SYS HAS ROW2_MOD; EXPORTS ROW?2)
$COMPACT (ROW3_SYS HAS ROW3_MOD; EXPORTS ROWS3)
$COMPACT (ROW4_SYS HAS ROW4_MOD; EXPORTS ROW4)
$COMPACT (ROW5_SYS HAS ROW5_MOD; EXPORTS ROWS5)
$COMPACT (ROW6_SYS HAS ROW6_MOD; EXPORTS ROW6)
$COMPACT (ROW7_SYS HAS ROW7_MOD; EXPORTS ROW?7)
$COMPACT (ROW8_SYS HAS ROW8_MOD; EXPORTS ROWS)
$COMPACT (ROW9_SYS HAS ROW9_MOD; EXPORTS ROW9)

318 Chapter 13 Extended Segmentation Models

The COMPACTontrol should appear in the invocation line. The first control line
indicates that the symbo8NE andCOSINErequire long references and belong to
some unknown subsystem. The next ten lines define the ten closed subsystems,
each containing a row of the matrix. T@@MPACTontrol is specified on the
invocation line when compilingIATRIX_MOand when compiling any other
module in the program except tR&wnodules).

Every subsystem definition should be consistent. For exaRPM/0_MODust
reside in the same subsystem in each definition. It is convenient to put control
lines, such as those shown above, in an include file. If any changes to the
subsystem definitions are made later, only one file needs to be updated.

PL/M-386 Programmer's Guide Chapter 13 319

Error and Warning Messages

The compiler may issue these kinds of error and warning messages:
e PL/M program error messages

e Fatal command tail and control error messages

» Fatal input/output error messages

* Fatal insufficient memory error messages

« Fatal compiler failure error messages

* Insufficient memory warning messages

The source errors are reported in the program listing; the fatal errors are reported
on the console device.

PL/M Program Error and Warning Messages

Nearly all of the source PL/M program error messages are interspersed in the
listing at the point of error and follow the general format:

*»** ERROR mmmniN ppp (LINE ppp), NEAR' aaa', message

or:
*»** WARNING mmniN ppp (LINE ppp), NEAR' aaa', message
Where:
mmm is an error number from the following list.
ppp is the actual source line number where the error occurs.
aaa is the source text near where the error is detected.

message is a message from the following list.

The following source error messages may be encountered.

*** ERROR 1 INVALID CONTROL
An unrecognized control in the control line; for example:

$NXCODE; /* probably intended NOCODE */

PL/M-386 Programmer's Guide Chapter 14 321

*** ERROR 2 PRIMARY CONTROL FOLLOWS NON-CONTROL LINE
Primary controls can be control lines in the source program, but they must come
first. No other statements can precede them.

*** ERROR 3 MISSING CONTROL PARAMETER
Certain controls (e.gINCLUDE), require a parameter.

*** ERROR 4 INVALID CONTROL PARAMETER
Examples are an illegal pathname for a control su&@Ba&CTor a string where a
number is required.

*** ERROR 5 INVALID CONTROL FORMAT
See Chapter 11 for correct formatting of control lines.

*** ERROR 7 INVALID PATHNAME
The pathname for a file is incorrectly specified; see the host-system operating
instructions.

*** WARNING 8 ILLEGAL PAGELENGTH, IGNORED
The pagelength specified is less than 5 or greater than 255; the default is 60.

*** ERROR 9 ILLEGAL PAGEWIDTH, IGNORED
The pagewidth specified is less than 60 or more than 132; the default is 120.

*** WARNING 10 RESPECIFIED PRIMARY CONTROL, IGNORED
Primary controls can be specified only once and cannot alter a previous setting.

*** ERROR 11 MISPLACED ELSE OR ELSEIF CONTROL
ELSE or ELSEIF control occurred without a correspondifgcontrol.

*** ERROR 12 MISPLACED ENDIF CONTROL
ENDIF control occurred without a correspondifg control.

*** ERROR 13 MISSING ENDIF CONTROL
End of source file without aBNDIF control to match a previous .

*** ERROR 14 NAME TOO LONG(31), TRUNCATED
Switch variable name i , ELSE, SET, or RESETstatement is too long.

*** ERROR 15 MISSING OPERATOR
Two operands in an expression must be separated by an arithmetic, logical, or
relational operator.

*** WARNING 16 INVALID CONSTANT, ZERO ASSUMED
The constant specified ISET, IF , or ELSEIF is invalid.

*** ERROR 17 INVALID OPERAND
SET, RESET IF , orELSEIF is used in an invalid position.

*** WARNING 18 PARENTHESES IGNORED WITHIN CONDITIONAL COMPILATION
CONDITION
Parentheses within conditional compilation conditions are ignored and the

expression is evaluated according to the regular precedence rules.

322 Chapter 14 Error and Warning Messages

*** ERROR 19 LIMIT EXCEEDED: SAVE NESTING
See Appendix B for the correct limit.

*** ERROR 20 LIMIT EXCEEDED: INCLUDE NESTING
See Appendix B for the correct limit.

*** ERROR 21 MISPLACED RESTORE CONTROL
RESTOREBworks only if there is a precedilBpAVE

*** ERROR 22 UNEXPECTED END OF CONTROL
A segmentation control requires a continuation line or a right parenthesis.

*** ERROR 23 SYMBOL EXISTS IN MORE THAN ONE HAS LIST
A module name can occur in only oAASlist.

*** ERROR 24 SUBSYSTEM ALREADY DEFINED
The subsystem name has already been defined.

*** ERROR 25 CONFLICTING SEGMENTATION CONTROLS
More than one segmentation control affecting the module being compiled was
encountered. One common cause is specifying-{@NST IN CODE- andROM
in a module with a subsystem definition.

*** ERROR 26 ILLEGAL PL/M IDENTIFIER
Identifiers can be up to 31 alphanumeric characters or the underscore; the first
character must be alphabetic or the underscore.

*** ERROR 27 PREDEFINED SWITCHES ARE NOT VALID BEFORE MODULE NAME
Predefined switches can be used only after theDipsttatement.

*** WARNING 28 INVALID PL/M CHARACTER, IGNORED
Look near the text flagged for an invalid character, or one that is inappropriate in
context. Delete it or retype the statement.

*** WARNING 29 UNPRINTABLE CHARACTER, IGNORED
Retype the line in question using valid characters.

*** ERROR 30 STRING TOO LONG, TRUNCATED
See Appendix B for the correct limit.

*** ERROR 31 ILLEGAL CONSTANT TYPE
A constant contains illegal characters. This might reflect missing operators (e.g.,
A=4T instead 0A=4+T).

*** ERROR 32 INVALID CHARACTER IN CONSTANT
For example, 107B and OABCD will cause this error because neither can be valid
in any PL/M interpretation; 7 is not a binary numeral, B cannot occur in decimal or
octal, and neither string ends in H.

PL/M-386 Programmer's Guide Chapter 14 323

*** ERROR 33 RECURSIVE MACRO EXPANSION
Following is an example causing this error:
DECLARE A LITERALLY 'B’;

DECLARE B LITERALLY 'A’;

B=4;/* error discovered here */

LITERALLY s cannot be declared circularly (i.e., solely in terms of each other).
*** ERROR 34 LIMIT EXCEEDED: MACRO NESTING (5)
This error occurs when too mabfCLAREstatements refer back through each
other to the one that actually supplies a type. See Appendix B for the correct limit.
For example:
DECLARE A LITERALLY 'B’;
DECLARE B LITERALLY 'C;

DECLARE Y LITERALLY 'Z};
DECLARE Z BYTE INITIAL (77);

A=7; /* error discovered here */

*** ERROR 35 LIMIT EXCEEDED: SOURCE LINE LENGTH (128)
See Appendix B for the correct limit.

*** ERROR 37 INVALID REAL CONSTANT
*** WARNING 38 REAL CONSTANT UNDERFLOW
An underflow occurred when conversion into floating-point was attempted.

*** WARNING 39 REAL CONSTANT OVERFLOW
An overflow occurred when conversion into floating-point was attempted.

*** ERROR 40 NULL STRING NOT ALLOWED
Strings of length zero are not supported.

*»** ERROR 41 DELETED: " tokens "

The compiler deleted tokens while attempting to recover from a syntax error.
*»** ERROR 42 NEAR " syntax " INSERTED:" tokens "

The compiler inserted tokens while attempting to recover from a syntax error.

*** ERROR 43 STATEMENTS FOLLOW MODULE END
Statements follow the logical end-of-module.

*** ERROR 44 CONSTANT TOO LARGE
A constant value (e.g., 999,999,999,999) is too large for the compiler.

324 Chapter 14 Error and Warning Messages

*** WARNING 45 MISMATCHED BLOCK IDENTIFIER
If a label is supplied in aBNDstatement, the label must match the first unmatched
DOstatement above tlEND Sometimes the error involves a module name
confused with a procedure name.

*** ERROR 46 DUPLICATE PROCEDURE NAME
Procedure names must be unique.

*** ERROR 47 LIMIT EXCEEDED: PROCEDURES
Too many procedures in this module. Break it into smaller modules. See
Appendix B for the correct limit.

*** ERROR 48 DUPLICATE PARAMETER NAME
A parameter must be declared exactly once. This message indicates that the
flagged parameter already has a definition at this block level, as in:
YAR: PROCEDURE (YAR77, YAR78);
DECLARE YAR77 BYTE;
DECLARE YAR77 BYTE;

Perhaps a different spelling was intended.

*** ERROR 49 NOT AT MODULE LEVEL
The flagged attribute or initialization can be valid only at the module level, not in a
procedure.

*** ERROR 50 DUPLICATE ATTRIBUTE
Attributes should be specified only once. This message means the compiler has
found a declaration like:
DECLARE B BYTE EXTERNAL EXTERNAL;

*** ERROR 51 MISSING OR ILLEGAL INTERRUPT VALUE
Interrupt numbers must be whole-number constants between 0 and 255. Thus -7 or
272 would be invalid.
*** ERROR 52 INTERRUPT WITH PARAMETERS
No parameters can be used in interrupt procedures.
*** ERROR 53 INTERRUPT WITH TYPED PROCEDURE
Interrupt procedures must be untyped.
*** ERROR 54 INVALID DIMENSION
*** ERROR 55 LIMIT EXCEEDED: NESTED STRUCTURES
See Appendix B for the correct limit.

*** ERROR 56 STAR DIMENSION WITH STRUCTURE MEMBER
Star dimension*() must not be used with structures. The dimensions for an array
that is a structure member must be specified explicitly.

*** ERROR 57 CONFLICT WITH PARAMETER
Object cannot be a parameter.

*** ERROR 58 DUPLICATE DECLARATION
The flagged item already has a definition declared at this block level.

PL/M-386 Programmer's Guide Chapter 14 325

*** ERROR 59 ILLEGAL PARAMETER TYPE
Parameters cannot be declared of type structure or array.

*** ERROR 60 DUPLICATE LABEL
Each label must be unique within its block or scope. Other®ie&® andCALLS
would have ambiguous targets.

*** ERROR 61 DUPLICATE MEMBER NAME
Member has been declared twice in the same structure. For example, in:
DECLARE AIR STRUCTURE (F4 BYTE, F4 BYTE);

subsequent referencesAtR.F4 would be ambiguous.

*** ERROR 62 UNDECLARED PARAMETER
A parameter named in the procedure statement was not defined in the body of the
procedure.

*** ERROR 63 CONFLICTING ATTRIBUTES
A variable has been declared with inconsistent attributes pelgLIC or
EXTERNALDATAOr INITIAL , AT or BASED.

*** ERROR 64 LIMIT EXCEEDED: DO BLOCKS
See Appendix B for the correct limit.

*** ERROR 65 ILLEGAL PARAMETER ATTRIBUTE
Certain attributes cannot be used to declare a parameteP(¢BfIC, EXTERNAL
DATA INITIAL , AT, or BASED.

*** ERROR 66 UNDEFINED BASE
A variable was declareBASEDusing an undeclared identifier.

*** ERROR 67 INVALID TYPE OR ATTRIBUTE FOR BASE
A base must be a non-subscripted scalar of AIBRESSPOINTER WORD
SELECTOROr OFFSET

*** ERROR 68 MISPLACED DECLARATION
Declarations and procedures can be interspersed, but not declarations and
executable statements.

*** ERROR 69 INVALID BASE WITH LABEL OR MACRO
BASEDcannot be used withABEL or LITERALLY types.

** ERROR 70 INVALID DIMENSION WITH LABEL OR MACRO
LABEL or LITERALLY cannot be dimensioned.

*** ERROR 71 INITIALIZATION LIST REQUIRED
A list of initial values is required if theNITIAL attribute, the non-external
dimension form, or the non-exterraATAattribute is used.

*** ERROR 72 BASED CONFLICTS WITH ATTRIBUTES
Examples of attributes conflicting with base include DATA INITIAL , PUBLIC,
andEXTERNAL

326 Chapter 14 Error and Warning Messages

*** ERROR 73 DATA OR EXECUTABLE STATEMENTS IN EXTERNAL
An EXTERNALprocedure, being defined elsewhere, cannot contain executable
statements or data declarations for variables that are not formal parameters.

*** ERROR 74 MISSING RETURN FOR TYPED PROCEDURE
A typed procedure must return a value; thus, it must incliRIEET&RNstatement.

*** ERROR 75 INVALID NESTED REENTRANT PROCEDURE
Reentrant procedures cannot contain procedures.

*** ERROR 76 LIMIT EXCEEDED: FACTORED LIST
Too many variables were named in a factored declaration. Break it into several
declarations. See Appendix B for the correct value.

*** ERROR 77 LIMIT EXCEEDED: STRUCTURE MEMBERS
See Appendix B for the correct value.

*** ERROR 78 MISSING PROCEDURE NAME
Every procedure must have a name.

*** ERROR 79 MULTIPLE PROCEDURE LABELS
Procedures must have only one name.

** ERROR 80 DECLARATIONS MAY NOT BE LABELED
Labels cannot be used on declaration statements.

*** ERROR 81 STAR DIM WITH FACTORED LIST NOT ALLOWED
Separate the array declarations giving the data initializations for each array
separately, or explicitly state the dimensions of the factored array declarations as in
the following examples:
DECLARE (A,B) (*) BYTE DATA (‘abcd', 'xywz'); /* illegal */
DECLARE (A) (*) BYTE DATA (‘abcd’); * legal */
DECLARE (B)(*) BYTE DATA ('xywz'); [* legal */

or
DECLARE (A,B) (4) BYTE DATA (‘abcd’, 'xywz"); /* legal */

*** ERROR 82 SIZE EXCEEDS nn BYTES
Storage for the declared item exceeds the maximum storage for the microprocessor.
For the Intel386 and Intel486 microprocessors 4G bytes.

*** WARNING 83 PROCEDURE CONTAINS NO EXECUTABLE STATEMENTS
This procedure does nothing, but executes successfully.

*** ERROR 85 INITIAL USED WITH ROM OPTION
Variables declared witiNITIAL are not initialized until load-time. Thus, if the
program is irROMthese initializations will never occur.

*** ERROR 86 LIMIT EXCEEDED: NUMBER OF PARAMETERS
The procedure declaration includes too many parameters. See Appendix B for the
correct limit.

PL/M-386 Programmer's Guide Chapter 14 327

*** ERROR 88 LIMIT EXCEEDED: PROGRAM TOO COMPLEX
The program has too many complex expressions, cases, or procedures. Break it
into smaller procedures.

*** ERROR 89 COMPILER ERROR: BAD ERROR RECOVERY
An unrecoverable error occurred. Trying a different copy of the compiler on a
different drive might reveal that the first copy has been damaged. Contact your
Intel representative.

*** ERROR 90 COMPILER ERROR: MULTIPLE PARSE ARGS
See source error message number 89.

*** ERROR 91 LIMIT EXCEEDED: PROGRAM TOO COMPLEX
The program has too many complex expressions, cases, or procedures. Break it
into smaller procedures.

*** ERROR 92 COMPILER ERROR: PARSE ARG STACK UNDERFLOW
See source error message number 89.

*** ERROR 93 LIMIT EXCEEDED: PROGRAM TOO COMPLEX
The program has too many complex expressions, cases, or procedures. Break it
into smaller modules.

*** ERROR 94 COMPILER ERROR: PARSE STACK UNDERFLOW
See source error message number 89.

*** ERROR 95 COMPILER ERROR: PARSE BUFFER OVERFLOW
See source error message number 89.

*** ERROR 96 LIMIT EXCEEDED: BLOCK NESTING
The program has too many nestgdblocks. Break it into smaller procedures.
See Appendix B for the correct limit.

*** ERROR 97 COMPILER ERROR: SCOPE STACK UNDERFLOW
See source error message number 89.

*** ERROR 98 LIMIT EXCEEDED: STATEMENT TOO COMPLEX
The statement is too large for the compiler. Break it into several smaller
statements.

*** ERROR 99 COMPILER ERROR: SEMANTIC UNDERFLOW
See source error message number 89.

*** ERROR 100 STRING CONSTANT TOO LONG
String constants used as scalars have a maximum of four characters.

*** ERROR 101 UNSUBSCRIPTED ARRAY
The array reference requires a subscript.

*** WARNING 102 UNQUALIFIED STRUCTURE
This statement is ambiguous as to which structure or member it references.

328 Chapter 14 Error and Warning Messages

*** ERROR 103 NOT AN ARRAY
Subscripts are permitted only on identifiers declared as arrays. Check spelling
consistency.

*** ERROR 104 MULTIPLE SUBSCRIPTS
PL/M has only single dimension arrays. Therefore, only one subscript is permitted
in an array reference. For example, for any artals references of the form
TING(2,4) o0rTING(3,7,9,6) are invalid.

*** ERROR 105 NOT A STRUCTURE
For example, a reference of the foBNU.F1, whereGNUwas not declared a
structure.

*** ERROR 106 UNDEFINED IDENTIFIER
Every identifier must be declared.

*** ERROR 107 UNDEFINED MEMBER
For exampleKAPI.HORN, whereKAPI is a valid, declared structure B4ORNS an
undeclared member of the structure.

*** ERROR 108 ILLEGAL ITERATIVE DO INDEX TYPE
Only expressions of typgYTE, WORPandINTEGERcan be used.

** ERROR 109 UNDEFINED OR NOT A LABEL
The identifier followingGOTQmust be a label; the flagged item was declared
otherwise, or the identifier was declared as a label but was not defined.

*** ERROR 110 MISSING RETURN VALUE
A typed procedure must return a value that is specified IREIT®RNstatement.

*** ERROR 111 INVALID RETURN WITH UNTYPED PROCEDURE
An untyped procedure does not return a value; thuRET&RNstatement cannot
specify one.

*** ERROR 112 INVALID INDIRECT TYPE
Only WORDr POINTERscalars can be used for indirect calls. This excludeRD
or POINTERexpressionsBYTE DWORDNTEGER or REALscalars; all structures;
and all arrays.

*** ERROR 113 INVALID PARAMETER COUNT
The number of actual parameters supplied @AaL must be equal to the number
of formal parameters declared in the procedure.

*** ERROR 114 QUALIFIED PROCEDURE NAME
Procedure names cannot be qualified.

*** ERROR 115 INVALID FUNCTION REFERENCE
Typed procedures can be invoked only by use in an expression, natAy.a

*** ERROR 116 INVALID CASE EXPRESSION TYPE
Case expressions must be of tg¥'E WORDor INTEGER

PL/M-386 Programmer's Guide Chapter 14 329

** ERROR 117 LIMIT EXCEEDED: NUMBER OF ACTIVE CASES
Reduce the number of cases in this case statement; the maximum number has bee
exceeded.

*** ERROR 118 TYPE CONFLICT
An example of type conflict iswORRNAREAL mixed in a reference.

*** ERROR 119 INVALID BUILT-IN REFERENCE
Built-in reference was qualified with a member name)WTPUT/OUTWORid
not appear on the left side of an assignment.

*** ERROR 120 INVALID PROCEDURE REFERENCE
Untyped procedures must be invoked by L statement; references to such
procedures are not permitted in expressions.

*** ERROR 121 INVALID LEFT-HAND SIDE OF ASSIGNMENT
The left-hand side of the assignment must be a scalar variable. For example,
PROCEDURE=ar INWORD(7)=9.

** ERROR 122 INVALID REFERENCE
Invalid label reference.

*** ERROR 123 USE OF "." MAY BE UNSAFE
The "dot" operator does not always produce correct results in a PL/M program that
contains more than one data segment or more than one code segment.

*** ERROR 124 PROCEDURE NAME REQUIRED
Procedure name is required SETSINTERRUPTandINTERRUPT$PTRbuilt-ins.

*** ERROR 125 PROCEDURE NAME ONLY
Parameters are not allowed on the procedure naSETSRINTERRUPTand
INTERRUPT$PTR

*** ERROR 126 BAD INTERRUPT NUMBER
Interrupt numbers in @AUSES$SINTERRUPBtatement must be whole-number
constants in the range (0 - 255).

*** ERROR 127 CONSTANT ONLY
In this instance, a constant is required.

*** ERROR 128 ARRAY REQUIRED
Some built-ins need an array name as a parameter.

*** ERROR 129 INTERRUPT PROCEDURE REQUIRED
The name declared inSET$INTERRUPTprocedure oINTERRUPT$PTRfunction
must be a previously declared procedure.

*** ERROR 130 INVALID RESTRICTED OPERAND
Illegal use of a dot operator.

*** ERROR 131 INVALID RESTRICTED OPERATOR
Only + and — can be used in restricted expressions.

330 Chapter 14 Error and Warning Messages

*** ERROR 133 REFERENCE REQUIRED
A variable reference is required IGENGTH LAST, andSIZE .

*** ERROR 134 VARIABLE REQUIRED
The operand taENGTH LAST, andSIZE must be a variable.

*** ERROR 135 VALUE TOO LARGE
A value is too large for its contextually determined type.

*** ERROR 136 ABSOLUTE POINTER WITH SHORT POINTERS
Two possible causes in tBMALL(RAM case: pointer variables cannot be
initialized with or assigned whole number constants; or the @ operator cannot be
used with a variable that was located at an absolute address that was specified by a
whole number constant.

*** ERROR 137 INVALID RESTRICTED EXPRESSION
Only addresses or constant types can be used in restricted expressions.

*** ERROR 138 PUBLIC AT EXTERNAL
PUBLIC declarations must be fully defined within the procedure. For example:
DECLARE KUN BYTE EXTERNAL;
DECLARE JAN BYTE PUBLIC AT (.KUN);

is illegal.
*** ERROR 139 PUBLIC AT ABSOLUTE
Absolute locations foPUBLICs are supported only in théRGEmodel.

*** ERROR 140 PUBLIC AT MEMORY
PUBLIC at @MEMORS not supported bOMPACT

** ERROR 141 AT BASED VARIABLE
Based variables cannot be usedinclauses.

*** ERROR 142 ILLEGAL FORWARD REFERENCE
An AT expression cannot have a forward reference. Any location reference in the
AT expression must refer to previously declared variables.

*** ERROR 143 VARIABLE TYPE REQUIRED IN AN AT EXPRESSION
TheAT expression must be a variable name. For example:
DECLARE B BYTE AT (.proc_name);

is illegal.

*** ERROR 144 LIMIT EXCEEDED: DATA OR STACK SEGMENT TOO LARGE
*** ERROR 145 LIMIT EXCEEDED: CODE OR CONST SEGMENT TOO LARGE
*** ERROR 146 LIMIT EXCEEDED: NUMBER OF EXTERNALS

See Appendix B for the correct limit.

*** ERROR 147 LABEL NOT AT LOCAL OR MODULE LEVEL
Label was not used correctly.

** ERROR 148 INITIALIZING MORE SPACE THAN DECLARED
The number of initialization values exceeds the number of declared elements.

PL/M-386 Programmer's Guide Chapter 14 331

** ERROR 149 ILLEGAL MODULE NAME REFERENCE
Module names cannot be referenced.

*** WARNING 150 USE OF "." WITH FAR PROCEDURE
A subsequent indirect call made through the respective address/pointer generates
the wrong type of call.

*** WARNING 151 USE OF "@" WITH NEAR PROCEDURE
See source error message number 150.

*** ERROR 152 INVALID "." OR "@" OPERAND
Must be used with a variable, procedure, or constant list.

*** ERROR 153 INVALID RETURN IN MAIN PROGRAM
A main program must have no returns.

*** ERROR 154 STAR DIMENSIONED VARIABLE WITH LENGTH, SIZE OR LAST
The LENGTHLAST, andSIZE built-in functions cannot be used with variables
declared with the implicit dimension specifiel) @nd theEXTERNALattribute.

*** ERROR 155 SYMBOL EXPORTED FROM ANOTHER SUBSYSTEM
A PUBLIC symbol in this module is also exported by another subsystem.

*** ERROR 156 LONG POINTER REQUIRED FOR THIS CONSTRUCT
A model with long pointers is required.

** ERROR 158 INITIALIZATION CONFLICTS WITH ATTRIBUTES
An external variable cannot be initialized.

*** ERROR 159 ILLEGAL INTERRUPT PROCEDURE REFERENCE
An interrupt procedure cannot be invoked with @#e L statement.

*** ERROR 160 INTERRUPT PROCEDURES MUST BE PUBLIC
An interrupt procedure must also be givenRuBLIC attribute.

*** ERROR 161 ILLEGAL ABSOLUTE POINTER OR SELECTOR
Constants cannot be assigne@@NTERs orSELECTOR, nor used to initialize
them. POINTERs andSELECTOR also cannot be passed as actual parameters.

*** ERROR 162 LIMIT EXCEEDED: STATEMENT TOO COMPLEX
The statement is too large for the compiler. Break it into several smaller
statements.

*** WARNING 162 LIMIT EXCEEDED: PROGRAM COMPLEXITY
Too many complex expressions, cases, etc. Break it into smaller procedures.

*** ERROR 163 COMPILER ERROR: SEMANTIC UNDERFLOW
See source error message number 89.

*** ERROR 164 COMPILER ERROR: INVALID NODE
See source error message number 89.

*** ERROR 165: 286 INTERFACE OBJECT NOT EXTERNAL
If the machine parameter i286, all identifiers in thed list must be declared
EXTERNAL

332 Chapter 14 Error and Warning Messages

*** ERROR 166 COMPILER ERROR: INVALID TREE
See source error message number 89.

*** ERROR 167 COMPILER ERROR: SCOPE STACK UNDERFLOW
See source error message number 89.

*** ERROR 168 LIMIT EXCEEDED: PROGRAM COMPLEXITY
The program has too many complex expressions, cases, or procedures. Break it
into smaller procedures.

*** ERROR 169 COMPILER ERROR: INVALID RECORD
See source error message number 89.

*** ERROR 170 INVALID DO CASE BLOCK, AT LEAST ONE CASE REQUIRED
The DOCASEDIock is described in Chapter 6.

*** ERROR 171 LIMIT EXCEEDED: NUMBER OF CASES
*** ERROR 172 LIMIT EXCEEDED: NESTING OF TYPED PROCEDURE CALLS
*** ERROR 173 LIMIT EXCEEDED: NUMBER OF ACTIVE PROCEDURES AND DO
CASE GROUPS
See Appendix B for the correct limit.

*** ERROR 174 ILLEGAL NESTING OF BLOCKS, ENDS NOT BALANCED
For everyDQ anENDis needed.

*** ERROR 175 COMPILER ERROR: INVALID OPERATION
See source error message number 89.

*** ERROR 176 LIMIT EXCEEDED: REAL EXPRESSION COMPLEXITY
TheREALSstack has eight registers. Heavily nested us&Eal functions with
REAL expressions as parameters can get excessively complex. See Appendix F.

*** ERROR 177 COMPILER ERROR: REAL STACK UNDERFLOW
See source error message numbers 89 and 176.

*** ERROR 178 LIMIT EXCEEDED: BASIC BLOCK COMPLEXITY
There is a very long list of statements without lab@ssSEs, IF s, GOT@G, and/or
RETURN. Either break the procedure into several smaller procedures, or add labels
to some of the statements.

*** ERROR 179 LIMIT EXCEEDED: STATEMENT SIZE
The statement is too large for the compiler. Break it into several smaller
statements.

*** ERROR 199 LIMIT EXCEEDED: PROCEDURE COMPLEXITY FOR OPTIMIZE (2)
The combined complexity of statements, user labels, and compiler-generated labels
is too great. Simplify as much as possible, perhaps breaking the procedure into
several smaller procedures.

** ERROR 200 ILLEGAL INITIALIZATION OF MORE SPACE THAN DECLARED
The number of initialization values exceeds the number of declared elements.

** ERROR 201 INVALID LABEL: UNDEFINED
No definition for this label was found.

PL/M-386 Programmer's Guide Chapter 14 333

*** ERROR 202 LIMIT EXCEEDED: NUMBER OF EXTERNAL ITEMS
See Appendix B for the correct limit.

*** ERROR 203 COMPILER ERROR: BAD LABEL ADDRESS
See source error message number 89.

*** ERROR 204 LIMIT EXCEEDED: CODE SEGMENT SIZE
See Appendix B for the correct limit.

*** ERROR 205 COMPILER ERROR: BAD CODE GENERATED
See source error message number 89.

*** ERROR 206 LIMIT EXCEEDED: DATA SEGMENT SIZE
See Appendix B for the correct limit.

*** ERROR 207 ATTEMPT TO USE 0 AS DIVISOR IN DIVISION/MODULO
Zero cannot be used as a divisor in division/modulo; use 1. This error appears at
the end as a semantic error.

*** ERROR 210 COMPILER ERROR: OBJECT MODULE GENERATION ERROR
*** ERROR 211 COMPILER ERROR: DEBUG SEGMENT SIZE OVERFLOW
*** ERROR 212 COMPILER ERROR: ILLEGAL FIXUP
*** ERROR 230 COMPILER ERROR: INVALID INTERNAL TYPE
See source error message number 89.

*** ERROR 241 ILLEGAL TYPE CASTING
For example:
pt2=pointer (real_value)

is illegal.
*** ERROR 242 TRUNCATION OF n BIT OFFSET
OFFSETwas assigned to a variable with a size less than 32 bits; the assigned value

may not be a vali®FFSET For the 8086 and 286 microprocessorss, 16. For
the Intel386 and Intel486 microprocessorss 32.

*** ERROR 243 286 INTERFACE OBJECT NOT EXTERNAL
If the machine parameter i286, all identifiers in thed list must be declared
EXTERNAL

*** ERROR 244 SYMBOL REPEATED IN INTERFACE SPECIFICATION
Symbols can be used only once inldMERFACEcontrol (i.e., a symbol cannot be
repeated in theNTERFACEcontrol).

*** ERROR 245 AT VARIABLE IN DIFFERENT SEGMENT
A variable cannot be declared using bothag Aattribute and thaT attribute
when using th&@OMoption. DATAshould be irCODEsegments aniNITIAL
should be iDATAsegments.

*** WARNING 247 INDIRECT CALL THROUGH 16 BIT VARIABLE
An indirect call through a 16-bit variable is not recommended because a 16-bit
variable can address only the first 64K of a segment.

334 Chapter 14 Error and Warning Messages

*** WARNING 248 BASE TYPE HAS ONLY 16 BITS OFFSET
Use of a 16-bit base specifier is not recommended because it can address only the
first 64K of a segment.

*** ERROR 251 COMPILER ERROR: INVALID OBJECT

*** ERROR 252 COMPILER ERROR: SELF NAME LINK

*** ERROR 253 COMPILER ERROR: SELF ATTR LINK
See source error message number 89.

*** ERROR 254 LIMIT EXCEEDED: PROGRAM COMPLEXITY
The program has too many complex expressions, cases, or procedures. Break it
into smaller modules.

*** ERROR 255 LIMIT EXCEEDED: SYMBOLS
See Appendix B for the correct limit.

|:| Note

If a terminal error is encountered, program text beyond the point
of error is not compiled. A terminal error message will appear at
the point of error in the program listing.

Fatal Command Tail and Control Error Messages

Fatal command tail errors are caused by an improperly specified compiler
invocation command or an improper control. The errors that can occur are as
follows:

COMMAND TAIL TOO LONG

COMMAND TAIL BUFFER LIMIT EXCEEDED AT OR NEAR: xxx
ILLEGAL COMMAND TAIL SYNTAX OR VALUE

UNABLE TO PARSE COMMAND TAIL AT OR NEAR: xxx
ILLEGAL COMMAND TAIL SYNTAX OR VALUE
UNRECOGNIZED CONTROL IN COMMAND TAIL

INVOCATION COMMAND DOES NOT END WITH <CR><LF>
ILLEGAL COMMAND TAIL SYNTAX

PL/M-386 Programmer's Guide Chapter 14 335

Fatal Input/Output Error Messages

Fatal input/output errors occur when the user specifies an incorrect pathname for
compiler input or output. These error messages are of the form:

PL/M-386 xxx ERROR --

FILE:

NAME:

ERROR:
COMPILATION TERMINATED

These errors also occur when the device runs out of space (e.g., the list file is large
than the available memory).

Fatal Insufficient Memory Error Messages

The fatal insufficient memory errors are caused by a system configuration with
insufficient RAM memory to support the compiler.

The errors that can occur due to insufficient memory are as follows:

NOT ENOUGH MEMORY FOR COMPILATION
DYNAMIC STORAGE OVERFLOW
NOT ENOUGH MEMORY FOR CODE GENERATION

336 Chapter 14 Error and Warning Messages

Fatal Compiler Failure Error Messages

The fatal compiler failure errors are internal errors that should never occur. If you
encounter such an error, please contact your Intel representative. The errors falling

into this class are as follows:

*** ERROR 89 COMPILER ERROR:
*** ERROR 90 COMPILER ERROR:
*** ERROR 92 COMPILER ERROR:
*** ERROR 94 COMPILER ERROR:
*** ERROR 95 COMPILER ERROR:
*** ERROR 97 COMPILER ERROR:
*** ERROR 99 COMPILER ERROR:

*** ERROR 163 COMPILER ERROR:
*** ERROR 164 COMPILER ERROR:
*** ERROR 166 COMPILER ERROR:
*** ERROR 167 COMPILER ERROR:
*** ERROR 175 COMPILER ERROR:
*** ERROR 177 COMPILER ERROR:
*** ERROR 203 COMPILER ERROR:
*** ERROR 205 COMPILER ERROR:
*** ERROR 210 COMPILER ERROR:
*** ERROR 211 COMPILER ERROR:
*** ERROR 212 COMPILER ERROR:
*** ERROR 230 COMPILER ERROR:
*** ERROR 251 COMPILER ERROR:
*** ERROR 252 COMPILER ERROR:
*** ERROR 253 COMPILER ERROR:

BAD ERROR RECOVERY
MULTIPLE PARSE ARGS

PARSE ARG STACK UNDERFLOW
PARSE STACK UNDERFLOW
PARSE BUFFER OVERFLOW
SCOPE STACK UNDERFLOW
SEMANTIC UNDERFLOW
SEMANTIC UNDERFLOW
INVALID NODE

INVALID TREE

SCOPE STACK UNDERFLOW
INVALID OPERATION

REAL STACK UNDERFLOW

BAD LABEL ADDRESS

BAD CODE GENERATED
OBJECT MODULE GENERATION
DEBUG SEGMENT SIZE OVERFLOW
ILLEGAL FIXUP

INVALID INTERNAL TYPE
INVALID OBJECT

SELF NAME LINK

SELF ATTR LINK

It is also possible to receive &NKNOWRATAL ERRORMessage.

Insufficient Memory Warning Messages

The following warnings may occur if there are too many symbols for symbol

processing:

NOT ENOUGH MEMORY FOR FULL DICTIONARY LISTING

NOT ENOUGH MEMORY FOR ANY

XREF PROCESSING

NOT ENOUGH MEMORY FOR FULL XREF PROCESSING

PL/M-386 Programmer's Guide

]

Chapter 14 337

Introduction

PL/M Reserved Words and

Predeclared Identifiers

These are reserved words in PL/M-386. They cannot be used as identifiers.

ADDRESS
AND

AT
BASED
BY

BYTE
CALL
CASE
CHARINT
DATA
DECLARE
DISABLE
DO
DWORD
ELSE
ENABLE
END
EOF
EXTERNAL
GO
GOTO
HALT
HWORD
IF
INITIAL

PL/M-386 Programmer's Guide

INTEGER
INTERRUPT
LABEL
LITERALLY
LONGINT
MINUS
MOD

NOT
OFFSET

OR

PLUS
POINTER
PROCEDURE
PUBLIC
REAL
REENTRANT
RETURN
SELECTOR
SHORTINT
STRUCTURE
THEN

TO

WHILE
WORD
QWORD
XOR

Appendix A

339

The following are PL/M-386 identifiers, built-in procedures and predeclared
variables. If one of these identifiers is declared DEELAREStatement, the
corresponding built-in procedure or predeclared variable becomes unavailable
within the scope of the declaration.

ABS

ADJUSTRPL
BLOCKINPUT
BLOCKINWORD
BLOCKOUTPUT
BLOCKOUTWORD
BUILDPTR

CARRY
CAUSEINTERRUPT
CLEARTASKSWITCHEDFLAG
CONTROLREGISTER
CMPB

CMPW
DEBUGREGISTER
DEC

DOUBLE

FINDB

FINDHW

FINDRB

FINDRHW

FINDRW

FINDW

FIX

FLAGS

FLOAT
GETACCESSRIGHTS
GETREALERROR
GETSEGMENTLIMIT
HIGH

IABS

INHWORD

340 Appendix A

NIL

OFFSETOF
OUTHWORD

OUTPUT

OUTWORD

PARITY
RESTOREGLOBALTABLE
RESTOREINTERRUPTABLE
RESTOREREALSTATUS
ROL

ROR

SAL

SAR
SAVEGLOBALTABLE
SAVEINTERRUPTTABLE
SAVEREALSTATUS
SCANBIT

SCANRBIT

SCL

SCR
SEGMENTREADABLE
SEGMENTWRITABLE
SELECTOROF

SETB

SETHW

SETREALMODE

SETW

SHL

SHLD

SHR

SHRD

PL/M Reserved Words and Predeclared ldentifiers

INITREALMATHUNITSKIPRB SIGN

INPUT SIGNED

INT SIZE

INWORD SIZE

LAST SKIPB

LENGTH SKIPHW
LOCALTABLE SKIPRHW
LOCKSET SKIPRW

LOW SKIPW
MACHINESTATUS STACKBASE
MOVB STACKPTR
MOVBIT TASKREGISTER
MOVE TESTREGISTER
MOVHW TIME

MOVRB UNSIGN
MOVRBIT WAITFORINTERRUPT
MOVRHW XLAT

MOVRW ZERO

MOVW

Identifiers with WORD16 Control
The following identifiers are specific to PL/M-386 when usingW@RD1&ontrol.

BLOCKINDWORD
BLOCKOUTDWORD
CMPD

FINDD

FINDRD
INDWORD

MOVD

MOVRD
OUTDWORD
SETD

SKIPD

SKIPRD

PL/M-386 Programmer's Guide Appendix A 341

Identifiers with MOD486 Control

The following identifiers are specific to PL/M-386 when usingNf@D486control.

BYTESWAP

TESTREGISTER
INVALIDATEDATACACHE
WBINVALIDATEDATACACHE
INVALIDATETLBENTRY

342 Appendix A PL/M Reserved Words and Predeclared Identifiers

PL/M Program Limits

Feature

Indirection level (A BASED on B,
B BASED on C)

Length of a string constant

Nesting of blocks

Nesting of INCLUDE controls

Nesting of LITERALLY invocations
Nesting of structures

Number of active cases

Number of cases in a DO CASE block
Number of DO blocks in a procedure
Number of declared EXTERNAL items
Number of elements in a factored list
Number of EXTERNAL items used
Number of labels on a statement

Number of nested procedures
and DO cases

Number of nested typed procedures
Number of procedures in a module
Numbers of characters in a line
Segment size
Size of LITERALLY string
Structure size
Symbol capacity
Total number of members in

a structure (at all levels)

* Limited by the total size of the symbol table.

PL/M-386
unlimited***

unlimited*

255

18

1016

128

4G
unlimited*
4G-1
2500

128

** Limited by either the number of procedures or the number of symbols, or both.
*** Unlimited means limited only by the amount of free memory allocated by the compiler.

[

PL/M-386 Programmer's Guide

Appendix B

B

343

Grammar of the PL/M Language

This appendix lists the entire syntax of the PL/M language in Backus-Naur Form
(BNF) notation. Since the semantic rules are not included here, this syntax permits
certain constructions that are not actually allowed. The terminology used in the
BNF syntax has been designed for convenience in constructing concise and
rigorous definitions. Its appearance differs substantially from the main body of the
manual.

The notations used here are slightly extended from standard BNF notations. An
ellipsis (...) indicates that the syntactic element preceding it can be repeated
indefinitely. The vertical bar (]) separates alternatives. Braces ({ }) enclose
required alternatives and brackets ([]) enclose optional alternatives. The vertical
bar within braces and brackets is also a separator of alternatives.

When items are stacked vertically within brackets, only one of the items can be
used.

PL/M-386 Programmer's Guide Appendix C 345

Lexical Elements

Character Sets

<character>::= <apostrophe> | <non-quote character>
<apostrophe>::="'

<non-quote character>::= <letter> | <decimal digit> | $ |
<special character> | blank

<letter>::= <uppercase letter> | <lowercase letter>
<uppercase letter>:=A|B|C|D|E|F|G|H]|I|J|K]|L]
L\(/Illé\lIOIPIQIRISITIUIVIWIXI

<lowercase letter>::=a|b|c|d|
minjo|[p|alr|s
ylz

<decimal digit>:=0|1]2|3|4]|5|6|7|8]9

[ifj k]
wx|

e|f
I

lglh
tlulv]

|
v

<special character>:=+ |- | *|/|<|>|=]:|;|.],|
(nNlel_
Tokens

<token>::= <delimiter> | <identifier> | <reserved word> |
<numeric constant> | <string>

Delimiters

<delimiter>::= <simple delimiter> | <compound delimiter>

<simple delimiter>:=+ |- | *[/|<|>|=|:|;].|,]| (]
)@

<compound delimiter>::= <> | <=|>=| :=

Identifiers
<first id character>::= <letter> | _

<identifier>::= <first id character> [<letter> |
<decimal digit> | $| _]...

<reserved word> (For a list of reserved words, see Appendix A.)

346 Appendix C Grammar of the PL/M Language

Numeric Constants

<numeric constant>::= <binary number> | <octal number> |
<decimal number> | <hexadecimal number> |
<floating point number>

<binary number>::= <binary digit> [<binary digit> | $]... B| Q

<octal number>::= <octal digit> [<octal digit> | $]... {O | Q}

<decimal number>::= <decimal digit> [<decimal digit> | $]... [D]

<hexadecimal T%Tbeﬁ>::: <decimal digit> [<hexadecimal digit>

<floating point number>::= <digit string> <fractional part>
[<exponent part>]

<fractional part>::= [<.digit string>]

<exponent part>::= E [+ | -] <digit string>

<digit string>::= <decimal digit> [<decimal digit> | $]...
<binary digit>::=0] 1

<octal digit>::= <binary digit> |2 | 3|4 |5|6|7
<decimal digit>::= <octal digit> | 8 | 9

<hexadecimal digit>::= <decimal digit>| A|B|C|D |E|F

Strings
<string>::= '<string body element> [<string body element>]... "

<string body element>::= <non-quote character> |"

PL/M Text Structure: Tokens, Blanks, and Comments
<pl/m text>::= <token> | <separator> [<token> | <separator>]...
<separator>::= blank | <comment>

<comment>::= /* [<character>]... */

PL/M-386 Programmer's Guide Appendix C

347

Modules and the Main Program

<compilation>::= <module> [EOF]
<module>::= <module nhame>:<simple do block>

<module name>::= <identifier>

348 Appendix C Grammar of the PL/M Language

Declarations

<declaration>::= <declare statement> | <procedure definition>

DECLARE Statement

<declare statement>::= DECLARE <declare element list>;
<declare element list>::= <declare element>[,<declare element>]...
<declare element>::= <factored element> | <unfactored element>

<unfactored element>::= <variable element> | <literal element> |
<label element>

<factored element>::= <factored variable element> |
<factored label element>

Variable Elements

<variable element>::= <variable name specifier> [<array specifier>]
<variable type> | [<variable attributes>]

<variable name specifier>::= <non-based name> |
<based name> BASED <base specifier>

<non-based name>::= <variable name>
<based name>::= <variable name>
<variable name>::= <identifier>

<base specifier>::= <identifier>[.<identifier>]

<variable attributes>::= [PUBLIC] [<locator>][<initialization>] |
[EXTERNAL] [<constant attribute>]

<locator>::= AT(<expression>)

<constant attribute>::= DATA

<array specifier>::= <explicit dimension> | <implicit dimension>
<explicit dimension>::= (<numeric constant>)

<implicit dimension>::= (*)

PL/M-386 Programmer's Guide Appendix C

349

<variable type>::= <basic type> | <structure type>

<basic type>::= Address | BYTE | HWORD | DWORD | QWORD | CHARINT |
OFFSET | SHORTINT | INTEGER | REAL | SELECTOR |
POINTER | OFFSET

Label Element
<label element>::= <identifier> LABEL [PUBLIC | EXTERNAL]

Literal Elements

<literal element>::= <identifier> LITERALLY <string>

Factored Variable Element

<factored variable element>::= (<variable name specifier>
[,<variable name specifier>]...)
[<explicit dimension>] <variable type>
[<variable attributes>]

Factored Label Element

<factored label element>::= (<identifier> [,<identifier>]...)
LABEL [PUBLIC | EXTERNAL]

The Structure Type

<structure type>::= STRUCTURE (<member element>
[[<member element>]...)

<member element>::= <unfactored member> | <factored member>

<unfactored member>::= <member name> [<explicit dimension>]
<variable type>

<member name>::= <identifier>

<factored member>::= (<member name>(,<member name>)...)
[<explicit dimension>] <variable type>

350 Appendix C Grammar of the PL/M Language

Procedure Definition

<procedure definition>::= <procedure statement> [<declaration>...]
[<unit>...] <ending>

<procedure statement>::= <procedure name>: PROCEDURE
[<formal parameter list>] [<procedure type>]
[<procedure attributes>];

<procedure name>::= <identifier>
<procedure type>::= <basic type>

<formal parameter list>::= (<formal parameter>
[,<formal parameter>]...)

<formal parameter>::= <identifier>

<procedure attributes>::= {EXTERNAL | PUBLIC | <interrupt> |
REENTRANT}...

Attributes

AT

<locator>::= AT (<expression>)

INTERRUPT
<interrupt>::= INTERRUPT

Initialization

<initialization>::= {INITIAL | DATA} (<initial value>
[<initial value>]...)

<initial value>::= <expression> | <string>

PL/M-386 Programmer's Guide Appendix C

351

Units

<unit>::= <conditional clause> | <do block> | <basic statement> |
<label definition><unit>

<basic statement>::= <assignment statement> | <call statement> |
<goto statement> | <null statement> |
<return statement> |
<microprocessor dependent statement>

<scoping statement>::= <simple do statement> | <do-case statement> |
<do-while statement> |
<iterative do statement> | <end statement> |
<procedure statement>

<label definition>::= <identifier>:

Basic Statements

Assignment Statement
<assignment statement>::= <left part >=<expression>;

<left part>::= <variable reference> [,<variable reference>]...

CALL Statement
<call statement>::= CALL <simple variable>[<parameter list>];
<parameter list>::= (<expression>[,<expression>]...)

<simple variable>::= <identifier> | <identifier>.<identifier>

GOTO Statement
<goto statement>::= {GOTO | GO TO} <identifier>

Null Statement

<null statement>::=;

RETURN Statement
<return statement>::= <typed return> | <untyped return>
<typed return>::= RETURN <expression>;

<untyped return>::= RETURN;

352 Appendix C Grammar of the PL/M Language

Microprocessor-dependent Statements

<microprocessor dependent statement>::= <disable statement> |
<enable statement> |
<halt statement> |
<cause interrupt statement>

<disable statement>::= DISABLE;
<enable statement>::= ENABLE;
<halt statement>::= HALT;

<cause interrupt statement>::= CAUSESINTERRUPT (numeric constant);

PL/M-386 Programmer's Guide Appendix C 353

Scoping Statements

Simple DO Statement

<simple do statement>::= DO;

DO-CASE Statement

<do-case statement>::= DO CASE <expression>;

DO-WHILE Statement

<do-while statement>::= DO WHILE <expression>;

Iterative DO Statement

<iterative do statement>::= DO <index part> <to part> [<by part>];
<index part>::= <index variable>=<start expression>

<to part>::= TO <bound expression>

<by part>::= BY <step expression>

<index variable>::= <simple variable>

<start expression>::= <expression>

<bound expression>::= <expression>

<step expression>::= <expression>

END Statement

<end statement>::= END [<identifier>];

Procedure Statement

<procedure statement>::= <procedure name> : PROCEDURE
[<formal parameter list>] [<procedure type>]
[<procedure attributes>];

354 Appendix C Grammar of the PL/M Language

Conditional Clause

<conditional clause>::= <if condition><true unit> |
<if condition><true element> ELSE
<false element>

<if condition>::= IF <expression> THEN <true unit>
<true element>::= [<label definition>...] <do block> |
[<label definition>...] <basic statement>

<false element>::= <unit>

<true unit>::= <unit>

DO Blocks

<do block>::= <simple do block> | <do-case block> | <do-while block> |
<iterative do block>

Simple DO Blocks

<simple do block>::= <simple do statement>[<declaration>...]
[<unit>...]<ending>

<ending>::= [<label definition>...]<end statement>

DO-CASE Blocks

<do-case block>::= <do-case statement> [<unit>...] <ending>

DO-WHILE Blocks

<do-while block>::= <do-while statement> [<unit>...] <ending>

Iterative DO Blocks

<iterative do block>::= <iterative do statement> [<unit>...]
<ending>

PL/M-386 Programmer's Guide Appendix C

355

Expressions

Primaries

<primary>::= <constant> | <variable reference> | <location reference>
| <subexpression>

<subexpression>::= (<expression>)

Constants

<constant>::= <numeric constant> | <string>

Variable References

<variable reference>::= <data reference> | <function reference>
<data reference>::= <name>[<subscript>] [<member specifier>]
<subscript>::= (<expression>)

<member specifier>::= .<member name>[<subscript>]
<function reference>::= <name>[<actual parameters>]

<actual parameters>::= (<expression>[,<expression>]...)
<member name>::= <identifier>

<name>::= <identifier>

Location References
<location reference>::= @<constant list> | @<variable reference>

<constant list>::= (<constant>[,<constant>]...)

Operators

<operator>::= <logical operator> | <relational operator> |
<arithmetic operator>

<logical operator>::= AND | OR | NOT | XOR
<relational operator>::=< | > | <= |>= | <>| =

<arithmetic operator>::= + |- | PLUS | MINUS | *| /| MOD

356 Appendix C Grammar of the PL/M Language

Structure of Expressions
<expression>::= <logical expression> | <embedded assignment>
<embedded assignment>::= <variable reference> := <logical expression>

<logical expression>::= <logical factor> | <logical expression>
<or operator> <logical factor>

<or operator>::= OR | XOR

<logical factor>::= <logical secondary> | <logical factor>
<and operator> <logical secondary>

<and operator>::= AND
<logical secondary>::= [<not operator>] <logical primary>
<not operator>::= NOT

<logical primary>::= <arithmetic expression> [<relational operator>
<arithmetic expression>]

<relational operator>::=<|>| <= |>=|<>| =

<arithmetic expression>::= <term> | <arithmetic expression>
<adding operator> <term>

<adding operator>::= + | - | PLUS | MINUS

<term>::= <secondary> | <term> <multiplying operator> <secondary>
<multiplying operator>::=*| /| MOD

<secondary>::= [<unary minus> | <unary plus>] <primary>

<unary minus>::= -

<unary plus>::= +

PL/M-386 Programmer's Guide Appendix C

357

Differences Between PL/M Compilers

Differences between PL/M-86 and PL/M-80
PL/M-86 differs from PL/M-80 in the following respects:

Support for floating-point arithmetic

Support for signed arithmetic

Addition of REAL INTEGER POINTER andSELECTORlata types
Addition of the@location reference operator

Support for nested structures

Expanded set of built-in procedures

In addition, the PL/M-80 reserved woa@DRESSs replaced by the PL/M-86
reserved wordvORD PL/M-80 has only theYTEandADDRESSIata types.
However, PL/M-86 has the following data typ8%:TE WORPDWORDNTEGER
REAL POINTER andSELECTOR

The PL/M-86 rules for expression evaluation are more complete than those of
PL/M-80. Other differences stem from the ones noted here. For example, an
iterativeDOblock operates differently if its index variable isINMEGERvariable.

PL/M-386 Programmer's Guide Appendix D 359

Compatibility of PL/M-80 Programs and the PL/M-86
Compiler

PL/M-80 programs that operate correctly on an 8080 microprocessor can be
recompiled with the PL/M-86 compiler to produce code that will run on an 8086
microprocessor. You may need to edit the PL/M-80 source code to change
identifiers that are PL/M-86 reserved words. (It is not necessary to change
ADDRESS0 WORPADDRESSs a PL/M-86 reserved word with the same meaning
asWORD

Note that where PL/M-86 programs would normally ha@NTERvariables and
location references formed with ti@operator, PL/M-80 programs hax®DRESS
(WORpvariables and location references formed with the dot operator. PL/M-80
usage is less restricted than PL/M-86 usage, because arithmetic operations can be
used orwORDalues. In general, the PL/M-86 compiler supports PL/M-80 usage

to provide upward compatibility. Some restrictions affect the types of expressions
that can be used in td attribute, theNITIAL andDATAInitializations, and

location references. See also the discussions of size controls and the @ot and
operators in this manual.

Differences between PL/M-286 and PL/M-86

PL/M-286 differs from PL/M-86 in the following respects:

* POINTERandSELECTORvariables cannot be assigned absolute (i.e., constant)
values. Only the equals operate) ¢an be used witROINTERvariables. For
SELECTORrariables the logicalAND OR NOT, XOR and relational<, >, <=,
>=, <>, =) operators can be used.

» Access to the hardware flag register is provided with the built-in variable
FLAGS

e Four built-in functions have been added to support multiple byte and word
input: BLOCKINPUT BLOCKINWORBLOCKOUTPUTandBLOCKOUTWORD
(available to PL/M-86 via the10OD86|MOD186control).

e The type of theSTACKBASEvariable has been changed fratv©RDo
SELECTOR

e New built-in procedures and functions have been added to support the 286
hardware protection model.

« Interrupt procedures are no longer assigned numbers in the source program.
(This is done by the 286 system builder.) Interrupt procedures also cannot be
called directly, and thBET$SINTERRUPTandINTERRUPT$PTRbuiIlt-ins have
been removed.

e The memory array has been removed.

360 Appendix D Differences Between PL/M Compilers

Compatibility of PL/M-86 Programs and the
PL/M-286 Compiler

PL/M-86 programs that operate correctly on an 8086 microprocessor can be
recompiled with the PL/M-286 compiler to produce code that will run on an 286
microprocessor. The PL/M-86 source code must be edited as follows:

« Assignments to th6TACKBASBbuilt-in variable must be changed frofORD
to SELECTOR

« All absolute pointer and selector assignments must be changed. (Pointers can
be assigned a zero value using the new built-in funttiobn) Also, relational
operations on pointer and selector values for any operation other than equality
and inequality must be changed.

e The interrupt numbers on all interrupt procedures must be deleted. Interrupt
vectors will be assigned to these procedures by the 286 system builder. Direct
calls to interrupt procedures must also be changed.

+ References to theET$INTERRUPT INTERRUPT$PTR andMEMORBUilt-ins
must be removed.

Differences between PL/M-386 and PL/M-286
PL/M-386 differs from PL/M-286 in the following respects:

e The string built-ingFIND, CMPR andSKIP return a value of OFFFFFFFFH for
the not found and string equal results.

e Support for 64-bit unsigned scalars.
e Support for 8-bit and 32-bit signed scalars.

e Addition of HWORBNAQWORDnNsigned integers, and tO&IARINT,
SHORTINT, andLONGINTsigned integer data types.

* ADDRESSs the same aBFFSET(and not asvVORR@s in PL/M-286).
e Support for casting functions.
e Support foWORD3andWORD16napping for data type identifiers.

e Addition of thewORD32|WORD1grimary compiler controls, which ensure
PL/M data type and language compatibility.

* MEDIUMandLARGESsegmentation controls no longer indicate unique meaning
to the compilerMEDIUMs interpreted aSMALLandLARGEIs interpreted as
COMPACEXxcept whem ARGEIs used to indicate a subsystem whose name is
unknown at compile time.

PL/M-386 Programmer's Guide Appendix D 361

e Several new built-in procedures and functions have been added to support the
new data types (for exampleMPHYBLOCKINHWORBee Chapters 9 and 10),
and some bit-string operations (for exam@EANBIT, MOVBIT).

e The built-insSCONTROL$REGISTE®EBUGS$REGISTERANATESTSREGISTER
have been added to support the Intel386 microprocessor.

* The following built-ins have been added to support the Intel486
microprocessorBYTESSWAPTEST$REGISTER INVALIDATE$SDATA$SCACHE
WBSINVALIDATE$DATASCACHEANAINVALIDATESTLBSENTRY.

e The FLAT and MOD486 compiler controls have been added.

Compatibility of PL/M-286 Programs and the
PL/M-386 Compiler

362

PL/M-286 programs can be compiled with the PL/M-286 compiler to produce code
that will run on Intel386 and Intel486 microprocessors in 286 microprocessor mode
and interface with PL/M-386 code througd\TERFACE(/286) . PL/M-286

programs can be recompiled with the PL/M-386 compiler to produce code that will
run on an Intel386 and Intel486 microprocessors in their native microprocessor
mode.

Appendix D Differences Between PL/M Compilers

Character Set

This appendix lists the ASCII character set and indicates whether the characters are
part of the PL/M source character set. Table E-1 is a list of codes.

Table E-1. Character Set

Dec Hex PL/M Character
0 00 NO NULL
1 01 NO SOH
2 02 NO STX
3 03 NO ETX
4 04 NO EOT
5 05 NO ENQ
6 06 NO ACK
7 07 NO BEL
8 08 NO BS

9 09 YES HT
10 0A YES LF
11 0B NO VT
12 oC NO FF
13 oD YES CR
14 OE NO SO
15 OF NO Sl

16 10 NO DLE
17 11 NO DC1
18 12 NO DC2
19 13 NO DC3
20 14 NO DC4
21 15 NO NAK
22 16 NO SYN

PL/M-386 Programmer's Guide Appendix E 363

364

Table E-1. Character Set (continued)

Dec Hex PL/M Character
23 17 NO ETB
24 18 NO CAN
25 19 NO EM
26 1A NO SuUB
27 1B NO ESC
28 1C NO FS
29 1D NO GS
30 1E NO RS
31 1F NO us
32 20 YES SP
33 21 NO !

34 22 NO

35 23 NO #

36 24 YES $

37 25 NO %
38 26 NO &

39 27 YES

40 28 YES (

41 29 YES)

42 2A YES *

43 2B YES +

44 2C YES ,

45 2D YES -

46 2E YES .

47 2F YES /

48 30 YES 0

49 31 YES 1

50 32 YES 2

51 33 YES 3

52 34 YES 4

53 35 YES 5

Appendix E

Character Set

Table E-1. Character Set (continued)

Dec Hex PL/M Character
54 36 YES 6
55 37 YES 7
56 38 YES 8
57 39 YES 9
58 3A YES
59 3B YES ;
60 3C YES <
61 3D YES =
62 3E YES >
63 3F YES ?
64 40 YES @
65 41 YES A
66 42 YES B
67 43 YES C
68 44 YES D
69 45 YES E
70 46 YES F
71 47 YES G
72 48 YES H
73 49 YES I
74 4A YES J
75 4B YES K
76 4C YES L
7 4D YES M
78 4E YES N
79 4F YES (0]
80 50 YES P
81 51 YES Q
82 52 YES R
83 53 YES S
84 54 YES T
PL/M-386 Programmer's Guide Appendix E

365

366

Table E-1. Character Set (continued)

Dec Hex PL/M Character
85 55 YES U
86 56 YES Y,
87 57 YES W
88 58 YES X
89 59 YES Y
90 5A YES A
91 5B NO [
92 5C NO \
93 5D NO]
94 5E NO n
95 5F YES _
96 60 NO

97 61 YES a
98 62 YES b
99 63 YES c
100 64 YES d
101 65 YES e
102 66 YES f
103 67 YES g
104 68 YES h
105 69 YES i
106 6A YES i
107 6B YES k
108 6C YES I
109 6D YES m
110 6E YES n
111 6F YES o]
112 70 YES p
113 71 YES q
114 72 YES r
115 73 YES S

Appendix E

Character Set

Table E-1. Character Set (continued)

Dec Hex PL/M Character
116 74 YES t
117 75 YES u
118 76 YES \Y
119 77 YES w
120 78 YES X
121 79 YES y
122 A YES z
123 7B NO {
124 7C NO |
125 7D NO }
126 TE NO ~
127 TF NO DEL
[

PL/M-386 Programmer's Guide

Appendix E

367

Linking to Modules
Written in Other Languages

Introduction

This appendix describes the calling conventions used by@@ family of

languages. These calling conventions are standardized so that a module written in
PL/M can freely call procedures, subroutines, and subprograms in other modules
written in other X]86 languages.

The information in this appendix is not necessary to call PL/M procedures and
functions from PL/M. See Chapter 8 for information about parameters and
arguments.

The calling conventions and stack and register usage described in this appendix are
needed to call ASM subroutines. Also, the corresponding data types listed at the
end of this appendix are needed to write a subroutine that can pick up the data in
the PL/M program. Refer to the ASM macro assembler operating instructions for
more information about combining PL/M programs with ASM programs and for
examples.

The easiest way to ensure compatibility between assembly-language subroutines
that are combined with PL/M programs or procedures is to write a dummy
procedure in PL/M. This procedure would have the same argument list and the
same attributes as the assembly language subroutine. Then compile the PL/M
procedure with the correct segmentation control and@@Econtrol. This will
produce a pseudo-assembly listing of the generated microprocessor code, which
can then be copied to the prologue and epilogue of the assembly language
subroutine.

PL/M-386 Programmer's Guide Appendix F 369

370

With PL/M, separate modules can be written and compiled, and combined at a late
time. This allows you to create separately tested modules that are combined after
they are internally bug-free. Not all modules have to be in PL/M: you can choose
the appropriate language for each module. Be sure to combine the modules
properly with a binder or a linker in order to satisfy references to externals.
Because theq]86 languages (excluding C) follow the same calling sequence,
control will pass to a called module correctly. The standard calling sequence is
described in the following section.) However, the called module might not be able
to deal intelligently with the data passed to it since languages treat some data
structures differently.

By specifying arguments in a reference to an external procedure, data is passed to
the external procedure. The number of arguments and the order in which they are
specified must match the number and order of the corresponding parameters in the
external procedures declaration (see Chapter 8).

All arguments for parameters are passed on the microprocessor's stack, or the
numeric coprocessor's register stack, in the order in which they were specified. Fol
Intel386 and Intel486 microprocessors, the space occupied by a parameter pushed
on the microprocessor's stack is always a multiple of four bytes. Functions return
non-real values in a register, aRHALvalues on the top of the numeric

coprocessor's register stack.

Appendix F Linking to Modules Written in Other Languages

Calling Sequence

The calling sequence for each procedure activation places the procedure's actual
parameters (if any) on the stack and then activates the procedureGaith a
instruction.

Parameters are placed on the microprocessor's stack or the numeric coprocessor's
register stack in left-to-right order. Because the stack grows from higher locations
to lower locations, the first parameter occupies the highest position on the stack,
and the last parameter occupies the lowest position. Stack representation for the
different PL/M parameters is described in Table F-1.

Table F-1. Stack Representation for PL/M Parameters

Intel386 and Intel486 CPU
Parameter Stack Representation
BYTE Four bytes, with the higher three bytes undefined.
CHARINT Four bytes, with the higher three bytes undefined.
HWORD Four bytes, with the high two bytes undefined.
SELECTOR Four bytes, with the high two bytes undefined.
SHORTINT Four bytes, with the high two bytes undefined.
WORD Four bytes, with no undefined bytes.
OFFSET Four bytes, with no undefined bytes.
INTEGER Four bytes, with no undefined bytes.
REAL Four bytes, with no undefined bytes.
DWORD Eight bytes with the high 32 bits pushed first and
the low 32 bits 16 bits pushed second.

For Intel386 and Intel486 microprocessor®CANTER parameter in the

SMALL(ROM)andCOMPACTases consists of a selector and an offset. The 16-bit
selector is pushed first, followed by the 32-bit offset.

The left-most seveREAL parameters are passed on the numeric coprocessor's
stack. If more than seve®EAL parameters are present, the rest (after the left-most

seven) are passed on the microprocessor's stack and are intermixed with the other
non-real parameters in the order in which all parameters were declared.

After the parameters are passed,@heL instruction places the return address on
the stack. In th6MALLandCOMPACTases with local (or non-exported)
procedures, this address is a 32-bit offset (the contents of the EIP register) and
occupies four bytes on the stack.

PL/M-386 Programmer's Guide Appendix F 371

For procedures exported from a subsystem, the return addre®SIisT®ERVvalue
consisting of a selector and offset; the return address is placed on the stack in the
same way #OINTERparameter is passed. The 16-bit segment selector (contents
of the CS register) is pushed first, then the 32-bit offset (EIP register contents) is
pushed.

For all of the microprocessors, control is passed to the code of the procedure by
updating the EIP register. For procedures exported from a subsystem, the CS
register is also updated.

Figure F-1 shows the stack layout at the point where the procedure gains control.

Higher <—® Stack Marker (BP Reg. Contents)

Locations
Parameter O

Parameter 1 Each Parameter Occupies 2 or 4

Bytes - See Text

Stack
Counter

Pérameter N

Rewm S Select } Absent In Small Or Compact
L M €lurn Segment Setector Program Or Local Procedure
ower Return Offset
Locations <——® Stack Pointer (SP Reg. Contents)

0OSD540

Figure F-1. Stack Layout at Point Where
a Non-interrupt Procedure is Activated

372 Appendix F Linking to Modules Written in Other Languages

Procedure Prologue

In compiling the procedure itself, the compiler inserts a sequence of instructions
called the procedure prologue. The procedure prologue varies depending on the
type of procedure being compiled as follows:

e If the procedure has thHUBLIC attribute and the program sizeLBRGE or if
it is exported from a subsystem, the content of the DS register is placed on the
stack and is then updated to the data segment of the procedure. ES is set to
DS.

« If any parameter of the procedure is referenced by a nested procedure, all
parameters are copied from the stack to space reserved for them in the data
segment.

e The stack marker offset (EBP register contents) is placed on the stack, and the
current stack pointer (ESP register contents) is used to update the BP or EBP
register.

« If the procedure has tiREENTRANRttribute, space is reserved on the stack
for any variables declared within the procedure (this does not include based
variables, variables with tHe2ATAattribute, or variables with theT attribute).

Control then passes to the code compiled from the executable statements in the
procedure body. Figure F-2 shows the stack layout at this point.

PL/M-386 Programmer's Guide Appendix F 373

%

Higher Parameter O
Locations Parameter 1 Absent if Any Parameter is Referenced
Within A Nested Procedure
Pérameter N
R S Sel } Absent In Small Or Compact
. eturn Segment Selector Program Or Local Procedure
]
= Return Offset onlv In Public P dure |
3 nly In Public Procedure In
S Old Data Segment Selector } y
g Large Program
—* Old Stack Marker
g <—® New Stack Marker (BP Reg. Contents)
Only In Reentrant Procedure
\4 . .
This Space May Be Used Stack Pointer May Change
Lower During Procedure Execution During Procedure Execution
Locations

0OSD541

Figure F-2. Stack Layout During Execution of a Non-interrupt Procedure Body

374 Appendix F Linking to Modules Written in Other Languages

Procedure Epilogue

To return from the procedure, the compiler inserts an instruction sequence called
the epilogue. This accomplishes the following:

« Ifthe compiler has used stack locations for temporary storage or local
variables during procedure execution, the stack pointer (the ESP register) is
loaded with the stack marker (the EBP register), discarding the temporary
storage.

e The old stack marker is restored by popping the stored value from the stack
into the EBP register.

« If the procedure has thUBLIC attribute and the program sizeLSRGEOr it
is exported from a subsystem, the old data segment selector is restored by
popping the stored value from the stack into the DS register. Additionally, ES
is set to DS.

e The stored return address (a 32-bit offset) is popped into the EIP register. If
the procedure is exported, the stored return address selector is also popped into
the CS register. Any parameters stored on the stack are discarded.

PL/M-386 Programmer's Guide Appendix F 375

Register Usage

Table F-2 provides a summary register usage.

Table F-2. Summary of the Intel386 Microprocessor Register Usage

Register Must Preserve Usage
EAX No Return BYTE (AL), HWORD (AX), WORD,
DWORD, CHARINT (AL), SHORTINT
(AX), INTEGER, SELECTOR (AX),
POINTER offset portion, and OFFSET.
EBX No** (Yes, when using --
C language interface.)
ECX No --
EDX No Return upper half of DWORD values,
POINTER segment selector.
ESP Yes* Stack pointer
EBP Yes Stack marker
ESI No (Yes when using --
C language interface.)
EDI No (Yes when using -
C language interface.)
FLAGS No --
CSs Yes Called procedure's code segment.
DS Yes Caller's data segment.
SS Yes Caller's stack segment.
ES Yes Caller's data segment.
FS, GS No -

* ESP must be adjusted so that all arguments are removed from the stack on return (except when using
C language interface.

** The C language interface referred to in the table is the variable parameter list format.

376 Appendix F Linking to Modules Written in Other Languages

The numeric coprocessor's stack contains the first SeZabarguments passed by
the calling program. The numeric coprocessor's status word is unknown and does
not need to be saved. If the status word is changed, the numeric coprocessor's
mode word must be saved on entry and restored before exit.

If an assembly language subroutine alters the DS or SS registers, and expects to be
called by a PL/M program, the subroutine must save the contents of these registers
upon entry and restore them before returning to the PL/M program. Additionally,
the CS and ES registers must be preserved by the called procedure.

PL/M uses the ESP and EBP registers to address the stack. If a called assembly
language subroutine uses the stack register, the subroutine must save the contents
of the register on entry and restore the register's contents before returning control to
the PL/M program. Before returning, the called subroutine must also adjust the
ESP register to remove all parameters from the microprocessor's stack.
Additionally, the CS and ES registers must be preserved by the called procedure.

The EAX, EBX, ECX, EDX, ESI, EDI, FS, and GS registers do not need to be
preserved. A called subroutine can freely use these registers.

An assembly language program calling a PL/M procedure cannot expect the
contents of the general-purpose registers (EBP and ESP) to be preserved. If the
contents of these registers are needed, they must be saved prior to calling the PL/M
procedure.

Table F-3 summarizes the microprocessor registers used to hold simple data types
that are returned by typed procedures.

PL/M-386 Programmer's Guide Appendix F 377

Table F-3. Registers Used to Hold Simple Data Types

Intel386 Microprocessor

Procedure Type Register
BYTE AL
CHARINT

HWORD AX
SHORTINT

DWORD DX:AX
INTEGER AX
WORD EAX
OFFSET

INTEGER

DWORD EDX:EAX
POINTER (SHORT, SMALL RAM) EAX
POINTER (LONG, EDX:EAX
COMPACT,

SMALL ROM)

SELECTOR AX

REAL Top of the numeric coprocessor's stack.

378 Appendix F Linking to Modules Written in Other Languages

Segment Name Conventions

Tables F-4 summarizes the segmentation of a subsystem und&tAheand
COMPACTProgram controls. The table shows the name of the segment in which
each type of program section is stored for each control and for subsystems.

Table F-4. Summary of PL/M-386 Segment Names

Model SubModel Code Data Const Stack

SMALL IN DATA CODE32 DATA DATA DATA
IN CODE CODE32 DATA CODE32 DATA

SMALL IN DATA S CODE32 DATA DATA DATA

(subsystem) IN CODE S _CODE32 DATA S _CODE32 DATA

COMPACT INDATA S CODE32 S DATA S CODE32 STACK
INCODE S _CODE32 S DATA S CODE32 STACK

COMPACT IN DATA S CODE32 DATA S DATA STACK
(subsystem) IN CODE S _CODE32 DATA S _CODE32 STACK

Notes:

CODE32 denotes a segment name composed of CODE32.

DATA denotes a segment name composed of DATA.

S_CODE32 denotes a segment name composed of the subsystem name and CODE32.
S_DATA denotes a segment name composed of the subsystem name and DATA.

PL/M-386 Programmer's Guide Appendix F 379

C Language Compatibility

The iC-n86 calling conventions, procedure prologue and epilogue, and register
usage differ from other InteB6 languages. However, theéTERFACEcontrol,
described in Chapter 11, allows C procedures to call procedures written in PL/M
and vice versa.

The procedure prologue and epilogue and register usage for the VPL (variable
parameter list) calling convention for 1@6 differ from othen86 languages.
These differences are as follows:

380

All parameters (real and non-real), are passed on the microprocessor's stack.
The last parameter is pushed first and the first parameter is pushed last so that
the first parameter is in the lowest memory location.

An integral parameter that is four bytes must be zero or sign-extended, as
required by the C language.

The space occupied by a parameter pushed on the microprocessor stack is
always a multiple of four bytes for Intel386 and Intel486 microprocessors.

Both short (floating-point) and long (double) real parameters are pushed as
long real parameters, as required by the C language. Therefore, all real
parameters passed from or to iC-386 procedures must be typed aRBAtbit
in the PL/M-386 code.

The calling procedure pops the parameters from the microprocessor stack after
the called procedure has returned. Except when the called procedure is a
function returning real results, the called procedure must not leave any entries
in the numeric coprocessor stack.

The ESP, EBP, CS, DS, ES, and SS registers should be preserved by the calle
procedure. (They are used for global storage). The EBX, ESI, and EDI
registers should also be preserved by the called procedure. These registers ca
be used by the caller for local data storage.

The EAX, ECX, EDX, FS and GS registers do not need to be preserved by the
called procedure.

Appendix F Linking to Modules Written in Other Languages

Design Guidelines

The following guidelines should be followed when combining C and PL/M
modules. These guidelines are demonstrated in the code example which follows
afterwards.

1. Identify all C functions which use the VPL calling convention. Library
function calling conventions are found by checking the .h include files.

2. Use the PL/M-386 INTERFACE compiler control to allow the PL/M compiler
control to generate VPL code.

3. All PL/M functions should be in a "#pragma fixed-params("plmf,...") list. This
will guarantee that any call to a PL/M function will use the FPL calling
convention.

4. Compile all files and link them in the same way C files are linked.

Code Example

This code example, run under the iRMX Operating System, discuses how a PL/M
application makes C function calls. An example of this is when a large PL/M
application is being converted to C. Mixing C and PL/M modules allows the
converted C modules to be debugged one at a time after conversion. Another
example is a PL/M application which needs access to the extensive I/O routines
available in C libraries.

The PL/M example, nameaatest.plm shows how a PL/M function calls a C
function that uses the VPL calling convention. It also includes a C procedure
called by the C example nameandplm.¢which the FPL calling convention.

The code example uses $IBITERFACEcontrol to signal the compiler thatintf

is a C function that uses the VPL convention. Any function that has the
"varparams" attribute should be included in the $INTERFACE list, such as the
printf function. C functions compiled under the iC-386 C compiler use the FPL
convention by default and should not be included in the "varparams" list.

PL/M-386 Programmer's Guide Appendix F 381

/* PL/M module - ptest.plm */

[* Only printf uses the VPL convention */
$INTERFACE(C=printf)

ptest: DO;

/* Uses VPL convention */
print:PROCEDURE EXTERNAL;
END printf;

[* Uses FPL convention */
c_call_plm_funct:PROCEDURE (i) WORD EXTERNAL,;
DECLARE i WORD;
END c_call_plm_funct;

/* Uses FPL convention */
c_fpl_functt PROCEDURE (i) WORD EXTERNAL;
DECLARE i WORD;
END c_fpl_funct;

[* This procedure is called by a C function which uses FPL */
plmproc:PROCEDURE (i) WORD PUBLIC;
DECLARE i WORD;
i=i-1;
[* The string in the PL/M call to printf terminates with ODH, OAH,
O0H so it conforms to C string conventions. These symbols cause a
<CR>, <LF>, and C end of string. */

/* Call to VPL C function. */
CALL printf(@(0Dh,'In plmproc, i = %d',0Dh,0aH,00H),i);

[* Call to FPL C function */
i = c_fpl_funct(i);
RETURN();

END plmproc;

382 Appendix F Linking to Modules Written in Other Languages

[* This main function is written in PL/M and may be used as a
substitute for a C main modules. The function calls printf to
demonstrate how PL/M calls a C function which uses VPL calling
conventions. It also calls a C function which uses FPL calling
conventions. */

main:PROCEDURE PUBLIC;

DECLARE i WORD, j WORD, k DWORD;
i=5;

k = 12345678H;

[* Call to VPL C function */
CALL printf(@('The value of i = %d, and k =
%xH',0Dh,0aH,00H),i,k);

/* Call to FPL C function */
j = c_call_plm_funct(i);
CALL printf(@(0Dh, The value of j = %d',0aH,00H)j);
END main;
END ptest;

PL/M-386 Programmer's Guide

Appendix F

383

The following C example, name@ndplm.¢ demonstrates how a PL/M call is

made from a C application.

/* C module - candplm.c */

#include <stdio.h>
#include <reent.h>
#include <locale.h>

/* Sets FPL for PL/M functions */

#pragma fixedparams("plmproc")
extern unsigned int plmproc(unsigned int);

[* The C function c_fpl_funct uses the FPL calling conventions. The
PL/M function "plmproc"” calls this function to demonstrate how a
PL/M procedure calls a C function which uses the FPL calling
convention. */

unsigned int
c_fpl_funct(unsigned int i)

{

i-=1;

printf("c_fpl_funct, i = %d\n",i);
return (i);

}

[* The C function call_plm_funct uses the FPL calling conventions.
This function calls "plmproc” to demonstrate how a C function calls
a PL/M function. */

unsigned int
c_call_plm_funct(unsigned int i)

{

i-=1;

printf("c_call_plm_funct, i = %d\n",i);

/* Call to PL/M function */

384

i = plmproc(i);
return(i);

}

Appendix F Linking to Modules Written in Other Languages

Compiling C and PL/M Modules

The submit file, namepdimsub.csdcontains the following command syntax to
compile and bingbtest.plmandcandplm.c

ic386 candplm.c debug code compact
plm386 ptest.plm debug code compact
bnd386 /intel/obj/cstart32.0bj, &
ptest.obj, candplm.obj, &
fintel/lib/clibxf32.lib &

renameseg (code32 to code) &
segsize (stack(2400H)) &

debug object(plmsub) &
rc(dm(4000h,0FFFFFh))

To invoke the submit files, enter the following command at the iRMX "-" prompt:
- submit plmsub over plmsub.out echo

When the processing stops and the prompt has returned, enter the following to run
the example:

- plmsub
The output of the code example follows:

The value of i =5, and k is 12345678H
c_call_plmfunct,i=4

In plmproc, i =3

c_fpl_funct,i=2

The value of j =2

Note that the variable "i" changes as it is passed as a parameter. The value is
initially setto 5. As it passes through each function, it is decremented and its new
value is displayed.

PL/M-386 Programmer's Guide Appendix F 385

Run-time Interrupt Processing

General Information

Interrupts can be initialized when the CPU receives a signal on its maskable
interrupt pin from a peripheral device, or when control is transferred to an interrupt
vector by theCAUSESINTERRUPBtatement. If the program runs under an

operating system that traps interrupts, the information in this appendix may not be
applicable.

Note that the CPU does not respond to the interrupt signal unless interrupts are
enabled. The PL/M-386 compiler do not generate any code to enable or disable
interrupts at the start of the main program.

If interrupts are enabled and vectored through an interrupt gate, the following
actions take place:
1. The CPU completes any instruction currently in execution.

2. The CPU issues an acknowledge interrupt signal and waits for the interrupting
device to send an interrupt number.

3. The CPU flag register is placed on the stack (occupying two bytes of stack
storage).

4. Interrupts are disabled by clearing the IF flag.
5. Single stepping is disabled by clearing the TF flag.

6. The CPU activates the interrupt procedure corresponding to the interrupt
number sent by the interrupting device.

7. When that procedure terminates, the stack is automatically restored to the state
it was in when the interrupt was received, and control returns to the point
where it was interrupted.

The mechanism for this activation and restoration are described in the following
sections. If interrupts are vectored through a trap gate, the fourth step is not
performed; if they are vectored through a task gate, all seven steps are replaced by
a task switch.

See also: interrupt processirgystem Concepts

PL/M-386 Programmer's Guide Appendix G 387

The Interrupt Descriptor Table

The interrupt descriptor table (IDT) contains descriptors that vector interrupts,
traps, and protection exceptions to their respective handling routines.

These descriptors are called gates; they can be either interrupt gates, trap gates, o
task gates. Interrupt gates and trap gates point to a particular entry point in the
address space of the interrupted user (i.e., to an interrupt procedure). Task gates
point to an interrupt processing task state segment (TSS).

BLD386 sets up the IDT and to assign numbers to vector the individual gates to the
appropriate interrupt procedure or task. For more information, séet¢f86
Family Utilities User's Guide

The IDT can hold up to 256 gates. Gates 0 through 31 are reserved for internal use

Procedures and Tasks

For Intel386 and Intel486 microprocessors, when an interrupt is vectored through
an interrupt gate, all registers must be pushed onto the stack, and interrupts are
automatically disabled. (Interrupts must be explicitly enabled.) The interrupt
procedure then begins execution. The interrupt procedure ends with an IRET
instruction that acts as a normal return. Hence, execution starts at the beginning o
a procedure each time it is entered.

The interrupt process differs for an interrupt vectored through a task gate. The
registers for the interrupted task are saved in the TSS, and the microprocessor's
registers are loaded from the TSS of the interrupt task. Thus, no explicit register
saving is necessary. Interrupts are enabled or disabled depending on the flag
settings in the interrupt task's TSS during execution of the interrupt task (unless
explicitly changed). This enables interruption of the interrupt task. However, a
protection violation occurs if an interrupt task is busy and an attempt is made to
vector through the busy interrupt task.

The interrupt task also ends with an IRET instruction, but in this case it acts as a
task switch, saving the status of the outgoing interrupt task in memory. When the
task is re-entered, execution continues at the first instruction after the IRET
instruction.

388 Appendix G Run-time Interrupt Processing

Interrupt Procedure Prologue and Epilogue

An interrupt procedure begins by declaring its name arrRUiBt IC or EXTERNAL
attribute. The following interrupt procedure declaration is the correct form for
PL/M-386:

HANDLER: PROCEDURE INTERRUPT PUBLIC;

This alerts the compiler to create a code prologue appropriate to a routine that will,
in general, be invoked by interrupts.

At the beginning of each interrupt procedure, the interrupt procedure prologue
inserted by the compiler accomplishes the following tasks:

1. Pushes the CPU registers onto the stack in the following order: EAX, ECX,
EDX, EBX, ESP, EBP, ESI, EDI.

2. Pushes the ES, FS, GS, and DS register content on the stack.

3. If the interrupt procedure has thEBLIC attribute, and if it is exported from a
subsystem, the contents of the DS register is placed on the stack and is then
updated to the data segment of the procedure. In addition, ES is set to DS.

4. The stack marker offset (EBP register contents) is placed on the stack, and the
current stack pointer (ESP register contents) is used to update the EBP register.

5. If the procedure has tlREENTRANRttribute, space is reserved on the stack
for any variables declared within the procedure. (This does not include based
variables, variables with tH2ATAattribute, or variables with theT attribute.)

|:| Note

The compiler may temporarily use the DS register and the ES
register in some cases (e.g., string built-ins), but always restores
it. Take care to note this possibility when writing an interrupt
procedure in assembly language.

PL/M-386 Programmer's Guide Appendix G 389

390

At the point where the interrupt procedure prologue gains control, the stack layout

is as shown in Figure G-1.

Higher
Locations

Flag Reg. Contents

} 2 Bytes

Return Segment Selector

Stack
Counter

Present Regardless Of
Program Size

Return Offset

Lower
Locations

<—@ Stack Pointer

0SD542

Figure G-1. Stack Layout at Point Where an Interrupt Procedure Gains Control

Appendix G

Run-time Interrupt Processing

After the interrupt procedure prologue is executed (at the point where the code
compiled from the procedure body gains control), the stack layout is as shown in

Figure G-2.

/

Higher
Locations

Flag Reg. Contents

A

Return Segment Selector
(In Interrupted Program)

Return Offset

Stack Counter

EAX Reg. Contents
ECX Reg. Contents
EDX Reg. Contents
EBX Reg. Contents
ESP Reg. Contents
EBP Reg. Contents
ESI Reg. Contents
EDI Reg. Contents
ES Reg. Contents

DS Reg. Contents

Old Stack Marker

2 Bytes

Present Regardless of
Program Size

CPU Status Information

P New Stack Marker

Local Variables

\4

Lower
Locations

Figure G-2.

This Space May Be Used During

Procedure Execution
.

(BP Reg. Contents)

Only In Reentrant Procedure

Stack Pointer May Change
During Procedure Execution

OMO02063

Stack Layout during Execution of Interrupt Procedure Body

PL/M-386 Programmer's Guide

Appendix G 391

The return from the procedure body is called the interrupt procedure epilogue; it
restores the stack to the state it was in before the interrupt occurred. The interrupt
procedure epilogue contains the following steps:

1. |If the compiler has used stack locations for temporary storage or local
variables during procedure execution, the stack pointer (the ESP register) is
loaded with the current stack marker (the EBP register) discarding the
temporary storage.

2. The old stack marker is restored by popping the stored value from the stack
into the EBP register.

3. The old data segment is restored by popping the stored value from the stack
into the DS register. This step will occur only if the procedure trasBaIC
attribute and it is exported from a subsystem.

4. The stack is popped into the CPU registers in the following order: EDI, ESI,
EBP, ESP, EBX, EDX, ECX, EAX. Note that the ESP register value is
discarded.

5. An IRET instruction is executed to return from the interrupt procedure
restoring the IP or EIP, CS, and the flag register contents from the stack.

At this point, the stack has been restored to the state it was in before the interrupt
occurred, and processing continues normally.

Interrupt Tasks

392

A task on the microprocessor is a single thread of execution; that is, a stream of
instructions and data with a task state image. The task state image is made up of
the contents of the task registers, the task's status word, and the virtual locations of
the task's instructions and data segments.

Tasks are initiated with a task switch operation. The CPU stores the task state
image of the outgoing task (held in the processor registers) in memory, and loads
the task state image of the incoming task into task registers. Because all the
registers are reloaded and a new address space is entered, it is impossible to jump
directly from one task to another.

Interrupt tasks are frequently written as one loop. At the beginning is the code
needed to initialize the task, followed by the steps needed to handle the interrupt.
Call theWAIT$FORS$INTERRUPDuIlt-in procedure (see Chapter 10) to generate an
IRET instruction. When the task is activated again, execution continues at the
instruction following the IRET, with all the registers unchanged. At the end of the
interrupt task, use @OTGstatement to loop back to the top of the interrupt task.
Thus, an interrupt task never terminates, unless an operating system function
removes the task.

Appendix G Run-time Interrupt Processing

Use of thewAIT$SFORSINTERRUPProcedure is demonstrated in the following
example. This task is designed to handle messages that arrive in pieces, each one
being preceded by an interrupt.

TASK: DO
DECLARE local variables ;
local procedures ;
NEWSMESSAGE:
CALL INITIALIZESMESSAGE$PROCESSING;
DO FOREVER;
CALL WAIT$FORSINTERRUPT;
[* IRET to wait for next interrupt, which continues here */
CALL PROCESS$PIECE$SOFSMESSAGE;
IF LASTSPIECEOFMESSAGES$ THEN DO;
CALL TERMINATE$SMESSAGE$PROCESSING;
CALL WAIT$FORSINTERRUPT;
/* IRET to wait for start of next message */
GOTO NEWSMESSAGE
END;
END;
END TASK;

PL/M-386 Programmer's Guide Appendix G 393

Exception Conditions in REAL Arithmetic

394

Six exception conditions can occur during normal numeric operations:
e Invalid operation

* Denormalized operand

e Zero divide

* Overflow

e Underflow

* Precision

These exceptions are discussed in the following sections. In each case, only a few
of the possible causes are described because most are not likely to occur with PL/N
usage. To perform sophisticated numeric processing of extreme precision and
flexibility, refer to the microprocessor-specific programmer's reference manual.

The six exceptions and their default responses are summarized in Table G-1.

As the following sections indicate, the masked, default response to most exceptions
will provide the least abrupt, most appropriate action for PL/M applications. Many
real math exceptions that occur in other processors will not occur with the numeric
coprocessor because of the extended range of intermediate results it holds. The sc
recovery of gradual underflow (described in the denormalized exception section)
also extends the range of permissible execution rather than reporting a hard-failure
condition.

Appendix G Run-time Interrupt Processing

Table G-1. Exception and Response Summary

Exception Masked Response Unmasked Response
Invalid In one operand is NAN, return it; Request interrupt. (Numeric
Operation if both are NAN's return NAN with coprocessor stack unchanged.)

larger absolute value; if neither is
NAN, return indefinite NAN.

Zero divide Return infinity signed with Request interrupt. (Numeric
"exclusive or" of operand signs. coprocessor stack unchanged.)
Denormalized = Memory operand: proceed as Request interrupt. (Numeric

usual. Register operand: convert coprocessor stack unchanged.)
to valid unnormal, then

reevaluate for then reevaluate for

exceptions.

Overflow Return properly signed infinity. Register destination: adjust
exponent, store result (see note),
request interrupt. Memory
destination: request interrupt.

Underflow Denormalize result. Register destination: adjust
exponent, store result (see note),
request interrupt. Memory
destination: request interrupt.

Precision Return rounded result. Return rounded result, request
interrupt.

Note:
On overflow, 24,576 decimal is subtracted from the true result's exponent. This forces the exponent back into
range and enables a user exception handler to ascertain the true result from the adjusted result that is
returned. On underflow, the same constant is added to the true result's exponent.

Programmers who use the recommended setting &EA& mode word (see

Chapter 10) need to handle only the invalid exception. Study of the other
exception conditions is advised, however, to gain a general understanding of their
use.

PL/M-386 Programmer's Guide Appendix G 395

Invalid Operation Exception

396

This exception generally indicates a program error. It could be caused by
referencing an uninitializedEAL variable or by referencing a location that does
not contain &REALVvalue (as might occur with an out-of-range subscript REAL
array). Attempting to take the square root of a negative number or to store a
number too large for integer format would also generate this exception.

Another interpretation of this exception is stack error. This may be caused by
failing to restore the math unit status before returning from an interrupt routine that
had saved the status. Another cause is the generation of more than eight
intermediate results durirREAL arithmetic, which can arise REAL procedure

function calls are nested too deeply. The compiler ensures that no single procedur
does this, but cannot check what may occur only at run time. This exception can
also occur wheREAL functions (typed procedures) are used as operands within
longerREAL expressions. For example:

DELTA$1 = ALPHA * (BETA/GAMMA) + CHI (PSI, RHO, PI)

where all these names are typageAL andCHI is some previously declar&EAL
function having three parameters.

The following is less likely to cause an exception condition:

EPS = CHI (PSI, RHO, PI)
DELTAS$1 = ALPHA * (BETA/GAMMA) + EPS

because alREAL arithmetic is performed using the numeric coprocessor's stack,
which has eight registers. The first se®EAL parameters supplied in procedure

calls are placed on this stack. If the procedure is typed (i.e., invoked as a function)
it can be embedded as one operand within a |o0RGAL expression.

Because the evaluation of such an expression also involves the use of this stack fo
prior and subsequent arithmetic operations, stack overflow may occur. This
overflow amounts to unpredictable destruction of original parameters or
intermediate results. It becomes more likely as the complexREAL expressions
containingREAL functions is increased. Thus, it is safer to use an assignment
statement first to store the function's value in a real variable; then use that variable
in the larger expression.

If stack error might apply, modify the code for the effected procedures to call the
built-in procedureSAVE$SREAL$STATURNARESTORE$REAL$SSTATUSS their
first and last operations, respectively.

Appendix G Run-time Interrupt Processing

The masked (default) response is to set the result to one of the special bit patterns
called Not-A-Number (NANSs), usually the indefinite value, the smallest NAN
representable in the specified precision. It also sets bit O &&heerror byte.

If bit 0 of theREALmMode word is 0O (invalid exception unmasked), an interrupt
occurs, transferring control to the user-written interrupt handler.

Denormal Operand Exception

This condition arises when numeric operations have resulted in a number whose
exponent is literally zero and whose significand is non-zero, or have resulted in a
number whose significand does not begin with a one. Denormals usually arise in
response to masked underflow. Gradual underflow is the masked, default response
to underflow. A small denormal added to a large noR&iL number can give an
acceptable, in-range answer if the denormal exception is masked. In practice,
denormals are very rare since intermediate results are kept in temporary real format
(15-bit exponent).

This condition causes bit 1 of tREALerror byte to be set to 1. If bit 1 of the
REALmMode word is 1, the response described previously occurs. If bit 1 is 0, an
interrupt occurs, transferring control to the user-written interrupt handler.

Zero Divide Exception

This condition arises when in the course of s&BaLcomputation a divisor turns
out to be zero. The masked response, when bit 2 &Ehe mode word is 1, is to
return infinity appropriately signed. If bit 1 is 0, an interrupt occurs, giving control
to the user-written interrupt handler. In either case, bit 2 arE#e error byte is
setto 1.

Overflow Exception

This error occurs when a real result is too large for the format in use. For assigning
to REALscalar types, it occurs if the result is greater than about 3.37 x 10**38. For
intermediateREAL computations, it occurs if the result is greater than about
10**4932. The overflow exception can arise during assignment, addition,
subtraction, multiplication, division, or conversion to integer.

The masked, default response (bit R&AL mode word = 1) is to return infinity
(signed if affine mode is set) and set bit 3 of REAL error byte to 1. Unmasked
overflow must go through a user-written interrupt handler.

PL/M-386 Programmer's Guide Appendix G 397

Underflow Exception

Underflow exception is caused by an exponent too small for the format in use. For
REALassignments, it occurs if the exponent is less than -127; and for intermediate
results if the exponent is less than -16383. Underflow can be caused by the same
type ofREALoperations as overflow.

The masked, default response (bit KR&ALmode word = 1) is to use the denormal
number created by adjusting the very small result. It adjusts the significand,
moving significant digits off to the right and raising the exponent until the latter
becomes non-zero. For example, with single precision values, a 24-bit significand
of .01 with an exponent of zero implies the number 1 x 2**-129 because a zero
exponent in this format means -127. If the denormal exception is masked, this
number would be adjusted into a significand of .001 with an exponent of 1 (i.e.,
0.001 x 2**-126), prior to operation. This number would then be available for use
in subsequerREAL operations that might yield valid results. Zero is returned if it
is the rounded result. Bit 4 of tREALerror byte is set to 1. Unmasked underflow
must go through a user-written interrupt handler.

Precision Exception

398

This error occurs when the result of an operation is inexact (i.e., rounded) or when
an overflow exception occurs. No special action is performed by a masked
response (bit 5 ;REALmode word = 1) other than setting bit 5 of REALerror

byte. Unmasked response is as chosen by the user.

Appendix G Run-time Interrupt Processing

Writing a Procedure to Handle REAL Interrupts

This section partially summarizes the information pertaining to interrupts,
floating-point usage, and procedures. (Additional facilities for han&lEwL

interrupts may be provided by the operating system, or can be performed with the
system builder.)

An interrupt-handling procedure may, for example, begin as follows:
HANDLER: PROCEDURE INTERRUPT PUBLIC;

If HANDLERwill do anyREAL arithmetic or assignments, its first executable
statements should be of the form:

ERRS$INFO = GET$REAL$ERROR;
/* must declare ERR$INFO$ BYTE earlier */

or:

CALL SAVE$REAL$STATUS (@Local_Save_Area);
/* also declare earlier */

Each procedure clears the error byte. The latter procedure also clearsRialthe
stack. Thus, after either procedure is usedRth&L error byte no longer contains
the flagged cause of the exception condition that invéieedDLER

USing SAVE$REALSSTATUSs a way of avoiding possible stack errors from
cumulative usage. This enables errors ANDLERO be detected independently of
the originating exception condition. It also enall@®IDLERO restore the state of
the interrupted procedure despiteNDLER own use of thREAL facility.
SAVE$REAL$STATUSISO makes available all the information regarding the state
of the numeric coprocessor exceptions, stack, and operations, as shown in the
following paragraph.

PL/M-386 Programmer's Guide Appendix G 399

Thus, the beginning of a typical routine to hareligaL exception conditions could
look like this:

HANDLER: PROCEDURE INTERRUPT PUBLIC;
DECLARE ERR$INFO BYTE;
DECLARE LOCAL$SAVE$AREA (94) BYTE;
ERRS$INFO = GET$REAL$ERROR;

or, to perform extensive manipulations on the save area, declare a structure
permitting access to the save area's component parts by name and/or byte, as
follows:

HANDLER: PROCEDURE INTERRUPT PUBLIC;

DECLARE ERR$INFO BYTE;

DECLARE SAVE$AREA STRUCTURE (

CONTROL(2) BYTE,
STATUS(2) BYTE,
TAG HWORD,
INSTR_OFF WORD,
INSTR_SEL SELECTOR,
OPERAND_OFF WORD,
OPERAND_SEL SELECTOR,
STACK_TOP(5) WORD,
STACK_ONE(5) WORD,
STACK_TWO(5) WORD,
STACK_3 (5) WORD,
STACK_4 (5) WORD,
STACK_5 (5) WORD,
STACK_6 (5) WORD,
STACK_7 (5) WORD);

CALL SAVESREAL$STATUS (@SAVE_AREA);

ERR$INFO = SAVE_AREA.STATUS(0);

|:| Note

To make use of thEAGword, use the masks and shifts to access
the individual fields shown in Figure G-3.

400 Appendix G Run-time Interrupt Processing

Call either theSAVE$SREAL$SSTATUProcedure or theET$SREALSERRORINCtiON,

but not both. If the extra information gained by the save is not needed (i.e., only
the exceptions are needed), useGEF$REALSERRORINction. If both are called,
the second call will produce incorrect results.

15 7 0

TAG(7) | TAG(6) | TAG(S) | TAG() | TAG(3) | TAG(2) | TAG() TA(IE(O)
1

Tag Values:

00 = Valid (Normal or Unnormal)

01 = Zero (True)

10 = Special (Not-A-Number, >, or Denormal) 0SD544
11 = Empty

Figure G-3. Tag Word Format

PL/M-386 Programmer's Guide Appendix G 401

402

The rest oHANDLERcan perform any appropriate actions. This is an application
dependent decision. Among the possibilities:

« Incrementing an exception counter for later display

e Printing diagnostic data (e.g., the contentSAYESAREA

« Aborting further execution of the calculation causing exception
* Aborting all further execution

The format of the OCAL_SAVE_AREAs it is filled by the save procedure is shown
in Figure G-4

The final action prior to returning (if desired) to the interrupted procedure is to
restore the status of tiREAL math unit:

CALL RESTORES$SREAL$STATUS (@LOCAL_SAVE_AREA);

However, ifGETSREAL$SERROR not used prior to theAVESREALS$STATURall,

the local save area will contain the original contents of the error byte. Under these
circumstances, first clear the lower byte of the saved status word before the
RESTOREstatement to avoid retriggering the same exception that invoked
HANDLERN the beginning.

To do so, use a command of the form:
LOCAL_SAVE_AREA (2) =0; /* should precede restore */
or:

SAVE_AREA.STATUS (0) = 0;

Appendix G Run-time Interrupt Processing

Instruction
Pointer

Operand
Pointer
Top
Stack
Element:
ST

Next
Stack
Element:
ST(1)

Next to
Last
Element:
ST(6)
Last
Stack
Element:
ST(7)

Figure G-4.

—

31

16 15 0

Reserved Control Word

Reserved Status Word

Reserved Tag Word

Instruction Pointer Offset

Reserved ‘ Instr. PTR Selector

Operand Offset

Reserved ‘ OP Selector

ST(0) Significand 31-0

ST(0) Significand 63-32

ST(1) Significand 15-0 ‘ S ‘ ST(0) Exponent

ST(1) Significand 47-16

s | ST(1) Exponent | ST(1) Significand 63-48

ST(6) Significand 31-0

ST(6) Significand 63-32

ST(7) 15-0 | s | sT(6) Exponent

ST(7) 47-16

s | ST(7) Exp \ ST(7) 63-48

Intel386 Microprocessor

PL/M-386 Programmer's Guide Appendix G

+0
+4

+8

+12
+16
+20
+24
+28
+32
+36
+40
+44

+ 88
+92
+ 96
+ 100
+104

0OSD546

Memory Layout of the REAL Save Area in Protected Mode for the

403

Run-time Support
for PL/M Applications

In addition to tools that support the software development process, Intel provides
run-time support for application programs.

Numeric Coprocessor Support Libraries

Three specific libraries contained in the Intel387 numeric coprocessor support
directory are of use to PL/M-386 programmers. The directong//ndp387
contains these libraries:

dc387n.lib/dc387f.lignear and far) converts floating-point
representations from ASCII decimal format to internal binary format,
and vice versa.

cl387n.lib/cI387f.lib(near and far)js a common elementary function
library that provides an assortment of common elementary functions,
i.e., logarithmic, exponential, trigonometric, and hyperbolic,
involving floating-point numbers, such as rounding.

eh387n.lib/eh387f.liknear and far) includes floating-point
exception-handling procedures.

For additional information on the libraries contained with Intel387 numeric
coprocessors, see the numeric coprocessor reference manual.

PL/M-386 Programmer's Guide Appendix H 405

PL/M Support Libraries

The PL/M support libraries contain connection procedures and complex built-ins
written in assembly language. The following support library modules are provided:

Interface to 286 CPU code
INTERFACE286_FAR
INTERFACE286_NEAR

Math function for double word
LQ_DWORD_DIVIDE
LQ_DWORD_MULTIPLY

Bit manipulation functions:
MOVBIT

MOVRBIT

SCANBIT

SCANRBIT

406 Appendix H Run-time Support for PL/M Applications

Index

@ operator, 57

A

ABS function, 165
ADJUST$RPL function, 203
Algebraic-shift functions, 168
Apostrophe in string, to include, 33
Arithmetic operators, 79, 91
Arrays, 67
ASM interface, 237
Assignment, 75, 96
AT attribute, 43, 61
Attributes
EXTERNAL, 143
INTERRUPT, 143
PUBLIC, 143
REENTRANT, 143

B

Based variables, 35, 54, 58

Binary number variables, 50

BITLOCK functions, 180

blanks, 29

Block structure, 119

BLOCKINDWORD, BLOCKINHWORD,
BLOCKINPUT, BLOCKINWORD
procedures, 192

BLOCKOUTDWORD, BLOCKOUTHWORD,
BLOCKOUTPUT, BLOCKOUTWORD
procedures, 193

blocks, 23

BUILD$PTR function, 183

Built-in arrays, 195, 196

Built-in procedures and variables, 25

Built-ins, 149

BYTE$SWAP built-in function, 211

PL/M-386 Programmer’s Guide

C

C language compatibility, 380

cache, clearing, 211

CALL statement, 118, 135

Calling sequence, 371

CARRY flag, 187, 189

CAUSESINTERRUPT statement, 186

Character set, 27

character strings, 33

CLEAR$TASK$SWITCHEDS$FLAG built-in
procedure, 200

Closed subsystems, 309

CODE control, 232

Comments, 33

Communication between subsystems, 310

COMPACT control, 221, 231, 263

Compilation summary listing example, 271

Compound operands, 78

Concatenate functions, 169

COND control, 232

Constants, 30, 43, 76

CONTROL$REGISTER built-in array, 198

Cross-reference listing example, 270

D

Data attribute declaration, 35

DATA keyword, 39, 43

Data types, 35, 48

DEBUG control, 233
DEBUGS$REGISTER built-in array, 198
DEC built-in function, 189

Decimal adjust, 189

Declaration statements, 23, 35, 36, 45, 122
Denormal operand exception, 397
Dimension specifier, 42

DISABLE statement, 185

Index 407

DO block and statement, 23
DO statement, 103
dollar sign, 30

E

EJECT control, 233

ENABLE statement, 185
END statement, 23, 103, 112
Evaluation of expressions, 87
Example of subsystem, 316
Example program, 279
executable statements, 24
Exporting procedures, 314
expressions, 25, 75
Extended segmentation model syntax, 310
EXTERNAL attribute, 123

F

factored declaration, 36

File inclusion with compiler controls, 227
File usage, 217

FIND element functions, 173

Find string mismatch function, 174
Find value in input port function, 191
FIX function, 160

FLAGS function, 189

Flags, hardware, 187, 188

FLAT control, 265

FLOAT function, 160

Floating-point arithmetic, 50

Flow of control, 103

Function references, 78, 135

G

GDT register, 194
GET$ACCESS$RIGHTS function, 200
GET$REAL$ERROR function, 208
GET$SEGMENTS$LIMIT function, 201
Global descriptor table register, 194
GOTO restrictions, 126

GOTO statement, 117

408 Index

H
HALT statement, 186

I/0 hardware, 192
IABS function, 165
Identifiers, 30
IDTR register, 196, 197
IF control, 234
IF statement, 112
IF|ELSE|ELSEIF|ENDIF controls, 233
Implicit dimension specifier, 42
INCLUDE control, 235
INITSREALSMATHSUNIT built-in
procedure, 207
INITIAL keyword, 38
Initialization, 39
Input files, 217
INPUT, INHWORD, INWORD functions, 191
Input/Output support, 26
INT function, 161
INTEGER keyword and variables, 51
INTERFACE control, 236
intermodule references, 47
Interrupt
Mechanism, to enable or disable, 185
Processing, 210
Software, to generate, 186
Interrupt descriptor table, 388
Interrupt descriptor table register, 196
Interrupt procedures, 389
Interrupt processing, 387
Invalid operation exception, 396
INVALIDATE$DATAS$CACHE built-in
function, 211
INVALIDATES$TLBS$SENTRY built-in
function, 212
IRET instruction, to generate, 210

L

Label declarations, 35, 46
Languages interface, 231, 236
LAST function, 151

LDT register, 197

LEFTMARGIN control, 221, 226, 241
LENGTH function, 150

Line numbers, 241

Linkage attributes, 119

Linking to modules in other languages, 369
LIST control, 241

Listing example, 271

LITERALLY declarations, 44, 45
local descriptor table register, 197
LOCALS$TABLE variable, 197
Location references, 54, 56, 60, 78
LOCKSET function, 180

Logical operators, 85

Logical-shift functions, 167

M

Machine overflow, 258

Machine status register, 198

MACHINES$STATUS built-in variable, 198

Math facility, 204

MEDIUM control, 231, 265

Messages, 321

MINUS operator, 188

MODA486 control, 242

module, 23

MOVB, MOVHW, MOVW procedures, 171

MOVBIT procedure, 177

Move bit patterns right or left, 166

MOVE procedure, 179

MOVRB, MOVRHW, MOVRW
procedures, 171

MSW register, 198

N

NIL function, 184

null statement, 107

Number base (binary, decimal, hexadecimal,
and octal), 31

O

Object files, 218

OFFSET function, 165
OFFSET type, 57
OFFSET$OF function, 183

PL/M-386 Programmer’s Guide

Open subsystems, 308

operands, 75

Operator precedence, 87

OPTIMIZE control, 243

OUTPUT, OUTDWORD, OUTHWORD,
OUTWORD functions, 191

OVERFLOW control, 258

Overflow exception, 397

P

PAGELENGTH control, 258
PAGEWIDTH control, 259
PAGING control, 259
Parameters, actual and formal, 132
PARITY flag, 188
PLUS operator, 188
POINTER function, 164
POINTER keyword and type, 48, 54
Precision exception, 398
PRINT control, 259
Print files, 218
Privilege level, to adjust, 200, 202
Procedure declarations, 47
Procedure epilogue, 375
Procedures, 23, 131

Activation, 135

Declaration, 131

Definition, 132

Exit from, 139

Parameters, 132

Scope, 132

Typed, 134

Untyped, 134
Procedures and tasks, 388
Protection architecture of the microprocessor,

to access, 193

PUBLIC attribute, 123

R

RAM control, 219, 231, 260
Read string procedure, 192, 194
REAL functions, 160

REAL interrupts, 399

REAL keyword and variables, 51
REAL math facility, 204

Index 409

Recursion, direct and indirect, 146 SELECTORS$OF function, 183

Register usage, 376 Separators, 29
Registers, 189 set command, 217
Relational operators, 83 SET control, 261
Requested privilege level, to adjust, 203 SET procedures, 176
Reserved words, 339 SET$REAL$MODE procedure, 207
RESET control, 228, 231, 232, 261 SHL function, 167
RESTORE control, 227, 260 SHLD function, 169
RESTORES$GLOBALSTABLE built-in SHR function, 167

procedure, 195 SHRD function, 169
RESTORESINTERRUPTS$TABLE built-in SIGN flag, 188

procedure, 197 Signed arithmetic, 51
RESTORE$REAL$STATUS built-in SIGNED function, 161

procedure, 208 Signed integer data type built-in function, 160
RETURN statement, 139 SIZE function, 151
ROL function, 166 SKIP functions, 174
ROM control, 231 SMALL control, 262
ROR function, 166 Source code, to insert compiler
Rotation functions, 166, 188 control line, 221
RPL, to adjust, 203 special characters, 29
Run-time support, 405 Stack layout, 392

Stack representation, 371
S STACKBASE variable, 190
STACKPTR variable, 190

SAL function, 168 Statements
Sample program, 279 CALL, 192,193, 195, 196, 200, 207,
SAR function, 168 209, 210
SAVE control, 260 CAUSESINTERRUPT, 186
SAVE$GLOBALS$TABLE built-in DISABLE, 185

procedure, 195 ENABLE, 185
SAVESINTERRUPTS$TABLE built-in HALT, 186

procedure, 196 String manipulation procedures and
SAVES$SREALS$STATUS built-in functions, 170

procedure, 208 Strings, 33
SCANBIT function, 177 Structures, 69
scientific notation, 52 Subexpressions, 78
SCL built-in function, 188 Subscripted variables, 68
scope, 119, 123, 126 Substitution (characters/values/
SCR built-in function, 188 quantities), 44, 45
Segment information and accessibility Subsystems, 297

functions, 200, 202 SUBTITLE control, 266
Segment name conventions, 379 Support libraries, 405
SEGMENT$READABLE function, 202 SYMBOLS control, 220, 266

SEGMENTS$WRITABLE function, 202
Segmentation controls, 299, 313
SELECTOR function, 164
SELECTOR keyword and type, 54, 57

410 Index

T \%

TASK$REGISTER variable, 193 Value conversion, 152
Tasks, 392 Variable declarations, 36
temporary-real format, 52 Variable references, 78
TEST$REGISTER built-in array, 198, 211
TIME procedure, 180 W
TITLE control, 267
Tokens, 29 WAIT$FORSINTERRUPT built-in
Translate string procedure, 175 procedure, 210
TYPE control, 267 WBSINVALIDATE$SDATASCACHE built-in
Type conversion, 96, 152 function, 212
Typed procedures, 134 WMOVB function, 171
WORD16 mapping for built-ins, 211
U WORD32|WORD16 control, 267
WORD32|WORD16 type mapping, 64
Underflow exception, 398 Work files, 217
underscore, 30 Write string procedure, 193
UNSIGN function, 162
Unsigned arithmetic, 50 X
Unsigned binary data type built-in
functions, 163 XLAT procedure, 175
Untyped procedures, 132 XREF control, 220, 221, 270

Using subsystems, 303
Z

Zero divide exception, 397
ZERO flag, 200

PL/M-386 Programmer’s Guide Index 411

PL/M-386 Programmer’s Guide

611052-002

WE'D LIKE YOUR OPINION

Please rate the following: Excellent Good Fair Poor

»« Manual organization O O O O

» Technical accuracy 0 O O O

» Completeness 0 O O O

» Clarity of concepts and wording O O O O

» Quality of examples and illustrations O O O O

» Overall ease of use O O O O

Comments:

Please list any errors you found (include page number):

Name

Company Name

Address

May we contact you? Phone

Thank you for taking the time to fill out this form.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

OPD Technical Publications, HF2-72
Intel Corporation

5200 NE Elam Y oung Parkway
Hillsboro, OR 97124-9978

Please fold here and close the card with tape. Do not staple.

WE'D LIKE YOUR COMMENTS....

This document is one of a series describing Intel products. Your
comments on the other side of this form will help us produce better
manuals. Each reply will be reviewed. All comments and suggestions
become the property of Intel Corporation.

If you are in the United States and are sending only this card, postage
is prepaid.

If you are sending additional material or if you are outside the United
States, please insert this card and any enclosures in an envelope. Send
the envelope to the above address, adding "United States of America" if
you are outside the United States.

Thanks for your comments.

International Sales Offices

AUSTRALIA

Intel Australia Pty. Ltd.

Unit 1A

2 Aquatic Drive

Frenchs Forest, NSW, 2086
Sydney

Intel Australia Pty. Ltd.
711 High Street

1st Floor

East Kw. Vic., 3102
Melbourne

BRAZIL

Intel Semiconductores do Brazil LTDA
Avenida Paulista, 1159-CJS 404/405
CEP 01311-Sao Paulo - S.P.

CANADA

Intel Semiconductor of Canada, Ltd.
999 Canada Place

Suite 404, #11

Vancouver V6C 3E2

British Columbia

Intel Semiconductor of Canada, Ltd.
2650 Queensview Drive

Suite 250

Ottawa K2B 8H6

Ontario

Intel Semiconductor of Canada, Ltd.
190 Attwell Drive

Suite 500

Rexdale MOW 6H8

Ontario

Intel Semiconductor of Canada, Ltd.
1 Rue Holiday

Suite 115

Tour East

Pt. Claire H9R 5N3

Quebec

CHINA/HONG KONG

Intel PRC Corporation

China World Tower, Room 517-518
1 Jian Guo Men Wai Avenue
Beijing, 100004

Republic of China

Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway

Central

Hong Kong

FINLAND

Intel Finland OY
Ruosilantie 2
00390 Helsinki

FRANCE

Intel Corporation S.A.R.L.

1, Rue Edison-BP 303

78054 St. Quentin-en-Yvelines
Cedex

GERMANY

Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen bei Muenchen
Germany

INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza

St. Mark's Road
Bangalore 560001

ISRAEL

Intel Semiconductor Ltd.

Atidim Industrial Park-Neve Sharet
P.O. Box 43202

Tel-Aviv 61430

ITALY

Intel Corporation Italia S.p.A.
Milanofiori Palazzo E

20094 Assago

Milano

JAPAN

Intel Japan K.K.

5-6 Tokodai, Tsukuba-shi
Ibaraki, 300-26

Intel Japan K.K.
Hachioji ON Bldg.
4-7-14 Myojin-machi
Hachioji-shi, Tokyo 192

Intel Japan K.K.

Bldg. Kumagaya

2-69 Hon-cho
Kumagaya-shi, Saitama 360

Intel Japan K.K.
Kawa-asa Bldg.

2-11-5 Shin-Yokohama
Kohoku-ku, Yokohama-shi
Kanagawa, 222

Intel Japan K.K.
Ryokuchi-Eki Bldg.

2-4-1 Terauchi
Toyonaka-shi, Osaka 560

Intel Japan K.K.
Shinmaru Bldg.

1-5-1 Marunouchi
Chiyoda-ku, Tokyo 100

Intel Japan K.K.
Green Bldg.

1-16-20 Nishiki
Naka-ku, Nagoya-shi
Aichi 460

KOREA

Intel Korea, Ltd.

16th Floor, Life Bldg.

61 Yoido-dong, Youngdeungpo-
Ku

Seoul 150-010

MEXICO

Intel Technologica de Mexico
S.A.de C.V.

Av. Mexico No. 2798-9B, S.H.
44620 Guadalajara, Jal.,

NETHERLANDS

Intel Semiconductor B.V.
Postbus 84130

3009 CC Rotterdam

RUSSIA

Intel Technologies, Inc.
Kremenchugskaya 6/7
121357 Moscow

SINGAPORE

Intel Singapore Technology, Ltd.
101 Thomson Road #08-03/06
United Square

Singapore 1130

SPAIN

Intel Iberia S.A.
Zurbaran, 28
28010 Madrid

SWEDEN

Intel Sweden A.B.
Dalvagen 24

171 36 Solna

TAIWAN

Intel Technology Far East Ltd.
Taiwan Branch Office

8th Floor, No. 205

Bank Tower Bldg.

Tung Hua N. Road

Taipei

UNITED KINGDOM

Intel Corporation (U.K.) Ltd.
Pipers Way

Swindon, Wiltshire SN3 1RJ

If you need to contact Intel Customer Support

Contacting us is easy. Be sure that you have the following information available:

or software config

Your phone and FAX numbers ready
Complete description of your hardware o

Your

uration(s) Com

product’s product code

Current version of all software you use

plete problem description

Type of Service

How to contact us

FaxBACK*

Using any touch-tone phone,

U.S. and Canada: (800) 628-2283

fax-on-demand system have technical documents sentfto (916) 356-3105
your fax machine. Know your

24 hrs a day, 7 days a wee¢kax number before calling. Europe: +44-1793-496644

Intel PC and LAN Information on products, U.S and Canada: (503) 264-7999

Enhancement Support documentation, software driversEurope: +44-1793-432954

BBS

24 hrs a day, 7 days a wet

firmware upgrades, tools,
presentations, troubleshooting.
2k

Autobaud detect
8 data bits, no parity, 1 stop

CompuServe*
Information Service

24 hrs a day, 7 days a wet

Worldwide customer support:
information and technical
support for designers, engineer
and users of 32-bit iRMX OS
cland Multibus product families.

Worldwide Locations:

(check your local listing)
Sl
Type: GO INTELC once online.

Customer Support

Intel Multibus Support engineer
offering technical advice and
troubleshooting information on
the latest Multibus products.

sU.S. and Canada: (800) 257-5404
(503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Europe: +44-1793-641464
FAX: +44-1793-496385

Hrs: M-F; 9-5:30 GMT

Hardware Repair

Multibus board and system
repair.

U.S. and Canada: (800) 628-8686
(602) 554-4904
FAX: (602) 554-6653
Hrs: M-F; 7-5 PST
Europe: +44-1793-40352(
FAX: +44-1793-496156
Hrs: M-F; 9-5:30 GMT

Sales Intel Sales engineers offering | Worldwide: Contact your local Intel
information on the latest iRMX office or distributor
and Multibus products and theif U.S. and Canada: (800) 438-4769
availability. (503) 696-5025
FAX: (503) 681-8497
Hrs: M-F; 8-5 PST
Correspondence Worldwide: Europe:

Mail letters to:

Intel Customer Support
Mailstop HF3-55

5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497

European Application Support
Intel Corporation (UK) Ltd.
Pipers Way

Swindon, Wiltshire

England SN3 1RJ

* Third-party trademarks are the property of their respective owners.

	Other iRMX Manuals
	PL/M-386 Programmer's Guide
	Quick Contents
	Contents
	1. Introduction
	Product Definition
	Compatible Assemblers, Debuggers, and Utilities
	Advantages of Using the PL/M Language
	Structure of a PL/M Program
	Overview of PL/M Statements
	Declaration Statements
	Executable Statements
	Built-in Procedures and Variables
	Overview of PL/M Expressions
	Input and Output

	2. Language Elements
	Character Set
	Tokens, Separators, and the Use of Blanks
	Identifiers and Reserved Words
	Constants
	Whole-number Constants
	Floating-point Constants
	Character Strings

	Comments

	3. Data Declarations, Types, and Based Variables
	Variable Declaration Statements
	Sample DECLARE Statements
	Results of Variable Declarations
	Combining DECLARE Statements

	Initializations
	The Implicit Dimension Specifier
	Names for Execution Constants: the Use of DATA

	Types of Declaration Statements
	Compilation Constants (Text Substitution): The Use of LITERALLY
	Declarations of Names for Labels
	Results of Label Declarations
	Declaration for Procedures

	Data Types
	Unsigned Binary Number Variables: Unsigned Arithmetic
	INTEGER Variables: Signed Arithmetic
	REAL-Variables: Floating-point Arithmetic
	Examples of Binary Scientific Notation
	POINTER Variables and Location References
	OFFSET Data Type and the Dot Operator
	SELECTOR Variables

	Based Variables
	Location References and Based Variables

	The AT Attribute
	WORD32 | WORD16 Type Mapping
	Choosing WORD32 or WORD16

	4. Arrays and Structures
	Arrays
	Subscripted Variables

	Structures
	Arrays of Structures
	Arrays Within Structures
	Arrays of Structures With Arrays Inside the Structures
	Nested Structures

	References to Arrays and Structures
	Fully Qualified Variable References
	Unqualified and Partially Qualified Variable References

	5. Expressions and Assignments
	Operands
	Constants
	Whole-number Constants in Unsigned Context
	Whole-number Constants in Signed Context
	String Constants

	Variable and Location References
	Subexpressions
	Compound Operands
	Arithmetic Operators
	The +, -, *, and / Operators
	The MOD Operator

	Relational Operators
	Logical Operators
	Expression Evaluation
	Precedence of Operators: Analyzing an Expression
	Compound Operands Have Types
	Relational Operators Are Restricted
	Order of Evaluation of Operands

	Choice of Arithmetic: Summary of Rules
	Special Case: Constant Expressions

	Assignment Statements
	Implicit Type Conversions
	Constant Expression
	Multiple Assignment
	Embedded Assignments

	6. Flow Control Statements
	DO and END Statements: DO Blocks
	Simple DO Blocks
	DO CASE Blocks
	DO WHILE Blocks
	Iterative DO Blocks

	END Statement
	IF Statement
	Nested IF Statements
	Sequential IF Statements

	GOTO Statements
	The CALL and RETURN Statements

	7. Block Structure and Scope
	Names Recognized Within Blocks
	Restrictions on Multiple Declarations

	Extended Scope: The PUBLIC and EXTERNAL Attributes
	Scope of Labels and Restrictions and GOTOs

	8. Procedures
	Procedure Declarations
	Parameters
	Typed Versus Untyped Procedures

	Activating a Procedure: Function References and CALL Statements
	Indirect Procedure Activation
	Code Examples

	Exit from a Procedure: The RETURN Statement
	The Procedure Body
	Examples

	The Attributes: PUBLIC and EXTERNAL, INTERRUPT, REENTRANT
	Interrupts and the INTERRUPT Attribute
	Reentrancy and the REENTRANT Attribute

	9. Built-in Procedures, Functions, and Variables
	Obtaining Information About Variables
	The LENGTH Funtion
	The LAST Function
	The SIZE Function

	Explicit Type and Value Conversions
	The PL/M-386 LOW, HIGH, and DOUBLE Functions
	The FLOAT Function
	The FIX Function
	The INT Function
	The SIGNED Function
	The UNSIGNED Function
	The Unsigned Binary Data Type Built-in Functions
	Signed Integer Data Type Built-in Function
	REAL Built-in Functions
	The SELECTOR Built-in Function
	The POINTER Built-in Function
	The OFFSET Built-in Function
	The ABS and IABS Functions

	Shift and Rotate Functions
	Rotation Functions
	Logical-shift Functions
	Algebraic-shift Functions
	Concatenate Functions

	String Manipulation Procedures and Functions
	The Copy String in Ascending Order Procedure
	The Copy String in Descending Order Procedure
	The Compare String Function
	The Find Element Functions
	The Find String Mismatch Function
	The Translate String Procedure
	The Set String to Value Procedure

	PL/M-386 Bit Manipulation Built-ins
	The Copy Bit String Procedure
	The Find Set Bit Funtion

	Miscellaneous Built-ins
	The Move Bytes Procedure
	The Time Delay Procedure
	The Lock Set Function
	The Lock Bit Functions

	POINTER and SELECTOR-related Functions
	The Return POINTER Value Function
	The Return Segment Portion of POINTER Function
	The Return Offset Portion of POINTER Function
	The Set POINTER Bytes to Zero Variable

	WORD16 Built-in Mapping

	10. Features Involving the Target CPU and Numeric Coprocessor
	Microprocessor Hardware-dependent Statements
	The ENABLE and DISABLE Statements
	The CAUSE$INTERRUPT Statement
	The HALT Statement

	Microprocessor Hardware Flags
	Optimization and the Hardware Flags
	The CARRY, SIGN, ZERO, and PARITY Functions
	The PLUS and MINUS Operators
	Carry-rotation Functions
	The Decimal Adjust Function

	Microprocessor Hardware Registers
	The Flags Register Access Variable
	The STACKPTR and STACKBASE Variables

	Microporcessor Hardware I/O
	The Find Value in Input Port Function
	The Access Output Port Array
	The Read and Store String Procedure
	The Write String Procedure

	The Hardware Protection Model
	The Task Register
	The Global Descriptor Table Register
	The Interrupt Descriptor Table Register
	The Local Descriptor Table Register
	The Machine Status Register
	Segment Information
	Segment Accessibility
	Adjusting the Requested Privilege Level

	The REAL Math Facility
	Built-ins Supporting the REAL Math Unit
	The INIT$REAL$MATH$UNIT Procedure
	The SET$REAL$MODE Procedure
	The GET$REAL$ERROR Function
	Saving and Restoring REAL Status
	Interrupt Processing

	WORD16 Mapping for Built-ins
	Intel486 Processor Built-ins

	11. Compiler Invocation and Controls
	Invocation Syntax on iRMX Systems
	Invocation Examples and Sign-on/Sign-off Messages under the iRMX OS

	Invocation Syntax on DOS Systems
	Invocation Examples and Sign-on/Sign-off Messages under DOS

	File Usage under DOS and the iRMX OS
	Input Files
	Work Files

	Introduction to Compiler Controls
	Input Format Control
	Code Generation and Object File Controls
	Segmentation Controls
	Listing Selection and Contents Controls
	Listing Format Controls
	Source Inclusion Controls
	Conditional Compilation Controls
	Language Compatibility Control
	Predefined Switches

	Compiler Control Encyclopedia
	CODE | NOCODE
	COND | NOCOND
	DEBUG | NODEBUG
	EJECT
	IF | ELSE | ELSEIF | ENDIF
	INCLUDE
	INTERFACE
	LEFTMARGIN
	LIST | NOLIST
	MOD486
	OBJECT | NOOBJECT
	OPTIMIZE
	OVERFLOW | NOOVERFLOW
	PAGELENGTH
	PAGEWIDTH
	PAGING | NOPAGING
	PRINT | NOPRINT
	RAM | ROM
	SAVE | RESTORE
	SET | RESET
	SMALL | COMPACT | MEDIUM | LARGE | FLAT
	SUBTITLE
	SYMBOLS | NOSYMBOLS
	TITLE
	TYPE | NOTYPE
	WORD32 | WORD16
	XREF | NOXREF

	Program Listing
	Sample Program Listing
	Symbol and Cross-reference Listing
	Compilation Summary

	12. Sample Program
	Introduction
	FREQ Module
	OPEN Module
	PRINT Module
	Include Files

	13. Extended Segmentation Models
	Overview
	Introduction
	Segmentation Controls Architecture Overview
	Using Subsystems
	Open Subsystems
	Closed Subsystems
	Communication Between Subsystems

	Syntax
	Placement of Segmentation Controls

	Exporting Procedures
	Large Matrix Example

	14. Error and Warning Messages
	PL/M Program Error and Warning Messages
	Fatal Command Tail and Control Error Messages
	Fatal Input/Output Error Messages
	Fatal Insufficient Memory Error Messages
	Fatal Compiler Failure Error Messages
	Insufficient Memory Warning Messages

	A. PL/M Reserved Words and Predeclared Identifiers
	Introduction

	B. PL/M Program Limits
	C. Grammar of the PL/M Language
	Expressions
	Primaries
	Operators
	Structure of Expressions

	Lexical Elements
	Character Sets
	Tokens
	Delimiters
	Identifiers
	Numeric Constants
	Strings
	PL/M Text Structure: Tokens, Blanks, and Comments

	Modules and the Main Program
	Declarations
	DECLARE Statements
	Variable Elements
	Label Element
	Literal Elements
	Factored Variable Element
	Factored Label Element
	The Structure Type
	Procedure Definition
	Attributes

	Units
	Basic Statements
	Scoping Statements
	Conditional Clause
	DO Blocks

	D. Differences Between PL/M Compilers
	Differences between PL/M-86 and PL/M-80
	Compatibility of PL/M-80 Programs and the PL/M-86 Compiler
	Differences between PL/M-286 and PL/M-86
	Compatibility of PL/M-86 Programs and the PL/M-286 Compiler
	Differences between PL/M-386 and PL/M-286
	Compatibility of PL/M-286 Programs and the PL/M-386 Compiler

	E. Character Set
	F. Linking to Modules Written in Other Languages
	Introduction
	Calling Sequence
	Procedure Prologue
	Procedure Epilogue
	Register Usage
	Segment Name Conventions
	C Language Compatibility
	Design Guidelines
	Code Example

	Compiling C and PL/M Modules

	G. Run-time Interrupt Processing
	General Information
	The Interrupt Descriptor Table
	Procedures and Tasks

	Interrupt Procedure Prologue and Epilogue
	Interrupt Tasks
	Exception Conditions in REAL Arithmetic
	Invalid Operation Exception
	Denormal Operand Exception
	Zero Divide Exception
	Overflow Exception
	Underflow Exception
	Precision Exception

	Writing a Procedure to Handle REAL Interrupts

	H. Run-time Support for PL/M Applications
	Numeric Coprocessor Support Libraries
	PL/M Support Libraries

	Index
	Service Information

