
Computing
Surface

CS-2 Documentation Set

Volume 2

83-MS048 mei<o

Acceptance

Copyright

Use

Copying

Assignment

Rights

Warranty

Notification of Changes

mei<D

Tenns and Conditions

All Meiko software and associated manuals ("the Software") is provided by the Meiko
Group of Companies ("Meiko") either directly or via a Meiko distributor and is
licensed by Meiko only upon the following tenns and conditions which the Licensee
will be deemed to have accepted by using the Software. Such tenns apply in place of
any inconsistent provisions contained in Meiko's standard Tenns and Conditions of
Sale and shall prevail over any other terms and conditions whatsoever.

All copyright and other intellectual property rights in the software are and shall remain
the property of Meiko or its Licensor absolutely and no title to the same shall pass to
Licensee.

Commencing upon first use of the Software and continuing until any breach of these
tenns, Meiko hereby grants a non-exclusive licence for Licensee to use the Software.

Copying the Software is not permitted except to the extent necessary to provide
Licensee with back-up. Any copy made by Licensee must include all copyright, trade
mark and proprietary information notices appearing on the copy provided by Meiko or
its distributor.

Licensee shall not transfer or assign all or any part of the licence granted herein nor
shall Licensee grant any sub-licence thereunder without prior written consent of
Meiko.

Meiko warrants that it has the right to grant the licence contained under "Use" above.

Meiko warrants that its software products, when properly installed on a hardware
product, will not fail to execute their programming instructions due to defects in
materials and workmanship. If Meiko receives notice of such defects within ninety
(90) days from the date of purchase, Meiko will replace the software. Meiko does not
warrant that the operation of the software shall be uninterrupted or error free.

Unless expressly stated in writing, Meiko gives no other warranty or guar
antee on products. All warranties, express or implied, whether statutory
or otherwise [except the warranty hereinbefore referred to], including
warranties of merchantability or fitness for a particular purpose, are here
by excluded and under no circumstances will Meiko be liable for any COD

sequential or contingent loss or damage other than aforesaid except
liability arising from the due course of law.

Meiko's policy is one of continuous product development. This manual and associated
products may change without notice. The infonnation supplied in this manual is
believed to be true but no liability is assumed for its use or for the infringements of the
rights of others resulting from its use. No licence or other rights are granted in respect
of any rights owned by any of the organisations mentioned herein.

3

Nuclear and Avionic
Applications

Termination

Important Notice

4

ffi

Meiko's products are not to be used in the planning, construction, maintenance,
operation or use of any nuclear facility nor for the flight, navigation or communication
of aircraft or ground support equipment. Meiko shall not be liable, in whole or in part,
for any claims or damages arising from such use.

Upon termination of this licence for whatever reason, Licensee shall immediately
return the Software and all copies in his or her possession to Meiko or its distributor.

FEDERAL COMMUNICATIONS COMMISSION (FCC) NOTICE

Meiko hardware products ("the Hardware") generate, use and can radiate
radio frequency energy and, if not installed and used in accordance with
the product manuals, may cause interference to radio communications.
The Hardware has been tested and found to comply with the limits for a
Class A computing device pursuant to Subpart J of Part 15 of FCC Rules
which are designed to provide reasonable protection against such interfer
ence when operated in a commercial environment. Operation of the Hard
ware in a residential area is likely to cause interference in which case the
user at his or her own expense will be required to take whatever measures
may be required to correct the interference.

X0084-00LI06.01 meko

Contents

1. Resource Management User Interface Library

2. CSN Communications Library for C

3. CSN Communications Library for Fortran

4. Tagged Message Passing and Global Reduction

5. PVM Users Guide and Reference Manual

6. The Elan Library

7. Group Routing

mei<D

Contents

ii mei<o

Computing
Surface

Resource Management User Interface Library

SlOO2-10MIIO.Ol mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko Scientific
Reservoir Place

. 1601 Trapelo Road
Waltham MA 02154

6178907676
Fax: 617 890 5042

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

01454616171
Fax: 01454 618188

Contents

1. Functions 1

About this Manual. 1

Compilation. 1
rrns_allocate () . 3

rms_boardTypeString () 6

rms _ checkVersion () 7

rrns_confirm() . 8

rrns_defaultResourceRequest () 10

rms_describe () . 13

rms_elantohost () 18

rms_elanton () . 19

rrns_forkexecvp () .. 20

rms _getgpid () . 22

rms_getgsid () . 23

rms_gpidString () 24

rms_hosttoelan () .. 25

rrns_jobStatusString () 26

rms_kill() 27

rms_logbal () 28

rrns_mapToString () 29

rms_moduleTypeString () 30

rms_ntoelan () . 31

rms_objectString () 32

rms_parseDefaultsFile () 33

rms_procStatusString () 35

rmsyrocTypeString () 36

rms_resourceStatusString () 37

rms_setgsid () . 38

rms_sigsend () . 39

rms_translate () . 40

rms_ttymsg () 41

rms_version () . 42

rms_waitpid () . 43

2. Data Structures . 45

board t . 46

config_t ~ . 49

- device t ,. 50

fsys_t '.' . 53

job_t. 55

logbal_t . 57

machine t . 58

map_t. 61

module t . 62

partition_t 65

proc_t . 67

resource_t . 71

rmsobj_t . 73

rrequest_t . 75

switch_t . 77

sysDefaults 79

3. Example Programs . 83

Introduction. 83
Program Loader. 83

Program Description. 84

ii

Examining the Configuration . 86
Program Description. 86

Contents iii

iv

About this Manual

Compilation

meJ<o

Functions 1

This chapter descri bes the user interface to the Resource Management System -
librms. The functions in this library allow user programs to query the resources
in the CS-2 and to run parallel programs on those resources. Direct use of this
library will allow you to write your own versions of the resource management
commands (such as prun, allocate, and rinfo) and to tailor them to the spe
cific requirements of your own applications.

The resource management user interface library also includes a number of sys
tem administration functions which are not described in this manual. These func
tions are used by high level system administration tools, such as Pandora, which
offer to the System Administrator a safe environment in which to perform sensi
tive operations.

Function prototypes, data structures, and associated definitions for use with this
library are included in the header file <rmanager /uif . h> which is distributed
in / opt /MEIKOcs2/ incl ude. You will need to include this header file in your
program files and specify it's home directory in your pre-processor's search path
(usually with the compiler driver's - I option, as shown below).

1

2

Applications built upon this library must be linked with librms (resource man
agement library), libew (Elan Widget library), and libelan (Elan library) -
all are distributed in / opt /MEIKOcs2 / lib. You usually identify these libraries
and their home directory to the linker by using your compiler driver's -Land -
1 options (as shown below).

The resource management user interface library is a dynamic shared library and
requires a search path to be passed to the runtime linker; the most convenient way
of doing this is to specify a search path using your compiler driver's - R option.
Failure to specify a search path will result in the following error message when
ever you execute your application:

ld.se.l: program: fatal: librms.so: can't open file:
errno=2: Killed

A typical compiler command line for a resource management program is:

user@cs2: CC -0 prog ~I/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/1ib -R/opt/MEIKOcs2/1ib prog.c \
-lrms -lew -lelan

SI002-10MllO.OI mei<D

Synopsis

Availability

Description

meko Functions

1

Allocate resources

#include <rmanager/uif.h>
int rms_allocate(rrequest_t *request);

MEIKOcs2 - MKrms

Allocate resources and hold them until the calling program exits or the resource
timelimit is exceeded (note that timelimits for resources are specified by the Sys
tem Administrator in the defaul ts(4) file). You only need to use this function
when allocating resource in advance of running your parallel application; nor
mally resource allocation and program execution is handled in one operation by
rms_forkexecvpO.

The required resources are specified by an rrequest _ t structure, which is usu
ally allocated and initialised by a call to rms_defaultResourceRequestO
(which reads a resource specification from your environment).

typedef struct {
int baseProc; /* processor base (relative to partition) */
int nProcs; /* number of processors */
int memory; /* MBytes of memory */
int timelimit; /* run-time in seconds */
int rid; /* resource identifier */
int flags; /* options on request */
int routeTable; /* route table to use */
char partition[NAME_SIZE]; /* partition to use */

rrequest t;

Unassigned fields in the rrequest_t structure (set to RMS_UNASSIGNED) are
interpreted as 'don't care', with the exception of the partition name which is
mandatory. On return from rms_allocateO the rrequest_t. rid field and
the RMS_RESOURCEID environment variable will identify the allocated re
source (the value assigned to this variable takes the form partition.rid, where
partition is the name of the partition that the resource is allocated from and rid
is an integer resource identifier); the environment variable allows the allocation
and execution phases to occur in separate processes.

Return values from rms_allocateO are a positive integer resource id on suc
cess or-Ion failure. rms_allocateO will fail if resources are already allocat
ed (either by an earlier explicit call to rms _ allo cat eO or by running the
program in a shell that has executed the allocate command). To run a program

3

1

Example

4

on the allocated resource you need to pass the resource id to rms_forkex
ecvpO by assigning it to the rrequest_t. rid field (note that rms_forkex
ecvpO will itself call rms_allocateO if this field remains unassigned).

Warning - The accounting system charges for the whole period that the re
source is held, whether you use it or not.

The following example uses rms_defaultResourceRequestO to get the re
source specification from the environment and then modifies this to suit the spe
cific requirements of this application. If the program is being run by a shell with
allocated resource then we must use those resources and must not attempt to al
locate resource ourselves; rms_defaultResourceRequestO will return in
the rrequest_t. rid field a resource identifier that will identify the shell's re
source to rms _forkexecvpO.

tinclude <sys/wait.h>
tinclude <stdio.h>
tinclude <rmanager/uif.h>

tdefine NPROCS 2
tdefine PARTITION "parallel"
tdefine MYFROGRAM "/opt/MEIKOcs2/example/csn/csn"
tdefine VERBOSE 1

main(int argc, char** argv)
{

rrequest_t *rreq;
int rid, status;
char buffer[30];

1* Specify the resources that we require */
rreq = rms_defaultResourceRequest();
rreq->nProcs = NPROCS;
rreq->flags = REQUEST_VERBOSE;
sprintf(rreq->partition, PARTITION);

/* Grab the resources, but only if they have not *1
/* already been allocated to the shell by allocate (1) *1
if (rreq->rid < 0)

if«rid = rms_allocate(rreq» < 0) {
printf("Failed to allocate resources\n");
exit(-l);

SI002-10MllO.Ol meJ<a

See Also

meko Functions

1

else
rreq->rid = rid;

/* We could do some work here whilst holding the resource */

/* Execute the program on the grabbed resource */
if (rms_forkexecvp(rreq, MYPROGRAM, argv» {

fprintf(stderr, "forkexecvp() failed\n");
exit(l);

/* Wait for the parallel application to complete */
if (rms_waitpid(rms_getgpid() , &status, 0» exit(l);

/* return exit status of parallel application */
return(WEXITSTATUS(status»;

The rms_allocateO function is used in the implementation of the allo
cate(1) command to allocate resources to a command shell.

rms_forkexecvpO, allocate. See the rrequest_t structure on page 75.

5

1

rms _ boardTypeStringO

Synopsis

Availability

Description

Example

See Also

6 rms_boardTypeS tringO

Printable board type string

#include <rmanager/uif.h>
char *rms_boardTypeString(BoardTypes board)

MEIKOcs2 - MKnns

rms _ boardTypeStr ingO converts an enumerated BoardType value into a
printable string. This function is used to display the type field in the board _ t
structure.

Return strings are:

Quattro
Vector
Dino
4x4 switch
2x8 switch

lx16 switch
Small switch
Switch buffer
Module controller
unknown (value)

Display the type of all boards in the system:

finclude <rmanager/uif.h>

main ()
{

board t *board;
int i = 0;

while«board=(board_t*)rms_describe(RMS BOARD, i++» !=NULL)
printf("Board type is: %s\n",

rms_boardTypeString(board->type»;

rms_describeO. See also board_t on page 46.

Sl002-10MllO.Ol mei<a

rms_checkVersionO

Synopsis

Availability

Description

Example

See Also

meko Functions

1

Confirm library version

#include <rmanager/uif.h>
int rms_checkVersion(char *version);

MEIKOcs2 - MKnns

This function checks the version string against the library version that your ap
plication has been linked with; it returns 1 if they are identical and 0 if they are
not.

rms_checkVersionO is usually passed the library version that is returned by
rms_versionO allowing you to confinn that your application is both compiled
with and linked with the same library version.

linclude <rmanager/uif.h>

main(int argc, char** argv)
{

if (!rms_checkVersion(RMS_VERSION»
{

printf (" '%5' incompatible with '%5' ('%5' expected) \n",
argv[O], rms_version(), 'RMS_VERSION);

exit (1) ;

else
printf ("Library version' 5 correct \n") ;

rms_versionO.

rms_checkVersion() 7

1

Synopsis

Availability

Description

Example

8

Confirm service availability

#include <rmanager/uif.h>
int rms_confirm(char *server);

MEIKOcs2 - MKnns

rms _ conf irmO tests the availability of resource management services. It can
be used to test the availability of the following:

Service Description

acctd Accounting daemon.

rnmanager The machine manager

active/partition The partition manager for partition.

rms _ conf irm() returns 0 if the selVice is available and -1 if not.

Confinn availability of all selVices:

_include <rmanager/uif.h>

main ()
{

partition_t *partn;
int i;
char name[NAME_SIZE];

1* See if machine manager is there *1
if (rms_confirm("mmanager") == 0)

printf("Machine manager is available.\n");
else {

printf("Machine manager not available.\n");
exit (0);

1* See if accoutning daemon is there *1
if (rms_confirm("acctd") == 0)

printf("Resource accounting daemon is available.\n");
else

printf("Resource accounting daemon not available.\n");

Sl002-10MllO.Ol mei<a

meI<D Functions

1

/* Check all partitions in current (active) configuration */
i ... OJ
while (partn=(partition_t*) rrns_describe (RMS_PARTITION, i++»
{

sprintf(narne, "active/%s", partn->name)j

printf("Partition %s ", partn->narne);

if (rrns_confirrn(narne) == 0)
printf("is available.\n")j

else
printf("is not available.\n");

9

1

rms _ defauItResourceRequestO Get default resource specification from the environment

Synopsis

Availability

Description

#include <rmanager/uif.h>
rrequest_t *rms_defaultResourceRequest();

MEIKOcs2 - MKrms

rms defaul tResourceRequestO fetches default resource requirements
from your environment and creates a rrequest _ t structure that is initialised
with these defaults.

If resource has already been allocated, possibly to the user's command shell, then
the rrequest _ t structure is initialised with infonnation about that resource
(identified by the RMS_RESOURCEID environment variable). The function
then reads the following resource management environment variables; if an en
vironment variable conflicts with the definition of an allocated resource it is ig
nored (e.g. you cannot ask for more processors than have already been allocated),
otherwise it overrides.

Variable

RMS BASEPROC

RMS NPROCS

RMS TIMELIMIT

RMS VERBOSE

RMS DEBUG

RMS PARTITION

Meaning

First processor to use in the partition. Numbering
starts at 0 with the first processor in the partition.

The number of processors to use. By default this
is the largest allocatable number of processors.

Execution timelimit (seconds); the segment will
be signalled after the minimum of this time and
any system imposed time limit has elapsed.
Default is set in the defaults(4) file (-1 means
no limit).

Execute in verbose mode (display diagnostic
messages).

Execute under the control of a debugger.

The name of the partition to use. Default is set in
the defaults(4) file.

10 rms_defaultResourceRequestO Sl002-10MllO.Ol mei<D

Example

meko Functions

Variable Meaning

RMS IMMEDIATE Exit if resources not immediately available. By
default the calling process is blocked until
resources are available.

RMS BARRIER Execute this program as a parallel application
(processes will barrier synchronise with host).
By default the resource management system
makes its own evaluation.

RMS ROUTETABLE Identifies the name of the route table to use (for
example "scatter", "random", or "user_default").
See also the rmsroutes(lm) manual page.

1

Fetch the default resource requirements from the environment and then change
as appropriate to this application - use 2 processors starting with processor 2 in
the parallel partition. Execute with the verbose and timing flags set.

iinclude <sys/wait.h>
iinclude <stdio.h>
iinclude <rmanager/uif.h>·

idefine NPROCS 2
idefine PARTITION "parallel"
idefine EXAMPLE "/opt/MEIKOcs2/example/csn/csn"

main(int argc, char** argv)
{

rrequest_t *rreq;
int status;

rreq = rms_defaultResourceRequest();

rreq->nProcs = NPROCS;
sprintf(rreq->partition, PARTITION);
rreq->flags = REQUEST_VERBOSE I REQUEST_TIMING;

/* Start the application */
if (rms_forkexecvp(rreq, EXAMPLE, argv» {

fprintf(stderr, rms_forkexecvp() failed\n");
exit(l);

rms_defaultResourceRequestO 11

1

/* Wait for the application to finish */
if(rms_waitpid(rms_getgpid(), &status, 0)) exit(l);

/* Exit with applications return status */

return(WEXITSTATUS(status));

See Also rms_forkexecvpO, allocate. See the rrequest_t structure on page 75.

12 rms_defaultResourceRequestO SI002-10MllO.OI m8<D

rms describeO

Synopsis

Availability

Description

meko Functions

1

Query resource availability

#include <rmanager/uif.h>
void *rms_describe(RMS_OBJECT_TYPES type, int Id);

MEIKOcs2 - MKnns

The resource management system supports a query mechanism that allows appli
cations to explore the resources available to them. This interface covers both the
hardware and the active configuration. The user interface to this facility is via the
function rms_describeO.

The type argument specifies the type of object as described by the enumerated
data type RMS_OBJECT_TYPES:

typedef enum {
RMS MACHINE = 0, /* the whole machine */
RMS_MODULE = 1, /* modules */
RMS_BOARD = 2, /* boards */
RMS SWITCH = 3, /* switches */
RMS_PROC co 4, /* processing elements */
RMS_DEVICE = 5, o /* peripherals */
RMS CONFIGURATION 6, /* working set of partitions*/
RMS_PARTITION = 7, /* individual partition */
RMS_RESOURCE = 8, /* application target */
RMS_JOB = 9, /* parallel program */
RMS PROCBYELANID 10, /* processing element from elanld */
RMS_LINK = 11, /* link between switches */
RMS RESOURCEBYID 12, /* processing resource */
RMS_FILESYS = 13, /* all the file systems */
RMS_SERVER = 14, /* a filesystem server */
RMS_FSYS = 15, /* a filesystem */

RMS OBJECT TYPES;

The Id argument is a logical idOthat is used to select an instance of the object. In
general the logical id for each object type begins at 0 and is assigned sequentially
to each object; the ordering of objects is undefined (so you should avoid making
any assumptions based on an object's id). Exceptions are job's and resource's
whose id's are relative to the partition that they are allocated to and do not begin
at 0 (use the macro PARTITION_BASEO to get the id for the initial job/resource
in a given partition), and objects of type RMS_RESOURCEBYID and RMS_
PROCBYELANID which enable access to resource and processor objects by re
source id or Elan id respectively.

rms_describeO 13

1

Hardware Resources

14

rms_describeO returns a NULL pointer on error.

Programs that wish to query the hardware resources in the machine will usually
begin with a call to rms _ de S cr ibeO with the object type RMS _MACHINE (note
that the Id argument is always 0 because there is only ever one instance of a ma
chine). This returns a mac hine _ t structure that describes at the highest level the
components in the machine:

machine (machine_t *)rms_describe(RMS_MACHINE, 0);

(The machine _ t structure is described in Chapter 2.)

Additional information about the machine's components may be obtained by
subsequent calls to rms _ descr ibeO. Each call queries a lower level object un
til the desired level is reached. At each stage the range of appropriate logical id's
is extracted from the previous stage. For example, the logical id's of all the mod
ules in the machine are extracted from the machine description.

The following variants of rms _ describeO are typically used to query the hard
ware resources in the machine (the data structures returned by these functions are
described in Chapter 2):

module = (module t *)rms_describe(RMS_MODULE, moduleId);
board = (board_t *)rms_describe(RMS_BOARD, boardId);
proc = (proc_t *)rms_describe(RMS_PROC, procId);

switch = (switch_t *)rms_describe(RMS_SWITCH, switchId);
device = (device t *)rms describe(RMS DEVICE, deviceId);

The following example gets a description of the machine, a description of the
modules in the machine, and a description of the boards in each module. This ex
ample shows a typical hierarchical query of resource objects.

iinclude <stdio.h>
iinclude <rmanager/uif.h>

main ()
{

int i, j, count, base;
machine t *machine;
module t *module;

Sl002-10MllO.Ol meJ<a

Configuration Resources

meko Functions

1

board_t *board;

if«machine=(machine_t*)rms_describe(RMS_MACHINE,O»==NULL){
fprintf(stderr, "Cannot get machine description\n");
exit(1);

/* Get a description of all the modules in the machine */
for(i=O; i<machine->nModules;i++) {

if«module=(module t*)rms describe(RMS_MODULE,i»==NULL){
fprintf(stderr, "Cannot get module description\n");
exit (1) ;

printf("Module type %s\n",
rms_moduleTypeString(module->type»;

/* Get a description of the boards in the module */

count = module->nProcs; /* number of boards */
base = module->baseProc; /* Logical id of 1st */

for (j = base; j<count+base-1; j++)

if «board=(board t*)rms describe(RMS_BOARD,j»==NULL){
fprintf(stderr, "Cannot get board description\n");
exit(1);

printf("Board type is %s\n",
rms_boardTypeString(board->type»;

Programs that wish to query the current configuration will usually begin with a
call to rms_describeO with the object type RMS_CONFIGURATION (note that
the Id argument is always 0 because there is only ever one active configuration).
This returns a conf ig_ t structure that describes at the highest level the make-

15

1

16

up of the current configuration:

config = (config_t*)rms_describe(RMS_CONFIGURATION, O)j

Additional infonnation about the configuration may be obtained by subsequent
calls to rms_describeO. Each call queries a lower level object until the de
sired level is reached. At each stage the range of appropriate logical id's is ex
tracted from the previous stage. For example, the logical id's of all the partitions
in the machine are extracted from the configuration descri ption.

The following variants of rms_describeO are typically used to query the con
figuration (the data structures returned by these functions are described in Chap
ter 2):

config = (config_t *)rms_describe(RMS_CONFIGURATION, O)j

partition =(partition_t *)rms_describe(RMS_PARTITION, partId)j
resource = (resource_t *)rms_describe(RMS_RESOURCE, targetld)j

job = (job t *) rms describe(RMS JOB, jobId)j

The following example shows all the jobs in the parallel partition. Note that
the initial logical id for the jobs in this partition is relative to the partition's log
ical id (and not 0 as with most other object types); this allows you to distinguish
jobs in different partitions. Note also that we fetch all the job descriptions for this
partition by calling rms_describeO until it returns NULL; you can apply the
same technique to any object type when you wish to query all instances.

finclude <stdio.h>
finclude <rmanager/uif.h>

fdefine PARTITION "parallel"

main ()
{

partition_t *pj
job_t *jobj
int i = OJ

/* Get logical id of the partition */
while«p=(partition_t*)rms_describe(RMS_PARTITION, i++» !=NULL)

if (!strcmp(p->name, PARTITION)} breakj

Sl002-10MllO.Ol mei<a

See Also

mei<D Functions

/* Exit if we couldn't locate the partition */
if (p == NULL) {

printf("Failed to located partition %s\n", PARTITION);
exit (1) ;

/* Job ids start at partition base */
i - PARTITION_BASE(i-l);

/* Get all the job descriptions for this partition */
while ((job = (job_t*)rms_describe(RMS_JOB, i++» != NULL)

printf("Process: %s Owner: %d Status: %s\n",
rms_gpidString(job->gpid), job->uid,
rms_jobStatusString(job->status»;

1

The descriptions of the data structures and their usage are listed in Chapter 2.

17

1

rms _ elantohost()

Synopsis

Availability

Description

See Also

18 rms_elantohostO

Translate Elan Id to hostname

tinclude <rmanager/uif.h>
int rms_elantohost(char *hostname, int elanld};

MEIKOcs2 - MKnns

rms _ elantohostO translates the specified Elan Id to the processor's host
name. The result is stored in hostname.

Return values are 0 on success, -Ion failure.

rms_hosttoelanO,rms_ntoelan(),rms_elantonO.

SI002-10MIIO.OI meJ<a

rms elantonO

Synopsis

Availability

Description

See Also

meko Functions

Elan Id to Ethernet address translation

#include <rmanager/uif.h>
#include <netinet/if ether.h>
struct ether addr *rrns_elanton(int elanld);

MEIKOcs2 - MKrms

1

rrns _ elantonO translates the specified Elan Id to the processor's Ethernet ad
dress - the address is standard 48 bit format, but only the last two fields are
used. Return values are the address on success or -Ion failure.

rrns_ntoelanO, rrns_hosttoelan (), rrns_elantohostO.

19

1

rms forkexecvpO

Synopsis

Availability

Description

20

Process creation

tinclude <rrnanager/uif.h>
int rrns_forkexecvp(rrequest_t *req, char *file,

char **args);

MEIKOcs2 - MKnns

rrns_forkexecvpO executes a parallel program on a resource.

The resources required by the parallel application are specified by an rre
quest_t structure. If the partition field of the rrequest_ t structure is un
assigned then rrns_forkexecvpO uses the default partition named in the
defaul ts(4) file. If the rid field is unassigned rrns _ forkexecvpO uses
rms_allocateO to allocate the requested resources.

typedef struct {
int baseProc:
int nProcs:
int memory;
int timelimit:
int rid:
int flags:

/* processor base (relative to partition) */
/* number of processors */
/* MBytes of memory */
/* run-time in seconds */
/* resource identifier */

/* options on request */
int routeTable: /* route table to use */
char partition[NAME_SIZE): /* partition to use */

rrequest t:

In most cases the rrequest_t structure should be created and initialised by a
call to rms_defaultResourceRequestO. This determines if the program is
being run on pre-allocated resource (the command shell may have allocated re
source) and uses that resource (if any) and your RMS environment variables (if
any) to initialise the rrequest _ t structure.

Note that the rrequest _ t . rid field must be initialised with a resource id if
resource has alread y been allocated; rms _ for ke xe cvpO will fail if the field re
mains un-initialised under these circumstances. You must therefore use rms
defaul tResourceRequestO to check your environment, or if you use rms_
allocateO you must explicitly assign its return value.

The file argument is the name of the program to execute; the program must be
executable, locatable in the user's search path, and the current working directory
must exist on all processors.

Sl002-10MllO.Ol 1T18<D

Example

See Also

mei<o Functions

1

argv is the argument array that is passed to the user's program.

The retum value from rms_forkexecvpO is 0 on success or -Ion failure.
rms_forkexecvpO will return when the processes have been created; use
rms_waitpidO to block the calling program until they have completed (and to
return the segment's exit status).

Execute the program on 2 processors with the verbose flag set.

iinclude <sys/wait.h>
'include <stdio.h>
'include <rmanager/uif.h>

'define EXAMPLE "/opt/MEIKOcs2/example/csn/csn"

main(int argc, char** argv)
{

rrequest_t *req;
int status;

/* Initialise default request structure */
req = rms_defaultResourceRequest();

/* Change the defaults that are inappropriate */
req->nProcs :0:: 2;
req->flags 1= REQUEST_VERBOSE;

/* Execute the program using the specified resource */
if (rms_forkexecvp(req, EXAMPLE, argv» {

fprintf (stderr, "rms_forkexecvp () failed\n");
exit(l);

/* Wait for the applciation to complete */
if (rms_waitpid(rms_getgpid() , &status, 0» exit(l);

/* Return the applications exit status */
return(WEXITSTATUS(status»;

rms_defaultResourceRequestO,rms_allocateO.

See also the deSCription of rrequest_t on page 75.

21

1

Synopsis

Availability

Description

See Also

22 rms....getgpidO

Return global process id

#include <rmanager/uif.h>
gpid_t rms_getgpid();

MEIKOcs2 - MKnns

rms _getgpidO returns the global process id of the calling process. A global
process id consists of two components: the Elan Id of the processor and the local
process id on that processor.

Two macros are provided in <rmanager /uif . h> for extracting the compo
nents from a gpid _ t type; these are PROCESSOR(gpid) and PROCESS(gpid).
A third macro, GPIDS_MATCHO, compares two gpid _ t variables for equality.

The function rms_gpidStringO will convert a global process id into a print
able string.

rms_gpidStringO.

Sl002-10MIIO.OI meJ<a

rms getgsidO

Synopsis

Availability

Description

See Also

mekD Functions

1

Return global session id

#include <rrnanager/uif.h>
gpid_t rrns_getgsid(gdit_t gpid);

MEIKOcs2 - MKrms

rrns _getgsidO returns the global session id for the process identified by the
global process id gpid.

rrns_setgsidO

rms~etgsidO 23

1

rms _gpidStringO

Synopsis

Availability

Description

See Also

24 rms-IDJidStringO

Convert global process/segment id to printable string

*include <rmanager/uif.h>
char *rms_gpidString(gpid_t gpid);

MEIKOcs2 - MKnns

rms_gpidStringO converts a gpid_t data type into a printable string in the
fonn processor. process .

rms _getgpid () .

Sl002-10MllO.Ol meJ<a

rms _ hosttoelanO

Synopsis

Availability

Description

See Also

mei<o Functions

1

Translate hostname to Elan Id

#include <rrnanager/uif.h>
int rrns_hosttoelan(char *hostnarne);

MEIKOcs2 - MKrms

rrns_hosttoelanO translates the specified hostnarne to the processor's Elan
Id. Return values are the Elan Id on success or -1 on failure.

rrns_elantohostO,rrns_ntoelan(),rrns_elantonO.

25

1

rms jobStatusStringO

Synopsis

Availability

Description

See Also

26 rmsjobS tatusStringO

Printable job status string

*include <rmanager/uif.h>
char *rms_jobStatusString(JobStatus status);

MEIKOcs2 - MKrms

rms_jobStatusStringO converts an enumerated JobStatus value into a
printable status string. This function is used to display the status field in the
job_t structure (returned by rms_describeO). Return strings are:

Return string Meaning

zombie Job has exited, failed or been killed on one but not all
processors (job status is JOB_RUNNING & (JOB _ NOTRUN
I JOB_KILLED I JOB_EXITED)

running Job is running (job status is JOB_RUNNING).

starting Job is starting (job status is JOB STARTING).

killed Job was killed (job status is JOB_KILLED).

exi ted Job finished normally (job status is JOB_EXITED).

unknown (value) None of the above.

See also job _ton page 55.

Sl002-10MllO.OI mS<O

rms killO

Synopsis

Availability

Description

See Also

rneko Functions

1

Deliver a signal to a parallel program

#include <rmanager/uif.h>
int rms_kill(gpid_t gpid, int signum);

MEIKOcs2 - MKnns

This function delivers a signal to the specified process. gpid is a global process
id, and signum is the signal that is to be delivered.

rms_killO returns -Ion error and 0 on success.

A list of signal numbers is included in signal(5).

rms_getgpid (), signal(5). rms_sigsendO

27

1

rms logbalO

Synopsis

Availability

Description

Example

See Also

28

Identify least loaded processor in a partition

*include <rmanager/uif.h>
int rms_logbal(uid_t id, char *partition,

logbal_t *info);

MEIKOcs2 - MKrms

rms_logbalO identifies the least loaded processor in partition. rms_log
balO uses the statistic speci fied in the system de fa ul t s(4) file to determine
processor loading (this is specified by the System Administrator).

The id argument is the user's id as returned by get uid(2).

On return from this function the logbal_ t structure is initialised with the host
name and IP address of the least heavily loaded processor in the partition.

rms _logbalO returns a value of -1 on error, and 0 on success.

Find the least loaded processor in the parallel partition:

'include <stdio.h>
'include <rmanager/uif.h>

fdefine PARTITION "parallel"

main ()
{

logbal_t lbalinfo;
uid_t myid;

myid = getuid () ;
if (rms_logbal(myid, PARTITION, &lbalinfo) == -1) {

fprintf(stderr, "Cannot identify processor\n");
exit(1);

printf("Use processor %s\n", lbalinfo.hostname);

See the description of logbal_ t described on page 57.

Sl002-10MllO.OI meJ<a

rms mapToStringO

Synopsis

Availability

Description

Example

See Also

meko Functions

1

Display range string

#include <rmanager/if.h>
char *rms_mapToString(map_t *map);

MEIKOcs2 - MKnns

rms _ mapToStr ing() reads a map _ t structure and returns a printable string
identifying all the bits that were set to 1. The string is a space separated list of
integers or integer ranges (e.g. 1 24-79 10). The map _ t structure is indexed
from O.

map _ t structures are used in the machine _ t structure (and others) to identify
the availability of processors, switches and other components.

The following example will identify the Elan Id's of the processors in your ma
chine:

iinclude <rmanager/uif.h>

main ()
{

machine t *machine;

machine = (machine_t*) rms_describe(RMS_MACHINE, 0);
printf("Machine has processors: %s\n",

rms_mapToString(&machine->map»;

See the description of the map_t structure on page 61.

rm s_m apToS tring() 29

1

rms _ moduleTypeStringO

Synopsis

Availability

Description

Example

See Also

30 nns_moduleTypeStringO

Printable module type string

#include <rmanager/uif.h>
char *rms_moduleTypeString(ModuleTypes type)

MEIKOcs2 - MKnns

rms _ moduleTypeStr ingO converts an enumerated ModuleTypes value to
a printable string. This function is typically used with the module _ t structure
to interpret its type field.

Return strings are: processor, switch, disk, peripheral, or unknown.

Fetch a description for all the modules in the machine and display the module
types:

iinclude <rmanager/uif.h>

main ()
{

module_t *m;
int i = 0;

/* Repeat for all processors */
while «m=(module_t*> rms_describe(RMS_MODULE,i++» != NULL)

/* Display module type */
printf(~Type is: %s\n", rms_moduleTypeString(m->type»;

rms_describeO. See also module_t on page 62.

SI002-10MBO.OI meJ<.o

rms _ ntoelanO

Synopsis

Availability

Description

See Also

ITIIfi<o Functions

Ethernet address to Elan Id translation

#include <rmanager/uif.h>
#include <netinet/if ether.h>
int rms_ntoelan(struct ether addr *e);

MEIKOcs2 - MKnns

1

rms_ntoelanO translates the specified ethernet address (e) to the processor's
Elan Id. Return values are the Elan Id on success or -Ion failure.

rms_elantohostO,rms_hosttoelan(),rrns_elantonO.

31

1

rms _ objectStringO

Synopsis

Availability

Description

Example

See Also

32

Return object type string

#include <rmanager/uif.h>
char *rms_objectString(RMS_OBJECT_TYPES type);

MEIKOcs2 - MKrms

rms _ ob jectStr ingO converts an enumerated RMS _OBJECT_TYPES value to
a printable string. This function is typically used with the rmsob j_ t structure
to interpret its type field.

Rerurnstringsare:machine,module,board,switch,processor,link,
device, configuration, partition, resource, job,orunknown.

Print the type of object at CAN address Ox20000:

iinclude <stdio.h>
iinclude <sys/canif.h>
iinclude <rmanager/uif.h>

idefine CAN ADDRESS Ox20000

main ()
{

CAN_AD DR can;
rmsobj_t *object;

can.addr int = CAN_ADDRESS;

if«object = rms_translate(can» == NULL) {
fprintf(stderr, "Cannot get object description\n");
exit(l);

printf("Object type: %s\n", rms_objectString(object->type);

rms_translateO. See the description of rmsobj_t on page 73.

Sl002-10MllO.Ol meJ<a

rms JlarseDefaultsFileO

Synopsis

Availability

Description

Example

mei<o Functions

1

Read system defaults

#include <rmanager/uif.h>
sysDefaults *rms_parseDefaultsFile(char *match);

MEIKOcs2 - MKrms

Read system defaults from the defaults(4) file.

The match argument allows you to select the defaults that apply to a specific
partition. Setting match to the name of a partition means that you require the de
faults that apply to the partition. Specifying a match of NULL means that you
don't care about partition specific defaults; the default value will be returned
even if it only applies to a subset of the partitions in your configuration.

Consider the following extract from a defaults(4) file:

access-control on parallel batch
timelimit 3000 parallel

With a NULL argument rmsyarseDefaultsFile() returns the default val
ues regardless of partition restrfctions:

sysDefaults *defaults;

defaults - rms_parseDefaultsFile(NULL):
printf("access-cntrl %d\n",defaults->accessControl);
printf("timelimit %d\n", defaults->timelimit);

access-control 1
timelimit 3000

By requesting the defaults that apply to the batch partition the tirnelimit re
turned by rmsyarseDefaultsFile() is the default that applies in the ab
sence of a suitable entry in the defaul ts(4) file.

sysDefaults *defaults;

defaults = rms_parseDefaultsFile("batch") :
printf("access-cntrl %d\n",defaults->accessControl);
printf("timelimit %d\n", defaults->timelimit);

rms_parseDefaultsFile() 33

1

See Also

34 rms_parseDefaultsFileO

access-control 1
timelimit -1

defaults(4). See the sysDefaults structure on page 79.

S 1002-10M1 10.01 meJ<D

rms J)rocStatusStringO

Synopsis

Availability

Description

Example

See Also

meI<D Functions

1

Printable processor status

iinclude <rmanager/uif.h>
char *rms_procStatusString(ProcStatus status)

MEIKOs2 - MKrms

rmsyrocStatusStringO converts an enumerated ProcStatus value into
a printable status string. This function is used to display the stat us field in the
proc _ t structure.

Return strings are:

Configured out
Needs fsck
Unix booting
VROM running
Powered down
Unix level 6 (or 5,4,3,2,1,0)
Single user
Can running

Display the status of all processors:

iinclude <rmanager/uif.h>

main ()
{

proc_t *proc;
int i = 0;

Error
TFTP boot
Self test
ROM running
Reset
Elan running
Unknown (value)

while«proc = (proc_t*)rms_describe(RMS_PROC, i++» !=NULL)
printf ("Processor status is: %s \n" ,

rms_procStatusString(proc->status»;

See also proc _ton page 67.

rms_procStatusS tringO 35

1

rms yrocTypeStringO

Synopsis

Availability

Description

Example

See Also

Returns a processor type string

#include <rmanager/uif.h>
char *rms_procTypeString(ProcTypes procType);

MEIKOcs2 - MKnns

rmsyrocTypeStringO convetts an enumerated ProcTypes value into a
printable string. It is used to display the type field in the proc _ t structure. Re
turn strings are:

Viking

Pinnacle

CY605

Viking+Ecache

unknown

The SPARe processor strings may also be appended by either +VP or +cVP (rep
resenting the vector processing units).

Fetch a processor description for all the processors in the machine and display
the processor types:

'include <rmanager/uif.h>

main ()
{

int i = 0;
proc_t *prOCi

/* Repeat for all processors */
while «proc = (proc_t*) rms_describe(RMS_PROC, i++» != NULL)

/* Display the processor's type */
printf("Type is: %s\n", rms_procTypeString(proc->type»;

See also proc _ton page 67.

36 rms-PfocTypeS tringO Sl002-10MllO.Ol mei(O

1

rms_resourceStatusStringO Printable resource status

Synop~s 'include <rmanager/uif.h>
char *rms_resourceStatusString(ResourceStatus status);

Availability MEIKOcs2 - MKrms

Description rms_resourceStatusStringOconverts an enumerated ResourceStat us
value into a printable status string. This function is used to display the status
field in the resource _ t structure. Return strings are:

Example

See Also

mei<D Functions

system

in-use

queued

free

xtime unknown (value)

Display the status of all resources:

iinclude <rmanager/uif.h>

main ()
{

resource t *resourcei
int i .. Oi

while(resource = (resource_t*)rms_describe(RMS_RESOURCE, i++» !=NULL)
printf("Resource status is: %s\n",

rms_resourceStatusString(resource->status»i

See also resource_t on page 71.

nns_resourceStatusS tringO 37

1

rms _ setgsidO

Synopsis

Availability

Description

See Also

38

Set global session id

#include <rmanager/uif.h>
gpid_t rms_setgsid();

MEIKOcs2 - MKnns

rms_setgsidO sets the process group ID and session ID of the calling process
to the process ID of the calling process, and releases the process's controlling ter
minal.

rms_getgsidO.

SI002-10MllO.OI meJ<a

Synopsis

Availability

Description

See Also

meko Functions

1

Signal a process

#include <rmanager/uif.h>
int rms_sigsend(idtype_t type, gpid_t gpid, int sig);

MEIKOcs2 - MKrms

rms_sigsendO sends a signal to the process or group of processes identified
by gpid and type.

The processor component of gpid (Le. PROCESSOR(gpid» identifies the target
processor. The interpretation of the process component (Le. PROCESS(gpid» is
dependent on the type argument as described by sigsend(2).

rms_killO, signal(5), sigsend(2).

39

1

rms translateO

Synopsis

Availability

Description

Example

See Also

40

Translate CAN address to object description

#include <rrnanager/uif.h>
#include <sys/canif.h>
rmsobj_t *rrns_translate(CAN_ADDR can);

MEIKOcs2 - MKrms.

Translates a CAN address to a resource object description.

The rmsobj_ t structure returned by rms _translate () is a generic data type
that can be used to represent any of the resource object structures (it is imple
mented as a C union of all the resource object structures).

The following example determines the type of object at CAN address Ox20000
(this represents processor 0 in module 2):

iinclude <stdio.h>
iinclude <sys/canif.h>
iinclude <rmanager/uif.h>

idefine CAN ADDRESS Ox20000

main ()
{

CAN_AD DR can;
rmsobj_t *object;

if«object = rms_translate(can» == NULL) {
fprintf(stderr, "Cannot get object description\n");
exit(l);

printf("Object type: %s\n", rms_objectString(object->type);

The rmsobj_t data structure described on page 73.

Sl002-10MllO.Ol meJ<D

rms ttymsgO

Synopsis

Arguments

Description

See Also

meI<o Functions

1

Write message to a session's controlling terminal

#include <rmanager/uif.h>
int rms_ttymsg(gpid_t gsid, char *msg)

MEIKOcs2 - MKrms

Sends a message to the controlling terminal of the session gsid

If PROCESS(gsid) < 0 and PROCESSOR(gsid) < 0 the message is sent to the
controlling terminals of all sessions.

If PROCESS(gsid) < 0 and PROCESSOR(gsid) > 0 the message is sent to the
controlling terminals of all processes on PROCESSOR(gsid).

The PROCESSO and PROCESSORO macros are defined in <rmanager/uif.h>.

rms getgsidO.

41

1

Synopsis

Availability

Description

See Also

42 rms_ version 0

Library version string

#include <rmanager/uif.h>
char *rms_version();

MEIKOcs2 - MKrms

This function identifies the library version that your application is compiled with.

The associated function rms_checkVersionO is used to compare the library
version that the application is compiled with against the version of the library
that it is linked with.

rms_checkVersionO.

Sl002-10MllO.Ol mei<a

rms _ waitpidO

Synopsis

Availability

Description

Example

meI<D Functions

1

Wait for a parallel program segment to complete

#include <rmanager/uif.h>
int rms_waitpid(gpid_t pid, int *status, int options);

MEIKOcs2 - MKrms

rms_waitpidO waits for the processes running in the segment to finish and re
turns the exit status in the manner of wai tpid(2). Execution of the calling proc
ess is blocked until the segment completes or the calling process itself is
interrupted by a signal.

The return value from rms _ wai tpidO is -1 if the function exited as a result of
a signal sent to the calling process (or some other reason for failure). Otherwise
the return value is 0 and the exit status for the segment is stored in stat us -
this may be interpreted using the macros defined in <sys/wait. h> and de
scribed in wstat(5).

The pid argument is the controlling process's global process id, as returned by
rms_getgpidO.

The options argument is currently ignored.

The following example uses rms waitpidO to get the exit status from our ex
ample parallel application. Note that the loader program is blocked by the call to
rms_waitpidO until the parallel application has completed.

iinclude <rmanager/uif.h>
iinclude <sys/wait.h>
iinclude <stdio.h>

idefine EXAMPLE "/opt/MEIKOcs2/example/csn/csn"

main(int argc, char** argv)
{

rrequest_t *req;
int status;
int i;

req = rms_defaultResourceRequest();

if (rms_forkexecvp(req, EXAMPLE, argv) == -1) {
fprintf(stderr, "Failed to fork application\n");
exit (1) ;

rms_ waitpidO 43

1

/* Wait for the parallel program to finish */
if (rms_waitpid(rms_getgpid(), &status, 0)) exit(l);

if(WIFEXITED(status))
printf("Exited with status: %d\n", WEXITSTATUS(status»;

See Also rms_forkexecvpO, rms_getgpid (), wstat(5), waitpid(2).

44 Sl002-10MllO.Ol meJ<a

meJ<D

Data Structures 2

The following data structures are used by the resource management user inter
face library. They are defined in the header file <rrnanager /uif . h>, and have
supporting macro definitions in the header file <rrnanager /rnachine. h>.

The resource management system maintains arrays of these structures to describe
the resources in the machine. An instance of any of these structures can be
fetched by specifying the object type and a logical id to rms_describe ().
The logical id, present as a field in many of the data structures, is the ordering of
the structures by the resource management daemons. Logical id's for modules,
boards, processors, and switches begin at O. Logical id's for jobs and resources
are relative to the partition that owns them.

45

2

board t

Synopsis

Description

46

Board Description

board = (board_t*) rms_describe (RMS_BOARD, n);

typedef struct {
int id;
BoardTypes type;
int idb;

/* logical id of this board */
/* board type */
/* id of board in module */

int moduleld;
int baseProc;
int nProcs:

/* module housing this board */
/* first processor */

int baseSwitch;
/* number of processors */
/* id of first switch */
/* number of switches */ int nSwitches;

CAN_AD DR can;
u_long romRevision;
GeneralStatus status;
int serialNumber

/* CAN address of H8 on board */
/* H8 ROM revision */
/* board status */
/* board serial number */

board t:

The board _ t structure describes any of the board types that can be fitted into a
module, and may therefore describe processor boards, switch boards, small back
plane switch cards, and module controllers. The fields have the following mean
ings:

Field

id

type

idb

moduleId

baseProc

nProcs

Meaning

The logical id of this board.

The board's type; this is one of the enumerated
BoardTypes described below.

Id of the board in its module.

The logical Id of the module that contains this board. You
can use this Id as an argument to rms_describe () to
get the describing structure for the module.

This is the logical id of the first processor on the board.
You can use this id with rms_describe () to get the
processor's deSCription.

The number of processors on the board.

Sl002-10MllO.Ol meJ<o

Associated Definitions

rneI<o Data Structures

2

Field

baseSwitch

nSwitches

can

Meaning

The logical Id of the first switch on the board. You can use
this id with rrns _de s c r ibe () to get the switch's
description.

The number of switches on the board.

This is the CAN address of the board. The definition of
the CAN_ADDR type is included in <sys/ canif. h>.

rornRevision The revision number of the board's H8 ROM.

status The module's operating status; this is one of the
enumerated types GeneralStatus (see below).

ser ialNurnber The Meiko serial number for this board.

The enumerated type BoardStatus defined in the header file <rmanager /
machine. h>:

Value

BOARD TYPE DINO

BOARD_TYPE_QUATTRO

BOARD TYPE VECTOR

BOARD TYPE SWITCH 4x4

BOARD TYPE SWITCH 2x8

BOARD TYPE SWITCH lx16

BOARD TYPE SMALL SWITCH

Meaning

MK401 single SPARC + I/O board.

MK405 quad SPARC board.

MK403 vector processing element.

MK529 four Elite board.

MK523 top switches.

MK522 two stage switch board.

MK511 module switch card (1 Elite).

BOARD TYPE SWITCH BUFFER MK512 module switch buffer card.

BOARD TYPE CONTROLLER MK515 module controller.

The enumerated type GeneralStatus defined in the header file <rmanag
er /rnachine . h>:

47

2

48

Value

STATUS ERROR

STATUS RUNNING

STATUS POWERDOWN

STATUS CONFIGOUT

STATUS UNKNOWN

Meaning

Misbehaving

Responding to requests.

Powered-down.

Configured -out.

Unknown.

Sl002-10MllO.Ol meJ<a

config_t

Synopsis

Description

meI<o Data Structures

2

Configuration description

config = (config_t*)rms_describe(RMS_CONFIGURATION,O);

typedef struct {
char name[NAME_SIZE]; /* configuration name */
int nPartitions; /* number of partitions */

} config t;

Describes the active configuration. Note that there is only one active configura
tion so the index argument to rms _ de s cr ibe () will always be O.

The fields have the following meanings:

Field Meaning

name The configuration's name.

nPartitions The number of partitions in the configuration.

confi&-t 49

2

device t

Synopsis

Description

50

Device description

device = (device_t*) rms_describe(RMS_DEVICE, n);

typedef struct
int id;
DeviceTypes type;
char *name;
int hostId;
int controller;
int target;

1* logical id of device *1
1* device type *1
1* manufacturers name *1
1* Host processor *1
1* SCSI controller (0-4) *1
1* target on SCSI bus (0-6) */

int lun; 1* logical unit number *1
DeviceStatus status[5]; 1* device status (upto 5 for RAID) *1
int moduleId; 1* logical id of module housing device *1
int positionMask; 1* device positions in module *1
int raidLevel;
int nPhysDevs;
int slicesUsed;

1* 1,3,5 (UNASSIGNED for single disks) */
1* number of physcial devices *1
1* which slices are in use */

device t;

Describe a SCSI device.

Field

id

type

name

hostld

controller

target

lun

Meaning

The logical id of this device.

The device type; this is one of the enumerated
DeviceTypes described below.

The device manufacturer's name.

The logical id of the processor that hosts this device. You
can pass this id to rms_describeO to get the
processor's description.

Identifies the SCSI controller that the device is connected
to. This will be in the range 0-4.

Identifies the device id on the SCSI bus. This will be in
the range 0-6.

Logical unit number (for use with RAID arrays).

Sl002-10MllO.Ol mei<D

Associated Definitions

meko Data Structures

2

Field Meaning

sta t us An array of status values; up to 5 values may be recorded
for RAID arrays. Each value may be one or more of the
enumerated DeviceStatus values listed below.

moduleId The logical id of the module that contains this device.
You can pass this id to rms_describeO to get the
module's description.

positionMask Bit mask indicating the device's position in the module.

raidLevel Identifies the RAID level as 1, 3, or 5. This field will be
set to RMS_UNASSIGNED if the device is not part of a
RAID array.

nPhysDevs The number of physical devices that constitute this
device.

slicesUsed A bit mask identifying the slices that are in use; bits 0-7
are used.

The enumerated DeviceTypes type defined in <rmanager Imachine. h>:

Value Meaning

DEVICE_TYPE_QITC Quarter inch tape device.

DEVICE TYPE CDROM CD-ROM drive.

DEVICE TYPE EXABYTE 8mm tape device.

DEVICE TYPE DISK 3.5" disk device.

DEVICE TYPE DISKARRAY Array of 3.5" disk devices.

DEVICE TYPE UNKNOWN Unknown device type.

51

52

The enumerated DeviceStatus type defined in <rmanager /ma
chine. h>:

Value

DEVICE PRESENT

DEVICE POWERON

DEVICE POWEROFF

DEVICE RUNNING

DEVICE ERROR

DEVICE UNKNOWN

Meaning

Device has been detected.

Power has been applied to the device.

Power to the device is off.

Device is in operation.

An error has been detected.

Unknown status.

Sl002-10MllO.Ol meJ<a

fsys t

Synopsis

Description

mei<o Data Structures

2

Filesystem description

fsys = (fsys_t*) rms_describe(RMS_FSYS, n)i

typedef struct
int id; /* logical id of fsys */
int type;
char slicerS];
char *rnountpi
int nDevicesi
int *deviceldsi
int nServersi
int *serverlds;
map_t *nfsClients;

/* fsystem type (as returned by sysfs) */
/* c?t?t?s? */
/* mount point */
/* number of devices */
/* device ids */
/* processors that serve this fsystem */
/* their ids */
/* clients that mount filesystern */

fsys t;

Describes a filesystem (including PFS and RAID filesystems).

Field

id

type

slice

mountp

nDevices

devicelds

Meaning

The logical id of this filesystem description.

The filesystem's type; this is a filesystem type index as
returned by sysfs(2).

A string in the form cxtxdxsx identifying controller, target,
logical unit number (LUN), and slice.

The filesystem's mount point.

Number of devices used by this filesystems (applicable to
PFS and RAID systems).

An array of logical device identifiers, one identifier for each
of the nDevices; pass these to rms_describeO to get a
description of the devices (instances of the device_ t
structure) .

53

2

54

Field Meaning

nServers The number of servers of this filesystem.

serverlds An array of logical processor identifiers, one for each of the
nServers. You can use these id's with rrns_describeO
to get a description of the processors (instances of proc _ t
structures).

nf sClient s A processor map. indexed by logical id. identifying the
processors that mount this filesystem.

Sl002-10MllO.Ol meJ<.o

Synopsis

Description

meI<o Data Structures

Job (program) description

typedef struct {
gpid_t gpid;
uid_t uid;
gpid_t rpid;
int rid;
time_t start;
int baseProc;
int nProcs;
int memory;
JobStatus status;
char name[NAME_SIZE];

job t

/* gpid of controlling process */
/* uid of owner */
/* process allocating resource */
/* resource identifier */

/* scheduled/actual start time */
/* first processor used for job */
/* number of processors */
/* memory (in MBytes) */
/* status of job */
/* name of program */

Describes a parallel program. Identifies the program name, resource require
ments, and owner.

2

Note that logical job id's are relative to the partition that is running the job. The
logical id for the first job within a partition can be detennined by specifying the
partition id to the macro PARTITION_BASEO, which is defined in <rmanag
er/uif. h>. Alternatively it can be detennined from the partition_t
structure.

The fields have the following meaning:

Field

gpid

uid

rpid

rid

start

Meaning

The global process id of the job's controlling process.

The user id of the owner of this job.

The global process id of the process that allocated the resource
that is used by this job.

The logical id of the resource used by this job. You can call
rms_describe(RMS_RESOURCEBYID,rid) ro get a
res 0 u r c e _ t structure describing the resource.

The time the job was started.

55

2

Associated definitions

56

Field Meaning

baseProc The logical id of the first processor used by this job. You can
use this id to select the appropriate proc _ t structure with
rms_describe ().

nProcs The number of processors used by this job. Jobs use a
contiguous range of processors with logical id's from
baseProc to (baseProc+nProcs-l).

memory The maximum memory required by this job (in Mbytes).

s tat u s The status of this job. This will be one or more of the
enumerated JobStatus types - see below.

name The name of the program.

The enumerated type JobStatus defined in the header file <rmanager/
uif. h>:

Value Meaning

JOB STARTING Job has started.

JOB RUNNING Job is running.

JOB EXITED Job has finished.

JOB KILLED Job was killed by a signal.

JOB NOTRUN Job failed to run.

JOB FINISHED Job has run and now finished.

JOB ZOMBIE Job was stopped (killed/exited/not-run) abnormally.

JOB LAUNCHED Job is either running or in a zombie state

SI002-10MBO.OI mei<a

logbal_t

Associated Functions

Description

mei<D Data Structures

Describes the least loaded processor

Used by rrns_logbalO.

typedef struct {
char hostname[NAME_SIZE]; /* name of host to use */
long addri

logbal ti
/* IP address of host to use */

2

Used by rms logbalO to identify the least loaded processor in a partition. The
resource management system uses the statistic specified in the defaul ts(4) file
to measure processor loading.

The fields have the following meanings:

Field

hostnarne

addr

Meaning

The hostname of the least loaded processor.

The IP address of the least loaded processor

logbaCt 57

2

machine t

Synopsis

Description

58

Machine description

machine = (machine_t*) rms_describe(RMS_MACHINE, 0);

typedef struct {
int nLevels;
int nModules;

/* number of network levels */
/* number of modules (all types) */
/* number of boards */ int nBoards;

int baseProc;
int topProc;
int nProcs;
int nSwitches;
int nDevices;
int nBays;
int layers;
int hostld;

/* first processor */
/* last processor */
/* number of processors */
/* number of switches */
/* number of peripherals */
/* number of bays */
/* bit mask of network layers */
/* machine host id */

int serialNumber; /* machine serial number */
int gCANs; /* number of global CAN networks */
char name[NAME_SIZE); /* machine name */
map_t map; /* processor map */

map_t proc_map; /* processors configured in/out */
map_t sw_map: /* switches configured in/out */
map_t board_map; /* boards configured in/out */
time_t timestamp; /* last modification time */

time_t started: J* time mmanager started * /
int nFsys; /* number of file systems */

machine t;

Used to describe the hardware components of your machine. The fields have the
following meanings:

Field

nLevels

nModules

nBoards

baseProc

Meaning

The number of levels in the switch network.

The total number of modules in the system (includes
switch, processor, and peripheral modules).

The number of boards in the machine. This count
includes all the boards in all the modules, and will include
module switch boards, module control boards, processor
boards, and switch boards.

The Elan Id of the first processor in the machine.

S 1002-10M1 10.01 mei<D

rneko Data Structures

2

Field Meaning

topProc The Elan Id of the last processor in the machine.

nProcs The number of processors in the machine.

nSwitches The number of switches in the machine.

nDevices The number of devices in the machine.

nBays The number of bays in the system.

layers A bit mask of network layers - bit n represents layer n.
Bits are set to indicate that a layer is available.

hostld The machine's host id.

serialNumber The machine's serial number.

gCAN s The number of global CAN networks in this system.

name The machine's name.

map A bit array showing the number of processors in the
system. Within the bit array processors are represented by
a single bit and are ordered by their Elan Id. Bits are set
for processors that exist, and cleared for those that do not.

proc _map This a processor map that shows the configuration state of
the processors in the machine. It is a copy of the map field
with configured-in processors having their bits set, and
configured-out processors having their bits cleared.

sw_ map Shows the availability of switches. Each switch device in
the machine has a bit in the array. Switches that are
configured-in have their bit set; configured-out switches
have their bits cleared. Switches are ordered in the bit
array by using their logical id.

Shows the availability of boards (this will include module
switch boards, module control cards, processor cards, and
module switch cards). Each board in the machine is
assigned a bit in the array. Boards that are configured-in
have their corresponding bit set. Boards are ordered in the
bit array by using their logical id.

59

2

Example

See Also

60

Field Meaning

timestamp

started

nFsys

Last modification time for this structure.

Start time for the machine manager.

The number of filesystems.

The following example tests the configuration state of the switch with logical id
3. If the switch is configured-in we use rms_describe () to fetch the describ
ing switch_t structure. Note that the ordering of bits in the sw_map uses the
same logical id that is used with rms_describe ().

machine_t *machine;
switch_t *switch;

/* Get machine description */
if«machine=(machine_t*)rms_describe(RMS_MACHINE,O» == NULL) {

fprintf(stderr, "Cannot get machine description\n);
exit (1);

/* Test switch availability */
if (MAPISSET (3, &machine->sw_map»

printf("Switch 3 is available\n");

/* Get more info about this switch *1
if«switch=(switch_t*)rms_describe(RMS_SWITCH,3» == NULL)

fprintf(stderr, "Cannot get switch description\n");
exit(l);

else
printf("Switch is at level %d\n", switch->level);

See also the description of the map _ t structure on page 61.

Sl002-10MllO.Ol meJ<a

Associated Functions

Description

Associated Definitions

Example

See Also

meI<o Data Structures

2

General purpose bit array

rms_configure O.

The map_t structure is used as an array of MAX_SWITCHES bits.

Instances of these bit arrays are held within the machine_t structures (describ
ing the resources within the machine) to describe the availability of processors
and switches. Resource management functions that effect the availability ofthese
components also notify the change by setting/clearing the appropriate bit within
these arrays.

A number of macro's are defined in <rmanager /uif . h> to manipulate the
bits within map _ t structures. Each take a pointer to a map map _ t structure.
These are:

Purpose

Set bit p in the specified map.

Clear bit p in the specified map.

Macro

MAP_SET(p,&map)

MAP_CLR(p, &map)

MAP_ISSET(p,&map)

ZERO_MAP (&map)

Returns true (non-zero) if bit p in the map is set.

Clear all bits in the rna p.

In the following example rms _ de s c r ibe () is used to get a description of the
machine (an instance ofa rnachine_t structure). Bit 1 in the proc_map field
is tested to check the availability of the processor with Elan Id 1:

machine_t *machine;

/* Get a description of the machine */
if«machine=(machine_t*)rms_describe(RMS_MACHINE,O»==NULL) {

fprintf(stderr, "Cannot get machine description\n");
exit(l);

/* Is processor with Elan Id 1 configured-in */
if(MAP_ISSET(l,&machine->proc_map»

printf("Processor 1 is available\n");

See also the description of the map fields within the rnachine_t structure.

61

2

module t

Synopsis

Description

62

Module description

module = (module_t*) rrns_describe(RMS_MODULE, n);

typedef struct
int id;
ModuleTypes type;
CAN_AD DR can;
int baseBoard;
int nBoards;
int baseProc;
int nProcs;
int baseDevice;
int nDevices;
int position;
int level;
int netld;
int plane;
int layer;
int gCAN;
int controllerld
int power
char *console;

/* logical id of this module */
/* module type */
/* CAN address of controller */
/* id of the first board */
/* number of boards */
/* first processor in module */
/* number of processors */
/* id of first device */
/* number of devices */
/* physical position in machine */
/* network level */
/* network id */
/* plane number */
/* network layer number */
/* connected gCAN (-ve if none) */
/* board id of controller */
1* power is good */
/* Cmd to grab console */

module t;

A description of a module. The fields have the following meanings:

Field

id

type

can

baseBoard

Meaning

The logical id of this module.

The module type. This will be one of the enumerated
ModuleTypes described below.

This is the CAN address of the module's controller. The
definition of the CAN_ADDR type is included in <sys/
canif .h>.

This is the logical id of the first board in the module. You
can use this id to select the appropriate board _ t
structure with rms _ descr ibe () .

Sl002-10MllO.Ol meJ<D

meI<o Data Structures

2

Field

nBoards

baseProc

nProcs

baseDevice

nDevices

position

level

netld

plane

layer

gCAN

Meaning

The number of boards in the module. This count includes
processor boards, switch boards, the module control
board, and the small switch cards that can be plugged into
the rear of the 'processor modules.

This is the logical id of the first Unix processor in the
module; you can use this id with rms_describe ().

The number of processors in the module.

The is the logical id of the first device in the module; you
can use this id with rms_describeO.

The number of devices in the module.

This is the physical position of the module in the machine.
This is specified by the Installation Engineer in the
machine. des(4) file.

This is the switch level that the module is connected to.

This is the module's network address.

This field identifies the switch plane that this module
contains.

This field identifies the switch layer that this module
contains (bit mask in which bit n represents layer n).

If the module is a G-CAN router then this field is the id of
its global CAN network. Otherwise it is negative.

controllerld Logical id of board description for the module controller.

power The status of the power supply voltages; a non-zero value
indicates that the module power supply is good.

console The command used to grab a console.

Note that the allocation of logical id's for processors, or boards, or devices is con
tiguous. The range of logical id's for all the processors in the module will there
fore range from baseProc to (baseProc+nProcs-l).

63

2

Associated Definitions

64

The enumerated type ModuleTypes is defined in <rrnanager luif . h>:

Value

MODULE TYPE PROCESSOR

MODULE TYPE SWITCH

MODULE TYPE PERIPHERAL

Meaning

Processor module.

Switch module.

Peripheral (disk) module.

Sl002-10MllO.Ol mei<a

partition _ t

Synopsis

Description

meI<o Data Structures

2

Partition description

partn = (partition_t*) rms_describe(RMS_PARTITION, n);

typedef struct {
int id; /* logical id of partition */
char name[NAME_SIZE]; /* partition name */
int baseProc; /* first processor */
int topProc; /* last processor */
int nProcs; 1* number of processors */
int baseResource; /* first resource in partition */
int nResources;
int baseJob;
int nJobs;
time_t start;
int active;
map_t map;

partition_t;

/* number of resources */
/* first job * /
/* number of active jobs */
/* time pmanager started */
/* running or not */
/* processor map */

Describes a partition. The fields have the following meanings:

Field Meaning

id The logical id of this partition.

name The partition's name.

baseProc The Elan Id of the first processor in the partition.

topProc The Elan Id of the last processor in the partition.

nProcs The number of processors in the partition.

baseResource The logical id of the first resource held within this
partition. You can use this id with rms _des cr ibe () to
obtain the deSCription of the first resource in the partition.

nResources The number of resources in the partition.

baseJob The logical id of the first job in this partition. You can use
this id with rms_describe () to obtain a description
of the first job in this partition.

nJobs The number of active jobs in the partition.

65

2

See Also

66

Field

start

active

map

Meaning

Start time for the partition manager.

Either 0 or 1, will be set to 0 if the partition is down.

A map of the processors that are in this partition. The map
is a bit array in which processors are represented by a
single bit and are ordered by their Elan Ids. Bits are set to
indicate that a processor is a member of the partition, and
cleared if it is not.

See also the description ofmap_t on page 61.

Sl002-10MllO.Ol meJ<o

Synopsis

Description

meI<o Data Structures

2

Processor description

typedef struct
int id;
int idp;
int boardId;
int moduleId;
ProcTypes type;
int memory;
int level;
int elanId;
CAN_AD DR can;
ProcStatus status;
ulong romRevision;
char *name;
Gender gender;
int bootId;
int nDevices;
int *deviceIds;
int nFsys;
int *fsysIds;
unsigned long iaddr;

proc t;

/* logical id of this processor */
/* id of processor on board */
/* board id */
/* module id */
/* processor type */
/* memory (in MBytes) */
/* switch network level */
/* elan id (route down) */
/* CAN address of processor */
/* processor status */
/* Open Boot ROM revision */
/* Unix hostname */
/* Processor's role */
/* Processor to boot from */
/* Number of devices */
/* Device identifiers */
/* Number of filesystems */
/* Filesystem identifiers */
/* Internet address */

Description of a Unix SPARe processor. The fields have the following meanings:

Field

id

idp

boardld

moduleld

type

memory

level

Meaning

The logical id of this processor.

The logical id of this processor relative to the others on the
same board.

The logical Id of the processor's board.

The logical Id of the processor's module.

The processor's type. One of the enumerated ProcType
values described below. May also be one of the enumerated
VpuTypes values if VPU co-processors are fitted.

The amount of memory (in Mbytes).

This processor's level in the switch network.

67

2

Associated definitions

68 proc_t

Field Meaning

elanId This processor's Elan Id.

can The CAN address of the processor's controlling H8
processor. The definition of the CAN_ADDR type is
included in <sys/ canif . h>.

s tat u s The processor's status. One of the enumerated
ProcStatus values described below.

romRevision The revision number of the processor's Open Boot ROM.

name The processor's Unix hostname.

gender Describes the processor's role; this will be one or more of
the enumerated Gender types described below.

boot I d Logical id of this processor's server.

nDevice s The number of attached devices.

deviceIds An integer array of logical device id's. Use these with rms_
describeO to get a description of the devices.

nF s y s The number of filesystems.

fsysIds An integer array of logical filesystem id's. Use these with
rms_describeO to get a description of the filesystems.

iaddr The processor's internet address.

The enumerated type ProcTypes is used to initialise the least significant byte
of the proc_t. type field:

Value

PROC TYPE 605

PROC TYPE PINNACLE

PROC TYPE VIKING - -
PROC TYPE VIKING ECACHE

PROC TYPE H8

Meaning

Ross 605.

Ross Pinnacle.

Texas Instruments Viking.

TI Viking with external cache.

H8 processor.

Sl002-10MllO.Ol mei<a

meI<o Data Structures

2

The enumerated type VpuTypes is (optionally) used to initialise the second
byte of the proc_t. type field:

Value

VPU TYPE 514

VPU TYPE 534 - -

Meaning

N on -cache coherent VPU.

Cache coherent VPU.

Enumerated type ProcStatus -Processor Status definitions. Defined in
<rmanager/machine.h>.

Value Meaning

PRoe STATUS RESET Processor held in reset.

PRoe STATUS_ROM_RUNNING At 'OK' (boot ROM prompt).

PROe STATUS SELF TEST Running remote self test.

PROe STATUS TFTP LOAD ROM loading external code.

PRoe STATUS BOOTING ROM about to run external code.

PRoe STATUS ERROR Processor is misbehaving.

PRoe STATUS NEEDSFSeK Disk needs checking.

PRoe STATUS eAN RUNNING The CAN module has been loaded.

PRoe STATUS RUNLEVEL S Unix running single user mode.

PRoe STATUS RUNLEVEL 0-6 Unix going to run level 0-6.

PRoe STATUS POWERDOWN Power is down on module.

PRoe STATUS eONFIGOUT Processor is configured out.

PROe STATUS VROM Processor is running in VROM.

Enumerated type Gender - processor roles. Defined in <rmanager /ma
chine.h>.

69

2

70

Value

GENDER MEDIA

GENDER SERVER

GENDER CLIENT

GENDER GATEWAY

GENDER CONSOLE

Meaning

Media server (QITC/CD-ROM etc.)

Server for clients/filesystems.

Client (no exported filesystems).

Network gateway.

Console host.

SI002-10MIIO.OI mei<a

Synopsis

Description

meI<o Data Structures

2

Resource description

Returned by rms_describe (RMS_RESOURCE ••.)

typedef struct {
int id;
gpid_t gpid;
gpid_t gsid;
uid_t uid;
int baseProc;
int nProcs;
time_t start;
time_t timelimit;
int priority;
ResourceStatus status;
char partition[NAME_SIZE];

resource t;

Describes a resource.

/* id (sequence number) */
/* process holding resource *1
/* controlling session */
/* uid of owner */
/* first processor */
/* number of processors *1
/* time queued/allocated */

/* allocation time in secs */
/* priority of request */
/* status *1
/* partition name */

Note that logical resource id's are relative to the partition that allocated the re
source. The logical id for the first resource within a partition can be determined
by specifying the partition id to the macro PARTITION_BASEO, which is de
fined in <rmanager /uif . h>. Alternatively it can be determined from the
partition_t structure.

The fields have the following meanings:

Field

id

gpid

gsid

uid

baseProc

nProcs

Meaning

Logical id of this resource.

The process id of the process that is holding this resource.

The global session id of the controlling session.

The user id of the owner of this resource.

The logical id of the first processor in this resource.

The number of processors in this resource. Resources contain
a contiguous range of processors with logical id's from
baseProc to (baseProc+nProcs-l).

71

2

Associated definitions

72

Field Meaning

start The time that the resource was either queued or allocated (to
detennine which applies look at the status field).

timelimi t The maximum time the resource can be held for specified in
seconds. The time limit is inherited from the resource request
structure (rrequest_t). -1 means no limit.

priority The priority of the request.

status The status of the resource. This is a bit mask that can be set!
tested by the enumerated ResourceStatus values (see
below).

partition The name of the partition that this resource is allocated from.

Enumerated type ResourceStatus - Resource Status values. Defined in
<rmanager/uif.h>.

Value Meaning

RESOURCE FREE Resource is free.

RESOURCE INUSE Resource in use.

RESOURCE_QUEUED Resource request is queued.

RESOURCE XTIME Resources are being freed. Out of time and
now in grace period.

RESOURCE SUSPENDED Use of resource has been suspended.

RESOURCE ESUSPENDED Externally suspended.

RESOURCE SYSTEM Resource in use by the system.

Sl002-10MllO.Ol mei<O

rmsobj t

Associated Functions

Description

mei<o Data Structures

Generic resource description

rms_translateO.

typedef struct {
RMS_OBJECT_TYPES type; 1* object type *1
union {

machine t machine;
module_t module;
board t board;
switch t sw;
proc_t proc;
device_t device;
config_t config;
partition_t partition;
resource_t resource;
job_t job;
fsys_t fsys;

objs;
rmsobj t;

2

This is a C union of several resource management data structures. The rmsob j_
t structure is used to simplify the interface to functions that can operate on more
than one type of resource object.

The fields have the following meanings:

Field

type

obj

Meaning

The type of object described by this structure; one of the RMS _

OBJECT_TYPES enumerated values (see below).

A C union of the following data types:

machine t

module t

board t

switch t

proc_t

device t

config_t

Machine description.

Module description.

Board description.

Switch description.

Processor description.

Device description.

Configuration description.

73

2

Associated Definitions

Example

74

Field Meaning

partition_t Partition description.

resource t Resource description.

job _ t Job description.

f s y s _ t Filesystem description.

The enumerated RMS_OBJECT_TYPES values defined in <rmanager /
uif. h>.

RMS MACHINE

RMS BOARD

RMS PROC

RMS CONFIGURATION

RMS RESOURCE

RMS FSYS

RMS MODULE

RMS SWITCH

RMS DEVICE

RMS PARTITION

RMS JOB

rms _ t ran s 1 ate () takes a CAN address and returns a pointer to a resource
management structure describing the object at that address. The type of the ob
ject is unknown until after the function call so a generic object type simplifies the
functional interface:

CAN_ADDR can = Ox8400;
rmsobj_t *object;

if«object = rms_translate(can» == NULL) {
fprintf(stderr, "Cannot get object description\n");
exit (1) ;

printf("Object type is %s\n", rms objectString(object->type»;

Sl002-10MllO.Ol mei<a

rrequest t

Associated Functions

Description

meko Data Structures

2

Resource request

Used by rms_forkexecvpO, rms_allocateO, rms_defaultRe
sourceRequestO.

typedef struct {
int baseProc: /* processor base (relative to partition) */
int nProcs; /* number of processors */
int memory; /* MBytes of memory */
int timelimit; /* run-time in seconds */
int rid: /* resource identifier */
int flags; /* options on request */
int routeTable; /* route table to use */
char partition[NAME_SIZE]; /* partition to use */

rrequest t;

The rrequest_t structure is used to describe the resources required by a par
allel application-it is passed as an argument to rms_forkexecvp() or rms_
allocateO

An instance of the rrequest_t structure is created and initialised with the
function rms_defaultResourceRequest (); the default values are read
from the user's environment.

Field

baseProc

nProcs

memory

timelirnit

rid

Meaning

The first processor that is required to run the user's program
(the numbering is relative to the start of the partition and
begins at 0).

The number of processors to use.

The maximum memory required by the program in Mbytes.

Maximum run-time of the program specified in seconds.
The program is sent a SIGXCPU after this period has
elapsed, and a SIGKILL after a short grace-period.

The logical id of a resource_t structure describing an
allocated resource. This allows an existing resource to be
used.

rrequesct 75

2

Associated Definitions

Example

76 rrequesct

Field

flags

routeTable

partition

Meaning

1 bit per flag, set to 1 to enable. The enumerated type
RequestFlags includes useful definitions (see below).

Elan route table to use.

The name of the partition to use (max. length currently 32
characters).

The enumerated type RequestF lags (defined in <rmanager /uif • h» can
be used to set bits in the rrequest_t. flags field:

Value Meaning

REQUEST_DEBUG Run program under the debugger.

REQUEST_CORE Allow core file creation.

REQUEST_SEQ Force no barrier synchronisation of slaves
with host (treat as a Unix sequential program).
The resource management system normally
makes its own evaluation.

REQUEST_VERBOSE Enable verbosity.

REQUEST_TIMING Time the loading process and write to stdout.

REQUEST_TAG Tag output with processor Id's.

REQUEST_EXTRAVERBOSE Enable more verbose output.

REQUEST_BARRIER Force barrier synchronisation of slaves with
host (treat as a parallel application). The
resource management system normally makes
its own evaluation.

REQUEST_IMMEDIATE Fail if resource is not immediately available;
by default the resource request blocks the
calling process until the resource is allocated.

The following code fragment sets the debug and core file creation flags:

rrequest_t rreq;

rreq.flags = REQUEST DEBUG I REQUEST CORE;

Sl002-10MII0.01 meJ<D

switch t

Synopsis

Description

meko Data Structures

Switch Description

Returned by rrns_describe (RMS_SWITCH ...)

typedef struct
int id;
int sid;
int level;
int netld;
int plane;
int layer;
int moduleld;
GeneralStatus
CAN ADDR can;
int chip;
int boardld;

switch t;

1*
1*
1*
1*
1*
1*
1*

status; 1*
1*
1*
1*

logical id of this switch *1
Physical id of this switch *1
switch network level */

network id */

plane number */
network layer number *1
module id *1
switch status *1
can address of controlling H8 */
id on local H8 controller *1
board id *1

2

Describes an Elite network switch, including its position in the switch network
and the state of its links. The fields have the following meanings:

Field

id

sid

level

netId

plane

Meaning

The logical id of this switch. See below.

The physical id of this switch. See below.

The level in the switch network that this switch is placed.

The switch's network Id. See below.

The switch plane that the switch is in.

layer The network layer that the switch is in.

rnoduleId The logical id of the module that contains this switch.

status

can

chip

boardId

The switch's operating status; this is one of the enumerated
types GeneralStatus (see below).

This is the CAN address of the board that contains the switch.
The definition of the CAN_ADDR type is included in <sysl
canif.h>.

The chip number on the controlling H8.

The logical id of the board.

77

2

Switch Numbering

Associated Definitions

78 switch_t

Each switch has three identifiers (the id, sid, and net Id fields in the
switch_t structure).

The id is the logical id of this switch and relates solely to the ordering of the
switch_t structures in the resource management system's list (Le. the index
that is passed to rms_describeO).

The net Id is the decimal representation of the switch's network address which
describes the route to the switch from the top of the network. All switches at the
top of the network have a netId of O. Remember that network routes take the form
<0-7>.<0-3>.<0-3> ... , so the switch at levell with the route 5.1 has Elan Id
21 (convert 5.1 to binary 101.01 and then to decimal). See the document entitled
Communication Network Overview for a description of network addressing.

Switch id's (the sid field) are unique to each switch and identify the physical
position of each switch within the network. The range of ids assigned to each net
work layer is detennined by the network size (which can be detennined using the
definitions in <rmanager /network. h». Switch id's begin at 0 in network
layer 0, and are assigned from the top network stage to the bottom, and from left
to right within each stage. The numbering for subsequent network layers contin
ues where the previous range ended. When the network is incomplete there will
be corresponding gaps in the assignment of switch id's. Consider, for example, a
3 stage network in which layer 0 switches have id's in the range 0-79; the top 16
switches have id's 0--15, the 32 switches at level 1 have id's in the range 1~7,
and the 32 switches at the lowest level have id's 48-79.

The enumerated type GeneralStat us defined in the header file <rmanag
er /machine. h>:

Value

STATUS ERROR

STATUS RUNNING

Meaning

Misbehaving

Responding to requests.

STATUS POWERDOWN Powered-down.

STATUS CONFIGOUT Configured-out.

STATUS UNKNOWN Unknown

Sl002-10MIIO.Ol mei<a

sysDefaults

Synopsis

Description

meko Data Structures

2

System defa ul ts

sysDefaults rms_parseDefaultsFile(match);

typedef struct {
ulong romRevision; /* minimum openboot ROM revision */
ulong h8RomRevision; /* minimum H8 revision date */
int informationHiding; /* only tell users about themselves */
int canDo; /* machine has CAN */
char partition[NAME_SIZE]: /* default partition */
int timelimit; /* timelimit on resource allocation */
int gracePeriod; /* grace period for timelimits */
int haltOnError; /* rms should stop on serious errors */
int accounting; /* accounting system is enabled */
int accessControl; /* enable access control checking */
int 10gPermErrors; /* log access permission errors */
int 10gStats; /* log resource usage statistics */
int acctlnterval; /* sampling interval for accounting */
char tmpdir[NAME_SIZE); /* path to local tmp filespace */
int 10gbalStatistic; /* load balancing statistic */
char 10gbalHosts[NAME_SIZE]: /* default places to log users in */

int logfileSize; /*.logfile size in KBytes */
int bootTime; /* time allowed to boot */
int haltTime; /* time allowed to halt */
int reset Time; /* time allowed to pulse reset */
int pulseTime: /* time allowed to reset and test */
int maxDeltaTirne; /* time between acct 'busy' reports */
int rnaxldleTirne; /* time between acct 'idle' reports */

sysDefaults;

This structure records system default values read from the defaults(4) file.
Each entry in the defaults file has a corresponding field in the sysDe-·
fa u 1 t s structure.

sysDefaults 79

2

80 sysDefaults

Field

romRevision

h8RomRevision

Meaning

Minimum pennitted OpenBoot ROM revision to
be used by any processor in this system. Default is
95.

Minimum pennitted H8 ROM revision date to be
used with any processor in this system. Default is
Ox93090611.

informationHiding Enable infonnation hiding if this variable is non
zero (only tells users about resources that are
available to them). Default is O.

canDo

partition []

timelimit

gracePeriod

haltOnError

accounting

accessControl

Specifies that this system is fitted with a CAN bus
if this variable is non-zero. Default is 1.

Default partition to use when no partition is
explicitly named by user applications. Default
partition is login.

Timelimit, in seconds, on resource allocation. Jobs
will be signalled (SIGXCPU) after this timelimit
has elapsed. Default is -1 (no limit).

Grace period, in seconds, for timelimits; jobs are
permitted this period to respond to the timelimit
signal; after the grace period has elapsed the job is
killed (sent SIGKILL). Default is 10.

The resource management system will stop on
serious errors if this variable is non-zero. Default
is 1.

The resource management system accounting is
enabled if this variable is non-zero. Default is O.

Access control is enabled if this variable is non
zero. Access to partitions is permitted to users
listed in the names(4)/permissions(4) files.
Default is 1.

Sl002-10MllO.Ol mei<a

mei<o Data Structures

Field

logPermErrors

logStats

acctlnterval

tmpdir []

logbalStatistic

logbalHosts[]

logfileSize

bootTime

haltTime

resetTime

pulseTime

maxDeltaTime

maxldleTime

2

Meaning

Enables logging by the partition managers of
security violations when this variable is non-zero.
The logfile is /opt /MEIKOcs2 / etc/ name/
security.log.Defuuhisl.

Log resource usage statistics if this variable is non
zero. Default is O. This option currently unused.

Sampling interval, in seconds, for resource
accounting. Default is 30.

Path to local temporary filespace. Default is / trope

Load balancing statistic: 0 = User CPU, 1= Kernel
CPU, 2= Idle CPU, 3 = Disk transfer rate, 4=page
in+out rate, 5=swap in+out rate, 6=interrupts,
7=packets, 8=contexts, 9=load. Default is 9 (load).

Identifies hosts to logbal(1) for load
loadbalanced command shells. This variable is a
space separated list of hostnames. Default is all
processors in the login partition.

File size in Kbytes for the machine manager's
event logs (this size is a maximum size; the log files
are cyclic buffers). Default is 256.

Time allowed to boot a processor. Default is 500.

Time allowed to halt a processor. Default is 300.

TIme allowed to pulse reset on a processor. Default
is 400.

Time allowed to reset and test. Default is 45.

Time between accounting "busy" reports. Default
is 120 seconds.

Time between accounting "idle" reports. Default is
60 seconds.

sysDefaults 81

2

82 sysDefaults Sl002-10MllO.Ol mei<D

Introduction

Program Loader

meJ<D

Example Programs 3

This chapter includes a number of example 1 ibrms programs showing the most
commonly used librms functions and data structures1.

The following command line is used to compile all of the 1 ibrms programs de
scribed in this chapter:

user@cs2: cc -0 prog -I/opt/MEIKOcs2/inc~ude \
-L/opt/MEIKOcs2/1ib -R/opt/MEIKOcs2/lib prog.c \
-~rms -lew -~e~an

This example demonstrates a simple program loader offering a subset of the
functionality of prune The usage synopsis for this example is:

loader [-v] [-n nprocs] [-p partition] program

1. These programs are intended to be short examples of librms functionality and do not therefore
include all the error checking, functionality, and style of commercial applications.

83

3

84

Program Description

The program begins with a call to rms_defaultResourceRequestO
which reads a default resource specification from the environment and gives the
user the option of specifying the target resource either by explicit use of the RMS
environment variables, or by running the loader from a command shell with re
sources allocated to it (see allocate(1)).

iinclude <stdio.h>
iinclude <rmanager/uif.h>

extern int optind;
extern char *optarg;

main(int argc, char** argv)
{

int status;
gpid_t pid;
rrequest_t *resources;
int opt;

/* Get default resource spec from the environment */
resources = rms_defaultResourceRequest();

Having fetched the resource specification from the environment the user can
override some attributes with command line arguments. Note that the loader pro
gram will tenninate if command line arguments are incompatible with resources
that have already been allocated to the command shell. To overcome this you
could include for the p and n options a test of the rrequest. rid field, which
will be a positive integer if resources have already been allocated; if they have
been allocated you should ignore the user's partition specification and check that
the specified processor count is less than or equal to that which has already been
allocated.

/* Override default with command line args */
while«opt = getopt(argc, argv, "p:n:v"» != -1)

switch (opt) {
case 'p':

strncpy(resources->partition, optarg, NAME_SIZE);
break;

case 'n':
resources->nProcs atoi(optarg);

Sl002-10MllO.Ol meJ<a

mei<o Example Programs

3

break;
case 'v':

resources->flags 1= REQUEST_VERBOSE;
break;

default:
break;

The user's parallel application is executed on the target resource by rms _ -
forkexecvpO. Note that ifno target partition has yet been specified (either in
the user's environment or on the command line) rms_forkexecvpO will de
termine a default partition from the system defaults file. rms_forkexecvpO
allocates the target resource, if it hasn't already been allocated, starts the appli
cation, and then returns control to the calling process as soon as the processes in
the parallel segment have executed their start-up barrier.

/* Run the program on the resource */
if (rms_forkexecvp(resources, argv[optind], &argv[optind]» {

fprintf (stderr, "%s:' Failed to execute on partition %s\n",
argv[O], resources->partition);

exit(l);

To prevent the loader program from terminating before the parallel segment has
completed (which would cause the whole application to finish) a call to
rms_waitpidO is used to block the loader program. rms_waitpidO is
passed the global process id of the application's controlling process (Le. the load
er program) as returned by the call to rms _getgpidO. The exit status for the
parallel segment is returned in the s tat u s variable and echoed to the screen
when verbose reporting is enabled.

/* Get pid of controlling process */
pid = rms_getgpid();

/* Wait for all processes to terminate */
rms_waitpid(pid, &status, 0);

/* Display exit status if verbosity is enabled */

85

3

if(resources->flags & REQUEST_VERBOSE)
printf("%s: exit status %x\n", argv[optind], status);

Examining the Configuration

86

This example examines the resources in a partition; it lists the processor types,
their status, Elan Id's, and hostnames. A program of this type might be useful to
those users who cannot use Pandora to visualise the availability and configura
tion of resources, and require more infonnation than is provided by either r in
£0(1) or rcontrol{lm).

The usage synopsis for this example is:

I config [partition]

The program's output for a 1 processor partition might look like:

cs2-0: config pl
Partition pl has 1 processor:

Proc type: Viking+Ecache
Elanld: 84
Status: Unix level 3

Hostname: cs2-84

Program Description

The program begins by fetching a default resource specification from the envi
ronment (with rms_de£aultResourceRequestO) which will allow the
program to target the resources that have been allocated to the command shell (if
any), or to use the partition specified by the user's RMS_PARTITION environ
ment variable (if set).

iinclude <stdio.h>
iinclude <rmanager/uif.h>

void printProclnfo(proc t* p)

Sl002-10MIIO.Ol mei<o

meko Example Programs

3

/* Display info from a proc_t structure */
printf(" Proc type: %s\n", rmsyrocTypeString(p->type»;
printf(" ElanId: %d\n", p->elanId);
printf(" Status: %s\n", rmsyrocStatusString(p->status»;
printf(" Hostname: %s\n\n", p->name);

main(int argc, char** argv)
{

int i = 0;
int baseProc, topProc, nProcs;
rrequest_t *resource;
partition_t *partition;
proc_t *proc;
map_t *map;
sysDefaults* def;

/* Get default resource spec from the environment */
resource = rms_defaultResourceRequest();

Having determined the default partition the program can override this with the
partition named on the command line (if any). Note however that if the program
is running in a shell with resources already allocated then it makes sense to target
that partition, as the user's parallel applications will always be executed on that
resource; in this case (indicated by a positive integer in the rrequest. rid
field) the command line option will be ignored.

/* Ignore args if resource is allocated to shell *
* otherwise override default partition with program args */

if (argc > 1 && resource->rid < 0)
strncpy(resource->partition, argv[l], NAME_SIZE);

For the case where no partition is specified a default partition name is read from
the system defaults file.

/* If no has been specified then read from defaults (4) */
if (resource->partition [0] == 0) {

defaults = rms parseDefaultsFile("");

87

3

88

strncpy(resource->partition, def->partition, NAME_SIZE);

Having identified a target partition we can extract information about it with
rms _ descr ibeO. In this case we scan the list of partition descriptions until the
named partition is located, or until the end of the list is reached; we exit if the
partition description cannot be found.

/* Get partition description for named partition *1
while«partition = (partition_t*)rms_describe(RMS_PARTITION, i++)) != NULL)

if(!strcmp(resource->partition, partition->name») break;

1* 'partition' is either NULL or pointer to a partition */
if (partition == NULL) {

printf("Could not locate partition %s\n", resource->partition);
exit(l);

The program extracts from the partition description a processor map that identi
fies the Elan Id's of the partition members. The map is a bit array, indexed by
Elan Id, in which asserted bits indicate the group members. The program scans
this map, between the upper and lower bounds identified from the partition de
sCription, and then uses rms_describeO to fetch a description of each mem
ber processor. Note that rms _ de s c r ibeO is passed the object type
RMS_PROCBYELANID; this represents a list of processor deSCriptions that is
ordered by Elan id, and differs from RMS_PROC in which the descriptions have
an indeterminate ordering. Having fetched a processor description we can print
the required information.

map = &partition->map;
baseProc = partition->baseProc;
topProc = partition->topProc;
nProcs = partition->nProcsi

/* map of partition members */
1* ElanID of first processor */
/* ElanId of last processor */
/* Number of processors */

printf("Partition %s has %d procs:\n\n", resource->partition, nProcs);

for(i=baseProc; i<=topProci i++) {

/* Bits set in map indicate ElanIds of partition members */
if (MAP_ISSET(i, map» {

Sl002-10MllO.Ol mei<o

/* So get description of those processors */
if «proc = (proc_t*) rms_describe(RMS_PROCBYELANID, i» == NULL) {

fprintf(stderr, "Cannot get processor description \n");
exit(l);

printProclnfo(proc);
}

In this case, we use the following simple display function.

void printProclnfo(proc_t* p)
{

/* Display info from a proc_t structure */
printf(" Proc type: %s\n", rms_procTypeString(p->type»;
printf(" Elanld: %d\n", p->elanld);

3

printf(" Status: %s\n", rmsyrocStatusString(p->status»;
printf(" Hostname: %s\n\n", p->name);

meko Example Programs 89

3

90 Sl002-10MllO.Ol meJ<o

Computing
Surface

CSN Communications Library for C

SlOO2-10MI06.06 mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
S01aris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control:External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Contents

1.

2.

Using the C Communications Library 1

CSN Communication Routines. 1
Functions for Starting-up and Shutting-down. 3
Functions for Inter-Processor Communication. 3
Functions for Non-blocking I/O . 4
Header Files . 4
Library Files. 5
Environment Variables . 6
Program Tracing. 7

Reference Manual

cs_abort() 0000 •• 0. 0.0.000 ••• 0

cs_getinfo () .. 0 0 0 0 0 0 0 0 0 0 •••• 0 0 0 0 0 0 •• 0 0

csn_close () 0 • 0 0 •• 0 • 0 0 •• 0 0 0 0 • 0 •••••

csn_deregistername() 0.000 •••• 00' 0 0000 ••

csn_exi t () 0 ••• 0 0 • 0 • 0 0 0 •• 0 0 • 0 • 0 ••••

CSN_GET_NET () ••• 0 •• 0 0 ~ 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0

CSN _GET_NODE () 0 0 0 0 0 0 • 0 • 0 0 0 ••••• 0 •• 0 ••••

CSN_GET_TRANSPORT () 0 0 • 0 • 0 • 0 0 0 0 0 •• 0 • 0 0 0 •

csn_getId () 0 •••• 0 0 0 0 ••••• 0 •• 0 0 0 0 0 •

9

10

11

12

13

14

15

16

17

18

19

csn_lookupname () .. 20

CSN_MAKE_ID () • . . . • • . . • • . . . • • • • • • • 21

csn_nnodes () 22

csn_node () 23

csn_open () 24

csn_registername () 25

csn_rx() 26

csn_rxnb () 27

csn_statusString () 28

csn_test () 29

csn_tx () 31

csn_txnb () 32

3. Tutorial Examples. .. 33

Overview. 33
Compilation and Execution. 33

Two Communicating Processes. 34
Transports. 34
Blocking Communications. 34
Program Description. 35
Program Listing. 35

Bidirectional Communications. 38
Transports. 38
Program Description. 38

Program Listing . 39
Non-Blocking Communications. 42

Non-Blocking Communications. 42
Program Description. 42

Program Listing. 44

4. Error Messages . 49

Message Fonnat . 49
Widget Library Exceptions. 50

ii

Note for Fortran Programmers. 50
Error Messages . 50

Contents iii

iv

Using the C Communications Library 1

CSN Communication Routines

The CSN routines provide access to the Computing Surface Network, which pro
vides a general point to point communications scheme. These routines must be
explicitly referenced from the libcsn library, as shown later in this chapter.

CSN communications occur through transports; a transport is a bidirectional end
point for communication. Each transport in the network has a unique address,
which must be used by the sender of a message to identify the target of the com
munication. Individual programs can have many transports open simultaneously
for the transmission and reception of messages. Facilities are provided (through
the calls csn_registername (), csn_lookupname () and csn_dereg
istername (») to give meaningful names to transports, so that user code need
not concern itself about the internal structure of network addresses.

Here is a full list of the CSN functions.

csn_close () Close a CSN transport.

csn_deregistername() Remove a name from a transport.

csn_exit () Shut down network connection and exit
process.

csn_getld ()

csn _GET_NET ()

Get transport address.

CSN address manipulation (macro).

1

2

csn_GET_NODE{)

CSN_GET_TRANSPORT{)

csn_init ()

csn_lookupname{)

CSN_MAKE_ID ()

csn_open ()

csn_registername{)

csn_rx ()

csn_rxnb ()

csn_statusString()

csn_test ()

csn_tx ()

csn_txnb ()

CSN address manipulation (macro).

CSN address manipulation (macro).

Set up the connection to the network.

Find a transport from a textual name.

CSN address manipulation (macro).

Open a new transport.

Give a textual name to a transport.

Recei ve a message.

Queue a buffer for receiving a message.

Return textual status.

Test for completion of queued send/receive.

Send a message.

Queue a message for transmission.

The CS-2 libcsn.a library includes two new routines providing information on
the number of processors and the id of each processor.

csn _ nnodes ()

csn_node ()

Number of processors.

Processor ide

The CS-2 libcsn. a library includes a number of support routines that were
previously part of libcs . a; libcs . a itself is no longer needed.

cs_abort ()

cs_getinfo ()

Terminate task.

Get processor information.

SlOO2-10MI06.06 mei<a

1

Functions for Starting-up and Shutting-down

There are various functions which are useful when starting up a program and
when closing it down. These include functions for giving names to transport ad
dresses, so that other processes can communicate with them, and functions for
finding out which process you are.

cs_abort () Terminate task.

csn_ close () Close a CSN transport.

csn_deregisternarne () Remove name from a transport.

csn _ exi t () Shut down network connection and exit
process.

cs_getinfo ()

csn_init ()

csn_lookupname()

csn _ nnodes ()

csn_node ()

csn_open ()

csn_registernarne()

Get processor information.

Set up the connection to the network.

Find a transport from a textual name.

. Number of processors.

Processor ide

Open a new transport.

Give a textual name to a transport.

Warning - csn _initO must be called before using other CSN routines when
running applications on the CS-2.

Functions for Inter-Processor Communication

The functions for performing inter-processor communication can be split into
two classes: those that do not complete until the communication has completed,
and those which return immediately, allowing the program to continue to execute
while the communication takes place. The operation of the functions that sus
pend or block the user process are easier to understand; these functions are c s
n_tx (), and csn_rx ().

Note that all of the message sizes on receive and transmit are given in bytes.

meI<o Using the C Communications Library 3

1

csn_rx ()

csn_tx ()

Receive a message.

Send a message.

Functions/or Non-blocking I/O

Header Files

4

As well as the blocking CSN functions there are corresponding functions cs
n_ txnb () and c sn _ rxnb () that can be used to start communications while
allowing the user program to continue to execute. Using these functions it is pos
sible to queue up many buffers into which receives will occur when messages are
sent, thus insulating the sender from delays in the receiver, or queue many buffers
to be sent as soon as a receiver is willing to accept them.

As soon as the sender has many buffers queued up for transmission or reception,
one needs a way of testing whether a buffer has been sent so that we may reuse
or destroy the buffer. This functionality is provided by csn _test () .

csn_rxnb ()

csn_test ()

csn_txnb ()

Queue a buffer for receiving a message.

Test for completion of queued send/receive.

Queue a message for transmission.

Two header files contain function prototypes and macro definitions for use with
this library. The files are in the directory / opt/MEIKOcs2 / include/ csn
and are called csn. h and names. h.

You should specify to your compiler the search path for these header files by us
ing the command line option -I with the argument /opt/ME1KOcs2/ in
clude.

SlOO2-10MHl6.06 mei<a

Library Files

1

All CSN libraries are stored in the directory / opt/MEIKOcs2 / lib. Programs
that use the CSN routines must be linked with the following command line op
tions:

I -L/opt/MEIKOcs2/lib -lcsn -lew -lelan

Tracing

To use the version of the CSN library that produces ParaGraph compatible trace
files you precede the -lcsn in the above line by -lcsnyt. Your attention is
drawn to the following two sections which describe environment variables that
are applicable to tracing, and also the tracing functions.

Debugging

There is also a debugging version of the library which attempts to provide more
security and better error behaviour than the standard library - although it will
also be slower. This library is available by specifying -lcsn dbg in place of
the standard version.

meko Using the C Communications Library 5

1

Environment Variables

The following environment variables are used by this library. Many are inherited
from libew - the low level Elan Widget library.

LIBCSN TRACEFILE For use with libcsn_pt only, this variable
specifies the name of the trace file to use; each
node outputs to $LIBCSN_TRACE
FILE.nodeno. Default name is LIBCSN
TRACE.nodeno.

LIBCSN TRACEBUF For use with libcsn_pt only, this variable
specifies the number of events to allow in the
trace buffer.

LIBEW WAITYPE Specifies how the low level Elan widget library
(libew) routines wait for Elan events; either
POLL or WAIT, default is to POLL.

LIBEW DMATYPE Specifies the type of DMA transfer used by the
low level Elan widget library (libew). Either
NORMAL or SECURE.

LIBEW DMACOUNT Specifies the permitted retry count for DMA
transfers. Default is 1.

LIBEW RS YS ENABLE Enables the remote system call server; when
enabled stdin, stdout, and stderr are
routed through the host process. May be either 0
(disabled) or 1 (enabled), default is 1.

LIBEW RSYS BUFSIZE The buffer size used by the remote system call
server. Default is 8192 bytes.

6 SIOO2-10MI06.06 mei<a

Program Tracing

LIBEW RSYS SERVER

LIBEW CORE

LIBEW TRACE

1

Virtual process ID of the processor that will run
the system call server.

Enables core dump on exception. Values may be
1 (enabled) or 0 (disabled). By default core
dumping is disabled.

Enables a trace dump on exception. Values may
be 1 (enabled) or 0 (disabled). By default trace
dumping is disabled.

Both ParaGraph and Alog/Upshot are supported for program tracing.

ParaGraph

Three functions in the low level Elan Widget library (libew) are applicable to
program tracing-these are ew ytraceStart () ,ew _ptraceStop () ,and
ewytraceFlush (). None of these take arguments and none return values to
the caller.

Programs that are traced must be linked with libcsn yt as described in an ear
lier section. The resulting trace file may be analysed with ParaGraph.

ewytraceStart()

ewytraceFlush ()

ewytraceStop ()

Enables tracing and records a "start of tracing"
event.

Flushes the event buffer to the file system. It
records a "start of flushing" event when it begins,
and an "end of flushing" event on completion. It
generates an exception with code EW _ E IO if it
fails to write to the trace file.

Disables tracing, records an "end of tracing" event
and calls ew_ptraceFlush (). Note that
ew _ptraceStop () and
ew_ptraceStart () may be called repeatedly
to record snapshots of a program's behaviour

meI<o Using the C Communications Library 7

1

8

Full documentation for the tracing functions is included in the Elan Widget Li
brary reference manual.

A log/Upshot

As an alternative to ParaGraph the event/state display tool upshot is also
supported. To use this you need to instrument your code with trace points. De
tails may be found in /opt/MEIKOcs2/upshot/README-MEIKO.

SlOO2-10MH>6.06 ms<a

Reference Manual 2

This chapter includes detailed descriptions of each function in the CSN library.

meJ<o 9

2

Synopsis

Description

See Also

10

Parallel C communications routine

#include <cs.h>
void cs_abort(char *message, int exitCode);

cs_abort () prints the given message to standard error and then causes an ex
ception on the calling process. It will never return. No flushing of output buffers
is performed, so this function should be used with caution.

csn_exit ().

SlOO2-10MH)6.06 meJ<a

Synopsis

Description

mei<D Reference Manual

2

Parallel C communications routine

include <cstools/cstools.h>
void cs_getinfo{int *nProcs,int *procld,int *localld);

cs_getinfo () returns the number of processors involved in the program
(nprocs), the identity of the local processor (processor Id = O ... (nProcs-
1)), and the identity of this process on this processor (currently always 0). The
result will be 0 for success, and less than zero in the case of an error.

11

2

csn_c1oseO

Synopsis

Description

See Also

12

Close a CSN transport

include <csn/csn.h>
int csn_close (Transport t);

c s n _ c los e 0 closes the transport t. It fails (and the transport remains open) if
there are outstanding sends or receives queued on the transport, or if the results
of completed non-blocking communications have not been collected by
csn_test ().

Return codes are as follows:

CSN OK

CSN ENOTREADY

Transport successfully closed.

Transport could not be closed due to outstanding
communications in progress.

SlOO2-10MI06.06 meJ«)

csn_ deregisternameO

Synopsis

Description

See Also

mei<o Reference Manual

2

CSN (Named Transport)

include <csn/names.h>
int csn_deregistername (Transport tpt);

csn_deregistername () removes a naming association created by the func
tion, csn_registername () , and must be called before the transport can be
renamed. It returns CSN_EBADREQ if the transport has not been registered or
looked-up, and CSN _OK on success.

csn_lookupname(),csn_registername().

13

2

csn_exitO

Synopsis

Description

14

Shut down CSN connection and exit process

include <csn/csn.h>
void csn_exit(int return_code);

This function shuts down the connection to the CSN network, which causes any
open transports to be closed. The process then tenninates, returning the exit sta
tus ret urn code.

This function should be used in preference to exi t () when running parallel
programs using the CSN.

To kill a parallel application, all processes should globally synchronise. Each
process then calls c s n _ex i t () , but note that the process does not exit until all
other processes have also called this function.

In current releases of this library, all outputs to the standard output device (s t d
out) are routed through a single process (to ensure they are correctly line buff
ered). You must ensure that all output is complete before the 10 process
tenninates.

SlOO2-10MI06.06 meJ<a

CSN_GET_NETO

Synopsis

Description

See Also

meko Reference Manual

2

Extract network number from CSN address

include <csn/csn.h>
CSN_GET NET (id)

This macro is defined in the header file, <csn/ csn. h>. It returns the network
number from the CSN address, id, that is passed as an argument.

CSN addresses (as returned by csn_lookupname () and other CSN func
tions) are structures that consist of three fields: the network number, the node
number, and the transport number.

15

2

Synopsis

Description

See Also

16

Extract node number from CSN address

include <csn/csn.h>
CSN_GET_NODE(id)

This macro is defined in the header file, <csn/ csn. h>. It returns the node
number from the CSN address, id, that is passed as an argument.

CSN addresses (as returned by csn_lookupname () and other CSN func
tions) are structures that consist of three fields: the network number, the node
number, and the transport number.

SlOO2-10MI06.06 meJ<a

2

CSN_GET_TRANSPORTO Get transport number from CSN address

Synopsis

Description

See Also

meI<o Reference Manual

include <csn/csn.h>
CSN_GET_TRANSPORT(id}

This macro is defined in the header file, <csn/ csn. h>. It returns the transport
number from the CSN address, id, that is passed as an argument. This only
makes sense if the relevant transport is local to the processor calling the function.

CSN addresses (as returned by csn_lookupname () and other CSN func
tions) are structures that consist of three fields: the network number, the node
number, and the transport number.

17

2

csn_getldO

Synopsis

Description

See Also

18

Get the CSN address of a transport

include <csn/csn.h>
netid_t csn_getld(transport t);

This function gets the CSN address of the local transport, t.

CSN_GET_NET(),CSN_GET_NODE(),CSN_GET_TRANSPORT(),
CSN_MAKE_ID ().

SIOO2-10MI06.06 meJ<a

csn_initO

Synopsis

Description

meI<o Reference Manual

2

Initialise the CSN

void csn_init();

This function sets up the network connection between the current process and the
CSN network - it must be the first function that is called by the process.

Before the CSN can be used, csn_init () must be called to perfonn any sys
tem initialisation which may be required. After calling csn_ini t (), a program
will nonnally create a set of Transports (using csn_open (», give each of the
transports a meaningful name (using csn registername (», and then (us
ing csn _lookupname ()) discover the addresses of the transports to which it
intends to transmit. It is nonnal for all programs to create their transports before
looking up any others to avoid potential deadlocks where two programs are each

, waiting for the other to create and register a transport.

19

2

csn _lookupnameO

Synopsis

Description

See Also

20

CSN (Named Transport)

include <csn/names.h>
int csn_lookupnarne (netid_t *peer, char *name,

int block);

csn _lookupname () looks for the specified name in the global name space.
Ifblock is set the function will wait until the name has been declared, otherwise
it will fail and return CSN ENOTREADY.

This function returns CSN _OK on success, and sets *p to be the network id as
sociated with that name.

csn_registername(),csn_deregisternarne().

SlOO2-10MI06.06 mei<a

Synopsis

Description

See Also

mekrJ Reference Manual

Assemble CSN address

include <esn/esn.h>
CSN_MAKE_ID(net, node, transport);

2

This macro is defined in the header file, <esn/ esn. h>. It assembles a CSN ad
dress from a network number, net, a node number, node, and a transport
number, transport.

CSN addresses (as returned by csn_lookupname () and other CSN func
tions), are structures that consist of three fields: the network number, the node
number, and the transport number.

Warning - In the current implementation net must be O.

Warning - Manipulation of the internal structure of network addresses is
not recommended.

CSN_GET_NET(),CSN_GET.NODE(),CSN GET TRANSPORT().

21

2

csn _ nnodesO

Synopsis

Description

See Also

22

N umber of Processors

include <csn/csn.h>
int csn_nnodes();

Parallel programs are run one process per processor on the CS-2. This function
returns the num ber of processors executing this application.

csn_node ()

SlOO2-10MI06.06 meJ<a

CSD_DodeO

Synopsis

DescriptioD

See Also

meI<o Reference Manual

Processor Id

include <csn/csn.h>
int csn_node () ;

2

Parallel programs are run one process per processor on CS-2. This function re
turns the 10 of the processor executing this process. IDs will lie in the range 0 to
nodes-I, where nodes is returned by csn_nnodes ().

csn_nnodes () .

23

2

csn openO

Synopsis

Description

24

Open a CSN transport

include <csn/csn.h>
int csn_open (int index, Transport *t);

csn_open () creates a new CSN transport; if successful it returns it in *t.
index may either be set to the desired transport number, or to -1 indicating that
any free transport number may be used.

Return values from csn_open () are as follows:

CSN OK

CSN ERANGE

CSN EALLOC

CSN ENOHEAP

New transport successfully created and returned in *t.

Requested transpon index out of range.

Requested transpon index already allocated, If a sped fic
transport index was not requested, this result means that
all trans pons are allocated.

No heap space left to build transport.

SIOO2-10MH>6.06 1TlEi<a

csn _registernameO

Synopsis

Description

See Also

mei<o Reference Manual

2

CSN (Named Transport)

include <csn/names.h>
int csn_registername (Transport tpt, char *name);

csn_registername () declares the specified name to be associated with the
CSN address of the transport t. It may return CSN _ EBADREQ if the transport al
ready has a naming scheme associated with it (that is, it hasn't been deregistered
before changing it's name), CSN _ ENOHEAP if a descriptor cannot be created in
memory, or CSN _ EALLOC if the name is already declared in the global name
space. CSN _ OK is returned on success.

csn_lookupname(),csn_deregistername().

25

2

Synopsis

Description

See Also

26

Receive a message from a CSN transport

include <csn/csn.h>
int csn_rx (Transport t, netid_t *frornld-p,
char *data, int nob);

csn_rx () queues the message buffer data for receiving up to nob bytes on
transport t. The contents of the message buffer may be updated by the CSN at
any time until the communication completes.

csn_rx () blocks until a message has been received. If fromld_p is non
NULL, the address of the source transport is passed back in it. The non-blocking
version, csn _ rxnb () , returns immediately, and completion of the receive it in
itiates must be determined by calling c s n _ t est () .

Return values for csn_rx () are as follows:

n >= 0

CSN EABORT

This result indicates that a message of size n bytes was
received successfully.

A call to csn_ cancel () on this transport caused this
communication to abort.

SlOO2-10MI06.06 meJ<a

cso_rxobO

Synopsis

Description

See Also

meI<.o Reference Manual

2

Receive a message from a CSN transport

include <csn/csn.h>
int csn_rxnb (Transport t, char *data, int nob);

csn _rxnb () queues the message buffer data for receiving up to nob bytes on
transport t. The contents of the message buffer may be updated by the CSN at
any time until the communication completes.

csn_rx () blocks until a message has been received. If fromld_p is non
NULL, the address of the source transport is passed back in it. The non-blocking
version, csn_rxnb (), returns immediately, and completion of the receive it in
itiates must be determined by calling c s n _ t est () .

Return values for csn_rxnb () are as follows:

CSN OK The message buffer has been queued successfully on
transport t. The contents of the message buffer should not
be inspected or altered until a call to csn _test ()
determines that this communication has completed, when
one of the above csn _ rx () results will be returned.

CSN ENOHEAP The message buffer was not queued for receiving, due to
lack of heap space.

csn_rx(),csn_tx(),csn teste).

27

2

csn _ statusStringO

Synopsis

Description

28

Return CSN error string

include <csn/csn.h>
char* csn_statusString(int status);

This function returns a pointer to a static string containing a textual version of
the CSN error code status.

SlOO2-10MI06.06 m8<O

csn_testO

Synopsis

Description

mei<o Reference Manual

2

Test for completion of non-blocking CSN communications

include <csn/csn.h>
int csn_test (Transport t, int flags, long timeOut,

netid_t *id p, char **data_p, int *status-p);

csn_test () allows a process to detect the completion of communications in
itiated by csn_txnb () and/or csn_rxnb () on transport t. The flags,
id _p, and data -p parameters determine the class of completed communica
tions to wait for (for example, any send or receive, any send to a particular trans
port address, any receive of data into a particular message buffer).

Setting flags to 0 causes csn_test () to wait for any completed non-block
ing communication, subject to the restrictions imposed by the other parameters.
The test may be restricted to communications initiated by csn_txnb () by set
ting flags to CSN_TXREADY, and to communications initiated by csn_
rxnb () by setting flags to CSN_RXREADY. OR'ing these flags has the same
effect as passing O. Passing any other value into f lags is an error.

Negative values of timeOut cause csn_test () to block indefinitely until a
specified communication completes, otherwise it specifies a number of micro
seconds to wait before returning failure.

Setting id_p to NULL or setting *id-p to CSN_NULL_ID will cause
csn _test () to ignore the source/destination address when it looks for a com
pleted communication. Otherwise the test is restricted to messages sent to or re
ceived from * id _po Note that passing an impossible address in * id -p causes
the test to block until the time-out expires.

Setting data -p to NULL or setting * da t a _p to NULL causes c s n _ t est ()
to ignore the message buffer when it looks for a completed communication. Oth
erwise the test is restricted to messages sent from or received into * da t a -p.
Note that passing an impossible message buffer in *data_p causes the test to
block until the time-out expires.

csn_test () must be used to free-up the memory used by non-blOCking com
munications.

Possible results of csn_test () are as follows:

29

2

See Also

30

CSN TXREADY

CSN RXREADY

o

CSN_EBADREQ

CSN EABORT

A communication initiated by c sn _ txnb () completed
or cancelled.

A communication initiated by csn _rxnb () completed
or cancelled.

No specified communications completed and at least
timeOut micro-seconds had elapsed since calling
csn_test ().

Illegal value for flags.

Transport t was closed while csn_test () was
blocked. Note that a transport may only be closed after
all outstanding communications on it have completed.

On successfully finding a completed communication, if id _p is non-NULL,
* id _p contains the source/destination transport address of the completed com
munication. If data _p is non-NULL, * da t a _p contains the message buffer of
the completed communication. Also if status_p is non-NULL, *statusJ>
contains the return status of the completed communication. In the case of a can
celled communication status_p is set to CSN_EABORT (and csn_test ()
returns either CSN _ TXREADY or CSN _ RXREADY).

csn_txnb(),csn_rxnb(),csn_close().

SIOO2-10MI06.06 m8<O

csn_txO

Synopsis

See Also

meko Reference Manual

2

Send a message via CSN

include <csn/csn.h>
int csn_tx (Transport t, int flags, netid_t told,

char *data, int nob);

csn_tx () queues the message buffer data for transmission of nob bytes to
the transport at address told. The flags parameter is currently unused, and
should always be set to O. The contents of the message buffer should not be al
tered until the communication completes.

csn _ tx () blocks until the communication is complete. The non-blocking ver
sion, csn_txnb () ,returns immediately, and completion of the communication
it initiated must be detennined by calling c s n _ t est () .

to I d may be set to CSN_NULL_ID, targeting the message at a notional trans
port which is always ready to receive messages of arbitrary size.

Return values for csn_tx () are as follows:

n == nob This result indicates that the communication completed
successfull y.

CSN ENOSP ACE No space to buffer this message at the destination
transport. When many processes all send messages to a
single destination transport, the destination may not have
enough space to buffer all the pending messages and may
cause one or more of the source transports to attempt re
transmission. This result is returned if re-transmission has
not been successful after the source transport's re
transmission timeout has expired.

CSN ENODEST No transport exists with address told. This result is
returned when the net ID or node ID components of to I d
refer to non-existent network or node numbers, when the
destination transport is refusing messages from this source
or when the destination transport does not exist and the
source transport's re-transmission timeout has expired.

CSN EOVERRUN Message too large for the receiving process's buffer.

31

2

csn_txnbO

Synopsis

Description

See Also

32

Send a message via CSN

include <csn/csn.h>
int csn_txnb (Transport t, int flags, netid_t toId,

char *data, int nob);

csn_ txnb () queues the message buffer data for transmission of nob bytes
to the transport at address toId. The flags parameter is reserved for future use
and should always be set to O. The contents of the message buffer should not be
altered until the communication completes.

csn_tx () blocks until the communication is complete. The non-blocking ver
sion, csn _ txnb () ,returns immediately, and completion of the communication
it initiated must be determined by calling c s n _ t est () .

toId may be set to CSN_NULL_ID, targeting the message at a notional trans
port which is always ready to receive messages of arbitrary size.

Return values for csn_txnb () are as follows:

CSN OK The message buffer has been queued successfully on
transport t. The contents of the message buffer should not
be altered until a call to csn_test () determines that
this communication has completed, when one of the above
c s n _ t x () results will be returned.

CSN ENOHEAP The message buffer was not queued for transmission due
to lack of heap space.

SlOO2-10MI06.06 mei<a

Overview

meJ<o

Tutorial Examples 3

This chapter includes a number of examples showing how to use the CSN com
munication library. It discusses the use of transports and the choice of blocking
versus non-blocking communications.

Compilation and Execution

All the examples in this chapter can be compiled with the following command
line:

user@cs2: cc -0 myprogram -I/opt/MEIKOcs2/inc1ude \
-L/opt/MEIKOcs2/1ib myprogram -1csn -1ew -1e1an

The programs are executed with prun(l) and will use command lines like that
shown below. Note that number is the number of processors required, partition
is the name of the partition that you will use, and myprogram is the name of the
program.

user@cs2: prUD -nnumber -ppartition myprogram

Full information about prun(1) command may be obtained from the reference
manual page.

33

3

Two Communicating Processes

34

Transports

The following example defines two processes that use a single blocking CSN
communication for synchronisation.

This example introduces transports and shows how they are used for a simple
blocking communication between two processes.

A transport is a connection from a process to the Computing Surface Network.
There is no limit on the number of transports that a process can use, so it is nor
mal to create a transport that is dedicated to specific classes of communication,
or to specific senders. In this example each process uses just one transport.

Each transport has an associated address, or net id. To send data to a remote trans
port the sender must first determine the address of the destination transport. To
do this the receiver registers a name for its transport with csn_register
nameO; the sending process determines the net id of this transport by looking
up the name with csn_lookupname().

A useful analogy that helps explain the use of transports is to compare the CSN
with a telephone network. Using this analogy people represent processes, the tel
ephone lines represent transports, and the telephone exchange represent the CSN
network. Each person's telephone line allows them to communicate with any oth
er (and there may be many lines each dedicated to a specific type of communica
tion) but to make a call the person must first determine the receiver's number by
looking up a name in the directory.

Blocking Communications

The CSN supports two types of communication: blocking and non-blocking. In
this example we consider blocking communications - the communication be
tween sender and receiver is delayed until both processes have called their com
munication function. It is this implicit sychronisation that is exploited in this
example.

S 1 002-1 OM 106.06 mei<a

3

Program Description

This example is a parallel implementation of the standard Hello World program
found in C programming tutorials. In this example there are two processes; one
writes Hello to the screen, the other writes World. A simple blocked commu
nication is used to synchronise the processes.

The program begins with initialisation code that is common to both processes.
esn_ini to is used to initialise the network, es_getinfoO identifies each
process's virtual process number and the total number of processes in the appli
cation, and esn_openO creates a transport.

The process with virtual process number 0 will be the sender of the blocked com
munication. The sender detennines the network address of the recipient's trans
port by looking-up the transport's name with esn_IookupnameO (the third
argument is non-zero indicating that esn lookupnameO should wait for the
other process to register its transport's name if it has not already done so). Our
sending process then writes its string to the screenl, and uses esn txO to send
a simple integer data item. At this point the sender will block until the-recipient
is ready to take the data.

Process 1 is the recipient of the communication. The recipient must register a
name for its transport with esn_registernameO so that it is visible to our
sender. The recipient waits until it receives a communication from the sender (us
ing esn rxO), and then writes its part of the string to the screen.

Both process finish by calling e s n _ex itO.

Program Listing

'include <stdio.h>
iinclude <csn/csn.h>
'include <csn/names.h>

maine argc, argv)
int argci

mei<o Tutorial Examples

1. Because the Hello string is not tenninated by a line feed it is necessary to use mushO to force
the string onto the screen; otherwise it would not be written until the process finishes.

35

3

36

char* argv [] ;
{

Transport transport;
netid_t networkid;
int flag == 1;
int status;
int nprocs, me, dummy;
int nob;

cs_getinfo(&nprocs, &me, &dummy);

if(nprocs != 2) {
/* Only process 0 prints the error message */
if(me == 0) fprintf(stderr, "Need two processors for this example\n");
exit (1) ;

status = csn_open(CSN_NULL_ID, &transport);
if(status != CSN_OK) {

fprintf(stderr, "Process %d: Cannot open transport\n", me);
exit(1);

if (me == 0)
/* Process 0 will be the sender */

status == csn_lookupname(&networkid, "Receiver", 1);
if(status != CSN_OK) {

fprintf(stderr,"Process %d: Cannot lookup transport\n", me);
exit(1);

printf("Hello "); fflush(stdout);

/* Awake process 1 by sending a token integer */
nob = csn_tx(transport, 0, networkid, (char*)&flag, sizeof(flag));
if (nob ! == sizeof (flag)) {

else

fprintf(stderr, "Process %d: Failed to transmit\n", me);
exit (1);

S lOO2-10MHl6.06 meJ<a

/* Process 1 will be the receiver */

status - csn_registername(transport, "Receiver");
if(status !- CSN_OK) {

fprintf(stderr, "Process %d: Cannot register transport\n", me);
exit(l);

/* Wait for synchronisation from process 0 */
nob - csn_rx(transport, NULL, (char*)&flag, sizeof(flag));
if(nob < 0) {
fprintf(stderr, "Process %d: Failed to receive\n", me);

exit(l);

printf("world\n");

mei<o Tutorial Examples

3

37

3

Bidirectional Communications

38

Transports

The following example is suitable for use with 2 or more processors. It defines a
master process and a number of slaves; the slaves send data to a master which
broadcasts a result back.

The example shows how to use transports for bidirectional communications, and
also introduces a style of programming that is suitable for a variable number of
target processors.

In this example each process creates just one transport that is used for both in
coming and outgoing communications. The processes could use a separate trans
port for each direction, or indeed dedicate a transport to each pair or processes.

To select the best use of transports for your application you should consider the
message receiving functions csn_rxO and csn_rxnbO. These can both iden
tify the network address of the sending transport (although this facility is not
used in this example). By using a.transport for a specific type of message the re
cipient of a message can infer a context for the data that it has received.

Program Description

All the processes begin by calling csn _ ini to to initialise the network, and fol
low this with a call to cs_getinfoO to get their virtual process number and
the number of processes in the application. Each process then opens a single
transport which will be used for both outgoing and incoming communications.

Each process registers it's own transport's name, and then looks-up the network
address for all the other transports. Note that each transport's name is derived
from the owning process's virtual process number, and that the network address
es are stored in an array that is indexed by virtual process number. This strategy
keeps the program code compact, and allows the number of target processors to
be specified at execution time.

At this point the program splits into the code for our master, and code for the
slaves. The master receives from each slave data that is simply added and then
broadcast back to all the slaves.

S 1 002-1 OM 106.06 mS<D

Program Listing

'include <stdio.h>
'include <csn/csn.h>
'include <csn/names.h>

'define MAXPROCS 10
'define NAME LEN 20

main (argc, argv
int argc;
char* argv [] ;
{

Transport transport;
netid_t networkid[MAXPROCS];
int nprocs, me, dummy;
int status, nob;
int i;
int result-Oj
char name[NAMELEN];

struct {
int data;

} packet;

/* Initialise */
csn_init () ;

/* Get my process id & number of procs */
cs_getinfo(&nprocs, &me, &dummy);

if(nprocs > MAXPROCS) {
/* Only process 0 prints this error */
if (me==O) fprintf(stderr, "Less that %d processes expected\n", MAXPROCS);
exit(l);

/* Open my transport */
status = csn_open(CSN_NULL_ID, &transport);
if(status !- CSN_OK) {

fprintf(stderr, "Process %d: Cannot open transport\n", me);
exit(l);

mei<o Tutorial Examples

3

39

3

40

/* Register my transport */
sprintf (name, "Proc%d", me);
status - csn_registername(transport, name):
if(status !- CSN_OK) {

fprintf(stderr, "Process %d: Cannot register transport\n", me):
exit(l);

/* Lookup all the other transports */
for(i=O; i<nprocs: i++) (

if (i==me) continue; /* Don't lookup my own tranport *1

sprintf(name, "Proc%d", i):
status - csn_Iookupname(&networkid[i), name, 1):
if(status != CSN_OK) {

fprintf(stderr,"Process %d: Cannot lookup transport\n", me):
exit(l);

/* Process 0 is the master */
if (me==O) {

/* Get data from all the workers */
fore i=l ; i<nprocs; i++) {

nob=csn_rx(transport, NULL, (char*)&packet, sizeof(packet»;
if(nob !- sizeof(packet» {

. fprintf(stderr, "Process %d: Failed to receive\n", me):
exit(l);

printf("Master receives data\n");
result += packet.data:

/* Now broadcast a result back to all the processes *1
packet.data = result:

for(i=l; i<nprocsi i++)
nob = csn_tx(transport, 0, networkid[i], (char*)&packet, sizeof(packet»;
if(nob != sizeof(packet» {

fprintf(stderr, "Process %d: Failed to transmit\n", me):

S lOO2-10Ml06.06 ms<a

exit(l);

else

/* I am a worker */

/* Initialise the data packet with some data */
packet.data - me;

/* Send my data to the master (process 0) */
nob = csn_tx(transport, 0, networkid[O], (char*)&packet, sizeof(packet));
if(nob != sizeof(packet» {

fprintf(stderr, "Process %d: Failed to transmit\n", me);
exit (1) ;

/* Get the result back from the master */
nob-csn_rx(transport, NULL, (char*)&packet, sizeof(packet»;
if(nob != sizeof(packet» {

fprintf(stderr, "Process %d: Failed to receive\n", me);
exit (1);

/* Display the result */
printf("Slave process %d: received %d from master\n", me, packet.data);

mekD Tutorial Examples

3

41

3

Non-Blocking Communications

42

The following example runs on 2 processors. It defines a Producer process that
wishes to send a large number of messages to a Consumer process.

The example simulates the case where a process wishes to send a large number
of non-blocking messages to a receiver process. The receiver does not know in
advance how many messages will be sent, nor can the producer assume that the
consumer has sufficient heap space to receive them all. The producer and con
sumertherefore periodically synchronise with a blocking communication so that
the number of non-blocking communications is agreed before they are sent.

N on-B locking Communications

This fonn of communication between processes does not require the sender and
recipient to synchronise, and is therefore more appropriate to time critical appli
cations where processes cannot be allowed to idle.

Non-blocking communications allow a sender to initiate a transmission and to
continue immediately without waiting for the communication to complete. Sim
ilarlya receiver can initiate a receive without waiting for the message to arrive.

Non-blocking sends are initiated by csn_txnbO. The data identified by this
function will be transferred from the process's address space at some indetenni
nate time in the future. To test the status of the transfer the program mustuse cs
n_ testO - only when the transfer has completed may the data buffer be
modified or destroyed.

Non-blocking receives are initiated by csn_rxnbO. This function identifies a
data buffer that can receive the incoming data. To test the status of the transfer
the program must use csn_testO-only when the transfer has completed may
the data buffer be modified or destroyed.

Program Description

Following the initialisation of the CSN and of each process's transports the pro
gram defines two processes: process 0 is a producer, and process 1 a consumer.

The producer sends a blocking communication to the consumer to agree a
number of non-blocking communications that may follow. If the consumer ac
cepts, the agreed number of non-blocking sends are initiated with c s n _ t xnb().

SIOO2-10MI06.06 mei<a

meI<o Tutorial Examples

3

The producer can, without waiting for the communications to complete, continue
with other meaningful work, until it is ready to use esn _ testO to confinn that
the transfers completed successfully.

The consumer awaits the blocking communications from the producer by making
the required number of calls to esn_rxnbO. Each call identifies a unique data
buffer for each of the incoming communications - these buffers must not be
modified or destroyed until the communications are complete. The receiver can
test the status of the communications at any time by calling esn_testO.

43

3

Program Listing

iinclude <stdio.h>
tinclude <csn/csn.h>
iinclude <csn/names.h>

idefine MAXMESSAGES 50
idefine NAME LEN 20
idefine STOP -1
idefine REQSIZE 10
idefine TIMEOUT 1000000

main(argc, argv
int argc;

44

char* argv [] ;
{

Transport transport;
netid_t networkid;
int nprocs, me, dummy;
int status, nob;
int data == 99;
int i;
int *rxbuffer;
int messages, requestsize;
char name[NAMELEN];

/* Initialise */
csn_init () ;

/* Get my process id & number of procs */
cs_getinfo(&nprocs, &me, &dummy);

if(nprocs != 2) {
/* Only process 0 prints this error */
if (me-=O) fprintf(stderr, "This example requires 2 processes\n");
exit(l);

/* Open my transport */
status - csn_open(CSN_NULL_ID, &transport);
if(status !- CSN_OK) {

fprintf(stderr, "Process %d: Cannot open transport\n", me);
exit (1);

SIOO2-10MI06.06 meJ<a

/* Register my transport */
sprintf (name, "Proc%d", me) i
status - csn_registername(transport, name);
if(status !- CSN_OK) {

fprintf(stderr, "Process %d: Cannot register transport\n", me);
exit(l);

/* Lookup my partner's transport */
sprintf (name, "Proc%d", (me==O) ? 1 : 0);
status = csn_lookupname(&networkid, name, 1);
if(status !- CSN_OK) {

fprintf(stderr,"Process %d: Cannot lookup transport\n", me);
exit(l)i

if (me=-O) {

/* Process 0 is the producer */

messages - MAXMESSAGESi
while(messages > 0) {

/* request a batch of buffers ... */
requestsize = «messages> REQSIZE) ? REQSIZE : messages);
messages -- requestsizei
printf("Producer requests %d buffers\n", requestsize);

/* .•• with a blocking communication */
nob - csn_tx(transport, 0, networkid, (char*)&requestsize, sizeof(requestsize»i
if(nob != sizeof(requestsize» {

fprintf(stderr, "Process %d: Failed blocking transmit\n", me);
exit (1) ;

/* Send a batch of messages ..• */
for(i=O; i<requestsize; i++) {

printf("Producer sets-up non-blocking send\n")i

/* ... with a non-blocking communication */
status = csn_txnb(transport, 0, networkid, (char*)&data, sizeof(data»;
if(status != CSN OK) {

mei<o Tutorial Examples

3

45

3

46

fprintf(stderr, "Producer: Failed non-blocking transmit\n");
exit (1);

/* Do some work here, if we want to */
printf("Producer doing some other work\n");

/* test for completion of non-blocking transmits */
/* and also free-up internal CSN buffers */
for(i=O; i<requestsize; i++) {

status = csn_test(transport, CSN_TXREADY, TIMEOUT, NULL, NULL, NULL);
if(status != CSN_TXREADY) {

fprintf(stderr, "Producer: Non-blocking timeout or failure\n");
exit(l);

printf("Producer reports non-blocking sends are complete\n");

/* No more messages so request consumer to stop */
requestsize - STOP; /* Send stop flag */
printf ("Producer requests consumer to STOP\n");

nob = csn_tx(transport, 0, networkid, (char*)&requestsize, sizeof(requestsize»;
if(nob != sizeof(requestsize» {

else

fprintf(stderr, "Process %d: Failed blocking transmit\n", me);
exit (1);

/* Process 1 is the consumer */

while (1) { /* Repeat forever */

/* Get message count from producer */
nob=csn_rx(transport, NULL, (char*)&requestsize, sizeof(requestsize»;
if(nob != sizeof(requestsize»

fprintf(stderr, "Process %d: Failed to receive\n", me);
exit (1) ;

/* Is this a request to stop? */
if (requestsize == STOP) {

SlOO2-10MH>6.06 meJ<a

printf("Consumer stopped by producer\n");
break;

/* Allocate requested number of buffers */
printf("Consumer receives request for %d buffers\n", requestsize);

/* Allocate buffer space */
if«rxbuffer = (int*) malloc(requestsize*sizeof(data)})==NULL}

fprintf(stderr, "Consumer connot allocate buffer space\n");
csn_exit(l}i

/* Receive a batch of messages - non-blocking receive */
for(i-O; i<requestsizei i++) {

status-csn_rxnb(transport, (char*)&rxbuffer[i], sizeof(data»;
if(status != CSN_OK) {

fprintf(stderr, "Consumer: Failed non-blocking receive\n");
exit (l);

printf("Consumer sets-up non-blocking receive\n"):

/* We could do some work here, if we want to */
printf("Consumer doing some other work\n");

/* test for completion of non-blocking transmits */
/* and also free-up internal CSN buffers */
for(i-O: i<requestsizei i++) {

status - csn_test(transport, CSN_RXREADY, TIMEOUT, NULL, NULL, NULL};
if(status !- CSN_RXREADY} {

fprintf(stderr, "Consumer: Non-blocking timeout or failure\n"};
exit (l);

printf("Consumer reports non-blocking receives are complete\n"};
printf("Consumer frees buffer space\n");

free (rxbuffer) ;

/* while loop */

meI<o Tutorial Examples

3

47

3

48 SlOO2-10MI06.06 meJ<D

Message Format

Error Messages 4

The functions in the CSN library (libcsn) are built upon the functions in the
Elan Widget library. Errors within libcsn are reported via the Widget library
exception handler; this writes diagnostic messages to the standard error device
and kills the application.

The fonnat of libcsn messages is:

CSN EXCEPTION @ process : error _code (error_text)
Additional information: error message string

The error message strings are described later in this chapter. The process is the
virtual process number of the process that detected the error; if the exception oc
curs before the process has attached to the network (i.e. before csn _ ini to is
called) then this is shown as ----. The error code (and its textual equivalent the
error text) are one of:

Error Code Error Text

2000 Ok

2001 No Destination

2002 Buffer Overflow

2003 No space at destination

mei<D 49

4

Error Code Error Text

2004 No heap

2005 Bad request

2006 Already allocated

2007 Out of range

2008 Aborted

2009 Not ready

2010 Interrupted

2011 Bad Address

Widget Library Exceptions

Functions in libcsn are implemented on functions in the Elan Widget library.
When an exception occurs within a Widget library function this is handled by the
Widget library's own exception handler. The Widget library handler is similar to
that used by libcsn but produces errors in the form:

EW EXCEPTION @ process : error code (error_text)
error message string

These exceptions are fully described in The Elan Widget Library, Meiko docu
ment number S 1002-10MI04.

Note/or Fortran Programmers

All errors apply to both C and Fortran implementations unless the description
specifies a specific language. Often the error message repeats the parameters that
were passed to the failed call; these will be the parameters that were passed to the
underlying C implementation of the function, and may not be identical to those
passed to the Fortran binding.

Error Messages

In the following list italicised text represents context specific text or values.

50 S lOO2-10Ml06.06 mEi<D

meI<o Error Messages

4

'csn_version' incompatible with 'elan_version' ('elan_version' expected)
Error type is 2008 (Aborted). Occurs in esn _ini to; Elan library version in
compatibility. This library was linked with an out of date version of libe
Ian.

'csn_version' incompatible with 'ew _version' ('ew _version' expected)
Error type is 2008 (Aborted). Occurs in esn _ ini to; Elan Widget library in
compatibility. This library was linked with an out of date version of libew.

Can't allocate count message descriptors
Error type is 2004 (No heap). Occurs in esn_rxnbO and esn_txnbO. A
call to eallocO failed (insufficient memory). A descriptor is required for
each pending non-blocking communication; tried to allocate a batch of addi
tional descriptors for non-blocking communications but was unable. Maybe
there are too many outstanding communications, are you clearing them with
esn_testO?

Can't allocate message port
Error type is 2004 (No heap). Occurs in esn ini to; a call to ew allo-
ea teO 1 failed maybe because heap or swap space exhausted. -

Can't allocate yp ports
Error type is 2004 (No heap). Occurs in esn_initO. A call to ew_allo
eateO failed maybe because heap or swap space exhausted.

CS_ABORT (message: status)
Error type is 2008 (Aborted). Occurs if es_abortO is called.

esn _check Version(self)
Error type is 2008 (Aborted). Occurs in esn _ ini to; internal incompatibil
ity of library source files.

Unexpected flag flag in csn _test
Error type is 2005 (Bad request). Occurs in csn_testO; expecting either
CSN_TXREADY or CSN_RXREADY but found something else. This is an
internal library error, not an error that is directly attributable to the user (spec
ifying the wrong type of flag to a function is flagged as an error by return codes
from the function).

1. ew _allocateO is a Widget library function.

51

4

52 SlOO2-10MHl6.06 meJ<a

Computing
Surface

CSN Communications Library for Fortran

SlOO2-10MI07.0S mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and OpenWindows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence DeSign Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

508 3710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454 616171
Fax: 01454618188

Contents

1. Using the Fortran CSN Library 1

Functions for Starting-up and Shutting-down. 3
Functions for Perfonning Communication 3
Functions for Non-blocking I/O . 4
Header Files . 4
Library Files. 5
Environment Variables . 6
Program Tracing. 7

2. Reference Manual 9

csabort () 10

csgetinfo () 11

csnclose () 12

csnderegname () . 13

csnexit () 14

csngetid () 15

csngetnet () 16

csngetnode () 17

csngettransport () 18

csninit() 19

csnlookupname () . 20

csnmakeid () 21

csnnodes () 22

csnnode () 23

csnopen () 24

csnregname () 25

csnrx () . 26

csnrxnb () 27

csnstatusstring () 28

csntest () 29

csntx () . 31

csntxnb () 32

3. Thtorial Examples. • 33

Overview. 33
Compilation and Execution. 33

Two Communicating Processes. 34
TransIX>rts. 34
Blocking Communications. 34
Program Description. 35
Program Listing . 36

Bidirectional Communications . 37
TransIX>rts. 37
Program Description. 38
Program Listing . 38

Non-Blocking Communications. 41
Non-Blocking Communications. 41
Program Description. 42
Program Listing. 43

4. Error Messages . 49

Message Fonnat . 49
Widget Library Exceptions. 50
Note for Fortran Programmers. 50

ii

Error Messages . 50

Contents iii

iv

meJ<.o

Using the Fortran CSN Library 1

The CSN routines provide access to the Computing Surface Network, which pro
vides a general point to point communications scheme. These routines are not in
cluded in any of the Fortran libraries, but must be explicitly referenced from
libcsn as shown later in this chapter.

CSN communications occur through transports; a transport is a bidirectional end
point for communication. Each transport in the network has a unique address,
which must be used by the sender of a message to identify the target of the com
munication. Individual programs can have many transports open simultaneously
for the transmission and reception of messages. Facilities are provided (through
the calls csnregname (), csnlookupname () and csnderegname (» to
give meaningful names to transports, so that user code need not concern itself
about the internal structure of network addresses.

Here is a full list of the CSN functions.

csnclose ()

csnderegname()

csnexit ()

csngetid ()

csngetnet()

Close a CSN transport.

Remove a name from a transport.

Shut down network connection and exit process.

Get transport address.

CSN address manipulation. Defined as statement
functions in the header, csn/ csnmcs. inc.

1

2

esngetnode () CSN address manipulation. Defined as statement
functions in the header, esn/ esnrnes. inc.

esngettransport () CSN address manipulation. Defined as statement
functions in the header, esn/ esnrncs. inc.

esnini t () Set up the connection to the network.

csnlookupnarne () Find a transport from a textual name.

esnrnakeid () CSN address manipulation. Defined as statement
functions in the header, csn/csnrncs. inc.

esnopen () Open a new transport.

esnregnarne () Give a textual name to a transport.

esnrx () Receive a message.

csnrxnb () Queue a buffer for receiving a message.

esnstatusstring () Return textual status.

esntest () Test for completion of queued send/receive.

esntx () Send a message.

esntxnb () Queue a message for transmission.

The CS-2 libcsn. a library includes two new routines providing information
on the number of processors and the ID of each processor.

esnnnodes ()

esnnode ()

Number of processors.

Processor ID.

The CS-2 libcsn. a library includes a number of support routines that were
previously part of libcs . a; libcs.a itself is no longer needed.

esabort ()

esgetinfo ()

Terminate task.

Get processor information.

SlOO2-10MI07.05 meJ<o

1

Functions for Starting-up and Shutting-down

There are various functions which are useful when starting up a program, and
when closing it down. These include functions for giving names to transport ad
dresses, so that other processes can communicate with them, and functions for
finding out which process you are.

csabort ()

csnclose ()

csnderegname()

csnexit ()

csgetinfo ()

csninit ()

csnlookupname()

csnnnodes ()

csnnode ()

csnopen ()

csnregname ()

Tenninate task.

Close a CSN transport.

Remove name from a transport.

Shut down network connection and exit process.

Get processor information.

Set up the connection to the network.

Find a transport from a textual name.

Number of processors.

Processor 10.

Open a new transport.

Give a textual name to a transport.

Warning - csnini t () must be called before using other CSN routines
when running applications on the CS-2.

Functions for Performing Communication

The functions for performing communication can be split into two classes: those
that do not complete until the communication has completed, and those that re
turn immediately allowing the program to continue to execute while the commu
nication takes place. The operation of the functions that suspend or block the user
process are easier to understand; these functions are:

meko Using the Fortran CSN Library 3

1

csnrx ()

csntx ()

Receive a message.

Send a message.

All of the message sizes on receive and transmit are given in bytes.

Functions/or Non-blocking 110

Header Files

4

As well as the blocking CSN functions there are corresponding functions
csntxnb () , and csnrxnb () that can be used to start communications while
allowing the user program to continue to execute. Using these functions it is pos
sible to queue up many buffers into which receives will occur when messages are
sent, thus insulating the sender from delays in the receiver, or queue many buffers
to be sent as soon as a receiver is willing to accept them.

As soon as the sender has many buffers queued up for transmission or reception,
one needs a way of testing whether a buffer has been sent so that we may reuse
or destroy the buffer. This functionality is provided by csntest () .

csnrxnb ()

csntest ()

csntxnb ()

Queue a buffer for receiving a message.

Test for completion of queued send/receive.

Queue a message for transmission.

Various constant values and type specifications are required when interfacing to
the CSN. In particular, all the CSN functions are named with the initial letters
cs, but their types are not implicit real. The header files include the correct type
definitions for the CSN functions, and define macros names for various parame
ters and return values.

Two header files have been included in this release. These are called csn. inc
and csnmcs. inc, and reside in /opt/MEIKOcs2/include/csn.

SlOO2-10MI07.05 meJ<a

Library Files

1

You must ensure that the contents of these files are included at the beginning of
each Fortran CSN program - you can automate this process by including the
following lines at the head of your program, and by passing it through a C pre
processor. Many compilers automatically invoke the C preprocessor if the For
tran file name includes a . F suffix in place of the usual . f.

'include <csn/csn.inc>
C Variable declarations here

'include <csn/csnmcs.inc>
C Executable code and statement functions ONLY here.

You should specify the search path for these header files to your compiler by us
ing the command line option -II opt/MEIKOcs2/include.

All CSN libraries are stored in the directory I opt/MEIKOcs2 I lib. Programs
that use the CSN routines must be linked with the following command line op
tions:

I-L/OPt/MEIKOCS2I1ib -lcsn -lew -lelan

Tracing

To use the version of the CSN library that produces ParaGraph compatible trace
files you precede the -1 c 5 n in the above line by -1 C 5 n yt. Your attention is
drawn to the following two sections which describe environment variables that
are applicable to tracing, and also the tracing functions.

Debugging

There is also a debugging version of the library which attempts to provide more
security and better error behaviour than the standard library - although it will
also be slower. This library is available by specifying -lcsn_dbg in place of
the standard version.

meI<o Using the Fortran CSN Library 5

1

Environment Variables

The following environment variables are used by this library. Many are inherited
from libew - the low level Elan Widget library.

LIBCSN TRACEFILE For use with libcsn_pt only, this variable
specifies the name of the trace file to use; each node
outputs to $LIBCSN_TRACE-FILE.nodeno.
Default name is LIBCSN TRACE.nodeno.

LIBCSN TRACEBUF For use with libcsn_pt only, this variable
specifies the number of events to allow in the trace
buffer.

LIBEW WAITYPE Specifies how Llte low level Elan widget library
(libew) routines wait for Elan events; either
POLL or WAIT, default is to POLL.

LIBEW DMATYPE Specifies the type ofDMA transfer used by the low
level Elan widget library (libew). Either
NORMAL or SECURE.

LIBEW DMACOUNT Specifies the permitted retry count for DMA
transfers. Default is 1.

LIBEW RSYS ENABLE Enables the remote system call server; when
enabled stdin, stdout, and stderr are routed
through the host process. May be either 0 (disabled)
or 1 (enabled), default is 1.

LIBEW RSYS BUFSIZE The buffer size used by the remote system call
server. Default is 8192 bytes.

LIBEW RSYS SERVER Virtual process ID of the processor that will run the
system call server.

LIBEW CORE Enables core dump on exception. Values may be 1
(enabled) or 0 (disabled). By default core dumping
is disabled.

LIBEW TRACE Enables a trace dump on exception. Values may be
1 (enabled) or 0 (disabled). By default trace
dumping is disabled.

6 SlOO2-10MI07.05 meJ<a

Program Tracing

1

Both ParaGraph and Alog/Upshot are supported for program tracing.

ParaGraph

Three C-Ianguage functions in the low level Elan Widget library (libew) are ap
plicable to program tracing - these are ew ytraceStart () , ew ytrace
Stop (), and ew_ptraceFlush (). None of these take arguments and none
return values to the caller.

Programs that are traced must be linked with libcsn_pt as described in an ear
lier section. The resulting trace file may be analysed with ParaGraph.

ew ytraceStart ()

ewytraceFlush ()

ew ytraceStop ()

Enables tracing and records a "start of tracing"
event.

flushes the event buffer to the file system. It records
a "start of flushing" event when it begins, and an
"end of flushing" event on completion. It generates
an exception with code EW _ E IO if it fails to write to
the trace file.

Disables tracing, records an "end of tracing" event
and calls ewytraceFlush (). Note that
ew_ptraceStop () and ewytraceStart ()
may be called repeatedly to record snapshots of a
program's behaviour

Full documentation for the tracing functions is included in the Elan Widget Li
brary reference manual.

A log/Upshot

As an alternative to ParaGraph the event/state display tool upshot is also
supported. To use this you need to instrument your code with trace points. De
tails may be found in /opt/MEIKOcs2/upshot/README-MEIKO.

meko Using the Fortran CSN Library 7

1

8 S 1002-1 OM 107.05 me/<o

Reference Manual 2

This chapter includes detailed descriptions of each function in the CSN library.

meJ<D 9

2

csabortO

Synopsis

Description

See Also

10

Parallel communications routine

#include <cs.inc>
subroutine csabort(string, exitcode)
character *(*) string
integer exitcode

csabort () prints the given string to the standard output device, and then caus
es an exception. It will never return. No flushing of output buffers is perfonned,
so this function should be used with caution.

csnexit ().

SlOO2-10MI07.05 meJ<o

csgetinfoO

Synopsis

Description

mei<D Reference Manual

Parallel communications routine

#include <cs.inc>
subroutine csgetinfo(nprocs, procid, localid)
integer nprocs, procid, localid

2

csgetinfo () returns the number of processors involved in the program
(nprocs), the identity of the local processor (processorld = O ... (nprocs-
1)), and the identity of this process on this processor (currently always 0). The
result will be 0 for success, and less than zero in the case of an error.

11

2

csncloseO

Synopsis

Description

See Also

12

Close a CSN Transport

#include <csn/csn.inc>
integer function csnclose(itransport)
integer itransport

This function closes the transport itransport. The close will fail if there are
any outstanding receives or transmits pending on the transport.

csnopen(),csntest().

SIOO2-10MI07.05 mei<D

csnderegnameO

Synopsis

Description

See Also

meI<D Reference Manual

Remove a transport's name

#include <csn/names.inc>
integer function csnderegname(itransport)
integer itransport

2

This function removes any name which was previously associated with the trans
port i transport. This is automatically perfonned when the transport itself is
closed, so the only occasion on which this function needs to be explicitly called
is if you wish to remove one name from a transport and then give it a new name.
This is a rare occurrence.

csnregname(),csnlookupname().

13

2

csnexitO

Synopsis

Description

14

Shut down network connection and exit process

#include <csn/csn.inc>
subroutine csnexit(istatus)
integer istatus

This subroutine never returns. It closes all of the transports and then causes the
calling program to exit with status istatus. It can be used to provide a (rela
tively) clean tennination in the case of an error.

To kill a parallel application, all processes should globally synchronise. Each
process then calls csnexit (), but note that the process does not exit until all
other processes have also called this function.

Warning - In current releases of this library, all outputs to the standard out
put device are routed through a single process (to ensure they are correctly
line buffered). You must ensure that all output is complete before the 10
process terminates.

SlOO2-10MI07.05 mei<a

csngetidO

Synopsis

Description

See Also

meI<rJ Reference Manual

Get the CSN address of a transport

#include <csn/csn.inc>
integer function csngetid(itransport)
integer itransport

2

This function gets the CSN address of the local transport i transport.

csngetnet(),csngetnode(),csngettransport(),csnmakeid().

15

2

csngetnetO

Synopsis

Description

See Also

16

Extract network number from CSN address

#include <csn/csnrncs.inc>
csngetnet(peerid)

This statement function is defined in the header file, <csn/ csnrncs. inc>. It
returns the network number from the CSN address, peer id, that is passed as an
argument.

CSN addresses (as returned by csnlookupnarne () and other CSN functions),
consist of three parts: the network number, the node number, and the transport
number.

csngetnode(),csngettransport(),csnrnakeid().

SlOO2-10MI07.05 meJ<a

csngetnode()

Synopsis

Description

See Also

rneko Reference Manual

Extract node number from CSN address

#include <csn/csnmcs.inc>
csngetnode(peerid)

2

This statement function is defined in the header file, <csn/ csnmcs . inc>. It
returns the node number from the CSN address, peerid, that is passed as an ar
gument.

CSN addresses (as returned by csnlookupname () and other CSN functions),
consist of three parts: the network number, the node number, and the transport
number.

csngetnet(),csngettransport(),csnmakeid()

17

2

csngettransportO

Synopsis

Description

See Also

18

Get transport number from CSN address

#include <csn/csnmcs.inc>
csngettransport(peerid)

This statement function is defined in the header file, <csn/ csnmcs. inc>. It
returns the transport number from the CSN address, peerid, that is passed as
an argument. This only makes sense if the relevant transport is local to the proc
essor calling the function.

CSN addresses (as returned by csnlookupname () and other CSN functions),
consist of three parts: the network number, the node number, and the transport
number.

csngetnet(),csngetnode(),csnmakeid().

SlOO2-10MI07.05 mei<a

csninitO

Synopsis

Description

meko Reference Manual

Initialise the CSN

#include <csn/csn.inc>
subroutine csninit()

2

This subroutine sets up the network connection between the current process and
the CSN network - it must be the first function that is called by the process.

Before the CSN can be used, the subroutine csninit () must be called to per
form any system initialisation which may be required. After calling csnin
it () , a program will normally create a set of Transports (using csnopen (»),
give each of the transports a meaningful name (using csnregname (»), and
then (using csnlookupname ()) discover the addresses of the transports to
which it intends to transmit. It is normal for all programs to create their transports
before looking up any others to avoid potential deadlocks where two programs
are each waiting for the other to create and register a transport.

19

2

csnlookupname()

Synopsis

Description

Example

See Also

20

Look-up a named Transport

#include <csn/names.inc>
integer function csnlookupname(inetaddr,cname,lblock)
integer inetaddr
character *(*) cname
logical lblock

This function looks up the name, cname, and returns the associated CSN address
in the variable, inetaddr. The argument, lblock, determines the behaviour
of the function when the given name has not yet been registered. If lblock is
. true. then csnlookupname () does not return until the name is registered,
otherwise csnlookupname () returns immediately with an error status as its
result. Note that it is advisable that a process always registers transport names be
fore looking-up, to prevent deadlock. If this advice is not followed, you should
not set lblock to . true ..

Here is a sample code fragment which looks up a transport called MASTER.

C

C Find the master
C

if (csnlookupname(masterTpt,'MASTER', .TRUE.) .ne. CSN OK) then
stop 'Slave can't find master'

end if

csnregname(),csnderegname().

SlOO2-10MI07.05 me/<o

csnmakeidO

Synopsis

Description

See Also

meko Reference Manual

Assemble CSN address

#include <csn/csnmcs.inc>
csnmakeid(netid, nodeid, transportid)

2

This statement function is defined in the header file, <csn/ csnmcs. inc>. It
assembles a CSN address from a network number, netid, a node number, no
deid, and a transport number, transportid.

CSN addresses (as returned by csnlookupname () and other CSN functions),
consist of three pans: the network number, the node number, and the transport
number.

Warning - In the current implementation netid must be O.

Warning - Manipulation of the internal structure of network addresses is
not recommended.

csngetnet(),csngetnode(),csngettransport().

21

2

csnnodesO

Synopsis

Description

See Also

22

N umber of Processors

#include <csn/csn.inc>
integer function csnnodes();

Parallel programs are run one process per processor on the CS-2. This function
returns the number of processors executing this application.

csnnode ().

SIOO2-10MI07.05 meJ<a

csnnodeO

Synopsis

Description

See Also

mei<o Reference Manual

Processor Id

include <csn/csn.inc>
integer function csnnode();

2

Parallel programs are run one process per processor on the CS-2. This function
returns the 10 of the processor executing this process. IDs will lie in the range 0
to nodes-I, where nodes is returned by csnnnodes ().

csnnnodes () .

23

2

csnopenO

Synopsis

Description

Example

See Also

24

Open a CSN Transport

#inelude <esn/esn.inc>
integer function csnopen{index, itransport)
integer index, itransport

This function allows a program to create a transport, and thus to access the CSN.
The first argument is the network address to give to the created port, or CSN
NULLID to allow the system to choose a suitable address. (Advice: always let
the system choose). The second argument is assigned the transport that is created.
The result is zero on success, or a negative value on failure.

To create a transport:

integer mastertpt
C
C Create the master transport
C

if (csnOpen(CSN NULL ID, mastertpt) .ne. CSN OK) then
stop 'Master failed to open a transport'

end if

esnelose(),esnregnarne{),esnlookupname{).

S lOO2-10Ml07 .05 meJ<a

csnregnameO

Synopsis

Description

Example

See Also

meI<o Reference Manual

2

Name a CSN Transport

*include <csn/names.inc>
integer function csnregname(itransport, cname)
integer itransport
character *(*) cname

This function associates the textual name, cname, with the transport, i trans
port. When the name has been associated, then other processes within the con
figuration can obtain the network address of the transport by perfonning a
csnlookupname () .

To create and name a transport we use csnopen () and csnregname () as
shown below:

integer mastertpt
C

C Create the master transport
C

c

if (csnOpen(CSN NULL 10, mastertpt) .ne. CSN OK) then
stop 'Master failed to open a transport'

end if

C Register a name for the Transport
C

if (csnRegName(mastertpt,'MASTER') .ne. CSN OK) then
stop 'Master failed to regi'ster name " MASTER' , ,

end if

csnlookupname(),csnderegname().

25

2

csnrxO

Synopsis

Description

Example

See Also

26

Blocking receive via CSN

#include <csn/csn.inc>
integer function csnrx(itransport, ipeerid,

ibuffer, imaxsize)
integer itransport, ipeerid, ibuffer, irnaxsize

This function receives a message on transport i transport into the buffer
ibuffer. The maximum message size which will be accepted is irnaxsize.
The argument ipeerid must be a VARIABLE, since it is assigned the transport
address of the transport from which the received message was sent.

The function returns the number of bytes actually received, or an error code.

To receive a four byte message:

null = CSN NULL 10
if (csnrx (slavetpt, null, processno, 4) .ne. 4) then

stop 'Slave failed to receive process number'
end if
processno = processno + 1
call csntx(slavetpt, 0, nexttpt, processno, 4)

csntx (), csnrxnb () .

SlOO2-10MI07.05 meJ<a

csnrxnbO

Synopsis

Description

Example

See Also

meI<o Reference Manual

2

Non-blocking receive via the CSN

iinclude <csn/csn.inc>
integer function csnrxnb(itransport, ibuffer,

imaxsize, itag}
integer itransport, ibuffer(*), imaxsize, itag

This routine is the non-blocking analogue of csnrx () . It is used to queue a
buffer into which reception of messages will occur. As with c s n t xnb () the tag
is used to identify this particular transaction to csntest () .

Here is a call from the master in a load balancer in which it queues up a number
of buffers to receive results from the slaves. An array of buffers is used, the index
of the buffer being used as its tag.

c
C First queue up the result buffers, their tags are negated, so
C that they can easily be distinguished from the job buffers when
C we do the csnTest.
C

do i = 1, nresultbuffe.rs
call csnrxnb(mastertpt, resultBuffer(O,i),

+ (resultSize+l) *4, -i)
end do

csntxnb () , csnrx () .

27

2

csnstatusstring()

Synopsis

Description

28

Return CSN error string

#include <csn/csn.inc>
character *(*) csnstatusstring(ierrno)
integer ierrno

This function returns a string containing a textual version of the CSN error code
ierrno.

SlOO2-10MI07.05 meJ<a

csntestO

Synopsis

Description

mei<o Reference Manual

Test for completion of non-blocking communication

*include <csn/csn.inc>
integer function csntest (itransport, iflags,

timeout, ipeerid, itag, status)
integer itransport, iflags, timeout
integer ipeerid, itag, status

2

This routine tests for the completion of communications initiated by the non
blocking calls c s nt xnb () and c s nrxnb () . It waits for timeout microseconds
(or forever if the timeout argument is CSNNULLTIMEOUT) for a buffer meet
ing the criteria set by the if lags and i tag arguments to be found.

The if lags argument determines what sort of communication is being tested
for completion, it can be 0 meaning either transmission or reception, or one of
the values CSNTXREADY or CSNRXREADY to test for the readiness of a buff
er queued by csntxnb () or csnrxnb () respectively.

The ipeer id argument must be a variable, since it is assigned within the func
tion with the value of the network address with which the successful communi
cation took place. In addition if the value on entry to the function is not
CSNNULLID, then only buffers involved in communication with that specific
network address are considered. (Note that it is an easy bug to forget to re-assign
CSNNULLID to the variable passed to the formal argument ipeerid, this has
the effect of unnecessaril y filtering the c s n t est () call, and will manifest itself
either as a deadlock, or a starvation of all but one other network address).

The i tag argument must be a variable, since it is assigned the tag which was
associated with the buffer whose communication has completed. As with the
ipeerid the initial value of the i tag argument is used as a selection criterion,
so if all buffers are to be considered then the itag formal argument must be as
signed the value CSNNULLTAG.

Warning - csntest () must be used to free-up the memory used by non
blocking communications.

The return values from csntest () are as follows:

29

2

See Also

30

CSNTXREADY

CSNRXREADY

o

CSNEBADREQ

CSNEABORT

A communication initiated by csntxnb () completed or
cancelled.

A communication initiated by csnrxnb () completed or
cancelled.

No specified communications completed and at least
timeout microseconds had elapsed.

Illegal values for flags.

Transport was closed while csntest () was blocked.
Note that a transport may only be closed after all
outstanding communications on it have completed. When
either CSNTXREADY or CSNRXREADY are returned,
the value of status may be used to detennine if the
communication completed or was cancelled. stat us is
set to CSNEABORT if it was cancelled.

csntxnb (), csnrxnb () .

SlOO2-10MI07.05 meJ<o

csntxO

Synopsis

Description

Example

See Also

mei<D Reference Manual

Blocking transmission via CSN

#include <csn/csn.inc>
integer function csntx(itransport, iflags, ipend,

ibuffer, isize)
integer itransport, iflags, ipend, ibuffer, isize

2

This function transmits a message through the transport itransport to the
transport whose address is ipend. The message data is taken from ibuffer,
and the number of bytes transmitted is isize. The argument if lags is not cur
rently used and should be set to O.

The function will not return until either an error can be detected, or the data has
been placed in a user buffer at the recipient. The result returned is the number of
bytes sent if the transmission was successful, or an error return if the transmis
sion failed.

To send the 4 byte integer, 0, through the transport mastertpt:

c
C Inject zero into the fr.ont of the pipe
C

if (csntx(mastertpt, 0, nexttpt, 0, 4) .ne. 4) then
stop 'Master can"t inject zero into pipe'

end if

csnrx (), csntxnb () .

31

2

csntxnbO

Synopsis

Description

Example

See Also

32

Non-blocking transmission via CSN

#inelude <esn/esn.ine>
integer function esntxnb(itransport, iflags, peerid,

ibuffer, isize, itag)
integer itransport, iflags, peerid
integer ibuffer(*), isize, itag

The arguments to this routine are identical to those for csntx () , but with an ad
ditional i tag argument. This is used to identify this transaction when querying
its status using esntest () . The return from the function occurs as soon as the
buffer has been queued, thus a successful return from esntxnb () does not im
ply that the data has been sent yet, merely that there were sufficient local resourc
es to request transmission. The return status for the whole transaction is returned
by the call to e s n t est () which returns this buffer. The contents of the buffer
will not be copied by the system, and should not therefore be modified until the
system has returned ownership of the buffer by returning it as the result of a es
ntest () call.

Here is a call from the master in a load balancer which is queuing a job to send
to a slave. Here the master has allocated a two dimensional array to serve as buff
ers, each column representing a single buffer. The column index is then used as
the tag, so that the correct buffer can be reused when the esntest () is com
plete.

c
C There is a job to be done, so queue it.
C

call csntxnb(mastertpt, 0, slavetpt(i),
+ jobbuffer(O,i), (jobsize+l) *4, i)

csntx (), esnrxnb () .

SlOO2-10MI07.05 meJ<.o

Overview

mei<a

Tutorial Examples 3

This chapter includes a number of examples showing how to use the CSN com
munication library. It discusses the use of transports and the choice of blocking
versus non-blocking communications.

Compilation and Execution

All the examples in this chapter can be compiled with the following command
line:

user@cs2: £77 -0 myprogram -I/opt/MEIKOes2/ine~ude \
-L/opt/MEIKOes2/~ib myprogram -lesn -lew -le~an

The programs are executed with prun(l) and will use command lines like that
shown below. Note that number is the number of processors required, partition
is the name of the partition that you will use, and myprogram is the name of the
program.

user@cs2: prun -nnumber -ppartition myprogram

Full infonnation about prun(l) command may be obtained from the reference
manual page.

33

3

Two Communicating Processes

34

Transports

The following example defines two processes that use a single blocking CSN
communication for synchronisation.

This example introduces transports and shows how they are used for a simple
blocking communication between two processes.

A transport is a connection from a process to the Computing Surface Network.
There is no limit on the number of transports that a process can use, so it is nor
mal to create a transport that is dedicated to specific classes of communication,
or to specific senders. In this example each process uses just one transport.

Each transport has an associated address, or net id. To send data to a remote trans
port the sender must first determine the address of the destination transport. To
do this the receiver registers a name for its transport with csnregname(); the
sending process determines the net id of this transport by looking-up the name
with csnlookupnameO.

A useful analogy that helps explain the use of transports is to compare the CSN
with a telephone network. Using this analogy people represent processes, the tel
ephone lines represent transports, and the telephone exchange represent the CSN
network. Each person's telephone line allows them to communicate with any oth
er (and there may be many lines each dedicated to a specific type of communica
tion) but to make a call the person must first determine the receiver's number by
looking up a name in the directory.

Blocking Communications

The CSN supports two types of communication: blocking and non-blocking. In
this example we consider blocking communications - the communication be
tween sender and receiver is delayed until both processes have called their com
munication function. It is this implicit sychronisation that is exploited in this
example.

SlOO2-10MI07.05 meJ<D

3

Program Description

meI<o Tutorial Examples

This example is a simple program that writes Hello and Wor ld on your screen.
There are two processes; one writes Hello, the other writes Wor ld. A simple
blocked communication is used to synchronise the processes.

The program begins with initialisation code that is common to both processes.
csnini to is used to initialise the network, csgetinfo() identifies each proc
ess's virtual process number and the total number of processes in the application,
and csnopenO creates a transport.

The process with virtual process number 0 will be the sender of the blocked com
munication. The sender detennines the network address of the recipient's trans
port by looking-up the transport's name with csnlookupnameO (the third
argument is non-zero indicating that csnlookupname() should wait for the
other process to register its transport's name if it has not already done so). Our
sending process then writes its string to the screen, and uses csntxO to send a
simple integer data item. At this point the sender will block until the recipient is
ready to take the data.

Process 1 is the recipient of the communication. The recipient must register a
name for its transport with c s nregnameO so that it is visible to our sender. The
recipient waits until it receives a communication from the sender (using csn
rxO), and then writes its part of the string to the screen.

Both process finish by calling c s n ex itO.

35

3

Program Listing

PROGRAM hello

IMPLICIT NONE

tinclude <csn/csn.inc>
tinclude <csn/names.inc>

C

INTEGER transport, networkid, flag, status, nob
INTEGER sizeofflag, sender
INTEGER nprocs, me, dummy

PARAMETER (flag=1, sizeofflag=4)

CALL csninit ()

status - csgetinfo(nprocs, me, dummy)

IF (nprocs.NE.2) THEN
CALL csabort('Need two processors for this example', 1)

ENDIF

status = csnopen(CSNNULLID, transport)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot open transport' ,1)
ENDIF

IF (me.EQ.O) THEN

C Process 0 is the sender
C

36

status = csnlookupname(networkid, 'Receiver', .TRUE.)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot lookup transport', 1)
ENDIF

PRINT *,'Hello '

nob = csntx(transport, 0, networkid, flag, sizeofflag)
IF (nob.NE.sizeofflag) THEN

CALL csabort('Failed to transmit', 1)
ENDIF

ELSE

S lOO2-10Ml07 .05 meJ<a

3

C

C Process 1 is the receiver
C

status - csnregname(transport, 'Receiver')
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot register transport', 1)
ENDIF

nob - csnrx(transport, sender, flag, sizeofflag)
if (nob.NE.sizeofflag) THEN

CALL csabort('Failed to receive', 1)
ENDIF

PRINT *,'World'
ENDIF

CALL csnexit(O)

END

Bidirectional Communications

Transports

meI<D Tutorial Examples

The following example is suitable for use with 2 or more processors. It defines a
master process and a number of slaves; the slaves send data to a master which
broadcasts a result back.

The example shows how to use transports for bidirectional communications, and
also introduces a style of programming that is suitable for a variable number of
target processors.

In this example each process creates just one transport that is used for both in
coming and outgoing communications. The processes could use a separate trans
port for each direction, or indeed dedicate a transport to each pair or processes.

To select the best use of transports for your application you should consider the
message receiving functions csnrxO and csnrxnbO. These can both identify
the network address of the sending transport (although this facility is not used in
this example). By using a transport for a specific type of message the recipient of
a message can infer a context for the data that it has received.

37

3

38

Program Description

All the processes begin by calling csninitO to initialise the network, and fol
low this with a call to csgetinfoO to get their virtual process number and the
number of processes in the application. Each process then opens a single trans
port which will be used for both outgoing and incoming communications.

Each process registers it's own transport's name, and then looks-up the network
address for all the other transports. Note that each transport's name is derived
from the owning process's virtual process number, and that the network address
es are stored in an array that is indexed by virtual process number!. This strategy
keeps the program code compact, and allows the number of target processors to
be specified at execution time.

At this point the program splits into the code for our master, and code for the
slaves. The master receives from each slave data that is simply added and then
broadcast back to all the slaves.

Program Listing

PROGRAM master

IMPLICIT NONE

finclude <csn/csn.inc>
finclude <csn/names.inc>
fdefine MAXPROCS 20
fdefine NAMELEN 20

INTEGER transport
INTEGER networkid(MAXPROCS)
INTEGER nprocs, me, dummy
INTEGER status, nob
INTEGER i, j
INTEGER result
CHARACTER*NAMELEN name

INTEGER data, sizeofint
PARAMETER (sizeofint = 4)

1. Note that process numbers start at 0 but the arrays are indexed from 1 (i.e. process id + 1).

SlOO2-10MI07.05 meJ<a

10 FORMAT(A,I1)

C Initialise CSN
CALL csninit ()

C Get my process id & number of procs
status - csgetinfo(nprocs, me, dummy)

IF (nprocs.GT.MAXPROCS) THEN
CALL csabort('Too many processors', 1)

ENDIF

C Open transport
status = csnopen(CSNNULLID, transport)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot open transport', 1)
ENDIF

C Register my transport

write (name, 10) 'Proc',me
status - csnregname(transport, name)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot register transport')
ENDIF

C Look up all the other transports (but not my own)
C Remember proc ids are O-(n-1) but the networkid array is indexed from 1 ...
C so 'i' is a processor id, 'j' is index into the array.

i = 0
j .. 1

DO WHILE (i.LT.nprocs)
IF (me.NE.i) THEN

write (name, 10) 'Proc', i
status = csnlookupname(networkid(j), name, .true.)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot lookup transport' ,1)
ENDIF
j = j+1

ENDIF
i = i+l

ENDDO

meko Tutorial Examples

3

39

3

C Process 0 is the master

IF (me.EQ.O) THEN

C Get data from all the workers
i = 1
result -0

DO WHILE (i.LT.nprocs)

nob = csnrx(transport, 0, data, sizeofint)
IF (nob.NE.sizeofint) THEN

CALL csabort('Failed to receive' ,1)
ENDIF

i = i+l
PRINT *,'Master receives data'
result = result+data

END DO

C Now broadcast a result back to all the processes

i = 1
DO WHILE (i.LT.nprocs)

nob = csntx(transport, 0, networkid(i}, result, sizeofint}
IF (nob.NE.sizeofint) THEN

CALL csabort('Failed to transmit' ,I}
ENDIF
i = i+l

ENDDO

ELSE

C I am a worker
C Send some data (my process id) to the master.

40

data = me

nob = csntx(transport, 0, networkid(l}, data, sizeofint)
IF (nob.NE.sizeofint) THEN

CALL csabort('Failed to transmit' ,1)
ENDIF

S 1 002-1 OM 107 .05 meJ<D

3

C Get a result back from the master

nob - csnrx(transport, 0, result, sizeofint)
IF (nob.NE.sizeofint) THEN

CALL csabort('Failed to receive' ,1)
ENDIF

PRINT *, 'Received from master:', result

ENDIF

CALL csnexit(O)

END

Non-Blocking Communications

The following example runs on 2 processors. It defines a Producer process that
wishes to send a large number of messages to a Consumer process.

The example simulates the case·where a process wishes to send a large number
of non-blocking messages to a receiver process. The receiver does not know in
advance how many messages will be sent, nor can the producer assume that the
consumer has sufficient heap space to receive them all. The producer and con
sumer therefore periodically synchronise with a blocking communication so that
the number of non-blocking communications is agreed before they are sent.

Non-Blocking Communications

meJ<o Tutorial Examples

This form of communication between processes does not require the sender and
recipient to synchronise, and is therefore more appropriate to time critical appli
cations where processes cannot be allowed to idle.

Non-blocking communications allow a sender to initiate a transmission and to
continue immediately without waiting for the communication to complete. Sim
ilarly a receiver can initiate a receive without waiting for the message to arrive.

41

3

42

Non-blocking sends are initiated by csntxnbO. The data identified by this
function will be transferred from the process's address space at some indetermi
nate time in the future. To test the status of the transfer the program must use c s
ntestO - only when the transfer has completed may the data buffer be
modified or destroyed.

Non-blocking receives are initiated by csnrxnbO. This function identifies a
data buffer that can receive the incoming data. To test the status of the transfer
the program must use csntestO - only when the transfer has completed may
the data buffer be modified or destroyed.

Program Description

Following the initialisation of the CSN and of each process's transports the pro
gram defines two processes: process 0 is a producer, and process 1 a consumer.

The producer sends a blocking communication to the consumer to agree a
number of non-blocking communications that may follow. If the consumer ac
cepts, the agreed number of non-blocking sends are initiated with csntxnbO.
The producer can, without waiting for the communications to complete, continue
with other meaningful work, until it is ready to use csntestO to confirm that
the transfers completed successfully.

The consumer awaits the blocking communications from the producer by making
the required number of calls to csnrxnbO. Each call identifies a unique data
buffer for each of the incoming communications - these buffers must not be
modified or destroyed until the communications are complete. The receiver can
test the status of the communications at any time by calling csntestO.

SlOO2-10MI07.05 meJ<a

Program Listing

PROGRAM nonblock

IMPLICIT NONE

'include <csn/csn.inc>
'include <csn/names.inc>
idefine MAXMESSAGES 50
'define NAME LEN 20
'define STOP -1
'define REQSIZE 10
*define TIMEOUT 1000000
*define MAXBUFFS 100

INTEGER transport
INTEGER networkid
INTEGER nprocs, me, dummy
INTEGER status, nob, peerid, tag
INTEGER data
PARAMETER (data=99)
INTEGER i
INTEGER rxbuffer(MAXBUFFS)
INTEGER messages, requestsize
CHARACTER*NAMELEN name
INTEGER sizeofint
PARAMETER (sizeofint-4)

C Initialise
CALL csninit ()

C Get my process id & number of procs
status - csgetinfo(nprocs, me, dummy)

IF (nprocs.NE.2) THEN
CALL csabort('This example requires 2 processors' ,1)

ENDIF

C Open my transport
status = csnopen(CSNNULLID, transport)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot open transport', 1)
ENDIF

C Register my transport

meko Tutorial Examples

3

43

3

20 format (A,Il)

write (name, 20), 'Proc', me

status - csnregname(transport, name)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot register transport' ,1)
ENDIF

C Lookup my partner's transport

C

C

C

44

IF (me.EQ.O) THEN
write (name, 20), 'Proc', 1

ELSE
write (name, 20), 'Proc', 0

ENDIF

status = csnlookupname(networkid, name, 1)
IF (status.NE.CSNOK) THEN

CALL csabort('Cannot lookup transport' ,1)
ENDIF

IF (me.EQ.O) THEN

Process 0 is the producer

messages = MAXMESSAGES

DO WHILE (messages.GT.O)

request a batch of buffers

IF (messages.GT.REQSIZE) THEN
request size = REQSIZE

ELSE
request size

ENDIF
messages

messages = messages - requestsize

PRINT *,'Producer requests', requestsize, , buffers'

... with a blocking communication

SlOO2-10MI07.05 meJ<a

C

C

C

C
C

+

nob - csntx(transport,O,networkid,requestsize,sizeofint)

IF (nob.NE.sizeofint) THEN
CALL csabort('Failed blocking transmit' ,1)

ENDIF

Send a batch of messages

i-1
DO WHILE (i.LE.requestsize)

PRINT *, 'Producer sets-up non-blocking send'

••. with a non-blocking communication

status=csntxnb(transport,O,networkid,data,sizeofint,i)
IF (status.NE.CSNOK) THEN

CALL csabort('Producer failed to transmit' ,1)
ENDIF

i .. i+1
ENDDO

Do some work here, if we want to

PRINT *, 'Producer doing some other work'

test for completion of non-blocking transmits
and also free-up internal CSN buffers

i=l
DO WHILE (i.LE.requestsize)

peerid - CSNNULLID
tag = CSNNULLTAG
status = csntest(transport, CSNTXREADY, TIMEOUT,

peerid, tag, status)

IF (status.NE.CSNTXREADY) THEN
CALL csabort('Non-blocking timeout or failure' ,1)

ENDIF

PRINT *, 'Producer reports completion'

i = i+1
ENDDO

mei<o Tutorial Examples

3

45

3

C

C

C

C

C

C

46

+

ENDDO

No more messages so request consumer to stop
request size - STOP

PRINT *,'Producer requests consumer to STOP'

nob = csntx(transport,O,networkid,requestsize,sizeofint)

IF (nob.NE.sizeofint) THEN
CALL csabort('Failed blocking transmit' ,I)

ENDIF

ELSE

Process 1 is the consumer

DO WHILE (. TRUE.)

nob - csnrx(transport, 0, requestsize, sizeofint)
IF (nob.NE.sizeofint) THEN

CALL csabort('Failed to receive' ,I)
ENDIF

Is this a request to stop?
IF (requestsize.EQ.STOP) THEN

GOTO 10
ENDIF

Allocate requested number of buffers
PRINT *, 'Consumer receives request for "

requestsize, , buffers'

Allocate buffer space
Should create heap space, but I'll use stack here.
IF (requestsize.GT.MAXBUFFS) THEN

CALL csabort('Exceeded size of rxbuffer array' ,1)
ENDIF

i = 1
DO WHILE (i.LE.requestsize)

status = csnrxnb(transport,rxbuffer(i),sizeofint,i)
IF (status.NE.CSNOK) THEN

CALL csabort('Failed non-blocking receive' ,1)

S lOO2-10Ml07.05 meJ<a

C

C

C

+

ENDIF

PRINT *,'Consumer sets-up non-blocking receive'

i - i +1
END DO

We could do some work here, if we want to
PRINT *,'Consumer doing some other work'

test for completion of non-blocking transmits
and also free-up internal CSN buffers

i = 1
DO WHILE (i.LE.requestsize)

peerid - CSNNULLID
tag = CSNNULLTAG
status = csntest(transport, CSNRXREADY, TIMEOUT,

peerid, tag, status)

IF (status.NE.CSNRXREADY) THEN
CALL csabort('Non-blocking timeout or failure' ,1)

ENDIF

i = i + 1
END DO

PRINT *,'Consumer reports completion'

END DO
ENDIF

10 CALL csnexit(O)

END

mekD Tutorial Examples

3

47

3

48 SIOO2-10MI07.05 mei<D

Message Format

Error Messages 4

The functions in the CSN library (libcsn) are built upon the functions in the
Elan Widget library. Errors within libcsn are reported via the Widget library
exception handler; this writes diagnostic messages to the standard error device
and kills the application.

The fonnat of libcsn messages is:

CSN EXCEPTION @ process : error ~code (error_text)
Additional information: error message string

The error message strings are described later in this chapter. The process is the
virtual process number of the process that detected the error; if the exception oc
curs before the process has attached to the network (Le. before csn _ ini to is
called) then this is shown as ----. The error code (and its textual equivalent the
error text) are one of:

Error Code Error Text

2000 Ok

2001 No Destination

2002 Buffer Overflow

2003 No space at destination

meJ<o 49

4

Error Code Error Text

2004 No heap

2005 Bad request

2006 Already allocated

2007 Out of range

2008 Aborted

2009 Not ready

2010 Interrupted

2011 Bad Address

Widget Library Exceptions

Functions in 1 ibc snare implemented on functions in the Elan Widget library.
When an exception occurs within a Widget library function this is handled by the
Widget library's own exception handler. The Widget library handler is similar to
that used by libcsn but produces errors in the form:

EW_EXCEPTION @ process : error code (error_text)
error message string

These exceptions are fully described in The Elan Widget Library, Meiko docu
ment number S1002-10MI04.

Note/or Fortran Programmers

All errors apply to both C and Fortran implementations unless the description
specifies a specific language. Often the error message repeats the parameters that
were passed to the failed call; these will be the parameters that were passed to the
underlying C implementation of the function, and may not be identical to those
passed to the Fortran binding.

Error Messages

In the following list italicised text represents context specific text or values.

50 SlOO2-10MI07.05 meJ<a

mekD Error Messages

4

'csn_version' incompatible with 'elan_version' ('elan_version' expected)
Error type is 2008 (Aborted). Occurs in csn _ini to; Elan library version in
compatibility. This library was linked with an out of date version of libe
Ian.

'csn_version' incompatible with 'ew _version' ('ew _version' expected)
Error type is 2008 (Aborted). Occurs in csn_initO; Elan Widget library in
compatibility. This library was linked with an out of date version of libew.

Can't allocate count message descriptors
Error type is 2004 (No heap). Occurs in csn_rxnbO and csn_txnbO. A
call to cal locO failed (insufficient memory). A descriptor is required for
each pending non-blocking communication; tried to allocate a batch of addi
tional descriptors for non-blocking communications but was unable. Maybe
there are too many outstanding communications, are you clearing them with
csn_testO?

Can't allocate message port
Error type is 2004 (No heap). Occurs in csn_initO; a call to ew_allo
cate01 failed maybe because heap or swap space exhausted.

Can't allocate yp ports
Error type is 2004 (No heap). Occurs in csn_initO. A call to ew_allo
cateO failed maybe because heap or swap space exhausted.

CS_ABORT (message: status)
Error type is 2008 (Aborted). Occurs if cs_abortO is called.

csn _ checkVersion(self)
Error type is 2008 (Aborted). Occurs in csn _ ini to; internal incompatibil
ity of library source files.

Unexpected ftagjlag in cso_test
Error type is 2005 (Bad request). Occurs in csn_testO; expecting either
CSN_TXREADY or CSN_RXREADY but found something else. This is an
internal library error, not an error that is directly attributable to the user (spec
ifying the wrong type of flag to a function is flagged as an error by return codes
from the function).

1. ew _allocateO is a Widget library function.

51

4

52 SlOO2-10MI07.05 meJ<a

Computing
Surface

TaggedMessage Passing & GlobalReduction

SlOO2-10MI08.06 mei<o

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent ofMeiko World
Incorporated.

Copyright © 1993 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a
trademark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc.
Verilog is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's full address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. Introd Detion 1

Implementation Notes. 1
Programming Models. 1
Resource Allocation. 2
Process Communication. 2
Features of this Release . 3

Compiling and Linking libmpsc Programs. 4
Node Programs '.' . 4
Host Programs . 4
Tracing. 5
Debugging . 6

Environment Variables . 7
Program Tracing. 9

2. Tagged Message Passing. 11

cprobe () 14

cprobex () 15

crecv () . 17

crecvx () 18

csend () . 20

csendrecv () 21

flick () . 23

gray () . 24

ginv() 25

gsendx () ... 26

infocount () /node () /pid () /type () 27

iprobe() 28

iprobex () 29

irecv() 31

irecvx () 32

isend() 34

isendrecv () 35

led() 37

mclock () 38

mpsc_ini t () 39

mpsc_fini () 40

msgdone· () 41

msgwait () 42

myhost () 43

mynode ()•...•..•••.•••• 44

mypid() 45

nodedim () 46

numnodes () 47

3. Global Reduction Operations. 49

Overview. 49

Example - gdsumO. 50
Function List. 51
gdhigh (), gihigh (), gshigh () 53

gdlow (), gilow (), gslow () 54

gdprod (), giprod (), gsprod () 55

gdsum (), gisum (), gssum () 56

giand (), gland () 57

gior (), glor () . 58

gixor (), glxor () .. 59

gsync () . 60

ii

4. Host Functions. 61

Restrictions. 61
mpsc_getnodes () . 62

killcube () 64

load () . 65

setpid() 66

waitall () 67

5. Example Programs . 69

Compilation. 69

Running the Programs. 70
Running Hosted Programs 70
Running Hostless Programs 71

Description of the Hosted Application 71
Process Initialisation. 72
Process -Communications 72
Global Operations. 73

Description of the Hostless Application 73

6. Error Messages . 75

Message Format . 75
Widget Library Exceptions. 76
Note for Fortran Programmers. 76

Error Messages . 76

A. Message Types 83

Contents iii

iv

Implementation Notes

Introduction 1

The message passing functions described in this document use tagged message
passing; each message has an associated user-specified tag, and receivers' may
elect to filter incoming messages using these tags. The library also defines a
number of global operations.

A tracing version of the library is available which produces ParaGraph compat
ible trace files, and a debugging version of the library is also provided offering
greater security and better error behaviour.

This library is implemented on the low level communication functions in the
Elan Widget Library (libew) and the resource management functions in the Re
source Management User Interface Library (librms). (Both libraries are de
scribed in separate documents within your CS-2 documentation set.)

This section describes how the architecture of the CS-2 affects the implemen
tation of this library.

Programming Models

This implementation of libmpsc supports both hosted and hostless applications.

mei<D 1

1

2

Hosted applications consist of two programs; a host and a number of identical
node processes. The libmpsc application is initiated by executing the host proc
ess which is then responsible for spawning the node processes. All processes, in
cluding the host itself, use libmpsc communication functions to cooperate and
complete the task.

Hostless applications have a number of identical node processes that are started
by using a loader program such as prun.

Resource Allocation

Alllibmpsc applications must liaise with the CS-2 Resource Manager for
processing resource. This liaison takes place within either the host process (for
hosted applications) or the loader process (for hostless applications).

In either case the host/loader runs in your login partition as a sub-process of your
command shell. The hostlloader process calls upon functions in the resource
management user interface library to liaise with the resource manager for the
nodes' processing resource. In the case of a loader, such as prun, the liaison is
via a direct calls to rms _ for k e xe c vpO in librms. In the case of a host process
the liaison happens when the host process calls mpsc_getnodesO or loadO.
(which in tum call rms_forkexecvpO).

The resource management function uses the user's id and other criteria specified
by your System Administrator to identify a suitable partition for the node proc
esses. If you don't like the default resource you can specify your preferences by
setting environment variables - the most useful variable is RMS_PARTITION
which identifies your preferred partition, but there are others too (see page 7 or
the documentation for rms_forkexecvpO). Alternatively you can explicitly
pre-allocate resources using the allocate command or mpsc _getnodesO.

Process Communication

libmpsc communication functions are built upon the tagged message port
(TPORT) functions in the Elan Widget library. lihmpsc applications are 2 seg
ment CS-2 applications in which the host or loader program and the nodes run in
separate segments. The two segments will usually run in separate partitions.

S lOO2-10Ml08.06 meJ<o

1

libmpsc processes have two numbering schemes associated with each process:
there are the node ids which are visible within the libmpsc application, and there
are internal (virtual process) numbers that are used by the low level communica
tion routines. In this implementation the node ids and virtual process ids are the
same.

For an example 6 process libmpsc application the virtual process numbers/node
id's are assigned as shown, with the node processes numbered from 0:

Nodes Host

f[~:nJXl~:J:U::~:1
Segment 0 Segment 1

For a 6 process hostless application the virtual process numbers and the node ids
are allocated as follows - note that the loader program does not form part of the
application and has no id of its own:

Nodes Loader

I (tt ?::Ll. "1.~:.L~..l. ~:..t .. ~ .L~]_ o
Segment 0 Segment 1

In general the allocation of each segment's processes to processors in a parti
tion mirrors the allocation of the virtual process numbers; processes with low
virtual process numbers are usually allocated to processors with low Elan id's.

Features o/this Release

meI<o Introduction

This manual describes librnpsc version 3.0. The reader is advised to note the
following points in relation to this implementation:

• csend () and isend () support only a single destination node or all
nodes.

• Only process ID 0 is supported; there is only 1 process per node.

• Only process type 0 is supported with the extended receive and probe
functions; there is only one process per node.

3

1

• Only exact match and match any tag selectivity is supported (that is, no
bitmask encoding when tag is less than -1).

• There are no "force" types.

• There are no versions of message passing calls that deliver signals.

• The use of the special array msginfo with extended receive and probe is
not supported.

Compiling and Linking lihmpsc Programs

4

The header file mpsc. h in / opt/MEIKOcs2/ include/mpsc contains
prototype definitions for libmpsc. You should therefore compile with the op
tion -I/opt/MEIKOcs2/include and refer to the header file in your pro
grams with =ll=include <mpsc/mpsc. h>.

Several variants of the library are provided; all are available in the directory
/opt/MEIKOcs2/1ib.

Node Programs

Node programs should be compiled with the following options:

-I/opt/MEIKOcs2/include -L/opt/MEIKOcs2/lib -lmpsc -lew -lelan

Host Programs

Host programs must be linked with -lmpsc_host (in additionto those li
braries used by node programs) and you must also specify the Meiko lib di
rectory after the - R option (to ensure that the dynamic libraries can be found at
run time):

-I/opt/MEIKOcs2/include -L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/1ib\
-lmpsc_host -lmpsc -lew -lelan

S lOO2-10Ml08.06 mFi<a

Tracing

meI<D Introduction

1

Programs that are linked without the - R option will fail to execute with the
following error message.

Id.so.l: mkaudit: fatal: librms.so.2: can't open file: errno=2
Killed

To overcome this you must either recompile the application, or you can include
in your LD_LIBRARY_PATH variable the pathname of the Meiko library di
rectory as shown in the following (C-shell) example - this allows the runtime
linker to locate the shared libraries:

NotesfoT Users of the SunPro F77 Compiler

When using the SunPro Fortran77 compiler the - R option as described above
will not work. You may either set the environment variable LD _RUN_PATH to
identify the Meiko library directory (this must be done before you execute your
compiler driver) or you can use the compiler driver's -R option with both the
Meiko and the SunPro library directories specified:

-I/opt/MEIKOcs2/inlucde -L/opt/MEIKOcs2/lib \
-R/opt/MEIKOcs2/lib:/opt/SUNWspro/lib \
-lmpsc_host -lmpsc -lew -lelan

To use the version of the library which produces ParaGraph compatible trace
files you should link with -lmpsc _pt in addition to -lmpsc . Your attention
is drawn to the following sections which describe environment variables that
are applicable to tracing, and also the tracing functions.

For node programs compile with the following libraries:

-lmpsc_pt -lmpsc -lew -lelan

5

1

Debugging

6

Host programs are compiled with the following libraries:

-lmpsc_host -lmpsc_pt -lmpsc -lew -lelan

There is also a debugging version of the library available, which attempts to
provide more security and better error behaviour, it will however execute slow
er than the standard version. This is available as -Imp s c _ dbg which should
be linked instead of -Imp s c.

For node programs compile wi th the following libraries:

I -lmpsc_debug -lew -lelan

Host programs are compiled with the following libraries:

I -lmpsc_host -lmpsc_debug -lew -lelan

S lOO2-10Ml08.06 mei<D

1

Environment Variables

~ Introduction

A hosted application that uses loadO to spawn the node processes identifies
your preferred resource requirements from the following environment variables:

Variable Description

RMS PARTITION The name of your preferred partition. If you fail to set -
this variable your node processes are executed on the
default partition specified by your System
Administrator.

RMS NPROCS The number of node processes. If you fail to set this -
variable your node processes are executed on all
nodes in the partition.

RMS BASEPROC Id of the first processor within the partition that will -
host the node process; usually the first processor in
the partition (logical id 0) is used, or the first available
processor.

RMS VERBOSE Set level of status reporting. -
RMS MEMORY The minimum memory requirements for each -

process, suffixed by K or M (for kilobytes and
megabytes respectively).

RMS CORESIZE Enable core dumping if this variable is set. -

The following environment variables are also used by this library; many are in
herited from the Elan Widget library:

Variable

LIBMPSC TRACEFILE

LIBMPSC TRACEBUF

Description

For use with libmpsc_pt only, this
variable specifies the name of the trace file;
each node outputs to $LIBMPSC_TRACE
FILE.nodeno. Default name is
LIBMPSC TRACE.nodeno.

For use with libmpsc _pt only, this
variable specifies the number of events to
allow in the trace buffer.

7

1

Variable Description

LIBEW WAITTYPE Specifies how the low level Elan widget -
library (libew) routines wait for Elan
events; either POLL or WAIT, default is to
POLL.

LIBEW DMATYPE Specifies the type of DMA transfer used by -
the low level Elan widget library (libew).
Either NORMAL or SECURE.

LIBEW DMACOUNT Specifies the permitted retry count for -
DMA transfers. Default is 1.

LIBEW GROUP BUFSIZE U sed by global operations such as - -
gsum () . Specifies the buffer size used for
communications between processes in a
group. The default is 8192 bytes.

LIBEW GROUP BRANCH U sed by global operations such as - -
gsum () . Specifies the branching ratio
used for the processes in a group. Default
is 2.

LIBEW GROUP HWBCAST U sed by global operations such as - -
g s urn () . Specifies that the Elan
communications processor's broadcast
hardware is to be used for message
broadcasts within the group. May be set to
o (false) or 1 (true). Default is 1.

LIBEW TPORT SMALLMSG Default small message size used by send -
and receive functions. Default value is
4096 bytes.

LIBEW RSYS ENABLE Enables the remote system call server; - -
when enabled stdin, stdout, and
stderr are routed through the host
process. May be either 0 (disabled) or 1
(enabled), default is 1.

LIBEW RSYS BUFSIZE The buffer size used by the remote system - -
call server. Default is 8192 bytes.

8 S lOO2-10Ml08.06 meJ<a

Program Tracing

~ Introduction

Variable

LIBEW RSYS SERVER

LIBEW CORE

LIBEW TRACE

1

Description

Virtual process ID of the processor that will
run the system call server.

Enables core dump on exception. Values
may be 1 (enabled) or 0 (disabled). By
default core dumping is disabled.

Enables a trace dump on exception. Values
may be 1 (enabled) or 0 (disabled). By
default trace dumping is disabled.

Both ParaGraph and Alog/Upshot are supported for program tracing.

ParaGraph

Three functions in the low level Elan Widget library (libew) are applicable to
program tracing - these are ewytraceStart (), ew_ptraceStop (),
and ewytraceFlush () . None of these take arguments and none return
values to the caller.

Programs that are traced must be linked with 1 ibmp s c yt as described in an
earlier section. The resulting trace file may be analysed with ParaGraph.

ewytraceStart()

ew_ptraceFlush()

ew_ptraceStop()

Enables tracing and records a "start of tracing"
event.

Rushes the event buffer to the file system. It
records a "start of flushing" event when it
begins, and an "end of flushing" event on
completion. It generates an exception with code
EW Era if it fails to write to the trace file.

Disables tracing, records an "end of tracing"
event and calls ew_ptraceFlush (). Note
that ew _ptraceStop () and
ew _ptraceStart () may be called repeatedly
to record snapshots of a program's behaviour

9

1

10

Full documentation for the tracing functions is included in the Elan Widget Li
brary reference manual.

A log/Upshot

As an alternative to ParaGraph the event/state display tool upshot is also
supported. To use this you need to instrument your code with trace points. De
tails may be found in /opt/MEIKOcs2/upshot/README-MEIKO.

S lOO2-10MI08.06 meJ<a

meJ<o

Tagged Message Passing 2

The following message passing functions are defined within the lihmpsc li
brary (the global operation functions are listed in Chapter 3).

Initialisation

mpsc _ ini t () Initialisation function.

mpsc_fini () Finalisation function.

Information

myhost ()

mynode ()

mypid()

nodedim ()

numnodes ()

Obtain node ID of the calling process.

Obtain node ID of the process.

Obtain node operating system process ID.

Obtain cube dimensions.

Obtain node count for cube.

11

2

12

Message Passing

cprobe ()

cprobex ()

crecv ()

crecvx ()

csend ()

csendrecv ()

gsendx ()

infocount()

infonode()

infopid ()

infotype ()

iprobe ()

iprobex ()

irecv ()

irecvx ()

isend ()

isendrecv ()

msgdone ()

msgwait ()

Miscellaneous

led()

flick ()

Wait for a message.

Wait for a message (extended).

Receive a message.

Receive a message (extended).

Send a message and wait for it to depart.

Send a message and block until replied.

Send a message and wait for departure (extended).

Determine length of received message.

Determine node ID of sending process.

Determine process ID of sending process.

Determine type of received message.

Determine if message is pending.

Determine if message is pending (extended),

Receive a message.

Receive a message (extended).

Send a message.

Send message and setup for reply.

Determine if non-blocking transaction is complete.

Wait for completion of non-blocking transaction.

Set front panel LEDs.

No-Op - included for portability.

S l002-10MI08.06 meJ<D

rneko Tagged Message Passing

gray ()

rnclock ()

ginv ()

Gray code.

Elapsed time in ms since rnps c _ ini t () .

Inverse Gray code.

2

13

2

cprobeO

Synopsis

Synopsis

Arguments

Description

14

Wait for a message

SUBROUTINE CPROBE(type)
INTEGER type

void cprobe(int type);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

cprobe () blocks the calling process until a message of the selected type is
available to be received. When cprobe () returns you can use crecv () or
irecv () to initiate the receipt of the message.

Notes:

• The message type is specified by the sender (either csend () or isend ()).

• Use the info functions to get more information about a received message (such
as its length or the ID of the sender).

• Use iprobe () and not cprobe () if you do not wish to block the process
while waiting for a message.

SIOO2-10MI08.06 meJ<a

cprobexO

Synopsis

Synopsis

Arguments

meko Tagged Message Passing

2

Wait for a message (extended)

SUBROUTINE CPROBEX(type, sender, ptype, info)
INTEGER type, sender, ptype, info(8)

void cprobex(int type,int sender,int ptype,int* info);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

sender Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

ptype

info

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (there is only one per process per node in this
implementation).

Returns the values that are normally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of inf 0 contains the message length. The third element of
info contains the node number of the sender.

15

2

Description

16

cprobex () is the same as cprobe () but allows selection by source and re
turns additional information that cprobe () does not (and requires additional
use of the info functions to obtain).

Warning - The info functions should not be used after cprobex () as the
relevant data has already been returned to you.

S 1002-1 OM 108.06 me/<D

crecvO

Synopsis

Synopsis

Arguments

Description

mei<rJ Tagged Message Passing

2

Receive a message

SUBROUTINE CRECV(type, buf, len)
INTEGER type
INTEGER buf(*)
INTEGER len

void crecv(int type, void* buf, int len};

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type ..

• If type is any negative number other than -1 then an exception
is generated.

This function is used to initiate the receipt of a message. The calling process is
blocked until a message of the appropriate type is received. The received mes
sage is stored in the buffer bu f.

Notes:

• Use the info functions to obtain more information about a received message
(such as its length or the ID of the sender).

• Use irecv () when you do not want the calling process to block.

17

2

crecvxO

Synopsis

Synopsis

Arguments

18

Receive a message (extended)

SUBROUTINE CRECVX(type, buf, len, sender, ptype, info)
INTEGER type, len, sender, ptype
INTEGER buf (*)
INTEGER info(8)

void crecvx(int type, void* buf, int len, int sender,
int ptype, int* info);

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

sender

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

S 1()()2-10MI08.06 meJ<a

Description

mei<D Tagged Message Passing

ptype

info

2

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are nonnally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender.

This function is the same as crecv () but allows selection by source and returns
additional infonnation that crecv () does not (and requires additional use of the
info functions to obtain).

Warning- The info functions should not be used after crecvx () as the rel
evant data has already been returned to you.

19

2

csendO

Synopsis

Synopsis

Arguments

Description

20

Send a message and wait for it to depart

SUBROUTINE CSEND(type, buf, len, node, pid)
INTEGER type
INTEGER buf(*)
INTEGER len, node, pid

void csend(int type, void* buf, int len,
int node, int pid);

type Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

buf Identifies the buffer that contains the message.

len Specifies the size of the message (in bytes).

node Specifies the recipient's node ID. If this variable contains a positive
integer then the message is sent to that node. Nodes within a cube
domain are numbered from 0; use of a node number that is greater
than the highest node in the cube causes an error. if node ID is set to
-1 the message is broadcast to all nodes.

pid Specifies the recipient's process ID. If a global send specifies its own
ID then the sender does not receive the message. If an alternative ID
is specified the sending node always receives the message.

This function sends a message to a process and causes the sender to block until
it is sent. Completion of this function does not indicate that the message arrived
at its destination, although it does imply that the sender's message buffer is avail
able for reuse.

S lOO2-10Ml08.06 me/<D

csendrecvO

Synopsis

Synopsis

Arguments

meI<o Tagged Message Passing

2

Send a message and block until replied

INTEGER FUNCTION CSENDRECV(type, sbuf, slen, tonode,
topid, rtype, rbuf, rlen)

INTEGER type, rtype
INTEGER sbuf(*), rbuf(*)
INTEGER slen, tonode, topid, rlen

int csendrecv(int type, void* sbuf, int slen,
int tonode, int topid, int rtype,
void* rbuf, int rlen);

type This specifies the type of the message that is being sent. It is
recommended that you use values in the range 0 to 999,999,999.
Unpredictable results occur if types outside the specified range are
used.

sbuf Specifies the source buffer.

slen Specifies the size of message to be sent from sbuf, in bytes.

tonode Specifies the 10 of the recipient node.

topid Specifies the 10 of the recipient process. Negative IDs are reserved
for system programs and should not be used.

rtype Specifies the reply message type. The following values are
permitted:

rbuf

rlen

• If type is a non-negative integer then a specific type of
message will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the buffer that will receive the reply message.

Specifies the size of the receive buffer in bytes.

21

2

Description

22

This function is used to send a message and to simultaneously post a receive; the
calling process is blocked until the reply is received. When a reply matching the
specified reply type (rtype) is received it is stored in rbuf and the calling proc
ess resumes execution.

Notes:

• This function is intended for use with remote procedure calls (a sender posts
a request for information and a server returns a result).

• Use isendrecv () if you do not want the calling process to block while
waiting for the reply.

• Use the info functions to obtain information about the received message (such
as its length or the ID of the sender).

S l002-10MI08.06 meJ<a

flickO

Synopsis

Synopsis

Description

meko Tagged Message Passing

No operation

SUNBROUTINE FLICK()

void flick(void);

This function is a no-op; it is included for portability.

2

23

2

grayO

Synopsis

Synopsis

Description

24

Gray code

INTEGER FUNCTION GRAY (val)
INTEGER val

int gray(int val);

Returns the Gray code of the integer argument val. It converts integers which
differ by 1 to integer which differ by a power of 2.

The table below enumerates the function for small binary integers.

n gray(n)

0 0

1 1

10 11

11 10

100 110

101 III

110 101

S 1 002-1 OM 108.06 meJ«)

ginvO

Synopsis

Inverse Gray code

INTEGER FUNCTION GINV(val)
INTEGER val

Synopsis int ginv (int val);

2

Description Returns the inverse Gray code; this function is the inverse of the gray () func
tion.

meJ<o Tagged Message Passing 25

2

gsendxO

Synopsis

Synopsis

Arguments

Description

26

Send a message to many nodes and wait for it to depart

SUBROUTINE GSENDX(type, buf, len, nodes, nnodes)
INTEGER type
INTEGER buf(*)
INTEGER len
INTEGER nnodes, nodes (nnodes)

void gsendx(int type, void* buf, int len, int* nodes,
int nnodes);

type

buf

len

nodes

nnodes

Specifies the type of message you are sending.

Identifies the buffer that contains the message.

Specifies the length of the message in bytes.

Contains a set of node numbers to which data is sent.

The number of node numbers in nodes.

gsendx () sends a message to each of the nodes specified by the nodes array.
The messages are sent by csend () ,so gsendx () is functionally equivalent to
the C program:

for (i=O; i<nnodes; i++)
csend(type, buf, len, nodes[i],O);

S lOO2-10Ml08.06 meJ<a

2

infocountO/nodeO/pidO/type()Get message information

Synopsis

Synopsis

Description

meI<o Tagged Message Passing

INTEGER FUNCTION INFOCOUNT()
INTEGER FUNCTION INFONODE()
INTEGER FUNCTION INFOPID()
INTEGER FUNCTION INFOTYPE()

int infocount(void);
int infonode(void);
int infopid(void);
int infotype(void);

These functions return infonnation about a received message. The returned value
is undefined unless it follows a recv () , sendrecv () , probe () , msg
done () , or msgwai t () .

infocount()

infonode ()

infopid ()

infotype ()

Returns the length of the message (in bytes).

Returns the node ID of the sending process.

Returns the ·PID of the sending process.

Returns the type of message.

Warning - These functions will not return the expected results if used after
an extended operation (cprobex (), iprobex (), crecvx (), or
irecvx ()). .

27

2

iprobeO

Synopsis

Synopsis

Arguments

Description

28

Determine if message is present

INTEGER FUNCTION IPROBE(type)
INTEGER type

int iprobe(int type);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

This function detennines if a message of the specified type is ready for receipt.
If a suitable message is ready iprobe () returns a value of 1; if no suitable mes
sage is ready the function returns o. When a value of 1 is returned, the info func
tions can be used to obtain information about the message.

This function does not block the calling process; use cprobe () if the calling
process must be blocked until a suitable message arrives.

SlOO2-10MI08.06 meJ<a

iprobexO

Synopsis

Synopsis

Arguments

meko Tagged Message Passing

2

Determine if a message is present (extended)

INTEGER FUNCTION IPROBEX(type, sender, ptype, info)
INTEGER type, sender, ptype, info(8)

int iprobex(int type, int sender, int ptype, int* info);

type Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

sender Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

ptype

info

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

Specifies the process type of the sender. Values other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are normally returned by the additional
infonode () , infocount () , and infotype () functions. The
first element of in f 0 contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender. Note: the info array
is only modified if the iprobexO was successful (and returned 1).

29

2

Description

30

iprobex () is the same as iprobe () but allows selection by source and re
turns additional information that iprobe () does not (and requires additional
use of the info functions to obtain).

Warning - The info functions should not be used after iprobex () as the
relevant data has already been returned to you.

Warning - The info array is only modified if the iprobex () was success
ful (and returned 1).

SlOO2-10MI08.06 meJ<o

irecvO

Synopsis

Synopsis

Arguments

Description

meko Tagged Message Passing

2

Receive a message

INTEGER FUNCTION IRECV(type, buf, len)
INTEGER type
INTEGER buf (*)

INTEGER len

int irecv(int type, void* buf, int len);

buf

len

type

Specifies the buffer where the received message will be stored.

Specifies the length of the message buffer in bytes.

Specifies the type of message you are waiting for. The following
values for type are valid:

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type,

• If type is any negative number other than -1 then an exception
is generated.

This function allows the caller to setup message buffers for an incoming mes
sage, but does not force the caller to wait for the message to arrive. irecv ()
returns a message ID immediately it is called. This message ID is used in subse
quent calls to msgwai t () or msgdone () to determine if the message has ac
tually arrived. The message ID is a positive integer greater than O.

Use the similar function crecv () if you want the calling process to block while
it waits for the message to arrive.

31

2

irecvxO

Synopsis

Synopsis

Arguments

32

Receive a message (extended)

INTEGER FUNCTION IRECVX(type, buf, len, sender,
ptype, info)

INTEGER type, len, sender, ptype
INTEGER buf(*)
INTEGER info(8)

int irecvx(int type, void* buf, int len, int sender, int
ptype, int* info);

buf Identifies the buffer where the received message will be stored.

len Specifies the length of the message buffer in bytes.

type Specifies the type of message you are waiting for. The following
values for type have the meanings shown:

sender

• If type is a non-negative integer then a specific message type
will be recognised.

• If type is -1 then the next message will be recognised,
regardless of type.

• If type is any negative number other than -1 then an exception
is generated.

Specifies the source (sending node) of the message you are waiting
for. The following values are valid:

• If sender is a non-negative integer then the message must have
been sent by this node.

• If sender is -1 then the message may have been sent by any
node

• If sender is negative and not -1 then an exception is generated.

S lOO2-10MI08.06 me/<D

Description

meko Tagged Message Passing

ptype

info

2

Specifies the process type of the sender. Value other than 0 or -1 will
cause an exception (only 1 process per node in this implementation).

Returns the values that are normally returned by the additional
infonode (), infocount (), and infotype () functions. The
first element of info contains the message type. The second
element of info contains the message length. The third element of
info contains the node number of the sender.

This function is the same as irecv () but allows selection by source and returns
additional information that ire cv () does not (and requires additional use of the
info functions to obtain).

Warning - The info functions should not be used after irecvx () as the rel
evant data has already been returned to you.

Warning - The info argument only contains valid results after a successful
msgdone () or msgwai t () on the message id returned by irecvx () .

33

2

isendO

Synopsis

Synopsis

Arguments

Description

34

Send a message

INTEGER FUNCTION ISEND(type, buf, len, node, pid)
INTEGER type
INTEGER buf(*)
INTEGER len, node, pid

int isend(int type, void* buf, int len,
int node, int pid);

type

buf

len

node

pid

Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

Specifies the buffer that contains the message. The data type of the
send and receive buffer should be the same.

Specifies the size of the message in bytes.

Specifies the recipient's node ID. Nodes within a partition are
numbered from O. Use of a node number that is greater than the
highest node in the partition (or is negative) causes an error.

Specifies the recipient's process ID. If a global send (broadcast)
specifies its own ID then the sender does not receive the message. If
an alternative ID is specified the sending node always receives the
message.

This function initiates a message transmission to a process but does not wait for
the transmission to complete before returning to the caller. isend () returns a
message IDthatmay be passed tomsgdone () ormsgwait () todeterminethe
status of the transmission. The message ID is a positive integer greater than O.

You should use the similar function, csend () , if you want the calling process
to block until the message has been sent.

SlOO2-10MI08.06 meJ<D

isendrecvO

Synopsis

Synopsis

Arguments

2

Send a message and setup for reply

INTEGER FUNCTION ISENDRECV(type, sbuf, slen, tonode,
topid, rtype, rbuf, rlen)

INTEGER type, rtype
INTEGER sbuf(*), rbuf(*)
INTEGER slen, tonode, topid, rlen

int isendrecv(int type, void* sbuf, int slen, int
tonode, int topid, int rtype,
void* rbuf, int rlen);

type Specifies the type of message that is being sent. It is recommended
that you use values in the range 0 to 999,999,999. Unpredictable
results occur if types outside the specified range are used.

sbuf Specifies the source buffer that contains the message.

slen Specifies the size of message, in bytes, to be sent from sbuf.

tonode Specifies the ID of the recipient node.

topid Specifies the ID of the recipient process. Negative IDs are reserved
for system programs and should not be used.

rt ype Specifies the types of reply message:

rbuf

rlen

If type is a non-negative integer then a specific message type will
be recognised.

If type is -1 then the next message will be recognised, regardless
of type.

If type is any negative number other than -1 then an exception
message is generated.

Specifies the buffer that will receive the reply message.

Specifies the size, in bytes, of the receive buffer.

Description This function is used to send a message and to simultaneously post a receive for
the reply. When a reply with the specified type (rtype) is received it is stored
in the buffer that is identified by rbuf.

meko Tagged Message Passing 35

2

36

The calling process is not blocked during this transaction. isendrecv () re
turns a message ID that may be passed to rnsgdone () or rnsgwai t () to deter
mine the status of the transfer.

Notes:

• This function is intended for use with remote procedure calls.

• If you want the calling process to block while waiting for the reply, use
csendrecv ().

• Use the info functions to get information about the received message (its size
and the sender ID, for example).

S l002-10MI08.06 me/<a

Ie dO

Synopsis

Synopsis

Description

meJ<o Tagged Message Passing

Set front panel LEDs

INTEGER FUNCTION LED (ipat)
INTEGER ipat

int led(int pattern);

2

Sets the LEDs on the node to the specified pattern. The bits that are used are hard
ware dependent.

The return value is the previous setting of the LEDs, which can be used to restore
the old pattern.

37

2

mclockO

Synopsis

Synopsis

Description

38

Elapsed time.

INTEGER FUNCTION MCLOCK()

int mclock(void);

This function returns the elapsed time, in milliseconds, since the execution of the
initialisation function mpsc _ ini t () .

SlOO2-10MI08.06 mei<a

mpsc _initO Initialisation function

Synopsis SUBROUTINE MPSCINIT ()

Synopsis void mpsc_init (void) ;

Description Initialisation function. Each process must call this function before any other
function in the libmpsc library.

2

me/<J:J Tagged Message Passing 39

2

mpsc_finiO

Synopsis

Synopsis

Description

40

Finalisation function

SUBROUTINE MPSCFINI()

void mpsc_fini(void);

Optional finalisation function.

S lOO2-10Ml08.06 mei<D

msgdoneO

Synopsis

Synopsis

Arguments

Description

meko Tagged Message Passing

Test for completion of non-blocking transaction

INTEGER FUNCTION MSGDONE(id)
INTEGER id

int msgdone(int id);

id The ID that is returned by isend () , irecv () , or irecvx () .

2

Use this function to detennine if an isend () , irecvx () , or irecv () trans
action has completed. msgdone () returns 1 when the isend () buffer is avail
able for reuse (the message has gone) or when the irecv () /irecvx () buffer
contains a message of the appropriate type.

Note that the message ID is cleared after msgdone () has returned a value of 1.
Subsequent uses of that ID are no longer valid.

A value of 0 is returned if the transaction is not complete. You may repeatedly
use msgdone () with the same ID until completion has been signalled.

41

2

msgwaitO

Synopsis

Synopsis

Arguments

Description

42

Wait for completion of non-blocking transaction

INTEGER FUNCTION MSGWAIT(id)
INTEGER id

int msgwait(int id);

id The ID that is returned by isend () , irecv (), irecvx () .

Use this function to wait until an isend () , irecvx () or irecv () transac
tion has completed. The calling process is blocked until the transfer is complete.
When msgwait () returns control to the process, thus signalling completion,
the message ID is cleared and no longer valid.

When the message transfer is complete the i send () buffer is available for reuse
(the message has gone), and the irecv () /irecvx () buffer contains a mes
sage of the appropriate type.

S lOO2-10Ml08.06 meJ<a

myhostO

Synopsis

Synopsis

Description

mei<o Tagged Message Passing

2

Obtain node ID of calling process

INTEGER FUNCTION MYHOST()

int myhost(void);

Returns the node ID for the host process. The return value will be -2 if there is
no host process. (This will ensure that a program that executes code like:

I csend(?,?,?, myhost(), ?);

will abort when there is no host, rather than send a message to a valid node.)

43

2

mynodeO

Synopsis

Synopsis

Description

44

Obtain node ID of the process

INTEGER FUNCTION MYNODE()

int mynode(void);

This function returns the node ID for this process.

SlOO2-10MI08.06 meJ<o

2

mypidO Obtain OS process ID

Synop~s INTEGER FUNCTION MYPID()

Synopsis int mypid (void) ;

Description This function returns the process ID for this process (always 0).

meI<o Tagged Message Passing 45

2

nodedimO

Synopsis

Synopsis

Description

46

Obtain cube dimensions

INTEGER FUNCTION NODEDIM(}

int nodedirn(void};

Returns the dimension of the allocated cube. The dimension of a 64 node cube is
6 because 26 = 64. Use nurnnodes () to return the number of nodes.

Warning - This function will cause an exception if the number of nodes is
not a power of 2.

S lOO2-10Ml08.06 meJ<a

numnodesO

Synopsis

Synopsis

Description

rneI<o Tagged Message Passing

2

Obtain node count for cube

INTEGER FUNCTION NUMNODES()

int numnodes(void);

Returns the number of nodes in the allocated cube. Use nodedim () to obtain
the cube dimension.

In a host program prior to loadO, numnodesO will return:

1. the number of nodes allocated by the all 0 cat e command if an allocation is
in effect.

2. the number of nodes which were allocated by mpsc_getnodesO.

3. the value 0 (no pre-allocation, and no nodes yet loaded).

After loadO (and therefore at all times in the node programs) numnodesO re
turns the number of nodes which were loaded.

47

2

48 SlOO2-10MI08.06 mei<a

Overview

mei<a

Global Reduction Operations 3

Global reduction operations take an item of data from each processor in the ma
chine, combine them according to some function, and return the result to all proc
essors. Execution continues when all processors have called the global operation,
communicated their data, and returned.

49

3

Example - gdsum()

50

Global operations implement a series of communication and calculation actions
more efficiently than the equivalent use of explicit message passing and calcula
tion functions. The global operations are also synchronised so that none may be
gin its calculations until the others are ready.

Figure 3-1 Vectors Distributed Over 7 Processors

vector

o

1

2

3

4

5

~t---t---------t----------------------------------t--------r

Reduction of elements
over processors

gdsum () takes a vector of double precision numbers from each processor, and
returns to each processor a vector of sums. If gdsum () is called with a vector of
4 doubles then the result is also a vector of four doubles, each the sum over the
processors of successive elements. In the example below, the vector v is both the
source and destination operand; the parameter work is not used.

SlOO2-10MI08.06 meJ<o

Function List

The results vector v [] is the same after:

I qdsum(v[lJ. 4. work)

as it is after:

gdsum(v[l] , 1, work)
gdsum(v[2] , 1, work)
gdsum(v[3], 1, work)
gdsum(v[4] , 1, work)

3

The latter is slower because it requires four times the number of system calls and
message transfers. The message length for the first method will be longer, of
course, but the increased transmission time will be insignificant for small vec
tors.

The following functions are defined within the 1 ibmp s c library:

gdhigh ()

gdlow ()

gdprod ()

gdsum()

giand ()

gihigh ()

gilow ()

gior ()

giprod ()

gisum()

gixor ()

gland ()

Global vector double precision Maximum operation.

Global vector double precision Minimum operation.

Global vector double precision Multiply.

Global vector double precision Sum.

Global vector integer bitwise AND.

Global vector integer Maximum operation.

Global vector integer Minimum operation.

Global vector integer bitwise OR.

Global vector integer Multiply.

Global vector integer Sum.

Global vector integer bitwise XOR.

Global vector logical AND.

meI<o Global Reduction Operations 51

3

52

glor ()

glxor ()

gshigh ()

gslow ()

gsprod ()

gssum ()

gsync ()

Global vector logical OR.

Global vector logical XOR.

Global vector real Maximum operation.

Global vector real Minimum operation.

Global vector real Multiply.

Global vector real Sum.

Global synchronisation.

SlOO2-10MI08.06 meJ<a

3

gdhighO, gihighO, gshighO Global Maximum operation

Synopsis SUBROUTINE GDHIGH (x, n, work)
DOUBLE PRECISION x(n)

Synopsis

Arguments

INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GIHIGH(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSHIGH(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdhigh(double* x, int n, double* work);

void gihigh(int* x, int n, int* work);

void gshigh(float* x, int n, float* work);

x

n

work

The input vector (or scalar). This vector will contain the result when
the function completes.

The number of elements in the input array.

Not used; included for compatibility.

Description These functions calculate the maximum of x across all nodes. The result is re
turned in x to every node.

mei<o Global Reduction Operations 53

3

gdlowO, gilowO, gslowO

Synopsis

Synopsis

Arguments

Description

54

Global Minimum operation

SUBROUTINE GDLOW(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GILOW(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSLOW(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdlow(double* x, int n, double* work);

void gilow(int* x, int n, int* work);

void gslow(float* x, int n, float* work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the minimum of x across all nodes. The result is re
turned in x to every node.

SIOO2-10MI08.06 mei<a

3

gdprodO, giprodO, gsprodO Global multiply operation

Synopsis

Synopsis

Arguments

Description

SUBROUTINE GDPROD(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GIPROD(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSPROD(x, n, work)
REAL x(n)
INTEGER n
REAL work(n)

void gdprod(double* x, int n, double* work);

void giprod(int* x, int n, int* work);

void gsprod(float* x, int n, float* work);

x

n

work

The input vector (or scalar). This vector will contain the result when
the function completes.

The number of elements in the input array.

Not used; included for compatibility.

These functions calculate the product of x across all nodes. The result is returned
in x to every node.

meI<o Global Reduction Operations 55

3

gdsumO, gisumO, gssumO

Synopsis

Synopsis

Arguments

Description

56

Global sum operation

SUBROUTINE GDSUM(x, n, work)
DOUBLE PRECISION x(n)
INTEGER n
DOUBLE PRECISION work(n)

SUBROUTINE GISUM(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GSSUM(x, n, work)
REAL x{n)
INTEGER n
REAL work(n)

void gdsum(double* x, int n, double* work);

void gisum(int* x, int n, int* work);

void gssum(float* x, int n, float* work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the sum of x across all nodes. The result is returned in
x to every node.

S lOO2-10Ml08.06 mei<D

giandO, glandO

Synopsis

Synopsis

Arguments

Description

Global AND operation

SUBROUTINE GIAND(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLAND(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void giand(int* x, int n, int* work);

void gland(int* x, int n, int* work);

3

x The input vector (or scalar). This vector will contain the result when
the function completes.

n

work

The number of elements in the input array_

Not used; included for compatibility.

These functions calculate the bitwise (giand ()) or logical (gland ()) AND of
x across all nodes. The result is returned in x to every node.

mei<o Global Reduction Operations 57

3

giorO, glorO

Synopsis

Synopsis

Arguments

Description

58

Global OR operation"

SUBROUTINE GIOR(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLOR(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void gior(int* x, int n, int* work) ;

void glor(int* x, int n, int* work) ;

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the bitwise (gior ()) or logical (glor () OR of x
across all nodes. The result is returned in x to every node.

S lOO2-10Ml08.06 mei<a

gixorO, glxorO

Synopsis

Synopsis

Arguments

Description

Global XOR (exclusive-OR) operation

SUBROUTINE GIXOR(x, n, work)
INTEGER x(n)
INTEGER n
INTEGER work(n)

SUBROUTINE GLXOR(x, n, work)
LOGICAL x(n)
INTEGER n
LOGICAL work(n)

void gixor(int* x, int n, int*

void glxor(int* x, int n, int*

3

work) ;

work);

x The input vector (or scalar). This vector will contain the result when
the function completes.

n The number of elements in the input array.

work Not used; included for compatibility.

These functions calculate the bitwise (gixor ()) or logical (glxor ()) XOR of
x across all nodes. The result is returned in x to every node.

meko Global Reduction Operations 59

3

gsyncO

Synopsis

Synopsis

Description

60

Global synchronisation

SUBROUTINE GSYNC()

void gsync(void);

This function synchronises node processes. When a process executes gsync ()
it blocks until all other processes have executed it.

S I002-10MI08.06 meJ<a

Restrictions

meJ<a

Host Functions 4

The library provides support for a limited set of host functions, which interface
to the resource management system to load the node processes. The following
functions are only available in the host program.

Host specific functions

mpsc_getnodes () Pre-allocate nodes' processing resource.

killcube () Forcibly tenninate all node processes.

load () Start execution of a set of node processes.

setpid () Set the host pid.

waitall () Wait for all node processes to exit.

In addition the host can use any of the functions used on the node apart from the
collective communication functions.

The host functions provided are restricted to allowing a single node program to
be loaded on all nodes. Only a single pid is pennitted (which must be zero).

Note that getcubeO is not included in this implementation; see the similar
function mpsc_getnodesO.

61

4

mpsc _getnodesO

Synopsis

Synopsis

Arguments

Description

62

Pre-allocate nodes' processing resource

SUBROUTINE MPSC_GETNODES(request,istatus)
CHARACTER *(*) request
INTEGER istatus

int mpsc_getnodes(const char* request);

is tat us returns 1 on success and 0 on failure.

The request argument is a string in which one or more of the following options
are concatenated (note the similarity to the allocate(l) command):

-b number Set the base processor, relative to the start of the partition.

- i Allocate resource immediately; fail if the resource is in
use rather than suspending execution until the resource is
free.

-n number I a Ask for number processors, or all (-na) processors in
the partition.

-p partition The name of the partition.

This function is used by a host process to allocate resource for the node process
es; it is a functional equivalent of allocate(l).

Allocated resource is held by the host process until it terminates and is chargea
ble to that host for the whole period that it is held; it is also unavailable for use
by other user's during the period.

Node processes are spawned onto the allocated resource by the load(3x) func
tion. When resources have been pre-allocated load(3x) does not attempt to re
allocate the resource, but instead spawns the node processes over the whole of
the allocated resource.

The numnodes(3x) function can be used by the host process after calling mp
sc_getnodes (3x) to determine the number of processors that were allocated.

S lOO2-10MI08.06 meJ<a

Example

See Also

meko Host Functions

4

Allocate all the nodes in the parallel partition:

call mpsc_getnodes("-p parallel -na", istatus)
print *, "Allocated WI, numnodes()," from parallel"
call load ("example", -1, 0)

Orin C:

istatus = mpsc_getnodes("-p parallel -na");
printf("Allocated %d from parallel\n", numnodes());
load ("example", -1, 0);

allocate(1), load(3x), numnodes(3x).

63

4

killcubeO

Synopsis

Synopsis

Arguments

Description

64

Forcibly terminate node proceses

SUBROUTINE KILLCUBE(node, pid)
INTEGER node
INTEGER pid

void killcube(const int node, const int pid);

node Specifies the set of nodes to be killed. The only valid value is -1.

pid Specifies the pid of the nodes to be killed. The only valid values are
zero or-l

killcube () sends a SIGKILL.signal to all of the node processes in the pro
gram and awaits their termination.

Notes:

• killcube () can only be used to terminate all nodes simultaneously.

Sl002-10MI08.06 m8<D

loadO

Synopsis

Synopsis

Arguments

Description

See Also

mei<o Host Functions

4

Load an executable image onto the node processors

CALL LOAD(exe,node,pid)
CHARACTER*(*) exe
INTEGER node
INTEGER pid

void load(const char * exe, const int node,
const int pid);

exe Specifies the name of the image file to be loaded. This is searched
for through the directories in the PATH environment variable

node Specifies the set of nodes to be loaded. The only valid value is -1,
meaning all nodes

pid Specifies the pid for the processes to be created. The only valid value
is zero.

load () loads a set of nodes with the given executable and starts them running.
The number of nodes chosen and their placement are determined by examining
the resource management system environment variables at the time that loadO
is executed, or the resources which have already been allocated.

Relevant environment variables are:

RMS PARTITION

RMS NPROCS

Notes:

The name of the partition.

The number of processors to be loaded.

• The choice of nodes to load can be changed by the host program by using the
putenv () call to modify the environment variables consulted by the
resource management system prior to making the call to load.

• A host process can pre-allocate the nodes' resource by calling
mp s c _get node sO. When resources are pre-allocated the subsequent call to
loadO will not attempt to allocate its own resources.

mpsc getnodes(3x), allocate(l).

65

4

setpid()

Synopsis

Synopsis

Arguments

Description

66

Set the pid for the host node

CALL SETPID(pid)
INTEGER pid

void setpid(const int pid);

pid is the process id to be used by the host node. The only valid argument value
is zero.

This function is a no-op - it is provided solely for compatibility with other sys
tems which require it to be present.

SlOO2-10MI08.06 meJ<a

waitallO

Synopsis

Synopsis

Arguments

Description

mei<D Host Functions

Allows the host to await termination of the nodes

CALL WAITALL(node, pid)
INTEGER node
INTEGER pid

void waitall(const int node, const int pid);

node

pid

Specifies the set of nodes to wait for; the only valid value is -1,
meaning all nodes

Specifies the pid for the processes to be waited for. The only valid
values are zero or -1.

4

waitall() allows the host program to suspend itself until all of the node pro
grams loaded by load have finished execution.

67

4

68 SlOO2-10MI08.06 meJ<D

Compilation

mei<D

Example Programs 5

The programs in / opt/MEIKOcs2/ example/mpsc describe aC and Fortran
version of a simple libmpsc application.

The examples have been coded to illustrate both hosted and hostless program
ming models and methods of coding that allows the choice of model to be select
ed at either run-time or compile time. Also illustrated are examples of both
blocking and non-blocking communications, global reduction, and global syn
chronisation.

A makefile is included alongside the example programs. Before compiling or ed
iting the example programs you should copy them into your home directory so
that your work does not conflict with the work of others:

user@cs2 mkdir -/mpsc
user@cs2 cp /opt/MEIKOcs2/example/mpsc/* -/mpsc
user@cs2 cd -/mpsc

To compile the C version of the example type:

user@cs2: make host htaq taq

69

5

To compile the Fortran version type:

user@cs2: make fhost ftaq

Running the Programs

70

Hosted applications are started by executing the host directly from you command
shell, whereas hostless applications require a loader such as prun. This section
shows examples of both methods.

Running Hosted Programs

The host process in a libmpsc application liaises with the CS-2 resource manage
ment system for the node's processing resource. You specify your resource re
quirement by setting one or more of the following environment variables:

Variable Descri ption

RMS PARTITION The name of your preferred partition. If you fail to set -
this variable your node processes are executed on the
default partition specified by your System
Administrator.

RMS NPROCS The number of node processes. If you fail to set this -
variable your node processes are executed on all
nodes in the partition.

RMS BASEPROC Id of the first processor within the partition that will
host the node process; usually the first processor in
the partition (logical id 0) is used, or the first available
processor.

RMS VERBOSE Set level of status reporting. -
RMS MEMORY The minimum memory requirements for each -

process, suffixed by K or M (for kilobytes and
megabytes respectively).

RMS CORESIZE Enable core dumping if this variable is set. -

S lOO2-10Ml08.06 meJ<o

5

To specify, for example, that the host process spawns 4 node processes within the
parallel partition you must set the following two variables before you exe
cute the host process (the following example uses the C-shell):

user@cs2: setenv RMS PARTITION parallel
user@cs2: setenv RMS NPROCS 4

Having specified your resource requirements you start the application by execut
ing the host program from your command shell. The following command line
starts the C version of this example:

I user@cs2: host

If you prefer the Fortran example execute fhost in place of host.

Running Hostless Programs

Hostless applications require a loader program, such as prun(1), to load the
node processes into a partition. You can specify your resource requirements by
setting the environment variables described above, or you can specify them on
prun's command line. The following example uses prun to execute 4 processes
in the parallel partition:

I muser@cs2: prun -n4 -ppara11e1 taq

If you prefer the Fortran example execute ftag in place of tag.

Description of the Hosted Application

mei<o Example Programs

The following sections describe the how the processes are initialised, including
the host's interaction with the resource management system, and how they com
municate.

71

5

72

Process Initialisation

A hosted application initially consists of just one process - the host. This proc
ess begins by calling the initialisation function mpsc_ini to, which is used to
attach the process to the Elan network and to initialise the underlying communi
cation mechanisms (the Widget library TPORTs).

The host process spawns the node processes by calling loadO. In the Fortran
example, where a previous call to mpsc _getnodesO is used to pre-allocate the
resource, the loadO function spawns the node processes onto the allocated re
source - it does not allocate any resource itself. In the case of the C example,
where there is no previous call to mpsc_getnodesO, the loadO function both
allocates resource and spawns the node processes.

Note that the loadO function in this implementation is not passed the number
of node processes that are to be spawned; this is detennined by either spawning
the nodes over all the pre-allocated resource (where allocate(1) or mp
sc_getnodes(3x) have been used) or by the resource management system en
vironment variables.

After spawning the node processes the loadO function suspends execution of
the host until all of the nodes have successfully initialised. Embedded within
both loadO and the nodes' mpsc_initO is a barrier synchronisation that pre
vents the application from continuing until all processes are ready; this barrier
synchronisation is a safeguard to ensure that no communications may take place
before the underlying communication mechanisms are in place.

Process Communications

Two types of communication are used by the node processes; blocking and non
blocking.

The iterative loop within the node processes uses the non-blocking isendOI
irecvO pair to handle communication between the node processes; use of non
blocking communications allow the node process to continue with useful work
(in this case a simple summation) while waiting for the communication to com
plete. Completion of the communication is tested for by calls to msgwai to; this
function will delay iteration of the loop until the communications have complet-

S lOO2-10Ml08.06 meJ<a

5

ed and the send and receive buffers are available for reuse. Note that the message
type arguments are always set to 0; we have no interest in the source or the or
dering of message in this case.

Communication with the host process is handled by blocking communications.
Note that the node processes have been coded to allow their execution without a
host process (in the C example the programming model is selected at compile
time, in the fortran example the decision can be made at runtime - see later).
The communications that are sent to the host are tagged with the sender's node
id, which allows the host to receive the messages ordered by the sender's node id.

Global Operations

The node processes include an example of global reduction. Each process passes
to gisumO a single integer (a vector of 1 element). gisumO synchronises all
the processes (an implicit barrier synchronisation) and then calculates the sum of
the vectors across all nodes. On completion the source vector is overwritten by
the result.

Note that gisumO must be called by all the node processes; the implicit synchro
nisation within this function will suspend the calling process until all the node
processes have also synchronised.

The example also includes an example of global synchronisation - an example
of gsyncO. This is used to synchronise all the node processes and to prevent any
one node process from tenninating before its peers have also completed. You can
use gsyncO to synchronise entry to any critical section of code.

Description of the Hostless Application

meI<o Example Programs

The hostless example uses the same node processes as the hosted application de
scribed above, except that they are loaded into a partition by a loader program,
such as prun, and not by a libmpsc program.

All the node processes begin execution of mp s c _ i ni t 0 at the same time. This
function initialises the process's communication mechanisms and includes an
implicit barrier, which suspends the caller until all other node processes have also
successfully execution their initialisation function.

73

5

74

In the C version of this example the decision to execute the application as a host
less application is made at compile time. Communications with a master process
are removed from the source by preprocessor directives, and substituted by out
put to the console. To compile the program for execution as a hosted application
include the -DHOSTED option on your compiler driver's command line; remove
it for a hostless application. If you study the makefile that is supplied with the
examples you will note that the only difference between the tag and htag tar
gets is the inclusion of this compiler option.

The Fortran example uses a different approach; the model used for this example
is selected at runtime by a call to myhostO. Here the return value from my
hostO is compared with the return value from numnodes(); if the two values
are the same then the node has a host (because the node id of the host will always
be the highest node id in the application). A return value of -2 from myhostO
also signifies that there is no host.

SlOO2-10MI08.06 meJ<o

Message Format

Error Messages 6

The functions in the Tagged Message Passing and Global Reduction library
(libmpsc) are built upon the functions in the Elan Widget library. Errors within
libmpsc are reported via the Widget library exception handler; this writes di
agnostic messages to the standard error device and kills the application.

The fonnat of 1 ibmp s c messages is:

MPSC EXCEPTION @ process : error code (error_text)
error message string

The error message strings are described later in this chapter. The process is the
virtual process number of the process that detected the error; if the exception oc
curs before the process has attached to the network (Le. before mpsc _ ini to is
called) then this is shown as - - - -. The error code (and its textual equivalent the
error text) are one of:

Error Code Error Text
1000 Initialisation error

1001 No more message descriptors

1002 Bad pid

1003 Bad event

meJ<o 75

6

Error Code Error Text

1004 No more dIna descriptors

1005 Bad Node

1006 Invalid argument

1007 Bad tag

1008 Bad ptype (must be zero)

1009 Bad resource request

Widget Library Exceptions

Functions in libmpsc are implemented on functions in the Elan Widget library.
When an exception occurs within a Widget library function this is handled by the
Widget library's own exception handler. The Widget library handler is similar to
that used by libmpsc but produces errors in the fonn:

EW_EXCEPTION @ process : error code (error_text)
error message string

These exceptions are fully described in The Elan Widget Library, Meiko docu
ment number Sl002-10MI04.

Note/or Fortran Programmers

All errors apply to both C and Fortran implementations unless the description
specifies a specific language. Often the error message repeats the parameters that
were passed to the failed call; these will be the parameters that were passed to the
underlying C implementation of the function, and may not be identical to those
passed to the Fortran binding.

Error Messages

In the following list italicised text represents context specific text or values.

76 S 1 002-1 OM 1 08 .06 meJ<D

meI<D Error Messages

6

'mpsc version' incompatible with 'elan version' ('elan version' expected)
Error type is 1000 (Initialisation error). Occurs in mpsc_initO; Elan library
version incompatibility. This library was linked with an out of date version of
libelan.

'mpsc version' incompatible with 'ew version' ('ew version' expected)
Error type is 1000 (Initialisation error). Occurs in mpsc_initC}; Elan Widget li
brary incompatibility. This library was linked with an out of date version of
libew.

Can't allocate count message descriptors
Error type is 1001 (No more message descriptors). Occurs in irecvO,
irecvxO, isendO, and isendrecvO; a call to callocO failed (insuffi
cient memory). A descriptor is required for each pending non-blocking com
munication; tried to allocate a batch of additional descriptors for non-blocking
communications but was unable. Maybe there are too many outstanding com
munications, are you clearing them with either msgdoneO or msgwaitC}?

Can't allocate message port
Error type is 1000 (Initialisation error). Occurs in loadO (in host processes)
and mpsc _ ini to (on node processes); a call to ew _ alloca te01 failed,
maybe because heap or swap space were exhausted.

cprobe (type)
Error type is 1007 (Bad tag). Occurs in cprobeO; the message type (type)
must be greater than -1 in this implementation.

cprobex (type, sender,ptype, info)
Error type is 1007 (Bad tag). Occurs in cprobexO; the message type (type)
must be greater than -1 in this implementation.

cprobex (type, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero». Occurs in cprobexO; the
process type (ptype) must be either 0 or -1 in this implementation.

crecv (type, buf, len)
Error type is 1007 (Bad tag). Occurs in crecvO; the message type (type)
must be greater than -1.

1. ew _allocateO is a Widget library function.

77

6

78

crecvx (type, buf, len, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in crecvxO; the message type (type)
must be greater than -1.

crecvx (type, buf, len, sender, ptype, injo)
Error type is 1008 (Bad ptype (must be zero». Occurs in crecvxO; the proc
ess type (ptype) must be 0 or -1 in this implementation.

csend (type, buf, len, node, pid)
Error type is 1002 (Bad PID). Occurs in csendO (with debugging enabled);
the pid argument must be 0 in this implementation.

csend (type, but, len, node, pid)
Error type is 1005 (Bad node). Occurs in csendO; the node argument is out
of range; must be either a node id or -1.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbuj, rlen)
Error type is 1002 (Bad PID). Occurs in csendrecvO (with debugging en
abled); the pid argument must be 0 in this implementation.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1005 (Bad node). Occurs in csendrecvO; the node argument
(tonode) is out of range - must be a positive integer node id.

csendrecv (type, sbuj, slen, tonode, topid, rtype, rbut, rlen)
Error type is 1007 (Bad tag). Occurs in csendrecv(); the reply message type
(rtype) must be greater than -1.

Hosted MPSC initialised with count procs in host segment
Error type is 1000 (Initialisation error). Occurs in loadO; a hosted MPSC ap
plication has been created but there is not 1 process in the host segment. This
indicates an internal error that should be reported to Meiko.

Hosted MPSC initialised with count segments
Error type is 1000 (Initialisation error). Occurs in loadO; a hosted MPSC ap
plication has been created but not within 2 segments. The host process should
be running in a different segment to the node processes. This indicates an in
ternal error that should be reported to Meiko.

S 1(>02-1 OM 108.06 meJ<a

mei<o Error Messages

6

iprobe (type)
Error type is 1007 (Bad tag). Occurs in iprobeO; the message type (type)
must be greater than -1.

iprobex (type, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in iprobexO; the message type (type)
must be greater than -1.

iprobex (type, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero)). Occurs in iprobexO; the
process type (ptype) must be either 0 or -1 in this implementation.

irecv (type, buf, len)
Error type is 1007 (Bad tag). Occurs in irecvO; the message type (type)
must be greater than -1.

irecvx (type, buf, len, sender, ptype, info)
Error type is 1007 (Bad tag). Occurs in irecvxO; the message type (type)
must be greater than -1.

irecvx (type, buf, len, sender, ptype, info)
Error type is 1008 (Bad ptype (must be zero)). Occurs in irecvxO; the proc
ess type (ptype) must be 0 or -1 in this implementation.

isend (type, buf, len, node, pid)
Error type is 1002 (Bad PID). Occurs in isendO (with debugging enabled);
the pid argument must be 0 in this implementation.

isend (type, but, len, node, pid)
Error type is 1005 (Bad node). Occurs in isendO; the node argument is out
of range.

isendrecv (type, sbut, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1002 (Bad PID). Occurs in isendrecvO (with debugging en
abled); the pid argument must be 0 in this implementation.

isendrecv (type, sbuf, slen, tonode, topid, rtype, rbuf, rlen)
Error type is 1005 (Bad node). Occurs in isendrecvO; the node argument
(to node) is out of range - must be a positive integer node id.

79

6

80

isendrecv (type, sbu/, sien, tonode, topid, rtype, rbut, rlen)
Error type is 1007 (Bad tag). Occurs in isendrecvO; the reply message type
(rtype) must be greater than -1.

kill cube (node, pit!) node must be -1
Error type is 1005 (Bad node). Occurs in killcubeO; the node argument
must be -1 in this implementation.

kill cube (node, pit!) only valid on host
Error type is 1005 (Bad node). Occurs in killcubeO; a node process called
killcubeO (only host processes may call this function).

kill cube (node, pit!) pid must be 0
Error type is 1002 (Bad PID). Occurs in killcubeO; the pid argument must
be set to 0 in this implementation.

load exe name too long
Error type is 1006 (Invalid argument). Occurs in fortran binding for loadO;
an internal limit of 256 exists for the length of the executable's name.

load: no elan capability
Error type is 1006 (Invalid argument). Occurs in loadO; a call to the Elan
Widget library function ew _getenvCapO failed which may happen because
of insufficient memory.

load ("prog", node, pit!) node must be -1
Error type is 1005 (Bad node). Occurs in loadO; the node argument must be
-1 in this implementation.

load ("prog", node, pit!) pid must be 0
Error type is 1002 (Bad PID). Occurs in loadO; the pid argument must be set
to 0 in this implementation.

mpsc _check Version(self)
Error type is 1000 (Initialisation error). Occurs in mpsc ini to; internal in
compatibility of library source files.

mpsc _getnodes argument string too long
Error type is 1009 (Bad resource request). Occurs in mpsc_getnodesO;
there is an internal limit of 256 characters on the resource request string.

S lOO2-10Ml08.06 meJ<a

meI<D Error Messages

6

mpsc _getnodes("resource")
Error type is 1009 (Bad resource request). Occurs inrnpsc_getnodesO; the
argument string is not a valid resource request.

nodedimO: invalid number of nodes count
Error type is 1006 (Invalid argument). Occurs in nodedimO; the number of
node processes is not a power of 2.

setpid (pid) pid must be 0
Error type is 1002 (Bad PID). Occurs in setpid(); the specified pid was not
O. (This function is provided for compatibility only and perfonns no useful
function).

waitall(node, pit!) node must be ·1
Error type is 1005 (Bad node). Occurs in wai tall(); the node argument must
be -1 in this implementation.

waitall (node, pit!) only valid on host
Error type is 1006 (Invalid argument). Occurs in wai tallO; a node process
called waitall(); only host processes may call this function.

waitall (node, pit!) pid must be 0 or ·1
Error type is 1002 (Bad PID). Occurs in wai tallO; the pid argument may
only be set to 0 or -1 in this implementation.

81

6

82 S lOO2-10Ml08.06 mei<a

mei<D

Message Types A

Message types in the range 0 to 999,999,999 are assigned to a message at
transmission time. Message types outside the above ranges are reserved for
system use and should be avoided.

Functions that receive messages are able to specify the types of message that
are to be received. The type variable is set according to the following conven
tions:

• If the type is a non-negative integer then a specific message type will be
recognised; all other message types will be ignored, unless they are force
types.

• If the type has a value of -1 then any message may be received.

• If the type is any negative number other than -1 then an exception is
generated.

83

A

84 S lOO2-10Ml08.06 meJ<a

Computing
Surface

PVM User's Guide and Reference Manual

•
S 1002-10M 133.0 1 meJ(O

The information supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARe trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

01454 616171
Fax: 01454618188

Meiko's PVM product is based upon software and documentation that is subject to the following restrictions:

PVM 3.2: Parallel Virtual Machine System 3.2
University of Tennessee, Knoxville TN.

Oak Ridge National Laboratory, Oak Ridge TN.
Emory University, Atlanta GA.

Authors: A. L. Beguelin, J. J. Dongarra, G. A. Geist, W. C. Jiang,
R. J. Manchek, B. K. Moore, and V. S. Sunderam

© 1992 All Rights Reserved

NOTICE

Pennission to use, copy, modify, and distribute this software and its documentation for any purpose and without
fee is hereby granted provided that the above copyright notice appear in all copies and that both the copyright

notice and this permission notice appear in supporting documentation.

Neither the Institutions (Emory University, Oak Ridge National Laboratory, and University of Tennessee) nor the
Authors make any representations about the suitability of this software for any purpose. This software is provided

"as is" without express or implied warranty.

PVM 3.2 was funded in part by the U.S. Department of Energy, the National Science Foundation and the State of
Tennessee.

Contents

1. Introduction 1

Features of this Implementation . 1
Programming Model. 1
Resource Allocation. 2
Process Communication. 3
Supported Functions. 4

Process Control. 4
Information. 4
Signalling . 5
Error Handling . 5
Message Buffers . 5
Packing Message Buffers. 6
Unpacking Message Buffers. 6
Sending and Receiving Data. 6
Synchronisation. 7

Unsupported Functions. 7

Debugging . 8
PVM Console. 9
Performance Considerations. 9

Compilation ofPVM Programs. 10
Executing PVM Applications . 11

ii

2. Example Programs . 13

Master/Slave Example. 13
Compiling the Example. 14
Starting the Example . 14
Detailed Description of the Programs. 15

SPMD Example. 16
Hosted SPMD Application. 17
Hostless SPMD Application. 17
Program Compilation. 19

3. Reference Manual. 21

pvrn_intro 22

pvm_barrier () 25

pvrn_bufinfo () 26

pvrn_config () 28

pvm _ exi t () 30

pvm_freebuf ()

pvm_getrbuf ()

pvrn_getsbuf ()

pvm_initsend ()

pvm kill ()

pvm_rncast ()

pvm _ mkbuf ()

pvm_rnstat ()

pvrn_rnytid ()

pvm nrecv ()

pvrn_pack

pvmyarent ()

pvmyerror ()

pvrnyrobe ()

pvrnystat ()

pvm_recv ()

pvrn_send ()

31

33

34

35

37

38

40

43

44

45
47

51

52

53

55

56

58
pvrn_sendsig () 60

Contents

pvm serror ()•...•... 61

pvm_setrbuf () ...•..............•.••.•. 62

pvm_setsbuf ()

pvm_spawn ()

pvm _tasks ()

pvm_unpack ()

63

64

67

69

iii

iv

Introduction 1

This chapter describes the features of the CS-2 implementation of PVM, and
highlights the differences between standard PVM and Meiko's implementation
(CS2-PVM).

Features of this Implementation

CS2-PVM allows PVM (version 3.2) applications to run on the CS-2 taking ad
vantage of the high perfonnance communication capability of the CS-2. In stand
ard PVM most of the process control and message routing uses daemons, with
one daemon running on each host. In the CS-2 implementation there are no PVM
daemons. The process control functionality of the daemons is provided by the
CS-2 Resource Management System. Message passing takes place directly using
the tagged communication (tport) layer from the Elan Widget Library.

The Meiko resource manager cannot duplicate all of the functionality of the PVM
daemons, so some of the calls that talk to the daemons are not supported in this
implementation. In addition the absence of the daemons means that CS2-PVM
cannot currentl y run in a mixed host environment; your applications are limited
to the processing resource within the CS-2.

Programming Model

Meiko's implementation ofPVM supports both hosted (master/slave) and host
less (SPMD) applications.

1

1

2

Hosted applications consist of two processes; a host and a number of identical
node processes. The PVM application is initiated by executing the host process
which is then responsible for spawning the node processes. All processes, includ
ing the host itself, use PVMs communication functions to cooperate and com
plete the task.

Hostless applications have a number of identical node processes that are started
by using a loader program such as prune These applications are coded as SPMD
applications, in which one instance of the program acts as a master to a number
of other node instances.

SPMD applications are unusual because they can be used as hosted or hostless
programs. An instance of an SPMD application can be executed directly at your
command shell, in which case it will spawn a number of copies of itself and then
run as a host/node application. Alternatively a number of instances of an SPMD
application can be started with a loader program, such as prun, in which case
the spawning activity of the "host" instance is suppressed. This will be covered
in more detail later.

Resource Allocation

All PVM applications must liaise with the CS-2 Resource Manager for process
ing resource. This liaison takes place within either the host process (for hosted
applications) or the loader process (for hostless applications).

In either case the host/loader runs in your login partition as a sub-process of your
command shell. The host/loader process calls upon functions in the resource
management user interface library to liaise with the resource manager for the
nodes' processing resource. In the case of a loader, such as prun, the liaison is
via a direct calls to rms_forkexecvpO in librms. In the case ofaPVM host
process the liaison happens when the host process calls pvm _ spa wnO, which in
tum calls rms_forkexecvpO.

The resource management function uses the user's id and other criteria specified
by your System Administrator to identify a suitable partition for the node proc
esses. If you don't like the default resource you can specify your preferences by
setting environment variables - the most useful variable is RMS_PARTITION
which identifies your preferred partition, but there are others too (see the docu
mentation for rms_forkexecvpO).

SlOO2-10M133.01 meJ<a

1

Process Communication

~ Introduction

PVMs communication functions are built upon the tagged message port
(TPORn functions in the Elan Widget library. PVM applications are 2 segment
CS-2 applications in which the host or loader program and the nodes run in sep
arate segments. The two segments will usually run in separate partitions.

PVM processes have two numbering schemes associated with each process: there
are the task-ids which are visible within the PVM application, and there are in
ternal (virtual process) numbers that are used by the low level communication
routines. You will need to understand the mapping from PVM tid to Elan virtual
process numbers if you wish to include direct calls to the Elan Widget library
within your PVM application.

For the 6 processes in an example hosted PVM application the virtual process
numbers are assigned as shown, with the node processes numbered from 0:

Nodes Host

,::i::t
Segment 0 Segment 1

The PVM tids for the same example are allocated in a different order, with the
host process numbered 0 and the nodes numbered from 1:

Nodes Host

~I:r.
Segment 0 Segment 1

For a 6 process hostless applications the virtual process numbers and the tids are
allocated in the same order as follows:

SPMD-m SPMD-s prun

O·~··· :~.
::~: :."'.

Segment 0 Segment 1

3

1

4

In general the allocation of each segment's processes to processors in a partition
mirrors the allocation of the virtual process numbers; processes with low virtual
process numbers are usually allocated to processors with lower Elan id's than
those processes with high virtual process numbers.

Supported Functions

The following functions are defined in this library:

Process Control

The following functions are used to start and stop PVM processes.

pvm_mytid

pvm_exit

pvm_spawn

Information

Process initialisation.

Process leaving PVM.

Start new PVM processes.

These functions provide information about processes and the host environment.

pvmyarent Returns the tid of the process that spawned this process.

pvm y s tat Returns the status of the specified process.

pvm _ msta t Returns the status of a CS-2 partition.

pvm _ conf ig Returns information about the current machine
configuration.

Returns information about the tasks running on the CS-2.

SlOO2-10M133.01 mei<a

mei<o Introduction

1

Signalling

These functions enable a process to signal other processes in the application.

pvrn_sendsig

pvrn_kill

Error Handling

Send a signal to a PVM process.

Tenninate a PVM process by sending a SIGTERM
signal.

These functions enable error reporting.

pvrnyerror

pvrn_serror

Print message describing the last error returned by a PVM
function.

Sets automatic error message printing on or off.

Message Buffers

These functions allow you to define message buffers.

pvrn_mkbuf

pvm_initsend

pvrn_freebuf

pvrn_getsbuf

pvm_setsbuf

pvrn_setrbuf

Creates a new message buffer.

Clear default send buffer and specify message
encoding.

Disposes of a message buffer.

Returns the message buffer identifier for the active
send buffer.

Returns the message buffer identifier for the active
receive buffer.

Switches the active send buffer.

Switches the active receive buffer and saves the
previous buffer.

5

1

6

Packing Message Buffers

These functions pack messages into message buffers.

pvmJ>k*
pvmJ>ackf

Pack the active message buffer with arrays of prescribed
data type.

Unpacking Message Buffers

These functions unpack messages from message buffers.

pvm_unpk*
pvm_unpackf

Unpack the active message buffer into arrays of
prescribed data type.

Sending and Receiving Data

These functions send and receive messages. Note that some functions block the
calling process until the transaction is complete, whereas some allow the process
to continue immediately (and require the transaction to be tested later).

pvm_nrecv

pvrn_recv

pvrn_probe

pvrn_bufinfo

Immediately sends the data in the active message
buffer. This function is asynchronous; it does not
suspend the calling process until a matching receive
has been posted.

Multicasts the data in the active message buffer to a set
of tasks.

Non-blocking receive; fetches a message into a new
active receive buffer if a message is available, but
returns straight away even if the message has yet to
arrive.

Receive a message; this function will block the caller
until a message is available.

Check if a message has arrived.

Returns information about a message buffer.

SlOO2-10M133.01 meJ<a

1

Synchronisation

Synchronisation ensures that all processes enter critical sections of your code at
the same time. Barriers are included within the definition of the PVM initialisa
tion functions to ensure that the application does not begin until all processes
have successfully initialised their communication mechanisms.

Barrier synchronise all processes; suspend the calling
process until other processes in the application have
also called this function. group/count arguments
are ignored in this implementation.

Unsupported Functions

meI<o Introduction

The following functions are not supported in this implementation. Note that
some functions are not defined (causing errors at program link. time), some return
an error ('not implemented '), and some may be called with no effect.

Most of the unsupported functi~ns related to the group library and the interface
to the pvmd daemons, neither of which are supported in this implementation.

Function Behaviour

pvm_addhosts Returns error (not implemented).

pvm_advise May be called with no effect.

pvm_bcast Not defined.

pvm_delhosts Not defined.

pvm_getinst Not defined.

pvm_gettid Not defined.

pvm_gsize Not defined.

pvm joingroup Not defined.

pvm_lvgroup Not defined.

pvm_notify Returns error (not implemented).

pvm_recvf May be called with no effect.

7

1

Debugging

8

The following function has a different meaning in this implementation:

Function Behaviour

pvm barrier Barrier synchronisation of all processes.

When the host of a hosted PVM application spawns the node processes under the
control of a debugger (by specifying the PvmTaskDebug option to pvm_
spawnO) the node processes are not executed directly but indirectly via a shell
script.

By specifying the debug option pvm spawnO locates a shell script called de
bugger in the directory $HOME/p';m3/lib1 and passes it the name of the
node task (as specified in the call to pvm_spawnO).

For example, consider the following call to pvm _ spa wnO, which identifies a
node program in your current directory:

pvm_spawn{"node", (char**}O,PvmTaskDebug,"",nproc,tids)

This causes nproc instances of $HOME/pvm3/ lib/ debugger to be started
and passed as their first argument the name of the node process. If your preferred
debugger is TotalView, the debugger script might be defined as follows:

I *! /bin/ csh -f
totalview $1

If you prefer DBX (in an X environment) you could use:

#!/bin/csh -£
exec xterm -n $1 -T $1 -Is -sb -sl100 -e dbx $1

1. This is the only occasion when Meiko's implementation of PVM requires a PVM subdirectory
within your home directory.

S lOO2-10M133.01 meJ<a

1

PVMConsole

There is no PVM console in the Meiko implementation. Many of the functions
of the PVM console are available from resource management commands:

Console Meiko Alternatives
Commands

conf r info(l) and pandora(l) can both be used to view the
configuration of your machine (the partitions, their size,
and their availability).

add/delete Partition sizes can be changed by the System
Administrator using rcontrol(lm) or pandora(1).

mstat The status of processors is available from pandora(1).

ps -a Use ps(l) or gps(l).

spawn Use prun(l) to spawn hostless applications, or execute
the host of a hosted PVM application.

kill/halt Use gkill(l) to tenninate processes.

Performance Considerations

meI<o Introduction

The host process (in a hosted PVM application) will nonnally execute in your
login partition under the control of your command shell. In general the proces
sors in the login partitions are heavily loaded and running tasks for more than one
user. Applications in which the host process fonns a key role in your application
may therefore suffer significant and unpredictable perfonnance variations. There
are two solutions to this problem: either code the host process so that it does not
take an active part in the overall application (i.e. limit it to a program loader), or
code the application as a SPMD application so that all processes are executed to
gether in a single partition.

The implementation ofpvm_spawnO and pvm_mytidO include a barriersyn
chronisation. After spawning the node tasks, pvm spawnO will suspend the
host process until all the slave processes have executed pvm_mytidO. This im
plicit synchronisation is included to ensure that no process tries to communicate
before the target process has initialised its CS-2 communication environment. To
ensure that the application begins as quickly as possible all the node processes
must include at the beginning of the program a call to pvm_mytidO.

9

1

Compilation of PVM Programs

10

PVM programs must be linked with the low level Elan communications libraries
and the resource management library.

Use the following command line to compile C programs:

user@cs2: cc -0 program -I/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib program.c \
-lpvm3 -lrms -lew -lelan -lsocket -lnsl

Use the following command line to compile Fortran programs:

user@cs2: f77 -0 program -I/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
program.F -lfpvm3 -lpvm3 -~rms -~ew -~elan -lsocket -lns~

Note that the -R option specifies a search path to the run-time linker to locate
dynamic libraries. If you faii to inciude this option you will get the following er
ror:

ld.so.l:program:fatal:librms.so.2: can't open file: errno=2
Killed

To overcome this problem you must either recompile your application or include
in your LD_LIBRARY_PATH environment variable the pathname for the Meiko
library directory.

Notes for User of SunPro Fortran77

When using the SunPro F77 compiler you must specify both the Meiko library
directory and the SunPro library directory after your compiler driver's - R option,
or you can omit the - R option and set the LD _ RUN _PAT H environment variable
before compilation to include just the Meiko library directory.

S lOO2-10MI33.01 meJ<a

1

Header Files

Function prototypes and constants used by the PVM functions are defined in two
header files, pvm3. hand fpvm3. h, which are used by the C and Fortran librar
ies respectively. Both files are in the directory /opt/MEIKOcs2/in
clude/PVM.

You should include the appropriate file in your program by using the preproces
sor's #incl ude directive near the beginning of your program file.

Fortran programmers can use a filename suffix of .F for their program files which
will instruct most compiler drivers to automatically pass your program through
the pre-processor- see the example Fortran programs in /opt/MEIKOc
s2/example/PVM.

Executing PVM Applications

meI<D Introduction

You execute a hosted PVM application by executing the host process directly
from your command shell. The host will liaise with the Resource Manager and
spawn the node processes:

I user@cs2: master

You execute a SPMD application by executing the program from your command
shell. This program will then liaise with the Resource Manager and spawn addi
tional copies of itself:

I user@cs2: spmd

You execute a hostless application using prun or some other loader program.
Note that the number of instances loaded by prun must be compatible with the
number of processes specified to pvm _ spa wnO; the number of processes loaded
by prun must always be 1 larger than the argument to pvm spawnO. The fol
lowing example loads 5 instances of the SPMD application:-

user@cs2: prun -nS -ppara~~e~ node

11

1

12

In all cases you specify your resource requirements with environment variables
(prun will read these environment variables but also allows you to specify your
requirements on the command line, as shown in the previous example). The fol
lowing environment variables may be specified:

Variable Meaning

RMS PARTITION The name of the partition that will host the node
processes.

RMS BASEPROC The id of the first processor in the partition that you
want to use (usually this is the first available processor)

RMS NPROCS The number of processors required in the target
partition.

RMS MEMORY The minimum memory requirement for each processor,
suffixed by K or M (for kilobytes and megabytes
respectively).

RMS STDIOLOG Preserve 10 from each process (don't delete temporary
files) if this variable is set.

RMS VERBOSE I Set level of status reporting.

For example, to specify that all node processes are spawned in the parallel
partition you need to ensure that the RMS_PARTITION environment variable is
set before you execute your PVM application. A C-shell user would set the var
iable as follows:

I user@cs2: setenv RMS_PARTITION para11e1

You can check the availability of your system and identify its partitions with the
rinfo command.

SlOO2-10M133.01 meJ<a

Master/Slave Example

Example Programs 2

A number of example programs are distributed in /opt/MEIKOcs2/exam
ple/PVM. The following text describes how 2 of these programs are compiled
and executed on the CS-2, and explains their interaction with the resource man
agement system and the Elan Widget library.

This example consists of two programs, a master and a slave. The example is
started by executing the master program, which prompts for a number of slave
processes. The slaves are spawned within a CS-2 partition and are passed a data
vector from the master. Each slave returns a result to the master which is dis
played on screen.

Figure 2-1 ~asterlSlave Communications

13

2

14

Compiling the Example

Before compiling or editing the example programs you should copy them into
your home directory so that your work does not conflict with the work of others.

user@cs2 mkdir -/PVM
user@cs2 cp /Opt/MEIKOcs2/example/PVM/* -/PVM
user@cs2 cd -/PVM

Both programs can be compiled using the makefile that is distributed with the ex
ample programs. Type the following command to compile the C version of this
example:

I user@cs2 make master s1ave

The makefile executes the following compiler command lines (which you can
type yourself if you prefer not to use make):

user@cs2 cc -I/opt/MEIKOcs2/include/PVM -0 masterl\
masterl.c -L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
-lpvm3 -lr.ms -lew -lelan -lsocket -lnsl

user@cs2 cc -9 -I/opt/MEIKOcs2/include/PVM -0 slavel\
slavel.c -L/opt/MEIKOcs2/lib -R/opt/MEIKOcs2/lib \
-lpvm3 -lr.ms -lew -lelan -lsocket -lnsl

Starting the Example

You specify your resource requirements by setting environment variables. In the
following C-shell example the parallel partition is identified as the target for the
node processes:

user@cs2 setenv RMS_PARTITION parallel

SlOO2-10M133.01 mS<O

2

You execute the example by executing the master program:

user@cs2 masterl
How many slave programs (1-32)?

You can specify that up to 32 slave processes are spawned by the master, but note
that the program will fail if you ask for more processes than can be supported by
your nominated partition. If the partition is too small (or unavailable) you will
get an appropriate error message from the resource management system. Note
also that your program may be queued (and appear to hang) if the partition con
tains resource that is temporarily allocated to other tasks. Use r inf 0 to check
the availability and size of your partitions.

The example should complete soon after it is started and confirm that a result was
received from all the slaves.

Detailed Description of the Programs

mei<D Example Programs

This example defines a simple 2 segment application.

The master process performs the role of a program loader; it includes within it
embedded calls to the resource management system which are used to allocate
resource and execute the slave processes. The master process executes in your
login partition on the processor that is hosting your command shell. The slave
processes execute in some other partition (identified by the RMS_PARTITION
environment variable).

The master process begins by executing pvrn_rnytid() (which for the master
process actually does nothing but return the process tid).

After fetching a process count from the user a number of slave processes are
spawned with pvrn_spawnO. It is here that the master process interfaces with
the resource management system - the request for resource and the execution
of the slave processes is handled within pvrn spawnO by a call to rrns
forkexecvpOl (a function in librms theresource management user lnter
face library). pvrn_spawnO also defines the underlying communication chan
nels (implemented on Elan Widget Library TPORTs) and includes an implicit
barrier that will delay execution of the master until all the slave processes are

15

2

SPMD Example

16

running and ready to communicate. This barrier is a safeguard to ensure that no
inter-process communications may take place before the underlying communica
tion mechanisms (TPORTs) are in place on all processes.

Initialisation of the communication channels within the slave processes is han
dled during the call to pVffi_ffiytidO. This function attaches the slave process
to the Elan network and uses the Widget library functions to initialise the TPORT
communication channels. Only when all the slave processes have executed this
function will they and the master be released from their barrier synchronisation.

The remainder of the example programs demonstrates PVMs message passing
functions. The master builds a packet that is multicast to all the slaves. Each slave
then perfonns some simple calculation, some one-to-one inter-process commu
nications, and returns a result to the master (which is displayed on screen). All
processes execute pVffi_exitO before finishing.

This example is essentially the same as the master/slave example described ear
lier, except in this example the code for both is defined by a single file. Using this
method of coding allows the program to be executed as either a hosted or a host
less application.

1. Any of the environment variables supported by rms_forkexecvpO may be used to specify the
requirements of your parallel application. The most useful variable is RMS_PARTITION. which
identifies your preferred partition. See the documentation for rms_forkexecvpO for the full list of
environment variables.

SlOO2-10M133.01 mei<a

2

Hosted SPMD Application

To run as a hosted application you execute the program directly from your com·
mand shell. (As with the previous master/slave example you may prefer to spec·
ify your resource requirements for the node processes by setting the appropriate
environment variables.)

user@cs2 setenv RMS PARTITION para11e1
user@cs2 spmd
me 3 my tid = xu
me 2 my tid yyy
me 1 my tid = ZZZ

me 0 my tid = 0
token ring done

The program begins with a call to pvm _ myt idO which identifies this process as
the first in the application and causes it to execute the host-specific code. The
host's code includes a call to pvm_spawnO which spawns the node processes,
initialises the host's communication ports, and barrier synchronises until the
node processes are ready (Le. until they have all successfully executed pvm
mytidO). Following the initialisation all processes (host and nodes) execute the
same code and cooperate to complete the task.

Note that when using the hosted model the host process runs in your login parti
tion and the node processes run in some other partition (which you will usually
identify with the RMS _P ARTITION environment variable).

Hostless SPMD Application

meI<o Example Programs

To run as a hostless application you load all instances of the parallel application
by using a loader program, such as prun. When using prun all the processes
are loaded into the same partition, and all begin executing at the same time.

11

2

18

The following example will spawn 4 instances of the SPMD program onto the
parallel partition1:

user@cs2 prun -n4 -pparallel spmd
me 3 my tid = xu
me 2 my tid = YXY
me 1 my tid = zzz
me 0 my tid = 0
token ring done

The process with tid 0 assumes the role ofa master; a call to pvm mytidO iden
tifies the master process and causes it to branch into the master-specific part of
the program. As with the hosted application the master program executes pvm_
spa wnO, but in this case the function's behaviour changes - it does not attempt
to spawn the node processes (which have already been spawned by prun). When
used within a hostless application pvm _ spa wnO initialises the master's commu
nication mechanism, barrier synchronises with the remaining node processes,
and returns to the caller the array of tids for the application.

The node processes begin executing immediately prun completes, however
these processes will stop as soon as they reach the call to pvm mytidO - re
member that for node processes this function initialises the process's communi
cation ports and then barrier synchronises.

When the barrier synchronisation in the master (pvm_spawnO) and nodes
(pvm mytidO) completes all processes resume execution. The master com
pletes its initialisation and then continues by executing the same code as the
nodes. All processes then cooperate to complete the task.

Note that when using the hostless model all processes (host and node) execute in
the same partition, which is usually identified either as an argument to prun or
by setting the RMS_PARTITION environment variable.

1. The SPMD program is assumed to specify 3 node processes to pvm_spawnO.

S lOO2-10M133.01 meJ<o

2

Program Compilation

mei<D Example Programs

The program can be compiled with the supplied makefile (the same compilation
procedure is used for either hosted or hostless methods of execution):

user@cs2 make spmd

19

2

20 SlOO2-10M133.01 meJ<.o

Reference Manual 3

This chapter contains the reference manual pages for all the functions that are de
fined in this library. The manual pages are also available on-line for use with the
man command.

Each function (or function group) is described on a separate page; the pages are
ordered alphabetically.

21

3

pvm intro

Description

Organisation

Hosted vs Hostless

Compiling/running

22

Parallel Virtual Machine System Version 3.2

The CS-2 implementation of PVM makes the high performance communication
capabilities of the CS-2 available to PVM application programs.

• CS2-PVM does not run in a mixed host environment.

• User programs are written in C, C++ or Fortran and access PVM through
library routines (libpvm3.a and libfpvm3.a).

• The Meiko Resource Management System provides process control whereas
the communication routines use the Elan widget tport layer.

• Both hosted (master/slave) and hostless (SPMD) applications are supported in
this release.

The distinguishing features of this release (Meiko's l.3 release) are:

No PVM daemons (pvmd) need to be spawned. The functionality of pvmd is pro
vided by the Resource Management System. The resource manager must be
available before any PVM applications can be run. CS2-PVM currently cannot
run in a mixed host environment.

Both hosted (master/slave) and hostless (SPMD) applications are supported.
Hosted applications are initiated by executing the host directly from your com
mand shell; this then spawns (via pvm _ spawnO) a number of identical node
processes into a CS-2 partition. Hostless applications consist of a number of
identical SPMD programs that are spawned using a program loader such as
prun(1).

PVM applications should be linked with libpvm3.a and libfpvm3.a for C and For
tran programs respectively. Additionally applications need to be linked with the
resource management library (librms.a), the CS-2 communications libraries
(libew.a and libelan.a), and the libsocket.a and libnsl.a libraries. For example:

user@cs2: cc -0 master I/opt/MEIKOcs2/inc~ude \
-L/opt/MEIKOcs2/~ib -R/opt/MEIKOcs2/1ib master.c \
-~p~ -~r.ma -~ew -lelan -lsocket -lnsl

See also the examples in /opt/MEIKOcs2/exarnple/PVM.

S lOO2-10M133.01 meJ«)

Process control

Message passing

PVM console

Debugging

meI<o Reference Manual

3

Process control is provided by the Resource Management System, primarily to
spawn (and terminate) PVM tasks. Typically a master task calls pvrn_spawnO
specifying the (slave) task name and the number of copies to be spawned. For ex
ample:

pvm_spawn(lfslave", (char**)O, 0, Iflf, nproc, tids);

The master then negotiates with the resource manager to spawn the tasks and set
up the CS-2 environment. By default tasks are spawned on the partition identified
by your System Administrator. To spawn tasks on another partition use the envi
ronment variable RMS_PARTITION to specify the partition name. pvm_
spawnO is restricted in that it can only be called once in an application. Note
also that pvm_spawnO tries to synchronise with the slave/node tasks via pvm_
rnytidO; these tasks must therefore call pvm_rnytidO before any otherPVM
calls. Likewise before exiting all tasks must call pvrn _ exi to, which synchro
nises tasks before they exit.

pvm_sendO, pvm_recvO, pVffi_nrecvO, pvrn_rncastO & pvmyrobeO
are all implemented on Elan Widget Library tports.

PVM console is not supported, although the Resource Management System util
ity r inf 0 can provide similar functionality.

The Resource Management Library allows tasks to be spawned under a debug
ger. When debugging the resource manager does not run spawned tasks directly
but does instead executes a shell-script that spawns the task via a debugger. The
following example spawns nproc instances of the script $HOME/pvrn3/ lib/
debugger which can run the task under a debugger:

pvm_spawn(lfslave lf , (char**)O,PvrnTaskDebug,lflf,nproc,tids);

The debugger script can run a task under any available debugger. For instance to
debug this task with TotalView use the following script:

#!/bin/csh -f
totalview $1

23

3

Group library

Other calls not supported

See Also

24

or with DBX (in an X environment) use:

#!/bin/csh -f
exec xterrn -n $1 -T $1 -Is -sb -s1100 -e dbx $1

The PVM group library is not supported, although the pvrn_barrierO call is
provided to allow all tasks to synchronise.

A number of other PVM calls are not supported. These include: pvrn_ de 1-
hostsO, pvrn_haltO, and pvrn_notifyO.

PVM 3.2 User's Guide and Reference Manual

SIOO2-10MI33.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

Synchronise processes

int info = pvm_barrier{ char *group, int count)

call pvmfbarrier(group, count, info

group Character string group name (ignored by this implementation).

count Integer specifying the number of group members that must call
pvm_barrierO before they are all released (ignored by this
implementation - all processes must call this function).

info Integer status code returned by the routine. Values less than zero
indicate an error.

3

pvrn_barrierO blocks the calling process until all members of the group have
called pvrn_barrier (). This implementation does not support PVMs group
mechanisms; pvrn_barrierO may therefore only be used to synchronise all
the processes in the application. Note that the group and count arguments are
ignored and can be NULL. pvrn_barrierO uses ew_gsyncO from the Elan
Widget library to synchronise tasks.

c:

I info pvrn_barrier(NULL, NULL);

Fortran:

I CALL PVMFBARRIER(0, 0, INFO)

Ifpvrn_barrierO is successful info will be O. If some error occurs then
info will be less than O.

The following error conditions can be returned by pvm_barrierO;

PvrnSysErr Resource management system (machine manager) was not
started or has crashed.

25

3

pvm bufinfoO

Synopsis

Synopsis

Arguments

Description

Example

26

Returns information about a message buffer

int info = pvm_bufinfo(int bufid, int *bytes,
int *msgtag, int *tid)

call pvmfbufinfo(bufid, bytes, msgtag, tid, info

bufid

bytes

Integer specifying a particular message buffer identifier.

Integer returning the length in bytes of the entire message.

msgtag Integer returning the message label. Useful when the message was
received with a wildcard msgtag.

tid Integer returning the source of the message. Useful when the
message was received with a wildcard tid.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ buf inf 00 returns information about the requested message buffer. Typ
ically it is used to detennine facts about the last received message such as its size
or source. pvm_bufinfoO is especially useful when an application is able to
receive any incoming message, and the action taken depends on the source tid
and the msgtag associated with the message that comes in first.

Ifpvm_bufinfoO is successful info will be O. If some error occurs then
info will be less than O.

c:

bufid = pvm_recv(-1, -1);
info = pvm_bufinfo(bufid, &bytes, &type, &source);

Fortran:

CALL PVMFRECV(-1, -1, BUFID)
CALL PVMFBUFINFO(BUFID, BYTES, TYPE, SOURCE, INFO)

S lOO2-10M133.01 meJ<a

Errors

See Also

mei<o Reference Manual

The following error conditions can be returned by pvm_bufinfoO.

PvrnNoSuchBuf

PvmBadPararn

pvrn _ recv(3)

specified buffer does not exist.

invalid argument.

3

2")

3

pvm configO

Synopsis

Synopsis

Arguments

Description

28 pVffi_configO

Returns information about the present virtual machine configuration

int info = pvm_config(int *nprocs, int *narch,
struct host info **hostp)

struct hostinfo {
int hi tid;
char *hi name;
char *hi_arch;
int hi_spe,ed;

} ;

call pvmfconfig(nproc, narch, dtid, name, arch,
speed, info)

nprocs Integer returning the number of processors in the partition.

narch Integer returning the number of different data fonnats being used
(always -1 for the CS-2).

hostp Pointer to an array of structures which contain information about
each host including its name, architecture, and relative speed.

dtid Integer returning pvmd task ID (always -1 for the CS-2).

name Character string returning name of this node.

arch Character string returning name of host architecture; this is "cs2"

speed Integer returning relative speed of this host. Default value is 1000.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ conf igO returns information about a CS-2 partition.

The C function returns information about the entire partition in one call. The For
tran function returns information about one host per call and cycles through all
the hosts; if pvmf conf igO is called nproc times the entire partition will be
represented.

Ifpvm_configO is successful info will beO. If some error occurs then info
will be < O.

SlOO2-10M133.01 meJ<a

Example

See Also

3

This function is useful for detennining the number of processors there are in a
partition.

c:

info = pvrn_config(&nproc, &narch, &hostp);

Fortran:

Do i=l, NPROC
CALL PVMFCONFIG(NPROC, NARCH, DTID(i), HOST(i), ARCH(i),

& SPEED(i),INFO)
Enddo

pvrn _ tasks(3)

meko Reference Manual

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

30 pvm_exitO

Tells the resource management system that this process is leaving PVM

int info = pvm_exit(void

call pvmfexit(info)

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm _ exi to tells the resource management system that this process is leaving
PVM. This routine does not kill the process, which can continue to perfonn tasks
just like any other serial process.

In hosted applications pvm _ exi to calls rms _ wai tpidO in the master task to
wait until all slave tasks have exited.

c:

I

/* Program done */
pvm_exit () ;
exit () ;

I

Fortran:

I CALL PVMFEXIT(INFO)
STOP

The following error condition can be returned by pvm _ exi to:

PvmSysErr Resource management error (machine manager unavailable)

rms _ wai tpid(3x)

S lOO2-10M133.01 mei<a

pvm freebuf()

Synopsis

Synopsis

Arguments

Description

Examples

mei<o Reference Manual

Disposes of a message buffer

int info = pvm_freebuf(int bufid

call pvmffreebuf(bufid, info

buf id Integer message buffer identifier.

info Integer status code returned by the routine. Values less than zero
indicate an error.

3

pvm freebufO frees the memory associated with the message buffer identi
fied by bufid. Message buffers are created by pvm_mkbufO, pvm_init
sendO, and pvrn_recvO.lfpvrn_freebufO is successful info will beO.1f
some error occurs then in f 0 will be < O.

pvm_freebufO can be called for a send buffer created by pvrn_mkbufO after
the message has been sent and is no longer needed.

Receive buffers typically do not have to be freed unless they have been saved in
the course of using multiple buffers, but note that Pvm _freebufO can be used
to destroy receive buffers as well. Messages that arrive but are no longer needed
can be destroyed so they will not consume buffer space.

Typically multiple send and receive buffers are not needed and the user can sim
ply use the pvm_initsendO routine to reset the default send buffer.

There are several cases where multiple buffers are useful. One example where
multiple message buffers are needed involves libraries or graphical interfaces
that use PVM and interact with a running PVM application but do not want to
interfere with the application's own communication.

When multiple buffers are used they generally are made and freed for each mes
sage that is packed. In fact, pvrn_initsendO simply does a pvrn_freebufO
followed by a pvm_rnkbufO for the default buffer.

c:

bufid = pvm_rnkbuf(PvmDataDefault);

info = pvm_freebuf(bufid);

pvrn_freebufO 3]

3

Errors

See Also

32

Fortran:

CALL PVMFMKBUF(PVMDEFAULT, BUFID

CALL PVMFFREEBUF(BUFID, INFO)

These error conditions can be returned by pvm_freebufO:

PvmBadParam giving an invalid argument value.

PvmNoSuchBuf giving an invalid bufid value.

pvm_rnkbuf(3), pvrn_initsend(3), pvm_recv(3).

S lOO2-10M133.01 meJ<o

pvm _getrbufO

Synopsis

Synopsis

Arguments

Description

Examples

See Also

meko Reference Manual

Returns the message buffer identifier for the active receive buffer

int bufid = pvrn_getrbuf(void

call pvrnfgetrbuf(bufid)

buf id Integer returning message buffer identifier for the active receive
buffer.

3

pvrn _getrbufO returns the message buffer identifier buf id for the active re
ceive buffer or 0 if there is no current buffer.

c:

I bufid pvrn_getrbuf();

Fortran:

I CALL PVMFGETRBUF(BUFID)

pvrn_getsbuf(3)

pvrn....getrbufO 33

3

Synopsis

Synopsis

Arguments

Description

Examples

See Aiso

34 pvrn-&etsbufO

Returns the message butTer identifier for the active send butTer

int bufid = pvm_getsbuf(void

call pvmfgetsbuf(bufid)

buf id Integer returning message buffer identifier for the active send buffer.

pvm_getsbufO returns the message buffer identifier bufid for the active
send buffer or 0 if there is no current buffer.

c:

I bufid

Fortran:

I CALL PVMFGETSBUF(BUFID)

pvm _getrbuf(3)

SlOO2-10M133.01 mei<a

pvm initsendO

Synopsis

Synopsis

Arguments

Description

mekD Reference Manual

Clear default send buffer and specify message encoding

int bufid = pvm_initsend(int encoding

call pvmfinitsend{ encoding, bufid)

encoding

bufid

Integer specifying the next message's encoding scheme.

Options in Care:

Encoding value MEANING

PvmDataDefault 0 XDR

PvmDataRaw 1 no encoding

PvmDataInPlace 2 data left in place

Option names are shortened in Fortran to:

Encoding value

PVMDEFAULT 0

PVMRAW 1

PVMINPLACE 2

MEANING

XDR

no encoding

data left in place

Integer returned containing the message buffer identifier.
Values less than zero indicate an error.

3

pvm _ ini t sendO clears the send buffer and prepares it for packing a new mes
sage. The encoding scheme used for the packing is set by encoding, which for
CS2-PVM defaults to PvmDataRaw since all CS-2 nodes are homogeneous.

PvmDatalnPlace encoding specifies that data be left in place during packing.
The message buffer only contains the sizes and pointers to the items to be sent.
When pvm _ sendO is called the items are copied directly out of the user's mem
ory. This option decreases the number of times a message is copied at the expense

35

3

Examples

Errors

See Also

36

of requiring the user to not modify the items between the time they are packed
and the time they are sent. The PvrnDataInPlace is not implemented in the
version 3.2.

Ifpvm_initsendO is successful then bufid will contain the message buffer
identifier. If some error occurs then buf id will be < O.

c:

bufid = pvm_initsend(PvmDataDefault);
info = pvm_pkint(array, 10, 1);
msgtag = 3;
info = pvm_send(tid, msgtag);

Fortran:

CALL PVMFINITSEND(PVMRAW, BUFID
CALL PVMFPACK(REAL 4 , DATA, 100, 1, INFO)
CALL PVMFSEND(TID, 3, INFO)

These error conditions can be returned by pvm_initsendO:

PvmBadParam giving an invalid encoding value

P vmN oM em Malloc has failed. There is not enough memory to create the
buffer.

SlOO2-10M133.01 m£i<a

pvm killO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

mei<o Reference Manual

Terminates a specified PVM process

int info = pvm_kill(int tid

call pvmfkill(tid, info

3

tid Integer task identifier of the PVM process to be killed (not yourselt).

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_killO sends a terminate (SIGTERM) signal to the PVM process identi
fied by tid. If pvm _ kill 0 is successful in f 0 will be O. If some error occurs
then info will be < O.

pvm killO is not designed to kill the calling process. To kill yourself in C call
pvm_exitO followed by exitO. To kill yourself in Fortran call pvrnfexitO
followed by stop.

C:

I info pvm kill (tid);

Fortran:

I CALL PVMFKILL(TID, INFO)

These error conditions can be returned by pvm_killO:

PvmBadPararn giving an invalid tid value.

PvmSysErr internal error.

pvm _ exi t(3), Meiko Resource Management System document set.

31

3

Synopsis

Synopsis

Arguments

Examples

38

Multicasts the data in the active message buffer to a set of tasks

int info = pvm_rncast(int *tids, int ntask, int rnsgtag

call pvmfrncast(ntask, tids, rnsgtag, info)

ntask Integer specifying the number of tasks to be sent to.

tids Integer array of length ntask containing the task IDs of the tasks
to be sent to.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~O.
It allows the user's program to distinguish between different kinds
of messages.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_rncastO multicasts a message stored in the active send buffer to ntask
tasks specified in the tids array. The message is not sent to the caller even if
listed in the array of tids. The content of the message can be distinguished by
rnsgtag. If pvrn_rncastO is successful info will be O. If some error occurs
then info will be < O.

The receiving processes can call either pvm_recvO or pvm_nrecvO to re
ceive their copy of the multicast. pvm_rncastO is asynchronous and computa
tion on the sending processor resumes as soon as the message is safely on its way
to the receiving processors. This is in contrast to synchronous communication,
during which computation on the sending processor halts until the matching re
ceive is executed by the receiving processor.

On the CS-2 pvm_rncastO uses the high speed interconnect via the tport layer
in the Elan Widget library.

C:

info pvm_initsend(PvrnDataRaw);
info pvrn_pkint(array, la, 1);
rnsgtag = 5;
info = pvm_rncast(tids, ntask, rnsgtag);

S lOO2-10MI33.01 m8<a

Errors

See Also

meko Reference Manual

Fortran:

CALL PVMFINITSEND{ PVMDEFAULT)
CALL PVMFPACK(REAL4, DATA, 100, 1, INFO
CALL PVMFMCAST{ NPROC, TIDS, 5, INFO)

These error conditions can be returned by pvm_mcast():

PvmBadParam

PvmSysErr

PvmNoBuf

giving a msgtag < O.

Resource management system error.

no send buffer.

EW _ TPORT(3x), Meiko Elan Widget library documentation set.

3

39

3

pvm mkbufO

Synopsis

Synopsis

Arguments

Description

40

Creates a new message buffer.

int bufid = pvm_mkbuf(int encoding

call pvmfmkbuf(encoding, bufid)

encoding

bufid

Integer specifying the next message's encoding scheme.

Options in Care:

Encoding value MEANING

PvmDataDefault 0 XDR

PvmDataRaw 1 no encoding

PvmDataInPlace 2 data left in place

Option names are shortened in Fortran to:

Encoding value

PVMDEFAULT 0

PVMRAW 1

PVMINPLACE 2

MEANING

XDR

no encoding

data left in place

Integer returned containing the message buffer identifier.
Values less than zero indicate an error.

pvm mkbufO creates a new message buffer and sets its encoding status to en
coding. If pvm mkbufO is successful then bufid will be the identifier for the
new buffer, which can be used as a send buffer. If some error occurs then buf id
will be < O.

Encoding in CS2-PVM defaults to PvmDataRaw since all CS-2 nodes are ho
mogeneous.

PvmDatalnP lace encoding specifies that data be left in place during packing.
The message buffer only contains the sizes and pointers to the items to be sent.
When pvm _ sen dO is called the items are copied directly out of the user's mem-

S lOO2-10M133.01 meJ<a

Examples

meI<o Reference Manual

3

ory. This option decreases the number of times a message is copied at the expense
of requiring the user to not modify the items between the time they are packed
and the time they are sent. The PvrnDatalnP lace option is not implemented
in this version 3.2.

pvm _mkbufO is required if the user wishes to manage multiple message buffers
and should be used in conjunction with pvm_freebufO. pvm_freebufO
should be called for a send buffer after a message has been sent and is no longer
needed.

Receive buffers are created automatically by the pvm _ re evO and pvrn _
nreevO routines and do not have to be freed unless they have been explicitly
saved with pvm_setrbufO.

Typically multiple send and receive buffers are not needed and the user can sim
pI y use the pvm _in its e n dO routine to reset the default send buffer.

There are several cases where multiple buffers are useful. One example where
multiple message buffers are needed involves libraries or graphical interfaces
that use PVM and interact with a running PVM application but do not want to
interfere with the application's own communication.

When multiple buffers are used they generally are made and freed for each mes
sage that is packed.

c:

bufid = pvm_mkbuf(PvrnDataRaw);
/* send message */
info = pvm_freebuf(bufid);

Fortran:

CALL PVMFMKBUF(PVMDEFAULT, MBUF
* SEND MESSAGE HERE

CALL PVMFFREEBUF(MBUF, INFO)

41

3

Errors

See Also

42

These error conditions can be returned by pvrn_rnkbufO:

PvmBadPararn giving an invalid encoding value.

PvmNoMern Malloc has failed. There is not enough memory to create
the buffer.

pvm _ ini t send(3), pvrn_ freebuf(3)

SlOO2-10M133.01 meJ<a

pvm mstatO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

mekD Reference Manual

3

Returns the status of a partition on the CS-2

int mstat = pvm_mstat(char *host

call pvmfmstat(host, mstat

host

mstat

Character string containing the host name. This is ignored on the
CS-2 and a NULL value can be passed.

Integer returning machine status:

Value Meaning

PvmOk

PvmHostFail

host is OK

partition is down

pvm _mstatO returns the status mstat of a partition on the CS-2; the partition
is specified by the RMS_PARTITION environment variable or (if the environ
ment variable is not set) it will be the default partition specified by your System
Administrator.

c:

I rnstat pvm_mstat(NULL };

Fortran:

I CALL PVMFMSTAT(0, MSTAT)

These error conditions can be returned by pvm _ms tat 0;

PvmSysErr

PvmHostFail

Internal error.

partition is down.

pvm _ conf ig(3), Meiko Resource Management System document set.

43

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

44

Returns the tid of the calling process

int tid = pvm_mytid(void

call pvmfrnytid(tid)

tid Integer returning the task identifier of the calling PVM process. Values
less than zero indicate an error.

pvm_rnytidO enrols this process into PVM on its first call. pvrn_rnytidO re
turns the tid of the calling process and can be called multiple times in an appli
cation.

Any PVM system call (not just pvrn_ rnyt idO) will enrol a task in PVM if the
task is not enrolled before the call.

When executed by node processes pvm rnytidO includes an implicit barrier (a
call to ew baselni to) that will block the calling process until all other proc
esses in the application have also executed the barrier. This means that a node
process is delayed until all the other nodes have initialised, and until the host
process has called pvm spa wnO. For host processes pvm myt idO simply re-- -
turns a tid (the barrier does not occur until the host executes pvm_spawn(»).

c:

I tid

Fortran:

I CALL PVMFMYTID(TID)

This error condition can be returned by pvrn_rnytidO:

P vmS y s Err Resource management system error.

pvmyarent(3), ew_baselnit(3x), ew_gsync(3x), MeikoElan Widgetli
brary documentation set.

SIOO2-10MI33.01 meJ<a

pvm nrecvO

Synopsis

Synopsis

Arguments

Description

meI<o Reference Manual

3

Non-blocking receive

int bufid = pvrn_nrecv(int tid, int rnsgtag

call pvrnfnrecv(tid, rnsgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~ o.
buf id Integer returning the value of the new active receive buffer

identifier. Values less than zero indicate an error

pvrn_nrecvO checks to see if a message with label msgtag has arrived from
tid and also clears the current receive buffer, if any. If a matching message has
arrived pvrn _ nrecvO immediately places the message in a new active receive
buffer, and returns the buffer identifier in bufid.

If the requested message has not arrived then pvrn_nrecvO immediatelyre
turns with a 0 in bufid. If some error occurs bufid will be < O.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -I and msgtag is defined by the user, then pvrn _ nrecvO will
accept a message from any process which has a matching msgtag. If msgtag
= -1 and tid is defined by the user, then pvm nrecvO will accept any message
that is sent from process tid. Iftid=-I andmsgtag=-1, thenpvrn nrecvO
will accept any message from any process.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

pvrn _nrecvO is non-blocking in the sense that the routine always returns im
mediately either with the message or with the information that the message has
not arrived yet.

pvrn_nrecvO can be called multiple times to check if a given message has ar
rived yet. In addition the blocking receive pvrn _ recvO can be called for the
same message if the application runs out of work it could do before the data ar
rives.

45

3

Example

Errors

See Also

46

Ifpvm_nrecvO returns with the message then the data in the message can be
unpacked into the user's memory using the unpack routines.

On the CS-2, pvm _ nrecvO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

C:

tid = pv.m-parent();
msgtag = 4;
arrived = pv.m_nrecv(tid, msgtag);
if (arrived> 0)

info = pv.m_upkint(tid_array, 10, 1);
else

/* go do other computing */

Fortran:

CALL PVMFNRECV(-1, 4, ARRIVED)
IF (ARRIVED .gt. 0) THEN

CALL PVMFUNPACK(INTEGER4, TIDS, 25, 1, INFO)
CALL PVMFUNPACK(REAL8, MATRIX, 100, 100, INFO)

ELSE
* GO DO USEFUL WORK

ENDIF

These error conditions can be returned by pvm_nrecvO:

PvmBadParam giving an invalid tid value or msgtag.

PvmSysErr Resource management system error.

pvm _ recv(3), pvm _ unpack(3), pvm _ send(3), pvm _ mcast(3), EW_
TPORT(3x), Meiko Elan Widget library documentation set.

S lOO2-10M133.01 meJ<a

pvmJlack

Synopsis

Synopsis

Arguments

mei<D Reference Manual

3

Pack the active message buffer with arrays of prescribed data type

int info
int info
int info
int info

= pvm-packf(const char *fmt, ...)
pvm-pkbyte(char *xp,int nitem,int stride
pvm_pkcplx(float *cp,int nitern,int stride)
pvm-pkdcplx(double *zp, int nitern,

int info

int stride)

pvm-pkdouble(double *dp, int nitern,
int stride)

int info pvm-pkfloat(float *fp,int nitern,int stride)
int info pvm-pkint(int *ip,int nitern,int stride)
int info = pvm-pkuint(unsigned int *ip, int nitern,

int stride)

int info pvm-pkushort(unsigned short *ip,int nitern,
int stride)

int info pvm-pkulong(unsigned long *ip,int nitern,
int stride)

int info = pvm-pklong(long *ip,int nitern,int stride)
int info = pvm-pkshort(short *jp,int nitern,int stride)
int info = pvm-pkstr(char *sp)

call pvmfpack(what, xp, nitern, stride, info)

frnt Printf-like format expression specifying what to pack. (See
discussion).

ni tern The total number of items to be packed (not the number of bytes).

str ide The stride to be used when packing the items. For example, if
stride = 2 in pvrn-pkcplxO, then every other complex number
will be packed.

xp Pointer to the beginning of a block of bytes. Can be any data type, but
must match the corresponding unpack data type.

41

3

Description

48 pvrn_pack

cp Complex array at least ni tern* str ide items long.

zp Double precision complex array at least nitern*stride items.

dp Double precision real array at least nitern*stride items long.

fp Real array at least nitem*stride items long.

ip Integer array at least nitern*stride items long.

jp Integer*2 array at least ni tern* str ide items long.

sp Pointer to a null terminated character string.

wha t Integer specifying the type of data being packed.

what options:

STRING

BYTEl

INTEGER2

INTEGER4

o
1

2

3

REAL4

COMPLEX8

REAL8

4

5

6

COMPLEXl6 7

inf 0 Integer status code returned by the routine. Values less than zero
indicate an error.

Each of the pvm_pk*O routines packs an array of the given data type into the ac
tive send buffer. The arguments for each of the routines are a pointer to the first
item to be packed, ni tern which is the total number of items to pack from this
array, and stride which is the stride to use when packing.

An exception is pvm_pkstrO which by definition packs a NULL terminated
character string and thus does not need nit em or s t ride arguments. The For
tran routine pvmfpack(STRING, ...) expects nitern to be the number of char
acters in the string and s t ride to be 1.

If the packing is successful, inf 0 will be O. If some error occurs then info will
be<O.

A single variable (not an array) can be packed by setting ni tern = 1 and
stride = 1.

SlOO2-10M133.01 meJ<a

mei<o Reference Manual

3

The routine pvmyackfO uses a printf-like fonnat expression to specify what
and how to pack data into the send buffer. All variables are passed as addresses
if count and stride are specified otherwise. variables are assumed to be val
ues. A BNF-like description of the fonnat syntax is:

format : null I init I format fmt
init : null I '%' '+'
fmt : '%' count stride modifiers fchar
f char : 'c ' I'd' I 'f ' I ' x ' I 's'
count: null I [0-9]+ I '*'
stride: null I '.' ([0-9]+ I '*'
modifiers : null I modifiers rnchar
mchar

Fonnats:

'h' I 'l' I 'u'

+
c
d
f

means initsend - must match an int (how) in the param list.
pack/unpack bytes
integers
float

x complex float
s string

Modifiers: h short (int)
1
u

long (int. float. complex float)
unsigned (int)

Messages should be unpacked exactly like they were packed to ensure data in
tegrity. Packing integers and unpacking them as floats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts. Packing 10 integers and 100 floats then trying to unpack only 3 integers
and the 100 floats will also fail.

49

3

Example

Errors

See Also

50

c:

info = pvrn_initsend(PvrnDataDefault);
info pvrn_pkstr("initial data");
info ~ pvrn_pkint(&size, 1, 1);
info = pvrn_pkint(array, size, 1);
info - pvrn_pkdouble(matrix, size*size, 1);
msgtag >= 3 ;
info pvrn_send(tid, rnsgtag);
int count, *iarrYi
double darry[4];
pvmyackf("%+ %d %*d %4lf",PvrnDataRaw,count,count,iarry,darry);

Fortran:

CALL PVMFINITSEND (PVMRAW, INFO)
CALL PVMFPACK(INTEGER4, NSIZE, 1, 1, INFO)
CALL PVMFPACK(STRING, 'row 5 of NXN matrix', 19, 1, INFO)
CALL PVMFPACK(REALa, A(5,1), NSIZE, NSIZE , INFO
CALL PVMFSEND(TID, MSGTAG, INFO)

The following error conditions can be returned by these functions:

PvmNoMern

PvmNoBuf

Malloc has failed. Message buffer size has exceeded the
available memory on this host.

There is no active send buffer to pack into. Try calling pvm_
ini t sendO before packing message

pvm _ unpack(3), pvm _ ini t send(3)

SlOO2-10M133.01 meJ<o

pvm .JlarentO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

rneko Reference Manual

3

Returns the tid of the process that spawned the calling process

int tid = pvm-parent(void

call pvmfparent(tid)

tid Integer returns the task identifier of the parent of the calling process. If
the calling process was not created with pvm _ spawn(), then tid =
PvmNoParent.

The routine pvrnyarent() returns the tid of the process that spawned the
calling process. If the calling process was not created with pvrn _ spawn(), then
tid is set to PvmNoParent.

For hosted PVM applications the host process has the tid set to PvrnNoPar
ent. For hostless applications, the process that assumes the role of the master
has the tid set to PvrnNoParent.

c:

I tid pvrn yarent () ;

Fortran:

I CALL PVMFPARENT(TID)

The following error conditions can be returned by pvm_parentO:

PvrnNoParent The calling process was not created with pVm spawnO.

PvmSysErr Resource management system error.

51

3

pvm yerrorO

Synopsis

Synopsis

Arguments

Description

Examples

52 pvrn--PeITorO

Prints message describing the last error returned by a PVM call

int info = pvm-perror(char *msg

call pvmfperror(msg, info)

msg Character string supplied by the user which will be prepended to the
error message of the last PVM call.

info Integer status code returned by the routine. Values less than zero
indicate an error.

pvm_perrorO returns the error message of the last PVM call. The user can use
msg to add additional infonnation to the error message, for example, its location.

C:

if (pvm_send(tid, msgtag)) pvm_perror();

Fortran:

CALL PVMFSEND(TID, MSGTAG)
IF(INFO .LT. 0) CALL PVMFPERROR('Step 6', INFO)

SIOO2-10MI33.01 meJ<a

pvm J)robe()

Synopsis

Synopsis

Arguments

Description

meI<o Reference Manual

Check if message has arrived

int bufid = pvm_probe(int tid, int msgtag

call pvmfprobe(tid, msgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

3

msgtag Integer message tag supplied by the user. msgtag should be ~ O.

bufid Integer returning the value of the new active receive buffer
identifier. Values less than zero indicate an error.

pvm_probeO checks to see if a message with label msgtag has arrived from
tid. If a matching message has arrived pvm yrobeO returns a buffer identifier
in bufid. This bufid can be used in a pvm_bufinfoO call to detennine in
formation about the message such as its source and length.

If the requested message has not arrived, then pvm_probeO returns with a 0 in
buf id. If some error occurs buf id will be < O.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -1 and msgtag is defined by the user, then pvm yrobeO will
accept a message from any process which has a matching msgtag. Ifmsgtag
= -1 and tid is defined by the user, then pvm _probeO will accept any message.
that is sent from process tid. Iftid= -1 andmsgtag= -1, thenpvmyrobeO
will accept any message from any process.

pvm yrobeO can be called multiple times to check if a given message has ar
rived yet. After the message has arrived, pvm _ recvO must be called before the
message can be unpacked into the user's memory using the unpack routines.

On the CS-2, pvm yrobeO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

53

3

Examples

Errors

See Also

54 pvrn_probeO

c:

tid = pvrn-parent();
msgtag = 4 ;
-arrived = pvrn-probe (tid, msgtag);
if (arrived)

info = pvrn_bufinfo(arrived, &len, &tag, &tid);
else

/* go do other computing */

Fortran:

CALL PVMFPROBE(-1, 4, ARRIVED)
IF (ARRIVED .GT. 0) THEN

CALL PVMFBUFINFO(ARRIVED, LEN, TAG, TID, INFO)
ELSE

* GO DO USEFUL WORK
ENDIF

These error conditions can be returned by pvm _probeO:

PvmBadParam giving an invalid tid value ormsgtag.

PvmSysErr Resource Management System error.

pvm_ nrecv(3), pvm _ recv(3), pvrn_ unpack(3), EW _ TPORT(3x), Meiko
Elan Widget library documentation set.

SlOO2-10M133.01 mei<a

pvmystatO

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

Returns the status of the specified PVM process

int status = pvrn-pstat(tid

call pvmfpstat(tid, status

tid Integer task identifier of the PVM process in question.

status Integer returns the status of the PVM process identified by tid.
Status is PvrnOk if the task is running, PvmNoTask if not, and
PvrnBadPararn if the tid is bad.

pvrn _pstatO returns the status of the process identified by tid.

c:

tid = pvm-parent();
status = pvm~stat(tid);

Fortran:

CALL PVMFPARENT(TID
CALL PVMFPSTAT(TID, STATUS

The following error conditions can be returned by pvrn_pstatO:

PvmBadPararn Bad Parameter most likely an invalid tid value.

PvmSysErr Internal error.

PvmNoTask Task not running.

Meiko Resource Management System document set.

3

55

3

pvm recvO

Synopsis

Synopsis

Arguments

Description

56

Receive a message

int bufid = pvm_recv(int tid, int msgtag

call pvmfrecv(tid, msgtag, bufid)

tid Integer task identifier of sending process supplied by the user.

rnsgtag Integer message tag supplied by the user. rnsgtag should be ~o.

bufid Integer returns the value of the new active receive buffer identifier.
Values less than zero indicate an error.

pvrn_ recvO blocks the process until a message with label rnsgtag has arrived
from tid. pvm _ recvO then places the message in a new active receive buffer,
which also clears the current receive buffer.

A -1 in msgtag or tid matches anything. This allows the user the following
options. If tid = -1 and msgtag is defined by the user, then pvm recvO will
accept a message from any process which has a matching msgtag. Ifmsgtag
= -1 and tid is defined by the user, then pvrn_recvO will accept any message
that is sent from process tid. If tid = -1 and rns gt ag = -1. then pvrn_ r e cvO
will accept any message from any process.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

Ifpvrn_recvO is successful, bufid will be the value of the new active receive
buffer identifier. If some error occurs then bufid will be < O.

pvrn_recvO is blocking which means the routine waits until a message match
ing the user specified tid and rnsgtag values arrives. If the message has al
ready arrived then pvm_recvO returns immediately with the message.

Once pvrn_recvO returns, the data in the message can be unpacked into the us
er's memory using the unpack routines.

On the CS-2, pvrn _ recvO uses the high-speed interconnect via the tport layer
in the Elan Widget library.

SlOO2-10MI33.01 meJ<o

Examples

Errors

See Also

me1<o Reference Manual

c:

tid = pvm-parent();
rnsgtag = 4 ;
bufid = pvm_recv(tid, rnsgtag);
info pvm_upkint(tid_array, 10, 1);
info pvm_upkint(problem_size, 1, 1);
info pvm_upkfloat(input_array, 100, 1);

Fortran:

CALL PVMFRECV(-1, 4, BUFIO)
CALL PVMFUNPACK(INTEGER4, TIOS, 25, 1, INFO)
CALL PVMFUNPACK(REAL8, MATRIX, 100, 100, INFO

These error conditions can be returned by pvm_recvO:

PvmBadPararn giving an invalid tid value, ormsgtag <-1.

PvmSysErr Resource management system error.

pvm_nrecv(3), pvm_unpack(3), pvm_probe(3), pvm_send(3), pvm_
rncast(3), EW _ TPORT(3x).

3

57

3

Synopsis

Synopsis

Arguments

Examples

58

Immediately sends the data in the active message buffer

int info = pvm_send(int tid, int msgtag

call pvmfsend(tid, rnsgtag, info)

tid

msgtag

info

Integer task identifier of destination process.

Integer message tag supplied by the user. rnsgtag should be ~ O.

Integer status code returned by the routine.

pvm _ sendO sends a message stored in the active send buffer to the PVM proc
ess identified by tid. rnsgtag is used to label the content of the message. If
pvm _ s e ndO is successful, in f 0 will be O. If some error occurs then in f 0 will
be<O.

The pvm_send() routine is asynchronous. Computation on the sending proces
sor resumes as soon as the message is safely on its way to the receiving processor.
This is in contrast to synchronous communication, during which computation on
the sending processor halts until the matching receive is executed by the receiv
ing processor.

The PVM model guarantees the following about message order. If task 1 sends
message A to task 2, then task 1 sends message B to task 2, message A will arrive
at task 2 before message B. Moreover, if both messages arrive before task 2 does
a receive, then a wildcard receive will always return message A.

On the CS-2, pvm_send() uses the high-speed interconnect via the tport layer
in the Elan Widget library.

C:

info p~initsend(PvrnDataDefault);
info pvm_pkint(array, 10, 1);
msgtag = 3 ;
info = pvm_send(tid, rnsgtag);

SIOO2-10MI33.01 meJ«)

Errors

See Also

meko Reference Manual

Fortran:

CALL PVMFINITSEND(PVMRAW, INFO)
CALL PVMFPACK(REAL8, DATA, 100, 1, INFO)
CALL PVMFSEND(TID, 3, INFO)

These error conditions can be retumed by pvrn_send():

PvmBadPararn giving an invalid tid or a rnsgtag.

Resource management system error

3

PvmSysErr

PvmNoBuf no active send buffer. Try pvrn _ ini t sendO before send.

pvm_ini t send(3), pvrn _pack(3), pvrn _recv(3), EW _ TPORT(3x), Meiko
Elan Widget library documentation set.

59

3

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

60

Sends a signal to another PVM process

int info = pvm_sendsig(int tid, int signum

call pvmfsendsig(tid, signum, info)

tid Integer task identifier of PVM process to receive the signal.

signum Integer signal number.

info Integer status code returned by the routine.

pvm _ sendsigO sends the signal number signum to the PVM process identi
fied by tid. Ifpvm _ sendsigO is successful, info will be O. If some error oc
curs then info will be < O.

pvm sendsigO should only be used by programmers with Unix signal han
dling experience. Many library functions (and in fact the PVM library functions)
cannot be called in a signal handler context because they do not mask signals or
lock internal data structures.

On the CS-2 signals are sent using the rms_sigsendO routine from the re
source management user interface iibrary.

c:

tid = pvm-parent();
info = pvm_sendsig(tid, SIGKILL);

Fortran:

CALL PVMFBUFINFO(BUFID, BYTES, TYPE, TID, INFO);
CALL PVMFSENDSIG(TID, SIGNUM, INFO)

These error conditions can be returned by pvm_sendsigO:

PvmSysErr Internal error.

PvmBadP ar am giving an invalid tid value.

Meiko Resource Management System document set.

SIOO2-10M133.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

meko Reference Manual

Sets automatic error message printing on or ofT

int oldset = pvm_serror(int set

call pvmfserror(set, oldset

3

set Integer defining whether detection is to be turned on (1) or off (0).

oldset Integer defining the previous setting of pvrn _ serror().

pvrn serrorO sets automatic error message printing for all subsequent PVM
calls by this process. Any PVM routines that return an error condition will auto
matically print the associated error message. The argument set defines whether
this detection is to be turned on (1) or turned off (0) for subsequent calls. In the
future a value of (2) will cause the program to exit after printing the error mes
sage. pvrn _ serrorO returns the previous value of set in oldset.

c:

I info pvrn_serror(1);

Fortran:

I CALL PVMFSERROR(0, INFO)

This error condition can be returned by pVID_serror():

PvmBadParam giving an invalid set value.

61

3

pvm setrbufO

Synopsis

Synopsis

Arguments

Examples

Errors

See Also

62

Switches the active receive buffer and saves the previous butTer

int oldbuf = pvm_setrbuf(int bufid

call pvmfsetrbuf(bufid, oldbuf)

bufid Integer specifying the message buffer identifier for the new active
receive buffer.

oldbuf Integer returning the message buffer identifier for the previous
active receive buffer.

pvrn_setrbufO switches the active receive buffer to bufid and saves the pre
vious active receive buffer oldbuf. Ifbufid is set to 0 then the present active
receive buffer is saved and no active receive buffer exists.

A successful receive automatically creates a new active receive buffer. If a pre
vious receive has not been unpacked and needs to be saved for later, then the pre
vious buf id can be saved and reset later to the active buffer for unpacking.

The routine is required when managing multiple message buffers. For example
switching back and forth between two buffers. One buffer could be used to send
infonnation to a graphical interface while a second buffer could be used to send
data to other tasks in the application.

c:

I rbufl pvm_setrbuf(rbuf2);

Fortran:

I CALL PVMFSETRBUF(NEWBUF, OLDBUF)

These error conditions can be returned by pvrn _ setrbuf();

PvmBadParam giving an invalid bufid.

PvrnNoSuchBuf switching to a non-existent message buffer.

pvrn_ set sbuf(3)

SlOO2-10M133.01 meJ<a

Synopsis

Synopsis

Arguments

Description

Examples

Errors

See Also

meI<o Reference Manual

3

Switches the active send butTer

int oldbuf = pvrn_setsbuf(int bufid

call pvrnfsetsbuf(bufid, oldbuf)

bufid

oldbuf

Integer message buffer identifier for the new active send buffer.
A value of 0 indicates the default receive buffer.

Integer returning the message buffer identifier for the previous
active send buffer.

pvrn_setsbufO switches the active send buffer to bufid and saves the previ
ous active send buffer oldbuf. Ifbufid is set to 0 then the present active send
buffer is saved and no active send buffer exists.

The routine is required when managing multiple message buffers. For example
switching back and forth between two buffers. One buffer could be used to send
infonnation to a graphical interface while a second buffer could be used send
data to other tasks in the application.

c:

I sbufl pvrn_setsbuf(sbuf2);

Fortran:

I CALL PVMFSETSBUF(NEWBUF, OLDBUF)

These error conditions can be returned by pvm setsbuf () :

PvmBadPararn giving an invalid bufid.

PvrnNoSuchBuf switching to a non-existent message buffer.

pvm _ setrbuf(3)

63

3

Synopsis

Synopsis

Arguments

64

Starts new PVM processes

int numt = pvm_spawn{char *task, char **argv,
int flag, char *where,
int ntask, int *tids)

call pvmfspawn(task, flag, where, ntask, tids, numt)

task

argv

flag

Character string containing the executable file name of the PVM
process to be started. The executable must already reside on the host on
which it is to be started. The default location PVM looks in is the
current directory.

Pointer to an array of arguments to the executable with the end of the
array specified by NULL. If the executable takes no arguments, then the
second argument to pvm_spawnO is NULL.

Integer specifying spawn options. In C, f lag should be the sum of:

Option Value Meaning

PvmTaskHost i where specifies a particular host (Not
applicable to CS-2)

PvmTaskArch 2 where specifies a type of architecture
(Not applicable to CS-2)

PvmTaskDebug 4 Start up processes under debugger

PvmTaskTrace 8 Processes will generate PVM trace data. *

In Fortran, flag should be the sum of:

Option

PVMHOST

PVMARCH

PVMDEBUG

PVMTRACE

Value Meaning

2

4

8

where specifies a particular host (Not
applicable to CS-2)

where specifies a type of architecture
(Not applicable to CS-2)

Start up processes under debugger

Processes will generate PVM trace data. *

S lOO2-10MI33.01 meJ<D

Description

meko Reference Manual

where

ntask

tids

numt

3

Character string specifying where to start the PVM process. On the CS-
2 this parameter is currently ignored.

Integer specifying the number of copies of the executable to start up.

Integer array of length ntask returning the tids of the PVM processes
started by this pvm_spawnO call.

Integer returning the actual number of tasks started. Values less than
zero indicate a system error. A positive value less than ntask indicates
a partial failure. In this case the user should check the t ids array for
the error code(s).

* future extension

pvm_spawnO starts up ntask copies of the executable named task. pvm_
spawnO passes selected variables in the parents environment to children tasks.
If set, the envarPVM_EXPORTis passed. IfPVM_EXPORT contains othervar
iable names (separated by':') then they will be passed too. For example:

setenv DISPLAY myworkstation:O.O
setenv MYSTERYVAR 13
setenv PVM EXPORT DISPLAY:MYSTERYVAR

On return the array t ids contains the PVM task identifiers for each process
started. numt will be the actual number of tasks started. If a system error occurs
then numt will be < O. pvm_spawnO may be called only once.

CS2-PVM negotiates with the Meiko Resource Management System to provide
process control. For hosted applications pvm_spawnO calls rms_forkexecO
to spawn numt copies of the task on a partition. The partition is identified by the
environment variable RMS_PARTITION, or defaults to the partition specified by
the System Administrator. For hostless SPMD applications that are loaded onto
a partition with prun(1) or some other loader, the pvm spawnO executed by
the master process does not attempt to create additional processes, as they will
already be up and running having been loaded by prune

pvm _ spa wnO tries to synchronise with the slave/node tasks via pvm _myt id().
pvm_spawnO (on the master/host process) and pvm_mytidO (running on the
slaves/nodes) both include a barrier synchronisation that prevents any process

65

3

Example

Errors

See Also

66

from continuing until all the others are ready. This ensures that no communcia
tions can be initiated until the underlying communication mechanisms of all
processes are in place.

If PvmTaskDebug is set then the resource management system will start the
task(s) in a debugger. In this case, instead of executing task args it executes
$HOME/pvm3/1ib/debugger task args. The debugger is a shell script
that can run the task under a debugger such as dbx or TotalView. Note that host
less applications cannot spawn a debugger in this way.

c:

numt p~spawn("node", (char**) 0,0, "", numt, tids);
numt pvm_spawn(nnode", (char**)O,PvmTaskDebug,"",numt,tids);

Fortran:

CALL PVMFSPAWN('node',PVMDEFAULT,'0',3,TID(1),NUMT)
FLAG = PVMDEBUG
CALL PVMFSPAWN('node', FLAG, '0', 3, TID(l), NUMT)

These error conditions can be returned by pvm _ spa wnO either in n umt or in
the tids array:

PvmBadP ar am giving an invalid argument value.

P vmN 0 F i 1 e speci tied executable cannot be found. The default location
PVM looks in is the current working directory.

PvmNoMem malloc failed. Not enough memory on host.

PvmSysErr Resource management system error.

PvmOutOfRes out of resources.

Meiko Resource Management System document set, rms_forkexec(3x).

SlOO2-10M133.01 meJ<a

pvm task sO

Synopsis

Synopsis

Arguments

meI<o Reference Manual

3

Returns information about the tasks running on the CS-2

int info = pvm_tasks(int where, int *ntask, struct
taskinfo **taskp)

struct taskinfo
int ti tid;
int tiytid;
int ti host;
int ti_flag;
char *ti_a_out;

} taskp;

call pvmftasks(where, ntask, tid, ptid, dtid, flag,
aout, info)

where Integer specifying what tasks to return infonnation about. The
options are:

o for all the tasks on the virtual machine

pvmd tid for all tasks on a given host (not applicable to CS-2)

tid for a specific task

ntask Integer returning the number of tasks being reported on.

t a s kp Pointer to an array of structures which contain infonnation about
each task including its task 10, parent tid, status flag, and the name
of this task's executable file. The status flag values are: waiting for
a message, and running.

tid Integer returning task 10 of one task

ptid Integer returning parent task 10

dtid Integer returning pvrnd task 10 of host task is on.

f lag Integer returning status of task

aout Character string returning the name of spawned task. Manually
started tasks return blank.

info Integer status code returned by the routine. Values less than zero
indicate an error.

67

3

Description

Examples

Errors

See Also

68 pVffi_tasksO

pvm _ tasksO returns infonnation about tasks presently running on a partition
on the CS-2. The C function returns infonnation about the entire machine in one
call. The Fortran function returns infonnation about one task per call and cycles
through all the tasks. Thus, if where = 0, and pvmftasks is called ntask
times, all tasks will be represented. Ifpvrn_tasksO is successful, info will be
O. If some error occurs then inf 0 will be < O.

c:

I info pvrn_tasks(0, &ntask, &taskp);

Fortran:

Do i=l, NTASK
CALL PVMFTASKS(DTID, NTASK, TID(i), PTID(i), DTID(i),

, FLAG (i) , AOUT(i), INFO)
EndDo

The following error conditions can be returned by pVffi_tasksO:

PvmBadPararn invalid value for where argument.

PvmSysErr Resource management system error.

pvm _ conf ig(3), Meiko Resource Management System document set.

SlOO2-10M133.01 mei<a

Synopsis

Synopsis

Arguments

meI<o Reference Manual

3

Unpack the active message buffer into arrays of prescribed data type

int info = pvm_unpackf(canst char *frnt, 000)

int info pvm_upkbyte(char *xp,int nitem,int stride)
int info pvm_upkcplx(float *cp,int nitem,int stride)
int info pvm_upkdcplx(double *zp,int nitem,int stride)
int info pvm_upkdouble(double *dp,int nitem,int stride)
int info pvm_upkfloat(float *fp,int nitem,int stride)
int info pvm_upkint(int *ip, int nitem, int stride)
int info pvm_upkuint(unsigned int *ip, int nitem,

int info

int info

int info
int info
int info

int stride)

pvm_upkushort(unsigned short *ip, int nitem,
int stride)

pvm_upkulong(unsigned long *ip, int nitem,
int stride)

pvm_upklong(long *ip,int nitem,int stride)
pvm_upkshort(short *jp,int nitem,int stride)
pvm_upkstr(char *sp)

call pvmfunpack(what, xp, nitern, stride, info)

frnt Printf-like format expression specifying what to pack. (See
discussion).

ni tern The total number of items to be packed (not the number of bytes).

stride The stride to be used when packing the items. For example, if
str ide = 2 in pvrn _ upkcplxO, then every other complex number
will be unpacked.

xp Pointer to the beginning of a block of bytes. Can be any data type, but
must match the corresponding pack data type.

cp Complex array at least ni tern* str ide items long.

zp Double precision complex array at least ni tern* str ide items.

dp Double precision real array at least ni tern* str ide items long.

fp Real array at least nitern*stride items long.

69

3

Description

70

ip Integer array at least ni tern*stride items long.

jp Integer*2 array at least nitern*stride items long.

sp Pointer to a null terminated character string.

what Integer specifying the type of data being packed.

what options:

STRING

BYTEl

INTEGER2

INTEGER4

o
1

2

3

REAL4

COMPLEX8

REAL8

4

5

6

COMPLEX16 7

info Integer status code returned by the routine. Values less than zero
indicate an error.

Each of the pvm _ upk*O routines unpacks an array of the given data type from
the active receive buffer. The arguments for each of the routines are a pointer to
the array to be unpacked into, nitern which is the total number of items to un
pack, and stride which is the stride to use when unpacking.

An exception is pvm_upkstrO which by definition unpacks a NULL tenninat
ed character string and thus does not need ni tern or str ide arguments. The
Fortran routine pvmfunpack(STRING, ...) expects ni tern to be the number
of characters in the string and stride to be l.

If the unpacking is successful, in f 0 will be O. If some error occurs then in f 0

will be < O.

A single variable (not an array) can be unpacked by setting ni tern = 1 and
stride = l.

SlOO2-10M133.01 mS<O

meI<o Reference Manual

3

The routine pvrn _ unpackfO uses a printf-like fonnat expression to specify
what and how to unpack data from the receive buffer. All variables are passed as
addresses. A BNF-like description of the fonnat syntax is:

format : null I init I format fmt
init : null I '%' '+'
fmt : '%' count stride modifiers fchar
fchar : 'c' I'd' I 'f' I 'x' I 's'
count: null I [0-9]+ I '*'
stride: null I '.' ([0-9]+ I '*'
modifiers : null I modifiers mchar
mchar : ' h' I 'l' I ' u '

Fonnats: +
c
d
f

means initsend - must match an int (how) in the param list.
pack/unpack bytes
integers
float

x complex float
s string

Modifiers: h short (int)
1
u

long (int, float, complex float)
unsigned (int)

Messages should be unpacked exactly like they were packed to ensure data in
tegrity. Packing integers and unpacking them as floats will often fail because a
type encoding will have occurred transferring the data between heterogeneous
hosts. Packing 10 integers and 100 floats then trying to unpack only 3 integers
and the 100 floats will also fail.

71

3

Example

Errors

See Also

72

c:

info pvm_recv(tid, msgtag);
info pvm_upkstr(string);
info pvm_upkint(&size, 1, 1);
info pvm_upkint(array, size, 1);
info pvm_upkdouble(matrix, size*size, 1);

int count, *iarry;
double darry[4];
pvm_unpackf("%d", &count);
pvm_unpackf("%*d %41f", count, iarry, darry);

Fortran:

CALL PVMFRECV(TID, MSGTAG);
CALL PVMFUNPACK(INTEGER4, NSIZE, 1, 1, INFO)
CALL PVMFUNPACK(STRING, STEPNAME, 8, 1, INFO)
CALL PVMFUNPACK(REAL4, A(5,1), NSIZE, NSIZE , INFO)

The following error conditions maybe produced by these functions:

PvmNoData Reading beyond the end of the receive buffer. Most likely
cause is trying to unpack more items than were originally
packed into the buffer.

PvrnBadMsg The received message can not be decoded. Try setting the
encoding to PvrnDataDefault (see pvrn_ mkbufO).

PvmNoBuf There is no active receive buffer to unpack.

S lOO2-10M133.01 mei<a

Computing
Surface

The Elan Library

SlOO2-10M131.01 mei<G

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSToois are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft
Preliminary
Release
Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454618188

Contents

1. Elan Library . 1

Compilation. 1
libelan. 2

elan_init (), elan_fini (), _elan_fini () 5

elan_version (), elan_checkVersion () 6

elan_create(), elan_destroy(), elan_nullcap() 7

elan_attach (), elan_detach () 9

elan_addvp (), elan_removevp () 10

elan_addrt () 11
elan_dma() 12

elan_setevent(), elan_waitevevent() 15

elan_waiteventevent(), elan_waitdmaevent() 17

elan_runthread () .. 18

elan_clock () 19

2. Examples . 21

Introduction. 21
U sing with the Elan Widget Library 21

Program Description. 22
Process Initialisation. 22
Elan DMAlEvent Functionality. 22

Finalisation . 23
Compilation and Execution. 23
The Program. 24

Using with the CSN Library. 27
Program Description. 27
Compilation and Execution. 28
The Program. 28

ii

Compilation

mei<D

Elan Library 1

This chapter describes the Elan Library; the lowest level functional interface to
the Elan communications processor and foundation for the Elan Widget library
and other higher level communications libraries.

Applications using the functions in this library must be linked with libelan. a
which is installed in the directory / opt /MEIKOcs2 / lib. In addition Elan li
brary programs reference header files from the standard header file directory (/
usr/include) and /opt/MEIKOcs2/include. A suitable compile com
mand line for Elan programs is:

user@cs2: cc -0 proq -7/opt/MEIKOcs2/include \
-L/opt/MEIKOcs2/1ib proq.c -lelan

1

1

Iibelan

Synopsis

2 libelan

Elan library

#include <elan/elan.h>

libelan provides the lowest level of access to the Elan Communications Proc
essor.

Parallel Programming

Parallel programs executing under the resource management system will usually
use the functions provided by the Elan Widget library or higher level communi
cation libraries (CSN, PVM etc.) to initialise each process. This is because the
processes must execute on the resources provided by the partition managers, and
support for this is not included in libelan.

Parallel programs may however use the low level communication primitives pro
vided by libelan to implement high performance or application specific com
munication protocols. The DMA and event handling routines will therefore be of
principle interest to parallel application programmers.

Capabilities

Access to the Elan is controlled via capabilities. A capability describes a physical
section of the machine, as a range of processors, and an Elan context number
across that range. Capabilities can be created both by the resource management
code, and by user applications. When a program tries to communicate the capa
bility is validated to ensure that it is only communicating with other processes
holding the same capabilities. This provides the protection mechanism between
programs and users.

A capability is defined by the following data structures, defined in the header file
<elan/elanvp.h>:

typedef struct elan_userkey
{

int key_vals[4];
ELAN_US ERKE y ;

SlOO2-10M131.01 meJ<a

meko Elan Library

typedef struct elan_capability
{

ELAN_USERKEY cap_userkey;
int cap_context;
int capyrocess;
int cap_entries;
int cap_lowElanId;
int cap_highElanId;
int cap_routeTable;

ELAN_CAPABILITY;

1

A process can attach to the Elan using a particular capability. Other processes on
potentially different processors can then access this process's memory using the
Elan so long as they also hold the same capability.

The 128-bit random key cap_userkey ensures that capabilities cannot be
forged, cap_entries specifies the number of processes, cap_lowElanId
and cap_highElanId specify the range over which the capability is valid and
cap_routeTable specifies which route table is to be used.

Elan DMA's

The Elan supports a number of different ways of accessing a remote nodes mem
ory, the most common is the DMA processor. The DMA processor is responsible
for performing bulk data transfers; it transfers data from the source to the desti
nation by writing into the remote process's address space. At the completion of
the data transfer events can be set at the source and destination; these are the syn
chronisation mechanism used by the Elan.

Each DMA is specified by a descriptor. The Elan maintains a queue of descrip
tors which have been submitted, and successively takes descriptors of the queue
and generates the network transactions to transfer the data. If the DMA is for a
large amount of data then the Elan will break the transfer into a number of pack
ets and may reschedule to progress other DMA descriptors on the queue.

libelan 3

1

4 tibelan

Events

Events fonn the synchronisation mechanism for the Elan. Nonnally an event will
be set when a data transfer completes. Elan events comprise of two words and
must be aligned on a double word boundary. Events are of two types, simple
events and queued events (queued events are not considered in this document).
Simple events can be in one of three states

State Description

CLEAR The event has not been set, and has nothing waiting on it.
This is the state that events must be initialised to.

SET The event has been set. Should anything try to wait or
de schedule on the event then it will continue without
descheduling and the event will be cleared.

WAITING Something is descheduled on the event. There are a number
of different things which can wait on a event; these are: local!
remote events, threads, DMA's, signals. When the event is
set the waiting item will be started and the event will be
cleared.

The libelan library provides functions for polling for an event to be set, sus
pending the process on an event, delivering a signal to the process when the event
is set, and suspending local events or DMA's on the event. The most common use
of events is as a way of indicating that a DMA has completed.

SIOO2-10MI31.01 m£i<a

1

elan _initO, elan _ finiO, _elan _ finiO Elan library initialisation/tinalisation

Synopsis

Description

Example

rnei<o Elan Library

#include <sys/types.h>
#include <elan/elan.h>
void *elan_init (void);
void elan_fini (void *ctx);
void _elan_fini (void *ctx);

elan _ ini t () provides a handle to access the Elan device driver. This func
tion is not intended for direct use by parallel applications; the initialisation
functions in the Elan Widget library perform this task (see ew _init(3x) and
ew _attach(3x».

elan_initO returns an opaque pointer which can be used in all subsequent
calls to libelan. The function also checks the revision number of the Elan sil
icon and reports the following error if it is incompatible.

elan: elan is incorrect version 91f != 92f

elan_initO will return NULL when there are too many processes currently
using the Elan, or if there is no virtual address space available to map-in the Elan
device.

elan _ f iniO and _elan _ f iniO are used when the process no longer needs
to access the Elan. _ e 1 a n _ fin i 0 is solely used for a child of a process that has
vfork'ed, in that it does not free the opaque structure pointed at by ctx. Both
functions will implicitly detach the process from the Elan and destroy any capa
bilities created on this context.

void *ctxi

if (! (ctx = elan_init())) {
fprintf(stderr, "Failed to initialise Elan context");
exit (1);

5

1

elan version(), elan check Version() libelan version checking

Synopsis

Description

Example

#include <sys/types.h>
#include <elan/elan.h>
#define ELAN VERSION
char *elan_version (void);
int elan_checkVersion (char *version);

ELAN_VERSION is a macro which gives the version string of the libelan
with which the application was compiled.

elan_ ver sion () returns the version string of the libelan with which an
application was linked.

elan_checkVersion () provides a check that the version of libelan
against which an application was compiled is compatible with the version with
which it was linked. It returns a non-zero value if ver sion is a compatible ver
sion of the library.

if (!elan_checkVersion (ELAN_VERSION»
{

fprintf (stderr, "libelan version error\n"):
fprintf (stderr, " Compiled with '%5' \n", ELAN_VERSION);
fprintf (stderr, " Linked with '%s'\n", elan version (»;
exit (1);

6 elan_versionO, elan_checkVersionO S 1002-1 OM 131.0 1 meJ<.o

1

elan_createO, elan_destroy(), elan_nulicapO Create/modify/destroy an Elan capability

Synopsis

Description

Example

mei<D Elan Library

finclude <sys/types.h>
finclude <elan/elan.h>
int elan_create (void *ctx, ELAN_CAPABILITY *cap);
void elan_destroy (void *ctx, ELAN_CAPABILITY *cap);
void elan_nullcap(ELAN_CAPABILITY* cap);

elan_create () creates or modifies a capability in the Elan device driver; any
process which holds the same capability may then subsequently attach to the
Elan or communicate with the attached process via the Elan. This function is not
intended for direct use by parallel applications; the initialisation functions
in the Elan Widget library perform this task (see ew_init(3x) and ew_at
tach(3x».

The capability argument cap is usually an un-initialised instanced of an ELAN_
CAPABILITY, as returned by elan _ nullcap(3x). The following fields will
be initialised by this function if they were previously unassigned:

cap~lowElanId

cap_highElanld
cap_context

node-id
node-id
free-context-number

The fields of a capability can be modified by subsequent calls to elan_cre
ateO if the ctx parameter is the one used to create the capability in the first
place. elan_create(3x) returns a value of 0 on failure.

elan_destroyO destroys capabilities previously created by elan_cre
ateO. Any process trying to attach with that capability will be refused. If a
process is already attached the context will become free when that process de
taches. If the capability argument to elan _ destroyO is NULL then all capa
bilities created using this ctx will be destroyed. This is done implicitly when the
process exits or calls elan _ f iniO.

void *ctx;
ELAN CAPBILITY *cap;

cap = (ELAN CAPABILITY*) malloc(sizeof(ELAN CAPABILITY»;

elan_create(), elan_destroy(), elan_nullcap() 7

1

8

ctx - elan_init();
elan_nullcap(cap);

if (elan_create (ctx, cap) < 0)
fprintf(stderr, "Failed to create capability\n");
exit(l);

S 1002-1 OM 131.0 1 meJ<a

1

elan attachO,' elan _ detachO Attach to, or detach from, the Elan

Synopsis

Description

meI<o Elan Library

#include <sys/types.h>
#include <elan/elan.h>
int elan_attach (void *ctx, ELAN_CAPABILITY *cap);
void elan_detach (void *ctx);

e 1 a nat t a c hO is used to attach the process with c t x into the Elan. This
function is not intended for direct use by parallel applications; the initiali
sation functions in the Elan Widget library perform this task (see ew _in
it(3x) and ew _attach(3x».

elan_attachO will map the whole of the process's address space into the
Elan and allows any process that also holds the capability cap to access the proc
ess's memory through the Elan.

The fields of the capability are checked against the capabilities that have been
previously created with elan_createO. Should the capability not be found or
not match then elan_attachO will fail. On failure a value of -1 is returned
and set errno as follows

EBUSY elan_attachO has already been called by this process, or
another process has already attached with this capability.

EACCES cap->cap _ userkey did not match the one specified by
elan _ crea teO.

EINVAL Thecap->cap_context,cap->cap_lowElanIdor
cap->cap _ highElanId did not match the ones specified
byelan_createO.

ENOMEM cap->cap _ userkey did not match the one specified by
elan_ createO.

elan_detachO is used to detach the process from the Elan group that it had
previously attached to. After calling elan detachO the process will not be
able to communicate with other processes using the Elan. The Elan state will be
preserved, and may be reinstated by calling elan_attachO.

1

elan_addvpO, elan_removevpO Add/remove virtual process segments

Synopsis

Description

10

finclude <sys/types.h>
finclude <elan/elan.h>
int elan_addvp (void *ctx, ELAN_CAPABILITY *cap);
int elan_removevp (void *ctx, int process);

elan_addvpO adds a section of virtual process numbers to the context. This
function is not intended for direct use by parallel applications; the initiali
sation functions in the Elan Widget library perform this task (see ew _in
it(3x) and ew _ attach(3x».

The virtual process numbers that are used to communicate are in the range cap_
process to capyrocess+cap_entries-l, and these map to the physi
cal location of the processes as defined by cap_lowElanId, cap_highEl
anId, and cap_context.

The capability is validated against that held by the destination process when the
first packet is opened. Should it not match then the program will take an invalid
process exception.

If cap yroces s is specified as ELA.J.~_CAP _U~1:TITALISED then a value
will be chosen such that the range does not overlap with previously added seg
ments.

SlOO2-10M131.01 1118<0

elan _ addrt()

Synopsis

Description

meko Elan Library

1

Add a broadcast virtual process

#include <elan/elan.h>
int elan_addrt (void *ctx, int process, int entries);

elan _ addrtO adds a virtual process that can be used to broadcast across the
processes [process, process+entries-l]. This function is not intended
for direct use by parallel applications; the ew _ createBcast Vp(3x) function in
the Elan Widget library performs this task.

Packets opened to this virtual process will use the hardware broadcast supported
by the Elan/Elite network. The range of processes to broadcast over must have
been previously specified by a single call to elan _ addvp(3x) - which for par
allel programs is performed by the ew attach(3x) Elan Widget function.

It is not permissible to broadcast across multiple segments of an application.

The function returns the virtual process number to use for the broadcast. On error
the function returns ELAN_INVALID_PROCESS, and will set errno appropri
ately.

EINVAL The process has not called elan attachO, the range of
processes does not match a previous segment defined by
elan_addvp(3x), or entries is less than O.

ENOMEM There is insufficient space in the Elan route tables to create
this route.

11

1

elan_dmaO

Synopsis

Description

12

Queue a DMA descriptor on the Elan

#include <elan/elan.h>
void elan_dma (void *ctx, ELAN_DMA *dma);

elan dmaO queues a DMA on the Elan.

The DMA is defined by the following descriptor, defined in <elan/ dIna. h>.
Note that descriptors must be 32-bit aligned, and so must be created either by
memalignO, or with the Elan Widget ew_allocateO function. The DMA
descriptor must not be altered until the DMA has completed.

typedef struct elan dma
{

union elan_dma_type dma_u;
unsigned int dma_size;
void *dma_source;
void *dma_dest;
volatile struct elan event *dma_destEvent;
unsigned int dma_destProc;
volatile struct elan event *dma_sourceEvent;

dInayad; unsigned int
ELAN_DMA;

#define dma_type

Field

dmau -

dma size -
dma source

dma dest

dma destEvent

dma_u.type

Description

The transaction type. The DMA TYPEO macro,
defined in <elan/ dma . h>, simplifies the setting
of this field. This is described below.

Size of the transfer.

A pointer to the source data in the sending process's
address space.

A pointer to the receivers data buffer in the
receiver's address space.

The event to set at the receiving processor when the
DMA has completed.

SlOO2-10M131.01 mei<a

meI<o Elan Library

1

Field Description

dma destProc The process number of the receiving process. -
dma sourceEvent - The event to set at the sending process when the

DMA has completed.

dma_pad Unused.

The DMA type can be set with the DMA TYPEO macro. This takes three argu
ments: one of the transaction types defined in <elan/transaction. h>, a
mode of operation, and an integer retry-on-error count. The mode of operation is
either DMA_NORMAL or DMA_SECURE; in secure mode DMA transfers are not
acknowledged all DMA network packets have arrived, whereas nonnally they
are acknowledged as the first arrives. The transaction type is used to describe the
alignment of the data and with the dma _ s i z e field to detennine the size of the
transfer; it is one of:

• TR_TYPE_BYTE - 8 bit data object (C type char).

• TR_TYPE_SHORT - 16 bit data object (C type short).

• TR_TYPE_WORD - 32 bit data object (C type int).

• TR_TYPE_DWORD - 64 bit data object (C type long long).

The Elan will perfonn the data transfer and set the completion events. The de
scriptor should not be changed until either of the completion events have been
set. Note that you can use a DMA of size 0 to set remote events without transfer
ring data.

The virtual process that the DMA will transfer data to is defined by previous calls
to elan_addvp (3x), or elan_addrt(3x) for this context. Typically, for
parallel applications, these will be called indirectly by Elan Widget library func
tions.

13

1

Example

Example

14

Send 1024 bytes to process 1, transferring the data from mybuffer (sender's
address space) to destbuffer (recipient's address space). Set events to awake
both the sender and the recipient when the transfer completes.

/* Build the DMA descriptor */
dmaDesc->dma_type = DMA_TYPE(TR_TYPE_BYTE, DMA_NORMAL, 8);
dmaDesc->dma_size = 1024;
dmaDesc->dma_source = &mybuffer;
dmaDesc->dma_dest = &destbuffer;
dmaDesc->dma destEvent = &destevent;
dmaDesc->dma destProc = 1;
dmaDesc->dma sourceEvent = &myevent;

/* Initiate DMA; the event signifies completion. */
elan_dma(ew_ctx, dmaDesc);
elan_waitevent(ew_ctx, myevent, ELAN_POLL_EVENT);

Set the remote event at address destevent in the address space of process 1:

dmaDesc->dma_type = DMA_TYPE(TR_TYPE_BYTE, DMA_NORMAL, 1);
dmaDesc->dma_size = 0;
dmaDesc->dma_source = NULL;
dmaDesc->dma_dest = NULL;
dmaDesc->dma_destEvent = &destevent;
dmaDesc->dma_destProc = 1;

/* Set the remote event. */
elan_dma(ew_ctx, dmaDesc);

S lOO2-10MI31.01 meJ<a

1

elan seteventO, elan waiteveventO Set or wait for an event

Synopsis

Description

meI<o Elan Library

#include <elan/elan.h>

ELAN_CLEAREVENT(ELAN_EVENT *event);

void elan waitevent (void *ctx, ELAN EVENT *event,
int how);

void elan setevent (void *ctx, ELAN_EVENT *event);

ELAN CLEAREVENTO is a macro which initialises an event. It is nonnally only
required for initialising events which have been dynamically allocated or de
clared on the stack.

elan_seteventO sets an event. If something was waiting on the event then
the Elan will schedule it. If nothing is waiting then the event will be left in the
set state.

elan _ wai teventO waits for the event to be set; when the event is set elan_
waitevent returns after clearing the event. If the event is set before the call to
elan_wai teventO the function returns immediately (after clearing the
event).

The parameter how detennines whether the event is polled until it is ready or
whether the process deschedules and voluntarily relinquishes the processor.
There are two macros defined <elan/ event. h> for use with the how field:
ELAN_POLL_EVENT and ELAN_WAlT_EVENT. If the process deschedules it
will take some time from the event being set until the process returns from the
call to elan_setevent () call; this is because the kernel needs to reschedule
the process. If a communication is expected to complete quickly then the event
is best polled.

elan_seteventO, elan_ waitevevent() I!

1

Example

An environment variable ELAN WAITEVENT MODE allows the elan wait-- - -
event () function to provide infonnation if the event is not set. It is a bit mask
defined as follows:

Bit 0 Flash mode. The front-panel LEDs display a cycling pattern if the
event is not set.

Bit 1 Abort mode. The program prints a message and executes the
abortO system call if the event is not set.

The following call to elan _ wai teventO will deschedule the calling process
until the event myevent is set. The context ew _ ctx is initialised by start-up
functions in the Elan Widget library.

ELAN EVENT myevent;

ELAN_CLEAREVENT(&myevent);
elan_waitevent(ew_ctx, &myevent; EL~~_WAIT_EVENT);

16 elan_seteventO, elan_ waiteveventO SIOO2-10M131.01 meJ<o

1

elan_waiteventeventO, elan_waitdmaeventO Wait a DMA on an event

Synopsis

Description

meI<o Elan Library

#include <elan/elan.h>
void elan waitdrnaevent (void *ctx, ELAN_DMA *dma,

ELAN_EVENT *event);
void elan waiteventevent (void *ctx,

ELAN_EVENT *chained,
ELAN_EVENT *event);

elan _ wai tdrnaeventO suspends a DMA pending the event. When the event
is set then the DMA descriptor pointed at by dma will be queued on the Elan. The
event will then be left clear. If the event was set when elan_wai tdmaeventO
was called then the DMA descriptor is queued immediately and the event is left
cleared.

This mechanism allows you to chain DMA's together and to suspend on a single
event to wait for them all to complete. The DMA's would execute sequentially
and chain through each other, setting a single event when they have all complet
ed.

elan_waiteventeventO allows an event to wait on another event; when the
event is set the event pointed to by chained is set. The event pointed to by
event will be left clear. This function allows you to implement alting for one
of many different communications to complete.

elan_ waiteventeventO, elan_ waitdmaeventO 11

1

elan _ runthreadO

Synopsis

Description

18

Schedule a thread to run on the Elan

#include <elan/elan.h>
void elan runthread (void *ctx, void (*fn) (),

caddr_t stack, int stacksize,
int nargs ...);

elan_runthreadO schedules a thread to run on the Elan's thread processor.
The thread executes the function fn passing it nargs parameters. The thread
executes using the stack specified by stack and stacksize.

The function fn should be compiled using the Elan threads processor compiler,
and it can call any of the inline intrinsic functions to execute the Elan instructions
for scheduling and preparing packets. A description of programming styles for
the Elan threads processor is beyond the scope of this document.

SlOO2-10M131.01 meJ«)

elan _ c1ockO

Synopsis

Description

meI<o Elan Library

1

Read the elan nano-second clock

#include <elan/elan.h>
void elan_clock (void *ctx, ELAN_TIMEVAL *tv);

elan _ clockO reads the nano-second realtime (wallclock) clock on the Elan.
It returns the current time in the structure pointed to by tv. The structure has the
following members

typede£ struct elan timeval
{

lond tv_nsec;
long tv_sec;

ELAN_TIMEVAL;

19

1

20 SIOO2-10M131.01 meJ<a

Introduction

Examples 2

Two examples are included in this chapter showing how the Elan Library's DMA
and event functionality can be embedded within an Elan Widget Library applica
tion and a CSN message passing application.

Using with the Elan Widget Library

meJ<o

In this example the Elan library functions are sandwiched between Elan Widget
Library initialisation and clean-up functions.

The Elan Widget library is a layer above the Elan Library; it provides a set of
higher level parallel programming constructs that augment the basic capabilities
of the Elan/Elite hardware. For many applications the Widget Library's perform
ance and generality will be sufficient. Where gains in performance are vital time
critical components of the Widget Library application may be implemented with
Elan Library functions.

In the following example the Elan Widget library is used to handle the process
initialisation and the creation of the Global Data Objects l . The Elan library's
DMA and Event functionality is used to handle the inter-process communication.

1. Global Objects are data structures that exist at the same virtual address on all processes.

2]

2

22

For a description of the Widget library see The Elan Widget Library, Meiko doc
ument number SlOO2-10MI04.

Program Description

Process Initialisation

The program is initialised with the Widget library function ew _base Ini to.
This function perfonns process initialisation, attachment to the Elan network,
and definition of virtual process addresses. It also defines some useful parallel
programming objects which are packaged within an ew_ base structure; in this
example we will use the segGroup (group of processes in this application) and
alloe (area of global memory) definitions.

The DMA descriptor, data buffer, and the event structure are allocated as global
objects from within the alloc region defined by the Widget library. The use of glo
bal objects is fundamental to the simplicity of this example; by defining the buff
er and event as global objects they will exist at the same virtual address on all
processes, allowing the sending process to address the receiver's data buffer and
event without explicit handshaking.

Having defined the global objects the processes barrier synchronise using the
Widget function ew_gsyneO. This ensures that none of the processes proceed
until the global objects have been defined (and prevents, in this example, the
sender from initiating a transfer into unallocated memory).

Elan DMAIEvent Functionality

The process with virtual process number 0 will be the sending process, so this
initialises the DMA descriptor to describe the transfer. A block of memory will
be transferred from the buffer in the sender's address space to the buffer in the
recipients address space (the buffer is initialised with a pattern so the integrity of
the received data can be verified).

The type of DMA transfer is described by the macro DMA _ TYPEO. In this exam
ple the transfer size of the DMA refers to a number of bytes (TR_TYPE_BYTE),
the op-code is DMA_ NORMAL, and the fail-retry count is set to 8. The op-code is
used to specify when the DMA is flagged as complete; with DMA_ NORMAL the

SlOO2-10M131.01 meJ<a

2

recipient acknowledges receipt as soon as the first DMA network packet is re
ceived (with DMA _SECURE the acknowledge is sent after the last packet is re
ceived).

Both a source and destination event are specified so that both processes are noti
fied when the DMA has completed. The source and destination event structures
exist at the same virtual address space in both processes, so the same address is
specified in both fields of the DMA descriptor.

Process 0 initiates the DMA with elan_dInaO, using the context that is initial
ised with the Widget library. The process is delayed until the event is set - be
cause the DMA will complete quickly it is more efficient to poll the event
(ELAN_POLL_EVENT) than to suspend the process and wait for it (ELAN_
WAIT_EVENT).

Process 1 simply waits until its own event is set signifying completion of the
DMA. Checking the receiver's data buffer will confinn the same data pattern as
the sender.

Finalisation

Both processes synchronise and then free their global objects.

Compilation and Execution

meI<o Examples

To compile the program use the following command line:

user@cs2: cc -0 elandma -I/opt/MEIKOcs2/inc1ude \
-L/opt/MEIKOcs2/lib elandma.c -lew -le1an

You can run the program with prun (in this case in the parallel partition):

user@cs2: prun -n2 -p para1le1 e1andma
Process 0 now transferring 1024 bytes by DMA
Data received and verified by process 1

23

2

The Program

'include <sys/types.h>
'include <elan/elan.h>
'include <ew/ew.h>
'include <stdio.h>

fdefine DMASIZE 1024

static unsigned char pattern[] - {OxOO, OxOO, OxOO, Ox55, Ox55, Ox55,
Oxaa, Oxaa, Oxaa, Oxff, Oxff, Oxff};

main ()
{

int me, nproc, i;
ELAN_DMA *dmaDesc:
ELAN_EVENT* event;
EW_ALLOC* alloc:
unsigned char* buffer;

/*********** Widget library initialisation functions ****************/

24

ew_baselnit ();

nproc = ew_base.segGroup->g_size;
me = ew_base.segGroup->g_self;
alloc = ew_base.alloc;

if(nproc !- 2) {
fprintf(stderr, "error: need 2 processors\n");
exit(1);

if(! (dmaDesc - (ELAN_DMA*) ew_allocate(alloc, EW_ALIGN, sizeof(ELAN_DMA») I I
! (buffer = (unsigned char*) ew_allocate(alloc, EW_ALIGN, DMASIZE» I I
! (event - (ELAN_EVENT*) ew_allocate(alloc, EW_ALIGN, sizeof(ELAN_EVENT»»

fprintf(stderr, "Failed to allocate\n"):
exit(1);

ew_gsync(ew_base.segGroup);

/******************** End of Initialisation **********************/

SIOO2-10M131.01 meJ<a

/************** Elan library DMA/Event functionality ************/

if (!elan_checkVersion(ELAN_VERSION» {
fprintf(stderr, ~error: libelan version error\n");
exit(l):

ELAN_CLEAREVENT(event):

if (me == 0) {
/* Processor 0 is the sender */

/* Initialise sender with data pattern */
for(i-O: i<DMASIZE: i++)

buffer[i] -= pattern[i % sizeof (pattern)];.

/* Build the DMA descriptor */
dmaDesc->dma_type - DMA_TYFE(TR_TYFE BYTE, DMA_NORMAL, 8):
dmaDesc->dma_size - DMASIZE:
dmaDesc->dma_source - buffer:
dmaDesc->dma_dest -= buffer:
dmaDesc->dma_destEvent - event:
dmaDesc->dma_destProc - 1:
dmaDesc->dma_sourceEvent - event:

/* Initiate DMA: the event signifies completion. */
printf(~Process %d now transferring %d bytes by DMA\n", me, DMASIZE):
elan_dma(ew_ctx, dmaDesc):
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

else {
/* Process 1 is the recipient */

/* Wait for DMA to trigger dest. event */
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

/* Check received data pattern */
for(i-O; i<DMASIZE; i++)

if (buffer[i] !- pattern[i%sizeof(pattern)])
fprintf(stderr, ~Received data differs\n");
exit(l);

printf(~Data received and verified by process %d\n", me):

/***************** End of Elan Library Functions ****************/

meI<o Examples

2

25

2

26

/************** Widget library clean-up *******************/

ew_gsync(ew_base.segGroup);

ew_free{{void*) event);
eW_free{{void*) dmaDesc);
eW_free{{void*) buffer);
exit (O) ;

SIOO2-10M131.01 meJ<D

2

Using with the CSN Library

In this example the Elan library's DMA and event functions are sandwiched be
tween CSN initialisation and clean-up functions. The CSN library is an example
of a message passing library - the concepts illustrated here will be equally ap
plicable to other messages passing systems.

The CSN library is a layer above the Elan Widget library (which in tum is built
upon the Elan library). It provides a high level message passing interface to the
Elan/Elite hardware. For perfonnance critical sections of an application it may
be desirable to make direct reference to either Widget library functions or the
Elan library.

In the following example the CSN library is used to handle the process initiali
sation and synchronisation. The addresses of remote data structures are explicitly
communicated to the sending process by using the CSN message passing func
tions. These addresses are then used as the target for a remote DMA transfer.

For a description of the CSN interface see the CSN Communications Library,
Meiko document number Sl002-10MI06.

Program Description

mekD Examples

The processes initialise with c s n in itO and get their virtual process id and the
number of processes in the application from cs getinfoO.

The DMA descriptor, event data structure, and the data buffer are created in each
process's local heap. There are two points to note here. Firstly the DMA descrip
tor must be 32 bit aligned. The second point is that the sender of the DMA trans
fer must explicitly obtain the address of the remote data buffer and event;
compare this with the previous Elan Widget example in which each process allo
cates space with ew_allocateO and can assume that each process's data
structure will exist at the same address 1.

1. A CSN program could use the Elan Widget allocation functions to create global objects ane
thus avoid the need for explicit communication of buffer addresses.

2'

2

28

Both processes in this example open a transport; process 1 uses it's transport to
communicate to process 0 the address of it's event structure and data buffer. Hav
ing obtained the remote addresses process 0 can use the Elan library DMA/event
functionality to transfer a block of initialised data directly into the receiver's ad
dress space - using the same code as the previous Widget library example.

Compilation and Execution

To compile the program use the following command line:

user@cs2: ec -0 esndma -I/opt/MEIKOcs2/ine~ude \
-L/opt/MEIKOcs2/lib csndma.c -lesn -lew -lelan

You can run the program with prun (in this case in the parallel partition):

The Program

user@cs2: prun -n2 -p parallel esndma
Process 0 now transferring 1024 bytes by DMA
Data received and verified by process 1

The use of Elan functions in this program is identical to the Widget library ex
ample described earlier, except the address of the remote data buffer and event is
that obtained by the CSN communications.

SlOO2-10M131.01 me<a

'include <stdio.h>
'include <sys/types.h>
'include <elan/elan.h>
'include <ew/ew.h>
finclude <csn/csn.h>
linclude <csn/names.h>

.define DMASIZE 1024

static unsigned char pattern[] - {OxOO, OxOO, OxOO, Ox55, Ox55, Ox55,
Oxaa, Oxaa, Oxaa, Oxff, Oxff, Oxff};

main ()
{

Transport t:
netid_t next:
char* name;

int me, nproc, i:

ELAN_DMA *dmaDesc:
ELAN_EVENT* event:
unsigned char* buffer:

/* Package pointers to remote data objects in one structure so we */
/* can transfer both in one CSN message passing operation. */
struct {

unsigned char* bufferp:
ELAN EVENT* eventp:

rxbuffers;

/************* CSN library initialisation functions ****************/

cs_getinfo(&nproc, &me, &i); /* i variable not used */

if(nproc != 2) {
fprintf(stderr, "error: need 2 processors\n H

);

exit(l);

2

meI<o Examples 29

2

30

1* Build structures in processes heap space */
1* DMA descriptor MUST BE 32 bit aligned. */
dmaDesc - (ELAN_DMA*) memalign (EW_ALIGN, sizeof (ELAN_DMA)) ;
buffer - (unsigned char*) malloc(DMASIZE);
event - (ELAN_EVENT*) malloc(sizeof(ELAN_EVENT»;

if (csn_open(CSN_NULL_ID, &t) !- CSN_OK) {
fprintf(stderr, "Cannot open transport\n");
exit(-1);

if (me == 0)
/* Process 0 is DMA sender; receiver of addresses from CSN transport */

/* Register my transport */
if(csn_registername(t, "toProcO") !- CSN_OK) {

fprintf(stderr, "Cannot register transport name\n");
exit(-1);

/* Get pointer to remote event and data buffer for process 1 */
if(csn_rx(t, 0, (char*)&rxbuffers, sizeof(rxbuffers» <0) {

fprintf(stderr, "Error on receive of remote addresses\n");
exit(-1);

else
/* Process 1 is DMA receiver; sender of addresses via CSN transport */

/* Lookup sender's transport */
if (csn_lookupname (&next, "toProcO", 1) != CSN_OK) {

fprintf(stderr, "Cannot lookup transport name\n");
exit(-1):

/* Send address of my event and data buffers */
rxbuffers.bufferp - buffer;
rxbuffers.eventp = event;
csn_tx(t, 0, next, (char*)&rxbuffers, sizeof(rxbuffers»;

/***************** End of CSN Initialisation **************/

SlOO2-10M131.01 meJ<a

/********** Elan library DMA/Event functionality *********/

if(!elan_checkVersion(ELAN_VERSION» {
fprintf(stderr, uerror: libelan version error\nH);
exit(l);

ELAN_CLEAREVENT(event);

if(me .- 0) {
/* Processor 0 is the DMA sender */

/* Initialise sender with data pattern */
for(i-Oi i<DMASIZE; i++)

buffer[i] - pattern[i % sizeof(pattern»):

/* Build the DMA descriptor */
dmaDesc->dma_type -
dmaDesc->dma size -
dmaDesc->dma source
dmaDesc->dma dest -

DMA_TYPE(TR_TYPE B~TE, DMA_NORMAL, 8):
DMASIZE;
- buffer;
rxbuffers.bufferp;

dmaDesc->dma_destEvent - rxbuffers.eventp:
dmaDesc->dma_destProc - 1;
dmaDesc->dma sourceEvent = event;

1* Address received from proc 1 */
1* Address received from proc 1 */

/* Initiate DMA; the event signifies completion. */
printf(~Process %d now transfering %d bytes by DMA\nH, me, DMASIZE);
elan_dma(ew_ctx, dmaDesc);
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

else {
/* Process 1 is the DMA recipient */

/* Wait for DMA to trigger dest. event */
elan_waitevent(ew_ctx, event, ELAN_POLL_EVENT);

/* Check received data pattern */
for(i-O; i<DMASIZE; i++)

if (buffer[i] !- pattern[i%sizeof(pattern»))
fprintf(stderr, ~Received data differs\nH):
exit (1);

printf(~Data received and verified by process %d\nH, me);

/****************** End of Elan functions ****************/

mfi<D Examples

2

31

2

32

1***************** CSN library clean-up ************************1

free(buffer);
free(dmaDesc);
free(event);
csn_exit(O);

SlOO2-10M131.01 1118<0

Computing
Surface

Group Routing

SlOO2-10M124.01 mei<G

The infonnation supplied in this document is believed to be true but no liability is assumed for its use or for the
infringements of the rights of others resulting from its use. No licence or other rights are granted in respect of any
rights owned by any of the organisations mentioned herein.

This document may not be copied, in whole or in part, without the prior written consent of Meiko World Incor
porated.

© copyright 1994 Meiko World Incorporated.

The specifications listed in this document are subject to change without notice.

Meiko, CS-2, Computing Surface, and CSTools are trademarks of Meiko Limited. Sun, Sun and a numeric suffix,
Solaris, SunOS, AnswerBook, NFS, XView, and Open Windows are trademarks of Sun Microsystems, Inc. All
SPARC trademarks are trademarks or registered trademarks of SPARC International, Inc. Unix, Unix System V,
and OpenLook are registered trademarks of Unix System Laboratories, Inc. The X Windows System is a trade
mark of the Massachusetts Institute of Technology. AVS is a trademark. of Advanced Visual Systems Inc. Verilog
is a registered trademark of Cadence Design Systems, Inc. All other trademarks are acknowledged.

Issue Status:

Meiko's address in the US is:

Meiko
130 Baker Avenue
Concord MA01742

5083710088
Fax: 508 371 7516

Draft

Preliminary

Release

Obsolete

Circulation Control: External

Meiko's address in the UK is:

Meiko Limited
650 Aztec West
Bristol
BS124SD

Tel: 01454616171
Fax: 01454 618188

Contents

1. «=;Jr()lJJl ~()lJtin~ •••..••••••••••••••••••••••• 1

Introduction. 1
Implementation. 2

Packets Originating from the Local Node. 3
External Packets Requiring Forwarding. 3
Broadcast Packets Originating Locally. 4
External Broadcast Packets Requiring Forwarding 5
Local and External Multicast Packets. 5

2. «=;Jr()lJJl ~()lJtin~ AdministJrati()D •..••...•••... 7

Start of day configuration . 7
Commands.................................... 8

ifconfig(1m) . 8
route(1m) . 8
netstat(1m) . 10
ndd(lm) . 10

ii

Introduction

rneJ<a

Group Routing 1

This document briefly outlines the implementation of Group Routing on the
Meiko CS-2 (Solaris 2.X) operating system. The design of group routing present
ed here is a logical extension of the scheme devised by Lawrence Livermore Na
tional Laboratories (LLNL).

The Solaris kernel maintains a routing table that is built at runtime via the actions
of daemons and explicit route commands. This table holds all the TCP/IP routing
infonnation. Conceptually this table is a list of ordered pairs:

<address template 1 > <gateway address>
<address template 2> <gateway address>
<address template 3> <gateway address>

... ...
<any address> <default gateway>

The address templates can represent several different types of route; broadcasts,
loopback, networks, subnets, and hosts.

When a user issues a system call that causes a packet to be sent out on the net
work, the system looks at the destination address of the packet. This address is
compared sequentially against all the address templates in the routing table. If a
match is found then the packet will be sent to the corresponding gateway address.

1

1

Implementation

2

If no match is found then the packet will be sent to the default gateway, if such a
route has been configured. Otherwise the packet is dropped and an error is report
ed to the system call.

With Group Routing the route table is augmented:

<address template 1> <gateway address> <gid list>
<address template 1> <gateway address> <gid list>

<address template 1 > <gateway address> <gid list>

...
<any address> <default gateway> <gid list>

gid list is a list of group ids. This list may be either "positive", which allows
all listed groups to access that route, or "negative", which denies access to the
listed groups. The kernel lookup algorithm is extended so that a route is only
found if the destination address matches the address template and the sender is
allowed to use that route (as specified by the gid list). A user is pennitted access
to a route if any of their gid's match (Le. their real gid or any oftheirsupplemen
tal gids). Senders with a root uid are always pennitted access.

Three Solaris commands have also been extended to support the group routing;
the route (1m) command is used to add the group lists into the route table, the
netstat (1m) command is used to display the route table and associated gid
lists, and the ifconfig (1m) command is used to assign a gid to network in
terfaces - the latter command is used when data must be forwarded from an ex
ternal network where the sender's gid cannot otherwise be detennined.

There are six types of IP traffic that need to be considered:

1. IP packets originating from the local node.

2. IP packets originating externally and requiring forwarding.

3. IP broadcast packets originating locally.

4. IP broadcast packets originating externally and requiring forwarding.

5. IP multicast packets originating from the local node.

6. IP multicast packets originating externally and requiring forwarding.

SlOO2-10M124.01 meJ<a

1

Warning - group routing is only relevant to out-going packets, all in-coming
packets destined for the local node are not validated.

Packets Originating from the Local Node

Packets from the local node are the most obvious in tenns of implementing the
group routing strategy. By amending the kernel routing tables to include a list of
group ids (gids), the standard IP routing algorithm can be amended to match the
sender's group id as well as the target IP address. This allows the Administrator
to define exactly which routes a particular group of users can use. The kernel's
routing tables contain several different types of entry: broadcasts, networks, sub
nets, gateways, and hosts. All these types of route entry will be subject to group
routing, allowing the Administrator to control access to individual hosts as well
as complete networks.

Warning - the sender's gid is stored when the stream is opened and is not
updated during the lifetime of the communication. The group routing is not
updated if the sender's process changes group.

External Packets Requiring Forwarding

meI<o Group Routing

The control of packets that originate externally to a node is more difficult but is
fundamental to the operation of the CS-2.

CS-2 machines are built from many processing elements each running a separate
instance of the Solaris kernel. All processing elements within the CS-2 are inter
connected by the Elan/Elite network; some of the processing elements, called
gateway nodes, will also be connected to local networks.

IP forwarding must be functional at the gateway nodes, however a forwarding
gateway node has no way of detennining the original sender's group id. For
packets originating within the CS-2 (that is, those arriving via the Elan/Elite net
work) it is guaranteed that group routing was perfonned at the source node; it is
therefore safe to forward these packets without further checking. For external
networks this assumption cannot be made. Rather than inhibit the forwarding of
these packets, which would be too restrictive for most applications, group ids are
assigned to each network interface and are inherited by incoming packets. This

3

1

4

strategy allows the same routing checks to be used as for the local packets, and
also allows the System Administrator to effectively partition network segments
- packets arriving from a network interface can be prevented from being for
warded to other networks.

For example, a CS-2 may be connected to 4 external networks: NET_A, NET_B,
NET_C, and NET_D. By creating new group ids to represent these networks a
matrix of routing permissions can be implemented:

NET A NET B NET C NET D

NET A Y Y N N

NET B y y N N

NET C N N Y Y

NET D N N Y Y

The above table shows that users can use the CS-2 to route between networks A
and B (and B to A), and between C and D; users on networks A or B cannot route
into networks Cor D. By default through routing will not be allowed. The default
gid assigned to network interfaces is nobody - only by adding nobody to an
outgoing route, or +everyone, will packets be forwarded through the CS-2
from these interfaces.

Warning - security can be compromised by routing external networks
through non-gateway CS-2 nodes. All through-routing should pass direct
from the incoming gateway node to the outgoing gateway node.

Broadcast Packets Originating Locally

Broadcast packets originating locally to the node should ideally be treated in the
same way as non-broadcast packets, however the broadcast routes are created dy
namically by the kernel and cannot be changed or deleted by the route com
mand.

To give the System Administrator control over broadcast routes a default group
list is used. The default group list is the access list associated with any routes that
have not been explicitly given group routing information. For security reasons

SlOO2-10M124.01 meJ«J

1

the default group list is defined to allow access to no-one. The kernel has been
modified to allow this default list to be amended via the route command (see
the reference to default routes in Section router 1 m) on page 8).

External Broadcast Packets Requiring Forwarding

This type of packet is treated in the same way as External Packets Requiring F or
warding, described above.

Local and External Multicast Packets

rnei<D Group Routing

To simplify the initial group routing implementation multicast packets, either
originating locally or externally, are disallowed. The CS-2 will not perform any
multicast forwarding. and will only allow the superuser to send multicast pack
ets.

5

1

6 SlOO2-10M124.01 m8<D

Group Routing Administration 2

Start of day configuration

mei<D

By default the kernel will boot with group routing enabled. In order to configure
group routing a new file called / etc/ groutes is executed when the system is
rebooted. If this file is not present and executable then group routing will be dis
abled and the machine will resort to the normal TCP/IP routing scheme. If
present this file should contain all the route and ifconfig commands neces
sary to enable normal user access to the machine. As a minimum it must config
ure the Elan network adaptor (elanipO) to have a group id of root, and also
allow +everyone access to the Elan network.

Defaults Summary

• To allow system maintenance and normal daemon operation the root gid will
bypass all group routing checks.

• All routes have a default gidlist that will apply unless explicitly specified by
the route command. For security reasons the default gidlist is -everyone,
which excludes everyone but root.

• All network interfaces have a default gid that will apply unless explicitly
specified by the if conf ig command. For security reasons the default gid is
nobody.

7

2

Commands

8

Two commands are used to administer the group routing strategy. They are
Meiko extended versions of the standard Solaris commands if conf ig (1m)
and route (1m) . A third command, ndd (1m) , allows group routing to be en
abled or disabled.

ifconfig(lm)

route(lm)

The synopsis for the extended if conf ig (1m) command is:

ifconfig interface [addressJamily] [address [dest_address]]
[netmask mask] [broadcast address] [up] [down]
[trailers] [-trailers] [arp] [-arp] [private]
[-private] [metric n] [mtu n] [auto-revarp] [plumb
[group groupname]

Where groupname is a valid group name in the / etc/ groups file orNIS map.
By default all adaptors are initialised with a gid of nobody. The gid root is a
special group which bypasses all group routing checks.

The following example usage of ifconfig applies a gid of root to the Elan
network interface:

cs2-0i ifconfig elanipO group root

The synopsis for the extended route (1m) command is:

route [-fn] [-g +I-gidlist] add I delete [host I net]
destination [gateway [metric]]

Where gidlist is a comma separated list of one or more group names (from
/ etc/ groups or NIS map). There must be no whites pace in this list, either af
ter the initial +/- or between each group name. The initial +/- defines whether the

S lOO2-10M124.01 meJ<a

2

list is an access or deny list. If + then only the groups listed will be allowed ac
cess to that route; if - then only the groups listed will be denied access to that
route. Only one group list per command is valid. There is a special group name
called everyone that can be used to define lists that include or exclude all
groups - for example, +everyone will allow all groups access, and -eve
ryone will deny all groups access (except root).

Warning - the group list flag must appear before the add/delete part of the
command. This is better suited to the original command syntax and com
mand line validation. This is not compatible with the LLNL specification.

All route entries with an undefined group list use the default group list, which is
-everyone. The System Administrator can change this default by specifying
defaul t as both the destination and gateway addresses; note that the metric
shown in the following command line is ignored:

cs2-0* route -9 +everyone add defau~t defau~t 0

This is not the same as setting the group list for a default route (where only the
destination is specified as default).

The route command may also be used to change the group list for routes that al
ready exist. The following example changes the group list for the local network.
meiko-net on the machine spin.

cs2-0* route -9 +meiko,staff add meiko-net spin 0

This causes the old group list to be deleted and be replaced by the new list. Only
the group list is changed, all the other route parameters are left untouched.

meI<o Group Routing Administration 9

2

netstat(l m)

The netstat (1m) command has been extended to display the gid lists associ
ated with each route. To display this information the following command line
should be used. This will dump out the kernel IP route table and the correspond
ing group lists in symbolic format, as shown below. Note that only the first 16
groups of each route's gid list will be displayed.

root@cs2-0# netstat -rv

IRE Table:

Destination

localhost

godiva-net

cs2-net

meiko-net

224.0.0.0

default

10

Mask Gateway Device MxFrg Rtt Ref FIg Out In/Fwd Groups

255.255.255.255 localhost 100 8232* 512 0 UH 3107 0 -everyone

255.255.255.0

255.255.255.0

255.255.255.0

240.0.0.0

255.0.0.0

ndd(lm)

god:i,.vaO-leO 1500* 512 0 UG 0 0 -everyone

cs2-0 elanipO 69554* 512 3 U 0 o -everyone

cs2-0-leO leO 1500* 512 2 U 29 o -everyone

cs2-0 elanipO 69554* 512 3 U 0 o -everyone

tel star 1500* 512 0 UG 0 o -everyone

Group routing can be enabled and disabled using the ndd command on the IP
module. If the parameter ip_group_routing is non-zero then group routing
is enabled.

ndd -set /dev/ip ip_group_routing 1

ndd -set /dev/ip ip_group_routing 0

* enable group routing

* disable group routing

The ip _ire_stat us function has also been modified to display the group lists
associated with each route entry.

SlOO2-10M124.01 mei<a

