PERKIN-ELMER

PASCAL

USER GUIDE, LANGUAGE REFERENCE,

AND RUN TIME SUPPORT

Reference Manual

48-021 RO1




The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document,

The software described in this document is furnished under a license, and it can be used or
copied only in a marner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Etmer Corporation.

The Perkin-Etmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Eimer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

®© 1982 by The Perkin-Elmer Corporation

Printed in the United States of America




PREFACE

CHAPTERS

TABLE OF CONTENTS

FART I PASCAL USER GUIDE

1 PASCAL USER GUIDE

- et -
e & o o
rEEo B

e s 8 8 & o o
NON AN EWN -

= md d md e b d b e el =) e oD d ed b e d o o o) o
© 0 0 8 o & & 6 8 6 6 0 4 6 6 ¢ 6 0 6 8 e o
guaatnamaamnalga Ny gyt
..OC..'......'...ICO.
WWWWwWwWwwwWwWwWwN = amadaaaan
e & & o s & ¢ & & o o

- A OO N E VDN -

- O

48-021 RO1

INTRCDUCTICN
FASCRIL PRCDUCT CVERVIEW
PRSCAL SYSTEM REQUIREMENTS

FASCRL SYSTEM FEATURES
Ianguace Features
Corpiler Features

CSS¢ Features

Run Time Features

EASCARL COMPIIER DESCRIPTICN

PAFCAL Compiler I/0 Requirements

The LOG Cutput Device

The Source Input Device

The Listing Device

Scratch Files

The Rssembly Listing Device

The Object Device

Additional INCLUDE Source Files
Compiler Memory Reguirements and Speed

- PRSCAL Compiler Options

ASSEMELY Listing Option

BATCH Cption

BEND Cption

BCUNDSCHECK Option

CRCSS FEFERENCE Listing Option
EJECT Listing Format Control Option
INCLUDE Option

LIST Listing Option

LOC Option

MAP Option

MEMLIMIT Memory Allocation Option

5/82

xi



CHAPTERS (Continued)

1.5.3.12 OPTIMIZE Option 1-28
1¢5¢3.13 BRANGECHECK Option 1-29
1.53.14 RELIANCE Interface Option 1-29
1e5¢3.15 SUFMARY Listing Option 1-30
1¢5¢3.16 HEAPMARK Option 1-31
1e5.U Error Fandling 1-31
1«55«41 Diagnostic Errors 1-31
1«5e4.2 Compiler Failure Xrrors 1-32
1¢5.4.3 User Task Run Time Errors 1-33
T1e565 Compiler Optimizations 1-37
1¢5.51 Pass 6 Cptimizations 1-38
1¢5¢5¢2 Pass 8 Cptimizations 1-39
1¢6 PASCAL COMPILER OPERATING INSTRUCTICRHS 1-42
Te€at Fxecuting the Compiler 1-43
Te662 Compiler Operations Messages 1-44
TeH5e3 Corpiler Return Codes on Termination 1-47
1e64U Using the CSS Procedures 1-48
1.7 ESTABLISFING A PASCAL PROGRAM AS A TASK 1-50
1.8 EXECUTING A PASCAL PROGRAM TASK 1-54
1.9 LISTINGC FORMATS 1-5K%
1«91 Compiled Program Listing 1-55
1¢2.2 The Summary Listing 1-56
193 The Cross Peference Listing 1-57
1«94 Progcram Statistics Listing 1-58§
1.9.5 Patch Statistics Listing 1-50
19.6 Assembly listing 1-60
1e@a7 MAP Iisting 1-53
1.10 SAMPLFE PASCAL BATCH/SINCLUDE

APPLICRTIONS 1-A5

PART II LANGUAGE REFERENCE

2 LANGUARSE CONCEPTS AND SYNTAX GRAPHS
21 LARGUACE CONCEEFTS 2-1
211 Plocks 2-1
2:142 Identifiers 2-2
2613 Scepe 2-3
Zeloall Constants 2-6
215 Variatles 2-7
2.1.6 Global and Local Variables 2-7
26167 Dynamically Allocated Variables 2-3
2168 Data Types 2-3
2.1.9 Data Type Compatibility and Conversion 2-9

ii 48-021 RO1 &/82



CHAPTERS (Continued)

2.1.10
2.1.11
2.1.12
2.2
3 LANGUAGE

3.1
3.2
3.2.1
3e2.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.4
3.5
3.%.1
3.5.2
3.5.3
3e5.4
3.5.5
3.5.6
3567
3.5.8
3.5.9

Selector
E¥pressions
Statements

UNDERSTANDING SYNTAX GRAPHS

ELEMENTS
INTRODUCTION

THY CHRRACTER SET OF PASCAL
Grephic Characters
Control Characters

BASIC SYMBOLS
Sprecial Symbols
Werd Symbols
Identifiers
Literal Constants

SEFARATORS AND COMMENTS

PREDEFINED/STANDARD ROUTINES

File Handling Procedures

Dvynamic Femory Allocation Procedures
Arithmetic Functions

Boolean Functions

Peal/Integer Data Conversion Functions
Ordered Data Transfer Functions
Discrete Data Transfer Functions
Miscellaneous Functions

Accessing Additional Math Routines
from PEMATH or FORTRAN RTLs

4 PROGRAM STRUCTUPE, RLOCKS, AND DECLARATIONS

4.1
4.2
be241
4.2.2
4.2.3
be2el
Be2e.5
4.3
48-021 RO1

INTRCDUCTION TO PROGRAM STRUCTURE

DECLARRTIONS

- Labkel Declaration Part

Constant Definition Part
Type Definition Part

Variable Declaration Part
Routine Declaration Part

THE BODY

5782

2-10
2-10
2-11

2-11

www
i
£ W -

- - g

w -2

w
1
-
©

3-22
3-23
3-25
3-28
3-30
3-31
3-32
3-32
3-33

iii



CHAPTERS (Continued)

5

iv

DATA CONSTANTS, TYPES, AND VARIABLE SELECTORS

5.1

oo onaa wn
s ¢ o ¢ & o .
N

& & & 5 % © o

Wwwwwwwuwwwwww
o © 8 & & & o 8 & o &

SRV E WN -

-

[9;]
&
=~

EXPRESSIONS, TYPE COMPATIBILITY, AND TYPE CONVERSIONS

[0, 3¢ N0, We, IS
s & % ¢ &
P T G
e o o o
WM -

2

(€)Y

6ol

-

IKTRODUCTION
CONSTRETS

DATA TYPES

Enumerstion Types (Ordinal types)
Character Type

Boolean Type

Integer, Shortinteger, and Byte
User-Defined Enumeration Type
Sukrance Type

REAL and SHORTREAL Data Types
Set Types

Array Types

String Rrray Types

Record Types

Pointer Types

VARIARLIE SELECTORS

EXPRESSICNS

Arithmetic Expressions
Relational Expressions
Loagical (Boolean) ¥xpressions
Set Fxpressions and Set Test
Membership Expressions

TYFE COMPATIBILITY
DATA TYFE CONVERSIOR

SUMMARY OF EXPRESSION OPERATORS
AND OPEFANDS

PASCAL EXECUTAELE STATEMENTS

INTRODUCTION

SIMPLE STATEMENTS

The Empty Statement

The Assignment Statement

The Procedure Call Statement
The GOTO Statement

STRUCTURED STATEMENTS
The Compound Statement
The IF Statement

48-021 RO1

7-19

5/82



CHAPTERS (Continued)

7¢3.3 The
Ta3a0 The
7.3.5 The
Te3e6 The
Te3e7 The

CASF Statement
FCR Statement
RFPEAT Statement
WHILE Statement
WITF Statement

8 FILE-TYPE AND 1/0

8.1 INTRCDUCTION TO PASCAL FILES

.2 FILE-TYPF

8.3 INPUT/GUTPUT ROUTINES

8.4 TEXT FILES

845 READING FILES USING RESET AKD GET

8.6 READINC FILES USING READ AND READLN
8.7 WRITING FILES USING REWRITE AND PUT
8.8 FRITING FILES USING WRITE AND WRITELN
8.9 DATAR TRANSFER EXAMPLES

9 PROGRAYM, MCDULFs, PROCEDUREs, AND FUNCTIONs

9.1 PROGRAF¥ AND PREFIX SYNTAX

9¢1e1 Program-Heading

9e1a2 Program Block and its Routines:

Procedures and Functions

%¢143 Routines and Modules External to Main Progranm

9.2 MODULES

9.241 Module-Heading

9.2.2 Module Declaration, Linkage Declaration,
and Invocation

9.3 " ROUTINE-DECLARATIONS

9.4 PROCEDURES

9.4.1 Procedure-Heading

9.4,2 Procedure Definitions

Gel4e3 Fxternal Procedures

9.5 FUNCTIONS

9e5.1 Function-Heading

9¢5.2 Function Definition

9.5.3 External Functions

48-021 RO1 5/82

7-23
7-27
7-32
7-34
7-37



CHAPTERS (Continued)

10

vi

o & 8 &

OO OWWOWYWY YWY WO
[ ] L[] [ ] L] L[] L]
AN AR R
L] [ [ ] L ® L ] [ ] ® L ]
ONOUIEWN =23 2
L] ® L]
WN A

RUN TIME

10.2.2
10.2.3
10.2.4
10e2e5
10.2.6

10.3
104341
10342
10.3.3
10.3.0
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
1043410
10.3.11
10.3.12
10.3.13
10.3.14
10.3.15
10.3.16
10.3.17

PROGRA¥MING ROUTINES

Parameter Declaration

Variable Parameters

Value Parameters

Formal Routine Parameters
Routine Invocation

Argument Specification
Arcgument Passing to Parameters
Compatiltility of Parameters and Arguments
Environment of an Invocation
Nestinc EKoutines

Recursion

PART III RUN TIME SUPPORT INFORMATION
SUFPORT INFORMATION AND LANGUAGE EXTENSIONG
IFTRODUCTION

RUN TIME LIBRARY

The PASCAL Initializer and Common Error
Message PRoutines

The PASCAL Task Pausing/EOT/Error Handler
(PRS.FFER)

The RELIANCE-Pascal Interface/Error Handler
(PAS.RTL)

The PASCAL Prefix Support Routines
(PASPREF Group)

The PRSCRAL SVC Support Routines

(PRASSVC Group)

The PASCAL Library Routines (PASLIB Group)

USING THE PASCARL PREFIX
Cpen

Close

Allocate

Renamre

Reprotect

Delete

Change Access Privilege
Checkpoint

Fetch Ettributes

Rewind

Write File HMark

Back Fecord

Back File Mark

Forward Record

Forward File Mark
Breakpoint

Start Parameters

48-021 RO1

9-32
9-32
9-33
9-34
9-35
9-36
9-39
9-u%
9-46
9-48
9-49
9-50

5/82



CHAPTERS (Continued)

10.3.18
10.3.19
10.3.20

10.0
10441
10442
10.4.3
10.4.4
10.4.5
10446
10.4.7
10.4.8
10.“.9
10.4.10
10.4.11
104412
10.4.13
10.4.14
10.4.15
10.4.16
10417
10.4.13
10.4.19
10.4.20
10eL 21
10.08.22
10.4.23
10.0.204
10.44.25

10.5
10.6
10641
10.64.2
10.6.3
10.6.4
10665
10.7
10.7.1

10.8

Tinme
Date
Fxit

USING THE SVC CAPABILITY
SVC1
Svea3
SV(C5h
SYC7
SVC2PAUS
SVC2AFLT
SVC2FPTR
SVC2L0GHM
SVC2FTIM
SVC2FDAT
SVC2TODW
SVC2INTW
SVC2PKNHM
SVC2PKFD
SVC2PEFK
SVC2TMAD
SVC2THET
SVC2TMRP
SVC2THLF
SVC2THMCA
SVCINITC
SVCTASKQ
FROMUDL
TOUDIL
SVC Examples

REGISTFR USAGE IN THE EXECUTING PASCAL TASK

MEMORY UTILIZATION

Internal Data Storage Representations
Memory Management Overview (Initial State)
Memory Management Overview (Running State)
Stack Femory Management

Heap Memory Management

PASCAL LINKAGE CONVENTIONS TO INTERNAL

" AND EXTERN RQUTINES

Passing Arguments to Parameters

PASCAL INTERFACE TO ROUTINES DECLARED
WITH THE FORTRAN DIRECTIVE

48-021 RO1 5/82

10-29
10-30
10-30

10-31
10-3%
10-35
10-36
10-36
10-37
10-37
10-37
10-38
10-39
10-39
10-40
10-140
10-41
10-42
10-43
10-44
10-45
10-46
10-47
10-48
10-49
10-49
10-50
10-51
10-51

10-56

10-57
10-57
10-66
10-71
10-73
10-81

10-85
10-89

10-98

vii



APPENDIXES

PART IV APPENDIXES

R SAMPLE LISTINGS R-1
B SOFTWARE CHAKGE REQUEST (SCR) SUBMISSION

INSTRUCTIONS B-1
C PASCAL CSS*'S SUVMMARIZED c-1
D PASCAL COMPILER LOGICAL UNIT ASSIGNMENTS D-1
E  PASCAL COMPILER OPTIONS : E-1
F PASCAL COMPILER FND-OF-TASK CONDITICNS F-1
G PASCAL ERROR MESSACGES G-1
H THE ASCII CHRRACTER SET H-1
I RESERVED WOKDS AKD PREDEFINED IDENTIFIERS I-1
J PASCAL SYNTRY GRAPHS J-1
K EXCEPTIONS AND EYTENSIONS T0O STANDARD PASCAL K-1
1L PASCAL RUN TIMF LIBRARY ROUTINES (PASETL.GRJ) L-1
M PASCAL-RELIANCE ENVIRONMENT INFORMATION M-1
N PERKIN-ELMER PASCAL PREFIX LANGUAGE EXTENSIONS N-1
0O PASCAL SVC SUPPORT 0-1
P PASCAIL RO1 FUNCTIONAL DIFFERENCES FROM PASCAL ROO P-1
FIGURES
1-1 PASCAL Language System Overview 1-2
1-2 PASCAL Compiler Operations 1-8
1-3 Minimal Initial Pascal Task Hemory HMap 1-53
1-4 Sample Ratch Statistics Listing 1-60
1-5 Sample Assembly Listing Fragment 1-62
1-4 Sample Map Listing 1-64
5-1 Linked List Creation 5-8
5-2 Linked List With Nodes Removed 5-81
5-3 Node Rddition to Linked List 5-81

viii 48-021 RO1 5/82



FIGURES (Continued)

10-1
10-2
10-3
10-4

10-5
10-6
10-7
10-8
10-9

10-10
10-11

TABLES

-— D D d
| [ |

|
2 WN A

Wwwwww
|
N E DN =

w w
I |
R - ~

u;n
(-
= W

A O
1t
K Y

6 )]
|
w

Programming an SVC 1 in PASCAL
Programming an SVC 7 in PASCAL
Programming Some SVC 2s in PASCAL
Initial Memory Map of PASCAL Program Task
(Under 0S/32)

Memory Map During Fxecution of a PASCAL
Program Task (Under 0S/32)

Structure of an Activation Record
(Internal Koutine)

Structure of an Activation Record of a
Function-Call

Function-value Passed on Stack

B Dynamic Variable Item on the Heap
Sample Linked List on the Heap

Ring of DIZPOSEd Free Areas on the Heap

PASCAL COEFILER I/O REQUIREMENTS
PASCAL CONMFILE TIME OPTIONS

PASCAL COMPILER OPTION SETTINGS
PASCAL COFPILER TERMINATION EOT CODES

THE ASCII CHARACTER SET

SPECIAL SYMBOLS

PASCAL WORL SYMBOLS

PREDEFINED IDENTIFIERS

PREDEFINFED ROUTINE IDENTIFIERS

BASIC EFXTEPNAL FOKTRAN MATH ROUTINE ACCESS
(SHORTREAL FUNCTIONS)

BASIC FXTERNAL FORTRAN MATH ROUTINE ACCESS
(REAL FUNCTIONS)

BOOLEAN CPERATIONS

INTEGER, SHORTINTEGER AND BYTE ARITHMETIC
OPERATORS

REAL AND SHFORTREAL CPERATIONS

SET OPFRATIONS

OFERATCR PRECEDENCES

ARITHMETIC MIXED MODE EXPRESSIONS (RESULTS
USING CPERATORS + - *)

ARITHKETIC MIXED MODE EXPRESSIONS (RESULTS
USING REAL DIVISION OPERATGCR)

ARITHMETIC MIXED MODE FEXPRESSIONS (RESULTS
USING INTFGER DIVISION OPERATORS DIV AND MOD)
ASSIGNABLEF MIXED MODES OF NUMERICS WITH
ASSIGNMENT OPERATCR (:=)

SUMMARY OF OPERATORS

SUMMARY OF VALID COMPARISONS

48-021 RO1 5/82

10-52
10-53
10-55

10-6¢
10-72
10-75
10-79
10-80
10-82

10-82
10-83

5-1%

5-20
5-39
5-48

6-11
6-33
6-34

ix



TABLES (Continued)

10-1 PASCAL PREFIX RUN TIME SUPPORT ROUTINES 10-5
10-2 PASCAIL RUN TIME SUPPORT SVC ROUTINES 10-7
10-3 PASCAL RUN TIME LIBKARY (PASLIB Group) ROUTINES 10-10
10-4 THE PFRKIN-ELMER PASCAL PREFIX SOURCE 10-13
10-5 PASCAL SVC SUPPORT TYPE-DEFINITIONS 10-32
10-6 EXTERN SVC DECLARATIONS TO CALL SVCS 10-34
10-7 INTERNAL DATA REPRESENTATIONS 10-58
INDEX Ind-1

X 48-021 RC1 &/82



PREFACFE

This document 'defines the ©vprogramming language Fascal as
implemented for the Perkin-Elmer 3200 Series computerse.

This document is divided 4into four main parts which further
consist of Charters or Appendices.

Part I, which comprises Chapter 1, is a Perkin—Eimer Pascal
User's Guide, providing introductory overview information and

detailed information on the Perkin-Elmer Pascal Compniler,
compiling a wuser-written Pascal source program by executing the
compiler with selected options, compiler operations, and

establishing the  user's compiled-program as an executable task
under 0S/32. Fefer to Appendix M for RELIANCE environments.

Part II, which comprises Chapters 2 through 9, is a Perkin-Flmer
Pascal Language Reference Manual, defining the Pascal Language as
provided by this implementation.

Chapter 2 presents a glossary of basic terms, detailing the
heirarchy of identifier scopes, and introduces the use of
syntax-grarhs; which are used to define Pascal syntax.

Chapter 3 presents the language elements, such as the Ffascal
Character Set as a subset of the ASCII character set, special
symbols, special characters, comments, 1literal constants,
rules on separating symbols and separators, reserved words of
the language, predefined identifiers, and gives definitive
summaries of available predefined/standard routines; with
instructions for accessing some math routines from the
Perkin-Flmer System Math Functions Library.

Chapter U4 provides the introduction to progranm block
structure, and the syntax of Declarations (LAEEL, CONSTant,
TYPE, and VARialle parts) and the Rody of a block.

Chapter 5 details not only syntax, but by extensive examples,
constants, and the various Pascal data types, and contains
the syntax of variable-selectors, as the means for selecting
and/or specifying a reference to a variable.

Chapter 6 details the syntax of expressions in Pascal,
contains the rules concerning operator precsdence, summarizes

the operators and applicable data-types, and contains
information on ©programming for “"identity" of type and
"assignment-compatibility" of type regarding

tYype-compatibility in Pascal.

Chapter 7 describes the various executable statements in the
Pascal 1language, reserving the ©Pascal I/0 statements to
Chapter 8; with additional statements provided by the Prefix,
and additional SVC call capability, given in Chapter 10.

48-021 RO1T 5/82 xi



Chapter 8 discusses Pascal files, and the file-type
data-type, including Pascal TEXT files, and details the
definitions of Pascal I/0 procedure-call statements.

Chapter 9 details the syntax of PROGRAM, MODULE, PROCEDURE,
and FUNCTICN header statements; covers the program/module
prefix syntax which is a Perkin-Elmer extension; and details
several issues concerning the programming of rcutines.

Part III, which comprises Chapter 10, is the Perkin-Elmer Pascal
Run Time Support Information and Language FXxtensions. It
contains a description of the Pascal Runtime Library, the use of
the Perkin-Elmer ©FPascal Prefix, the use of the Perkin-Flmer SVC
capability in Perkin-Flmer Pascal, run time memory wutilization,
internal data storage mechanisms, and contains a description of
this implementation's Pascal linkage conventions amongst internal
routines, and between external routines declared FEXTERN, either
CAL routines or Pascal WODULEs, and those external routines
declared with the directive FORTRAN.

Part IV <contains various appendices which summarize key
information contained in the body of this document, plus
additional information on extensions and exceptions to standard
Pascal 1listed in PRAppendix K; wuser information on preparing
programs tc run in a RELIANCE environment in Appendix #¥; and a
summary of Functional Differences between Pascal R0OO and Pascal
R01 in Appendix F.

The reader is assumed familiar with Perkin-%Tlmer 32-bit Software
Systemse. The following manuals provide deteiled information on
related Perkin-Flmer Software.

Common Assembler languace (CAL) Programming S29-6U0
Reference Manual

0S/32 Library Loader Reference Manual 4&-020
0S/32 Operator Peference Manual S29-574
0S/32 Rpplication Level Programmer Reference ¥anual 4Lg-039
0S/32 System Level Frogrammer Reference Manual 48-040
0S/32 Link Reference Manual 48-008%
0S/32 Supervisor Call (SVC) Reference Manual Le-038
Perkin-~Elmer System Mathematical Functions Reference

Yanual ug-025
FIORTRAN VII Reference Manuzal 4g-017
FORTRAN VII User Manual 48-010

xii 43-021 RO1 &/82



PART |
PASCAL USER GUIDE



CHAPTER 1
PASCAL USER GUIDE

1.1 INTRODUCTICN

This chapter of the Pascal Reference Manual is a user operations
guide with system overview information and details on how to
operate the ccmpriler, establish a compiled program as a task, and
execute it under 0S/32. Users preparing programs for a FReliance
environment must refer to Appendix M and Section 1.5.3.14.

1«2 PASCAL PRODUCT OVERVIEW

The Perkin-Flmer Pascal software product consists of:

® A multi-pass optimizing compiler surplied in both overlaid
(PASCAL.TSX) and resident task versions (PASCALR.TSK).

@ A run time library (PASRTL.ORJ) of assembler written object
routines which satisfy calls generated by the compiler in the

compiled object program, to support the running user task.
This 1library includes support routines for a basic set of SVC

calls that the user may code in Pascal. Sample SVCs and
prerequired source declarations are provided on the file,
SMPLSVCS.PAS.

e CS55 procedures to facilitate compilation and establishment of
a user program as a task to run under 0S/32.

e This product reference manual, providing a user guide, a
Pascal language reference, and run time support information.

e A package information\ document with instructions for
unpackaging the prcducte. It contains an installation exercise
to ensure installation of an operational package.

e A Perkin-Elrer Prefix of Pascal source declarations
(PREFIX.PAS), which when prefixed to the user source program
betfore compilation, provides Pascal language extensions for
additional input/output (I/0) and other system services.

® The Perkin-Elmer Sfystem Mathematical Library <(on PEMATH.OBJ)
provides several math routinese.

Figure 1-1 is a Pascal language system overviewe. It depicts the
program development cycle and compiler operationse.

48-021 RO1 &5/82 1-1



3590-1

SOURCE
PREPARATION

v

AND/OR
tOG DEVICE

o
/ TEMPORARY
SCRATCH FILE

COMPILE
TIME

/ TEMPORARY
~ SCRATCH FILE

USER KEY DATA
SOURCE ENTRY

USER/SYSTEM
CONSOLE

——— s

0§/32

USER’S
PASCAL
SOURCE

PROGRAM

USERPROG.PAS

EDIT

{ SINCLUDE (fd) }
USED FOR ADDITIONALLY
INCLUDED PASCAL SOURCE
E.G. PREFIX.PAS

VOLN:FILENAME PAS

——— e
TEMPORARY /
SCRATCH FILE
PASCAL LUS ‘ ONLY IF l
COMPILER \ cuinon-RanDomM \
AN N
\ N . e —— —

ASSEMBLY I
LISTING

USERPROG.ASM

N~ —— —_
- Lu7
-
BATCH STATISTICS INFO SEPARATELY
PROGRAM STATISTICS USER'S COMPILED/ASSEMBLED)
OBJECT PASCAL MODULES
PROGRAM CAL ROUTINES
CROSS REFERENCE FORTRAN ROUTINE
USERPROG.0BJ
COMPILED-PROGRAM EACH \ >\USE RSUBR.0BJ
LISTING ‘COMPILATION s
UNIT
PASCAL
RUN-TIME
USERPROG.LST LIBRARY
PASRTL.OBJ
TASK <
ESTABLISHMENT 0532/ o~
RUN-TIME
LINK LIBRARY
/ or LIBRARY F7RTLS0.0BJ
2 PEMATH.OBJ
Lon or F7RTL50.0BJ
USER'S
PROGRAM
USERPROG TSK
05/32 LINK MAP
L.

“LOAD USEPROG. TSK

RUNTIME

INPUT,
TEXTFILE.
OR OTHER

PASCAL FILE

Figure 1-1

“ASSIGN LUs ————
*START 08/32
|| PASCAL-FORTRAN FORTRANCODE  /
. RUN-TIME ERROR
USER'S TASK INTE
N o | WMIERFACEONLY ' mMessAGE-FILE \
— —— |- EXECUTION [~ |—
r _1 v _F7RTLE0 ERR \>
| | — -
|

OuTPUT,
TEXTFILE,
OR OTHER

PASCAL FILE

Pascal Language System Overview

4&-021 RO1

5/R32



1«3 PASCAL SYSTEM REQUIREMENTS .
The minimum system configuration required to compile and run a
Pascal program, in addition to this product, are:

® Perkin-Elmer 32-bit processor
e (S5/32 R05.2 or higher

e N95/32 Link RCO or higher

® 7ne direct access device

e A 168KB task memory partition under 0S/32

The compiler is provided as two tasks; an overlaid version,
PASCAL.TSK, and a resident version, PASCALR.TSK. Regardless of
the compiler versior used, its user operation is the same.

The overlaid version, not the resident version, of the compiler
supports this minimum configuration. The overlaid version
requires the least memory space at compile time with a slight
penalty in compile speed because of the overhead of overlay
loading. Overlay loading is otherwise transparent to the user.
The root segment of this version is sharable and amounts to
apnroximately 14KB of the compiler's code. The space required
for the overlays themselves must be available in the user task
partition. See Section 1.5.2.

The resident version can be shared by many users since all passes
of the compiler are established, along with the root segment, as
one pure taske. The resident version provides an advantage in
overall memory utilization when the number of concurrent users
exceeds sixe.

The minimum configuration supports compilation of medium size
Pascal source programs, in which the number of unique identifiers
iz about 1000 and in which routines are no more than about 500
lines.

The following additional hardware/software options enhance either
compilation performance or the run time support environment.

e Distribution of source, object, listing and scratch files on
more than one direct access device can significantly improve
compilation speed.

e Increased partition size vpermits compilation of larger
programs, or permits use of the resident compiler.

e The routines in the Perkin-Elmer System Mathematical Library
can be called by the user programe. See Section 3.5.9.

® Source progrars may be prepared by 0S/32 Edit or Texte.

48-021 RO1 5/82 1-3



1.4 PASCAL SYSTEK FEATURES

The Pascal product provides several features to enact, enhance,
and simplify program development. These are:

e Language features
e Compiler features
e (ST features

e Run time features

1.4.1 Language Features

The language in which programs are written is defined in Part II
of this manual, Charpters 2 through 9. The language 1is a complete
implementation of Pascal as described by Jensen and Wirth in the
Pascal User Manual and Report, with several extensions. Rlso
included are prominent stable features of the proposed IS0 Pascal
Language Standard putlished in SIGPLAN Notices, Volume 15, Number
4, April 1980.

Exceptions and extensions to this standard Pascal languagqge
provided by this implementation are described in Appendix K.,

Additional extensions afforded the wuser by the Perkin-Elmer
Prefix and SVC routine declarations have their use describted in
Sections 10.3 and 10.4, respectively.

The user is given the capability to code SVCs within his Pascal
program, as Pascal procedure-call statements after declaring the
necessary SVC source interfaces.

The Perkin-Elmer Prefix extends the language to allow the user
to:

Open a file or device

Close a file or device

Allocate a file

Rename a file

Reprotect a file

Delete a file

Change Access Privileges of a file or device
Checkpoint a file or device

Fetch Attributes of a file or device
Rewind a file or device

Write a file mark

Backspace a Record

Backspace to a file mark

Forward space a record

Forward space to a file mark
Breakpoint a running Pascal progranm

1-4 48-021 RO1 5/82



Obtain the Start Parameters

Obtain the tinme

Obtain the date

Exit the task with a specified return code

1.4.2 Compiler Features

The compiler accepts Pascal source which can be prepared by 0S/32
Edit or 0S/32 Text. Pascal source, if on a non-random device, is
automatically ccpied by the compiler to a scratch file for
subsequent rereading by the compiler. Batch compilation of
programs and modules is provided. It is also possible to merge
additional source files into the source stream.

Several programring aids are generated by the compiler at the
user's option, such as:

o Compiled Procram Listing

® Cross reference listing

e Summary listing

® Assenbly listing

® Map of object program listing

® Program statistics listing

e Batch statistics listing

Refer to Appendix A for a sample compiled-program listing.
Optimizations which may increase the efficiency of +the user
object program are performed by the compiler at the user's
option. Object precgrams optionally can be compiled to <contain
additional dats validity checking code; or not to contain the

checking when space economy is of higher priority.

Object programs are generated as pure code, directly wusable by
Linko

The compiler can detect a variety of user coding errors and
displays these diagnostic errors below the line in which the
error was detected. Also, the compiler summarizes any diagnostic
error messages at the end of each 1listinge. The textual error
messages indicate the nature of the error.

Refer to Appendix G for the Pascal diagnostic error messages
displayed in compiled-program listingse.

To expedite the identification of any unexpected compiler
failures, there is a special compiler error message. See Section

48-021 RO1 5/82 1-5



1.5.4- on error handling. See Appendix B for instructions on
reporting or recuesting resclution via a Software Change Request
(SCR).

1.4.3 CSS Features

Three Command Substitution System (CSS) Procedures are provided:
a compile €SS, a 1link CSS, and a compile and link CSS, to
establish the user program as an eXecutable task from a user MTHM
terminal wunder O0S/32. Three additional CSS procedures are
similarly provided for operation from the system console under
0S/32.

The Pascal CSS's are summarized in Appendix C, and detailed in
Section 1e.6.4. Also see some sample ease-of-use examples of the
Pascal CSS*'s applying SBATCH and SINCLUDE in fection 1.10 at the
end of this chagpter.

1.4.4 Run Time Features

A variety of run time error messages, as listed in Appendix G,
are provided to detect run time errors, in the running user task.

During execution of an established Pascal progranm task, the
Pascal Run Time Ilibrary provides a variety of run time support
routines. The Pascal Run Time Library is classified into six
major parts, for the purpose of discussion, as follous:

° The Pascal Initializer and Common Error Message Routines

° The Pascal Task Pausing/EOT/Error Handler (PAS.FRR oroup)

e The RELIANCE-Pascal Interface/Error Handler (PAS.REL group)
. The Pascal Prefix Support Routines (PASPRFF group)

] The Pascal SVC Support Routines (PASSVC group)

° The Pascal Library Routines (PASLIB group)

A Pascal RO1 enhancemznt provides the entire Pascal Run Time
Library one object file, PASRTL.OBJ. Some of its routines, and
only those necesgsary to resolve a user program's eXxternal
references, are linked to Pascal compiled program code during
task establishment. Rlso added, is the flexilkility to establish
and run under either an 0S/32 or RELIANCE system environment.

An established Pascal (R01 and up) program task always contains
a version of the Fascal Initializer, always contains the commen
Frror Message PRoutine, always contains either the PAS.ERR group
or the PAS.REL group, but not both; and almost invariably
contains several routines from the PASLIB groupe. If the original

1-6 48-021 RO1 5/82



program source had referenced the standard Prefix definitions,
and was compiled with +the Prefix, then the established task
contains several rur time support routines from PASPREF. TIf the
original program source declared and used the Pascal routines to
issue SVC calls, then the established task contains several run
time support routines from the PASSVC group.

The Pascal Initializer, P$INIT, initializes the memory management
mechanisms for the taske If the Pascal program is interfacing
with FORTRAN produced code or CAL routines using FORTRAN linkage
conventions (as directed by the Pascal "FORTRAN" directive), then
the alternate versicn of the Pascal Initializer is incorporated,
and it also performs additional housekeeping for the FORTRAN
interface.

Programs intended +to run in a basic 0S/32 environment
(non-Reliance environment) are compiled into object form that
users (references) PAS.ERR group for error handling, task

pansing, and task termination at run timee.

Programs intended to run in a RELIANCE environment are corpiled
with a wuser-specified compiler option, "RELIANCE", so that the
compiled object program uses (references) the PAS.REL group for
error handling, task pausing, and task termination; at run *+ime.

The Pascal Prefix Support Routines, from the PASPRFF ¢group,
provide the run time support for tasks wusing the standard
Perkin-Elmer Prefix routine definitions.

The Pascal SVC Support Routines, the PASSVC group, are the run
time support routines for a set of basic SVC calls, (callable
from Pascal code), whose =source interface declarations are
provided with the product. See Sections 10.2.5 and 10.4.

The Pascal Library, the PASLIB group, is the run time support
library of routines which enact certain language features of
Pascal in the running task. The PASLIB group contains the
routines which perform heap management, linkage +to FORTRAN
subprograms, copying and comparison of structured variables, set
operations, Pascal file input and output, and formatted Pascal
textfile input and output.

Chapter 10 provides in detail information on the above run time
features and the use of the Prefix and SVC routinese.

1.5 PASCAL COMPILER DESCRIPTION

The Pascal compiler performs 10 passes in compiling a Pascal
source program, translating the program into coded intermediate
language for inter-pass communication. Different compiler passes
analyze, optimize, and convert +that program into a 1linkable
object form and a printed listing. Figure 1-2 is an overview of
the operational phases performed in the 10 passese.

48-021 RO1 5/82 - 1=7



Source =--->|

(lu 1)

—————— —— -

—— o ————— -

Figure 1-2

-

- —————— - — - - >

- —— - —— - > - - - -

- ———— - - — - - ——

- ————— - — - ———

——————— - = —— - —

———————— - ———

| if error
=== >Pass10.

Pascal Compiler Operations

48-021 RO1

5/82



- —— - = ——— —————— - — D = " -

| Fachine independent |
| optimization |

- — e e A - - ————— - ——— —— G =D - ——

-~
-
=

w
A

- - ———— - S - - - =

|Machine dependent optimization]
|Instruction/address selection |

. - —— . - - - - - —

v
(lu 4)

|

v
| Pass 9 |->Assembly Listing
=== e - { Map Listing (1lu 6)

I

| OkJject code generation |->0bject Program
------------------------------ (1u 7)

|

| Pass 10

j<===(1lu 3)

| error-entry

v
----------------------- mm————- (1u 2)
| Pass 10 ->Listings of:
== e - | Compiled Progranm
| | Cross-reference
1 Listing/XREF generation | Summary
------------------------------ Program Statistics

Batch Statistics

Figure 1-2 Pascal Compiler Operations (Continued)

48-021 RO1 5/82 1-9



Pass 1 performs a 1lexical analysis of the source, creating a
symbol table index for each unique jdentifier. The source
program is converted into a coded intermediate form which is
written to a temporary disc scratch file on 1lu 3. Subsequent
passes read, modify, and rewrite this representation of the
program unit being compiled, intervweaving inter-rass
communication between lu 3 and 1lu 4,

Pass 2 performs a context-free syntax analysis of the source
program inputing its intermediate form from 1u 3 and outputing to
lu 4 for Pass 3.

Pass 3 performs a scope analysis of the identifierse. It
differentiates between local and global variables and rerlaces
the earlier general indices with indices unique to each

identifier at a given nesting level. It communicates to Pass 4
through 1lu 3.

Pass 4 performs a context-sensitive analysis of the CONST, TYPE,
and VAR declarations and allocates storage on the stack for the
variable declarations. It communicates to Pass 5 through lu 4.

Pass 5 performs the main body analysis; i.e., a context—-sensitive
analysis of the executable Pascal statements, and generates
information on 1lu 3. If certain errors preclude the possilkility
of continuing to produce object code, Pass 5 abortively skirs to
Pass 10. 7
Pass 6 performs machine independent optimizations (see Section
1e5e5e1)e This operation recognizes certain arrangements of
intermediate code and reproduces it in a more efficient form
independent of the machine architecture. It communicates to Pass
7 through lu 4. Pass 6 and 7 also detect some diagnosticse.

Pass 7 generates symbolic machine code and selects specific
register allocations. It communicates to Pass 8 through lu 2.

Pass 8 performs mactine dependent optimizations on the symbolic
intermediate code produced 4in Pass 7. Instruction formats are
selected and addresses are assigned. Certain arrangements of
this code are rerproduced in a more efficient form (see Section
1¢5.5.2) and communicated to Pass 9 through 1lu 4.

Pass 9 generates object code acceptable to Link. An object
program map, giving relative locations of data and statements, is
optionally 1listed on this pass. Also, a listing of the object
program, as disassembled into Common Assembly Language (CAL/32)
instruction formats, optionally can be produced on this pass.

Pass 10 generates a listing of the source program Jjust compiled
into an object programe. A summary of internal conmpiler
statistics pertaining to the user compiled program, and a cross
referance of identifiers used in the program optionally can be
produced on this pass. PBatch statistics are produced if a Datch
conpilation is in effecte. 1Individual program statistics, such as
file allocations, are also listed.

Jry
[

10 48-021 RO1 5/82



1.5.1 Pascal Compiler I/0 Requirements

The Pascal compiler can use any of the following logical  units
(lu):

® logical unit 0, log device or file

® Jlogical unit 1, scource input device or file

® logical unit 2, listing device or file

® logical unit 3, scratch file

¢ logical unit 4, scratch file

® logical unit 5, scratch file

® logical unit 6, mar or assembly listing device or file

e logical unit 7, objecﬁ code output device or file

® logical unit §, additional source input file

All necessary logical units, or those required for specified
options, must be assigned to physical devices or files by the
usere. Logical unit 5, which is internally controlled by the
compiler, and lu 8 which the compiler assigns to a user—-specified
SINCLUDE 4in-stream option are e¥ceptions. If not using CSS
procedures, the user must directly assign these logical units (1lu
0, 1, 2, 3, 4, €, and 7) after loading the compiler and before
executing it. Refer to Section 1.6.4 for CSS information.

Table 1-1 is a listing of logical units, their wuse, when their

assignment is required, data formats, logical record length
requirements, and allowable media.

TABLE 1-1 PASCAL COMPILER I/0 REQUIREMENTS

T T T T T I M R T M M e e e s - — = -~ - -~ " - - - ———an - =

| LOG- | | | | ! |
| ICAL ) | | | LOGICAL | |
| UNIT | | ASSIGN~ | DATA | RECORD | |
| (LU) | USE | MENT | FORMAT | LENGTH | MEDIA |
|=============:================================================:'
| O | Qutput: | RPlways | ASCII | 64 to | device/ |
| | Log information | required] | 256 | file |
[ o e e e o e e |
| 1 { Input: | Always | ASCII | Up to | device/ |
| | User Pascal | required| | 256 | file |

| | source program | | | | |

48-021 RO1 5/82 ' 1-11



TABLE 1-1 PASCAL COMPILER I/O REQUIREMENTS (Continued)

| LOG- | | | | | |
| ICAL | | | | LOGICAL | |
| UNIT | | ASSIGN- | DATA | RECORD | {
| (LY | USE | MENT | FORMAT | LENGTH | MEDIAR |
| 2 | OCutput: | Always | ASCII | 132 | device/ |
| | List, cross, | required| | | file |
| | summary, batch | for | | | |
| | statistics and | program | ] i |
| | program statis- | statis- | | | |
| | tics | tics | | | |
| === o o o o en oo oo !
| 3 | Input/output: | Always | BINARY | 512 { file i
i | Temporary com- | reguired] | | only |
| | piler scratch ] | | | |
| | information | | | | |
| === == e e oo mmm oo oo— oo |
| 4 | Input/output: | Always | BINARY | 512 | file |
| | Temporary com- | required| | | only i
| | piler scratch | | | ] |
| | information | | | | |
| === == oo oo oo oo oo |
| 5 | Input/output: | Intern- | ASCII | 256 | £file |
| | Temporary com- | ally | | | only |
| | piler scratch | control-| | | |
| | information | led by | | | |
| | | compiler| | | :
' _______________________________________________________________

| & | Output: | Cptional] ASCII | 132 | device/ |
| | Rssembly list- | Requi- | | | file i
| | ing and Mar | red for | | | |
| | listinrg | map and | | | i
| I | assem- | | | |
| | | bly | | | :
' ———————————————————————————————————————————————————————————————

1 7 | Output: | Always | BINARY | 126 | device/ |
| | Compiled program| required|] | | file |
| | object | | I | ;
| _______________________________________________________________

| 8 | Input: ] Intern- | ASCII | Up to | device/ |
| | SINCLUDE file | ally | | 256 | file |
| | | control-| | | |
| ! | led by | I I |
| I | compiler] | | |

—— - ————— T — — e S W T W G S D U G WS S S S e - . W AR WS e - o -~

1¢5¢1e1 The Log Output Device

Assignment of the log output device is always required for the

-
i

12 48-021 RO1 5/82



compiler to identify itself and to output other ASCII formatted
compiler-operations messages. Refer to Appendix G for a list of
compiler-operations messages that may occur during compilation.

The LOG option additiocnally enables the compiler to identify each
Pass currently operating and the number of errors that occurred
during the pass, if any; to the compiler's log device. Refer to
Section 1.5.3.9 on the LOG option.

1512 The Source Input Device

The source input device or file on logical unit 1 contains the
Pascal source program in ASCII format of logical record lengths
of up to 256 bytes. If the source input records are larger than
the print medium records, the listed line will wrap around to the
next line.

When the source input unit is a device (non-random), the compiler
automatically allocates and assigns 1lu 5 to the temporary file to
copy lu 1 source onto lu % for subsegquent reuse in Pass 10.
Logical wunit 5 1is a temporary scratch file used only for this
puUrpose.

1«5¢1e3 The lListing Device

Output to the listing device or file on 1logical unit 2 1is in
ASCII in logical record lengths of 132 bytes to produce:

e Compiled program listings

e Cross reference listings

® Summary option listings

e Program statistics listings

® Batch statistics listings
See Section 1.9 for descriptions of listing formatse.

1¢5.1.4 Scratch Files

The compiler requires two temporary scratch files during
compilatione. The files are allocated by the user (when standard
CS55's are not in use) to 1lu 3 and lu 4 as indexed files with a
logical record length of 512 bytes, just as the Pascal CSS's do.

These file allocations are not controlled internally by the
compiler. The compiler performs both input and output of binary
data to these files for inter-pass communication. Some user
sites mayY operate the compiler with 1u 3 and lu 4 allocated to

iy
|

48-021 RO1 5/82 13



the same volume. Leferring these allocations to the user or CS5S
level gives the user the option, if possible, of placing them on
different volumes for increased compilation speed.

It is possible to shorten compilation-time for large, nearly
stable programs once the largest number of sectors used during
compilation is known, by allccating temporary contiguous files
for 1lu 3 and 1lu 4.

The Summary Listing for Pass 1 through Pass 8 displays this
information (produceé¢ under the SUMMARY ortion). See Section
T1e9e2e

Another scratch file, 1lu 5, 1is internally controlled by the
compiler depending on whether 1lu 1 supports random-access as
described in Section 1.5.1.2. If 1lu 1 is non-rewindable, 1lu 1
source is copied to 1lu 5 for subsequent rereading on Pass 10.

1.5.1.5 The Assembly Listing Device

Logical unit 6 (the assembly listing device or the map option
listing device) <can be a print device or file that can receive
ASCIT logical record lengths of 132 bytes. At the user's option,
the compiler outputs the following listings to lu 6:

e Assembly listing
e Yap listing

See Section 1.9 for descriptions of listing formats.

15616 The Object Device

The object device or file, on lu 7, 1is required for every
compilation althouch it may be assigned to the null device prior
to starting the compiler. The compiler outputs to the object
devics binary object code in logical record lengths of 126 bytes;
i.ce, an object module of pure code which is directly usable by
0S/32 Linke.

1.5.1.7 BAdditional INCLUDE Scurce Files

The assignment of scurce files to lu 8 is internally controlled
by the compiler for the SINCLUDE option. These source files are
ASCII files of Pascal source that are merged with the main source
stream from lu 1. The compiler assigns this 1l1lu 8 to the
user-specified file descriptor (fd) given with each in-stream
$INCLUDE option. Refer to Section 1.5.3.7 for details of the
SINCLUDE optione. The 1logical record length requirements of
SINCLUDE files are identical to those specified for the main
source input file on 1lu 1.

1-14 48-021 RO1 5/82



1542 Compiler Memory Requirements and Speed

The size of the pverlald compiler is determined by the size of
its root segment (14XKB) and largest overlay (90KR) and is
approximately TOHKB taken together. The size of the Trastdent
EOMPIler is deterrined by the size of its root segment (14KR)
plus the sum of the sizes of all of the compiler passes and is
approximately 560KP. Approximately 14KB of the overlaid versicn
is the sharable root segment and the compiler passes as overlays
themselves, occupy space (as they occur) in the user task
partition at compile-time. [Ihe resident version is sharable.

With either compiler version, additional memory is required for
table space at comrile-time. The Pascal CSS's default this
"memincr” to 6UF¥B. The amount of required space is source
program dependent. A memory segment-size increment of 300KB will
usually suffice for compilation of 4000 line programs containing
500 unique identifiers with complex statement structures; eege..,
2 CASE statement with all 128 possible choices indicated.

The compiler has a compilation speed of approximately 1200 1lines
per minute without optimization, and 400 lines per minute with
optimization. The exact compilation speed with optimization
depends on the complexity of the source program. Programs that
do not lend themselves to any of the available optimizations
compile at a rate somewhat better than 400 lines per minute.

1.5.3 Pascal Compiler Options

The compiler processes the user-written Pascal source program
into 1linkable object <code. Compiling Pascal source code under
the default option state allows generation of a compiled program
listing, cross reference 1listing, and certain data validity
bounds and range checks in the object code.

Additional compile time options provided by the Pascal compiler
allow the wuser to tailor compilations and improve ease-of-use
during the program development cycle.

The compiler defaults to an internally initialized state when it
is started without any user-specified options. Certain options
are considered off/on unless the user reverses them to on/off
with either a start option or an in-stream option selection. A
start option is passed to the compiler as an argument in the
START (ST) directive. An in-stream option having a slightly
different format is embedded in the source stream of the Pascal
source programe. Some options can be selected only as start
options, others only as in-stream options. Some can be specified
by either method. In-stream options over-ride start options.

The Pascal compiler options give the user flexibility in
tailoring compilations that affect source, object code, listings,
listing-format-control, memory allocation schenes, and
ease~of-use. Each compiler option is detailed in the following
sections and summarized in Table 1-2.

48-021 RO1 5/82 1-15



TABLE 1-2 PASCAL COMPILE TIME OPTIONS

OFTION- | |
SPECIFIER | FUNCTION |
ASSFMBLY Assembly listing option prints out a listing
on lu 6 a disassembly of the compiled object
program in an assembler-level format.
BATCH Batch compilation option compiles a batch or
series of Pascal programs or modules from lu
1 until an end of file (EOF) or an end of
redium (EQOM) condition, or {$BEND} opticn is
encountered on the source file or device.
BEND Batch end option signals end of batch to the
compiler. Required only if BATCH 1is in
effect and 1lu 1 is a non-random access
device. Wust be placed on line after "FND."
BOUNDSCHECK Subrange bounds check option generates
object code within the compiled program that
will check for illegal out-of-bounds values
assigned to variables of the subrange-type.
CROSS Cross reference listing option prints out a
listing on lu 2 which is a cross reference
of labels and of identifiers wused in the
compiled program, relating place of defini-
number.
EJECT Eject listing format control option,
wherever encountered in the source streanm,
causes a top-of-form (or page ejection)
within the compiled program listing being
printed on 1lu 2 wunder the LIST option.
HEAPMARK The Heapmark option allows the compiler to
recognize MARK and RELEASE references in the

user's source as predefined ©procedure iden-
tifierse.

INCLUDE
(fd,arg'],
arg2)

Irclude additional source option includes,
wherever {SINCLUDE (£4)} is specified in-
stream, additional source from the file
indicated by fd. Argl or arg2 may be LIST or
NLIST, or CROSS or NCROSS.

LIST The List option outputs the compiled-program
listing on 1lu 2.

LOG

| |
| I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| i
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| tion and place of reference Dby source line |
| |
| |
| !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| |
| |
| |
| |
| |

Log option prints notifications (logs) on 1lu

48-021 RO1 5/82



TABLE 1-2 PASCAL COMPILE TIME OPTIONS (Continued)

| OPTION- {
| SPECIFIER | FUNCTION
0 notices of compiler operations, such as:
current pass number and the number of errors
encountered (if any), on lu 0.
¥AP Map option prints out a map of the compiled

program object, giving relative address dis-

placements of statements and data.
MEMLIMIT=xx Memory allocation option defines a percent-
age of taskspace for Fascal system workspace
sc the remainder of the task partition can
be available, for example, for get-storage
requests from external CAL written rcutines.
OPTINMIZE Ortimization option generates optimized
okject code so object program space and eXxe-
cution time may be minimized.

within the compiled object program to check

at run time for illegal out-of-range values

used for subscripts, variant-tags, pointer

values, and subrange value-parameterse.
RELIANCE The Reliance option causes the appropriate
run time error, task pausing, and task
termination mechanisms to be generated in
ir a RFELIANCE environment, instead of the
the compiled object code as is required in a
Reliance environment, different from 0S/32.
SUMMARY Summary listing option prints out a 1listing
on lu 2 of internal compiler statistics
regarding table space, and file sizes used,
for a particular compilation-unit and lists
register usage and +the number and kind of
any optimizations that were performed in the
obhject code.

—— . A — o — e e — ) . - T i — A —— —— ——— ——— " — — i e e —— — — a—— — — —r—
— A S T — — —— — — oV —— T — A ——— e} A — — T S — — —— —) —— — —— — —— ——— e H— a— — A —— —

|
!
|
|
|
|
|
|
|
|
|
|
|
I
|
!
|
RANGECHECK | Rangecheck option generates additional code
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|

The compile-time option default states, and minimum abbreviated
start or in-stream formats are listed in Table 1-3.

48-021 RO1 5/82 1-17



TABLE 1-3 PASCAL COMPILER OPTION SETTINGS

1 | ! ! |  ABBREVIATED |
| | | | ABBREVIATED | IN-STREAN |
| | | | START OPTION | OPTION FORMAT |
| COMPILER | 1 Rttt bt bbbt |
| OPTION | DEFAULT | PLACEMENT | ON | OFF | ON | OFF |
| SomoLr ) O ) START or im-sirean | A5 1 NAS 1 tohss | comAsy |
: BATCH : CFF ; START or in-streanm : BA ‘ - : {$BAY} : ----- }
: BEND : NULL ‘ In-stream only : : : {$BEND2} ! ----- I
: BOUNDSCHECK : oN : START or in-stream : BO } NBO : {$BO} : {$NBOZ} :
: CROSS : ON : START or in-streanm } CR : NCR : {3$CR} : {3$NCR32 :
: EJECT : NULL : In-stream only l : : {$EJ} : ----- :
: HEAPMARK : OFF : START or in-streanm : HE : NHE : {SHE} : {SNHED :
: INCLUDE : NULL : In-stream only : { } {SIN(fd)}: ----- :
: LIST : ON : START or in-stream : LI } NLI : {SLI} } {SNLI} :
} LOG : OFF ‘ START only : LO ! NLO : : :
: MAP { OFF : START or in-stream : MA : NHMA { {SMA} I {SNMAY ;
: MEMLIMIT : 100% : START or in-stream : ME=xx= : {SME=xx1} : :
: OPTIMIZE : OFF { START only : opP : NOP l ‘ l
: RANGECHECK : ON : START or in-streanm } RA : NRA : {SRAY} : {SNRA2 :
: RELIANCE : OFF I START or in-stream : RE : NRE : {SRE} : {SNRF2} :
: SUMMARY : OFF : START or in-stream : SU = NSU : {sSu} ‘ {SNSU2 ;

4ith the exception cof LOG and OPTIMIZE, which are CSTART-only
options, the cptions <can be specified in-stream by rreceeding
their names with a dollar sign and enclosing them within Pascal
comment delimiterse. Additionally, there are three options that
can bes specified in-stream only. They are:

e {SBENDY)

¢ {SEJECTI

e {SINCLUDE (fd,argl,arq2)’}

1-18 48-021 R0O1 5/82



Compiler optier mnames indicate the ©positive condition of
performing the function that they name. It is advantageous when
invoking the options as start options to use an abbreviated
mnemonic of the oprtion-specifier: AS for turning on ASSEMBLY, or
NCR for turning off the CROSS option, for example. The
option-specifier names also «can be abbreviated in-streanme.
In-stream option-specifier names must immediately be preceded by
a dollar sign character (S) and must be enclosed within a pair cf
Pascal comment delimiters; either the pairing { and } or the
pairing (* and *),. Option-specifier mnemonics consist of at
least the first twec letters of their name and up to all the
letters that make wup their complete spelling. Preceding the
option-specifier with the letter N negates those options which
can be negated. Upper or lower case letters may be uced to
specify the optionse.

Pascal compile time options grouped by type are:
® Source options

- BATCH

- BFEND

- HEAPHMARK
- IH#CLUDE

e Listing options

- ASSEMBLY
- CROST

- LIST

- MAP

- SUMMARY

e Object options

- BOUNDSCHECK
- OPTINIZE

- RANGECHECK
- RELIANCE

® Listing-format—-control option
- EJECT
® Memcry allocation option

-  MEMLIMIT

-
!

48-021 PO1 5/82 19



e Pass Notification option

- LOG

Options that can be specified as start options are:

- ASSEMBLY

- BATCH

- BOUNDSCHECK
- CROSS

- HEAPMAPK

- LIST

- LOG

- MAP

- HEMLIMIT=xXx
- OPTIMIZE

- RANGECHECK
- RELIANCE

- SUMMARY

1¢5e3.1 ASSEMBLY Listing Option

The Assembly Listing option obtains a listing of  the
compiled-progranm machine instructions (generated for Fascal
executable statements) disassembled into CAL/32 instructions and
its EXTERN 1linkages, and its constants area code. The assembly
listing is output to 1lu 6.

Because its default state is OFF, the user must specify either
ASSEMBLY as a start-option, or {$ASSEMBLY} in-stream to obtain an
assembly-listinge.

Selecting ASSEMBLY as a start option in conjunction with the
BATCH start option, causes the option state between individual
johs in the batch stream to be ON.

The assembly listing is printed prior to the map listing on lu €.
If 1u 2 and lu € are assigned to the same file or device, the
assembly 1listing and/onr the map listing is printed on compiler
PASS9 prior to those listings output to lu 2 on compiler PASS10.

1.5.3.2 BATCH Opticn

The Batch option allows the user to compile a series of Pascal
programs and/or modules collectively located as a batch stream on
a given file or device. This option is available both as a start

option and as an in-stream option. All other start options
specified in conjunction with the BATCH start option supersede
the normal default state of those options, between

compilation-units, i.e., creating a batch-start default state.
That is, the compiler returns to the batch-start default state

1-20 48-021 RO1 5/82



between individval corvilations of programs and/or modules on the
batch streanm.

The format for specifying the Batch option in the start options
is BATCH, minimally abbreviated BA. The format for specifying
the Batch option in-stream is S$SBATCH enclosed in Pascal comment
delinmiters: {SBATCH}, (*SBATCH*). It shculd be on the first
line of the source in-streame. Other options specified in
conjunction with the "“in-stream" {$BATCH} or (*$BATCH*) option
apply only to thke first job of the batch compilation. ©Cnly when
tha Batch opticn is selected as a compiler start option will its
co-specified option settings determine a batch-start defasult
state for all compilation-units of the batche.

Given the Ratch start option, the compiler successively compiles
the Pascal source batch stream from 1lu 1 (including any S$INCLUDE
options), until either an EOF/E0OM is encountered or the <SREND}
in-stream option is encountered. The compiler succeedes the
batch compilaticn with summarized information on the series of
individual Jjobs processed during the batch run. Following all
other listings output for individual compilation-units, a batch
Statistics listing is output to 1lu 2. Refer to Section 1.9.5 for
information on the batch statistics listing.

1.5.3.3 BEND Option

Code the Batch-end ortion by specifing SBEND within the Yascal
comment delimiters: <{SBEND} or (*$BEND*). This option, if used,
can be placed in-stream as the last line of source stream text of
the batch-compilation to indicate an end of batch cendition.
However, it is not necessary for individual program 2r module
compilations, nor is it necessary for source files with an EQF
indicator. It is necessary on a sequential device like the card
reader, which might not support an EOF condition.

The user is cautioned that the {SBEND} or (*S$BFEND*) option
specifier must be placed after the end of a compilation-unit,
which ends with the 1last 1line containing "END." as a
nrogram/module terminator. Placing the {$BEND} specifier in the
middle of a compilation-unit may cause it to be ignored.

At the end of a batch compile, when the last compilation-unit is
completed, the compiler automatically summarizes information
relating to the series of completed jobs and prints out to 1lu 2
a listing of Dbatch statistics. The batch statistics contains
program/ module names, batch page number, batch line number, and
end-of-task code for each compilation unit within the
batch-stream. For each compilation unit that compiled without
error, object size information is also given, i.e., object code
size and literal constants code size. See Section 1.9.5 for
detailse.

-
[

48-021 RO1 5/82 21



1.5.3.4 BOUNDSCHECK Option

The Bounds Check (BOUNDSCHECK) option, when selected Dby default
or specification, causes the compiler to generate additional
object code that checks for illegal values assigned to variables
of the subrange type.

The user can specify whether or not the object progranm will
incorporate this run time validity checke.

A orogram compiled with the BOUNDSCHECK option on, and containing
the source statement:

VAR INDEX : 1..10;

contains additional object code that provides a run time errcr
message if the execution of the program attempts the assignment:

INDEX := e¥rression:;

where the evaluation of the expression results in a value less
than 1, or greater than 10. The run time error generated
contains the message VALUE RANGE ERROR.

The BOUNDSCHECK option can be selected as a start option or
specified in-streame. The minimally abbreviated format for
specifying BOUNDCHECK is to be ON as a start option 1is BC; to
turn it off: KBO. It can be turned ON and/or OFF in-stream, so
that only portions of the program will be affected. The
in-stream formats are {SBOUNDSCHECK}, OR (*SBOUNDSCHECKX*) to turn
it on: and {SNBOUNDSCHECK?Y} or (*SNBOUNDSCHECK*) to turn it off.

1.5.3.5 CROSS FEFERENCE Listing Option

The Cross Reference Listing option is a program development aid
that locates identifiers in the compiled program listing by
source line numtrers. The Cross Reference Listing option, when
selected by default or specification, causes the ccmpiler to
generate a cross reference printout of all identifiers within the
particular compiled program. It is output to lu 2 and follows
the compiled program 1listinge. It 1lists all user identifiers
alphabetically, giving place of declaration or definition with a
mnemonic code indicator for the general kind of identifier; i.e.,

constant, variable, type, etce. It 1lists where the user
identifier wvas referenced within the compiled program listing and
reflects where a chenge of value is programmed to occure. The

place of declaration, definition, or reference is given by source
1ine number makince it easy to locate the identifier in the
compiled program listinge.

The Cross Reference option is ON by default for all compilations
unless the user specifically turns it COFF. Restating that the

1-22 48-021 RO1 5/82



Cross Reference Listing is to be ON 1is specified Py either
starting the comriler with the start option CROSS (CR): or by
invoking the option in-stream with either {SCROSS} or (*SCRNSS*).
Turning the Cross Reference Listing option OQOFF, is specified by
either starting the compiler with the start option NCROSS (NCR):
or by an in-stream specification of <{$SNCROSS}, or (*NCROSS*).
When the Cross Keference Listing option is OFF, a cross reference
listing is not oenerated.

1«5.3.6 EJECT Listing Format Control Option

The user may format the compiled-progranm listing with page
ejectionse. The FJIECT option encountered in the source strean
causes a page ejection (form-feed) in the compiled program
listing. This option can occur anywhere in-stream, but cannot+ bhe
used as a compiler start option. This option only affects the
listing produced when the LIST option is on.

To cause a page ejection encode:

{SEJECT}
or

(*SEJECT*)

The in-stream format of the EJECT listing format control option
is A{SEJECT} or (*$EJECT*). The SEJECT must be enclosed within a
pair of Pascal comment delimiters.

1«543.7 INCLUDE Option

The INCLUDE option enables the compiler to process and merge into
the source stream an entirely separate file containing Pascal
sourcee. It can be specified as an in-stream option only and
cannot be used as a start option specifier.

There is no limit con the number of files which may be included.
One separate file will have its source included for each option
specified. The included file may also contain other TJINCLUDE
option specifiers.

To merge an additional Pascal source file, into +the current
source, use a Pascal option-specifier comment containing the
SINCLUDE optione. Srecify the name of the additional file as an
argument to the SINCLUDE option as a file-descriptor, within
parentheses. Witkin either  vpair of acceptable Pascal
comment-delimiters; the format of the INCLUDE option specifier is
SINCLUDE followed ty its arguments enclosed in parentheses. The
arguments within the parentheses are the name of the f£f4,
onptionally follcwed by a comma, and another option specifier that
can specify LIST, (LI), or NLIST (NLI), optionally followed by a

48-021 RO1 5/82 1-23



comma and another option specifier, such as CROSS (CR) or KNCRGSS
(NCR). The entire specification must be enclosed in a pair of
Pascal comment delimiters and be self contained on one source
line. The format of the SINCLUDE may be:

{ SINCLUDE ( fd ) 2
or

(* SINCLUDE ( fd4 ) *)
to include the source on file fd into the source streanm being
compiled. The 1listing and cross reference will or will not
contain or pertain +to that portion of the source from £d,
depending on the option settings for the main stream.
Compiling under the default state with the LIST and CROSS listing
options ons the listings would reflect the source of all $INCLUDE
references that do not specify differently.
The user may disengage the LIST and CROSS reference listings for
that portion of source which is included by the SINCLUDE option.
The user may also turn the listings on, even when the main stream

listing options are off. The complete format of the SINCLUDE
option is:

Format:

{ SINCLUDE ( fd,argl,arg2 ) %}

Parameters:

£d is the file descriptor of a file <containing
Pascal sourcee.

Arg1 and/or arc? are optional and can be any of the following:

CROSS CROSS turns the cross reference listing on
NCROSS NCROSS turns the cross reference listing off
LIST LIST turns the LIST listing option on

NLIST NLIST turns the LIST listing option off

Note that arg1 and arg2 contain no dollar signe.

Examples:
{ S$INCLUDE ( M3CG:SEGMENT8.PAS ) 2}
(* SINCLULDE ( M300:EXCERPT.PAS,NCROSS,KLIST ) *)

{ SINCLUDE ( MuOO:PART34.PAS,NLI,CR ) 2%

1-2u 48-021 RC1 £t&/32



1¢5.3.8 LIST Listing Option

The LIST listing option speclfies that a compiled progranm listing
of the source cempilation unit is to be produced.

The compiled program listing is produced on 1lu 2, prior to any
other 1listings being printed for that rrogram on lu 2. However,
if lu 2 and lu € were assigned to the same file, for example, and
the MAP or ASSENBLY options were on, those listings, as they are
generated on TFass® prior to Pass10 precede the compiled-proaranm
listinge.

Because the default condition of the LIST option is on, the
listing is normally produced without specifying any options. The
LIST option is both a compiler start option and an in-streanm
option and can te turned on and off for different porticns of the
source program so tktat only the desired portions will be included
in the compiled-program listing.

Specify NLIST as either a start option or an in-stream cption +to
disengage the listing opticn. Specifying LIST or NLIST with the
batch start option will engage or disengage the compiled~-proaoram
listing for the entire batch compilation causing any in-strean
SLIST or S$NLIST settings to be ignored.

The format for settinc the compiled program listinag to on is
LIsv, minimally abbreviated LI:; or to off, it is NLIST,
abbreviated NLI; specified as a compiler start-optione.
The format for setting the compiled program listing to ¢cn or off
in the source stream, is SLIST, minimally abbreviated $LI: or
SNLIST, minimally atbreviated SNLI; any one of them erclosed in
a pair of Pascal comment delimiters. Fxamples of in-stream LIST
option settings are:

{ SLIST ?}

(* SLI *)

{ SNLI 2}

(* SNLIST *)
or it can be embedded in a series of option settings:
{ SEJECT,SLIST,SMAP 3}

The compiled program 1listing is detailed in Section 1¢9.1.
Generally, the 1listing 1lists the user source program by line
number and any diagnostic errors.

48-021 RO1 5/82 1-25



1¢53.9 LOG Option

The LOG Option, specified as a compiler start option, enables the
compiler to notify the user of its detailed PASS operations on 1lu
0. It is not available as an in-stream optior and may only be
selected as a compiler start option.

The LOG option enables the compiler to 1log the nane of each
currently operating Pass number and the number of any errors that
occurred during the pass. For a correct compilation, with the
LOG option set, the log might contain (in addition to normal log
device information such as the compiler identification,
end-of-task return code message, and other compiler-operations
messagesSe

PASS1
PASS2
PASS3
PASSY
PASSS
PASS6
PASS?
PASSS
PASS9
PAS310

To reflect compilation errors encountered, the log might contain:

PRSE1

PasSE2

PASS3

PASSY

PASSS

145 ERRORS DETECTED IN PASSS
PASE10

and the compiler terminates with an abnormal termination return
code after Fass 10 completes its listings. The number of errors
in any pass is c¢iver in decimal.

The user can start the compiler with:

ST ,BAR SU AS LO NLI NCR

sotting the loqg option to monitor the compilation process through
many unit compilations in a batch-stream, or start with:

ST ,LOG

1-2+% 48-021 RO1 E/82



to monitor the ©process of a single compilation with 1lu 0
previously assicned to the user terminal.

1.5.3.10 MAP Option

The MAP option, specified as a start option or within the <cource
stream, causes the compiler to generate a Pascal map listing on
lu 6. This listing is a map of the user object ©program, or
object module, for each separately compiled compilation-unit,
giving displacements which indicate the relative locations cf the
beainning of each source line containing an executable statement.
The map also contains displacements (stack offsets) for the first
datum on a given data-defining source line. See Section 1.9.7
for the map listing format of an individual Pacscal
compilation-unit object map. This is not the same kind of map as
that generated by 0S5/32 LINK for a Link MAP, which displays the
object locations of an entire established task. To relate the
displacements given in a Pascal MAP, to object locations at run
time, a Link M¥AP <chould be on hand ¢to determine starting
locations of any particular cempilation-unit object.

The Pascal MAP cption default state is off, and the user must
specify MAP, abbreviated MA, as a start option to obtain a marp
listing. The in-stream format of the MAP option can be turned on
and off throughout the source stream so only the ©portions of
source code surrounded by {SMAP} and {SNMAP} are listed in the
map listing, but it may not be advantageous to do so.

The format to specify the MAP listing option in-stream is:

{ SMAP »
or
(* SMAP *)

or in conjunction with other option specifiers:

{ SLIST,SASSEMBLY,SMAP,SSUMMARY 3

Specifying either MAP or NMAP in conjunction with the batch start
option determines the batch-start default state between johs of
the MAP option for each compilation-unit in the batch compile.

1¢543.11 MEMLIVMIT Memory Allocation Option

The Memory Allocation (MEMLIMIT) option may be specified as a
compiler start-cption or in-streanm.

48-021 RO1 5r82 1-27



With this option, the user can specify that only a portion of
task workspace be reserved for access by Pascal compiled-code for
the heap and stack of the running Pascal program task. The
remaining amount of workspace is available, for example, for any
get storage SVCs issued within 1linked routines externally
assembled from the programe.

The default condition of the memory limit is 100 percent. That
is, 100 percent of the task workspace available after linking and
loading all object code, between CTOP and UTOP, remains in the
task partition to be used by Pascal compiled-code for the heap
and the stack, and other internal tablespace (Pascal SDA, RTL
Scratchpad, etc.). Specifying 80 percent with the MEMLIMIT
option, e.g., KE=E80, reserves only 80 percent of the available
workspace for access by Pascal compiled-code. Twenty percent of
the workspace is reserved for other access, e.g., get-storage
requests, from externally linked routines which are not Pascal
compiled code. Pascal compiled-code does not enact access to the
twenty percent set aside by the MEMLIMIT=80. See Figure 1-3 in
Section 1.7.

The format of the Memory Allocation option is:

Format:

HEMLINIT = xX

Parameters:

XX is a percentage, represented by a decimal
nurber from 0O through 100.

An illegal percentace, not in the range 0..100, causes an ILLEGAL
OPTIONS ccmpiler-operations message on the log device.

1¢5¢63.,12 OPTIMIZE Option

The Optimization (OPTIMIZE) option instructs the compiler to
attempt to make the user object cnde more efficient by analyzing
both machine indeperdent and specifically machine dependent <code
and recompiline them into optimized code on Pass 8. This option
is best used when the user source program reaches a compile time
error-free state. The specific optimizations performed by the
compiler are detailed in Section 1.5.4. Specify the SUMMARY
Listing option for an accounting of the optimizations performed
during compilation (see Section 1.5.3.15).

The optimization option may be specified as a corpiler
start-option onlye. It cannot be turned on and off for conly

1-28 48-021 RO1 &/82



portions of source code in the source stream; nor can it te
specified in-stream at all.

JPTIMIZE is the full format to specify that this additional
optimization 1is tc take place. It is minimally abbreviated OP;
and although the default condition is OFF, the user can specify
no optimizatior with NOPTIMIZE, minimally atbreviated NOP.

1.5.3.13 RANGECHECK Option

The Range Check Option, selected by default or specification,
causes the compiler to generate additional object code that
checks for 1illegal or out of range values being used for
subscripts, variant tags, pointer values, and subrange value
parameters. The user can specify wvwhether or not his object
program will incorporate these run time validity checks.

To compile a program with the RANGECHECK option on, if the
program contains type definitions and variable declarations such
as:

TYPE COLOR = (RED,BLUE,BLACK);
VAR A: ARRAY [1..99,COLOR] OF INTEGER:

then that program contains additional object code rangechecking
that causes a run time error, if program execution attempts the
array reference:

A [INDEX1,INDEX2]

whenever the value of INDEX1 is not vwithin the range 1 through
99, or the value of INDEX2 is not within the values RED, BLUE, or
BLACK. This run time error contains the message INDEX RANGE
ERROR. Other velidity checks on variant tags, pointer values, or
subrange value paranmeters could produce the run time errors with
the messages VARIANT TAG ERROR, POINTER ERROR, or PARAM RANGE
ERROR, respectively.

The RANGECHECK option can be selected as a start option or
specified 1in-streane. As it 1is on Dby default, the user must
specify NRANGECHECK (NRA) as a start-option or specify
{SNRANGECHECK} or (*SNRANGECHECK*) in-stream, to turn it off.

1.5.3.14 RELIANCE Interface Option

Specification of the Reliance Interface Option (RELIANCE) is
required as a compiler option for any compilations of compilation
units which are 3intended to operate in a Reliance environmente.
It must not be specified for compilations not intended to operate
in a Reliance environment. It is off by default.

48-021 RO1 5/82 1-29



The Reliance option, when specified, causes the compiled object
program to contain run-time error handling, task pausing and task
tarmination mechanisms compatible with a Reliance environment.

The Reliance option may be specified as either a start-opticn or
in-stream option. The format for specifying this option as a
start-option is RELIANCE, abbreviated RE. The format for
specifying this option in-stream is <{S$REFLIANCF}, abbreviated
{SRE}; and must be on the first 1line of the source of the
compilation unite.

Users preparing Pascal programs to run in a Reliance ernvironment
nust also refer to Appendix M for the Pascal-Reliance
informatione.

1¢5¢3.15 SUMMARY Listing Option

The SUMMARY Listing Option, specified as a start option or within
the source stream, causes the compiler to generate a summary
listing on 1lu 2. The summary listing contains information on
internal compiler statistics that were accumulated during user
program compilation. A paragraph is printed out for each of the
first eight passes, giving file size information in use on lu 3
and lu 4 useful to users repeatedly compiling a large near-stable
program who wish to pre-allocate 1lu 3 and 1lu 4 as contiguous
scratch files with adequate space.

The summary listing also contains information on which
optimizations were performed and how many times. Whenr the user
selects the OFTIMIZE option, the Pass 8 optimizations are
recorded. The amount of memory space saved is also reflected.
The machine independent optimizations performed during Pass 6,
are given in +the SUMMARY, Pass 6 ©paragraph. The machine
dependent optimizations performed during Pass 8 are given in the
SUMMARY, Pass & paragraphe. The optimizations are listed by their
abbreviated names ard the number of times they were effected
(refer to Section 1.5.5).

The default state of this option is off. To obtain a Summary
Listing the user must specify SUMMARY, minimally abbreviated SU,
as a compiler start option or use its in-stream format, which is:

{ SSUMMARY 2
or

(* SSUMMARY *)

or in conjunction with other in-stream option specifiers:

{ SMAP,S$SSUMMARY,SLIST 1}

1-30 48-021 RO1 5/82



1¢5.3.16 HEAPMARK Option

Specification of the HEAPMARK option is required only for those
compilation wunits which contain references +to the predefined
procedures MARK and RELEASE. This option need not be specified
if +the compilatior unit contains no such references. It is QFF
by defanult.

In the default state, which 1is off, the <compiler will not
recognize MARK and PELEASE as predefined procedure identifiers.

The Heapmark option may be specified as either a start-option or
in-stream optione. The format for specifying this option as a
start-option is HEARPMARK, abbreviated HE. The format for
specifying this option in-stream is J{SHEAPMARK}, abbreviated
{SHE}. It should be on the first 1line of the source of the
compilation wunit, or prior to the first reference to either MARK
or RELEASE.

1«5.4 Error Handling

The Pascal compiler provides extensive error diagnostics of the
user source and documents any detected errors in the compiled
program listing, which are discussed in Section 1.5.4.1 below.

The compiler also provides its own compiler operations messages
to the user, as detailed in Section 1.6.1 and especially provides
a warning message (when possible) prior to malfunctioning, see
Section 1«5.4.2 below.

The compiler generates in the program object code certain runtime
error checking depending upon its start-options. Rll of the user
task run time error messages are presented in Section 1.5.4.3 and
those run-time error checks, controlled by compiler-options are
discussed.

-

Appendix G <contairs a complete 1list of PASCAL Diagnostic
Messages, Compiler Operations Messages, and Run Time FError
Messages.

15«41 Diagnostic Errors

User-written coding errors are detected by the compiler while
processing the Pascal source and given diagnostic error messages
in the corpiled-program listing. The descriptive
conmpiler-produced error messages contain the source line number
of the offending construct and a U4-digit error «code that
indicates the pass number in which the error was detected and the
error number in that pass and a brief text message describing the
€rrorCe

Diagnostic error messages are presented in the compiled-program
listing below the line of code in which the error wvas detected.

u4g-021 RO1 5/82 1-31



They are also presented collectively at the end of compilation as
part of the program statistics listing. The format of a compile
time diagnostic error message is:

Format:

**k*xx% JTNE n, ERPROR XYVYY: MEeSSAJE » o o o e

Where:
n is the offending source line number,
X is the pass number that detected the error,
YYY is the error code, and
message is the error text, describing the errore.

The possible codes xyyy and messages are listed in Appendix G.
Some examples of the "messages" of the diagnostics detected are:

BAD NUMBER FORMMAT: DIGIT REQUIRED

CASE STATEMENT SYNTAX

IDENTIFIER DECLARED TWICE

EXTERNAL ROUTINF CANNOT HAVE FORMAL ROUTINE PARAMETERS
OPFRAND TYPE CONFLICT

MOD RELATIVF TO O OR NEGATIVE NUMBER

Refer to Appendix G for a complete list of the diagnostic errors
displayed in listings.

1e5.4.2 Compiler Failure Errors

The Pascal compiler is subject to the same internal consistency
checking as any other Pascal progranm. When the compiler is
running as a task, a run time error can occur as compilations are
performed. However, the normal run time error message 1is
insufficient since the compiler is a multi-module programe. If
the compiler <chould malfunction, the user |is given more
information to write a software <change reqguest (SCR) and to
identify where in compiling this program the compiler
malfunctioned.

There 1is a run time error mechanism especially for the compiler.
If the compiler code fails, or cannot continue due to
insufficient accessible memory, the format of the run time error
message which is sent to the log device is:

1-32 48-021 RO1 &/82



Format:

PASS n LINE xxx¥X, ADDR YYYYYY MESSa0Ces e
COMPILING LINE zzzzz OF PROGRAM name

Where:

n is the number of the compiler pass during
which the error occurred.

XXXXX is the source line number in the compiler pass
wvhere the error occurred.

YYYYYY is the object address within the compiler
where the error occurred.

message is the textual run time error nmessage, as
follows:

- INDSX RANGE ERROR
- PRRAM RANGE ERROR
- VALUE RANGE ERROR
- CASE LABEL ERROPR
~ TRUKC RANGE FERROR
- VARIANT TAG ERROR
- POINTER ERROR

- STACK OVERFLOW

- HEAP OVERFLOW

ZZZZZ is the source line number in the user progranm,
currently being compiled.

name is the name of the wuser program, currently
being compiled.

The user can determine where in his program that +the compiler
faulted by examining the program's source line zz2zzz and possibly
change that source line as an avoidance procedure to continue.

If the HEAP or STACK OVERFLOW message occurs after the compiler
is started or a CSS is invoked, reload the compiler with more
task memory space (a greater memory segment-size-increment).
Other abnormal wunresolvable error messages occurring during
compile time should be reported on an SCR (refer to Appendix K).

1e5e4e3 User Task Run Time Errors

Executing Pascel compiled-code enacts certain self-contained
program logic and run-time data validation checks to detect

48-021 RO1 5/82 1

33



exceptional circumstances that make it illogical or impossible
for the ©program to continue executinge. Subsequent to these run
time error messages, the task is paused, and upon an attempt to
continue with the O0S CONTINUE command, the wuser task is
terminated with END-OF-TASK, under 0S/32. These run-time error
messages may occur while executing Pascal compiled-code as
follows, and are ¢f the form:

Format:

LINE xxxxx, ADDP yyYYYYY mesSad€ess

Hhere:

XXXXX is indicating (when possible) the user's
errant Pascal source line number in which the
error was detectable, by the 1line's Pascal
compiled-code; or xxxxx 1is =zero, when the
error was detectable by an RTL/support routine
not having access to the user®'s line number.

YYYYYY is the machine address in the compiled object
code, of either the interupting ERR compiler
generated instruction, near the detected
error; or if line xxxXXxX is zero, yyyyy is the
machine address in code which called the error
detecting RTL routine; and

"message" is one of the following:

INDPEX RANGE ERROR
PARAM RANGE ERROR
VALUE RANGE ERROR
CASE LABEL ERROR
TRUNC RANGE ERROR
VARIANT TAG ERROP
FOINTER ERROR
STACK OVERFLOW
HEARP OVERFLOW

Bach of these "messages" is described in detail in Appendix G
under RUN TIME EPREORS. Some of them are generated by the
compiler under certain compiler options. BOUNDSCHECK ortion,
controls whether o¢r not the VALUE RANGE ERROR checks will be
generated in compiled-code for subrange-type range errors, and
can be turned offe. The RANGECHECK option, controls certain
checks for illecal out-of-range run-time values £for subscripts,
variant-tags, pointer values, and subrange value ©vparameters
giving the messages, INDEX RANGE ERROR, VARIANT TAG FREOR,

1-34 48-021 RO1 5/82



POINTXR ERROR, and PRRAM RANGE ERROR. The RANGECHECK option can
ba turned cff.

Run time errors occvring during execution of user Pascal tasks
are logged (via =an SVC 2,log-message) to the consocle (user
console in an NMTM environment, system console in a stand alone
0s5/32 MT environment, or system Jjournal in a ERELIANCE
environment)e.

Some errors may allow continuing execution, after pausing for
correction by oprerator intervention, others may require relcading
With more or differently arranged memory allocations, relinking
the task, or reprocramming and recompile, to correct the problem.

NOT ENOUGH SPACE TC RUN PASCAL

This message occurs immediately after starting a user Fascal
task, when the memory allocations available to the task are
not even large enough for the basic internal workspace
needed for the Fascal SCA, FORTRAN SCA, or the RTL Scratch
Pad area. The user task is then terminated.

Reload or relirnrk with more memory, and restart; or if
MENLIMIT was used, check the effect of the MEMLIMIT memory
allocation option. If upon restarting, this message dces
not appear and the STACK OVERFLOW immediately doces, or it
occurs sometime thereafter, enough memory was added/arranged
to accomodate the basic internal tables, but not enough for
this particular user progranm's Global variables or stack
data to be run. Reload or relink with greater memory, and
restarte.

When executing Pascal named file I/0 (text file or non-text
file), with RFSFT, REWRITE, READ, READLN, WRITF, WRITELN
statements; the following runtime error messages may occur. Note
that when the logical unit number, nnn, is an external Pascal
named file; the position of the file-name in the PROGRAM header
file-name-list determined its associated lu number. If the 1lu
number, nnn, cannot possibly be an external file in the program
concerned, an internal file-variable is of concern.

NO LU AVAILABLE TO ASSIGN INTERNAL FILE
READ ATTEMPTED ON R NON-RESET FILE, LU= nnn
READ ATTEMPTED PAST END-OF-FILE, LU= ann

WRITE ATTEMPTED TO A NON-REWRITTEN FILE, LU= nnn

INVALID CHARACTFR IN FUMERIC INPUT, LU= nnn

48-021 ROt1 5/82 1-35



Additional system file error cotditions may be detected while
performing Pascal named file I/0, as follows.

I/9 ERROR xxyy, LU= nnn

where xxyy is the non-zero hexidecimal 0S/32 SVC 1 Error
Status encountered on logical unit number, nnn, by an SVC 1
I/0 being attempted.

After this message occurs the program is paused. Check the
0S/32 SVC 1 status halfword as defined in the Operating
System manual, and the file/device assigned to 1lu nnn; to
determine the source of trouble.

In an 0S/32 environment, the task is paused to allow
operator intervention to c¢orrect the problem, and enter the
0S/32 CONTINUE command to retry the SVC 1, and proceed.

ERROR IN INITIALIZING EXTERNAL FILE FOR READ/WRITE
SVC 7 ERROR, LU= nnn; FN= xxxxxxxxxxx, STATUS= yyyYyyYYYYYYYYYYYY

ERROR IN ASSIGNING INTEENAL FILE
SVC 7 ERROR, LU= nnn; FN= xxxxxxxxxxx, STATUS= yyyyyyyyyyyyyyyy

ERROR IN ATTEMPTING TO CLOSE INTERNAL FILE
SVC 7 ERROR, LU= nnn; FN= xxxxxxxxxxx, STATUS= yyYYYYYYYYYYYYYYY

Fach of the above messages are detailed in Appendix G under RUN
TIYS ERRORS.

The qualifier SVC 7 ERROR message of the above three messages
identifies the logical unit number concerned, the function code
attempted, and the error status encountered; and is of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>