

Adventurer'S Guide to
Interleaf Lisp

David Weinberger

ONwnRD®
PRE S S

ii Inside Adventurer's Guide to Interleaf Lisp

ADVENTURER'S GUIDE TO INTERLEAF LISP
By David Weinberger

Published by:

On Word Press
2530 Camino Entrada
Santa Fe, NM 87505-4835 USA

All rights reserved. No part of this book may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording or by any
information storage and retrieval system without written permission from the publisher,
except for the inclusion of brief quotations in a review.

Copyright © 1994 David Weinberger
First Edition, 1994
SAN 694-0269
10987654321
Printed in the United States of America

Acquisitions Editor: David Talbott
Project Editor: Margaret Burns
Production Manager: Carol Leyba
Production Editor: Sandra McDougle
Cover Design: Lynne Egensteiner
Copy Editor: Mary Margaret McCormick

Library of Congress Cataloging-in-Publication Data

Weinberger, David
Adventurer's Guide to Interleaf Lisp

Includes index.

1. InterleafLisp (computer programming language) 2. Desktop publishing 1. Title
93-85301
ISBN 1-56690-042-5

Trademarks iii

Trademarks
Interleaf is a registered trademark of Interleaf, Inc. Interleaf 5, Interleaf 5 for DOS, and
Interleaf Lisp are trademarks of Interleaf, Inc. On Word Press is a trademark of High Moun
tain Press, Inc. Additional products and services are mentioned in this book that are the
trademarks or registered trademarks of their respective owners. Neither On Word Press nor
the author makes any claims to these marks.

Warning and Disclaimer
This book is designed to provide information about Interleaf Lisp. Every effort has been
made to make this book complete and as accurate as possible; however, no warranty or fit
ness is implied. The information is provided on an "as-is" basis. The author and OnWord
Press shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages in connection with or rising from the information contained in this
book. This book was prepared using Interleaf 5 and Interleaf 5 for DOS.

About the Author
David Weinberger has been working with Interleaf tools for seven years. He has written for
Byte, PC Magazine, UNIX World, Computer World, The New York Times, Smithsonian
Magazine, and TV Guide. He speaks annually at national and international ICON.

Thanks for the Help
1'd like to thank the following people for their generosity of time and expertise: Tim Ander
son, Tom Borgman, Keith Corbett, Don Davis, Stacy and George Dymalski, Paul English,
Tim Giebelhaus, Kimbo Mundy, Gary Wasserman and Information Technology Partners,
Inc. And most of all, lowe thanks to my wife, Ann Geller, for giving me all the nights and
weekends this book has required.

Cover Art
Cover design by Lynne Egensteiner, using QuarkXpress 3.1 and Adobe Photoshop 2.5.1.

On Word Press
On Word Press is dedicated to the fine art of practical documentation. In addition to the
author who developed the material for this book, other members of the On Word Press team
make the book end up in your hands.

iv Inside Adventurer's Guide to Interleaf Lisp

Thanks to Dan Raker, David Talbott, Carol Leyba, Gary Lange, Margaret Burns, Lynne
Egensteiner, Tierney Tully, Michael Hadley, Catherine Hemenway, and Mary Margaret
McCormick.

Installing the Bonus Lispware Disk
This disk contains files. "packed" together into one file by the Interleaf Desktop Utility
(IDU). The IOU file is named "leafware.idu". To use these files, you must unpack them
using IOU. When IDU unpacks them, you will end up with a subdirectory named "lisp
ware" that should appear as an Interleaf desktop cabinet. Inside will be further cabinets, as
well as README files. IOU will ensure that the files you receive follow the differing nam
ing conventions used by MS-DOS, UNIX, and other operating systems supported.

1. To unpack the files with IOU, first locate the idu utility. On UNIX systems, its probable
path is: linterleaf/ileaf5/bin/idu. On DOS, its probable path is: \ileaf5\bin\idu.exe.

2. Next, change to your desktop directory (e.g., "cd D:\desktop" in DOS).
3. Now extract the files by typing at the prompt:

idu-path -xf idu-file-path
where "idu-path" is the path to your idu utility and idu-file-path is the path to "lisp
warejdu."
For example, in DOS the command might be:

li/eaf5lbinlidu -xf A:l!ispware.idu
and in UNIX it might be:

linterleafli/eaf5lbinlidu -xf Ipcfsl/ispware.idu
4. If you have Interleaf up and running already, do a "Rescan" on your desktop to force

it to notice the new files put there.
5. If you have copied "lispware.idu" to your hard drive, after "unpacking" it you may

delete it.

Contents

Installing the Bonus Lispware Disk .. iv

Chapter 1 Introduction 1

Why is this a good environment? 1
Who is this book for? . 2
Risks ... 3
Design philosophy . 3
Other tools . 4
Note on the user interface
Disclaimer

Chapter 2 Getting Started with Interleaf Lisp 7

5
5

Functions . 7
Data types . 9
Objects ... 9
Classes .. 10
Sending messages to objects . 11
Return 12
t or nil
Variables
Lists
List processing
Parentheses

Chapter 3 Working with Interleaf Lisp 21

14
15
16
17
18

Lisp icon .. 21
Word processor or programming editor .. 22
Recommendation .. 23
Loading a script .. 23
A first script . 24
Attaching a script to a keystroke . 28
Breaks ... 29

vi Adventurer's Guide to Interleaf Lisp

Chapter 4 Basics of Programs 31

Setting values
Testing values
Logical operators

Chapter 5 List Processing 41

What is a list?
Making lists .. .
Finding items in lists .. .
An example - Cards

Chapter 6 Control Structures 55

Chapter 7 Numbers and Characters 65

31
37
39

41
42
44
52

Types of numbers ... " 65
Testing numbers ... " 66
Altering numbers . 68
Arithmetical operations .. 69
Characters .. 71
Strings '" '" " 76
Sample program: Leaf of Fortune .. 81
Format ... 85

Chapter 8 The Desktop 91

Desktop objects . 91
Getting Desktop Objects .. 91
Properties .. 101
Lisp data , , , .. " '" 113

Chapter 9 Inside the Document 115

Document structure ,. 115
Getting a document .. 116
Navigating .. 118
Editor objects .. 123
Document editor .. 124
Document manipulation .. 127
Markers .. 130
Tokens
Text editor

143
145

Working with components .. 151
Pages .. 175
Columns .. 177
Lines 179

Providing new editors

Chapter 10 Stickups and Stayups 187

Stickups
Stayups

Chapter 11 Popups 199

Contents vii

184

187
192

Creating popups .. 199
Attaching pop ups to objects .. 202
Altering existing popups .. 204
Popup variables .. 208

Chapter 12 Keyboard 211

Chapter 13 Property Sheets 221

Creating a property sheet .. 222
Submenu contents .. 226
Buttons .. 229
Multiple submenus .. 234
Sample simple propsheet .. 235
Sample propsheet application .. 239

Chapter 14 Tables 251

Table functions
Table totaler
Table sorter
Table striper

Chapter 15 Graphics 261

Frames

251
253
254
258

261
Architecture .. 269
Named Graphic Objects .. 270

Chapter 16 Windows 273

Window manager .. 273
An example .. 277
Timers ... 280

Chapter 17 Streams 285
Reading files .. 286
Writing to files .. 287
Examples .. 289

Chapter 18 Active Documents 295

Architecting and opening 295

viii Adventurer's Guide to Interleaf Lisp

Simple example .. .
Working with active documents
Another example - Forms fill
User interface .. .
New functions

Chapter 19 Fifteen Errors You Will Make 319
Statement doesn't eval

298
298
300
307
313

319
The values at a breakpoint make no sense .. 320
Changes to text formatting don't take effect .. 320
String error .. 320
Changes to a comma 5 file don't take effect .. 321
Your active document is spawning too many classes 321
Changes to comma 21 file have no effect .. 321
Your code continues to make mistakes you corrected quite a while ago 322
Buttons on your stickups don't work as

predicted ... 322
Selected icon isn't found by script .. 323
Division doesn't work .. 323
A string never tests as empty .. 323
The component editor just cut a whole bunch more than you wanted 324
Can't push object onto list .. 324
When you open an active document, you

get stuck in an infinite loop that never gets past the open function 324

Index 327

Chapter 1
Introduction

Interleaf 5 ™ is an amazingly powerful publishing product. From the end user's point of view,
it can do just about anything imaginable to text and graphics.

To the developer, however, that's just the starting point.

Interleaf 5 contains - in fact, much of it is built with an extension language which allows a
programmer to take advantage of all ofInterleaf 5's text and graphics document functionality.
The programmer can use this extension language - InterleafLisp ™ - to modify Interleaf 5
or to build entirely new applications out of its pieces.

For example, a developer could use Interleaf Lisp to

fiill.l Add new functionality to Interleaf 5

fiill.l Alter Interleaf 5's interface

~ Build active documents, programmed with the "intelligence" to access information,
evaluate it, and act on it

a Create links to other data

a Automate the document work flow

a Create entirely new applications that use Interleaf 5 as, for example, an interface or dis-
play engine.

All this is possible because the InterleafLisp development environment is so powerful. It was
not designed for casual end users; Interleaf built the development environment with profes
sionals in mind. Nevertheless, with some guidance and some patience, those of us who are not
professional programmers can begin to use the tools that are sitting in Interleaf 5 to take
advantage of the product's radical re-programmability.

That's what this book is about.

2 ADVENTURER'S GUIDE TO INTERLEAF LISP

Why is this a good environment?
Interleaf Lisp is part of a highly productive development environment. That's not simply
because the language itself is useful. It's primarily because the environment is document-ob
ject-oriented.

In practice, this means that Interleaf has already created a set of very powerful objects. For
example, Interleaf tables already know how to size themselves to their contents, paginating
themselves if necessary. This sort of functionality would be difficult to build from scratch.
But because Interleafhas already built these tables, the developer can use them without doing
any further work. For example, if you wanted to build an application that puts data into a par
ticular cell in a table, all you have to do is tell the table cell (actually, a marker in the table
cell's microdocument) to accept the contents. That is a single line of code. Everything else
that happens - perhaps the table resizes, repaginates, causes a ripple through a I,OOO-page
document that involves updating hundreds of autonumbers and references - happens auto
matically, without the programmer having to worry about it.

In addition, Interleaf has made available a set of tools for the developer - an editor, debug
ger, compiler, on-line help, etc. - that lets a developer create code very productively. (This
book does not assume your version ofInterleaf 5 came with these tools; while they greatly aid
you, they are not an absolute requirement.)

But the real test of the value of a development environment is how well developers do with it.
I believeyou'll find Interleaf's environment not only productive, but tremendous fun.

This book will help you give it a try.

Who is this book for?
Interleafhas a variety of programs set up to help professional developers become proficient at
working with Interleaf Lisp. This book is not intended primarily for them.

Most oflnterleaf 5's users will find that the active documents that come with the system are
more than enough for them. They can get all the configurability and extensibility they need
by using what comes in the box. This book is not intended primarily for them, although they
might find it an inducement to continue to the next level of expertise.

Then there is a set of users who are ready to push the envelope. They are not professional
developers, but share some of the following characteristics:

fil Power users of Interleaf 5

fil Ask themselves not only how to use a feature but also why it was designed the way it was

m:m Have looked at pieces ofInterleaf 5 through their operating system, e.g., have used their
OS's file browser to look at the various "invisible" backup files Interleaf creates.

Introduction 3

Such a person is likely to fall in love with InterleafLisp as soon as she or he encounters it. This
book is for that person.

There are some prerequisites:

II You should have some experience programming in any language, even as a hobbyist;
this book will not teach you the basics of computers or of programming.

II You should have a good sense of how Interleaf 5 works; this book will not teach you the
basics of Interleaf 5.

If you meet those two criteria, you should be able to use this book to good advantage.

Risks
Interleaf Lisp gives you a tremendous amount of power. It also gives you, therefore, the
chance to screw up royally.

There are two fundamental things you can screw up:

lIB You can unintentionally destroy documents and other data.

lIB You can introduce "stuff" into your system that will do weird and sometimes not-so
wonderful things to Interleaf 5's processes. For example, you may discovered that you
can no longer type into documents, or that all your menus have gone away, because of
unintended side-effects of a script.

The safeguard against the first sort of screw-up is to back up your data and documents fre
quently, and to never have any documents that you care about open on your desktop while you
are experimenting with InterleafLisp. (You can do damage to unopened documents as well;
it's just easier with opened ones.)

The safeguard against the second sort of screw-up is not to do any work with Interleaf Lisp
and not to accept any active documents onto your desktop.

If you decide to go ahead anyway, if your system starts acting strangely, exit and reload. If it's
still acting strangely, check your Profile drawer and the clipboard to see if there are any active
documents in there that may be getting loaded when Interleaf 5 loads. Finally, be patient and
do not call Interleaf customer support unless you are quite, quite, quite sure that the problem
is with the software as delivered by Interleaf, and is not due to one of your Interleaf Lisp
experiments.

Design philosophy
There are, of course, many ways to write an introduction to a programming environment.
Given who this book is for, I have taken a very particular approach.

4 ADVENTURER'S GUIDE TO INTERLEAF LISP

III The aim of the book is not to give you an abstract know ledge of the Interleaf Lisp func
tions available to you but to help you design and create small applications and utilities.
When quick-and-dirty is easier to understand and just as good in a small program as
slow-and-clean, I've gone for quick-and-dirty every time. This book does not aim at
purity of Lisp expression. (I'm an Interleaf Lisp hobbyist and fan, not a programming
professional.)

III This is not a comprehensive reference work. There are areas and functions I have
skipped because I consider them to be advanced topics. Within anyone area, I have not
attempted to provide comprehensive documentation, for the same reason.

III While I have tried to make the various functions easily accessible, as in a reference work,
the book often assumes you've read at least somewhat sequentially. For example, the
section on working within a document occasionally assumes you've read the prior sec
tion on working on the desktop.

III The book is structured in general in the order in which a fledgling programmer needs
questions answered. So, for example, a section on working with components will begin
with an explanation of how the programmer accesses components in the first place. That
discussion may not be first in terms of alphabetical order, but it is first if you're in the
process of building an application.

III I have not been a slave to consistency. For example, most functions have an example of
how to invoke them. Some do not because it's so obvious or because, for some other rea
son, it didn't seem appropriate.

III I have tried to include lots of sample functions. When possible, I've tried to make them
useful. But, since their primary aim is to illustrate points, I have sometimes included
some less-than-useful programs.

III Because the sample programs are meant to illustrate points, I have tended to use the most
explicit, most easily understood constructions, rather than the most compressed, fastest
or most elegant. Professionals may look at my code and snicker. But the rest of us, I hope,
will find it easier to make sense of what's going on in the samples.

III I have used my own experience as a devoted hobbyist as a guide. This book is, therefore,
a somewhat idiosyncratic tour ofInterleafLisp. I have tried to hit the major points, but
the fact that there is nothing in here on, for example, the equation editor, is in part a result
of the fact that I don't know anything about building equations. In fact, however, all
books like this suffer from the same risk, except when they say that they skipped a topic
because it is "advanced," they don't admit that "It's advanced" is really often a way of
saying, "I don't care about it."

Other tools
This book will get you on the road. But there are other routes for you to take instead of or in
addition to this one.

Introduction 5

9 Interleaf User Groups are a great way to get information - and the annual ICON user
group convention can be a gold mine.

fE2l Interleaf training.

~ The Interleaf Developers Toolkit will give you the official documentation as well as a
powerful set of development tools.

~ Interleaf's electronic bulletin board, LeafLine, is a source of additional scripts.

fE2l Interleaf's user dicussion group or the Internet can be accessed at the address
comp.text.interleaf.

Note on the user interface
This book assumes you are using the traditional Interleaf user interface, not the Motif, Open
Look, Macintosh, or Microsoft Windows versions. Much of what this book teaches you
should transfer directly to Interleaf 5 running under those interfaces, except for some big
chunks of the user interface. For example, while Interleaf stickups will probably be supported
in those new user interfaces, you can be just about certain that property sheets will not be. So,
if you are planning on moving to those new interfaces, you should be careful to isolate and
identify the parts of your code that address the user interface, and you should stay away from
property sheets and pop ups.

Disc/aimer
I certainly do not claim that any piece of code in this book is written optimally. And while
they've all been tried out, it's always possible that they won't work for you because you typed
it in wrong, the Interleaf Lisp changed since this was written, there is something screwy in
your environment that keeps it from working, there was something screwy in my environ
ment that allowed it to work, or I made a mistake. (I haven't gotten around to becoming infal
lible yet.)

Remember, if things go wrong because of what you've done with Interleaf Lisp, do not call
Interleaf Support. They can't possibly debug your programs for you, and Interleaf, Inc.
obviously can't be held responsible for any of the damage you may do inadvertently while
adventuring with Interleaf Lisp.

Chapter 2
Getting Started with
Inter/eat Lisp

Interleaf Lisp (I-Lisp) is based on a version of Lisp called "Common Lisp." But I-Lisp
diverges from Lisp wherever necessary to make it work better in Interleaf's unique active
document environment. In this chapter, you'll learn the basics of programming in I-Lisp.

I am assuming that you have used at least one programming language before, whether it's
BASIC, Pascal, C, Fortran, etc. So I will not explain common programming basics such as
the nature of variables or of loops; if you're not familiar with such concepts, there are many
books that can get you started.

I-Lisp, like the Lisp it's based on, makes heavy use of the concept of lists; in fact, "Lisp"
stands for list processing. You will soon get used to working with this data structure. In addi
tion - and perhaps harder to grasp - Lisp is based around the notion of functions; once
you're used to them, you'll find it hard to believe you ever did without them.

Functions
A function is a piece of code (perhaps a single line) that carries out a set of instructions and
returns a value. (The value can be a single number, a list or some other data structure.) In
Lisp, you conceive of your program as a set of functions which are evaluated; the word
"evaluated" is used instead of "executed" to remind us that functions return values.

Many functions are built into I-Lisp. For example, there are functions for taking a string of
characters and returning a particular letter in it, for taking two numbers and returning the
lower of the two, for taking a number and returning its square root. There are also functions
peculiarly useful within an Interleaf document, such as functions for inserting text any
where in a document, for telling you exactly how many components into a document you
are, and for transforming the shape of a graphic.

8 ADVENTURER'S GUIDE TO INTERLEAF LISP

Lisp is an extensible language, which means you can add your own functions. For example,
if as part of a program you need to look at the first character of every component in a docu
ment, you might create a function that will do that. You give it a name, tell it what informa
tion it's going to need when it runs (e.g., the name of the document it looks in), and write the
function. From then on, you have it available to you.

You mark some code as a function by using the word defun (as in "define function"). Here's
what one looks like:

2-1 open-document
(defun open-document (doc)

(tell doc mid:open))

This function is named open-document. It takes one argument; an argument is information
coming into the function. In this case, the argument coming in is put into the variable doc.
On the second line (we could have done this in one big line; I-Lisp doesn't care) is the com
mand to be evaluated. In this case, it tells the document to open, as we'll discuss later.

If you put this into a script, exactly nothing would happen. That's because it's afunction,
which must be invoked as you would invoke a subroutine or procedure. A function is a tool
in your tool chest. Tools don't do anything until they're used.

To use a function, you write a line that calls or invokes the function, causing it to be eva
luated (or, eval' ed). For example, the line (open -document data) would cause the open
doc function to execute, passing it the document for which data is a variable. (See Chapter 4
to learn how to actually tryout scripts and functions.)

Of course, if you were to start up Interleaf 5 and execute a script that simply had the line
(open-document data) in it, you'd get an error message because the software wouldn't
know that the open-document function existed or where to find it. (It also wouldn't know
the contents of the variable data.) You have to load the functions you need, or tell the soft
ware where to look when an unknown function is called. I-Lisp provides a variety ofmeth
ods for doing this, which we'll discuss later.

Let's look at another example. Suppose there is some calculation you need to do 'frequently
in a program. It might be figuring mortgage payments or deri ving cube roots. For our exam
ple, let's say you frequently need to multiply two numbers and add a one. Rather than
rewriting the same lines of code every place you need to do the calculation in your program,
you would write a function such as the following:

2-2 times-2-plus-1
(defun times-2-pJus-1 (n1 n2)

(+ 1 (* n1 n2)))

To use this function (named times-2-pJus-1), you would use an expression such as:
(times-2-p/us-1 23 106.7). You'd type this into a Lisp icon, save it, select the icon

Getting Started 9

and do a Custom->Load on the desktop. This would invoke the function and send it the two
numbers (in this case, 23 and 106.7). When the function executes, it will substitute 23 for nl
and 106.7 for n2 and give you the right answer.

An I-Lisp program usually consists of some set of functions and some lines of code that
cause those functions to be executed. The lines that cause the functions to execute may
either do so immediately upon running the program, or they may tie the execution of the
functions to some other event. For example, the program might cause the times-2-p/us-1
to execute whenever a user presses a particular key or makes a particular menu choice.

Data types
I-Lisp understands several different sorts of data. You can mix data types easily, and convert

from one to another. You can even take something that acts as data in one context and have it
act as a program in another.

The basic data types are:

• Numbers. Numbers can be integers (whole numbers) or real numbers (which include a
decimal point and some numbers to the right).

• Characters. Characters are integers that are taken as code numbers for a character that
can show up on the screen. For example, 65 is the code for the character "A." There are
functions in I-Lisp for interpreting numbers as the characters they code and vice versa.

• Strings. A string is a sequential collection of characters, such as "this is a string.;'

iii Lists. Lists are sequences of data. A list can contain data of more than one type. Lists
can even contain other lists. Because lists are fundamental to the way I-Lisp thinks,
we'll discuss them in detail below.

Iii Array. An array consists of a set of data, all of the same type, that user can access by
number. Lists and arrays are similar but there are different ways of getting data into and
out of lists and arrays. (This book will not discuss arrays.)

Iii Symbols. A symbol is a collection of characters (any so long as it includes at least one
character that isn't a digit) that stands for something else. A symbol typically is used as
a variable (to hold some value, such as a number or a string), as a name of a function, or
as a keyword (a group of words with special, reserved meanings to I-Lisp).

I-Lisp also allows you to define your own compound data types by declaring a structure, but
that is one of the advanced topics not covered in this manual.

Objects
Interleaf 5 is an object-oriented system. Object~oriented systems consist of ... objects. An
object, as opposed to a traditional data structure, not only has data but also has things it

10 ADVENTURER'S GUIDE TO INTERLEAF lisP

knows how to do. So you can ask an object to open itself, or to cut itself, or to move itself.
And if it has been programmed to know how to do these things, it will.

Interleaf objects are things like: books, folders, cabinets, documents, components, frames,
graphic shapes and groups, photographic images, microdocuments, inline components,
charts, tables, table rows, and table ceIIs.

Interleaf objects know how to do things to themselves such as: open, close, move, delete,
capitalize, rotate, fiII, adjust contrast, shear, spellcheck, hyphenate. Of course, not every
sort of object can do each of these things. For example, text components know how to adjust
their line spacing, but graphic shapes don't. And while both documents and folders know
how to open themselves, "open" means something different to each of them. The operations
objects know how to perform are called methods in object-oriented parlance.

I-Lisp allows you to create new types (or classes) of objects with their own methods and to
change the methods of already-existing classes. For example, documents come with a close
method (i.e., they know how to close themselves). But suppose you want documents to do
something different when you tell them to close; suppose you want them to encrypt them
selves. Interleaf I-Lisp allows you to change the close method of documents. (You might
want then to change their open method so that they automatically decrypt themselves.)

Objects also have properties. A property is some information about the object. For exam
ple, a component object not only has a method for changing its margins, it also has left and
right margin information as properties. When you change the component's margins (either
by using the component property sheet, or by using an I-Lisp program), you are changing
the component's properties. (Technically, a property is just more data about an object. But
in a document system such as Interleaf, it is useful to distinguish content data from property
data.)

The predefined objects Interleaf 5 comes with have predefined properties. For example,
folder objects have the properties of name, position-on-desktop, etc. Graphic frames have
the properties of name, type-oj-anchor, height, width, etc. You can always find out what
properties an object has. You can alter the contents, or add your own category of properties
to objects.

Classes
Objects are always instances of a class. A class contains the set of methods that each object
inherits. So, if you create a new object of the class doc-cmpn-class - that is, a new docu
ment component - it will automatically know how to do the things that other components
know how to do. It inherits its methods from its parent.

You can create new classes of objects. For example, you might want to create a class of
document that knows to check a security list before opening itself, or a class of diagram-

Getting Started 11

ming object that knows to perform an action if it is selected (i.e., a button), or a class of
components that know how to do math.

Interleaf comes with a rich set of classes already defined. Here are some examples:

Class Example Objects Example Methods
dt-book-class book open, close, create index of

its contents, print its con-
tents

doc-document-class document open, close, rename, set
page size

doc-cmpn-class component join, split, set line-spacing

doc-table-class table in a document accept a fill pattern

doc-page-class page have a number

dg-ellipse-class ellipse drawn in a frame rotate, fill, move

doc-frame-class frame get properties, size, have
shared contents

dg-micro-doc-class microdocument join, split, change fonts

doc-cmpn-editor-class internal editor that knows find a component, change a
how to manipulate compo- component's properties
nents

These are just samples. The list of predefined classes is quite extensive. And, of course, you
can always add to it.

Sending messages to objects
With I-Lisp you get objects to do things by asking them politely. If an object has a method
for doing something - or if you supply it with a method - the object will know how to
respond and will take the appropriate action. (If it doesn't have a method, it will look to its
parent class. If the parent class has a method, the object will use its method. Otherwise it
looks to the parent's parent, etc. If it finds no method anywhere, it gives you an error mes
sage.) For example, if you tell a document to open itself, it will create a document window,
layout all the text and graphics in the document, and show itself in the window. If you ask a
folder to open itself, it will create a directory window and show its contents as icons. And if
you ask a component to open itself, it will tell you that you're making a mistake because
components don't have a method for opening themselves, unless you've supplied one.

The command that sends a message to an object is quite simple in format:

(tel/ object mid:method argument)

12 ADVENTURER'S GUIDE TO INTERlEAF LISP

This can be translated as:

l en -,-.......L.~..., '-_.-.-.3---....,....,....,1 a/)/ument 1 ---1
Give the ob'ect I

I
I

I and give it additional information ~J

The argument line is dotted because not all methods require additional information. Some
always do, some sometimes do, and some never do. Some require a keyword before the
argument to tell it what type of argument it is. A keyword is a word with a special meaning
in Interleaf Lisp, which by convention begins with a colon (e.g., : line-spacing, :begin
new-page, :hide-side-bar).

How do you indicate which object you want to send a message to? You can't just use its
name because a name is a property of an object, not an object itself; once you have an
object, you can tell it to mid:get-name (get-name is a method for named objects), and it will
tell you its name. So you need some other way of indicating what the object is.

There are several ways of indicating an object. For example, the expression (doc-cur
rent-icon) points at whatever icon is currently in use. And (doc-point-cmpn) indi
cates the component your text caret is currently in. So the expression (tell (doc-current
icon) mid:get-name) would give you the name of the current icon; and (tell
(doc-point-cmpn) mid:get-name) would give you the name of the component the
text caret is in. Later you'll learn other ways to indicate other objects.

Suppose, for example, that you want to set the current component's line spacing. Compo
nents have methods for setting line spacing, of course. If you tell a component to set its line
spacing, it needs to know what you want to set it to. So, the expression (tell (doc-point
cmpn) mid:set-props :line-spacing) wouldn't work, but (tell (doc-point-cmpn)
mid:set-props :line-spacing 100000) would. (lnterleaf likes measurements
expressed in rsu's - which stands for ridiculously small units. There are 1,228,800 rsu's to
the inch.)

Return
We just said that (tell (doc-current-icon) mid:get-name) would tell you the name of
the icon currently in use. But just typing in those letters will do nothing; you have to type
them in an environment that will let you ron them. That means the built-in interpreter has to

Getting Started 13

be told to read the letters, figure out that they are an I-Lisp instruction, and then execute the
instruction.

But even once you learn how to do that, executing the instruction will have no visible effect.
Likewise, the I-Lisp expression (+ 12) is an instruction to add 1 and 2. But executing this
instruction will do nothing visible.

What happens when you execute (+ 1 2) ? The I-Lisp interpreter returns the right answer.
But you haven't told I-Lisp to do anything with the answer that it has returned.

There are lots of things you might do with the answer. You might want it displayed in a
stickup. You might want it to be multiplied by 6. You might want it to be stuck into the cell
of a table. None of these things will happen unless you explicitly tell I-Lisp to do one of
them. You will soon learn how to tell I-Lisp to do something with the information it returns
to you.

The key point in this section, however, is that there is a return for every instruction, even if
the return is just the fact that nothing is returned.

Sometimes the return is obvious. For example, the return of (+ 1 2), which adds 1 and 2, is
the result of the math thatI-Lisp does. The return of (tell (doc-current-icon) mid:get
name) is the name of the icon. But what's the return of (tell (doc-point-cmpn)
mid:set-props :line-spacing 100000), which sets a component's line-spacing? After
all, you're not telling the component to adjust its line spacing in order to get some informa
tion; you're telling it that in order to adjust the line-spacing. Nevertheless, every instruction
or function returns something. In the case of the line-spacing command, I-Lisp returns t
(which stands for true) if the command worked, and nil (i.e., nothing) iffor some reason the
command couldn't be executed.

In fact, if you look at the instruction (tell (doc-current-icon) mid:get-name) you'll
see that it takes advantage of the fact that instructions return information. The expression
(doc-current-icon) is itself an instruction that gets evaluated by the I-Lisp interpreter. It
returns the object that is the current icon. In fact, when the I-Lisp interpreter looks at (tell
(doc-current-icon) mid:get-name) , it substitutes what (doc-current-icon)
returns for "(doc-current-icon}" itself.

14 ADVENTURER'S GUIDE TO INTERLEAF LISP

Here's what happens step by step:

• The tell flags that the next piece of the instruction is the object the message is going to.

• The (doc-current-icon) gets executed and returns the object currently in use. This
is now taken as the object receiving the message.

• The mid: flags that the next phrase is the method to be run.

II The get-name is the method.

Likewise, you could substitute the expression (+ 40006000) for the number 10000 in (tell
(doc-point-cmpn) mid:set-props :line-spacing 10000) without changing the out
come, for I-Lisp would add 4000 and 6000, and return 10000.

t or nil
There are two special values in I-Lisp that are frequently the returns of various functions
and expressions. We mentioned them briefly in the previous section, but they warrant a
small section to themselves.

The returns are t (true) and nil (nothing). These are reserved words which you are not
allowed to use as variable names.

The easy one to understand is t. For example, there is a function equal which compares two
objects and tells you if they are equal. All of the following return t:

(equal 2 2)
(equal 10000 (+ 40006000))
(equal (doc-point-cmpn) (doc-point-cmpn))

(equal "howdy" "howdy")
(equal (+ 23) (+ 32))

But when two things are not equal, the equal function returns nil.

Getting Started 15

Nil in fact is an empty set, a list with nothing in it. That's why you'll sometimes see it
expressed as ().

Nil is not zero. The expression (- 55) (which subtracts five from five) returns the number
0, not nil.

Variables
As with any programming language, with I-Lisp you can use variables. For example, sup
pose you wanted to remember what the line-spacing of a component was, perhaps so you
could set it back to its original state after making some alterations. To do that, you have to
tell the component to give you its line-spacing. Then you alter its line-spacing. Then you
tell it to set its line-spacing back to the original. For this you need a variable to hold the
value of the original line-spacing.

In some languages, if you want to set a variable called, say, linespace to the value 10000,
you would use an expression such as linespace = 10000. With I-Lisp, you would say: (setq
Iinespace 10000). (You could also do this with the let command; we'll discuss the differ
ence later.)

The following would also work:

(setq linespace (+ 6000 4000))
(setq linespace (doc-point-cmpn))
(setq linespace "Hi there")
(setq linespace (tell (doc-point-cmpn) mid:get-props :Iine-spacing))

Now, linespace is a pretty confusing name for a variable for storing a component object or
the phrase "Hi there," but the point is that with I-Lisp, you don't have to say what type of
variable a variable is. You can store any type of data in any variable, and you can change
your mind and store a different type of data in it later if you'd like.

Using setq is also an I-Lisp instruction, of course, so it too returns something. It turns out
that setq returns the new value of the variable. This is frequently useful in ways that you'll
see demonstrated later.

In I-Lisp, the rules for what is a legitimate variable name are very loose. Variables can't
consist only of digits (or else I-Lisp will think it's a number), but can be basically as long as
you like - 50-character names are OK with I-Lisp if you really want to do all that typing,
The convention is to separate the words in a variable by a dash. For example, typical vari
ables might be: number-of-right-answers, box-in-upper-lejt, hyper-jump-destination,
etc.

16 ADVENTURER'S GUIDE TO INTER LEAF LISP

By the way, if you wanted to change the line spacing of a component and then change it
back, here's a script that would do it (anything following a semicolon is a comment):

2-3 change-and-restore-line-spacing
; Tell the component to give its line spacing, and set original to that value
(setq original (tell (doc-point-cmpn) mid:get-props :line-spacing))
; Set the component's line spacing to 2000 rsu's
(tell (doc-point-cmpn) mid:set-props :line-spacing 2000)
; make sure the document is updated to reflect the change
(doc-flush-queue)
; Set the component's line spacing back to the original
(tell (doc-point-cmpn) mid:set-props :line-spacing original)

Lists
I-Lisp thinks in terms of lists. A list is just what you think it is - a set of objects one after
another. I-Lisp doesn't care much about what sort of objects you put in a list even if they're
all of different types. It even lets you include lists as objects in a list. *
A simple list might consist of some numbers (1 2 3 5.6 6 7), of some strings ("one" "two"
"three" "five point six" "seven"), of some variables (doc-type cmpn-name first-word
on-page), or any other data. A list can mix various types (1 2 "three" doc-type 5) freely.
It can even contain other lists (1 2 (doc-type 4) (cmpn-name 5.6 "Howdy'J 7). This
last list consists of five items, two of which are themselves lists:

1. 1
2. 2
3. (doc-type 4)
4. (cmpn-name 5.6 "Howdy")
5. 7

A list may also contain an item such as (+ 40006000). ButI-Lisp will take that to be an
instruction to be executed. So, the list (1 2 (+4000 6000) 4) would actually turn out to be the
list (1 2 10000 4). Suppose for some reason you wanted to keep the expression (+ 4000
6000) on your list without having I-Lisp evaluate it and turn it into 10,000. You can do this
by putting a single quote mark before it: (list 1 '(+ 40006000)). The quote tells I-Lisp not
to evaluate what follows, but instead just to accept it.

*In this way, lists are unlike arrays in other languages. Both lists and arrays are data structures
ways of holding data-but you can get at any datum in an array by using its number, whereas to
get at it in a list, you have to start at the beginning and count your way in. For example, suppose
you wanted to find Jane Smith at graduation ceremonies. If there is an array of graduates and you

know Smith is sitting in row 15, seat 12, you could find her by asking to see the person at "coordi
nates" 15: 12. On the other hand, if there is a list of graduates, especially if they're not in alphabetic
order, you find Smith by beginning at the beginning and looking at every name until you find her.
I-Lisp, based on Lisp, uses lists but provides shortcuts that give you array-like techniques for find
ing what you need in lists.

To create a list, I-Lisp provides a function called list.

Function 2-1: list

(list object object, etc.)

Returns: List of objects

E.g. (list 1 2 (list "a" 3) 4 (+ 10 12))
Returns: (1 2 ("a" 3) 422)

Here are some more examples:

(list 1 23)
Returns (1 2 3)
(list "one" 2 3)
Returns ("ane" 2 3)
(list 1 2 3 (list 3 4 5))
Returns (1 2 3 (3 4 5))
(list 1 2 (+ 1 2))
Returns (1 2 3)
(list 1 2 '(+ 1 2))
Returns (1 2 (+ 1 2))

Getting Started 17

Lists can of course themselves be stored in variables or contain variables. For example:
(setq list-at-numbers (list 1 23)) would store in the variable list-oj-numbers the list (1
2 3). And those variables can be used in lists. For example, (list list-at-numbers 4 5 6)
would return a list with four items, the first one of which is the list (1 2 3).

List processing
You will learn more about list processing in Chapter 5, which is devoted to that topic. But
you need to know a little now.

Every list can be thought of as having two parts: the first object and the rest - a head and all
that follows. For reasons lost in the historical origins of Lisp, the head of a list is called the
car and the tail is the cdr (pronounced "could-er").

Function 2-2: car

(car list)

Returns: First item on list

E.g. (car (list (list 1 2) "a" "b'))
. Returns: (1 2)

Let's say you have the list (1 "two" 3) which you've setq'ed to the variable my-list. The
instruction (car my-list) will return 1. Now you want to see the next item on the list, so you
once again execute the instruction. It returns 1. This isn't what you wanted.

Where did you go wrong?

18 ADVENTURER'S GUIDE TO INTER LEAF LISP

Easy. Asking to see the car of a list doesn't change the list. So every time you ask to see the
car, the same old head shows itself.

Instead, you need to see the head and then behead the list. That's one place cdr comes in
handy.

Function 2-3: cdr

(cdr list)

Returns: List of everything except the first item on list

E.g. (cdr (list (list 1 2) "a" "b''))
Returns: ("a""b")

If you want to look past the first element of a list, you can set a variable to be equal to the cdr
of the list, and then look at that new list's car. For example:

(setq my-list (list 1 2 3))
Returns (1 2 3)
(setq rest-of-list (cdr my-list»
Returns (2 3)
(car rest-of-list)
Returns 2

In later chapters you'Ulearn how to loop through a list to examine each of the members.
You'll also learn some more direct ways of getting at members of lists.

Parentheses
You have undoubtedly noticed the heavy use of parentheses in all of the examples. That's
because parentheses are the walls of I-Lisp - they indicate where a function or a list begins
and ends. You will certainly become familiar with the I-Lisp error message that tells you
that you have unmatched parentheses. That may mean you made a typo, or it may indicate
that you haven't correctly thought through the basic units or structure of your program.

The integrated programming editor that comes as part of the Developer's Toolkit provides
parenthesis matching: put your text caret before a left parenthesis or after a right parenthe
sis, type I\Q, and your text caret will move to the matching parenthesis.

The parentheses tell I-Lisp about the structure of the expression. You need to pay attention
to them. And you also need to use the tools that I-Lisp provides to help you get them right.

Getting Started 19

Short one parenthesis.

One too many parentheses.

Chapter 3
Working with Interleaf
Lisp

In order to tryout the InterleafLisp scripts you're going to learn how to write, you need to
understand the mechanics of entering the text, loading the script, etc. That's what this chapter
will teach you. (I will assume that you db not have the Developer's Toolkit option. If you do,
you also have documentation explaining the tools that come in the Toolkit.)

In the course of this book, you'll be trying out lines of code and writing scripts. There are
several ways of doing this.

I!I Lisp icon. Make a copy of the Lisp icon that comes with the system and open it to enter
text.

I!I Word processor with a pure ASCII text mode. Use your favorite word processor, so long
as you can save the document in pure text mode.

I!I Programming editor. Use a programming editor such as emacs.

We'll look briefly at each alternative.

Lisp icon
When you open a Lisp icon, you're given some choices. Tell it that you want to open it for
edit. Now you can enter text into it. (If you do have the Developer's Toolkit, you'll have a
very useful set of utilities available to you while you're within a Lisp icon).

The default Lisp icon that comes in the system's Create cabinet contains the following lines:

(lisp-set-implementation "Interleat Lisp" "2.0')

;; Module name:

22 ADVENTURER'S GUIDE TO INTER LEAF LISP

;; Purpose:
;; Notes:
;; Interfaces:

;; Audit:
;; DD-MON-YY USERNAME COMMENT

Only the first line is really required (and the script will actually work even without it). The
first line tells the system which version ofInterleafLisp you're using. At some later date, if
you don't have that line, the system may get confused because it's expecting Interleaf Lisp
version 3.0 or 4.0. The rest of the lines in the default Lisp script are comments; the idea is that
you fill in the blanks about what the name of the script is, what it's for, any random notes,
which user interfaces it supports, and the date and creator's name. This information is com
pletely optional, although it's handy for others who may come across your script.

To enter text, go past all of the comments and start.

Let's say you enter the line of text: (stk-open "Hel/o") and now you want to try it out. Here's
how:

II} Save the file by using the popup (or try AXAS). Notice that you do not have to close the

file.

r,m Select its icon on the desktop.

t!iJ Do a Custom->Load (using your desktop popup menu).

One of many easy mistakes to make is to alter what you've typed, select the icon, and load it,
and notice that nothing different happens. That's because you forgot to save the file. When
you Load a selected icon, it actually reads the file in from the disk; to alter the file on the disk,
you have to save it.

There are advantages to working within a Lisp file:

i.3 You get a set of useful tools for saving, searching and printing the file.

~ You can work without leaving the Interleaf desktop.

There are also some disadvantages:

fill The editing capabilities of the Lisp icon are not nearly as strong as in a professional pro
gramming editor.

Ii!iI For very long files, a programming editor may be faster.

Word processor or programming editor
Instead of the Lisp icon, you can use either a word processor or a programming editor. The
advantage of a programming editoris that it will have all sorts of useful tools (e.g., the ability

Working with Interleaf Lisp 23

to show you where a parenthesis's mate is, the ability to automatically indent in ways that
clarify the structure of progams), and probably will have better performance than a word pro
cessor. The disadvantage of a programming editor is that you probably don't own one,
whereas you probably do have a word processor. On the other hand, there are a number of
very good programming editors either in the public domain or free (e.g., many DOS editors
available as shareware or freeware, and gnuemacs in UNIX).

To create an Interleaf Lisp script with either of these types of text editors, you create a file
with a ".lsp" extension (e.g., "myscripUsp"). (Try to keep your file names to eight letters or
less, and don't use any peculiar characters; that will help make it easier to transfer your scripts
from one type of computer to another.) When the Interleaf desktop sees the" .lsp" extension, it
assumes that it is a Lisp script and will create the appropriate icon. (Remember to use Cus
tom->Rescan if an icon doesn't show up when you think it should.)

To run a script you've created, save the file, select the icon, and do a Custom->Load, exactly
as you would if typing into a Lisp icon. (Once again, remember to save the file in your word
processor - but not necessarily close it - before doing a Custom->Load to ensure that the
system is loading the current version of the script.)

The advantages of using either a word processor or a programming editor are that they offer a
great deal of functionality and power. The disadvantage is that you have to work in a separate
window, off your Interleaf desktop. For those running DOS, this means that you have to
"shell" out of Interleaf, start up your text editor, make your changes, close out of your text
editor, "exit" back into Interleaf, tryout your changes, etc. For DOS users, working in the
Interleaf Lisp icon probably makes more sense in most circumstances.

Recommendation
As a beginner, you may find that the Interleaf Lisp icon meets all your needs. If it does, it is
slightly more convenient to stay within the Interleaf desktop.

As you begin developing longer and more complex scripts, if you are in a multitasking envi
ronment you ought to run a programming editor in a separate window. You get the functional
ity of the programming editor and the ability to tryout your scripts quickly.

If you are not in a multitasking environment, use the InterleafLisp icon. If you start stretching
its capacity, you can always break your script into shorter files and join them at the end.

Loading a script
Let's say you create a script that you actually find useful. There are a number of different
ways to load (run) it.

III If it's a script you want to use in some sessions but not all, put it somewhere where you
can find it. When you want to use it, do a Custom .Load.

24 ADVENTURER'S GUIDE TO INTER LEAF LISP

mI If it's a script you always want to use (e.g., it lets your 1\0 key open a template file you
frequently use), put it in your profile drawer so that it will be automatically loaded every
time you start up Interleaf S. (If you use fast startup - you'll see the fast startup icon on
your desktop, probably labeled "lleafS" - the changes in your profile drawer may be
ignored. Purge the fast startup icon and start the system up again to cause it to reread the
profile drawer's contents.)

iii If it's a script that you want available from the desktop, put it in either your Selection or
No Selection cabinet.

iii You can attach a script to a keystroke so that whenever you press that key, the script runs.
In fact, you can cause scripts to run on almost any user action, including selecting a
graphic, leaving a window, and closing a document.

~ By the time you read the end of this book, you'll be able to attach the script to a particular
document or class of document so that its functionality will be available only in the docu
ments you want it to be available in .

. A first script
Now let's practice by writing and running some small scripts. (This section will repeat some
of what you learned in the previous section.)

. The first step is to choose One of the methods above to create a file that the system will recog
nize as an InterleafLisp script. Perhaps you will simply create a Lisp icon by using the sys
tem's Create menu. Or perhaps you'll create a'file on the desktop with a ".lsp" at its end.

Now that you have a document that Interleaf S will recognize as an Lisp script, type the fol
lowing lines into it. Watch those parentheses! (Any text from a semicolon to the end of a line
is a comment and has no effect on the program itself; it is very valuable to comment as much
of your code as possible so you can go back to it later on and understand what you did. Also,
do not type in the boldfaced titles of the functions; they're not a part of the function itself.)

3-1 first-stickup
(stk-open "Hello, World',

Now save the file and run it by selecting it, and choosing Load from the Custom popup menu
you get when you hold down your menu button while you're on the desktop. (Make sure the
Lisp icon is selected or else you won't see Load on your Custom options.) Load the script. Lo
and behold, a stickup opens.

Stk-open is afunction that comes already predefined in Lisp. But suppose you want to add
your own functions. Suppose, for example, you like your stickups to thank the user after they
choose Yes on a yes-or-no stickUp. As a first step, delete what you just typed and type in:

3-2 yes-or-no stickup
(stk-open "Answer yes or no" :yes-,!o)

I '

Working with Interleaf Lisp 25

In Lisp, every function (such as the one you just typed) returns some value after it is run. (In
fact, you should think of these functions as being evaluated instead of run. Indeed, eval is the
Lisp function that causes a script to "run.") In the case of a yes-no stk-open, the return is the
value t (for a yes response) or nil (for a no response), depending on which button the user has
pressed. You can use this return to cause another set of code to be eva!' ed. The following will
give a "Thank you" stickup if the user answers "yes" to the yes-or-no stickup:

3-3 polite-stickup
(if (stk-open "Answer yes or no" :yes-no)

(stk-open "Thank you!'})

The first line creates the stickup and waits for the user to interact with it. The value t or nil is
returned, depending on the user's choice. If the return of (stk-open ':Answer yes or no"
:yes-no) is t, then the next line of code is eva!' ed, causing a stick-up to appear with the words
"Thank you!".

Now, let's say this is such an incredibly useful capability that you would like to use it in many
different programs, or at many different times within one program. Just as stk-open has a
meaning within Lisp, you can give your polite stickup mini-program a name. You do this by
defining it as a function, using the word defun:

3-4 polite-stickup-function
(defun polite-stickup 0
; Says thank you after answering yes to a stickup. Demo.

(if (stk-open "Answer yes or no" :yes-no)
(stk-open "Thank you!'}))

Let's examine this function.

The first line says that we are creating a new function which will be named polite-stickup.
(We'll explain the empty parentheses in a minute.) The next line explains what the function
does. Because it begins with a semicolon, it is ignored when the function is eval' ed. The next
two lines are the function itself. Notice that if you match the pairs of parentheses, there are
none left over, and the very first one matches the very last one. (Having an editor that can
show you where the matching parentheses are is very useful when working in Lisp.)

If you eval this new function, you'll see that no stickup shows up on your screen. That's
because there's a difference between defining a function (which is what defun does) and using
a function. Basically, you've created a new function that can be used just as the predefined
ones can be. But how can you try it out?

With nothing selected on the desktop, do a Custom->ReadEval. This stickup allows you to
enter a Lisp function and eval it, and returns the value in a stick up. So, if you were to enter (+ 4

26 ADVENTURER'S GUIDE TO INTERLEAF LISP

5), the system would present a stickup giving you the result of the eval, which is 7. * Or type in
'tstk-open" Hi therfi')"and press the Enter button, and it will eval that phrase and create a
stickup with the text "Hi there." Just as you can use ReadEval to eval the "+" function or the
"stk-open" functions, you can also eval the new function you've just defined. So, into the
ReadEval stickup enter the phrase "(polite-stickup)" and click on the Enter button on the
stickup. This will run the function and create the polite stickup.

While you are developing a script, you may not want to have to type the function name into
the ReadEval stickup every time you want to run it. First of all, while the stickup is on your
screen, I\p will cycle through the previous ten or so lines you typed into it, so you can go back
to a previous entry without having to reenter it. Second, if you put the following line into a
script in your Profile drawer, you will be able to get the ReadEval stickup by typing I\R while
on the desktop:

(kbd-bind kbd-dt-map "IIIR" '(i/eaf:i/eaf-listen :custom)).

Finally, probably the fastest way to run your script is to include at the bottom of the script
itself the line that you would have typed into the ReadEval stickup. To stick with our polite
stickup example, you would put the line (polite-stickup) at the end of the file you defined the
function in. Then when you save your file, select the icon and Load it, it will see the defun and
will make an updated version of the function you've defined, and it will see the (po/ite
stickup) and will eval it which will cause the function to run (exactly as if you had typed it
into the ReadEval stickup). But remember that when you're done editing your script, you
should remove the (polite-stickup) line unless you want it to run every time you load it. For
example, if you were to put the script into your Profile drawer, every time you start up your
system it will create the polite stickup and wait for you to answer yes or no.

Now that you've defined polite-stickup, you can use it just as you would any other Lisp func
tion: eval (polite-stickup) and you'll get your stickup. (Because polite-stickup is one you
defined and does not come as part of Lisp itself, next time you load Interleaf 5, it won't know
what polite-stickup means; if you want to use your new function again, you have to eval its
definition again by loading the script.)

Let's take one additional step here, just to give you a little more information about using
defun.

Let's pretend you really care about politeness, so you want all the new stickups you create to
be polite. And you don't want all your stickups to have the text "Answer yes or no." So, just as
you can tell the standard Lisp function stk-open what text to use, you can tell a newly-created
polite-stickup-2 what text to use. You do this by passing polite-stickup-2 an argument. Just
as "Hello, World" is the argument in (stk-open "Hello, World'), "Shall I greet the world?" is
the argument in (polite-stickup "Shalll greetthe world?'?

*Just checking to see if you're paying attention.

Working with Interleaf Lisp 27

But for polite-stickup-2 to know what to do with an argument, we need to alter it:

3-5 polite-stickup-function-2
(defun poJite-stickup-2 (text)
; Demo. Says thank you after answering yes to a stickup.

(if (stk-open text :yes-no)
(stk-open "Thank you!")))

Notice that we've renamed it, and we've put something between the parentheses on the first
line. What's between the parentheses takes its contents from the argument passed to the func
tion. So text now stands for the words "Shall I greet the world?" (but only within this func
tion). In the third line, when the system sees the word text, it substitutes the argument passed
to it.

Functions can take more than one argument. Here's a function that takes two arguments. In
this case, it takes two numbers and then gives you a stickup with special buttons for four dif
ferent arithmetical operations. After the user chooses one, it puts the result of the calculation
into a stickup. At this point, you will not be able to understand what's going in this function;
it's really only here as an example of a function with two arguments. Sometime later you
might want to look back at this and see how you could improve it to make it actually useful.

3-6 primitive-calculator
(defun primitive-calculator (number1 number2)
(let (operator answer) ; create two temporary variables called "operator" &

"answer"
; make sure we're using floats, not integers
(setq number1 (float number1))
(setq number2 (float number2))
; create the stickup
(setq operator

(stk-open
(format nil "Do what to '" D and '" D?" number1 number2)
:buttons (Jist "+" "-" "x" "j" "Gance!")))

; do an operation, depending on which button was pressed
(cond

; plus
((= 0 operator) (setq answer (+ number1 number2)))
; minus
((= 1 operator) (setq answer (- number1 number2)))
; times
((= 2 operator) (setq answer (* number1 number2)))
; divide
((= 3 operator) (setq answer (/ number1 number2)))
(t (quit)) ; cancel

28 ADVENTURER'S GUIDE TO INTER LEAF LISP

)

))

; show the answer, converting it from a float to a string
(stk-open (ftoa answer))
; return the answer
answer

This function also returns the value of the answer, so if it is invoked by some other function,
that other function could receive the answer and conceivably make some use of it.

Stickup asking for further input.

Attaching a script to a keystroke
Remember, there's a difference between defining a function and using it. Defining a new
function is like putting a new tool into your toolkit. Using a function is like using the tool.

For example, suppose you need to do square roots sometimes. Here's a simple function that
lets you type a number into a stickup and be shown in a stickup what its square root is.

3-7 square-root-stkup
(detun square-root-stkup ()
; Prompts for a number. Returns square root.
(let (n)

))

(setq n (stk-open "Enter number" :input 10))
(stk-open (ftoa (sqrt (atot n))))

Let's not worry how this function works. (In fact, the last line is sort of interesting because it
converts a string to a number, gets the square root, and then converts the square root back to a
string.) Let's just assume it works. Now you want to be able to use it while you're in a docu
ment. Let's make it so AF (control-F) will invoke it. (This will also mean, however, that AF
will no longer move the text caret forward by one character, the way it usually does.) Go back
to your Lisp document window and type in:

Working with Interleaf Lisp 29

(kbd-bind kbd-doc-map "\ A F" 'square-root-stkup)

This line says that from now on, when you're in a document, I\F will invoke the square-root
stkup function. (So willl\f; control characters don't care about capitalization.)

Save your Lisp file, select it, and Load it by using the Load command off the Custom entry on
your desktop popup. Nothing visible happens.

While your mouse cursor is inside your Lisp window, type I\F . Still nothing happens. That's
because you said I\F will invoke the square root function only when you're inside a normal
document; that's what kbd-doc-map means. The Lisp document you're in is not a normal
Interleaf 5 document.

But now move your mouse cursor inside a normal Interleaf document window. Type I\F. And,
sure enough, a stickup appears. (If it doesn't say "Enter number" - if it contains some
information about Lisp errors - check your typing and then reread this chapter to this point.)

You have created a Lisp script that creates a new function and that says that whenever you
type I\F (when you're in a document) that function ought to be invoked.

In general, that's how Lisp works. You create potential actions and specify the actions or
conditions that will cause the system to take those actions.

Breaks
There is a function that is extremely helpful while developing a program: (break). You stick
in a breakpoint where you want to be able to stop and look around at what's happening. When
break is eval' ed, it puts up a stickup that lets you check the value of variables and get other
information (the same stickup you get if you run ReadEval off your desktop Custom nothing
selected popup). (If you have the Developer's Toolkit, it puts you into a "listener" which
makes it even easier to get information.)

ReadEval stickup.

For example, here's a function that doesn't work:

(defun square-junk ()
; squares any number entered

30 ADVENTURER'S GUIDE TO INTER LEAF LISP

(let (amount total)

))

; get an amount to square
(setq amount (stk-open "Enter amount to square" :input 10))
; square it
(setq total (* amount amount))
; return it
total

When you try to run this, after you enter some amount into the stickup (say, 2), you'll get the
following error message:

Error stickup.

If you choose "Debug," you'll get the ReadEval stickup. Into it you can type any variable or
function and it will eval it and return the result to you in another stickup. So, if you type
"amount," it will return "2" to you. (And if you pay careful attention, you'll notice that since
the numeral is in quotes, amount is a string, not a number and thus it cannot be multiplied and
thus you get the error message.)

You can continue running your program from where the break occurred by typing (continue)
into the stickup.

(Note that Ay and Ap will cycle through previous entries you've typed into the stickup.)

As you develop programs, you'll find yourself taking breaks frequently.

Chapter 4
Basics of Programs

In this chapter we'll look at the basic elements of programs - how to assign values, test
values, and build control structures, and how to build a useable function.

Setting values
I-Lisp provides several flexible ways of setting a symbol equal to a value. Perhaps the one
with the most general utility is setq.

Function 4-1: setq

(setq symbol value)

Returns: the value

E.g. (setq age 13)
Returns 13 and age is now set to 13

Basically, (setq x y) is I-Lisp's way of saying x now equals y.

Setq also lets you assign values to a bunch of symbols all at once. For example:

(setq one
two
three
rest

Returns (456)

1
2
3
(list 4 56»

This line of code has set one equal to 1, two equal to 2, three equal to 3, and rest equal to the
list (4 5 6). It's just a shortcut.

Because setq returns the value of the last symbol it sets, you can write very compressed
code. For example:

(+ (setq age 3) 4)
Sets "age" to 3 and returns 7

32 ADVENTURER'S GUIDE TO INTERLEAF LISP

In I-Lisp, as you'll eventually see, mathematical expressions put the math symbol first,
ratherthan between the two items being affected; (- 4 3) is I-Lisp's way of saying (4 - 3).
Now let's consider the line of code above. This line is evaluated, as always, from the inside
out. At the inside is the expression (setq age 3) which makes age equal to 3. But it also
returns 3. So (setq age 3) gets treated as its return and then gets added to 4. So, the line of
code above not only adds 3 and 4, but sets age equal to 3.

This becomes especially important in control loops, as we will discuss below. Here's a
quick preliminary example:

(setq stock (list 145 645 243))
(while (setq item (pop stock))
(do-something-with item))

; make a list of 3 items in stock
; look at each item in list
; if there is one, go do something with it

In this example, we first create a list (stock) using setq. Then we use the while statement
we'll describe below in detail. Basically, while looks at an expression (in this case, (setq
item (pop stock))) and, if it isn't nil, does what follows. (Presumably somewhere we have
defined a function called do-something-with; we won't worry about that here.) Then it
goes back, checks the initial expression again, and loops until the expression returns nil.

In our example, the while statement checks whether (setq item (pop stock)) returns nil.
Now, (pop stock) returns the first item on the list stock and removes that item from stock. If
there are no items left in stock, it returns nil. Every time stock is popped, item is setq' ed to
the first element of stock. When stock is empty, the pop statement returns nil. That means
item is set to nil. And that means the setq statement returns nil. And that, in turn, stops the
while statement. So, those few lines of code look at every item in turn and stop when there
are no more items left.

This is a very common sort of construct; you will see it frequently in examples on your
Interleaf system. If you are confused by the example, come back to it after you have read the
section on while.

By the way, if you try to do some things with a symbol before you have introduced it to the
system by setqing it, you will get an I-Lisp error. For example, if you use push (to which you
will be formally introduced later) to put an item on to a list, you have to make sure the vari
able representing the list already exists:

; wrong way
(push 1 age-list)
Returns error message: "Symbol not bound: age-Jist"
; right way
(setq age-list nil)
(push 1 age-list)
Returns (1)

Function 4-2: let

(let (symbols) code)

Returns: nil

Basics 33

Let is used primarily to establish symbols for use only for the duration of a function. For
example:

(let (x)
(setq x 20)
; x is now set to 20

) ; end the scope of let
; x now isn't set to anything; using it returns an error message

The scope of the let is everything between the parenthesis that prefaces it and the matching
parenthesis. Immediately after the let comes a list of symbols, all within parentheses.
Within the parentheses containing the list of symbols can be symbols set to values; these are
themselves within parentheses. A commented example will help:

(let
(x
(month ':July")
(days (list "Sun" "Mon"))
(count (+ 4 6))
)
(car days)
(push 2 time)

; begin list of symbols and create x
; create month and set it to ':July"
; create days and set it to Sun, Mon
; create count and set it to to 4 + 6
; end list of symbols
; returns "Sun"
; returns error - time's not a symbol
; end of scope of let

Why would you want to use let? When you start putting together complex programs, espe
cially ones that use functions you may have written a long time ago, or functions you've
borrowed from other people, or functions that use established libraries of functions, you
can't always be sure that some other function hasn't already used a symbol with the same
name as one you've created. For example, suppose you create a symbol called counter
which in a particular function is used to count the number of items in a list. It gets set to, say,
45. Suppose some other function - perhaps used in a completely different program later in
the day - also uses a symbol called counter. You don't want your value of counter (45) to
replace the one the other program expects.

So Interleaf Lisp lets you define symbols that are used only during a let statement, typically
within a single function. As soon as that function is over, it's as if you never defined the
variable at all.

So, a typical function might be structured as follows:

4-1 select-page
(defun select-page 0
; selects al/ the cmpns on a page

34 ADVENTURER'S GUIDE TO INTER LEAF LISP

(let (page first-c c)
; get current cmpn
(setq first-c (doc-point-cmpn))
; deselect all cmpns
(tell *cmpn-editor* mid:deselect :all)
; select current cmpn
(tell *cmpn-editor* mid:select first-c)
; get current page
(setq page (doc-page-offirst-c))
; walk up, selecting all cmpns on that page
(setq c first-c)
(while (and (setq c (tell c mid:get-previous :along :structure))

(eql page (doc-page-of c)))
(tell *cmpn-editor* mid:select c))

; walk down
(setq c first-c)
(while (and (setq c (tell c mid:get-next :along :structure))

(eql page (doc-page-of c)))
; make sure the document is up to date

(doc-flush-queue)
))

Now you could attach this to a keystroke:

; attach this to control-X p
(kbd-bind kbd-doc-map "\ A Xp" 'select-page)

If you try to use page or Jirst-c outside of select-page, you'll get an error message saying
that the symbol isn't bound.

Sometimes, however, you want a symbol to be recognized everywhere, not just in a func
tion. These are called globals, and they must be used with care because if someone else has
created a global with the same name, you are likely to trash each other's programs. The
convention in Interleaf Lisp is that globals begin and end with asterisks, e.g., *month*,
list-oJ-restaurants, etc. (Sure, the asterisks make globals harder to type - that's prob
ably why it's the convention.)

Interleaf provides a very solid mechanism for ensuring that symbol names never conflict:
packages. Developers can establish a package for their program (or suite of programs)
which causes Interleaf internally to recognize that all symbol names in those programs are
to be used only within those programs. So, if two packages both use the symbol x, Interleaf
will keep them distinct. Unfortunately, the use of packages is beyond the scope of this book.
As an alternative, you are strongly advised to use unique names.

One way of doing this is to make sure that all your functions are prefaced by a two- or three
letter prefix unique to the program you're creating. For example, if you're writing one

Basics 35

called "Baseball Scores," all the functions you use could be prefaced by bbs-, e.g., bbs
get-data, bbs-count-strikes, bbs-rbi.

Then, within functions, use let so that you don't have to worry about symbols clashing -
the symbols you create within let won't be recognized outside of the let. *
Function 4-3: defvar
(defvar variable value)
Returns: value
E.g. (defvar minimum-age 17)

Returns minimum-age as a symbol

Defvar is used to create global variables. If the variable you're trying to set is already a
global variable (e.g., you've setq'ed it earlier, not within a let), then the variable retains its
original value.

Notice that because defvar returns the symbol, and not its value, the following will not
work:

(+ (defvar X 3) 4)
Returns Lisp error

To I-Lisp, this looks like you're trying to add 4 and a symbol (x). After you've set x to 3
using defvar, however, you can use x interchangeably with 3. So, the following does work:

(defvar X 3)
Returns x
(+ X 4)
Returns 7

Function 4-4: boundp
(boundp symbol)
Returns: t if symbol is bound; otherwise, nil
E.g. (setq x 1)

(boundp 'x)
Returns t

A symbol is bound if somewhere along the line it's been given a value, even if that value is
nil. If it's been given a value within a let statement, it's only bound within that statement.
Sometimes you need to find out if a symbol has already been bound, either to prevent an
error in a routine that assumes that it has been bound, or to help debug a program. Boundp
will tell you if it's bound. (Notice the initial quote before the variable, telling the system not
to evaluate the symbol, but simply to look at it as a symbol).

Boundp is also useful to see if you've already run a program. For instance, you can in a
program set a global variable to t. The next time you run the program, if there are parts that

*There is one useful exception to this. Interleaf Lisp uses dynamic scoping. That means that sym
bols declared within a function through let will be passed to any other function called within that
first function.

36 ADVENTURER'S GUIDE TO INTER LEAF LISP

are only required to be run the first time the program runs, you can check to see if the global
is bound. If it is, then you can skip the unnecessary pieces of code. For example:

(if (not (boundp '*my-font*))
(setq *my-font* (list "Swiss" 16.5 :underline t)))

The first time this code gets eval'ed, *my-font* hasn't yet been bound to anything, so the if
statement is true (i.e., it's t that *my-font* isn't yet bound). So the next line gets eval'ed,
binding *my-font* to a list of font-like properties. The next time, however, that this code
gets eval'ed, *my-font* will be bound, so the ifstatement will be nil and the rest of the state
ment won't be eval'ed. Not only does this make for marginally better performance, there
are times when you definitely want some code to be executed once and only once. For
example, the code that creates a new class of document will create multiple classes with the
same name if you run it multiple times, so you'll definitely want to make sure that you run
that code only once.

Function 4-5: makunbound
(makunbound symbol)
Returns: symbol

E.g. (setq name "Jones'?
Returns "Jones"
(makunbound 'name)
Returns "Jones" and sets name to nil

Makunbound makes a symbol unbound. This is especially useful when debugging in order
to return a program to its original state.

Function 4-6: fboundp
(fboundp symbol)

Returns: t if symbol is bound; otherwise, nil
E.g. (defun test-fen 0

(do -something))
(fboundp 'test-fen)
Returns t

This does the same thing as boundp but it checks whether a function, not a variable, has
been bound.

Function 4-7: fmakunbound

(fmakunbound symbol)

Returns: symbol
E.g. (defun test-fen 0

(do -something))
(fmakunbound'test-fen)
Returns "Jones")

This the same as makunbound but it unbinds functions rather than variables.

Basics 37

Testing values
Now that we have some variables loaded with values, we may want to test whether they're
equivalent or not.

There are various tests of equivalency in Interleaf Lisp. Some only work with particular
types of data, e.g., number or strings. Others are more forgiving. We'll look at these tests in
rough order of flexibility, the narrowest tests first.

Function 4-8: =
(= number1 number2)

Returns: t if number1 equals number2; else, nil

E.g. (= 4 (+ 13))
Returns t

The equal sign tests two numbers. If you use it to test, say, two strings (e.g., (= "Yes"
"Yes'), you'll get an error message.

Function 4-9: string=

(string= string1 string2)

Returns: t if string1 is the same as string2; else, nil
E.g. (string= "Yes" "Yes')

Returns t

String= will give an error message unless the two things it's comparing are both strings. For
the strings to be equal, their capitalization must be the same (i.e., the test is case-sensitive).

Function 4-10: eq/

(eql object1 object2)

Returns: t if object1 and object2 are the same; else, nil

E.g. (eq/ 5 5)
Returns t

Eql works for a wide variety of objects, including document objects such as components
and frames. There's really only one type of object eql won't work on: objects that consist of
sets of other objects. For example, you can't use eql to compare two strings because strings
consist of sets of characters. You can use eql to compare two lists, however.

If you pay attention to the following example, you will avoid a common and hard-to-debug
mistake:

(setq Iist1 (list 1 2))
(setq Iist2 Iist1)
(setq list3 (list 1 2))
(eqllist1 list2)
Returns t
(eqllist1 list3)

; create a list
; set another variable equal to the first
; create a new list with same content as the first
; test first two with eq/

; test first and third with eq/

38 ADVENTURER'S GUIDE TO INTERLEAF LISP

Returns nil

In this example, we have set list2 to be one and the same thing as listl. You can prove this by
using selt (explained later) to alter one of the lists:

(selt 3 list2 1) ; replace 2nd element of list2 with the number 3
Returns 3
list2 ; look at content of list2
Returns (1 3)
Iist1 ; look at content of Iist1
Returns (1 3)

Changing the content of list2 also changes the content of listl also because you have told
list2 to point to exactly the same entity as list1. But list3 is different: it's a copy of listl
which has the same contents without being precisely the same thing (which is what being a
copy means, after all). Because list1 and list3 are different lists, eql reports they are differ
ent, for they are different objects. (This makes sense. For example, two paragraphs may
have the same contents but still be two separate paragraphs.)

Also, remember that integers are a different type of number than a real number. For exam
ple:

(eql 100 100.0)
Returns nil

The decimal point after the second 100 indicates that it is a real number that happens not to
have any numbers to the right of the decimal point. But because it is a different type of num
berfrom the first 100, eql reports that they are not identical. (The function (= 100100.0)
would return t.)

Function 4-11: equal

(equalobject1 object2)

Returns: t if object1 and object2 have the same content; else, nil

E.g. (setq a (list 1 2))
(setq b (list 1 2))
(equa/ a b)
Returns t

Equal will test any two objects, even compound objects such as strings. Further, it doesn't
demand that the two objects be one and the same, only that they have the same contents. So,
using the example in the section above (on eql), (equa/fist1 Iist3) would return t.

Equal (like eql) does not consider an integer to be equal to a real number with the same
value.

Function 4-12: equa/p

(equalp object1 object2)

Returns: t if object1 and object2 have the same content; else, nil

E.g. (setq a (list 1 2))
(setq b (list 1 2))
(equal a b)
Returns t

Basics 39

The major difference between equal and equalp is that equalp counts as equal two strings
that have different capitalization. For example:

(equalp "Polish" "polish")
Returns t

In addition, equalp will accept as equal an integer and a real number with the same value.
For example:

(equalp 100 100.0)
Returns t

Logical operators
Through logical operators (and, or, not) you can evaluate sets of statements to see if they are
true.

Function 4-13: and

(and statement1 statement2 ... J
Returns: value of last statement evaluated

E.g. (setq x 3)
(setq Iist1 (list 1 2))
(setq Iist2 Iist1)
(and (eql Iist1 Iist2) (eql 3 x))
Returns t

And looks at each of the following statements, and evaluates them until it comes upon one
that returns nil. If it finds one that returns nil, then the and statement itself returns nil. If it
doesn't find any nils, then it evaluates all the statements and returns the value ofthe last one
it evaluated.

Notice that once it has found a single statement that is nil, it stops evaluating the rest in the
series. This can have serious consequences if you are counting on setting some value in the
and statement itself. For example:

(and
(eql x y)
(setq z y))

If x andy are noteql, then the line (setq zy) will never be reached, soz won't be setq'ed to y.

In logic class you may have learned that an and statement is true only if all of its conjuncts
are true. In InterleafLisp class you have just learned that an and statement evaluates to non
nil if all of its conjuncts evaluate to non-nil; in I-Lisp, the conjuncts can evaluate to any
thing except nil for them to satisfy an and statement. For example:

40 ADVENTURER'S GUIDE TO INTERLEAF LISP

(setqx1)
Returns 1
(setq y 2)
Returns 2
(setq z 3)
Returns 3
(and x y z)
Returns 3

This returns 3 because the last statement it evaluated was z and z's value is 3.

And (and the other logical operators) is of use primarily in conjunction with control struc
tures such as if and while. As you will soon see, those control structures go forward so long
as the condition they're evaluating doesn't work out to nil. In English, we might put an if
statement as "If this isn't nil, then do that." The this can be a number, a word, a function, or a
component to satisfy the criterion. In short, in InterleafLisp, not-nil is often more important
than t.

Function 4-14: or

(or statement1 statement2",J

Returns: value of first non-nil statement

E.g. (setq x 1)
(setq y 2)
(or (eq/ x y) (eq/ y V))
Returns 2

Unlike and, or only needs one non-nil statement to return a non-nil value.

Whereas and stops evaluating statements once it's found one that is nil, or stops evaluating
them once it's found one that isn't nil.

Function 4-15: not

(not statement)

Returns: t if statement is nil; else returns nil

E.g. (setq x 1)
(not (eq/ x 1))
Returns nil

Not takes a non-nil value and returns nil, or takes a nil value and returns t.

You can use not not only to evaluate conditions, but also to flip a value. For example:

(setq heads t)
(setq tails (not heads»
Returns nil; tails is set to nil but heads remains t
(setq heads (not heads»
Returns nil; heads is set to nil

ChapterS
List Processing

Lisp likes lists. In fact, its name derives from list processing. While there's plenty you can
do in I-Lisp without ever encountering a list, sooner or later you're going to have to under
stand how the world looks to a list processing system.

This chapter will show you the basics of working with lists.

What is a list?
A list is a set of items arranged one after another. In I-Lisp, lists can contain any jumble of
data types you want, including other lists. So, the following are acceptable lists (with paren
theses marking the beginning and end of lists):

(12345)
(32415)
(1 "two" 3 4 5)
(123 (4 5) 6)
((Jim (34 "Male" "NY")) (Mary (35 "Female" "NJ'J))

This last example actually is a list that contains two other lists, each of which in turn con
tains one list. The two items on the list are (Jim (34 "Male" "NY")) and (Mary (35 "Female"
"NJ")), and the second item on each of these lists is itself a list containing information about
age, sex, and location.

The ability ofI-Lisp lists to be so freely structured and to contain such a wide variety of data
is very important. About all that lists have in common is that the data in them is stored in
sequence, one item after another.

Lists turn out to be a very useful way of looking at the world. For example, a document can
be viewed as several different types of lists: a list of components, of words, of pages, of
chapters. Taken as a whole, a document can be viewed as a list of lists. For example, this

42 ADVENTURER'S GUIDE TO INTER LEAF LISP

chapter consists of a list of subsections, each of which contains a list of paragraphs, each of
which contains a list of words and pictures, each of which contains a list ofletters or picture
elements.

As you learn Interleaf Lisp, you'll be surprised at how strong a model the list model is.

Making lists
There are several ways of constructing a list.

Function 5-1: list

(list items)

Returns: the list

E.g. (list 1 23 (list 4 5))
Returns (1 23 (4 5))

The command list takes all the entries after it and turns them into a list. So, (setq week (list
"Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday'J)
would create a variable week and set it equal to a list of the names of the days.

There's a shortcut for constructing a list: put a single quotation mark outside a parentheses.
So '(1 23) is the same as (list 1 23), and '(1 23 '(45)) is the same as (list 1 2 3 (list 4 5))

As always you can have I-Lisp do some extra work for you while constructing a list. For
example, (+ 35) is the I-Lisp code that causes 3 and 5 to be added. If you place that code as
an entry on a list, it gets replaced by the sumof3 and 5. E.g., (list 12 (+ 35) 4) returns (128
4). If you want the phrase (+ 3 5) to be on the list without being evaluated, put a single quote
mark in front of it, e.g. (list 1 2 '(+ 3 5) 4) returns (l 2 (+ 3 5) 4).

Function 5-2: append

(append list item)

Returns: a new list with item as the last member of list

E.g. (setq flavors (list "vanilla" "chocolate'J)
(setq flavors (append flavors "strawberry"))
Returns ("vanilla" "chocolate" . "strawberry")

In the example, we first construct a list named "flavors" with contents of "vanilla" and
"chocolate." We then want to add another flavor. Appending "strawberry" returns a new list
with "strawberry" at the end. Because it's a new list, flavors hasn't been affected. That's
why you have to setq flavors to the new list. (Don't worry about the dot between "choco
late" and "strawberry" in the final line of the example above. It's not a typo, but it's also not
real helpful to know about yet.)

Append is a relatively slow function (because it evals every item in the list in order to (reach
the end). Try using push instead, when possible:

Function 5-3: push

(push item list)

Returns: the list with the new item as its first element

E.g. (setq flavors (list "vanilla" "chocolate'?)
(push flavors "strawberry")
Returns ("strawberry" "vanilla" "chocolate")

List Processing 43

Push varies from append in two ways. First, the item you push onto a list becomes the first
element of the list, not the last. Second, push alters the list itself; append creates a new list.
For example:

(setq flavors (list "vanilla" "chocolate"))
flavors now equals the list ("vanilla" "chocolate',
(append flavors "strawberry")
flavors still equals ("vanilla" "chocolate',
(setq flavors (append flavors "strawberry"))
flavors now equals ("vanilla" "chocolate" "strawberry',
(push "pistachio" flavors)
flavors now equals ("pistachio" "vanilla" "chocolate" "strawberry',

You cannot push an item on to a nonexistent list. Make sure you create the list first, even if
it's an empty list, e.g., (setq flavors nil).

Function 5-4: cons

(cons item item)

Returns: a two-item list

E.g. (cons "NY" "Albany',
Returns: ("NY". "Albany',

A cons is a special type oflist. It consists of two items. (Of course, the items may themselves
be complex lists.) A cons is expressed as a dotted pair: the two items are shown with a
period between them.

There are special techniques for retrieving items from a list of conses which make conses
especially useful. (See assoc and rassoc.)

Here are some examples of conses and lists of conses.

(cons 1 2)
Returns (1 . 2)
(cons 1 (list 2 3))
Returns (1 . (2 3))
(cons 1 (cons 2 3))
Returns (1 . (2. 3))
(cons (cons 1 2) (cons 3 4))
Returns ((1 . 2) . (3. 4))

44 ADVENTURER'S GUIDE TO INTER LEAF LISP

(list (cons 1 2) (cons 3 4) 56)
Returns ((1 . 2) (3. 4) 56)

Finding items in lists
The point of using a list is not to build an interesting list for its own sake but to be able to get
information out of it. I-Lisp has a rich set of functions for doing so.

Those functions begin with the mysteriously named car and cdr (pronounced could-er),
familiar to any Lisp programmer.

Function 5-5: car

(car list)

Returns: first element of list

E.g. (setq n (list 1 23 4)}
(car n)
Returns 1

Function 5-6: cdr

(cdr list)

Returns: the list minus the first element

E.g. (setq n (list 1 234)
(cdrn)
Returns (2 3 4)

Car and cdr are surprisingly powerful functions. You can use them to build sophisticated
functions for processing lists. (On the other hand, I-Lisp already contains many of those
functions.)

Here are some more examples:

(setq precipitation (list "clear" "snow" "rain" "hail" "frogs"))
Returns ("clear" "snow" "rain" "hail" "frogs'')
(car preCipitation)
Returns "clear"
(cdr precipitation)
Returns ("snow" "rain" "hail" "frogs")
(car (cdr precipitation))
Returns "snow" [the first element of the cdr of preCipitation]
(setq weather (list (list "clear" "snow" "rain" "hail" "frogs") (list
"hot""cold""moderate")))
Returns (("clear" "snow" "rain" "hail" "frogs'') ("hot" "cold" "moderate''))
(car weather)
Returns ("clear" "snow" "rain" "hail" "frogs'')
(cdr weather)
Returns (("hot" "cold" "moderate',))

List Processing 45

(car (cdr weather))
Returns ("hot" "cold" "moderate") [Notice single parentheses]
(car (car (cdr weather)))
Returns "hot"
(cdr (car weather))
Returns ("snow" "rain" "hail" "frogs")
(car (car weather))
Returns "clear"

As the examples show, you can ask for the cdr of a car of a car of a cdr, if you want. I-Lisp
looks at such a statement, begins with the innermost function, and works its way outwards.
For example:

(setq n (list 0 (list (list 1 2 3 4) 5 6 7) 8 9 10))
Returns (0 ((1 234) 567) 89 10)
(cdr (car (car (cdr n))))
Returns (2 3 4)

Let's take this step by step, beginning with the innermost (in this case, rightmost) cdr. The
cdr of n is «(1 2 3 4) 5 6 7) 8 9 10) - that's what you get if you take the first element (the 0)
off. The car of that cdr is « 1 2 3 4) 5 6 7). The car ofthat in turn is (1 2 3 4). And the cdr of
that is (2 3 4). (Keep re-reading this until it makes sense, and then take two aspirin and start
again in the morning. The key is understanding the structure of the list; after that, cdr and
car are easy.)

Notice that cdr and car do not modify the lists themselves. They report to you what the first
element is and what the rest of the list is, but they do not change the list. So, if you are trying
to examine the contents of a list, repeatedly applying car will keep giving you the same first
element:

(setq n (list 1 234))
Returns (1 2 3 4)
(car n)
Returns 1
(car n)
Returns 1

How, then, do you look at each member of a list in succession? If you insist on using car and
cdr, you could do use the while structure which we won't talk about until the next chapter.
(While loops until the condition following it is nil.)

(setq n (list 1 234))
(while n

(setq item (car n))
(setq n (cdr n))
(do-some-function item)))

; loop until n is empty
; get the first item
; make n equal to its cdr
; do some function with item

46 ADVENTURER'S GUIDE TO INTER LEAF LISP

There is, however, an easier way to accomplish the same result: pop.

Function 5-7: pop

(pop list)

Returns: first item on list

E.g. (setq n (list 1 23))
(pop n)
Returns 1 and changes n to (23)

Unlike cdr and car, pop not only gets you the first item, it actually affects the list. It beheads
the list. So, you could replace the code given in the previous section with:

(setq n (1 234))
(while n

(setq item (pop n))
(do-some-function n))

; loop until n is empty
; get the first item and make n equal to its cdr
; do some function with n

In fact, you could even save some space by writing this function as:

(setq n (1 234))
(while (setq item (pop n))

(do-some-function n)); do some function with n

(This works because setq returns the value you are setq'ing to.)

Pop is frequently used in conjunction with push. Pushing an item on to a list places it at its
front. As you repeatedly push items on to it, you're building a list in which the first elements
come last and the last ones come first. Popping elements takes them from the front, so the
most recently pushed elements come out first. For example:

(setq n nil)
Returns nil
(push 1 n)
Returns (1)
(push 2 n)
Returns (2 1)
(pop n)
Returns 2
(pop n)
Returns 1
(pop n)
Returns nil

; you can't push onto a non-existent list

; n is now equal to (1)

; n is now equal to 0, or nil

; popping an empty list returns nil

If, for some reason, you are unhappy with having a reverse order list, you can use reverse to
change the order.

Function 5-8: reverse

(reverse list)

Returns: the list in reverse order

E.g. (setq n (list 1 234))
(setq back-n (reverse n))
Returns (4 3 2 1)

Reverse only reverses the top level of a list. For example:

List Processing 47

(setq capitals (list (list "UK""London") (list"USA" "WaShington")))
Returns (("UK" "London'J ("USA" "Washington'J)
(setq capitals (reverse capitals))
Returns (("US!!:' "Washington") ("UK" "London"))

Reverse does not actually reverse the list itself; it only returns a copy of the list in reverse
order. So, in the example above, the original list (capitals) retains its original order.

Function 5-9: nth

(nth number list)

Returns: item on list at position number

E.g. (setq n (list "a" "b" "c" "d'J)
(nth 0 n)
Returns "a"

Nth assumes the first element is numbered 0, so (nth 3 test-list) will return the fourth ele
ment of test-list.

For the first ten elements of a list, there is a slight shortcut: (second test-list) is the same
as (nth 3 test-list), (third test-list) is the same as (nth 4 test-list), etc. And (first test
list) and (last test-list) also perform as expected.

Function 5-10: elt

(elt list number)

Returns: item on list at position number

E.g. (setq n (list "a" "b" "c" "d))
(elt nO)
Returns "a"

This looks a lot like nth, except the order of list and number is reversed. Elt, like nth, is
zero-based.

Elt also lets you count backwards, from the end of the list. It assumes that the last item on the
list is -1, the second to last is -2, etc. For example:

(setq n (list "a" "b" "c" "d"))
Returns ("a" "b" "c" "d'J
(elt n 1)
Returns "b"

48 ADVENTURER'S GUIDE TO INTERLEAF LISP

(elt n -3)
Returns "b"

Function 5-11: member
(member item list &optional test)
Returns: list from matched item to end, or nil if no match
E.g. (setq n (1 2345))

(member 3 n)
Returns (3 4 5)
(member 6 n)
Returns nil

Member lets you look for an element in a list. It doesn't just tell you whether the element is
there or not; it actually tells you what the rest of the list is if the element is found on it.

Member is one of the I-Lisp functions that allows you to specify what test you want to use
when you are trying to match an item on the list. If you don't specify any, it will use eql. You
might prefer the more forgiving equal. For example, two identical strings will fail the eql
test, but will pass the equal test. For example:

(setq n (list "a" "b" "c" "d"))
Returns ("a" "b" "c" "d'')
(member "b" n)
Returns nil
(member "b" n 'equal)
Returns ("b" "c" "d'')

; defaults to using eq/ as the test

You can even substitute your own functions instead of eql or equal. For example, we'll
create a function called "last-name" which will find the last name in a two-word string and
compare it with the last name in another two-word string.

(setq names (list "Mary Jones" "Phil Philby" "Ann Gifford"))
Returns ("Mary Jones" "Phil Philby" "Ann Gifford")
(defun last-name (a b)
(let (I-name-a I-name-b)

))

; Get last names of a & b by looking for first space in each name
(setq I-name-a (substring a (string-contained" " a)))
(setq I-name-b (substring b (string-contained" " b)))
;are the two last names the same?
(string= I-name-a I-name-b)

(member "Phil Nemo" names 'equal)
Returns nil
(member "Phil Nemo" names 'last-name)
Returns nil because "Nemo" isn't a last name on the list
(member "Annabel Philby" names 'last-name)
Returns ("Phil Philby" "Ann Gifford'')

List Processing 49

It's probably worth explaining this. We create a function called last-name that expects two
arguments (a and b). The member function looks at every member of the list, one by one.
For each member, it goes to last-name, sending it as arguments the item you're checking for
inclusion in the list and the list item currently being checked. Last-name does whatever it is
that you want, and sends the result back to member. In this example, last-name gets the last
name of the name we're checking and the name on the list being checked, and reports tifthe
two are the same. Member stops checking the list items if and when one ofthe items on the
list passes the test (i.e., in this case, the last names match).

One of the many uses of member is to help build a list that has no repeated members. For
example, if you want to build a list of all the months that have a birthday of one of your
co-workers, you could do something like the following:

(if (not (member item month-list))
(push item month-list)

This pushes item onto month-list only if it isn't already on the list.

The following function takes a list that may contain repeated elements and returns that list
containing only one instance of each item.

5-1 build-unique-list
(defun build-unique-list (original-list)

(let (item unique-list)
; initialize the unique list
(setq unique-Jist nil)
; loop through list
; get an item by popping the original-list
(while (setq item (pop original-list))

; if the item isn't on unique-list, then push it on it
(if (not (member item unique-list))

(push item unique-list)))
; return the unique list
unique-list
))
; try it out
(setq my-list (build-unique-list (list 1 232334 5 7)))
; returns (7 5 4 3 2 1)

Function 5-12: assoc
(assoc item Iist-ot-cons &optional test)
Returns: first cons whose car matches item
E.g. (setq n (list (cons 1 2) (cons 3 4) (cons 5 6)))

Returns ((1 . 2) (3.4) (5. 6))
(assoc 3 n)
Returns (3 . 4)

50 ADVENTURER'S GUIDE TO INTER LEAF LISP

Remember cons? Assoc provides a powerful way to retrieve information from a list of con
ses.1t compares an item to the car of every set of conses on a list. If it matches, it returns the
cons.

As with member, you can substitute your own test.

Function 5-13: rassoc

(rassoc item list-at-cons &optional test)

Returns: first cons whose cdr matches item

E.g. (setq n (list (cons 1 2) (cons 34) (cons 5 6)))
Returns ((1 . 2) (3.4) (5. 6))
(rassoc 4 n)
Returns (3 . 4)

Rassoc is exactly the same as assoc except it looks at the cdr of each cons, rather than the
car.

Function 5-14: rplaca

(rplaca list new-cons)

Returns: the modified list with new-cons replacing the original car

E.g. (setq n (list (cons 1 2) (cons 3 4) (cons 5 6)))
Returns ((1 . 2) (3.4) (5. 6))
(rplaca n (cons 7 8))
Returns ((7. 8) (3. 4) (5. 6))

Rplaca alters a list by replacing the car with a new item.

Rplaca works on any list, not just lists of conses, because I-Lisp in a sense considers all lists
to be lists of conses - the car is the first half of the cons, and everything else (the cdr) is the
second half. For example:

(setq n (list 1 234))
Returns (1 2 3 4)
(rplaca n 6)
Returns (62 3 4)

Function 5-15: rplacd

(rplacd list new-cons)

Returns: the modified list

E.g. (setq n (cons 1 2))
Returns (1 . 2)
(rplacd n 3)
Returns (1 . 3)

Rplacd is just like rplaca except that it replaces the cdr, not the cons.

By the way, the d in rplacd is a reminder that it deals with the cdr, since d is the only letter
that differentiates cdr from car.

Function 5-16: selt

(selt item list number)

List Processing 51

Replaces item at position number in list with item

E.g. (setq n (list "a" "b" "c" "d'J)
Returns ("a" "b" "c" "d'J
(selt "f" n 2)
Returns "f"; n is now ("a" "b" "f" "d")

Selt is zero-based; it thinks the first element of the list is number O.

Function 5-17: delete

(delete item list &optional test

Returns: list with item deleted

E.g. (setq n (list 1 234 1))
Returns (1 2341)
(delete 1 n)
Returns (2 3 4)

Delete looks at a list and deletes from it everything that matches the specified item.

Function 5-18: list-length

(list -length list)

Returns: number of items on list

E.g. (setq n (list 1 23))
Returns (1 2 3)
(list-length n)
Returns 3

This gives you the number of top-level items in the list. (Notice that it is not zero-based.)
For example:

(setq n (list 1 2 3 (list 4 5)))
Returns (1 23 (4 5))
(list-length n)
Returns 4

If you want to count all the items in a list, including the items in lists contained within the
list, you could do the following:

5-2 total-list-length
(defun total-list-length (1st)
; Count all items in a list, even if the list has lists as items in it

(let (item)
(while (setq item (pop 1st))

(if (typep item 'cons)
(total-list-length item)

; get an item from the list
; is the item itself a list?
; if yes, then invoke this
; function again

52 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

(inc *ctr*)))
ctr

; example of a use of this function:

; else, increase the counter
; when done, return the counter

(setq m (list 1 2 3 (list 4 5) 6 7 (list 8 9 (list 10 11 (list 12 13))) 14 (list 15
16)))
; Returns (1 23 (4 5) 67 (8 9 (1011 (12 13))) 14 (1516))
(setq *ctr* 0) ; use a global counter ... not pretty!
(setq length (total-list-length m))
Returns 14

This is actually a tricky function. You can either use it blindly, or read the next paragraph
and find yourselves plunged into the depths of recursion. It's optional.

The total-list-length function takes a list as an argument. It pops the first item from the list.
Then it asks if the item is itself a list, by using the typep function we have not yet explained;
typep lets you find out if something is of a particular type. If the item is a list, then it invokes
total-list-length again. It keeps invoking the function again until it has gone all the way to
the bottom of nested lists. (The invoking of a function from within that very function is
what's known as recursion. I-Lisp lets you use recursion effectively.) If the item is not itself
a list, then it increases the counter (*ctr*) by one. The function returns *ctr*.

Unfortunately, *ctr* has to be defined outside of the function itself; otherwise it would be
reset to 0 each time total-list-length is invoked. This means *ctr* is a global variable; by
convention, global variables are given names that begin and end with asterisks. Global vari
ables are to be avoided whenever possible.

An example - Cards
As an example of ways of processing lists, here is the beginning of a card game. It creates a
deck of cards, shuffles it, and then deals it out. (By the way, when you go to deal the cards
out to two players, remember you don't have to deal the cards alternately to the two players
because the computer's random function has already ensured randomness). The following
uses several functions we have not yet covered.

5-3 shuffle
(defun shuffle (d)
; Shuff fie the cards
(let (card1 card2 card1-number card2-number)

; get a random card
(repeat 100 ; swap cards 100 times

(setq card1-number (random 52)) ; get a random card number
(setq card2-number (random 52)) ; get another to swap with
(setq card1 (elt d card1-number)) ; get the card at that number

))

(setq card2 (eft d card2-number))
(selt card1 d card2-number)
(selt card2 d card1-number))

5-4 create-shuffle-deck
(defun create-shuffle-deck()
; create deck and shuffle it

(let (deck suits suit card)
(setq deck nil)
; create list of suits

List Processing 53

; get the other card
; put card1 at card2's position
; and card2 at card1's position

(setq suits (list "Club" "Spade" "Heart" "Diamond'))
; create the deck
(while (setq suit (pop suits))

(setq card 0)

))

(while « = (inc card) 13)
(push (cons card suit) deck)

; Take the deck and shuffle it
(shuffle deck)

deck
))

; try it out·
(setq d (create-shuffle-deck))

Chapter 6
Control Structures

Interleaf Lisp provides a variety of ways of looking at conditions and then doing one thing
or another.

Function 6-1: if

(if statement consequence &optional else)

Returns: If statement is t, then returns value of consequence; else returns
value of else (if any)

E.g. (setq x 2)
(setq y 3)
(if (= x y)

(stk-open "They're equal!")
(stk-open "They're not equa/!"))

Creates stickup and returns value of else (nil)

An if statement performs a test, and if the test turns out to be non-nil, then it does what fol
lows. If the test is nil, then it looks for an else to do; the else is optional.

With if, it is crucial to pay attention to the parentheses, for these are what tell you which
groups of statements are the test and which are the actions.

The test statement can be complex, involving ands, ors and nots, multiple conditions, and
the like. The stuff that is to be done if the test statement is true can be as long and complex as
necessary. This is likewise true for what gets done if the test statement is false.

Let's look at some examples:

; have user enter name
(setq name (stk-open "Enter your name" :input 40»
; check if name is "Smith"
(if (string= name "Smith")

; create stickup and end the if
(stk-open "Hello, Smith"»

56 ADVENTURER'S GUIDE TO INTERLEAF LISP

Here's another example.

; have user enter name
(setq name (stk-open "Enter your name" :input 40»
(if name

(do-something name»

In this case, you prompt the user to enter a name. If the user does, then name becomes non
nil and so the function do-something (which we haven't bothered defining in this example)
gets executed. If, however, the user chooses Cancel on the stickup, rather than entering a
name, then name becomes nil, and do-something never gets executed.

Another example:

(if (setq name (stk-open "Enter your name" :input 40»
(do-something name»

This does exactly the same thing as the previous example, except it compresses it by
remembering that setq returns the value of the variable that is being assigned a value. So, in
this example, first a stickup is created. Then name is set to its value. Then the value is
checked to see if it is nil. If it's non-nil, then the test is passed.

Let's expand this example to get an else:

(if (setq name (stk-open "Enter your name" :input 40))
(do-something name)
; else
(stk-open "So you prefer to be anonymous"»

Notice that in this example, the second line ends with a single right parenthesis, rather than
double parentheses. Matching the initial parenthesis says that the if statement is done and
there is no else to be executed. In the most recent example, the parenthesis that matches the
initial one is on the last line, closing the if statement after the else has been noticed.

The general form of an ifstatement is:

(if (test) ; if test is non-nil
(action1) ; then do action1
(action2) ; else, do action2

But suppose you do more than just a single line function as the result of an if test. You use
progn:

Function 6-2: progn

(progn statement1 ... J
Returns: Return of last statement

E.g. (progn
(setq x 6)
(setq yx))

Returns 6

Control Structures 57

Progn says that there are a series of statements to be executed. For example:

(if (setq name (stk-open "Enter your name" :input 40))
(progn

(do-something name)
(do-something-more name)
(stk-open "Thanks for entering your name.")))

This will execute three lines (do-something, do-something-more, and stk-open) if the user
enters a name.

You can also use progn to wrap a set of statements to execute as your else statement. For
example:

(if (setq name (stk-open "Enter your name" :input 40))
(progn

(do-something name)
(do-something-more name)
(stk-open "Thanks for entering your name."))

; else
(progn

(do - anonymous - stuff)
(setq anonymous t)
(do - more - anonymous - stuff)))

Once again, pay attention to where the parentheses are.

Here is another way if could be used.

(setq age 14)
(stk-open

(if (> age 13)
(setq text "Please continue")
; else
(setq text "Please get your parents before continuing")))

Remember that stk-open expects some text. In this example, the if determines what to setq
text with; the setq returns the value text is set to; the if returns the value of the setq statement.
And that value is used as the text of stk-open.

Function 6-3: unless

(unless statement then)

Returns: If statement is t, then returns nil; else returns value of then

58 ADVENTURER'S GUIDE TO INTERLEAF LISP

E.g. (setq x 3)
(unless (= x 3)

(stk-open "X isn't equal to 3'J)
Returns nil; does not create the stickup

Unless is the opposite of if. While if only executes its then statements if the test statement is
non-nil, unless executes the then statements if the test statement is nil.

You could simulate unless by using not with if. For example, the following two expressions
do exactly the same thing:

(if (not (string= name "smith"))
(stk-open "Your name isn't Smith")

(unless (string= name "smith")
(stk-open "Your name isn't Smith"))

Function 6-4: cond
(cond (test consequence)(test consequence) ...)
Returns: Value of last then evaluated or nil if none is evaluated
E.g. (setq x 5)

(cond
((= x 4) (setq yO))
((= x 5) (setq y 1)))

Returns 1

With cond, you can test multiple conditions. When one condition is met (the statement is
non-nil), then the following then is executed, the rest of the cond is skipped, and the value of
the then is returned. The form of a cond is:

(cond
((test 1) (then 1))
((test 2) (then 2))

)

Here's an example:

; let user enter skill level
(setq degree (stk-open "Enter highest degree earned:" :input 5))
; assign skill level based on degree
(cond

; if degree is BA or BS, set skill to 1
«or (string= degree "BA") (string= degree "BS")) (setq skill 1))
; if degree is MA, set skill t02
«string= degree "MA") (setq skill 2))
; if degree is Ph.D., set skill to 3
«string= degree "Ph.D.") (setq skill 3))
; in all other instances, set skill to 0
(t (setq skill 0)))

Control Structures 59

There are a couple of points worth noting in this example. First, the first condition in this
example is an or statement. You can make the conditions as complex as you want, so long as
they are all contained within a single set of parentheses. Second, the last condition is t. This
is to handle the case in which none of the prior tests are matched. The t is always going to be
evaluated as non-nil, so the then that follows it is going to be executed if the cond gets that
far ... which it will so long as none of the previous conditions are met. So, the last line only
gets executed if none of the previous ones do. If you didn't use this "trick," and none of the
conditions were non-nil, then the cond would return nil. (Remember, 0 and nil are not the
same things.)

Function 6-5: while
(while statement then)

Returns: value of last statement evaluated

E.g. (setq x 0)
(while « x 3)

(inc x))
Returns 0

While lets you do something repeatedly until some test comes up nil. For example:

(setq parts-list (list 12 45 23)) ; make list with 3 numbers in it
(while (setq item (pop parts-list)) ; get next on list

(enter-into-order-form item) ; do something with the part number
(send-update-to-inventory item)) ; do something else with it

Remember that pop returns the first item on a list, and removes that item from the list. So, by
setqing item, we put the first element of parts-list (12) into item, and shorten parts-list by
one. And, since setq returns the value of what has been setqed, the while gets a non-nil
value ... until the last value has been popped off of parts-list. So, when parts-list no longer
has any members, popping it results in a nil, item is setqed to nil, the entire test returns nil,
and the while loop grinds to an end.

You can see that while can be very useful when, for example, looking at every component in
a document. Perhaps you want to find all the components named "para" and turn them into
"bullet," or check to see if there are any components with a particular attribute value. With
while, you can go through the entire document, component by component, until there are no
more components. The following example shows this, although parts must remain mysteri
ous until later chapters:

6-1 add-footnote
(defun add-footnote 0
; Creates footnote frame at end of any component named quote.
; Expects a frame master named footnote to already exist in the
; document.
(let (cmpn)

; get first component

60 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

(setq cmpn (tell *document* mid:get-child))
; while not out of cmpns
(while cmpn

; is cmpn named "quote"?
(if (string= "quote" (tell cmpn mid:get-name))

(progn
; get marker at end of cmpn
(setq marker (tell cmpn mid:get-marker t))
; go to marker
(doc-goto-marker marker)
; create frame named "footnote"
(tell *text-editor* mid:create :frame "footnote")))

; get next cmpn unless we're done
(setq cmpn (tell cmpn mid:get-next)))

; try it out
(add - footnote)

This looks at every component in a document, and adds a footnote frame at the end of any
component named "quote." (It expects you to have already created a master for a frame
called "footnote.")

Function 6-6: repeat

(repeat number statement)

Returns: value of last statement executed

E.g. (setq x 2)
(repeat 3

(setq x (* x x)))
Returns 256

Repeat does exactly the same thing as using a counter to count the number of iterations of a
while loop, but does so more economically. The following two approaches are equivalent:

(setq ctr 5)
(setq test 0)
(while (not (zerop ctr))

(dec ctr) ; decrements ctr by one
(inc test))

(setq test 0)
(repeat 5
(inc test))

(In the above examples, (inc test) is just a sample of something you might want to do.)

Control Structures 61

Function 6-7: catch and throw

Catch and throw provide a way to exit from a loop before the test condition has become nil.
For example:

6-2 find-first-cmpn-of-name
(defun find-first-cmpn-of-name (cmpn-name)
; Finds first component named cmpn-name
(let (cmpn (found-cmpn nil))

; get first component
(setq cmpn (tell *document* mid:get-child))
; set place to jump to with throw
(catch 'done
; while not out of cmpns
(while cmpn

; matches requested name?
(if (string = cmpn-name (tell cmpn mid:get-name))

; if so, save cmpn ...
(progn

(setq found-cmpn cmpn)
; ... and exit loop
(throw 'done))

; else get next cmpn unless we're done
(setq cmpn (tell cmpn mid:get-next)))))

; Return the cmpn
cmpn
))

In the previous example, the function takes the name of a component as its argument. It

looks through all the components for one with the same name. If it finds one, it saves the
component in the variable Jound-cmpn and throws itself out of the loop entirely. Otherwise,
it loops through all of the components and returns nil.

If the system comes across a throw, even if it is in the middle of a loop that by all rights isn't
yet done, it will throw control back to the catch. Notice that both catch and throw take a
symbol as their argument - you should make up a name that is appropriate and put a quote
in front of it.

Function 6-8: toplevel

If the system comes across a throw, it throws control back to the catch; if it comes across a
toplevel, it exits the I-Lisp program entirely.

Function 6-9: quit

Quit is like toplevel. It exits the I-Lisp program immediately.

62 ADVENTURER'S GUIDE TO INTERLEAF LISP

There are two sets of functions - advanced topics - that allow you to iterate through a list
without having to use any control structure such as while or repeat.

Function 6-10: apply

(apply function args)

Applies function to the args, the last one of which must be a list

E.g. (apply'+ (list 234))
Returns 9

Apply takes a function and applies it to each member of a list (or lists). In the above exam
ple, the plus function is repeatedly applied to a list, with the answer accumulating. (Notice
that the function has to be prefaced by a single quote to indicate that it is not to be, evaluated
immediately.)

The following example prints at the text caret a list of every component in a document, fol
lowed by the page it begins on. It does this by building a list of the component names and
page numbers, and then using apply to insert the names and numbers repeatedly into the
document.

6-3 show-cmpn-names
(defun show-cmpn-names 0
; creates list in a doc of cmpns and page numbers

(let (c name pagenumber (cmpn-name-list nil))
; notice that this let statement sets cmpn-name-list to nil

; loop through the document, looking at each cmpn
; get the first cmpn (the child of the document object))
(setq c (tell *document* mid:get-child))
(while c

)

; get the name
(setq name (tell c mid:get-name))
; get the page the cmpn is on, get the page's number, and
; convert that number to an ascii string
(setq pagenumber

(itoa (doc-page-number-of (doc-page-of c))))
; push the info onto list in form "name:pagenumber"
; followed by a return represented by "In"
(push (concat name ":" pagenumber "In") cmpn-name-list)
; get the next cmpn and continue the loop
(setq c (tell c mid:get-next))

; we've pushed the list into reverse order, so unreverse it now
(setq cmpn-name-list (reverse cmpn-name-list))
; repeatedly tell the current spot in doc to insert contents the list
(apply #'tell (doc-point-marker) mid:insert

Control Structures 63

cmpn-name-list)
))

Function 6-11: mapcar

(mapcar #function list &optional more-lists)

Performs function on successive cars of list and more-lists; returns a list
of the results

E.g. (mapcar #' + (list 1 23) (list 4 5 6))
Returns (5 7 9)

If the lists are of different lengths, mapcar quits after completing the shortest list. (The # is
Lisp magic. It needs to be there. Just use it blindly.)

Here are some more examples:

(map car #' > (list 4 6 2 7) (list 9 7 1))
Returns (nil nil t)
; make a function to check if half of one is greater than twice the other
(defun half-greater-than-twice (a b)

(> (/ a 2) (* b 2)))
(map car #'half-greater-than-twice (list 20 30 40) (list 4825))
Returns (t nil nil) because half of twice 20 is greater than twice 4, etc.

These capabilities allow you to put together complex and powerful applications with
Interleaf Lisp.

Chapter 7
Numbers and
Characters

Interleaf Lisp provides powerful ways of manipulating numbers and characters. In this
chapter you'll learn some of those techniques.

Types of numbers
I-Lisp recognizes two types of numbers: integers and floats. Integers are numbers with no
decimal places. Floats (or floating point numbers) are numbers with decimal places. Some
functions only work with one or the other type of number, so keeping them straight can be
important.

Integers have to be between -2,147,483,648 and 2,147,483,647. Floats don't suffer from
this rather severe restriction.

Fortunately, you can convert from one type to the other.

Function 7-1: float

(float integer)

Returns float equivalent of integer

E.g. (float 34)
Returns 34.0

Function 7-2: ceiling

(ceiling number)

Returns smallest integer equal to or greater than number

E.g. (ceiling 3.01)
Returns 4

66 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 7-3: floor

(floor number)

Returns smallest integer equal to or less than number

E.g. (floor 3.99)
Returns 3

Function 7-4: truncate

(truncate number)

Returns integer of number with nothing after its decimal pOint

E.g. (truncate 3.99)
Returns 3

Function 7-5: round

(round number)

Returns closest integer (rounds up or down); if .5, rounds up to nearest
integer

E.g. (round 2.51)
Returns 3

The differences among these are more obvious if you look at some examples:

(ceiling 34.6)
Returns 35
(floor 34.6)
Returns 34
(truncate 34.6)
Returns 34
(round x)
Returns 35

The difference between floor and truncate becomes apparent when you have negative num
bers. For example:

(floor -43.6)
Returns -44
(truncate)
Returns -43

Testing numbers
You may want to find out what type of number you're dealing with, or, more frequently, test
the relationship of two numbers. Interleaf Lisp provides a useful set of functions for doing
so - many of which may not look like functions because they are denoted by a single char
acter, e.g., "+" or ">."

Function 7-6: floatp
(floatp number)
Returns t if number is a float; else, nil
E.g. (setq x 3.0)

(floatp x)
Returns t

Function 7-7: integerp
(integer number)
Returns t if number is an integer; else, nil
E.g. (setq x 3.0)

(integerp x)
Returns nil

Function 7-8: >
(> number1 number2)
Returns t if number1 is greater than number2
E.g. (> 32.1)

Returns t

Function 7-9: <
« number1 number2)
Returns t if number1 is less than number2
E.g. « 3 2.1)

Returns nil

Function 7-10: >=
(> = number1 number2)

Numbers and Characters 67

Returns t if number1 is greater than or equal to number2
E.g. (>= 32.1)

Returns t

Function 7-11: <=
« = number1 number2
Returns t if number1 is less than or equal to number2

E.g. «= 3 2.1)
Returns nil

Function 7-12: =
(= number1 number2
Returns t if number1 is equal to number2
E.g. (= 32.1)

Returns nil

All of these tests are straightforward.

Hint: To translate these expressions into our normal format, imagine the operator moving
into the middle position. So, for example, (> x y) is the same as (x> y).

68 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 7-13: zerop

(zerop number)

Returns t if number is zero; else, nil

E.g. (setqx O. 1)
(zeropx)
Returns nil

This is a briefer way of saying (= 0 number).

Function 7-14: evenp

(evenp number)

Returns t if number is even; nil if odd

E.g. (setq x 3)
(evenpx)
Returns nil

Function 7-15: oddp

(oddp number)

Returns t if number is odd; else, nil

E.g. (setq x 3)
(oddpx)
Returns t

Altering numbers
In addition to the arithmetical operators we'll discuss in the next section, I-Lisp lets you
alter numbers in some especially useful ways.

Function 7-16: dec

(dec integer)

Reduces (decrements) integer by one and returns the decreased number
E.g. (dec 15)

Returns 14

Function 7-17: inc

(inc integer)

Increases integer by one and returns the increased number

E.g. (inc 15)
Returns 16

Inc and dec are both one-step ways of adding or subtracting one from a number. This is
especially useful when you are using a variable as a counter. For example:

7-1 count-open-docs
(defun count-open-docs (container)
(let (kids kid count)

; set counter to 0
(setq count 0)
; get all children ot a container
(setq kids (dt-children container))
; count them
(while (setq kid (pop kids))

; only counts it it's a document and it's open

Numbers and Characters 69

(it (and (is-ot-class kid dt-document-class)
(tell kid mid:get-props :opened))

(inc count)))
; return the counter
count
))

The inc and dec functions could be easily replaced by slightly more cumbersome code. For
example:

(setq X (- X 1»
and

(setq X (1- x))

are both the same as

(dec x)

Arithmetical operations
Interleaf Lisp uses prefix notation for arithmetical operations - the arithmetical operators
come first. So, for example, in I-Lisp, you add 3 and 4 with the expression:

(+ 34)

And you subtract 3 from 4 with:

(- 43)

With this in mind, the following arithmetical operators are available to you in I-Lisp:

Function 7-18: +, -, I, *

(+ number number)

Returns result of operations

E.g. (+ 3.125.67.8)
Returns 16.52
(- 657.3)
Returns 57.7
(* 3 4.2)
Returns 12.6
(/63)
Returns 2

70 ADVENTURER'S GUIDE TO INTER LEAF LISP

You can, of course, nest operations within parentheses. For example:

(+ 1 (- 52.2»
Returns 3.8
(+ 1 (- 2 (* 3 (/4.655))))
Returns 0.21

Notice that +, -, and * can take more than one argument. The + and * do the obvious thing:
they keep adding or multiplying the arguments. On the other hand, - does something a little
less predictable; it in effect subtracts from the first argument the sum of all the remaining
arguments. For example:

(- 101 23)
Returns 4

Note that / returns a float so long as either of its arguments is a float. If, however, they are
both integers, / returns only the integer portion of the result. For example:

(/12.05)
Returns 2.4
(/125)
Returns 2

Failure to keep this in mind is an excellent way to create a recalcitrant bug.

Function 7-19: mod

(mod number1 number2)

Returns the remainder of dividing number1 by number2

E.g. (mod 12 5)
Returns 2

Function 7-20: abs

(abs number)

Returns the absolute value of number

E.g. (abs -3.12)
Returns 3. 12

In addition, there are some mathematical functions available to you. Their operation and
results should need no elucidation at this point:

sqrt square root

sin sine

cos cosine

tan tangent

asin arc sine

Numbers and Characters 71

acos arc cosine

atan arc tangent

This functionality can be built on to provide powerful mathematical processing capabili
ties.

Characters
A single character for I-Lisp is not the same thing as a string with one character in it. A
single character is expressed by prefacing it with a pound sign and a backslash. For exam
ple:

#\A
#\Z
#\;

uppercase A
uppercase Z
semicolon

There are some characters with special meaning:

#\\n newline, or linefeed
#\\t tab

Characters are represented internally by a code number, which usually maps to the ASCII
code numbers, although Interleaf provides an extended set of characters above 127 on the
ASCII chart.

Function 7-21: character

(character argument)
Returns: character equivalent to argument

E.g. (character 65)
#\A

You can use character to convert a code number or a single-element string into a character.
For example:

(character "fJ\')
Returns #\A

Function 7-22: char-int
(char-int char)

Returns: code number of char

E.g. (char-int #\A)
Returns 65

Function 7-23: int-char

(int-char number)

Returns: character represented by number in Interleaf character code
E.g. (int-char 65)

Returns #\A

72 ADVENTURER'S GUIDE TO INTERLEAF LISP

These two functions allow you to go back and forth between characters and integers.

Here is a function that will print a list of selected character codes; it prints it into whatever
component your insertion caret is in when you invoke the function. It gives you the charac
ter code in base 10 and in hexadecimal, as well as the character itself. (This function uses
some terms we have not yet introduced, including doc-point-cmpn, get-marker, concat,
and itoa. Theformat function will be explained later in this chapter.)

7-2 print-char-codes
(defun print-char-codes (min max)
; prints char codes number followed by char for numbers MIN through
; MAX.
; E.g., (print-char-codes 6591)

(let (marker)
(while « = min max)

; get marker at end of cmpn
(setq marker (tell (doc-point-cmpn) mid:get-marker t))
; build string with concat
(tell marker mid:insert (format nil" '" Dlt '" Xlt '" A In" min min (int-char

min)))

))

; increment character
(inc min))

For example, (print - char-codes 32 127) would put the following into your document: *

32 20
33 21
34 22
35 23 #
36 24 $
37 25 %

38 26 &
39 27
40 28 (

41 29)

42 2A *
43 2B +

*When you run this function you may notice some upside-down question marks where you expected
a character to be. The question marks are Interleaf's way of saying that there is no printable character
for that character code. You may also notice that what follows character 10 is a blank line. That isn't
a mistake. Character lOis the line feed character, i.e., the character that causes a new line to be inserted
into a document.

Numbers and Characters 73

44 2C
45 2D
46 2E
47 2F /
48 30 0
49 31
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @

65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T

74 ADVENTURER'S GUIDE TO INTERLEAF LISP

85 55 U
86 56 V

87 57 W
88 58 X

89 59 y

90 5A Z

91 5B [

92 5C \
93 5D]

94 5E A

95 5F
96 60
97 61 a

98 62 b

99 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69
106 6A j
107 6B k
108 6C
109 6D ill

110 6E n

111 6F 0

112 70 P
113 71 q

114 72 r

115 73 s
116 74
117 75 u
118 76 v
119 77 w

120 78 x
121 79 y
122 7A z

123 7B {

124 7C I
125 7D }

126
127

7E
7F

Numbers and Characters 75

Notice that although character 32 looks blank, it's actually the space character. Unrecog
nized characters are printed as Ill. And if you were to print (print-char-codes 262266)
you'd get the special hyphen and dash characters as well.

262
263
264
265
266

106
107
108
109
lOA

If you are in a document and need to know a character's code, simply select it and execute
props from the text-selected menu. That will put the character code into the message line of
the document window. (It will show it as a hexadecimal number.)

Function 7-24: char-down case

(char-downcase character)

Returns: lowercase equivalent of character, or character if no lower case
E.g. (char-downcase #IA)

Returns #\a
Function 7-25: char-upcase

(char-upcase character)

Returns: uppercase equivalent of character, or character if no upper case
E.g. (char-upcase #\a)

Returns #\A

These allow you to switch from upper to lower case and vice versa. Where there is no upper
(or lower) case, the character itself is returned. For example:

(char-downcase #\a)
Returns #\a
(char-upcase #\3)
Returns #\3

Function 7-26: plain-char-p
(plain-char-p argument)

Returns: t if argument is a character; else, nil
E.g. (plain-char-p "This is a string')

Returns an error because it is a string, not a character

You can test whether what you have is a character by using plain-char-p. If it has a charac
ter code between 0 and 255, it will return t.

(plain-charp (int-char 65))
Returns t

76 ADVENTURER'S GUIDE TO INTER LEAF LISP

(plain-charp (int-char 265»
Returns nil
(plain-charp "N)
Returns error message because "A" is a string, not a character

Strings
I-Lisp comes with powerful functions for handling strings, as you might expect given that
Interleaf 5 itself is often used as a sort of super word processor.

Function 7-27: string

(string argument)

Returns: string made from argument

E.g. (string 'Alabama)
Returns "Alabama"

String turns a single character or a symbol into a string.

String will turn a character into a string. For example:

(string #\A)
Returns ':04"

Function 7-28: concat

(concat string1 string2 ...)

Returns: string consisting of string1 plus rest of string arguments

E.g. (concat "Welcome to"" Hawaii")
Returns "Welcome to Hawaii"

This is a very useful function because it allows you to create strings by using variables. For
example:

7-3 name-into-stickup
(defun name-into-stickup 0

(let (name msg)
; get name
(setq name (stk-open "Enter your name" :input 40))
; concat it into message
(setq msg (concat "You said your name is" name "l'J)
(stk-open msg)))

(You could have skipped the second-to-Iast line and replaced the last line with (stk-open
(concat "You said your name is" name "l'J).)

Concat is actually quite powerful. For example:

; create a list for this example
(setq winners

(list
(list "Joe Smith" "Winnebago, MN")
(list "Jane Doe" "Raleigh, NC")))

; concat the winners and make stick - up
(stk-open
(concat "The winners are:\n"

(car (setq winner (pop winners)))
" of" (car (cdr winner)) "\nand\n"
(car (setq winner (pop winners)))
" of" (car (cdr winner))))

Creates stickup that says:

Numbers and Characters 77

The winners are:
Joe Smith of Winnebago, MN

and
Jane Doe of Raleigh, NC

(The \n indicates a new line. You could also just put in the number 10, which is the number
of the new-line "character.")

The function format gives you much more control over the printed format of strings, as we
will discuss at the end of this chapter.

Function 7-29: *case-sensitive*

The system comes with a global variable, *case-sensitive *, which initially is set to nil. If
you set it to t, then some of the string comparison functions will report two strings as not
equal if they differ only in terms of upper or lower case letters. So, "polish" and "Polish"
would be reported as not equivalent.

You can alter this by the line (setq *case-sensitive* t) or (setq *case-sensitive* nil)

Function 7-30: string=
(string= string1 string2)

Returns: t if string1 has the same content as string2

E.g. (string="Cary Grant" "Archibald Leach")
Returns nil

78 ADVENTURER'S GUIDE TO INTER LEAF LISP

We discussed string= in Chapter 5. The global variable, *case-sensitive* does not affect
this comparison; string= is always case-sensitive.

Function 7-31: string-contained
(string-contained string1 string2)

Returns: position where string1 is contained within string2; else, nil
E.g. (string-contained "leaf" "Interleaf']

Returns 5

String-contained tells you where one string begins in another. (The first letter is counted as
zero.) This function is controlled by the variable *case-sensitive*, although it can be over
ridden.

You can have string-contained begin looking at a particular spot, count backwards or for
wards, and be case sensitive or not, all by using some optional arguments. For example:

(string-contained",6;' "012a456")
Returns 3
; begin at 4th position
(string-contained",6;' "012a456" 4)
Returns nil
; begin at 3rd position
(string-contained",6;' "012a456" 3)
Returns 3
; make it case sensitive
(string-contained ",6;' "012a3456" 0 :forward t)
Returns nil
; make it not case sensitive
(string-contained ",6;' "012a3456" 0 :forward nil)
Returns 3

If you do not specify whether the search should be case sensitive or not, the case sensitivity
is whatever *case-sensitive* has been set to.

You can use string-contained to check whether a string (or character) is part of a known set.
For example:

7-4 is-digit
(defun is-digit (c)
; returns the position of the char in the string of numbers if char is a digit,
; or else a nil

(string-contained (string c) "0123456789"))

This takes a character, converts to a string, and looks for it in the string "0123456789." If it's
there, then, then the character is a digit. We could the same thing for a grade:

7-5 is-grade
(defun is-grade (c)

Numbers and Characters 79

; returns t if char is an academic grade A-F
(string-contained (string (char-upcase c)) "ABCOF'J)

Of course, we are not limited to checking characters; we can also check strings:

7-6 is-grade-plus-or-minus
(defun is-grade-plus-or-minus (s)
; returns number if s is an academic grade A-F with plus or minus

(string-contained s "A+ A- B+ B- C+ C- 0+ 0- F'J)

Notice, by the way, that Interleaf distinguishes among several types of dashes. Not only are
there "-", "-" and "-", but Interleaf's own Lisp font (used in its documentation to show
Lisp code) has its own dash. So, be careful of how you're expressing your minus sign when
using this function.

Function 7-32: string-length

(string-length string)

Returns: the number of characters in string

E.g. (string-length "12345'J
Returns 5

Notice that string-length is not zero-based.

Function 7-33: string-uppercase

(string-uppercase string)

Returns: uppercased version of string

E.g. (string-uppercase "aBc1 OeF")
Returns "ABC1 OfF"

Function 7-34: string-lowercase

(string-lowercase string)

Returns: lowercased version of string

E.g. (string-lowercase "aBc1 OeF'J
Returns "abc 1 def"

Function 7-35: substring

(substring string number1 number2)

Returns: subset of string starting at position number1 and continuing for
number2 characters

E.g. (substring "abcdefg" 2 3)
Returns "cde"

Notice that the position number is zero-based.

Function 7-36: string-left-trim

(string-left-trim string1 string2)

Returns: string2 with any characters in string1 removed from its left

80 ADVENTURER'S GUIDE TO INTERLEAF LISP

E.g. (string-left-trim "-$+" "+$100')
Returns "100"

Function 7-37: string-right-trim

(string-right-trim string1 string2)

Returns: string2 with any characters in string1 removed from its right

E.g. (string-right-trim "-+" "$100+')
Returns "$100"

These functions allow you to snip off the beginning or ending of a string. For example, you
might want to remove leading or trailing spaces; these functions make it easy.

If you want to trim characters from both the beginning and ending simultaneously, use the
following function:

Function 7-38: string-trim

(string-trim string1 string2)

Returns: string2 with any characters in string1 removed from its left and
right

E.g. (string-trim "<>1" "»!!100 !!«")
Returns "100"

The following functions will help you convert numbers to strings.

Function 7-39: atoi

(atoi string)

Returns: integer of string version of number expressed by string
E.g. (atoi "62')

Returns 62

Function 7-40: itoa

(itoa integer)

Returns: string version of integer

E.g. (itoa 62)
Returns "62"

Function 7-41: atof

(atof string)

Returns: float version of string

E.g. (atof "62.1')
Returns 62. 10

Function 7-42: ftoa

(ftoa float)

Returns: string version of float

E.g. (ftoa 62.1)
Returns "62.10"

Numbers and Characters 81

These "ascii-to-number" and "number-to-ascii" functions convert a string to a number,
or a number to a string.

These are very useful functions since you will frequently be encountering numbers written
as characters in documents. And most stickups return strings, so if you want to have a user
type a number into a stickup, you will probably be using atoi to convert it to a number, and
itoa to convert it back to something printable. For example:

7-7 string-or-number-stkup
(defun string-or-number-stkup ()
; stickup handles either text or numbers
(let (text number)

))

(setq text (stk-open "Enter product name or number" :input 50))
(if (setq number (atof text))

; it's a number, so
; do something ... for demo, just give a confirming stickup
(stk-open "It's a number!")
; else it's a string, not a number
(stk-open "Text, text, text. '))

Sample program: Leaf of Fortune
Here is a sample program that uses many of the string functions we've looked at so far. It's a
bit like the traditional hangman game, although it doesn't draw the graphic of the person
about to be hanged; consider adding the graphic to be one of your first challenges after
you've looked at the chapter on Interleaf graphics.

; create a list of phrases, as a global variable
(setq *Ieaf-words* (list "TURN OVER A NEW LEAF" "LEIF ERIKSON'))

7-8 get-a-saying
(defun get-a-saying ()
; choose from list of sayings, or quit if there aren't any left
(let (phrase which)

; if there are any words on the list ...
(if *Ieaf-words*

(progn
; get a random number
(setq which (random (list-length *Ieaf-words*)))
; get phrase from the list
(setq phrase (nth which *Ieaf-words*))
; remove the selection from the list
(setq *Ieaf-words* (delete phrase *Ieaf-words* :test 'string=))

82 ADVENTURER'S GUIDE TO INTER LEAF LISP

)
; else

(progn
(stk-open "Out of phrases. Replenish and try again!')
(quit)))

; return the phrase
phrase

))

7-9 take-a-guess
(defun take-a-guess 0
(let (ch)
(setq ch (stk-open "Enter a character to guess" :input 1))

; if no response, then quit
(if (not ch)
(quit))

(string-uppercase ch) ; uppercase it
))

7-10 get-char-s
(defun get-char-s (s n)
; returns char in string s at position n
(substring s n 1))

7-11 build-guess
(defun build-guess (s)
; make a copy, with asterisks, of the saying to be guessed
(let ((blank-guess "")

))

(x 0)
(s-Ien (string-length s)))

; look at each char until we finish the string
(while « x s-Ien)

; get next char in saying
(setq c (get-char-s s x))
; increment counter
(inc x)
; if char's not a blank, then put in an asterisk
(if (not (string= c " 'J)

(setq blank-guess (concat blank-guess "*'J)
; else
(setq blank-guess (concat blank-guess" 'J)))

blank-guess

7-12 is-guess-in-saying
(defun is-guess-in-saying (c s)

Numbers and Characters 83

; loops through s building list of all places where there's a c
(let ((spot-list nil)

(spotO))
; loop until no more guessed-chars in the string
(while (setq spot (string-contained c s spot))

; make list of all places where guessed-char is in string
(push spot spot-list)
; increment spot counter so we keep looking for next
; guessed-char
(inc spot))

spot-list
))

7-13 put-char-s
(defun put-char-s (s c n)
; Put char into string at position n
(let (s1 s2)
(setq s1 (substring sOn)) ; gettirst half
(setq s2 (substring s (+ 1 n) (string-length s))) ; get 2nd half
(concat s1 c s2) ; join 2 halves w/new char 'tween

))

;---------------------- Run this to play the game
7-14 leaf-of-fortune-game
(defun play-Ieaf-of-fortune 0

(let (saying
new-cmpn
guess
letter-guessed
spot location -list
marker
turns
max-turns)

; set maximum number of turns
(setq max-turns 20)
(setq turns 0) ; set counter

; get a saying
(setq saying (get-a-saying))

; build a blank guess with asterisks and underscores

84 ADVENTURER'S GUIDE TO 'NTERLEAF LISP

(setq guess (build-guess saying))

; put the display of letters to turn
; needs cmpn master named "response" to already be defined
(setq new-cmpn (tell *cmpn-editor* mid:create "response"))
; create cmpn
(tell (tell new-cmpn mid:get-marker t) mid:insert guess)
; update the display
(doc-flush-queue) ; force a redisplay of the doc

; loop to play the game until use up maximum turns or get successful
guess

))

(while (and «== turns max-turns)
(not (string== guess saying)))

(setq letter-guessed (take-a-guess))
(inc turns)

(if letter-guessed
(progn
; create new cmpn

; get a guessed letter
; increase turn counter
;ffnotcanceloutofsffckup

(setq new-cmpn (tell *cmpn-editor* mid:create "response'})
; is guessed letter in saying?
(if (setq location-list

)))

(is-guess-in-saying letter-guessed saying))
(progn
; take list of pOSitions, substitute letter guessed for *
(while (setq spot (pop location-list))

(setq guess
(put-char-s guess letter-guessed spot)))))

; insert new display
(tell (tell new-cmpn mid:get-marker t) mid:insert guess)
(doc-flush-queue) ; force a redisplay of the doc

; check to see if we have a winner
(if « = turns max-turns)

(progn
(stk-open "You won!'})

; else
(stk-open "Better luck next time'})

; try it
(play-Ieaf-of-fortune)

Numbers and Characters 85

Format
Function 7-43: format

A special function, called format, has enough options and parameters to deserve its own
small section. Format will output your strings in just about any way you can imagine. All
you have to do is learn the magic incantations.

The basic format offormat is:

(format destination control-string string)

The destination is usually going to be nil, which will send the string to the standard output.
You could, however, specify a specific stream (see streams in Chapter 17) for the output.

The control-string is a special set of characters used by format to figure out how to format
the string you want formatted. The control-string begins with a tilde ("-") and ends with a
character. Between the two can be more special codes to further specify how you want the
string formatted. For example:

(format nil" '" 0" 12345)
Returns "12345"
(format nil" '" :0" 12345)
Returns "12,345"
(format nil "'" @:O" 12345)
Returns "+12,345"
(format nil" '" R" 12345)
Returns "twelve thousand three hundred forty five"

These codes can themselves be part of a string to be printed. For example:

(format nil "The answer is '" :0" 12345)
Returns "The answer is 12,345"
(format nil "The characters'" R are the same as '" :0" 1 023 1023)
Returns "The characters one thousand twenty-three are the same as
1,023"

Notice that in that last example, we had to write" 1 023" twice; each of the codes looks for its
own argument at the end of the statement.

Format allows you to force a string to fill a certain size field by padding any leftover spaces
with your choice of characters. You do this by specifying the size of the field (default 0), the
minimum number of characters added when padding (default 0), the number of times a
character is repeated (default 1), and the character you want to use for padding (default
space). For example:

(format nil" '" 1 0,1,1 A:' "one")
Returns "one "
(format nil" '" 1 0, 1,1 ,'#A" "one")
Returns "one#######"

; default pad char

; # as pad char

86 ADVENTURER'S GUIDE TO INTERLEAF LISP

(format nil ,,,,, 1 0,1,1 ,'#@A" "one")
Returns "#######one"

; pad on left, not right

Notice that you have to put a single quotation mark before the character you want to use as
the pad character.

Here are the codes:

A
Prints strings

@ (right justifies)
(format nil "Welcome to '" A" "NY")
Returns "Welcome to NY"
(format nil "'" 15,1,1,' .@A" "Smith") ; right-justified with dots as pad char
Returns " Smith"

B
Prints in base 2 (binary) format

add commas
@ print number's sign even if positive

(format nil" '" 8" 34)
Returns "10010"
(format nil" '" :8" 34) ; add comma
Returns "10,010"

D
Prints integers in base 10

add commas
@ print number's sign even if positive

(format nil" '" 1 O,'*@:D" 12345) ; right-justified with * pad chars
Returns "***+ 12,345"
(format nil" '" 1 0, '*D" 12345) ; right-justified with * pad chars
Returns "12345*****"

E
Prints a floating pOint number in exponential form

@ print number's sign even if positive
(format nil" '" E" 123456.78)
Returns "1.2345678e5"

F
Prints a floating pOint number.

@ print number's sign even if positive
(format nil" '" F" 12)
Returns" 12.0"
(format nil" '" 6F" 12) ; force width of 6, including decimal point
Returns" 12.0"

Numbers and Characters 87

(format nil "'" 6,2F" 12.3456) ; width of 6, 2 on right of decimal point
Returns" 12.35"
(format nil "'" 6,4@F" 1200.345678)
Returns "+1200.3457"

G
Prints number in floating point notation if it isn't too large, and exponential
format if it is very large. See E and F for formatting rules
(format nil " '" G" 1 0000000000000.01)
Returns "10000000000000.01"
(format nil "'" G" 1 00000000000000.01) ; add one more zero ...
Returns "1.e+14"

o
Prints integer in base 8 (octal)

prints comma
@ print number's sign even if positive

(format nil" '" 0" 44)
Returns "54"

p

Lets you stay grammatical by printing "s" if its argument isn't the number
one

reuses previous argument
@ prints "y" if argument is 1, "ies" otherwise

(format nil "Knocked on '" 0 door'" P" 1 1)
Returns "Knocked on 1 door"
(format nil "Knocked on '" 0 door'" P" 2 2)
Returns "Knocked on 2 doors"
(format nil "Knocked on '" 0 door'" :P" 3) ; only one argument, used twice
Returns "Knocked on 3 doors"
(format nil "Knocked on '" R door '" :P" 300) ; Use '" R, not '" 0
Returns "Knocked on three hundred doors"
(format nil" Ate '" R french fr'" @P" 1 1)
Returns ';L\te one french fry"
(format nil "Ate'" R french fr"'@P" 12 12)
Returns ';L\te twelve french fries"

R (no parameters)
By itself, R prints an English equivalent of a number

prints name as ordinal number
@ prints number as Roman numeral

(format nil "'" R" 23)
Returns "twenty-three"
(format nil" '" :R" 23)

88 ADVENTURER'S GUIDE TO INTERLEAF LISP

Returns "twenty-third"
(format nil ,,"" @R" 23)
Returns "XXII/"

R (parameters)
If you give R parameters, it prints a number in the base (radix) of your
choice

prints commas
@ prints number's sign even if positive

(format nil " "" 6R" 1 000) ; base 6
Returns "4344"
(format nil" ""7:R" 1000) ; base 7, with commas
Returns "2,626"
(format nil" "" 17R" 1 000) ; base 17
Returns error: radix out of range

T
Prints a tab
(format nil "NY"" BTAlbany\n "" BTNYC")
Returns "NY Albany

NYC"

X
Prints in base 16 (hexadecimal)

prints commas
@ prints number's sign even if positive

(format nil ,,"" X" 1 00)
Returns "64"
(format nil ,,"" :@X" 1 0000)
Returns "+2,710"

$
Print in dollars and cents format

number's sign before padding
@ number's sign even if positive

(format nil ,,"" $" 12.3456)
Returns "12.35"
(format nil " "" $" 12.1)
Returns "12.10"
(format nil ,,"" @$" 123.3456)
Returns "+123.35"
(format nil "$ "" $" 123.3456)
Returns "$123.35"

%
Prints newline characters

; tab of B spaces

; add plus sign

; add $ sign

(format nil "Skip two lines'" 2%and start again")
Returns "Skip two lines

and start again"

Takeformat slowly and you'll learn to love it.

Numbers and Characters 89

Chapter 8
The Desktop

Traditional Interleaf 5 provides its own graphical user interface which uses the desktop
metaphor. Some versions, however, now use another windowing system's desktop - for
example, the Motif version of Interleaf 6 has shipped and versions for Microsoft Windows
and NT are under development as this book is being written. In this chapter, we'll examine
ways in which the traditional Interleaf 5 desktop can be manipulated by InterleafLisp. This
includes operating on desktop objects - opening them, closing them, etc.

Desktop objects
The Interleaf 5 desktop is hierarchical. At the highest level- the parent of all parents - is
the desktop itself. It can contain containers of various sorts, such as folders, cabinets and
books. These containers have their own methods. For example, books know how to index
their contents. Then there are a variety of non-container objects, such as documents, image
icons, lisp scripts, and palette icons. Of course containers may be nested any way the user
wants. In addition, there are special objects such as the dictionary, clipboard, profile
drawer, system cabinet, and custom cabinet. Finally, there may be new classes of objects
created by other developers; for example, someone might make a "card file" document
with special functionality and make it into a new class of object, or a "vault" container that
cannot be opened without first entering the proper password.

Getting Desktop Objects
As with other objects, a desktop object's name is a property of the object and must not be
confused with the object itself. So, to address a desktop object, you have to first get ahold of
it somehow. Interleaf Lisp provides a variety of techniques for doing so. Some of the impor
tant objects that come with the system have their own variables:

dt-desktop - current desktop
dt-c1ipboard - the clipboard

92 ADVENTURER'S GUIDE TO INTERLEAF LISP

In other cases, there are functions which easily provide access to particular objects.

Function 8-1: dt-find-profile
(dt-find-profile)
Returns: the profile script container
Function 8-2: dt-find-system
(dt-find-system)
Returns: the SystemS cabinet
Function 8-3: dt-find-custom
(dt-find-custom &optional argument)
Returns: Custom cabinet, Selection cabinet or No Selection cabinet
E.g. (dt-find-custom nil)

Returns the No Selection Cabinet

If you supply no argument, dt-find-custom returns the Custom cabinet. An argument of nil
returns the No Selection cabinet. An argument of non-nil returns the Selection cabinet.

When you use one of these functions and look at 'what gets returned, it wi11look something
like # <dt-obj Ox71fOOO>. The code number is used for internal purposes. (It's actually
the memory address where the object begins.) About the only good it does you is that if,
while debugging, you notice two objects have the same code, you can be pretty sure they are
the same object.

Of course you need to be able to get at any object, not just the ones that come with the sys
tem:

Function 8-4: dt-object
(dt-object name)

Returns: desktop object with that name
E.g. (dt-object "mytile.doc'J

Returns the object named "myti/e.doc"

You can also specify a pathname. That pathname can be relative to the desktop or not. For
example, if you have a document whose full pathname is "/u/serviette/chris/desktop/big
book.booI5CardDraw.doc," you could use either of the following two expressions:

(dt-object "/u/serviette/chris/desktop/bigbook.boo/5CardDraw.doc")
(dt-object "bigbook.boo/5CardDraw.doc")

Notice that the desktop-relative pathname does not begin with a slash. Also be aware that
pathnames may look different in your operating system. Finally, notice that we use the file
name as it appears to the operating system, which may be different from the way it appears
on the desktop; most operating systems, for example, don't like spaces to be part of file
names, and some don't like filenames to be longer than 8+3 characters; Interleaf 5 lets you
get around this limitations, but dt-object wants the operating system name. If you have a
desktop object and want to get its pathname, you can use:

The Desktop 93

Function 8-5: dt-path

(dt-path object &key)

Returns: path name to object

E.g. (dt-path mydoc :part :backup)
Returns "bigbook.boo/mydoc.doc, 1"

If you provide the :root keyword with an argument of nil, you'll get just the filename as it
appears to the operating system. If you give it the key :part, it will give you the pathname to
the object's "part" files. These are files that contain information related to the main docu
ment. The Interleaf software automatically maintains these files invisibly to the end user.
For example, if a user cuts, copies, moves or renames a file on the desktop, all the associated
parts files will be handled appropriately. There are several different sorts of part file:

Keyword Description UNIX
:main main document

:backup backup file ,1

:checkpoint created when a checkpoint save is done ,2

:crash created when user chooses "file" from crash ,3
menu

:work-in-progress work-in-progress file ,4

:methods Interleaf Lisp applied to the main document ,5

:saved-data data placed on document through Lisp ,6

:image-summary linked image file information ,7

:autonumber-summary information about autonumbers ,8

:index-summary information about the main document's index ,9

:attribute attribute information .@

(prefix)

:parts Lisp scripts ,21-9

Matters are different with Interleaf 5 for DOS. Because of the eight-character (and three
character extension) limitation imposed by DOS, Interleaf 5 uses a different scheme for
denoting the different types of files. (Of course on the Interleaf 5 desktop, the user can use
the usual 31-character file names.) It "hashes" the names so that the operating system name
may look quite different from what's on the desktop.

94 ADVENTURER'S GUIDE TO INTERLEAF LISP

Containers Folders, cabinets, drawers and books end with a distinctive
3-character code:

Folders: fdr
Cabinets: cab
Drawers:drw
Books: boo

E.g., "System 5" cabinet is "systecab" when looked at in
DOS

Documents For the main document (the one that shows up as an icon),
15 provides a .doc extension.

Catalogs have a .sty extension

The parts files that have ",number" extension in Unix instead
have a .d#number extension. So, a Unix file called
"Mydoc.doc,5" would show up in DOS as "mydoc.d#5."
When the part number is double digit, 15 switches to letters.
So the Unix "Mydoc.doc,21" becomes the DOS "mydoc.d#I"
and "Mydoc.doc,22" becomes "mydoc.d#m"

Lisp files .Isp extension

The following function will put into a stickup the file system name of any selected icon. (It
uses a function we have not yet explained.)

8-1 show-dos-name-stkup
(defun show-dos-name-stkup 0

; make sure we're in the right container
(dt-set-container (dt-pointer-container))
(stk-open (dt-path (dt-child-selected))))

The following does the same but puts the name into a stayup (using a function we haven't
yet explained either), so you can refer to it as you do other things.

8-2 show-dos-name-stayup
(defun show-dos-name-stayup 0
; make sure we're in the right container

(dt-set-container (dt-pointer-container))
(stayup (dt-path (dt-child-selected))))

Put this into your Selection cabinet if you plan on using it regularly.

The following function returns the name as it appears on the desktop.

Function 8-6: get-name
(tell object mid:get-name)
Returns: object's desktop name
£.g. (tell object mid:get-name)

Returns "MyWork"

The Desktop 95

Notice that this does not return the extension, e.g., it returns "My Work," not
"MyWork.doc."

You might want to get at the selected icon. But, with Interleaf 5, you might have two icons
selected, each in its own container (a folder, cabinet, etc.). You can specify the working
directory.

Function 8-7: dt-get-container
(dt-get-container)
Returns: current container
Function 8-8: dt-set-container
(dt-set-container container)

Sets container

E.g. (dt-set-container *dt-desktop*)
Returns the desktop

Suppose you have several directory windows open at once on the desktop. The current con
tainer, unlike the current document, is not necessarily the one the mouse pointer was in most
recently (and whose header changed color to indicate this). It is, roughly, the container you
most recently worked in. But the notion of "working in" can be complex. So, to work in a
container programmatically - for example, to open a document within it - you will usu
ally want to force the container to be the current container. Here is one technique.

8-3 make-current-container
(defun make-current-container (dtobj)
; sets parent of dtobj to be the current container

(let (container)
; get container of dtobj
(setq container (tell dtob mid:get-parent))
; set container
(dt-set-container container)))

If you want the container the mouse pointer is currently in, the following will get it for you:

Function 8-9: dt-pointer-container
(dt-pointer-container)
Returns: container mouse is currently in, or nil if mouse isn't in a container
Function 8-10: dt-child-match
(dt-child-match container &optional name class)
Returns: desktop object of name in container of type class
E.g. (dt-child-match mybook "mydoc" dt-document-class)

This will look in the container mybook (which is a desktop object, not a name) for a docu
ment named "mydoc." If you do not specify a name, dt-child-match will return the first

96 ADVENTURER'S GUIDE TO INTERLEAF LISP

object in the container. If you do not specify class, it will return all objects of every type in

the container.

The notion of the "first" or "last" objects in a container is problematic. Usually, the system
understands the order of objects in a container the way human beings do: "First" means at
the top and to the left. Sometimes, however, the order is different. So don't count on being

able to predict the order.

You can look at every object in a container:

Function 8-11: get-child

(tell container mid:get-child)

Returns: first object in container, or nil if no objects in it

E.g. (tell mybook mid:get-child)
Returns first document in the mybook container object

Once you have one child, you can get all the others.

Function 8-12: get-next

(tell object mid:get-next)

Returns: next child, or nil if no other objects

E.g. (tell mydoc mid:get-next)
Returns next object in mydoc's container

Interleaf 5 includes functions for getting only the selected children or non-selected children
of a container:

Function 8-13: dt-child-not-selected

(dt-child-not-selected &optional container)

Returns: first unselected child in container; if all selected, nil

Function 8-14: dt-child-selected

(dt-child-selected &optional container)

Returns: first selected child in container; if none selected, nil

Since you may have multiple files selected, all in different containers, this function gives
you the first one selected in whatever is the current container (or in the container object
specified as an argument). Since it often isn't obvious what the current container is, you are
well advised to specify the container whenever possible.

Hint: You may well find yourself using dt-child-selected (and its variants) quite frequently.
As a shortcut, you could load the following function:

8-4 get-sel
(defun get-sel 0
; returns the selected object and posts name in a stickup to confirm

(if (not (dt-child-selected))

)

(stk-open (con cat "No selected object in"
(tell (dt-get-container) mid:get-name)))

; else, if something is selected
(progn

; optionally, post name in stickup
(stk-open (tell (dt-child-selected) mid:get-name)) ;
(dt-child-selected))) ; return selected object

; try it
(setq doc (get-sel))

You can get all the contents in one fell swoop:

Function 8-15: dt-children
(dt-children &optional container argument)
Returns: all contents of a container
£.g. (dt-children mybook :selected)

Returns list of all selected contents

The Desktop 97

The arguments are :selected, :not-selected, or :all. If you don't specify any arguments, it
will default to giving you all.

Here is a function that checks a selected document to see if it has a backup file.

8-5 check-for-backup
(defun check-for-backup 0
; checks selected doc to see if there is a backup file
(let (doc (backup-doc nil))

))

(setq doc (dt-child-selected))
; is there a selection?
(if (not doc)

(stk-open "Nothing selected. 'j
; else
(progn

; get path to backup
(setq backup-doc (dt-path doc :part :backup))
; is there a file with that name?
(if (probe-file backup-doc)

(stk-open "There is a backup. 'j
; else
(stk-open "No backup. 'j)))

backup-doc

This function uses probe-file, which we have not discussed. Probe-file returns t if there's a
file with that pathname, and nil if there isn't.

98 ADVENTURER'S GUIDE TO INTER LEAF LISP

The following checks all the children of a container and builds a list of those that have no

backup file.

8-6 check-for-backups
(defun check-for-backups (container)
; checks all of container's children for backup files
(let (doc-list doc (no-backup-list nil) (counter 0))

; get all the children
(setq doc-list (dt-children container))
; check each for backup
(while (setq doc (pop doc-list))

; is it a doc? (uses a function not yet discussed)
(if (is-of-class doc dt-document-class)

(progn
; increase counter
(inc counter)
; is there backup?
(if (not (probe-file (dt-path doc :part :backup)))

; put it on list
(push doc no-backup-list)))))

; report the number of no backups
(stk-open (format nil "Of '" D documents, '" D had no backup."

counter (list-length no-backup-list)))
; return the list

no-backup-list))

Here are two brief functions that will look through a container and find every child, even
containers nested within the original container. It goes to the current open document and
creates a separate line for each document name, with a tab for each level of hierarchy. In
essence, the following functions will build an outline view of the contents of a container.
(They use other functions not yet discussed.)

8-7 is-container
(defun is-container (obj)
; returns t if obj is a container

(is-of-class obj dt-container-class)
)

8-8 got-a-child
(defun got-a-child (obj lev)
; creates line and inserts name of obj

(let (m (text III))
;get a marker
(setq m (doc-point-marker))

; create string, one tab for each successive level
(repeat lev

(setq text (concat text "It',))
(setq text (con cat text (tell obj mid:get-name) "In',)
; move marker down to next line
; first get a marker at the end of the line
; and then move it one token ahead
(setq m (tell (doc-point-line) mid:get-marker t))
(tell m mid:move-by 1)
; go to marker
(doc-goto-marker m)
; insert the text
(tell m mid:insert text)

))

8-9 get-children
(defun get-children (container level)
; recurses through container getting all children,
; and sending each to got-a-child

))

(let (children child)
(setq children (dt-children container))
(while (setq child (pop children))

; is it a container?
(if (is-container child)

(progn
(inc level)
(got-a-child child level)
(get-children child level))) ; recurse

; else not a container
(progn

(got-a-child child level)))
(dec level)

; give it a try, with the Create cabinet as our sample
(get-children (dt-find-create) 0)

The Desktop 99

The function get-children gets all the children in a container, looks at each, and sends it to
got-a-child, which constructs a new line. If get-children comes across a child which is
itself a container, it recurses, i.e., it calls itself from within itself and passes itself the child
that is a container. Get-children then looks at all of the children of the new container, and so
forth, until it has examined every single child.

Sometimes an end user is trying to access a document buried within several layers of con
tainers. Usually a user gets there by opening each container, each of which makes its own

100 ADVENTURER'S GUIDE TO INTERLEAF LISP

window on screen. The following function opens an object and simultaneously closes its
parent, keeping the user's screen cleaner. (This uses the mid:open method, which we
haven't yet discussed.)

8-10 open-and-close
(defun open-and-close 0
;Opens selected item and closes its parent, unless the parent is the
desktop.
(let (obi parent)

))

; set container to where the mouse now is
(dt-set-container (dt - pOinter-container))
; anything selected?
(if (not (setq obi (dt-child-selected)))

(stk-open "Nothing selected. 'J
; else - something is selected
(progn

; make it unselected
(tell obi mid:set-props :selected nil)
; open it
(tell obi mid:open)
; close the parent, unless it's the desktop
(if (not (equal *dt-desktop* (setq parent (tell obi mid:get-parent))))

(tell parent mid:close))))

; try it out, binding desktop A 0
(kbd-bind kbd-dt-map "I AO" 'open-and-close)

If you use this method of opening a container, you may want to open all the parents until you
reach the desktop.

8-11 open-parents
(defun open-parents 0
; opens parent of selected item
(let (container parent)

))

; set container to where the mouse now is
(dt -set-container (dt-pointer-container))
(setq container (dt-get-container))
; get parent
(setq parent (tell container mid:get-parent))
; open it
(tell parent mid:open)

; try it out, binding desktop A C
(kbd-bind kbd-dt-map "\ A c" 'open-parents)

The following will close the current container and open its parent.

8-12 open-parent-and-close-current
(defun open-parent-and-c/ose-current 0
; opens parent of selected item
(let (container parent)

))

; set container to where the mouse is now
(dt-set-container (dt-pointer-container))
(setq container (dt-get-container))
; get parent
(setq parent (tell container mid:get-parent))
; if not desktop
(if (not (equal *dt-desktop* container))

(progn
; close current
(tell container mid:close)
; open parent
(tell parent mid:open)))

; try it out, binding desktop A A

The Desktop 101

(kbd-bind kbd-dt-map "\ A a" 'open-parent-and-close-current)

Properties
Now that we can get desktop objects, we can get and set their properties, which we do, of
course, by telling them to set their properties.

Function 8-16: get-props

(tell dtobj mid:get-props &optional &keyword)

Returns specified properties of dtobj

E.g. (tell (dt-child-selected) mid:get-props :opened)
Returns t if the selected obj is open

Function 8-17: set-props

(tell dtobj mid:set-props &keyword value)

Sets specified property of dtobj to value

E.g. (tell (dt-child-selected) mid:set-props :save-default :ascii)
Sets the default save method of the selected object to ascii

The properties you can get or set are:

102 ADVENTURER'S GUIDE TO INTER LEAF LISP

Argument Return
:window-position Cons of x and y coordinates of upper left edge of the window posi

tion, in screen pixels
:window-size Cons of width and height of window in screen pixels

:icon-position Cons of x and y coordinates of upper left edge of icon

:icon-size Cons of width and height of icon

:opened t if icon is open, nil if not

:selected t if icon is selected, nil if not

:autopositioned t if icon is autopositioned, nil if not

:save-default Format to save document in (:fast, :ascii or nil for inherit)

:attributes-control Lists document attributes

:catalog-exports List of what a catalog exports (:components, :auto-numbers,
:frames, :diagramming-objects, :tables, :page-properties, :headers
footers)

Let's look at one example. If you use your operating system to copy a document into a book,
the operating system doesn't do the "bookkeeping" Interleaf requires to know where that
document is supposed to be in the set of chapters composing the book. So, the next time you
open the book icon, the system will report that there is an autopositioned document in it.
Unfortunately, it doesn't tell you which is the autopositioned icon. Here is a script that
reports this to you.

8-13 autoposition-report
(defun autoposition-report 0
; reports which selected docs were auto-positioned
(let (book (doc-list nil) doc (auto-list nil) (names ""))

; get the book
(setq book (dt-child-selected))
; make sure it's a book
(if (not (is-of-class book dt-book-class))

(progn
(stk-open "Not a book. 'J
(quit)))

; get list of docs
(setq doc-list (dt-children book))
; check each one
(while (setq doc (pop doc-list))

(if (tell doc mid:get-props :autopositioned)
(progn

; build list
(push doc auto-list)
; build string of names of autopositioned docs
(setq names

(concat names (tell doc mid:get-name) 10))))
)
; report
(if auto -list

(progn

The Desktop 103

(stk-open (con cat "Autopositioned icons:" 10 names)))
; else

))

(stk-open "No autopositioned icons'J)
; return list of autopositioned icons
auto-list

One reason we had this function return the list of autopositioned icons is so we can automate
the next step:

8-14 de-auto position
(defun de-autoposition ()
; makes any selected docs that were auto-positioned not auto-positioned

))

(let (doc (a-list nil))
; get the list of autopositioned icons
; if any, then do something
(if a-list

(progn
(setq a-list (autoposition-report))
; select them
(while (setq doc (pop a-list))

(tell doc mid:select))
; open the container - lisp seems to like this
(tell (dt-child-selected) mid:open)
; do a book sync of all selected documents
(dt-sync-selected (dt-child-selected))))

The following script is a little unusual in that it has to be run by using the Load function on
your Custom menu.

8-15 jump-script
(defun jump-script (doc)
; makes this script's icon jump up and back
(let (pos new-pos)

; get the current icon position
(setq pos (tell doc mid:get-props :icon-position))
; set a new icon position 15 pixels higher
(setq new-pos

104 ADVENTURER'S GUIDE TO INTER LEAF LISP

(cons
(car pas)
(- (cdr posy 15)))

; move icon 15 pixels up
(tell doc mid:set-props :icon-position new-posy
; restore it to its original position
(tell doc mid:set-props :icon-position pas)

))

; now try it out, using this very icon
(jump-script (dt-script))

When you load this script, it will jump up 15 pixels and then settle down again. It gets the
current icon position, which is returned as a cons of the lefUright axis and the top/bottom
axis. It then subtracts 15 from the cdr of the cons, sets the icon position to the new height,
and then returns it to the original position.

When this de/un gets called by this script, the object it is passed is the actual script itself.
That's the purpose of dt-script:

Function 8-18: dt-script

(dt-script)

Returns: the desktop object of the script currently being interpreted

The following script uses jump-script to make all the objects in a container jump up and
down, in sequence.

8-16 wave
(defun wave (container)
; makes all docs in current window jump and down once in wave-like
fashion
; uses jump -script
(let (child)

; get first child
(setq child (tell container mid:get-child))
; go through the children
(while child

; make the child jump
(jump-script child)
; get next child

(setq child (tell child mid:get-next)))
))

You will notice that there is a very short delay after each jump and possibly the sound of disk
access. That's because Interleaf 5 has to save the icon position information for each icon in a

The Desktop 105

separate file. The ability to adjust the position of the icons is actually quite important in a
system such as Interleaf 5 where the visual arrangement of documents is considered a cru
cial part of the information about those documents. For example, the order of documents in
a book window determines the order of the chapters in the book.

Function 8-19: dt-create
(dt-create name &optional :type icon-type)
Returns: new desktop object of type icon-type and name name
E.g. (dt-create "newfile" :type 'book)

Returns new book object

Dt-create allows you to create instances of a class. Assuming that the class has no contents
as part of its definition, the objects you create also will have no contents. But they will have
methods: if you create a book, for example, the popup menu when a document is selected
will show all the usual book methods (indexing, TOe, etc.). (If you leave off the word :type,
the system will create a plain host file, i.e., an empty file icon that shows up on the desktop
as computer paper.)

Function 8-20: dt-search-position
(dt-search-position old-position container)
Returns: a cons for a new position for an icon in container near old-posi

tion
E.g. (setq old-pos (tel/ dtobj mid:get-props :icon-position))

Returns (638 . 224)
(dt-search-position old-pos (dt-get-container))
Returns (654 . 240)

If you tell it that the old position is (cons 0 0), it will give you the first available position.
The following creates a new icon in the first open spot in a container:

8-17 dt-create-and-position
(defun dt-create-and-position (icon-name icon-type container)
; creates an icon in the named container

(let (obj new-posy
;set container
(dt-set-container container)
; create object
(setq obj (dt-create icon-name :type icon-type))
; get new position
(setq new-pos (dt-search-position (cons 0 0) container))
; move icon to new position
(tel/ obj mid:set-props :icon-position new-posy
))

You may well want to position an icon as the last in a book, however. The following will do
that:

106 ADVENTURER'S GUIDE TO INTERLEAF LISP

8-18 position-icon-as-Iast
(defun position-icon-as-Iast (obj container)
; positions obj as last icon in container

))

(let (children last-child old-pos new-posy
; set the container
(dt-set-container container)
; get list of all children
(setq children (dt-children container))
; get last child in container
(setq last-child (car (last children)))
; get position of last-child
(setq old-pos (tell last-child mid:get-props :icon-position))
; gets new position
(setq new-pos (dt-search-position old-pos container))
; move icon to new position
(tell obj mid:set-props :icon-position new-posy

Function 8-21: dt-checkpoint

(dt-checkpoint)

CheckpOints all open documents and returns t

This forces a checkpoint save (i.e., an automatic save of a document).

Function 8-22: dt-refresh

(dt-refresh)

Redraws the screen and all open windows, and returns nil

This does what a user does when she selects Refresh from the desktop menu.

Function 8-23: dt-sync-document

(dt-sync-document object &optional :save)

Does a sync on the object; if :save, then resaves it also

E.g. (dt-sync-document dtobj :save)

Performs a sync, updating all the book information about a file.

Function 8-24: dt-sync-se/ected

(dt-sync-selected container &optional :save)

Does a sync on all the objects selected in container; if :save, then resaves
it also

E.g. (dt-sync-container my-book :save)
Does a sync on all the selected documents in my-book

This syncs all the selected documents at once.

Function 8-25: dt-line-up

(dt-line-up container)

Lines up selected objects in container

The Desktop 107

This does within any container what the Line up choice allows an end user to do to the
selected icons within a book: it aligns the icons, spaces them evenly, and generally
improves the scenery.

Function 8-26: toc-create-se/ected

(toc-create-selected container)

Creates table of contents of selected documents within container

To create a table of contents for all the objects within a container, you could use the follow
ing:

8-19 create-toc-for-all
(defun create-toc-for-all (container)
; creates a TOC for all documents in container

))

(let (children child)
; get all the unselected children
(setq children (dt-children container :not-selected))
; select them
(while (setq child (pop children))

(tell child mid:set-props :selected t))
; create table of contents for all children
(toc-create-selected container)

Function 8-27: dt-size-container-to-contents

(dt-size - container-to - contents container)

Sizes container to its contents
E.g. (dt-size-container-to-contents (dt-get-container))

Sizes current container to its contents and returns cons of
window size in pixels

This command redraws a container window so that it just fits the contents of the container.

The following will resize a window to its contents whenever you press AS on the desktop:

8-20 size-container-to-contents
(kbd-bind kbd-dt-map "\ AS"

'(dt-size-container-to-contents (dt-pointer-container)))

Function 8-28: print

(tell dtobject mid:print printer-name)

Prints dtobject to printer printer-name

108 ADVENTURER'S GUIDE TO INTERLEAF LISP

The following will give you a list of printers so you can find the printer name.

Function 8-29: *printers*

printers
Returns: list of installed printers

The following builds a stickup of all printers and lets the user choose one. (This function
may not work in your operating system environment.)

8-21 choose-printer
(defun choose-printer 0
(let (item name-list printers choice names p-Jist net-name

(name-string "')
(done nil)

(ctr 0))

(setq printers *printers*)
(if (not printers)
(progn

(stk-open "No printers found')
(topleve!)))

; build list of names
(setq p-list (copy-Jist printers))
(while (setq item (pop p-Jist)) ; item is one printer's plist
(inc ctr)
; build a name with a number in front of it
(setq name-string

(concat name-string
(itoa ctr)

(fourth item)
10)))

; display list and make choice
(while (not done)

(setq choice "")
(setq choice (stk-open (concat "PRINTERS" 10

"Enter number of printer" 10
name-string) :input 3 :Ieft-justify))

(if (not choice)
(quit))

(if « = (atoi choice) ctr)
(setq done t))

; ok choice

The Desktop 109

(if (not done)
(stk-open (concat "Choose number between 1 and" (itoa ctr))))

(if (not choice)
(top/eve/))

; look up number on printer list to get net name
(setq net-name (second (nth (1- (atoi choice)) printers))))

; return netname
net-name
))

Function 8-30: copy

(tell dtobject mid:copy parent &optional :link)

Returns a copy of dtobject and places it in container parent

E.g. (tell doc mid:copy *dt-desktop*)
Creates copy on desktop of selected document

Surprisingly, the copy that is returned by this function is not visible until you tell a container
to insert the copy, as explained in the next function.

If you specify :link followed by :simple, :original, or :container, the copy will be a linked
copy to the document, to the original object to which the document is linked, or to the docu
ment's container.

Function 8-31: insert
(tell container mid:insert dtobject)

Inserts dtobject into container and deletes dtobject from its current con
tainer

Returns t if it succeeds, nil if it doesn't
E.g. (tell myfo/derobject mid:insert doc)

Cuts myfo/derobject from current container and inserts it into this-folder

As mentioned immediately above, if you make a copy of a desktop object, insert simply
inserts it into the container object. If the desktop object is already inserted (i.e., is visible on
the desktop), the object is cut from where it is and is copied into the container object.

Here is a general-pupose utility for copying a file, giving it a new name, and placing its icon
in a suitable place on a container.

8-22 copy-and-name
(defun copy-and-name (doc new-name container)
; copies doc into container and gives it new-name

(let (doc-copy new-posy
; make the copy
(setq doc-copy (tell doc mid:copy container))

110 ADVENTURER'S GUIDE TO INTERLEAF LISP

)

; give it a new name
(dt-set-property doc-copy :icon-name new-name)
; insert it
(tell container mid:insert doc-copy)
; get next available spot in window
(setq new-pos (dt-search-position (cons 00) container))
; move it to that spot
(tell doc-copy mid:set-props :icon-position new-posy

; try it ... make a copy of mydoc.doc, rename it, and put it into current
container
(copy-and-name

(dt-object "mydoc.doc'J
"mydoc -newname" (dt-get- container))

; Returns cons of new document's position

Suppose you want to cut a document from a folder and insert it into your Create cabinet
where it will serve as a template.

8-23 move-new-template
(defun move-new-template (doc)
; cuts and pastes doc into the Create. cab

(let (create-cab)
; find the create cabinet
(setq create-cab (dt-find-create))
; cut the doc
(tell doc mid:cut)
; do the move - cut doc and move it into Create. cab
(tell create-cab mid:insert doc)
))

You might want to add some code (using dt-search-position) to put the newly-created icon
into the next available spot in the Create cabinet. (See dt-create-and-position.)

Function 8-32: delete

(tell container mid:delete dtobject)

Deletes dtobject from container

Returns t if successful, nil otherwise

E.g. (tell my-book mid:delete (dt-child-selected))
Deletes selected icon from my-book container

This deletes not only the icon but also any backup, crash and Lisp files. This does not put a
copy of the file onto the clipboard; there is no recovering the file after you delete it.

The Desktop 111

Function 8-33: open

(tell object mid:open &optional keywords)

Opens object according to manner specified by keywords and returns t

E.g. (tell (dt-child-selected) mid:open :hide-side-bar t)
Opens selected document with component bar hidden and returns t

The keywords are:

Keyword Argument Comment
:page # Open to specified page number

:hide-window Opens but is not visible to user

:hide-pulldowns Hides header boxes

:hide-side-bar Hides component bar

:hide-horizontal-scroll Hides righthand scroll bar

:hide-vertical-scroll Hides bottom scroll bar

:hide-message-bar Hides message bar

Works
if already

open
y
y
n
n

n

n

n

:hide-title-bar Hides bar with icon name if window opened without n

:page-to-page-mar
gin

header boxes

Size of black border between pages in a window n

In the table's Arg column, t indicates that it takes a t or nil as an argument; a # means it takes
a number. The following illustrations shows a document opened with the usual parameters
and one opened using some of the keywords listed above.

Opening a document that is already open on the desktop will cause it to come in front of any
windows that may be obscuring it; this is what happens when the user opens an icon that is
already open. As the table shows, some of the keywords will take effect when opening an
already-opened document; others will not. You cannot, for example, tum the headers on
and then off. For that you would first have to close the document and then open it the way
you like.

One of the keywords that does have an effect on an open document is :page. This allows you
to display various pages very easily. The page number is the page number the user would
see. For example, if you were in Chapter 2 and wanted to go to page 22, you would say (tell
doc mid:open :page 22), and not have to worry about whether 22 was an absolute page
number or an offset.

112 ADVENTURER'S GUIDE TO INTERLEAF LISP

page-to-page margin

Helvetlctl 12

,LunCllon 7 -2 •.•.•.•....• Ot-Scrlpl
(dl-scrlpt)
Returns: the desktop object of the script cur-

rently being interpreted
The following ,cript ",e, jump-script to make all
the objecl$ in a container jump up and down, in se
quence.

"'-3IWa.""
(defun wa'lle O;?

A

; USes Jump-Script 7-24:;?
(let (child container pos new-pos)~
... .; get container -- wherever the mouse is;?
.... ~setq container (dt-pointar-container»);!
... .; get first child;?
... ..{setq child (tell container mid:gel-child»:;?
... .: go through the children;?
... ,.(while child:;?
'-fo'-~ maKe the child jump:;?
... ~ ... ~(jump-script child);?
... ~ gel nexl child:;?
... ,.{setq child (tell child mid:get-nexl»);?

title bar

horizontal scroll -mmMEZlE2ITllillITllZlEESIIiTI:rITill['llillZlEZlEG:E!1ijl

(tell object mid:open
:hide-pulldowns t

:hide-horizontal scroll t
:hide-vertical-scroll t

:hide-side-bar t
:page-to-page-margin 1)

.J:unctlon 7 -2 .. _._._ .. _.~-Scripr
(dl-soripl)
Returns: the desktop abject of the script cur-

rently being interpreted

The following ,cript use, Jump-script to make all
the objects in a container jump up and down, in se
quence,

"'-3Iwa •• ,~
(defun wave O:;?
; Uses Jump-Script 7-24;?
(let (child container pos new-pos):;?
.... ~ get container -- wherever the mouse is:;?
... isetq container (dt-pointer-container»:;?
.... ~ get firs1 child;?
.... t:selq child (tell container mid:get-child»:;?
.... ~ go through the children:;?
.. ~)(whHe child:;?
.... I'-.• ~ maf{e the child jump:?
....) ... ~ump-script child)::;:>
.... h get next child:;?
....)(setq child (tell child mid:get-next»):;?

»,
: now execute the script::?
~a,,)

There are a set of desktop variables you can get and set.

Function 8-34: dt-get-vars
(dt-get-vars &optional keywords)
Returns: value of all variables, or of keywords if specififed
E.g. (dt-get-vars :rescan-enabled :rescan-min-idle)

Return (:rescan-enabled t :rescan-min-idle 3)
Function 8-35: dt-set-vars
(dt-set-vars &optional keyword value)

vertical scroll

The Desktop 113

Sets keyword variable to value, and returns value of last value set

E.g. (dt-set-vars :rescan-enabled nil :rescan-min-idle 4)
Returns 4

Some of the variables available to you are:

Keyword Comment Default
:rescan-enabled

:rescan-min-idle

:doc-view-max
open-docs

:book-max-open
docs

:desktop-max-open
docs

:path-limit-Iength

:prop-menu

:Iink-prop-menu

:override-clipboard
lock

Lisp data

If t, desktop automatically updates itself by scanning
during idle time for changes to icons

Minimum of number of seconds of idle time before
desktop rescan

When in "View book as document" mode, number of
documents than can be open simultaneously

How many documents can be open simultaneously
in a book

Maximum number of documents that can be open
simultaneously on the desktop

Maximum number of characters in a pathname

The prop sheet object for the document property
menu

The prop sheet object for the document property
menu for linked objects

If t, overrides the lock that prevents two users from
accidentally working on the same desktop simulta
neously

3

4

32

256

nil

Effectivity attributes are one way of putting information into a document without having
that information show up on the page. But there's another way. You can attach data through
Lisp that's visible only through Lisp. And you can have that data saved across sessions (in a
comma 6 file for data attached to desktop icons) or saved just during a particular session.

Function 8-36: put-saved-data

(tell object mid:put-saved-data :category data)

Returns: data
E.g. (tell (doc-point-cmpn) mid:put-saved-data :owner "mary')

Returns "mary"

Function 8-37: get-saved-data

(tell object mid:get-saved-data :category)

Returns: data

E.g. (tell (doc-point-cmpn) mid:get-saved-data :owner)
Returns"mary" (if put-saved-data used as in above example)

114 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 8-38: put-data

(tell object mid:put-data :category data)

Returns: data
E.g. (tell (doc-point-cmpn) mid:put-data :owner "mary')

Returns "mary"

Function 8-39: get-data

(tell object mid:get-data :category)

Returns: data
E.g. (tell (doc-point-cmpn) mid:get-data :owner)

Returns"mary" (ifput-data used as in above example)

These functions allow you to create your own category of data and attach it to any object
not just to components, but to any object Interleaf knows about, including desktop icons,
and graphic objects. A category can be anything you like. And the type of data can be any
type you want. For example -

(tell object mid:put-data :number-of-times 1)
Returns 1
(tell object mid:get-data :number-of-times 1)
Returns 1
(tell object mid:put-data :users (list "Vic" "Ev" "Carol" "Kathy")
Returns ("Vic" "Ev" "Carol" "Kathy")

These two matching sets of functions are alike except that the saved ones save the data
across multiple Interleaf sessions; the others maintain the data only during the session.

Chapter 9
Inside the Document

With Interleaf Lisp, you can get at virtually any aspect of a document. In this chapter, we'll
explore how you can manipulate components and the text contents of components. In addi
tion, you'll learn how to set document-wide properties such as page size.

Document structure
Interleaf documents can be viewed as a hierarchy of objects: a document that contains com
ponents that contain inline components and frames, etc. Frames in turn can contain graphic
objects and even their own components (through microdocuments). In addition, Interleaf
documents use a master-instance paradigm: existing objects are instances of their masters.

But there are other ways of looking at documents. For example, you could look at a docu
ment not as a collection of objects, but as text and graphics laid out on pages.

In fact, Interleaf Lisp has three different views it can take of a document:

III The structural view looks at a document in terms of the relation of the various objects
in it, such as components and frames. It knows that a particular subhead component is
followed by a particular para, but it doesn't know precisely where on the page those
two elements are.

III The format view considers the document in terms of the text and graphics on the page.
The format view knows where every line ending is and where every object is posi
tioned on every page.

III The name view is more abstract. It understands the document primarily in terms of the
various masters and instances in it. For example, through the name view, you can look
at a master and get at all its instances, even if those instances are scattered hither and
yon throughout the document.

From a user's point of view, the structural view corresponds to looking only at the compo
nent bar (although this over simplifies it because inlines, frames and hidden components

116 ADVENTURER'S GUIDE TO INTER LEAF LISP

are also part of the structural view). The format view corresponds to looking only at what
you'd see if you turned the component bar off. And the name view in a sense corresponds
roughly to what the user "sees" when looking at a component property sheet; in applying a
change globally, you are affecting every instance of that component or graphic object (i.e.,
every object with that name) no matter where it is scattered in the document.

Interleaf Lisp allows you to move through a document using any of these three axes.

Because of the structured nature of Interleaf documents, you can sometimes navigate by
moving to the next or previous object, and sometimes by moving to the child or parent of an
object. For example, for a particular component in the structural view, the next would be the
next component. But the child of it might be an inline component. Similarly, the parent of a
component is the document itself.

A word about tokens is in order here. Taking a very unstructured view, an Interleaf 5 docu
ment consists of a series of tokens. Tokens generally consist of two types of information: the
type of token they are and their data. Tokens in a document are typically character tokens
which consist of the information that they're a character token and the character itself.
When you select text and change its font properties, the system invisibly inserts font tokens
that contain that information. Likewise, there are frame and index tokens, among others.
We will refer to tokens throughout this chapter even before we get to the section that
explains them more fully.

But before we learn how to navigate through a document, we have to learn how to get a
document object in the first place.

Getting a document
To work in a document - including getting information about its contents or structure -
the document must be open. But "open" doesn't necessarily mean "visible." With I-Lisp,
it's possible to open a document in such a way that it doesn't open on screen. In the previous
chapter, we looked at the various optional arguments when opening a document:

Function 9-1: open

(tell desktop-object mid:open &args)
Returns: t if object can be opened

E.g. (tell (dt-object "mydocument.doc'') mid:open :hide-window t)
Opens document (although invisibly) and returns the document object

But how do you get the open document (visible or not) as an object so you can tell it do
things?

Function 9-2: *document*

The I-Lisp variable *document* is always bound to the current document. The current doc
ument is, by definition, the document your mouse most recently passed over.

Inside the Document 117

This is a little tricky, however. If you have two documents open and you've been working in
one of them, entering text and so forth, and then you move your mouse out of that document
and graze the corner of the other document, that other document's header bar may turn
white. That document will now be considered to be the current document, even though you
haven't altered it at all; you've only brushed it with your mouse. Further, opening a docu
ment takes precedence over touching it with a mouse. So, if you've worked in document A,
then brushed document B, but then open document C (by hand or through I-Lisp), docu
ment C will be the most current document, and the one referenced by the variable *docu
ment*.

The way to make a document the most current one through I-Lisp is to tell it to open. If it is
already open and visible, telling it to open will make its window come to the top and overlay
any other open windows. If it isn't visible, then telling it to open has no visible effect, of
course.

It is vital to understand that you can only work in the current document, whether by hand or
through I-Lisp.

For example, say you have two documents, called ping and pong. Here's how you could
open both and work in them.

9-1 work-in-two-documents
; Open the first document
(tell (dt-object "ping.doc') mid:open)
; Get it as an object
(setq doc 1 *document*)
; Open the second document
(tell (dt-object "pong. doc") mid:open)
; Get it as an object
(setq doc2 *document*)
; Open ping to make it current
(tell doc1 mid:open)
; now we can do something in it
(tell *cmpn-editor* mid:create "para') ; create a para
; Open pong to make it current
(tell doc2 mid:open)
; Now do something in pong
(tell *cmpn-editor* mid:create "subhead') ; create a subhead

Function 9-3: doc-current-icon
(doc-current-icon)
Returns: desktop object of the current document

If you need to get at the current document's icon, (doc-current-icon) will do it for you. For
example,

118 ADVENTURER'S GUIDE TO INTERLEAF LISP

9-2 make-asci i-backup
(defun make-ascii-backup ()

(let (current-doc icon new-name)
; get current doc's icon
(setq current-doc (doc-current-icon))
; make a copy
(setq icon (tell current-doc mid:copy (tell current-doc
mid:get-parent)))
; make new name with "bak" in it
(setq new-name (concat (dt-get-property icon :icon-name) "-bak"))
; rename icon
(dt-set-property icon :icon-name new-name)
; insert it into container
(tell (tell current-doc mid:get-parent) mid:insert icon)
; open it hidden
(tell icon mid:open :hide-window t)
; save as ascii
(tell icon mid:save :ascii)
; close it
(tell icon mid:close)
))

By the way, (doc-current-icon) is the same thing as *document*'s parent:

(eql (doc-current-icon) (tell *document* mid:get-parent))
Returns t

Navigating
Now that you have a document as an object, how do you get at the objects within the docu
ment?

There are a variety of shortcuts which we will discuss in their own sections of this chapter.
They are:

Object
(doc-point-marker)

(doc-point-cmpn)

(doc-point-top-empn)

(doc-point-line)

Comment
Marker in the text stream where the visible text caret is

Component or in line that contains the text caret

Component that contains the text caret; if the caret is in an
inline, the top-level component is returned

Line that contains the caret

Inside the Document 119

Object Comment
(doc-poi nt-page) Page that contains the caret

(doc-point-column) Column that contains the caret

These very handy functions give quick access to the objects around where your text caret is.
For example, (doc-point-cmpn) returns a component object which you can then tell to
do things such as "Change thy fonts!" or "Cut thyself!" (You'll see that the actual object
returned has an identification number attached to it. That is, if you evaluate (doc -point
cmpn), something like "#<doc-cmpn Ox2ae46c>" will be returned. This number won't be
the same the next time you open the document, so don't count on using it for anything.)

But you don't need to be tied to the text caret. With I-Lisp, you can navigate through an
entire document. We'll look at some built-in functions that handle it for you neatly. But
first, let's see how you might build such functions by hand so that you'll get a sense of how
one navigates through Interleaf documents.

Let's begin by getting the first component of a document. The first component is what you
get returned if you ask for the child of the current document:

9-3 get-first-cmpn
(defun get-first-cmpn 0

(tell *document* mid:get-child))

This is equivalent to telling the document component class doc-cmpn-class - which is the
logical parent of all components - to give its first child, which you could with the expres
sion (tell-class doc-cmpn-class mid:get-first).

Here is how you can get the last component:

9-4 get-Iast-cmpn
(defun get-Iast-cmpn 0

(tell-class doc-cmpn-class mid:get-Iast))

Now let's look through an entire document, component by component. In this case we'll
both build a list and put each name into a stickup. The key here is that once we have the first
component, we can tell it to give us the next one, and continue until there are none left.

9-5 look-through-doc-toplevel
; define a global for the cmpn Jist
(setq *cmpn -Jist* nil)
(defun look-through-doc-toplevel ()
; builds global list of all cmpns in a doc

(let (c)
; get first cmpn
(setq c (tell *document* mid:get-child))

120 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

; loop
(while c

; build list
(push c *cmpn-list*)
; put name into stickup, just for demo purposes
(stk-open (tell c mid:get-name))
; get next one
(setq c (tell c mid:get-next :along :structure)))

This uses get-next:

Function 9-4: get-next
(tell object mid:get-next :along :axis)
Returns: next object of that type, if any; else nil

E.g. (tell cmpn mid:get-next :along :name)
Returns next component of the same name

There is another function closely related to get-next:

Function 9-5: get-previous

(tell object mid:get-previous :along :axis)
Returns: previous object of that type, if any; else nil
E.g. (tell cmpn mid.·get-previous :along :name)

Returns previous component of the same name

The default of get-next (and get-previous) is to look along the structure of a document,
which means that a component will get the next component from the user's point of view.
(Because it is the default, you don't have to specify it if you want to use it, i.e., (tell cmpn
mid:get-next).) If you are navigating the document along the name axis, however, it
would give you the next component with the same name. The order in which you get objects
by using get-next along the name axis is rather arbitrary; you may well not get the next one
in terms of the sequence of pages.

Function 9-5 looks at every top level component. But because it uses get-next, it won't find
any inline components. For that, we have to use get-child:

Function 9-6: get-child

(tell object mid:get-child :along :axis)

Returns: child of object, if any; else, nil
E.g. (tell cmpn mid:get-child :along :structure)

Returns child, if any

Here's how you could use this to find all the inlines of a component:

9-6 get-all-cmpn-children
(defun get-all-cmpn-children (c)

; gets all children of a cmpn
(while c

(do-something c) ; a made-up function
(push c *cmpn-Iist*)
(if (tell c mid:get-child)

Inside the Document 121

(get-all-cmpn-children (tell c mid:get-child))) ; recurse
(setq c (tell c mid:get-next)))

)

You invoke this function by executing the following:

(setq *cmpn-Iist* nil)
(get-all-cmpn-children cmpn)

This will build a global variable (*cmpn-list*) which contains a list. You could also use it to
build a list of all the components and inlines in a document by using the following function
that calls get-all-cmpn-children:

9-7 get-all-doc-children
(defun get-all-doc-children 0
; looks through a doc and builds list of all cmpns

(setq c (tell *document* mid:get-chiJd))
(while c

(if (tell c mid:get-child)
(get-all-cmpn-children c)
; else
(push c *cmpn-Iist*))

(setq c (tell c mid:get-next)))
)

To use this function, you would execute the following:

; try it out, making a global
(setq *cmpn-Iist* nil)
(get-all -doc -children)

But these home-brewed techniques are not as reliable or powerful as the ones provided with
I-Lisp. Instead of get-all-doc-children, you should in fact use:

Function ~7: doc-scan

(doc-scan function &optional :context context)

Doc-scan is a powerful function which looks at every object in a document. It sends those
objects, one at a time, to a function you've specified. Presumably that function looks at each
object and decides whether or not to do something with it. The function is then sent the next
object by doc-scan, and so forth. (The context argument allows you to specify that doc-

122 ADVENTORER'S GUIDE TO INTERLEAF LISP

scan should examine a document other than the current one.) For example, the following
routine finds every component whose name has a footnote in it, and sets it to italics.

9-8 footnote-to-italics
(defun footnote-to-italics (obj level)

)

(if (and (is-of-class obj doc-cmpn-class)
(string= "footnote" (tell obj mid:get-name))

(tell obj mid:set-props :italics t))

(doc-scan 'footnote-to-italics)

Notice that the function called by doc-scan takes two arguments. The first is the object
being passed to it. The second is a number indicating how far nested the object is. For exam
ple, an inline within a toplevel component would have a level number of 1, whereas an
inline within an inline would have a level number of 2. This enables you to keep track of the
rough structure of the document.

Here's how you could use the context argument.

; Open the first document
(tell (dt-object "ping. doc') mid:open)
; Get it as an object
(setq doc 1 *document*)
; Open the second document
(tell (dt-object "pong.doc") mid:open)
; Get it as an object
(setq doc2 *docum£tnt*)
; doc2 is open and current, but work in doc1
(doc-scan 'footnote-to-italics :context doc 1)

There are several variants of doc-scan:

Function 9-8: doc-scan-top-/evel

(doc-scan-top-Ievel function &optional :context context :Ievel)

E.g. (doc-scan-top-Ievel 'mytun :context doc1 :Ievel number)
Looks recursively at every top level component, sending it to
function mytun

This function looks only at components, not at inlines or frames or other children of compo
nents. If you invoke the function with :level, it will invoke itself recursively for each com
ponent, so you'll get all the inlines, etc.

Inside the Document 123

Function 9-9: doc-scan-cmpn
(doc-scan-cmpn function component &optional :Ievel)

Like our home-brewed get-all-cmpn-children, doc-scan-cmpn looks at a single specified
component and gets the children (inlines and frames). If you specify :level, it will also delve
into inlines and frames in the component and will get all their components.

Function 9-10: doc-scan-obj
(doc-scan-obj function object &optional :Ievel)
Sends a/l siblings of object to function

Doc-scan-obj finds the siblings of any object. Specifying :level makes it find all nested
children within the object.

Function 9-11: doc-scan-c/ass-app/y

(doc-scan-class-apply function classes)
E.g. (doc-scan-c/ass1-app/y'myfun (list dg-named-c/ass))

Sends evety named graphic object to myfun

One of the easy ways to go wrong here is to write a function for use by doc-scan-class-apply
that has two arguments. It only wants one argument - the object that's being examined.

While Lisp mavens may prefer to do raw coding going up and down the chain along the
name or structure access, the doc-scan functions make it easy to get a lot done.

Editor objects
There are in any document a set of invisible objects called editors. For example, the text
editor knows all about how to edit text - cutting, pasting, hyphenating, etc. When the end
user makes a popup choice to, say, cut text, he or she is unknowingly addressing his or her
command to the text editor. The programmer can direct commands to the editors as well.
The programmer can also create a new editor and make it the standard editor for a document
or a class of documents. This makes it possible to design unique active documents easily.

The editor objects include

Editor
doc-editor

doc-text-editor

doc-cmpn-editor

doc-table-editor

We will discuss each of these.

Controls
Document header pulldowns and other document proper
ties

Text popups and other functionality

Component bar popups and other functionality

Tables popups and other functionality

The document editors are what gets addressed when a user makes a menu choice. The pro
grammer can directly address those editors, often through a syntax that mimics the standard

124 ADVENTURER'S GUIDE TO INTERLEAF LISP

popup menu choices. For example, the user can create a frame named, say, "Rule", by
choosing Create tFrame tRule from the popups. The programmer can create a frame by
telling the text editor to create a frame named "Rule":

(tell *text-editor* mid:create :frame "Rule")

Using the editors is a relatively high-level operation. That means that a brief command does
a lot. It also means that you get any "side effects" of an action. For example, telling the
document editor to close a document brings with it the side effect of getting the close
stickup if there have been any changes to the document. Or, changing a font will update the
font box in the document header.

We'll begin with the document editor.

Document editor

The document editor for the current document can be addressed through the variable *doc
editor*. This editor is responsible for document-wide actions, most of which the user would
initiate through the document's pulldown menus in the document window header.

The document editor has a set of properties that can be accessed through (tell *doc-edi
to(* mid:get-props) , optionally using a keyword. Among the properties are:

Property
:modify

:page

:page-range

:view-anchor

:view-empty

:view-facing

:view-index

:view-inline

:view-return

:view-ruling

:view-space

:view-tab

:view-undo

:zoom

Explanation
Amount a document has been modified since it was last
saved. Nil or 0 means it hasn't been modified. Every
operation adds a number (from 1 to 30). Used to deter
mined if document needs saving before closing.

Current page number. Within a book, gives the proper
page number from the beginning of the book. (See text
following table for more information.)

Cons of first and last page numbers of document. (Cannot
be set.)

Display frame anchors

Display empty text strings in graphics

Display facing pages

Display index markers

Display in line markers

Display hard returns

Display invisible table rulings

Display spaces as raised dots

Display tab markers

Display inline markers created by the undo function

How much the document is zoomed

Inside the Document 125

When you get-props for :page, you are returned the current page number. When you set
props, however, you are taken to a page. For this you must use the keyword :first, :last,
:next, or :previous. If you give tas an argument, you will be taken to the current page (bring
ing the top of the page to the top of the window); if you give nil as an argument, you will get
a stickup asking you to type in the page number you want to go to. For example,

(tell *doc-editor* mid:set-props :page :Iast)
Takes you to last page
(tell *doc-editor* mid:set-props :page nil)
Prompts you for number of page to go to

But suppose you want to go to a page not addressed through a keyword, and you don't want
to have to prompt the user to type in the page number. You can always open the document to
the page you want even if it's already open. For example,

(tell (doc-current-icon) mid:open :page 77)
Takes you to page 77

Function 9-12: close

(tell *doc-editor* mid:close &optional :force t)
Closes the document; if :force is non-nil, closes without asking for con-

firmation
E.g. (tell *doc-editor* mid:close :force t)

If you don't give this method an argument, it will ask you if you want to save, cancel or close
(if there have been any modifications). For example,

(tell *doc-editor* mid:close)
If there have been any modifications, prompts user with a stickup before
closing

Function 9-13: open-props

(tell *doc-editor* mid:open-props &optional :page :color :pattern
:printer)

Opens a property sheet for user interaction

E.g. (tell *doc-editor* mid:open-props :color)
Opens color property sheet

If no argument is given, then the document property sheet opens.

Function 9-14: save

(tell *doc-editor* mid:save &keyword :format :version &optional :force)
Saves document

This saves the document in your choice of formats (ASCII or fast) or versions (version 3 for
Publisher, 4 for TPS 4 or 5 for Interleaf 5). Whenever you save in version 3 or 4, the docu
ment is automatically saved in ASCII format. For example,

(tell *doc-editor* mid:save :format :fast)
Saves in normal fast (binary) format

126 ADVENTURER'S GUIDE TO INTER LEAF LISP

(tell *doc-editor* mid:save :format :ascii)
Saves in ascii format
(tell *doc-editor* mid:save :version 3)
Saves in ASCII version 3 for Publisher
(tell *doc-editor* mid:save :version 4 :format :fast)
Saves in version 4 ASCII; ignores the :format command
(tell *doc-editor* mid:save :format :fast :force t)
Forces a save in normal fast (binary) format, even if there have been no
modifications

Function 9-15: convert

(tell *doc-editor* mid:convert &key :version number &optional :name
name)

Makes a new copy of document, under name, converted to version number

E.g. (tell *doc-editor* mid:convert :version 4 :name "mydoc4',
Creates copy named "mydoc4.doc" saved in version 4

Unlike specifying a version number (3, 4 or 5) with mid:save, convert creates a new copy. If
you don't specify a name, the system will prompt the user to supply one.

Function 9-16: rename

(tell *doc-editor* mid:rename &optional name)

Renames file to name

E.g. (tell *doc-editor* mid:rename :name "textt',
Creates new copy with name "textt"

This does exactly what rename does when a user chooses it from the document header
menu: it creates a new copy under the new name, closes the original copy, and leaves the
user in the new copy.

If you don't supply it with a name, it will prompt the user for one. If you do supply a name, it
makes a copy with that name.

If you want to make a copy but not have to open the document first to do it, you can use the
copy command on the desktop. For example,

; get the selected object
(setq doc (dt-child-selected))
; make a copy of it, put it on the desktop, and get the copy
(setq newdoc (tell doc mid:copy *dt-desktop*))
; rename the new object
(dt-set-property newdoc :icon-name "New name")

Function 9-17: revert

(tell *doc-editor* mid:revert &key :which :document)

Reverts to previous version of document

Inside the Document 127

There are five possible arguments to :which- :document, :backup, :checkpoint, :crash or
:work. These all correspond to choices the user sees on the revert pUlldown (":work" refers
to the work-in-progress file).

If you specify .force with a non-nil value, it will do the reversion without first querying the
user.

(tell *doc-editor* mid:revert :which :backup :force t)
Reverts to backup without asking for confirmation

Document manipulation
You can also manipulate documents without going through the document editor simply by
telling the document to do different things.

You can get and set properties of document objects. (RSUs, or "ridiculously small units,"
are Interleaf's internal unit of measurement. There are 1,228,800 rsu's in an inch.)

Function 9-18: document get-props

(tell document mid:get-props &optional keyword)

Returns: property requested through keyword, or all properties if no
keyword

E.g. (tell *document* mid:get-props :columns)
Returns number of columns

Function 9-19: document set-props

(tell document mid:set-props &optional keyword value)

Sets document's property of keyword to value

E.g. (tell *document* mid:set-props :columns 2)
Makes document into a two-column document

There are many properties you can get and set. The following table lists most of them. It is
organized along the various property sheets that provide end-user access to these proper
ties. (If you need more information about what these properties do, check your Interleaf 5
documentation.)

Page Property Value
Basic Property
:columns Number of columns

:gutter-width In rsu's

:balance-columns t or nil

:page-width In rsu's

:page-height In rsu's

:top-margin Top margin of page, in rsu's

:bottom-margin Bottom margin of page, in rsu's

128 ADVENTURER'S GUIDE TO INTERLEAF LISP

:Ieft-margin

:right-margin

:inner-margin

:outer-margin

:page-Iayout

:turn-Iayout

:header-footer-bleed

:different-first-header

:different-first-footer

:first-header

:first-footer

:right-header

:Ieft-header

:right-footer

:Ieft-footer

Custom Property
:general-unit

:line-spacing-unit

:font-unit

:ascii-unit

:hyphenate

:Iadder-count

:allow-break-after-hyphen

:cmpn-margin-method

:baseline-to-baseline-mar
gins

:rev-bar-placement

:vertical-justification

:cmpn-margin-stretch

:cmpn-margin-shrink

:frame-margin-stretch

:feathering

:justify-pages

Left margin of page, in rsu's

Right margin of page, in rsu's

Inner margin of page, in rsu's

Outer margin of page, in rsu's

Choice of :single-sided, :odd-pages-right, :odd-pages
left. If :single-sided, inner and outer margins are ignored.

Choice of :normal, :clockwise, :counter-clockwise

If t, headers and footers stretch all the way across the
page

t or nil

t or nil

Frame used for first header. Cannot be set

Frame used for first footer. Cannot be set

Frame used for right header. Cannot be set

Frame used for left header. Cannot be set

Frame used for right footer. Cannot be set

Frame used for left footer. Cannot be set

Preferred unit of measurement. Choice of :inches, :points,
:mm, :picas, :ciceros, :didots

Preferred unit of measurement for line spacing. Choice of
:inches, :points, :mm, :picas, :ciceros, :didots

Preferred unit of measurement for fonts. Choice of :inches,
:points, :mm, :picas, :ciceros, :didots

Preferred unit of measurement when saving in ASCII. 0
means inches, 1 means mm

t if hyphenation is on, nil if it's off

Integer (0-4) specifies number of consequetive lines that
end with hyphens. 0 means any number are permitted.

If t, page or column can end with a hyphen

Choice of :add, :minimum, :maximum, :bottom, :top. Deter
mines relationship of bottom of a margin with top of the
next one.

t or nil

Choice of :automatic, :right, :Ieft

t or nil

100% = 1024

100% = 1024

100% = 1024

t or nil

t or nil

:Iong-page-justify
threshold
:short-page-justify
threshold

:autonumbers-frozen

:composition-frozen

:header-page

:double-sided

:manual-sheet-feed

:print-rev-bars

:print-strikes

:print-underlines

:print-deletion-marks

:underline-position

:default-printer

:orient-same-as-page

:spot-color-separation

Inside the Document 129

100% = 1024

100% = 1024

t or nil

t or nil

Printer Property Value
If t, add header page when printing

If t, print double sided

If t, feed paper manually

If t, print rev bars

If t, print strike-throughs

If t, print underlines

If t, print deletion marks used by rev tracking

Choice of :baseline, or :descender

String indicating default printer

If t, printing matches page orienation

Choice of :solid, :screened, :off

There are other properties you can get and/or set.

:window

:keymap

: read-only

:color-palette

:pattern-palette

:doc-type

Miscellaneous Value
Window object for the document. Cannot be set

The keymap for this document (see chapter on keyboard)

If t, document is read-only

Document's color palette

Document's pattern palette

1 if binary, 2 if ASCII markup, 3 if plain ASCII. Cannot be
set.

In addition to setting and getting properties, you can set various variables that affect the
document.

Function 9-20: doc-get-vars

{doc-get-vars &optional keywords}

Returns: list of settings
E.g. (doc-get-vars :initial-zoom)

Returns 1.0

Function 9-21: doc-set-vars

{doc-set-vars keyword value}

130 ADVENTURER'S GUIDE TO INTER LEAF LISP

Sets variable keyword to value

E.g. (doc-set-vars :initial-zoom 1.8)
Sets initial zoom variable to 1.8

Here is a list of some of the variables you can set.

:initial-zoom Amount of zoom when the document opens

:advanced-formatter If t, uses different algorithms for formatting (e.g., figuring
line breaks), based on Knuth/Plass. Interleaf, Inc. does not
officially support this option.

:checkpoint--control Integer from -100 to 100. Controls how frequently check
point copies are made. If 0, no checkpointing.

:allow-break-after-hyphen If t, "allow break after" shows up on page property sheet

You can get further information about the document window from four related functions.

Function 9-22: doc-pixe/-window-top-offset

(doc-pixel-window-top-offset)

Returns: offset of document window from top of screen, in screen pixels

E.g. (doc -pixel-window-top -offset)
Returns 58

Function 9-23: doc-pixe/-window-top-offset

(doc-pixel-window-Ieft-offset)

Returns: offset of document window from the left of screen, in screen
pixels

These amounts in1cude the size of the component bar and document header. They measure
the distance of the actual screen representation of the upper left corner of the page (the
white area) from the edge of the screen.

Function 9-24: doc-pixel-window-height

(doc-pixel-window-height)

Returns: height of current document's window, in screen pixels

Function 9-25: doc-pixel-window-width

(doc-pixel-window-width)

Returns: width of current document's window, in screen pixels

Markers
Before moving on to the text editor, we're going to talk about markers. Markers are invis
ible pointers into the document's text contents. Markers should not be confused with the
visible marker - the text caret. The text caret is, in fact, a type of marker, but not all mark
ers are visible.

Function 9-26: doc-point-marker
(doc - pOint-marker)
Returns: a marker at the position of the text caret

Inside the Document 131

(doc-paint-marker) gives you a marker that points to wherever the text caret is currently

pointing.

(setq mark (doc- point- marker))
Returns marker; sets mark equal to that marker

Function 9-27: get-marker
(tell component mid:get-marker nil or t)
Returns: marker at beginning or end of component
E.g. (tell (doc-point-cmpn) mid:get-marker nil)

Returns marker at beginning of component

If you give get-marker nil as an argument, it returns a marker at the very beginning of the
component (even before the font token, as we will discuss in the section on tokens); if you
give it as an argument, it gives you a marker at the end of the component. If you don't give it
any argument, it defaults to nil.

Function 9-28: marker copy
(tell marker mid:copy)
Returns: copy of marker
E.g. (setq m2 (tell m1 mid:copy)

Returns new marker at position of m1

One reason this function is useful is that it allows you to get a marker, make a copy, move the
copy some fixed amount, and now use the original and the copy as delimiters marking a text
string.

Function 9-29: doc-text-selection
(doc-text-selection)
Returns: if text is selected, returns dotted pair of markers; else, nil
This function gives you markers at the beginning and end of selected text.

Function 9-30: doc-goto-marker
(doc-goto-marker marker)
Returns: moves text caret to marker

This function moves the text caret to the marker passed as a parameter. If that marker is
invalid or for some reason the text caret can't be placed there, nil is returned. Among the
reasons why the text caret can fail to be placed at a marker: the component with the marker
was cut, the component is invisible due to effectivity, or the marker is in a microdocument
that can't be edited.

The following is a fairly useless bit of code that illustrates some of these marker functions.
If there is text selected, it moves the text caret to either end of it 100 times. Otherwise, it tells
you that no text is selected.

132 ADVENTURER'S GUIDE TO INTERLEAF LISP

9-9 move-caret-in-selected-text
(defun move-caret-in-selected-text 0

(let (markers mark (ctr 1))

))

; is any text selected?
(if (setq markers (doc-text-selection))

(progn
; Begin loop
(repeat 100

; alternate which marker you get
. (if (oddp (inc ctr))

(setq mark (car markers))
; else
(setq mark (cdr markers)))

(doc -goto -marker mark)
; force the change to be visible
(doc -flush -queue)))

; else nothing selected
(stk-open "Nothing is selected. 'J)

If you actually try this, you'll see that it not only works, it's really absolutely useless.

But don't worry - there are plenty of useful things we can do with markers.

Moving Markers

By moving a marker, you can select text to affect, and can look at the characters along the
way. Remember that when you are moving a marker through a component, you can tell if
you've reached the end if the return is greater than 0, since the marker move-by method
returns the number of tokens it tried and failed to move by.

Function 9-31: move-by

(tell marker mid:move-by count &optional :by &keywords :word-endings
:word-beginnings :component-beginnings :component-endings)

Returns: how many left after hitting the end of the cmpn or doc

E.g. (tell marker mid:move-by 3 :by:word-endings)

This will move the marker the number of tokens specified by count. If you specify a nega
tive count, you move backwards. If you hit the edge of the component before you've used
up your count, the function returns the number left in the count.

This method can take parameters. If you add :by followed by what you want to move by,
you can move from word to word or component to component. The keywords are: :word
beginnings, :word-endings, :component-beginnings, and :component-endings.

Inside the Document 133

Function 9-32: move-to

(tell marker mid:move-to count &optional :by &keywords :word-endings
:word-beginnings :component-beginnings :component-endings)

Returns: how many left after hitting the end of the cmpn or doc

E.g. (tell marker mid:move-to 3 :by :word-endings)

This function is very similar to (tell marker mid:move-by count) except that it counts from
an absolute position at the beginning of the component.

Here are three related functions to count tokens in a component, words in a component, and
components in a document.

9-10 count-tokens-in-cmpn
(defun count-tokens-in-cmpn (cmpn)

(let (m (ctr 0))
; get marker at beginning of cmpn
(setq m (tell cmpn mid:get-marker))
; loop until no tokens left
(while (zerop (tell m mid:move-by 1))

; increment counter
(inc ctr))

; return the ctr
ctr
))

9-11 count-words-in-cmpn
(defun count-words-in-cmpn (cmpn)

(let (m (ctr 0))
; get marker at beginning of cmpn
(setq m (tell cmpn mid:get-marker))
; loop until no words left
(while (zerop (tell m mid:move-by 1 :by:word-endings))

; increment counter
(inc ctr))

; return the ctr
ctr
))

9-12 count-cmpns-in-doc
(defun count-cmpns-in-doc (cmpn)

(let (m (ctr 0))
; get marker at beginning of cmpn
(setq m (tell cmpn mid:get-marker))
; loop until no words left

134 ADVENTURER'S GUIDE TO INTERLEAF LISP

(while (zerop (tell m mid:move-by 1 :by:cmpn-endings))
; increment counter
(inc ctr))

; return the ctr
ctr
))

You use markers to select text. But to do so, you have to tell the document's text editor to
perform some commands. The text editor is the editor object responsible for enabling you
to edit text within an Interleaf document. We will discuss it further later.

Function 9-33: select

(tell *text-editor* mid:select marker1 marker2)

Returns: t if successful; else nil

This selects the text between markerl and marker2.

Function 9-34: deselect

(tell *text-editor* mid:deselect)
Returns: t if successful; else nil

This deselects the text between markerl and marker2.

Here are some examples of using the selection commands:

9-13 flicker-selection
(defun flicker-selection 0
; flickers selected text; some machines don't display this well

(let (markers m 1 m2)

))

; need initial selection
(if (setq markers (doc-text-selection))

(progn
; get the markers
(setq m1 (car markers))
(setq m2 (cdr markers))
;Ioop 10 times
(repeat 10 ; faster machines might want to make this 100

(tell *text-editor* mid:deselect)
(tell *text-editor* mid:select m1 m2))))

9-14 select-a-word
(defun select-a-word (marker &optional backwards)
; Selects word starting at marker. If backwards is non-nil, selects
backwards

(let (m2 direction remaining)

; go backwards?
(if backwards

(setq direction -1)
; else
(setq direction 1))

; deselect previous selection, if any
(tell *text-editor* mid:deselect)
; make copy of marker
(setq m2 (tell marker mid:copy))
; move copy to end of word

Inside the Document 135

(setq remaining (tell m2 mid:move-by direction :by:word-endings))
; select the word
(tell *text-editor* mid:select marker m2)
; If move was possible, return m2, else return nil
(if (> remaining 0)

(setq m2 nil))
m2
))

9-15 select-each-word
(defun select-each-word (cmpn)
; selects each word in a component, in turn

))

(let (m1)
; get marker at beginning of cmpn
(setq m1 (tell cmpn mid:get-marker nil))
; loop through component until end
(while m1

(doc-flush-queue) ; force an update
(setq m1 (select-a-word m1))
; italicize, just for demo
(tell *text-editor* mid:set-props :italic t))

(tell *text-editor* mid:deselect)

9-16 italicize-line
(defun italicize-line (line)

(let (m1 m2)
; move to beginning of line
(key-begin-line)
; get the marker
(setq m1 (doc-point-marker))
; move to end of line
(key-end-line)

136 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

; get the marker
(setq m2 (doc-point-marker))
; select the line
(tell *text-editor* mid:select m1 m2)
; italicize line
(tell *text-editor* mid:set-props :italic t)
; deselect the line
(tell *text-editor* mid:deselect)

This function uses commands normally attached to keystrokes - key-begin-line and key
end-line - to move to the beginning and end of the line. There we grab markers, use them
to select the line of text, and then use the text editor to italicize the line. (Later you'll learn
how to set markers at the beginning and end of the line without actually forcing the text
caret to change its position.) Of course, for Interleaf 5, a line is an ephemeral thing; entering
or deletIng a character elsewhere in the component may change what constitutes the line. In
that case, the string of text will remain italicized, even if it no longer constitutes a line. But
this function is useful when you are using hard returns to indicate new lines. For example,
you might use this to italicize the comments in some programming code.

Of course, you could modify this function to perform other font operations, or even to delete
lines. See the section on the text editor for more information.

Here are some more functions associated with markers.

Function 9-35: marker get-parent
(tell marker mid:get-parent &optional :along :structure :format)

Returns: containing component (if along structure), containing line (if
along format)

Taken just the way it is, without any further arguments, this will give you the component or
inline in which the marker is located. That's because without any further arguments, this
function defaults to :along :structure.lf, however, you specify :along .format, you will get
the line in which the marker is located. For example:

(tell (doc-point-marker) mid:get-parent)
Returns component marker is currently in
(tell (doc-point-marker) mid:get-parent :along :format)
Returns line object

The following function, for example, will tell you what component your marker is in and
the width of the line:

9-17 where-and-how-Iong
(defun where-and-how-Iong 0

(let (line line-in-inches (marker (doc-point-marker)))
; get cmpn parent of marker

Inside the Document 137

(setq cmpn (tell marker mid:get-parent :along :structure))
; get line as parent of marker

))

(setq line (tell marker mid:get-parent :along :format))
; get width of line and convert to inches (from RSU's)
(setq line-in-inches

(/ (tell line mid:get-props :width) 1228800.0))
; display info in a stickup
(stk-open

(format nil "In component: '" A\nWidth: '" 0" (tell cmpn mid:get-name)
line-in-inches))

Function 9-36: get-top-cmpn

(tell marker mid:get-top-cmpn)

Returns: top level containing component

This returns the component that contains the marker. If the marker is in an inline, it returns
the top-level component. This can be very handy if, for example, you are constructing a
form that uses inlines. Suppose you have a couple of inlines used repeatedly throughout the
form because they contain buttons or do range checking. But you may need to know what
component they're in to see how they should act in this or that circumstance. This function
allows you to get at that top-level component.

Function 9-37: get-bounds

(tell marker mid:get-bounds)

Returns: position of marker, relative to page, as a dotted pair of pixels
E.g. (tell (doc-point-marker) mid:get-bounds)

Returns (117.410)

This function allows you to link a position within a component to its position on a page, for
it tells you the horizontal and vertical position of the marker on screen. It uses the pixel as
the unit of measurement. The numbers it gives are relative to the page, which means they
stay the same even if you move the document window around or resize it.

Here's one use of this:

9-18 set-initial-indent
(defun set-initial-indent 0
; sets initial indent to caret position. Can't decrease initial indent.

(let (pixelpos pixelx indent innermarg)
; get current marker position
(setq pixelpos (tell (doc-point-marker) mid:get-bounds))
; get x coordinate
(setq pixelx (car pixelpos))
; figure indent, converting pixels to RSU's

138 ADVENTURER'S GUIDE TO INTER LEAF LISP

))

; (figure 75 pixels per inch, and 1228800 RSU's per inch)
(setq indent (* (/ pixelx 75.0) 1228800))
; get left page margin offset
(setq innermarg

(tell *document* mid:get-props :inner-margin))
;(setq innermarg (/ innermarg 1228800.0))
; figure indent (marker position on pg minus inner pg margin)
(setq indent (round (- indent innermarg)))
; set the indent
(tell (doc-point-cmpn) mid:set-props :initial-indent indent)

; try it, binding it to A Xy
(kbd-bind kbd-doc-map "\ A Xy" 'set-initial-indent)

Function 9-38: get-location
(tell marker mid:get-Iocation)
Returns: dotted pair of component number and token-number

E.g. (tell (doc-point-marker) mid:get-location)
Returns (196.9) (i.e., 196th component, 9th token)

Interleaf numbers components starting from zero; the first component is component num
ber O. Also, notice that get-location counts all components hidden by effectivity.

Function 9-39: is-in-word

(tell marker mid:is-in-word)
Returns: t if marker is in a word; else nil

But what counts as a word? Clearly, if the marker is in the middle of a word, this function
will return t. It will also return t if the marker is between a space and the first letter of a word.
But it returns nil if it's between the last letter and a space. It can be hard to predict exactly
what will count as being within a word, as the following illustration shows.

Function 9-40: insert

(tell marker mid:insert string or token-list)
Returns: t unless marker is in read-only component
E.g. (tell (doc-point-marker) mid:insert "Hello'J

Returns t and inserts "Hello" at component

The following inserts at the text caret whatever text one has typed into a stickup.

9-19 insert-string-at-caret
(defun insert-string-at-caret 0

(let (text)
(setq text (stk-open "Enter text to be entered: " :input 60))
(tell (doc-point-marker) mid:insert text)))

Inside the Document 139

(n = nil)

Markers also provide a way for you to insert and delete text and other objects.

The next function inserts your name at the text caret.

9-20 insert-name
(defun insert-name 0
; inserts name as defined in variable in profile.drw

(tell (doc-point-marker) mid:insert *my-name*)
)

This function assumes you have put the line (setq *my-name* "Harriet Higgins') (or
whatever) in your profile drawer. You'd probably want to bind this function to a keystroke
to have it actually be useful.

The following two functions expand on this, and use doc-scan to insert the day's date into
any component named date. Note that it first deletes the current contents of the date compo
nent.

9-21 auto-insert-date
(defun auto-insert-date 0
; build a string expressing the date
(let (date-str tm m m2 name)

; get the time ... a list of milliseconds, seconds, etc.
(setq tm (get-decoded-time))
; use format to make a string
(setq date-str (format nil ""'A'" 0, "'4,'00"

(nth (nth 4 tm)
(list nil "January" "February" "March" "April" "May"

"June" "July" "August" "September" "October"
"November" "December"))

(nth 3 tm) ; day
(nth 5 tm) ; year

))

140 ADVENTURER'S GUIDE TO INTER LEAF LISP

; Look through document for cmpns named "date"
; (uses lambda, which we don't explain)
(doc-scan '(lambda (0 I)
(if (and (setq name (advise 0 mid:get-name))

(string= "date" name))
; if we've found a date cmpn
(progn

(setq m (tel/ 0 mid:get-marker))
(setq m2 (tell 0 mid:get-marker t))
; delete the current contents
(tel/ m mid:delete m2)
; insert the date

(tell m mid:insert date-str)))))
))

;; bind it to a keystroke - - A Xd
(kbd-bind kbd-doc-map "I A Xd" '(auto-insert-date))

The following function inserts a word count in brackets every tenth word.

9-22 insert-incremental-word-count
(defun insert-incremental-word-count (cmpn interval)

(let (count marker number-string)
; Initialize count
(setq count 0)
; get marker at beginning of cmpn
(setq marker (tel/ cmpn mi:get-marker))
; move ahead a word at a time
(while (zerop (tell marker mid:move-by 1 :by:word-endings))

; increment counter
(inc count)
; check for zero remainder when divided by interval
(if (eql 0 (% count interval))

(progn
; create number string to insert
(setq number-string (concat "<" (itoa count) ">"))
; insert number
(tel/ marker mid:set-props :follow-insert t)
(tell marker mid:insert number-string))))))

By using the (tell marker mid:move-by count :by :cmpn) in the above function, you could
alter it to insert a number before every paragraph. (You'd be wiser to insert an auto-number,
however).

Inside the Document 141

The (tell marker mid:insert) function allows you to insert a plain text string or other tokens.
If you want to insert tokens, you have to construct a dotted pair list.

Function 9-41: delete

(tell marker1 mid:delete marker2)

Returns: t if successful; else, nil
E.g. (tell m1 mid:delete m2)

The above function lets you delete tokens between two markers.

The following function deletes all of a component's contents:

9-23 delete-cmpn-contents
(defun delete-cmpn-contents (cmpn)

))

(let (m1 m2)
; get marker at beginning of cmpn
(setq m1 (tell cmpn mid:get-marker nil))
; get marker at end of cmpn
(setq m2 (te/l cmpn mid:get-marker t))
; delete it
(tell m1 mid:delete m2)

This is a very useful function whenever you want to update a component by erasing its cur
rent contents and replacing them with new contents.

You should find it straightforward to adapt the italicize-line function we created above to
delete a line.

Here are a set of functions that will alphabetize the words in a component.

9-24 cmpn-into-wordlist
(defun cmpn-into-wordlist (c)
; returns a list of words in cmpn c
(let (m1 m2 (word-list nil))

)

(setq m1 (tell c mid:get-marker)) ; get marker
(setq m2 (tell m1 mid:copy)) ; make a copy of it
; loop, getting each word
(while (= 0 (te/l m1 mid:move-by 1 :by:word-beginnings))

(tell m2 mid:move-by 1 :by:word-endings)
; get word, using get-substring not discussed yet
; variable word is defined in alphabetize-component
(setq word (tell m1 mid:get-substring m2 t t))
(if word (push word word - list))

word-list
))

142 ADVENTURER'S GUIDE TO INTERLEAF LISP

9-25 word-sort
(defun word-sort (a b)
; compare routine for alphabetizing

(> (string-compare b a) 0))

9-26 alphabetize-component
(defun alphabetize-component (cmpn)
; alphabetizes contents of a cmpn
; strips out frames, tokens, etc.

(let (wordlist word m)

))

(setq m (tell cmpn mid:get-marker))
(tell m mid:set-props :fol/ow-insert t)
; get the wordlist
(setq wordlist (cmpn-into-wordlist cmpn))
; sort it using our own word-sort function
(setq wordlist (sort wordlist 'word-sort))
; now, if you want, delete contents of cmpn,
; using delete-cmpn-contents 9-9-23
(delete-cmpn-contents cmpn)
; insert words by looping through wordlist
; first, get marker at end of empty cmpn
; (if at beginning, you'd have to
; to move past font marker)
(setq m (tell cmpn mid:get-marker t))
(while (setq word (pop wordlist))

(tell m mid:insert (concat word "In'?)
(setq m (tell cmpn mid:get-marker t)))

(doc -flush -queue)

Notice that these functions sort along ASCII order. And whether they are case-sensitive
depends on how the *case-sensitive* variable is set; this is a system variable that causes
string-contained (among other functions) to be case-sensitive when it is set to t, and not
when it is set to nil.

Also, these functions are not very sophisticated. They don't handle components that have
frames or index tokens, and they are dumb about handling changes in font and the like. And
if a word is used twice or more in a component, it gets listed twice or more. You might con
sider enhancing these functions as homework.

Inside the Document 143

Tokens
We have several times referred to tokens while promising we would explain them later.
Now is the time.

Tokens are objects encountered in the stream of characters in an Interleaf component. For
example, a line of text might include a set of character tokens (i.e., the characters that show
up on screen), a font-change token, tokens indicating hard or soft spaces, and so forth. A
token consists of two basic pieces of information, generally its type and its content. For
example, a character token consists of a dotted pair whose car is :char and whose cdr is the
identifying number of that character.

Token
:char

:hyph-char

:doc-font

:hard-return

:inline-head

:inline-tail

:frame

:index

:glue

:tab

:autonumber

Description
A character such as "0-9", "A-Z", "a-z"

A character after which a hyphen can be inserted.
When the spell checker detects a misspelled
word, it flags it by making its last character a hyph
char

Font change information (or, if first token in com
ponent, that component's base font)

What you get when you hit the Return key

Indicates the beginning of an inline component

Indicates the end of an inline component

Frame

An index token - not to be confused with the vis
ible index tokens. Even if you hide the visible
ones, this index token remains to tell the system
there's indexing to be done here

Spacer between words to justify a line, expressed
in screen pixels

Tab stop. Lists type of tab (:blank, :dotted, :under
line :center-line), tab-stop number, and width in
screen pixels

Autonumber

:cross-reference Cross-reference to an autonumber

Example
(:char . #\A)

(:hyph-char. #\e)

(:doc-font . #<doc
font Ox8f64aO)

(: hard-retu rn)

(:inline-head .
#<doc-cmpn
Ox8678BO»

(:inline-tail .
#<doc-cmpn
Ox8678BO»

(:frame . #<doc
frame Oxcebc6c»

(:index #<doc-in
dex-mark
Oxd27800»

(:glue .4)

(:tab :blank 1 75)

(:autonumber .
#<doc-autonum
mark Oxa2f70e»

(:cross-reference .
cross-reference
props)

We will look at these in some detail. But first we need a function that will return a token.
And for this, we need the more general-purpose function, get-substring

144 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 9-42: get-substring

(tell marker1 mid:get-substring marker2 &optional tOken-types in-string)

Returns: tokens between marker1 and marker2

E.g. (tell m1 mid:get-substring m2 (list :char :hyph-char) t)
Returns string of all characters and hyphenated characters between m1
andm2

This is a powerful function that will give you all of the tokens between two markers in either
list or string format. You can also give it a list of the types of tokens you want. For example,
suppose you put the text caret into a component that consists of the words "Hello, friend!"
followed by a frame:

(setq m1 (tell (doc-point-cmpn) mid:get-marker nil))
Returns marker at beginning of current cmpn
(setq m2 (tell (doc-point-cmpn) mid:get-marker t))
Returns marker at end of current cmpn
; return it as string
(tell m1 mid:get-substring m2 t t)
Returns "Hello, friend!"
; return it as list of all tokens
(tell m1 mid:get-substring m2 t)
Returns ((:doc-font. #<doc-font OxBd9BcO» (:char. #\H) (:char. #\e)
(:hyph-char. #\1) (:char. #\lj (:char. #\0) (:char. #\,) (:glue. 4) (:char.
#\f) (:char. #\r) (:char. #\i) (:char. #\e) (:char. #\n) (:char. #\d) (:char.
#\!) (:frame. #<doc-frame Oxa66110»)
; return only frames
(tell m1 mid:get-substring m2 (list :frame))
Returns ((:frame. #<doc-frame Oxa66110»)
; return string of characters - no hyphenated characters (such as the first
"I"), no spaces ("glue")
(tell m1 mid:get-substring m2 (list :char) t)
Returns "Helo,friend!"
; return string of characters, hyphenated characters and spaces ("glue")
(tell m1 mid:get-substring m2 (list :char :hyph-char :glue) t)
Returns "Hello, friend!"

We can use get-substring to give us a selected portion of a component. For example:

9-27 selected-text-substring
(defun selected-text-substring ()
; returns substring of selected text

(let (m 1 m2 substr)
; initialize substring
(setq substr nilj
; if any text is selected

Inside the Document 145

(if (doc - text - selection)
(progn

; get markers at beginning and end of selection
(setq m1 (car (doc-text-selection)))

))

(setq m2 (cdr (doc-text-selection)))
; get the substring
(setq substr (tell m1 mid:get-substring m2))

)
; else, nothing selected
(stk-open "No text is selected"))

; return selected text as a list
substr

9-28 get-taken-substring
(defun get-token-substring (m1)
; returns the token immediately following marker m 1

(let (m2)
; make a copy of m1
(setq m2 (tell m1 mid:copy))
; move the copy one token forward
(tell m2 mid:move-by 1)
; get the substring and return its first and only element
(car (tell m1 mid:get-substring m2))

))

Text editor
The text editor is an invisible object that knows how to do things with text. Users access the
text editor primarily through popups and pulldowns when in the text area of a document.
The Interleaf Lisp developer can access the text editor more directly.

The text editor for the current document can always be reached through the variable *text
editor*.

The text editor has a set of properties that can be accessed through (tell *text-editor*
mid:get-props), optionally using a keyword. The following are among the properties.

Property Value
:bold t, nil or :toggle

:caps :all-caps, :all-small-caps, :caps-and-small, or nil

:dbl-underline t, nil or :toggle

:doc-font The current font

Property Value

146 ADVENTURER'S GUIDE TO INTERLEAF LISP

:family Font family

:italic t, nil or :toggle

:Iast-font Previous font used

:overbar t, nil or :toggle

:pair-kerning t, nil or :toggle

: revision-bar t, nil or :toggle

:size Font size in points

:striketh rough t, nil or :toggle

:subscript t, nil or :toggle

:superscript t, nil or :toggle

:tab-type :blank, :dotted, :underscore, :centerline, :dashed

:track-kerning :tighter, :Iooser, :tight 1-3, :Ioose 1-3

:underline t, nil or :toggle

As you can see, these reflect the choices in the text prop pull down in the document window
header bar.

If you use set-props to set a property of the text editor, if there is any selected text, that text
will take on the new properties. If there is no selected text, then anything typed at the inser
tion point will take on the new properties; this too mirrors how the user normally interacts
with the text editor.

The following will take a number of characters, starting at the text caret, and increase each

one's font size in one-point increments, so it looks like this: example.
9-29 font-mount
(detun tont-mount (number-ot-chars)

(let (m1 m2 token tont-size)
; get the starting point
(setq m1 (doc-paint-marker))
; get the initial tont size
(setq tont-size (tell *text-editor* mid:get-props :size))
; loop.
(repeat number-at-chars

; get a character by getting two markers
(setq m2 (tell m1 mid:copy))
(tell m1 mid:move-by 1)
(setq token (tell m2 mid:get-substring m1))
; is token a char or hyphenated char?
(it (member (car(car token)) '(:char :hyph-char) 'equal)

(progn
; increase the tont size
(inc tont-size)

; select the text
(tell *text-editor* mid:select m2 m1)
; boost its size

Inside the Document 147

(tell *text-editor* mid:set-props :size font-size)))
)

))

Here's another stupid font trick.

9-30 bold-flicker
(defun bold-flicker 0
; flickers selected text between bold and italics

))

(let (m1 m2 original-font)
; save original font
(setq original-font (tell *text-editor* mid:get-props :doc-font))
(if (not (doc-text-selection))

(progn
(stk-open "No text selected")
(quit)))

(setq m1 (car (doc-text-selection)))
(setq m2 (cdr (doc-text-selection)))
(repeat 7

)

(tell *text-editor* mid:select m1 m2)
(tell *text-editor* mid:set-props :bold :toggle)
(tell *text-editor* mid:set-props :italic :toggle)
; just for effect, flash the selection also
(tell *text-editor* mid:deselect)

; restore it to its original good looks
(tell *text-editor* mid:select m1 m2)
(tell *text-editor* mid:set-props :doc-font original-font)

Remember, (doc-text-selection) is a shortcut for (tell *text-editor* mid:get-selec
tion).

Function 9-43: get-selection
(tell *text-editor* mid:get-selection)
Returns: Cons of markers at beginning and end of selection
E.g. (tell *text-editor* mid:get-selection)

Returns (#<doc-marker Ox132e05> . # <doc-marker Ox132ef6>
Function 9-44: open-props
(tell *text-editor* mid:open-props)
Does props on selected text

148 ADVENTURER'S GUIDE TO INTERLEAF LISP

When the user selects text and chooses props from the popup menu, the system puts
information about the selected text into the status bar. If the user has selected an inline com
ponent marker, the system opens the inline property sheet. The same things happen when
the developer uses the open-props function.

Function 9-45: copy

(tell *text-editor* mid:copy)
Puts a copy of the selected text on to the clipboard

This function only works if text is selected, in which case it copies it to the clipboard, which
means it's ready to be pasted.

Function 9-46: cut
(tell *text-editor* mid:cut)

Deletes selected text and puts it on to the clipboard

This function only works if text is selected, in which case it cuts the selected material and
copies it to the clipboard, which means its ready to be pasted.

If you want to cut material without first having to select it (which means that it gets high
lighted on screen before it is cut), you can use the marker method of deleting:

(tell marker1 mid:delete marker2)

This, however, does not put the deleted material on to the clipboard, so you cannot then
paste it.

Function 9-47: paste

(tell *text-editor* mid:paste)
Pastes from clipboard into document at text caret

This function works only if no text is selected. In addition, there has to be something on the
clipboard ready to be pasted.

Function 9-48: select

(tell *text-editor* mid:select markerl marker2)

Returns: t and selects contents between markerl and marker2

Once the material is selected, you can use the text-editor to copy, cut or paste it.

Why would you use the text-editor instead of just setting markers and directly getting the
substring, deleting it, and inserting it? For one thing, you might want to show the material
being selected on screen. But, more important, the text editor handles all of the "details,"
such as updating the font bar, etc.

Function 9-49: deselect

(tell *text-editor* mid:deselect)
Returns: t. Deselects any selected material

This function returns t no matter what.

Inside the Document 149

Function 9-50: split
(tell *text-editor* mid:split)
Splits the component into two components at the text caret
Function 9-51: hyphen
(tell *text-editor* mid:hyphen &keyword :show :set :clear)
Returns: t

The keyword :show works only if there isn't any text selected. It puts a message in the mes
sage bar of the document window indicating the hyphenation points of the word in which
the text caret sits. The keyword :set forces a hyphenation point (but not necessarily a
hyphen, of course) where the text caret is. The keyword :clear clears the word of all
hyphenation points.

Since these functions all return t, suppose you want to access the hyphenation points pro
gramatically, rather than displaying them to the user? Remember that hyphenated charac
ters are their own special token which you can get through the marker get-substring
method.

9-31 get-hyphenation-points
(defun get-hyphenation-points (m1 m2)
; Returns list of hyph - chars between two markers

(tell m1 mid:get-substring m2 '(:hyph-char)))

Misspelled words are flagged internally by having their last character set as a hyphenated
character. So, the above function will return the last characters of any misspelled words.
You could fix this by altering the function so it takes one word at a time, and then checking
the hyphenated characters to make sure they're not the last character in the word. You could
also take advantage of this fact to write a function that checks to see if a word has been
flagged as misspelled:

9-32 misspelled-word
(defun misspelled-word (m)
; m is a marker at the end of a word

))

(let (m1)
(setq m1 (tell m mid:copy))
; move m 1 back one token
(tell m1 mid:move-by -1)
(tell m1 mid:get-substring m '(:hyph-char))

You could now write a routine that looks through a component or a document, moving the
marker by word-endings, and thus compiling a list of misspelled words (or a list of markers
pointing at misspelled words ... or both.)

Similarly, you could rebind the word-ending characters (space, punctuation, hard return,
etc.) so that before inserting themselves, they check the character before them to see if it's

150 ADVENTURER'S GUIDE TO INTERLEAF LISP

hyphenated (i.e., misspelled). If it is, then perhaps the system beeps at you, or adds the word

to a word list, etc.

Function ~52: spell

(tell *text-editor* mid:spell)

Returns: t and runs the spell checker

This does exactly what a user does when she runs the spell checker by making a popup menu

choice.

Function ~3: shape

(tell *text-editor* mid:shape)

Returns: t and runs the text shaping function

This puts the user into text-shaping mode, exactly as if she invoked it through the popups.
The programmer, however, can shape text directly by using the component editor (dis
cussed below).

Function ~54: create-ref

(tell *text-editor* mid:create-ref :page "page")

Inserts page reference

This inserts a reference to the current page, the same as manually creating one.

Function ~5: Inllne

(tell *text-editor* mid:inline name)
Creates in line, or converts selected text to inline name

E.g. (tell *text-editor* mid:inline "para'?
Creates inline named "para"

If text is selected, the above function converts it to an inline; if none is selected, it creates an
empty inline.

Function ~56: convert-case

(tell *text-editor* mid:convert-case &keyword)

Converts case of selected text to keyword

E.g. (tell *text-editor* mid:convert-case :Iower nil)

The choices of argument are :upper, :lower, and : initial. The last argument determines
whether accents should be stripped; if it's non-nil, the accents will be stripped.

Function ~57: search

(tell *text-editor* mid:search)
Opens search prop sheet

Function ~8: replace

(tell *text-editor* mid:replace)

Opens replace prop sheet

Inside the Document 151

If any text is selected, it will be entered into the search and replace prop sheet's Search

String field.

Function 9-59: auto-ref
(tell *text-editor* mid:auto-ref)
Creates auto reference
Function 9-60: goto
(tell *text-editor* mid:goto &keyword)
Takes you to the next argument object
E.g. (tell *text-editor* mid:goto :frame)

Takes you to next frame

The argument options are .frame, :autonumber, :index, :reference, or :inline.

Function 9-61: create
(tell *text-editor* mid:create &keyword name)
Creates the named thing at the text caret
E.g. (tell *text-editor* mid:create :frame "Rule")

Creates a frame named "Rule"

This powerful function allows you to insert, at the text caret, a frame, index token, auto
number, or inline. If you give the name of an object that already has a master, then an
instance of that object is inserted; if there is no master, then a default object is created with
the name you've supplied. Here is a list of what you can create:

Keyword Argument
:frame name

:inline name

:index string

:autonumber name, level

Working with components

Comment
If frame has shared or initial con
tents, those are created along with
it

String is used as entry in index

Level is zero-based, so (tell *text
editor* mid:create :autonumber
"chaptnumb" 1) creates second
level autonumber

As with the text editor, you can work with components either directly or by invoking the
component editor. The component editor allows the programmer to easily mimic the inter
actions of an end user with the system; working directly with components provides a finer
degree of control but also requires the programmer to pay more attention to getting all the
details right.

This time we'll begin by discussing how to work with components directly since there are
things we're going to want to do right away - such as adjust component properties - that
are easy to do using the direct method. Then we'll discuss the component editor.

152 ADVENTURER'S GUIDE TO INTERLEAF LISP

Working directly with components

You work directly with components first by getting a component object and then by telling

it do something.

The first task is to get a component object.

Function 9-62: doc-point-cmpn
(doc-point-cmpn)
Returns: component the text caret is in
E.g. (doc-point-cmpn)

Returns current component

If the text caret is in an inline, (doc-point-cmpn) will give you the inline component.

Function 9-63: doc-point-top-cmpn
(doc-point-top-cmpn)
Returns: the top-level component the text caret is in (the one named in the

component bar)
E.g. (doc-point-top-cmpn)

Returns current top component

This gives the current top-level component (the one that gets listed in the component bar)
even if you are currently in an inline.

Here is a list of the properties that can be retrieved and/or set, arranged in the order in which
the end user encounters them on the component property sheet. (MTIR refers to whether the
properties are available on masters, top-level components, inlines or rows of tables. Rsu's
are Interleaf's standard of measurement; there are 1,228,800 rsu's in an inch.)

Format Returns Can
be set

:name MTIR cmpn's name V'
:doc-font MTIR base font for cmpn V'
:top- MTR top margin, in rsu's V'
margin

:bottom- MTR bottom margin,in rsu's V'
margin

:Ieft-margin MT left margin, in rsu's V'
:right- MT right margin, in rsu's V'
margin

:initial- MT amount of initial indent, in rsu's V'
indent
:initial-in- MT number of initial lines to be indented V'
dent-count
:line- MT line spacing, in rsu's V'
spacing

Inside the Document 153

Format Returns Can
beset

:Iine-spac- MT if t, line spacing is specified in lines J/
ing-lines

:Iine-spac- MT t if line spacing is based on cmpn font size J/
ing-fixed

:alignment MT alignment- :Ieft, :right, :center, :inner, :outer, J/
:justified

Page
:begin- MT forces cmpn to begin new page J/
new-page

:begin- MT forces cmpn to begin new column J/
new-
column

: allow- MTR t if break is allowed before cmpn
break-
before

: allow- MTIR t if break is allowed within cmpn
break-
within

:allow- MTR t if break is allowed after cmpn J/
break-after

:orphan- MT avoid breaks that leave this number (1-16) of J/
count lines at the beginning of cmpn

:widow- MT avoid breaks that leave this number (1-16) of J/
count lines at the beginning of cmpn

:straddle- MT t if cmpn straddles columns J/
columns

Custom
:read-only MTIR forces cmpn to be read only J/
:toc- MTI name of document to hold the table of content J/
document- listing
name

:hyphen- MTI how easily to allow hyphenation, from 0 (off) to
ation- 10
amount

:track- MT kerns spaces, if track kerning is on
kern-
spaces

:prefix- MTI t if cmpn is shared prefix J/
content

:shared- MTI t if cmpn is shared contents J/
content

154 ADVENTURER'S GUIDE TO INTERLEAF LISP

Format Returns

Tab
:tab-origin- MT t if tabs are relative to the column; nil if relative
column to margin

:tab-stops MT list of cons (location. type) where location is in
rsu's and type is :Ieft, :center, :right, :numeric

Profile
:profile MT list of (line-count indent is-right) where line-

count is the starting line number (starting with
1), indent is the amount to indent in rsu's, and
is-right is t if the indentation is from the right
margin

Attr
:attributes MTIR attributes and values for the cmpn

In line-specific
:font-inherit MI sets font inherit of inlines

Table-specific
:table-row R t if cmpn is a table row

:row-bor- R t if show rulings at end of row
der-rulings

:table- R t if use this row as header
header

:table- R t if use this row as table footer
footer

:broken- R t if row is result of the previous being broken
table-row across pages or columns

:vertical- R t if a vertical straddle enters this row from above
straddle

Other
:force- MTIR forces cmpn not to show
hidden

As usual, you get these properties with the following function:

Function 9-64: get-props

(tell cmpn mid:get-props &keyword ...)

Returns: requested properties

E.g. (tell (doc-point-cmpn) mid:get-props :alignment)
Gets current component's alignment. Returns, e.g., :Ieft

If you do not specify any keyword, you will get a long list of all the properties.

Can
be set

I'"

I'"

I'"

I'"

I'"

Inside the Document 155

You can set the properties with a closely related function:

Function 9-65: set-props
{tell cmpn mid:set-props &keyword ... }
Returns: requested properties and sets cmpn's properties
E.g. (tell (doc-point-cmpn) mid:set-props :alignment :Ieft)

Returns :Ieft and makes the current cmpn left-aligned

Some of the properties require additional notes.

Name

You can get a component's name by asking for its :name property (tell (doc-point
cmpn) mid:get-props :name) or you can use a special function:

Function 9-66: get-name
{tell cmpn mid:get-name}
Returns: the name of cmpn
E.g. (tell (doc-point-cmpn) mid:get-name)

Returns name of current component

Components don't have a set-name method; if you want to set a component's name, you
need to use the set-props function, e.g., (tell (doc-point-cmpn) mid:set-props
:name "bullet'? If you set a component's name to that of an already-existing master, how
ever, it will not change anything else about that component. For example,

(tell (doc-point-cmpn) mid:set-props :name "Title")
Changes the current component's name to "Title" but leaves its other
properties unaltered

If you want to change both the name and the properties, the easiest way to do it is by using
the component editor, e.g., (tell *cmpn-editor* mid:change "subsect3'?, discussed
below. (This is an example of the advantages and disadvantages of doing things directly or
through the component editor.)

Tab-stops

Asking for the tab stops gives you a list such as the following:

; get the tabs
(tell test-cmpn mid:get-props :tab-stops)
Returns ((0. :Ieft) (1228800. :Ieft) (2457600. :right) (3686400. :Ieft))
; set the tabs
(tell test-cmpn mid:set-props :tab-stops (list (cons 1000000 :right)(cons
2000000 :center)))
Returns ((1000000. :right) (2000000. :center))

Remember, if you set the tab stops of a component, you wipe out all the existing tabs. For
example, suppose we now get the tab stops of the component named "test-cmpn" used in
the example above:

156 ADVENTURER'S GUIDE TO INTERLEAF LISP

; get the tabs
(tell test-cmpn mid:get-props :tab-stops)
Returns ((1000000. :right) (2000000. :center))

The original tabs have been completely replaced by the new list; all the other tabs have been
lost. So, to add a tab without altering any of the original ones, you need a function such as

the following:

9-33 add-a-tab
(defun add-a-tab (cmpn tab-position tab-type)

))

(let (tabs)
; get current tabs
(setq tabs (tell cmpn mid:get-props :tab-stops))
; add new tab to list
(push (cons tab-position tab-type) tabs)
; set new tabs
(tell cmpn mid:set-props :tab-stops tabs)

To use this function, you would invoke it as follows: (add-a-tab (doc-point-cmpn)
2000000 :right).

You have seen that you can change the fonts of any selected text by using the text editor. You
could also change fonts more directly by inserting a font token at any marker. Either tech
nique affects the text stream without affecting the properties of the component. To change
the component properties, the end user goes to the component property sheets. Program
mers can do so more directly.

In Interleaf 5, a font is an object. You can ask a component to hand over its font object
through the get-props method. Then you can examine those properties, or make a new font
object. For example,

; get the font object and set df to it
(setq df (tell (doc-point-cmpn) mid:get-props :doc-font))
Returns # <doc-font OxBc4060>
; look at the font object's properties
(tell df mid:get-props)
Returns (:family 'Thames" :bold nil :italic nil :size 12.0 :underline nil
:strikethrough nil :dbl-underline nil :overbar nil :superscript nil :subscript
nil :revision-bar nil :caps nil :pair-kerning t :track-kerning nil :fn-font
#<font-obj Ox9BcOOO> :dictionary # <sdict-obj Ox6dOBOO> :zoom nil)
; look at a particular property of the font object
(tell df mid:get-props :family)
Returns "Thames"

Inside the Document 157

; create a new font based on df, with changes (Swiss, 17.5pts, bold,
underlined)
(setq new-font (tell-class doc-font-class mid:new :doc-font df :family
"Swiss" :size 17.5 :bold t :underline t))
Returns # <doc-font Ox8c4180>
:apply new font to component
(tell (doc-point-cmpn) mid:set-props :doc-font new-font)
Returns #<doc-font Ox8c4180>

Here are two functions that together use font changes as a sort of interface to other functi
onality. This case supposes you have a component with a bunch of inlines, and you want the
user to be able to move from one inline to another by hitting the tab key. You will signify
which in line the user is in by putting it into boldface. If the user is in the last inline, hitting

the tab key takes him or her to the first inline. The following way of doing this assumes that
you have created a component named "movingbar" that consists of inlines named "choice"
and that the first choice inline starts off already bolded.

9-34 get-next-choice
(defun get-next-choice ()
; moves caret to next inline named choice, puts it into boldface,
; and puts all others into roman

(let (df bold-font unbold-font next m (c (doc-point-cmpn)))
.. get current font
(setq df (tell (doc-point-cmpn) mid:get-props :doc-font))
.. unbold current cmpn
.. make bold font
(setq bold-font (tell-class doc-font-class mid:new :doc-font df
:bold t))
; make unbold font
(setq unbold-font (tell-class doc-font-class mid:new :doc-font df
:bold nil))
.. make current cmpn unbold
(tell c mid:set-props :doc-font unbold-font)
; go to next inline
(setq next (tell c mid:get-next))
.. if at end, next is nil
(if (not next)

(progn
.. get first inline
(setq next (tell (tell c mid:get-top-cmpn) mid:get-child))))

.. set next inline to bold
(tell next mid:set-props :doc-font bold-font)
; get marker in next inline

158 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

(setq m (tell next mid:get-marker))
; go to that marker
(doc-goto-marker m)

9-35 alter-tab
(defun new-tab 0
; rebind tab key so it looks for cmpn named movingbar

; are we in a component named "movingbar"?

)

(if (string = "movingbar" (tell (tell (doc-point-cmpn)
mid:get-top-cmpn) mid:get-name))

(get-next-choice)
; else tab key should just insert a tab
(key-insert-tab))

; Try it: rebind tab key
(kbd-bind kbd-doc-map "It" 'new-tab)

The following set of functions allow you to toggle between something like a "draft" mode
and a WYSIWYG mode. In draft mode, all fonts are replaced by a single font of your
choice, in single column.

; choose your draft font and size
(setq *draft-face* "Courier"

draft-size 14)

9-36 draft-scan
(defun draft-scan (0)
; every cmpn gets sent here for draft formatting
(let (df new-df)

; get current doc font
(setq df (tell 0 mid:get-props :doc-font))
; if there is a doc font, build a new one
(ifdf

(progn
; create a new one with different family and size
(setq new-df

(tell-class doc-font-class mid:new :doc-font df
:family *draft-face*
:size *draft-size*))

; set cmpn props to new doc font
(tell 0 mid:set-props :doc-font new-df)
; save original font as temporary lisp data

Inside the Document 159

(tell 0 mid:put-data :font df)))
))

9-37 draft-mode
(defun draft-mode ()
; puts document into draft mode, if not already there

(if (not (tell *document* mid:get-data :draft))

)

(progn

))

; turn doc into draft version
; get number of cols and put it as temporary data
(tell *document* mid:put-data :cols
(tell *document* mid:get-props :columns))
; set doc to one col
(tell *document* mid:set-props :columns 1)
; scan doc to set fonts to draft fonts
(doc-scan-class-apply 'draft-scan (list doc-cmpn-class))
; update the doc
(doc-flush-queue)
; put some data so we can check whether it's in draft mode
(tell *document* mid:put-data :draft t)

9-38 undraft-mode
(defun undraft-mode ()

)

; if there's saved data, read number of columns and restore
(if (tell *document* mid:get-data :cols)

(tell *document* mid:set-props :columns
(tell *document* mid:get-data :cols)))

; scan the doc and restore any saved fonts
(doc-scan-class-apply '(lambda (0)

(if (tell 0 mid:get-data :font)
(tell 0 mid:set-props :doc-font (tell 0 mid:get-data :font))))

(list doc-cmpn-class))
; update the doc
(doc - flush - queue)
; tell it it's not in draft mode any more
(tell *document* mid:put-data :draft nil)

; bind some keys - - A Xr to draft it, A XR to undraft it
(kbd-bind kbd-doc-map "\ A Xr" 'draft-mode)
(kbd-bind kbd-doc-map "\ A XR" 'undraft-mode)

160 ADVENTURER'S GUIDE TO INTERLEAF LISP

Attributes

Interleaf 5 allows the user - or the programmer - to attach any information (in the form of
attributes) he or she wants to any Interleaf object. The main purpose of this for the end user
is to allow the end user to automatically assemble different versions of a document based
upon the information attached to the objects. This is known as effectivity or conditional

document assembly.

For the programmer, however, this capability is even more useful, for it provides a very
convenient way to attach data that a program might need. You can even use the object's
attributes to store code that then gets eva!' ed. (You can also use Lisp data, as explained in a

previous chapter.)

Function 9-67: get-attrs
(tell cmpn mid:get-attrs)
Returns: list of attributes and values
E.g. (tell (doc-point-cmpn) mid:get-attrs)

Returns "(("prod#""123.4a" "5.5'J("security""top'J)

What get-attrs returns is a list oflists. Each inner list consists of the attribute's name and all
of its values. If an attribute has no value, neither the attribute nor its value is returned.

You can get a specific attribute by supplying its name as an argument:

(tell (doc-point-cmpn) mid:get-attrs "prod#")
Returns, e.g., ("123.4a""5.5"), or nil if no value

In this example, the attribute prod# has two values. It is important to note that if an object
has no value for a particular attribute, that attribute does not get reported at all. For exam
ple, if the next component's "do" attribute were blank, the attribute list might look like this:
(("nextcmpn" "code'J (''prod#'' "123.41" "5.5'J). And if there are no values for any attrib
ute for an object, when you ask to see its attributes, you will get a nil returned to you.

To find out what all the attributes are that have been defined in a document, you have to ask
the document icon:

(tell (doc-current-icon) mid:get-props :attributes-control)
Returns (("prod#" 2) ("security" 1))

In this case, the document has prod# defined as an attribute that can have two values,
whereas security can only take one value.

If you want to add a new attribute to a document (not fill in an attribute value), you only
have to set an object to include that attribute; it will automatically show up on the document
property sheet.

set-attributes
(defun set-attributes (cmpn attr-list)

(tell cmpn mid:set-props :attributes attr-list)

Inside the Document 161

)
; try it out
(set-attributes (doc-point-cmpn)

(list (list "date" "11-23-93'J (list "products" "Zizzy Scoop" "The
Abdomifier'J))

To use this function, you need to construct a list of the attributes you want to set. The list
contains a list for each attribute you want to set (consisting of the attribute name and all the
values you want to set.) The list has to be complete. For example, if a component has attrib
utes set for "date" and "place," and you give set-attributes a list that contains a value only
for "date," the "place" attribute values will be wiped out.

To change just one attribute value, you can use the following:

9-39 alter-attr-value
(defun alter-attr-value (cmpn attr)
; set a new attr value without disturbing other current ones

))

(let (current-attrs)
; get current attribute list
(setq current-attrs (tell cmpn mid:get-props :attributes))
; is new one is already on list?
(if current-attrs

(progn
(setq current-attrs (delete attr current-attrs :test

'(lambda (a b) (string= (car a) (car b)))))))
; add new value to list
(push attr current-attrs)
; set cmpn to new attr list
(tell cmpn mid:set-props :attributes current-attrs)

; try it
(alter-attr-value (doc-point-cmpn) (list "product#" "second'J)

You can, of course, set control expressions through Interleaf Lisp that will look at every
object's attributes and see if the object ought to be shown or be hidden; this simulates the
way end users use effectivity.

9-40 set-control-expression
(defun set-control-expression (expr)
; applies expr string to document

(let ((doc (doc-current-icon)))
; set the control expression
(tell (doc-current-icon) mid:set-props :local-control-expression

162 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

expr)
; tell it to pay attention to its control expression
(tell (doc-current-icon) mid:set-props
:Iocal-control-expression -enabled t)

; try it out
(set-control-expression "$name # order-number'')

This allows you to create an easier interface for altering attributes. The following creates an
input stickup with the current attribute value already in the input area. If you enter new data
into the stickup, it gets applied to the component.

9-41 attribute-ui
(defun attribute-ui (c attr)
; shows value of attribute attr of cmpn c

))

(let (new-value value)
; get value of attribute
(setq value (tell c mid:get-attrs attr))
; if has no value, call it nil
(if (not value) (setq value "<Nil>''))
; prompt for new value and show old one in stickup field
(setq new-val

(stk-open-prompt (format nil "Enter new value of rv A" attr)
:initial-prompt value))
; set attr to new value using previously created function
(if new-val

(alter-attr-value c (list attr new-val)))

; try it
(attribute-ui (doc-point-cmpn) "product#'')

With attributes, you can take the moving bar menu we began to create and make it come
alive. Using Interleaf 5's end-user interface, create a component called "movingbar" that
consists of inlines called "choice." Create an attribute called "do." For each of the inlines,
give a value to the do attribute that is in fact a piece ofInterleafLisp code. For example, one
might be (stk-open "Howdy'') and another might be (tell *text-editor* mid:save). Now
we're going to rebind the return key so that it will check to see if we're in a choice inline,
and, if so, it will try to execute whatever line of code is stored in the do attribute.

Function 9-68: doc-eval-attribute
(doc-eval-attribute cmpn attr)
Returns: nil if no attribute
E.g. (doc-eval-attribute (doc-point-cmpn) "do")

Evals the "do" attribute of current component and returns value

Inside the Document 163

This function gets the value of the attribute you want and then assumes that that value actu
ally is some Lisp code which it then evals. So, if you had a component with an attribute
called "code" which consists of the value (tell *cmpn-editor* mid:create "signature'J,
doc-eval-attribute would eval the value and create a new component named signature.

You could now use some of the functions developed in this chapter to create a moving-bar
menu which allows you to tab through various fields and use the return key to execute a
choice. First, eval the moving-bar code above which rebinds the tab key so that it cycles
through inlines in a component. Then, eval the following code which rebinds the return key
so that if the current component is named choice and has an attribute named "do," it will try
to eval the value of "do"; if it has no value, it inserts a hard return.

9-42 moving-bar-action
(defun moving-bar-action 0

))

(let (to-do (c (doc-point-cmpn)))
; get contents of "do"
(if (not (doc-eval-attribute c "do'))

(key-insert-return))

9-43 new-return
(defun new-returnO
; rebind return key so it looks for inline named "choice"

)

(if (string= "choice" (tell (doc-point-cmpn) mid:get-name))
(moving-bar-action)
; else
(key-insert-return))

; rebind return key
(kbd-bind kbd-doc-map "Ir" 'new-return)

The programmer can still get at any object hidden through effectivity. Navigating :along
:structure will bring you to every hidden element. You can look at each object to see if it is
visible. For example,

9-44 count-hidden-elements
(defun count-hidden-elements 0

(let ((hidden-ctr 0))

))

(doc-scan '(lambda (obj level)
(if (not (tell obj mid:is-effective))

(inc hidden-ctr))))
hidden-ctr

164 ADVENTURER'S GUIDE TO INTER LEAF LISP

; try it
(stk-open (itoa (count-hidden-elements)))

Force-hidden

While effectivity provides a very powerful mechanism for storing Interleaf Lisp data, it is
often not very useful to the programmer as a way of showing or hiding document objects,
precisely because it is a useful way for end-users to show and hide content. Because the
programmer cannot predict what control expression the end user may have in place, the
programmer would have to preserve that control expression when adding or deleting new
conditions. That would mean lots of careful string handling.

Fortunately, Interleaf Lisp provides another, more direct, technique. Any document object
can beforce-hidden which means that it will not be visible. Because it works with text and
with graphics, force-hidden is useful not only for changing the appearance of documents
but also when building document-based interfaces.

Here is a function that hides or shows all the frames in a document:

9-45 hide-or-show-frames
(defun hide-or-show-frames (toggle)
; if toggle is t, hides frames; if nil, shows them

(doc-scan '(lambda (obj level)
(if (is-of-class obj doc-frame-class)

(tell obj mid:set-props :force-hidden toggle))))
)
;try it
(hide-or-show-frames nil)

As you can see, force-hidden provides a powerful capability.

In fact, since the frames have been hidden through force-hidden, there is no user interface
that will bring them back. The following routine will unhide anything hidden by force-hid
den. (It leaves hidden anything hidden because of the effect of a control expression.)

9-46 force-unhide-all
(defun force-unhide-all 0

(doc-scan '(lambda (obj level)
(tell obj mid:set-props :force-hidden nil)))

)

You can use force-hidden to provide an automated outliner. In the following example,
A X-causes every component of less importance than the current one to hide itself; A X +
shows all the lesser components you've hidden. "Lesser" means it is of lesser importance in
the structure of the document, To determine this, the function uses a simple and easily
fooled set of "heuristics." For example, if component A is in a larger type size than compo-

Inside the Document 165

nent B, it assumes that A is greater than B in terms of its relative importance in the docu
ment. Likewise, being centered and bolded makes A greater than B ifB either isn't centered
or isn't bolded. Clearly you could come up with your own "heuristics" that would make the
following freeform outliner work better. (Be prepared to use example 9-.46 - force
unhide-all- to restore your document as you experiment with this code!) (Note: The fol
lowing leaves table rows untouched because if you try to get their doc font, they give you
nil; you instead have to look inside the individual cells.)

9-47 is-lesser-than
(defun is-lesser-than (c size center bold indent)
; "heuristics" to decide if c is lesser than where we started

(let (this-size (lesser nil) this-bold df)

))

;get new fontsize
(setq df (tell c mid:get-props :doc-font))
(setq this-size (tell df mid:get-props :size))
(setq this-bold (tell df mid:get-props :bold))
; if this one is smaller type size
(if « this-size size)

(setq lesser t))
; if original is centered and bold and this one isn't
(if (and (equal :center center) bold

(or (not (equal :center (tell c mid:get-props :alignment)))
(not this-bold)))

(setq lesser t))
; if this one is indented and equal or smaller
(if (and (> (tell c mid:get-props :Ieft-margin) indent)
«= this-size size))

(setq lesser t))
lesser

9-48 outline-hide-Ievels
(defun outline-hide-Ievels 0
; hides any cmpn less than current cmpn

(let (font-size bold indent centered c doc-font)
; get current cmpn's parameters
(setq c (doc-point-cmpn))
; get doc font so can get size and boldness
(setq doc-font (tell *text-editor* mid:get-props :doc-font))
(setq font-size (tell doc-font mid:get-props :size))
(setq bold (tell doc-font mid:get-props :bold))
(setq indent (tell c mid:get-props :Ieft-margin))
(setq centered (tell c mid:get-props :alignment))

166 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

; loop hiding anything "Iess" than current cmpn
; get first cmpn
(setq c (tell-class doc-cmpn-class mid:get-first))
(while c

; skip table rows and check for lesserness
(if (and (not (tell c mid:get-props :table-row))

(is-lesser-than c font-size centered bold indent))
(progn

)

(tell c mid:set-props :force-hidden t)))
(setq c (tell c mid:get-next))

(doc-flush-queue)

9-49 outline-show-Ievels
(defun outline-show-Ievels ()
; shows any cmpn greater than current cmpn
(let (font-size bold indent centered c pt doc-font)

; get current position

))

(setq pt (doc-point-marker))
; get current cmpn's parameters
(setq c (doc-point-cmpn))
; get doc font so can get size and boldness
(setq doc-font (tell *text-editor* mid:get-props :doc-font))
(setq font-size (tell doc-font mid:get-props :size))
(setq bold (tell doc-font mid:get-props :bold))
(setq indent (tell c mid:get-props :Ieft-margin))
(setq centered (tell c mid:get-props :alignment))
; loop hiding anything "Iess" than current cmpn
; get first cmpn
(setq c (tell-class doc-cmpn-class mid:get-first))

(while c (inc ctr)
; skip table rows and check for lesserness

(if (and (not (tell c mid:get-props :table-row))
(is-lesser-than c font-size centered bold indent))
(progn

(tell c mid:set-props :force-hidden nil)))
(setq c (tell c mid:get-next :along :structure))

)
(doc-flush-queue)

Inside the Document 167

; bind it to some keys
(kbd-bind kbd-doc-map "\ A X+" 'outline-show-Ievels)
(kbd-bind kbd-doc-map"\ AX_" 'outline-hide-Ievels)

Remember, while effectivity is one way of attaching data to objects, put-saved-data is
another.

Masters

You've learned how to alter the properties and content of individual objects. But Interleaf 5
provides masters, not just instances. A master is a component's definition. When the user
creates a new instance of a component by using the Create menu in the component bar, the
system creates an instance that exactly reflects the master. (If the user creates a new
instance by hitting the A J key, the new instance is modelled on the current component, not
on the master; the user may have adjusted the current component without updating the mas
ter.) With Interleaf Lisp, you can manipulate a master just the way you manipulate
instances.

First you have to get the master. To do that, you have to check the name pool of the class of
object - in this case, component - you're looking for. The name-pool consists of the
names of the objects in the document. The name pool has a name-head which is the head of
the chain. You can use the name pool to get the master. You can also use it to visit every
object with that name.

name pool

name heads

masters master master master master

I I I I
instances "para" ''title'' "bullet" "at anchor"

I I I

"para" "bullet" "at anchor"
I I

"para" "bullet"
I I

"para" "bullet"

168 ADVENTURER'S GUIDE TO INTER LEAF LISP

Function 9-69: name-find-pool

(name-find-pool class &optional parent)

Returns: name pool of class in parent

E.g. (name-find-pool doc-cmpn-class *document*)
Returns the name pool for all components in the current document

The name pool for components contains all the components in the document. To traverse
this list, however, you have to find its head:

Function 9-70: name-find-head

(name-find-head class name &optional parent)

Returns: the head of the name pool for class by the name of name in
parent

E.g. (name-find-head doc-cmpn-class "para" *document*)
Returns head of the name pool for all components named "para" in the
current document

The object classes for which you can find the name pool and name head include the follow
ing:

iii doc-cmpn-class

iii doc-frame-class

iii doc-table-class

iii doc-table-cell-class

iii doc-autonum-stream-class

iii doc-pagenum-stream-class

II dg-named-class

iii rev-edit-class

!ill rev-version-class

Now that you have the name header, you want to do something with it. You can get the mas
ter if you can get the head by asking for the head's child :along :structure:

9-50 get-master
(defun get-master (class name)
; get the master of object

))

(let (head)
(setq head (name-find-head class name))
(if head

(tell head mid:get-child :along :structure))

For example,

(get-master doc-cmpn-class "bullet")
Returns the master for the component "bullet"

Inside the Document 169

Now that you have the master, you can alter it by getting and setting its props just as with
any component. Of course, altering the master won't alter any of the existing instances,
although the next instance created will reflect the changes. (You'll see how to change the
instances in a minute.)

If you want to confirm that the object in your hands is a master, you can use the following
function:

Function 9-71: is-master
(tell object mid:is-master)
Returns: t if object is a master; otherwise, nil
E.g. (tell (doc-point-cmpn) mid:is-master)

Always returns nil because the current component is never the master

Suppose you want to get all the masters of a certain class in a document.

9-51 get-masters
(defun get-masters (class)

))

(let (pool name-head (master-list nil) child)
(setq pool (name-find-pool class))
; get first
(setq name-head (tell pool mid:get-child))
(while name-head

)

; get master from name head
(setq child (tell name-head mid:get-child :along :structure))
(if child

(push child master-list))
(setq name-head (tell name-head mid:get-next))

master-list

If you only want to see the masters that actually have instances, you could process the list of
masters you just created:

9-52 get-used-masters
(defun get-used-masters (class is-used)
; returns list of masters, optionally only those with instances

(let (name-head (master-list nil) child (used t))
(setq pool (name-find-pool class))
; get first
(setq name-head (tell pool mid:get-child))

170 ADVENTURER'S GUIDE TO INTER LEAF LISP

))

(while name-head
(setq child (tell name-head mid:get-child :along :structure))
; if we want only used masters, find out if it's used
(if is-used (setq used (tell name-head mid:is-used)))
(if (and child used)

(push child master-list))
(setq name-head (tell name-head mid:get-next))

)
master-list

This slight variation on get-masters has an additional argument. If it is t, then the function
will only return masters that have at least one instance.

You can use the name pool to visit every instance of a master as well. This makes it a fast
way to apply changes to every component with a certain name, for example.

9-53 global-apply
(defun global-apply (name fnc &optional value)

))

(let (head m)
(setq head (name-find-head doc-cmpn-class name *document*))
(setq m (tell head mid:get-child :along :name))
(while m

(tell m mid:set-props fnc value)
(setq m (tell m mid:get-next :along :name)))

For example, (global-apply "para" :alignment :,;ght) will right align every instance of
"para" and will set its master to right aligned as well.

You could also use these functions to visit every component in your document and change
the fonts from, say, Thames to Swiss. But be warned - if you change your mind afterwards,
you'll have to go back through and restore the original fonts by hand. (You could expand
this function so that it stores the original fonts as an attribute of each component - or, bet
ter, as lisp data via mid:put-data - so you could undo it programmatically later on.)

9-54 change-all-fonts
(defun change-all-fonts (family size)

(let (pool child c (name-list nil) df newfont)
; post a warning
(if (not

(stk-open
(format nil "Are you sure you want to change all fonts\nin '" D

to\n '" Dpt. "'A? NOT recoverable!"
(tell (doc-current-icon) mid:get-name) size family) :yes-no))

))

Inside the Document 171

(quit))
(setq pool (name-find-pool doc-cmpn-class *document*))
; get list of name heads
(setq child (tell pool mid:get-child :along :name))
(while child

(push child name-list)
(setq child (tell child mid:get-next))

)
; go through list of name heads and find all instances
(while (setq m (pop name-list))

; go through all instances
(setq c (tell m mid:get-child))
(while c

; create appropriate doc font
(setq df (tell c mid:get-props :doc-font))
(setq newfont (tell-class doc-font-class mid:new :doc-font df
:family family :size size))
; apply new font
(tell c mid:set-props :doc-font newfont)
(setq c (tell c mid:get-next))))

;try it
(change-all-fonts "Swiss" 14.5)

Component Editor

One of the objects available to the programmer within a document is the component editor,
much like the text editor and other editors. This provides a convenient way to accomplish
many component-oriented tasks.

You can tell the component editor to get-props and set-props:

:caret-direction

:cmpn-bar-width

:view-cmpn-bar

If :next, component caret will appear just after the compo
nent with the text caret; if :previous, it will appear just
before it

Width of the component bar in screen pixels

If t, the component bar shows. If nil, it doesn't show. If
string, the component bar will show the value of the
attributer that matches the string

You can mimic the end user's interaction with the component bar menus by using the com
ponent editor, as well as do more.

172 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 9-72: get-child

(tell *cmpn-editor* mid:get-child)

Returns: first top-level component in the document

This does the same as (tell *document* mid:get-child)

The component editor cares whether anything is selected in the component bar. In this it
mirrors programmatically the end user's experience with the software. Fortunately, there
are a number of ways of controlling what is selected.

Function 9-73: select

(tell *cmpn-editor* mid:select &optional arguments)

[no arguments]

component
name
:all

:table name
:begin

:end

:toggle

:page page-number

Selects component the mouse cursor is pointing at - in
the text or in the component bar

Selects the specified component

Selects all components with that name

Selects all components (or all in current microdocument)

Selects table named name
Selects all from first through current component

Selects all from current component through end

Selects what was deselected (except hidden components)
and deselects what was selected.

Selects all components from current component to the
specified page. Page numbering is zero-based; the first
page of the document is page 0, even if in a book. If no
number is supplied, user will be prompted for one

Unfortunately, there is no built-in way to get a list of all the selected components. The fol
lowing function should suffice, however:

9-55 get-selected-cmpns
(defun get-selected-cmpns 0

))

(let (c (sel-/ist nil))
; go to first cmpn
(setq c (tell *cmpn-editor* mid:get-child))
; loop through document
(while c

(if (tell c mid:is-selected)
(push c sel-list))

(setq c (tell c mid:get-next)))
sel-/ist

Inside the Document 173

Function 9-74: deselect
(tell *cmpn-editor* mid:deselect &optional argument)
Deselects specified components
E.g. (tell *cmpn-editor* mid:deselect :all)

Deselects all components
Without any arguments, (tell *cmpn-editor* mid:deselect) will deselect whichever
component the mouse cursor is over. With :all, all components are deselected. Or you can
specify which precise component you would like deselected, i.e., (tell *cmpn-editor*
mid:deselect cmpn).

Function 9-75: cut
(tell *cmpn-editor* mid:cut)
Cuts selected components
If there are no components selected, you'll get an error message. Otherwise, all the selected
components will be cut and written to the clipboard, which means they can be pasted using
the paste method.

Function 9-76: copy
(tell *cmpn-editor* mid:copy)
Copies selected components
Copies any selected components onto the clipboard from which they can be pasted.

Function 9-77: paste
(tell *cmpn-editor* mid:paste)
Pastes whatever was selected on the clipboard
If anything is selected in the document, you'll get an error message. If anything is selected
on the clipboard, it will be pasted at the component caret. If nothing is selected on the clip
board, there will be a message to that effect put into the document window's message line.

You can control whether the paste occurs above or below the component with the compo
nent caret by setting the props of the component editor. For example:

(tell *cmpn-editor* mid:copy)
Copies selected components to clipboard
(tell *cmpn-editor* mid:set-props :caret-direction :next)
Sets caret beneath the component
(tell *cmpn-editor* mid:paste)
Pastes beneath the component
(tell *cmpn-editor* mid:set-props :caret-direction :previous)
Sets caret before the component
(tell *cmpn-editor* mid:paste)
Pastes above the component

Notice that only if you have multi-paste set to true can you paste twice in a row without
re-copying. This variable is part of your profile; look in the init.lsp file in your profile
drawer, or use your Profile Tool.

174 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 9-78: create
(tell *cmpn-editor* mid:create &optional object)
Creates an instance of the object
E.g. (tell *cmpn-editor* mid:create "para'?

Creates an instance of "para"

The optional object can be a component's name or a master component. If it is nothing, then
an instance of the current component will be created.

This simple function can be used very effectively. Suppose, for example, you create an
instance of "list." This may be a component that has a shared prefix which consists of a
frame with a graphic of a hand and a microdocument with an autonumber. The prefix may
be tagged for a table of contents. With one command, you create an instance that contains
all this information, that may cause multiple cross references to be updated across a net
work, that is properly numbered and listed in the table of contents. That this is possible with
a single command is testimony to the power of document object-oriented programming.

Here is a very function that combines several functions. It creates an instance of whatever
component is stored in the attribute "nextcmpn" when the user types escape-J. So, for
example, you could store "para" as the value of "nextcmpn" for a subhead component, so
that when you're in a subhead you can type escape-J and get an instance of "para."

9-56 next-cmpn
(defun next-cmpn ()

))

(let (attr (c (doc-point-cmpn)))
; get attributes
(setq attr (tell c mid:get-attrs "nextcmpn'?)
; if no value of "nextcmpn" attr, set name to current cmpn
(if (not attr)

(setq attr (tell mid:get-name)))
; insert after current cmpn
(tell *cmpn-editor* mid:set-props :caret-direction :next)
; create the new cmpn
(tell *cmpn-editor* mid:create attr)

; bind it to escape-J
(kbd-bind kbd-esc-map T 'next-cmpn)

With a little more work, you can allow the user to put a series of component names in the
nextcmpn attribute so that escape-J will create all the listed components.

Function 9-79: change
(tell *cmpn-editor* mid:change cmpn)
Changes the selected components into cmpn
E.g. (tell *cmpn-editor* mid:change "para'?

Changes all selected components to "para"

Inside the Document 175

The change function requires that some components be selected.

Function 9-80: join
(tell *cmpn-editor* mid:join)
Joins previous and next components

The previous function requires that nothing be selected.

Function 9-81: goto

(tell *cmpn-editor* mid:goto &keyword master)

Returns: Moves caret to object and returns the object

E.g. (tell *cmpn-editor* mid:goto :next "para')
Goes to next instance of component named "para" and returns that

component

The keywords allowable here are :first, :last, :next and :previous.

Function 9-82: open-props

(tell *cmpn-editor* mid:open-props)
Returns: Opens property sheet for selected component and returns the

window object

There must be one and only one component selected for this function to work, just as when
it is invoked by an end user.

Pages
Pages are fleeting in Interleaf 5. Every time you enter a character, it's entirely possible that
you will be altering many pages, for your character may cause the document to repaginate
itself. Interleaf 5 is built around the structure of documents - the relationship of the vari
ous components and other objects - not around transient pages. So there is not much
emphasis put on pages in Interleaf Lisp.

Function 9-83: doc-point-page
(doc-point-page)

Returns: current page

This gives you the current page. You can then get, but not set, the following properties:

: offset

:pixel-Ieft-offset

:pixel-top-offset

:visible

Page number. The first page of the document is page o.
Number of pixels the page is from the left side of the win
dow

Number of pixels the page is from the top of the window

If any portion of the page is visible on screen (or very
close) - i.e., if it's in the document window -- this is t.

One of the most common uses of pages is to get the page number of a particular object. This
is easily done by using the following two functions.

176 ADVENTURER'S GUIDE TO INTER LEAF LISP

Function 9-84: doc-page-of
(doc-page-of object)

Returns: page that object is on

This returns the page object, but not yet the page number.

Function 9-85: doc-page-number-of
(doc-page-number of page)

Returns: page number of page

This takes a page object and tells you what its page number is. The page number is the actual
page number; if the object is in a book so that the page number is influenced by other chap
ters before it, the number returned will be the appropriate one.

These two functions can be combined into one:

9-57 get-page-number-of
(defun get-page-number-of (obj)
; returns page obi is on

(doc-page-number-of (doc-page-of obj))
)

You can also navigate through pages. The doc-page-class can be used to get to the first or
last pages:

Function 9-86: get-first
(tell-class doc-page-class mid:get-first)
Returns: first page object
Function 9-87: get-last
(tell-class doc-page-class mid:get-Iast)
Returns: last page object

You can go to a particular page by using the document's open method:

9-58 goto-page
(defun goto-page (document page-number)

(tell document mid:open :page page-number)
)

; try it
(goto-page (doc-current-icon) 357)

You can see how this simple function can serve as the basis for a powerful hypertext capa
bility. (If the page number is lower than the number of the first page in the document, this
function will take you to the first page; if the number is higher than the last page, it takes you
to the last page.)

Inside the Document 177

If you want to go to a particular object, but you don't know, or can't predict, where the

object is, you can use the function get-page-number-of

9-59 goto-object-page
(defun goto-object-page (document object)
; uses previously-defined function

(tell document mid:open :page (get-page-number-of object))
)

Notice that with Interleaf 5's power, you can build a hypertext system that works even as the
objects you're linking to are moved around.

This function leaves the text caret at the top of the page. If you want to leave it immediately

before the object itself, you can use the following function:

9-60 goto-object
(defun goto-page (document object)

; go to page
(tell document mid:open :page (get-page-number-of object))
; go to object on page
(doc-goto-marker (tell obj mid:get-marker))
)

If you want to leave the caret immediately after the object, give get-marker an argument of

t: (doc-goto-marker (tell obj mid:get-marker t)).

Columns
Columns are short-lived in Interleaf 5. Whenever the pagination changes, so that text or
graphics go from one column to another, the old column object is destroyed and a new one is
created.

You can get the following properties of columns:

:type

:visible

:at-Ieft-margin

:at-right-margin

:width

One of: :text, :column-text, :straddle-text,
:top-frames-only, :follow-anchor-straddle
frames, :follow-text-straddle-frames, :bot
tom-straddle-frames, :underlay-frames,
:overlay-frames, :Ieft-side-frames, :right
side-frames

t if any part of the column is visible on
screen, although may be true if a column is
off to the left or right side of a window

t if column is leftmost on page

t if column is rightmost on page

Width, in rsu's

178 ADVENTURER'S GUIDE TO INTERLEAF LISP

:vertically-justified

:feathered

:height

:Ieft-offset

:top-offset

t if vertically justified

t if line spacing will be tinkered with to
achieve vertical justification

Height, in rsu's, of the column

Distance, in rsu's, from the left of the page
to the left margin of the column

Distance, in rsu's, from the top of the page
to the top of the column

You can navigate through columns, but otherwise you can't do much with them in Interleaf
5 (because columns are such transient objects).

Function 9-88: get-next
(tell column mid:get-next)

Returns: next column
Function 9-89: get-previous

(tell column mid:get-previous)

Returns: previous column

Function 9-90: get-parent

(tell column mid:get-parent)
Returns: Page containing column

Function 9-91: get-child

(tell column mid:get-child)

Returns: first line or floating frame in column

Function 9-92: get-last-child

(tell column mid:get-Iast-child)

Returns: last line or floating frame in column

The following will build a list of the text contents of the first line of every column, along
with the page number of each. This could be further refined to provide the first and last
words of any set of columns.

9-61 first-lines
(defun first-lines ()

(let (col page page-number line line-contents (col-list nil))
; get first page
(setq page (tell-class doc-page-class mid:get-first))
; get first column
(setq col (tell page mid:get-child))
; loop
(while col

; get first line
(setq line (tell col mid:get-child))

Inside the Document 179

; get contents
(setq line-contents

(tell (tell line mid:get-marker) mid.'get-substring

))

(tell line mid:get-marker t) t t))
; get page number
(setq page-number (doc-page-number-of (doc-page-of line)))
; add it to the list
(push (cons line-contents page-number) col-list)
; get next
(setq col (tell col mid:get-next)))

; return the list
col-list

Lines
Lines change so frequently in Interleaf 5 that they usually do not form a reliable basis for
programming, Nevertheless, if you need to know about them, Interleaf Lisp lets you find
out all about them.

Function 9-93: doc-poi nt-line

(doc-point-line)
Returns: line the text caret is in

Lines are children of columns, so you can get the first in a column by doing a get-child of a
column.

The following will give the first line or floating frame of a column on the current page.

9-62 get-first-line
(defun get-first-line ()

))

(let (page col)
; get first page
(setq page (tell-class doc-page-class mid:get-first))
; get first column of page
(setq col (tell page mid:get-child))
; get first line
(tell col mid:get-child)

We can now walk through the entire document, using the familiar get-next.

9-63 count-lines
(defun count-lines ()
; uses get-first-line

180 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

(let (line (line-ctr 0))
,. get first line
(setq line (get-first-line)) (break)
,. loop through doc
(while line

,. increment counter
(inc line-ctr)
,. get next line
(setq line (tel/line mid:get-next)))

line-ctr

Function 9-94: get-marker
(tell line mid:get-marker argument)
Returns: marker at beginning of line if argument is nil, or at end of line if

argument is t
E.g. (tel/ (doc-point-line) mid:get-marker nil)

Returns marker at beginning of line

If you don't specify any argument, this function defaults to nil , returning a marker at the
beginning of the line.

By combining these functions, you can, for example, automatically italicize all lines of a
particular type. For example, if you wanted to italicize every comment line in programming
code, you could look for lines that begin with a semi-colon (or which only have tabs or
spaces before a semi-colon):

9-64 italicize-all-lines
(defun italicize-all-lines (trigger-chars throw-out-chars)
; italicizes lines that begin with trigger char or has any throw-out-chars
,. before trigger char

(let (line m1 m2 first-chars contents)
,. get first line of doc ... uses function get-first-line)
(setq line (get-first-line))
,. loop through aI/lines
(while line

,. get text content of line
(setq m1 (tel/line mid:get-marker nil))
(setq m2 (tel/ line mid:get-marker t))
(setq contents (tel/ m1 mid:get-substring m2 t t))
; throw out chars that don't count
(if contents

(progn
(setq contents (string-left-trim throw-out-chars contents))
,. get first char after the ones you've thrown out

Inside the Document 181

(setq first-chars (substring contents 0 (string-length
trigger-chars)))
; do the first chars match the trigger-chars?
(if (string = first-chars trigger-chars)

(progn
; if so, then italicize the line

; select the line
(tell *text-editor* mid:select m1 m2)
; italicize line
(tell *text-editor* mid:set-props :italic t)
; deselect the line
(tell *text-editor* mid:deselect)))))

(setq line (tell line mid:get-next :a/ong :format)))
))

You invoke this function by giving it a string of the characters you want to trigger the action
(in this case, italicizing the line) and a string containing the characters it should throw out at
the beginning of a line, such as tabs and spaces; for example, (italicize -all-lines ";"" It'?
where the second argument consists of a tab and a space. (Note: be careful experimenting
with this because once you've changed the text properties of lines, there is no fast way
through the user interface to change them back.)

You can get the following properties of lines:

:begin-new-page

:begin-new-column

:straddle-columns

:has-revision-bar

:baseline

:height

:width

:doc-font

t if line must start new page

t if line must start new column

t if line straddles columns

t if line has revision bar

Distance, in rsu's, from the top of the col
umn to the line's baseline

Height, in rsu's, of the line

Width, in rsu's, of the line

Starting font for the text in the line

With this you could, for example, report how many lines have changed (if you are using rev
bars):

9-65 count-changed-lines
(defun count-changed-lines ()
; Counts lines with rev bars. Uses get-first-line

(let (line (rev-ctr 0))
(setq line (get-first-line))
; loop through doc
(while line

182 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

; increment counter
(if (and (not (is-of-class line doc-frame-class)) ; frames sometimes

are lines
(tel/line mid:get-props :has-revision-bar))
(inc rev-ctr))

; get next line
(setq line (tel/line mid:get-next :along :format)))

; report it (using ~ P to make plural of "line" when necessary)
(stk-open (format nil"~ D line rv P changed" rev-ctr rev-ctr))
; return count
rev-ctr

; try it
(count-changed-lines)

The following will let us do something a little more interesting with changed lines:

Function 9-95: get-top-cmpn

(tell line mid:get-top-cmpn)

Returns: top level component line is in

E.g. (tel/ (doc-point-line) mid:get-top-cmpn)
Returns component that contains current line

Now, rather than simply counting the number of lines with rev bars, we could make a list
recording the text contents of the line, the name of the top-level component it's in, and the
page it falls on. From this list we could then generate a written report of which changes
occurred on which pages. (Using Interleaf 5's revision tracking capabilities, we could build
more interesting reports still, noting who made which changes when.) To generate this list,
we need to add a few lines to where we increment the rev-ctr in the count-chang ed-lines:

; getcmpn
(setq cmpn (tel/line mid:get-top-cmpn))
; get contents
(setq contents (tel/ (tel/line mid:get-marker)

mid:get-substring (tel/line mid:get-marker t) t t))
; get page
(setq page (doc-page-number-of (doc-page-of obj)))
; build list
(push (list contents cmpn page) changed-lines-list))

The following function is useful when writing programming code within a document. It
assumes that you are using the return key at the end of a line. It counts the number of tabs at

Inside the Document 183

the beginning of the line above it and inserts the same number at the beginning of the new

line.

9-66 semi-smart-indent
(de fun semi-smart-indent ()
; indents same amount as previous line
(let (m1 m2 line start tab-ctr tabs)

))

; only works in cmpns named "code"
(if (string= "code" (tell (doc-point-cmpn) mid:get-name))

(progn
; get marker at beginning of line
(setq m1 (tell (doc-point-line) mid:get-marker))
(setq m2 (tell (doc-point-line) mid:get-marker t))
(setq line (tell m 1 mid:get-substring m2 't t))
; count tabs
(setq start 0)
(setq tab-ctr 0)
(if line

(progn
(while (string= "It" (substring line start 1))

(inc start)
(inc tab-ctr))))

; do the return
(key-insert-return)
; build tab string
(setq tabs nil)
(repeat tab-ctr

(setq tabs (concat "It" tabs)))
; insert tabs
(if tabs

(tell (doc-point-marker) mid:insert tabs))
; move to end of line
(doc-goto-marker (tell (doc-point-line) mid:get-markert)))

; else
(key-insert-return))

(kbd-bind kbd-doc-map "Ir" 'semi-smart-indent)

Binding the return key to the smart-indent function is not the preferred way of operating
because it means that in every document, every time you hit the return key, it's going to
check the name of the component. It'd be better to make a special text editor sub-class that
knows what it should do when it receives a return key. But we aren't quite up to that yet.

184 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 9-96: get-bounds

(tell line mid:get-bounds)

Returns: left-offset, top-offset, width, height and baseline of line

E.g. (tell (doc-point-line) mid:get-bounds)
Returns (7520725612216)

Here are the returns of two identical lines separated only by a few lines:

(tell (doc-point-line) mid:get-bounds)
Returns (8622621012271)
(tell (doc-point-line) mid:get-bounds)
Returns (8629621012305)

Providing new editors
One of the most powerful capabilities of Interleaf 5 is that it allows you to create your own
editor objects and attach them to a document or a class of documents. That means you can
start with the default text editor, for example, modify it, and make your customized text
editor the default for that document.

To do this, you first create a new class of editor. Then you give that new class whatever new
methods you want it to have. Then you tell the editor of a particular document to become an
editor of that class.

Here is an example:

; create a new class of text editor named "new-editor"
(setq new-text-editor-c1ass (obj-new-class doc-text-editor-class
"new-editor"))
Returns object class
; give new class a new cut method (defined elsewhere)
(obj-provide new-text-editor-class mid:cut 'new-cut-function)
Returns new-cut-function
; tell current text-editor to become a new-text-editor class of text-editor
(tell *text-editor* mid:set-class new-text-editor-class)
Returns object class

If you were to evaluate these lines, the text editor in your current document would look to a
function called "new-cut-function" whenever the user tried to cut selected text. But, of
course, since that new cut function hasn't been defined, the user would get an error mes
sage. So let's define a new cut method.

9-67 new-cut-function
(defun new-cut-function (editor)

(let (old-method)
; get the old cut method

»

Inside the Document 185

(setq old-method
(obj-get-method (tell new-text-editor-class mid:get-parent)
mid:cut»

; add something new - a stickup
(if (stk-open "Are you sure you want to cut this text?" :yes-no)

(progn
(funcall old-method editor»)

Let's look more closely at the new-cut-function function. We want our new cut function to
do something new (to take another example, you might want to have all cut information
automatically pasted into some other file) and then to do the normal sort of selected-text
cut. So suppose you write new-cut-function so that it does its new bit of business and then
does a (tell *text-editor* mid:cut). It will then go to new-cut-function which will tell it to
do its cut method, which will send it to new-cut-function ... ad infinitum. So, how do you
tell the new text editor to do a normal sort of cut in its new cut function?

You may have given your new text editor a new cut method, but the normal text editor still
remembers how to cut the old fashioned way. Because Interleaf 5 is object-oriented and
uses inheritance, when you make a new class, you do so by modelling it on an existing class.
Our new-text-editor-class is based on the doc-text-editor-class that comes defined with
the system. So, your new text editor cut method will tell the parent of the new text editor
class to hand over its cut method (and assign it the name old-method). Then, after doing
whatever new things we want our new text editor cut method to do, we'll execute the old cut
method by saying (funcall old-method editor) (where "editor" is the current text-editor).
(Funcall is short for "function call," and is not a practical joke played on the telephone.)

The last thing you need to know to make practical use of this capability is how to give a
document a new text editor. You'll learn more about this in Chapter 18 on creating active
documents, but basically the process is this:

,. Create a comma 5 file that creates a new class of object, which defines the current doc
ument as a member of that class, and which gives that class a new open method found in
some other Lisp file attached to the document.

,. In the other Lisp document, write an open method that captures the open method of the
parent class of the current document. The new open method should do whatever else
you want this document to do 011 opening. Then do afuncall using the old open method
so that the document will open in the normal way.

If you really want to get yourself in trouble, you can do the thing that Interleaf, Inc. warns
you against doing: you can change the methods of the parent class of editors. The reason to
do that is to change the way text editors work in all your documents, rather than having to
make a new class of text editor and apply it whenever you open a document. To do this, you
do something like:

186 ADVENTURER'S GUIDE TO INTERLEAF LISP

(obj-provide doc-text-editor-class mid:cut 'new-cut-function)

Now every document you open will inherit the new cut method. The best way to get the
normal method back is to exit the desktop and start the system up again. Note: If you've
already created a text editor for a particular document that uses new-cut-function and you
eval the line above, then that new text editor will look to its parent for the traditional cut
function but won't find it. The result is an infinite loop! Believe me. I found out the hard
way. More than once.

Here's an example that avoids the infinite loop. You know that when you do a normal join of
two components, Interleaf doesn't presume to insert a space between the two newly-joined
paragraphs. You might prefer to have the space inserted automatically. The following rede
fines all your component editors so that the space is inserted.

; get the old join method - make it a global
(setq *old-join-method*

(obj-get-method doc-cmpn-editor-class mid:join))
; give cmpn editor a new join method
(obj-provide doc-cmpn-editor-class mid:join 'new-join-function)

9-68 new-join-function
(defun new-join-function (editor)

(let (old-method)
; do the old style join
(funca/l *old-join-method* editor)
; insert the space (even when the two cmpns are empty ... a chance to

enhance!)
(tell (doc-point-marker) mid:insert" 'J

))

Chapter 10
Stickups and Stayups

A stickup is a type of dialogue box that provides an important way Interleaf 5 interfaces
with end users. The chief distinguishing characteristic of stickups is that they don't allow
the user to do any other work until she takes care of the stickup (perhaps simply by hitting
the cancel button).

As with most of Interleaf Lisp's control over the interface, you can either build a stickup
object and then open it up for interaction whenever you need it, or you can build it on the fly,
get the result, and no longer have it available as an object. For example, the warning stickup
that is built into interleaf 5 to remind you that you're about to revert a document to its pre
vious version contains a lot of text and is always the same. The stickup is an object that gets
called repeatedly. If you have the Developers Toolkit, you can access that object, build your
own stickup object, and replace Interleaf's with your own. On the other hand, if you're
building an application that uses a stickup once (maybe it asks for a password) or that has to
be built dynamically (perhaps it's giving choices based on the content of a particular com
ponent), then you'll build it on the fly.

We will begin by looking at how to build stickups on the fly because they give more
immediate feedback as you're learning how to build them. The two approaches are very
similar in any case.

Stickups
We have used stickups in earlier chapters, so the basic form is probably already familiar to
you:

Function 10-1: stk-open
(stk-open text)
Displays text and a continue button
E.g. (stk-open "Don't forget to save your work')

Creates stickup with text "Don't forget to save your work" and returns 0
when user clicks on continue button

188 ADVENTURER'S GUIDE TO INTER LEAF LISP

This function, however, can take keywords, as follows:

Keyword Function Return
:yes-no Makes Yes & No buttons t for yes, nil for no

:confirm-cancel Makes Confirm & Cancel but- a or 1
tons

:buttons Takes list and makes button number of button (zero-
for each based)

:Ieft-justified Left-aligns the text

:font Choice of :system or :lisp

:interactive-choice Specifies which is on by
default

You can create a multi-line message by listing each line as a separate string. For example:

(stk-open "This is line one" "This is line two")

Or, you can use the format function to build strings for a stickup either by using it explicitly
or by specifying a list for your text. For example, the following three expressions result in
the same stickup text:

(setq name "Pat")
(stk-open "Hi, Pat")
(stk-open (format nil "Hi, '" /\' name))
(stk-open (list "Hi, '" /\' name))

The following multi-line stickups are also equivalent:

; #1
(stk-open "You owed $10.65"
"You paid $5.45"
"You still owe $5.20")
;#2
; set some variables
(setq owed 10.65)
(setq paid 5.45)
(stk-open (concat "You owed $" (ftoa owed) "\nYou paid $" (ftoa paid)
"\nYou still owe $" (ftoa (- owed paid))))
; #3
(stk-open (format nil "You owed $ '" ,2F\nYou paid $ '" ,2F\nYou still owe
$ '" ,2F" owed paid (- owed paid)))

Among the advantages of usingformat over concat is that concat relies uponftoa to convert
the result of the calculation of the amount owed into a printable representation. But con cat
isn't smart enough to add the zero at the end of the calculation, so it prints "5.2" rather than
"5.20". Format, on the other hand, is good at such things.

Stickups and Stayups 189

Function 10-2: stk-open-prompt

(stk-open-prompt text &optional :font font :width width :Ieft-justify value
:initial-prompt string)

Creates stickup with text and lets the user enter text and returns the text

E.g. (setq lastname "Smythe')
(stk-open-prompt "Please enter correct spelling of your last name"
:width 30 :Ieft-justify t :initial-prompt lastname)
Creates the following stickup:

Stickup with some text in place as a prompt.

For example, you could use a series of stickups to build the buttons for another stickup:

10-1 build-buttons-stickup
(defun build-buttons-stickup 0
(let ((button-list nil) button message choice)

; get input until user leaves it blank
(while (not (string= 'III

(setq button (stk-open-prompt "Enter string for button" :width 10))))
(push button button-list))

; reverse the order of the list
(setq button-list (reverse button-list))
; get the message for the stickup
(setq message (stk-open-prompt "Enter message you want for stickup"

:width 60))
; open the stickup only if user has entered right info
(if (and message button-list)

(setq choice (stk-open message :buttons button-list)))
choice
))

Interleaf Lisp provides some input stickups that are a little more intelligent than stk-open
prompt.

190 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 10-3: stk-get-number
(stk-get-number text &optional width)

Creates stickup with text message that accepts width number of digits and
returns the number

E.g. (stk-get-number "Enter left margin" 4)
Returns number entered.

This function returns a number rather than a string. If the user enters a string, the user is
given an error message.

If you want to control what happens in case of error, you can use a more cumbersome func
tion:

10-2 stk-open-get-number
(defun stk-open-get-number (message)
(let (input-string input-number)

; get the input as text
(setq input-string (stk-open-prompt message :width 4))
; if anything entered
(if input-string

; try to convert to float
(setq input-number (atof input-string)))

; if couldn't convert to float, give an error message
(if (not input-number)

(stk-open "Input was not an acceptable number'J)
input-number
))

You might alter that function so that it checks that the number is within a particular range.
Or you might change it so it loops until the user either provides acceptable input or hits the
cancel button. In this latter case, you might want to alter the stickup's message to reflect the
fact that the previous input failed. For example:

1 0-3 stk-open-get-number-Ioop
(defun stk-open-get-number-Ioop (text)
(let (input-string (input-number nil) (input-failed nil))

(while (not input-number)
; get the input as text
(setq input-string (stk-open-prompt text :width 4))
; try to convert to float
(if (not (setq input-number (atof input-string)))

(stk-open (concat input-string" not acceptable. Input a number. 'J)))
input-number
))

Stickups and Stayups 191

Function 10-4: stk-parse-numeric
(stk-parse-numeric text default &optional arguments)
Creates stickup with message text and returns default if the user enters no

value or returns the value of the text entered.

The point of this function is that it allows the user to enter not only a number but a mathe
matical expression. The function will do the calculation and return the amount. For exam
ple, if the user entered the text "2 * (100 / 4)" the function will return the number 50.0.
(Notice it returns a float.)

The optional arguments allow you to use the publishing-specific knowledge built into the
system: : input-units, :output-units and :doc-font. The first two allow you to specify
:inches, :mm, :picas, :points, :didots, or :ciceros.

For example:

(stk-parse-numeric "Enter inches" 0 :input-units :inches :output-units
:mm)
Returns a number that has converted the number entered into millimeters.
For example, an input of "1.5" would return 38.1, which is the millimeter
equivalent of 1.5 inches.

The :doc-font argument allows you to specify which font you want used when parsing
expressions such as "line." For example, using the following you could enter "1 line" and
have it parsed to the height of one line in the specified font:

(stk-parse-numeric "Test" 0 :doc-font (tell (doc-point-cmpn)
mid:get-props :doc-font))

Now let's look at creating stickUps as objects and then invoking them whenever you need
them. It's simple.

Function 10-5: stk-new-choice
(stk-new-choice &optional :text :buttons :interactive-choice :font :Ieft
justify)
Returns number of button that was chosen
E.g. (stk-new-choice :text "Choose your font" :buttons (list "Swiss" "Helv"

"Thames')
:Ieft-justify t)

Returns stickup object

No stickup appears on screen when you use this function. To invoke the stickup you use the
following function

Function 10-6: stk-up open
(tell stkup-obj mid:open)
Creates stickup and gives the result of the user interaction with it
E.g. (tell font-stkup mid:open)

Returns result of user interaction with font-stkup

192 ADVENTURER'S GUIDE TO INTERLEAF LISP

This works with one other type of stickup object you can create:

Function 10-7: stk-new-prompt
(stk-new-prompt &optional :text :buttons :interactive-choice :font :Ieft
justify)

Returns stickup object

This works along the same lines as (stk-new-choice).

Stayups
When a stickup is on screen, the user is blocked from doing anything until she or he has
interacted with the stickup. Sometimes, however, you want to put information up on the
screen without blocking other actions. Stayups are one way of doing this.

A stayup is, basically, a plain text window; all it can do is display characters. Why use it
instead of a document? Stayups open faster and offer less distracting functionality than
docuents do. If you need multi-font display, or graphics, then you might want to use a docu
ment, but open it hidden (tell document mid:open :hidden t) when your application
opens, and then open it in the normal way when you want to display it; this puts the over
head of opening the document into the load time of your application.

Opening a stayup is as easy as opening a stickup:

Function 10-8: stayup
(stayup message &optional :title title :font font :position pos :size size)
Creates stayup with contents of message, title of title, in font font, as posi-

tion indicated by the cons pos and of size indicated by the cons size.
Returns the window object.

E.g. (stayup "Press F1 for help" :title "Help to Help" :font "thames14"
:position
(cons 100200) :size (cons 15075))
Creates stayup illustrated below, 100 pixels to the left and 200 pixels
down.
It is 150 pixels wide and 75 pixelsels high.

A stayup.

If you don't specify a position, the stayup is positioned at the cursor position. If you don't
specify a size, the stayup sizes itself to fit the text.

Stickups and Stayups 193

You specify the font by using the internal name of a recognized font. (You can get a list of
those names through (fn-families). Remember to put it in lowercase with the type size
appended to it, as in the example above. The default font Interleaf 5 uses in stayups is
"lisp 10."

(tn-families)
Returns (("SysErrors" "SysMarkers'j ("Courier" "Helvetica" "Swiss"
"Thames" "Times'j ("Century" "HelveticaNarrow") ("Thames Greek") ("Math
A" "Math B" "Math Ext." "Math-8502'J ("Symbols" "ZapfDingbats'j
("Symboljf' "Symbol_B'J)

Function 10-9: stayup-close
(stayup:stayup-close &optional window)
Closes the latest stayup or window
E.g. (setq test-stayup1 (stayup "This is a test'J)

(setq test-stayup2 (stayup 'This is a second test'J)
(stayup:stayup -close test-stayup 1)
(stayup:stayup-close test-stayup2)
Creates two stayups, closes the first one, then closes the second one

Notice that stay up-close requires the package name before it, as shown in the example.
(Packages are not within the scope of this book.)

If you have lost track of your stayups, the following function will return the stayup window
based on the titles. (If the stayup doesn't have a title, it won't work. Also, if there is more
than one window with the same title, it will return only one of them.)

10-4 find-stayup-window
(defun find-stayup-window (title)
; finds a stayup window with name "title"
(let (obi win-list window win-title (found-win nil))

; get list of windows
(setq win-list (tell *wn-wmgr* mid:get-props :windows))
; look through list for title
(while (setq window (pop win-list))

(if (and
(setq obi (tell window mid:get-obiect))
(is-of-class obi stayup:stayup-class))

(progn
; get title
(setq win-title (tell obi mid:get-name))
(if (and win-title

(string= win-title title))
(setq found-win window)))))

found-win
))

194 ADVENTURER'S GUIDE TO INTERLEAF LISP

You can update the contents of a stayup in either of two ways.

Function 10-10: optional stayup:add-string

(stayup:add-string text window &optional :refresh)

Adds text to window and returns the string. If :refresh is t, immediately
updates the window.

E.g. (setq status-stayup (stayup "Found file ... 'J)
(stayup:add-string "Processed file" status-stayup :refresh t)
Creates stayup, adds line, and returns "Processed file';

If you don't make :refresh t, then the window is updated whenever its time comes.

Function 10-11: optional stayup:add-line

(stayup:add-line text window &optional :refresh)

Adds text to window and adds new line; if :refresh is non-nil then immedi
ately updates window

This works exactly the same as stayup:add-string except it puts in a carriage return at the
end of the line.

The following function will put the pathname of a desktop object into a stayup:

10-5 pathname-stayup
(stayup (dt-get-property (dt-child-selected) :path-name))

This is especially useful in DOS where the desktop name is frequently very unlike its oper
ating system name.

The following set of functions takes any selected text and puts it into a stayup. This is useful
when you want to "pin up" some text from one page in a document while you work else
where in the document. There are two challenging parts of this: it's harder than it seems to
get text when the selection spans components, and we need to recompute the line endings to
fit into our stayup. Here's the code:

; create a variable used to specify how many characters on a line
(setq *st-fmt* 30)

10-6 text-into-stayup
(defun text-into-stayup 0
; finds selected text and builds stayup
(let (this-stayup mt m2 text ct c2 (new-text "'J done this-cmpn)

; if nothing is selected, quit
(if (not (doc-text-selection))

(quit))
; create the stayup
(setq this-stayup (stayup text :font "swisstO"

:title (format nil "'" A, pg. rv 0" (tell *document* mid:get-name)

)
))

(tell *doc-editor* mid:get-props :page))))
; get markers at beginning and end of selection
(setq m1 (car (doc-text-selection)))
(setq m2 (cdr (doc-text-selection)))

Stickups and Stayups 195

; try to get the text ... only works if it's aI/ within one cmpn
(if (setq text (tell m1 mid:get-substring m2 tty)

(setq done t))
; get the cmpns the beginning and end markers are in
(setq c1 (tell m1 mid:get-parent))
(setq c2 (tell m2 mid:get-parent))
; if mUlti-cmpn, get first cmpn's text
(if (not done)

(setq text (tell m1 mid:get-substring (tel/ c1 mid:get-markert) tty))
(if text

(progn ; format the text and stick it into the stayup
(setq text (format-text text))
(put-text-into-stayup text this-stayup)))

; loop through cmpns until you're in the one that end marker is in
(setq this-cmpn c1)
(while (not done)

; get the next cmpn
(setq this-cmpn (tell this-cmpn mid:get-next))
; is it the same as the end marker's cmpn
(if (not (eql this-cmpn c2))

(progn ; get the text
(setq new-text

(tell (tell this-cmpn mid:get-marker) mid:get-substring
(tell this-cmpn mid:get-marker t) t t)))

; else, if this is c2, get rest of text
(progn

(setq new-text
(tell (tell this-cmpn mid:get-marker) mid:get-substring m2 t t))

(setq done t)))
; format the text and stick it into the stayup
(setq text (format-text new-text))
(put-text-into-stayup text this-stayup)

196 ADVENTURER'S GUIDE TO INTERLEAF LISP

10-7 put-text-into-stayup
(defun put-text-into-stayup (text this-stayup)
; puts text into stayup and adds 2 linefeeds

(stayup:add-string (format nil 'u" Alnln" text) this-stayup)
)

10-8 format-text
(defun format-text (text)
; does word wrap for text at line length specified by *st-fmt*
(let (done new-pas m1 m2 new prev prev-sp m

(pas 0) (space-list nil) (eol-list nil) (newtext '''J (len *st-fmt*))
; create list of where the spaces are
(while (not done)

(if (setq new-pas (string-contained" "text pas))
(progn

(push new-pas space-list)
(setq pas (1 + new-pas)))

; else
(setq done t)))

; space list is in reverse order, so turn it around
(setq space-list (reverse space-list))
; set a bunch of counters to 0
(setq m 0 pre v 0 prev-sp 0)
; create list of where the breaks ought to be
(while (setq new (pop space-list))

; look for the difference between last place we started a line and next
; spot on list of spaces
; if difference is greater than margin, then note this spot
(if (> = (- new prev-sp) len)

(progn

))

(push prev eol-list)
(setq prev-sp prev)
;(push new space-list)

(setq prev new))
; snip together the string
(setq eol-list (reverse eol-list))
(setq m1 0)
(while (setq m2 (pop eol-list))

)

(setq newtext (concat newtext 10 (substring text m1 (- m2 m1))))
(setq m1 (1 + m2))

(setq newtext (concat newtext 10 (substring text m1 (- (string-length

text) m1))))
newtext
))

; bind it to A XN

Stickups and Stayups 197

(kbd-bind kbd-doc-map "\ A XN" 'text-into-stayup)

Chapter 11
Pop ups

Popups are obviously a key part ofInterleaf's standard interface. In this chapter we'll show
how to create a popup object and how to get that object attached to various objects so it can
actually be used.

Creating pop UpS
A popup consists of a list, each item of which corresponds to one entry on the popup menu.
Let's begin by making a single entry.

Function 11-1: popup-new-entry

(popup-new-entry text &optional :handler function :sublist popup-list
:data data)

Returns: popup entry for use in popup object

E.g. (popup-new-entry "Set props"
:handler'my-set-props
:sublist prop-subJist-pup
:data (tell *document* mid:get-name))

Returns popup entry with text "Set props" which will run 'my-set-props
when selected, which has as a subJist another popup entry called
prop-subJist-pup, and which passes to the handler the name of the
document

Every popup entry you create will have at least some text to appear on the menu and a han
dler, i.e., a function invoked when the user chooses the popup. If you want it to have a sub
list, then give it another popup after the :sublist key word. And there are times when the
handler function could use some additional data; the :data keyword lets you append what
ever type of data you want.

Remember, this function by itself will not cause a popup to appear. To do that we first have
to build a complete popup.

200 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 11-2: popup-new-list

(popup-new-list popup-list &optional :offset :font :default)

Returns: popup object consisting of entries on popup-list

This function takes a list of popup entries and turns them into a popup object. The keyword
:offset can be either: right or :down; the former is the normal type of popup, and the latter is
the pulldown sort of popup you get in the document header bar. The font is expressed in the
form of "swiss36," "thames24," etc. (The default font, at least on my Sun SPARe, is
"wstOps14.") The :default keyword is inserted into the list of entries to force one particular
entry to be the default; otherwise, the system will choose the center one as default (or the
higher of the two center ones if there are an even number of entries).

The easiest way to understand this is to look at an example.

11-1 popup-example
; create entry to be used as a sublist entry later
(setq test-sublist

(popup-new-list ; create list with only one entry
(list

; create an entry that will execute a function called "sublist-function"
; (which we have not defined)
(popup-new-entry "Sublist item" :handler 'sublist-function))))

; create the popup that contains the sublist item above
(setq test-pup

; create the popup list
(popup-new-list

(list
; create first entry, with a handler that just opens a stickup
(popup-new-entry "test1" :handler '(stk-open "test1"))
; create second entry, with sublist, and make this entry the default
:default (popup-new-entry "test2" :handler '(stk-open "test2")

:sublist test-sublist)
)

:font "swiss36" ; force the font of the list to be Swiss 36
:offset :down ; force it to be a pulldown sort of popup
))
; make it run

(popup-run test-pup)

Result of test popup. Notice sublist is normal font
because we didn't specify it should be different.

Function 11-3: popup-run

(popup-run popup-object &optional :position (cons x y)

E.g. (popup-run test-pup :position (cons 00))

Popups 201

Runs the popup object "test-pup "and positions at upper left of screen

Now at last you can run your popup. If you don't specify a :position, the popup will appear
at the cursor position, as usually happens.

Function 11-4: popup-get-prop

(popup-get-prop popup-object :prop :property)

Returns: property of popup list or popup entry

E.g. (popup-get-prop test-sublist :list)
Returns list of popup entries for test-sublist

You can give this function either a popup object or a particular entry in one of those objects.
If you give it a popup object, the properties you can ask for are :offset, .font, : list, or
:default. The property :list returns the actual list of popup entries. If you have not specified
a specific property when building the popup entry, this function returns nil.

If you specify a popup entry, the properties are :name (the text shown in the popup), :han
dler, :sublist, :data, :has-data (t if :data was specified when popup entry was built), and
:visible (t if entry is visible, and not hidden).

Function 11-5: popup-decode-list

(popup-decode-listpopup-/ist)

Returns: list of data about the popup list
Function 11-6: popup-decode-entry

(popup-decode-list popup-entry)

Returns: list of data about the popup entry

The easiest way to understand these functions is to look at examples. We'll use the test-pup
we created above.

(popup-decode-list test- pup)

202 ADVENTURER'S GUIDE TO INTERLEAF LISP

Returns list:
(

)

("test1" (stk-open "test1'J nil nil)
; note sublist because of subentry
("test2" (stk-open "test2")

(
("Sublist item" sublist-function nil nil)) nil)

The infonnation is in the order: :name, :handler, :sublist, :data.

Function 11-7: "'popup-history'"
Returns: history of the most recently-popped popup
E.g. *popup-history*

Returns ((#<popup-list Ox71ea5B> . #<popup-entry Ox71eaBO»
(#<popup-list Ox71eaaB> . #<popup-entry Ox7bef1B»
(#<popup-list Ox7bef40>. #<popup-entry Ox7bef90»)

This system variable represents the most recently used popup. You could then use the
decode functions to get the particulars about this popup.

Function 11-8: "'popup-action'"
popup-action
Returns: list with data about most recently used popup
E.g. *popup-action*

Returns ((:handler. ileaf::text-editor-ph) (:data #<mid:paste»
(:context)) .

This function returns three values: the handler the popup invokes, the data that gets passed
to the handler, and any context infonnation that may have been passed to the handler.

Function 11-9: "'popup-last'"
popup-Iast
Returns: the last popup entry used and visible
E.g. *popup-/ast*

Returns #<popup-entry Ox7b0340>

The trick here is that if you use a popup but click through it so quickly that it doesn't have
time to display itself (e.g., if you're a power user and after doing a cut you just do a click to
perfonn the paste), the value of *popup-last* will be nil.

Attaching popups to objects
There are two fundamental ways to get your popups to run. First, you can substitute your
popup for one of the existing ones and let the editor objects automatically use yours.
Second, you can hook into an event and write the code to get your popup to run.

Popups 203

To substitute yours for an existing editor's, you create a new class of text editor and alter
that editor's popup method. For example:

11-2 change-editor-popup
; create a new subclass of text editor
(setq new-text-ed (obj-new-class doc-text-editor-class "new text
ed"))
; give that new class a new popup method
(obj-provide new-text-ed mid:popup 'new-popup-fcn)
; reclass this text editor to be new-text-ed class
(tell *text-editor* mid:set-class new-text-ed)

Now when you press the mouse menu button, you'll get an error message since you have not
created new-popup-fcn which is what pressing the menu button looks for. So, let's create the
function we need:

11-3 new-popup-fcn
(defun new-popup-fcn (name handler data)

; run a previously-created popup
(popup-run test-pup))

The same sort of procedure can be used on the component editor and the table editor.

This technique provides you with the same popup wherever the editor is in force. But sup
pose you want the user to get different popups in different components. Here is some code
that may help.

11-4 context-sensitive-popups
; create a new subclass of text editor
(setq new-text-ed (obj-new-class doc-text-editor-class "new text
ed"))
; give that new class a new popup method
(obj-provide new-text-ed mid:popup 'new-popup-fcn)
; reclass current text editor as of new-text-ed class
(tell *text-editor* mid:set-class new-text-ed)

11-5 new-popup-function
(defun new-popup-fcn (&optional text handler data)
; looks for attribute called "popup"
(let (attr symb pup)

; is there an attribute?
(if (setq attr (tell (doc-point-cmpn) mid:get-attrs "popup"))

(progn
; if a "popup" attribute, convert value to symbol

204 ADVENTURER'S GUIDE TO INTERlEAF LISP

(setq symb (eval (find-symbol attr)))
; if there's a popup with that name, run it
(ifsymb

(setq pup (eval (find-symbol attr))))))
; else no attribute specified, so run the normal popup
(if (not pup)

(progn
; if text is selected, then run normal text-selected popup
(if (doc - text - selection)

(setq pup ileaf::doc-text-sel-pl)
; else, nothing is selected, so run normal no-sel popup
(setq pup ileaf::doc-text-pl))))

(popup-run pup)
))

Notice that this uses a function we don't otherwise discuss in this book: find-symbol takes
text and looks for a symbol with that name; eval'ing the return gives you the symbol itself.
Also, this function sets the popup to the already-created standard text popups if no popup is
specified in the popup attribute; this is explained below.

Altering existing popups
In addition to making your own, you can get and alter the popups that come with the system.
To get an existing popup you have to know its symbol name. Those names, by and large, are
defined in the lisp directory in your Interleaf directory. Here are some of the key popup
names:

Popup name Comment

Text
doc-text-pl main text popup, nothing selected

doc-text-sel-pl main text popup, something selected

text-read-only-sel-pl if in read-only text

text-read-only-nosel-pl if in read-only text

doc-text-misc-pl sublist of misc submenu

Graphics
dg-norm-nosel-pl main popup, nothing selected

dg-norm-sel-pl main popup, something selected

dg-select-pl selection submenu

dg-edit-pl edit submenu

dg-norm-nosel-misc-pl misc submenu, nothing selected

dg-sel-misc-pl misc submenu, something selected

dg-edge-dashes-pl dashes

dg-fill-pl

dg-edge-pl

dg-edge-weight-pl

dg-edit-font-pl

dg-create-pl

dg-create-subedit-pl

dg-create-arc-pl

dg-create-old-text-pl

dg-view-magnify-pl

dg-size-pl

dg-size-to-frame-pl

dg-size-numeric-pl

dg-move-rect-pl

dg-move-numeric-pl

dg-rotate-pl

dg-dup-pl

dg-shear-pl

dg-align-pl

dg-align-to-frame-pl

dg-convert-pl

dg-convert-to-ortho-pl

dg-convert-to-iso-pl

Components
doc-cmpn-sel-pl

doc-cmpn-pl

Tables
row-nosel-pl

row-sel-pl

col-nose I-pi

col-sel-pl

cell-sel-pl

Document header boxes
doc-name-box-pl

doc-name-box-save-pl

doc-name-box-revert-pl

doc-name-box-read
only-pi
doc-page-box-pl

doc-print-box-pl

doc-view-box-pl

Popups 205

fills

edges

edge-weight

edit font

create diagramming objects

go to subedit

create arc

create old style text

view magnified

size submenu

size to frame

size numeric

constrained move

numeric move

rotate

duplicate

shear

align submenu

align to frame

convert submenu

convert to ortho view

convert to isometric view

main menu, something selected

main menu, nothing selected

main row menu, nothing selected

main row menu, something selected

column not selected

column selected

cell selected

main pulldown in name box in header

save submenu

revert submenu

pulldown if document is read-only

main pulldown in page box

main pulldown in print box

main pulldown in view box

206 ADVENTURER'S GUIDE TO INTER LEAF LISP

doc-view-box-cmpn-pl cmpn submenu in view box

Desktop
dt-nosel-pl main desktop menu, nothing selected

dt-sel-pl main desktop menu, something selected

dt-cut-or-purge-pl cut or purge

clipboard-nose I-pi clipboard menu, nothing selected

To use one of these, you must put ileaf:: in front of it; this tells it which package to look in.
(Packages are an advanced topic this book does not discuss.) For example:

(popup-run i1eaf::doc-view-box-pl)
Returns popup in view box
in document header

CmpnBar ...
I<eyb()ttrd
Markers 0 ...

FacihgPages
Zoom ;.;

Pulldown off View entry in
View box in document header.

Interleaf, Inc. explicitly warns against altering the default popups that come with the sys
tem because you can never tell what other code may depend upon those popups being in
their original state. To avoid those problems, if you want a document that has a modified
default popup, you should make a copy of the default popup, alter it, make a new class of
document, and attach your altered popup to it.

This function will create a copy of a popup:

11-6 copy-popup
(defun copy-popup (old-pup)
(let (decoded-pup)

))

; decode the original popup
(setq decoded-pup (popup-decode old-pup))
; create new popup out of list form of original
(popup-make-list decoded-pup)

; try it
(setq new-pup (copy-popup ileaf::doc-name-box-pl))

Popups 207

Now that you have created a new copy of your default popup, you can insert a new entry.

Function 11-10: popup-insert

(popup-insert popup -object popup -entry)

Inserts popup-entry into popup-object)

E.g. (popup-insert new-pup (popup-entry "New choice" 'new-choice
handler))
Creates popup entry with "New choice" as text and inserts it into
new-pup

You can tell a popup where you want the new entry inserted by supplying an additional
argument. An argument of t will insert the popup at the end of the popup. An argument that
is a particular popup entry will insert the new entry after it. If you don't supply any argu
ment, the new entry gets inserted at the top of the popup.

The following example creates a new copy of the component bar popup when something is
selected, and adds a function called "Delete contents" after the "Cut" option.

11-7 find-pup-entry
(defun find-pup-entry (pup text)
; finds an entry in a popup by searching for its text
(let (decoded-pup pos entry)

))

; turn popup into a list we can look at
(setq decoded-pup (popup-decode pup))
; find entry in the list
(setq entry (assoc text decoded-pup 'string=))
; find position of entry in decoded list
(setq pos (position entry decoded-pup))
; get the entry
(if pos

(nth pos (popup-get-props pup :list)))

; create copy of cmpn popup, using function above
(setq new-cmpn-pup (copy-popup ileaf::doc-cmpn-sel-pl»
; create new entry (with a handler we haven't really created yet!)
(setq new-entry (popup-new-entry "Delete contents" :handler
'del-cmpn-contents))
; find "Cut" popup entry in the new popup
(setq cut-entry (find-pup-entry new-cmpn-pup "Cut"»
; insert the new entry after "Cut"
(popup-insert new-cmpn-pup new-entry cut-entry)
; try running the new popup
(popup-run new-cmpn-pup)

208 ADVENTURER'S GUIDE TO INTER LEAF LISP

There is a mechanism built into Interleaf 5 that allows you to add entries to several impor
tant popups. Suppose you make a component editor called new-ed. You can now give it a
new get-custom method:

; create new component editor
(setq new-ed (obj-new-class doc-cmpn-editor-class "sample cmpn
ed'J)
; give new-ed a get-custom method called new-ed-pup-method
(obj-provide new-ed mid:get-custom 'new-ed-pup-method)

; create the new-ed-pup-method
(defun new-ed-pup-method (a b)

; what popup to display?
new-ed-pup

)

; create the new popup
(setq new-ed-pup

(popup-new-list
(list

(popup-new-entry "Delete page" :handler 'del-page))))

This will hang a popup off a Custom entry at the bottom of the component bar menu, as
shown in the screen capture.

Create ...
Paste
Select ...
Find ...
Join
CUStOtl1 oOelete page

Custom entry on text popup.

Popup variables
You can set some variables that will affect all popups throughout your system.

Popups 209

Argument Type Comment
:moresize Integer 5-256 Number of entries before you get a

"More" entry and the popup splits

:quick-clicks-effective t or nil Lets you "beat the popup" so that a click
brings the default action even before the
popup displays

:timeout Integer 0-100 The amount of time (in milliseconds) the
mouse button can be down before the
menu pops up

:stayup t or nil If t, the popups stay up even when the
menu button isn't down

:font string Sets font. Expects string such as
"swiss36" (sets font to Swiss, 36pt.)

For example,

(popup-set-vars :moresize 10 :timeout 50)

Or, another very popular example:

(popup-set-vars :font "swiss24")

This will give you nice big popups. (But beware: you may lose the arrows indicating subme
nus after using these font-altered popups for a while. This is an annoying bug.) By the way,
if you specify an illegal font name (e.g., "Swiss24" instead of "swiss24"), the system substi
tutes a serif font of the appropriate size.

Chapter 12
Keyboard

Every time you press a key on your keyboard, you're executing an Interleaf Lisp script. In
this chapter, you'll learn how to alter those scripts. At the simplest level, this allows you to
customize your keyboard. At the most powerful, you can radically alter your interface.

When you press a key, the keyboard sends some sort of signal to the computer. What the
signal is varies with every type of computer. Interleafknows how to interpret the signals for
every computer it runs on, and you need never concern yourself with this raw level of data.
Instead, what matters is what becomes of that signal once it's been received and understood
by Interleaf.

The first place the signal goes is to a translation table. This is an Interleaflist (different for
each type of computer) that translates the signal into something that Interleaf understands
(pretty much the same for each platform).

The translation table takes those interpretations and passes them to the global keymap. This
is a list of what to do with each of the signals regardless of what context you're in - whether
you're typing into text, entering a name into a property sheet, changing a name on the desk
top, etc.

The information is then passed to a local keymap. This is also a list of translations. If a key
defined in the global keymap has been redefined in the local keymap, the translation in the
local keymap is the one that holds.

There are two important facts about local keymaps. First, there can be different local key
maps for text, diagramming, stickups, property sheets, etc. This means that the same key
stroke can do different things depending on your context. Second, different documents can
have different local keymaps so that one document might have one keyboard interface and
another, a different one.

To generate a list of the local maps, look at the global variable *kbd - keymap -Iist*.

212 ADVENTURER'S GUIDE TO INTERLEAF LISP

keyboard

Relation of keymaps.

Function 12-1: *kbd-keymap-list*

kbd-keymap-list
Returns: list of keymaps defined
E.g. (*kbd-keymap-list*)

Returns ((kbd-doc-map) (kbd-dg-map) (kbd-eq-map)
(kbd-dt-map)
(kbd-fm-map) (kbd-sr-map kbd-fm-map))

To get a complete list of the bindings of a keymap:

Function 12-2: kbd-map-list

(kbd-map-list keymap)

Returns list of pairs (character and definition) for all bound keys in keymap

E.g. (kbd-map-list kbd-eq-map)
Returns list of all characters and definitions in the equations map:
((#\\ A X. kbd-eq-ctl-x-map) (#\\ A Y. key-eq-paste)
(#\\ A [. kbd-eq-esc-map) (#\\ A A. key-eq-eqn-start)
(#\\ A B. key-eq-prev-char) (#\\ AD. key-eq-cut)
(#\\ A E. key-eq-eqn-end) (#\\ A F. key-eq-next-char)
(#\ \f. key-eq-refresh) (#\ \r . key-eq-deselect)
(#\ \ AN. key-eq-deselect-top) (#\ \ A P . key-eq-setect-next)
(#\\ A? key-eq-cut-prev))

(Remember that J\X means control-X.) If you know what the key is and want to get its value
in a particular keymap:

12-1 key-value-in-map
(defun key-value-in-map (key kmap)
(let (decoded-map)

; decode the map
(setq decoded-map (kbd-map-list kmap))

; find key and return its function
(cdr (assoc key decoded-map))

))

; try it out
(key-value-in-map #\\ AJ kbd-doc-map)
; Returns key-ec-cmpn-create

Keyboard 213

We will begin by looking at how to change the bindings of existing keymaps and then we'll
look at creating your own keymaps and attaching them to different contexts.

To alter a key binding in an existing keymap:

Function 12-3: kbd-bind

(kbd-bind keymap key function)

Binds function to key on keymap

E.g. (kbd-bind kbd-dt-map "\ A E" 'my-function)
Binds A E to the function my-function on the desktop keymap

This function will accept a series of pairs of keys and functions. If instead of a key, you
supply a dotted pair of keys, all the keys between (and including) those keys will be bound
to the function. For example:

(kbd-bind kbd-dt-map (cons "\ A Pi' "\ A Z") nil)

This makes all the control keys do nothing.

To succeed with kbd-bind, though, you need to know how to express keys in strings. Simple
characters are easy: you can supply the code number or just put the character in quotation
marks (E.g. "A" or 65).

Function keys as well as special characters (control codes, etc.) can be expressed by prefix
ing them with "\"x*". For example:

"\A x*L02"
"\\ A. x*Cut"
"\ A. x*F01"

Left function key 2
"Cut" function key
Function key 1 (on DOS and others)

You can specify that a key is in its shifted, control, or meta (escape) mode by putting a num
ber after the "*". A shift is worth 1, control 2, and meta (escape) 4. You add together the
appropriate values. For example:

"\ A. x*1 R09" Shifted right function key 9
"\ A. x*2R09" Control right function key 9
"\ A. x*4R09" Meta right function key 9
"\ A. x*3R09" Shifted control right function key 9
"\ A x*5R09" Shifted meta right function key 9
"\ A. x*6R09" Control meta right function key 9
"\ A. x*7R09" Shifted control meta right function key 9

214 ADVENTURER'S GUIDE TO INTERLEAF LISP

Here are some quick functions you can bind to keystrokes:

12-2 keyboard-tricks
; A. Xa in graphics opens arrows clipart (put in your own pathname!)
(kbd-bind kbd-dg-map "I A. Xa"

'(tell (dt-object "System5.cab/Graphics.drw/Arrows.fdr'? mid:open))

; A. Xb in graphics opens your own clipart collection named "myclipart.doc"
(kbd-bind kbd-dg-map "1 A Xb"

'(tell (dt-object "System5.cab/myclipart.doc'? mid:open))

; A Xp on desktop opens profile drawer .
(kbd-bind-doc kbd-dt-map "I A xp" '(tell *dt-profile* mid:open))

; A Xc on desktop purges selected icon
(kbd-bind kbd-dt-map "1 A Xc"

'(progn (dt-cut-or-purge (dt-pointer-container) t)))

; A. L in a document centers page in window
(kbd-bind kbd-doc-map "1 A L:'

'(let ((m (doc-point-marker)))
(tell *doc-editor* mid:set-props :page t)
(doc-goto-marker mY))

There is a slight variant of kbd-bind.

Function 12-4: kbd-bind-doc

(kbd-bind-doc keymap key function doc)

Binds function to key on keymap and uses doc as doc-string in keyboard
prop sheet

This works precisely the same as kbd-bind but it has an extra argument: a brief string
describing what the key does. This gets used in the visible keymap property sheet available
on some systems. A typical doc string might be "smart\nquote". The "\n" gets turned into a
carriage return so that this doc string will show up as two very brief lines.

There are two key prefixes that come as default; if the user types either meta (usually the
escape key) or AX, the system waits for the user to type the next key and then interprets that
key as part of the escape or A X key maps. For example, by default, AXS is bound to the save
document function in a document.

The following examples bind keys in these two maps:

(kbd-bind kbd-esc-map "fJ\' 'my-function)
Binds Esc-A to my-function

(kbd-bind kbd-ctrlx-map "8" 'new-function))
Binds A XB to new-function

Keyboard 215

If you want to use some other character as a prefix, you specify a keymap as the function to
be invoked by a key. We'll go into this in more detail later in the chapter.

There are some very useful, simple functions available to you:

Function 12-5: kbd-self-insert

(kbd - self- insert)
Inserts the current character

This function is useful when you have bound a function to a keystroke, and the function
evaluates the situation and either does something interesting or simply passes the character
through. For example, the following rebinds the hard return key so that it checks the compo
nent's name to see if it's an entry blank. If it is, then it takes the user to the next component.
If it's not, it simply inserts the hard return.

12-3 forms-hard-return
(defun forms-hard-return 0
(let (new-c (c (doc-point-cmpn)))

; are we in a cmpn named "blank-form"?
(if (string= "blank-form" (tell c mid:get-name))

(progn
; go to next cmpn named "blank-form"
(setq new-c (tell *cmpn-editor* mid:goto :next "blank-form"))
; go to that cmpn
(doc-goto-marker (tell new-c mid:get-marker t)))

; else, put in hard return
(key-insert-return))))

; bind it to hard return
(kbd-bind kbd-doc-map "Ir" 'forms-hard-return)

Notice that this function only works with toplevel components, not inlines. The function
(key-insert-return) is the built-in function that gets called when you hit the enter (or
return) key.

The following set of scripts does something more complex. They rebind the hard return so
that it checks to see if the previous character was a hard return. If it is, then it deletes the
previous return and creates a new instance of the component (as linefeed normally does).

12-4 double-return
(defun double-return 0
(let ((prev-char nil) (m1 (doc-paint-marker)) m2)

; get marker for previous character

216 ADVENTURER'S GUIDE TO INTERLEAF LISP

(setq m2 (tell m1 mid:copy))
(tell m2 mid:move-by -1)
; if could move back one, then get the substring
(setq prev-char (tell m2 mid:get-substring m1 t t))
; is it a return?
(if (equal "In" prev-char)

(progn
; delete old one
(setq m1 (doc-point-marker))
(setq m2 (tell m1 mid:copy))
(tell m2 mid:move-by -1)
; select the old return and cut it
(tell *text-editor* mid:select m1 m2)
(tell *text-editor* mid:cut)
; set cmpn caret position
(tell *cmpn-editor* mid:set-props :caret-direction :next)
; deselect all
(tell *cmpn-editor* mid:deselect :all)
; insert new cmpn
(tell *cmpn-editor* mid:create (tell (doc-point-cmpn)
mid:get-name)))

; else
(key...,.-insert-return))

(doc-flush-queue)
))

; bind it
(kbd-bind kbd-doc-map "Ir" 'double-return)

Note that this may not do exactly what you want. In particular, if you move into the middle
of a component and type a double return, you may expect it to divide the component in two;
that's what happens with word processors. In this case, it will instead create a new compo
nent at the end of the current one. To get it to behave the way a word processor does, instead

of telling the component editor to create a new component, you could tell the text editor to
split the component.

There are other functions for inserting material.

Function 12-6: kbd-insert-string

(kbd-insert-string arg)

Inserts string, character or character value of an integer

E.g. (kbd-insert-string "Testing")
Inserts the string "Testing"

Function 12-7: kbd-insert-character

(kbd-insert-character arg)

Keyboard 217

Inserts arg which is a character, integer or a one-character string
E.g. (kbd-insert-character 65)

Inserts the character "A"

Here is a function that inserts your name wherever you type AXn. (Of course, you can easily
modify it to insert any string you want.)

12-5 insert-name
(defun insert-name ()

(kbd-insert-string "Your Name'))

; bind it
(kbd-bind kbd-doc-map "A Xn" 'insert-name)

Now let's see how to create new maps and attach them to objects.

To get a map:

Function 12-8: kbd-get-vars

(kbd-get-vars &optional map)

Returns map specified by keyword map (:Iocal-map or :global-map)
E.g. (kbd-get-vars :Ioca/-map)

Returns local key map

There are other keywords available:

: current-key returns the integer value of the current key
:current-key-str returns a string representation of current key

You can set a map in a similar way:

Function 12-9: kbd-make-sparse-keymap
(kbd-make-sparse-keymap)

Returns empty keymap
E.g. (setq new-keymap (kbd-make-sparse-keymap))

Returns empty keymap

Now that you have a blank keymap, you'll want to start assigning it values.

12-6 modify-keys
(defun modify-keys ()
; assign keys
(let (new-map)

; create a new blank keymap
(setq new-map (kbd-make-sparse-keymap))

218 ADVENTURER'S GUIDE TO INTER LEAF LISP

; assign two new keys to the keymap
(kbd-bind new-map

"\ A Xd" 'date-function ; bind A Xd to one function
"\ A [\r" 'new-retum-function) ; bind return key to another function

; tell the doc that it should take the new keymap as well as the normal doc
; one
(tell *document* mid:set-props :keymap (list exp-map kbd-doc-map))

))

Suppose you want a character to become a prefix, as /\ X is. To make a new character stand as
a prefix, you create a new keymap and bind it to a key. For example, suppose you want /\Q to
be a prefix key in the kbd-doc-map:

12-7 create-prefix-key
(defun create-prefix-key ()
(let (prefix-q-map)

))

; create a new keymap
(setq prefix-q-map (kbd-make-sparse-keymap))
; bind it to A Q
(kbd-bind kbd-doc-map "\ A Q" 'prefix-q-map)
; bind A QA to some function
(kbd-bind prefix-q-map ''A'' 'some-function)

Function 12-10: kbd-key-history
(kbd - key-history)
Returns: list of previous keystrokes
E.g. (kbd-key-history)
(#\s #\t #\ \ \ #\0 #\f #\ \ \ #\p #\r #\e #\v #\i #\0 #\u #\s #\ \ \ #\k #\e #\y
#\s #\t #\r #\0 #\k #\e #\s #\k #\b #\d #\ \ A [#\ - #\k #\e #\w #\y #\ \ A X
#\ * #\8 #\a #\c #\k #\S #\p #\a #\c #\e #\ \ A X #\ * #\8 #\a #\c #\k #\S #\p
#\a #\c #\e #\y #\\ A [#\- #\h #\i #\s #\t #\0 #\r #\y #\\ A X #* #\8 #\a #\c
#\k #\S #\p #\a #\c #\e #\\t #\\ A E#\\r #\\ A [#\x #\(#\k #\b #\d #\- #\k
#\e #\y #\- #\h #\i #\s #\t #\0 #\r #\y #\) #\\n)

This function lets you see the keys you have just typed.

The following set of functions allows you to type /\ Xx within the text area of a component
and have it turn itself into the type of component above it. If you type /\ Xx again, the compo
nent will turn into the next one above it. So, if you create a para, and above it are (in ascend
ing order) para, bullet, bullet, para, and subhead, the first time you type /\Xx, the compo
nent you're in will turn into bullet; the second time it will turn into subhead, and so on.

; set some global variables
(setq *c-list* nil) ; list of cmpns
(setq *backup-start-cmpn* nil) ; where to start looking for new cmpn

You are here -----I.

The first time you type 1\ Xx, the para
you're in turns to bullet. The second

time, it becomes a subhead.

Keyboard 219

12-8 bkup-2nd-try
(defun bkup-2nd-try 0
; were previous keystrokes A Xx? Get previous keystrokes and compare
(let (klist list-len)

))

; get the history of keystrokes
(setq klist (kbd-key-history))
; get the number of the second to last element on the list of keystrokes
; which is the keystroke before this one
(setq list-len (- (list-length klist) 2))
; were the last two characters entered A X and x?
(and (equal #\\ A X (nth list-len klist))

(equal #\x (nth (1- list-len) klist)))

12-9 kbd-doc-cmpn-change
(defun kbd-doc-cmpn-change 0
(let (new-cmpn

(cmpn (doc-point-cmpn)))
; Did we just do a A Xx? If so, we need to go back one more cmpn
; If it's our first A Xx, then push current cmpn on to the list of cmpns
(if (not (bkup-2nd-try))

(progn
(setq *c-list* nil)
(push (tell cmpn mid:get-name) *c-list*)
; capture the current cmpn as the starting point for search upwards
(setq *backup-start-cmpn* cmpn)))

; do the change
(tell *cmpn-editor* mid:deselect :all)
(tell *cmpn-editor* mid:select cmpn)
; get the previous unused cmpn

220 ADVENTURER'S GUIDE TO INTERLEAF LISP

(setq new-cmpn (get-previous-cmpn *backup-start-cmpn*))
(if new-cmpn

(progn
; capture latest cmpn as the last place we looked so that multiple
; A Xx's will
; cycle through cmpns, moving up the doc
(setq *backup-start-cmpn* new-cmpn)
(tell *cmpn-editor* mid:change (tell new-cmpn mid:get-name))))

(doc - flush -queue)
))

12-10 get-previous-cmpn
(defun get-previous-cmpn (c)
; gets previous cmpn
(let (cmpn (thiscmpn (doc-point-cmpn)))

; loop until we find a cmpn not already used or until no more left
(while (and (setq cmpn (tell c mid:get-previous))

(member (tell cmpn mid:get-name) *c-list* 'string=))
(if (not cmpn) ; ran out of cmpns

(progn
reset list to just this cmpn
(setq *c-/ist* (list (tell thiscmpn mid:get-name)))
(setq cmpn thiscmpn))) ; if at begin of doc, reset to current cmpn
(setq c cmpn))

; record the new cmpn
(ifcmpn

(push (tell cmpn mid:get-name) *c-list*))
cmpn
))
; bind it to A Xx
(kbd-bind kbd-doc-map"\ A Xx" 'kbd-doc-cmpn-change)

Chapter 13
Property Sheets

An Interleaf 5 property sheet menu is a dialogue box that contains buttons and input fields.
Property sheets provide a convenient and familiar way for users to interact with the
system.

Component Properties II!DmiIJI Page II Custom IITab II Profile II Attrs I

Name
Margins

Top
Bottom
Left
Right

Initial Indent
Number

Alignment

Font
Line Spacing
Text Props

paragraph

lines

I Justified I

IITCDookmanl [!!I ~ Iitalici
I largest font on line I +~ I lines I
I<Defaults>1

A familiar property sheet.

t

There are, however, limitations to using property sheets from the developer's point of view:

Ii They cannot contain graphics.

• The types of buttons are already defined.

• Their layout can only follow rigid rules.

Ii They have to be layed out programmatically, not using the interactive editing tools.

So why use them?

Ii The pre-existing buttons are powerful.

222 ADVENTURER'S GUIDE TO INTERLEAF LISP

II They open fast.

II Interleaf users are already familiar with interacting with them.

You might want instead to use an active document as an interface. That will give you more
freedom to invent what you want - but it also means that you have to invent it. Once you
get the hang of property sheets you'll find them an important part of your kit bag.

Note: The Lisp code for creating property sheets - or "prop sheets" as fans refer to them
is almost certain to undergo drastic change in the new GUI versions of Interleaf 5. It is not
yet known how much change prop sheet code will have to undergo to run on the Motif, on
Windows and versions ofInterleaf 5.

Creating a property sheet
A page of a property sheet is called a submenu. A property sheet may have many different
submenus which the user accesses by pressing buttons listed on top. Remember, a property
sheet menu is the object that has prop sheet submenus, and a submenu is the visible rectan
gle that users interact with.

Let's take a look at the steps required to create a prop sheet. The first one we create will have
no contents. (We'll look at this in logical order, not in the order in which the functions
should actually appear in your code; you'll get examples of that later on.)

; create a new prop sheet object
(setq blank-prop-sheet (tell-class prop-menu-class mid:new))

; If more than one submenu, specify the text for the button at top
(tell blank-prop-sheet mid:set-props :text "Custom')

; give it a method for opening a submenu
(tell blank-prop-sheet mid:provide mid:open
'blank-submenu-open-method)

; give prop sheet a popup
(tell blank-prop-sheet mid:provide mid:popup 'basic-popup)

; create a submenu
(tell blank-prop-sheet mid:set-props :submenus (ncons
blank-submenu)

; open the prop sheet
(setq blank-prop-sheet-window (tell blank-prop-sheet mid:open
"Blank" 200 100))

The last line causes the property sheet to open, with the word "Blank" in its title bar. It will
open at a screen position 100 pixels down and 200 pixels from the left. The window itself
can be referenced through the variable blank-prop-sheet-window.

Property Sheets 223

Actually, it won't really open because we have not yet defined basic-popup or blank-sub
menu. Let's do so, by giving them open methods.

(defun blank-submenu-open-method (submenu)
; tell it to start, with left margin of 1
(tell submenu mid:start 1)
..
" ;; here's where we'd put in buttons, text, etc .
..
"
; End it
(tell submenu mid:end)
)

(defun basic-popup (menu window)
; Create a popup with a single choice on it: close

(popup-run
(popup - create -list

(popup-create-entry "Close" 'close-prop-sheet nil window)
)))

Now, of course, we have to create the close-prop-sheet function:

(defun close-prop-sheet (window)
; make the window nil

(setq blank-prop-sheet-window nil)
; do the close
(tell (car window) mid:close)

)

As usual, you should actually put the last three defuns at the beginning before they're refer
enced by the code that creates the property sheet.

At the end of this chapter, you'll get a simple example and then an extended, working exam
ple. But first, let's look at some of the other methods of property sheets.

Function 13-1: new

(tell-class prop-menu-class mid:new)

Returns new prop sheet object

(setq new-prop-sheet (tell-class prop-menu-class mid:new)

Returns prop sheet object

This is the basic method for creating a new property sheet object.

Before the new prop sheet object is created on screen, you must, among other things,
open it.

224 ADVENTURER'S GUIDE TO INTER LEAF LISP

Function 13-2: open

(tell prop-sheet mid:open title xpos ypos &optional width height
Returns window object if open is successful; else, nil

(tell new-prop-sheet mid:open 150200300400)

Returns window object, and creates prop sheet at location 150 pixels from
the left and 200 pixels from the top of the screen. Prop sheet is 300
pixels wide and 400 pixels high.

Usually you will not want to supply the last two arguments when opening a prop sheet so
that the system will figure out what the optimal size of the prop sheet is. If you do force the
size, then you may size the window so small that some of the buttons are not visible.

The window object that is returned by this method is what you use to send most messages to,
including the close message.

Function 13-3: close

(tell window mid:close)

£.g. (tell my-prop-window mid:close)
Prop sheet closes

Function 13-4: prop-current-menu

(prop-current-menu)

Returns prop sheet object in current window; if none, then nil

This allows you to get the prop sheet if you have the window.

Function 13-5: prop-current-submenu

(prop-current-submenu)

Returns currently active submenu (or sheet) in the current window

Function 13-6: get-window

(tell prop-sheet-object mid:get-window)

Returns list of all windows currently displayed for prop-sheet-object

£.g. (tell my-prop-sheet mid:get-window)
Returns window object

Let's say you open a property sheet object twice, so that two instances of it are displayed
onscreen. This method will return a list of all the windows.

Since you frequently will not want to have more than one instance of the prop sheet open,
the following will only open the prop sheet if there are no instances already open.

13-1 prop-sheet-already-open
(defun prop-sheet-a/ready-open (prop-sheet-obi)

(if (not (tell prop-sheet-obj mid:get-window))
(tell prop-sheet-obj mid:open 200 300))

)

Property Sheets 225

It's worth pointing out the symptoms of prop sheet code gone wrong. If you make a mistake
in the function that draws the prop sheet, it will look like nothing has changed on your desk
top, but as you click, you'll find your mouse unresponsive. What has actually happened is
that the system has tried to draw a giant propsheet submenu, the size of your desktop, but it
failed before it filled in any prop sheet contents. The mouse responds the way it would in
any prop sheet without buttons. The solution is to size the prop sheet down as far as it will go
and stick it somewhere on your desktop where it won't bother you.

There is a also a set of functions that reports on the state of the prop sheet, allowing the
programmer to use some built-in functionality quite easily.

Function 13-7: get-modified-window

(tell prop-sheet-object mid:get-modified window)

Returns t if the prop sheet in window has been modified.

The primary use of this function is to see whether you should be showing the user a popup
that includes "Apply" or "Cancel" as options. If no changes have been made, then "Apply"
and "Cancel" don't make sense.

Here is an example of how to make your popup menus sensitive to this information:

13-2 has-propsheet-changed
; create popup method
(defun my-popups (prop-sheet window)
(let (changes-popup no-changes-popup)

))

; create popup for when there have been changes
(setq changes-popup

(popup -create -list
(popup-create-entry "Apply" 'my-apply nil window)
(popup-create-entry "Cancel" 'my-cancel nil

window)))
; create popup if no changes
(setq no-changes-popup

(popup - create -list
(popup-create-entry "Close" 'my-close nil window)))
; if it's been modified

(if (tell prop-sheet mid:get-modified window)
(popup-run changes-popup)
; else
(no-changes-popup))

; create the prop sheet object
(setq my-prop-sheet (tell-class prop-menu-class mid:new))

226 ADVENTURER'S GUIDE TO INTER LEAF LISP

; give the prop sheet a popup method
(tell my-prop-sheet mid:provide mid:popup 'my-popups)

Of course, you would now need to provide the functions your pop ups are calling.

You could use the same basic technique to give each submenu (sheet) special popups.

Submenu contents
Now that you know how to create a property menu with a submenu, you need to know how
to give the submenu some contents.

The contents of a submenu are specified in the function that provides the submenu's open
method, as defined when the submenu was first given to the prop sheet.

Submenus have a left margin that is usually used to list the topic of the line. You declare the
size of that margin when you tell the submenu to start:

Function 13-8: start

(tell submenu mid:start margin)

Tells submenu to start and creates left margin of margin

(tell submenu 1 mid:start 12)

Between the start and end commands, you define a submenu by describing each line, in
order.

You create a new line on a submenu with the following method:

Function 13-9: line

(tell submenu mid:line text)

Creates new line on submenu and puts text into left margin

E.g. (tell submenu 1 mid:line "Font')
Creates line with "Font" in left margin

To create a line with no text in the margin, use (tell submenu mid:line "'J.

You can show or hide a line:

Function 13-10: is-effective
(tell submenu mid:is-effective line-number text)

Creates a line on submenu at line-number and puts in text; if nil, hides the
line at line-number

E.g. (tell submenu1 mid:is-effective 5 "Super Secret')
Creates a fifth line with the text "Super Secret"

E.g. (tell submenu 1 mid:is-effective 5 nil)
Hides fifth line

In order for this change to take effect, the property sheet has to be told to redraw:

Function 13-11: redraw

(tell submenu mid:redraw submenu1)

Redraws submenu with submenu 1 's contents

Property Sheets 227

E.g. (tell (prop-current-menu) mid:redraw (prop-current-menu))
Redraws current submenu

You can put text anywhere in the submenu through the text method:

Function 13-12: text

(tell submenu mid:text text X &optional :border)
Puts text into submenu at position X, with border if keyword is used

E.g. (tell submenu 1 mid:text "Press Return" 10 :border t)
Puts "Press Return" into submenu 1, with a border, at column 1 0 of the
current row

The current row is the one your submenu open method is currently describing. For example:

13-3 open-my-submenu
(defun open-my-submenu (submenu)

; start the submenu, and give it a left margin of 15
(tell submenu mid:start 15)
; create a line with the word "Line #1"
(tell submenu mid:line "Line #1'J
; create a blank line
(tell submenu mid:line "'J
; create a second line
(tell submenu mid:line "Second line'J
; Add some text inside the prop sheet, 4 spaces over
(tell submenu mid:text "Your message here" 4)
; end it
(tell submenu mid:end)

)

Really boring sample prop sheet.

Remember, of course, that to get this function to work, you'd have to provide the necessary
housekeeping described at the beginning of this chapter: create a prop sheet menu, give it

228 ADVENTURER'S GUIDE TO INTER LEAF LISP

some popups, give it at least one submenu, give the submenu an open method (which is
what the open-my-submenu example above does), and open the prop sheet. Here is code
that will do the job

13-4 sample-simple-propsheet
; create new prop sheet submenu
(setq mysubmenu (tell-class prop-submenu-class mid:new))

; give it methods for opening the two submenus
(tell mysubmenu mid:provide mid:open 'open-my-submenu)

(setq prop-sheet-menu (tell-class prop-menu-class mid:new))

; give the prop sheet object the two submenus
(tell prop-sheet-menu mid:set-props :submenus (ncons mysubmenu))

; open the prop sheet
(setq test-menu (tell prop-sheet-menu mid:open "TEST!" 400 400))

If you don't want to have to figure out what the left margin ought to be, you can create a list
of all the words you want in the left margin, and have the system calculate the longest one:

13-5 get-longest-word
(defun get-longest-word (word-list)
(let (item (longest 0))

(while (setq item (pop word-list))
(if (> (string-length item) longest)

(setq longest (string-length item))))
longest

))

Then you would alter the open-my-submenu function as follows:

13-6 open-my-submenu2
(defun open-my-submenu (submenu)
(let (line-words)

; create list of words
(setq line-words (list "Une #1" "Second line"))
; start the submenu, and calulate longest line
(tell submenu mid:start (get-longest-word line-words))
; fill in the rest ...

(tell submenu mid:end)
))

Property Sheets 229

Buttons
There are three basic types of buttons available on a prop submenu. All three invoke a speci
fied function when pressed. A toggle button simply turns on or off when selected. A list

button is a set of radio buttons; turn one on and all the others turn themselves off. A text
button displays text in it; with each click, the text changes to the next string in the list, cycl

ing indefinitely.

Let's look at each of the three.

Toggle buttons

Function 13-13: toggle button
(tell submenu mid:button string position width function :type :toggle
&optional :initial state :arg arguments)
Creates toggle button at position position of width characters wide, with

text content of string. It invokes function when pressed. It has initial
state of on or off (t or nil) and passes to function additional argu
ments.

E.g. (tell submenu 1 mid:button "Italics" 50 'italic-fcn :type :toggle
:initial nil :arg my-count)
Creates button with word "Italics" in it at column 5. Because width is 0, it
calculates the right width. It is initially in off state. If selected, it invokes
italic-fcn and passes it the argument my-count.

Notice that if the width is 0, it calculates the appropriate width.

With a toggle button, the function that gets invoked gets passed the old state and the new
state, as t or nil. If you pass it some additional arguments, they of course show up. A typical
function for a toggle button might look like this:

13-7 italic-fen
(defun italic-fcn (old new &optional times)

(if « times 10)

t)

(progn
; set italic font on or off, appropriately
(tell *text-editor* mid:set-props :italic new))

; else
(stk-open "Style Violation! You've changed italics
more than 10 times."))

Note. Button functions usually ought to return t. Failure to do so may result in unexpected

results. The function is passed the current setting (t or nil) and what the setting will be if the
function returns non-nil. So, if you forget to give your function something to return,· it will

return something perhaps unintended, and will not toggle itself if the return happens to

be nil.

230 ADVENTURER'S GUIDE TO INTERLEAF LISP

List buttons

(tell submenu mid:button string position width function :type :list list
&optional :initial number :arg arguments)

Creates list of buttons list starting at position position of width characters
wide. It invokes function when button number number is chosen. It
passes to function additional arguments.

E.g. (tell submenu 1 mid:button "Swiss" 'Thames" "Courier" 5 0 'family-fcn
:type :list :initial 0 :arg permission)
Creates list of buttons "Swiss" "Thames" and "Courier," with the Swiss
button on. It begins at column 5. Because width is 0, it calculates the
right width. If selected, it invokes family-fcn and passes it the argument
permisSion.

The function that gets called gets passed the number of the button that was clicked (zero
based numbering). Here is a sample function:

13-8 family-fcn
(defun family-fcn (choice)
; sets font to chosen family
(let (family)

t
))

(cond

)

((= 0 choice) (setq family "Swiss',)
((= 1 choice) (setq family 'Thames',)
((= 2 choice) (setq family "Courier',)

; set family
(tell *text-editor* mid:set-props :family family)
; return t

Another way to handle this would be to set up the button as follows:

; create a list of button names
(setq buttons (list "Swiss" 'Thames" "Courier',)
; use this list to build the buttons
(tell submenu 1 mid:button :buttons buttons 5 0 'family-fcn :type :list :initial
o :arg buttons)

This passes the button list to the function where you can decode it as follows:

(defun family-fcn (choice buttons)
; use the number of the button to find the choice on the list
(tell *text-editor* mid:set-props :family (nth choice
buttons))

t
)

Property Sheets 231

This uses the nth function to retrieve the right button from the list of buttons.

Text buttons

Text buttons allow the user to cycle through a set of choices. They provide a convenient
interface when there are too many choices to show in a series of list buttons. In addition, a
text button can have a popup menu that lists all available choices, so the user can go straight
to the right one by holding down the menu button while on the text button (although this
takes additional work on the programmer's part).

The basic way of creating a text button is straightforward:

Function 13-14: text button

(tell submenu mid:button text position width function :type :text &optional
:initial state :arg argument)

Creates text button at position with text, width wide, invoking function.
Passes function argument. Button reflects state (t or nil).

E.g. (setq family-list (fn-families))
Returns list of font families available in *document*

(tell submenu1 mid:button "Swiss" 50 'families-fen :type :text :arg
family-list)
Creates text button five characters in, automatically
assuming the right size. Invokes families-fen when selected, passing it
the mouse button pressed on the button; also passes family-list.

If you click on a text button, the function that is invoked will receive as an argument a sym
bol indicating which mouse button you pushed: :select, :menu or :extend. In general, the
way Interleaf 5's own interface works, the select button shows you the next item on a list,
the extend button shows you the previous, and the menu button shows you the list in popup
form. In the next few pages, we'll reproduce that sort of interface, in this case using a list of
available fonts as our example. (In the extended example at the end, you'll see how to get
the list of fonts.)

As with the other types of buttons, specifying a width of zero causes the button to size itself
to fit the text, but since that text may alter as the user cycles through the button choices, the
size of the button will alter. Therefore, it may make sense to specify a width so that the but
ton will always be the same size.

Here is what the function that gets invoked might look like:

13-9 families-fen
(defun families-fen (old mouse-button families)
(let (return)
; old contains original button text

232 ADVENTURER'S GUIDE TO INTER LEAF LISP

; act differently depending on which button was pressed
(cond

((eql mouse-button :select) (setq return (get-next old families)))
((eql mouse-button :menu) (setq return (popup-run

*families - popup *)))
((eql mouse-button :extend) (setq return (get-prev old families))))

return))

Let's look at this more closely.

The cond says that if the select button has been pressed, we should set return to whatever the
function get-next returns. Let's create a get-next function:

13-10 get-next
(defun get-next (current fam-list)
(let (pos next-string)

; get the position of current choice in family list
(setq pos (position current fam-Iist :test 'string=))
; if not the last one, then get the next
(if (not (eql (1 + posy (list-length fam-list)))

(setq next-string (nth (1 + posy fam-Iist))
; else, it's the last one, so get the first
(setq next-string (car fam-list)))

; return string
next-string
))

This will make the return equal to the value of the next string we want; whatever it returns is
what's put into the text button. So, now we can use the select button to cycle through the
choices.

Thefamilies--fcn should also let us move backwards through the list. This requires writing a
function very similar to get-next:

13-11 get-prev
(defun get-prev (current fam-list)
(let (pos prev-string)

; get the position of current choice in family list
(setq pos (position current fam-list :test'string=))
; if not the first one, then get the previous
(if (not (eq/ pos 0))

(setq prev-string (nth (1- posy fam-Iist))
; else, get last
(setq prev-string (last tam-list)))

; return string

Property Sheets 233

prev-string
))

Finally, we have to write a function that will create a popup object named *families
popup* so that the menu button can run it. This function needs to be called before the user
gets to press the menu button while over the button we've created.

13-12 make-font-popup
(defun make-font-popup-obj (font-list)
; Make popup object out of list of fonts
(let (f-list item (p-list nil))

))

; create copy of font list
(setq (-list (copy-list font-list))
; go through list, making list of entries
(while (setq item (pop f-list))

(push (popup-create-entry item item) p-list))
; make the popup object by applying the list through
; popup-create
(setq *families-popup* (apply #'popup-create-/ist

p-list))

In the example we've been building, the select button cycles down a list, the extend button
cycles up the list, and the menu button shows you the list in popup form. That is how
Interleaf 5's own prop sheet interface works. Your application need not follow these con
ventions. But if you choose to violate the conventions, you probably should have a good
reason for doing so.

Fields

Prop sheets can contain input fields into which the user can type information.

Function 13-15: prop-sheet field
(tell submenu mid:field text position width function &optional :arg value
:type {:text :popup :integer} :maximum number)
Create field with text as its content at position, width characters wide, that

invokes function, passing value as an argument. The field will accept
number of characters if specified.

E.g. (tell submenu 1 mid:field "Swiss" 1020 'check-font :arg 4 :type :text
:maximum 30)
Creates field in submenu1 at position 10. It's 20 characters wide and
starts with the text "Swiss" showing. It calls check-font and passes it
the value 4. It is of type :text and will accept a total of 30 characters as
input.

Users get the standard Interleaf user interface text editing capabilities in a field; for exam
ple, the arrow keys work to move within the typed-in text and edit it. When the user is done

234 ADVENTURER'S GUIDE TO INTERLEAF LISP

entering text (hits a return or moves the mouse out of the field), the system invokes the
named function, passing it the old contents as well as the new. Most likely, you'll write the
function that checks to make sure that the entry makes sense (as defined by you, the devel
oper), and will take corrective action if it does not.

The system already knows how to do some type checking. If you specify the :type as :inte
ger, and a user enters something other than an integer, the system will put a message in the
message bar of the prop sheet window and will return the text in the field to its previous
state. Types :text and :popup accept any input and treat it as a string.

The :maximum value ("number" in the example) tells it how long the string can be. This can
be longer than the width of the field; the system will automatically scroll.

Popup-type fields operate a little differently. What is passed to the function is the current
text in the field and the value :popup, which is t if the user has pressed the menu button and
nil otherwise. This allows the user to get a popup menu of choices which, if selected, will
automatically fill in the field.

For example, consider the previous example which starts with "Swiss" as its contents. The
function it calls might look like this:

13-13 field-fen
(defun field-fcn (old new)

)

; User pressed menu button?
(if (eql new :popup)

(progn
(popup-run

(popup - create -list
(popup-create-entry "Swiss" "Swiss',
(popup-create-entry "Thames" "Thames',
(popup-create-entry "Courier" "Courier',)))

; else, not a popup, then check if it's on list
(if (not (member new (list "Swiss" "Thames" "Courier', 'equal))

(stk-open "Not an acceptable font choice. Try again. 'I))

Multiple submenus
If there is more than one submenu, they will show up as buttons at the top of the prop sheet.
To create multiple submenus, you have to create the submenu object, give it an open
method, state what text you want used in the button at the top, and give the property sheet a
list of all the submenus. The following code should get you started.

; create two new prop sheet objects
(setq submenu 1 (tell-class prop-submenu-class mid:new))

Property Sheets 235

(setq submenu2 (tell-class prop-submenu-class mid:new))

; Create two submenu buttons for the top of the prop sheet
(tell submenu 1 mid:set-props :text "First Submenu',
(tell submenu2 mid:set-props :text "Second Submenu")

; give it methods for opening the two submenus
(tell submenu 1 mid:provide mid:open 'submenu1-open)
(tell submenu2 mid:provide mid:open 'submenu2-open)
; (remember to provide these open methods eval'ing this code!)

(setq prop-sheet-menu (tell-class prop-menu-class mid:new))

; give the prop sheet object the two submenus
(tell prop-sheet-menu mid:set-props :submenus (list

submenu1 submenu2))

; open the prop sheet
(setq test-menu (tell prop-sheet-menu mid:open ''TEST!'' 400 400))

TEST!

Sample blank prop sheet with two submenus.

Sample simple propsheet
Now let's look at a sample property sheet that uses all the different buttons unconstrained by
the need to do anything useful.

Here is the property sheet that we will be constructing:

236 ADVENTURER'S GUIDE TO INTER LEAF LISP

Sample Prop Sheet

st
ext
ype-in fie

Toggle Button

IillDlsecondllThirdl

IText11

First sheet (submenu) of sample property sheet.

Sample Prop Sheet I Firstl11l1·Jllsl

Text, no border t
r .. 'T.ixi··w·lth .. ·b'.ir(:i'.ir· .. ·~
:. .. : T

+-1 1-+ E!J

Second sheet (submenu) of sample property sheet.

We'll begin by defining the functions that will get called as the user interacts with the prop
erty sheet.

13-14 toggle-function
(defun toggle-function (old new &optional data)

(stk-open (concat 'Turning toggle" (if new "on" "off'J))
t)

13-15 list-function
(defun list-function (old new which)

(stk-open (concat "You chose button #" (itoa new) " (zero based). 'J)
t)

13-16 text-function
(defun text-function (old mouse choices)

(let (mouse-text number next)
; translate mouse button symbol to string
(cond

((eql mouse :select) (setq mouse-text "select'J)
((eql mouse :popup) (setq mouse-text "menu'J)
((eql mouse :extend) (setq mouse-text "extend'J))

Property Sheets 237

(stk-open (concat "Old text was" old" and you pressed" mouse-text
" button. "))

; get next on list, or first if at end
(setq number (position old choices :test 'string=))
(if (= (1 + number) (list-length choices))

(setq number 0)
; else, increase number by one
(inc number))

; get the right one from the list of choices
(setq next (nth number choices))

next))

13-17 type-in-function
(defun type-in-function (old new)

(stk-open (concat "You typed in: " new))
)

Now we'll define what the prop sheets will look like and where each button will go.

13-18 submenu1-open
(defun submenu1-open (sheet)

; start with label margin of 12
(tell sheet mid:start 12)

; create toggle button, initially on
(tell sheet mid:line ''Toggle'')
(tell sheet mid:button "Toggle Button" 2 0 'toggle-function :initial t)

; create list of buttons, with third initially on
(tell sheet mid:line "List'?
(tell sheet mid:button (list "First" "Second" ''Third'J 2 0 'list-function :type

:list :initial 2 :arg t)

; create text button with "Text1" chosen as default
(tell sheet mid:line "Text'J
(tell sheet mid:button ''Text1'' 2 0 'text-function :type :text :arg (list "Text1"
"Text2" "Text3"))

; create text type-in field with word "Sample" in it
(tell sheet mid:line "Type-in field'J
(tell sheet mid:field "Sample" 2 15 'type-in-function :type :text)

238 ADVENTURER'S GUIDE TO INTERLEAF LISP

; end it
(tell sheet mid:end)

)

13-19 submenu2-open
(defun submenu2-open (sheet)
(tell sheet mid:start 5)
; on second submenu, only place some text; blank line
(tell sheet mid:line "';
(tell sheet mid:text "Text, no border" 2)
; blank line
(tell sheet mid:line ''';
; place some text with a border
(tell sheet mid:text "Text with border" 4 :border t)

; end it
(tell sheet mid:end)

)

Now we'll define what happens when you make a choice from the property sheet's popup
menu, and then we'll create the popup menu object itself.

13-20 test-apply
(defun test-apply (&optional data)

(stk-open "Here's where you would actually do an apply'J)

13-21 test-close
(defun test-close (window)

(tell (car window) mid:close))

13-22 sample-popup
(defun sample-popup (menu window)
; create a popup with an apply or close button

(popup-run

)

(popup-create-Iist
(popup-create-entry "Apply" 'test-apply nil window)
(popup-create-entry "Close" 'test-close nil window)))

Now we'll do the work that defines the property sheet and opens it.

13-23 make sample prop sheet
; make two new prop sheet submenu objects

Property Sheets 239

(setq submenu1 (tell-class prop-submenu-class mid:new))
(setq submenu2 (tell-class prop-submenu-class mid:new))

; create two submenu buttons for the top of the prop sheet
(tell submenu 1 mid:set-props :text "First'}
(tell submenu2 mid:set-props :text "Second',

; give each submenu a method for opening
(tell submenu 1 mid:provide mid:open 'submenu1-open)
(tell submenu2 mid:provide mid:open 'submenu2-open)

; create new prop sheet
(setq new-prop-sheet (tell-class prop-menu-class mid:new))

; give the prop sheet the two submenus
(tell new-prop-sheet mid:set-props :submenus (list submenu 1
submenu2))

; give prop sheet a popup (defined above)
(tell new-prop-sheet mid:provide mid:popup 'sample-popup)

; open the prop sheet
(setq test-menu (tell new-prop-sheet mid:open "Sample Prop Sheet"
300200))

Sample propsheet application
Now let's write an actual application using a property sheet interface. In order to use as
many of the different types of buttons as possible, this example perhaps goes a little over
board. But it is actually a useful function: it allows the user to apply new font properties to
all of the objects in a document in one fell swoop. So, if you decide you'd like to change all
your fonts to Swiss, while maintaining the various point sizes, bolding, etc., this prop sheet
will let you.

The code that actually opens the prop sheet relies upon other functions having been loaded
first. So, leave that code for the end of the program.

Let's begin by looking at the open methods for two submenus. These describe what the
property sheets will look like.

For reference purposes, I have numbered the buttons and the corresponding functions they
invoke.

.. .. --------------------------------------
" " Design the first submenu

240 ADVENTURER'S GUIDE TO INTERLEAF LISP

13-24 change-fonts-submenu-open
(defun change-fonts-submenu-open (sheet)

; start
(tell sheet mid:start 12)
; insert blank line
(tell sheet mid:line "'')

; 1. Create text type - in field with current doc name in it
(tell sheet mid:line "Document'')
(tell sheet mid:field (get-current-doc-name) 2 32

'doc - name - fcn :type :text)

; 2. Create toggle button to auto-insert current doc name
(tell sheet mid:line "'')
(tell sheet mid:button "" 2 2 'insert-current-name-fcn
:type :toggle :initial *cur-name*)

; add explanatory text
(tell sheet mid:text "Use current document" 5)

;3. Create text button that cycles through fonts, or gives popup
(tell sheet mid:line "'')
(tell sheet mid:line "Fonts'')
(tell sheet mid:button *family* 2 0 'family-popup-fcn :type :text)

; 4.Buttons for increase/decrease font size, or stay the same
(tell sheet mid:line '''')
(tell sheet mid:line "Size'')
(tell sheet mid:button "Same" 20 'same-size-fcn :type
:toggle :initial *same-size*)

(tell sheet mid:button "Increase" 100 'inc-size-fcn
:type :toggle :initial *inc-size*)

(tell sheet mid:button "Decrease" 250 'dec-size-fcn
:type :toggle :initial *dec-size*)

; 5. Type-in field displays font increment
(tell sheet mid:field (itoa *font-boost*) 185
'font-boost-fcn :type :text)

; end
(tell sheet mid:end)

)

Property Sheets 241

.. _---------------------------
"
;; Design the second submenu

13-25 change-fonts-custom-submenu-open
(de fun change-fonts-custom-submenu-open (sheet)

; start
(tell sheet mid:start 10)

; 6. Radio buttons to save bullets, math, both or neither
(tell sheet mid:line ''';
(tell sheet mid:line "Preserve';
(tell sheet mid:button (list "Bullets" "Math" "Both"

"Neither'; 20 'save-bullets-math-fcn :type :list
:initial *save-button*)

; end
(tell sheet mid:end)

)

The following screen captures are numbered according to the code that created them:

CJHlnge All Fonts IDlIDElD I~
r·· .. ······ ... ····· .. ·····················:0

Document fontdoc

Use current document

Fonts !Niwissl

Size ~ame @lcreasel ® 0 l@jecreasel 'T

Submenu 1.

242 ADVENTURER'S GUIDE TO INTERLEAF LISP

Change All Fonts I Font Props 11I1~iE.JIII

Preserve ~u"etsIIMathl_INeitherl

04-1 1-110

Submenu 2.

Now let's look at the functions the prop sheet invokes as the user interacts with it.

; 1---------------------------
; Checks typed-in name to see it it matches an open doc

13-26 doc-name-fcn
(detun doc-name-tcn (old new)
; Checks typed in name to see it it's an open doc
; This gets called when you tinish typing in a doc name
(let (win-Jist win obj doc name (obj-Jist nil))

; get Jist ot all windows
(setq win-list (tell *wn-wmgr* mid:get-props :windows))
; look through windows
(while (setq win (pop win-Jist))

(it (and (setq obj (tell win mid:get-object))
(is-ot-class obj doc-editor-class))
(progn

(setq doc (tell obj mid:get-document))
(setq name (tell doc mid:get-name))
(push name obj-Jist))))

; it name not on Jist, then put notice in msg bar
(it (not (member new obj-Jist 'string=))

(wn-message nil (concat "No document named" new
".")))

new
))

; 2 ---------------------------
; Gets current doc's name and tills in the blank with it

13-27 get-current-doc-name
(detun get-current-doc-name ()

1.

T
E!J

; Gets name of current doc to which changes will be
; applied
; Called when propsheet opens to fill in the blank
(let ((name "No document open'))

; if a doc is open, get its name
(if (doc-current-icon)

(setq name (tell *document* mid:get-name)))
name
))

13-28 insert-current-name-fcn
(defun insert-current-name-fcn (old new)

Property Sheets 243

; Redraws current menu, at which point it inserts name of current doc
; blink it

t)

(setq *cur-name* t)
(tell (prop-current-menu) mid:redraw (prop-current-window))
(setq *cur-name* nil)
(tell (prop-current-menu) mid:redraw (prop-current-window))

;3---------------------------
; Builds font list, lets user cycle through names

13-29 get-font-list
(defun get-font-list 0
: Returns list of font names. Ignores system fonts
(let (fn-list f item (font-list nil))

; skips car of list returned by fn-families because
; that's where the system fonts are listed
(setq fn-list (cdr (fn-families)))
; cycle through the list, flattening it so there are no
; nested lists
(while (setq item (pop fn-list))

(while (setq f (pop item))
(push f font-list)))

font-list
))

13-30 family-popup-fcn
(defun family-popup-fcn (old new)
; Cycle up or down, or show popup of all families
; old contains original button text
(let (family return)

244 ADVENTURER'S GUIDE TO INTERLEAF LISP

; act differently depending on which button was pressed
(cond

((eql new :select) (setq return (get-next old
font-list)))

((eql new :popup) (setq return (popup-run
families-popup)))

((eql new :extend) (setq return (get-prevold
font-list))))

(setq *family* return)
return))

13-31 get-next
(defun get-next (current fam-list)
;gets next entry on list of font families
(let (pas next-string)

; get the position of current choice in family list
(setq pas (position current fam-list :test 'equal))

; if not the last one, then get the next
(if (not (eql pas (1- (list-length fam-list))))

(setq next-string (nth (1 + pas) fam-list))
; else, get first
(setq next-string (car fam-list)))

; return string
next-string
))

13-32 get-prey
(defun get-prev (current fam-list)
; gets previous entry on list
(let (pas prev-string)

; get the position of current choice in family list
(setq pas (position current fam-list :test 'equal))
; if not the last one, then get the next
(if (not (eql pas 0))

)

(setq prev-string (nth (1- pas) fam-list))
; else, get last
(progn

(setq prev-string (nth (1- (list-length fam-list)) fam-list)))

; return string
prev-string
))

;---------------------------4
; Increase/decrease the increment

13-33 same-size-fen
(defun same-size-fcn (old new)

t)

(setq *font-boost* 0) ; zero the value
; flash the button by redrawing window twice
(setq *same-size* t) ; set button value
(tell (prop-current-menu) mid:redraw
(prop-current-window))

(setq *same-size* nil)
(tell (prop-current-menu) mid:redraw
(prop - current - window))

13-34 ine-size-fen
(defun inc-size-fcn (old new)

t)

(inc *font-boost*) ; boost the value
; flash the button by redrawing window twice
(setq *inc-size* t) ; set button value
(tell (prop-current-menu) mid:redraw
(prop - current - window))

(setq *inc-size* nil)
(tell (prop-current-menu) mid:redraw
(prop-current-window))

13-35 dec-size-fen
(defun dec-size-fcn (old new)

t)

(dec *font-boost*) ; decrease the value
; flash the button by redrawing window twice
(setq *dec-size* t) ; set button value
(tell (prop-current-menu) mid:redraw
(prop - current-window))

(setq *dec-size* nil)
(tell (prop-current-menu) mid:redraw
(prop-current-window))

;---------------------------5

Property Sheets 245

; Accept typed-in number as the amount to change the size

13-36 font-boost-fen
(defun font-boost-fcn (old new)

246 ADVENTURER'S GUIDE TO INTERLEAF LISP

; boost the global containing amount to increase/decrease; font size
(setq *font-boost* (atoi new))

t
)

;---------------------------6
; Radio buttons preserve bullets, math, both or neither
13-37 save-bullets-math-fcn
(defun save-bullets-math-fcn (old new)
; sets variables used when changes are applied

(cond
((eql new 0) (progn

(setq *save-bullets* t)
(setq *save-math* nil)))

((eql new 1) (progn
(setq *save-bullets* nil)
(setq *save-math t)))

((eql new 2) (progn
(setq *save-bullets* t)
(setq *save-math* t)))

((eql new 3) (progn
(setq *save-bullets* nil)
(setq *save-math* nil))))

; save it in global and return it
(setq *save-button* new)

)

;===============================
POPUP FUNCTIONS

; Apply and Close functions called by prop sheet's popups

;- APPLY

13-38 is-bullet
(defun is-bullet (f)
; is cmpn's family a bullet? Dumb way of finding out:
; Checks if name is like "Symbols" or "Dingbats"
(or (string-contained "Symb" (tell f mid:get-props

)

:family))
(string-contained "Ding" (tell f mid:get-props
:family)))

13-39 is-math
defun is-math (f)
; is cmpn's family a bullet?
(string-contained "Math" (tell f mid:get-props :family))
)

13-40 propsheet-apply
(defun propsheet-apply (&optional data)
; Big apply function. Builds new font and applies to all.

(let ((name-list nil) df newfont family)
; post a warning

Property Sheets 247

(if (not (stk-open (format nil "Are you sure you want to change all fonts
in\n '" D\nto\n '" A?\nNOT recoverable!" (tell (doc-current-icon)
mid:get-name) *family*) :yes-no))

(quit))
(setq pool (name-find-pool doc-cmpn-class *document*))
; get list of name heads
(setq child (tell pool mid:get-child :along :name))
(while child

(push child name-list)
(setq child (tell child mid:get-next))

)
; go through list of name heads and find all instances
(while (setq m (pop name-list))

; go through all instances
(setq c (tell m mid:get-child))
(while c

; create appropriate doc font
(setq df (tell c mid:get-props :doc-font))
; if preserve bullets or math, don't change family
(if (or

(and *save-math* (is-math df))
(and *save-bullets* (is-bullet df)))

(setq family (tell df mid:get-props :family))
; else, make family into new family
(setq family *family*))

; set size and check for range of 2-200
(setq size (+ *font-boost* (tell df mid:get-props
:size)))

(if « size 1)
(setq size 2))

(if (> size 200)
(setq size 200))

248 ADVENTURER'S GUIDE TO INTERLEAF LISP

; make new font
(setq newfont (tell-class doc-font-class mid:new
:doc-font df :family family :size size)

; apply new font
(tell c mid:set-props :doc-font newfont)
(setq c (tell c mid:get-next :along :name))))

; reset size to 0
(setq *font-boost* 0)
(setq *boost-button* 0)
; reset button to "same" by redrawing the window
(tell (prop-current-menu) mid:redraw (prop-current-window))

))

; CLOSE -
; close method accessed through popup
13-41 close-prop-sheet
(defun close-prop-sheet (window)

; make the window nil
(setq change-fonts-window nil)
; do the close
(tell (car window) mid:close)

)

13-42 make-font-popup-obj
(defun make-font-popup-obj (font-list)
; Make popup object out of Jist of fonts
(let (f-list item (p-Jist nil))

))

; create copy of font Jist
(setq f-Jist (copy-Jist font-list))
(while (setq item (pop f-list))

(push (popup-create-entry item item) p-list))
(setq *families-popup* (apply #'popup-create-list
p-list))

;;; Create popups for prop sheet window
13-43 change-fonts-popup
(defun change-fonts-popup (menu window)
; Create a popup with a Single choice on it: close

(popup-run
(popup -create -list

(popup-create-entry "Apply" 'propsheet-apply nil
window)

Property Sheets 249

(popup-create-entry "Close" 'close-prop-sheet nil window)
)))

;;;; Make some globals
; list of all available fonts
(setq *font-list* (get-font-list))
; amount to raise/lower font
(setq *font-boost* 0)
; font size boost button amt
(setq *boost-button* 0)
; popup object lists all fonts
(setq *families-popup*

(make-font-popup-obj *font-list*))
; make current-doc-name button off
(setq *cur-name* nil)
; make family button show "Swiss"
(setq *family* "Swiss')
(setq *same-size* nil)
(setq *inc-size* nil)
(setq *dec-size* nil)
(setq *save-button* 2)
(setq *save-bullets* t)
(setq *save-math* t)

Create the prop sheet

; make same-size button off
; make inc-size button off
; make dec-size button off
; make both bullets and math button on
; save bullets
; save math

; create a new prop sheet object
(setq change-fonts-submenu (tell-class prop-submenu-class
mid:new))

(setq change-fonts-custom-submenu (tell-class
prop-submenu-class mid:new))

; create two submenu buttons tor the top ot the prop sheet
(tell change-fonts-submenu mid:set-props :text "Font
Props')

(tell change-tonts-custom-submenu mid:set-props :text
"Custom')

; give it methods for opening the two submenus
(tell change-tonts-submenu mid:provide mid:open
'change -fonts -submenu -open)

(tell change-tonts-custom-submenu mid:provide mid:open
'change-tonts-custom-submenu-open)

250 ADVENTURER'S GUIDE TO INTERLEAF LISP

; create prop sheet obj
(setq change-tonts-menu (tel/-class prop-menu-class
mid:new))

; give prop sheet a popup
(tel/ change-tonts-menu mid:provide mid:popup

'change -tonts - popup)

; give the prop sheet the two submenus
(tel/ change-tonts-menu mid:set-props :submenus (list
change - tonts -submenu change - tonts - custom -submenu))

; open the prop sheet
(setq change-tonts-window (tel/ change-tonts-menu mid:open "Change
AI/ Fonts" 600 400))

Yes, that was a mega-example. But it contains many of the different sorts of buttons you can

use. Go over it slowly, have a nice warm bath, and you'll be refreshed and ready to try out

your own prop sheets.

(Don't forget: If you make an error while you are coding a prop sheet, there's a good chance

you'll be left with a semi-visible prop sheet occupying your entire screen. Size it as small as

it will go and pretend it's not there.)

Chapter 14
Tables

Access to tables is similar to access to other objects in a document. There is even an object
known as the *table-editor* which helps make tables much easier to work with. The only
real obstacle is understanding the rather complex structure of Interleaf tables.

Table functions
A table cell is really a graphics frame. Cells appear to be text elements because, by default,
when the user selects a cell, she is immediately dropped into a microdocument. If the user,
however, selects the cell and changes it from object to diagram the user can now operate in
that frame as in an ordinary frame. But no matter what the cell is set to, internally it is a
frame.

To get a particular table, you can get the first table in a document and then navigate to the
rest.

Function 14-1: get-first

(tell-class doc-table-class mid:get-first)
Returns: first table in document

Now that you have a table, you can get all the rest of them by using get-next.

14-1 visit-every-table
(defun visit-every-table 0
(let (table)

; get first table
(setq table (tell-class doc-table-class mid:get-first))
; visit the rest of them
(while table
; do something here with the table

(do-something table) ; made-up function
; get next table
(setq table

252 ADVENTURER'S GUIDE TO INTER LEAF LISP

(tell table mid:get-next))
)

))

You could also work backwards by using (tell-class doc-table-class mid:get-/ast)
and (tell table mid:get-previous).

Now that you have a table, you can get its props.

Function 14-2: get-props

(tell table mid:get-props &optional prop)

Returns properties

This works the same way all the other get-props do.

Here are the properties you can get or set:

Property Type
:number-of-rows integer

:number-of-columns integer

:top-margin integer (RSUs)

:bottom-margin integer (RSUs)

:Ieft-margin integer (RSUs)

:right-margin integer (RSUs)

:begin-new-page t or nil

:begin-new-column t or nil

:widow-count integer

:straddle-columns t or nil

To navigate within a table, there are a number of functions.

Function 14-3: get-parent
(tell table mid:get-parent)

Returns document

If you want to get move among rows, you can get the first or last rows of a table, and then use
get-next or get-previous.

Function 14-4: get-child

(tell table mid:get-child)

Returns first row of table
Function 14-5: get-Iast-child
(tell table mid:get-Iast-child)

Returns last row of table

Now that you have a row, you probably want to get a cell. A cell is a child of a row:

Function 14-6: get-child
(tell row mid:get-child)
Returns first cell of table.

Tables 253

You can then use get-next and get-previous to move from cell to cell. But you can also use
the following:

Function 14-7: get-cell
(tell table mid:get-cell row column)

Returns cell or microdocument at row number row and column number
column

E.g. (tell table mid:get-cell 0 0)
Returns cell at row 0, column 0

Obviously, get-cell is zero-based.

If the cell only has one component, then get-cell returns the component. If it's a graphics
frame (diagram) cell that contains only one component, then it returns the component;
otherwise, it returns the graphics frame, then leaves it to you to navigate the frame objects.

Table tataler
The following function will total the contents of a column in a table. It is fairly limited. It
skips cells that are set as frames, and it skips cells that have more than one component. It
also doesn't do anything more interesting with the result than return it.

14-2 get-cmpn-number
(defun get-cmpn-number (cmpn)
; gets number in a cell
(let (m1 m2 contents number)

(setq m1 (tell cmpn mid:get-marker)) ; beginning
(setq m2 (tell cmpn mid:get-marker t)) ; end
(setq contents (tell m1 mid:get-substring m2 t t))
; if contents, convert to float
(if contents

(setq number (atof contents))
; else, no contents, so return 0
(setq number 0))

number))

14-3 get-all-cmpns
(defun get-all-cmpns (cmpn)
; gets all cmpns in a cell and totals their contents
(let ((total 0.0) number)

(while cmpn

254 ADVENTURER'S GUIDE TO INTERLEAF LISP

; get contents as a number
(setq number (get-cmpn-number cmpn))
(it number (s.etq total (+ total number)))

(setq cmpn (tell cmpn mid:get-next))
); while

total))

14-4 total-cells
(detun total-cells (table col-number)
(let ((total 0.0) cell (row-ctr 1))

))

; loop, looking at every row
(while (setq cell (tell table mid:get-cell row-ctr cOl-number))

(setq total (+ total (get-all-cmpns cel!)))
; increment row ctr
(inc row-ctr)
)
total

Table sorter
The following sorts a table using the contents of a column specified by the user. It skips
frame cells. And it should be used with care on tables that have vertically straddled cells.

14-5 table-sort-fcn
(detun table-sort-tcn (a b)
; used by sort as criterion
(let (conta contb ret)

(setq conta (car a))
(setq contb (car b))
; either nil?
(it (and conta contb)

(progn
; it it's a number string, convert to numbers
(it (and

(atot conta)
(atot contb))

(setq ret « (atot conta) (atot contb)))
;else
(progn
(it (> (string-compare conta contb) 0)

(setq ret t)

;else
(setq ret nil))))))
; no content
(it (or (not conta) (not contb))

(setq ret t))
ret
))

14-6 get-cell-cont
(detun get-cell-cont (table col row)
; gets content ot a cell in a particular row
(let (cell contents)

(setq cell (tell table mid:get-cell row col))
(it (is-ot-class cell doc-cmpn-class)

(progn
(setq contents

(tell (tell cell mid:get-marker) mid:get-substring
(tell cell mid:get-marker t) t t))))

contents
))

14-7 sort-table
(detun sort-table ()

Tables 255

(let (rows cols sort-table r (ctr 1) col-to-sort cmpn item (row-ctr 1)
(row-list nil))

; is there a document open?
(it (not (doc-current-icon))

(progn
(stk-open "No document is open. ")
(toplevel)))

; get row
(setq r (doc-point-cmpn))
(it (not (tell r mid:get-props :table-row))

(progn
(stk-open

"You're either not in a table or not at the right level. "
"Get table caret and try again. ")

(toplevel)))

; get table
(setq sort-table (tell r mid:get-parent))

256 ADVENTURER'S GUIDE TO INTERLEAF LISP

(if (not (is-of-class sort-table doc-table-class))
(progn

(stk-open "Move caret to table and try again',
(quit)))

; get number of rows and cols
(setq rows (tell sort-table mid:get-props :number-ot-rows))
(setq cols (tell sort-table mid:get-props :number-of-columns))
; get col to sort on
(setq col-to-sort
(stk-open

(format nil "Sort on which column (1- rv Dr cols) :input 5))
; error check
(if (not cOI-to-sort)

(toplevel))
; convert input to ascii
(setq col-to-sort (atoi col-to-sort))
(if (not cOI-to-sort)

(progn
(stk-open "Improper (non-numeric) input. Try again.")
(top/evel)))

(if (not (and (> col-to-sort 0) «= col-to-sort cols)))
(progn

(stk-open (format nil "Column not in range. Choose 1- rv D." cols))
(toplevel)))

; get list of all rows: (content. row)
; go to top of table
(setq r (tell sort-table mid:get-chifd))
(while (and r

(tell r mid:get-props :table-row)
(equal sort-table (tell r mid:get-parent)))

; skip table heads
(if (not (tell r mid:get-props :table-header))

(progn
(push (cons (get-cell-cont sort-table col-to-sort row-ctr) r)
rOW-list)))

(inc row-ctr)
(setq r (tell r mid:get-next)))

; sort the list

(setq row-list (sort row-list 'table-sort-fcn))

; cut each member of list, go to beginning of table, and paste it
; go to end of table

Tables 257

(doc-goto-marker (tell (get-last-row sort-table) mid:get-marker))
(while (setq item (pop row-list))

)

; getcmpn
(setq cmpn (cdr item))
; deselect all
(tell *cmpn-editor* mid:deselect :all)
; select cmpn
(tell *cmpn-editor* mid:select cmpn)
; cutcmpn
(tell *cmpn-editor* mid:cut)
(doc-goto-marker (tell (get-last-row sort-table) mid:get-marker))

; set caret direction
(tell *cmpn-editor* mid:set-props :caret-direction :next)
; paste it
(tell *cmpn-editor* mid:paste)

(doc-goto-marker (tell cmpn mid:get-marker))

; update the document
(doc-flush-queue)
))

14-8 get-last-row
(defun get-last-row (table)
(let (r prev)

))

; get first
(setq r (tell sort-table mid:get-child))
; get last
(while (and r (equal table (tell r mid:get-parent)))

(setq prev r)
(setq r (tell r mid:get-next)))
; we went one past it, if there's something after the table
; (if r (setq r (tell r mid:get-previous)))

prev

258 ADVENTURER'S GUIDE TO INTER LEAF LISP

; bind it to A XT
(kbd-bind kbd-doe-map "\ A XT" 'sort-table)

Table striper
This next set of functions automatically add a background fill every nth row of a table; the
user gets to select how many blank rows there ought to be between filled rows and also how
many rows to fill. For example, you could have every fifth row filled, or have two filled,
then three blank, etc.

Unfortunately, you can't tell what color the fill is going to be since you set colors by using
the number of the color in the color palette for that document, and color palettes are very
difficult to decode. So this arbitrarily uses the third color in the document's palette, what
ever color that happens to be.

14-9 which-row
(defun which-row (row)
; returns number of row we're in ... zero based
(let ((row-etr nil) table first-row)

; are we in a table at all?
(if (equal 'doc-table (type-of (tell row mid:get-parent)))

(progn
(setq row-etr 0)
;get the table
(setq table (tell row mid:get-parent))
; get first row
(setq first-row (tell table mid:get-ehild :along :strueture))
; move up rows until row equals first row
(while (not (equal row first-row))

; increase the row counter
(inc row-etr)
; move to previous row
(setq row (tell row mid:get-previous)))))

row-etr
))

14-10 ts-get-table
(defun ts-get-table 0
(let (re-table)
; get table
(setq re-table (tell (doe-point-empn) mid:get-parent))
; is it a table?
(if (not (typep re-table 'doc-table))

(progn

(stk-open "You need to be in a table")
(quit)))

rc-table
))

14-11 ts-get-cell
(defun ts-get-cell (table r c)
; takes cell cmpn and returns the cell frame it's in
(let (contents)

(setq contents (tell table mid:get-cell r c))
(while (not (typep contents 'doc-frame))
(setq contents (tell contents mid:get-parent)))

contents
))

14-12 stripe-a-row
(defun stripe-a-row (table row col-number fill-it)
; adds color to a row of a table
(let (cell (col-ctr 1) (color 3))

))

(while (and (tell table mid:get-cell row cOl-number)
«= col-ctr cOl-number))

; get cell
(setq cell (ts-get-cell table row col-ctr))
; set color props
(tell cell mid:set-props :fiII-color-index color)
(tell cell mid:set-props :fill-visible fill-it)
; inc col-ctr
(inc col-ctr))

14-13 do-stripes
(defun do-stripes 0
(let (table row-ctr (col-ctr 0) ts-col-number

(rowson 0) (rowsoff 0) times r)
; get table
(setq table (ts-get-table))
; get frequency of stripe

Tables 259

(setq rowson (atoi (stk-open "Enter number of rows to stripe" :input 3)))
(if rowson

(setq rowsoff
(atoi (stk-open "Enter number of rows to skip" :input 3)))
; else
(quit))

(if (= 0 (+ rowson rows off))

260 ADVENTURER'S GUIDE TO INTER LEAF LISP

(quit))

; get number of columns in table
(setq ts-col-number (tell table mid:get-props :number-of-columns))
; loop through rows - - start striping at the caret
(setq r (doc-point-cmpn))
(setq row-ctr (1 + (which-row r)))

(catch 'tdone
(while r

(repeat rowson

)

; stripe the row
(stripe-a-row table row-ctr ts-col-number t)
; get next row
(setq r (tell r mid:get-next))
; inc rowctr
(inc row-ctr)
; if over, then end
(if (not r)

(throw 'tdone))

(repeat rowsoff
; blank the row
(stripe-a-row table row-ctr ts-col-number nil)
; get next row
(setq r (tell r mid:get-next :along :structure))
; inc rowctr
(inc row-ctr)
; if over, then end
(if (not r)

(throw'tdone))
)

))
(doc-flush-queue)
))
; try it
(do-stripes)

Chapter 15
Graphics

This chapter skims the surface of Interleaf graphics. Unfortunately, at the time of this writ
ing, Interleaf Lisp's graphic capabilities are an advanced topic, requiring a lot of low-level
coding. For the upcoming Motif version of Interleaf 5 Interleaf is developing a diagram
ming editor object which reportedly will be as easy to use as *text-editor*. Until then, the
best this book can do is show you how to work with graphics using frames and named
graphic objects (NGOs) - objects that can be created by the end user but manipulated by
the developer.

Frames
To get the first frame in a document:

Function 15-1: get-first

(tell-class doc-frame-class mid:get-first &optional :along axis)

Returns: first frame
E.g. (tell-class doc-frame-class mid:get-first)

Returns first frame

The two keywords are :structure and .format. Since the order of anchors in a document can
be different from the order of the frames (e.g., a bottom frame's anchor may come before an
at-anchor frame's anchor, but the bottom frame may come after the at-anchor frame in
terms of the stream of objects on the page), which axis you navigate along makes a differ
ence. For example:

(tell-class doc-trame-class mid:get-trame :along :structure)
Returns first frame in the order of the anchors in the document
(tell-class doc-trame-class mid:get-frame :along :tormat)
Returns first frame in the order of the frames in the document

Now that you have a frame, you can get the next or previous frame.

262 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 15-2: get-next

(tell frame mid:get-next &optlonal :along axis)

Returns: next frame
E.g. (tell myframe mid:get-next :along :name)

Returns next frame after myframe with the same name as myframe

The axes are :structure, .format and :name. The structure axis will return the next frame in
anchor order. (For repeating frames, it returns the next repeating frame on that page.) The
fonnat axis will return the next frame in frame order. The name axis returns the next frame
with that name in random order; the name axis is handy for visiting every instance of a
frame with a particular name.

Function 15-3: get-previous

This is exactly the same as get-next, discussed immediately above, except, of course, it
moves backwards.

Remember, you can also use the various flavors of doc-scan to look at every frame. For
example:

(doc-scan-class-apply 'do-something (list doc-frame-class»
Sends every frame to the function do -something

Do-something should have a single argument, which is the frame being examined, e.g.:

(defun do-something (fr)
; put the frame's name into a stickup
(stk-open (tell fr mid:get-name))
)

You can use the ever-elusive name-pool to look at every frame with a particular name.

15-1 frame-sean-name
(defun frame-scan-name (name fun)
; visits every frame named name and sends it to function fun
(let (pool head name inst)

(when; traverse name pool of named diagramming objects
(setq pool (name-find-pool doc-frame-class))
(setq head (tell pool mid:get-child))

(while head ; find all instances of name
(setq inst (tell head mid:get-child :along :name))

(while (and inst (string= (tell inst mid:get-name) name))
(funcall fun inst)

(setq inst (tell inst mid:get-next :along :name)))
(setq head (tell head mid:get-next))

) ; while head
)))

Graphics 263

;try it out, with a do-something function presumably defined elsewhere
(frame-scan-name "rule" 'do-something)

This function takes the name of the frame and the function you want to send the frame to.
So, you might use it to send every frame named "rule" to a function you write that sets its
properties the way you want.

The following function will return the current selected frame. Note: Thisfunction is used by
several that follow.

15-2 get-selected-frame
(defun get-selected-frame 0
(let (m1 m2 markers token)

))

; if nothing selected, quit
(if (not (setq markers (doc-text-selection)))

(progn
(stk-open "Nothing selected")
(quit)))

; get markers at beginning and end of text selection
(setq m1 (car markers))
(setq m2 (cdr markers))
; get the frame token
(setq token (car (tell m1 mid:get-substring m2 (list :frame))))
; token is in form (:frame . frame-object). Return only the frame-object
(cdr token)

Note that the above function doesn't work if the text selection spans components. If more
than one frame is selected, it will return the first one in anchor order. The order of the mark
ers returned by doc-text-selection depends upon whether the user selects downwards or
upwards.

Function 15-4: get-props

(tell frame mid:get-props &keyword prop)

Returns: prop property of frame
E.g. (tell myframe mid:get-props)

;Returns all the properties of myframe:
(:name "myframe"
:force-hidden nil
:attributes nil
:placement :at-anchor
:shared-content t
:frame-selection t
:border-visible t

264 ADVENTURER'S GUIDE TO INTER LEAF LISP

:auto-edit nil
:height 1228800
:width 7373280
:vertical-aJignment
:bottom
:vertical-offset 0
:baseline -1228800)

These properties clearly match the names on the frame property sheet.

You can get the following properties of frames:

Property Argument
:name string

:force-hidden t or nil

:placement :at-anchor, :underlay, etc,

:shared-content t or nil

:frame-selection t or nil

:border-visible t or nil

:auto-edit t or nil

:height rsu's

:width rsu's

:Ieft-offset rsu's

:top-offset rsu's

:vertical-alignment :bottom. :top, etc.

:horizontal-alignment :Ieft, :centered

:horizontal-reference :page-without-margins, etc.

:vertical-reference :page-with-margins, etc.

:repeat-begin t or nil

: repeat-end t or nil

:repeat-same-page t or nil

To set properties:

Function 15-5: set-props

(tell frame mid:set-props &keyword prop)

Returns: prop property of frame

Comment
frame's name

force it to hide or not

clicking on frame selects it

frame border visible when
frame selected

clicking on object in closed
frame opens frame and
edits object

as on prop sheet

as on prop sheet

begin repeating frame

end repeating frame

begin repeater on this page

E.g. (tell myframe mid:set-props :placement :underlay)
Turns myframe into an underlay frame

You can use *text-editor* to create frames. And since frames can come in with content, you
can do some powerful things very easily.

15-3 create-draft-underlay
(defun create-draft-underlay 0
(let (frame)

; create the frame
(tell *text-editor* mid:create :frame "draft")
; use get-selected-frame to get the new frame
(setq frame (get-selected-frame))

Graphics 265

; set its props ... although could also do this by setting "draft's" master by
; hand

)

))

(tell frame mid:set-props :placement :underlay
:shared-content t
:repeat-begin t
:repeat-same-page t

This script expects that you've already made a master frame called "draft" that contains the
content you want. (You could create this graphic through I-Lisp too, but it's much easier to
do so using Interleaf 5's graphics tools than through any programming language.)

The following function will look for any frame named "draft" and will either hide it or show
it, depending on which argument it's passed.

15-4 hide-draft-notice
(defun hide-draft-notice (name show)
(let (head m)

))

(setq head (name-find-head doc-frame-class name *document*))
(if head

(progn
(setq m (tell head mid:get-child :along :name))

(while m
(tell m mid:set-props :force-hidden show)
(setq m (tell m mid:get-next :a/ong :name)))))

; bind ESC-h to hide frames named "draft"
(kbd-bind kbd-doc-esc-map "h" '(hide-draft-notice "draft" t))
; bind ESC-H to show frames named "draft"
(kbd-bind kbd-doc-esc-map "H" '(hide-draft-notice "draft" nil))

The following function sets the height and width properties of a frame so that they match the
size of a component. This assumes you have used the user interface to create a master for an
underlay frame named underbox which contains a box. The frame's properties should be set

266 ADVENTURER'S GUIDE TO INTERLEAF LISP

to size contents to width and height. Here are two propsheets that show what it should
look like.

Frame Properties ".Jpntit'l custom II Attrs I

Name
Size

Width
Height

Placement

Horizontal
Vertical

Aunderbox

I Underlay I

Reference
I Anchor I
I Anchor I

"I

Align
I Left I
I Top I

Offset
I 0

I 0

Frame Properties I Format Ilm~.mll Attrs I

Frame Selection _INol
Border Visible _INol

Content
Editor I@UlE"'11 Object I
Shared Ivesl_
Size To Width -~ Size To Height -~

Anchor IDIIJallllnvisible II Numbered I
.. I

Two ''pages'' of the underbox property sheet.

15-5 box-cmpn
(defun box-cmpn (cmpn)
; uses get-selected-frame, above
(let (height frame m1 m2 font font-size)

; get the height of the cmpn by getting diff. in position
; of beginning and end markers
; get beginning and end markers
(setq m1 (tell cmpn mid:get-marker))
(setq m2 (tell cmpn mid:get-marker t))
; get difference in height between them
(setq height
(- (cdr (tell m2 mid:get-bounds :type :screen))
(cdr (tell m1 mid:get-bounds :type :screen))))

; if 0, then they're on the same line
(if (= height 0)

(progn
; make it equal to height of one line
(setq font (tell cmpn mid:get-props :doc-font))
(setq font-size (tell font mid:get-props :size))
; convert pOints to inches (72pts in an inch) to rsu's
(setq height (round (* 1228800 (j font-size 72.0))))

)
; else - convert from pixels to inches to rsu's
(setq height (round (* 1228800 (/ height 75.0)))))

; go to beginning of cmpn
(doc-goto-marker m1)
; create frame
(tell *text-editor* mid:create :frame "underbox'J
; frame is selected so use previous function to get it
(setq frame (get-selected-frame))
; set its props
(tell frame mid:set-props :height height)

))

Graphics 267

Notice that this does a very bad job if the component is split across two pages. You could
alter the function to take account of this, or you could only use it on components set so they
won't split across pages.

T he following function creates a drop cap like the one this paragraph begins with. It
finds the first letter in a component, cuts it, creates a frame called "dropcap"
(which you should have defined ahead of time), sticks the first letter into a micro-

document in the frame, and adjusts the paragraph's initial indent. For this to work, the
"dropcap" frame's master needs to have a single microdocument as its content, and you

268 ADVENTURER'S GUIDE TO INTERLEAF LISP

should size the frame and position the way you want a dropped cap to work. Make sure the
frame's properties are set so that its contents will size themselves to the frame's width to
ensure that the microdocument displays properly.

15-6 drop-cap
(defun drop-cap 0
(let (m1 m2 text (c (doc-point-cmpn)) letter frame graph micro c cmpn)

; get first letter of cmpn

))

(setq m1 (tell c mid:get-marker))
; find first letter
(setq f!12 (tell m1 mid:copy))
(until (or letter

(not (zerop (tell m2 mid:move-by 1))))
(setq letter (tell m1 mid:get-substring m2 (list :char :hyph-char)))
(if (not letter)

(setq m1 (tell m2 mid:copy))))
; delete the first character
(tell m1 mid:delete m2)
; go to beginning of line
(doc -goto -marker m 1)
; create the frame
(tell *text-editor* mid:create :frame "dropcap'?
; get the frame using (get-selected-frame) defined in this chapter
(setq frame (get-selected-frame))
; get dg-graph
(tell frame mid:open)
(setq graph (dg-remainder))
; get microdocument
(setq micro (tell graph mid:get-child))
; get first (and only) cmpn in microdoc
(setq cmpn (tell micro mid:get-child))
; insert the letter
(tell (tell cmpn mid:get-marker t) mid:insert letter)
; adjust the initial indent to a half-inch, 3-line indent
(tell c mid:set-props :initial-indent 614400 :initial-indent-count 3)
; update the document
(doc-flush-queue)

Graphics 269

Architecture
Now let's take a look at the architecture of frames and diagrams. It's not what you might
think from the user interface.

Every frame has a child of dg-diagram-class. This is the object - invisible to the end user
- that gets changed when you turn the grid on or off, adjust gravity, etc.

(setq frame (get-selected-frame))
Returns selected frame, using function 15-3
(setq dg1 (tell frame mid:get-child))
Returns dg-diagram
(tell dg1 mid:get-props)
Returns
(:clipping-box ((0. 0) (7356416. 180224) -2147483646)
:default-fill-color 7
:default-fill-pattern 5
:default - fill- visible nil
:default-edge-color 7
:default-edge-dashes :none
:default-edge-weight 8
:default-edge-visible t
:default-text-c%r 7
:gravity t
:gravity-radius 1
:rotation-detent t
:rotation-detent-angle 15.0
:magnified nil
:magnification -level 1. 0
:width 8093696
:height 196608
:horizontal-shift 0
:vertical-shift 0
:input-scaled nil
:input-scale-factor 1.0
:old-text-angle 0.0
:grid-a/ign t
:grid-displayed nil
:grid-on-top t
:grid-type :rectangular
:grid-horizontal-spacing 491520
:grid -horizontal-subdivisions 81920
:grid-vertica/-spacing 491520
:grid-vertical-subdivisions 81920

270 ADVENTURER'S GUIDE TO INTER LEAF LISP

:grid-isometric-spacing 491520
:grid-isometric-subdivisions 81920)

You can get the dg-diagram object of the frame currently being edited through:

Function 15-6: dg-graph

(dg-graph)

Returns: current diagramming object

The contents of the frame are the children of this object. They are divided into two lists:
those that are currently selected (selection) and those that are not (remainder).

Function 15-7: dg-se/ection

(dg-selection)

Returns: list of selected diagramming objects

Function 15-8: dg-remainder

(dg - remainder)

Returns: list of all unselected diagramming objects

Now, for the reasons stated at the beginning of this chapter, we are not going to look at how
to modify diagramming objects. But here is an example of what happens when you finally
get to the props of a diagramming object.

(setq d (tell (dg-selection) mid:get-child))
Returns diagramming group
; get child of that diagramming group
(setq dd (tell d mid:get-child))
Returns actual diagramming object, e .. g., ellipse
; get props of ellipse
(tell dd mid:get-props)
Returns (:Iocks nil :edge-color-index 7 :edge-dashes :none
:edge-weight 8 :edge-visible t :fill-color-index 7 :fil/-pattern-index 5
:fill-visible nil)

Named Graphic Objects
With a little Lisp, you can do a lot with graphics, thanks to named graphics objects. These
let you use the user interface to create complex graphics and then turn them into objects that
can be manipulated through Lisp.

The following doc-scan variant visits each of the named graphic objects in a document and
sends it to a function (in this case, a function called ngo-test-fcn). (Don't forget to (require
"doc-scan") at the beginning of any script that uses this function.)

(defun ngo-test-fcn (0)
; dummy function for testing find-named-ngos

; puts name of NGO into stickup
(stk-open (tell 0 mid:get-name)))

Graphics 271

Here's the actual code you would run to visit every named graphic object:

15-7 find-all-ngos
(doc-scan-class-apply 'ngo-test-fcn (list dg-named-class))

This next function not only finds all NGOs and sends them to a function, but it will also
optionally let you specify the name of the NGO you want to send to the function and/or the
frame that you want to inspect. You tell it the name of the NGO you want to look at. You can
optionally give it the name of a function you want every NGO sent to.

15-8 find-named-ngos
(defun find-named-ngos (name &optional fcn)

(let (head ngo (ngo-/ist nil))

))

(setq head (name-find-head dg-named-class name))
(setq ngo (tell head mid:get-child))
(while ngo

(if fcn (funcall fcn ngo))
(push ngo ngo-list)
(setq ngo (tell ngo mid:get-next :along :name)))

; return list of NGOs
ngo-list

If you want to use this function to send every NGO to some other function, you design a
function such as:

(defun dummy-code (ngo-object)
; do something here with the ngo-object
)

You invoke the function either as (find-named-ngos "my-ngo'? or (find-named
ngos "my-ngo" 'dummy-code).

To make any further progress with graphics, I recommend you either poke around with doc
uments you don't mind trashing during sessions you don't mind crashing, or wait for the
next version of Interleaf 5 to provide a more accessible interface to the graphics system.

Chapter 16
Windows

If you are using the Interleaf user interface (and not, for example, Open Look or Motif),
then this chapter will tell you how to access the Interleaf windowing system.

Window manager
Just as there are text editors and component editors, Interleaf provides an object that man
ages windows: *wn-wmgr*. Its properties include:

Property Type Comment
:pointer-window object Window the mouse pointer is in

:windows list List of all current window objects, in back to front order

:size cons Width and height of area that can hold windows

:position cons Upper left corner of where windows can be placed

:maximum-bounds cons Lower right corner where windows can be placed

The ftrst two properties enable you to get a window object. For example,

(tell *wn-wmgr* mid:get-props :pointer-window)
Returns window object the mouse pOinter is in
The window manager also has a set of methods.

Function 16-1: refresh

(tell *wn-wmgr* mid:refresh)
Redraws all windows

This does the same thing as doing a refresh through the desktop popup.

Function 16-2: set-props

(tell *wn-wmgr* mid:set-props keyword value)

274 ADVENTURER'S GUIDE TO INTERLEAF LISP

Sets property keyword to value
E.g. (tell *wn-wmgr* mid:set-props :Ieft-button :select :middle-button

:menu :right-button :extend)
Returns :extend

There aren't many properties you can set for the window manager. The only one you might
need is the ability to set which mouse button does what, as in the example immediately

above.

If you want to get a particular window and know its name, you can use one of the properties
of window objects:

Function 16-3: get-object

(tell window mid:get-object)
Returns: object of window

If the window is a document window, then this will get the document editor. If it's a direc
tory window, it will get the desktop icon. The following function allows you to find a win
dow by supplying the name of the object you're looking for, document or container.

16-1 find-window
(defun find-window (name)
; finds window of a particular name

(let (win-list win obj parent-name target-obj)
; get list of windows
(setq win-list (tell *wn-wmgr* mid:get-props :windows))
; loop through Jist looking for name
(while (setq win (pop win-list))

))

; get the object associated with window
(setq obj (tell win mid:get-object))
; is there an object at all?
(ifobj

(progn
; is it a document?
(if (is-of-class obj doc-editor-class)

(progn
(setq parent-name (tell (teJl obj mid:get-object)
mid:get-name)))

; else it's a container
(progn

(setq parent-name (tell obj mid:get-name))))
; if it's the right name, save the object
(if (string= name parent-name)

(setq target-obj (tell obj mid:get-window))))

target-obj
))

Windows 275

Now that you have a window, what can you do with it? You can get and set some properties:

Property Type
:position pixels, cons

:size pixels, cons

:interior-position pixels, cons

:interior-size pixels, cons

: object desktop object

:obscured t or nil

:pointer-position pixels, cons

There are other functions as well:

Function 16-4: new
(tell win mid:new)

This creates a new window.

Function 16-5: close
(tell win mid:close)

Closes the window.

Function 16-6: button
(tell win mid:button button state area)

Comment
x and y position

height and width

height and width

height and width

object it's a window of

visible or not

x and y position

This allows you to intercept mouse button presses and do what you want with them. The
buttons are :menu, :popup or :select. The state is either :up or :down. The area is one of
:command, :message, :resize, :title or :window, corresponding to various areas of the win
dow.

This allows you to get the popup you'd get in a window without actually being in that win
dow:

16-2 get-win-popup
(defun get-win-popup (win)

(tell win mid:button :menu :down :message)
)

You could also provide your window with a new button method so that you can give it
entirely new popups:

16-3new-win-popup
; Assumes you already have a window setq'ed to w
; create new win class

276 ADVENTURER'S GUIDE TO INTERLEAF LISP

(setq new-win-class (obj-new-class wn-window-class "New Win"))
; give your win class a new button method.
(ob{-provide new-win-class mid:button 'new-win-pup-handler)
; make your window a member of that class
(tell w mid:set-class new-win-class)

16-4 new-win-pup-handler
(defun new-win-pup-handler (win button state area)
(let (pup)

))

(setq pup
(popup -create-list

(popup-create-entry "New function" 'new-pup-fcn)))
(if (and (eql button :menu)

(eql state :down)
(eql area :message))
(progn

(popup-run pup)))

(defun new-pup-fcn (data)
; dummy function for popup handler

(stk-open"Oummy function'J)

This creates a new class of window. If you press the menu button while in the message area
a/the window (the line under the title, usually), you will now get a single-entry popup that
says "New function" and which executes a dummy function.

There are other properties of windows you can set.

Function 16-7: lower-to-bottom

(tell win mid:lower-to-bottom)

Lowers window to bottom, most obscured position on screen.

Function 16-8: raise-to-top
(tell win mid:raise-to-top)

Raises window to top on screen.

Function 16-9: message

(tell win mid:message text)
Displays text in message bar of window.

This does the same as wn-message. Wn-message automatically does a format on the text
you supply. As with format, it expects a nil before the message. Here's an example:

(wn-message nil "Your name is '" A and your age is '" 0" "Bill" 15)

Windows 277

Puts "Your name is Bill and your age is 15" into the window message bar.

An example
The following example lets you shrink a window so that only its name box (plus a tad more)
shows, and stacks these "icons" in a diagonal line, starting from the upper left of your
screen. Another keystroke restores the document to full-screen size. This is especially use
ful on small screens. This script should go into your profile drawer.

Two "iconized" windows, shown actual size.

; Compute size of desktop
(setq *dt-ht* (sys-get-vars :screen-height))
(setq *dt-wd* (sys-get-vars :screen-width))

16-5 rsus-to-pixels
(defun rsus-to-pixels (r)
; general utility for converting rsu's to screen pixels. Approximate
(round (* (/ r rsus-per-inch) 75))

)

16-6 window-size-to-page
(defun window-size-to-page ()
; Sizes window to size of page
(let (ph pw ht-offset wd-offset win zoom-factor)
; get the window
(setq win (tell *doc-editor* mid:get-window))
; size of window over size of doc
(setq ht-offset 150)
(setq wd-offset 130)
;get doc ht and width
(setq pw (tell *document* mid:get-props :page-width))
(setq ph (tell *document* mid:get-props :page-height))

278 ADVENTURER'S GUIDE TO INTERLEAF LISP

»

; convert from rsus into pixels
(setq pw (rsus-to-pixels pw»
(setq ph (rsus-to-pixels ph»
; get zoom factor
(setq zoom-factor (tell *doc-editor* mid:get-props :zoom»
; get visible page width and height (multiplying page size by zoom)
(setq pw (round (* pw zoom-factor»)
(setq ph (round (* ph zoom-factor»)
; add size of windowing stuff
(setq pw (+ pw wd-offset»
(setq ph (+ ph ht-offset»
; if greater than desktop size, reduce to desktop size
(if (> ph *dt-ht*)

(progn
(setq ph (1- *dt-ht*»
(tell win mid:set-props

:position (cons (car (tell win mid:get-props :position» 0

»»
(if (> pw *dt-wd*)

(progn
(setq pw (1- *dt-wd*»
(tell win mid:set-props :position (cons 0

(cdr (tell win mid:get-props :position»

»»
; set window size
(tell win mid:set-props :size (cons pw ph»

; put page squarely on screen, without visible page break
(tell *doc-editor* mid:set-props :page
(tell *doc-editor* mid:get-props :page»

; raise window to top
(tell win mid:raise-to-top)

16-7 grow-window
(defun grow-window ()
; grows window to max size, and brings it to the top
(let (win posy

(setq win (tell *doc-editor* mid:get-window» ; get the window
; did we already save the doc's old window position?
(setq pos (tell *document* mid:get-data :window-pos»
; If haven't already handled this window, so there's no pos data

(if (not posy
(setq pos (cons 00)))

; set the position
(tell win mid:set-props :position posy
; size the window to the size of the page
(window-size -to - page)
; raise window to top
(tell win mid:raise-to-top)

))

16-8 this-is-small
(defun this-is-small (w)
; is this window a small one? Judges solely on size of window.
(equal (cons *small-wd* *small-ht*)

(tell w mid:get-props :size))
)

16-9 shrink-windows
(defun shrink-window 0

Windows 279

; shrinks window and reshuffles all small windows for semi-pleasing
;display
(let ((small-wins nil) win obi item wins Ir tb

(left-offset 15) (tb-offset 18))
; get the window of this doc
(setq win (tell *doc-editor* mid:get-window))
; is this itself a small win? Assumes it is if it's the size of the small
; windows
; get all the windows
(setq wins (tell *wn-wmgr* mid:get-props :windows))
; find any other docs and get furthest left and lowest
(while (setq item (pop wins)) ; cycle through windows

(setq obi (tell item mid:get-obiect))
; is it a doc window already reduced by this program?
(if (and obi

(is-of-class obi doc-editor-class)
(this-is-small item))
(progn

(push item small-wins))))
; sort the list by top position
(setq small-wins (sort small-wins #'sort-win-pos))
; place windows
(setq Ir 0) (setq tb 0)
(while (setq item (pop small-wins))

280 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

)

(tell item mid:set-props
:position (cons Ir tb) :size (cons *small-wd* *small-ht*))

(tell item mid:raise-to-top)
(setq Ir (+ Ir left-offset))
(setq tb (+ tb tb-offset))

; place this doc's window unless it started as a small one
(unless (this-is-small win)
; save origins
(tell *document* mid:put-data :window-pos (tell win mid:get-props
:position))
(tell win mid:set-props

:position (cons Ir tb)
:size (cons *small-wd* *small-ht*))

(tell win mid:raise-to-top))

16-10 sort-win-pos
(defun sort-win-pos (a b)
; sorts windows by vertical placement
(let (a1 a2)

(setq a1 (car (tell a mid:get-props :position)))
(setq a2 (car (tell b mid:get-props :position)))
« a1 a2)
))

; bind the keys
(kbd-bind kbd-doc-map "\ A Xi" 'shrink-window)
(kbd-bind kbd-doc-map "\ A XI" 'grow-window)
(kbd-bind kbd-doc-map "\ A Xz" 'window-size-to-page)

Timers
A timer is a stop watch set by the system on your command. For some reason, timers are
attached to windows.

Timers have the following properties:

Property
:delta-time

:idle-time

:repeat

:active

Comment
Number of milliseconds the timer lasts

Number of milliseconds the timer can be left idle before it
kills itself

If t, time restarts itself automatically

t if timer has started and hasn't died yet

Windows 281

The methods :new, :start and :stop are self-explanatory. The following one isn't:

Function 16-10: end
(tell timer mid:end 'function)

Evaluates function when the time is up

If you use this method, when your timer expires, it will execute the function you name. If
you do not set this, it will default to evaluating whatever function (if any) you've specified
by putting data named :expression on the timer. For example:

{tell my-timer mid:put-data :expression '(bJow-up-time-bomb))

If you now started my-timer (remember that you first have to create it, of course), when it
expired it would run your function blow-up-time-bomb.

Here's an example of a function that prompts you to enter a number of minutes, and which
puts up a stickup when that time has expired.

16-11 stkup-countdown-timer
(defun stkup -countdown -timer ()

(let (minutes millisecs timer msg)
(setq minutes (stk-open "How many minutes to count down?" :input 5))
(if (string= "" minutes)

(quit))
; convert to milliseconds
(setq millisecs (* 60000 (atoi minutes)))
; create new timer
(setq timer (tell-class wn-timer-class mid:new))
; tell it what to do when it expires and input a message
; (the comma before "timer" isn't a typo, but will remain a mystery in this
; book)
(tell timer mid:put-data :expression '(countdown-done ,timer))
; get message to put into stickup and attach it to timer
(setq msg (stk-open "msg " :input 30))
(tell timer mid:put-data :text msg)
; set timer props
(tell timer mid:set-props :delta-time millisecs)
; start the timer
(tell timer mid:start)))

16-12 countdown-done
(defun countdown-done (timer-obj)
; what happens when the timer is done

(stk-open (format nil " D minute timer done. In A"
(itoa (I (tell timer-obj mid:get-props :delta-time) 60000))
(tell timer-obj mid:get-data :text))))

282 ADVENTURER'S GUIDE TO INTERLEAF LISP

; try it out
(stkup -countdown -timer)

It's easy to think of ways this could be elaborated. You could tell the user the current time in

the stickup and have her enter the time for the alarm to go off. You could alter the interface,
perhaps using a graphic of a clock to let the user set the time for the alarm. The actions that
can occur can go far beyond opening a stickup. (The function (beep) works on some sys
tems.)

Here's a little typing test. (Since it doesn't check for accuracy, it counts speed without test
ing skill.)

16-13 typing-test
(defun typing-test 0

(let (cmpn timer text)
; create text to type
(setq text "Now is the time for all good human beings to come to the aid
of their party, except for lazy dogs too busy to jump over quick brown
foxes. A man, a plan, a canal, panama. If you're done, then type it all
again. And, please, drive carefully/'J
(stk-open "This will test your typing speed. When ready, press the button

and type in the text you'll find inserted into your document. ')
; create the components we need
(setq cmpn (tell *cmpn-editor* mid:create "para'))
(tell (tell cmpn mid:get-marker) mid:insert text)
; create blank para for typing into
(setq cmpn (tell *cmpn-editor* mid:create "para'))
; start the timer for one minute
(setq timer (tell-class wn-timer-class mid:new))
; tell it what to do when it expires
(tell timer mid:put-data :expression '(typetest-done))
; set timer props to one minute
(tell timer mid:set-props :delta-time 60000)
; start the timer
(tell timer mid:start)))

16-14 typetest-done
(defun typetest-done 0
; count the words

(let (word-count)
; get word count
(setq word-count (count-words-in-cmpn (doc-point-cmpn)))
(stk-open (format nil "You've typed'" D words in a minute, many of them

perhaps correctly." word -count))
))

16-15 count-words-in-cmpn
(defun count-words-in-cmpn (cmpn)

(let (m (ctr 0))
; get marker at beginning of cmpn
(setq m (tell cmpn mid:get-marker))
; loop until no words left
(while (zerop (tell m mid:move-by 1 :by:word-endings))

; increment counter
(inc ctr))

; return the ctr
ctr
))

; try it
(typing-test)

Windows 283

Chapter 17
Streams

Streams in Interleaf Lisp allow you to access information in files outside of the Interleaf
desktop. A stream is a data source, either coming into Interleaf or going out. In this chapter,
we'll cover the basics of reading and writing files.

To use a stream, first you must open it.

Function 17-1: open

(open filename)

Returns: stream to filename

E.g. (open "desktop/System5.cab/readme")
Opens "desktop/System5.cab/readme"

Open takes a number of keywords. At a minimum, you'll want to specify :input, :output or
:io (both), where input means you'll be getting input from it (i.e., reading it) and output
means you'll be writing to it. You'll also want to specify either :character or :byte as the
type of data you'11 be inputting or outputting, although within the scope of this book it will
almost certainly be characters that you'll be dealing with; you look for characters in text
files and bytes in compiled, executable files (among others). If you have specified :output
or :io, then you might want to specify either :overwrite (i.e., delete the existing material in
the file when you write to it) or :append, so that the new material is appended to the end of
the file. Finally, you can say what you want to have happen if the file does not exist and you
are trying to write to it; :create will cause a file to be created.

Here are some examples:

(open "myfile" :input :character)
Opens myfile to read characters from (assumes "myfi/e" exists)
(open "myfile" :output :character :append :create)
Opens myfile for writing characters to. New data will be appended to the
old. If no file by that name exists, a new one will be created.

286 ADVENTURER'S GUIDE TO INTER LEAF LISP

Function 17-2: close

(close stream)

Returns: nil

Close closes the stream. If you don't do this, some or all ofthe changes you made to the file
may not be preserved.

Here is an example of opening (or creating a file), writing something to it, and closing it.

(let (out-file)
; look for file faa or create a new one if none there. Make it for overwriting
; characters to
(setq out-file (open "faa" :output :character :overwrite :create))
; write a line to out-file
(write-line "Howdy!" out-file)
; close it
(close out-file)
)

Reading files
Now let's look at a few ways of reading a file.

Function 17-3: read-line

(read-line stream)

Returns: characters from stream up to but not including the next hard
return

If you loop through a file using read-line, you will get every line in the file. When there are
no more lines, you will get an eoJ(end-of-file) symbol. So, you want to loop until you get
eo! For example:

17-1 example-read-Ioop
(defun example-read-Ioop (my-stream)
(let (line ctr)

))

; for this example, we'll just count lines
(setq ctr 0)
; read lines until one equals the end of file marker
(until (eql (setq line (read-line my-stream)) 'eof)

; do something with the line, such as increase a counter
(inc ctr))

If your file isn't arranged in lines, you can specify the size of the bite you want to take out of
the file:

Function 17-4: read-string-no-hang

(read-string-no-hang number stream)

Returns: number of characters from stream

E.g. (read-string-no-hang 32 my-stream)
Reads 32 characters from the stream my-stream

Streams 287

There is another, similar, function called read-string, but it doesn't know enough to return
eofwhen the file is empty, so read-string-no-hang is almost always preferable for the sort
of work we adventurers do.

Function 17-5: read-delimited-string

(read-delimited-string delimiter stream)

Returns: string from stream up to and including the delimiter character

E.g. (read-delimited-string #\t my-stream)
Reads all characters up to and including the next tab in my-stream

Read-delimited-string is useful where you know that your file uses something other than
hard returns to divide its data. Also, if you use read-delimited-string and give it a hard
return as its delimiter (#\n), it will include that hard return in the line that it gives back to
you. (Beware: if the last line of the file doesn't end with a hard return, this function will not
automatically put one in for you.)

Function 17-6: read-char-no-hang

(read-char-no-hang stream)

Returns: next character from stream or nil if at the end of the file

Read-ehar-no-hang is useful where you want to read a file character by character. Notice
that it returns nil and not eof when it comes to the end of the file.

Function 17-7: unread-char

(unread - char stream)

Returns: puts the most recently read character back into stream

You will be surprised to find how useful this function is. Basically, it lets you look at a char
acter and then put it back into the stream so that the next time you read the stream, you'll get
the character.

Writing to files
Function 17-8: prine

(princ string stream)

Prints string to the stream

Prine is the function to use if you are trying to write a file that will be readable by humans,
with no special objects. If you want to write something readable by Interleaf Lisp, use:

288 ADVENTURER'S GUIDE TO INTERLEAF LISP

Function 17-9: prin1
(prin1 string stream)
Prints string to stream

For example, let's make an example file named "testfile" with a stream setqed to a

variable!

; open a file for writing out to
(setq f (open "testfile" :output :character :append :create»

Here are the results of the various ways of using prine and prinl

Function
(prin1 "line written with prin1" f)

(princ (concat "Here's a princ character: "
#\a) f)
(prin1 (concat "Here's a prin1 character: "
#\a) f)
(prine (list 1 2) f)

(prin1 (list 1 2) f)

Now don't forget to close the file: (close f).

Function 17-10: terpri
(terpri stream)
Prints hard return into stream

This simply puts a hard return into the stream

Result
"line written with prin1"

Here's a princ character: a

"Here's a prin1 character: a"

(1 2)

(1 2)

There are also functions that correspond to the functions for reading files.

Function 17-11: write-line
(write-line string stream)
Writes string to stream
Function 17-12: write-string
(write-string string stream)
Writes string to stream

The key difference between these two is that write-line, unsurprisingly, puts a hard return
after each line it writes.

Both of these functions can take arguments which specify which part of the string is to be
written. For example, (write-string "abcdef" out-stream :start 1 :end 3) would write
"bcd" to the out-stream file. (yes, it's zero-based.)

Function 17-13: write-char
(write-char char stream)
Writes char to stream

Streams 289

Examples
This first example reads a file and applies the data in it to a chart. We have not discussed
charts in this book, and this example is really a way of sneaking some chart Lisp in.

The program assumes that the data file looks a lot like the chart data sheet in Interleaf. It
consists of lines of numbers, each number separated by a tab. (It also assumes that you've
already gotten your hands on the chart object, which you can do using any of the standard
techniques, looking for dg-chart-class objects.)

The way it works is simple. The function update-chart reads the file a line at a time. It
passes each line to get-row-of-values which transforms it from a set of numbers separated
by tabs into a list of numbers. But charts want their data as a list of entries, each of which has
the row number, the column number, and the value. For example,

((00 1.0) (0 1 2.0) (1 05.0) (1 1 6.6) (207.0) (2 1 8.8))

This translates to:

Column 0 Column 1

Row 0 1.0 2.0

Row 1 5.0 6.6

Row 2 7.0 8.8

Also, you may notice that these two functions share a variable: chart-data-list. This is an
example of dynamic scoping, which is an advanced topic we will not cover except to say
that because Interleaf Lisp allows for dynamic scoping, a function called by another func
tion has access to that function's variables.

17-2 get-row-of-values
(defun get-row-of-values (line row)
; takes tab-delimited row and returns list of numbers
(let (n (pas 0) (colO) (prev-pos 0))

; find all the numbers by looking for tabs starting at where previous tab
; was found
(while (setq pas (string-contained "It" line prev-pos))

; get the characters that are the number and convert to a float
(setq n (atot (substring line prev-pos posy))
; pust (row col number) on to the chart-data-list
; (this is an example of dynamiC scoping)
(push (list row col n) chart-data-list)
(inc col)
(setq prev-pos (1 + pas))

)

290 ADVENTURER'S GUIDE TO INTERLEAF LISP

))

; get the last number in the row
(setq n (atof (substring line prev-pos (length line))))
(push (list row col n) chart-data-list)
; check for longest row so we can set size of chart
(inc col) ; col is zero-based but chart size isn't, so boost col number
(if (> col *chart-Iongest-row*)

(setq *chart-Iongest-row* col))

17-3 update-chart
(defun update-chart (chart file-name)
(let (data-file line number (chart-data-list nil) (row 0))

; look for file ... quit if it's not there
(if (not (probe-file file-name))

(progn
(stk-open (format nil "Cannot find ~ A" file-name))
(quit)))

; prepare to find longest row, using a global
(setq *chart-Iongest-row* 0)

; open the file
(setq data-file (open file-name :input :character))
; read file line by line
(while (not (eql 'eof (setq line (read-line data-file))))

; push row, col and list of numbers on to larger list
; (setq chart-data-list
(get-row-of-values line row)
; increment row because we finished a line
(inc row))

(close data-file)

; do chart work
; set number of rows and cols; :num-vars is number of cols, num-vals is
; rows
(tell chart mid:set-props :num-vals row :num-vars

chart-Iongest - row)
; set the chart values
(tell chart mid:set-values chart-data-list)
; tell chart to update itself
(tell chart mid:draw)

))

Streams 291

Remember, to use this function, you must already have access to a chart and know the path
name of the data file.

The following function does something quite different. It allows you to attach notes to icons
so that if you type AN while on the desktop, you'll be shown whatever note you attached (in
a stickup) and will be able to alter it. That piece of the functionality is actually quite briefly
accomplished. The rest of the function writes the pathname of the document, the date, and
the note to a file in your system cabinet. It actually checks to see if there is already an entry
for that file and overwrites it. (Actually, it copies each line of the file into a new file, replac
ing the old entry with a new entry if required; then it deletes the old file and renames the new
one.) From an end-user point of view, the existence of this simple file allows you to find
misplaced documents by doing a search for keywords in the notes.

The notes are stored as an attribute to the icon. We could save it as a comma-6 file (through
mid:put-saved-data), but that would make a new file for each document that has a note,
which seems inefficient.

17-4 dt-note-it
(defun dt-note-it ()
; get or show a note for a selected icon
(let (note stk-text new-note icon)

))

; make sure the current container is the one the mouse is in
(dt-set-container (dt-pointer-container))
(setq icon (dt-child-selected)) .
; build text for stickup, showing the selected doc's name
(setq stk-text (format nil "Note for I A.?,..., AI"" (tell icon mid:get-name)))
; get the current note to put in as a prompt in the stickup
(setq note (tell icon mid:get-attrs "dt-note'J)
; open the stickup
(setq new-note (stk-open-prompt stk-text :initia/-prompt note))
; if user enters a new note
(if new-note

))

(progn
; put the note in as an attribute
(tell icon mid:set-attrs "dt-note" new-note)
; update log
(dtnote-update-Iog (list (dt-path icon :root *dt-desktop*)
new-note))

note

292 ADVENTURER'S GUIDE TO INTERLEAF LISP

17-5 dtnote-get-date
(defun dtnote-get-date ()
; see explanation after the code
(strftime "%8 %d, %Y'J
)

17-6 dtnote-update-Iog
(defun dtnote-update-Iog (data)
; update the log we keep of all notes
(let (log-stream note-log-path filename note date line)

; get the date string
(setq date (dtnote-get-date))
(setq filename (first data))
(setq note (second data))
; build the line to be written into the log file
(setq line (format nil"~ A\t~ A\t~ A" filename date note))
; get path to system cabinet
(setq system-path (dt-path *dt-system*))
; make file name ... UNIX only! Comment out this or the DOS line below.
;(setq note-log-path (concat system-path "/noteslog"))
; here's the DOS version:
(setq note-log-path (concat system-path "\\noteslog'J)
; look for it in profile
(if (not (probe-file note-log-path))

(progn
; wasn't a log file. Ask user if she wants to make one
(if (stk-open "No dt-note log file found in System cabinet. Make one?"

:yes-no)
(progn

; open a stream
(setq log-stream (open note-log-path :output :character :append
:create))
; enter initial warning text and some hard returns
(prine "Created automatically by dt-note./sp. Do not alter."
log-stream)
; put in two hard returns
(terpri log-stream) (terpri log-stream)
; put in the line of text we want
(prine line log-stream)
(close log-stream)
)))

; else already is a notesfile, so go to the following function
(progn

Streams 293

(dtnote-add-line note-log-path filename line)))
))

(defun dtnote-add-line (path filename text)
; checks notefile for other entries for this filename. If it finds none,
; it appends the new text. If it finds one, it replaces it. Does this
; by copying each line of current into a temp file, then renaming
; the temp file at the end
(let (line in-stream out-stream tmp-path beheaded-path old-file)

; open current notes file to read from
(setq in-stream (open path :input :character))
; create new file to copy into
; first get path of current dtnotes file, minus file name
(setq beheaded-path (car (path-split path)))
; create temporary file using that pathname
(setq tmp-path (get-temp-file beheaded-path))
(setq out-stream (open tmp-path :output :character))
; read through current file line by line
(until (eql (setq line (read-line in-stream)) 'eof)

; is it a line describing same file?

)

(if (and (string-contained filename line)
(= 0 (string-contained filename line)))

(progn
(write-line text out-stream)
; flag that we found an entry already
(setq old-file t))

; otherwise
(progn

(write-line line out-stream)))

; if not already an entry, make it one
(if (not old-file)

))

(write-line text out-stream))
; close the streams
(close out-stream)
(close in-stream)
; delete the current notes file
(delete-file path)
; rename the temp file to the notes file name
(rename-file tmp-path path)

294 ADVENTURER'S GUIDE TO INTERLEAF LISP

; rebind it to A N on the destop
(kbd-bind kbd-dt-map "I AN" 'dt-note-it)

This uses strftime to provide a formatted date string.

Function 17-14: strftime

(strftime format)

Returns: date string

E.g. (strftime "%8 %d, %Y'J
Returns date in form "month day, year," e.g., "February 15, 1993)"

The formatting string can contain a wide number of variables representing various times
and dates:

Formatting Result Example
variable
%a Abbreviated weekday name Mon

%A Full weekday name Monday

%b Abbreviated month name Feb

%8 Full month name February

%c One particular date format Monday, February 15, 19934: 12 pm

%d Day of the month as number 15

%H 24-hour time 16 (= 4pm)

%1 12-hour time 4

%j Day of the year 46

%m Month as number 2

%M Minute 31

%p AM or PM pm

%S Second 50

%U Week number 6 (Sunday as zero)

%w Weekday number 1 (Sunday is 0)

%W Week number 6 (Monday as zero)

%x One particular date format Monday, February 15, 1993

%X One particular time format 4:34pm

%y Year without century 93

%Y Year 1993

%Z Timezone EST

Chapter 18
Active Documents

Now that you know how to build some Lisp scripts, if you attach them to a document,
you've built yourself an active document.

Architecting and opening
Active documents can be architected in many ways. The task is to load some Lisp automati
cally so that the document knows that it is of a new class, and then to load some more Lisp
telling the new class of document how to behave.

Typically, this is done through part files - files invisible to the end user but managed by the
desktop. One special part file, the comma 5 file, is used to reclass the document because the
comma 5 file is loaded automatically the first time that the directory the document is in is
opened. So, when you open a folder (or book, etc.) for the first time, the system checks to
see if there are any comma 5 files. If there are, they get loaded. (The comma 5 file for a
document namedfoo.doc would be named foo. doc, 5. In DOS, it would be namedfoo.d#5,
and the comma 5 file for a folder named baifld would be baifld.#5.)

Let's take a look at a typical architecture for a document named calc. doc

!IJ The comma 5 file calc. doc, 5 gets read when the directory containing calc. doc first
opens. It creates a new class (e.g., calc-class), reclasses calc.doc to calc-class, gives
calc-class a new open method, and tells calc. doc to look in a comma 21 file to find the
new open method.

!IJ The comma 21 file calc. doc, 21 (in DOS, calc.d#l) contains a new open method that, in
addition to opening the document, perhaps creates a new class of text editor, builds
some new popups, gathers data from various sources, etc.

While the comma 5 file gets read when the container is first opened (and isn't read again
unless you explicitly force it to), the comma 21 file gets read when the document opens.
This is because the comma 5 file typically tells the system to look in the comma 21 file to

296 ADVENTURER'S GUIDE TO INTERLEAF LISP

find the document's open method. (You can specify a part file from 21-26.)

CommaS
~ Sets class of

mydoc.doc. Comma 21 WYSI
Sets open DOC
method for Contains open

class. method and
Tells doc to look special

in 21 for open ~ functionality for V method mydoc.doc

"m doc.doc,5" y
"mydoc.doc" "mydoc.doc,21 "

Let's take a look at a complete active document. In this example, we'll build a document
that provides some basic address book functionality, for alphabetizing entries and inserting
dividers between letters.

Comma 5 file

; unless we've already created the new class, create a new class of doc as
; a subclass of the generic document class
(unless (boundp 'addr-bk-class)

)

(setq addr-bk-class
(obj-new-class dt-document-class "Address Bk'J)

; tell it to look in its comma 21 file to find its new open method
(defautoload addrbk-open

(dt-path *dt-Ioad-object* :part 21))

; give the addr-bk-class a new open method, a function called
; addrbk-open
(obj-provide addr-bk-class mid:open 'addrbk-open)
; tell this document to set its class to the new class
(tell *dt-Ioad-object* mid:set-class addr-bk-c/ass)

You can use this example as a template for your comma 5 files. But note that if you try to
load this script, it will object to *dt-load-object* since this variable only has a value when
the comma 5 file is being loaded by the system (when its directory is being opened). See
section 3 for important information on how to actually create and load comma 5 files.

Active Documents 297

Comma 21

The comma 5 file has told the new class of document that it should look in the comma 21 file
to find its open method. So, one of the functions we'll want to put into the comma 21 file is
the function that serves as the new open method:

18-1 addrbk-open
(defun addrbk-open (dt-obj &rest args)
(let (addrbk-text-editor)

; open the document
(apply #'tell-next args)
; create new text editor
(setq addrbk-text-editor (obj-new-c/ass doc-text-editor-c/ass
"addrbk-ed'J)
(obj-provide addrbk-text-editor mid:get-custom

'addrbk-custom-method)
(addrbk-keys) ; redefine some keys
(addrbk-rec/ass-buttons) ; make some graphics active buttons
(tell *text-editor* mid:set-c/ass addrbk-text-editor)

))

This open function avoids a mistake that everyone makes at least once. The mistake is to
write an open function that adds the additional functionality we want but which then tries to
open the document by telling it (tell dtobj mid:open). In that case, the document sees that
it has to open itself and that its open method is the function addrbk-open. So now it runs the
function again, sees that it has to open itself, runs the function again, sees that it has to open
itself ... forever.

So, the function above uses tell-next which gets the method of the object's parent class. In
this case, the parent of the address-book document class is the normal document class. The
normal document class's open method does the usual things when a document opens. The
tell-next function should only be used in code that is giving an object a new method (in this
case, it's used in the redefinition of the address-book class's open method).

Now that the document is open, the address book's open method creates a new text editor
class and gives that text editor a new custom popup. It goes to a function that builds a modi
fied keymap for the document so that the document's keys will act differently. Finally, it
tells the document's text editor to reclass itself so that it can pick up the new characteristics
we've just defined.

298 ADVENTURER'S GUIDE TO INTERLEAF LISP

Simple example
Let's take a simple example. This document has a new open method that prompts the user
for which view of the document she wants; depending on her answer, it either turns on or off
the local control expression.

Let's begin with the comma 5 file, which will make a new class of document called "two
vers-c1ass" :

(unless (boundp 'two-vers-c/ass)
(setq two-vers-c/ass

(obj-new-c/ass dt-document-c/ass "Two Version Doc',)
(defautoload two - vers -do -open

(dt-path *dt-Ioad-object* :part 21))
)

(obj-provide two-vers-class mid:open 'two-vers-do-open)

(tell *dt-Ioad-object* mid:set-class two-vers-class)

Now for the comma 21 file, which really is about all there is for this simple document:

18-2 two-vers-do-open
(defun two-vers-do-open (dtobj)
(let (show)

))

; do the parent class's open
(apply #'tell-next args)
; ask to turn the local control expression on or off
(setq show (stk-open 'Turn local control expression on?" :yes-no))
; turn the expression on or off
(tell (doc-current-icon) mid:set-props

:Iocal-control-expression -enabled show)

Working with active documents

It's a good idea to segregate active documents as much as possible while you're developing
them to cut down on the damage inevitable programming errors may cause. At a minimum,
as you work on an active document, put it into its own folder.

Because comma 5 and comma 21 are invisible to the desktop, you may find it useful to
create linked Lisp files which are visible and which will allow you to do some editing of
these files on your desktop. To do this:

Active Documents 299

1111 Create a normal Lisp file in the directory where your active document is

II Select the Lisp file and Copy .Link .to original object. Paste the linked file into the
directory

1111 Props the copy and change the pathname so that it points to the comma 5 or comma 21
file

The trickiest part of working with active documents is forcing the system to re-read a
comma 5 file which it has read once already. Remember the beginning of our original
comma 5 file?

(unless (boundp 'addr-bk-class)
(setq addr-bk-class

(obj-new-class dt-document-class "Address Bk"))

; tell it to look in its comma 21 file to find its new open method
(defautoload addrbk-open
(dt-path *dt-Ioad-object* :part 21))

)

The first line of this file basically tells the script to run what follows once and only once. As
you work on your comma 5 file, you may not want it to keep skipping those initial lines of
code. So, change the first line to:

(unless nil; (boundp 'addr-bk-class)

This comments out the code and forces the unless statement to always be fulfilled.

But we're not out of the woods yet. The system only reads the comma 5 file the first time it
opens the directory. And if you try to load it using the load script in your Select cabinet, the
system will tell you it can't successfully evaluate it because it can't find *dt-Ioad-object*
since that's an object that's only found when the document itself is having its comma 5 file
loaded; the comma 5 file by itself doesn't know what document it's associated with. The
following script will force a document's comma 5 file to load:

18-3 load-5
; make sure we're looking in the current container
(dt-set-container (dt-pointer-container))
; load the comma 5 file
(dt -load -methods (dt-child -selected))

Put this into your Selection cabinet. Or, bind it to a key, such as "Xl:

(kbd-bind kbd-dt-map "1 A XI" '(progn
(dt -set-container (dt-pointer-container))
(dt-Ioad-methods (dt-child-selected))))

300 ADVENTURER'S GUIDE TO INTERLEAF LISP

Occasionally, after you've succeeded in reclassing a document you will wish you could just
open it like a regular document so you can do some document work in it. You can, and no
Lisp is required. Just go to the document's prop sheet and change its icon class.

Desktop Object Properties 1!D'IBL£.0l.!!..ro!JL~~

Nilme I pal I t

Icon Class loraphicPalettel

Ownership
Owner I david I
Group I eng I

Permissions
Owner

I.~ Group
Others I Write I

Time of Last
Change :-···············Thii;-Declo;1-ii92 .. ·'fi;-25;~·········
Access IL., ...

Default
Save Format IIIImIIII Fast II ASCII I II .. I-*E!l

leon class set to GraphicPalette.

Another example - Forms fill
Here is an example. It is the beginning of what could tum into an automated form:

• While you are in a field in this form, you get a popup that lists the appropriate choices.

• If you enter values into a field, it will check to make sure they are within the appropri
ate range.

• You can either get "short help" (a stickup) or "long help" (hyperlink to a help docu-
ment) for any field.

a Hitting the return key while in a field takes you to the next field.

In this example, none of the above functions are implemented with all the error-checking
one would want in a real application. Nevertheless, it may give you an idea of how to pro
ceed.

To create this active document, you should create this comma 5 file:

18-4 autoform-comma-5
(un/ess (boundp 'autoform-c/ass)

(setq autoform-c/ass
(obj-new-c/ass dt-document-c/ass "Auto Form'?)

(defautoload autoform-open
(dt-path *dt-Ioad-object* :part 21))

)

Active Documents 301

(obj-provide autoform-class mid:open 'autoform-open)
(tell *dt-Ioad-object* mid:set-class autoform-class)

The rest of this should go into your comma 21 file. (The description of what it does is in the
commented section immediately below.)

popup
long-help
bounds

titanium

137

Property sheet shows attributes set/or guided/orm active document.

;; F1 gets short help
;; F2 gets long help (looks for "Ionghelp.doc" on the desktop)
;; F3 gets a context-senstive popup for filling in the form
..
1/

;; Expects form doc to have following attributes:
;; bounds (low and high): for range checking
;; popups: determines local popup. Give list.
;; help: short help text
;; long-help: page number in longhelp.doc

" ;; Fields with popups, help, etc. should be inlines named "blank"
;; The attributes described above apply to the inline cmpns, not to
;; the top level ones (although you could put in help there as welQ

;; pathname to longhelp document. Change this if you want your long help
;; doc to be elsewhere or otherwise named. (Consider making this an

302 ADVENTURER'S GUIDE TO INTER LEAF LISP

;; attribute of the document so you don't have to look at Lisp to change it.)
(setq *long-heIR-doc* "Ionghelp.doc')

18-5 autoform-short-help
(defun autoform-short-help 0
; creates stickup with short help text based on contents of "help" attribute
(let (text)

; get the text from the cmpn
(setq text (tell (doc-point-cmpn) mid:get-attrs "help'))
(if text

(stk-open text)
; else
(stk-open "No help available. '))

))

18-6 autoform-Iong-help
(defun autoform-Iong-help 0
; goes to right page in longhelp.doc
(let (page-number)

))

; is there any such file? If not:
(if (not (probe-file *Iong-help-doc*))

(/Jrogn
(stk-open (format nil "Help file "'A not found." *Iong-help-doc*))
(quit))

; Else, yes, the help doc exists:
(progn

)

; get the page number from the cmpns long-help attribute
(setq page-number (tell (doc-point-cmpn) mid:get-attrs
"long-help'))
; tell help doc to open to the page number in the attribute
(tell (dt-object *Iong-help-doc*) mid:open :page (atoi
page-number)))

18-7 autoform-get-attrs
(defun autoform-get-attrs (attribute cmpn)
; get a multi-value set of attributes
(let (attrs values)

; get the attributes
(setq attrs (tell cmpn mid:get-props :attributes))
; find the desired attributes in the list that gets returned
(if attrs (setq values (cdr (assoc attribute attrs 'equal))))

values))

18-8 autoform-verify
(defun autoform-verify ()
; checks to see if we're in an inline named "blank"
; and verifies contents against attributes (bounds)
(let (min max text bounds m m1 (ok t))
; are we in a cmpn named "blank"? If not:

Active Documents 303

(if (not (string= "blank" (tell (doc-point-cmpn) mid:get-name)))
(progn

; go to next line
(autoform-goto-next-line (doc-point-top-cmpn))
(quit))) ; quit

; in proper inline
; get min and max values from attributes
(setq bounds (autoform-get-attrs "bounds" (doc-point-cmpn)))
; if not any bound listed, then quit
(if (not bounds) (quit)

; get the two values from the list of two that's returned
(setq min (first bounds))
(setq max (second bounds))
; convert to integer from ascii
(if min (setq min (atoi min)))
(if max (setq max (atoi max)))
; if no useable min and max bounds, then quite
(if (or (not min) (not max))

(quit))
; there are min and max
; get value of text that was entered
(setq m (tell (doc-point-cmpn) mid:get-marker))
(setq m1 (tell (doc-point-cmpn) mid:get-markert))
(setq text (tell m mid:get-substring m1 t t))
(if text

(progn
(setq text (atoi text))
(if text

(progn
; do the compare of min and max
(if (or (not (> = text min))

(not « = text max)))
; out of bounds

(progn
(setq ok nil)
; create stickup announcing out of bounds

304 ADVENTURER'S GUIDE TO INTERLEAF LISP

(stk-open
(format nil "Out of range\n '" D- '" Dn min max»)

»»»
; If not out of bounds, then go to next line
(If ok

(progn
(autoform-goto-next-line (doc-point-top-cmpn»»

»
18-9 autoform-goto-next-line
(defun autoform-goto-next-Ilne (c)
; finds next inline named "blank". Assumes only one per cmpn!
(let (next-inline inline done)

»

(while (not done)
; get next cmpn
(setq c (tell c mld:get-next»
; If no more cmpns, go to first blank inline
(If (not c)

(progn
(autoform-goto-first-inline)
(setq c (doc-point-top-cmpn»»

; look for an inllne
(setq inllne (tell c mld:get-child»
; If you find one, and it's named "blank"
(If (and Inline

(string= "blank" (tellinline mid:get-name»)
(progn

; flag that we're done looking
(setq done t)
(setq next-inline Inline»)

; if no more cmpns, then stop looking
(if (not c) (setq done t»
)
; if we found the next inline, then go to it
(if next-Inllne

(doc-goto-marker (tell inline mid:get-marker»)

18-10 autoform-goto-first-Inline
(defun autoform-goto-first-inline 0
; goes to first inllne named "blank" in doc
(let (c inline done)
; get first cmpn

(setq c (tell *document* mid:get-child))
; loop through all cmpns
(catch 'done
(while (not done)

; look for an inline in the cmpn
(setq inline (tell c mid:get-child))
; yes, we found an inline and it's named "blank"
(if (and inline

(string= "blank" (tell inline mid:get-name)))
; so flag that we're done
(progn
(setq done t)
(throw 'done))

Active Documents 305

; otherwise, no inline named "blank," so get next cmpn
; else
(setq c (tell c mld:get-next)))))

; if we found one, then go to it
(if done (doc -goto -marker (tell inline mid:get-marker)))

))

18-11 autoform-insert
(defun autoform-insert (&optional data)
; inserts into cmpn the text from the popup
(let (m m1 (c (doc-point-cmpn)))

; delete cu"ent contents
(setq m (tell c mid:get-marker))
(setq m1 (tell c mid:get-marker t))
(tell m mid:delete m1)
; insert text
(tell m mid:insert (car data))

))

18-12 autoform-popup-method
(defun autoform-popup-method (&optional data d dd)
; builds popup out of list in "popup" attribute
(let (autoform-popup attr-vals text (vplist nil))

; get attributes
(setq attr-vals (autoform-get-attrs "popup" (doc-point-cmpn)))

; create list of popup entries
(while (setq text (pop attr-vals))

(push (popup-create-entry text 'autoform-insert nil text) vplist))
; create popup by applying popup-create-list to list of "popup" attr

306 ADVENTURER'S GUIDE TO INTERLEAF LISP

; values
(setq autoform-popup (apply #'popup-create-list vplist))

; do the popup
(popup -activate autoform -popup)

))

18-13 autoform-alter-keys
(defun autoform-alter-keys 0
; assign special keys
(let (autoform-map)

(setq autoform-map (kbd-make-sparse-keymap))
(kbd-bind autoform-map

"\ A X*F01" 'autoform-short-help ; F1
"\ A X*F02" 'autoform-Iong-help ; F2
"\ AM" 'autoform-verify) ; Return key

; install new keys
(tell *document* mid:set-props :keymap (list autoform-map

kbd-doc-map))
))

18-14 autoform-open
(defun autoform-open (dt-obj)
(let (autoform-text-editor)

))

; open
(apply # 'tell-next args)
(wn-message 0 "Initializing .. , 'J
; create new text editor to give it a new popup
(setq autoform-text-editor (obj-new-class doc-text-editor-class
"autoform-ed'J)
(obj-provide autoform-text-editor mid:popup
'autoform-popup-method)
(tell *text-editor* mid:set-class autoform-text-editor)
(autoform-alter-keys)
; go to first inline
(autoform-goto-next-line (tell *document* mid:get-child))
; new text editor
(wn-message 0 "'J

Active Documents 307

User interface
Now we're going to create a much more complex (and more useful) active document,
focusing on some user interface pieces. The active document is a phone directory that sorts
entries alphabetically.

Here's the comma 5 file:

; if not addrbk class, make one
(unless (boundp 'addr-bk-class)

(setq addr-bk-class
(obj-new-class dt-document-class "Address Bk'?)

; look for open method in comma 21 file
(defautoload addrbk-open

(dt-path *dt-Ioad-object* :part 21))
)

The comma 5 file causes the system to look in the comma 21 file for the function that is
addr-bk-class's new open method. Here is the relevant open function:

(defun addrbk-open (obj)
; open the addressbk
(apply #'tell-next obj)

)

; create new text editor
(setq addrbk-text-editor (obj-new-class doc-text-editor-class
"addrbk-ed'?)
; give new text editor a custom method to hang popup off of it
(obj-provide addrbk-text-editor mid:get-custom
'addrbk-custom-method)
; make this doc's text editor an instance of the new one
(tell *text-editor* mid:set-class addrbk-text-editor)
; bind some keys for this doc
(addrbk-keys)
; turn some graphics into buttons
(addrbk-reclass-buttons)

We want this document's text editor to have its own popup, which we'll hang off of the Cus
tom entry. We laid the groundwork for this in the open method by giving the text editor a
new custom method (which it will hang off the bottom of the text popup). Now let's define
the popup method:

18-15 addrbk-custom-method
(defun addrbk-custom-method (&optional a b)

addrbk-custom-popup
)

308 ADVENTURER'S GUIDE TO INTERLEAF LISP

Now we'll build the actual popup.

(setq addrbk-custom-popup
(popup-new-/ist

(list
(popup-new-entry "Sort" :handler 'sort-addrbk)
(popup-new-entry "Props" :handler 'addrbk-do-propsheet))))

Custom popup for address book.

Later we'll define the sort-addrbk and addrbk-do-propsheet functions referenced here.
But now let's continue with the user interface by redefining what the Escape-Pagedown
key does within this document; we'll rebind it so that it takes us to the next letter (i.e., take
you to the B's, if you're in the Pls) ,rather than to the next page. The following function is
called by the open method.

18-16 addrbk-keys
(defun addrbk-keys ()
; assign the keys
(let (addrbk-map)

; make a blank keymap
(setq addrbk-map (kbd-make-sparse-keymap))
; on that map, bind the ESC-Enter key so that it invokes a new function
(kbd-bind addrbk-map "\ A £\ A X*Next" 'addrbk-goto-next-Ietter)
; tell this document that its keymap should consist of the new one and the
; usual one
(tell *document* mid:set-props :keymap (list addrbk-map

kbd-doc -map))
))

Now let's write the function we just attached to a key.

18-17 addrbk-goto-next-Ietter
(defun addrbk-goto-next-Ietter ()

Active Documents 309

; goto next letter divider cmpn
(tell *cmpn-editor* mid:goto :next "letter'J)

Now we want to create a graphic that will act as a button, so that when it's clicked, some
thing will happen. To do this, we're going to make a new class of graphic that when selected
evaf's whatever may be the value of an attribute called do. We'll begin by making the new

class:

; use "unless" so we only do this if we haven't already created this new
; class
(unless (boundp 'addrbk-button-class)

(progn
; create the new class
(setq addrbk-button-class (obj-new-class dg-named-class
"addrbk-button-class'J)
; give class new selection method
(obj - provide addrbk - button -class mid:allow-selection
#'addrbk-select-fcn)))

We've given our buttons a new select function, so that when one's selected, it will not just
blink but will do something. In this case, we want it to evaf the value of its "do" attribute (if
any):

18-18 addrbk-select-fcn
(defun addrbk-select-fcn (obi)

(doc-eval-attribute obj "do'J)

Now we need to find all the buttons in the document and tell them to take on this new class.
We'll take any graphic named "button" as a button.

18-19 addrbk-reclass-buttons
(defun addrbk-reclass-buttons ()
; reclasses all diagramming objects named "button" to
; addrbk-button-class
~et(poolheadinsV

(when; traverse name pool of named diagramming objects
(setq pool (name-find-pool dg-named-class))
(setq head (tell pool mid:get-child))

(while head; find all instances named "button"
(setq inst (tell head mid:get-child :along :name))

(while (and inst (string= (tell inst mid:get-name) "button'J)
(tell inst mid:set-class addrbk-button-class)

(setq inst (tell inst mid:get-next :along :name)))
(setq head (tell head mid:get-next))

310 ADVENTURER'S GUIDE TO INTERLEAF LISP

) ; while head
)))

This function goes to the name pool, looks at all named graphic objects, finds the name
"button," and visits every graphic named button, telling it is now rec1assed as an addrbk

button-class object.

The last thing we need to do is go to into our document and create a graphic, name it "but
ton," create an attribute called "do," and give the graphic's "do" attribute the value of
"(sort-addrbk)," which is the function we want activated when the user presses the button.
Then we want to do a Props on the button's frame, turning off "Frame Selection" and "Bor
der Visible" so that the user can click directly on the graphic itself. Also, print lock it so that
when you print out your address book, you won't have to see it. We also want to make the
frame a repeating shared contents frame so that you can have the button on every page.

Finally, we want to create a property sheet. (This is what the user will see when she selects
"Props" from the Custom popup menu we designed earlier.)

First, let's design the look and functionality of the prop sheet.

Property sheet for configuring address book.

18-20 addrbk-submenu-open
(defun addrbk-submenu-open (sheet)

; design prop sheet
; start
(tell sheet mid:start 18)
; insert blank line
(tell sheet mid:line "'')

; put in name of document affected
(tell sheet mid:line " Document',

Active Documents 311

(tell sheet mid:text (tell *document* mid:get-name) 2)

; radio button
(tell sheet mid:line ''',
(tell sheet mid:line " Phrase to sort by',
(tell sheet mid:button (list "Last word" "First word',

2 0 'sort-key-fcn :type :list :initial (addrbk-get-data :sort-by 1))

(tell sheet mid:line "',
; put in letter dividers?
(tell sheet mid:line " Letter dividers?',
(tell sheet mid:button " " 2 2 'divider-fcn :type :toggle :initial

(addrbk-get-data :divider 0))
(tell sheet mid:text "Insert alphabetic dividers" 4)

; end
(tell sheet mid:end)

)

Now we'll set up some defaults for when the prop sheet first opens:

; set default props for when the prop sheet first appears
; sort by first words (i.e., assume "Smith, Jane" format)
(setq *addrbk-sort-by 1

addrbk-divider t ; put in alphabetical dividers
)

Our property sheet has some buttons that call functions. Now we have to define the func
tions.

18-21 sort-key-fcn
(defun sort-key-fcn (old new)
; sets global to tell us whether to sort on first or last name

(setq *addrbk-sort-by* new)
t
)

18-22 divider-fen
(defun divider-fcn (old new)
; sets global (integer) to tell us whether to insert letter dividers

(setq *addrbk-divider* new)
t)

312 ADVENTURER'S GUIDE TO INTERLEAF LISP

Now let's create a popup for the property sheet. It will have a "Close" and an "Apply"
choice.

18-23 addrbk-popup
(defun addrbk-popup (menu window)
; create prop sheet popup

(popup-activate
(popup -create -list

(popup-create-entry "Apply" 'addrbk-apply-fcn nil window)
(popup-create-entry "Close" 'addrbk-close-prop-sheet nil

window)
)))

The next two functions are what the prop sheet popups call. The first closes the property
sheet. The second applies the changes by saving the data.

18-24 addrbk-close-prop-sheet
(defun addrbk-close-prop-sheet (window)
; close method for popup window

; make the window nil
(setq addrbk-window nil)
; do the close
(tell (car window) mid:close)

)

18-25 addrbk-apply-fcn
(defun addrbk-apply-fcn (&optional data)

; apply the prop sheet data

)

(tell *document* mid:put-saved-data :sort-by *addrbk-sort-by*)
(tell *document* mid:put-saved-data :divider *addrbk-divider*)

When the active document does a sort, it will look to the global variables saved in the apply
function to see what type of sort it ought to be.

Now we need the code that actually creates the prop sheet:

18-26 addrbk-do-propsheet
(defun addrbk-do-propsheet (&optional data)
(let (addrbk-submenu addrbk-menu addrbk-window)

; create a new prop sheet object
(setq addrbk-submenu (tell-class prop-submenu-class mid:new))

; give it a method for opening a submenu

Active Documents 313

(tell addrbk-submenu mid:provide mid:open 'addrbk-submenu-open)

; create prop sheet obj
(setq addrbk-menu (tell-class prop-menu-class mid:new))

; give prop sheet a popup
(tell addrbk-menu mid:provide mid:popup 'addrbk-popup)

; create a submenu
(tell addrbk-menu mid:set-props :submenus (list addrbk-submenu))

; open the prop sheet
(setq addrbk-window (tell addrbk-menu mid:open "Address book

props"

))

(car (tell *wn-wmgr* mid:get-props :pointer-position))
(cdr (tell *wn-wmgr* mid:get-props :pointer-position))

))

New functions
Now we have to do the work of writing the functions we want this active document to have.

First we'll get the saved data that tells us what the user's preferences are, based upon her
previous interaction with property sheet (or the defaults, if she's never gone to the prop
sheet). The following function's first argument is the name of the type of data we're getting
(:sort-by or :divider); the second argument is the type of data we'll be getting.

18-27 addrbk-get-data
(defun addrbk-get-data (fun type)
; gets doc's saved lisp data describing user's preferences from last
; interaction with prop sheet
; type is bool, int, string. If no saved data, returns something reasonable
(let (r)

; get the saved data
(setq r (tell *document* mid:get-saved-data fun))
(if (and (not r)

(> type 0))
(progn

(if (= 1 type)
(setq rO)

; else
(setq r "0'))))

314 ADVENTURER'S GUIDE TO INTER LEAF LISP

r
))

Next is a straightforward function that takes a component and returns all of its text (but only
its text).

18-28 addrbk-get-text
(defun addrbk-get-text (c)

)

(tell (tell c mid:get-marker) mid:get-substring
(tell c mid:get-marker t) t t)

Now let's write the sort function. It will find all thes component named "record" and will
alphabetize them. (Note: This function expects that you have entered addresses in your
address book using a component named "record." So, make sure your address book has a
component with that name.)

18-29 sort-addrbk
(defun sort-addrbk (&optional arg)
(let (c new-c first-record-marker item (clist nilj)

; let us back out
(if (not (stk-open "This will sort all contents. Ok?" :yes-no))

(quit))
; build list of all cmpns named "record"
(setq c (tell *document* mid:get-child))
(while c

(if (string = "record" (tell c mid:get-name))
(push c clist))

(setq c (tell c mid:get-next)))
; sort the list, using a specially-designed sorting test
(setq clist (sort clist 'addrbk-sort-test))
; delete all records and letter dividers
(tell *cmpn-editor* mid:select "record')
(tell *cmpn-editor* mid:select "Ietter')
(tell *cmpn-editor* mid:cut)
; go to the end of the document
(if (setq first-record-marker

(tell (tell-class doc-cmpn-class mid:get-Iast) mid:get-marker))
(doc -goto - marker first- record -marker))

; insert the new records
(tell *cmpn-editor* mid:set-props :caret-direction :next)
(while (setq item (pop clist))

(setq new-c (tell *cmpn-editor* mid:create "record'))
(tell (tell new-c mid:get-marker t) mid:insert (addrbk-get-text item))

))

Active Documents 315

)
; insert letters
(if *addrbk-divider* (addrbk-insert-Ietters first-record-marker))
(tell *cmpn-editor* mid:deselect :all)
(doc-flush-queue)

Now we need to write the sort test referenced above. This function gets passed two compo
nents. It gets the text for each, and then goes to addrbk-get-last-name to find what it con
siders to be the name to sort on.

18-30 addrbk-sort-test
(defun addrbk-sort-test (a b)
(let (texta textb)

))

(setq texta (addrbk-get-Iast-name (addrbk-get-text a)))
(setq textb (addrbk-get-Iast-name (addrbk-get-text b)))
(> (string-compare textb texta) 0)

The above function references addrbk-get-last-name that takes the text of a component
and returns the last name (which may be the first or last word on a line).

18-31 addrbk-get-Iast-name
(defun addrbk-get-Iast-name (text)
(let (pos line start-pos end-pos name)

; get first line
(setq pos (string-contained "In" text))
(if pos

(setq text (substring text 0 pos)))

; if sorting by first name in line
(if (equal *addrbk-sort-by* 1)

(progn

)

; first trim any leading spaces
(setq text (string-left-trim" "text))
; set beginning spot at beginning of line
(setq start-pos 0)
; find the first space, if any
(setq end-pos (string-contained"" text))
; if no space, then there's only one word on the line
(if (not end-pos)

(setq end-pos (string-length text)))

; else, we're looking for last word on line

316 ADVENTURER'S GUIDE TO INTERLEAF LISP

)

(progn
; first trim any trailing spaces
(setq text (string-right-trim " "text))
; set end position to end of line
(setq end-pas (string-length text))
; get last space on line
(setq start-pas (string-contained" " text -1 :reverse)))
; if there is a space, then advance counter one past it
(if start-pas

(setq start-pas (1 + start-pas))
; if no space, then set it to 0
(setq start-pas 0))

; get the text
(substring text start-pas end-posy

))

The next function we want to add is one that automatically inserts letter dividers. We only
want to insert the letters for which there are addresses with instances. This function gets
passed a marker in the component immediately before the record components begin.

18-32 addrbk-insert-Ietters
(defun addrbk-insert-Ietters (m)
; insert the distinguishing letters. M is marker in first cmpn before records
(let (c cur-letter letter new-c mark)

; get parent component of the marker
(setq c (tell m mid:get-parent))
; get the next component, i.e., where the addresses begin
(setq c (tell c mid:get-next))
; set the current letter to an empty string
(setq cur-letter '''J
; go through all the remaining components, inserting letter dividers

(while c
; get the first letter of the last name for that component
(setq letter (string-uppercase

(string (char
(addrbk-get-Iast-name (addrbk-get-text c)) 0))))

; is the first letter of this last name different from the one before it?
(if (not (string= cur-letter letter))

; if it's different ...
(progn

; go to the cmpn, and insert the letter cmpn
(doc-goto-marker (tell c mid:get-marker))

))

Active Documents 317

(tell *cmpn-editor* mid:set-props :caret-direction :previous)
(setq new-c (tell *cmpn-editor* mid:create "letter"))

))

(setq mark (tell new-c mid:get-marker t))
. ; insert the first letter into the letter cmpn

(doc -goto - marker mark)
(tell mark mid:insert letter)
; update the current letter variable
(setq cur-letter letter)

; get the next cmpn
(setq c (tell c mid:get-next))
) ; end of while

Chapter 19
Fifteen Errors You Will
Make

Some errors are so easy to make in Lisp that you are practically predestined to make
them. Here are some of my favorites, in no particular order.

But first, remember the keys to breaking out of an infinite loop. Control-Z will give
you the first level break. If that's not sufficient, hit "Z again and choose "Stop Lisp." If
that doesn't work, try unplugging your machine. If that doesn't work, you've got the
basics for a bad science fiction movie. (DOS users note: Control-Break should give you
the "Stop Lisp" stickup; "Z"Z won't!)

Statement doesn't eval
(if sky-is-gray
(take-umbrella t)
(wear-galoshes t»

If an if statement is true, only the next statement is eval' ed. The one right after it is
treated as an else. In this example, if sky-is-gray is true, then take-umbrella will be
eval'ed, but wear-galoshes won't be unless sky-is-gray is nil.

So, if you really wanted to take-umbrella and wear-galoshes if the sky-is-gray, you
should have written:

(if sky-is-gray
(progn
(take-umbrella)
(wear - galoshes)))

320 ADVENTURER'S GUIDE TO INTERLEAF LISP

The values at a breakpoint make no sense
You've put in a breakpoint, using the (break) function so you can examine the values at
a particular point in the function. But the symbols you want to examine don't even exist
within that function, or their values are screwy.

You probably have a breakpoint left in from a previous debugging session. Use your

text editor to search for it and get rid of it.

Changes to text formatting don't take effect
Your script makes some series of changes to a document, but they don't occur. What's
worse, if you enter the same commands by hand (through the Listener or ReadEval
stickup, or some other way of doing them one at a time), they work fine. So you know

your code is ok.

There's a good chance that you've run into a problem that occurs when you try to affect
a document with a series of commands without giving the document time to catch up
with you.

To avoid this, insert (doc-flush-queue) after each document change statement. This
causes the document to apply any pending changes so that the next change you want to
apply is operating on the properly adjusted document. The problem with this, however,
is that adjusting the document after each command takes longer than letting the system

"queue" the changes, In part this is because doc-flush-queue causes the document to
redisplay itself. If you are walking through a complex table, you really don't want the

entire table to redisplay after each change you apply. A way to avoid this is to ... display
stuff. Sometimes (doc-flush-queue) isn't enough. The next thing to try is (event
after-put 'function). For example, you could apply italics by the line (event-after
put '(tell *text-editor* mid:set-props :italic t)).

String error
Your script that manipulates strings keeps ending in error messages.

Quite possibly you're feeding some string functions nil values. They don't like that. For

example:

(string-contained "a" my-string)

will generate an error if my-string is nil. So, do the following:

(if my-string
(string-contained "a" my-string»

Fifteen Errors 321

Changes to a comma 5 file don't take effect
Typically in a comma 5 file, you test to see if the new class of document has already
been declared so that you won't declare it every time the comma 5 file gets eval'ed.

(unless (boundp'dt-hpers-class)
(setq dt-hpers-class
(obj-new-class dt-document-class "HangPerson")
)

(defautoload hpers-open
(dt-path *dt-Ioad-object* :part 21))

(obj-provide dt-hpers-class mid:open 'hpers-open)

But that means that while you're debugging, some portion of the comma 5 is being
skipped. If you don't want to skip it, do the following, remembering to change it back
when you're done:

(unless nil; (boundp 'dt-hpers-class) <======
(setq dt-hpers-class
(obj-new-class dt-document-class "HangPerson")
)

(defautoload hpers-open
(dt-path *dt-Ioad-object* :part 21))

(obj-provide dt-hpers-class mid:open 'hpers-open)

Your active document is spawning too many
classes
On the document property Icon Class popup, you get more than one listing of some
class of document you've created. Reread the previous error. Your comma 5 file prob
ably isn't testing to see if the class exists before redeclaring it.

Changes to comma 21 file have no effect
You've made some changes to the comma 21 file that defines some functions for an
active document you've built. But the changes just don't seem to be taking effect.
You've even stuck in a (stk-open "In 21 'J at the beginning of the file, but it doesn't
get eva!' ed either.

322 ADVENTURER'S GUIDE TO INTERLEAF LISP

Whoops.

Make sure that you've saved the file before opening the document. The comma 21 file
that will get loaded when the document opens is the currently saved one.

Your code continues to make mistakes you
corrected quite a while ago

If you're working in a comma 21 file, make sure there isn't an active document of the
same type that is getting loaded after your most current version, overwriting the func
tions in the new one.

In some early versions, a Lisp script or a comma file that gets cut (and therefore put
onto the clipboard) gets eva!' ed while actually on the clipboard. Purge it from the clip
board.

Buttons on your stickups don't work as
predicted

(setq choice
(stk-open "This is a sample stickup with two buttons"
:buttons (list "Button ";' "Button B")))

If this is what your code looks like, remember that stickups are zero-based, so that if the
user chooses "Button A," that will set choice equal to zero.

Fifteen Errors 323

Selected icon isn't found by script
You can see the icon selected as plain as the nose on your face, but your script can't
find it.

Remember that the Interleaf desktop allows you to have many directory windows open
with many items selected at each. To find the selected icon, you have to tell the system
which container to look in. This is handled automatically for any script put into the
Selection cabinet and chosen through the Custom menu. Other than that, however, you
need to tell the system which container the icon is in. If you are developing a script that
will end up in the Selection cabinet, but now isn't finding the right icon, you can force a
particular container to become the current one (i.e., the one the system looks in when
you do a (dt-child-selected) by putting your mouse cursor into the container and
running any script off the Custom menu. You might consider building two "no-op"
scripts (that do absolutely nothing) and putting one into your Selection and one into
your No Selection cabinets. The script can look like this:

(list nil)

This does absolutely nothing. But, by running it, you will set the container with the cur
sor in it as the current container.

Division doesn't work
(/83)

returns 2. That's because you are dividing an integer by an integer. To avoid this, make
either one or other number a float, i.e., a number with an explicit decimal point:

(/83.0)

A string never tests as empty
You're testing a string (called, say, "my-string") to see if it's empty. But it never is.

If the code looks like this:

(if (not my-string)
(do-something))

then perhaps you want it to look like this:

(if (string = "" my-string)
(do - something))

The point is not to confuse nils with empty strings. They're not the same.

324 ADVENTURER'S GUIDE TO INTERLEAF LISP

The component editor just cut a whole bunch
more than you wanted
If you use the component editor to operate on components, remember that it will make
changes to any and all selected components. For example:

; select current component
(tell *cmpn-editor* mid:select (doc-point-cmpn»
; cut it
(tell *cmpn-editor* mid:cut)

If there were any other components already selected, whether by the program or by the
user, they will be cut also. To avoid this, first insert the line

(tell *cmpn-editor* mid:deselect :all)

Can't push object onto list
You have declared a variable called my-list. Now you want to push an object into it:

(let (my-list)
(push (doc-point-cmpn) list)

)

You'll get an error message. To avoid it, first explicitly declare my-list to be nil:

(let (my-list)
(setq my-list nil)
(push (doc-point-cmpn) list)

)

or, in compressed form:

(let «my-list nil»
(push (doc-point-cmpn) list)

)

When you open an active document, you
get stuck in an infinite loop that never gets
past the open function
If you give an active document a new open method - which is a very common thing to

do - you can't then use that open method to open it, or you will get stuck in a loop

- -------"--------~---------

Fifteen Errors 325

forever. You have to be able to get to its old open method. Check the chapter on active
documents for how to do this. But the basic idea is this:

II Give the active document a new open method. In that new open method, capture the
open method of the active document's parent. Typically, the parent is the doc~ocu
ment-class.

II Open the document with the parent's open method, through tell-next. This will do the
expected actions of creating a document window, formatting and composing the docu
ment, and displaying it.

f!I Do the rest of what you want your new open method to do.

If you decide to delay doing the parent's open method until after you have done your
special open-method activities, just remember that any of those activities that require
the document to be open will fail.

Those are some of the most common errors. But part of the great adventure of Interleaf
Lisp is coming up with your own, unique errors, mistakes and impracticalities.

Good luck and happy adventuring!

Index

Symbols
+,69
-,69
*,69
1,69
=,37,67

·<,67
<=,67
>,67
>=,67

abs, 70
acos, 71

A

active document
comma 21, 295, 297-317
comma 5, 295, 296
opening, 295-297

advanced-formatter, 130
alignment, 153
allow-break-after, 153
allow-break-after-hyphen, 128, 130
allow-break-before, 153
allow-break-within, 153
and,39
append,42,43
apply, 62
argument, 8
array (not discussed), 9
arrays, 16
ascii,71
ascii-unit, 128
asin, 70
assoc, 49
atan, 71
atof,80
atoi,80

attributes, 160-164
component, 154

attributes-control, 102
auto-reference, 151
autonumber-summary, 93
autonumbers-frozen, 129
autopositioned, 102

B
backup, 93
balance-columns, 127
base 16, 88
base 2, 86
base 8, 87
baseline, 181
baseline-to-baseline-margins, 128
begin-new-column, 153, 181
begin-new-page, 153, 181
bleed,128
bold, 145
book, 11
book-max-open-docs, 113
bottom-margin, 152
bound,35
boundp,35
break,29-31
build-unique-list, 49
button,309
button-class, 309
buttons, prop sheet, 229-234

C
caps, 145
car, 17,44,46
caret-direction, 171
case-sensitive,77
catalog-exports , 102

catch,61
cdr, 17, 18,44,46
ceiling,65
cell,251
change, 174-175
char-downcase, 75
char-int, 71
char-upcase, 75
character, 71
characters, 9, 71-76
chart, 289
checkpoint, 93
checkpoint-control, 130
child,116
classes, 10-11
clipboard, 91
close, doc-editor, 125
cmpn-bar-width, 171
cmpn-margin-method, 128
cmpn-margin-shrink, 128
cmpn-margin-stretch, 128
color-palette, 129
column, 177-179

is visible, 177
columns, 127
comma 21, 295, 297
comma 5, 295, 296
comma 6, 291
comment, 24
component, 11
component bar pop ups, 123
component editor, 151
components, 151-175
composition-frozen, 129
concat, 76-77
cond,58
cons,43
containers, 94

current, 95
convert, doc-editor, 126
convert-case, 150
copy, 109, 148

component editor, 151-152, 173
marker, 131

cos, 70
count-lines, 179
crash,93
create, 151

component editor, 174

create-shuffle-deck, 53
current desktop, 91

Index 327

current document, 116-117
current page number, 124
custom, 92
custom cabinet, 91, 92
cut

component editor, 173
text, 148

D
dash characters, 75
data types, 9
date, 217
dec,68
default-printer, 129
defun, 8, 25
defvar,35
delete, 51,141-143

desktop object, 110
deselect

component editor, 173
text-editor, 134

desktop, 91-114
current, 91

desktop objects, 91
properties, 101-113

desktop-max-open-docs, 113
dg-ellipse-class, 11
dg-micro-doc-class, 11
dictionary, 91
different-first-footer, 128
different-first-header, 128
division, common error, 323
doc-cmpn-class, 11
doc-cmpn-editor, 123
doc-cmpn-editor-class, 11
doc-current-icon, 12, 117
doc-document-class, 11
doc-editor, 123

close, 125
doc-eval-attribute, 162-167
doc-flush-queue, 320
doc-font, 145, 152, 156
doc-frame-class, 11
doc-get-vars, 129
doc-gota-marker, 131
doc-page-class, 11

328 ADVENTURER'S GUIDE To INTERLEAF LIsP

doc-page-number-of, 176
doc-page-of, 176
doc-pixel-window-height, 130
doc-pixel-window-top-offset, 130
doc-pixel-window-width, 130
doc-point-cmpn, 12, 118, 152
doc-point-column, 119
doc-point-line, 118, 179-180
doc-point-marker, 118, 131
doc-point-page, 119, 175
doc-point-top-cmpn, 118, 152-154
doc-scan, 121
doc-scan-cmpn, 123
doc-scan-obj, 123
doc-scan-top-Ievel, 122
doc-set-vars, 129
doc-table-class, 11
doc-table-editor, 123
doc-text-editor, 123
doc-text-selection, 131
doc-type, 129
doc-view-max-open-docs, 113
document, 116
document editor, 124-127
document header pulldowns, 123
document manipulation, 127-130
dollars and cents format, 88
dotted pair, 43
double-sided, 129
dt-book-class, 11
dt-checkpoint, 106
dt-child-match, 95-96
dt-child-not-selected, 96
dt-child-selected, 96-97
dt-children, 97-101
dt-clipboard, 91
dt-create, 105
dt-desktop, 91
dt-find-custom, 92
dt-find-profile, 92
dt-find-system, 92
dt-get-container, 95
dt-get-vars, 112
dt-line-up, 1 07
dt-object, 92
dt-path, 93-94
dt-pointer-container, 95
dt-refresh, 106
dt-script, 1 04-1 05

dt-search-position, 105-106
dt-set-container, 95
dt-set-vars, 112-113
dt-size-container-to-contents, 107
dt-sync-document, 106
dt-sync-selected, 106
dynamic scoping, 289

E
editor, 171-186
editor objects, 123-124
editors, creating new, 184-186
effectivity, 160-164
ellipse, 11
elt, 47
em dash, 75
en dash, 75
eql,37
equal,38
equalp,38
eval,8
evenp,68
event-after-put, 320
exponential, 86, 87
extensions, filename, 94

F
facing pages, 124
fboundp,36
feathered, 178
feathering, 128
find-symbol,203-204
find-window, 274
first, 47
first-footer, 128
first-header, 128
float, 70
floating point, 86
floating pOint notation, 87
floating point number, 86
floatp,67
floor, 66
fmakunbound, 36
fn-families, 193
font, 145
font family, 146
font size, 146

font-inherit, 154
font-unit, 128
fonts, 156-159
footers, 128
force-hidden, 164-186

component, 154
format, 85-89
format view, 115-116
frame, 11
frame anchors, 124
frame-margin-stretch, 128
frames, 261-268

border-visible, 264
force-hidden, 264
get-first, 261
get-next, 262
get-previous, 262
get-props, 263
repeating, 264
selection, 264
shared-content, 264

ftoa, 80
function, 25
functions, 7

G
get-attrs, 160
get-bounds

line, 184-186
marker, 137-138

get-cell,253-260
get-child, 96

cmpn-editor, 172
component, 120-121

get-data, 114
get-decoded-time, 139
get-first, page, 176
get-last, 176-178
get-location, 138
get-marker, 131

line, 180-182
get-master, 168
get-modified-window, 225-226
get-name, 12, 94-95

component, 155-160
get-next, 96

component, 120

Index 329

get-object, 274-275
get-parent, marker, 136
get-previous, component, 120
get-props

component, 154-155
document, 127

get-saved-data, 113
get-selection, 147
get-top-cmpn, 137

line, 182-183
get-window, 224-225
global keymap, 211
globals,34
goto, 151, 175
goto-page, 176
graphics, 261-271
gutter-width, 127

H
handler, popup, 199
hard returns, 124
header-page, 129
headers, 128
hexadecimal, 88
hide-horizontal-scroll, 111
hide-message-bar, 111
hide-pulldowns, 111
hide-side-bar, 111
hide-title-bar, 111
hide-vertical-scrol\, 111
hide-window, 111
horizontal-reference, 264
hyphen, 75, 149
hyphenate, 128
hyphenation, 128
hyphenation-amount, 153

icon-position , 102
icon-size, 102
if,55
image-summary, 93
in, 26
inc, 68
index markers, 124
index-summary, 93
initial-indent, 152

330 ADVENTURER'S GUIDE To INTERLEAF LIsP

initial-indent-count, 152
initial-zoom, 130
inline, 150
inline markers, 124
insert, 109-110

marker, 138-141
int-char, 71
integer, 86, 87
integerp, 67
is-effective, 226
is-in-word, 138
is-of-class, 98
italic, 146
itoa, 80

J
join, 175
justify-pages, 128

K
kbd-bind, 213
kbd-bind-doc, 214
kbd-doc-map,29
kbd-get-vars, 217
kbd-insert-character, 217
kbd-insert-string, 216
kbd-key-history, 218
kbd-make-sparse-keymap, 217
kbd-map-list, 212
kbd-self-insert, 215
kerning, 146
keymap, 129
keyword, 9, 12

L
ladder-count, 128
last, 47
left-footer, 128
left-header, 128
left-margin, 152
let, 33
line, 179-184

first in column, 178
prop sheet, 226

line-spacing, 152
line-spacing-unit, 128
link-prop-menu, 113
Lisp data, 113
list, 17,42
list processing, 17-18
list-length, 51
lists, 7, 9,16-17,41-42
load,8
local keymap, 211
logical operators, 39
long-page-justify-threshold, 129
lower-to-bottom, 276

M
macintosh, 5
makunbound, 36
manual-sheet-feed, 129
mapcar,63
margins, page, 127
markers, 130-142
masters, 167-171
member, 48
message, 276-281
messages, 11
method,11
methods, 10, 93
microdocument, 11
Microsoft Windows, 5
mod,70
modify,124
motif,5
mouse button, 274
move-by, 132
move-to, 133-134

N
name, 12
name pool, 167
name view, 115-116
name-find-head, 168..,.169
name-find-pool, 168
name-head, 167
newline, 71, 88
next-cmpn, 174
nil, 13, 14-15
no selection cabinet, 92

not, 40
nth,47
number-of-columns, 252
number-of-rows, 252
numbers, 65-66

=,67
<,67
<=,67
>,67
ceiling, 65
dec,68
evenp,68
float, 65
floatp,67
floor, 66
inc, 68
integer, 65
integerp, 67
integers, 65
oddp,68
round, 66, 67
testing, 66-68
truncate, 66
types of, 65-66
zerop,68

numeric operations, 69-71
+,69
-,69
*,69
1,69
abs, 70
acos, 71
asin,70
atan,71
cos, 70
mod,70
sin, 70
sqrt, 70
tan, 70

o
object-orientation, 9
octal,87
odd-pages-Ieft, 128
odd-pages-right, 128
oddp,68
offset, page number, 175

Index 331

open, 116
desktop object, 111-112

open look, 5
open-props, 147, 175

doc-editor, 125
opened, 102
or, 40
ordinal number, 87
orient-same-as-page, 129
orphan-count, 153
overbar, 146
override-clipboard-Iock, 113

p
pad character, 86
padding, 85
page, 11, 111, 124

first, 176
is visible, 175
last, 176
number offset, 175
pixel offset, 175

page-height, 127
page-range, 124
page-to-page-margin, 111
page-width, 127
pages, 175-177
parent, 116
parentheses, 18-19
part files, 93
paste

component editor, 173
text, 148

path-limit-length,113
pathname, 92
pattern-palette, 129
pixel-left-offset, 175
plain-charp, 75
pointer-window, 273
pop, 32,46
popup, attaching to objects, 202-204
popup-action, 202
popup-decode-ent~,201
popup-decode-list, 201
popup-get-prop, 201
popup-histo~, 202
popup-insert, 207
popup-Iast, 202

332 ADVENTURER'S GUIDE To INTERLEAF LIsP

popup-new-ent~, 199
popup-new-list, 200
popup-run, 201
popup-set-vars, 209
popups, 199-209

altering existing, 204
compatibility with other user inter-

faces, 5
component bar, 123
creating, 199
handler, 199
pulldown, 200
setting variables, 209
table, 123
text, 123
variables, 208
warning not to alter defaults, 206

prefix keys, 218
prefix notation, 69
prefix-content, 153
previous, 116
prin1,288
prine, 287
print, 107-108
print-deletion-marks, 129
print-rev-bars, 129
print-strikes, 129
print-underlines, 129
printer properties, 129
printers, 108
probe-file, 97
profile, 92
profile (shape), 154
profile drawer, 91
progn,56
prop sheet

button
fields, 233
list, 230-231
text, 231
toggle, 229

buttons,229-234
close, 224
get-modified-window, 225
get-window, 224
gone wrong, 225
is-effective, 226
line, 226

new, 223
open, 224
redraw, 227
sample, 239-250
start, 226
submenus, 226
text, 227

prop-current-menu, 224
prop-current-submenu, 224
prop-menu, 113
properties, 10
property sheets, 221-250

compatibility with other user inter
faces, 5

pulldowns, 200
push,32,43

common error, 324
put-data, 114
put-saved-data, 113

Q
quit, 61

R
radix, 88
raise-to-top, 276
random, 52
rassoc,50
read-char-no-hang, 287
read-delimited-string, 287
read-eval, 25
read-line, 286
read-only, 129, 153
read-string-no-hang, 287
ReadEval, 29
reclass, text-editor example, 203
recursion, 52, 99, 121
redraw, 227
refresh, 273
rename, 126
repeat, 60
replace, 150
rescan-enabled, 113
rescan-min-idle, 113
return, 7, 12-14
rev bars, 129

rev-bar-placement, 128
reverse, 47
revert, doc-editor, 126
revision-bar, 146, 181
right-footer, 128
right-header, 128
right-margin, 152
roman numeral, 87
round,66
row-border-rulings, 154
rplaca,50
rplacd,50
RSU, 12

S
save, doc-editor, 125
save-default, 102
saved-data, 93
search,150
select, 148

component editor, 172
text-editor, 134

selected, 102
selection cabinet, 92
selt, 38, 51
semi-colon, 24
set-props

component, 155
document, 127-129

setq, 15, 31
shape, 150
shared content, frames, 264
shared-content, 153
short-page-justify-threshold, 129
shuffle, 52
sin, 70
single-sided,128
spell, 150
split, 149
spot-color-separation, 129
sqrt, 70
start, 226
stayup, 192-193
stayup:add-line, 194-197
stayup:add-string, 194
stayup-close, 193-194
stayups, 192-197

Index 333

stickups, 187-192
stk-get-number, 190
stk-new-choice, 191
stk-new-prompt, 192
stk-open, 24,187-188
stk-open-prompt, 189
stk-parse-numeric, 191
straddle-columns, 153, 181
stream

close, 286
open,285
prin1,288
princ, 287
read-char-no-hang, 287
read-delimited-string, 287
read-line, 286
read-string, 287
read-string-no-hang, 287
unread-char, 287
write-char, 288
write-line, 288
write-string, 288

streams, 285-294
strftime, 294
strikethrough, 146
string, 76
string-contained,78-79
string-left-trim, 79-80
string-length, 79
string-lowercase, 79
string-right-trim, 80
string-trim, 80
string-uppercase, 79
string=, 37, 77-78
strings, 9

atof,80
atoi,80
case-sensitive,77
char-downcase, 75
char-int, 71
char-upcase, 75
character, 71
character 10, 72
concat, 76-77
ftoa,80
int-char, 71
itoa,80
linefeed, 71
newline, 71

334 ADVENTURER'S GUIDE To INTER LEAF LIsP

plain-charp, 75
string, 76
string-contained,78-79
string-left-trim, 79-80
string-length, 79
string-lowercase, 79
string-right-trim, 80
string-trim, 80
string-uppercase, 79
string=, 77-78
substring, 79
tab,71
upside-down question marks, 72

striper, 258-260
structural view, 115-116
subclass, text editor example, 203
submenu,222,226-228
submenus, prop sheet, 234-235
subscript, 146
substring, 79
superscript, 146
symbols, 9
system cabinet, 91

T
t, 13, 14-15
tab, 71, 88, 146
tab markers, 124
tab-origin-column, 154
tab-stops, 154, 155-156
table

begin-new-column, 252
begin-new-page, 252
bottom-margin, 252
get-child, 252
get-first, 251-252
get-last-child,252
get-parent, 252
get-props, 252
left-margin, 252
right-margin, 252
straddle-columns, 252
top-margin, 252
widow-count, 252

table rulings, 124
table sorter, 254-258
table-class, 11

table-editor, 251
table-footer, 154
table-header, 154
table-row, 154
tables, 251-260
tables popups, 123
tabs, 154
tan, 70
tell-next, 297
terpri,288
text caret, 130
text editor, 145-151
text popups, 123
text strings, 124
throw, 61
timers, 280-283
toc-create-selected, 107
toc-document-name, 153
tokens, 116
top-margin, 152
toplevel, 61
total-list-length,51
totaler, 253-254
translation table, 211
truncate, 66
turn-layout, 128
typep,52

U
underline, 145
underline-position, 129
undo, 124
unit of measurement, 128
unless, 57
unread-char, 287

V
variables, 15-16
vertical-justification, 128
vertical-reference, 264
vertical-straddle, 154
view-anchor, 124
view-cmpn-bar, 171
view-empty, 124
view-facing, 124
view-index, 124
view-inline, 124

view-return, 124
view-ruUng, 124
view-space, 124
view-tab, 124
view-undo, 124

W
while, 32, 59
widow-count, 153
window, 129

button,275
close, 275
get-object, 274
lower-to-bottom, 276
maximum-bounds, 273
message, 276
new, 275
object of, 275
popup, 275

position, 273, 275
raise-to-top, 276
size, 273, 275

Index 335

window manager, 273-277
window-position, 102
window-size, 102
windows

pointer-position, 275
set-props, 273

wn-wmgr, 273
work-in-progress, 93
write-char, 288
write-line, 288
write-string, 288

Z
zerop,68
zoom, 124

More
OnWord Press Titles

Pro/ENGINEER Books

INSIDE ProlENGINEER
Book $49.95 Includes Disk

The ProlENGINEER Quick Reference
Book $24.95

The ProlENGINEER Exercise Book
Book $39.95 Includes Disk

Inferleaf Books

INSIDE Interleaf
Book $49.95 Includes Disk

Adventurer's Guide to Interleaf Lisp
Book $49.95 Includes Disk

The Interleaf Exercise Book
Book $39.95 Includes Disk

ililt!:! :!WH!;! l

The Interleaf Quick Reference
Book $24.95

Interleaf Tips and Tricks
Book $49.95 Includes Disk

MicroSfafion Books
!mm~ ;:m~ %!

INSIDE MicroStation 5X. 3d edition
Book $34.95 Includes Disk

MicroStation Reference Guide 5.X
Book$lB.95

The MicroStation Productivity Book
Book $39.95 Optional Disk $49.95

MicroStation Bible
Book $49.95 Optional Disk $49.95

Adventures in MDL Programming
Book $49.95

Programming With MDL
Book $49.95 Optional Disk $49.95

Programming With User Commands
Book $65.00 Optional Disk $40.00

101 MDL Commands
Book $49.95
Optional Executable Disk $101.00
Optional Source Disks (6) $259.95

101 User Commands
Book $49.95 Optional Disk $101.00

Bill Steinbock's Pocket MDL
Programmer's Guide

Book $24.95

MicroStation for AutoCAD Users
Book $29.95 Optional Disk $14.95

MicroStation for AutoCAD Users Tablet
Menu

Tablet Menu $99.95

MicroStation S.x Delta Book
Book $i9.95

Managing and Networking MicroStation
Book $29.95 Optional Disk $29.95

The MicroStation Database Book
Book $29.95 Optional Disk $29.95

The MicroStation Rendering Book
Book $34.95 includes Disk

INSIDE JlRAS B
Book $24.95 Includes Disk

The CLIX Workstation User's Guide
Book $34.95 Includes Disk

BuildCeU
Software $69.95

SunSoft Solaris Series

The SunSoft Solaris 2.* User's Guide
Book $29.95 Includes Disk

SunSoft Solaris 2. *for Managers and
Administrators

Book $34.95 Optional Disk $29.95

The SunSoft Solaris 2.* Quick Reference
Book$i8.95

Five Steps to SunSoft Solaris 2.*
Book $24.95 Includes Disk

One Minute SunSoft Solaris Manager
Book $14.95

SunSoft Solaris 2. * for Windows Users
Book $24.95

The Hewlett Packard HP-UX Series

The HP-UX User's Guide
Book $29.95 Includes Disk

HP-UX For Managers and
Administrators

Book $34.95 Optional Disk $29.95

The HP-UX Quick Reference
Book$i8.95

j J1

Five Steps to HP-UX
Book $24.95 Includes Disk

One Minute HP-UX Manager
Book $14.95

HP-UX for Windows Users
Book $24.95

CAD ManalemenfWW!

One Minute CAD Manager
Book $14.95

Manager's Guide to Computer-Aided
Engineering

Book $49.95

Of her CAD

CAD and the Practice of Architecture:
ASG Solutions

Book $39.95 Includes Disk

INSIDE CADVANCE
Book $34.95 Includes Disk

Using DraflX Windows CAD
Book $34.95 Includes Disk

Fallingwater in 3D Studio: A Case Study
and Tutorial

Book $39,95 Includes Disk

Geographic Informafion Slsfems

The GIS Book. 3d edition
Book $39.95

DTP/CAD Clip Art
~lm HWW:a:*

1001 DTP/CAD Symbols Clip Art
Library: Architectural

Book $29.95

DISK FORMATS:

MicroStation
DGN Disk $175.00 Book/Disk $195.00

AutoCAD
DWG Disk $175.00 Book/Disk $195.00

CADIDTP
DXF Disk $195.00 Book/Disk $225.00

Nef1l!0rkingfL.ANfasficw

Fantastic LANtastic
Book $29.95 Includes Disk

The LANtastic Quick Reference
Book $14.95

One Minute Network Manager
Book $14.95

OnWord Press Distribution

End UsersjUser GroupS/Corporate Sales

OnWord Press books are available worldwide to end users, user groups, and
corporate accounts from your local bookseller or computer/software dealer, or from
HMP Direct: call 1-800-526-BOOK or 505-473-5454; fax 505-471-4424; e-mail
to ORDERS@BOOKSTORE.HMP.COM; or write to High Mountain Press Direct, 2530
Camino Entrada, Santa Fe, NM 87505-8435.

Wholesale, Including Overseas Distribution

We have international distributors. Contact us for your local source by calling
1-800-0NWORD or 505-473-5454; fax to 505-471-4424; e-mail to ORDERS @BOOK
STORE.HMP.COM; or write to High Mountain Press/lPG, 2530 Camino Entrada,
Santa Fe, NM 87505-8435, USA.

Comments, Corrections, and
Bug Fixes

Your comments can help us make better books. If you find an error in our products,
or have any other comments, positive or negative, we'd like to know! Please contact
our e-mail address:READERS@HMP.COM. or write to us at the address below.

OnWord Press, 2530 Camino Entrada, Santa Fe, NM 87505-8435 USA

ADVENTURER' .
GUIDE
TO INTERLEAF
LISP

Everything the power user needs to begin reprogramming
the world's most powerful document tool-Interleaf 5

Interleaf 5 is a publishing powerhouse. Unlocking the potential of Interleaf 5
with Interleaf Lisp can be a true adventure. Take this guide and follow along
with lots of sample functions that show you how to customize the user inter
face, add functionality, and even create "active documents" that respond to your

input and automate everyday tasks. Increased productivity is at your fingertips.

TOPICS COVERED INCLUDE:

THE DESKTOP. TEXT
POPUPS STICKUPS AND STAYUPS
PROPERTY SHEETS GRAPHICS
TABLES ACTIVE DOCUMENTS

Designed for the hobbyist programmer and Interleaf power user, Adventurer's
Guide to Interlea/ lisp offers many tips and tricks not found in the manufac
turer's reference manuals. Learn to use Interleaf Lisp to maximize productivity
in your publishing process.

The bonus disk includes all the Lisp examples shown in the book,
plus several useful utJities.

ON "RD~
PfrESS

Dedicated to the
Fine Art of
Practical User
Doc!l1ll1mtation

m
»
z

IS BN 1-56690-042-5

I
90000 >

9 781566900423

