THE K-1 ARCHITECTURE MANUAL

amcoahl K

Key Computer Laboratories

THE K-1 ARCHITECTURE MANUAL

Version 3.0

June 5, 1989

CONFIDENTIAL CONFIDENTIAL

This document contains information proprietary to Amdahl Key Computer
Laboratories (KCL). Use or disclosure without the written permission of an

officer of KCL is expressly forbidden. Copyright © KCL 1987, 1988, 1989.

Report number KC-101

Contents i

Contents
List OF FIUPEeS o ucmsississisnsssssessisssssasses B SRS SO A— vii
List of Tables............... SRPRPEIRURPEL Y\ X . S A IO sssesiiuadnisdsetuiin ix
CHAPTER 1. INTRODUCTION , .cociconssasssmsessscsspsssavansase SIS REes s e 1-1
CHAPTER 2. K-1 ARCHITECTURE OVERVIEWccccccineeernncnnccannes 2-1
2.1 I ORI IO cvonnecosnnampprnsesamsmsasmompsnessissnbshushnensbbotil pbesma Peinamesen Ao T sass sidoadinns 2-1
2.2 CONVENHONG o vcssmmasmenmsrsssmnshninsasasssssssnanssmsosssonismbpids s 00 GpAvrieims bl davyek sonsscsstiatonms 2-3
2.3 DHAER TYDES cuvsssiccisssasssnsasssisspmsasinssenasssvassmsssss srnprrmispiina s ssi o sossssmksogonns 2-3
2:3:1 BRI s soncmsmionsiansssns simessamiess Koasense fesrs e st BE D AP S S TS AN 0 A TR 2-3
2:.3.2 Floating-Point NUMDETS.........ccccecrieersrssnrecrssssnesecssssansasessassssasasssnsseseses 2-4
2.4 INSEUCHON FONMBLSnummspmmsussssssimosasiivisrsstsimseiisadasasmtdiibscssasfotines 2-6
2.5 GENETAL REGISIOLS cvvussunsssecsssmnsessassavsassssisiorssssibis sims s i m e R AT G ssssbsmtesss 2-7
2,6 . Flags and Conditional Branching «sscsmssitpsissssissanspeniterp s s 2-7
2d BLE FIBES - civn ssosinssossssganirsmemsssmamensrar s SR Ao e Sas 6 eI Rlesn cnin P s 2-7
2.8 IVEBITIOUN s csnassasninissnmsanssansastnsasassasssimsstoninivasasnssinsrosuss anp RGN O IRML S s ms Bnkibren 2-7
2.8.1 Precision and AlIENmMENL. c.ssiaasssimmstsss@ianisisossssvisisnibiiiasssass dvadsars 2-8
2.8.2 AOASENE WIOHEE . v mmimsioss s Rt Sitle s D ovss st 2-8
29 PIOCESSOT STAIES cuoonsassmupinssmsinipasssarismssossrms e st o ipilaasasss oamves 2-9
210 VItTOB] MIBIIONY «cocosiimnssssinssssssspsassossmnsssssasssssnmsstsonysarsspinns snnsssptiiasssbiipiaminssintind 2-9
2,101 . Addross MEDPPING ...\cosetvivobrlintrsmsibibomviiomitambtesssssviubnef st 2-10
2.10:1.1 Instruction MAapPINg . c..cmssnsssessssssrmmsssssmis 2-10
210.1.2 - DatwMAapping...ieiicnsdicbiotsonniismsetvosssssstiols ssbusdh 2-11
211 TCACHE BIEOUE. ..oocormsns ionssomernnsssssmsmonssmsmssussnss s ssme s s ans ¥ A e S Aa R s s 2-14
2.11.1 - Cache-Organization and Addressing.. . A0 Jhiiuidumentiot el 2-14
2.11.2 InSruction StACheE..........coeeuieieveericrecreeeereseeee e eeseeraeseesse s eeaeessenens 2-15
Pod o R Tyl S RS AR LA L A ER LR S A - 2-15
2.11.4 Interprocessor SynChronizationcecevueeeeeeeseeseesnssessesssessasnennes 2-16
2.12 Program EXECULION........cceieriereeriecrereeteeeesteeesseeseeseessesesssessesssesessensesnsensessesses 2-16
212.1 Delayed Branthing. csummisiswannscnmpsmnss somnipasissppsgpns i 2-17
2022 Conditional EXOCUTION.virmsnstaressisssanssasrasasssssammsrsasssssassomsnsnsrararssserss 2-18
2. L% BRIEY BB s i e s i e s R e ol 2-18
2:18 PrOCERSOT SURIIS soncverconcancusssmmoncussiis spinassastssesson shosssmsussiemtontopmisesisssstihisctasiusiss 2-19
215 TOPULAOUIDUL. ...ccocconcinanrrminssasasnsonsossssssssanseotsssopsanssntossasesasassnsasssssssinssonsrsseplsbnens 2-23
Sl Ol I INCTRUDES. .. croivmimmmmi e st R SRR A A G AN e sits 2-23
218 TS oourmaiemmsussspmissmmsm st e irsplmie g iap fhae 2-23
2.17 Traps, Interrupts, and Maching Checksccceerveeeeseeenreenieeecveeinesneeesnnecnneennns 2-24
2171 THE TIAD SCQUEBNTE: ..cicrirmessrsmmmrssrasemssssersssnsszsssssasdasssssssssorsosassisssnssssass 2-26

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

Contents ii

208 RO DB M riisiscasininassssiresionsbosinstsaressbont sonss chnst b niniin s vt aas S A A SRR 2-29
CHAPTER 3. K-1 Instructions......cccceeeecennee AR SRS — e 3-1
¥ . | THEIOCEON FORRIME. o amnssmisssmrssms s s AR s s A oS S R SRR 3-1
CHAPTER 4. Floating-Point INnStructions.....c..cceeseeecccsecccnccnsscsscnncees —— Y |
4.1 Floating-Point Compare INSITUCHIONS ...ccveiverreeiuerreieneaesieesteecreesraessesseesssssssesseasses 4-1
4.2 Floating-Point Conversion INSrUCHIONSccveereeesreeeieeiireeeeeesseesseeeseaesneeeneens 4-5
4.3 Floating-Point Computation INStrUCHIONS.ccceeveereererrieereeieeriresiesaesvesinesneens 4-13
CHAPTER 5. Load and Store Instructions.....cccccececseccnseens SSRPPICP P VA T 5-1
N | RefOrencing NVIBIIITY ..civiessmeisasiongsreins omispasinsss g g i isiss s tiang 5-1
5.2 Memory-Referencing InStruction TTapsccceceeeveerneeeniennienseceneeeiecnneneeseesseennes 5-3
5.3 L0000 DIVITOCHIIIR oo i e R S R Ak S S R A S 5-5
B R THSIIOTIONE civuss ciisnssxonssnruion sossmassonssnonsdss bebomnin sassomeians brssmasssenss FoaI RS S HOA 5-34
5.5 Special Load/Store INSIUCHONScciveismsunssssssivsessassvssssbiborsinsessssibstvsrssssiseses 5-43
3.6 -~ BLE FIOE TNSEUCHONS 1ocoiorsisimssmmmssissmesvonsssssss b i e eobteitsspmens sinias 5-49
5.7 BIath WaICHDOINE vt imssssmsmismmsssmmmmmsmssiabsuavimbas sl 5-53
CHAPTER 6. Integer INStrucCtionsS.......cccccceeeeccccneececccneeeecssnssnscssassssssssseses 6-1
6.1 . Integer ATIthMEHC INSIUCHIONS .. uiivssevossssssassssnssosnsobivassssobesinessos lisssassonsssssasoioinase 6-1
6.2 Integer Compare INSHUCTIONSvssscumssssmsssssrsrsossovsivnbusssnsivnssasibs bebosthasassnsessrsiive 6-16
6.3 Data Moving Instructions ... sessusions senssimsiusbrimisniiimiverseisisieadilnbmemssisschys 6-29
6.4 BOUEn IDSIIICTIONS ..o cmermnissmssmssssssvessissssssmmsnssdenoimilistmmbobsnsmsasssdiivs 6-39
6.5 Shilt ISUCHONS wovcmsimmmassismsisss st A s sdissbns 6-48
6.6 - Bt Count-and Reverse INSITUCHIONS ...t iiiteiaiatathusiiibiniecamessnsaivaitassssssssanss 6-54
6.7 Flag INSUCIONS vovuvismmensmmensmvovimsmmsussismsssinblvalin s Sl rssenshemias huncossssusses 6-58
6.8 GROCk INSEPUCTIONS «ovmsummmmsims e otk s s ks 6-61
CHAPTER 7. Transfer of Control Instructions............ SRS RN S 7-1
CHAPTER 8. Processor Status Register and Timer Instructions............ 8-1
CHAPTER 9. Virtual Memory and Cache Instructionsccceeeceeccneennes 9-1
CHAPTER 10. Trap InStructions......c.c.ceceeseereereesseesareseesanens PR —— 10-1
CHAPTER 11. I/O INStrucCtionS....ceeeeseeeeeneeseseeesesaenessssesassessssesessesesassesnes 11-1
CHAPTER 12. Miscellaneous INStructionscc.ecceesseeseessecseesesesesssessesanens 12-1
CHAPTER 13. Undefined OpPCodes........eceererueeeruerueseeresseaeseeseesesessassasassness 13-1
Appendix A. Instruction Index (Alphabetic)...cccceeerveeenee Bl A AL e A-1

Appendix B. Instruction Index (Numeric)........ P RS E LR SN0 K, A M B-1

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

Appendix C. Instruction Timing Considerations.......cceescccsssncccnsesancecned C-1
it SR B 4 S S R Wb A AT i OO A Vst SO e C-1
G2 TostoncHon ISEUG ..cmmosspssissiassunesiinns snsisss i spoaappemsisbngioos oxcsssrsrs o Bs ok C-1
3 PIDCHNINER o nnrminre o inarrssismistossamt i atss s esiinstrab (RSF S E o G535 C-2
C4 Functions] Uil Lateney nd Tnterlovks ... cccmosmonssmmmsimmmsnamvesspavanponsprin C-2
5 K] INETIO0KE i sonsmasmnss susssusasmumsmssininss samesins sosssen s sssi s snsn ke ss Smemenmianosusi s ngecsn C-3

G50 "REGISEr INETIOCKSoosecnmmsessesssrssssnessnssassnasneriserssrasaassassqropsssssengaoapions C-3

a2 BB IOBIIOCRE « o cinineniansiimonss s msm s Sk s hs Ao Sy s W5 SHE SR e C-4

G837 T1/10 INREHIOCKS. ..ocorsearesmmmossneorsanssrnsnaseimensnpimnsssssinsipsenspspassgapssssenies ipcosi C-5
CA3L T INCIIDCKEN .ovnvissrsnsnmenmsssgrspsenessmmesnsspsnansspessperssssapess C-5

G532 Serial INSIUCHONS . v ciiasssinssssmasmsissoisaisssmassasinssamsassngisbinss C-5

C3.3.3 11/10 Read Port CONTHES yeescirnessusiasisiridssssnssessssinberystionysenn C-5

C.5.3.4 I1/10 Register and Flag Conflicts.......ccoceeviivnnninnneninennenns C-6

C54 Floating-Point Divide/Square Root Unit ...ccomssmsmpssssiisseonssmmospanessans C-6

C33 Loag/Stone TNL. ...cussamemraimasmisomntosomsssossivassssspssmstiaisssmssissisnss C-7

Gl BEAMCIINE .. cocobevmsnrstvsssmmimmsmos i sms s e AR A SR s s SR AR sy ' C-7
C.6.1 Branching to a PC-Relative or Absolute Address.........cccevvrerruerencenne C-7

C.6.2 Branching to an Address in @ RegISter......ccccevereruenensenrecenincniceenns C-8

C.7 Special INSIIUCHONS.......cccccreerreerensersseessacsanesasssacsnnssnsesasessasassssnssssassesbbras * PRI C-8
e S TR 7 TS S S AT SSNPOT C-8

C T2 1ps, wWps, 5Pl And ST..occccmsmsisssussisnmssssssnimssinmmsscasvisy T — C-9

C.7.3 Trap Instructions and Instructions Which Trapccccccceeererceenuenuninns C-9

Ko P il BIIR s R A R R OSSP S RSN Bradld sl C-10

S ol SN ' | O T A C-10

5 R | NS s T S C-10

8 L0ad/S1018 THNING cuusnsossmmssunensmissismiospsorta i sems s piissasson A wsecqgnssiis C-11
C8.1 1080 INSIUCIIONS. ucvsvrrarinssnessussnssntassnseseserrussinensspssesisagiosyieiosssspdivyss C-11

.82 SIOIE INSIIUCTIONE . osvusmsumsmssonsenexssmspmmas et SE SRR LR pATRRR SRR C-11

Cl3 | MDA ossssionmssimasmssimatsssiminasistnsssertanerr s st s S ss i s C-11

G844 PCLANMA ZCL. ccoivnormssiessmssmssansesssnnsssaprrmrssaesnsssnspasssssssnsssnsmrosnsssvssessesvnes C-11

kR i 1 YRR, IR WU OO TPCTTPON SRS, WIORRORIE S £ G THE NETD C-12

B0 riee BNk WEBE .. imenmmsmsmiiisisss urisiapis s P s S baps C-12

C.8.7 TI0S ANA WIOS ..eeeueiiiieeiirerietiieestesesassesessesaee e ssassesesaesesassessssesaesenses C-12

Appendix D. Trap Handlingeeoeeeeoeeeereereeesseeesneessesesensesssessssessnsessnses D-1

0.1 Trap Dat and T ReCOVEIY aunsameasimsinssissssraistmeiamssissiisssssetsios D-1.

DLl Primisry TEaD DAk,comesivosssommmistmmsivssisssmisssssriamsdsgessissmssssos D-1
D.1.1.1 Trap SUMMATY ..cooviiiiiieieciee et ssaesre s se e eneane D-1

D112 Trap LOoCors . cosumssnasimnmmimssiimsssinisonipsmasiresiss D-5

D.1.1.2.1 IMA Trap LOCAtOTISccceveeueneenneneerieenuenseseeseesessessesseseseenes D-8

D.1.1.2.2 LJS Trap LOCAOTS cswsssumomusnmpmesassnoriassamessnsuanassssssansipon D-10

D.11.23 Divide Trap LOCAOTE auiwmriisiousssasesmsssssusssssmssicys D-10

D.1.2 Reading Primary Trap Datacccccecvvereerersenssrssecsessssessasaessesessosasaes D-10

D.1.3 Load/Store Trap DAath.....cc.wsssrsrsassosnsssnsnsnspsonpossisassgssgipssssnsisfoss D-11

D.1.4 Storing Load/Store Trap Data.......ccccussearsrssssessarsrsessssassesaissbcsssssnpssass D-14

D2 Ust of €xt5 INSIUCHIONG ccir v sissrinsmsssssvenssmmemsanitomssiessnsssssmstsssssshesssbudesmansamsensss D-15

Contents iii

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

Contents iv
1).3 Examnple TIap FIANAIED. . usnvasiosimimssnimssinssis s ssasism s D-15
Appendix E. Memory System SPecifiCs ci.ccssessssssssesssorsassosssasansssssssssassnss Bl
E.l IDOQUCTION. . ..econecrssssoneronsarennssnpsansssersaiupsonssssnssossnnssopasnssrosssssennonsapessasgassssspsrspossss E-1
Bid Daa ONE. oo iniosmsissmenossssssse s giss s s apas ag s ns E-1
B3 Efror-CotreCting Codeocmssenerarnssvossesnsensaisrosasansassossassssansossscsssasertpassassansonsssass E-3
E.4 CPU Features for Diagnosing the Memory SysStem.........ceceereererrcrccenunsenseccneenns E-3
E.5 Console Interactions and Error LOZZINg.......cccocevereririnenienenenniiesieseniecesiennenes E-3
E.6 Cache CORETENCYcccvveriiriinriienineeientenenececsesseae st essesessassessassesssssssassassessassessenss E-3
EI Memory SyStem TIMINE ...cocoiniiciiusssinissivissss iissssmangssspiss iasstosessasssmssisasusins E-3
Appendix F. I/O System Specificsccceeeeee. sespasg T A—— F-1
00 G 1o s To (o) O S s B OCA———— F-1
F.2 InStruction DeSCIIPLIONScccuieeierieereeieenieceesaessaessseesuesaessassssessusssasssassssessecssaenne F-3
S0 R o S R S O F-3
BZL' OB psmmsimrivsrmimsssmssossmns sotsapesnes st it s sssisgis e aas sERSp AT A SR aoss F-7
F.3 ' = Contiol and Status RESISIEr FOTMALE «.cuemsiseemrssnisssavntnssasassssscissppagssasosssisssnss F-11
F.3.1 Channel Control Register FOrmat........cccccoceeeivievcenvinnmnnnenniecnueineinns F-11
.30 Lhanhi] Stitis Register FOIaE ..o somsemmponssrrescemsppasomssss F-12
B33 JOCA Status Register FOIMAL. ..ormsnsssssisssmsssssmossrsoprsmsnsssssserinss F-13
Appendix G. Console Specifics.....cceeeeecencccacenne L RATLY SO P —— G-1
GLY IONOOTUOHION s ihumsnnanenssmiessnniinvas mesh ks s sessassis so oo smom susmpaas hasss s i GEiASS SR G-1
LK) R S S R S e e S PR v RO D TSI SO G-1
KRS LY DOROIOEE . fovs s srnstrsesisisnsies s s o s N e R S B AN B g e G-1
Gl POTIOTANCE OOUNIEIE. L. cvsrmanscomssonssmsasssisasisrarm by e aies oea s F5 SN S SAS RIS G-2
3.3 7 ICIOUI COMIIOL s vommmsssiosonssisssnsssisssvmsmmassssssasasommisbasmsssemigssmss s S A ST S S G-2
16 Scan Comtrol Snd HIAAEN SR ..o smsmsinmiemissnssssssprpsemsiigriboptassissisnsasiaiss G-2
G.T * BOOISHED PROCEAUTE.......ccscvrssmsncrmsmsstansrssssemssnsenvssensorseinaporssssssssrsspsspapsssssnssssesesss G-2
Appendix H. Implementation Dependencies LA T) S— H-1
FEL - The Version 1 InpICmieIitaion ;s aisisasmsssasorinasmaeissoossorssssinsstsis s iassinsses H-1
Appendix L. Floating-Point Operation Details.......ccceeunee ————— |
I.1 Fateti o T S SRS oo o A SN oS B i 3 I-1
1.2 SO NN Lo i sricssrssniiiensarseamsmerei e tones s s s sl saesss sea sy ansas sy I-1
13 Floating-Point Overflow and Underflowccoveeeerecuenriveeneeiieeneeieseeeeseenenens I-2
1.4 Floating-Point Operation Tables....imessmssssimsssscsssaseissorsssssossssssssssssnsssoasmsssnss I-2
1.4.1 Floating-Point Additioncocvviiiiininininiiiteeneeie e I-3
L5 Floating-Point Negation.........cccoiiiiiiirieieniereieeresestesaeseesaseetes e ssssa e ssssseessssssseseens I-5
L6 PIOBIAEPOINE SUDIRCTION o ovssnrnusssunsinsesnmsms g osnipesssss sk s mamiks s I-5
17 Floating-Point MulpHCATION i csmisiomss tasnissietonshtensiasssissint s inseioatis I-6
1.8 Floating-Point DiVISION......ccccciiriieiieieiesiciciest et sres e essraseesseaeeraenesseseens I-7
1.9 Floating-Point SQUAare ROOLc.ccoveeieieriieecececee et I-8
L10 - Floating-Point CONVEIRIONS .ciusmismimsinmiomsmmsisiiussiomassoriorissaisisssresiasissnsess I-9
I.10.1 Conversion Between Floating-Point Formats............cccoevevueeeenuecveennannn. I-9

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

Contents v

I.10.2 Conversion Between Floating-Point and Integer Formats................... I-11

INDEX ..coeeeeeecrecreneescocconsaes et e e SO — Index-1

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.

Figure 2-10.
Figure 2-11.
Figure 2-12.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 4-1.
Figure 5-1.
Figure 6-1.

Figure D-1.
Figure D-2.
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.
Figure D-7.
Figure D-8.
Figure D-9.
Figure D-10.

Amdahl Key Computer Labs

List of Figures vii

List of Figures

The K-1 Processor and Its Interconnettions. ..o immiistesiassaiossssasaissnsisssans 2-2
Signed 64-Bit'Integer Datd TYPe.....uidicdbiidisidiloiasstiissrsasessionistsansessesbonensseith 2-4
IEEE 32-Bit Precision Floating-Point FOIMIAL. c.i.iiucinmicasiiisssnsssnsssssasbrothit 2-5
IEEE 64-Bit Precision Floating-Point Format.........ccccovvvnnniniiiinininennneininnes 2-5
Address Calculation for Load/Store InStruCtionsccceceeeeceeeeseesensessneecsaeecsenes 2-8
Vittual AdAress FOIMIALccocisnescosssmsissssmsessasssarssonsenssonissossaasisrnsssstsons shassoiunns 2-10
InstracBon Pape Table FOIMAL ..uamnmmsimnmmanimssiisesssmmsmasssserns 2-11
Virtonl Pape NUMDOE «.cinsmssniimvesaniorinm st s ihsss oo s 2-13
Dot PRgie TAbIe FOMMAL ..o cumesstormismssmsstitnpsesnstrmmsetnmibisisissasssiivionisass 2-13
VDB COUDIET 1o coensosmmmsrensemmmnesssussinesm smssesisaeossssss o smas s eamsssveshuasonsedessersss 2-24
Interval Timer REBISIOr. ...ommmunasnesssomsesmesmeseonsesosarsssscnsossansonasnsnensansssassnssssts 2-24
REBIRIE P nssinmmsimsumminmis st s oy B A R S P oA RSB ST 2-26
REgISter INSHUCTION FOTINAL ciniasmissss siissiinsvinsisisvsinsssn susss s onsss s sassmmim 3-2
Unconditional Short Constant Instruction Formatccocccveiiiiniiiieinnnnnnnnees 3-3
Conditional Short Constant Instruction FOrmatccceevvvieerniienieiecnicecnnenn. 3-3
Long Constant Instruction FOIMAL.........ccccoiiieiiiiinrieeiiinneeeeeseeessssseeseesssnnsneens 3-4
PC-Relative Branch. InStructon FOMMAL .- cusssmsnsssmsinmsssismvassssisssssessasntnss s 3-4
Absolute Branch Instruction FOrmMatccceeeiiericiieienieiineceeceecne e 3-5
Register Branch Tostruction FOTMMAL «usassismeoimssovmacssssomsmissasms s msummssinss 3-6
EX1S INSHUCHON FOMMEE .. v sssosammsnssmumsmseiminsmymasmiiisstiokssss i 3-6
Floating-Point Conversion Sreh ArBUMENE . suussasssesmsrrssmisasssmnssmssssessess 4-5
Data Watchpoint Table Entry Formatcccccoviiviiniininnicinnnnninniiniennecnn, 5-53
DOO STCA ATZUIMENTviiiieiieiiiecieetectaeseeseee s ee e eesaes e e e e seesaeesaessnessaseenessnan 6-59
TEAD: SUMMATY coirnciioomcnson snshsavnsins s b snsikacs s oo s s 6 Ao S KA S0 KA H RS ST 8% D-2
Divide Trap LOCHLIOTocoimversuemmsemumpessesmnssnossssessmspassnssssseneasssonsbsssdssniss vassusiaresh D-5
Load/Store Trap LOCALOTccievieiieeireerecneessesseessaesssssaeessessassssessssssssssessseessass D-5
AN TR LRI wosmnssroniumnsenerisriirmmabamnt it s o ir e Sust obdesan sy heass D-5
TITAK. TP BVIE scimmminsimarssnsainssmbmrmisissmss s ons s st s A s s oA s D-6
IIVIA. TEOD WIOTH.cnimnsmsnimsnsmmsr s o s s AT ea s sase D-6
Load/Store Trap Datacocuiviecieeieeeeineeiaeseesaessaesesesseessssssssssessessssssesssecnne D-12
addr Data Field FOrMat.......ccccoviiiiiieiiiiieeiieie e cne e siseceaeseaesaessessassaassacenaes D-13
Combined srca/sreb Data Fiekd FOrMAt .o sssssirssmissssmsisnmmsssssssssmsss D-13
ldpage Data Field FOrmatccuivuiiiieeiiiieieciece et se e e see s D-13

CONFIDENTIAL K-1 Architecture Manual

List of Figures viii

Figure D-11. slstrpd srcb Operand FOrmat......cooueecveeiieiienieiennecinieesnecssecesiessaesssessssecenes D-14
Figure E-1. ECC Groupings Within @ Sub-Line........cccceceevieriniinninenneneneeiencseeneeie e E-2
Figure F-1. sronand srcb Qperand POTMEBE ... nissnsniiisminisssssrmisimmiomiasasssmisiisaimisg F-3
Figure F-2. CRP and NCRP POinter StrUCIUTEccccoerieeeniesienrenienseniessuessisiessessssssessnesennes F-5
Figure F-3. Type 0001 rdst Register FOTMIAL & ..o iiimssisosmisnsinsssissesasmmmesimassssression F-8
Figure F-4. Type 0010 rdst Register FOImatcccouiiieerceenieiniieniececniecnesneseenseseseeecenenns F-8
Figare BS5. Type 0011 rdst RESISIEr FOTTIAL e mmssamisombisinsssminissssiariasssimtonien F-9
Figure F-6. _Type 0100 rdst RESiSter FOTINAL . o sscsnissiederisias secsifiosetin it svabs caste fosssinson spastosnsgs F-9
Figure F-7. Type 100x rdst Register Format CRP Queue Pointers..........ccccevieeivureeecneeennne F-10
Figure F-8. Type 100x rdst Register Format NCRP Queue Pointers.......cccccovveeenvereneeecnnns F-10
Figure F-9. Type 100x rdst Register Format CRP Locations (0-4;6-7;15) ..c.ccceecveeuerunnnnnn F-10

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.
Table 2-10.
Table 2-11.
Table 2-12.
Table 3-1.
Table 3-2.
Table 4-1.
Table 5-1.
Table 6-1.
Table 9-1.
Table C-1.
Table D-1.
Table D-2.
Table D-3.
Table D-4.
Table D-5.
Table D-6.
Table D-7.
Table I-1.
Table 1-2.
Table I-3.
Table 1-4.
Table I-5.
Table I-6.
Table I-7.
Table I-8.

List of Tables ix

List of Tables
IEEE 32-Bit Precision Floating-Point VAIES ..cumsssimsmvmssssasscmssnss 2-5
IEEE 64-Bit Precision Floating-Point Valuescccccvuevieniinnnnecnsennneiineeecn. 2-6
Instruction Page Table $12€ SPeCHIr...xawmimsmmsmusmsmssesammmmiss 2-11
Memory Reference MOdEScoeivuereenernieneeeneentennienesseeneesssssessnecsnessaessnes 2-12
Processor Status REZISIET. . .ccivuiiiueiiiiinsieenieiitecstie e e sraessreesasessasessessnnesones 2-20
Arithmetic Trap Enables and Exception FIagscissussissssissassssassssssasess 2-20
RoOUNAING MOMESovoiiiieiniiieciiieiie et se e st ae s ee e s eaae e st e e e e s s aeeneas 2-21
Low-t0-High Byte AdAressingcuaamsmonmmmommosmossssmsmssessssommesons 2-22
External Intersupt Priority LEVELS......civiimaissacissmssnssss smosisrsmmmis 2-27
TEBY VECIOPIRE . osir vz trsshess s e pas s e s A aevad S5 p A s 2-27
D0 and D1 Decoding for 32-bit INStructions........cceveervievuerreesieenenessnesnncnenns 2-28
D0 and D1 Decoding for 8 64-bit INSTUCTHON wwwsssisssvosssmsmassesnsrossovsmspsmmenn 2-28
BOUrce OPErang CONITOL ..cvovrmssrssssosssersrariorsssanssne suaiiss ssssssasaiins i3 sismasusss s 3-2
Delayed Execution Control Decoding.........coceeeveenienniiniiiinsniecniinneineie e 3-5
FIoalng-Point COMPOIISOIS .« mressmissiamaiimmmsss s tsss s ps isnsr s sassnson 4-2
Memoary Referencing InSmuction TIaDE . anssssssminssisasssimmssammisiasoss 5-3
boof Code (BC) DECORINE ..ovinisisnuscisivisinimmossmiismimammseiissiass s 6-59
dflush srcb Control FUNCLIONScccueiieiiieeiertinieeeseeese et ceeeeeesseesaesssesssesaesanesns 9-7
Functional Unit Latenties...cxeesmasvssssssvassesssssmissssssssansiisessmemussmie C-3
TEBD BIICOMIES cxcacuunsvicsssssssnminssion onunnsossss vinisinedmsnsisn s aess s sk iamais o usaeee s D-3
Machine Check ENCoding.......ccccvuiviririeniinnieniinenieiesecisie e e ssenenens D-4
Tap Bt Field Enohlings. oo iimuninninansinmis isisissib e D-7
10 and I1 Decoding for 32-bit INStrUCLIONS ...ccovveeeueeerririeeniieeenreriesiesesieecnenane D-7
10 and 11 Decoding for a 64-Bit INSIPUCHONusmemosminssessssmsasmsmsmmmmsssssisnsass D-8
TP STCA ENCOAINEG ...eviieiiiieiieieeeestie et ceees e essaae s aeesaaeesaeesssaessseereesssnessnsecnnes D-11
TY ENCOQING...uiiuiiiiiiiietiieie ettt ettt se et e e s easesae et s e ssbesbassbaessaesaae e D-14
AOAIHON RESUME cocincimmmmismmiinin s s s s s sos s ssn (s s s mvais srvenss I-4
Multiplication RESUILSc.ceviiiuiiieniiiieitiet e e s I-6
JIVIRION TRBSUIER. o conpmmmiasrsmmmassssi s R e R SRR T TS I-7
Square ROOt RESUILScccuieiiiriiiriiiiiie ettt e se s sraesaae s saeesrens I-8
Double to Single Conversion RESUIS ..owamssssssusmmmsmismsmsesmumsomsisassiasieens I-9
Single to Double Conversion Resilfs . cucunmsmminnsinsssiississisissontimstsisss I-10
Signed or Unsigned Integer to Floating-Point Conversion Results................... I-10
Floating-Point to Signed Integer Conversion Resultscccoveeiieirenenecinnnennns I-11

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

CHAPTER 1. INTRODUCTION

The Amdahl Key Computer Laboratories K-1 family of supercomputers is designed to
meet the needs of the modern large computer user. Equipped with an extremely large
address space, very high I/O and memory bandwidths, and pipelined functional units, the K-1
is ideally suited to tackling today’s highly compute intensive problems. At the same time, a
simple, straightforward, yet powerful instruction set makes the K-1 architecture one of the
best possible targets for optimizing compilers. A complete set of virtual memory features
rounds out the architecture and makes it possible to run modern operating systems smoothly
and efficiently.

This manual describes the architecture of the central processing unit of the K-1
family. Different members of this family may contain different numbers of central processing
units or have different physical memory sizes or attached I/O processors, but the central
processing units all function identically. The main body of this manual contains all the
information necessary for programming the K-1, with the exception of instruction timing
information which is provided in Appendix C.

The following sections describe the main features of the K-1 architecture and are
followed by individual instruction descriptions. Instruction indexes are provided in
Appendices A and B for quick reference. Appendix C gives detailed instruction timing
information and Appendix D gives trap handling details along with an example of a trap
handler. Appendices E, F and G give memory system, [/O system, and Front-End system
specifics, respectively. Implementation dependent aspects of the K-1 architecture are noted
in the text with square brackets ([]) and are references to Appendix H, which explains
features particular to this implementation.

The examples used in this manual to describe K-1 machine instructions conform to
the K-1 assembly language syntax, which is described in a separate manual, The K-I
Assembly Language Reference Manual.

Other documents of interest are:

KC-126: K-1/IOP Software Interface Specification
KC-109: The K-1 Assembly Language Reference Manual
ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating-Point Arithmetic

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

CHAPTER 2. K-1 ARCHITECTURE OVERVIEW

2.1 Introduction

The K-1 architecture is designed for general purpose/scientific computing. It has been
optimized to allow extremely high performance implementations such as the Amdahl Key
Computer Laboratories K-1 system. It provides an extensive set of high-precision, IEEE-
compatible, floating-point instructions, as well as a full complement of integer, logical and ad-
dressing operations. In addition, there are instructions to manipulate the virtual memory
system, to control the caching of main memory data, and to control input/output.

The K-1 computer can be divided into three main parts: the Central Processing Units
(CPUs, or simply “processors”), the memory subsystem, and the I/O subsystem. Each
CPU can be further divided into three main subsections: the instruction fetch and issue units,
the register file, and the functional units. Figure 2-1 shows the major interconnections with-
in a K-1 CPU, and its connections to the memory and I/O subsystems.

The most central part of a K-1 CPU is the register file, containing up to 64 general-
purpose registers of 64 bits each. The register file is used to store data items of all types.
Functional units take their inputs from registers, or from constants that are part of the in-
struction. Functional unit results are always stored into registers. Most instructions can
specify three independent register addresses. For example, the add instruction adds two
registers together and stores the result into a third register.

There are five different types of functional units which process information from the
registers: the integer, load/store, floating-point add, floating-point multiply, and floating-
point divide/square root units. With the exception of a few special instructions that affect
the internal state of the CPU, each instruction in the architecture is executed by exactly one
functional unit. Timings for the individual functional units are given in Appendix C. The num-
ber of each type of functional unit present in a given K-1 CPU is model-dependent; however,
every K-1 CPU has at least one unit of each type. A program will give identical results re-
gardless of the number of units; only the execution time will be affected.

The K-1 main memory system consists of a very large, uniformly addressed memory
space. Two large caches insulate each K-1 processor from the access time of main memory.
One cache is used exclusively to hold instructions and the other to hold data. The caches op-
erate transparently, but there is no hardware coherence between the instruction and data
caches. The hardware does, however, maintain cache coherence among the data caches of all
CPUs in a multiprocessor system. The architecture provides instructions for manipulating
the caches and for updating memory.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-2

Introduction

REGISTER
FILE

INTEGER
UNIT

FLOATING-
POINT
ADD
UNIT

INSTRUCTION
FETCH
AND
ISSUE
UNITS

FLOATING-
POINT
MULTIPLY
UNIT

FLOATING-
POINT
DIVIDE/
SQUARE ROOT
UNIT

LOAD/STORE
UNIT

2.1

TO I/O
PROCESSORS

I/0
SYSTEM

MAIN
MEMORY
SYSTEM

Figure 2-1. The K-1 Processor and Its Interconnections

K-1 Architecture Manual

CONFIDENTIAL

Amdahl Key Computer Labs

2.2 Conventions 2-3

I/O in the K-1 architecture is performed through attached I/O processors that inter-
face via a number of very high speed I/O busses. These busses are operated by I/O control-
lers within the K-1, which transfer data directly to and from main memory. Instructions are
provided to send control information to, and receive status from, the I/O subsystem.

2.2 Conventions

Every numeric data type in this manual is assumed to have its most significant bit on
the left and its least significant bit on the right. Bits are numbered in ascending order from
least significant to most significant, right-to-left, starting with zero. Bytes are numbered in
the reverse order from most significant to least significant, left-to-right. This numbering
scheme is commonly referred to as “big endian”. The only exception to this is related to the
Byte Order Low-to-High feature which allows the ordering of bytes in memory to be in as-
cending order from least significant to most significant, right-to-left (commonly referred to as
“little endian”). However, even in this case, the bit numbering remains right-to-left.

A data type can be zero-extended from its natural size to a larger size by appending
sufficient high-order zero bits to make up the difference. For example, a byte can be zero-
extended to 64 bits by appending 56 high-order zero bits. Similarly, a signed quantity can be
sign-extended by appending sufficient high-order copies of the sign bit. For example, a 32-
bit data type can be sign-extended to 64 bits by appending 32 high-order copies of bit 31.

The letters K and M indicate 1,024 and 1,048,576 units of something, usually bytes.

The notation m..n indicates a contiguous range of bits within a word or field. Bit num-
ber m is the most significant end of the range, and bit number 7 is the least significant end. If
the name of the field is NAME, then such a range is indicated by NAME<m..n>.

2.3 Data Types

The K-1 architecture supports a number of data types and precisions. When a data
item is in a register, it may be a signed or unsigned integer of length 8, 16, 32, or 64 bits, or a
32-bit or 64-bit IEEE floating-point number. When in memory, only the precision of the data
item (8, 16, 32, or 64 bits) is important. Quantities smaller than 64 bits are always right-ad-
justed within a register.

2.3.1 Integers

Integers are 8-, 16-, 32-, 33-, 53-, or 64-bit quantities and may be either signed or
unsigned. Signed integers are two’s complement values whose most significant bit is the
sign bit, S. Figure 2-2 shows the format of a signed 64-bit integer. The 53-bit integer for-
mat is used only for the integer multiply instructions; the 33-bit integer format is used only
for the integer divide instructions.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-4 Floating-Point Numbers 2.3.2

w AN
[\ Ne))
o

S Integer Data

(63)

Figure 2-2. Signed 64-Bit Integer Data Type

2.3.2 Floating-Point Numbers

Two precisions of floating-point numbers are supported: 32-bit (single) and 64-bit
(double). Separate instructions are provided for each floating-point operation for each preci-
sion. The formats conform to the ANSI/IEEE Standard 754-1985 floating-point single and
double formats.

Both floating-point precisions contain a sign bit, an exponent field, and a fraction
field. The value represented is always a sign-magnitude mantissa times a power of two de-
termined by the exponent. The mantissa consists of a “hidden” bit followed by the fraction.
The floating-point format also provides certain special values, such as NaN (Not-a-Num-
ber), infinity, negative zero and denormalized numbers (allowing for gradual underflow).

The IEEE standard specifies two types of NaNs: signaling and quiet. Both types of
NaNs must have a maximum exponent and a non-zero fraction. The K-1 recognizes a NaN
as quiet if the most significant fraction bit is a one, and as signaling if it is zero. When given
a NaN as input, all non-trapping floating-point operations (except compares and negate) will
generate a quiet NaN. When given as operands to floating-point instructions, signaling
NaNs cause an invalid operation trap if enabled. Whenever a NaN is output by a floating-
point operation (except negate), it will be a quiet NaN in the form shown in Tables 2-1 and
2-2 with the sign bit set to zero. The floating-point negate function is considered to be a da-
ta moving operation, and thus never changes its input (except for the sign bit), and never
causes a trap.

Most floating-point numbers are normalized, meaning that their most significant man-
tissa bit (called the hidden bit) is a one. This bit, therefore, does not need to be present in
the representation and is omitted. When computing the value represented by a floating-
point number, the hidden bit must be reinserted. However, in order to extend the negative ex-
ponent range and allow for gradual underflow, the floating-point format provides a class of
numbers called denormalized numbers. These numbers, which are very close to zero in value,
have a hidden bit of zero (and are therefore not normalized).

32-bit (single) precision floating-point format numbers have a sign bit S, an 8-bit ex-
ponent EXP, and a 23-bit fraction F (Figure 2-3). The value, V, represented by this format
is computed as in Table 2-1. Note that Figure 2-3 shows this format as it would be stored
in a 64-bit register; 32-bit precision floating-point numbers can be stored in 32 bits in memo-

ry.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.3.2 Floating-Point Numbers 2-5
6 333 2:2 0
3 210 32 0

Unused S EXP F
(32) (8) (23)

Figure 2-3. IEEE 32-Bit Precision Floating-Point Format

Table 2-1. IEEE 32-Bit Precision Floating-Point Values

S EXP F \

X 255 0x.xT NaN (signaling)

X 255 ly.y* NaN (quiet)

S 255 0 (-1)S INFINITY

S| 0<EXP<255 F (-1)S 2EXP-127 (| gy
S 0 #0 1S 27126 o F)

S 0 0 DS 0

64-bit (double) precision floating-point format numbers have a sign bit S, an 11-bit
exponent EXP, and a 52-bit fraction F (Figure 2-4). The value, V, represented by this for-
mat is computed as in Table 2-2.

66 33 0
32 21 0
s EXP F
(11) (52)
Figure 2-4. IEEE 64-Bit Precision Floating-Point Format
T

oo

X..X is any non-zero bit pattern on input. Signaling NaNs are never generated by the K-1.

* y..y is any bit pattern on input, and is all ones if generated by the K-1.

Amdahl Key Computer Labs

CONFIDENTIAL K-1 Architecture Manual

2-6 Instruction Formats 2.4

Table 2-2. 1IEEE 64-Bit Precision Floating-Point Values

S EXP F \
X 2047 Ox..xT NaN (signaling)

X 2047 ly.y+ NaN (quiet)

S 2047 0 (-1)S INFINITY

S| 0<EXP<2047 F (-1)S 2EXP-1023 (1
S 0 #0 1)S 271022 o

S 0 0 S0

Note that due to the sign-magnitude nature of the floating-point formats, there are
distinct representations for both positive and negative zero.

Refer to Appendix I for details on floating-point computations and exceptions in the
K-1.

2.4 Instruction Formats

The K-1 uses a three-address instruction format: most instructions require three reg-
ister addresses, two of which specify source operands and the third of which specifies the
destination for the result. The way in which the K-1 specifies the use of immediate con-
stants as operands, however, is quite different from other machines.

Whereas most machines use different opcodes to distinguish instructions which allow
an immediate constant operand from instructions which only have register operands, the K-1
distinguishes these types of instructions with a format code. The format code is a separate
field in the instruction from the opcode; it regularizes the instruction set by separating the
function of an instruction (e.g., addition, loading from memory, etc.), from the sources of its
operands (constants or registers). For example, the add opcode with one format code will
add two registers; with another format code it will add a register and an immediate 9-bit con-
stant; and with another format code it will add a register and an immediate 36-bit constant.

For instruction formats with immediate constants, the format code also controls the
order of the constant operand and the register operand. That is, one format code will perform
constant op register, and another will perform register op constant. This provides more flexi-
bility and allows the K-1 to have fewer opcodes than would otherwise be needed. (Only one
form of asymmetric instructions such as subtract and magnitude comparison is required).

-k

X..X is any non-zero bit pattern on input. Signaling NaNs are never generated by the K-1.

-}

y..y 1s any bit pattern on input, and is all ones if generated by the K-1.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.5 General Registers 2-7

Instruction formats are fully explained in Chapter 3.

2.5 General Registers

The register file comprises up to 64 registers containing 64 bits each, and are referred
to as r0 to r63. Implementations of the K-1 architecture may support less than 64 registers
[2-1]. All of the registers are general purpose and may be used to hold the operands or the
results of any operation. The architecture treats all registers identically.

2.6 Flags and Conditional Branching

The Processor Status register contains seven flags, named f0 through f6, that can
each store a binary value; an additional flag, f7, always contains the value one. These flags
control conditional branching, and allow conditional execution of instructions in most formats.
(See Chapter 3 for a description of instruction formats). A number of different instructions,
such as the compare instructions, may set or clear a flag; a field in the instruction determines
which flag is affected. In addition, boolean operations may be performed on flags and the re-
sult may be written to a flag or to a register. During a conditional branch instruction, any flag
may determine if the branch should be taken. The flag to be used and its polarity are speci-
fied by fields in the branch instruction. There are actually no unconditional branch instruc-
tions in the K-1 architecture. “Unconditional” branches are accomplished by specifying flag
f7 as the branch condition. Similarly, in most instruction formats, unconditional execution can
only be achieved by conditional execution with respect to f7. As will be seen in Chapter 3,
conditional branching and conditional execution of instructions are specified in exactly the
same fashion.

2.7 ELF Flags

Associated with each general register is an Early Load Fault (ELF) flag [2-2].
These flags are set and cleared by load and eload instructions, and may be interrogated by
an echk instruction. The ELF flags are used to indicate that an eload instruction encoun-
tered an illegal condition. (See the section on Early Load below for a description of the
eload instruction and its differences from normal load instructions). The relf and welf in-
structions can be used to save and restore the ELF flags.

2.8 Memory

Though most operations in a K-1 program will be of the register-to-register type,
there must still be some way to move data in registers into and out of memory. The K-1
load/store instructions serve this purpose. These instructions operate on a number of differ-
ent sizes of data in memory, and are blind to the data types being moved. For example, a 64-
bit integer and a 64-bit floating-point number are treated identically by the load/store instruc-
tions.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-8 Precision and Alignment 2.8:1

Main memory can be thought of as a very large array of 8-bit bytes which are num-
bered starting from zero. The architectural limit to the size of memory is the number of bytes
that can be addressed in 48 bits, approximately 281 trillion bytes. Implementations of the
K-1 architecture may support smaller address spaces [2-3].

2.8.1 Precision and Alignment

When a load/store instruction references memory, it specifies the precision in which
the operation is to be done: either 1, 2, 4, or 8 bytes. The address given must be aligned ac-
cording to the precision. This means that the address for a 2-byte operation must be evenly
divisible by 2; for a 4-byte operation, it must be evenly divisible by 4; and for an 8-byte oper-
ation, it must be evenly divisible by 8. A load/store instruction with an address that is not
properly aligned will cause a trap (except for eload instructions, as explained in the section
on Early Load, below).

The address given in a load/store instruction normally specifies the most significant
byte of the data item. However, there is a bit in the Processor Status register called Byte
Order Low-to-High, which, if set, causes the address to refer to the least significant byte of
the data item. In either case, the address of a data item of any precision always refers to
byte O of the data item. (Byte Order Low-to-High is described in more detail in the section
on the Processor Status register.)

Index {1,2,4,8}

X

Y
Base ——><-{"—>

Address

Figure 2-5. Address Calculation for Load/Store Instructions

2.8.2 Addressing Modes

Addresses in load/store instructions are computed in one of two ways. The address
may come directly from a single register or constant operand, or it may be calculated as the

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.9 Processor States 2-9

sum of two terms: the base and the index. The index is multiplied by an additional factor, the
memory precision (Figure 2-5).

The memory precision is either 1, 2, 4, or 8, and is implicitly specified in the opcode of
the load/store instruction; it cannot come from a register. The base and index can come from
registers or constants depending upon the instruction formats and opcodes used.

2.9 Processor States

The processor can be in one of three modes of operation (states) depending on the
settings of some bits in the Processor Status register and whether a trap has just oc-
curred. These states are called user mode, supervisor mode, and Trap State. User mode
has the least privileges; all applications will normally run in user mode. Supervisor mode is
intended for use by the operating system; it provides more capabilities than user mode, such
as the ability to set more bits in the Processor Status register, the ability to write data that
is read-only in user mode, and the ability to execute privileged instructions.

Whenever a trap is taken, the processor enters Trap State, which provides all the
privileges of supervisor mode, plus the ability to read and modify special internal state infor-
mation which aids in trap diagnosis and recovery.

Trap State, user mode, and supervisor mode are described more fully in the sec-
tions on Processor Status and Traps, Interrupts, and Machine Checks.

2.10 Virtual Memory

Data addresses (produced by the address calculations of load/store instructions) and
instruction addresses are called virtual addresses, and are the only type of address that an
application programmer ever uses. The virtual memory system allows multiple users to co-
exist in a common physical memory by providing hardware support for sharing between us-
ers, protection from other users, and efficient execution of modern operating systems such as

the UNIX® operating system.T

In order to facilitate porting application programs from an all-32-bit environment, a
Small Address Compatibility mode is provided. In this mode, all user program and data ad-
dresses are assumed to be 32-bit addresses: the high-order bits of any address are set to
zero and the low-order 32 bits are retained. This mode is controlled by the Small Address
Compatibility Mode bit in the Processor Status register.

The term reference is used throughout this manual to mean a memory operation
(generally a load or a store) at a given address. Memory references can be made in either
supervisor mode or user mode. The mode of the reference controls the mapping of the virtu-
al addresses used in the processor to the physical addresses used in the memory system.
Supervisor mode references, used by the operating system, employ a different mapping
scheme than user mode references.

T UNIXisa registered trademark of AT&T.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-10 Address Mapping 2.10.1

2.10.1 Address Mapping

The address of an instruction or of a data operand in a load/store instruction is trans-
lated to a physical address before being sent to the memory system. This process is known
as virtual-to-physical address mapping.

The mapping of a contiguous block of memory, called a page, is specified by a single
entry in a table, called a page table or page map. Specifically, a page is a 64K-byte block of
addresses starting at an address that is evenly divisible by 64K. This is equivalent to say-
ing that the address of the first byte of a page has 16 low-order zeros in binary. There are
separate page tables for instructions and for data.

When a memory data reference is a supervisor mode reference (see the section on
Data Mapping, below), the mapping from virtual to physical addresses is the identity func-
tion. In other words, there is no distinction between virtual and physical addresses for su-
pervisor mode data references.

As part of the mapping process, a 48-bit virtual address is divided into two pieces.
The high-order 32 bits are called the virtual page number and the low-order 16 bits are called
the page offset (Figure 2-6) [2-4]. The virtual page number is mapped into a physical page
number while the page offset remains the same. The physical page number and the page off-
set are concatenated to produce the physical address.

Virtual Page Number Page Offset

(32) (16)

Figure 2-6. Virtual Address Format

2.10.1.1 Instruction Mapping

The instruction page table consists of eight entries, individually loadable with the
privileged instruction lipage, that specify the mapping of eight different virtual regions for us-
er mode instruction references. In supervisor mode, instruction mapping is done in an
implementation-dependent fashion [2-5]. In user mode, instruction mapping is done using
the instruction page table. Figure 2-7 shows the format of an instruction page table entry
(the operand to a lipage instruction) [2-6].

The N field, sometimes called the Instruction Page ID, specifies which of the eight
instruction page table entries is to be affected. If the valid bit, V, is a zero, then page table
entry N is invalid and the rest of the fields are ignored. If the valid bit is a one, then page ta-
ble entry N maps a virtual page range into a physical page range. The virtual and physical
page ranges begin with the pages specified by the Virtual Page Number and Physical Page
Number fields, respectively [2-7]. These page ranges must always be aligned on a bound-

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.10.1.2 Data Mapping 2-11

ary which is a multiple of their size. Note that an instruction virtual page number is architec-
turally limited to 25 bits, and therefore instruction addresses are architecturally limited to 41
bits.

66 6555 33 0
32'09.76 21 0
V] N | SS Virtual Page Number Physical Page Number

(3) 1(3) (25) (32)

Figure 2-7. Instruction Page Table Format

The extent of the page ranges is determined by the size specifier, SS, field. It indi-
cates how many contiguous pages are referenced by this instruction map entry. The interpre-
tation of this field is implementation-dependent (Table 2-3) [2-8].

Note that it does not matter which page table entry (which value of N) is used for a
particular mapping entry, but mapping a given virtual address with more than one page table
entry will produce unpredictable results. Therefore, the virtual page ranges specified by the
valid page table entries must be non-overlapping.

Table 2-3. Instruction Page Table Size Specifier

SS # of Pages Mapped

0-7 See Implementation
Dependencies, Appendix H

2.10.1.2 Data Mapping

It is intended that the operating system and applications program(s) occupy separate
address spaces. Whether a reference is treated as a supervisor mode reference or a user
mode reference is a function of the User Mode Load, User Mode Store, and User Protec-
tion bits of the Processor Status register, as well as the type of reference (Table 2-4).
When the processor is in user mode, it can only make user mode references to memory. But
when the processor is in supervisor mode (and not in Trap State), it can make either user
mode references or supervisor mode references depending on the settings of the User
Mode Load and User Mode Store bits and the type of reference. This allows the operating
system to perform memory references with the user’s address mapping. For example, if the
operating system wanted to copy data into the user’s area at a virtual address provided by
the user (such as in response to an I/O request), it could set the User Mode Store bit; load

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-12 Data Mapping 2.10:1.2

instructions would then use the operating system’s address mapping, but store instructions
would use the user’s address mapping and protection. Using the user’s protection prevents
malicious users from providing invalid addresses.

In Table 2-4, all load, eload, ldecc, ldnecc, loadcpu, and pcl instructions are consid-
ered to make “load” (i.e., memory read) references, and all store, storecpu, dflush, and zcl
instructions are considered to make “store” (i.e., memory write) references. The swat in-
struction, which does both a memory read and a memory write, is considered to be both a
load and a store. swat instructions require the User Mode Load and User Mode Store
bits to have the same value or the results will be unpredictable.

Table 2-4. Memory Reference Modes

User User Load Store

Mode Mode Reference Reference

Load Store Mode Mode
Off Off Supervisor | Supervisor
Off On Supervisor User
On Off User Supervisor
On On User User

User mode references always use the data page table to perform the mapping from
virtual to physical addresses and to determine the legal access modes (read or write) and
sharability of that page. Supervisor mode references do not use the data page table; both
read and write supervisor mode references are always permitted. Supervisor mode refer-
ences are always shared. Only shared pages participate in the multiprocessor cache-coher-
ence scheme. Thus, all supervisor mode references and any user mode references which are
designated as shared in the data page table are cache-coherent.

The page control bits of a data page table entry (described below) control the types of
access (read and write) that are allowed for user mode references to that page. In addition,
they control whether the page can be shared among processes. For user mode references
when the User Protection bit in the Processor Status register is off, the page control bits
are ignored: both read and write references are permitted if either type of reference is permit-
ted. This allows the supervisor to modify user data without the user’s access restrictions.

Data page table information is stored differently from instruction page table entries.
The data page table is a cache, while the instruction page table is a fully-associative memory
[2-9].

Each page table entry contains the Process Key, a virtual tag, the physical page
number, and a number of page control bits. The data page table is addressed by hashing the
virtual page number being mapped and the Process Key field of the Processor Status reg-
ister [2-10]. Therefore, the same virtual page numbers for two different processes (which, of
course, must have different Process Keys) are probably mapped by different entries in the

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2,10.1.2 Data Mapping 2-13

page table. It is not necessary to evict one entire process to load the page table for another
because the Process Key values stored with the page table entries are used to distinguish
the entries for different processes.

A data map miss trap occurs on a user mode reference when the virtual address cal-
culated by a load/store instruction does not have a valid entry with the proper Process Key
and address tags in the data page table.

The ldpage instruction is used to load entries into the data page table. Figures 2-8
and 2-9 show the formats of the operands to a lIdpage instruction [2-11]. A table entry is
written to map the given Virtual Page Number to the given Physical Page Number. The
Virtual Page Number and the Process Key field of the Processor Status register are
hashed to produce the data page table address to be written.

W AN
oo
NS
O\ —
Y —
()

Unused Virtual Page Number Unused

(16) (32) (16)

Figure 2-8. Virtual Page Number

The R and W page control bits define the types of user mode references permitted to
the page being mapped (unless overridden by clearing the User Protection bit of the Pro-
cessor Status register; see below). If R is set, then load, eload, and pcl instructions are
permitted. If W is set, then store, dflush, and zcl instructions are permitted. swat instruc-
tions, which do both a read and a write, require both R and W to be set. If neither bit is set,
the page is invalid and no reference to that page is permitted in user mode regardless of the
setting of the User Protection bit. Note that referencing an invalid page will cause an ille-
gal access trap, not a data map miss trap.

The S bit indicates that the page is shared. The unused fields in the data page table
format are reserved for future expansion and must be zero. An illegal access trap occurs
when the user virtual address calculated by a load/store instruction does not have the proper
page control bits for the requested reference.

6 44 11 0000
3 87 65 3210
Unused Physical Page Number Unused R|W|S

(16) (32) (13)

Figure 2-9. Data Page Table Format

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-14 Cache Effects 259

2.11 Cache Effects

Each K-1 processor contains two independent cache systems, one for instructions
and the other for data. The caches are hardware managed, but without regard for whether a
single data item exists in both caches at the same time. Therefore, when writing applica-
tions that depend on the execution of data as programs, that write into the instruction
stream, or that require that main memory contain an up-to-date copy of the data (such as I/O
processing), the programmer is required to use instructions that manipulate the caches.
These instructions can be used to remove data from either cache and/or force modified cache
data to be written back to main memory.

2.11.1 Cache Organization and Addressing

The instruction and data caches are both one-way set-associative, also known as di-
rect-mapped. They are addressed by low-order address bits [2-13] and contain program-
mer-invisible tag fields that indicate the high-order address bits of the data that currently is
cached at that location. Because they are one-way set-associative, two locations whose
low-order address bits agree cannot reside in the same cache at the same time.

In order to improve efficiency, data is organized in the caches in groups of consecutive
addresses called cache lines (or sometimes just lines). Lines are the minimal tagged unit
in the cache. Transfers between the memory system and a CPU are always of entire cache
lines, but are broken up into smaller pieces called memory transfer sub-lines (or just sub-
lines). A sub-line can be thought of as the largest unit that can be read from or written to
the cache at one time (or as the width of the memory bus). For example, writing a cache line
into the cache involves a series of writes of individual sub-lines. The size of cache lines and
sub-lines are implementation-dependent, but are always powers of 2 [2-12]. Cache lines
and sub-lines are always aligned on a boundary that is a multiple of their size.

The instruction cache is addressed by physical addresses, while the data cache uses
a combination of virtual and physical addresses. That is, the instruction cache is addressed
and tagged by the physical address, whereas the data cache is addressed by the low-order
bits of the virtual address, but is tagged with the physical address. This means that lines of
data at the same virtual address in two different processes will compete for the same place
in the data cache.

An additional implication of this data cache organization is that shared data (data that
is referenced by more than one process) should be addressed by all sharing processes with
addresses that agree in sufficient low-order virtual address bits to ensure that they refer-
ence the same location in the data cache. (If this is not done, then the same data item could
potentially exist at more than one place in the data cache, and the locations would not be
guaranteed to contain the same data.) The number of low-order address bits that must
agree is dependent upon the size of the data cache. In order to allow for future increases in
the size of the data cache, processes should share data at addresses that agree in the low-
order 27 bits (allowing for a maximum data cache size of 128M bytes).

It is also possible for processes to share data at arbitrary virtual addresses. Howev-
er, this requires that the operating system ‘“sweep” the cache after running such a process.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.11.2 Instruction Stache 2-15

It also requires that two such sharing processes never be run simultaneously on two differ-
ent processors in a multiprocessor system. Naturally, this will result in some performance
penalty.

The sizes of the instruction and data caches are implementation-dependent [2-13].

2.11.2 Instruction Stache

The K-1 provides an additional level of instruction caching called the instruction
stache. This much smaller and faster cache lies between each CPU and its instruction
cache. The instruction stache is addressed by low-order instruction address bits, but instead
of recording the entire physical page number, it remembers only the Instruction Page ID
(the N field in an instruction page table entry). This means that the entire instruction stache
must be invalidated whenever the instruction page table is changed. The entire instruction
stache may be invalidated by executing an iskill instruction, or by entering or exiting Trap
State (i.e., by trapping or by returning from a trap).

The line size of the instruction stache is not necessarily the same as that of the in-
struction cache. The total size and the line size of the instruction stache are both implemen-
tation-dependent [2-14].

2.11.3 Cache Coherence

The K-1 implements a multiprocessor cache-coherence scheme that allows CPUs in
the same system to share data without software knowing about the effects of caches. That
is, if one processor (A) modifies some data, cache coherence guarantees that the next pro-
cessor (B) to read that data will see the modified value (even if the old value was in B’s da-
ta cache prior to A’s write). It is still necessary for software running on different CPUs to
synchronize the modification of shared data. Otherwise, two CPUs might modify the same
data at nearly the same time. Since there is no guarantee (without synchronization) which
CPU would modify the data first, the result would be unpredictable.

The K-1 cache-coherence scheme is handled through the memory system. It sup-
ports a single-writer, multiple-reader model. That is, any number of processors can have a
read-only copy of a particular piece of shared data in their data caches at the same time. But
as soon as one processor tries to modify shared data, it must be granted sole ownership.
When another processor tries to read the modified result, the writer will lose its sole owner-
ship (and its write privileges).

The K-1 distinguishes between shared data and non-shared data; only shared data
participates in the cache-coherence scheme. As explained in the section on Data Mapping
above, all supervisor mode references are shared; user mode references are shared only if
they are marked as shared in the data page table.

The instruction caches do not participate in the cache-coherence scheme. Cache co-
herence between instructions and data must be provided by software, even between the in-
struction cache and the data cache of a single processor.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-16 Interprocessor Synchronization 2.114

The I/O system does not participate in the cache-coherence scheme and because of
this, care must be taken when writing low-level code. Before initiating an I/O write, the data
being written must be flushed from the data caches of all processors. Before an I/O read
completes, the old “stale” data in all the processors’ caches must be flushed (so that the
new data can be read from memory). A special shared version of the dflush instruction is
provided for this purpose. This shared dflush is “broadcast” to all the CPUs in a multipro-
cessor system, and can flush a given cache line from all processors’ data caches at once.
(See the dflush instruction description for more details.)

2.11.4 Interprocessor Synchronization

The K-1 has two semaphore schemes to allow different processors to synchronize
their activities. First, the swat instruction is an atomic operation on shared memory. Sec-
ond, the I/O system implements a limited number of registers whose bits can be atomically
set or cleared with the wios instruction. Both of these methods can be used to implement bi-
nary semaphores, which can be used for interprocessor synchronization.

The two independent synchronization schemes use different system resources.
While the swat instruction allows the implementation of a huge number of semaphores
(limited only by the size of memory), its use of the memory system (which is optimized to
transfer large amounts of data) can make it slow. swat instructions must also ‘“‘compete”
for memory bandwidth with other operations. The I/O system implements a smaller number
of semaphores, but they are faster to access and their use does not consume memory band-
width. The semaphores used most frequently by the operating system should be implement-
ed in the I/O system. See Appendix F for more details on the I/O system.

2.12 Program Execution

K-1 instructions are either 32 or 64 bits long and reside in main memory at addresses
that must be properly aligned; a 32-bit instruction must start at an address evenly divisible
by 4 and a 64-bit instruction must start at an address evenly divisible by 8. Program execu-
tion involves the repeated fetching of 64-bit instruction words, and the issue of instructions
from them. (Instruction words start at an address that is evenly divisible by 8.)

Each instruction word contains either two 32-bit instructions or one 64-bit instruc-
tion. If there are two 32-bit instructions packed into an instruction word, they are designated
as I0 and I1, with I0 occupying the most significant half (lower address) and I1 the least sig-
nificant (higher address). If there is one 64-bit instruction in an instruction word, it is desig-
nated as 10, and there is no I1 instruction.

The byte address of the current instruction being fetched is contained in the Program
Counter (PC), which is incremented by 4 or 8 depending upon the size of the instruction be-
ing executed. Programs are executed sequentially until a trap condition or a branch instruc-
tion is encountered. Branch instructions select a new program counter either as an absolute
address or as a signed offset from the address of the instruction word containing the branch
instruction. If a new program counter points to an I1 instruction (i.e., its bit 2 is set) then the

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

. o | Delayed Branching 2-17

entire 64-bit instruction word will be fetched, but only the I1 instruction in that word will be
executed.

There are two disable bits, D0 and D1, associated with each PC. The DO bit inhibits
the execution of the I0 instruction, and the D1 bit inhibits the execution of the I1 instruction.
Normally, when an instruction word is first fetched, both the DO and D1 bits will be clear.
The DO bit is set after the I0 instruction has executed, and the D1 bit is set after the Il in-
struction has executed. For 64-bit instructions, both bits are set when the instruction exe-
cutes. Note that a branch to an Il instruction actually branches to the I0 instruction (since
the K-1 always fetches 64-bit instruction words), but sets the DO bit, disabling the I0 half of
the instruction word. The DO disable bit can thus be seen to be the same as bit 2 of the pro-
gram counter. The disable bits are used primarily in the features of the architecture relating
to trapping. When an instruction word is fetched from a PC with both disable bits set (as
can happen due to delayed branching or exts instructions), instruction map miss traps are
suppressed.

2.12.1 Delayed Branching

Branch instructions have the ability to disable the execution of instructions from the
subsequently-fetched one or two 64-bit words. This is done by specifying the conditions un-
der which the two instruction words following a branch will be executed: in case of branch, in
case of fall-through, or always (in case of branch or fall-through). The execution of a few
more instructions after a branch can be thought of as delaying the actual branching (as op-
posed to delaying the branch decision). Delayed branching allows compilers to compensate
for the execution time penalty incurred by branches in implementations of the architecture. In-
structions whose execution is controlled by a branch are called delay instructions. The first
64-bit word fetched following a branch instruction is called the first delay slot, and the 64-
bit word fetched following that is called the second delay slot.

Branch instructions control whether or not instructions that occupy the first and sec-
ond delay slots are to be executed. For each delay slot there are three cases: execute the in-
structions in that slot if the branch is taken (branch), not taken (fall-through), or regardless
of whether the branch is taken (always). The letters b, f, and a are used to refer to these
cases, respectively. Of the nine possible independently controllable cases for two delay
slots, eight may be specified by the delayed execution control field (DC) of a branch instruc-
tion (Table 3-2). The ninth case, ba, indicates that the instructions in the first slot are exe-
cuted only on the branch path, while those from the second slot are executed always (on both
paths). This is thought to be the least useful case, and is practically equivalent to the ab
case, which is provided.

There are no restrictions on the types of instructions that can be executed as delay in-
structions. In particular, another branch instruction may be executed as a delay instruction.
In order to clearly describe the sequence of instructions that will be executed in such a case,
it is necessary to use a slightly unusual model of how program branching works. The key
rule to remember is that the execution of each 64-bit instruction word determines the
address of the third following 64-bit instruction word to be fetched. It is also important to
know that all delay instructions are fetched, even if they are not going to be executed. Such a

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-18 Conditional Execution 2.12.2

nullified delay instruction word is effectively disabled by asserting both the DO and D1 dis-
able bits associated with that instruction’s PC.

When the first in a sequence of branch instructions is encountered, the addresses of
the next two instruction words have already been determined. If the branch is taken, the ad-
dress of the third following instruction word fetch will be the branch target address. Howev-
er, it is the execution of the first delay instruction that controls the fetch address to be used
immediately after the target of the branch (the fourth following instruction word fetch).

As an example consider the following program:

A: jump XYZ, aa
B: add %10,%r1,%r12; br QQQ, bb
C: nop

XYZ: move %rl,%r2

QQQ:

The sequence of instruction fetches will be from addresses A, B, C, XYZ, QQQ, and will
then continue with QQQ+8, QQQ+16, etc. Note that the delay instructions of a branch are
not necessarily located in the addresses sequentially following the branch. In the above ex-
ample, the first delay slot for the branch to QQQ is at C, but the second delay slot for that
branch is at XYZ.

2.12.2 Conditional Execution

Most of the K-1 instruction formats allow the specification of a conditional execution
field: instructions can be conditionally executed based on the value of a flag. Since flag f7 is
always true, instructions can always be unconditionally executed. The benefit of conditional
execution is that in many cases branches can be avoided by conditionally executing the code
that would have been jumped around. For a small number of conditionally-executed instruc-
tions, this is more efficient than branching; the exact break-even point depends upon the spe-
cific instruction timings and interlocks. (See Appendix C for more details on these topics.)
Conditionally-disabled instructions will never trap, even in cases such as illegal instruc-
tion/privilege violation traps. Note that traps that occur before an instruction is interpreted,
such as instruction page map misses and trace traps, will still affect conditionally-disabled
instructions.

2.13 Early Load

In order for compilers to produce highly efficient code despite the latency of load in-
structions, they must be able to move the load instructions “backwards” in the code, i.e.,
well before the use of the load’s result. However, a load may have the serious side effect of
trapping. If a load instruction was moved before a check for an illegal address, for example,

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.14 Processor Status 2-19

the load result would probably have been ignored after the check and so an illegal address
trap would have been superfluous and should have been suppressed.

The early load mechanism is designed to solve this problem. For each load instruc-
tion there is a corresponding eload instruction. The eload instruction performs the same ad-
dress calculation and mapping function as the corresponding load, and, if there is no trap,
loads the proper value into the destination register. eloads, however, behave differently if
there is an error. For illegal access errors, illegal address errors (when the Early Load
Alignment Trap bit in the Processor Status register is not set), and supervisor mode non-
existent memory errors, the eload will not trap but will instead store zero into the destina-
tion register and set the ELF flag corresponding to that register. For all other types of er-
rors, eload instructions behave the same as the corresponding load. In this case, it is then
up to the operating system to either abort the program or set the result and ELF flag accord-
ingly and resume its execution.

The ELF flag is cleared by any load that does not trap, and set by any load that does
trap. eload instructions set the ELF flag identically to the corresponding load, whether the
eload traps or not. A load that might have an unwanted side effect should be replaced with
an eload.

In order to verify that the results of an eload are indeed valid, the programmer may
use the echk instruction. This instruction tests one ELF flag and traps if it is set. It should
be noted that echk instructions may be omitted for efficiency; correct programs will always
work either with or without echk instructions, although the behavior of incorrect programs
can be radically different.

In Trap State (see below), load instructions do not affect the ELF flags and eload
instructions act the same as loads. The relf and welf instructions can be used either in or
out of Trap State to save and restore the ELF flags.

2.14 Processor Status

Much of the K-1 processor’s operation is controlled by a register called the Proces-
sor Status register. The rps, wps, srm, and spl instructions read and write the Processor
Status register. In user mode, only the high-order 32 bits of the Processor Status register
can be modified. The Processor Status register is overridden while in Trap State and a de-
fault value for some of the bits is used. The format of the Processor Status register is given
in Table 2-5. Unused bits of the Processor Status register read as zero, but application
programs must not rely on this fact since this may not be the case in other versions of the K-
1 architecture. Attempts to set (write a ‘1’ into) unused bits of the Processor Status regis-
ter cause a trap [2-16].

The Processor Version Number<7..0> field is a read-only field giving the imple-
mentation level for this model of the K-1 processor. It may be used by operating systems to
tailor code for specific implementations.

The f<6..0> field refers to the six flag bits f6 through f0 (where f<6> refers to f6,
etc.). These bits are primarily set and cleared by compare and flag instructions and tested by
conditional branch instructions. They can also be used to control conditional execution in

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-20

most instruction formats.

Processor Status

2.14

Flag f7 is always set and is therefore not part of the Processor

Status register.
Table 2-5. Processor Status Register
: . Actasif Oin
Bits Function Trap State

63..56 Processor Version Number<7..0> No
52..46 f<6..0> No
45..41 Arithmetic Exception Flags<4..0> No
40..36 Arithmetic Trap Enables<4..0> Yes
35 Integer Divide Trap Enable Yes
34.33 Rounding Mode<1..0> No
32 Byte Order Low-to-High Yes
28..16 Process Key<12..0> No
15 Trace Enable Yes
14 Trace Pending Yes
13 User Protection Yes

) § User Mode Store Yes
11 User Mode Load Yes
10 Small Address Compatibility Mode Yes

9 Early Load Alignment Trap Yes
3.0 Processor Priority Level<3..0> Yes

Table 2-6. Arithmetic Trap Enables and Exception Flags

Bit | Trap/Exception Type

Invalid Operation
Division by Zero
Floating-Point Overflow
Floating-Point Underflow
Inexact Result

AWLWN—~=O

If certain exception conditions are detected during floating-point calculations, then
one or more of the Arithmetic Exception Flags will be set, and an arithmetic trap may occur
depending upon the Arithmetic Trap Enables<4..0> field. These five bits independently en-
able floating-point exceptions to trap as shown in Table 2-6. Setting Arithmetic Exception
Flags or Arithmetic Trap Enables with the wps (write processor status) instruction will
not cause a trap. The Arithmetic Exception Flags can be cleared only with the wps instruc-

K-1 Architecture Manual

CONFIDENTIAL

Amdahl Key Computer Labs

2.14 Processor Status 2-21

tion. Note that floating-point instructions issued in Trap State can affect the Arithmetic Ex-
ception Flags. If preservation of the state of the trapping program is desired, then care must
be taken in Trap State to save the Processor Status register before issuing any floating-
point instructions.

Although the K-1 supports floating-point traps, they are not IEEE compatible. It
should be noted, however, that the IEEE Floating-Point standard does not require any sup-
port for traps.

The Integer Divide Trap Enable bit controls the ability of integer divide instructions
(divsst and divssr) to generate traps when division by zero is attempted. If this bit is not
set, then integer divides will not trap on division by zero and will just return 0.

During floating-point calculations, it is sometimes necessary to store an inexact re-
sult. The process by which the exact answer is transformed into an inexact result is called
rounding. Four different methods of rounding are available as controlled by the Rounding
Mode<1..0> field and described in Table 2-7. The srm instruction is provided to change the
Rounding Mode field of the Processor Status register.

Table 2-7. Rounding Modes

Field Value | Rounding Mode Name
0 Round to Nearest Nearest
1 Round Towards Zero Truncate
2 Round Towards Positive Infinity Ceiling
3 Round Towards Negative Infinity Floor

The Byte Order Low-to-High bit controls the low-order address bits generated dur-
ing load/store instructions. If this bit is set, then the low three address bits (2..0) are trans-
formed based on the precision of the load/store instruction (Table 2-8). Supervisor mode
references are not affected by the setting of the Byte Order Low-to-High bit.

The Process Key<12..0> field distinguishes the virtual page numbers of the current-
ly running process from the identically-numbered pages of another process in the data page
map.

The Trace Enable and Trace Pending bits control trace trapping. Trace Enable en-
ables the setting of Trace Pending after the execution of the current instruction. Trace

Pending actually causes a trace trap. These bits can be used to single step a program, or to
advance a program past a breakpoint.

The Trace Enable bit can only be cleared or set by a wps instruction when the pro-
cessor is in Trap State. The Trace Pending bit can only be cleared by a wps instruction
when the processor is in Trap State, and can be set by a wps instruction in Trap State.
But most importantly, the Trace Pending bit is set whenever a non-Trap State instruction
is executed while the Trace Enable bit is set. A trace trap occurs when Trace Pending is

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-22 Processor Status 2.14

set, the processor is not in Trap State, and the instruction about to be issued has not been
disabled by a branch or by exts. (Trace Pending will cause a trace trap on an instruction
which is disabled by conditional execution.)

Table 2-8. Low-to-High Byte Addressing

Precision Input <2..0> Output <2..0>
1-byte 0 7
1 6
2 5
3 4
4 3
5 2
6 1
7 0
2-byte 0 6
2 4
4 2
6 0
4-byte 0 4
4 0
8-byte 0 0

The User Mode Load and User Mode Store bits control whether memory referenc-
es are treated as user mode references or supervisor mode references. This topic is dis-
cussed in the section on Data Mapping, and is illustrated in Table 2-4. Note that the Byte
Order Low-to-High and Small Address Compatibility Mode bits affect only user mode ref-
erences — both bits are disabled in supervisor mode. Since the User Mode Load and User
Mode Store bits always act as zero in Trap State, there can only be supervisor mode ref-
erences in Trap State.

The User Protection bit controls whether user mode references use the protections
provided in the data page table, or whether they get supervisor “over-ride” privileges. This
topic is discussed in the section on Data Mapping.

The processor is considered to be in user mode only if all three of the User Mode
Load, User Mode Store, and User Protection bits are on. If any of these bits is off, the
processor is in supervisor mode. Any attempt to switch from supervisor mode to user
mode other than when in Trap State will produce unpredictable results. Note that even
when the processor is in supervisor mode (and not in Trap State), it can still make user
mode references to memory by controlling which of the User Mode Load, User Mode

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.15 Input/Output 2-23

Store, and User Protection bits are set. Instruction references are in user mode only if the
processor is in user mode (all three of the User Mode Load, User Mode Store, and User
Protection bits are on).

The Small Address Compatibility Mode bit forces both user mode instruction and us-
er mode data virtual addresses to be truncated to 32 bits. The higher-order bits of any user
address will be set to zero. This mode is provided to ease the burden of porting programs
from a 32-bit environment. Supervisor mode references are not affected.

The Early Load Alignment Trap bit enables eload instructions to trap on misaligned
address errors (instead of just setting an ELF flag). The normal operation, if this bit is clear,
is for eloads to “ignore” the alignment error (setting the ELF flag and returning 0). If this
bit is set, however, an eload with a misaligned address will take an illegal address trap (as
would the corresponding load instruction).

The Processor Priority Level<3..0> field gives the interrupt priority level of the
processor. All interrupts have an associated priority level. If the priority level of an interrupt
is higher than the priority level of the processor, then the interrupt will happen. If the inter-
rupt priority is the same or lower than the priority level of the processor, then the interrupt
will remain pending. The interrupt will occur as soon as the processor lowers its priority to
be less than that of the interrupt. The Processor Priority Level field is encoded with zero
as the highest priority level (masking out all interrupts), and fifteen as the lowest level
(allowing all interrupts). The spl instruction is provided to change the Processor Priority
Level field of the Processor Status register.

2.15 Input/Output

I/O controller(s) perform input/output via direct memory access over a number of high-
speed I/O busses. The sequencing of I/O operations is controlled by messages in memory
and by interrupts. The rios and wios instructions are provided to exchange control and sta-
tus information between a CPU and the I/O subsystem.

2.15.1 I/O Interrupts

Interrupts from the I/O system are assigned priority levels from zero to fifteen, with
zero being the highest priority. The level of the highest-priority, pending I/O interrupt is
compared with the Processor Priority Level<3..0> field of the Processor Status register
and, if the I/O interrupt has higher priority (i.e., is numerically less than the processor’s prior-
ity), the processor will perform an I/O interrupt sequence. The Trap Summary contains the
level of the highest-priority pending I/O interrupt. All I/O interrupts are disabled in Trap
State. (See the section on Traps, Interrupts, and Machine Checks, below.)

2.16 Timers

The K-1 has an Uptime Counter and an Interval Timer register, whose formats are
shown in Figures 2-10 and 2-11. The Uptime Counter continuously counts the number of cy-

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-24 Traps, Interrupts, and Machine Checks 217

cles since the processor was last reset. (See Appendix C for a description of processor cy-
cles.) The Interval Timer register contains an interval field, that is constantly being com-
pared with the low-order 32 bits of the Uptime Counter. If there is a match and the clock in-
terrupt enable (CIE) bit is set and the processor is not in Trap State, then an interval timer
interrupt will be generated; this interrupt has priority level 0. If the processor is in Trap
State, the interrupt is held pending until the processor exits Trap State. Generation of an
interrupt effectively clears the CIE bit; the Interval Timer register must be loaded again if an-
other interrupt is desired.

6 0
3 0

Uptime

(64)

Figure 2-10. Uptime Counter

[Ne)
[38 N
N W

Unused Interval

mHQ

(31) (32)

Figure 2-11. Interval Timer Register

The rut instruction can be used to read the Uptime Counter, and the wit instruction
can be used to write the Interval Timer register.

The size of the fields in the Uptime Counter and the Interval Timer register are imple-
mentation-dependent [2-15].

2.17 Traps, Interrupts, and Machine Checks

A variety of exceptional conditions that prevent further progress may arise during the
execution of a program and cause a trap to occur. During a trap, certain processor state in-
formation is saved and execution is transferred to a different address with (possibly) differ-
ent processor status. Some of the exceptional conditions that can cause traps are data map
misses, I/O, Interval Timer, and Console interrupts, machine checks and the execution of cer-
tain instructions whose purpose is to cause a trap. When a trap occurs, the processor enters
Trap State.

With the exception of load/store unit instructions, all instructions that write results
will still do so even if they trap. The results written, however, may be different depending on

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.17 Traps, Interrupts, and Machine Checks 2-25

whether there was a trap or not. See Chapter 5 for a description of the effects of traps on
load/store unit instructions, and Appendix I for a description of the results returned by float-
ing-point instructions in the presence or absence of traps.

The K-1 architecture does not guarantee that instructions will be completed in the or-
der in which they are encountered in the program. The order of operations may be changed if
it does not affect the results of the calculations. While this is normally completely invisible
to the programmer, it can become visible when a trap occurs.

While execution can be continued after a trap, the imprecise nature of most traps
means that results can not always be repaired before returning from the trap. In more detail,
traps occurring before instruction issue (instruction map miss, illegal instruction/privilege vio-
lations, trace traps, interrupts, trap instructions such as bpt, trap, etc.) are precise, and
traps occurring after instruction issue (floating-point exceptions, data map miss, memory er-
rors, etc.) are imprecise. A precise trap implies that execution has not proceeded past the
instruction that trapped. With imprecise traps, some number of instructions after the trap-
ping instruction may have been issued and completed. For example, if a floating-point multi-
ply instruction traps, several instructions after the multiply may have issued and completed
before the multiply trap is detected (suspending further instruction issue). The instructions
following the multiply may have altered the input operands of the multiply, making recovery
from the trap difficult, if not impossible. Furthermore, instructions that use the result of the
trapping instruction could have been issued before the trap suspended instruction issue.

Imprecise traps are a consequence of a highly pipelined machine with moderate func-
tional unit latencies. Precise traps can be guaranteed in software by not modifying the oper-
ands of an instruction and by not using its result until after any trap it could have issued has
taken affect. (The special long constant form of the nop instruction is useful in this context —
it can be used to wait for various events such as the completion of non-fixed-latency instruc-
tions). See Appendix C for a discussion of functional unit latencies.

When a K-1 CPU decides to trap, all new instruction execution is suspended. A sum-
mary of all the “simultaneously” occurring traps is accumulated, as well as specific informa-
tion about each one. This Trap Summary is explained in Appendix D.

Regardless of the cause of a trap, certain restart information, referred to as the Re-
start PCs, is also accumulated. The Restart PCs (Figure 2-12) are the first three instruc-
tion addresses to fetch to resume execution of the program that trapped, and contain execu-
tion disable bits to possibly void the execution of instructions fetched at those addresses
(due to the effects of prior delayed branches and previously issued instructions). For both
precise and imprecise traps, the Restart PCs allow the program to be resumed from the
point at which execution was suspended. The exact location of the restart point depends up-
on the cause of the trap. (See the description of decode traps, below and in Appendix D.)
Three Restart PCs are necessary because of the K-1 architecture’s two-cycle delayed
branching.

In a Restart PC, the Restart IWA (Instruction Word Address) field contains bits
40..3 of the address of an instruction word [2-3]. DO and D1 are the disable bits associated
with the instructions at address Restart IWA*8. If a disable bit is set for a particular Re-
start PC, the corresponding I0 or I1 instruction will be disabled when it is fetched. It is pos-

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-26 The Trap Sequence 2.17.1

sible that both D0 and D1 will be set, indicating that no instructions from that word are to be
executed upon restart.

6 44 44 0000
3 87 10 3210
Unused Reserved Restart IWA D|D|0
0|1
(16) (7) (38)

Figure 2-12. Restart PC

Traps from load/store instructions, although imprecise, are treated specially. In order
to support paging, traps from load/store instructions must be recoverable. A further compli-
cation is that load/store instructions are also executed serially, and at the time of a trap,
there may be quite a few load/store instructions already in the pipeline. To recover from an
imprecise load/store instruction trap, it is necessary to simulate in software all of the
load/store instructions that entered the pipeline before the trap suspended further instruction
issue. All of the information needed to simulate these instructions is contained in a memory
called the load/store queue. A copy of the contents of the load/store queue is frozen upon
entering Trap State, and can be stored to memory with the slstrpd (store load/store trap da-
ta) instruction. (See Appendix D for more information on recovering from load/store traps.)

2.17.1 The Trap Sequence

At the start of a trap sequence, the K-1 saves certain trap recovery information,
which can be read with the rtrpd and slstrpd instructions, in internal memories in the CPU.
This trap data includes the Trap Summary, a set of Trap Locators for each pipeline stage
of each functional unit, the load/store queue, and the three Restart PCs. Next, the proces-
sor enters a special state called Trap State. In Trap State, a number of fields in the Pro-
cessor Status register act as if they are zero, except that a rps instruction reads out the cor-
rect processor status. The affected fields are indicated in the last column of Table 2-5. In
Trap State, as in supervisor mode, instruction mapping is done in an implementation depen-
dent fashion [2-5]. Any trap while in Trap State will cause the system to halt and the Con-
sole to be notified.

There are five types of CPU-internal traps that can occur in any combination: decode
traps, instruction fetch traps, integer overflow or check traps, floating-point traps, and
load/store traps. In addition, a special CPU-internal trap, called a reset trap, occurs at sys-
tem initialization time. (See the section on Reset Operation.)

There are five types of external interrupts that are recognized by the K-1: NMI is a
non-maskable interrupt that indicates that an over-temperature condition or other Console
panic has been detected; CKI indicates an interval timer interrupt; RPI and WPI are inter-
rupts that indicate that the Console interface’s read port and write port are full and empty, re-
spectively; and IOI indicates an I/O system interrupt. Table 2-9 lists the priority level corre-
sponding to each external interrupt.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

2.17.1 The Trap Sequence 2-27

Lastly, machine checks are error conditions that, in a correctly operating machine,
should never occur. Unlike traps or external interrupts, they are more indicative of compo-
nent, connector, or design failures, possibly of an intermittent or one-time nature. A number
of units within the K-1 CPU cooperate to detect such conditions and facilitate graceful (if pos-
sible) recovery.

Table 2-9. External Interrupt Priority Levels

Interrupt Type Priority Level
NMI -1 f
CKI
RPI
WPI
(0)1 0-14

T Non-maskable (except in Trap State),
Processor Priority Level ignored.

All decode traps, instruction fetch traps, and external interrupts are considered pre-
cise traps since they are detected prior to instruction issue. All other traps and machine
checks are imprecise traps as they occur after instruction issue. The Trap Summary reports
all traps, interrupts, and machine checks that may have occurred during the time the CPU
was not in Trap State.

The format of the Trap Summary, the Trap Locators, and the load/store queue are
implementation dependent; please see Appendix D for more information on these structures.

To begin the Trap Sequence, the processor first vectors to either address O or 128 as
determined by the type of trap (Table 2-10). General registers may be saved in memory us-
ing store instructions. (The special storecpu instruction is provided for this purpose.) Fol-
lowing that, the processor internal state may be moved to the registers with rtrpd instruc-
tions, and load/store state may be saved with slstrpd instructions.

Table 2-10. Trap Vectoring

Trap Type Vector Address

Reset 0
All other traps 128

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

2-28 The Trap Sequence 2.17.1

A return from a trap is accomplished by reloading the three Restart PCs with three
exts instructions. Since these instructions must be executed while the processor is in Trap
State, the operating system must first cause a trap (using the xtrap instruction, for exam-
ple) to enter Trap State. Appendix D gives an example of trap state software.

Note that using exts with a delayed execution control field that disables either of the
following two instructions will produce unpredictable results. Also, while the hardware
would never produce a Restart PC with I0 enabled and Il disabled, returning from Trap
State with such a PC is legal and produces the obvious result (I0 will get executed and Il
will not).

Table 2-11. DO and D1 Decoding for 32-bit Instructions

Trapping Instruction
DO D1 Instruction Executed Next
0 0 none 10
0 1 not possible not possible
1 0 I0 I1
1 1 10 and/or IlT 5

T Decode traps can only be caused by I1 in this case.

* both 10 and I1 have finished - apply same decoding to next PC

Table 2-12. DO and D1 Decoding for a 64-bit Instruction

Trapping Instruction
et S Instruction Executed Next
0 0 none 10
0 1 not possible not possible
1 0 not possible not possible
1 1 10 i

¥10 has finished - apply same decoding to next PC

For decode traps and instruction fetch traps, which are mutually exclusive, the first
Restart PC’s D0 and D1 bits give an indication of which instruction(s) caused the trap or
would have been executed next had there not been a trace trap or an instruction fetch trap.
These bits should be interpreted according to Tables 2-11 and 2-12. For the bpt, trap,
strap, and xtrap instructions, and for an illegal instruction/privilege violation, the disable bit

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

2.18 Reset Operation 2-29

of the offending instruction will be set. Therefore, upon return, the same instruction word will
be fetched, but the offending instruction will be disabled. For breakpoints this is not appropri-
ate. In this case, the original instruction should be put back and the disable bit corresponding
to the bpt instruction should be cleared. To be able to unambiguously determine which half of
the instruction word executed the breakpoint, all bpt instructions must use a 32-bit format.

2.18 Reset Operation

When the K-1 is reset, the Processor Status register is undefined, Trap State is
entered, and processing begins with a reset trap. Reset traps are distinguished from other
traps by having a different vector address. In the case of a reset trap, all other trap informa-
tion should be ignored.

After first applying power to the K-1, the state of the memory, caches, and page ta-
bles will be undefined, and in fact may contain parity or other uncorrectable errors. The mem-
ory and data cache should be cleared using zcl and dflush instructions, the instruction cache
should be cleared using ickill instructions, and the instruction and data page tables should be
cleared using lipage and Idpage instructions. The ELF flags and the general registers must
also be initialized. Bootstrap programs that initialize the state may be loaded by the Con-
sole into a small section of the instruction cache. The Console may leave some interesting in-
formation in certain general registers upon start-up. See Appendix G for details of the reset
state of the machine.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

CHAPTER 3. K-1 Instructions

The K-1 architecture has been designed with simplicity and regularity as important
goals. This is most evident in the way K-1 instructions have been organized. For each pos-
sible operation there is a corresponding unique opcode. For each opcode, a number of dif-
ferent instruction formats are available. These formats differ in their lengths and in terms of
what operands they provide to the functional units. A given opcode always performs the
same operation regardless of which instruction format is used. It is not always true, howev-
er, that a given opcode uses all of the fields available in a given format.

PC-relative branches use a special format that does not require an opcode. Other
types of branches require an opcode and are restricted to using specific formats.

In the individual instruction descriptions in the following chapters, the functional unit
that executes the instruction is explicitly named. The descriptions refer to the register file,
flags, and ELF flags as if they were arrays, R[], F[], and ELF[]. Opcodes are given in hexa-
decimal. Timing information can be found in Appendix C. The memory access function
mem(size, paddr) and the address mapping function map(addr), used in the descriptions of
the memory referencing instructions, are described at the beginning of Chapter 5.

3.1 Instruction Formats

The K-1 architecture provides eight different instruction formats. Four of these are 32-
bit, and four are 64-bit formats. The long (64-bit) formats provide long constants and target
addresses for non-PC-relative branches. 32-bit instructions must be aligned on a 4-byte
boundary, and 64-bit instructions must be aligned on an 8-byte boundary.

This chapter makes use of the terms “I0” and “I1”, which were defined in Chapter
2. An IO instruction resides in the most significant (lowest address) half of a 64-bit instruc-
tion word (at a byte address that is evenly divisible by 8). Il instructions reside in the least
significant (highest address) half of a 64-bit instruction word (at a byte address that is con-
gruent to 4 modulo 8). All long (64-bit) formats are legal only as I0 instructions. One of the
32-bit formats, the PC-relative branch format, is legal only as an I1 instruction.

The instruction format specifies the origin of operands and the location where the re-
sult is to be stored. Data operands to instructions are given the names srca, srcb, srcc, and
fsrc. Not all instructions require all of these operands. The result, if any, is stored in a regis-
ter, rdst, or a flag, fdst.

Most formats specify a 2-bit format control field, FC, an 8-bit opcode field, OP, and a
6-bit register address/flag number field, RC. srcc and rdst are specified by R[RC], fdst is
specified by F[RCZ_O] (where RC2_0 is the low three bits of the RC field), and fsrc is speci-

fied by F [OPZ-O] (where OP2_0 is the low three bits of the opcode). srca and srch are speci-

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

3-2

fied according to Table 3-1. In this table, as elsewhere, the term “short constant” format is
used to refer to either the unconditional short constant format or the conditional short con-

stant format.

Instruction Formats

Table 3-1. Source Operand Control

FC | CA srca srcb Format Legal in
10 11
10 - R[RA] R[RB] Register Yes | Yes
ox| 0 | RRAB] | SSCON)*| Shortconstant | Yes | Yes
oxt| 1 | S(SCON)*| RIRAB] ,| Shortconstant | Yes | Yes
11 0 R[RAB] t S(LCON) Long constant Xes{ :No
11 1 S(LCON) R[RAB] Long constant Yes | No
11 - - - PC-relative branch | No | Yes
11 - - - Absolute branch | Yes | No
11 v R[RA] - Register branch Yes | No
11 * R[RA] - exts Yes | No

The register format (Figure 3-1) has an FC field with the binary value 10.
tion to the standard RC field, this format contains two additional register address fields, RA
and RB, that are the register addresses of srca and srch, respectively, and two fields, I and
FLG, that control conditional execution of the instruction. If the I field is a zero, the instruc-
tion is executed only if the flag addressed by the FLG field is set (has the value one). If the
I field is a one, the instruction is executed only if the addressed flag is clear. By specifying
flag f7, which is always set, and I = 0, the instruction can be unconditionally executed. Using
the register format, an instruction can have two register operands and can write its result to
a third register. Some instructions read a third operand instead of, or in addition to, writing a

result.

332 22 11 10 000 O
109 21 65 09 432 0
FC (0)4 RC RA RB I| FLG
10 (8) (6) (6) (6) (3)

Figure 3-1. Register Instruction Format

T There are two versions of the short constant format; FC<0> controls whether this

format is conditionally executed

¥ S(x) performs format-dependent extension and shifting of a constant to 64 bits.

K-1 Architecture Manual

CONFIDENTIAL

3.1

In addi-

Amdahl Key Computer Labs

3.1 Instruction Formats 3-3

The short constant format has two forms — unconditional and conditional (Figures 3-
2 and 3-3). Both are similar to the register format except that an immediate, signed con-
stant, SCON, can be used in place of either of the register operands. The RA field is re-
named to RAB because R[RAB] can be directed to either srca or srcb under the control of
the CA field (Table 3-1). If CA is a zero, then R[RAB] is srca and the constant is srcb. If
CA is a one, then R[RAB] is srcb and the constant is srca. If FC<0> is a 0, then the instruc-
tion is in unconditional short constant format (Figure 3-2); if FC<0> is a 1, then the in-
struction is in conditional short constant instruction format (Figure 3-3). The uncondition-
al short constant format provides a 9-bit signed short constant (SCONY); the conditional
short constant format provides a 5-bit signed short constant (SCONS), but allows condi-
tional execution as in the register format.

3.32 2.2 11 100 0
109 21 65 098 0
FC oP RC RAB [C SCON9

A
00 (8) (6) (6) (9)

Figure 3-2. Unconditional Short Constant Instruction Format

332 22 11 100 000 O

109 21 65 0938 432 0

FC op RC RAB [c| scoNns |I| FLG
A

01 (8) (6) (6) (S) (3)

Figure 3-3. Conditional Short Constant Instruction Format

The long constant format (Figure 3-4) is the first of the 64-bit formats; it has an FC
field with the binary value 11. The long constant format is similar to the conditional short
constant format with the SCON field replaced by the 36-bit LCON field. As in the short
constant formats, the CA field determines the ordering of R[RAB] and the constant (in this
case LCON). The LF (LeFt) field controls the extending of LCON to 64 bits. If LF is a ze-
ro, then LCON is right-justified within 64 bits and sign-extended. However, if LF is a one,
then LCON is left adjusted within 64 bits and the low 28 bits are set to zero. An instruction
using this format may also be conditionally executed by using the I and FLG fields, as in the
register format.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

3-4 Instruction Formats 3.1

666 &3 44 44 00000 O

321 43 87 21 65432 0

FC oP RC RAB LCON C|L|I| FLG
AlF

11 (8) (6) (6) (36) (3)

Figure 3-4. Long Constant Instruction Format

The PC-relative branch format (Figure 3-5), whose FC field has a binary value of
11, is a 32-bit format that is allowed only in the I1 (low-order) half of an instruction word.
Therefore, there must be another 32-bit format instruction in the I0 (high-order) half of the
same instruction word. If a PC-relative branch format instruction were put in the 10 half of
an instruction word it would be interpreted as a long constant format instruction since both
these formats use the same FC field. They are distinguished by where they occur in a 64-bit
instruction word: the long constant format, a 64-bit instruction, must be 8-byte aligned and
thus its FC field is always in the I0 half of an instruction word.

332 00 000 O
109 76 432 0
FC PC-Relative Branch Offset DC |I| FLG
11 (23) (3) (3)

Figure 3-5. PC-Relative Branch Instruction Format

The remaining bits in the PC-relative branch format are a 23-bit signed PC-Rela-
tive Branch Offset, a 3-bit delayed execution control field DC, and the I and FLG fields.
The PC-Relative Branch Offset is a signed offset from the address of the I0 half of the in-
struction word containing the PC-relative branch instruction, expressed as a number of 4-
byte units. The branch address is calculated by summing the PC-Relative Branch Offset
and the address of the first byte of the 64-bit instruction word containing the PC-relative
branch.

The I and FLG fields in the PC-relative branch format are used to control branching:
if the flag is set and I is zero, or if the flag is clear and I is one, then the branch is taken.
(Note that this is identical to the way conditional execution is controlled in other formats.)
Execution of the instructions following the branch is controlled by the DC field (Table 3-2).

Three variations of the long constant format are used for branches: if the opcode of an
IO instruction is jump or call with an address expression operand (as opposed to a register
operand), then the instruction is decoded in absolute branch format rather than long con-
stant format; if the opcode is jump or call with a register operand or is ickill, then the instruc-
tion is decoded in register branch format rather than long constant format; if the opcode is
exts, then the instruction is decoded in exts format. In each of these cases the FC field must

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

3.1 Instruction Formats 3-5

have the binary value 11. Note that jump (call) with an address expression operand uses a
different opcode from jump (call) with a register operand; if this was not the case, these two
formats could not be distinguished. As noted in Table 3-2, the DC field also controls the PC
stored for a call instruction, which is always an offset from the address of the call instruction.

Table 3-2. Delayed Execution Control Decoding

Al Stored PC Branch Branch
DC o if call: taken not taken
Address of call + 15t 2nd 15t ond
0 ff 8 No No | Yes | Yes
1 fa 24 No | Yes | Yes | Yes
2 af 16 Yes | No | Yes | Yes
3 aa 24 Yes | Yes | Yes | Yes
4 bf 16 Yes | No No | Yes
5 bb 24 Yes | Yes | No No
6 ab 24 Yes | Yes | Yes | No
7 fb 24 No Yes | Yes No
18t = execute from first delay word
2nd = execute from second delay word
a = always
b = if branch
f = if fall-through

The absolute branch format (Figure 3-6) has the same FC field as the long con-
stant format, but is distinguished by the opcode being jump or call with an address expres-
sion operand. The RC field specifies the register in which to store the PC if the opcode is
call. The instruction is conditionally executed based on the I and FLG fields. If the instruc-
tion is executed, then the branch address is the 41-bit Absolute Branch Address field of
the instruction shifted left by two bit positions [3-1]. The delayed execution control bits op-
erate as in the PC-relative branch format. (See Table 3-2).

6 66 35 44 00 000 O
321 43 87 76 432 0
FC oP RC Absolute Branch Address DC |I| FLG
11 (8) (6) (41) (3) (3)

Figure 3-6. Absolute Branch Instruction Format

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

3-6 Instruction Formats 3:1

The register branch format (Figure 3-7) has the same FC field as the long constant
format, and is used when the opcode is jump or call with a register operand, or is ickill. The
RC field specifies the register in which to store the PC if the opcode is call. The instruction is
conditionally executed based on the I and FLG fields. If the instruction is executed, then the
branch address is taken from the register specified by the RA field. The delayed execution
control bits operate as in the PC-relative branch format. (See Table 3-2).

6 66 35 44 44 00 000 O
321 43 87 21 76 432 0
FC OoP RC RA Unused DC |I| FLG
11 (8) (6) (6) (35) (3) (3)

Figure 3-7. Register Branch Instruction Format

The exts instruction format (Figure 3-8) has the same FC field as the long constant
format, and is used when the opcode is exts. The instruction is conditionally executed based
on the I and FLG fields. If the instruction is executed, then the branch address is taken from
the register specified by the RA field. The delayed execution control bits operate as in the
PC-relative branch format, but using a delay code that could disable either of the following
two instructions will produce unpredictable results. The exts Load Address field, when mul-
tiplied by eight, gives an absolute virtual memory address whose contents are to be loaded
into the register specified by the RC field. Bits 7 and 8 are unused in this format and must be
zero. (Note that the exts Load Address is transformed to make it unique among all the
CPUs in a multiprocessor; see the exts instruction description for details.)

6 66 55 44 44 0000 000 O

3 2% 43 87 21 9876 432 0

FC OP RC RA exts Load Address DC |I| FLG
010

aiGi & (8) (6) (6) (33) (3) (3)

Figure 3-8. exts Instruction Format

Any attempt to execute an instruction with opcode jump, call, ickill, or exts as an I1
instruction, or as an I0 instruction with a format code other than 11, will result in an illegal in-
struction/privilege violation trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

CHAPTER 4. Floating-Point Instructions

Floating-point operations can be performed on 32-bit (single) or 64-bit (double) pre-
cision numbers in IEEE format (ANSI/IEEE 754-1985). The precision is specified directly
by the opcode, while the rounding mode, and ability to trap are controlled by bits in the Pro-
cessor Status register. (Note that for convert instructions, the rounding mode can be speci-
fied either by the srcb operand, or by the Processor Status register, as explained in section
2 of this chapter). There are three classes of floating-point instructions: comparisons, con-
versions and computations. The computations are carried out in the floating-point add, float-
ing-point multiply and floating-point divide/square root units, the comparisons are done in
the integer unit, and the conversions are performed in the floating-point add unit. Exact de-
scriptions of how the conversions and computations are carried out (and under what condi-
tions different types of exceptions may result) can be found in Appendix L.

Many of these operations can result in floating-point exception conditions. If an ex-
ception occurs, then the corresponding bit in the Arithmetic Exception Flags field in the Pro-
cessor Status register will be set. These flags are “sticky” in that they may be set but may
never be cleared by a floating-point instruction. The only way to clear an exception flag is
with a wps instruction, which can set the flags to any value. Note, however, that setting a
bit in the Arithmetic Exception Flags field with wps will not cause the corresponding trap,
even if enabled. The only way to cause an arithmetic trap is to execute an instruction that
causes the desired exception while traps are enabled for that exception.

4.1 Floating-Point Compare Instructions

Floating-point numbers of the same precision may be compared using the floating-
point compare instructions. The complete set of IEEE comparisons may be made with the
understanding that the order of the operands may be reversed, and that conditional branches
and conditional execution can test the negation of the flags. For example, if the programmer
wishes to determine if the double precision floating-point number in register rl is negative
and set flag f3 accordingly, he may write:

cmpgt.d 0.0,%r1,%f3

since no cmplt.d instruction is available. The only exception to this is the uge (unordered or
greater than or equal) comparison which requires two comparison instructions.

In accordance with the IEEE standard, if one or both of the operands being compared
is a NaN, then the quantities are considered to be unordered. For any two quantities, there-
fore, exactly one of the four relationships: greater than, less than, equal, or unordered will
be true. Invalid operation traps can be caused by floating-point comparisons if they are en-
abled by the appropriate bit in the Arithmetic Trap Enables field in the Processor Status
register (see Table 2-6) and if one of two other conditions occurs:

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-2

Floating-Point Compare Instructions 4.1

(1) one or both of the operands is a signaling NaN, or

(2) the operands are unordered and the comparison test considers this to be
an exception condition.

The complete list of K-1 floating-point comparison operations is given in Table 4-1, in
which the mnemonics for the operations have the following meanings:

gt greater than
ge greater than or equal
Ig less than or greater than
leg less than, equal, or greater than
eq equal
un unordered (i.e., at least one operand is a NaN)
ueq unordered or equal
ugt unordered or greater than
Table 4-1. Floating-Point Comparisons
Greater Less Exception if

S, Than Than Equi Lhapied UnoIr)dered
gt T F F F Yes

ge g F T F Yes

Ig) T F F Yes
leg T g) T F Yes

eq F F T F No

un F F F T No
ueq F F g § T No
ugt T F F T No

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.1 Floating-Point Compare Instructions 4-3

Instructions: cmp{gt,ge,lg,leg,eq,un,ueq,ugt}.d srca,srcbfdst
Opcodes: cmpgt.d 31

cmpge.d 37

cmplg.d 33

cmpleg.d 35
cmpeq.d 3B
cmpun.d 3D
cmpueq.d 3F
cmpugt.d 39

Operation: Compare 64-bit precision floating-point numbers and set flag.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: Invalid operation

Description:

The two 64-bit precision floating-point numbers, srca and srcbh, are compared and the
result of the comparison is recorded in the flag fdst. srca is the left comparand and srcb is the
right comparand. See Table 4-1 for the definitions of the individual tests. If one of the oper-
ands is a signaling NaN, or if one of the operands is a quiet NaN and Table 4-1 indicates an
exception if unordered, then an invalid operation exception will occur and the corresponding
exception flag will be set. If enabled by the corresponding Arithmetic Trap Enable in the
Processor Status register, this exception will cause a trap.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

44

Instructions:

Opcodes:

Operation:
Operands used:
Results stored:
Legal in:
Functional unit:
Exceptions:

Description:

Floating-Point Compare Instructions 4.1

cmp{gt,ge,lg,leg,eq,un,ueq,ugt}.s srca,srcb fdst

cmpgt.s 30
cmpge.s 36
cmplg.s 32

cmpleg.s 34

cmpeq.s 3A

cmpun.s 3C

cmpueq.s 3E

cmpugt.s 38

Compare 32-bit precision floating-point numbers and set flag.
srca, srcb

fdast

User or Supervisor mode

Integer

Invalid operation

The two 32-bit precision floating-point numbers, srca and srcb, are compared and the
result of the comparison is recorded in the flag fdst. srca is the left comparand and srcb is the
right comparand. See Table 4-1 for the definitions of the individual tests. If one of the oper-
ands is a signaling NaN, or if one of the operands is a quiet NaN and Table 4-1 indicates an
exception if unordered, then an invalid operation exception will occur and the corresponding
exception flag will be set. If enabled by the corresponding Arithmetic Trap Enable in the
Processor Status register, this exception will cause a trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.2 Floating-Point Conversion Instructions 4-5

4.2 Floating-Point Conversion Instructions

Numbers may be converted between 64-bit and 32-bit floating-point formats and be-
tween either of the floating-point precisions and 64-bit integer format. Conversion may re-
quire rounding and may result in floating-point overflow, underflow, invalid operation, or inex-
act exceptions (and possibly traps, if enabled). Conversion of a quiet NaN from one floating-
point format to another is possible without causing an exception.

In order to provide a means for library routines to use a fixed rounding mode (instead
of the Rounding Mode<1..0> field of the Processor Status register which could have been
set arbitrarily by an application program), all but one of the floating-point conversion instruc-
tions take a srcb argument (shown in Figure 4-1) which can directly specify the rounding
mode. The RMB bit, if set, causes the rounding mode to come from the RM field of the srcb
argument, instead of the Rounding Mode<1..0> field of the Processor Status register. If
the RMB bit is not set, the RM field is ignored and the rounding mode in the Processor Sta-
tus register is used. Note that the cvts.d (convert from single precision to double precision)
instruction will never have to round, and thus does not require a srcb argument.

6 0000
3 3210
Unused * | RM

(61) (2)

* RMB

I

Figure 4-1. Floating-Point Conversion srch Argument

In the following instruction descriptions, the phrase “according to the rounding mode
specified in srcb” should be understood to mean either the rounding mode specified in the
RM field of srcb (if the RMB bit is set), or the rounding mode specified in the Processor
Status register (if the RMB bit is not set).

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-6 Floating-Point Conversion Instructions 4.2

Instruction: cvtd.s srca,srcb,rdst

Opcode: 94

Operation: Convert a 64-bit precision floating-point number to 32-bit precision.

Operands used: srca, srchb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The 64-bit floating-point operand, srca, is rounded to 32-bit format according to the
rounding mode specified in srch, and then stored in rdst. A quiet NaN is converted without
generating any exceptions. An invalid operation exception results if srca is a signaling NaN.
If the exponent of the resulting number cannot fit in the 32-bit format’s exponent field, then a
floating-point overflow or underflow exception occurs, as appropriate. If there was any loss
of precision, then an inexact exception occurs. If an exception happens, the corresponding ex-
ception flag will be set. If enabled by the corresponding Arithmetic Trap Enables in the
Processor Status register, any of these exceptions will cause a trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.2 Floating-Point Conversion Instructions 4-7

Instruction: cvts.d srca,rdst

Opcode: 84

Operation: Convert a 32-bit precision floating-point number to 64-bit precision.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation

Description:

The 32-bit floating-point operand, srca, is converted to 64-bit format and stored in
rdst. No rounding is necessary, nor can there be any overflow or underflow. A quiet NaN is
converted without generating any exceptions. An invalid operation exception results if srca
is a signaling NaN. If an exception happens, the corresponding exception flag will be set. If
enabled by the corresponding Arithmetic Trap Enable in the Processor Status register,
this exception will cause a trap.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-8 Floating-Point Conversion Instructions 4.2

Instruction: cvtd.l srca,srcb,rdst

Opcode: 95

Operation: Convert a 64-bit precision floating-point number to a 64-bit integer.
Operands used: srca, srchb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, inexact

Description:

The 64-bit floating-point number, srca, is rounded to an integer value according to the
rounding mode specified in srch, and the result is converted to integer format and stored in
rdst. If the result for a finite input cannot be represented as a signed 64-bit integer, or if srca
is positive or negative infinity, then an invalid operation exception is signaled and the largest
integer of the same sign as srca is stored. An invalid operation exception also results if srca
is a signaling or quiet NaN, and a zero is stored. If there was any loss of precision, then an
inexact exception occurs. If an exception happens, the corresponding exception flag will be
set. If enabled by the corresponding Arithmetic Trap Enables in the Processor Status
register, any of these exceptions will cause a trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.2 Floating-Point Conversion Instructions 4-9

Instruction: cvts.l srca,srcb,rdst

Opcode: 85

Operation: Convert a 32-bit precision floating-point number to a 64-bit integer.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, inexact

Description:

The 32-bit floating-point number, srca, is rounded to an integer value according to the
rounding mode specified in srchb, and the result is converted to integer format and stored in
rdst. If the result for a finite input cannot be represented as a signed 64-bit integer, or if srca
is positive or negative infinity, then an invalid operation exception is signaled and the largest
integer of the same sign as srca is stored. An invalid operation exception also results if srca
is a signaling or quiet NaN, and a zero is stored. If there was any loss of precision, then an
inexact exception occurs. If an exception happens, the corresponding exception flag will be
set. If enabled by the corresponding Arithmetic Trap Enables in the Processor Status
register, any of these exceptions will cause a trap.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-10 Floating-Point Conversion Instructions 4.2

Instruction: cvtl.d srca,srcb,rdst

Opcode: 97

Operation: Convert a signed 64-bit integer to a 64-bit precision floating-point
number.

Operands used: srca, srch

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Inexact

Description:

The signed 64-bit integer, srca, is rounded to a 64-bit floating-point number according
to the rounding mode specified in srch. The result is stored in rdsz. If there was any loss of
precision, then an inexact exception occurs. If an exception happens, the corresponding ex-
ception flag will be set. If enabled by the corresponding Arithmetic Trap Enable in the Pro-
cessor Status register, this exception will cause a trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.2

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Floating-Point Conversion Instructions 4-11

cvtul.d srca,srcb,rdst
98

Convert an unsigned 64-bit integer to a 64-bit precision floating-point
number.

srca, srcb

rdst

User or Supervisor mode
Floating-Point Add

Inexact

The unsigned 64-bit integer, srca, is rounded to a 64-bit floating-point number accord-
ing to the rounding mode specified in srch. The result is stored in rdst. If there was any loss
of precision, then an inexact exception occurs. If an exception happens, the corresponding ex-
ception flag will be set. If enabled by the corresponding Arithmetic Trap Enable in the Pro-
cessor Status register, this exception will cause a trap.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-12 Floating-Point Conversion Instructions 4.2

Instruction: cvtl.s srca,srcb,rdst

Opcode: 96

Operation: Convert a signed 64-bit integer to a 32-bit precision floating-point
number.

Operands used: srca, srch

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Inexact

Description:

The signed 64-bit integer, srca, is rounded to a 32-bit floating-point number according
to the rounding mode specified in srch. The result is stored in rdst. If there was any loss of
precision, then an inexact exception occurs. If an exception happens, the corresponding ex-
ception flag will be set. If enabled by the corresponding Arithmetic Trap Enable in the Pro-
cessor Status register, this exception will cause a trap.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-13

4.3 Floating-Point Computation Instructions

The floating-point computation instructions perform addition, subtraction, negation,
multiplication, division, and square root. One of three floating-point functional units is in-
volved in each calculation. All operations except negation generate rounded results accord-
ing to the rounding mode in the Processor Status register, and, depending upon the opera-
tion and the input operands, can cause invalid operation, floating-point overflow, floating-
point underflow, floating-point division by zero, and inexact exceptions. Negation is consid-
ered to be a data moving operation and therefore never causes any exceptions.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-14

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Floating-Point Computation Instrucitons 4.3

neg.d srca,rdst

92

Compute the negative of a 64-bit precision floating-point number.
srca

rdst

User or Supervisor mode

Floating-Point Add

none

The negative of the 64-bit floating-point operand, srca, is computed and stored in
rdst. The operation is performed by complementing the sign bit of srca regardless of the val-
ue it represents. No exception can be generated by negation.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-15

Instruction: neg.s srca,rdst

Opcode: 82

Operation: Compute the negative of a 32-bit precision floating-point number.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: none

Description:

The negative of the 32-bit floating-point operand, srca, is computed and stored in
rdst. The operation is performed by complementing the sign bit of srca regardless of the val-
ue it represents. No exception can be generated by negation.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-16 Floating-Point Computation Instrucitons 4.3

Instruction: add.d srca,srcb,rdst

Opcode: 90 i

Operation: Add two 64-bit precision floating-point numbers.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded sum of the two 64-bit floating-point operands, srca and srcb, is computed
and stored in rdst. Rounding is performed according to the rounding mode specified in the
Processor Status register. Floating-point overflow or floating-point underflow exceptions
occur if the magnitude of a finite result is too big or too small to be represented in the 64-bit
floating-point format. If traps are disabled, the result will be infinity or zero, respectively. If
traps are enabled, the result will be as described in Appendix I. An invalid operation excep-
tion will occur if either or both of the operands is a signaling NaN, or if one of the operands is
positive infinity while the other operand is negative infinity. The result in either case will be
a quiet NaN. If there was any loss of precision, then an inexact exception occurs. If an ex-
ception happens, the corresponding exception flag will be set. If enabled by the correspond-
ing Arithmetic Trap Enables in the Processor Status register, any of these exceptions will
cause a trap. If none of the inputs is a signaling NaN, and one or more of the inputs is a quiet
NaN, then there will be no exception and the result will be a quiet NaN.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-17

Instruction: add.s srca,srchb,rdst

Opcode: 80

Operation: Add two 32-bit precision floating-point numbers.

Operands used: srca, srchb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded sum of the two 32-bit floating-point operands, srca and srcb, is computed
and stored in rdst. Rounding is performed according to the rounding mode specified in the
Processor Status register. Floating-point overflow or floating-point underflow exceptions
occur if the magnitude of a finite result is too big or too small to be represented in the 32-bit
floating-point format. If traps are disabled, the result will be infinity or zero, respectively. If
traps are enabled, the result will be as described in Appendix I. An invalid operation excep-
tion will occur if either or both of the operands is a signaling NaN, or if one of the operands is
positive infinity while the other operand is negative infinity. The result in either case will be
a quiet NaN. If there was any loss of precision, then an inexact exception occurs. If an ex-
ception happens, the corresponding exception flag will be set. If enabled by the correspond-
ing Arithmetic Trap Enables in the Processor Status register, any of these exceptions will
cause a trap. If none of the inputs is a signaling NaN, and one or more of the inputs is a quiet
NaN, then there will be no exception and the result will be a quiet NaN.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-18 Floating-Point Computation Instrucitons 4.3

Instruction: sub.d srca,srcb,rdst

Opcode: 91

Operation: Subtract one 64-bit precision floating-point number from another.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded difference, srcb - srca, of the two 64-bit floating-point operands, srca and
srchb, is computed and stored in rdst. Note that the order of the operands is backwards from
what might be expected. Rounding is performed according to the rounding mode specified in
the Processor Status register. Floating-point overflow or floating-point underflow excep-
tions occur if the magnitude of a finite result is too big or too small to be represented in the
64-bit floating-point format. If traps are disabled, the result will be infinity or zero, respec-
tively. If traps are enabled, the result will be as described in Appendix I. An invalid opera-
tion exception will occur if either or both of the operands is a signaling NaN, or if both of the
operands are infinities with the same sign. The result in either case will be a quiet NaN. If
there was any loss of precision, then an inexact exception occurs. If an exception happens,
the corresponding exception flag will be set. If enabled by the Arithmetic Trap Enables in
the Processor Status register, any of these exceptions will cause a trap. If none of the in-
puts is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will be no
exception and the result will be a quiet NaN.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-19

Instruction: sub.s srca,srcb,rdst

Opcode: 81

Operation: Subtract one 32-bit precision floating-point number from another.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Add

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded difference, srcbh - srca, of the two 32-bit floating-point operands, srca and
srcb, is computed and stored in rdst. Note that the order of the operands is backwards from
what might be expected. Rounding is performed according to the rounding mode specified in
the Processor Status register. Floating-point overflow or floating-point underflow excep-
tions occur if the magnitude of a finite result is too big or too small to be represented in the
32-bit floating-point format. If traps are disabled, the result will be infinity or zero, respec-
tively. If traps are enabled, the result will be as described in Appendix I. An invalid opera-
tion exception will occur if either or both of the operands is a signaling NaN, or if both of the
operands are infinities with the same sign. The result in either case will be a quiet NaN. If
there was any loss of precision, then an inexact exception occurs. If an exception happens,
the corresponding exception flag will be set. If enabled by the Arithmetic Trap Enables in
the Processor Status register, any of these exceptions will cause a trap. If none of the in-
puts is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will be no
exception and the result will be a quiet NaN.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-20 Floating-Point Computation Instrucitons 4.3

Instruction: mult.d srca,srch,rdst

Opcode: Al

Operation: Multiply two 64-bit precision floating-point numbers.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Multiply

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded product of the two 64-bit floating-point operands, srca and srcb, is com-
puted and stored in rdst. Rounding is performed according to the rounding mode specified in
the Processor Status register. Floating-point overflow or floating-point underflow excep-
tions occur if the magnitude of a finite result is too big or too small to be represented in the
64-bit floating-point format. If traps are disabled, the result will be infinity or zero, respec-
tively. If traps are enabled, the result will be as described in Appendix I. An invalid opera-
tion exception will occur if either or both of the operands is a signaling NaN, or if one of the
operands is infinity while the other operand is zero. The result in either case will be a quiet
NaN. If there was any loss of precision, then an inexact exception occurs. If an exception
happens, the corresponding exception flag will be set. If enabled by the Arithmetic Trap En-
ables in the Processor Status register, any of these exceptions will cause a trap. If none of
the inputs is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will
be no exception and the result will be a quiet NaN.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-21

Instruction: mult.s srca,srcb,rdst

Opcode: A0

Operation: Multiply two 32-bit precision floating-point numbers.

Operands used: srca, srchb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Multiply

Exceptions: Invalid operation, floating-point overflow, floating-point underflow, in-
exact

Description:

The rounded product of the two 32-bit floating-point operands, srca and srcb, is com-
puted and stored in rdst. Rounding is performed according to the rounding mode specified in
the Processor Status register. Floating-point overflow or floating-point underflow excep-
tions occur if the magnitude of a finite result is too big or too small to be represented in the
32-bit floating-point format. If traps are disabled, the result will be infinity or zero, respec-
tively. If traps are enabled, the result will be as described in Appendix I. An invalid opera-
tion exception will occur if either or both of the operands is a signaling NaN, or if one of the
operands is infinity while the other operand is zero. The result in either case will be a quiet
NaN. If there was any loss of precision, then an inexact exception occurs. If an exception
happens, the corresponding exception flag will be set. If enabled by the Arithmetic Trap En-
ables in the Processor Status register, any of these exceptions will cause a trap. If none of
the inputs is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will
be no exception and the result will be a quiet NaN.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-22 Floating-Point Computation Instrucitons 4.3

Instruction: div.d srca,srcb,rdst

Opcode: A3

Operation: Divide one 64-bit precision floating-point number by another.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Divide/Square Root

Exceptions: Invalid operation, division by zero, floating-point overflow, floating-

point underflow, inexact

Description:

The rounded quotient, srca + srcb, of the two 64-bit floating-point operands, srca and
srch, is computed and stored in rdst. Rounding is performed according to the rounding mode
specified in the Processor Status register. Floating-point overflow or floating-point under-
flow exceptions occur if the magnitude of a finite result is too big or too small to be represent-
ed in the 64-bit floating-point format. If traps are disabled, the result will be infinity or zero,
respectively. If traps are enabled, the result will be as described in Appendix I. An invalid
operation exception will occur if either or both of the operands is a signaling NaN, or if both of
the operands are zero, or if both of the operands are infinity. The result in any case will be a
quiet NaN. If the numerator is not zero, NaN, or infinity while the denominator is zero, then a
division by zero exception will occur and the correctly signed infinity will be produced as a re-
sult. If there was any loss of precision, then an inexact exception occurs. If an exception hap-
pens, the corresponding exception flag will be set. If enabled by the Arithmetic Trap En-
ables in the Processor Status register, any of these exceptions will cause a trap. If none of
the inputs is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will
be no exception and the result will be a quiet NaN.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-23

Instruction: div.s srca,srch,rdst

Opcode: A2

Operation: Divide one 32-bit precision floating-point number by another.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Divide/Square Root

Exceptions: Invalid operation, division by zero, floating-point overflow, floating-

point underflow, inexact

Description:

The rounded quotient, srca + srch, of the two 32-bit floating-point operands, srca and
srcb, is computed and stored in rdst. Rounding is performed according to the rounding mode
specified in the Processor Status register. Floating-point overflow or floating-point under-
flow exceptions occur if the magnitude of a finite result is too big or too small to be represent-
ed in the 32-bit floating-point format. If traps are disabled, the result will be infinity or zero,
respectively. If traps are enabled, the result will be as described in Appendix I. An invalid
operation exception will occur if either or both of the operands is a signaling NaN, or if both of
the operands are zero, or if both of the operands are infinity. The result in any case will be a
quiet NaN. If the numerator is not zero, NaN, or infinity while the denominator is zero, then a
division by zero exception will occur and the correctly signed infinity will be produced as a re-
sult. If there was any loss of precision, then an inexact exception occurs. If an exception hap-
pens, the corresponding exception flag will be set. If enabled by the Arithmetic Trap En-
ables in the Processor Status register, any of these exceptions will cause a trap. If none of
the inputs is a signaling NaN, and one or more of the inputs is a quiet NaN, then there will
be no exception and the result will be a quiet NaN.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

4-24 Floating-Point Computation Instrucitons 4.3

Instruction: sqrt.d srca,rdst

Opcode: B3

Operation: Compute the square root of a 64-bit precision floating-point number.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Divide/Square Root

Exceptions: Invalid operation, inexact

Description:

The square root of the 64-bit operand, srca, is computed and stored in rdst. Rounding
is performed according to the rounding mode specified in the Processor Status register. If
the input operand is finite and greater than or equal to zero, the result will be finite and non-
negative. If the input operand is negative zero or positive infinity, the result will be negative
zero or positive infinity, respectively. An invalid operation exception will occur if srca is ei-
ther a signaling NaN, or a negative operand other than negative zero (including negative in-
finity). The result in either case will be a quiet NaN. If there was any loss of precision, then
an inexact exception occurs. If an exception happens, the corresponding exception flag will
be set. If enabled by the Arithmetic Trap Enables in the Processor Status register, either
of these exceptions will cause a trap. If the input is a quiet NaN, then there will be no excep-
tion and the result will be a quiet NaN.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

4.3 Floating-Point Computation Instrucitons 4-25

Instruction: sqrt.s srca,rdst

Opcode: B2

Operation: Compute the square root of a 32-bit precision floating-point number.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-Point Divide/Square Root

Exceptions: Invalid operation, inexact

Description:

The square root of the 32-bit operand, srca, is computed and stored in rdst. Rounding
is performed according to the rounding mode specified in the Processor Status register. If
the input operand is finite and greater than or equal to zero, the result will be finite and non-
negative. If the input operand is negative zero or positive infinity, the result will be negative
zero or positive infinity, respectively. An invalid operation exception will occur if srca is ei-
ther a signaling NaN, or a negative operand other than negative zero (including negative in-
finity). The result in either case will be a quiet NaN. If there was any loss of precision, then
an inexact exception occurs. If an exception happens, the corresponding exception flag will
be set. If enabled by the Arithmetic Trap Enables in the Processor Status register, either
of these exceptions will cause a trap. If the input is a quiet NaN, then there will be no excep-
tion and the result will be a quiet NaN.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

CHAPTER 5. Load and Store Instructions

This chapter describes load and store instructions, which are used to move data be-
tween the registers and main memory. It also describes instructions that read, write and
test the ELF flags, instructions that are used for memory diagnostics, and instructions that
write Data Watchpoint Table entries.

5.1 Referencing Memory

The operands of load, eload and store instructions are used to specify source or des-
tination register addresses and to calculate memory addresses. A memory address may be
specified directly by an operand, or it may be calculated by multiplying the index operand by
1, 2, 4, or 8 as specified by the opcode, and adding the result to the base operand (Figure 2-
5). (The index multiplier, implicit in the opcode, is referred to as m in the instruction descrip-
tions.) Memory addresses are architecturally limited to 48 bits, and may be restricted fur-
ther by implementations of the architecture [5-1]. The opcode also implicitly specifies a
memory precision (1, 2, 4, or 8 bytes). If the memory address is not a multiple of the preci-
sion, an illegal address condition will occur.

After the address is calculated, it may be modified if either of the Byte Order Low-to-
High (Table 2-8) or Small Address Compatibility Mode bits in the Processor Status reg-
ister is set. (See Processor Status in Chapter 2). In brief, Byte Order Low-to-High will
transform the low three bits of the address according to Table 2-8, and Small Address Com-
patibility Mode will clear any bits in the address above bit 31. The loadcpu, storecpu, and
exts instructions perform an additional translation to make the address unique among all of
the CPUs in a multiprocessor [5-6]. The address resulting from these three possible trans-
formations is a virtual address and must be mapped into a physical address before accessing
any data. This translation process also produces a set of protection bits controlling read and
write access, and a bit that indicates if the data is shared. (See the section on Data Map-
ping in Chapter 2). The virtual-to-physical address mapping function depends on whether
the reference is a user or a supervisor mode reference.

The User Mode Load and User Mode Store bits control whether memory referenc-
es are treated as user mode references or supervisor mode references. This topic is dis-
cussed in the section on Data Mapping in Chapter 2, and is illustrated in Table 2-4. The Us-
er Protection bit controls whether user mode references use the protections provided in the
data page table, or whether they get supervisor “over-ride” privileges. This topic is also
discussed in the section on Data Mapping in Chapter 2.

Supervisor mode references use the identity mapping to produce a physical address;
this mapping also produces a default set of protection bits that grant both read and write ac-
cess and indicate that the page is shared. For a user mode reference, the translation process

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-2 Referencing Memory 5.1

reads the data page table at an address that is a function of the given virtual address and the
Process Key<12..0> field of the Processor Status register [5-2]. If the data page table
entry that is read is not the entry corresponding to the given address, a data map miss trap
will occur. (The data page table is a cache and cannot simultaneously map all possible pag-
es). If the entry is found, then it contains the physical address, the access bits and the
shared bit. Finally, for a user mode reference, if the User Protection bit in the Processor
Status register is off, then the read and write access permission bits are both forced on if the
page is valid (has either read or write access).

The above mapping process is performed for all memory reference instructions and
can result in a data map miss for user mode references. The access bits that are produced
are used to check whether the reference to be performed is legal. References that read mem-
ory (load, eload, pcl, etc.) require read access; references that write memory (store, dflush,
etc.) require write access; swat instructions, which both read and write memory, require both
read and write access. If the reference is not allowed and the instruction is not an eload, an
illegal access trap will occur. For eload instructions, no illegal access trap is generated; this
condition is signaled by storing zero in rdst and setting ELF[RC].

If no problems occur during the computation and mapping of the memory address, then
the requested load/store reference will take place. There are signed and unsigned versions
of all load (and eload) instructions for precisions less than 8 bytes. The signed version of a
load will sign-extend the data read to 64 bits; the unsigned version will zero-extend the da-
ta to 64 bits. For 64-bit data, the assembler accepts both signed and unsigned instruction
mnemonics (though both refer to the same opcode); load.l and loadu.l, for example, both per-
form a load of 64 bits of data into a register.

Constants may be used in place of registers as operands (see Chapter 3), except that
data to be stored in memory may not be a constant. To store a constant value in a memory lo-
cation, the constant must first be loaded into a register, as in the following sequence:

move <constant>, %rl
store.l %%rl, <memory address>

The function map(addr), which is referred to extensively in the instruction descrip-
tions later in this chapter, performs all the transformations necessary to turn its virtual ad-
dress argument into a physical address that can be used to reference memory. This includes
the effects of the Byte Order Low-to-High and Small Address Compatibility Mode bits in
the Processor Status register, the special transformations performed by the loadcpu,
storecpu, and exts instructions, and virtual-to-physical address mapping. Note that the
map function will not return a result larger than the size of a physical memory address [5-1].
Memory referencing instructions can trap during the mapping process (for traps such as ille-
gal address, data map miss, and illegal access), or after referencing memory (for traps such
as Nonexistent Memory and ECC errors).

The memory access function mem(size, paddr) refers to size consecutive bytes start-
ing at physical address paddr. That is, paddr is a result of the map(addr) function.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.2 Memory-Referencing Instruction Traps 5-3

5.2 Memory-Referencing Instructibn Traps

A number of trapping conditions are common to major classes of memory-referencing
instructions. Table 5-1 shows the traps that can occur for load-type, eload-type, store-
type, dflush, and zcl instructions. Some special load/store instructions, such as dflush, exts
and slstrpd are described in other chapters of this manual but refer to Table 5-1 to enumer-
ate the conditions under which they trap. The individual instruction descriptions that follow
refer to these trap classes instead of listing all the traps individually. Explanations of the cir-
cumstances under which these traps can occur also appear below and not with the individual
instruction descriptions. See Appendix D for more information on load/store traps.

Table 5-1. Memory Referencing Instruction Traps

Trap/Error load | eload | store [dflush| zcl
Data Map Miss 1 1 1 1 1
Illegal Address 3 2,3 3 no 4
Illegal Access 1 no 1 1 1
Data Watchpoint 5 5 5 no o
PM/CT Parity yes | yes | yes | yes | yes
ECC (1st sub-line) yes | yes | yes no no
ECC (subsequent sub-line) yes | yes | yes no no
Memory-related Parity yes | yes | yes no no
Nonexistent Memory yes 1 yes no no

! for user mode references only
2

3
4

if the Early Load Alignment Trap bit in the Processor Status register is set, and ...
if the precision is 2, 4 or 8 bytes
if sufficient low-order address bits are not zero [5-5]

5 Yes, except in Trap State which disables Data Watchpoint traps

A data map miss trap occurs when a user mode reference is not found in the data
page table. A complete description of this issue is given in Chapter 2 in the section on Data
Mapping.

An illegal address trap occurs when the address of the quantity being referenced is
not a multiple of its precision. For example, a 4-byte load must use a 4-byte aligned ad-
dress (the low two bits of the address must be zero). Note that the zcl instruction referenc-
es an entire data cache line and thus requires more low-order address bits to be zero than
load instructions (which reference eight bytes or less) [5-5].

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-4 Memory-Referencing Instruction Traps 3.2

An illegal access trap occurs when a user mode reference does not have the proper
permissions in the data page table for the requested reference. (l.e., a load must have read
permission). This topic is also discussed in Chapter 2 in the section on Data Mapping.

A data watchpoint trap occurs when the referenced address matches an address in
one of several Data Watchpoint Table entries in the load/store unit. The Data Watchpoint
Table entries (or just Data Watchpoints) can be set with the wdwp instruction. See the wd-
wp instruction description for details on setting Data Watchpoints and the conditions under
which they will cause a trap (or stop the system clocks).

A page map/cache tag parity error can occur when reading the data page table
(also called the page map) for a user mode reference, or when reading the tag fields of the
data cache (which are read for all memory references). There are both recoverable (occurring
with a data cache miss) and non-recoverable (occurring with a data cache hit) versions of
this error.

A cache miss will transfer an entire cache line of data from the memory system into
the cache, but this transfer actually comprises a series of smaller transfers of sub-lines (the
largest unit that can be read from or written to the cache at one time). The K-1 distinguishes
two types of ECC (Error Correcting Code) errors: ECC errors on the first sub-line trans-
ferred, and ECC errors on subsequent sub-lines. In order to decrease latency, the memory
system always returns the sub-line with the referenced data first. Thus, for load and eload
instructions (including ldecc, ldnecc, and loadcpu) the distinction between first and subse-
quent lines indicates whether the data written to the register file is correct or not. When da-
ta with ECC errors is returned from the memory system, the cache tags for that line are in-
validated (so that the incorrect data cannot be accessed). Note that a store instruction can
get ECC errors since a store that misses in the data cache must retrieve the referenced
cache line from the memory system. store instructions, however, don’t care which type of
ECC error they receive — the data can not be marked as valid in the data cache so the store
can not complete. Correctable and uncorrectable memory errors are logged as described in
Appendices E and G.

A memory-related parity error is caused when the processor fails to complete a
memory operation because of an internal error in the memory subsystem. This error is usual-
ly indicative of serious problems in the memory system.

A nonexistent memory error occurs when a reference outside the bounds of physical
memory is made. For a user mode reference, this can only happen if the data page table has
been set up incorrectly.

For all traps except the ECC error on subsequent sub-lines trap and the non-recover-
able version of the page map/cache tag parity error trap, all load (including ldecc, ldnecc,
and loadcpu) and eload instructions that trap will not modify their destination register.
eload instructions that detect an error but do not trap (as for an illegal access) will always
write their destination register to zero. The cases in which this can happen are: illegal ac-
cess errors (which can only happen with user mode references), illegal address errors (but
only if the Early Load Alignment Trap bit in the Processor Status register is clear), and
nonexistent memory errors for supervisor mode references. These three cases will be re-
ferred to as the “special eload error conditions” in the instruction descriptions. The section
on Early Load in Chapter 2 gives a complete description of the trap behavior of eload in-
structions.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions - 5-5

5.3 Load Instructions

The following instruction descriptions are for all the “normal” load and eload instruc-
tions. Several special types of load instructions are covered in a later section.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-6

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 53

loadu.b (srca)[srcb:1],rdst

D1

Load one byte of data from memory into a register.
srca, srcb, mem(1, map(srca + srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + srcbh). If no trap occurs during the
mapping process, then a single byte at the resultant physical address will be read from mem-
ory, zero-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap oc-
curs, and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-7

Instruction: loadu.b srca,rdst

Opcode: DO

Operation: Load one byte of data from memory into a register.
Operands used: srca, mem(1, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then a single byte at the resultant physical address will be read from memory, zero-
extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-8

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit;

Exceptions:

Description:

Load Instructions 5.3
loadu.h (srca)[srcb:m],rdst
loadu.h (srca)[srcb:1],rdst D5
loadu.h (srca)[srcbh:2],rdst D6

Load two bytes of data from memory into a register.
srca, srcb, mem(2, map(srca + m*srch))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then two bytes at the resultant physical address will be read from memory,
zero-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs,
and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-9

Instruction: loadu.h srca,rdst

Opcode: D4

Operation: Load two bytes of data from memory into a register.
Operands used: srca, mem(2, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then two bytes at the resultant physical address will be read from memory, zero-ex-
tended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-10

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 2.3

loadu.w (srca)[srcb:m],rdst

loadu.w (srca)[srcb:1],rdst D9
loadu.w (srca)[srcb:4),rdst DA

Load four bytes of data from memory into a register.
srca, srcb, mem(4, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then four bytes at the resultant physical address will be read from memory,
zero-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs,
and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

53 Load Instructions 5-11

Instruction: loadu.w srca,rdst

Opcode: D8

Operation: Load four bytes of data from memory into a register.
Operands used: srca, mem(4, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then four bytes at the resultant physical address will be read from memory, zero-ex-
tended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-12

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 53

load[u].l (srca)[srcb:m],rdst

load[u].l (srca)[srch:1],rdst CD
load[u].l (srca)[srcbh:8],rdst CE

Load eight bytes of data from memory into a register.
srca, srcb, mem(8, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then eight bytes at the resultant physical address will be read from memo-
ry and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to zero if no trap oc-

curs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

3.3

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 5-13

load[u].l srca,rdst

CC

Load eight bytes of data from memory into a register.
srca, mem(8, map(srca))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then eight bytes at the resultant physical address will be read from memory and
stored in rdst. ELF[RC] will be set to one if any trap occurs, and to zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-14 * Load Instructions 5.3

Instruction: load.b (srca)[srcb:1],rdst

Opcode: C1

Operation: Load one byte of data from memory into a register, extending the sign.
Operands used: srca, srcb, mem(1, map(srca + srcb))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca + srch). If no trap occurs during the
mapping process, then a single byte at the resultant physical address will be read from mem-
ory, sign-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap oc-
curs, and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-15

Instruction: load.b srca,rdst

Opcode: COo

Operation: Load one byte of data from memory into a register, extending the sign.
Operands used: srca, mem(1, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then a single byte at the resultant physical address will be read from memory, sign-
extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-16

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 3.3
load.h (srca)[srcb:m],rdst
load.h (srca)[srcb:1],rdst C5
load.h (srca)[srcb:2],rdst C6

Load two bytes of data from memory into a register, extending the sign.
srca, srcb, mem(2, map(srca + m*srch))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then two bytes at the resultant physical address will be read from memory,
sign-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs,
and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-17

Instruction: load.h srca,rdst

Opcode: C4

Operation: Load two bytes of data from memory into a register, extending the sign.
Operands used: srca, mem(2, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then two bytes at the resultant physical address will be read from memory, sign-ex-
tended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-18

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 53
load.w (srca)[srcb:m],rdst
load.w (srca)[srcb:1],rdst C9
load.w (srca)(srcb:4],rdst CA

Load four bytes of data from memory into a register, extending the sign.
srca, srcb, mem(4, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then four bytes at the resultant physical address will be read from memory,
sign-extended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs,
and to zero if no trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

53 Load Instructions 5-19

Instruction: load.w srca,rdst

Opcode: C8

Operation: Load four bytes of data from memory into a register, extending the sign.
Operands used: srca, mem(4, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then four bytes at the resultant physical address will be read from memory, sign-ex-
tended to 64 bits, and stored in rdst. ELF[RC] will be set to one if any trap occurs, and to
zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-20

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 53

eloadu.b (srca)[srcb:1],rdst

F1

Load one byte of data from memory into a register.
srca, srcb, mem(1, map(srca + srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca + srcb). If no error occurs during the
mapping process, then a single byte at the resultant physical address will be read from mem-
ory, zero-extended to 64 bits, and stored in rdstz. If one of the special eload error conditions
occurs, then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one
if any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

53

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 5-21

eloadu.b srca,rdst

FO

Load one byte of data from memory into a register.
srca, mem(1, map(srca))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then a single byte at the resultant physical address will be read from memory, zero-
extended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs,
then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any
error or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-22 Load Instructions 53

Instructions: eloadu.h (srca)[srcb:m],rdst
Opcodes: eloadu.h (srca)[srcb:1],rdst F5
eloadu.h (srca)[srcb:2],rdst F6
Operation: Load two bytes of data from memory into a register.
Operands used: srca, srcb, mem(2, map(srca + m*srcb))
Results stored: rdst, ELF[RC]
Legal in: User or Supervisor mode
Functional unit: Load/Store
Exceptions: eload-type (see Table 5-1)
Description:

A memory address is calculated as map(srca + m*srcb). If no error occurs during the
mapping process, then two bytes at the resultant physical address will be read from memory,
zero-extended to 64 bits, and stored in rdst. If one of the special eload error conditions oc-
curs, then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if
any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-23

Instruction: eloadu.h srca,rdst

Opcode: F4

Operation: Load two bytes of data from memory into a register.
Operands used: srca, mem(2, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then two bytes at the resultant physical address will be read from memory, zero-ex-
tended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs, then
no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any error
or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-24 Load Instructions 5.3

Instructions: eloadu.w (srca)[srcb:m],rdst
Opcodes: eloadu.w (srca)[srcb:1],rdst F9
eloadu.w (srca)[srcb:4),rdst FA
Operation: Load four bytes of data from memory into a register.
Operands used: srca, srcb, mem(4, map(srca + m*srcb))
Results stored: rdst, ELF[RC]
Legal in: User or Supervisor mode
Functional unit: Load/Store
Exceptions: eload-type (see Table 5-1)
Description:

A memory address is calculated as map(srca + m*srcb). If no error occurs during the
mapping process, then four bytes at the resultant physical address will be read from memory,
zero-extended to 64 bits, and stored in rdst. If one of the special eload error conditions oc-
curs, then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if
any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-25

Instruction: eloadu.w srca,rdst

Opcode: F8

Operation: Load four bytes of data from memory into a register.
Operands used: srca, mem(4, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then four bytes at the resultant physical address will be read from memory, zero-ex-
tended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs, then
no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any error
or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-26

Instructions::

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 5.3

eload[u].l (srca)[srcb:m],rdst

eload[u].l (srca)[srcb:1],rdst ED
eload[u].l (srca)[srcb:8],rdst EE

Load eight bytes of data from memory into a register.
srca, srcb, mem(8, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcbh). If no error occurs during the
mapping process, then eight bytes at the resultant physical address will be read from memo-
ry and stored in rdst. If one of the special eload error conditions occurs, then no trap will be
taken and zero will be stored in rdst. ELF[RC] will be set to one if any error or trap occurs,
and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-27

Instruction: eload[u].l srca,rdst

Opcode: EC

Operation: Load eight bytes of data from memory into a register.
Operands used: srca, mem(8, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then eight bytes at the resultant physical address will be read from memory and
stored in rdst. If one of the special eload error conditions occurs, then no trap will be taken
and zero will be stored in rdst. ELF[RC] will be set to one if any error or trap occurs, and to
zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-28 Load Instructions 53

Instruction: eload.b (srca)[srcb:1],rdst

Opcode: El

Operation: Load one byte of data from memory into a register, extending the sign.
Operands used: srca, srcb, mem(1, map(srca + srcb))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca + srcb). If no error occurs during the
mapping process, then a single byte at the resultant physical address will be read from mem-
ory, sign-extended to 64 bits, and stored in rdst. If one of the special eload error conditions
occurs, then no trap will be taken and zero will be stored in rdstz. ELF[RC] will be set to one
if any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

i

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 5-29

eload.b srca,rdst

EO

Load one byte of data from memory into a register, extending the sign.
srca, mem(1, map(srca))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then a single byte at the resultant physical address will be read from memory, sign-
extended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs,
then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any
error or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-30

Instructions:

Opcodes:

Operation:

Operands used:
Results stored:
Legal in:
Functional unit:
Exceptions:

Description:

Load Instructions 5.3
eload.h (srca)[srcb:m],rdst
eload.h (srca)[srch:1),rdst ES
eload.h (srca)[srcb:2],rdst E6

Load two bytes of data from memory into a register, extending the sign.
srca, srcb, mem(2, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no error occurs during the
mapping process, then two bytes at the resultant physical address will be read from memory,
sign-extended to 64 bits, and stored in rdsz. If one of the special eload error conditions oc-
curs, then no trap will be taken and zero will be stored in rdsz. ELF[RC] will be set to one if
any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-31

Instruction: eload.h srca,rdst

Opcode: E4

Operation: Load two bytes of data from memory into a register, extending the sign.
Operands used: srca, mem(2, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then two bytes at the resultant physical address will be read from memory, sign-ex-
tended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs, then
no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any error
or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-32

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Load Instructions 5.3

eload.w (srca)[srcb:m],rdst
eload.w (srca)[srcb:1],rdst E9
eload.w (srca)[srcb:4),rdst EA

Load four bytes of data from memory into a register, extending the sign.
srca, srcb, mem(4, map(srca + m*srcb))

rdst, ELF[RC]

User or Supervisor mode

Load/Store

eload-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no error occurs during the
mapping process, then four bytes at the resultant physical address will be read from memory,
sign-extended to 64 bits, and stored in rdst. If one of the special eload error conditions oc-
curs, then no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if
any error or trap occurs, and to zero if no error or trap occurs.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.3 Load Instructions 5-33

Instruction: eload.w srca,rdst

Opcode: E8

Operation: Load four bytes of data from memory into a register, extending the sign.
Operands used: srca, mem(4, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: eload-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no error occurs during the mapping
process, then four bytes at the resultant physical address will be read from memory, sign-ex-
tended to 64 bits, and stored in rdst. If one of the special eload error conditions occurs, then
no trap will be taken and zero will be stored in rdst. ELF[RC] will be set to one if any error
or trap occurs, and to zero if no error or trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-34 Store Instructions 5.4

5.4 Store Instructions

The following instruction descriptions are for all the “normal” store instructions.
Several special types of store instructions are covered in a later section.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.4 Store Instructions 5-35

Instruction: store.b srce,(srca)[srcb:1]

Opcode: D3

Operation: Store one byte of data from a register into memory.
Operands used: srcc, srca, srchb

Results stored: mem(1, map(srca + srcb))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: store-type (see Table 5-1)

Description:

A memory address is calculated as map(srca + srcb). If no trap occurs during the
mapping process, then a single byte from the least significant part of srcc will be written to
memory at the resultant physical address.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-36 Store Instructions 5.4

Instruction: store.b srce,srca

Opcode: C3

Operation: Store one byte of data from a register into memory.
Operands used: srcc, srca

Results stored: mem(1, map(srca))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: store-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then a single byte from the least significant part of srcc will be written to memory at
the resultant physical address.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.4 Store Instructions 5-37

Instructions: store.h srce,(srca)[srcb:m]
Opcodes: store.h srce,(srca)[srch:1] D7
store.h srce,(srca)[srch:2) E7
Operation: Store two bytes of data from a register into memory.
Operands used: srcc, srca, srch
Results stored: mem(2, srca + map(m*srch))
Legal in: User or Supervisor mode
Functional unit: Load/Store
Exceptions: store-type (see Table 5-1)
Description:

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then two bytes from the least significant part of srcc will be written to
memory at the resultant physical address.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-38 Store Instructions 5.4

Instruction: store.h srce,srca

Opcode: C7

Operation: Store two bytes of data from a register into memory.
Operands used: srcc, srca

Results stored: mem(2, map(srca))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: store-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then two bytes from the least significant part of srcc will be written to memory at
the resultant physical address.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.4 Store Instructions 5-39

Instructions: store.w srcc,(srca)[srcb:m]
Opcodes: store.w srce,(srca)[srch:1] DB
store.w srce,(srca)[srchb:4] EB
Operation: Store four bytes of data from a register into memory.
Operands used: srcc, srca, srcb
Results stored: mem(4, srca + m*srcbh)
Legal in: User or Supervisor mode
Functional unit: Load/Store
Exceptions: store-type (see Table 5-1)
Description:

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then four bytes from the least significant part of srcc will be written to
memory at the resultant physical address.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-40 Store Instructions 54

Instruction: store.w srce,srca

Opcode: CB

Operation: Store four bytes of data from a register into memory.
Operands used: srcc, srca

Results stored: mem(4, map(srca))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: store-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then four bytes from the least significant part of srcc will be written to memory at
the resultant physical address.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.4

Instructions:

Opcodes:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Store Instructions 5-41
store.l srcc,(srca)[srcb:m]
store.l srce,(srca)[srch:1]) DF
store.l srcc,(srca)[srcb:8] EF

Store eight bytes of data from a register into memory.
srcc, srca, srch

mem(8, map(srca + m*srcb))

User or Supervisor mode

Load/Store

store-type (see Table 5-1)

A memory address is calculated as map(srca + m*srcb). If no trap occurs during the
mapping process, then all eight bytes of srcc will be written to memory at the resultant physi-

cal address.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-42 Store Instructions 5.4

Instruction: store.l srce,srca

Opcode: CF

Operation: Store eight bytes of data from a register into memory.
Operands used: srcc, srca

Results stored: mem(8, map(srca))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: store-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then all eight bytes of srcc will be written to memory at the resultant physical ad-
dress.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.5 Special Load/Store Instructions 5-43

5.5 Special Load/Store Instructions

The instructions described in this section are more specialized than the previous load
and store instructions.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-44 Special Load/Store Instructions 5.3

Instruction: swat srca,srcc

Opcode: FC

Operation: Swap atomically eight bytes of data between memory and a register.
Operands used: srca, srcc, mem(8, map(srca))

Results stored: rdst (same register as srcc), ELF[RC], mem(8, map(srca))

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1)

Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then eight bytes at the resultant physical address will be read from memory and ex-
changed with srcc. ELF[RC] will be set to one if any trap occurs, and to zero if no trap oc-
curs.

swat is the only instruction that is guaranteed to atomically read and write a memory
location. The addressed location should be on a shared page since the operation is not guar-
anteed to be atomic between processors if the page is not shared. swat is also the only
load/store instruction that requires both read and write access, and that requires both the Us-
er Mode Load and User Mode Store bits of the Processor Status register to have the
same value.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

=

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Special Load/Store Instructions 5-45

loadcpu srca,rdst
8D

Load eight bytes of data from memory into a register, transforming the
address to be unique to one CPU in a multiprocessor.

srca, mem(8, map(srca))
rdst, ELF[RC]

User or Supervisor mode
Load/Store

load-type (see Table 5-1)

A memory address is calculated as map(srca), which for this instruction includes an
implementation-dependent transformation to make the address unique among all of the
CPUs in a multiprocessor [5-6]. If no trap occurs during the mapping process, then eight
bytes at the resultant physical address will be read from memory and stored in rdst.
ELF[RC] will be set to one if any trap occurs, and to zero if no trap occurs.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-46

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Special Load/Store Instructions 5

storecpu srce,srca
8F

Store eight bytes of data from a register into memory, transforming the
address to be unique to one CPU in a multiprocessor.

srcc, srca
mem(8, map(srca))

User or Supervisor mode
Load/Store

store-type (see Table 5-1)

A memory address is calculated as map(srca), which for this instruction includes an
implementation-dependent transformation to make the address unique among all of the
CPUs in a multiprocessor [5-6]. If no trap occurs during the mapping process, then all eight
bytes of srcc will be written to memory at the resultant physical address.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.5 Special Load/Store Instructions 5-47

Instruction: ldecc srca,rdst

Opcode: DC

Operation: Load ECC bits from memory.

Operands used: srca, mem(8, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1), but without ECC errors
Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then the cache will be consulted to see if it contains the addressed data. If it does,
then the instruction completes as if it were a load.l (loading whatever data is in the data
cache). If it does not (if there is a cache miss), then the ECC bits for the line containing the
resultant physical address will be read from memory and stored in the cache. The instruction
will then complete as if there were no cache miss. ELF[RC] will be set to one if any trap oc-
curs, and to zero if no trap occurs. See Appendix E for details of how the ECC bits are
stored and accessed.

Note that using this instruction on shared data will produce unpredictable results (if
some other processor has the data). For this reason, ldecc should be used with great care
as a supervisor mode reference (since supervisor mode references are always shared).

For diagnostics to properly use this instruction, the ECC bits should be verified a line
at a time, and the desired line should be flushed from the data cache before the first ldecc in-
struction for that line.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-48 Special Load/Store Instructions 2.5

Instruction: ldnecc srca,rdst

Opcode: BC

Operation: Load uncorrected data from memory.

Operands used: srca, mem(8, map(srca))

Results stored: rdst, ELF[RC]

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: load-type (see Table 5-1), but without ECC errors
Description:

A memory address is calculated as map(srca). If no trap occurs during the mapping
process, then the cache will be consulted to see if it contains the addressed data. If it does,
then the instruction completes as if it were a load.l. If it does not (if there is a cache miss),
then the line containing the resultant physical address will be read from memory and stored
in the cache. However, the data will be uncorrected, i.e., the error correction possible using
the ECC bits in memory will not be in effect. The instruction will then complete as if there
were no cache miss. ELF[RC] will be set to one if any trap occurs, and to zero if no trap oc-
curs.

Note that using this instruction on shared data will produce unpredictable results (if
some other processor has the data). For this reason, ldnecc should be used with great care
as a supervisor mode reference (since supervisor mode references are always shared).

For diagnostics to properly use this instruction, the ECC bits should be verified a line
at a time, and the desired line should be flushed from the data cache before the first ldnecc
instruction for that line.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

5.6 ELF Flag Instructions 5-49

5.6 ELF Flag Instructions

These instructions are used to test ELF flags, trapping if one is set, and to read and
write the ELF flags for context switching.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-50

Instruction:
Opcode:
Operation:
Operands used:
Results stored:
Legal in:
Functional unit:
Exceptions:

Description:

ELF Flag Instructions

echk rdst

F3

Test an ELF bit and trap if it is set.
ELF[RC]

none

User or Supervisor mode
Load/Store

echk

5.6

If the ELF flag whose number is given by the instruction’s RC field is set, then an

echk trap occurs.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

5.6 ELF Flag Instructions 5-51

Instruction: relf rdst

Opcode: C2

Operation: Read early load fault bits into a register
Operands used: ELF<63..0>

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Load/Store

Exceptions: none

Description:

The early load fault bits, ELF[RC]<63..0>, corresponding to registers r63 through r0, l
are written to rdst.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-52

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

ELF Flag Instructions

welf srca,srchb

D2

Write early load fault bits.
srca, srcb

ELF<63..32> or ELF<31..0>
User or Supervisor mode
Load/Store

none

5.6

If the low bit of srch is a zero, then the early load fault bits, ELF[RC]<31..0>, corre-
sponding to registers r31 through r0, are written from the low-order half of srca. If the low
bit of srcb is a one, then ELF[RC]<63..32>, corresponding to registers r63 through r32, are
written from the low-order half of srca.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

3 Data Watchpoint 5-53

5.7 Data Watchpoint

A data watchpoint is a breakpoint on load/store reference addresses. Data watch-
points are stored in the Data Watchpoint Table. A Data Watchpoint Table entry specifies
a virtual address to be compared with addresses output by the Load/Store functional unit.
(See Table 5-1, which lists the instruction classes that can take data watchpoint traps.) If
enabled, an address match can cause a data watchpoint trap. The low three bits of the ad-
dress are not compared, so care must be taken when setting up a data watchpoint for an 8-,
16-, or 32-bit quantity: spurious data watchpoint traps could occur on accesses to other
parts of the same 64-bit word.

The format of a Data Watchpoint Table entry is shown in Figure 5-1.

6 44 0000
3 87 3210
Unused Data Watchpoint Word Address S
O|S
(16) (45)

Figure 5-1. Data Watchpoint Table Entry Format

The Data Watchpoint Word Address field specifies bits <47..3> of the address to
be compared [5-3]. The ENA bit must be set to enable this Data Watchpoint Table entry;
if this bit is clear, this data watchpoint will not trap or cause the clocks to be stopped. The
USR bit controls whether address matches are detected for user or for supervisor references.
If the USR bit is set, then only user mode references will be watched; if the USR bit is clear,
then only supervisor mode references will be watched. Data watchpoint traps will not occur
in Trap State. The SO (store only) bit, if set, disables data watchpoint trapping except for
store, swat, and zcl instructions. If the SO bit is clear, then both loads and stores can take
data watchpoint traps.

The Console can enable data watchpoints to stop the processor’s clocks and interrupt
the Front-End Processor. See Appendix G for details of the Front-End Processor. Even
though data watchpoint traps cannot be taken in Trap State, data watchpoint clocks stops
can happen in Trap State.

A few instructions are treated specially. The exts and slstrpd instructions will never
cause data watchpoint traps, though they can cause clock stops. The dflush and pcl instruc-
tions will never cause data watchpoint traps or clock stops. The zcl instruction compares
only the cache line address (ignoring more low-order bits than other compares).

The size of the Data Watchpoint Table is implementation-dependent [5-4].
The contents of the Data Watchpoint Table cannot be read.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

5-54 Data Watchpoint 5.7

Instruction: wdwp srca,srch

Opcode: FB

Operation: Write a Data Watchpoint Table entry.
Operands used: srca, srcb

Results stored: Data Watchpoint Table[srch]

Legal in: Supervisor mode only

Functional unit: Load/Store

Exceptions: Illegal instruction/privilege violation
Description:

If the processor is in user mode, then an illegal instruction/privilege violation trap will
occur. If the processor is in supervisor mode then the Data Watchpoint Table entry ad-
dressed by the low-order bits of srch will be written from the srca operand. The format of a I
Data Watchpoint Table entry is shown in Figure 5-1. =

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

CHAPTER 6. Integer Instructions

The integer instructions encompass a great variety of operations, including boolean,
shift, compare, bit count and bit reverse, data moving, and signed and unsigned arithmetic op-
erations. Operands are usually 64-bit integers, although certain integer operations work on
8-, 16-, 32-, 33-, and 53-bit quantities.

6.1 Integer Arithmetic Instructions

Integer operations use two’s complement arithmetic. Whether the most significant
bit is considered a sign bit is relevant only when comparisons are involved, or when the re-
sult has more bits of significance than the operands, such as in multiply. In those cases, both
signed and unsigned versions of the operation are provided. All operations are performed in
the integer functional unit except for signed and unsigned integer multiply and divide (which
are done in the floating-point multiply and floating-point divide/square root units), and
move.d (which is done in the floating-point add unit).

Certain common operations, such as inc (incrementing), dec (decrementing), and neg
(negating), are not provided in hardware because they can be obtained using existing opera-
tions with constant operands at no cost in time or space. (See Chapter 3.) The assembler,
however, performs these translations automatically, making it appear that these operations
exist. Refer to The K-1 Assembly Language Reference Manual for more details.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-2 Integer Arithmetic Instructions 6.1

Instruction: add srca,srcb,rdst
Opcode: SA

Operation: Add two 64-bit integers.
Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode
Functional unit: Integer

Exceptions: none

Description:

The low 64 bits of the sum of two 64-bit integer operands, srca and srcb, are stored in
rdst.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Arithmetic Instructions 6-3

addc f0,srca,srcb,rdst

58

Add two 64-bit integers with carry in and out.
f0, srca, srcb

rdst, 0

User or Supervisor mode

Integer

none

The sum, srca + srcb + 1 - 10, of two 64-bit integer operands, srca and srcb, and the
complement of flag f0 is computed and the low 64 bits of the result are stored in rdst. In addi-
tion, the complement of the carry out of the sum is returned to f0. This instruction is intended
for use in multiple precision arithmetic.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-4 Integer Arithmetic Instructions 6.1

Instruction: addt srca,srcb,rdst

Opcode: 59

Operation: Add two 64-bit signed integers with trap on overflow.
Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: Integer overflow

Description:

The low 64 bits of the sum of two 64-bit integer operands, srca and srcb, are stored in
rdst. An integer overflow trap will occur if the result overflows. Note that such a trap will oc-
cur regardless of the state of the Arithmetic Trap Enables in the Processor Status regis-
ter.

This instruction can be used to implement range checking for languages such as Pas-
cal and Ada.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit;

Exceptions:

Description:

Integer Arithmetic Instructions

sub srca,srcb,rdst
4A

Subtract two 64-bit integers.
srca, srch

rdst

User or Supervisor mode
Integer

none

The difference, srch - srca, of two 64-bit integer operands, srca and srcb, is computed

and the low 64 bits of the result are stored in rdst.

backwards from what might be expected.

Amdahl Key Computer Labs CONFIDENTIAL

Note that the order of the operands is

K-1 Architecture Manual

6-6 Integer Arithmetic Instructions 6.1

Instruction: subb f0,srca,srcb,rdst

Opcode: 48

Operation: Subtract two 64-bit integers with borrow in and out.
Operands used: f0, srca, srcb

Results stored: rdst, f0

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The difference, srcb - srca - f0, of two 64-bit integer operands, srca and srcbh, and a
borrow from flag f0 is computed and the low 64 bits of the result are stored in rdst. In addi-
tion, the borrow out of the sum is returned to f0. This instruction is intended for use in multi-
ple precision arithmetic. It can also be used to maintain a decrementing loop counter, and
will set flag f0 when the counter is decremented from a positive number or zero to a negative
number.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1 Integer Arithmetic Instructions 6-7

Instruction: subt srca,srcb,rdst

Opcode: 49

Operation: Subtract two 64-bit signed integers with trap on overflow.
Operands used: srca, srch

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: Integer overflow

Description:

The difference, srch - srca, of two 64-bit signed integer operands, srca and srcb, is
computed and the low 64 bits of the result are stored in rdst. An integer overflow trap will
occur if the result overflows. Note that such a trap will occur regardless of the state of the
Arithmetic Trap Enables in the Processor Status register.

This instruction can be used to implement range checking for languages such as Pas-
cal and Ada.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-8 Integer Arithmetic Instructions 6.1

Instruction: multlss srca,srcb,rdst

Opcode: A5

Operation: Multiply two 53-bit signed integers and return the low part of the re- I
sult.

Operands used: srca, srch

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-point Multiply

Exceptions: none

Description:

The least significant 64 bits of the product of two 53-bit signed integer operands, srca
and srcb, is computed and stored in rdst. The sign bit of the operands is assumed to be in bit
position 52, and bits 63 through 53 are ignored. A 106-bit signed product is calculated and
the low 64 bits are stored as the result. The multhss instruction can be used to obtain the
high-order portion of the product.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Arithmetic Instructions 6-9

multhss srca,srcb,rdst
A7

Multiply two 53-bit signed integers and return the high part of the re- I
sult.

srca, srch

rdst

User or Supervisor mode
Floating-point Multiply

none

The most significant 42 bits of the product of two 53-bit signed integer operands, srca
and srcb, is computed and stored in rdst. The sign bit of the operands is assumed to be in bit
position 52, and bits 63 through 53 are ignored. A 106-bit signed product is calculated and
the high 42 bits are sign-extended to 64 bits and stored as the result. Note that the sign bit
of the result gives the true sign of the product. The multlss instruction can be used to obtain
the low-order portion of the product.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-10 Integer Arithmetic Instructions 6.1

Instruction: multluu srca,srcb,rdst

Opcode: A9

Operation: Multiply two 53-bit unsigned integers and return the low part of the re-
sult.

Operands used: srca, srcb

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Floating-point Multiply

Exceptions: none

Description:

The least significant 64 bits of the product of two 53-bit unsigned integer operands, s7-
ca and srcb, is computed and stored in rdst. A 106-bit product is calculated and the low 64
bits are stored as the result. The multhuu instruction can be used to obtain the high-order
portion of the product.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1

Instruction:
Opcode:

Operation:

Operands used:
Results stored:
Legal in:
Functional unit:
Exceptions:

Description:

Integer Arithmetic Instructions 6-11

multhuu srca,srch,rdst

AB

Multiply two 53-bit unsigned integers and return the high part of the re-
sult.

srca, srcb

rdst

User or Supervisor mode
Floating-point Multiply

none

The most significant 42 bits of the product of two 53-bit unsigned integer operands, sr-
ca and srch, is computed and stored in rdst. A 106-bit unsigned product is calculated and the
high 42 bits are zero-extended to 64 bits and stored as the result. The multluu instruction
can be used to obtain the low-order portion of the product.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-12

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Arithmetic Instructions 6.1

multlus srca,srchb,rdst
AD

Multiply a 53-bit unsigned integer and a 53-bit signed integer and re-
turn the low part of the result.

srca, srcbh

rdst

User or Supervisor mode
Floating-point Multiply

none

The least significant 64 bits of the product of a 53-bit unsigned integer operand, srca,
and a 53-bit signed integer operand, srch, is computed and stored in rdst. The sign bit of srcb
is assumed to be in bit position 52, and bits 63 through 53 are ignored. A 106-bit signed
product is calculated and the low 64 bits are stored as the result. The multhus instruction
can be used to obtain the high-order portion of the product.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Arithmetic Instructions 6-13

multhus srca,srcb,rdst
AF

Multiply a 53-bit unsigned integer and a 53-bit signed integer and re- I
turn the high part of the result.

srca, srcb

rdst

User or Supervisor mode
Floating-point Multiply

none

The most significant 42 bits of the product of a 53-bit unsigned integer operand, srca,
and a 53-bit signed integer operand, srcb, is computed and stored in rdst. The sign bit of srcb
is assumed to be in bit position 52, and bits 63 through 53 are ignored. A 106-bit signed
product is calculated and the high 42 bits are sign-extended to 64 bits and stored as the re-
sult. Note that the sign bit of the result gives the true sign of the product. The multlus in-
struction can be used to obtain the low-order portion of the product.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-14

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Arithmetic Instructions 6.1

divsst srca,srcb,rdst
A4

Divide a 33-bit signed integer by a 33-bit signed integer and return a
64-bit signed integer quotient using truncate rounding mode.

srca, srcbh

rdst

User or Supervisor mode
Floating-point Divide

Integer divide

The truncated 64-bit signed integer quotient, srca + srcb, of the two 33-bit signed in-
teger operands, srca and srcb, is computed and stored in rdst. If srcb is zero (in its low 33
bits), the result will be zero and, if enabled by the Integer Divide Trap Enable bit in the
Processor Status register, an integer divide trap will occur.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.1 Integer Arithmetic Instructions 6-15

Instruction: divssr srca,srcb,rdst
Opcode: A6
Operation: Divide a 33-bit signed integer by a 33-bit signed integer and return a

64-bit signed integer quotient.

Operands used: srca, srch

Results stored: rdst

Legal in: User or Supervisor mode
Functional unit: Floating-point Divide
Exceptions: Integer divide
Description:

The rounded 64-bit signed integer quotient, srca + srcb, of the two 33-bit signed inte-
ger operands, srca and srcb, is computed and stored in rdst. Rounding is performed according
to the Rounding Mode<1..0> field of the Processor Status register. If srcb is zero (in its
low 33 bits), the result will be zero and, if enabled by the Integer Divide Trap Enable bit in
the Processor Status register, an integer divide trap will occur.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-16 Integer Compare Instructions 6.2

6.2 Integer Compare Instructions

Only a very small number of compare instructions are necessary to provide a com-
plete set of operations because the order of operands may be easily switched, and because
the complements of flags may be tested as easily as the true version. (See Chapter 3).
Therefore, there are only three types of integer compare instructions. One type tests for
equal and may be used with either signed or unsigned operands. The other two types test
for greater than, one with signed operands and the other with unsigned operands.

Each type of comparison is available in four precisions for operating on 1-, 2-, 4- or 8-
byte operands. For precisions less than 8 bytes, the least significant part of the 64-bit regis-
ter operands contain the data to be compared.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.2 Integer Compare Instructions 6-17

Instruction: cmpeq.b srca,srcb fdst

Opcode: 27

Operation: Compare two 8-bit integers for equality.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two 8-bit operands, srca and srcb, are compared. If they are equal, then the flag
fdst is set. If they are different, then the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-18 Integer Compare Instructions 6.2

Instruction: cmpeq.h srca,srchb fdst

Opcode: 26

Operation: Compare two 16-bit integers for equality.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two 16-bit operands, srca and srch, are compared. If they are equal, then the flag
fdst is set. If they are different, then the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.2 Integer Compare Instructions 6-19

Instruction: cmpeq.w srca,srcb fdst

Opcode: 25

Operation: Compare two 32-bit integers for equality.
Operands used: srca, srch

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two 32-bit operands, srca and srch, are compared. If they are equal, then the flag
fdst is set. If they are different, then the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-20 Integer Compare Instructions 6.2

Instruction: cmpeq.l srca,srcb fdst

Opcode: 24

Operation: Compare two 64-bit integers for equality.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two 64-bit operands, srca and srcb, are compared. If they are equal, then the flag
fdst is set. If they are different, then the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.2 Integer Compare Instructions 6-21

Instruction: cmpgt.b srca,srcb fdst
Opcode: 23

Operation: Compare two 8-bit signed integers.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode
Functional unit: Integer

Exceptions: none

Description:

The two signed 8-bit operands, srca and srch, are compared. If srca is greater than
srcb, then the flag fdst is set, otherwise the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-22

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Compare Instructions

cmpgt.h srca,srcb fdst

22

Compare two 16-bit signed integers.
srca, srcb

fdst

User or Supervisor mode

Integer

none

6.2

The two signed 16-bit operands, srca and srcb, are compared. If srca is greater than
srcb, then the flag fdst is set, otherwise the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

6.2

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Compare Instructions

cmpgt.w srca,srcb fdst

21

Compare two 32-bit signed integers.
srca, srcb

fdst

User or Supervisor mode

Integer

none

6-23

The two signed 32-bit operands, srca and srcb, are compared. If srca is greater than
srcb, then the flag fdst is set, otherwise the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL

K-1 Architecture Manual

6-24

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Integer Compare Instructions

cmpgt.l srca,srcb fdst

20

Compare two 64-bit signed integers.
srca, srch

fdst

User or Supervisor mode

Integer

none

6.2

The two signed 64-bit operands, srca and srcb, are compared. If srca is greater than
srcb, then the flag fdst is set, otherwise the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

6.2 Integer Compare Instructions 6-25

Instruction: cmpugt.b srca,srcb fdst
Opcode: 2B

Operation: Compare two 8-bit unsigned integers.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two unsigned 8-bit operands, srca and srch, are compared. If srca is greater than
srch, then the flag fdst is set, otherwise the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-26 Integer Compare Instructions 6.2

Instruction: cmpugt.h srca,srch. fdst

Opcode: 2A

Operation: Compare two 16-bit unsigned integers.
Operands used: srca, srcb

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two unsigned 16-bit operands, srca and srcb, are compared. If srca is greater
than srcb, then the flag fdst is set, otherwise the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.2 Integer Compare Instructions 6-27

Instruction: cmpugt.w srca,srcb fdst

Opcode: 29

Operation: Compare two 32-bit unsigned integers.
Operands used: srca, srcbh

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two unsigned 32-bit operands, srca and srcb, are compared. If srca is greater
than srcb, then the flag fdst is set, otherwise the flag is cleared.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-28 Integer Compare Instructions 6.2

Instruction: cmpugt.l srca,srcb fdst

Opcode: 28

Operation: Compare two 64-bit unsigned integers.
Operands used: srca, srch

Results stored: fdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

The two unsigned 64-bit operands, srca and srcb, are compared. If srca is greater
than srcb, then the flag fdst is set, otherwise the flag is cleared.

K-1 Architecture Manual CONFIDENTIAL Amdahl Key Computer Labs

6.3 Data Moving Instructions 6-29

6.3 Data Moving Instructions

The data moving instructions move quantities of any data type. One class of these in-
structions can move one of two operands based on the value of a flag.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-30

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Data Moving Instructions

move srca,rdst
4B

Move a 64-bit integer.
srca

rdst

User or Supervisor mode
Integer

none

The 64-bit integer, srca, is stored unchanged in rdst.

K-1 Architecture Manual CONFIDENTIAL

6.3

Amdahl Key Computer Labs

6.3 Data Moving Instructions 6-31

Instruction: move.d srca,rdst
Opcode: 93

Operation: Move a 64-bit integer.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode
Functional unit: Floating-point Add
Exceptions: none

Description:

The 64-bit integer, srca, is stored unchanged in rdst. This is the same operation as
move but is performed in the floating-point add functional unit, which can run in parallel with
the integer unit, thus providing more bandwidth for copying data between registers. The tim-
ing of this instruction is different than that of move. See Appendix C for details.

Amdahl Key Computer Labs CONFIDENTIAL K-1 Architecture Manual

6-32 Data Moving Instructions

Instruction: zext.b srca,rdst

Opcode: 2C

Operation: Zero-extend an 8-bit integer to 64 bits.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

6.3

The 8-bit integer, srca, is zero-extended to 64 bits and stored in rdst.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

6.3

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Data Moving Instructions

zext.h srca,rdst

2D

Zero-extend a 16-bit integer to 64 bits.
srca

rdst

User or Supervisor mode

Integer

none

6-33

The 16-bit integer, srca, is zero-extended to 64 bits and stored in rdst.

Amdahl Key Computer Labs CONFIDENTIAL

K-1 Architecture Manual

6-34 Data Moving Instructions
Instruction: zext.w srca,rdst

Opcode: 2E

Operation: Zero-extend a 32-bit integer to 64 bits.
Operands used: srca

Results stored: rdst

Legal in: User or Supervisor mode

Functional unit: Integer

Exceptions: none

Description:

6.3

The 32-bit integer, srca, is zero-extended to 64 bits and stored in rdst.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

6.3

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Data Moving Instructions

sext.b srca,rdst

4C

Sign-extend an 8-bit integer to 64 bits.
srca

rdst

User or Supervisor mode

Integer

none

6-35

The 8-bit integer, srca, is sign-extended to 64 bits and stored in rdst.

Amdahl Key Computer Labs CONFIDENTIAL

K-1 Architecture Manual

6-36

Instruction:
Opcode:

Operation:

Operands used:

Results stored:

Legal in:

Functional unit:

Exceptions:

Description:

Data Moving Instructions

sext.h srca,rdst

4D

Sign-extend a 16-bit integer to 64 bits.
srca

rdst

User or Supervisor mode

Integer

none

6.3

The 16-bit integer, srca, is sign-extended to 64 bits and stored in rdst.

K-1 Architecture Manual CONFIDENTIAL

Amdahl Key Computer Labs

6.3

Instruction:
Opcode:
Operation:
Operands used:
Results stored:
Legal in:
Functional unit:
Exceptions:

Description:

Data Moving Instructions

s<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>