| REALITY w
- Computer System
Reference Manual

HQM]M!H Microdata



iy
&
o
U

REALITY

Revised
August 1974
Revision 2
g PROPRIETARY INFORMATION
The information contained herein is proprietary to
and considered a trade secret of Microdata
Corporation and shall not be reproduced in whole or
part without the written authorization of Microdata
Corporation.
™ -
: Microdata
~ Microdata Corporation
. . icrodata Corporati
©1974 Microdata Corporation 17481 Red_Hiur_j\venue
TM Trademark of Microdata Corporation el cas 114 Sa0-6730

Printed in U.S.A.

TWX 910-595-1764






| Microdata

Microdata Corporation

17481 Red Hill Avenue

Irvine, California 92714

(714) 540-6730 TWX: 910-595-1764

The Microdata REALITY Computer System Reference
Manual will be revised periodically. If you desire

to receive revisions to this manual, you must complete
the following data request card with the name of the
person you want to receive the revision data. Return

the card to Microdata.

T e e e et e ! o2t o A et e . o T A B A T T I LT TR 1 0 S, S S A, e 5 S S et e % o S o o e S Y S S O Gt o o e e e 0 20 e e e

i A & o ot vy vidy G rodas ot S

Please Return This Card To Microdata Corporation

Title

State Zip

Telephone (

) Ext .

Microdata REALITY Computer System Reference Manual Copy Number # #'07353

REV, 2



First Class
Permit No. 1972
Santa Ana
California 92711

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN UNITED STATES

Postage Will be Paid by:

Microdata Corporation

17481 Red Hill Avenue
Irvine, California 92714




TABLE OF CONTENTS

INTRODUCTION ¢ « ¢ o v o o o 6 = o o o6 0 6 6 o0

Reality - Central Processing Unit ...
Operating System . . ... . ¢ o c o oo
Instruction Set ... .. ... .00
ENGLISH . & ¢t v v v o o o o o 06 00 00600
Software « « « ¢ v ¢ e v 6o vt et 00 000 e

DATA STRUCTURES ¢ ¢ ¢ ¢ « ¢ ¢ ¢ o o o 0o 6 o o o o

Introduction « « ¢« ¢ ¢ ¢ o 0 o 0 0 o 0 0 0.
Executable Frames . . « o ¢ ¢ o ¢ ¢ 6 o o o
Process Work Space « « ¢ ¢ ¢ o o ¢ ¢ ¢ o o
Disk Space Assignment . « ¢ ¢ ¢ ¢ o ¢ 0 4
File Space .« ¢ ¢ ¢ ¢ ¢ o v o o v v o o o o o
Overflow Space Management. . . « + « + « &
File Definition . . . ¢« s ¢ v v v v v oo v
Hashing Algorithm . . . ... .. ... ...
Ttem StOTALZE « ¢ ¢ o ¢ o « o o o o o o o o o
Item Format - Physical .. ........

Dump of Sample File ... ... ... 0. co o

Example of File with 3 Groups and 2 Frames/Group

Item Format - Logical .. ... .4 ¢4 4.
Selecting Modulo and Separation. o e s e
Density Versus Overflow . . .. ... . ..
REALITY System Modes « ¢« « ¢ ¢ ¢ ¢ o « o o
Core Map ¢ ¢ ¢ ¢ v o v ¢ o v 6 6 0 o 0 0 o oo
Table of Prime Numbers Less Than 1000.

DICTIONARIES & & o ¢ v v o v o o 0 6 o 0 o o o o o

Introduction « « « o ¢ ¢ ¢ ¢ o ¢ 0 s o 0 o o
File StYUuCtUre o « o ¢ + o ¢ 6 o o o o s o o o
Dictionary Interrelationships . . . . . .
Dictionary Item Definitions . ... ...
File Definition Items « « ¢ ¢ ¢ ¢ o o « o &
File Synonym Definition Items . . . « . &
Attribute Definition Items . « « « « « & &
Attribute Synonym Definition Items. . .
Dictionaries « ¢ ¢ ¢ ¢ ¢ o ¢« o 0o 0 6 6 6 o o s
The System Dictionary (SYSTEM) .. ...
The Master Dictionary (M/DICT) . . .. .
Initial System Files ¢« « « ¢ ¢ ¢ o v ¢ o o« o
The Account File . ...« ¢ oo oo s o0 oo
The SYSPROG Account « ¢ o« ¢ ¢ ¢ o ¢ ¢ o o o
The ERRMSG File o « ¢ o ¢ o v 0 6o v o s o o &
The NEWAC F1le ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ 0 0 0 06 0 0«
Summary of Dictionary Item Definitions

iii

.




TABLE OF CONTENTS (Continued)

Page

TERMINALCONTROLLANGUAGE.......,.......,,,.,.... Iv_l

Introduction , .. ... e e v v v v o oeoeeeeeeoesoeses IV-1
Input StatementsS . . . ¢« ¢ ¢ « o o s o 6 6 6 6 06 0 s 00000 seese IV-1
TCL Processing , .., .. ... v evveoeeeeooooessasss IV-3
Standard Reality Verbs . .. . . ¢ ¢ oo oo o0 eoaceseses IV=4
TCL Statement Parsing . . . .. .o e oo o006 o0coeeeees IV=-6-1
Statement Formats . .. . .. .. ¢« .. Gt e e e s e e e e aeeas IV-6-1
ENGLISH VerbsS ¢ v ¢« ¢ ¢« v ¢ o ¢ o o ¢ e s 6 o oo o oo ooveeses IV=6=-1
TCL-II Verbs . ¢ ¢ v ¢ o ¢ e o 0 6 6 o 6 s 0o s o s oesoeeeses IV-6-1
Interaction of TCL-II Verbs with the SELECT Verb ..... IV-7
TCL-I Verbs . + ¢ o ¢ ¢ ¢ ¢ ¢ o o o » e A
Interrupting Processing . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o 00 s 0 00000 IV=7
Processing AbOTES . . v ¢ v v ¢ o ¢t ¢ ¢ s 0 0 s oo ooseesses IV-9
TCL Verb Definition . . « « ¢ ¢ ¢ ¢ ¢ o ¢ ¢ ¢ e s 0006 00eeeas IV=9

STOREDPROCEDURES(PROC)--.-..-o.otaootoottooo.o- V—l

Introduction . . .. ¢ ¢ o e oo oo oo seeeoeesoseecess V-1
PROC Execution . ¢« ¢ o ¢ ¢ ¢ ¢ ¢« o 0 e 00 o600 s0eoseeessses V=1
PROC Link Command . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ 06 66 60 s 0 oooeoees V=3-1
Summary of PROC Commands . . ... ¢ e o oo eoveeeeoesees V-4
Input/Output Buffer Operation . . . .. ¢ oo oo e o eeeese V=5
PROC COmMANAS & ¢ o s o o ¢ o 6 ¢ ¢ 06 ¢ 60 s s 60 soeeeeeees V=8
PROC Command FOYMAL o v e o « ¢ ¢« ¢ ¢ v o 6 0 s 0 s 0 s o o ooeease V-8

LOGON/LOGOFF.--....----oooo-o.oo-ooooooooooo- VI—l

Introduction . ... vo o v v v oo oo o osseoeosecsssss VI-1
Logging On to the System . ... ¢ . ¢ oo 000000 eeeees VI-1
The Logon PROC . . . ¢ v v v vt o+ e 0o oo oo ooessoeseess VI=2
General System MESSAZE .« o o o o ¢ ¢ o ¢ 0 6 06 o 000 sesses VI-3
Logging Off the System . .. ... 0000000 eesoeeess VI-3
Clearing the ACCOUNT File . . .4 ¢ s o000 c00so0ese. VI-4
User Identification Items ... .. .0000000000000qs VI-5
System Privileges . o ¢« ¢ ¢ ¢« o o e ¢ 6 60 o e oooeosssees VI-5
Additional Work-Space Assignment . ..+ o0 ¢ 60 0e0os00.. VI-6
Updating System Dictionary Entries. ... ... ¢ oo oo oo . VI-7
The Accounting History Flle , ., . . . v v ¢ e ¢ o o0 oeoeeo VI-9
Active Users ENtYY . o o o o v o o o 0 o s s 0 s s s o o oo eess VI-9
Accounting History Entry .. ... . e o e 0o 00 ec0e00000. VI-10

FILE MANAGEMENT PROCESSORS . ¢ ¢ ¢ v o o ¢ o o o e o6 oo e s oosee VII-1

CREATE-FILE 4 4 ¢ o s o o o 6 ¢ 0 6 0 s s s s o s oo seseessss VII-1
CLEAR-FILE . 4 4o vt v o o o o o o 0 o o s e s o ooeosoeoesess VII-2
DELETE FILE . ¢ v ¢ o 6 ¢ o ¢ s o o 0o 0 oo s o oo voeseseess VII-3
COPY & v v o s e o s o s v o oo s s s oo oo onosoesoseseess VII-3
Copying to the Magnetic Tape, Line Printer or Terminal . VII-6

iv



TABLE

Options « ¢ ¢ ¢ o 6 v o o
File Management Verbs

SEL-RESTORE Verb . . . . .

EDITOR ¢ ¢ ¢ ¢ ¢ o o ¢ ¢ o ¢ o o o @

Introduction .. .. ...

OF

CONTENTS

(Continued)

Edit Command Structure. . . ... e e s e 6 0 e 0 s o .
"String' FOYMAte « « « v o o o o o o o o s 0 o o o s oo o
Editor Error Messages « « « « « « o & o oo e e e e e
The Input Environment e s e e e s e s s e e s e s e e e e e
Edit Commands « ¢ « o o « o ¢ o & e o s s 0 s 6 o 6 s s o .
SYSTEM COMMANDS ¢ + « o o ¢ o o o s o o o s o s ... . .

Introduction =« ¢ ¢« ¢« o ¢ ¢ ¢ o ¢ o o o o o o o e o e e e
Arithmetic Commands - « . .« . o oo . .
Card Reader Commands - - . e e e e e o o e e
Tape Commands o « ¢ o o o o ¢ o o o 0 o 6 o o o o o o o o o o s oo
Tape Labels + « ¢ ¢ ¢ o 0 o o o o 0 6 0 0 0 6 o T
Multiple Reel Tape Files . ¢ . v o o o v 6 o o o o o o 0 o oo
Output Spooler Commands « « « ¢ ¢« « ¢ o ¢ o ¢ o ¢ o o o o s oo

Summary of Spooler Error Messages . . .

Miscellaneous Commands

BLOCK=PRINT &+ « o « « o »+ &
Debug o ¢ o s o 0 0o o s
DUMP . &+ ¢ ¢ ¢ ¢ o 0 6 o ¢«
MESSAGE « ¢« « « ¢« ¢ o o « o s
TERM ¢ o ¢ o v 0 0 6 o 0 o

TIME ® 6 8 o o o o o 0 o o o o

WHO ¢ ¢ ¢ ¢ o 0 o o o 0 0 o o
ENGLISH LANGUAGE « ¢ « ¢ ¢ & « &
Introduction « ¢ ¢ ¢ o o &

ENGLISH Input Rules =« .
ENGLISH Verbs « ¢ « « ¢ « &

LIST and SORT Verbs .« . ...

COUNT Verb e o o 8 o o o o
SUM and STAT Verbs . . .
SELECT Verb ¢ ¢« ¢ ¢ ¢ ¢ « &

SSELECT Verb « « ¢« ¢ ¢ ¢ o ¢ &

File-Name Specification . .
ItemLiStooooo e o o o o o o o o o o o

Selection Criteria . . .
Output Specification . -

o o o o

. o o o o
o o .
« o o o o
. o o
ooooo .
o o o o
o o o o o o

. . o o
o o o o o
. o o

Modifiers, Relational Operators and

o o o o o o o o o
. o o o o o o o o o
o o o o o o o o o o
. o o o o o L] .
o o o o o . .
o o o o o o o o o o o
» o 8 o o o o . .
. o o e o o o o o o
» LI o o o o o o o
o o o o o o o o o o
. o o @« o o o s o o .
. e o o o o o
e o o o o o o . .
o o o o o o o .
. o o o o o o o . .
o o . o o .
ooooo . o o

. o o o o o o
e » o s o o o o o o o
ooooo o o o . .

Connectives « « ¢« « . .

Page

VII-6
VII-7
VII-8

VIII-1

VIII-1
VITI-2
VIII-3
VIII-3
VIII-4
VIII-4

IX-1

IX-1
IX-1
IX-2
IX-2
IX-6
IX-6
IX-7
IX-15
IX-17
IX-17
IX~-18
IX-20
IX-20
IX-21
IX-22
IX-22

X~6-1
X-6-2
X-6-2
X-7
X-8
X-10
X-13



TABLE OF CONTENTS (Continued)

Page
CONVERSION @ O 0 5 0 0 0 0 0 0 v 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0o 0 0 o 0 0 0 o XI_l

Introduction .« « ¢ ¢ ¢ ¢ o ¢ o ¢ o o o 6 0 00 06060006000 eeas. XI-1
D Conversion (Date) .« ¢ o o o ¢ ¢ o o 0 66 s o a0 oo soeess XI-1
MD Conversion (Mask Decimal) « + ¢« o ¢ o ¢ ¢ ¢ o 0 ¢ 6o o 0 oo o o XI=2
MT Conversion (Time) « . « « « - . . . et e e e b s e e e e e e XI-3
MX Conversion (Hexadecimal) =« ¢ ¢ ¢ o ¢ o o o o 0o 0o s 60606000 XI-3
T Conversion (Translate) « ¢ « o o ¢ o o s 6 s 6 06 0 0 0600000 XI-3
U Conversion (USEr) « ¢ ¢ « o o o e s s o 6 6 6 6o s s o o osss XI=5

CORRELATIVES ® & ¢ 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 XII-l

INtroduction « o ¢ ¢ o o ¢ o o o o 06 o 0606 06 0606006000000 0e XII-1
D-Correlative (Associative) .« ¢ ¢ ¢ o o o 6 o 00 0 00 00000 XII-1
F-Correlative (Function) =« ¢ « ¢ ¢ ¢ o o o 0 6 6 06060600000 XII-3
G-Correlative (Group Retrieved) « ¢« ¢ ¢ ¢ ¢ ¢ ¢ 6 ¢ o 0 6o o s o » XII-7
T—-Correlative (TeXt)s ¢ ¢« o o o « s o o ¢ 6 06 s 6 66 6 06000000 XII-8

SECIIRITYoo.oo.onoonoooo.ooocoooooc‘ocoooooo XIII"'l

INtroduction « o o v o v v o oo e v e st oo e e a0 es .. XIII-1
L-RET and L/UPD « « o o o o o s s o s s 0o oo s sooseeeses XIII-1
User Assigned Codes « « ¢ ¢ ¢ o o ¢ ¢ o o s 6 0600600000000 XIII-2
Security Code Comparison « ¢ ¢« ¢ ¢ ¢ o ¢« o o o ¢ 66 6000000 XIII-2

BATCHPROCESSOR ® 0 0 0 0 0 0 0 0 0 0 0 0 0 0 > b 0 0 0 0 0 0 0 0 0 0 0 0 0 XIV-l

Introduction « « ¢ ¢ ¢ o ¢ o ¢ o ¢ o 6 6 6 06 0660606006000 000. XIV-1
Evoking Batch « ¢ ¢ ¢ e o o o o o o e o v o000 0oeeesesss XIV-1
BATCH-string Format e « ¢ s ¢ ¢ o o ¢ ¢ o ¢ 06 6 ¢ 0 6 0 06000000 XIV-2
Input Data Conventions e ¢ ¢ ¢ ¢ o o ¢ o o o o 0 o 06 06000+ XIV-3
BATCH-string File-defining Element . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o « o XIV-4
BATCH-sring Attribute-defining Elements e o oo o0 e e oo XIV=5
Additional BATCH-string Elements « « ¢ ¢« s ¢ ¢ ¢ ¢ o o o o o o » XIV=7
Additional Sub-elements =+ ¢ ¢ ¢ ¢ o o s 06 60 0000000000 XIV-7

MICRODATA REALITY REFERENCE MANUAL . . . . v ¢ ¢ o o o o 000 oo oo XV-1

INtroduction « ¢ o o ¢ ¢ o ¢ ¢ o o 0 0 o 6 0 00 000 00 e XVU-1
System StYuCtUYe « ¢ ¢ o o o o o s ¢ o o 0 2 060 06000000000 XVU-1
Information FOYMAtsS o o o ¢ ¢ ¢ ¢ o 6 6 6 o 6 6 06 066 60600000 XV-1
Addressing « ¢ ¢ ¢ o ¢ o o v 0 0 6 0 0 6o 0 s s e 0 s e 00 s 00 XV-2
Virtual Memory Management « « « « ¢ ¢ ¢ ¢ o o o o o .o . XV-3
Buffer StatusS o o ¢ ¢ ¢ ¢ ¢ ¢ o o 6 0 6 06 0606 060000 e oo+ XV-3
Buffer Status Byte « « « o o ¢ ¢ ¢ 6 ¢ ¢ e 0 s 0 0 00 00eeese XVU=3
Buffer Map =« o ¢ ¢ o e o ¢ e o o 00 000 0000000 e oo XV-4
Buffer QUEUE « o« ¢ ¢ ¢ ¢ ¢ o ¢ o o o 6 6 6 s s s s s s o ooeosees XV-4
ProCeSS + o ¢ o ¢ ¢ 6 ¢ o 06 06 060606 060 sa000eoseoeseseses XV=5
Process Identification Block =« ¢ ¢ ¢ ¢ o ¢ o ¢ o ¢ o0 0o 0o o0 XV=5

vi



TABLE OF CONTENTS

PIB Status Bytes . .. ...

Primary Control Block .. ... .. .. o+ e o

Address Registers . . . ...
Address Register Attachment
Address Register Zero

Address Register One . . . «

Frame FormatS « ¢ ¢« ¢ ¢ o s o o
Monitor ¢ ¢ ¢ ¢ 6o o 0 0 o 0o o
Monitor PCB . . . .

Initial Condition of Monitor PCB
Initial Condition of Monitor PCB

Monitor Register Assignment

Interrupts and Monitor Calls « « ¢« o ¢ ¢ o ¢ o o ¢ o &

Traps o o o ¢ o o 0 0 ¢t 0 0 00 o

Trace Mode « « ¢ ¢ ¢ o o ¢ o

Monitor Disc Scheduling Tables

TheIOQTable.oooooooooo-

I0Q Table Format « « « « « « .

o & o o 0 0 o0

Registers

(Continued)

Selection of a Process to be Placed on the IOQ. s 0o 0 0 00

IOQ Setup =« o ¢ o o o o ¢ o .
Disc Address Computation. .

Disc Address Format .« . . . .

Device Control Table . . . .
DCT Table Entry .« « « « « «

Disc Interrupt Handling .. .. ... e e e e

Selection and Setup of Next I/0

Starting I/0 « « ¢ ¢ ¢ o o o

Disc ETYOrS o ¢ ¢« o ¢« v o « o o @
Select Next User Routine . .
Programming Notes « « ¢« ¢« ¢« « « .
Instruction Descriptions . . .
Definitions of Terms Used in the
Effective Address Computation
Arithmetic Operations « . « « . &

Data Transmission Operations
Address Modification Operations

.

Bit Manipulating Instructions .

Control Instructions . . . .

Logical Operations . . « . . .

Shift Operation ¢ « ¢ « . . .
String Operations « « « ¢ «
Conversion Operations . . .
Input-Output Operations . .
Monitor Operations .« . . . .
Instruction Summary . . . . .
Core Map « ¢« ¢ ¢ ¢ o o 0 0 0 o

Peripheral I/0: Device Orders

Descriptions « . . .. . &

vii

5 o o o o o o o

ooooooooo

Page

Xv-5
Xv-8
Xv-9
XvV-9
XvV-10
Xv-10
Xv-10
Xv-11
Xv-12
Xv-13
XV-13
XV-14
XV-14
Xv-15
XV-16-1
Xv-16-1
Xv-16-1
XV-16-2
TV-16-4
XV-16-4
XV-16-5
XvV-16-5
XV-16-5
XV-16-5
XV-16-6
XV-16-6
Xv-16-7
XV-16-7
Xv-16-7
Xv-16-8
XV-16-9
XV-16-10
XV-16-10
Xv-16-11
Xv-17
Xv-20
Xv-22
Xv-22
Xv-30
Xv-31
Xv-31
Xv-33
XvV-34
Xv-35
Xv-37
XV-43
XV-44



TABLE OF CONTENTS (Continued)

REALITY ASSEMBLY LANGUAGE (REAL)

Introduction e s s 0 0 6 6 0 s e 0 6 s 0 0 s e e
Source Language o+ c ¢ ¢ o o 0 0o o 0 0 0 0 0 0 0 o
Label Field o « ¢ o o v o ¢ 6 000 06660000
Operation Field o+ ¢ ¢ ¢ e o s 0 o 0 0 0 0 0 0 o
Operand Field « ¢ ¢ o ¢ oo oo 0o o0 0 000 o
Operand Field Expressions =« ¢« -« ¢ ¢ o o oo
Comment Field .+ ¢ ¢ ¢ ¢ o v o ¢ e 0o 0 0 0 00 0
"Argument" Field « ¢ ¢ ¢ ¢ ¢ o 0 o 0 v o 0o n .
Calling the Assembler « « « ¢ ¢ ¢ o o ¢ o o o &
Listing Output « ¢ ¢ o o s o ¢ o 0 6 0 0 0 0 0 o o
Loading « ¢ « o o o 6o o s s o0 0 o0 0 s 0 0 0
TCL-II Cross Reference Capability « « « «
Cross=Index Verb . o « « o ¢ ¢ o o 0 6 066 s 6 o
X-REF Vexrb =« « ¢ ¢ ¢ ¢ ¢ o 0 ¢ 0 6 060 0060000

XREFPROCOoboaoocnoao;onnllco'o

Operand Conventions =« « « ¢ ¢ ¢ o o ¢ ¢ ¢ o o o
Character Instructions (Moves)
Character Instruction (Tests) o « « ¢ ¢ o o &
Bit Instructions e« ¢ ¢ ¢ ¢ ¢ ¢« 0o 6 0 0 06 0 0 0 &
Data Movement and Arithmetic Instructions

Register Instructions e o o s 0 6 o 0 s s e o o

Data Comparison Instructions.« . ¢« « « « o o &

Translate Instructions =« ¢ ¢ o ¢ o o o o o ¢ o o

Execution Transfer Instructions
I/0 and Control Instruction « « ¢ ¢ o o o ¢
Assembler Directives =« ¢ ¢ o ¢ o ¢ o o 0 0 oo
Address Register Usage =« « ¢ ¢ ¢ ¢ ¢ o oo o
REAL Instruction Side Effects « ¢ ¢ ¢ o ¢
Examples of REAL Instructions =« ¢« « o o .
Assembler Tables « o o ¢ o o 6 ¢ 06 6 0 060004
TSYM/PSYM Table Entry Formats « « « ¢ o o &
Symbol-Codes « ¢ ¢ ¢ o ¢ ¢ ¢ 0 ¢ 0o 00000000
OSYM Table-Lookup Technique « « « o o ¢ o o &
TSYM Table Entry Setup =« o ¢ o o oo 0o o0
OSYM Table Entry Format « « « « ¢ « o o o o 4 &
Macro Definition Format « ¢ « ¢ ¢ ¢ o ¢ ¢ o o o
"Primitive" Definition Formats « « « « o +
Exit Format e o 6 o ¢ 06 s 0 6 0 s 0 0 8 0 0 0 s e
Gen FOrmat ¢ ¢ ¢ ¢ o ¢ s o ¢ « 06 6 6 06 06 06 06 6 0 0
Reset FoOrmat e« ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o ¢ 06 06 06 06 6 0 0 o
Assembler OQULPUL ¢ ¢ « o ¢ o o o o 0 o o o o o o
Literal Generation « ¢ ¢ ¢ ¢ ¢ ¢ 6o 0 6o 0o o o o o
Reassembly in Pass IT « ¢ o ¢ ¢ o o o s o o o
Assembler Error Messages * * * * * ¢
Example of REAL Macro Expansion =« ¢ ¢ ¢ ¢ ¢

viii

ooooooo

Page
XVI-1

XVI-1
XVI-1
XVI-1
XVI-1
XVI-2
XVI-2
XVI-2
XVI-2
XVI-2
XVI-3
XVIi-3
XVI-5
XVI-5
XVI-6
XVI-8
XVI-10
XVI-11
XVI-14
XVI-15
XVI-15
XVI-17
XVI-19
XVI-20
XVI-22
XVI-23
XVI-26
XVI-28
XVI-29
XVI-30
XVI-54
XVI-54
XVI-54
XVI-55
XVI-55
XVI-56
XVI-56
XVI-57
XVI-57
XVI-57
XVI-58
XVI-58
XVI-59
XVI-60
XVI-60
XVI-61



TABLE OF CONTENTS

THE INTERACTIVE DEBUGGER . .« « ¢ ¢ o ¢ o o &
Introduction ...« . ¢ . .
DEBUG SYyNtax .« « o ¢« o o o ¢ o o 0 6 ¢ o
General DEBUG Statement Format . . .
DEBUG Commands « « « o« s o ¢ ¢ o o ¢ o s &
Data Display Commands
Replacing Information . ... ... ..

(Continued)

Tables Provided for Debugging . . ...

Break MesSSages « ¢ o o o ¢ v 0 ¢ 0 o o o o
Hardware Trap Conditions « « « + « . &

SYSTEM MAINTENANCE ¢ ¢ ¢ ¢ ¢ o o o o o o o o
Introduction « « o ¢ o o ¢ o o 6 6 o o o o
Halting the CPU While in Execution

Restarting After STEP/INT Halts . .
Bootstrap and Cold-Start Procedure .
Using Preset Configuration

Reconfiguring Software at Cold Start Time
Programming NOLteS « ¢+ o o o ¢ ¢ o ¢ o o o 0 « o &
Further Explanation of Configuration Parameters . .
File-ReStore ProCeSS « o o o ¢ o ¢ 6 ¢ o 6 6 6 6 6 o 0 0 o o

File Restore Frame Limits
Output From a File-Restore Process

Initial System Setup « « ¢ ¢ o ¢ o ¢ o
SYSPROG Account PROCs and Verbs. . .
COLD-START PROC ¢ ¢ o 6 ¢ 6 o o o o o o o
CREATE~-ACCOUNT PROC
USage + o ¢ s o ¢ o 0 o 0o 0 0 0 0 0000 0
FILE-RESTORE PROC ¢ ¢ ¢ ¢ o o o o ¢ » o o
FILE-SAVE PROC
Method of Operation
Output from the File-Save Process. .
Operator Use of FILE-SAVE PROC . . .
RE-GEN PROC ¢ ¢ ¢ o o s 0 o s s 0 o o 00
SETUP-ASSY PROC ¢ ¢ o ¢ o o 6 6 6 6 0 o o
SETUP-RPG PROC . 4 ¢ ¢ ¢ ¢ o ¢ 6 6 6 6 o &
START-SPOOLER PROC =+ ¢ ¢ ¢ ¢ o s ¢ s o &
SYS=GEN PROC ¢ s o ¢ o o o 0 6 o 6 0 00
SYS—LOAD PROC + ¢ o o o o o o o o 6 s o o &
SYS-UPDATE PROC ¢ - ¢ ¢ o ¢ ¢ + o o o o
UPDATE-ACCOUNT PROC . - ¢ ¢ ¢ ¢ o o « &«
VERIFY-SYSTEM PROC « ¢ ¢ ¢ ¢ o o o o o &
Special SYSPROG Verbs « .+« . o .o ..
Standard SYSPROG PROCs «» « + &+ = ¢ « &« &

SYSTEM MESSAGES

o & o 8 & o 6 o o 0 ¢ 0 o s o o

ix

® » & ¢ & o o 0 o o o o o s s o

Page

XVII-1

XVII-1
XVII-1
XVII-2
XVII-2
XVII-3
XVII-4
XVII-4
XVII-4
XVII-5

XVIII-1

XVIII-1
XVIII-1
XVIII-1
XVIII-1
XVIII-2
XVIII-2
XVIII-3
XVIII-4
XVIII-5
XVIII-6
XVIII-6
XVIII-8
XVIII-8
XVIII-10
XVIII-10
XVIII-11
XVIII-12
XVIII-12
XVIII-13
XVIII-14
XVIII-16
XVIII-16
XVIII-17
XVIII-17
XVIII-18
XVIII-18
XVIII-18
XVIII-19
XVIII-19
XVIII-19
XVIII-19
XVIII-22

XIX-1



TABLE OF CONTENTS (Continued)

SYSTEM SOFTWARE ¢ & « ¢ ¢ ¢ ¢ ¢ o o o S

Introductionooo-ooaoooooooooonnoa-o
AddreSSRegiSterSooooooaooooooooooooo

Attachment and Detachment of A/R'S ¢ ¢ ¢ ¢ ¢ o o

Attachment and Detachment of Address Registers .

Re-’entrancy-a-ooooaoaoo-.o-ooooooo

Work Spaces or Buffers « « ¢ ¢ o oo 000000
Defining a Separate Buffer Area =« ¢« ¢ ¢ ¢ ¢ ¢ oo
Usage of mODE L] e o e o o . o o . e o o o o o o o o o o o

Initial Conditions « ¢ « o o o o o o 6 0 6 0 0 o o o o
Special PSYM Elements o« ¢ o ¢ ¢ ¢ o ¢ o 0o ¢ 0 o o oo
Program Documentation Conventionse ¢ ¢ ¢ ¢ ¢ ¢ ¢ &
Primary Control Block e o 6 0 0 0 0 0 0 s 0 e e e
Secondary Control Block « ¢ ¢ o ¢ oo o e o0 o e
Debug Control Block « ¢ ¢ e o o o o 0o 0 0 60 000

PSYM.....D/COde ® © 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0

TCL-1 & TCL-II PROCESSORS AND PROC INTERFACE =« + « -

TCL—II @ O o 0 06 0 0 0 0 0 0 6 0 0o 0 0 0 0 o 0 o o " o o
WRAPUP Processor -
UPDITM (WRAPUP II)

3
.
.
.
3
.
.
.
.
.
.
.
.
.
.
.
.

PRTEER(WRAPUPIII)oooooooooooooooaooo

DISCFILEI/O ® o o © 0 0 o 0 0 06 0 0 o o 0 0 0 0 8 0 0 0 o o

RETIX AND RETI e 0 0 06 06 0 06 0 0 0 0 2 0 0 0 0 0 0 0 0 0 o
GETITM ® 0 06 0 0 & 0 0 0 0 0 6 & 0 0 o 0 06 0 0 0 0 0 o 0 o o0
UPDITM ® 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 o o0

GBMS ® 06 06 0 0 0 0 o 0 0 0 T 6 0 0 0 0 0 0 0 0 0 0 8 0 o o

GDLID @ o 0 0 6 o 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 0 0

TERMINALI/O ® @ & 0 0 6 06 0 0 0 0 0 0 0 2 0 0 s 0 0 0 0 0 0 o0

GETIB AND GETIBX ¢ ¢ ¢ ¢ ¢ o 6 o 0o 0 0 0 00060 00c0
GETBUF ¢ ¢ ¢ ¢ ¢ ¢ e o 0 0 600 0e 00 s 0eess0000
WRTLIN AND WRITOB ¢ ¢ ¢ ¢ ¢ o 6 o s 0o 0 0 0 000000
PRNTHDR AND NEWPAGE ¢ ¢ ¢ o ¢ o o e o 0 0 0 0 06 0600
PRINT AND CRLFPRINT o ¢ ¢ ¢ o ¢ o o 0 0 0 e 6 066 0.0

VIRTUALMEMORYI/O @ 6 0 0 0 0 0 0 & 0 0 06 0 0 0 0 0 0 0 o 0

RDREC0000000noooloccooolouocc.co

RDLINKANDWTLINKoouoooocococoooccoao

LINK ® 6 06 0 0 o 6 0 0 0 0 0 0 0 0 o 0 06 0 0 0 0 0 0 0 0 0

.
.
3
.
.
.
.
.
.
.
.
.
Y
.
.
.
.
.
.

Page

XX-1
XX-1

-XX-2

XX-3
XX-3

XX-7
XX-8
XX-9
XX-9
XX-11
XX-13
XX-14
XX-15
XX-16

XX-21

XX-26
XX-31
XX-34
XX-34

XX-38

XX-39
XX-41
XX-43
XX-46
XX-48

XX-49

XX-50
XX-52
XX-53
XX-55
XX-57

XX-58
XX-59

XX-60
XX-61



TABLE OF CONTENTS

OVERFLOW SPACE MANAGEMENT . . . ¢ s 6 o o o &

GETOVF b ] GETBLK . . * . L . . . . . L] L] L) . .

RELOVF, RELCHN AND RELBLK ... ...
ATTOVF: ¢ ¢ o ¢ 4 ¢ ¢ ¢ ¢ ot o 0 6 0 0o oo
NEXTIR AND NEXTOVF ¢ ¢ ¢ ¢ ¢ 6o ¢ o 6 o &

WORK SPACE INITIALIZATION . .. ¢+ o ¢ o . .
wS INIT L] . L] - . . L . . . L L . . . L] . L] L

TSINIT ® o 6 o o 0 ¢ o 6 0 6 0 0 s 0 0 0+ 0 @
ISINIT @ 6 s 4 s o 0 s+ 0 06 2 0 0 6 0 0 o o o

PERIPHERAL I/0 4 v v v o v oo 0 o oo oo s oo

Tape Control Subroutines ... .. ..
INIT and TPSTAT. « o « « + o ¢ o s o o o
WEOF & e v o o v o 6ot oo 00000 0o o
BCKSP & . i v v vt e i b et oo s a0 o0

REWIND...--......----..---

FRWSP & v v v 0 00 6 v a0 o 000 00000
Tape I/0 Routines ... ... .
Blocked Tape 1/0 Operations ... ..
SEGMNT (3,TAPEIO-TII) . v ¢ o ¢ o 0 o + &

LABELED TAPE I/0O ROUTINES .+ v v 0 0 v o « »
RDLABEL (2,TAPEIO-II) =« ¢ v o o v o »

RDLABELX (S,TAPEIO_II) ® o ¢ 0 0 o 0 o o
WTLABLE (2,TAPEIO-III) . ... ... ..

WTLABELX (4,TAPEIO-III) .........

CREADoouooonoooc..--ooouaootl

MISCELLANEOUS « ¢ ¢ ¢ ¢ ¢ 0 o ¢ 0 6o ¢ 0 0 0 0 0
TIMDATE, TIME AND DATE .+ ¢« ¢ ¢« ¢ 4 ¢ & &«

ASCII- Character to Binary Conversion .

Binary to ASCII - Character Conversion
MBDSUB AND MBDNSUB . . ¢ ¢ 6 6 6 s o & &

EBCDIC to ASCII Conversion ... ... ¢ o

File Initjalization « « ¢ o o o ¢ ¢ o 6 o 0 o

DLINIT(6,DLOAD).....-......-
DLINIT1 (7,DLOAD) &+ v v v v o 0 s o ¢ s s

x1i

(Continued)

® o o o o o e o . o »
e o o6 & » 0 0 o o o e o o
o o . . . e o o o
o o o o o e o o o o .
o & 2 & & s o o o o o o »
e o s o o . . o o

e o o o . o o
e o o o e o o o o .
e o o 0 + 0 0 o s o0 o o »
. o o e » o o @ o o
e o o o e o o o o e o o

® s o 5 o+ o o o o o
o o . o o . . .
. o o o o e o o & o o
o o o o o o s o o o .
e o . o o .
® o o & o o o o & o o e & o
o & o o e o o o o o
© & 0 o6 06 6 0 0 o o ¢ o o .

o o o o . . o o o o
e o 0 o 2 o o o o o o .

® o o o 0 0 o o e o o
o o o o . e o o o o o »
o o o o o o o o o o 0
o o o o o 0 o o o o o o o
e o o o s 6 0 s o o
o o o o & o o o o o o » @

Page

XX-62

XX-63
XX~-64
XX-65
XX-66

XX-67
XX-68

XX~-69
XX-69

XX-71
XX-71
XX-71
XX-72
XX-72
XX-72
XX-73
XX-74
XX-75

XX-77
XX-77
XX-77
XX-78
XX-78
XX-79
XX-81
XX-81
XX-82
XX-83
XX-83
XX-84
XX-85

XX-~85
XX-85



TABLE OF

GPCBO (4,ABSL) . . .
SETPIB (4,LOGON) . .
SETPIBF (3,ABSL) . .

GMMS e » o 0 0 0 o o
GACBMS (1,LOGOFF) .

GETOPT (10,SYSTEM-SUBS-II)

GETUPD o o o o o 0 o o o 0 o 0 0

SORT ¢ o o o o ¢ o o o &

e 0o o o o

BLOCK LETTERS « « « . .

ENGLISH INTERFACES

e o o o o o o o

CONTENTS

o o o
o o o
o o o
e o o
o o o
o o o
e o o
o o o
o o

o o o

xii

(Continued)

Page

XX-86
XX-86
XX-87
XX-88
XX-88
XX-89
XX-89
XX-91
XX-93

XX-94



SECTION I

INTRODUCTION

Reality is a completely new system of computer hardware and software,
specifically oriented to provide a vehicle for the implementation of cost-
effective information management. Information management systems
implemented in Reality afford two major benefits; they are: (1) providing
accurate and timely information to form the basis for significantly improv-
ing the decision making process, and (2) substantially reducing the clerical
and administrative effort associated with the collection, the storage, and
dissemination of the information pertaining to an organization.

Reality is a completely new computer system combining both proprietary
hardware and proprietary software to create an effective tool for on-line
information management. Through the use of Microprogramming, Microdata

has implemented a truly revolutionary on-line transaction processing system.
Three major components of the system have been implemented directly in
firmware. They are, (1) virtual memory operating system; (2) the software
level architecture; (3) the terminal input-output routines. The virtual
memory operating system which has long been used in large computer systems
has been impractical for minicomputers due to the large amount of overhead
needed for the operating system itself. In Reality,.the operating system
has been directly implemented in highspeed, read-only memory (we called it
firmware) which executes many times faster than would a comparable system
normally implemented in software. Since the firmware is really an exten-
sion of the hardware of the computer hardware itself, this implementation
is more precisely referred to as a virtual machine operating system. With
the operating system directly implemented in read-only memory, only a small
amount of main memory (core memory) is needed to run Reality.

Slightly over 4,000 bytes of core memory need be allocated for the operating
system monitor. Everything else, system software, user software, and data,
is transferred automatically into main memory from the disc drive by the
virtual machine operating system in a demand-paged environment. Everything
in the Reality computer system is organized into 512 byte pages, or frames,
which are stored on the disc. The virtual concept allows the user to have
access to a programming area not constrained by a main (core) memory, but

as large as the entire available disc storage on the system.

The second feature implemented directly in firmware by Reality is the
software level architecture of the machine itself. Through Micro-
programming, Microdata has implemented a machine architecture expressly
designed and optimized for information management. The assembly language
architecture of Reality has very powerful instructions expressly designed
for character moves, searches, compares, and all supporting operations
germane to managing variable length fields and records. In addition, this
software architecture has in existence a very large field proven software
base written for information management. The information management soft-
ware available on the Reality computer system equals or exceeds the software
available for medium scale data processing systems costing several times
the price of Microdata Reality.



The third major item implemented in Microcode is the input-output routines
designed to handle communication with the terminals. In all minicomputer
on-line applications, one of the main problems is that of managing the
input and output from on-line interactive terminals. As these terminals
increase in number, the load on the CPU becomes overwhelming and conse-
quently the response to the terminals degrades dramatically. Microdata,

in Reality, has implemented the transactions with the on-line terminals

in high-speed microcode. The Microprogram implemented in read-only memory
directly controls the communications from and to all of the on-line
terminals connected to the Reality computer system. This means that the
process execution need not be interrupted to handle a character coming in
or going out to each and every terminal. The firmware handles or buffers
all these transactions and only interrupts the software at the completion
of a block. As a result, a very large number of terminals may be connected
to the Microdata Reality System before any significant degradation in
response time is detected. The response time is, of course, dependent upon
the specific application and the activity level of all terminals. However,
implementations of 10, 20, 30, or more terminals is not impractical. 1In
fact, with the virtual machine operating system, which automatically
manages the available resources of the computer, and the architecture
itself, custom designed for data base management and all the terminal

input and output handled directly by high-speed microcode, the Microdata
Reality System excels as the number of terminals increases.

What does this mean to the user?

1. Due to the structure of Reality a large number of terminals can
be accommodated with excellent termiral response times.

2. Due to the virtual machine impiementation the user need not be
concerned directly with the amount of main memory (core storage).

3. A large number of terminals (in excess of 32) may efficiently
be on~-line to the system.

4. All users (terminals) can share the Input/Output resources of
the system. An Input/Output spooling subsystem permits any
terminal to use the optional Magnetic Tape Drive and Line
Printer.

5. All files can be interrogated and manipulated using the ENGLISH
retrieval language, even those files built and maintained with
RPG-II programs.

REALITY - CENTRAL PROCESSING UNIT

The Reality CPU, although physically small in size and priced in the
minicomputer category, has the architecture of a medium scale computer.

Its main memory is core and is expandable from 8,192 bytes to 65,536 bytes
in increments of 8,192 bytes. Its full cycle operation is 1 microsecond
per byte. The virtual memory is disc which is oriented into 512 byte

frames expandable from 4,871 frames (2.5 million bytes) to 12,192,320 frames
(6.4 billion bytes). That is the virtual memory addressing range of the



CPU itself. However, in standard configurations, the Microdata Reality
system is currently configured from 5 million bytes to 80 million bytes of
disc storage. The CPU is capable of handling a large number of asynchro-
nous processes, each associated with an input-output device. The Reality
CPU will support in excess of 32 terminals (or asynchronous processes).
The CPU has 16 addressing registers and one extended accumulator for each
terminal. A variable return stack accommodating up to 31 recursive sub-
routine calls for each terminal is also provided; however, current soft-
ware convention allows only 11 entries in the stack. By indirect address-—
ing through any one of the 16 registers, any byte in the virtual memory
can be accessed. Relative addressing is also possible using an off-set
displacement plus one of the 16 registers to any bit, byte, word (16 bits),
double word (32 bit) or triple word (48 bits) in the entire virtual memory.

OPERATING SYSTEM

The operating system of the Microdata Reality is unique in that it is
implemented directly in firmware and as such is an extension of the hard-
ware., The features of the Microdata Reality operating system are summar-
ized below:

Operating System (Hardware) features include:

Selection of process for execution and determination of length of
execution.

Management of the allocation of core memory buffers containing disc
frames.

Processing of implicit and explicit frame faults (requests for core/
disc transfers).

Processing of logically linked frames and presenting them as physically
sequential.

Processing of inter-module linkage and maintenance of return stacks.
Recognize process defined breakpoints and generate software traps.
Minimum core resident overhead per defined process (32 bytes).

Full duplex byte (character) I/0, to buffer transfers between a
process and its associlated device, echo input bytes, process parity
bits, and test input bytes for process activation.

Generation of software traps on abnormal conditions, illegal op-codes,
return stack overflow/underflow, disc memory protect violation, arith-
metic overflow/underflow and device interrupts.

Disc I/0 with overlapped seeks using block multiplexed channels

providing an average access time of 35 ms and a maximum through-put
of one thousand 512 byte disc frame transfers per second.

I-3



One to four IBM compatible 9-track 800 bpi magnetic tapes for file
back-up, historical files and communication with other computer
systems.

Virtual memory read/write protection, to selectively lock critical
areas of memory from access.

Power fail-safe for automatic, safe shutdown in event of power
failure.

Real time clock and console settable user execution quantities.

Bootstrap program (hardware) to re-boot the system from disc, tape or
any byte I/0 device.

INSTRUCTION SET

The Reality System has an extensive instruction set, including:
Bit, Byte, word, double-word, and triple word operations.

Memory to memory operation using relative addressing on bytes, words,
double-words, and triple-words; for the movement, addition or subtrac-
tion of the first operand to the second operand.

Bit operations permitting the setting, resetting, and branching on
condition of a specific bit.

Branch instructions which permit the comparison of two relative
memory operands and branching as a result of the compare.

Addressing register operations for incrementing, decrementing, saving
and restoring addressing registers.

Byte string operations for the moving of arbitrarily long byte strings
from one place to another; movement may be stopped on a count runout,

addressing register reaching a specified value, or encountering up to

any one of seven specified delimiters.

Operations for the conversion of binary numbers to printable ASCII
characters and vice versa.

Arithmetic instructions for loading, storing, adding, subtracting,
multiplying, and dividing the extended accumulator and a memory
operand.

Control instructions for branching, subroutine calls, and program
linkage.



ENGLISH

ENGLISH is a generalized information management data retrieval language.
ENGLISH is a freeform order-independent language used to retrieve informa-
tion from the data files of the Reality computer system. The language
consists of verbs, nouns, connectives, and values. All information in the
system is stored in self-describing data bases and retrieved through the
use of dictionaries or tables.

The verbs of ENGLISH are action oriented words such as list, sort, select,
sum, etc. which evoke one of the ENGLISH processors.

Nouns are either the names of files or the names of attributes. They are
assigned by the user and can have as many synonyms as the user finds
necessary.

Connectives are provided to modify and qualify ENGLISH statements.
Modifiers are nouned or phrased limiters whose impact is to limit the depth
of action initiated by the verb.

Qualifiers are value limiters which logically qualify values such as equal
to, not equal to, greater than, less than.

Not only does ENGLISH provide an ability to selectively or conditionally
retrieve information, it also provides an automatic report generate capa-
bility. The report which normally appears on the terminal but optionally
can be transmitted to the line printer for hard copy output 1is automatically
formatted for the user by the Reality computer system. Listing output will
be processed through a formatter which will create a colummnar list, if
possible; otherwise vertical output will be created. The output may be
sorted into any sequence defined by the user and attributes may be totaled
based on user specified control breaks.

The update capability permits the adding, changing or deleting items or
attribute values for a specific item or items. As with the retrieval capa-
bility, updates may also be performed selectively on only those items
meeting defined conditionals.

Correlative codes, stored in the dictionaries, permit the user to define
certain processing relationships for specific attributes. Using correla-—
tions, the user can define arbitrarily complex file inter-relationships
and maintain these inter-relationships automatically. Correlations fall
into three basic groups.

Horizontal associations permit the chaining from an item in one data
list to an item in another data list. These lists may be used to
maintain inverted and cross indexed files and redundantly store data
in multiple locations. Similarly they may trigger the automatic
retrieval of data from secondary files, eliminating the need for
redundantly stored data.



Vertical associations permit the construction and maintenance of
hierarchial data structures. Previous and next links are maintained
automatically, permitting insertions and deletion of items into
indentured lists automatically.

Internal associations permit definition of relationships within a
single item. These relationships include repeating, groups and non-
stored attributes defined as a function of other stored attributes.

Data Audits provide definition of permissible characteristics for
attribute values. Audits include size, type, pattern, table-look-up,
and range checking.

Data conversion provides for automatic conversion of values on input
and output. Conversion includes data conversion, table look-up con-
version and data encoding.

Storage method of wvalues for attributes may be specified as: single value;
multiple value/non-redundant store; multiple-value/redundant store; positive
post; negative post.

Every file and their individual attributes may be secured for either update
or retrieval by the assignment of security codes. At log on time, each
user gets a list of pre-defined security codes which are then matched to
codes on requested files and attributes. Only those with matches are
retrieved or updated.

SOFTWARE

The software available on the Reality computer system is the most extensive
data base management software available on any minicomputer. A summary of
some of the processors available to all terminal users is presented below:

A high level two pass symbolic assembly language and macroprocessor
translates REAL source statements, and can be used to implement cross-

assemblers for other computers.

On-line editor - an interactive editor designed for creating, displaying,
searching, and altering source programs and other bodies of text.

COPY, a file management processor, provides for data movement between disc
files, tapes, line printers and terminals.

A file save and restore processor providing tape back-up for disc files.

ON/OFF processor to validate users wishing to gain access to the system
and also to update accounting information.

MESSAGE, a message processor permitting the storing and forwarding of
messages to other users whether currently on the system or not.



PROC, a facility allowing a user to define procedures "PROC's'". A PROC can
be used to define complex procedures involving multiple processor entry and
conditional branching.
System subroutines are provided for use by user written programs, including:
An n-way polyphase disc sort/merge subroutine.
Routines for reading the standard input/output device (terminal).

Routines for retrieving and updating items in ENGLISH defined files.

A message formatter accepting value strings and formatting them into
a message or report using a predefined format string.

Input/Output Spooling System which permits any terminal to use system
peripherals such as the line printers or magnetic tape unit.

Numerous utility processors providing capability to:
Examine and alter physical frames.
Load assembled source programs.
List assembled source programs.
Define terminal characteristics.
On-Line Debug facilitates program debugging by:

Examining, Inserting and modifying the program elements such as
instructions and data.

Controlling execution by setting breakpoints at specific
locations, and breaking on branches or external calls.

Single stepping execution.

Tracing execution by displaying information at designated points
in a program.

Conventions regarding data typed in at the terminal.

The following conventions apply uniformly through this manual:

Where the format of a command to the system is described, upper-case
characters or words are literal, that is, they represent the actual occur-
rence of that character or word; lower-case characters or words represent
variables, that is, in actual use they are replaced by a specific value.
For example, if the format is:

EDIT DICT file-name item-name (X,Q)



"EDIT", "DICT" and "(X,Q)" are literals and are to be entered exactly as
shown; "file-name" and "item-name'" are to be replaced in actual use by a
specific value representing, respectively, the file-name and the item-name
to be used. Thus, if '"'SYS-FILE" is a valid file-name, and "ABCD" is a
valid item~name, the data:

EDIT DICT SYSGEN-FILE ABCD (X,Q)
is actually typed in.

In examples shown in this manual, data typed in at the computer terminal
is underlined; computer-generated output is not.

The symbol (:) represents the entry of a carriage return or a line
feed at the terminal.

Control characters are represented by the upper-case letter

" n,

corresponding to the key used, with a superscript of a "¢"; thus PC repre-
sents '"'control-P"; further, PCS represents 'control-shift-P".



SECTION II

DATA STRUCTURES

INTRODUCTION

Reality is a virtual machine with all of the virtual memory (typically
disc) being directly addressable as if it were in real memory (typically
core). The virtual memory consists of a set of 512-byte frames, address-
able by a positive integer called a Frame ID (FID). The entire set of
data associated with a Reality system, including executable programs,
process work spaces and all system and user files reside in virtual
memory.

Executable Frames

Starting with frame one (FID=1), and continuing upward sequentially, are
the executable frames. The extent of these frames (i.e., how high they go)
is a system generation parameter. However, a minimum of 511 frames must
be reserved: furthermore, not more than 4095 frames may be reserved.

This initial area of the virtual memory contains every executable program
or subroutine available with the Reality system. These frames are shared
among all users. For example, the TCL processor is solely contained on
frames 2, 4, and 5; a user executing in TCL uses these three frames
simultaneously with all other users executing in TCL. Frames 1 to 399 are
reserved for current and future Reality software. Frames 400 to 511 are
available for user-developed software. The appendix to this section
describes the frame locations for the Reality operating system software
(not including ENGLISH software). Following the space reserved for the
executable frames, beginning at frame number 512, is the process work
space.

Process Work Space

A user interacts with the Reality system via an interactive terminal
attached to a communications port on the Reality CPU. The on-going dialog
with any port is called a process. Additionally certain processes not
actually connected with a communications port may be defined at system
generation time. These background processes can be used for such things
as spooling data to a line-printer. Uniquely associated with each process
is a primary control block (PCB) which is a one-frame block that defines
the state of the process at any instant. The PCB contains the addressing
registers for its process as well as the accumulator, condition flags,
return stack and scan delimiters, all required by the hardware during
execution by the process. Each PCB is followed by a 31-frame work space
that is associated with it; thus 32 frames are reserved for each defined
process and the first frame of each block is the PCB. Following the process
work space is the file space, from which each process can get and release
work space as required.

II-1



The 32 frames of process work space associated with each process are as

follows:

to

to

to

to

to

Frame

PCB + 0

PCB

PCB

PCB

PCB

PCB

PCB
PCB

PCB
PCB

PCB
PCB

PCB
PCB

PCB

+

+

+

1

O N

10
15

16
21

22
27

28

PCB + 29
PCB + 31

Description and Symbolic Name

Primary Control Block (PCB)

Second any Control Block (SCB)

DEBUG Control Block (DCB)

Unassigned and unavailable

BMS/50, AF/50, CS/100, IB/140, OB/140

TS - one frame unlinked scratch area (TSBEG)
Four frame PROC work area & stacks

HS - six frame linked HS work area

(HSBEG)

IS - six frame linked IS work area (ISBEG)

0S - six frame linked 0S work area (OSBEG)

UPD - one frame unlinked work area (UPDBEG)
set up only when GETUPD is called from a
user written program. Also used by RPG.

Unassigned and unused, available for
user programs.

It should be noted that the above work space assignments for HS, IS, and OS
may be increased by the establishment of an appropriate entry in the LOGON
item; however, the additional space is obtained from the common pool of
For a discussion of frame formats, refer to Section XV.

overflow space.

II-2



Disk Space Assignment

The map below describes the assignment of the disk space; the "highest
available disk frame" number is dependent on the disk configuration for a
particular system; several other FID's are also configuration-dependent;
examples shown below (FID's in parentheses), are for a system with 32K
bytes of core-memory and with one five megabyte (5 MB) disk, and sixteen
processes.

0
1 Coredump area. Shared by both RPG
199 computer object code and the core dump
200 area. Refer to Section XVIII for
further details.
397 Operating system and ENGLISH software;
328 executable program area.
399
400
- Available for user—-generated software;
executable program area.
511
512
Work-space area for processes
0 through 7
767
768
Work-space area for processes
8 through 15
1023
AT 3=
(Work-space area for processes
it o o S T ey 16 thrOUgh 63) *
(1024)
Start of file (data) space
File (data) space available to the
k_" system.

(9743)
Last available data frame.

Highest available
disk frame.

II-3



In general, the configuration-dependent FID's may be computed using the
rules below:

Start of file space (fl) = 512 4+ u * 32 u = number of processes.

Highest available disk
frame
FIDm = 9,743 One 5 MB disk
19,487 Two 5 MB disks, or one 10 MB disk.
38,975 Four 5 MB disks, or two 10 MB disks.
77,951 Four 10 MB disks.

End of file space (fj) = FIDmax

File Space

Beginning after the process work space, the remainder of the virtual
memory is available for the storage of data in files. The beginning of
this area is a system generation parameter. A direct access file technique
1s used and employs a hashing technique. All data is stored as items
within files., Dictionaries, which are also files, are used to decode the
formats of the data stored in an item.

Overflow Space Management

The areas of the disk that are not allocated to the files are maintained

as a pool of overflow space that is available to the Reality system file
management routines as additional data space, as well as to other processors
as scratch work space. The Reality system maintains a table of pointers
that define the available overflow space, which may be either in a '"linked"
form, or in a "contiguous" form. Contiguous overflow space, as the name
implies, consists of blocks of contiguous frmmes defined by a set of 2
pointers that are all available, and can be taken out of the pool either
singly or as a block. Linked overflow space can only be taken a frame-at-—
a-time. Conversely, space may be released by processors to the linked
overflow pool a frame-at-a—-time, or to the contiguous pool as a block.

At the conclusion of a file-restoration process on the Reality system,

an initial condition may be said to exist; there is no linked overflow
space, and only one block of contiguous overflow space, extending from the
end of the current data space through the last available data frame. As
the system obtains and releases overflow space, and as files are created
and deleted, the overflow space gets fragmented, and at any particular
time there may be several blocks of contiguous overflow space, and a

II-4



chain of linked overflow space. Representative examples of these two states
are shown below; shaded areas indicate use of file space:

0 0
Executable program
1024 ""‘ space; 1024
Process work space
Total 4000
. 4020
File 48004500
pace
. //S 5800
6000 6500
Contiguous ! 31007200
Overflow ! 90008150
Space 9250
97699743
9743
Start of Linked . 0 8000 (400 frames in
Overflow space : linked set)
Contiguous space : 6000 4000 first set
pointer sets. 9743 4020
6000 second set
(end of table) 6500
8150 third set
9000
9250 fourth set
9743

(end of table)

I1-5



File Definition

A file is a mechanism for maintaining a set of like items logically

together so that one can access these items for both retrieval and update.
For the Reality system, this mechanism functions by operating on a specified
item~id which uniquely identifies the item. A computational hashing
technique is used which operates on the item—-id, using several variables
unique to the file, to produce a virtual memory address where the item is
stored.

Terms used in defining and accessing files:

Item A string of data associated with and including an
item-id. Items are stored in files.

Ltem—id A unique datum (key) within a file with which all of
the data in an associated item is identified or
referenced.

File A set of items.

Group An area (a set of linked frames) where items may

be sequentiallv stored. It consists of one or
more linked frames and can vary in size from file
to file. (Usually 10 to 25 items per group.)

Base The first FID of the first group in a given file.
Modulo The number of groups allocated for a given file.

Separation The number of frames initially allocated for each
group in a file.

Hashing Algorithm

The "hashing" technique is used to distribute items within the physical
structure of the file.

FID = BASE + [Remainder (Item-id/MODULO) ]J* SEPARATION

The item-id is treated as a variable length string of binary digits;
dividing this value by the positive integer MODULO yields an unsigned
integer remainder in the range:

0 < remainder < MODULO.
This is then the group number (i.e., 0, 1, 2, . . . . . up to MODULO-1) where

the item is to be stored. Multiplying by the SEPARATION and adding the
BASE yields the actual FID of the first frame in the group.

I1-6



Item Storage

After computing an FID to locate the specific group in which the item
resides, each item's item-id in the group must be compared for a match.

The frames comprising a group are linked both forward and backwards. This
Reality system facility makes the group appear to be a physically sequen-
tial string where items are stored one immediately after another. In fact,
any portion of an item may spill across a physically non-contiguous frame
boundary. An example is included on the next page.

When a file is created it is allocated a primary area of (MODULO *
SEPARATION) frames. Thus this amount of contiguous disk-space is perman-
ently allocated to the file. As the file grows, individual groups may
fill up. When this happens, an additional frame is added to the group
from a pool of available space. This frame is linked into the group to
increase the length of the logically sequential group. Additionally, if
a delete or update causes the group to shrink, any unused frames outside
the primary area are returned to the pool of available space.

Item Format—Physical

Character Count - The first four characters of an item are a hexadecimal
character character count which specifies the total number of characters
in the item, including the count field; the maximum size of an item is
32267 bytes (X'7EOB'). This character count is used to locate the
beginning of the next item within a group.

Attribute Separation - After the character count is the beginning of the
data in the item., The first datum is the Item~id identifying that item.
Following, and marking the end of the Item-id is an attribute mark (X'FE'),
which prints as "4" or "', Following the attribute mark are the attribute
values, which may be of variable length, separated by additional attribute
marks. An item is always terminated with an attribute mark.

Absense of Values - The absence of a value for an attribute is specified

by an attribute mark (to maintain the proper attribute sequence) immediately
following the attribute mark indicating the end of the previous value. The
"space'" between two adjacent attribute marks can be thought of as repre-
senting the absent value. If the last attributes within an item have no
stored values, the item terminates with the Attribute Mark following the
last value present. However, all items must terminate with an attribute
mark. The minimum Item consists of only an Item-id followed by a single
attribute mark.

Multiple Values - Between any two attribute marks (i.e. any one attribute
value) multiple values may exist. These are separated by a value mark
(X'FD') which prints as "]", in exactly the same manner an attribute mark
separates attributes.

End of Group - An attribute mark immediately following an item signifies

the end of a group. If a group is empty the first character of the group
will be an attribute mark.

I1-7



Dump of Sample File

The following "print out" was generated using the DUMP processor. It shows
a sample file with BASE=1248, MODULO=3 and SEPAR=2, The DUMP processor
assumes frames in a linked format as follows:

Byte 1 - unused

Byte 2 - number of next contiguous frames
Byte 3-6 - next linked frame

Byte 7-10 - previous linked frame

Byte 11 - number of previous contiguous frames
Byte 12 -  unused

Byte 13-512 data portion

For each frame the first line shows the frame number (FID) and links fields
in the above sequence. Subsequent lines display all non-blank data. The
sample file contains one large item and all the linked frames including
those outside the primary item are dumped. Attribute marks print as the
character A.

Example of File with 3 Groups and 2 Frames/Group

BASE = 1248, MODULO = 3, SEPAR = 2.

1st group (FID 1248) has 3 icems

2nd group (FID

1250) has no items

3rd group (FID

1252) has 2 items

:DUMP G 1248@

l///,//Count field = X'002E' = 46, bytes
ink fields

;;“//tTN’///7::::——‘—‘kiffiEE’EHEQgI—L

FID : 1248 KS :"1 1249 0 0

001: 002ETTEMOALINE 17SMITH, JOHN”1234 MAIN STREET~0033
051: ITEM3"THIS IS AN ITEM WHOSE ITEM-ID IS CITEM3)"003
101: 3ITEM6"THIS IS AN ITEM WHOSE ITEM-ID IS (ITEMsiiSX

FID : 1249 LINKS : 0 0 1248 1 Group data
terminating
attribute mark.

Item—-id: ITEMO = X'4954454D30' End of first item.—
Hashing algorithm:
FID = Remainder(X'4954454D30' / 3) * 2 + 1248
=0 *% 2 4+ 1248
= 1248

I1-8



REALITY 2.0 UPDATE

No. of next contiguous
frames.

Next frame.

Previous frame.

:DUMP G 1250 \E) No. of previous
contiguous frames.

DISK 1250
Group data terminating
FID : 1250 LINKS : 1 1251 0 O attribute mark; null
001: \\\ // group since it is
at beginning of
FID : 1251 LINKS : 0 0 1250 1 group.
001

The third group has a large item (size = X'74F' = 1871) causing
the group to link out of the primary area into the overflow space.

‘DUMP G 1252 @

DISK 1252

FID : 1252 LINKS : 1 1253 0 0

001: O7LFITEM2°THIS IS AN ITEM WHOSE ITEM-ID IS (ITEM2)
051: ~“"THE PREVIOUS ATTRIBUTE IS NULL"THIS IS THE FIRST
101: VALUE OF A MULTI VALUED ATTRIBUTE ]JTHIS IS THE SEC
151: OND VALUE OF A MULTI VALUED ATTRIBUTE~1234567890AB
201: CDEFGHIJUKLMNOPQRSTUVWXYZ!'"'#$%8'()*:=—_+;/["]<>2/..
251: "ATTRIBUTE VALUES MAY CONTAIN ANY COMBINATION OF L
301: EGAL CHARACTERS, AND ONLY THE NUMBER OF CHARACTERS
351: ACTUALLY IN THE VALUE WILL BE STORED. ADDITIONAL
401: Y THE VALUE MAY BE UP TO 32,760 CHARACTERS LONG."V
451: ALUE FOR ATTRIBUTE 6" VALUE FOR ATTRIBUTE 7"VALUE F

< R B K g

FID : 1253 LINKS : 0 9327 1252 1

501: OR ATTRIBUTE 8"VALUE FOR ATTRIBUTE 9°VALUE FOR ATT
551: RIBUTE 10"VALUE FOR ATTRIBUTE 11"VALUE FOR ATTRIBU
601: TE 12°"VALUE FOR ATTRIBUTE 13"VALUE FOR ATTRIBUTE 1
651: 4 VALUE FOR ATTRIBUTE 15°VALUE FOR ATTRIBUTE 16°VA
701: LUE FOR ATTRIBUTE 17"VALUE FOR ATTRIBUTE 18"VALUE
751: FOR ATTRIBUTE 19°VALUE FOR ATTRIBUTE 20°VALUE FOR
801: ATTRIBUTE 21°VALUE FOR ATTRIBUTE 22°VALUE FOR ATTR
851: IBUTE 23"VALUE FOR ATTRIBUTE 24"VALUE FOR ATTRIBUT
901: E 25°VALUE FOR ATTRIBUTE 26°VALUE FOR ATTRIBUTE 27
951: "VALUE FOR ATTRIBUTE 28°VALUE FOR ATTRIBUTE 29°VAL

o0 T n

I1-9



REALITY 2.0 UPDATE

FID : 9327 LINKS : 0 9331 1253 0

1001: UE FOR ATTRIBUTE 30°VALUE FOR ATTRIBUTE 31"VALUE F

1051: OR ATTRIBUTE 32"VALUE FOR ATTRIBUTE 33"VALUE FOR A\\\\\7
1101: TTRIBUTE 34"VALUE FOR ATTRIBUTE 35°VALUE FOR ATTRI
1151: BUTE 36"VALUE FOR ATTRIBUTE 37°VALUE FOR ATTRIBUTE
1201: 38"VALUE FOR ATTRIBUTE 39"VALUE FOR ATTRIBUTE 40~
1251: VALUE FOR ATTRIBUTE 41°VALUE FOR ATTRIBUTE 42°VALU
1301: E FOR ATTRIBUTE 43"VALUE FOR ATTRIBUTE 44"VALUE FO
1351: R ATTRIBUTE 45"VALUE FOR ATTRIBUTE 46"VALUE FOR AT
1401: TRIBUTE 47°VALUE FOR ATTRIBUTE 48"VALUE FOR ATTRIB
1451: UTE 49°VALUE FOR ATTRIBUTE 50°VALUE FOR ATTRIBUTE

End of first item.

£ 0O HHMHR OO

FID : 9331 LINKS : 0 0 9327
1501: 51°VALUE FOR ATTRIBUTE §2"VALUE FOR ATTRIBUTE 53"V
1551: ALUE FOR ATTRIBUTE 54"VALUE FOR ATTRIBUTE 55" VALUE
1601: FOR ATTRIBUTE 56"VALUE FOR ATTRIBUTE 57"VALUE FOR
1651: ATTRIBUTE 58"VALUE FOR ATTRIBUTE 59°VALUE FOR ATT
1701: RIBUTE 60"VALUE FOR ATTRIBUTE 61"VALUE FOR ATTRIBU
1751: TE 62°VALUE FOR ATTRIBUTE 63"VALUE FOR ATTRIBUTE 6
1801: 4"VALUE FOR ATTRIBUTE 65°VALUE FOR ATTRIBUTE 66"VA
1851: LUE FOR ATTRIBUTE 67°0033ITEM5"THIS IS AN ITEM WHO
1901: SE ITEM-ID IS (ITEM5)""

o 0oPYwn

Item Format - Logical

While it is important to understand the item format as described in the
Previous section, in normal system usage items are always accessed at a
more abstract or higher level. Files are identified by a File-name.
Within a File, items are referenced by an Item-id. For example, the
following statement shows an item in the file 'SAMPLE-FILE' whose item-
id is 'ITEMO'. Furthermore, this item has three attributes or lines
each with sample data.

:COPY SAMPLE-FILE ITEMO (T) (:)

ITEMO Item-id
001 LINE 1
002 SMITH, JOHN
003 1234 MAIN STREET

Utility processors like COPY and EDIT deal at the file - item - line
level. They make no logical distinction in definition between various
"lines" in an item other than their implied line numbers. ENGLISH
processors, however, add an additional dimension through the use of
the dictionary. This dictionary informs them as to the nature of

the information stored for each of the attributes. The logical item
format is identical for ENGLISH and non-ENGLISH processors as in the
case of COPY above. It is the

IT-10



responsibility of the user to ascertain the further qualifications, if
any, of the various attributes. For example, the following is a listing
of the item shown above using the ENGLISH List Processor.

:LIST SAMPLE-FILE “ITEMO” ATTRIBUTE-1 NAME ADDRESS (%)

PAGE 1 16:40 23 OCT 1973

SAMPLE-FILE ATTRIBUTE-1 NAME.....c.co.. ADDRESS......vvvunn

ITEMO LINE 1 SMITH, JOHN 1234 MAIN STREET

In this example the dictionary defines the second attribute (or line) as
'NAME'. This permits the user to reference his data symbolically, when
in fact, the actual data stored on file is the same regardless of

the Processor accessing it.

Selecting Modulo and Separation

These are general guidelines in selecting values for the modulo and
separation parameters when using the CREATE-FILE processor. The guidelines
are derived from the density versus overflow table explained in the next
section.

Modulo: is the number of groups in the file. It should be selected
with regard to the total number of items that the file is to store. For
optimal hashing (the pseudo-random technique of distributing items among
the groups), the modulo should be a prime number. As a trade-off between
saving storage space and minimizing search-time in a group, the modulo
should be such that there will be 10-20 items per group (fewer for large
items).

Therefore, m =~ [(Average expected number of items)/15]
m prime

Separation: is the size (in frames) per group. It should be selected
with regard to the average size of items that the file is to store. A
value should be selected such that 807 of the data in a group is in the
"prime" space.
Therefore, s = [(Average number of bytes per group)/(.8%500)]
where the average number of bytes per group can be computed from the
average item size, and the number of items per group. Separation should
be selected after the modulo.

II-11



EXAMPLE--

The new NEWAC file (prototype M/DICT) has about 160 items, average item
size 30 bytes. Therefore,

m = (160/15) = 10.67

Selecting m = 11 as a prime number, 160
average number of bytes per group = 11 * 30 = 436, and

s = 436/(.8%500) = 1 (500 bytes per frame)
Therefore the selected modulo = 11, separation = 1.
Other considerations include the frequency of usage of the file--relatively

"static" files can have more items per group; '"dynamic" files should have
fewer items per group.

Density Versus Overflow

The table overleaf shows the relationship between density and overflow
access, where density is the percentage of primary space used, and over-
flow access occurs when an item is partially or wholly in overflow space.

When an item is updated, it moves to the end of the group. Thus items
that are most frequenly updated occur towards the end of the group data.
This accounts for the difference in the probability figures for update and
retrieval.

II-12



REALITY 2.0 UPDATE

it of updates to
overflow area
per 1000
# of updates
retrievals
from overflow
area per 1000
retrievals
# of UTILIZATION
Items
per Group 10% 20% 30% 40% 50% 60% 70% 807 907 100%
1 95 181 259 330 393 451 503 551 593 632
2 132 48 65 84 104 125 147
2 18 62 122 191 264 337 408 475 537 592
- 17 30 47 66 88 112 138
3 4 23 63 121 191 269 350 430 506 577
- 10 20 34 52 74 100 128
4 1 9 34 79 143 221 208 397 485 567
- 6 13 25 42 64 90 119
5 - 4 19 53 109 185 275 371 468 560
- 3 9 19 35 56 82 <1112
6 - 1 10 36 84 156 247 349 454 554
- 2 6 14 29 49 75 106
7 - 1 6 24 65 133 223 330 442 550
- 1 5 12 25 44 69 101
8 - - 3 17 51 113 203 313 431 547
- 1 3 10 21 39 65 97
9 - - 2 12 40 97 185 297 421 544
- 1 2 8 18 36 61 93
10 - - 1 8 32 84 169 283 413 542
- - 2 6 16 33 57 90
15 - - - 2 13 48 121 238 383 536
- - - 2 8 22 44 77
20 - - - - 4 24 82 195 354 530
- - - 1 5 15 36 69
25 - - - - 1 13 57 162 330 527
- - - - 3 11 162 64
15 - . B - - 4 28 116 293 523
- ~ - ~ 1 7 23 56
50 - - - - - 1 10 72 249 519
- - - - - 3 16 48

Probability of Overflow Using Modulo Addressing

I1-13



:

wo~NOTBM LN

MODE
DB1
TCL-II
DISKFIO-II
TCL-INIT
TCL-I
TERMIO
DISKFIO-1

SYSTEM-SUBS-I
SYSTEM-SUBS-11I

WRAPUP-I
WRAPUP-II
WRAPUP-III
EDIT-I
EDIT-II
EDIT-III
EDIT-IV
DB2

DB3

DB4

DB5

DB6

GAF
PASS1
ASTAT
MACRO
GEN
ALIGN
PASS2
GETOP
ADDLAB
LOADER
MLIST
OF2

OF1
TAPEIO-I
TAPEIO-II
T-LOAD
EBCDIC
SORT
PROC-III
DUMP-TII
DUMP-I
LOGON
PROC-I
PROC-II
DLOAD
ABSL
DDUMP
ABSD

FRAME

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

I1-14

REALITY 2.0 UPDATE

MODE

LOGOFF
SYSTEM~-SUBS-III
MSG



REALITY 2.0 UPDATE

FRAME MODE FRAME MODE

99 148 CARDIO
100 149

101 150 PROC-IV
102 151 PROC-V
103 152 INPUT
104 153 TAPEIO-III
105 154

106 155

107 156

108 157

109 158

110 159

111 160 ARITH
112 161

113 162

114 163 OPNPF
115 164 PQUEUE
116 165 PFILE
117 166 PQEXT-1I
118 167 PQEXT-1I
119 168 PQEXT-III
120 169 XLOADER
121 170 COREDUMP
122 171 PQEXT-IV
123 172 WSPACES
124 173

125 174

126 175 PQEXT-V
127 176

128 177

129 178

130 179

131 DISC-DIAG 180

132 DISC-MSG 181

133 182

134 183

135 184

136 185

137 186

138 187 MSETUP
139 188 MSETUPQ
140 COPY-I 189 MSETUP1
141 COPY-II 190 MBOOT
142 COPY-III 191 MBUFFERS
143 COPY-IV 192 MMONITOR
144 DISK-CHARGES 193 MMONITORX
145 XREF 194 PIBO

146 CROSS 195 PIBl

147 SEL-RESTORE 196 MONITORY

II-15



FRAME

197
198
199
200

290

399

MODE
PCBO

MMONITORZ
MMONITORY/N2

BLOCK-LETTERS

II-16

REALITY 2.0 UPDATE



CORE-MAP

REALITY 2.0 UPDATE

This table describes the core-map of the system as it is initialized
A minimum of 16K of core is required; any
additional core in the particular hardware configuration is not

by the cold-start process:

initialized.

The "STATUS" column has one of the following entries:

X'80' -- LOCKED IN CORE; X'EF' WRITE TO DISK; X'FF' AVAILABLE.

BUFFER # ADDRESS FID(U)..(L) FID

HEX DEC HEX STAT  HEX HEX DEC DESCRIPTION AND PROGRAM-NAME
00 00 0000 - - - - MONITOR PCB MBOOT

01 o1 0200 80 - - - BUFFER TABLES MBUFFERS

02 02 0400 80 - - - MONITOR OBJECT MMONITOR

03 03 0600 80 - - - MONITOR OBJECT MMONITORX

04 04 0800 80 FFFF  FC PIBS, DEV. 18/19 PIBO

05 05 0AD0 80 FFFF FB PIBS, DEV. 1A/1B PIBl

06 06 0Co00 80 FFFF FA MONITOR OBJECT MMONITORY/N1
07 07 OE00 - FFFF F9 - MONITOR OBJECT MMONITORZ

- - 1000 - - - - CONFIGURATOR MSETUPO

- - 1200 - - - - LITERALS MSETUP1

- - 1400 - FFFF FA MONITOR OBJECT MMONITORY/N2
- - 1600 - - - - DISC DIAGNOSTIC DISC-DIAG
- - 1800 - - - - LITERALS DISC-MSG
08 08 1000 EF 0002 00 512 PCB, CHANNEL O PCBO

09 09 1200 EF 0000 2F 47 TFILE RESTORE ABSL

0A 10 1400 EF 0000 23 35 TAPE I/0 TAPEIO-I

0B 11 1600 EF 0000 24 36 TAPE I/0 TAPEIO-II

oc 12 1800 80 0000 04 4 INITIALIZATION TCL-INIT

0D 13 1A00 80 0000 06 6 TERMINAL I/0 TERMIO

OE 14 1C00 80 0000 07 7 FILE 1/0 DISKFIO-I

OF 15 1E00 80 0000 08 8 SYSTEM SUBS SYSTEM-SUBS-1
10 16 2000 EF 0000 01 1 DEBUGGER DB1

11 17 2200 EF 0000 02 2 TCL TCL-II

12 18 2400 EF 0000 03 3 FILE I/0 DISKFIO-II
13 19 2600 EF 0000 05 5 TCL TCL-I

14 20 2800 EF 0000 09 9 SYSTEM SUBS SYSTEM-SUBS~IT
15 21 2A00 EF 0000 0A 10 WRAPUP PROCESSOR WRAPUP-I

16 22 2C00 80 0000 OB 11 WRAPUP PROCESSOR WRAPUP-II
17 23 2E00 EF 0000 OC 12 WRAPUP PROCESSOR WRAPUP-III
18 24 3000 EF 0000 11 17 DEBUG PROCESSOR DB2

19 25 3200 EF 0000 12 18 DEBUG PROCESSOR DB3

1A 26 3400 EF 0000 13 19 DEBUG PROCESSOR DB4

1B 27 3600 EF 0000 14 20 DEBUG PROCESSOR DB5

1c 28 3800 EF 0000 15 21 DEBUG PROCESSOR DB6

1D 29 3A00 FF 0000 - ~  AVAILABLE

1E 30 3C00 FF 0000 - - AVAILABLE

1F 31 3E00 FF 0000 - -  AVAILABLE

I1-17



REALITY 2.0 UPDATE

The first three buffers are not accessed by the firmware in the virtual
mode of operation; thus there is absolute memory protection of core
locations 0-X'07FF'. The status fields for these buffers must be set
to X'80' (core-locked). There are two buffers containing the PIB's
(process identification blocks) that follow the above; their status
must also be set to X'80'. Buffers 6 and 7 have additional monitor
object code, and must be locked in core. The dummy FID's assigned to
buffers 4, 5, 6 and 7 allow software to access these buffers, but
provide some measure of access protection.

I1-18



11

13

17

19

23

29

31

37

41

43

47

53

59

61

67

71

79

83

89

97

101

103

107

109

113

127

131

137

139

149

151

157

163

167

173

179

181

191

193

197

199

TABLE OF PRIME NUMBERS LESS THAN 1000

211
223
227
229
233
239
241
251
257
263
269
271
277
281
283

293

307

311

313

317

331

337

347

349

353

359

367

373

379

383

389

397

401

409

419

421

431

433

439

443

449

457

461

463

467

479

487

491

499

503

509

521

523

541

547

557

563

569

571

577

587

593

599

II-19

601
607
613
617
619
631
641
643
647
653
659
661
673
677
683

691

701

709

719

727

733

739

743

751

757

761

769

773

787

797

809

811

821

823

827

829

839

853

857

859

863

877

881

883

887

907

911

919

929

937

941

947

953

967

971

977

983

991

997



SECTION III

DICTIONARIES

INTRODUCT ION

Dictionaries define and describe data within their associated file. Dic-
tionaries exist at several levels within the Reality system; the highest
level dictionary is called the System Dictionary (SYSTEM). This dictionary
1s used for system control, and contains only a pointer to the Accounting
file and the names of users who may logon to the Reality system. The next
level dictionary is called the Master Dictionary (M/DICT); each user's
account has a Master Dictionary associated with it. The Master Dictionary
points to (or defines) lower level dictionaries within the user's account.

File Structure

The term "file" as used in the context of the Reality system, refers to a
mechanism for maintaining a set of like items logically together. The

data in a file is normally accessed via the dictionary associated with it.
Since the dictionary is itself a file, the mechanism for accessing items in
a dictionary is identical to that for a file.

At the user M/DICT level, a file-definition item (the file name) is a pointer
to the dictionary. The dictionary may contain pointers to one or more lower-
level data files; thus a two-level stiucture 1s usually implied by a file
definition item at the M/DICT level. A special item in a dictionary, whose
item-id is DL/ID, serves as the file pointer to the data.

If there is no data section corresponding to the dictionary entry in the
M/DICT, the DL/ID item may be absent in the dictionary, or it may be present
and may point to the dictionary itself; in the latter case the 'data" sec-
tion overlays the dictionary.

User M/DICT

(FILE‘NAME)——7 This diagram shows the two-stage rela-

tionship of the file-name in the master
dictionary to the data section. The
User Dictionary file-name is a file-definition item
(see next section) that points to the
dictionary; one of the items in the
(Dictionary definitions) dictionary is the DL/ID, which again is
a file-definition item that points to
(DL/ID)'_7 the data section of the file. Items

at each level thus serve to define the

structure at the next lower level: the
Data SectionJ/ M/DICT describes the user-dictionaries,
and each user-dictionary describes its
(Data Items) corresponding data section.

III-1



Dictionary Inter-relationships

The table on the next page describes the four-~level file structure, and
dictionary inter-relationships of the Reality system. In addition to the
required system dictionaries and data-files, one user account is shown for
illustration.

The boxes represent the dictionaries "containing" items; shown are file-
definition and file synonym definition items (defined in the next two
sections). The full lines from items to boxes represent the '"file pointer"
nature of file-definition items; the dashed lines represent the linkage
between file synonym definitions and their equivalent files.

DICTIONARY ITEM DEFINITIONS

File Definition Items

Each item in a dictionary is classified according to a single character
dictionary code (D/CODE) in attribute one of the item. A file-definition
item has a D/CODE of "D", and is a pointer to the actual physical location
of the file in the virtual (disc) memory. File-definition items are set up
during the system File-restore process, and by the CREATE-FILE processor.
Values in these items that define the physical file extents should not be
altered by the user. There may be more than one file-defining item in a
dictionary that points to the same file; but there should not be any such
items in other dictionaries that point to the same file-~these should be
file synonym definitions (see below). If duplicate "D" items exist in other
dictionaries, duplicate copies of the file will result on a filesave and
restore.

Attributes two through four define the physical extents of the file:

Attribute two: Contains the BASE FID of the file.
Attribute three: Contains the MODULO of the file.
Attribute four: Contains the SEPARATION of the file.

The values for BASE, MODULO and SEPARATION are stored as decimal numerics;
the meaning of these fields is described under Data Structures.

Attributes 5 through 12 of a file~definition item are identical to those
described for attribute definition items (see later).

Attribute 13 is an optional Reallocation specification, which allows the
reallocation of the physical extents of a file during a system File-restore
process. This is the only way in which the physical extents of a file can
be altered. The format of this specification is as follows:

(m,s) Where "m" and "s" are decimal numerics specifying the new
modulo and new separation parameters of the file. Restric-
tions on the values of '"m" and "s'" are as follows:

0O <m
0 < s < 128

ITI-2



€-II1

Dictionary Inter-relationships in the Reality System.

System Dictionary (SYSTEM)

e sesso.Minimum system .................,>4.‘.....additional user acCountsS ceeeecccecccecomm

Level 0
N\ <N\ !
\(SYSTEM) \ (DL/1D) | (USER-1) (USER-2) — (USER-3)
- — — -{ — — —(ACCOUNT) (SYSPROG) : ,'
\ (ACC) | / -
\ A | /

Accounting history

dictionary

System Prégrammefﬁq\

<\

\

User~1 j
\
Y\ < N\

/
Y >\ T\

\ N1/pict)  (oL/10)/ /)| (ERRMSG) N\@/DICT) (oL/10)/” \MD)  \(PROC)
! (SYSTEM)” - |/
Level 1\ | (DL/ID) < 1-(ACC) om/prcty |
\ (USER-FILE-1) (USER-FILE-2) (USER—FILE-3)-——7
\ -(ERRMSG) _ (NEWAC)—| / ,
\
i\ \ L / / /
\ System messages Prototype M/DICT /~ Dictionary of Dictionary of Dictionary of
\ /,—" user-file-1 user~file- user-file~
\ AN #"/ N
Level 2 | Accounting (DL/ID)> (DL/1ID) (DL/ID
History 7
Data ofgaser-file-l
(no data section)
Level 3

Entries in parentheses represent file-definition items in the appropriate master-dictionary or

dictionary.
the former has a DL/ID pointing to the dictionary.

in the M/DICT of USER-1, are file synonym definitions.

Note that USER-FILE-2 and USER-FILE-3 both have no data sectors defined, but that
The entry USER~2 in the SYSTEM, and ERRMSG



File Synonym Definition Items

A file synonym definition item is distinguished by its having a D/CODE of
"Q", and it allows access to files in another user's account. Attribute two
of a file synonym definition item contains the name of the account in which
the actual file definition is to be found (the account name is an entry

in the System Dictionary, SYSTEM); attribute three contains the file-
definition item~id to which the synonym equates. If this attribute is

null, it is implied that the synonym file is the user's M/DICT. Examples
are shown below:

SYSTEM
(USER-1) ,(USER—?‘/ /V(USER—:B)\
b < — -
M/DICT 1 ~ M/DiCT 2 M/DICT 3
yd ]
(SYNONYM-1) PR
- /
Line 1 Q P / -
Line 2 USER-27
Line 3  FILEX. / (FILEX)
N / 7
~N / -
(SYNONYM-2)[ N, -
\ -
Line 1 Q PN
Line 2 USER-3-"| _ — X
Line 3 - T \\\

The entry SYNONYM-1 in user-1's M/DICT is equivalent to the file-definition
item FILEX in user-2's M/DICT; the entry SYNONYM-2 is equivalent to user-3's
M/DICT itself, since it has a null value in attribute 3.

Attributes four through twelve are as defined under Attribute Definition
Items (see below).

Attribute Definition Items

These items define the meaning of the various attributes, or fields, in the
data items. Each attribute definition item has a value, called the attri-
bute mark count (AMC), which acts as a pointer to the data field defined
by it. The AMC indicates the number of attribute marks which precede the
value(s) for the attribute being defined by the item. Recalling that the

ITI-4



physical item format consists of the count field immediately followed by
the item-id field, followed by an attribute mark, and then the attribute
values, each delimited by another attribute mark, it will be seen that the
item—id itself may be referenced as having an AMC = 0, the first attribute
as having an AMC = 1, and so on:

xxxx item-id A value for A value for A ... %

_//ﬂ /f attri}ute-l attr?}ute—Z
count AMC=0 AMC=1 AMC=2

field

An attribute-defining item in the dictionary has a D/CODE of "A"; attribute
two contains the decimal AMC value described above; attributes three and
four are not defined for these items.

The values for attributes five through twelve are as follows; values are
optional except where specified:

Attribute 5: Retrieval security lock; used to restrict
the retrieval access to this attribute.

Attribute 6: Update security lock; used to restrict
the update access to this attribute. These
two fields are described in the section
under Security.

Attribute 7: Conversion specification; used to perform
table look-ups, masking functions, etc.
Described under Conversion.

Attribute 8: Correlative specification; used to describe
inter-file, and intra-file data relationships.
Described under Correlatives.

Attribute 9: Type and Justification; describes the type
(alphabetic or numeric), and justification
(left or right) for output. A value is man-
datory, and may be one of the following:

L Left justified, no specified type.
LA Left justified, alphabetic.
LN Left justified, numeric.
R Right justified, no specific type.
RA Right justified, alphabetic.
RN Right justified, numeric.
Attribute 10: Maximum length; describes the maximum length of

values for the attribute; an entry is a decimal
numeric, and is mandatory.

III-5



Attribute 11: Minimum length; describes the minimum length
of input values acceptable on updates to
this attribute.

Attribute 12: Pattern edit; describes a pattern editing mask

that input values must check against, on updates
to this attribute.

Attribute Synonym Definition Items

These items have specific meaning to the ENGLISH processors; they'are more
fully described in those sections. A synonym definition has a D/CODE of
either an "S" or an "X"; attribute two is not used, but normally contains
the AMC value of the attribute being defined (mainly to allow sorting by
AMC of items in a dictionary). Attribute three contains a "synonym name",
a value which lists as a header on ENGLISH LIST or SORT statements;
attribute four contains the AMC. Attributes five through twelve are as
described above for attribute definition items.

DICTIONARIES

The System Dictionary (SYSTEM)

There is one and only one SYSTEM Dictionary for each Reality system. Other
than a pointer to the Accounting file, the SYSTEM should contain only '"D"
code items, representing user accounts. The LOGON processors use these
D" code items to verify users attempting to logon to the system. Only
one "D" code item should be present for each account; if more than one
user-name is to be established for the same user-account, the additional
names should be file synonym definition ("Q" type) items. The meaning of
attributes five through eight is different for both "Q" and "D" Code
entries in the SYSTEM; these are described under LOGON/LOGOFF. Entries in
this dictionary also completely control the file-save process, whereby

the data base is saved on a secondary storage medium.

The Master Dictionary (M/DICT)

There is one M/DICT for each account. The M/DICT, like any other file or
dictionary, is made of up items. Some of these items define the attribute
format for all dictionaries (D/CODE = "A") and their formats are identical
to those for file-dictionaries. The file defining items (D/CODE = '"D")
point to (or define) the various dictionaries defined for the account.

In addition to those elements in the M/DICT identical to a file dictiomnary,
there are entries which define VERBS, PROCS and various ENGLISH language
elements (connectives and BATCH STRINGS). Each of these entries has a
coding structure which uniquely identifies it. Please refer to the chapters
on TCL, PROC and ENGLISH language for their respective definitions.

III-6



All names used as item-id's in the M/DICT must be unique not only within
the M/DICT, but also among all file dictionaries.

INITIAL SYSTEM FILES

Certain files are essential to the operation and maintenance of the
Reality System. These files are described below.

The Account File

This file contains the accounting history for the system, as well as the
entries that describe currently active (logged-on) users. The formats of
these entries are described under the LOGON/LOGOFF section. The Accounting
file should be cleared periodically to prevent overflow of the file (refer
to LOGON/LOGOFF).

The SYSPROG Account

The SYSPROG (System Programmer) account is the only account needed to
maintain the Reality System. The system message file (ERRMSG) and the
prototype M/DICT (NEWAC) are defined from this account; the former is
accessed by all users of Reality to obtain error and informative messages,
while the latter is used to create new user M/DICT's.

Also contained in the SYSPROG account are the system-level PROC's which
perform the File-save and File-restore functions, the initialization of the
accounting file on a cold-start, etc. For this reason, the following two
file synonym definition items must be present in the SYSPROG M/DICT.
MM/DICT synonym to the SYSTEM dictionary.
ACC : synonym to the accounting history file.

See System Maintenance for a full description of entries in this account.

The ERRMSG File

This dictionary defined from the SYSPROG account, contains the system mes-
sages. It is mandatory that every user account have a "Q" type entry called
ERRMSG which points to the ERRMSG file in the SYSPROG account. (This is
accomplished by the CREATE-ACCOUNT PROC.)

Entries in the ERRMSG file are listed in the System Messages section; they
consist of both error messages as well as informative messages.

The NEWAC File

This dictionary is defined from the SYSPROG account, and is a prototype
M/DICT that is used as a model from which a new user's M/DICT is created.

I11-7



It contains the standard set of VERBS, PROCS, and ENGLISH language elements.
Entries are listed in the System Maintenance section.

Summary of Dictionary Item Definitions

Synonym to Synonym to
Attribute M/DICT File a File- Attribute  Attribute
_Number = _Name Definition Definition Definition Definition
1 D/CODE D Q A S or X
2 F/BASE Base FID Account- AMC [AamMC]
or of file name
A/AMC
3 F/MOD Modulo of Synonym Not used Synonym
or file file-name name
S/NAME
4 F/SEP Separation Not used Not used AMC
or of file
S/AMC
5 L/RET - - Retrieval lock code(s) = - - = - = = = = = =
6 L/UPD - - Update lock code(s) - = = = = = = = = = = = -
7 V/CONV - - Conversion specification(s) - - - - = - - - -
8 V/CORR - - Correlative specification(s) = - - = = = = =
9 V/TYPE - - Justification & type-code - - - - - - - - -
10 V/MAX - - Maximum field length - - - - - = - = = = - -
11 V/MIN - - Minimum field length - - - - - - - - - - - -
12 V/EDIT - - Pattern edit for updating values - - - - - -
13 F/REALLOC Reallocation - - - - - Not Used @ - - - - -

Specification

ITI-8



EXAMPLES~--

:COPY DICT M/DICT M/DICT MURTHI PREMIUM 16 (P) (¥

001
002
003
0oL
005
006
007
008
009
010
011
012
013

001
002
003
ook
005
006
007
008
009
010
011

001
002
003
00k
005
006
007
008
009
010
011

001
002
003
00k
005
006
007
008
009
010

M/DICT

D

14933

13

1

/;P123
UPDATE*LOCK !

L
13
1

(11,1

MURTHI

Q
CHANDRASHEKAR

L
8
1

PREMIUM
A
99

16
S
16
AGENCY NAME....
16

TAGENT-NO;V; ;2

LA
4

III-9

Item—-id (file-name).

D/CODE = '"D"; File Definition Item.
Base FID of file.

Modulo of file.

Separation of file.

File access protect code; retrieval
Update lock-code. lock=-code
Conversion (null).

Correlatives (null).

Left justified dictionary items.
Maximum field length.

Minimum field length.

Pattern edit mask (null).
Reallocation parameters.

Item~id (file-name).

File Synonym Definition Item.
User name in MM/DICT.

Null file-name; therefore M/DICT.

Item-id (attribute name).
Attribute Definition Item.
Attribute Mark Count (99-th. field).

Conversion specification.
Correlative specification.
Right justified field.

Item-id (attribute synonym).
Attribute Synonym Definition Item.
For sorting purposes only.
Synonym name (header name),
Attribute Mark Count.

Conversion specification,

Left justified; alphabetic field.



0T-I11

:SORT DICT AGENCY-NO D/CODE A/AMC S/NAME S/AMC V/CONV V/CORR V/TYPE V/MAX V/MIN V/EDIT F/REALLOC BY
D/CODE BY A/AMC DBL-SPC (:)

AGENCY-NO. D/CODE.. A/AMC S/NAME.......... S/AMC V/CONV........ V/CORR.... V/TYPE V/MAX V/MIN V/EDIT F/REALLOC

RATE A 01 MDL4 R 7 7
DESC A 02 L 50 1
DESCRIPTIONA 02 L 50 L
TAX A 03 MD23 R 9 1
DL/ID D 03259 0001 020 L b L
1 S 01 RATE 1 MD4L L 7 7
2 S 02 DESCRIPTION 2 L 50 L
3 S 03 TAX 3 MD2 3 R 11 1

The above is a listing of the AGENCY-NO dictionary; the fields L/RET and L/UPD have been suppressed.
Note that the Attribute Definition Items 'DESC' and 'DESCRIPTION' reference the same field (both
have an A/AMC of two); thus they can be said to be "synonyms" to each other. Though the items DESC
and DESCRIPTION are identical, they may have different entries under, say, the V/MAX for formatting
or other purposes; there is no restriction on the number of such synonyms in the dictionary. The
values under the columns A/AMC, S/NAME and S/AMC for the File Definition Item 'DL/ID', are actually
the values of the base FID, modulo and separation of the data-file referenced by this dictionary.
Leading zeroes in numeric fields are not necessary; they are present mainly for formatting purposes.



SECTION IV

TERMINAL CONTROL LANGUAGE

INTRODUCTION

The Terminal Control Language (TCL) 1s the primary interface between the
terminal user and the various Reality processors. Most processors are
evoked directly from TCL by a single statement, and return to TCL after
completion of processing. Some processors, the EDITOR for example, retain
control of the terminal until explicitly exited, at which point they return
control to TCL. TCL prompis the user by typing a colon(:). This is
referred to as the "TCL prompt character'. Statements are constructed by
typing a character at a time from the terminal until the "CARRIAGE-RETURN"
or "LINE-FEED" key is depressed. At that time the entire line is

processed by TCL,

EXAMPLE--

:COUNT EVERY ITEM IN THE ACCOUNT FILE C)

Input Statements

TCL works on one statement at a time. A statement may be comprised of
multiple lines. However this statement must begin with a verb and may
contain only one verb per statement. Reality operates in the full-duplex
mode of communication with each user's terminal. Full-duplex means that
data is being transmitted in both directions simultaneously between the
terminal and the computer. Additionally, Reality operates in what is

known as an "Echo-Plex'" environment. This means that each data character
input by the terminal is echoed back to the terminal by the computer. The
user is assured therefore that the data character displayed on the terminal
is identical to the data character stored by the computer. TCL passes only
complete input lines to be processed by the software. The user fully
composes his input statement with no action being taken until TCL detects
either a Carriage-Return or a Line-Feed. If no Carriage-Return (or Line-
Feed) 1s detected data characters will be assembled into a statement in

the user's input buffer up to 140 characters at which time TCL will auto-
matically generate a Carriage-Return. In addition to the standard

ASCII (96) character set recognized by TCL, special operations are per-
formed when control characters are detected. The control characters listed
below perform editing functions; all other control characters are deleted
from the input line that is passed to lower level processors, but remain in
the original input line.

IV-1



OVERALL VIEW OF SYSTEM SOFTWARE TINKAGE

PROC
PROCESSOR
TCL
PROCESSOR
TCL VERBS A

TIME, DUMP, ETC.

v

TCL
PROCESSOR

ENGLISH VERBS
LIST, SORT, ETC.

e

ENGLISH
PRE-PROCESSOR

'

ENGLISH
SELECTION
PROCESSOR

¢

ENGLISH
PROCESSORS

) 4

OFF
VERB

FROM

COLD-START

LOGOFF
PROCESSOR

1

v

PROCESS
INITIALIZATION

l
|
|
—

f

v

LOGON
PROCESSOR

LOGON
TCL-Il VERBS
EDIT, COPY, ETC.
FROM ANY OFF
TCL- PROCESSOR
PROCESSOR DEBUG
PROCESSOR
< 30
END
TCL-
PROCESSORS

h 4

WRAPUP PROCESSOR

IV-2




REALITY 2.0 UPDATE

Control Character Function

Carriage Return Terminates the input statement and

or Line Feed initiates processing.

Backspace (Control H) Deletes the last character typed from

the input buffer.

Cancel (Control X) Deletes the entire line currently being
typed from the input buffer.

Retype (Control R) Causes the entire line currently being
built in the input buffer to be retyped.

Continuation Permits continuation to a second input

(Control~-Shift 0) line; must be immediately followed by

a carriage return or line feed.
Note: The continuation character is only effective from TCL; all

other characters may be used at any time for any processor
requesting input.

TCL Processing

The TCL expects the first parameter of a statement to be a verb. There
are three types of verbs in Reality:

° ENGLISH verbs

e TCL-II verbs

® TCL-I verbs
A summary of standard Reality verbs is provided below. One of the
powerful features of Reality is the ability to customize the vocabulary
for each user. Since verbs reside in the individual user's Master
Dictionary (M/DICT) the vocabulary may be added to or deleted from

without affecting the other users. (In addition to adding or deleting
verbs, an unlimited number of synonyms may be created for each verb.)

Iv-3



REALITY 2.0 UPDATE

Verb Type Function

ADDD TCL-I Add decimal.

ADDX TCL-I Add Hexadecimal.

AS TCL~-II Assembles source code.

ASSIGN TCL-I Assign print spooler device.

B/ADD TCL~II File update via batch-string.

B/DEL TCL-II File delete via batch-string.

BLOCK~-PRINT TCL~-I Send block characters to spooler.

BLOCK-TERM TCL-I Print block characters on terminal.

C-READ TCL-1I Read cards and append them to an existing file
item.

CLEAR-FILE TCL-I Remove all file items from a file or
dictiomnary.

COPY TCL-I11 Copy data files and dictionaries.

COREDUMP TCL-I Produce formatted output from a binary dump
of core.

COUNT ENGLISH Count occurrences of file items.

CREATE-FILE TCL-I Create a new file.

CROSS-INDEX TCL-II Create a cross index of assembly language
programs.

DELETE-FILE TCL~-I1 Delete an entire file.

DIVD TCL-I Divide decimal.

DIVX TCL-I Divide Hexadecimal.

DTX TCL-I Convert from decimal to hexadecimal.

DUMP TCL-1 Dump virtual frames to terminal.

EBTPRD TCL-11 Read records from tape into file items.

ED TCL-1I Same as EDIT.

EDIT TCL~1I Evoke the editor processor.

EJECT TCL-I Eject line printer pages.

IV-4



REALITY 2.0 UPDATE

Verb Type Function

FORM TCL-I Set form alignment for print spooler.

GROUP TCL-II Provide file usage statistics on groups.

I-DUMP ENGLISH Dump to terminal in T-DUMP format.

ISTAT ENGLISH Histogram file hashing.

ITEM TCL-II Provide usage statistics on file items.

KILL TCL-I Abort current spooler output.

LIST ENGLISH Print selective report output.

MESSAGE TCL-I Inter-user communication.

MLIST TCL-II List assembly source code.

MLOAD TCL-II Load assembly object code.

MSG TCL-1 Same as MESSAGE.

MULD TCL-I Multiply decimal.

MULX TCL-I Multiply hexadecimal.

MVERIFY TCL-II Verify assembled program against loaded
program.

OFF TCL-I Terminate session-logoff the system.

P TCL-I Inhibit printing at terminal.

P-ATT TCL-I Attach line printer.

P-ATT-KILL TCL-I Unconditionally detach line printer from any
line.

P-DET TCL-I Detach line printer.

P-STAT TCL-I Print line printer status.

POVF TCL-I Print overflow parameters.

PRINT-HOLD TCL-I Send hold file to line printer.

PRINT-QUE TCL-I Print hold file queues.

SEL-RESTORE TCL-II Selective restore from save tape.

SELECT ENGLISH Select file items for subsequent command.

IvV-5-1



REALITY 2.0 UPDATE

Verb " Type Function

SORT ENGLISH Print ordered report output.

SSELECT ENGLISH Select and sort file items for subsequent
command .

STAT ENGLISH Print attribute statistics.

SUBD TCL~-I Subtract decimal.

SUBX TCL-I Subtract Hexadecimal.

SUM ENGLISH Total attribute values.

T-ATT TCL-1 Attach magnetic tape unit.

T-BCK TCL-I Backspace tape.

T-DET TCL~-I Detach magnetic tape unit.

T-DUMP ENGLISH Dump file items to tape.

T-FWD TCL-I Forward-space tape.

T-RDLBL TCL-I Read tape Label.

T-LOAD TCL-II Load file items from tape.

T-READ TCL-I Read one record from tape.

T-REW TCL~-1 Rewind magnetic tape.

T-WEQF TCL-I Write EOF on tape.

TERM TCL-I Set terminal characteristics.

TIME TCL-I Print time and date.

WHO TCL-I Print the line number and account name to
which the terminal is logged on.

X-REF TCL-I Create a cross-reference of assembly programs.

XTD TCL-I Convert from hexadecimal to decimal.

IV-5-2



REALITY 2.0 UPDATE

TCL Statement Parsing

TCL copies characters from the terminal into a second buffer performing
the following processing:

° The first word is assumed as the VERB and looked-up in the
user's Master Dictionary (M/DICT), but not copied.

® Redundant blanks surrounding all words in the statement are
deleted.

® Character strings surrounded by single or double quotes (' ')
are identified and copied verbatim, including redundant
blanks.

Statement Formats

All statements processed by TCL must begin with a verb. The syntax of
the statement is dependent on the type of verb used.

ENGLISH Verbs

Statements are free-form and may use any combination of conditional
constraints such as relational and Boolean operators. The form is:

Verb file-name item-list selection-criteria output-specification
In ENGLISH the words after the verb may be arranged in any sequence

that makes sense to the user. (See ENGLISH section for further
details.)

TCL-II Verbs

Statements are more restricted. Selection-criteria and output-
specification are not allowed by TCL-II verbs. The file name (or DICT
file-name) must immediately follow the verb. Item selection is
restricted, since each item-id must be uniquely named in the state-
ment, or, alternately all items may be specified (by use of the
asterisk*). The advantage gained by this restricted format is an
-enhancement in processing speed since statement parsing is quicker.

TCL-II verbs use the following formats:
verb file-name item-list (option parameter string)

verb DICT file-name item-list (option parameter string)

Iv-6-1



REALITY 2.0 UPDATE

Item-list format: The item-list is made up of one or more
item-ids, separated by one or more blanks. If an item-id
contains embedded blanks or parentheses it must be surrounded
by single quotes. All items in a file may be specified by
using an asterisk (*) as the item-list.

IV-6-2



Option-string format: The option parameter string is enclosed in
parentheses. This string is passed to the TCL-II processor and
its contents are a function of the particular verb.

Option parameters are either single characters, A through Z, or
the numeric option n-m; multiple options are separated by commas.

Interaction of TCL-II Verbs with the SELECT Verb

The full ENGLISH selection criteria may be used in conjunction with TCL-II
verbs. This may be done by using the "SELECT" verb to select items from a
file (refer to ENGLISH section); when the message indicating the number of
items selected is returned, the TCL-II statement may be entered, omitting

the item-list. The previously selected list of items will then be used by
the TCL-II verb. This capability permits, for instance, selective editing
or copying of a file.

EXAMPLE-~-

*SELECT SYSTEM-MODES WITH CLASS = '""*SYSTEM MODE" (:)

18 ITEMS SELECTED.
:MLIST SYSTEM-MODES (P,M) (T) (Note item-list missing)

TCL~1 Verbs

Verbs which have a code of other than "2" or "35" in line two of their
M/DICT entry are known simply as TCL-I verbs. When TCL identifies a verb
it exits immediately to the entry point specified in line two of the verb
defining item.

Interrupting Processing

The CPU processing can be interrupted at any time by depressing the BREAK
key on the terminal (INT on <ome terminals). This causes an interrupt in
the current processing, and an entry to the DEBUG state. This entry is
signalled by the message "I x.d" where "x" and ''d" describe the location

of the point of interruption (refer to DEBUG documentation for details); and
input is then requested by the DEBUG prompt character, the exclamation
point (!).

For users with system privileges level zero and one, the following are the
only DEBUG facilities available.

Iv-7



OFF

Print on/Print Off;

Each entry of P switches from print suppression to print
non-suppression and back; the message OFF is returned if output
is now suppressed; ON if it is now resumed. Useful to limit
output at the terminal., (Also refer to P verb in TCL).

Go; causes resumption of process execution from the point of
interruption.

Note: G cannot be used 1f a process ABORT condition caused the
entry to DEBUG,

Terminates current process and causes an immediate return to TCL.

Terminates current process and causes the user to be logged off
the system,

Note that depressing the BREAK key when in the terminal input or in the
output mode will cause a loss of up to 16 characters., If in the input<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>