

II

II

D

�I�~�

�I�~�

IJ

fJ

I"J
�I �'�~�

'"

r:
�I �~�'�"�

. . .. �~�

�I �~�~�.� '
-'

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

Removes a partition.

Synopsis

Parameters

#include <Ilx.h>

long nx _ rmpart(

partition

force

char *partition,
long force,
long recursive);

Relative or absolute pathname of the partition to be removed. The parent partition
must give write permission to the calling process.

Removes partitions that contain running applications. If the value is 0 (zero). the
partition will not be removed if any applications are running in the partition. Any
other value specifies removing the partition even if applications are running in the
partition.

recursive Recursively remove the partition. A value of 0 (zero) specifies that the partition
will not be removed if the partition has any subpartitions.

A non-zero value specifies that the partition and all its subpartitions will be
removed recursively. There cannot be any applications running in the partition or
any of its sUbpartitions. If applications are running in the partition or any of its
subpartitions. the nx JmpartO function does not remove the partition or any of
its subpartitions.

.
The force parameter set to a positive integer and used with the recursive parameter
allows a partitions and subpartitions to be removed if they have applications
running in them.

145

�-�.�"�-�-�-�-�-�-�-�-�-�-�.�~�- . ----

Manual Pages Paragon'" OSFI1 C System Calls Reference Manual

NX_RMPARTO (cont.)

Description

The nx JIDpartO function removes from the system a partition, its subpartitions, and applications
running in the partition or its subpartitions. A calling process must have write permission on the
parent partition to remove the partition.

Theforce parameter specifies whether to remove the partition if it contains applications. A 0 (zero)
value specifies not to remove a partition if it contains applications. Any other value forces the
partition to be removed. This is a safety mechanism so you do not accidently destroy an application
or subpartition.

The recursive parameter specifies whether to remove the partition and all its subpartitions. A 0 (zero)
value specifies not to remove a partition if it contains subpartitions. Any other value removes the
partition and all its sUbpartitions.

If you provide non-zero values for both the force and recursive parameters, nx JIDpartO removes
the partition and all its subpartitions, even if applications are running in the partition or its
subpartitions.

Return Values

>0 Partition was successfully removed.

-1 Error; errno is set.

Errors

When - 1 is returned by this function, errno is set to one of the following values:

EPACCESS Insufficient access permission for this operation on a permission.

EPALLOCERR
An internal error occurred in the node allocation server.

EPINV ALPART
The specified partition does not exist.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPNOTEMPI'Y The specified partition contains one or more subpartitions or running applications.

146

------ --------- ----'-

n
11

D
II]

C

Cl

E

•
E

EJ

1:=
[J

III

III
£J

I!J

111

IJ

III

I:J

• • •
111
II]

• •
• • •
D

It

II

It

I:

II

I!

1:1
I~

.. ,j

I ·""
: ".1

I:
I:
I~'

""

IJ

Ij

IJ
I ~!

'"

~

• • • •

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

NX_RMPARTO (cont.) NX_RMPART() (cont.)

See Also

chpart, Ispart, mkpart, DX_chpartO, DX_mkpartO, pspart, rmpart

147

Manual Pages Paragon™OSF/1 C System Calls Reference Manual

Waitsf()f all the child processes of a calling process to stop or terminate

Synopsis

Description

#include <nx.h>

long DX_waitall(void);

The ox _ waitallO function takes no parameters, waits for all the child processes of a calling process
to stop or terminate, and returns 0 (zero) for successful termination of child processes or -1 for
unsuccessful termination of child processes. Otherwise, the ox _ waitallO function is identical to the
OSF/l waitO function. See wait(2) in the OSFll Programmer's Reference.

The ox_waitallO function suspends the application's calling process until all the application's child
process stop or terminate. An application can start child process with the ox _ nfork(), ox JoadO, or
ox JoadveO functions.

Return Values

Errors

see Also

148

o All the application's processes terminated successfully

-1 One or more of the application' s processes terminated with an error

If the ox _ waitallO function fails, errno may be set to one of the error code values described for the
OSFIl wait(2) function.

D

D

o
o
D

D

III

B1

• •
[j

l:

IJ

Cl

El

II

•
IJ

&1

KJ

• • •
II

•
III

• • • • •

•
•
II

II

II

D

n

111

1:1

~

[j

['1

I:

IJ
I~

[1

I:
IJ

• • • •

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SETIOMODE() SETIOMODE()

Sets the 110 mode of a file and performs a global synchronization operation.

Synopsis

Parameters

Description

#include <nx.h>

void setiomode(
intfildes,
int iomode);

ftldes A file descriptor representing an open file.

iomode The 110 mode to be assigned to the file associated withjildes. Values for the
iomode parameter are as follows:

M _ UNIX Each node has its own file pointer; access is
unrestricted.

M _LOG All nodes use the same file pointer; access is frrst
come, first served; records may be of variable length.

M_SYNC All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.

M _RECORD Each node has its own file pointer; access is frrst come,
frrst served; records are in node order and of fixed
length.

The setiomodeO function changes the 110 mode of an open shared file. A shared file is a file that is
opened for access by more than one node. Shared files opened by openO or fopenO have the 110
mode M_ UNIX.

Each node calling setlomodeO must specify aftldes that refers to the same file, and the file pointer
must be in the same position in the file for each node at the time the call to setiomode() is made.

149

.. _---------------

Manual Pages Paragon'M OSF/1 C System Calls Reference Manual

SETIOMODEO (cont.) SETIOMODEO (cont.)

150

In addition to setting the file's 110 mode. setiomode() performs a global synchronizing operation
like that of the gsyncO function. That is. all nodes must call the setiomodeO function before any
node can continue executing. In the M _LOG. M _SYNC. and M _RECORD modes. clOSing the file
also performs a global synchronizing operation.

Use the iomodeO function to return a file's current mode.

Using the forkO function. the child process does not inherit the 110 modes associated with the parent
process's file descriptors; all 110 modes in the child process default to the mode M_UNIX.

In this mode. each node maintains its own file pointer and can access information anywhere in the
file at any time. If two nodes write to the same place in the file. the latest data written by a node
overwrites the data written previously by another node.

This mode is often used when all nodes are only reading a data file or when each node is responsible
for data in a specific area of a file.

Because each node can access the file immediately. this mode generally has higher performance than
the M_LOG. M_SYNC. or M_RECORD modes.

In this mode. all nodes use the same file pointer. 110 requests from nodes are handled on a first -come.
frrst-served basis. Because requests can be performed in any order. the order of the data in the file
may vary from run to run.

This mode is often used for log files. The files stdin. stdout. and stderr are always opened in this
mode.

Because only one node may access the file at a time. this mode has lower performance than the
M_ UNIX mode.

In this mode. all nodes use the same file pointer. but 110 requests are handled in node order. This
mode treats file accesses as global operations in which all nodes must complete their access before
any node can access the file again. The amount of data read or written may. however. vary from node
to node.

.----- .. ~~-

D

11

D

D

D

D

o
C1

• •
£j

l:
(J

II]

•
II

• •
El

• •
• • • • • • • • • •
D

•
II
II

11

" I]

D

I:

(~

IJ

I]

IJ

IJ

IJ

IJ

II

• • •

Paragon™ OSFI1 C System Calls Reference Manual Manual Pages

SETIOMODEO (cont.) SETIOMODE() (cont.)

In this mode, all nodes must perform the same file operations in the same order. The only valid use
for the IseekO or eseekO function is for all nodes to seek to the same position in the file prior to an
access.

Because nodes must access the file in node order, this mode has the lowest performance of all the
modes.

M_RECORD (Mode 3)

In this mode, each node maintains its own file pointer and can access the file at any time. The data
for each corresponding access (that is, the nth read or write) must be the same length for all nodes.
Because the data from each node appears in the file in a predictable location, each node can access
the file whenever it is ready.

Files created in this mode resemble files created in the M _SYNC mode. The data appear in node
order. All nodes should perform the same file operations in the same order. However, in the
M _RECORD mode most operations are not synchronized for performance reasons. The operations
that are synchronized are the IseekO and eseekO system calls: the only valid use of one of these calls
is for alI nodes to seek to the same position in the file prior to an access.

Because nodes may access the file when they are ready, this mode offers better performance than
mode M_SYNC.

Return Values

Errors

Upon successful completion, the setiomode() function returns control to the calling process; no
values are returned. Otherwise, the setiomodeO function displays an error message to standard error
and causes the calling process to terminate.

Upon successful completion, the _setiomode() function returns 0 (zero). Otherwise, the
_setiomode() function returns -1 and sets errno to indicate the error ..

If the _ setiomode() function fails, errno may be set to one of the following error code values:

EBADF

EINVAL

EMIXIO

The fildes parameter is not a valid file descriptor.

The given value for iomode is not a valid I/O mode.

The givenftldes is invalid because all nodes have not specified aftldes that
represents the same file.

151

._--_ .. _---_ .. --------

Manual Pages Paragon™ OSF/1 C System Calls Reference Manual

SETIOMODEO (cont.) SETIOMODE() (cont.)

See Also

152

EMIXIO The given value for iomode is not valid because all nodes sharing the file
represented by fildes have not used the same value.

EMIXIO In 110 modes M_LOG, M_SYNC, or M_RECORD, all nodes sharing the file
have not set the file pointer to the same location.

cread(), cwrite(), iomodeO, ireadO, iwriteO

OSFll Programmer's Reference: dup(2), rork(2), open(2)

D

U

It

o
II

III

•
E

• •

II

• • •
I(

• • • • • • • • • • •

II

D

n
Ir
c
n

-U

I~

-."'1 - _"I

IJ

I]

• • • •

Paragon™ OSF/1 C System Calls Reference Manual Manual Pages

SETPTYPEO SETPTYPEO

Sets the process type of a process.

Synopsis

Parameters

Description

#include <nx.h>

void setptype(
long ptype);

ptype Process type you are assigning to a process. The ptype must be a non-negative
integer between 0 and 231 - 1.

The setptype() function sets the process type of the calling process.Call the setptypeO function
before using any message-passing calls.

Multiple processes running on the same node in the same application must have different process
types (ptypes). However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

When you run an application that is linked with the -ox switch, the system automatically sets, by
default, the process type for all processes in an application to 0 (zero). You can override the default
process type in the application's command line with the -pt switch.

The ox_nforkO, ox}oadO, and ox}oadveO system calls have aptype parameter that lets you
specify the process type for newly created processes in an application.

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process's process type is set to the special value INVALID _ PfVPE (a
negative constant defined in the header file nx.h). A process whose process type is
INV ALID _ PfVPE cannot send or receive messages. It must call the setptypeO function to set its
process type to a valid value before it can send or receive any messages.

153

Manual Pages Paragon'M OSFI1 C System Calls Reference Manual

SETPTYPEO (cont.) SETPTYPE() (com.)

A process can call the setptype() function multiple times to change its process type to a new value
or to a previously set value. Once a process has used a process type. it remains associated with the
process for the life of the application. No other process in the same application on the same node can
use that process type.

The process type in effect when making a send or receive system call determines the process type
associated with the message. If a process changes its process type, messages that arrive for the
previous process type cannot be received unless the process changes its process type back to the
previous value.

Return Values

Errors

See Also

154

Upon successful completion, the setptype() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _setptypeO function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Refer to the ermo manual page for a list of errno values that can return for errors in C underscore
system calls.

application, ermo, myptype(), ox)oadO, ox _nforkO

-------- .-~------------.-----~--~~~~~~-

•. 1Il Ill,
Ai!

G

D

C

I!J

1:1

r·~

, .'~ ~

(" I J

E

r
r
lJ
fj

e

• • '. •

Message Types and Typesel Masks
.- .. ."... . . . :;: ,,: .. :.' : ..

Types
The type parameter used in message passing calls is a user-defined integer value used to identify the
kind of information contained in the message. Types 0 to 999 , 999 , 999 are normal types that can
be used by any send or receive call.

NOTE

Types 1 ,000,000,000 to 1,073,741,823 and 2,000,000,000 and up
are used by the system and should be avoided. Their use may
produce unpredictable results.

Types 1.073.741.824 to 1,999.999.999 are specialforce types intended specifically for the
csendrecvO. hsendrecvO. and isendrecvO calls. Force types have three special properties:

1. A message with a force type bypasses the normal flow control mechanisms and is not delayed
by clogged message buffers on the sending or receiving node.

2. Force types do not match the -1 wildcard type selector. This property can be used to guarantee
that the message is received by the proper buffer. no matter what other messages are also
received.

3. A message with a force type is discarded if no reCeive is posted (as when the receiving process
has been killed). In general, bypassing the normal flow control mechanisms causes no problem
because the send-receive calls guarantee that a receive is posted for the message.

A-1

Message Types and Typesel Masks Paragon'" OSF/1 C System Calls Referenoe Manual

Typesel Masks

A-2

The typesel parameter used in receive calls is an integer value that specifies the type(s) of message
you are waiting for in a probe, receive, or flush operation. You assign a type to a message when you
initiate a send operation. The typeset (type selector) allows you to select a specific message type or
a set of message types based on a 32-bit mask. The typesel can be set as follows:

• If typesel is a non-negative integer, a specific message type will be recognized. All other
messages will be ignored.

• If typesel is -I, the first message to arrive for the process that initiated a probe or receive
operation will be recognized. After the first message has been received, you can use -1 again
to receive or probe the next message, and so on.

• If typesel is any negative number other than -I, a set of message types will be recognized. In
this case, bits 0-29 of the typesel correspond to types 0 - 29. For example, if bit number 3 is set
to lin the typeset. then a message of type 3 will be recognized. If bit number 3 is set to 0, then
a message of type 3 will be ignored.

Bit 30 allows you to select all types greater than 29 as a group. Bit 30 can be used in conjunction
with bits 0-29, as desired. Bit 31 set to 1 makes the typesel parameter negative and indicates that
it is a mask.

Table A-I shows the hexadecimal numbers associated with bits 0-31. To generate a mask, add the
constant 0 x80 000000 and the hexadecimal numbers associated with the types you want to select
For example, if you want to receive message types 1, 2, 5, and 12, add the following hex numbers:

Ox80000000 + Ox2 + Ox4 + Ox20 + Ox1000 = Ox80001026

then enter

crecv (Ox80001026, buf, len);

Or, if you want to receive any message except type 0, use:

crecv (OxFFFFFFFE, buf, len);

TableA-1. Typesel Mask Ust (1 of 2)

Type Hex Number

0 OxOOOOOOOI

1 OxOOOOOOO2

2 OxOOOOOOO4

3 OXOOOOOOO8

IE
II

'" I]

I:J

•
III

•
E

IJ

I'J

a
D

D

III
o

• • •
D

D

D

II

D

III

I~

D

1_,
-".:1

IJ

IJ

IJ

(j

I~

C

• • • •

Paragon'M OSFI1 C System Calls Reference Manual Message Types and Typesel Masks

Table A·I. Typesel Mask List (2 of 2)

Type Hex Number

4 OxOOOOOOl0

5 OXOOOOOO20

6 Ox00000040

7 OXOOOOOO80

8 OxOOOOOl00

9 OxOOOOO200

10 OxOOOOO400

11 Ox00000800

12 OxOOOOl000

13 OXOOOO2000

14 OxOOOO4OOO

15 OXOOOOSOOO

16 OxOOOl0000

17 OXOOO20000

18 OxOOO40000

19 OXOOO80000

20 OXOO 1 00000

21 OXOO200000

22 OxOO4OOOOO

23 OXOO800000

24 . OxO 1 00000o

25 Ox02000000

26 Ox04000000

27 Ox08000000

28 Ox 10000000

29 Ox20000000

Other types Ox40000000

A-3

Message Types and Typesel Masks Paragon™ OSFI1 C System Calls Reference Manual

A-4

~- --~-~-~ ~-----------------~.

11

It
D

D

11

D

CJ

Cl

•
E1

I:

r=
r:
l:

III

KJ

• •
EJ

~

I:J

• • • • •
II]

• • • • o

• • •
II

D

II

D

U

C

D

I ...

I:

r:

1·'1
, .,-d

IJ

IJ

IJ

IJ

Ll

IJ
I]

• • • •

Index
. " " .' . :.: ... :: ... : :.. :. :.... :. " ' ".,:: -:.

C esub 15

cprobe 1 etos 37

cprobex 1

cread 3 F
crecv 5 festat 35

crecvx 5 flick 39

csend 8 flushmsg 41

csendrecv 1 0 fpgetm ask 43

cwrite 12 fpgetround 43

fpgetsticky 43

0 fpsetmask 43

dclock 14 fpsetround 43

fpsetsticky 43

E
eadd 15 G

- ecmp 15 gcol47

ediv 15 gcolx 49

emod 15 gdhigh 51

emul15 gdlow 53

eseek 30 gdprod 55

esize 32 gdsum 57

estat 35 giand 59

Index-1

-----------------------------.. _----------.---

Inci&x

gihigh 51

gil ow 53

gior 61

giprod 55

gisum 57

gland 59

glor 61

gopf 63

gsendx 65

gshigh 51

gslow 53

gsprod 55

gssum 57

gsync 67

H
hrecv 68

hrecvx 68

hsend 72

hsendrecv 76

hsendx 72

infocount 79

infonode 79

infoptype 79

infotype 79

iodone 81

iomode 83

iowait 85

Index-2

iprobe 87

iprobex 87

iread 90

irecv92

irecvx 92

isend 95

isendrecv 97

iseof 100

isnan 102

isnand 102

isnanf 102

iwrite 104

L
led 106

Isize 108

M
masktrap 111

msgcancel 113

msgdone 115

msgignore 117

msgmerge 119

msgwait 121

myhost 123

mynode 124

myptype 125

N
numnodes 126

Paragon'M OSF/1 C System Calls Reference
II

I:
II

C

I]
I]

G

•
D
(J

IJ
(]

r::

•
EJ

•
[J

c
II]

III
II]

I:l

I:l

D

D

D

G

II

• •
a
D

o
c
D

D

C

c
17:

I:
I.~

I "'
.. ,

I ... :
(

"'1

J

-IJ
I "

J.J

[J

• • • •

--- -.. -.---.-~-.------

Paragon™ OSF/1 C System Calls Reference

nx_chpart_epl 127

nx_chpart_mod 127

nx_chpart_name 127

nx_chpart_owner127

nx_chpart_rq 127

nxjnitve 131

nxJoad 134

nxJoad_ ve 134

nx_mkpart 137

nx_mkpart_map 137

nx_mkpart_rect 137

nx_nfork 140

nx-perror 142

nx-pri 143

nx_rmpart 145

nx_waitall 148

s
setiomode 149

setptype 153

stoe37

Index

Index-3

Index

Index-4

ParagontM OSFI1 C System Calls Reference

IE
II

I:

