
THE LIVERMORE DISTRIBUTED STORAGE SYSTEM:
REQUIREMENTS AND OVERVIEW UCRL—102664

DE90 007255Carole Hogan, Loellyn Cassell, Joy Foglesong,
John Kordas, Michael Nemanic, George Richmond

Lawrence Livermore National Laboratory
Livermore, California

ABSTRACT

This paper outlines the requirements for a
large-scale, distributed storage system, and de
scribes how a system being developed at the
Lawrence Livermore National Laboratory,
called the LINGS Storage System (LSS), meets
those requirements. The LSS provides dis
tributed storage in an environment that in
cludes supercomputer host machines and a
large-capacity, hierarchical central repository.
The paper defines the key terms and concepts of
the LSS and gives a brief architectural overview
of the system. Major system components are de
scribed in more detail. The contributions of the
LSS to the design of large-scale, distributed
storage systems are identified and discussed
throughout the paper. Finally, the current status
of the development of the LSS is described, in
cluding a brief summary of hardware and soft
ware components.

INTRODUCTION

The computing environment at the Lawrence
Livermore National Laboratory (LLNL) in
cludes supercomputer host machines that
weekly generate 50 gigabytes of data for long
term storage. These large-capacity storage
needs, constrained by budgetary limits, have
led to the integration of host, central, and
archival storage systems into one transparent,
logical system called the LINGS Storage

System (LSS) (see Figure 1).** The significant
contributions of the LSS to the design of large-
scale, distributed storage systems, explained in
detail in later sections of this paper, include:

* System components modeled on an extended
client-server model, for reasons of modular
ity, extensibility, portability, and trans
parency.

* A pipelined, message-passing communica
tion protocol between system components, to
permit efficient asynchronous communica
tion and provide part of the flexibility neces
sary to move components to any machine in
the system, as needed.

• Separation of control messages from data
messages in communication between system
components, to improve performance and
support movement of third-party and
pipelined data.

• Automatic migration of bitfiles and directo
ries between host and central and between
central and archival storage, to improve per
formance and storage-space management,
and to aid in presenting a single, integrated
view of all levels of the storage system.

• Caching the entire bitfile when an access to it
is first made, to improve performance by sav
ing the overhead of multiple requests for re
peated access to the same resource.

* Portability of system components as a sepa
rate goal, to ensure the flexibility that permits
moving components to any machine, regard-

Significant terms and concepts used through
out this paper are defined in the GLOSSARY
Section at the conclusion of the paper.

DISTRIBUTION OF
MASTER

THIS DOCUMENT IS UNLIMITED
1

less of the operating system running on that
machine.

• Separation of the naming service that maps
human-oriented names into machine-
oriented identifiers in a single system
component, rather than replicating it in all
components, for reasons of flexibility,
extensibility, simplicity, and performance.

Other contemporary storage systems have suc
ceeded in integrating multiple storage levels,
including the SUN Network File System
(NFS),1 Camegie-Mellon University's Andrew
File System (Andrew),2 the Los Alamos
National Laboratory Common File System
(CFS),3>4 the NASA-Ames Research Center
Mass Storage System (MSS-II),6 the National
Center for Atmospheric Research Mass Storage
System (NCAR),3-4 and the University of
Michigan's Institutional File System (IFS).6
Each of these systems has made significant
contributions to certain aspects of storage sys
tem design and to certain types of storage envi
ronments. NFS integrates workstation file
systems by permitting file access to several
systems from a single machine. Andrew ex
tends the workstation environment by integrat
ing thousands of workstations into one storage
system. IFS extends the Andrew effort by pro
viding a file system that supports tens of thou
sands of workstations. It also provides an
archival storage system as a backup for the
workstation file systems. CFS performs migra
tion of files from central to archival storage in a
supercomputing environment. MSS-II provides
high-performance transfers between central
storage and host supercomputers. NCAR pro
vides a fast data path from device controllers in
central storage directly onto a high-speed net
work to the supercomputer host machines.

The LSS contribution is to provide full, trans
parent integration of large-scale storage across
multiple supercomputer host systems and across
all levels of the storage hierarchy depicted in
Figure 1. For system users and designers, there
are several advantages to a fully integrated,
distributed storage system. For system users,
including those who write and those who utilize
application programs, the primary advantage is
simplicity. They see the same directory struc
ture from any vantage point. They need to know
only one interface for accessing bitfiles and di

rectories, whether local or remote, because loca
tion is transparent. All bitfiles and directories
are accessed as if they were local. Thus, the LSS
provides a user view of a single storage system.

By contrast, in systems like NFS and CFS,
users must be aware of the location of their re
sources. In NFS, the location of the particular
file system where the desired files reside must
be known and mounted before the files can be v
accessed. (However, once mounted, file access ,
is transparent.) In CFS, the user must be aware
of whether his files are local or on CFS. A user
must explicitly request files to be moved between
local storage and CFS.

Having one transparent, distributed storage
system also means that LSS users need not be
familiar with different storage system charac
teristics such as bitfile lifetime and maximum
bitfile size. They need not be concerned with
tasks that are typically required when bitfiles
must be explicitly stored. These tasks include
breaking large bitfiles up into smaller pieces to
meet size limitations on a particular medium
and copying bitfiles to permanent storage so
they won’t be destroyed when space on that
medium becomes scarce. Also, unlike the case
of UNIX, users are not faced with the prospect of
being unable to run if space becomes scarce on a
particular medium.

For system designers, the primary advantage of
a fully integrated, transparent, distributed stor
age system is resource management flexibility.
The freedom to migrate bitfiles allows the sys
tem to optimize performance, maximize media
utilization, control network traffic, incorporate
new technologies, and minimize operational
costs. High performance at low cost is achieved
by keeping active bitfiles on expensive, fast-
access storage and less active bitfiles on
cheaper, slower-access storage. Also, with only
the inactive bitfiles on off-line storage, there are
fewer fetches to that medium, reducing the *
amount of storage space and manpower
required to deal with it. Moreover, the load on
the network is significantly reduced, since
there are fewer fetches to lower levels of storage.

2

The remainder of this paper outlines the re
quirements of a large-scale, distributed storage
system, presents an architectural overview of
the LSS, and discusses how the LSS components,
defined below, meet these requirements.

REQUIREMENTS

The users of a storage system generally desire
unlimited storage capacity and fast access to
their stored data. These desires are frequently
offset by the high cost of fast-access storage
hardware. One solution, adopted in the LSS, is a
hierarchy of storage media with varying access
times. Good architectural design hides the dif
ferent performance characteristics of the media
in the hierarchy and minimizes software devel
opment and maintenance costs. Thus, the re
quirements of a distributed storage system re
sult from users' needs, cost constraints, and
sound architectural design principles.

While user needs and cost constraints can vary
from site to site, there are several general re
quirements that remain constant. These re
quirements are tabulated below.

Performance The time necessary to access
resources must be mini
mized. Furthermore, to give
users a single view of the
system, the time required to
complete an operation should
be as independent of the loca
tion of the resource as possi
ble.

Capacity The system must be able to
store ever-increasing
amounts of data as computers
with greater computing ca
pacity become available. The
system should also provide
users with the ability to store
bitfiles without size restric
tions.

Transparency The system must provide
users a single, homogeneous
view of storage for ease of
use. There are four main
dimensions of transparency:
1) Syntactic transparency—
access to both local and re-

Integrity

Synchronization

Availability

Security

Naming

Resource
management

mote resources use the same
operations and parameters.
2) Semantic transparency—
behavior of storage opera
tions is independent of re
source location and error
types.
3) Name transparency—a
resource can be accessed with
the same name from any site
in the network.
4) Location transparency—
location of a resource should
not be inferable from its hu
man-oriented name.

The system must preserve
data integrity, software bugs
and hardware crashes
notwithstanding.

The system must provide
mechanisms for sequencing
access to shared resources to
preserve data consistency.

The system must provide
mechanisms that ensure the
continuous availability of
system components and re
sources.

The system must provide
mechanisms that implement
both mandatory and discre
tionary access control poli
cies to protect user data.

The system must provide a
reliable way to name re
sources at various system
levels, from human-oriented
names to machine-oriented
identifiers, so that users can
store, locate, and retrieve
their data and the system can
locate dynamically relocat
able resources.

The system must provide
mechanisms, including ac
counting and allocation
controls, to efficiently man-

3

age resources at several
levels.

Error control
and recovery

The system must provide
controls to detect and recover
from failures at many
levels.

Modularity The system software compo
nents must be written as in
dependent modules with
well-defined interfaces for
ease of system construction
and maintenance, and to
provide the building blocks to
recursively expand the sys
tem, if desired.

Portability System modules and utilities
must be written in a high-
level, portable language and
be built on libraries in such a
way that the system can run
on a variety of operating
systems and hardware
configurations.

Extensibility The system must be written
flexibly so that it can be
easily expanded to include
newer technologies as they
are developed.

Random read!
write access
to bitfiles

The system must provide
users with random read/
write access to their bitfiles to
eliminate the delay inherent
in sequential access and to
provide the flexibility that
many applications require.

Standards The system should adhere to
standard communication
protocols and provide access
to and from other file sys
tems.

The various ways that the LSS meets these
requirements are discussed throughout the re
mainder of this paper. The next section pro
vides an overview of the key architectural
concepts of the system.

ARCHITECTURAL OVERVIEW

The key components of the LSS are taken from
the IEEE Mass Storage Reference Model
(Reference Model).7 They include name
servers, bitfile servers, storage servers, and bit-
file movers. The servers are built on the mes
sage-based client-server model, including
lightweight tasking for multiprocessing and
concurrency, because of its particular
suitability for a distributed storage system. The
client-server model, its suitability for
distributed systems, and the functionality of the
LSS components are discussed in this section.

Client-Server Model

The LSS is built upon a message-based architec
ture using the client-server model, as shown in
Figure 2. In this model, the client process pre
pares a message containing the identifier of the
object to be accessed and the operation to be per
formed. The request message is sent to the
server, where it is processed and a response
message is generated. Each server or object
manager presents to its clients an abstract ob
ject, defined by three essential parts: a logical
representation or data structure, a set of opera
tions that can be performed on the logical repre
sentation, and legal sequences of the operations.
The implementation details of the physical rep
resentation are known only by the server.
Thus, the abstract-object mechanism allows
each server to choose the implementation best
suited to its environment. Two servers manage
the same type of object if their abstract-object def
initions are the same, regardless of the method
they choose to implement the object8

An example of a familiar abstract object, the
UNIX file, has a logical representation of a
header and a byte stream. The set of operations
includes stat, open, close, read, write, and seek.
The legal sequence of operations requires, for
example, that a file must be opened before it can
be read. A server that implements the UNIX file
abstract object may choose to store the header in
formation on magnetic disk, which is easily
accessible, and to store the body or byte stream in
noncontiguous segments on magnetic tape.

The syntax of the messages sent between clients
and servers is uniform. A request message
contains an operation identifier and its

4

parameters. The reply message contains the
results from the operation, including error
indications. Bulk data may flow in separate
communications for efficiency and flexibility,
as described later in this paper.

The client-server model is particularly well
suited for a distributed storage system because it

« fulfills the requirements of modularity, porta-
f bility, syntactic and semantic transparency,

and extensibility. The model supports modu
larity because the details of the storage devices
are hidden behind the interface by the server
modules that implement the abstract object.
Therefore, clients of the system need not con
cern themselves with the differences between the
various physical media. Also, all servers
managing the same type of abstract object sup
port the same well-defined interface. Message-
based communication aids in achieving the re
quirements of modularity and portability.
Message passing permits clients and servers to
execute asynchronously rather than blocking on
procedure calls. It also provides the flexibility to
move servers and clients to other machines be
cause they are not dependent on such things as
global variables or particular databases.

Syntactic transparency is provided because ac
cess to an object, whether local or remote, occurs
through the same operations and parameters.
Semantic transparency is achieved because the
behavior of storage operations is independent of
operand location and types of errors. Ex
tensibility is provided by the underlying
message-passing system and the modularity of
the client-server model. Modularity, in particu
lar, supports extensibility because it permits
more complex systems to be built recursively. It
also allows for the easy replacement of older
modules to incorporate new technologies.

Components of the LSS Architecture
♦

The key components of the LSS are the bitfile
servers, the storage servers, the bitfile movers
and the name servers (see Figure 3).* The bit-
file servers provide access to bitfiles. The stor-

* The storage servers have been incorporated
into the bitfile servers and, hence, are not shown
separately in Figure 3. The bitfile movers are
represented by the arrows between the servers.

age servers allocate and access physical stor
age. The bitfile movers transfer bitfile data
between channels, such as networks, or devices,
such as di^jc or tape. The name servers map
human-oriented object names to machine-
oriented object identifiers. There are several
architectural features of these servers that make
them particularly well suited as components in
a distributed storage system. First, they con
form to the server portion of the client-server
model defined above, thereby meeting the re
quirements of modularity, portability, syntactic
and semantic transparency, and extensibility.
Second, they also extend the model through the
use of lightweight tasking to provide multipro
cessing and concurrent access (see Figure 4).
Light weight tasks also have less state than tra
ditional processes such as UNIX processes.
Because the cost to create, destroy, and perform a
context switch with lightweight tasks is less ex
pensive, performance is increased and memory
overhead is reduced. Third, the model-
supported, asynchronous message passing
permits pipelining multiple requests of
unlimited size for performance efficiency.
Fourth, the particular format used in the
message passing between clients and LSS
servers provides flexibility and extensibility.
The parameters are not position dependent in
the LSS syntax, so various operations can be
easily extended. Also, there is one standard
network format for each parameterized
datatype, allowing machines of different
architectures to communicate easily.9

The LSS servers are organized in a hierarchy
that corresponds to the three levels of storage in
the system: host, central, and archival (see
Figure 3). Objects are stored at each level of the
hierarchy, according to size and frequency of
access. Servers cooperate to provide transparent
access to the objects. They do this by moving the
objects between host, central, and archival stor
age, as appropriate. Host bitfile servers interact
with the central bitfile server to move bitfiles
between host and central storage, or between host
bitfile servers. The central and archival bitfile
servers interact to move bitfiles between their
levels. Similarly, host name servers cooperate
with the central name server to move directories
between the host and central directory systems,
or between host directory systems. These inter
actions are invisible to the client.

5

Figure 5 presents a brief scenario to describe
how a file is accessed in the LSS. Suppose a user
on host A desires to read a bitfile named /a/h/c.
Suppose further that the file is physically located
in the archive bitfile .server's database and that
the directory entry containing the bitfile identi
fier is located in host B's directory system. To
the user, the read is accomplished as follows. A
process running on the user's behalf on host A
contacts the name server running on A to fetch
the bitfile identifier for the bitfile (message 1).
Once the process obtains the identifier from A's
name server, the read request is completed by
the process sending the request to the bitfile
server running on host A, along with the identi
fier obtained from the name server (message 7).

To users, the local name and bitfile servers rep
resent the entire storage system. Access to any
object, wherever located, is accomplished
through requests made only to the local servers.
In the current example, the fact that the desired
directory entry and bitfile have been obtained
from remote servers is invisible to the user on
host A. To actually accomplish the read, the
system took the following steps. First, the name
server running on host A determined that the
directory entry for /a/b/c was not local, so it re
quested its only supporting server, the central
name server, to fetch the entry (message 2). The
central name server, through tables kept for this
purpose, determined that the directory where the
entry was cataloged was located on host B. The
central name server then sent a message to B's
name server requesting the identifier (message
3). B's name server returned the directory con
taining the identifier to the central name server
(message 4) which, in turn, returned it to the
name server on A (message 5). The central
name server also updated its tables to show that a
read-only copy of the directory was on host A.
The name server on A then returned the identi
fier to the user's process from the directory pro
vided by B (message 6).

Next, the user's process on host A sent the read
request with the bitfile identifier to the bitfile
server running on host A (message 7). The
server determined that the bitfile was not local,
so it requested its only supporting server, the
central bitfile server, to read the file (message
8). The central bitfile server determined,
through tables kept for this purpose, that the bit-
file was located in the archive bitfile server's

database, so it sent the read request to that server
(message 9). The archive bitfile server located
the bitfile in its database and returned it to the
central bitfile server (message 10) which, in
turn, returned it to the bitfile server running on
host A (message 11). The central file server
also updated its tables to indicate that a read
only copy of the bitfile was on host A. The server
on A then provided the bitfile to the user's pro
cess (message 12).

Should a user on host B now make a read request
of its bitfile server for the same bitfile, the same
sequence of steps will take place, with the follow
ing two exceptions. First, the name server run
ning on B will be able to fetch the entry directly
out of its database. Second, if it no longer has a
copy of the bitfile, the central bitfile server will
have the choice of reading it from either host A
or the archive. The archive will be chosen since
it is on the same machine as the central bitfile
server, making communication with it faster
than with the bitfile server on host A.

To extend the scenario further, if a user on host
C now desires to write file /a/b/c rather than to
read it, the system will take the same steps it
took for the user on host A when the original
read request was made, with the following ex
ception. Since writing to a file modifies it, the
central bitfile server must inform the bitfile
servers on hosts A and B that their copies of the
file are no longer current. Therefore, further
read requests by the users on A and B will result
in the same sequence of steps taken as described
in the original scenario, except that the bitfile
will be read from host C rather than from the
archive.

An important caching design consideration is
how much of a resource to cache at once. It is a
key LSS design feature that an entire bitfile is
cached when an access to it is first made. This
is unlike NFS, which fetches only small
portions of a file at a time, so that several *
requests must be made to obtain the entire file.
The LSS designers chose to cache entire bitfiles
at once because (1) host storage space can
accommodate entire bitfiles, (2) experience
indicates that the entire bitfile will probably be
accessed,10 and (3) since the entire bitfile will be
accessed, it is a performance improvement to
cache it all at once and save the overhead of

6

multiple requests to obtain a single resource.*
Similarly, an entire directory is cached when
an access to it is first made. However,
experience with caching directories is meager.
Access patterns for directories may prove to be
sufficiently different to justify caching only a
portion of a directory at a time. Should this be
the case, the directory caching algorithms can
be modified to take advantage of the actual
access patterns.

The following sections describe the key compo
nents of the LSS in more detail, particularly
discussing how these components meet the re
quirements given above.

DESIGN

In this section, requirements issues concerning
the two major LSS components, the name server
and the bitfile server, are covered first.
Requirements issues common to several or all
of the LSS components are then discussed.

Name Server

In the Reference Model, the basic purpose of a
name server is to meet the naming require
ment: to map a human-oriented object name
(“string”) to a machine-oriented object identi
fier (“identifier”) which can then be used to ac
cess an object.11-12 In the LSS, that purpose is
fulfilled by cooperating directory servers.
Directory servers manage abstract objects
called directories. Each directory consists of a
descriptor and a body. The descriptor contains
administrative information such as the number
of entries in the body and the last time the body
was modified. The body consists of
string/identifier pairs, or entries. The pairing
of strings and identifiers in directory bodies
constitutes the mapping from human names to
object identifiers that is central to a name
server. Since directories can store entries for
any type of resource, identifiers to directories

* Bitfile sizes are increasing as supercom
puter technology advances. As bitfile sizes in
crease, the advantages of caching entire bitfiles
at once diminish. If the advantages diminish
enough, the LTSS bitfile servers can be modified
to cache significant portions of bitfiles at a time
rather than entire bitfiles.

can themselves be entry components in a direc
tory. This allows the creation of arbitrary di
rected graphs. As a result, strings become links
in pathnames, and mapping becomes pathname
resolution. Pathname resolution can span di
rectory servers (see Figure 6). Operations on
directories include functions such as create,
insert, delete, list, fetch-identifier, interrogate-
descriptor, and change-descriptor.

Network-Wide Naming Mechanism. A
key design feature of the LSS directory servers
is that they provide a network-wide naming
mechanism for the objects they catalog. This
feature fulfills the requirements of name and
location transparency. Specifically, name
transparency requires that the same name
resolve to the same object from all sites in the
network, so that the user need not be concerned
with the site he logged onto in naming his
objects.13 The directory server supports name
transparency by providing a logically single,
directed-graph directory structure. Location
transparency means that the name of an object
need not change when the object is moved.
Embedding the current location of an object in
the object’s name to facilitate finding it violates
location transparency.13 The directory server
supports location transparency by mapping the
human name to a globally unique object
identifier.

Performance. An obvious concern with a
network-wide naming service is performance.
Without optimization, network accesses to a
single directory structure can be unacceptably
slow. In the LSS directory server, performance
is optimized through the caching and migration
of directories. Specifically, access to the direc
tory structure is synchronized by the directory
server running on the central storage system.
Cooperating directory servers run on each of the
host machines. When a directory structure is
accessed from one of the host machines, the spe
cific directory involved is cached from the cen
tral directory server to the server running on the
accessing host. Thereafter, until the directory
is purged or is migrated back to the central
directory server, all accesses to it from that host
will occur locally. Migration will occur if the
directory has been modified and either it is no
longer in use on the host or write access to it is
requested by a different host. In all cases,

7

accesses to directories are synchronized to
protect the consistency of the data.

Separation of Human Naming from Other
Object Servers. Another key design feature of
the LSS directory servers is that they are en
tirely separate entities from the other LSS
servers.

Advantages. Separating human naming
from object servers other than the directory
servers is not unique to the LSS.14 This design
choice has several advantages:

• The directory servers can serve as a common
mechanism for naming different types of ob
jects, thus facilitating total system extensi
bility.

• The other servers can function in a variety of
user environments, since they are indepen
dent of human-oriented naming conven
tions.11

• The other servers can be optimized to manage
their own objects without the need to deal with
human-oriented names.12

• New objects can be named in the same way as
existing objects.15

• In addition to the directory servers, it allows
for several forms of application-dependent
and general-purpose higher-level name ser
vices that can also catalog identifiers.12

• Applications can create, access, and destroy
objects without ever storing the identifiers in
any name server.15

Disadvantages. Depending on the imple
mentation techniques chosen, separating the
naming functionality can also have disadvan
tages. These can include performance
degradation, a more complicated resource-
management scheme, and more complicated
security mechanisms. For a complete
discussion of these issues, see reference 16.

Bitfile Server

In the Reference Model, the purpose of the bitfile
server is to provide access to bitfiles. The LSS

bitfile server does this. The abstract object it
manages is a bitfile, which consists of a descrip
tor and a body. The descriptor contains named
fields with various restrictions on access.
These fields specify attributes of the bitfile, such
as time of creation, length, and body location.
The body is an unstructured stream of bits
available for random reading or writing by the
client. Operations on bitfiles include functions
such as create, read, write, change-descriptor,
and interrogate-descriptor.

Performance. A very important concern
when analyzing a storage system that spans
machines is performance. The LSS cooperating
bitfile servers use several techniques to enhance
system performance, both on a single machine
and across several machines, to meet the per
formance requirement. These techniques in
clude: caching and migration, separation of
control messages from data messages, and
certain optimization mechanisms.

Caching and Migration. A major tech
nique used to enhance system performance is
the caching and migration of bitfiles. The par
ticular storage medium for a given bitfile de
pends on the current demand for the bitfile, its
size, and the time it was last accessed. When a
client on a host accesses a bitfile located in cen
tral storage, the local bitfile server cooperates
with those on the central storage machine to
cache the bitfile locally for fast access.
Although the time to complete the first access
will vaiy depending upon the current location of
the bitfile, future accesses will be fast because
the bitfile is now local.*

Access to the same bitfile from several hosts is
coordinated by means of locking. In general, a
bitfile can be local to several hosts for simulta
neous read access. However, to preserve data
consistency, before a bitfile is modified, all
read-only versions on other hosts are first in
validated. When the modification is complete,

* A further optimization utilized by MSS-II
allows access to the bitfile as soon as part of it is
received by the host. Currently in the LSS,
access is not allowed until the entire bitfile is
transferred to the host. However, plans for the
future do not preclude this optimization.

8

the updated version moves to the hosts when new
access is requested. For a complete discussion
of the locking mechanism, see reference 16.

Infrequently accessed bitfiles migrate down to
the archival bitfile server, where they are placed
on cartridge tape. Initially, they reside in an
on-line repository. Eventually, dormant bit-
files migrate from the on-line repository to car
tridges stored in an off-line tape vault. When a
bitfile in the vault is accessed, it first moves to
the central bitfile server and then to the appro
priate host bitfile server. Each server manages
its scarce resources by moving bitfiles up or
down the hierarchy, as shown in Figure 7.

Separation of Control and Data. Another
performance-enhancing technique is the sepa
ration of control and data (see Figure 8). Bitfile
access requests are sent as control messages to
the bitfile server. Requests to read or write the
bitfile establish separate data connections over
which the data is moved. The bitfile server
itself never handles the data. It performs the
necessary space allocation actions through the
incorporated storage server and informs a
subordinate server, the bitfile mover, of the data
movement parameters. The bitfile mover per
forms the actual data movement from device to
device or between device and network connec
tion, avoiding expensive memory-to-memory
data copies. Separation of control and data mes
sages also supports third-party control of data
transfers and permits pipelining of the trans
fers.17

Optimizations. The central bitfile server
is designed to deliver higher performance than
the archival bitfile server. The central bitfile
server manages an active subset of the bitfiles
in the entire system on fast-access disks.
Because it manages only active bitfiles, it can
keep in memory the look-up table that maps the
bitfile identifier into the location of the descrip
tor. The archival bitfile server manages bit-
files on slower-access tape cartridges.
However, its look-up table is kept on disk for
faster access. Also, access to the bitfiles stored
on cartridge tape is optimized by locating the de
scriptors on disk, providing fast queries and
updates to descriptors as well as flexible reloca
tion of data fragments.

Resource Management. The LSS bitfile
servers use two mechanisms to manage their
bitfiles in meeting the resource management
requirement. These mechanisms are bitfile
segmentation and speedy migration to tape.

Segmentation. Bitfile space is managed
by maintaining a list of segments in each bitfile
descriptor. Each segment contains a portion of a
bitfile, on either disk or tape. As a bitfile grows,
new segments are allocated. If a bitfile has too
many segments, the segments are consolidated
by compacting data on disk. The benefit of
segmentation is easy media space management
and the ability to transfer large, contiguous
blocks of data. Its alternative, storing an entire
bitfile contiguously, requires expensive media-
compaction techniques when the space remain
ing is not large enough to hold the next bitfile.
Further, the LSS segmentation design is less ex
pensive than UNIX data blocks. The UNIX
blocks require more overhead to manage and
more disk head movements because they are
small, fixed-size structures.

Migration. Bitfiles remain in the cen
tral bitfile server’s disk cache until disk space
becomes scarce. At this point, any bitfile that
has not been updated since it migrated to the
archival bitfile server can simply be removed
from the central bitfile server’s disk. Migration
is not required because the bitfile has not been
modified. Bitfiles that have been modified are
candidates for migration. Once bitfiles have
been migrated, they can be removed from disk.
Removal is based on a formula that weighs size
and time of last access. Large or old bitfiles are
removed first. The central bitfile server
migrates bitfiles to the archival bitfile server as
soon as one tape cartridge of data has been
accumulated. A tape cartridge may contain
several bitfiles or only a portion of a large one.
The goal of this process is to keep a certain
fraction of the disk cache space free for new data
and to maintain a good hit rate to increase the
overall performance of the system. *

* This migration discussion specifically
concerns central storage; however, the same
procedures are also utilized between host
machines and central storage.

9

Similarly, the archival bitfile server manages
space in the robotic tape-cartridge system to meet
performance requirements by identifying the
oldest bitfiles on cartridges in the robotic system
and migrating them to off-line tape volumes.
The active data left on a volume can be consoli
dated with other active bitfiles to fill tapes that
stay in the robotic system. This migration pro
cess serves the same purpose as in the central
bitfile server case. Active bitfiles stay easily
accessible in the robotic system while inactive
bitfiles are moved to the tape vault.

Capacity. The LSS bitfile servers meet
both facets of the capacity requirement.
Hardware is the limiting factor in meeting the
increasing storage demands made by each new
generation of supercomputers. Specifically,
network and device bandwidths and cpu power
may need to be upgraded as supercomputer out
put outstrips the hardware’s capacity to handle
it. The bitfile servers provide virtually un
limited size with their flexibility to expand de
scriptors to add as many segments to the list as
is necessary for each bitfile. If necessary, these
segments can span disk or tape volumes.

Random Access. Archival media such as
cartridge tape do not provide random write ac
cess. Therefore, the random read/write access
requirement is met in the LSS by allowing
clients access to bitfiles only through the host or
central bitfile servers, both of which manage
magnetic disk, a medium that does support ran
dom read and write access. The bitfile is cached
from tape cartridge to disk, where the modifica
tions are made. When the updated copy of the
bitfile migrates to the archival bitfile server, the
body is written onto a new volume, and the de
scriptor is updated to point to the new body.

Other Features of the LSS Components

There are several features common to most or
all components of the LSS that are designed to
satisfy the requirements of a large-scale, dis
tributed storage system not fully addressed to
this point in this paper. These requirements in
clude: integrity, synchronization, availability,
security, resource management, error control
and recovery, portability, and standards. These
remaining requirements are discussed in this
section.

Integrity. All LSS servers have two principal
mechanisms to preserve data integrity across
machine and software failures. These are in
ternal redundancy and data backup to more re
liable media. The bitfile and directory servers
achieve internal redundancy by dual atomic
writes to separate disks of bitfile descriptors and
directories. All data is backed up to archival
media as quickly as practical to protect against
disk failures. Bitfiles are copied to tape when
one full tape cartridge of data has been accumu
lated. Directories are copied to tape once a day.
To date, the LSS has experienced only one com
plete disk failure. This failure caused the loss
of only a few bitfiles that had not yet been backed
up to tape by migration.

Synchronization. Synchronization, which pro
tects the consistency of the data, is employed in
the caching and migration locking algorithms.
Briefly, locks are used to synchronize access to
distributed objects. Servers can place read locks
on objects to delay modification during a series
of reads, or write locks can be used to delay both
reads and other modifications during writes.
As a server write-locks objects on one machine,
servers on other machines invalidate their
copies of the locked objects. For a more complete
discussion of the locking algorithms, see refer
ence 16.

Availability. Three mechanisms are employed
to increase system availability in the LSS:
quick restarts, persistent clients and servers,
and redundant systems. Typical restart times
vary from seconds for some servers to five
minutes for the central bitfile server, which
must scan all of its bitfile descriptors to build
search tables. Persistence through retries al
lows the failure of an individual component of
the LSS to be overcome with only modest delays
in service. Furthermore, the persistence of
servers and clients relieves users from the bur
den of repeatedly transferring their data when a
system component is unavailable. The LSS has
a second central storage machine available to it
which can be used in place of the primary ma
chine if necessary.

Security. To comply with the Department of
Energy (DOE) security guidelines, the LSS in
cludes mechanisms that implement both
mandatory and discretionary security policies.
Two mechanisms are used to implement

10

mandatory policy. The first mechanism is en
cryption, which is used to protect the object iden
tifier from forgery. The second mechanism
implements seven DOE security levels. A pol
icy based on these levels is enforced by each
server and by the underlying communications
systems. For example, objects of a higher level
cannot be accessed or conveyed through a lower-
level communications medium.18 In the LSS,
discretionary policy is implemented through
access bits located in the object identifiers.
These bits control the manner in which an object
is accessed and include such permissions as
modify access, add access and read access. (In
other systems, these access bits are located in the
object descriptors. The relative merits of locat
ing access bits in object identifiers versus object
descriptors is beyond the scope of this paper.)

Resource Management. All of the LSS servers
implement accounting and allocation mecha
nisms. Generally, the accounting mechanism
permits charging for storage to recover opera
tional costs. An indirect benefit of charging is
better utilization of storage space, as users tend
to keep only data that is truly useful to them.
The allocation mechanism is provided to ensure
an equitable distribution of storage space among
all users. For a detailed description of the ac
counting and allocation mechanisms, see ref
erence 16.

Error Control and Recovery. Error control and
recovery is achieved through several mecha
nisms, including log files, restart messages,
persistence, and reconstruction of descriptor ta
bles. By referring to log files kept for this pur
pose, several servers can restart after crashes at
the point where they left off before crashing.
These files record the activity of the servers at
crucial moments and can be referred to when
the servers begin running again. Further,
some servers send messages to their principal
clients, informing them that the servers are
running again. Persistent clients also aid in
error recovery by repeatedly sending the same
request message until either a response is re
ceived from the server or it is apparent that the
server is down for an extended period. As an
other aid to recovery, the central bitfile server is
able to quickly rebuild its in-memory table of
descriptors because it does not have to follow
indirections to find the actual data blocks, un
like the UNIX fsck routine. The integrity

mechanisms discussed above also provide error
control and recovery.

Portability. Portability of the LSS components is
achieved through the use of a high-level
programming language and machine-
independent interfaces to libraries. All LSS
servers and utilities have been written in the C
programming language. Machine dependen
cies are hidden in a small set of macros and
library routines. The LSS runs on machines
with different word sizes and bit orders.

Two libraries of routines in particular provide
machine and operating-system independence.
The first supports lightweight tasking, and the
second provides interprocess communication.
These libraries are small and can be easily
ported to other operating systems including
those running on most of today's supercomput
ers.

Standards. Standards have been a high priority
during the design and development of the LSS.
LLNL personnel are active in the development
of the Reference Model, which is becoming the
basis for a mass storage system standard. The
LSS follows the design principles stated in the
Reference Model.

The LSS also provides interfaces to several
standard protocols. These protocols include
TCP/IP, a standard network communication
protocol; FTP, a standard file transfer protocol;
and NFS, a de facto standard file access proto
col.

THE LSS TODAY

Hardware

Currently, the host computers are Cray super
computers. The central storage computer is an
Amdahl 5868 configured as a pair of 5850s
running UTS, which has a 200-gigabyte on
line disk cache. The archive includes five on
line STC 4400 robotic tape cartridge systems,
housing 5 terabytes of data on 30,000 tape
cartridges. The archive also includes an

additional 6000 cartridges stored in an off-line
vault. The Grays and the Amdahl machine
communicate via a Network Systems
Corporation HYPERchannel.**

Software

Portable C language production versions of the
bitfile and directory servers are complete. The
host and central directory systems have been
connected into one logical directory structure.
However, the current directory structure still re
flects that the host and central directory systems
are physically separate. Currently, there is no
automatic migration of directories between the
host and central directory systems, but work on
this mechanism is in progress.

The integration of the central and archival bit-
file servers is complete, with automatic migra
tion of bitfiles between these levels. Imple
mentation to connect the host and central bitfile
servers by adding automatic migration between
these levels is in progress.

To date, unlike the NFS, Andrew, and IFS envi
ronments, there are no plans to extend the LSS to
workstations. Although the system architecture
is extensible to that environment, the resources
required for software support are currently
unavailable.

In the LSS, users can write their own code to di
rectly access host and central bitfiles and direc
tories. However, the system also offers an in
terim mechanism to bridge the gap between the
host and central bitfile and directory systems.
Bitfiles can be transferred between the host and
central systems or between host systems by an
external, persistent utility and server. Users
invoke bitfile transfers explicitly, by executing
the utility that translates user requests into re
quests to the persistent server. Bitfiles can also
be transferred using standard NFS and FTP
clients on host machines.

The maximum bitfile size is currently limited
to the smaller of either the size of one disk or two
tape cartridges. These capacity limitations will
be relieved in the near future.

CONCLUSION

The requirements of a large-scale, distributed
storage system have been met in the design of
the LSS. Its main features include:

• System components built on an extended
client-server model

• An asynchronous message passing protocol

• Separation of control and data messages

• Automatic caching and migration of data

• Movement of entire bitfiles when an access
is made

• Portability as a specific design goal

• Isolation of the naming service in a separate
system component

These features will result in a fully inte
grated, transparent, distributed storage system
in a supercomputer environment

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribu
tions of Samuel S. Coleman and Richard W.
Watson in the design of the LSS and in helping
us bring this paper to fruition. We also thank
Mark R. Gary and Richard P. Ruef for their in
valuable work in the development of the LSS.
This work was performed by Lawrence
Livermore National Laboratory under contract
number W-7405-Eng-48 under auspices of the
U.S. Department of Energy.

GLOSSARY

archival storage Cartridge tape on the stor
age machine.

backup A copy of data kept for re
dundancy.

bitfile An object consisting of a bit
string of arbitrary length
and a set of attributes.

bitfile mover A manager that moves the
bits in bitfiles between

12

channels or designated
address spaces.

bitfile server An object manager that
creates and provides access
to bitfiles.

caching The act of automatically
moving an object such as a
bitfile from a slower-
access storage medium to a
faster-access medium.

central storage A collection of magnetic
disks on the storage ma
chine.

directory A cataloging structure
consisting of pairs of
human-oriented names
and machine-oriented
object identifiers.

host storage Solid state disks and rotat
ing disks on local ma
chines.

IEEE Mass Storage The document developed by
Reference Model the IEEE Mass Storage

Committee proposing a
common design for
archival storage systems.

migration The act of automatically
moving an object such as a
bitfile from a faster-access
storage medium to a
slower-access medium.

name or
directory server

A manager that provides a
mapping between human-
oriented names and ma
chine-oriented object iden
tifiers; these terms are
used interchangeably
through-out this paper.

off-line A storage medium requir
ing human intervention
for access.

on-line A storage medium not re
quiring human interven
tion for access.

persistence The act of persisting
through periods of system
unavailability to accom
plish an operation.

storage server A manager that allocates
and accesses physical stor
age.

RV. H'KH.'RMngg

1. D. Walsh, B. Lyon, G. Sager, J. M. Chang,
D. Goldberg, S. Kleiman, T. Lyon, R.
Sandberg, and P. Weiss, "Overview of the
Sun Network Filesystem," Conference
Proceedings, Winter USENIX Technical
Conference, Dallas, 1985.

2. J. H. Morris, M. Satyanarayanan, M. H.
Conner, J. H. Howard, D. S. Rosenthal,
and F. D. Smith, "Andrew: A Distributed
Personal Computing Environment,"
Communications of the ACM, Vol. 29,
No. 3, March, 1986.

3. William Collins, Marjorie Devaney, and
David Kitts, "Profiles in Mass Storage: A
Tale of Two Systems," DIGEST OF
PAPERS, Ninth IEEE Symposium on Mass
Storage Systems, October, 1988, pp. 61-67.

4. Samuel S. Coleman, "Storage Architecture
and Issues," Proceedings, Cray User
Group, April, 1989, pp. 89 -93.

5. Robert L. Henderson, "MSS-II and RASH
A Mainframe UNIX Based Mass Storage
System with a Rapid Access Storage Hier
archy File Management System," Confer
ence Proceedings, Winter USENIX
Technical Conference, San Diego, 1989,
pp. 65-84.

6. Private telephone communication with
Elaine M. Wolfe of Transarc Corporation,
The Gulf Tower, 707 Grant Street,
Pittsburgh, Pennsylvania 15219, (412)
338-4400.

7. Stephen W. Miller, "A Reference Model for
Mass Storage Systems", Advances In
Computers, Vol. 27,1988, pp. 157 - 209.

13

8. Anita K. Jones, "The Object Model: A
Conceptual Tool For Structuring Software,"
in Operating Systems - An Advanced
Course, Springer-Verlag, Berlin
Heidelberg, 1978, pp. 8 -16.

9. R. W. Watson, "Requirements and
Overview of the LINGS Distributed
Operating System Architecture,"
Proceedings, Cray User Group, April, 1984.

10. M. Satyanarayanan, "A Survey of
Distributed File Systems," Annual Review
of Computer Science, Vol. 4, 1989.

11. Samuel S. Coleman, "Storage in Super
computer Environments," Proceedings,
Cray User Group, June, 1988, pp. 423-428.

12. R. W. Watson, "Identifiers (naming) in
distributed systems," in B. W. Lampson,
M. Paul, and H. J. Siegert (eds.), Dis
tributed Systems - Architecture and Imple
mentation, Springer-Verlag, New York,
1981, pp. 191-210.

13. Peter Lawrence Reiher, Naming Issues In
Large Scale Distributed Systems, Ph.D.
Dissertation, Department of Computer
Science, University of California, Los
Angeles, 1987.

Tenth IEEE Symposium on Mass Storage
Systems, May, 1990.

18. J. G. Fletcher, "A Security Policy for Dis
tributed Systems," LLNL Working Docu
ment, June 26,1985.

FIGURES

Bitfile Server

Name Server Name Server

Bitfile Server

Central Bitfile Server

Central Name Server

Host A

[Archival Bitfile Server)

HostB

Figure 1. LSS Hierarchy

Client
------- >1
^ Reply Server

1 Bulk data J
Figure 2. Client - Server Diagram

14. Liba Svobodova, "File Servers for Network-
Based Distributed Systems," Computing
Surveys, Vol. 16, No. 4, Dec. 1984,
pp. 353-398.

15. Samuel S. Coleman, and Richard W.
Watson, "Designing Archival Storage
Systems for Distributed Supercomputer
Environments," submitted for Computer,
May, 1990.

16. Joy Foglesong, George Richmond, Loellyn
Cassell, Carole Hogan, John Kordas, and
Michael Nemanic, "The Livermore
Distributed Storage System: Imple
mentation and Experiences," DIGEST OF
PAPERS, Tenth IEEE Symposium on Mass
Storage Systems, May, 1990.

Sewer
Bitfile
Server

Bitfile
Server

Central
Name
Server

Archival
Bitfile
Server

Host A

Server

Central
Bitfile
Server

HostB

Figure?. LSS Architecture

17. Mark Gary, "Overcoming UNIX Kernel
Deficiencies In A Portable, Distributed
Storage System," DIGEST OF PAPERS,

14

Figure 4. Client Server Tasks

Host A Host B

Storage
Machine

Central
Name
Server

User
Client

Central
Bitfile
Server

Server
Bitfile
Server

Archival
Bitfile
Server

Server

FigureS. Message Passing Between Servers

Name ObjID

Name ObjID

— Root

Host A HostB

Name ObjID

Bitfile

Figure 6. Pathname abc/def/ghi Resolution

Host Bitfile Servers

Central
Bitfile
Server

Robotic tapeArchival
Bitfile
Server Vault tape

Figure 7. Bitfile Caching And Migration

Client

Mover

Bitfile
Server

1. Request

6. Reply

2. Command

3. Read

FigureS. Separation Of Control And Data

15

