EBS 314

Revision No.1

EBS/1231 System
Programming

Manual

ACCUMULATOR INSTRUCTION
CONTROL
0o 32
8 24
16 16
24 8
32 0

CONTROL

REGISTER SELECT

LITTON ELECTRONIC BUSINESS SYSTEMS [B

AUTOMATED BUSINESS SYSTEMS

1231

PROGRANMMING
MANUAL

EBS-314

July 1969

Automated Business Systems [B
a division of Litton Industries

Copyright 1969. Litton Business Systems, Inc. All rights reserved.

TABLE OF CONTENTS

1231 PROGRAMMING MANUAL

TABLE OF CONTENTS

TITLE PAGE NO.

Table of Contents 1

SECTION I. INTRODUCTION

Purpose
General

=
1
N

SECTION II. PROGRAM AND DATA STORAGE

Working Registers 2-1
A Register 2-1
B Register 2-1
Storage Registers 2-1
P Register 2-1
V Register 2-1
D Register 2-1

SECTION III. PROGRAMMING PROCEDURE

Description 3-1
Summary of Symbolic Instructions for
the EBS/1231 Operating System 3-3
Transfer Command 3-3
Arithmetic Command 3-3

- Jump Commands 3-3
Input-Output Commands 3-4
Distribution Commands 3-4
Special Commands 3-4

SECTION IV, INSTRUCTIONS

Description 4-1
Transfer Instructions 4-2
Clear 4-2
Exchange AB - 4-2
Exchange VOO 4-3
Bring 4-3
Store 4-4

1231 PROGRAMMING MANUAL

TABLE OF CONTENTS (Continued)

TITLE PAGE NO.

SECTION IV. INSTRUCTIONS (CONTINUED)

Arithmetic Instructions 4-5
Add 4-5
Negate A 4-5
Negate B 4-6
Update 4-6
Accumulate 4.7
Multiply - Divide 4-8

Jump Instructions 4-9
Automatic Jump 4-9
Jump Unconditional 4-9
Jump Zero 4-10
Jump Positive 4-11
Jump Mark 4-11
Jump Return 4-12

Input and Output Instructions 4-13
Select Channels 4-13
Input 4-14
Input (P-03 compatibility) 4-15
Skip Field from Tape 4-17
Output 4-17

Construction of Output Format
Constants (Edit Words) 4-18

Duplicate 4-20
Character Output 4-20
Single Character Input 4-21
Single Character Output 4-21
Tab 4-21
Alpha-Numeric Input 4-21
Alpha-Numeric Output 4-22
Input of ASCII-Coded Tape 4-22
Distribution Instructions 4-23
Clear Distribution Registers 4-23
Bring a Distribution Register .4-23
Store to a Distribution Register 4-24
Search for a Non-Zero Value 4-24
Distribute 4-24

To Construct a Distribution
Edit Word 4-28
A Comprehensive Use of the
DIST Command 4-29

1231 PROGRAMMING MANUAL

TABLE OF CONTENTS (Gontinued)

TITLE PAGE NO.

SECTION IV, INSTRUCTIONS (CONTINUED)

Background 4-29
Designing the System 4-29
Processing the Analysis 4-30
Load a Split Distribution
Register 4-32
Store a Split Distribution
Register 4-33
Special Instructions : 4-34
Program Interrupt 4-34
Calculate 4-34
Check Digit Verification 4-34
Conversion and Duplicating Instructions 4-36
How to Construct a Conversion Table 4-37
A. Explanation 4-37
B. The Code Conversion Chart 4-38
C. To Construct a Conversion
Table 4-38
D. To Test the Table 4-39
E. To Punch the Conversion
Table in Tape 4-40
SPEC - To Output Any Code Without
Parity Control 4-40

SECTION V., THE OPERATING UTILITY SYSTEM (OPUS)

Introduction 5-1
How to Use OPUS 5-2
Start-Up 5-2
Restart 5-2
Description of OPUS Service Routines 5-2
1. Program Creation Routines 5-3
Reset Memory to the
Origin-Pattern 5-3
Register Mode Control 5-3
Octal (O) or Decimal
(N) Format 5-4
Store Instructions
- or Data 5-4
Print Out Program or
Storage Registers 5-7

1231 PROGRAMMING MANUAL

TABLE OF CONTENTS (Continued)

TITLE PAGE NO.

SECTION V. THE OPERATING UTILITY SYSTEM (OPUS) -continued-

Punch Tape Leader 5-8
Punch Program Into Tape 5-8
Verification of Program

Tape 5-8

2., Program Testing Routines 5-9

Change the Contents of
a Register 5-9
Print Out Register A 5-1
Print- Out Register B 5-1
3. Program Operation Routines 5-1
Read Program Tape Into
Memory 5-12
To Process an Applica-
tion Program 5-12
Summary 5-13

SECTION VI. ERROR HALTS

Parity and Other Errors
Distribution Errors
Output Parity Error

o O OV
1
N w»n -

-4-

1231 PROGRAMMING MANUAL

TABLE OF CONTENTS (Continued)

TITLE PAGE NO.

SECTION VII., APPENDICES

Appendix I. Edit Word Formats 7-1

Appendix II. Table of Character
Output Codes 7-2

Appendix III. Model 11 Keyboard
Layout 7-3

Appendix IV, Origin-Patterns for
P and V Registers 7-4
P-Register Origin-
Patterns 7-5
V-Register Origin-
Patterns 7-6

Appendix V. EBS/1231 System Code
Chart 7-7

SECTION |

INTRODUCTION

1231 PROGRAMMING MANUAL

L. INTRODUCTION

PURPOSE

This manual intends to supply a programmer with a description of the
programming characteristics of the Litton EBS/1231 System and those of
the EP31 Operating Program. The manual deals with basic programming
as it pertains to the EBS/1231 System only.

Before the EBS/1231 can be programmed, its physical characteristics must
be fully understood. The EBS/1231 Operator Manual, EBS-315, describes
these characteristics and must be used in conjunction with this manual
for a thorough knowledge of the EBS/1231.

1-1

1231 PROGRAMMING MANUAL

GENERAL

The 1231-EP31 System is comprised of the Litton EBS/1231 System and the
EP31 Operating Utility System (OPUS).

OPUS provides a series of functions which can be programmed to suit a
particular application. OPUS also provides the essential service rou-
tines to assist the programmer in the creation and testing of applica-
tion programs. OPUS is permanently stored in the memory unit of the
EBS/1231 Processor making these functions and service routines available
whenever required.

The Litton EBS/1231 System is comprised of the following components:
a 1602 Processor, a Model 11 Keyboard, a Model 30 Printer, and a Model
60/70 Reader-Punch.

This System has extremely flexible forms and media capabilities.

The printer can handle: pressure fed roll, continuous or cut journals;
tractor fed continuous forms, front fed ledger or cut forms.

The reader/punch can handle: continuous or cut edge-punched cards, as
well as paper and Mylar tape.

1.2

SECTION 1i

PROGRAM AND DATA STORAGE

1231 PROGRAMMING MANUAL

Il. PROGRAM AND DATA STORAGE

The EBS/1231 Operating System Programs and Data are internally stored

on a magnetic drum. The drum contains 694 registers for this purpose.
A program register holds four instructions; a data register holds ten
digits and a plus or minus sign.

The 694 registers have the following names and functions:

A Register

B Register

P Register

Y Register

D Register

WORKING REGISTERS

The accumulator. All numeric data enter the computing
unit through the A register. Up to ten digits can be
entered with a minus sign to make the field negative.
All numeric output data leave the computing unit from
the A register. All arithmetic operations are performed
in A, All numeric data are stored from A or retrieved
from storage into A.

The B register holds the second factor in certain arith-
metic and transfer operations.

STORAGE REGISTERS

There are 128 program or ''P'' registers which hold the
stored program. Each register holds four instructions,
for a total of 512 program instructions in a single

program,

There are 64 variable or 'V!' registers which are used
for the storage of constants, accumulations, or as
working areas. The contents of these registers can be
brought into register A, or changed by storing from
register A.

There are 500 distribution or 'D'" registers which are
used to store accumulated totals or constants. The con-
tents of these registers can be brought into register A,
or changed by storing from register A only when specified
distribution commands are utilized.

2-1

1231 PROGRAMMING MANUAL

The diagram below shows the paths along which data can flow in the
EBS/1231 operating system.

TAPE
KEYBOARD READER
v —>
REGISTERS
A B P
< REGISTERS
0 >
REGISTERS |_

SECTION 1l

PROGRAMMING PROCEDURE

1231 PROGRAMMING MANUAL

Ill. PROGRAMMING PROCEDURE

DESCRIPTION

A program is the complete sequence of machine instructions necessary to
solve a problem. An instruction directs the machine to perform a speci-
fic operation, such as add, multiply, print, etc.

The standard procedure for the EBS/1231 programming is first outlined
below and then discussed in detail.

1. Define the program's objective.

2. Code the program in symbolic language.

3. Key-in and printout the program.

4, Punch the numeric instructions into a program tape.
5. Test the program.

1. A program is designed to fit within the capabilities of the EBS/1231.
The program objectives are defined within the limits of the devices
available.

2. Coding is the writing of individual instructions in the sequence
required by the application. For ease in coding, symbolic instruc--
tions are used to represent machine language instructions. Thus,
BVO5 is the symbolic instruction which commands the processor to
Bring register VO5 to the accumulator (A Register).

In coding, the instructions are assigned

to the program registers which will ul-
P00 Ccl timately hold them., Using ?l, cz, C?,
C2 §tc., to.represent general illustrative
instructions, the symbolic coding is
Cc3 done as follows:
c4 Each box represents one register. Each
register must contain four instructions.
c5 The number beside each box is the P-Reg-
POl ister number which is, by definition,
cé the register address. Programs always
c7 start with the first instruction in
register'POO. The processor executes
Cc8 each instruction in the register in order,
and automatically sequences, after exe-
C509 cuting the fourth instruction, to the
P127 . .
next register. The program continues,
€510 in a straight numeric sequence, from POO
Cc511 through P127. This sequence can be al-
C512 ‘tered by means of programmed jump in-
structions. A jump instruction must be

programmed in P127,

3-1

1231 PROGRAMMING MANUAL

APPLICATION

EBS 1231

CODING CHART PAGE

—OF

DATE

BY I WORKING REGISTERS souee

ROUTINE

| FroM

| erocaam
RESISTER

¥ i] . By 1 .
| s | g, | scomona | COMMENTS I A ' B8 © 00 jj xa lnon jevn jewcs

; H : H

! i | | A
T
i

£8s 313 1188 o ho
-

A printed form EBS-313 titled EBS/1231 Coding Chart should be used
to construct the program register contents, instruction by instruc-
tion. As the program is coded, each V register used is listed so
that no register will accidentally be misassigned. EBS-31l1 should
be used for V register assignments. For all numeric output formats
used, the edit words are constructed and written into the appro-
priate V registers on the ''V'' register sheet.

are keyed into
in OPUS. The
entry.

The symbolic instructions and ''V'' register contents
the EBS/1231 using the appropriate service routines
program is then printed out and checked for correct

The program tape is then punched and verified using OPUS service
routines. This program tape contains all of the program instruc-
tions and constants in proper format for re-reading at a later
time. Characters in a program tape are ODD parity.

The program is ready to be tested to see whether it will operate
as designed.

3-2

1231 PROGRAMMING MANUAL

SUMMARY OF SYMBOLIC INSTRUCTIONS FOR THE EBS/1231 OPERATING SYSTEM

OPERATING ADDITIONAL

TRANSFER COMMAND: CODE CODE
Clear (A=0; B unchanged) CLR
Exchange AB (A—»B; B—»A) XCB
Exchange V0O (A—>V00; VOO—»A) XCcv
Bring (A—»B; V—»A; V unchanged) BV 00- 63
Store (A—>V; A&B unchanged) sv 00- 63

ARITHMETIC COMMAND:

Add (A+B—»-A; B unchanged) ADD
Negate A (The sign in A is reversed) NGA
Negate B (The sign in B is reversed) NGB
Update (A+V—>=V; AEB unchanged) uv 00- 63
Accumulate (A*V—A; B&V unchanged) ACC 00- 63
Multiply/Divide (AxB+V—A; BEV unchanged) MDV 00- 31

JUMP COMMANDS:

JUMP AUTOMATIC- - AJ
Go to first instruction of next program
register.

JUMP UNCONDITIONAL- JUP 00-127
Go to first instruction of specified pro-
gram register.

JUMP ZERO- JZP 00-127
Go to first instruction of specified pro-
gram register if A is zero. Subtract 1l
from A Register and go to next instruc-
tion if A is not zero.

JUMP POSITIVE- JPS
Go to second next instruction if A is zero
. or positive. Go to next instruction if A
is negative.

JUMP MARK- JMK 00-127
Mark this place and go to first instruction
of specified program register.

JUMP RETURN- ' JR

Go to instruction immediately following
the last Jump Mark executed.

3-3

1231 PROGRAMMING MANUAL

OPERATING ADDITIONAL
INPUT - OUTPUT COMMANDS: CODE CODE
Channel Selection (No registers affected) SEL 00- 77
Input (A—»- B; Input—»A) IN 0l- 10
Skip SKIP
Output (A—>Output;) 0 00-
(ASB unchanged) Ut 0- 31
Duplicate (No register affected) DUP 01-190
Character Output (No registers affected) co 00- 77
Refer to table of codes.
Single Character) . SCI
Input) (Input—s-A; B unchanged)
Single Character) (A—»output;) sco
Output) (B unchanged) A
Tab (No registers affected) TAB -01-190
Alpha Input (5 alpha char. A) ALFI
Alpha Output (A—=5 alpha char. output) ALFO
Input ASCII (Numeric ASCII—»A; A—»B) INA
OPERATING
DISTRIBUTION COMMANDS: _CODE
Clear Distribution Registers DCLR
(D registers set to zero;)
(A and B are destroyed)
Bring a Distribution Register DGET
(A—>B; D—»A; D unchanged)
Store to a Distribution Register DPUT
(A—»D; A&B unchanged)
Distribute a Tape as specified, to the 500 DIST
Distribution Registers.
Search the Distribution Registers for a Non-Zero
Value SCAN
(Value —»A; D Register Address—»V007)
Bring a Split Distribution Register SGET
Store a Split Distribution Register SPUT
SPECIAL COMMANDS:
Program Interrupt OPUS
Calculate CALC
Check-Digit Verification CDVv
Convert and Duplicate (Even Parity Input) DUPE
(0dd Parity Input DUPO
SPEC

(Special Code Output)

3-4

SECTION 1V

INSTRUCTIONS

DESCRIPTION

The instructions used in
six groups:

1-

2=~

TRANSFER

ARITHMETIC

JUMP

INPUT /OUT PUT

DISTRIBUTION

SPECIAL

1231

PROGRAMMING MANUAL

IV. INSTRUCTIONS

programming the EBS/1231 are divided into

Those instructions concerned with the movement
of data into and out of specific registers.

Those instructions which do the actual com-
putations.

Those instructions which make it possible to
branch out of the normal sequence of program
steps.

Those instructions which govern the flow of

data from keyboard and reader into the pro-

cessor and from the processor to the printer
and punch.

Those instructions which control the use of
the 500 distribution registers.

Those instructions whose functions do not fall
in any of the above groups.

In describing the operation of each EBS/1231 instruction, the following
format is used:

Instruction

Symbolic..

Description

Example

The name of the instruction.

The symbol used in writing a program. When
the symbolic instruction is given in the form
BVO0O-BV63, it means that this instruction has
sixty-four forms, BVOO, BVOl, ...BVé63.

An explanation of the operation of the instruc-
tion.

An example is given to show how the values
change in registers affected by an instruction
or to show how an instruction might be pro-
grammed. In the examples, Cl, C2, etc., are
representative non-jump instructions.

4-1

1231 PROGRAMMING MANUAL

TRANSFER INSTRUCTIONS

The instructions detailed in this section are those which handle the
transfer of data between the A register, the B register and the 64
V registers.

Instruction Clear

Symbolic CLR

Description Register A is cleared to zero.

Example CLR
REGISTER A B
Before +0000985683 Not affected
After +0000000000

Instruction Exchange AB

Symbolic XCB

Description The contents of register A are transferred to

register B, The previous contents of register
B are transferred to register A,

Example XCB
REGISTER A B
Before +0000000097 -000000006 3
After -0000000063 ' +0000000097

1231 PROGRAMMING MANUAL

Instruction Exchange V0O
Symbolic XCV
Description The contents of register A are transferred to regis-
ter VOO. The previous contents of register VOO are
transferred to register A.
Example XCv
REGISTER A B Voo
Before +0000001234 Not Affected -0000000011
Af ter -0000000011 +0000001234
Instruction Bring
Symbolic BVOO - BV63
Description The contents of register A are transferred to regis-
ter B. The contents of the V register specified in
the BRING instruction are transferred to register A,
The contents of the V' register are preserved.
Example BVO09
REGISTER A B Vo9
Before ~ +0000000890 -0000098765 +0000000006
After +0000000006 +0000000890 +0000000006

4-3

1231 PROGRAMMING MANUAL

Instruction Store
Symbolic SVO0 - Své63
Description The contents of register A are stored in the V Register

specified by the STORE instruction. The previous con-
tents of that register are lost. The contents of A are

preserved.
Example Sv12
REGISTER A B V12
Before -00000006 06 Not affected +0000008888
After -0000000606 -00000006 06

4-4

1231 PROGRAMMING MANUAL

ARITHMETIC INSTRUCTIONS

The instructions detailed in this section provide the four arithmetic
processes of addition, subtraction, multiplication and division. The
absolute value of the maximum number that can be held internally is

34 359 738 367, that is, 235 .1, However, the largest number at the
output can only be 9 999 999 999, that is, a maximum of ten significant

digits.
Instruction Add4
Symbolic ADD
Description The number in régister B is added to the number in regis-
ter A. The sum is stored in register A. The contents
of B are preserved.
Example ADD
REGISTER A B
Before +0005634721 +0007 469887
After +0013104608 +0007 469887
Before +0007552845 -0000856338
After +0006696507 -0000856338
Instruction Negate A
Symbolic NGA
Description The sign of the number in register A is reversed. If
the number was positive, it becomes negative. If the
number was negative, it becomes positive. However, if
the number is zero, it is always treated as a positive
number.
Example NGA
REGISTER A B
Before ;0000009876 Not affected
After -0000009876
Before -0000000017
After, +0000000017

4-5

1231 PROGRAMMING MANUAL
Instruction Negate B
Symbolic NGB
Description The sign of the number in register B is reversed. If
the number is zero, it is treated as a positive number.
Example NGB
REGISTER A B
Before Not affected +00000012345
After -00000012345
Instruction Update
Symbolic UVOO - UVé3
Description The contents of register A are added to the contents of
the V register specified in the UPDATE instruction. The
sum is stored in the V register. The contents of A are
preserved.
Example uvl3
REGISTER A B V13
Before +0000000042 Not affected +0000000336
After +0000000042 +0000000378
Before -0000000005 +0000000450
After -0000000005 +0000000445

4-6

1231 PROGRAMMING MANUAL
Instruction Accumulate
Symbolic ACCOO - AcCc63
Description The contents of the V register specified in the instruc-
tion are added to the contents of the A register. The
sum is stored in the A register. The contents of the
V register are preserved.
Example ACCl4
REGISTER A B V14
Before +0000000324 Not affected +0000045244
After +0000045568 +0000045244
Before -0000000050 +0000000026
After -0000000024 +0000000026

4-7

1231 PROGRAMMING MANUAL

Instruction Multiply - Divide
Symbolic MDVOO - MDV3l
. AxB
Description The multiply-divide instruction has the form V = Q,
that is, the contents of register A are multiplied by
the contents of register B and the product is divided
by the contents of the V register specified in the in-
struction. The result of the operation is automatically
rounded off and stored in register A. The contents of
the B and V registers are preserved.
All factors (A, B, or V) can be up to 10 decimal digits,
either positive or negative, and correct results, in-
cluding sign, will be obtained. If the A, B, or V regis-
ter is zero, computation does not take place and a zero
is recorded in A,
If the result (Q), as computed, is larger than the maxi-
.mum number that can be held internally, a zero is re-
corded in A.
Example MDV15
REGISTER A B V15
Before +0000000246 +0000000000 +0000000003
After +0000000000 +0000000000 +0000000003
Before -0000000688 +0000000001 +0000000007
After -0000000098 +0000000001 +0000000007
Before -0000000689 -0000000001 +0000000007
After +0000000098 -0000000001 +0000000007
Before -000000Q530 -0000000004 -0000000001
After -0000002120 -0000000004 -0000000001
Before -0000000690 +0000000001 -0000000007
After +0000000099 +0000000001 -0000000007
Before +0000065000 +0000000003 -0000000100
After -0000001950 +0000000003 -0000000100

1231 PROGRAMMING MANUAL

JUMP INSTRUCTIONS

The normal sequence of instructions is to process the first instruction
in a program register, followed by the second, third, and fourth in-
structions. After the fourth instruction, the EBS/1231 then executes
an automatic jump to the first instruction of the next program regis-
ter. However, there are times when it is desirable to break this se-
quence and transfer control to another section of the program.

A jump instruction is used to change the sequence of instructions. Any
one of the four instructions in a program register can jump to any one
of the 128 P registers. Register P127 must always contain a programmed
jump as it is the last register in the sequence.

Instruction Automatic Jump
Symbolic AJ
Description If program sequencing requires less than four instruc-

tions in one register, the balance of the register
must be filled in with automatic jump instructions.

As soon as an automatic jump instruction is inter-
preted, the program sequences to the first instruction
of the next P Register (except in register Pl127 which
must contain a programmed jump).

Instruction Jump Unconditional
Symbolic JUPOO - JUP127
Description The program jumps to the first instruction of the P

register specified by the jump instruction. No regis-
ter contents are changed.

Example

P05 Cl
Cc2
C3
Jup 24

P24 C4
CS
Cé
Cc7

4-9

1231 PROGRAMMING MANUAL

Instruction Jump Zero
Symbolic JZPOO - JZP127
Description If register A = 0, the program jumps to the first instruc-

tion of the specified register. If A is not equal to zero,
-1 is added to A and the program sequences to the next

instruction.
Example
Instruction Next
Being A A Instruction
Executed Before | After Executed
JZP10 2 1 JZP17
JZp1l7 1 0 JZP25
JZP25 0 0 c97
(affects only the A register)
;.———-’.
P03 JZP 10 P10 Cc37
JZP 17 C38
JZP 25 C39
JZP 01 c40
P04 €13 —>1 P17 c65
Cla C66
C15 c67
Cl6 Cé68
L o 525 co7
Cco8
C99
C100
L poz col
Cco2
CcO3
co4

4-10

Instruction
Symbolic

Description

Example

NOTE :

1231 PROGRAMMING MANUAL

Jump Positive
JPS

If the value in register A is positive or zero, the pro-
gram sequences to the second next instruction. If the
value in register A is negative, the program sequences
to the next instruction. No register contents are
changed.

POl Cl (1) If A is positive or
JPS zero, C4 is executed.
C3
c4 (2) If A is negative, C3
: is executed.

JPS is ineffective as the fourth instruction of a register since
the next instruction, the automatic jump, will lead directly to

the second next instruction. That is, regardless of whether register A
is zero, positive or negative, the program will sequence to the first in-
struction of the next register.

Instruction

Symbolic

Example

Jump Mark
JMKO00-JMK127

This instruction marks the spot where the jump mark
command is used. The sequence of the instructions then
jumps to the first instruction of the specified register.
When the program finds a jump return instruction, it then
jumps back to the instruction immediately following the
last jump mark executed. The jump return instruction
will only recognize the last jump mark executed. Thus,

a jump return should be executed before another jump’
mark is processed.

JMK20
P09 C32
JMK20 —4————+19P20 C63
C34 = ce4
C35 C65
JR

4-11

1231 PROGRAMMING MANUAL

instruction Jump Return
Symbolic JR
Description The program jumps to the instruction immediately follow-

ing the last jump mark executed.

Example JR
P09 32
JMK204——————P20 Cc63
c34 c64
35 65
JR

4-12

1231 PROGRAMMING MANUAL

INPUT AND OUTPUT

Data entered into the processor from either the keyboard or the tape
reader is defined as Input.

Similarly, data transferred from the processor to the printer or tape
punch is defined as Qutput.

The input and output devices are hooked into the 1231 system at specific
points, referred to as ''channels'',

In the 1231 System, the keyboard is connected to channel 1 input; the
printer is connected to channel 1 output; the reader is connected to
channel 2 input; and the punch is connected to channel 2 output.
Channel 3 input and output are available for an additional input device
and/or output device.

Instruction Select Channels
Symbolic SEL 00 - SEL 77
Description The selection of channels determines from which channel(s)

data can be input and through which channel(s) data can
be output. The select channels instruction consists of
two parts. The first digit selects (turns on or off)

the input channel(s). The second digit controls the out-
put channel(s). When one set of input or output channels
is turned on, the previous set is automatically turned off,
unless they have been re-selected. This instruction can
select up to three input channels and three output chan-
nels, individually or simultaneously.

Example INPUT OUTPUT
0:<All input channels OFF 0 All output channels OFF
1 Channel 1 ON (Keyboard) 1 Channel 1 ON (Printer)
2 Channel 2 ON (Reader) 2 Channel 2 ON (Punch)
3 Channels 1 and 2 ON 3 Channels 1 and 2 ON
(Keyboard and Reader) (Printer and Punch)
4 Channel 3 ON 4 Channel 3 ON
5 Channels 1 and 3 ON 5 Channels 1 and 3 ON
6 Channels 2 and 3 ON 6 Channels 2 and 3 ON
7 Channels 1, 2 and 3 ON 7 Channels 1, 2 and 3 ON
NOTE : When an output is attempted to a channel that is not selected,

the program will hang-up. The corrective procedure is to de-
press HALT, READY, and RUN buttons on the console, and to correct the
error in the program.

4-13

1231 PROGRAMMING MANUAL

Instruction Input
Symbolic IN1 - IN1O
Description The contents of register A are transferred to register

B. Register A is cleared. The following characters are
accepted as described:

0-9: These digits are entered into register A, up
to a maximum field size as specified by the
input instructions. These are the only charac-
ters which effect the field size count (leading
spaces are ignored).

MINUS: Makes the number in register A negative. The
(Qor-) diamond (¢) or hyphen key (-) can be depressed
anytime before the termination key is depressed.

CLEAR: Clears register A and allows re-entry of the
field, if depressed before the termination
key.

All other characters are ignored by this instruction.
The following characters cause the input instruction to terminate. These

characters are the control and program selection keys on the keyboard.
All these characters affect VOO except control key I.

I No effect on VOO
II VOO set to 1
III VOO set to 2
IIII VOO set to 3
PO VOO set to 4
Pl VOO set to 5
P2 VOO set to 6
P3 VOO set to 7
P4 VOO set to 8

4-14

Instruction
Symbolic

Description

NOTES:

1231 PROGRAMMING MANUAL

INPUT (P-03 Compatibility)

IN 01 - IN 10

The input command will also read a tape produced from
the P-03 ADD PUNCH. The P-03 ADD PUNCH punches fields
on tape containing specific start-of-field codes and end
codes depending ‘on the key (motor bar) that is depressed.

Each field punched to tape, contains digits (0-9) and
space codes that are processed by the Input command in
the same manner as described on page 4-14.

On the following page is a chart of start codes and end
codes produced by each motor bar on the P-03. The chart
shows the EBS 1231 code equivalent of each P-03 code, how
the Input command processes each field, and what effect
the end code of each type of field has on register VO0O.

1. The Input command now recognizes the CPl code and the Line
Feed Left code as end codes to a numeric field. Therefore,
these two codes should not be output to tape as a by-product
of processing any program. Their use should be limited to
the printer only, or punched to tape only when it is certain
they will ultimately be read under the DUP command.

2. When duplicating a P-03 tape (DUP command), the printer should
not be selected.

4-15

" (Open/Close)

1231 PROGRAMMING MANUAL
P-03 EBS 1231
MOTOR CODE EFFECT
DE I EFFECT ON INPUT
BAR SCRIPTION EQUIVALENT ON VOO
INT Start Code | Asterisk (*) Ignored
ngLE End Code Control II Terminates Input, with Set to 1
data field in Reg. A.
Start Code || Minus (-) Sets input routine. for a
—_— negative entry.
End Code CpPl Terminates Input, with No effect
negated field in Reg. A,
DES Start Code Clear Ignored.
CYCLE End Code Line Feed Left | Terminates input, with Set to 2
NA data field in Reg. A.
Start Code
AMT (None)
-+_ End Code CpPl Terminates input, with No effect
data field in Reg. A.
Start Code
SuB (None)
TOTAL
End Code Line Feed Right | Ighored No effect
Start Code
TOTAL (None)
End Code il Percent (%) Ignored No effect
Tape Leader || Carriage Ignored

4-16

Instruction
Symbolic

Description

Instruction
Symbolic

Description

Example

1231 PROGRAMMING MANUAL

Skip Field from Tape
SKIP

The SKIP command is used to read and ignore a field (or
fields) from tape. It replaces the INU (Input unlimited)
command. The INU command is removed from the EP31 command
list and should not be used.

The SKIP command will read and ignore characters from

tape until a control I key is recognized. No output will
occur even though output channels may be selected. Regis-
ters A and B are unaffected.

Output
OUTO00 - OUT31

The: contents of register A are output according to the
format contained in the V register specified by the in-
struction. The contents of the A, B and V registers remain
unchanged. The format specifies the field size, the use of
the symbols and whether the sign and field end characters
are to be output. Leading zeroes are output as spaces,
zeroes, or asterisks. A minus is output as a hyphen (-).

A plus is output as a space.

The control key I tape character may be output at the end
of every field. This gives the numeric output field the
correct format for subsequent use as a numeric input field.
The field size used must be large enough to accommodate

the largest number expected in that_field. The maximum
field size for numeric output is 1010.1 (ten digits). If
the number in register A is greater than this, the output
is incorrect.

OUTO02 V02 = 455 556 466 360

FORMAT = X,XXX.XX (with sign)

CHARACTERS
CONTENTS OF A OUT PUT
+0000012345 123.45
-0000987654 9,876.54-
+0000000007 .07

4-17

1231 PROGRAMMING MANUAL

CONSTRUCTION OF OUTPUT FORMAT CONSTANTS (EDIT WORDS)

A numeric field cannot be output without specifying the output format.
The output instruction refers to a specified V register to find the
format. The constant in that V register is created as follows:

To determine the edit word constant for a specific format, write
down the format desired for the field to be output, showing all
characters to be printed, including symbols (/,.);

X, XXX .XX

Add an (S) to the right if a sign is to be output.
X, XXX .XX(S)

Fill in to the left with S's so that the S's and X's total 10.
Positions identified with S will be suppressed, that is, not printed
at all. The S's must be used because all 10 possible positions must
be coded. (This does not include the (S) for sign.)

SSSSX , XXX .XX(S)

Add an asterisk (*) to the left if leading spaces are to print as
asterisks.

*SSSSX, XXX .XX(S)
Add a "Z" to the left if leading spaces are to print as zeroes.
ZSSSSX,XXX,XX(S)

Add a Roman numeral I to the left if an end code (Control I Key) is to
be output following the field.

I*SSSSX,XXX.XX(S)

4-18

1231 PROGRAMMING MANUAL

This format is used to construct the edit word constant for the V regis-
ter, using the following tables. An edit word of 12 characters must be
constructed. The first character (on the left) controls the field end
code and the use of asterisks, zeroes, or spaces to be output for non-
significance,

0 = Leading spaces; no end code
1 = Leading zeroes; no end code
2 = Leading asterisks (*); no end code
4 = Leading spaces with end code
5 = Leading zeroes with end code
6 = Leading asterisks (*) with end code

The next 10 characters control the 10 possible positions to be output:

5

S (suppress). It is written for all positions to
be suppressed.

2 = (/) output a slant followed by the next digit. All
digits following the slant are considered to be
significant.

4 = (,) output a comma followed by the next digit. If
no significant digit has been output, a space, an
asterisk, or a zero is output followed by the next
digit.

3 = (.) output a decimal point followed by the next
digit. All digits following the decimal point are
considered to be significant.

6 = output any digit. A space, an asterisk, or a zero
is output for leading zeroes.

7 = Used only with programs converted command-for-command
from the EBS/1230. For these converted programs,
this code represents the first digit.

The last character (on the right) controls the sign and end of output.

O = Output the sign of the number; space for positive,
hyphen for negative, and terminate the instruction.
1 = No sign is output. Terminate the instruction.

4-19

1231 PROGRAMMING MANUAL

The edit word constant for the example format is:

Format I*SSSSX, XXX.XX(S)
Edit Word 655 556 466 360

A table of commonly used formats and edit words is contained in the

appendix.

Instruction
Symbolic

Description

Example

Instruction
Symbolic

Description

Duplicate
DUP1 - DUP190

Descriptive data are entered from the keyboard or tape
reader, one character at a time, and output immediately
to the channel(s) selected. This instruction is termi-
nated with the control key I character only. The control
I character is not automatically output and must be
generated via the character output instruction. During
this instruction, if the code for the RETURN key is
recognized, the print wheel is automatically moved to
the position specified in this instruction; a line feed
is not automatically output. Every third printer posi-
tion may be addressed, from 1 through 190 (i.e., 1, 4,
7, 10....190). All valid characters are handled by

this instruction, either alpha-numeric or printer posi-
tion (refer to appendix for complete list).

DUP16
1. All characters are duplicated until a control
key I code is recognized which terminates the in-

struction.

2. If the RETURN key code is recognized during this
instruction, the print wheel moves to position 16.

Character Output

CO 00 - CO 77

This instruction is used to directly output any one of
64 alpha-numeric characters. See the appendix for a

complete list of characters. No registers are affected
by this instruction.

4-20

Instruction
Symbolic

Description

Instruction
Symbolic

Description

Instruction
Symbolic

Description

Instruction
Symbolic

Description

Example

1231 PROGRAMMING MANUAL

Single Character Input

SCI

Any single character is accepted from any selected input channel
and stored in A, B is not affected. Only one character is read
by this instruction. No end code is required. Reference the
table in the appendix for the internal values of characters read
by this instruction.

Single Character Output
SCo

The program will output one character from the A register. B
is not affected.

Tab
TAB Ol - TAB 190

The program will tab to the specified position. Every third
position may be addressed, from 1 to 190 (i.e., 1, 4, 7, 10,
....190).

Alpha-Numeric Input
ALFI

This command accepts the input of five characters only. After
the fifth character is entered, control moves to the next in-
struction in the program. The five alpha-numeric characters re-
main in Register A after leaving this command. The previous
contents of Register A are destroyed. The contents of Register
B are unchanged. Any character is accepted by this command, in-
cluding the Control keys, the '"P'" keys and tab codes (which use
the ''shift! key in conjunction with another key on the keyboard).

ALFI

Entry of the word STOP.
REGISTER A B
BEFORE +0000012479 -0000000124
AFTER STOP (P4) -0000000124

The P4 key is recommended for use as a filler code for fields
less than five characters long. The P4 code is a non-printing
code.

4-21

Instruction
Symboelic

Description

Example

Instruction
Symbolic

Description

1231 PROGRAMMING MANUAL

Alpha-Numeric Output
ALFO
This command outputs the contents of Register A as five

alpha-numeric characters. Register A and B are unchanged.
The command is exited after the 5th character is output.

ALFO

REGISTER A B
BEFORE STOP (P4) -0001020411
AFTER STOP (P4) -0001020411

Input of ASCII-Coded Tape
INA

The contents of Register A are transferred to Register
B. This command will read and accept digits (0-9), and
the minus code. When the ESC code is recognized, the
command is exited with the numeric data in Register A.

The minus code will reverse the sign of the value in
Register A. The rub-out code will clear Register A when
recognized. All other ASCII codes (including the RS code)

are ignored.

4-22

1231 PROGRAMMING MANUAL

DISTRIBUTION INSTRUCTIONS

The instructions outlined in this section are those that control the
input and processing of data in the 500 distribution registers.

The 500 distribution registers are considered to have addresses in the
range 000 to 499.

Instruction Clear Distribution Registers
Symbolic DCLR
Description The 500 distribution registers are set to zero. After
clearing is completed, the program returns to the in-
struction following the DCLR command. A and B are
destroyed.
Instruction Bring a Distribution Register
Symbolic DGET
Description The contents of register A are placed in register B.
The contents of the distribution register whose address
is stored in V07 are placed in register A. The 'D"
register is unchanged. The program returns to the in-
struction following the DGET command. The address of
the specified ''D'' register must be placed in V07 prior
to execution of the DGET command.
Example DGET
REGISTER A B DO5 Vo7
Before | +0000000123 | +0000123456 | +0000011111 | +0000000005
After +0000011111 | +0000000123 | +0000011111 | +0000000005

4-23

Instruction
Symbolic

Description

Example

Instruction
Symbolic

Description

instruction
Symbolic

1231 PROGRAMMING MANUAL

Store to a Distribution Register

DPUT
The contents of register A are¢stored in the ''D'" register

specified by the address in VO7. Registers A and B are
unchanged.

DPUT

REGISTER A DO5 Vo7

Before +0000145111 -0000000112 | +0000000005

After +0000145111 | +0000145111 | +0000000005.

Search for a Non-zero Value

SCAN

The program sequentially searches the 500 distribution
registers for a register containing a non-zero value.
If a non-zero value is found, the value is placed in
register A; the address of the 'D' register containing
the value is placed. in VO7; and control is returned to
the instruction following the SCAN command. The pro-
grammexr may then process the entry, place a new address
in V07, and return to the SCAN instruction. When V07
becomes larger than 499, control returns to the second
instruction following the SCAN command. Prior to the
use of this command, V07 must contain the address of the
first 'D" register to be scanned. This command is in-
effective when used as the fourth command in a program
register.

Distribute
DIST

This command will read a formatted data tape, select the
proper address and amount fields, distribute the data to
assigned distribution registers, and accumulate a sum of
all distributed amounts in register V63. (V63 should
be cleared prior to entry into this routine.) This
command selects device 2 input only. It makes decisions
on the selection of address and amount fields based on
five values stored in advance by the programmer.

4-24

Vo1

Vo2

Vo4

1231 PROGRAMMING MANUAL

The locations and functions of these five values are as
follows:

Contains the start character of the address field
to be selected on this pass. This start character
is the identification code used by the program to
accept or reject the field as a proper address
field. Tab positions should be used as start
characters (i.e., 1, 4, 7, 10....190).

Contains the start character of the amount field to
be selected on this pass. This start character is
the identification code used by the program to
accept or reject the field as a proper amount
field. Tab positions should be used as start
characters (i.e., 1, 4, 7, 10,....190).

Contains the 6-digit base number for this pass.
The base number represents the lowest address that
will be accepted during the pass. For example,

if the range of address values on the tape was 000
to 1999, register V04 would be set to zero for the
first pass, and addresses 000 through 499 would
be distributed. The value of V04 would then be
changed to 500 for the second pass and addresses
500 through 999 would be distributed.

To illustrate this example:

Vo4 Range of Distribution
First Pass 000 000 - 499
Second Pass 500 500 - 999
- Third Pass 1000 1000 -1499
Fourth Pass 1500 1500 -1999
Other examples:
Vo4 Range of Distribution
600 600 - 1099
250 250 - 749
10 10 - 509
123400 123400 -123899

4-25

Vo5

VOoé

1231 PROGRAMMING MANUAL

Contains the mode switch., The setting of this
mode switch permits the routine to distribute
under two different tape formats.

Mode 1 - Controlled by setting the value in VOS5
to 1.

This mode causes the routine to scan the tape until
an acceptable address field is found. An accepta-
ble amount field is then sought. After the amount
field is accepted and distributed, “he routine will
re-cycle to search for the next address field.

Thus, Mode 1 searches the tape, alternately locating
an address field and then an amount field.

Mode 2 - Controlled by setting the value in V05
to 2.

This mode looks for an acceptable address field,

. then an acceptable amount field. However, rather

than re-cycling back to look for the next acceptable
address field, the routine will look for either an
address field or another amount field. As aq result,
multiple amount fields could be distributed before
another acceptable address field is located.

TAPE FORMATS

Mode 1 - Address Field; Amount Field; Address
Field; Amount Field; etc...

Mode 2 - Address Field; Amount Field; Amount
Field; Amount Field; Address Field;
Amount Field; Address Field; Amount
Field; etc...

Contains the edit word that defines the positiogning
of the digits of the address field. It is possible
to have 10-digit address fields entered. However,
six digits are the maximum number of digits that
this routine uses to base its decision on accep-
tance of the address field. Therefore, the routine
uses this edit word to determine which six digits
in the field to use in judging acceptance.

4-26

1231

PROGRAMMING MANUAL

The edit word is made up of octal edit codes with
the following functions:

Octal
Code

0

1l

Function
Ignore the digit.

This digit is the one hundred thousands
digit position of the field.

This digit is the ten thousands digit
position of the field.,

This digit is the thousands digit posi-
tion of the field.

This digit is the hundreds digit posi-
tion of the field.

This digit is the tens digit position
of the field.

This digit is the units digit position
of the field.

This code identifies the end code of the
address field. :

4-27

1231 PROGRAMMING MANUAL

TO CONSTRUCT A DISTRIBUTION EDIT WORD

Determine the exact number of digits that make up the address
field. (For example: assume an eight digit address field.
ABCDEFGH.)

Write the address field down. ABC DE FGH (H is the units
digit of the address field and A is the high-order digit).

Select the proper edit code for each digit position. Write these
edit codes below the corresponding positions in the field. (Assume
the six low-order digits are selected to be the significant dis-
tribution digits in the field) ABCDE FGH

123456

If the address field contdins digit-positions that will not affect
distribution, assign ignore-codes (code zero) to these digit-posi-
tions. Place code 7 to the right of the field and fill in enough

zeroes to the right of code 7 to develop a total of thirteen octal

codes for the edit word. The edit word must contain 13 octal codes.

ABCDEVFGH
0012345670000

Thus, the edit word 0012345670000 would be stored in VO06.

NOTE : Address fields may contain symbols among the digits in the

field (such as decimal point, comma, or slash). The field

may also contain a sign at the end of the field. These symbol and sign
positions must be considered as digit-positions, with an ignore-code
assigned to them.

In the example above, if the eight-digit address field actually
was :

ABCDEF .GH(S) (S) = Sign

Then the edit word would be:

If symbol and sign positions are not represenfed by ignore-codes
in the edit word, they will be interpreted by the DIST command as
illegal. and will cause the program to HALT.

4-28

1231 PROGRAMMING MANUAL

A COMPREHENSIVE USE OF THE DIST COMMAND

BACKGROUND: Consider a distribution tape that was punched while
processing a billing application. The specifications
call for the following analysis:

Sales (Dollars) by each of 400 products
Sales (Dollars) by each of 30 salesmen
Sales Tax (Dollars) by each of 25 states

DESIGNING THE SYSTEM: In designing the system, the following decisions
were agreed upon:

1.

2.

3.

4,

Range of Distribution Fields:

Products numbered 1150 through 1499 falling
in the four high-order digits of a nine-digit
field. (XXXX00000)

Salesmen numbered 1 through 30 in a two-digit
field. (XX)

States numbered 1 through 25 falling in two
low-order digits of a three-digit field. (OXX)

Start-of-Field Characters:

Products (Tab 4)

Salesmen (Tab 61)

States (Tab 52)

Sales (Dollars) (Tab 100)
Sales Tax Dollars (Tab 103)'

The Distribution tape contains the following se-

quence of fields for each invoice processed:

Salesman Number (XX) =~
Product Number (XXXX00000)
Sales (Dollars) (XXXXX.XXt)
Product Number (XXXX00000)
Sales (Dollars) (XXXXX.XXt)
Product Number (XXXX00000)
Sales (Dollars) (XXXXX.XXiZJ
State Code (0xx)

State Sales Tax (XXX.XXt)

> VARIABLE

Sequence of Distribution analysis:

Pass 1: Sales by Product
Pass 2: Sales by Salesman
Pass 3: Sales Tax by State

4-29

1231 PROGRAMMING MANUAL

PROCESSING THE ANALYSIS:

Pass 1:

COMMENT:

Sales by Product

VOl Address Field Start Character (4)
V02 Amount Field Start Character (100)
V04 Base Number (1150)
VO5 Mode Switch (1)
VO6 Edit Word (Octal) (3456000007000)

The DIST command will search the tape for a code corresponding
to the tab position 4 code in VOl. It will ignore all other
codes. When the address field start-character is located, it
will read in the nine-digit field immediately following the
code and will pull out the four digits and arrange them in

the order dictated by the edit word in VO6.

The base number in V04 will be compared with this four-digit
number. This number must equal the base number or fall be-
tween the base number and the base number plus 500. If it
does, the base number in V04 is subtracted from the four-
digit field. The difference represents the address of the
register where the sales amount will be distributed.

The DIST command then searches the tape for the code corres-
ponding to the tab position 100 code in V02 (Amount field
start character). It will ignore all other codes. When the
amount field start-character is located, the field is read
and the amount is distributed.

Since the mode switch in V05 is set to Mode 1, the DIST
command then searches for the next tab position 4 code (address
field start character).

This sequence of operations is maintained until all sales
dollars have been distributed. The DIST command affects in-
put only. The printout of sales by product can then be
custom-written.

NOTE : If the range of products had been 1150 through 1999,

the DIST command would have only accepted address
fields whose edited four digits would fall between 1150 and
16497 Any products numbered higher than 1649 would be dis-
tributed in another pass where the values in V01, V02, VOS5
and V06 would be the same, but the base number in V04 would
be 1650.

4-30

1231 PROGRAMMING MANUAL

Pass 2: Sales by Salesman

VOl Address Field Start Chqgracter (61)
V02 Amount Field Start Character (100)
V04 Base Number (1)

VO5 Mode Switch (2)

V06 Edit Word (Octal) (5670000000000)

COMMENT: The sequence of operations is the same as in pass 1. However,
because V05 contained a mode 2, for each salesman address-
field located, the DIST command would search for multiple
amount fields (Sales Dollars) to distribute to that salesman's
total.

Pass 3: Sales Tax by State

VOl Address Field Start Character (52)
VO2 Amount Field Start Character (103)
VO4 Base Number (1)

VO5 Mode Switch (1)

V06 Edit Word (0567000000000)

COMMENT: The sequence of operations is the same as pass 1.

CONCLUSIONS: This illustration was used to demonstrate the flexi-
bility of the edit word and the mode switch. It was
not intended to be an example of a good system. With
better specifications, the analysis in this example
could be accomplished with one pass of the tape. The
point is, the flexibility of the DIST command is avail-
able, but should be used wisely.

4-31

1231 PROGRAMMING MANUAL

Instruction Load A Split Distribution Register
Symbolic SGET
Description The contents of the distribution register whose address

is stored in VO7 are placed in registers A and B in the
following manner:

A Register - Contains the low order half of the dis-
tribution register with the correct sign.

B Register - Contains the high order half of the dis-
tribution tegister with the correct sign.

The highest decimal value permitted in a half of a regis-
ter is 500,000%.

The previous contents of registers A and B are destroyed.

Exaomple SGET

REGISTER vo7z D422 A B

Before | +0000000422 | +500000 1 -001234 | +0000001111 | +0000124760

After +0000000422 | +500000 1 -001234 | -0000001234 | +0000500000

- - - -

4-32

Instruction
Symbolic

Description

Example

1231 PROGRAMMING MANUAL

Store a Split Distribution Register
SPUT

The SPUT instruction combines the contents of registers
A and B, The combined value is then stored in a distri-
bution register specified by the address in VO7.

The A register must contain the value and sign to be
stored in the low-order half of the distribution register.
The B register must contain the value and sign to be
stored in the high-order half of the distribution register.

The values in the A and B registers must not exceed
500000t .

After processing the SPUT instruction, register A con-
tains the packed value that was stored in the distribution
register, The value in register B is unchanged.

SPAUT

REGISTER

A B vo7 D261

Before

+ +0000001236 -0000014210 | +0000000261 -005332 :+OOO975

After

1 . y
-014210! +001236 -0000014210 | +0000000261 | -014210 } +001236

4-33

Instruction
Symbolic

Description

Symbolic
Description

instruction

Symbelic

Description

1231 PROGRAMMING MANUAL

SPECIAL INSTRUCTIONS

Program Interrupt
OPUS

This command, when temporarily inserted into the coding
of an application program, causes a jump out of the
application program and into the Operating Utility System
(OPUS). This command is not used in the normal pro-
cessing of an application program, but is used primarily
to aid in program debugging.

Calculate

CALC

This command is made up of ten routines, each with the
ability to be micro-programmed into different calculating
sequences. It can contain Federal, State, and City tax
calculations; Social Security and SUI calculations,

A more in-depth description of this command can be found
in the literature on the Payroll Application.

Check-Digit Verification
Ccbv

Many companies assign numbers to their customers which
contain a check-digit in the low order digit position.

Credit card numbers generally contain a check-digit. One
method of determining the check-digit assigned to a number
is the ''Modulo 10" method (also known as the LUHN algo-
rithm). This is the method used by the CDV command.

4-34

1231 PROGRAMMING MANUAL

This command verifies the value in register A for a
valid check-digit. If the A register contained a valid
number, upon exiting this command, the A register will
be set to zero, and register B will contain decimal ten.
If the A register contained an invalid number, upon
exiting this command, the A register will contain a
negative number, and the B register will contain a posi-
tive number that would make the original value in A a
valid number.

Assume the value 610157802 is a valid number. The low
order digit (2) is the check-digit.

REGISTER A B
Before 610157802 UNIMPORTANT
After ZERO 10

Assume the value 610157803 is an invalid number,.

REGISTER A B
Before 610157803 UNIMPCRTANT
After -1 ‘ 9

The CDV command can also be used to generate a check-digit
for a new number. This number must not exceed nine digits.
For example, if it is desired to generate a check-digit

for the value 830754926, add a zero to the low-order end
(8307549260) and place in register A, The CDV command
will place the valid check-digit in register B upon exiting
the command.

REGISTER A B
Before 8307549260 UNIMPORTANT
After -6 4

Thus, if the value in register A was saved, it can now
be added to the check-digit in register B, producing the
valid number 8307549264.

4-35

1231 PROGRAMMING MANUAL

If, however, the valid check-digit is zero, the CDV
command will clear register A, and place a decimal 10
- in register B.

CONVERSION AND DUPLICATING INSTRUCTIONS
Three commands are provided by OPUS to facilitate the processing of data
in codes other than the basic 1231 code:
DUPE - To duplicate data entered with even parity.
DUPO - To duplicate data entered with odd parity.
SPEC - To output any code without parity control.
To use the DUPE and DUPO commands, a conversion table must be constructed.
During processing, this conversion table is stored in the first 128
D-registers. This table contains the code system for the input data and
the converted codes to be output.
NOTE : To use the DUPE or DUPO commands in an application program,
the mode key on the punch console must be set to conform to
the parity of the desired output codes, that is -
Even Parity Output - Position il
0dd Parity Output - Position i3

An input code can be handled in one of three ways:

1. It can be converted

The code is entered and located in the conversion table. Its
corresponding converted output code is then output to the de-
vices selected by the application program. The next code is
then entered.

2. It _can be ignored

The code is entered, ignored, and the next code is then entered.

3. It can be designated as an ''exit'' character

An 'exit!" character when recognized on input will terminate the
command and return control to the application program. Register

A will contain a value that identifies the particular "exit'
character that caused the command to terminate. This identifying
character is determined at the time the table is being constructed.
Thus, more than one code can be classified as an ''exit'' character,

4-36

1231 PROGRAMMING MANUAL

with the application program determining which lexit" character
was entered by the value placed in register A,

NOTE : Parity errors detected during the entry of data will
be treated in the same manner as described under parity
errors during DUP with the reader selected.

The DUPE and DUPO commands can do two basic operations; duplicate codes
or skip fields,

1.

Duplicate Codes:

If the A-register contains a (-1) when DUPE or DUPO are executed,
these commands will convert and duplicate or ignore codes until
an ''exit" character is recognized. Control then returns to the
application program.

Skip Fields:

If the A-register contains zero (0) when DUFE or DUPO are exe-
cuted, the commands will act as a SKIP command and read and ig-
nore input data until an ''exit'' character is recognized. Control
then returns ta the application progranm.

HOW TO CONSTRUCT A CONVERSION TABLE

A. EXPLANATION:

The construction of a conversion table has been simplified by
the use of q program entitled ''Conversion Table Service Routine''.
This program enables the programmer to:

1. Select one of four possible input/output parity conditions.

odd in even out
odd in odd out
even in - odd out
even in - even out

2. Select which characters are to be ignored.
3. Select which characters are to be converted.
4, Select which characters are to be '"exit' characters.

NOTE : The DUFE command is used in an application program where

even-parity input data is converted. The output can be

even or odd parity. The DUPO command is used when odd-parity input
data is converted. The output can be even or odd parity.

4-37

1231 PROGRAMMING MANUAL

B. THE CODE CONVERSION CHART

Before constructing a conversion table, it is necessary to pre-
pare a Code Conversion Chart, listing each input code that is
not to be ignored and its corresponding output code. These codes
must reflect the exact tape representation of each character in
the input and output set, using ones to represent the holes and
zeroes the absence of holes. The eighth channel of the tape is
shown on the left. After the ones and zeroes are laid out for a
code, these eight binary numbers are sectioned into three octal
codes: (00 000 000). For example, the ASCII code for B is

01 000 010 or octal 102. The ASCII code for C is 11 000 Oll or
octal 303. In the 1231 code system, B is 01 100 010 or 142
while C is 01 110 Ol1 or 163.

NOTE : It is mandatory that the parity channel of the tape be
shown in its correct position.

The Code Conversion Chart must also contain the input codes desig-
nated as-''exit'' characters. The Output column of the chart for
""exit!" characters should reflect an 'E'" followed by a decimal
number (0-999) reflecting the value of that exit character which
will be placed in the A register on exiting the command when that
character is recognized.

Once the Code Conversion Chart is completed, the Conversion Table
can then be constructed.

C. TO CONSTRUCT A CONVERSION TABLE

The '"Conversion Table Service Routine'' is read into memory by
depressing the Pl key. Also read in at this time is the Master
Conversion Table. The Master Conversion Table uses 200 D-regis-
ters starting at D 200,

This table is used by the Service Routine to translate the octal
representation of the input code into the correct address for
the Conversion Table being constructed. The master table also
translates the octal representation of the corresponding output
code into the correct form for the 1231 processor.

l. TO IGNORE

Since the Conversion Table contains 128 possible codes to be
converted, most code systems that will be converted allow
for the ignoring of more than half of the system codes. This
Service Routine, therefore, eliminates the necessity of en-
tering each code to be ignored by enabling the programmer to
begin constructing the table by ignoring all 128 possible
codes. Thus, only the codes to be converted or designated
as ''exit'" characters need be entered.

4-38

1231 PROGRAMMING MANUAL

To 'Ignore' the table, after Control IIII has beeﬂ depressed:
Depress the Control I key. "IGNORE'" will print.

Hold down the SHIFT key and depress the P4 key. The
table will be set to the ignore condition.

2. TO SELECT THE PROPER ENTRY SET-UP

ENTER THEN DEPRESS SET-UP _DESCRIPTION
1 CONTROL I EVEN IN - ODD OUT
2 CONTROL 1 ODD IN - EVEN OUT
3 CONTROL I EVEN IN - EVEN OUT
4 CONTROL I ODD IN - OuTr OouT

3. Enter the three-digit octal representation of the input
character. Terminate the entry as follows:

CONTROL I - To be converted and output.
"P" will print.
Enter the three-digit octal representation
of the output code. Depress Control I.

CONTROL II - To be an "exit' character.
WE'" will print.
Enter the three-digit decimal number that
identifies this exit character. Depress
Control I. '

CONTROL III - To be ignored.
"I" will print.
No further entry is required.

4. Repeat Step 3 above for each character.

NOTE: "~ 1. If an octal representation is entered higher
than 377, "ILLEGAL" will print. Return to
Step 3 above.

2. If the parity of the octal representation of
either the input or output field is not correct
according to the select code entered at Step

2 above, '"PARITY'" will print. Return to Step
3 above.

D. TO TEST THE TABLE _
1. Restart the program (HALT, READY, RUN CONTROL IIII).

2, Place a tape to be tested on the reader.

4-39

1231 PROGRAMMING MANUAL

V. THE OPERATING UTILITY SYSTEM (OPUS)

INTRODUCTION

The previous section of this manual describes the 1231 command
list. This section of the manual describes the various service
routines available to the programmer and the operator.

When an instruction is used in an application program, a function-
routine is activated to supply the internal coding necessary to
make that instruction operate correctly. That function-routine,
along with all the other function-routines in the EP/31 command
list, is found in the section of memory known as the Operating
Utility System (OPUS).

When a service routine is selected to provide assistance to the
programmer in the creation and testing of an application progranm,
that service routine is found in the Operating Utility System (OPUS).

When an operator is ready to process an application program, a ser-
vice routine is available to process at the beginning of the appli-
cation program. This service routine is found in the Operating
Utility System (OPUS).

OPUS provides the following features of importance to the programmer
and the operator: '

1. OPUS is permanently stored in memory, making the service rou-
tines and function-routines available whenever required.

2. The programmer, when creating an application program, need
only enter the symbolic instructions. Conversion to machine-
language codes is handled internally by OFUS.

3. When OPUS senses an error during the processing of an appli-
cation program, it will display a pattern of lights on the
console to indicate the type of error. Thus, corrective action
can be quickly taken, and processing can resume in a minimal
amount of time.

OPUS provides service routines for manually entering, through the
keyboard, program instructions and data into the 1231's memory;
printing program instructions and data from the 1231's memory;
punching program instructions and data from the 1231's memory onto
paper tape; examining individual program instructions and data for
possible change; reading of program instructions and data from
punched paper tape into memory; and the execution of a stored
application program,

5-1

1231 PROGRAMMING MANUAL

TO USE OPUS

Entry into OPUS is automatic once the EBS/1231 START-UP procedure
or RESTART procedure is accomplished.

ART-UP

Depress the POWER button.
(The light above the POWER ~~ o~
and HALT buttons will

light. When the memory

drum reaches the proper W—_— || " Ii I
speed for processing, the ‘
READY light will be 1lit.) HALT RUN READY POWER

Depress (in this order) the
HALT, READY, an d RUN
X

7

buttons. (The light above
each button will light as
it is depressed. The light
above the HALT button will
go out when the RUN button
is depressed.) EBS/1231 Console

N \\ M. NN

The keyboard SELECTED light will begin flashing. Whenever

the keyboard SELECTED light flashes, it is an indication that
OPUS has been entered and is waiting for the depression of a
selection key to indicate which OPUS service routine is desired.

RESTART
The RESTART procedure is used when power is already on and a return

to OPUS is desired. The RESTART procedure follows the same proce-
dures as steps 2 and 3 of the START-UP procedure.

RIPTION OF OPUS SERVICE ROUTINES

This section will list the name of the service routine; the selec-
tion key to depress to enter the service routine; and a description
of how the routine operates.

These service routines can be grouped into three types of routines:
1. Program Creation Routines

2, Program Testing Routines
3. Program Operation Routines

5-2

1231

PROGRAMMING MANUAL

1. Program Creation Routines

KEYBOARD KEYS

®

NAME AND DESCRIPTION

Reset Memory to the Origin-Pattern

This routine stores a unique pattern of bits
in each program (P) and storage (V) register.
These bit-patterns, or origin-patterns, do
not resemble any program instructions or
legal data. The origin-pattern is different
in each register.

Since this routine destroys the previous con-
tents of every register quickly, the depres-
sion of selection key R will not, by itself,
activate this routine. When R is depressed,
the word RESET will print. If it is truly
desired to reset memory, the SHIFT key is
held down with the left hand and the P4 key
is depressed. The origin-pattern will then
be established.

If selection key R was accidentally depressed,
and it is not desired to reset memory, de-
press any key. ERR will print. Control will
return to OPUS.

This routine should be selected prior to
manually entering the instructions of a new
application program., As instructions or

data are entered, the origin-pattern in each
used register is destroyed. This will indi-
cate to OPUS which registers should be punched
into the program tape, without the need for
entering the beginning and ending register
numbers.

Register Mode Control.

Prior to the selection of most service rou-
tines, the programmer must indicate which

type of register (program or storage) the
service routine is to affect. Once this
indication is made, OPUS will maintain this
mode until a different type of register is

to be acted on. That is, a return to OPUS
from a service routine will cause the same
type of registers to be automatically selected
for subsequent utility routines.

5-3

1231

KEYBOARD KEYS

@=®

PROGRAMMING MANUAL

NAME AND DESCRIPTION

Octal (O) or Decimal (N) Format.

If the register mode control (described pre-

viously) was set to storage (V) registers, the

pProgrammer has the option of entering or
printing data in either octal (base 8) or
decimal (base 10) format. Selection key O
or N is depressed to indicate the format de-
sired. Once this indication is made, OPUS
will maintain the selected format until the
other format is desired.

OPUS monitors the use of all its
routines. If it senses a violation
to any rule governing its use, ERR will print
and control will return to OPUS. The regis-
ter mode control is automatically set to
handle 'P" registers and the format is set
to octal (0).

NOTE :

Store Instructions or Data.
This routine allows for the keyboard entry

of symbolic program instructions into "P"
registers, and data into "V' registers.

P-REGISTER ENTRY

Enter the numeric address (000-127) of
the register whose instructions are to
be keyed-in. The digits will print as
they are entered.

1.

Depress ''#' key. This key indicates
the end of an address entry. The i
symbol prints, followed by a tab to
position 19.

Enter the operation (symbolic) code of
the instruction. The letters print as

they are entered.

Depress the SPACE bar. This key indi-
cates the end of the operation code.

Enter the additional code (if applica-

ble) for the instruction.
code prints as it is entered.

5-4

The additional

1231 PROGRAMMING MANUAL

6. Depress one of the following keys:

n

If another instruction is to be keyed
into this same register. (The printer
will line feed and tab to position 19
awaiting the entry of the next instruc-
tion.) Return to Step 3.

If this is the 4th line in the register,
the printer will line feed, print an S,
print out the address of the next regis-
ter, print #, and tab to position 19
awaiting the entry of the first instruc-
tion. Return to Step 3.

(]

This key stores the instructions into
the specified register, line feeds,
prints an S, and prints out the address
of the next register. It then tabs to
position 19 awaiting entry of the first
instruction. Return to Step 3.

If this key is used and this was not the
4th instruction in the register, the
unused instruction areas will be filled
with automatic jumps before being stored
into memory.

]

If no more instructions are to be keyed-
in and a return to OPUS is desired. Any
unused instruction areas in this register
will be filled with automatic jumps prior
to storing the register. Control will
return to OPUS.

NOTE : If YERR" prints, the entire

register's contents must be
re-entered. Probably an operation code
or additional code was not within the
required limits monitored by OPUS. Con-
trol returns to OPUS,

5-5

1231 PROGRAMMING MANUAL

NAME AND DESCRIPTION

V-REGISTER ENTRY

l.

Be certain the correct format (octal or
decimal) is entered. The only legal
digits for entering data in the octal
format are digits O through 7. This
format is primarily used for edit words.
It may be used for positive constants
but it must not be used for negative
constants.

In the decimal format, only digits O
through 9 are legal. This format should
be used for both positive and negative
constants.

Enter the numeric address (00-63) of the
register whose data is to be keyed-in.
The digits will print as they are entered.

Depress the # key. The # symbol will
print followed by a tab to position 25.

Enter the data. Each digit prints as it
is entered. When entering constant data
(either positive or negative) only the
significant digits need be entered. OPUS
will fill the positions to the left of
the digits with zeroes. If a storage
register is to contain all zeroes, one
zero must be entered. When a negative
value is entered, the minus sign may be
entered any time prior to the entry of
the end code. If a mistake is made while
entering data in either the octal or
decimal format, depress the HALT, READY,
and RUN buttons. Control returns to
OPUS., The routine can then be re-se-
lected.

Depress one of the following end keys:

[] |

The tontents of this register are stored
in memory, the printer will line feed,

S will print, the address of the next
storage register will print followed by
a tab to position 25 awaiting the entry
of data to the next register. Return to
step 4, above.

5-6

1231 PROGRAMMING MANUAL

e}

The contents of this register are stored
in memory, and control returns to OPUS.

NOTE : If "ERR" prints, an illegal

digit or key was depressed.
Control returns to OPUS., The data must
be re-entered.

KEYBOARD KEY NAME AND DESCRIPFTION

GED Print Out Program or Storage Registers.

This routine prints out the contents of the
specified registers. The printout of program
registers is in the same symbolic form that

it was entered. The printout of storage regis-
ters can be in the octal or decimal format
selected.

TO PRINT OUT REGISTERS

1. Be certain the correct register mode is
selected (selection key P or V). Then
select the W key (print out routine).

2. Enter the numeric address of the first
register to be printed. (Program regis-
ters 000-127; Storage registers 00-63.)
The digits print as they are entered.

3. Depress the # key. (# prints.)

4., Enter the numeric address of the last
register to be printed. The digits print
as they are entered.

5. Depress the ¥ key (# prints, followed by
a line feed, a tab to position 1, and
one space. The address of the first
register prints, # prints, and a tab to
position 25). The contents of the regis-
ter prints out. This is repeated for
each register in the range specified.
When the contents of the last register
have'been printed, control returns to
OPUS.

S-7

KEYBOARD KEYS®

1231

PROGRAMMING MARUAL

The format of an octal printout is:
X XXX XXX XXX XXX

The format of a decimal printout is:
XXX XXX . XXX . XXX

NOTE : During the printout of P-regis-
ters, when OPUS recognizes the
origin-pattern as the contents of the
program register, the register address
is printed, followed by the printing of
the word 'empty''. The printout continues
to the next register address. If the
origin-pattern is recognized while print-
ing storage registers, the pattern is
printed octally or decimally depending on
the mode selected.

NAME AND DESCRIPTION

Punch Tape Leader.

This routine punches about four inches of
tape leader automatically.

Punch Program Into Tape.

This routine will punch, in sequence, the
contents of all program and storage registers
which vary from their origin-pattern. Only
those registers which contain program in-
structions and data will be punched into tape.

Verification of Program Tape.

With the newly created program tape on the
reader (device 2 input), this routine will
compare the contents of the registers punched
in tape with the corresponding contents in
memory. If a discrepancy is found, ''COMP
ERR" will print and control will return to
OPUS. The tape should be thrown away and
another one punched.

5-8

1231 PROGRAMMING MANUAL

2. Program Testing Routines

KEYBOARD KEY NAME AND DESCRIPTION

@ Change the Contents of a Register.

This routine allows the printing of the con-
tents of a specific program or storage regis-
ter. The option is then available to change
or accept the printed contents. The contents
of program registers will be in symbolic
format. The contents of storage registers
will be either octal or decimal depending on
the format selected.

TO PRINT A PROGRAM REGISTER

1. Enter the numeric address (000-127) of
the register to be printed. The digits
print as they are entered.

2. Depress the # key. (# prints, followed
by a tab to position 19.)

3. The first instruction in the register
is printed, followed by a tab to posi-
tion 37.

4, If the instruction is acceptable, de-
press one of the following:

[

The next instruction will print.

[

The contents of this register will be
stored in memory. The first instruction
of the next register will print.

kel

The contents of this register will be
stored in memory and control will return
to OPUS.

5-9

1231 PROGRAMMING MANUAL

NAME AND DESCRIPTION

If the instruction is to be changed,
enter the operation code; enter a space;
enter the additional code (if applicable)
enter either the control I, control II

or return key as described in step 4,
above.

TO PRINT A STORAGE REGISTER

1.

Enter the numeric address (00-63) of the
register to be printed. The digits print
as they are entered.

Depress the # key. (# prints, followed
by a tab to position 25.)

The data print, followed by a tab to
position 37,

If the data are acceptable, depress one
of the following keys:

[]

The contents of this register will be
stored in memory and the data in the
next register will print.

el

The contents of this register will be

stored in memory and control will return
to OPUS.

If the data are to be changed, enter the

new data. The digits print as they are
entered.

Depress the control I or the return key
as described in step 4, above.

5-10

1231 PROGRAMMING MANUAL

NOTE : If a register will no longer be

used by the application program
and it is desirable to delete it from the
next program tape to be punched, refer to the
origin pattern list in the appendix to find
out what origin pattern to enter. Setting
the register back to its own origin-pattern
indicates to OPUS not to punch it in tape.
Setting a storage register to zZero will not
keep it from being punched to tape.

KEYBOARD KEYS NAME AND DESCRIPTION

® Print Out Register A.

This routine will print out the contents of
register A with a decimal format.

® . Print Out Register B.

This routine will print out the contents of
register B with a decimal format.

NOTE ¢ When testing a program, it may be
desirable to print out the contents

of register A (X); register B (Y); or a
storage register (Q) immediately after an
arithmetic function has been performed. The
special instruction '"OPUS'" may be substi-
tuted for a program instruction which
immediately follows the arithmetic function.
When the program reaches the instruction
"OPUS'', control will return to OPUS. The
appropriate test can then be selected.

5-11

1231 PROGRAMMING MANUAL

3. Program Operation Routines
KEYBOARD KEYS NAME AND DESCRIPTION

Read Program Tape into Memory.

This routine will read a program tape and
store the instructions and data in the P
and V registers.

@ To Process an Application Program.

This routine will transfer control out of
OPUS and to the first instruction in POO.
The 1231 will then begin processing the
application program.

NOTE : During the testing of an applica-

tion program, if the program exe-
cutes a jump to a program register which con-
tains the origin-pattern, ''empty ERR'" prints,
and control returns to OPUS. The error can
then be corrected.

5-12

SUMMARY

1231 PROGRAMMING MANUAL

Sequence of operations to create, test and operate an application
program:

1.

10.

11.

12.

13.

14,

15.

Enter OPUS via start-up restart procedure.
Reset memory - key R, then shift key and P4 key.

Select register mode if not already selected. Key P, for
program registers; key V, for storage registers.

Select format (octal or decimal) if key V was entered and
the desired format was not previously selected. Key O for
octal format; key N for decimal format.

Select the STORE routine. Key S.

Enter the numeric address and the # key of the desired register.

Enter the symbolic program instructions or data as outlined
in the description of the STORE routine.

Continue to store instructions and/or data until the RETURN
key is depressed and control is returned to OPUS,

Printout P and V registers for verification of correct entry.
Key W.

Punch Tape Leader - key L.

Punch out program tape - key T.

Punch Tape Leader at the end of the tape - key L.

Verify the punched tﬁpe - key P2.

Test the program using key Q for register changes; key W for
V-register printout; key X and Y for registers A and B
printout.

Operate the program -- Using key Pl to read the program into

memory; and control key IIII to pass control to the first
instruction in POO to begin processing the application program.

5-13

SECTION VI

ERROR HALTS

1231 PROGRAMMING MANUAL

VI. ERROR HALTS

PARITY AND OTHER ERRORS

The various EP/31 instructions contain controls that check for odd
parity on input and the entry of an excessive number of digits on input.
There are also input controls on reading and distributing a data tape.

The EBS/1231 will automatically halt the program when one of these con- -
trols is violated. A pattern of lights will be displayed on the 1231
console indicating the reason for the halt. The following is the 1231
console panel of lights and switches.

7 6 5 4 3 LZ | OJ
v

ERROR K=| K=O HALT RUN READY POWER

HALT
LIGHTS

When the program halts, the RUN light will go out. Lights numbered 3
through 7 will go out; and a variable pattern of lights (numbered O
through 2) will appear 1lit on the console.

The lights numbered O through 2 will be 1lit in the following pattern:

LIGHT PATTERN REASON FOR HALT

Parity error or an excessive number of
ON digits entered in the input command.
(Keyboard selected.)

CORRECTION PROCEDURE

1. Depress keyboard RELEASE button.
2. Depress the CLEAR key.

3. Depress the RUN button on the con-
sole,

4, Re-enter the entire field.

6-1

1231
ON
2 | 0
ON ON
2 |)
ON
2 | 0

PROGRAMMING MANUAL

Parity error on the SCI command. (Key
board selected.)

CORRECTION PROCEDURE

1. Depress keyboard RELEASE button.

2. Depress the RUN button on the con-
sole.

3. Re-enter the character.

Parity error detected during keyboard
entry of alpha-numeric data. (DUP in-
struction.)

CORRECTION PROCEDURE

1. Depress keyboard RELEASE button.

2. Depress the RUN button on the con-
sole.

3. Re-enter the character.

A parity error was detected while read-
ing a numeric field from tape.

CORRECTION PROCEDURE

1. Depress the REVERSE FEED button on
the reader once.

2. Depress the RUN button on the con-
sole.

3. If the error halt is repeated, a
parity error (even parity) is ac-
tually present in the tape. Refer
to the error correction procedures
of the application program involved.

1231
ON OoN
2 | 0
ON ON -
2 | 0

PROGRAMMING MANUAL

An excessive number of digits were read
from tape during the execution of the
input command.

CORRECTION PROCEDURE

If both keyboard and reader are selected,
make the correct entry through the key-
board as follows:

1. Open the reader tight-tension
switch.

2. Move the tape in the reader so that
the sensing pins are under the first
code of the next field in the tape.

3. Depress the CLEAR key on the key-
board.

4. Depress the RUN button on the con-
sole.

S. Manually're-enter the field.

6. Close the tight-tension switch on
the reader. Processing will con-
tinue.

If the keyboard is not selected, refer
to the error correction procedures of
the application program involved.

A parity error was detected while read-
ing a SCI character or while reading an
alpha-numeric field from tape (DUP in-
struction).

CORRECTION PROCEDURE

Re-read the character as follows:

1. Depress the REVERSE FEED button on
the reader once.

2. Depress the RUN button on the console.

3. If the error halt is repeated, a
parity error is present in the tape.
Refer to the error correction proce-
dures of the application program in-
volved.

6-3

1231
ON ON ON
2 ! 0

PROGRAMMING MANUAL

This error halt designates a control

was violated while executing a distri-
bution instruction. To determine the
specific error involved, depress the
HALT button on the console once. A

new display of lights will appear. Re-
fer to the section on Distribution Error
Halts for the specific error and correc-
tion procedure.

6-4

1231

ON

PROGRAMMING MANUAL

DISTRIBUTION ERRORS

The DIST instruction has detected one
of two errors:

1.

6-5

A non-numeric character was de-
tected in an address field that
did not have an ignore code in
the corresponding digit-position
of the distribution edit word.

An end code in the distribution
edit word was processed, and there
was no end character in the corres-
ponding position in tape.

CORRECTION PROCEDURE

Depress the STEP REVERSE switch
on the reader once.

Depress the RUN button on the con-
sole. The character on tape will
be re-read. If the character was
accepted this time, processing
will continue.

If the character was in error
again, processing will halt.

A) Mark the tape so that it can
be checked after the run.

B) Depress the K=1 switch on the
console.

C) Depress the RUN button on the
console. The program will
search the tape for the start
code of the next address field.

1231
ON
| 0
ON ON
! 0

PROGRAMMING MANUAL

The DIST instruction has detected a
parity error (even parity in the tape).

CORRECTION PROCEDURE

Same as the correction procedure for
the Exrror Halt on the preceding page.

The DGET or DPUT instruction found a
D-register address outside the range
of 000 to 499 in register VO7.

CORRECT ION PROCEDURE

Depress the RUN button on the console.
Control returns to OPUS.

6-6

1231 PROGRAMMING MANUAL

OUTPUT PARITY ERROR

When the EBS/1231 recognizes the output of EVEN parity (parity error),
the following sequence occurs:

1. The PARITY LIGHT on the Model 70 Punch comes ON.

2. Processing halts.

CORRECT ION PROCEDURE

1. Depress the RAPID ADVANCE SWITCH. Produce enough tape
leader so that a proper identification of the error can be

written on the tape.

2. Label the tape with a reference to the record being pro-
cessed,

EXAMPLE : Employee number, Invoice number, Product
number, etc.

3. Open the TAPE-TENSION SWITCH on the punch.

4, Turn the MODE KEY on the punch to the middle position. The
PARITY LIGHT goes OFF.

S. Turn the MODE KEY back to the right position.

6. Close the TAPE-TENSION SWITCH on the punch. Processing
continues.

SECTION Vil

APPENDICES

1231 PROGRAMMING MANUAL

APPENDTIX I

EDIT WORD FORMATS

FORMAT EDIT WORD CONSTANT
X 055-555-555-561

XX 055-555-555-661

XXX 055-555-556-661

XXXX 055-555-566-661

XXXXX 055-555-666-661
XXXXXX 055-556-666-661
XXXXX XX 055-566-666-661

XXXX XXX 055-666-666-661
XXXXXXXXX 056-666-666-661
XXXXXXXXXX 066 -666-666-661

X .XX 055-555-556-361

XX .XX 055-555-566-361

XXX . XX 055-555-666-361

X, XXX .XX 055-556 -466-361

XX, XXX . XX 055-566-466-361
XXX , XXX .XX 055-666-466-361
X, XXX, XXX .XX 056-466-466-361
XX, XXX , XXX . XX 066-466-466-361
XX/XX/XX 055-556-626-261

All edit words shown contain leading spaces, no sign,
and no field code.

7-1

1231 PROGRAMMING MANUAL

APPENDTIX II

TABLE OF CHARACTER OUTPUT CODES

CHARACTER AND CODE KEY AND CODE SPECIAL LHAR., AND CODES
A 061 PO 013 space 000
B 062 Pl 014 * 032
c 063 P2 015 , 033
D 064 P3 016 / 021
E 065 P4 017 Q 012
F 066 it 013
G 067 - 040
H 070 I 034 % 052
I 071 II 035 $ 053
J 041 III 036 & 060
K 042 IIII 037 . 073
L 043 072
M 044 CLR 012
N 045
o 046
P 047
Q 050
R 051
S 022
T 023
U 024 FUNCT IONS CODES
v 025
W 026 Line Feed Left 075
X 027 Line Feed Right 055
Y 030 Line Feed Both 054
y4 031 Form-Up 057
0 020 Black Ribbon 056
1 001 Red Ribbon 074
2 002 Backspace 076
3 003 Carriage (Open,Close) 077
4 004
5 005
6 006
7 007
8 010
9 011

1231 PROGRAMMING MANUAL

APPENDTIX 111

MODEL 11 KEYBOARD LAYOUT

O (@] ¢iPIP2|P3|P4| 111
043 094

*1112[3Ta[5[e7[8]9
184 | 004 | 007 Jolo 013 J 016 | 019 | 022 | 028 | 028 | 0491031 | 136 { 037 {040 046
“"QWERT_YUITOP# PGl71819] 1
187 J 121 Joerlieoji124 josejorslosif172 { us | e | o9l
4 AISIDIFIGIH|JIKIL|=[(%|%*]0[4|5]61 I
133) 148 J 085] 187 | 163 | 166 | 169 | 100 | 103 | 106 | oe7 [127 | 079 097 0i3 | ole | ol9 oss
- ZIX|CIVIBINIM| | | /]|&|CLEAR
't ore | o070} 154 foea {181 | 112 {109 [082] 178 082] 148 o031 | oo4| 007 | 010 |
- oot ISHIFT SPACE vt o .. oss
NOTE : Subscripted numbers indicate the print head

position obtained when ''SHIFT'" and the se-
lected key are depressed. The following print head
positions cannot be obtained from the keyboard:
139, 142, 175, 181, and 190.

7-3

1231 PROGRAMMING MANUAL

APPENDIX IV

ORIGIN-PATTERNS FOR P AND V REGISTERS

There will be times when it is desired to reset selected program or
storage registers to their origin-pattern, without resetting the entire
memory. This is desirable, because setting unused registers back to
their origin-patterns reduces the length of a punched program tape.

The following are the steps for re-setting origin-patterns:

1. Depress the HALT, READY and RUN buttons on the console. Control
is transferred to OPUS.

2. Depress the ''"H'' key on the keyboard.
3. Depress tbe US" key on the keyboard.
4, Refer to the P or V origin-pattern lists.
a. Find the line containing the register address to be reset.

b. Enter the three-character internal address through the key-
board. (Do not enter the register address.)

c. Depress the # key on the keyboard.
d. Enter the eight character origin-pattern.

e. Enter the end code as follows:

[:] The origin pattern is stored in the specified register.
The internal address of the next register prints. Return
to step 4d above.

[:] The origin-pattern is stored in the specified register.
Control returns to OPUS. If no other registers are to be
reset, depress the HALT, READY and RUN buttons on the con-
sole,

7-4

1231 PROGRAMMING MANUAL

iv

(CONT INUED)

APPENDTIX

P - REGISTER ORIGIN-PATTERNS

P P P
REG. INTERNAL ORIGIN ||REG. INTERNAL ORIGIN REG. INTERNAL ORIGIN
ADR., _ADR. _ PATTERN ||ADR. _ ADR. PATTERN ADR. __ ADR, _ PATTERN
000 300# 0707 E300||043 32B# 07 07E32B || 086 356# 07 07 E356
001 301# 07 07 E301 || 044 3204 07 07 E32C || 087 3574 0707 E357
002 302# 07 07 E302 || 045 32D# 07 07 E32D || 088 358# 07 07 E358
003 303# 07 07 E303 || 046 32E## 07 07 E32E || 089 3594 07 07 E359
004 304# _ 0707 E304]| 047 32F# 07 07 E32F]| 090 35A% 07 07 E35A
005 305# 07 07 E305 | 048 330# 07 07 E330 || 091 35B# 07 07 E35B
006 306# 07 07 E306 || 049 331# 0707 E331 || 092 35C# 07 07 E35C
007 307# 07 07 E307 || 050 332## 07 07E332 || 093 35D## 07 07 E35D
008 308# 07 07 E308 | 051 333# 0707 E333 || 094 35E4 07 07 E35E
009 309# 0707 E309)] 052 334y 07 07 E334 || 095 35F# 07 07 E35F
010 30A# 07 07 E30A || 053 335# 07 07 E335 || 096 360#f 07 07 E360
011 30B# 07 07 E30B || 054 336## 0707 E336 || 097° 361# 0707 E361
012 30C# 07 07 E30C || 055 3374 0707 E337 || 098 362/#f 07 07 E362
013 30D% 07 07 E30D || 056 338%# 07 07 E338 || 099 363y 0707 E363
0l4 30E# 0707 E3CE || 057 339y 07 07 E339 || 100 364y 07 07 E364
015 30F# 07 07 E30F || 058 33A#f 07 07 E33A || 101 365# 07 07 E365
016 310# 0707 E310]|[059 33B## 07 07E33B || 102 3664 07 07 E366
017 311% 07 07 E311][060 33C## 07 07 E33C || 103 3674# 07 07 E367
018 312# 0707 E312 || 061 33D# 07 07 E33D || 104 3684 07 07 E368
019 313# 0707E313|]062 33E# 0707 E33E || 105 36944 07 07 E369
020 314# 07 07 E314[] 063 33F# 07 07 E33F || 106 36A# 07 07 E36A
021 3154 07 07 E315 || 064 3404 07 07 E340 || 107 36B# 07 07 E36B
022 316% 07 07 E316 || 065 341 07 07E341 || 108 36C# 07 07 E36C
023 317# 07 07 E317 || 066 3424 0707 E342 || 109 36D# 07 07 E36D
024 318# 0707 E318 || 067 343f# 07 07 E343 || 110 36E4# 07 07 E36E
025 319# 0707 E319 || 068 344/ 07 07 E344 || 111 36F# 07 07 E36F
026 31A% 07 07 E31A || 069 3454 0707 E345 || 112 370# 07 07 E370
027 31B# 0707 E31B|| 070 346% 07 07 E346 || 113 371# 0707 E371
028 31C# 0707 E3ic || 071 347## 0707 E347 || 114 372 07 07 E372
029 31Dj# 0707E31D|l072 3484 0707 E348 || 115 3733 07 07 E373
030 31E¥ 07 07 E31E || 073 3497 07 07 E349 || 116 374if 07 07 E374
031 31F# 07 07 E31F || 074 34A¢ 07 07 E34A || 117 375# 07 07 E375
032 320# 0707 E320|| 075 34B## 07 07E34B || 118 37644 07 07 E376
033 321# 0707 E321][076 34C# 07 07E34cC || 119 377# 07 07 E377
034 3224 0707E3221|077 34Dj## 07 07 E34D || 120 3784 0707 E378
035 323# 0707 E323([078 34E# 07 07 E34E || 121 379# 07 07 E379
036 324# 07 07 E324 | 079 34F## 07 07 E34F || 122 37A# 07 07 E37A
037 325# 0707 E325 |{ 080 3504 07 07E350 || 123 37B# 07 07 E37B
038 3264 0707 E326 || 081 3514 07 07E351 || 124 37C#f 07 07 E37C
039 327# 0707 E327 || 082 352# 07 07 E352 || 125 37Df# 07 07 E37D
040 328# 0707 E328 |[083 353% 07 07E353 || 126 37E# 07 07 E37E
041 329## 0707 E329 || 084 3544 07 07 E354 || 127 37F# 07 07 E37F
042 32A# 0707 E32A[085 355 07 07 E355

7-5

1231

APPENDIX

IV

PROGRAMMING MANUAL

(CONTINUED)

V- REGISTER ORIGIN-PATTERNS

v v

REG. INTERNAL ORIGIN REG. INTERNAL ORIGIN
ADR. ADR., PATTERN ADR. ADR. PATTERN
000 3801 07 07 E380 032 3A04 07 07 E3A0
001 3814 07 07 E381 033 3Al# 07 07 E3Al
002 382y 07 07 E382 034 3A2i# 07 07 E3A2
003 3833 07 07 E383 035 3A3i# 07 07 E3A3
004 3844¢ 07 07 E384 036 3A4if 07 07 E3A4
005 385t 07 07 E385 037 3A 5% 07 07 E3AS
006 3864 07 07 E386 038 3A67# 07 07 E3A6
007 387# 07 07 E387 039 3A74 07 07 E3A7
008 388# 07 07 E388 040 3A8% 07 07 E3A8
009 3894 07 _07 E389 041 3A9i} 07 07 E3A9
010 38AYE 07 07 E38A 042 3AA 07 07 E3RA
0ol1 38Bit 07 07 E38B 043 3AB#} 07 07 E3AB
012 38Ci# 07 07 E38C 044 3AC## 07 07 E3AC
013 38Dt 07 07 E38D 045 3AD## 07 07 E3AD
014 38E## 07 07 E38E 046 3AE# 07 07 E3AE
015 38F 07 07 E38F 047 3AF{# 07 07 E3AF
016 3904 07 07 E390 048 3BO## 07 07 E3BO
017 391 07 07 E391 049 3B1# 07 07 E3Bl1
018 3924 07 07 E392 050 3B2## 07 07 E3B2
019 3934 07 07 E393 051 3B3Y¥ 07 07 E3B3
020 394y 07 07 E394 052 3B4if 07 07 E3B4
021 3954 07 07 E395 053 3B5# 07 07 E3BS5
022 3969 07 07 E396 054 3B67 07 07 E3B6
023 397# 07 07 E397 055 3B74¢ 07 07 E3B7
024 3984 07 07 E398 056 3B83 07 07 E3B8
025 3994 07 07 E399 057 3B9{ 07 07 E3B9
026 39A¢# 07 07 E39A 058 3BA{# 07 07 E3BA
027 39Bi# 07 07 E39B 059 3BB## 07 07 E3BB
028 39Ci# 07 07 E39C 060 3BCH# 07 07 E3BC
029 39D} 07 07 E39D 061 3BDY# 07 07 E3BD
030 39E# 07 07 E39E 062 3BE# 07 07 E3BE
031 39F% 07 07 E39F 063 3BFi 07 07 E3BF

1231

PROGRAMMING MANUAL

APPENDTIX \')

EBS/1231 SYSTEM CODE CHART

INTERNAL
CODE

KEYBOARD
CHARACTER

PRINTER
CHARACTER

PRINT
WHEEL
POSITION

FUNCTION

000

Space

Space

001

002

003

004

005

006

RS

007

010

011

WR(NJMOb [jw [N |-

012

@lear

013

iPo

u|e]ojo|Njor|junlnlwin |~

014

)
[}

015

9
N

016

.
w

LA LA L

AL LA LA LA LR L]

017

1)
N

020

Numeric Zero

021

022

023

024

025

A LA LA L

026

027

030

031

032

*|N||xi=|<|a|RuiNo

*NI<IX | <|a|s|uN\ o

033

[~

034

035

i~
-

036

III

10310

LA LA LA B LA LA LRt

AL LAt AL AL R LR LA LR LA LR LR LA LA LA L

037

IIII

040

041

042

043

044

045

046

»
LA E R AL

047

050

]

051

Ittt AL LA LA LA LA LA LS

052

e|=|ovlolz|x|r|x=lu]|O

o (vlo|2|X|c =]

7-7

1231

APPENDTIX

PROGRAMMING MANUAL

V__ (CONTINUED)

EBS/1231 SYSTEM CODE CHART (CONTINUED)

PRINT
TAPE INTERNAL KEYBOARD PRINTER WHEEL
CHARACTER CODE CHARACTER CHARACTER | POSITION
3{4{15]|6|7|8 FUNCTION
x x 053 S $
x|[x X 054 44 Index Left + Right
x|x|x| [x 055 4(R) Index Right
x{x[x|x] Ix 056 . Black Ribbon Print
X|{x|x X 057 Formup
X|xix 060 & &
x|x 061 A A
X X [x 062 B B
X x|x|x 063 C C
x x|x 064 D D
X x|x|x 065 E E
X [x| [x]|x[x 066 - F F
x|x X |x 067 G G
x x|x 070 H H
x|x|x]|x 071 I I
X x|x|x|x 072
X X x|x 073 . .
xix|x|x]|x 074 Red Ribbon Print
x|x] Jxlx 075 A(L) Index Left
x|x|x] |x|x 076 <4 Backspace
Xx|x|{x|x|x 077 Carriage Open or Close
x 100 e 1 Return
x x 101 _SHIFT 1 4
X X X 102 SHIFT 2 7
x x 103 SHIFT 3 10
X x x 104 SHIFT 4 13
x X 105 SHIFT 5 16
X|x x 106 SHIPT 6 19
X|x X X 107 SHIFT 7 22
x|x x 110 SHIFT 8 25
x x 111 SHIFT 9 28
x x x 112 SHIFT@orClear: 31
x| [x]x X 113 SHIFT itox PO 34
x[x X 114 SHIFT Pl 37
x|x|x x 115 SHIFT P2 40
x[x|x|x x 116 SHIFT P3 43
x|x|x x 117 SHIFT P4 46
x|x]| |x 120 SHIFT O 49 Numeric Zero
x| [x 121 SHIFT / 52
X x| |x 122 SHIFT S 55
x x|x X 123 SHIFT T 58
x x| |x 124 SHIFT U 61
x x|x]| [x 125 SHIFT V 64

7-8

1231

APPENDTIX \'A

PROGRAMMING MANUAL

(CONTINUED)

EBS/1231 SYSTEM CODE CHART (CONTINUED)

PRINT
TAPE INTERNAL KEYBOARD PRINTER WHEEL
CHARACTER CODE CHARACTER CHARACTER | POSITION
3|4|5(/6]7]8 FUNCTION
x x| |x 126 SHIFT W 67
X x| |x 127 SHIFT X 70
X X X 130 SHIFT Y 73
x{x|x! {x 131 SHIFT Z 76
x| Ixjx}x] |x 132 SHIFT * 79
x| (x| |x 133 SHIFT , 82
xIxix|x X 134 SHIFT I 85
x|x| |x] Ix 135 SHIFT II 88
x| x X X 136 SHIFT III 91
x| x|x|x|x X 137 SHIFT IIIX 94
X x|x 140 SHIFT-or ¢ 97
x|x 141 SHIFT J 100
x|x 142 SHIFT K 103
X x|x 143 SHIFT L 106
X x| x 144 SHIFT M 109
x| x| |x|x 145 SHIFT N 112
X X x|x 146 SHIFT O 115
x| x x| x 147 SHIFT P 118
X x|x 150 SHIFT Q 121
xXix xlx 151 SHIFT R 124
x| Ix)x] Ix|x 152 SHIFT % 127
x x| 153 SHIFT $ 130
xfxix| |x|x 154 SHIFTA4 133 Index Left & Right|
x| x x|x 155 SHIFT 4 (R) 136 Index Right
Xix|x x|x 156 139
x|x]x]x] Ixlx 157 142
x|x|x 160 SHIFT & 145
x{x|x|x 161 SHIFT A 148
x| x|x|x 162 SHIFT B 151
x x|x|x 163 ~ SHIFT C __ 154
X x| xx]x 164 SHIFT D 157
x x| x|x 165 SHIFT E 160
X x{x|x 166 SHIFT F 163
x|x x| x{x|x 167 SHIFT G 166
x| x| x|x|x 170 SHIFT H 169
x| Ixlx|x 171 SHIFT I 172
x| Ix|x{x 172 175
x|x|x]x]|x 173 SHIFT . 178
x| x] [x|x]x 174 181
x| xlx|x]x|x 175 SHIFT 4 (L) 184 Index Left
x| x| x| x| x|x 176 SHIFT € 187 Backspace
x| x xIx|x 177 190

7-9

OPUS EP3I SerncE Aourmes
ey
R AESET‘yepd
3[V Selecrs Sreppse fes.,

/ 4 Ocrat [Mecymnl (Srornce Lecisren darn)
S srre: AN # oPaAAD(L. scauenril mperT
AR # 40000000~ NEXT REGISTER (p-pecs on.
K— opus
E r
W wprre; 75‘/{#/‘ Y
Ap #/M# A

Ledoer, papen TALE,

TAPE PROGRAM— f2on STORAGE

P vepify Above oW ((Iuﬂ)ﬂedﬂelﬁ’ (omﬂ ERR ", gefecrive.
R une: AR YA /90 Zoﬁ 2408 (X

ﬂﬁ# ”04 m { 0Arﬂf 11:
K-

~ T

X PRwrs A,
Y pemrs A,
PL Resn Aoc TAPE 1wTo /nemM’V

B Jump To Poso, + EXECuTE.,
e ——— e R

- To /mnALIZE T® opuUS
PowER; (READYD , HALT, READY, RUN. CKerbonpn see £las hon

STERS !
bogive: A (< Aw Z/oy rhaee 4 oéeé-.

A 244
Srotpce ! AP (Rese) 728 aks; €9 =573 s e, , 0127,
P27 poses T fave A Teemp,
V comsiy #e9, B2 pte. o363

dee
D osw) So, ,J—'—’cﬁ)ﬁé‘é OCO3YY

[. " (/éOZ/,éocessoé
177 0

EﬂS//ZBI Lys7hucreny Ser

2ot

And Tfe 2o0e
burron;) DCLR k=@ , A=4=7 | <tewr oO-4555
JGET &=A, A=, Loy J-Hes-
Drur 4‘;/9 SrenE =~ =
*DzsT 2 ﬁfsrﬂ/dtnl TARE 100
*SCAN A= uslur 5 Voo7 =0¢£§g AVOR| Sterkch o8 F#o vAuE,
SGET ,&é//@ A Splrr J-Ké
SAUT SrosE = =
1AL OPUS - ARos., /NTER
CALL LAt selATE
()] ChEck D/&,7 VEA,
DupE INPeAT l(onb. o Lhep. Cven Foie
oupre wpnr = = = loso) <
- SPEC outpur = T T Lspecinld
X ScAn D -0pEn when YIlonm, 18 fog, Reg.
@it Vo 2199 > SKIPS NEXT (SINGLE) INSTR.
KDIST @ Vo1 = Stanr chmr of 2sor. fielo 8 "',
02 = < > % Bmount 7
[lj:: ;i f’f,ﬁ,‘,/zﬁ Qﬁéﬁ’}i,’&fﬁ‘ﬁ ALOR, Thew ox 4*W— s

S0Pk 2)~d

’/oe Ao felp Eoer LorD.

¥ In8Hs = pueadlZR@ITaD) ~ | <tvenly smsitfe by 3 $hH7,n 11

123! /¥S$TRUCT/ON SET

lof

" /2”0 N LoDE %%?L Symbolic £xXPlvarew NOTES
YSFER, CLR| ~ A= P
XC8| - AL ExchANGE
Xcv| - S Uso
BV | co-e3| 8=A, A=V Lawe
SV |ece-e3] U=A S refE)
rh ;. ROD A=A+8
NGA A=A NEGATE
NGA 4= 8 ,.
LY | 63| V= VA | «roare
Ace | oo-63| A= AtV | Aecomsel ATE, B FSpesns
w3 | AZARHY | vioE
Jump: RT | - AuTOMARIC Teamp 10 PRO:
| VIUP| eo-127 o > JUMP Jump uslovd, 70 pROS
oprf J2P \cor27 | 1A {50-» AzA-1. | _Jump 2ERo refhos
'.l/,a,la...}J'PS - /FAZ B>sKP NEXT @ Tumppes suP onr,
TMK |oo-127 F:hﬁ Japx 76 pRO6
e v/ — Tum 0 Rerupn rolssT mkh) /NST)
/e © SEL | oo17 LAANNEL SElgcTroN
IN lo1-10 , B4, A= jppnr, 2 270
SKZIP|o)-t0 "
OUT |os-31 ADoutpur Ml , :
Bup [s1-196 Jﬁf@f;»::,’:,:f;ﬁ”' Ducprse greoorT oo onmr
ce |[06-77 ChAR Durpur
scx| - Az mpur, Swgle ChAR. Tnpecr
€Ol o A>outpurt = 2 Qurpn?
TAR\ o-190 TAbulpTE
ALFR - XXxxx ->A Alfa INPUT
! ALfd = | A2 xxxxx AlfA OATAUT
®) INA| ~ [Giw Ases >A MR

ESCHEXIT

mer AscTT
Rub-ouT > LEAR

I/o

CAANNELH ocurPar H£Y1¢ &

NPu7r HEVIC E

KerboAR) / ARy TER
READE R 2 ALt
Aes'y, 3 AEs0,

IRPINGD

SEL co-77 2 SEL X x
wpur <by, ~—3 t"“our/&—vr ch

codE CoDE
—
ST ChANNEL <h, <h, <h,
Con& 3 2 !
O & o o
] o o !
2 o (o
3 & |)
“ / o o
XY / o /
6 / / o
7 J { {
IN o1-s INPUTS ol~to S$i1G. Digrrs

(0 ’m, ‘> KEYs (ANYwhéRE) o Are NEG, wo.
CLEDAR KCy +70 pE-ENTER
I (Voo = Voo) unchanges

r Voo = 1
I Voo =2
1o “~ =23
PO e |
Al * =5
£1 r =P
3 =7

nmAnd
(T o031 A-bwrmr)(,aflh/lf = Vaa‘?uo

:01:_ %gzz;m r,ofaﬂt 4/1&:)

FJ e ol Waled r

fe‘ffff*/x o xx €f5>}

, 5“/’!\?::60
Lbesr bie,rs
§w

P NoTES

D #ofssadx's pusr = t0,
& % wvvtcares oprion.

Ehrr Worg ComnsrANr

O r/’ai‘J‘
S/GH,

->,D
—>Suppesse o
- D

- Com) PAOG,
/i’dl" ‘v

mAND

—-——-‘ i
A/ ol-to
ﬂﬁ 0% 4 &Qm —
:Ke?hﬂkﬂ TBPLE__| eoumnlent
- INT, CYclE NA z\‘/ =
- =fchr

DEs cyele wa <LRILF lefr
AmrT + & [ct1

SubTorAt © Jforbgir

Total / %
CARA
TAPE LenBER OPENFCLOSE

£

| fger NEGATES) 76RMINATES ?

- fir8s T LY '

y(/oo : ChAR, :If ;54& i
oo =1 16N RED / TELMINATES

bho =

——

NEG, [NEG, +TERM
/6. / rfﬁ’h‘r

/ 7ERMN.
/6,

/e
/e

PROGRAMMING MANUAL

1231

PAGE

PR, | JUS

EBS 1231
CODING CHART
WORKING REGISTERS

DATE

APPLICATION

ul
t

oEVICE
SELECTION

T v 1
|PTR (PNCH|

-
| x» lnon
L

oo!

1
H
1

.

—— -

— -1

[

S

—— 4 —- 3.

8y

ROUTINE

COMMENTS

1 acoirionaL
| coot

or
OoDE

(=1

-
| PROGARAM
. REGISTER

FROM

R

2~
e

EBS 313 11,89 o -

	0-001
	0-002
	0-003
	0-01
	0-02
	0-03
	0-04
	0-05
	1-00
	1-01
	1-02
	2-00
	2-01
	2-02
	3-00
	3-01
	3-02
	3-03
	3-04
	4-00
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	7-00
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08

