
utility
software
package
reference manual

Microsoft, Inc.
Microsoft Building

10700 Northup Way
Bellevue, WA 98004

utility
software
package
reference manual

for 8086 microprocessors

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy any part of The Utility
Software Package on cassette tape, disk, or any other medium for any purpose other than the
purchaser'S personal use.

Copyright © Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product,
including but not limited to any interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

The Utility Software Package, MACRO-86, MS-LINK, MS-LIB, MS-CREF, and MS-DOS
(including the names of its constituent programs EDLIN and DEBUG) are trademarks of
Microsoft, Inc.

8407-100
Part Number 14F06A

Package Contents

1 diskette, with the following files:
M86.EXE
LINK.EXE
LIB.EXE
CREF.EXE

1 binder with 4 manuals
MACRO-86 Macro Assembler Manual
MS-LINK Linker Utility Manual
MS-LIB Library Manager Manual
MS-CREF Cross Reference Facility Manual

1 Utility Software Reference Card

System Requirements

Each utility requires different amounts of memory.

MACRO-86 - 96K bytes of memory minimum:
64K bytes for code and static data
32K bytes for run space

MS-LINK - 54K bytes of memory minimum:
44K bytes for code
10K bytes for run space

MS-LIB - 38K bytes of memory minimum:
28K bytes for code
10K bytes for run space

MS-CREF - 24K bytes of memory minimum:
14K bytes for code
10K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. None of the utility programs in this
package allow time to swap diskettes during
operation on a one-drive configuration. Therefore,
two disk drives is a more practical configuration.

Microsoft

Welcome to the Microsoft family of products.
I

Microsoft, Inc. is recognized as the leader in microcomputer
software. Microsoft BASIC interpreter, in its several
versions, has become the standard high-level programming
language used in microcomputers. Microsoft, Inc. continues
to supply consistently high-quality software which sets the
standard for software quality for all types of users.

In addition to the Utility Software Package and Microsoft
BASIC interpreter, Microsoft sells other full-feature
language compilers, language subsets, and operating system
products. Microsoft offers a "family" of software products
that both look alike from one product to the next, and can
be used together for effective program development.

For more information about other
contact:

Microsoft, Inc.
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Microsoft products,

contents

General Introduction

Major Features
Using These Manuals
Syntax Notation
Learning More About Assembly Language Programming
Overview of Program Development

MACRO-86 Macro Assembler

Introduction

Chapter 1 Creating a MACRO-86 Source File

Chapter 2 Names: Labels, Symbols, and Variables

Chapter 3 Expression: Operands and Operators

Chapter 4 Action: Instructions and Directives

Chapter 5 Assembling a MACRO-86 Source File

Chapter 6 MACRO-86 Messages

Index for MACRO-86

MS-LINK Linker Utility

Introduction

Chapter 1

Chapter 2

Index for MS-LINK

Running MS-LINK .

Error Messages

MS-LIB Library Manager

Introduction

Chapter 1 Running MS-LIB

Chapter 2 Error Messages

Index for MS-LIB

MS-CREF Cross Reference Facility

Introduction

Chapter 1 Running MS-CREF

Chapter 2 Error Messages

Chapter 3 Format of MS-CREF Compatible Files

Index for MS-CREF

Appendixes

General Index

GENERAL INTRODUCTION

The Microsoft Utility Software Package includes four utility
programs used for developing assembly language programs. In
addition, the MS-LINK Linker Utility is used with all of
Microsoft's 16-bit language compilers.

Major Features

MACRO-86 Macro Assembler

Microsoft's MACRO-86 Macro Assembler is a very rich and
powerful assembler for 8086 based computers. MACRO-86
is more complex than any other microcomputer assembler.

MACRO-86 supports most of the directives found in
Microsoft's MACRO-80 Macro Assembler. Macros and
conditionals are Intel 8080 standard.

MACRO-86 is upward compatible with Intel's ASM-86,
except Intel codemacros, macros, and a few $ directives.

Some relaxed typing, so that if the user enters a
typeless operand for an instruction that accepts one one
type of operand, MACRO-86 assembles the statement
correctly instead of returning an error message.

MS-LINK Linker Utility

MS-LINK is a virtual linker, which can link programs
that are larger than available memory

MS-LINK produces relocatable executable object code.

MS-LINK knows how to handle user-defined overlays.

MS-LINK can perform multiple library searches, using a
dictionary library search method.

MS-LINK prompts the user for input and output modules
and other link session parameters.

MS-LINK can be run with an automatic response file to
answer the linker prompts.

MS-LIB Library Manager

MS-LIB can add, delete, and extract modules in the
user's library of program files.

MS-LIB prompts the user for input and output file and
module names.

MS-LIB can be run with an automatic response file to
answer the library prompts.

MS-LIB produces a cross reference of symbols in the
library modules.

MS-CREF Cross Reference Facility

MS-CREF produces a cross reference listing of all
symbolic names in the source program, giving both the
source line number of the definition and the source line
numbers of all other references to them.

Using These Manuals

These manuals are designed to be used as a set and
individually. Each manual is mostly self-contained and
refers to the other manuals only at junctures in the
software. The Overview given below describes generally the
flow of program development from creating a source file
through program execution. The processes described in this
overview are echoed and expanded in overviews in each of the
four manuals.

Also, note that each manual has its own index. The four
individual indexes are compiled into a general index at the
back of this documentation set.

refer to
MS-LINK

refer to
MS-CREF

refer to
MS-LIB

MACRO-86
Manual

..

..

.. M
M

MS-LINK
Manual

MS-CREF
Manual

S-LIB
anual

Each of the four manuals is used independently. References
between manuals reflect junctures in the software.

MACRO-86 output ·IMS-LINK I

T
0

0 0 u
u u t
t t P
P P u
u u t

1 t

. \MS-!IBI \
IMS-CREF I

Syntax Notation

The following notation is used throughout this manual in
descriptions of command and statement syntax:

[] Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

. . .

CAPS

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

User enters a value
here to replace the
"dummy" entry and
the angle brackets

~.

User has an option;
user may stop here,
or may enter more

r
Enter as many more
parameters as you
want, up to end of line

CALL «parameter> [,<parameter> •••]) <RETURN> +---upper case

1 1 I 1 inside angle

1
brackets, press

Enter CAPS this key
exactly as Enter punctuation as shown

shown

Learning More About Assembly Language Programming

These manuals explain how to use Microsoft's utility
Software Package, but they do not teach users how to program
in assembly language.

We assume that the user of The Utility Software Package will
have had some experience programming in assembly language.
rf you do not have any experience, we suggest two courses:

1. Gain some experience on a less
assembler.

sophisticated

2. Refer to any or all of the following books for
assistance:

Morse, Stephen P. The 8086 Primer. Rochelle Park,
NJ: Hayden Publishing Co., 1980.

Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill, 1980.

The 8086 Family User's Manual.
Intel Corporation, 1979.

8086/8087/8088 Macro
Manual. Santa
1980.

Assembly
Clara, CA:

NOTE

Santa Clara, CA:

Language Reference
Intel Corporation,

Some of the information in
these books was based on
preliminary data and may not
reflect the final functional
state. Information in your
Microsoft manuals was based on
Microsoft's development of its
16-bit software for the 8086
and 8088.

Overview of Program Development

This overview describes generally the steps of program
development. Each step is described fully in the individual
product manuals. The numbers in the descriptions match the
numbers in the facing diagram.

1. Use EDLIN (the editor in Microsoft's MS-DOS), or
other 8086 editor compatible with your operating
system, to create an 8086 assembly language source
file. Give the source file the filename extension
.ASM (ASMRO-86 recognizes .ASM as default).

2. Assemble the source file with MACRO-86, which
outputs an assembled object file with the default
filename extension .OBJ (2a). Assembled files, the
user's program files (2b), can be linked together
in step 3.

MACRO-86 (optionally) creates two types of listing
file:

(2c)a normal listing file which shows assembled
code with relative addresses, source
statements, and full symbol table;

(2d)a cross-reference file, a special file with
special control characters that allow MS-CREF
(2e) to create a list showing the source line
number of every symbol's definition and all
references to it (2f). When a cross reference
file is created, the normal listing file (with
the .LST extension) has line number placed into
it as references for line numbers following
symbols in the cross reference listing.

3. Link one or more .OBJ modules together, using
MS-LINK, to produce an executable object file with
the default filename extension .EXE (3a).

While developing your program, you may want to
create a library file for MS-LINK to search to
resolve external references. Use MS-LIB (3b) to
create user library file (s) (3c) from existing
library files (3c) and/or user program object files
(2b) •

4. Run your assembled and linked program ,the .EXE
file (3a), under MS-DOS, or your operating system.

1. EDLIN

(2c)

2. MACRO-86

'--__ (_2_d,.l ~----""L

(2b) (2a)
(2e l I MS-iREF I
(2f)

3. MS-LINK
(3b)

MS-LIB

"

(3a)

(3c)

4. IMS-DOS I

Microsoft
Software Problem Report

Use this form to report errors or problems in: 0 MS-FOR TRAN

o OTHER - Please indicate
name of manual.

Release (or version) nwnber:, _________ _

Date -----------------------
Report only one problem per form o

Describe your hardware and operating system: ________________________ _

Please supply a concise description of the problem and the circumstances
surrounding its occurrenceo If possible, reduce the problem to a simple
test case. Otherwise, include all programs and data in machine readable
form (preferably on a diskette). If a patch or interim solution is being used,
please describe it.

This form may also be used to describe suggested enhancements to Microsoft
softwareo

Problem Description:

-over-

!)id you find errors in the docUmentation supplied with the software?
If so, please include page numbers' and d'es'cribe::

Fill in the following information· be£6r"e retul~4ng:··tb:is:: form: _________ _

Name __ · ______________________ .. ~ ... ~ ~ .. ~~~ .. ~.~ ==~~~~ Phone ______________________ _

Organization __________ ~~~~ __ ~·~.~"<~-_-_-~-.. ~.~._.~,, __ ~~~--------______________ __

Addr es s _____________;~.;.;...~;;;:;;.:. City "), Sta~~ ___ ZIP _____ _

RETURN FORM TO: MICROSOFT;· Ir~tC·.
10ioo ~orthup Way
C 97200
Bellevue, Wa. 98 o,d 4

Microsoft, Inc.
Microsoft Building

10700 Northup Way
Bellevue, WA 98004

microsoft
MAC RO-86
macro assembler
manual

8086 and 8088
implementations

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft, Inc. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied only in
accordance with the terms of the agreement. It is against the law to copy the MACRO-86 Macro
Assembler on cassette tape, disk, or any other medium for any purpose other than the purchaser's
personal use.

Copyright © Microsoft, Inc., 1981

LIMITED WARRANTY

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product,
including but not limited to any interruption of service, loss of business or anticipatory profits or
consequential damages resulting from the use or operation of this product. This product will be exchanged
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except
for such replacement the sale or subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the Problem
Report at the back of this manual.

MACRO-86, MS-LINK; MS-LIB, MS-CREF, and MS-DOS (including the names of its constituent
programs EDLIN and DEBUG) are trademarks of Microsoft, Inc.
Intel and ASM86 are trademarks of Intel Corporation.

8407A-IOO-Ol

INTRODUCTION

Features and Benefits of MACRO-86

Microsoft's MACRO-86 Macro Assembler is a very rich and
powerful assembler for 8086 based computers. MACRO-86
incorporates many features usually found only in large
computer assemblers. Macro assembly, conditional assembly,
and a variety of assembler directives provide all the tools
necessary to derive full use and full power from an 8086 or
8088 microprocessor. Even though MACRO-86 is more complex
than any other microcomputer assembler, it is easy to use.

MACRO-86 produces relocatable object code. Each instruction
and directive statement is given a relative offset from its
segment base. The assembled code can then be linked using
Microsoft's MS-LINK Linker Utility to produce relocatable,
executable object code. Relocatable code can be loaded
anywhere in memory. Thus, the program can execute where it
is most efficient, not o~ly in some fixed range of memory
addresses.

In addition, relocatable code means that programs can be
created in modules, each of which can be assembled, tested,
and perfected individually. This saves recoding time
because testing and assembly is performed on smaller pieces
of program code. Also, all modules can be error free before
being linked together into larger modules or into the whole
program. The program is not a huge monolith of code.

MOD 1 MOD 2

MACRO-86

no

MS-LINK

Page 4

MOD 3

Individual modules
can be edited and
assembled until they
work correctly

When the individual
modules are ready,
they can be linked
singly or into one
or more larger modules

Page 5

MACRO-86 supports Microsoft's complete 8080 macro facility,
which is Intel 8080 standard. The macro facility permits
the writing of blocks of code for a set of instructions used
frequently. The need for recoding these instructions each
time, they are needed is eliminated.

This block of code is given a name, called a macro. The
instructions are the macro definition. Each time the set of
instructions is needed, instead of recoding the set of
instructions, a simple "call" to the macro is placed in the
source file. MACRO-SO expands the macro call by assembling
the block of instructions into the program automatically.
The macro call also passes parameters to the assembler for
use during macro expansion. The use of macros reduces the
size of a source module because the macro definitions are
given only once, then other occurrences are one line calls.

Macros can be "nested,"
inside another macro.
memory.

that is, a macro can be called from
Nesting of macros is limited only by

The macro facility includes repeat, indefinite repeat, and
indefinite repeat character directives for programming
repeat block operations. The MACRO directive can also be
used to alter the action of any instruction or directive by
using its name as the macro name. When any instruction or
directive statement is placed in the program, MACRO-86
checks first the symbol table it created to see if the
instrucion or directive is a macro name. If it is, MACRO-86
"expands" the macro call statement by replacing it with the
body o~ instructions in the macro's definition. If the name
is not defined as a macro, MACRO-86 tries to match the name
with an instruction or directive. The MACRO directive also
supports local symbols and conditional exiting from the
block if further expansion is unnecessary.

statement
statement
statement
macro call
statement ~-

" name MACRO x

ENOM

name MACRO x

.

)-

..

When the assembler
encounters a macro
call, it finds the
MACRO block and
replaces the call
with the block of
statements that
define the macro

name 1,2 .i-----Nested MACRO call:
name defined else
where as a macro,
is "expanued"

ENOM
during assembly,
as shown above

Page 6

Page 7

MACRO-86 supports an expanded set of conditional directives.
Directives for evaluating a variety of assembly conditions
can test assembly results and branch where required.
Unneeded or unwanted portions of code will be left
unassembled. MACRO-86 can test for blank or nonblank
arguments, for defined or not-defined symbols, for
equivalence, for first assembly pass or second, and MACRO-86
can compare strings for identity or difference. The
conditional directives simplify the evaluation of assembly
results, and make programming the testing code for
conditions easier as well as more powerful.

MACRO-86's conditional assembly facility also supports
conditionals inside" conditionals ("nesting"). Conditional
assembly blocks can be nested up to 255 levels.

If the condition---+
in the expression
(shown by <exp
true» is true,
the IF block is
assembled up to
ELSE, then skips
to ENDIF. If no
ELSE, then simply
assembles the
whole conditional
block

IF

IF

IF

ENDIF

ELSE

ENDIF

ENDIF

statement
statement
statement
IF <exp true>

ELSE

ENDIF
statement
statement

+--

]

Page 8

--If the condition
in the expression
is false, MACRO-86
skips to ELSE, then
resumes assembly at
the next statement.
If ELSE is not used,
skips to ENDIF and
resumes assembly
with next statement.

Nesting of conditionals
is allowed; up to 255
levels

Page 9

MACRO-86 supports all the major 8080 directives found in
Microsoft's MACRO-80 Macro Assembler. This means that any
conditional, macro, or repeat blocks programmed under
MACRO-80 can be used under MACRO-86. Processor instructions
and some directives (e.g., .PHASE, CSEG, I DSEG) within the
blocks, if any, will need to be converted to the 8086
instruction set. All the major MACRO-80 directives
(pseudo-ops) that are supported under MACRO-86 will assemble
as is, as long as the expressions to the directives are
correct for the processor and the program. The syntax of
directives is unchanged. MACRO-86 is upward compatible,
with MACRO-80 and with Intel's ASM86, except Intel
codemacros and macros.

MACRO-86 provides some relaxed typing. Some 8086
instructions take only one operand type. If a typeless
operand is entered for an instruction that accepts only one
type of operand (e.g., in the instruction PUSH [BX], [BX]
has no size, but PUSH only takes a word), it seems wasteful
to return an error for a lapse of memory or a typographical
error. When the wrong type choice is given, MACRO-86
returns an error message but generates the "correct" code.
That is, it always puts out instructions, not just NOP's.
For example, if you enter:

you may have
meant one of
three instructions:

MOV AL,WORDLBL

\0
o MOV AL,BYTE PTR WORDLBL

CD
MOV AL,<other>

MOV AX,WORDLBL

MACRO-86 generates instruction ® because it assumes that
when you specify a register, you mean that register and that
size~ therefore, the other operand is the "wrong size."
MACRO-86 accordingly modifies the "wrong" operand to fit the
register size (in this case) or the size of whatever is the
most likely "correct" operand in an expression. This
eliminates some mundane debugging chores. An error message
is still returned, however, because you may have misstated
the operand the MACRO-86 assumes is "correct."

Page 10

Overview of MACRO-86 Operation

The first task is to create a source file. Use EDLIN (the
resident editor in Microsoft's MS-DOS operating system), or
other 8086 editor compatible with your operating system, to
create the MACRO-86 source file. MACRO-86 assumes a default
filename extension of .ASM for the source file. Creating
the source file involves creating instruction and directive
statements that follow the rules and contraints described in
Chapters 1-4 in this manual.

When the source file is ready, run MACRO-86 as described in
Chapter 5. Refer to Chapter 6 for explanations of any
messages displayed during or immediately after assembly.

MACRO-86

I
I
t

<: >
lobject J

~

+-- --

Page 11

MACRO-86 is a two-pass ass.embler. This means that the
source file is assembled twice. But slightly different
actions occur during each pass. During the first pass, the
assembler evaluates the statements and expands macro call
statements, calculates the amount of code it will generate,
and builds a symbol table where all symbols, variables,
labels, and macros are assigned values. During the second
pass, the assembler fills in the symbol, variable, labels,
and expression values from the symbol table, expands macro
call statements, and emits the relocatable object code into
a file with the default filename extension .OBJ. The .OBJ
file is suitable for processing with Microsoft's MS-LINK
Linker utility. The .OBJ file can be stored as part of the
user's library of object programs, which later can be linked
with one or more .OBJ modules by MS-LINK (refer to the
MS-LINK Linker Utility Manual for further explanation and
instructions). The .OBJ modules can also be processed with
Microsoft's MS-LIB Library Manager (refer to the MS-LIB
Library Manager Manual for further explanation and
instructions).

The source file can also be assembled without creating an
.OBJ file. All the other assembly steps are performed, but
the object code is not sent to disk. Only erroneous source
statements are displayed on the terminal screen. This
practice is useful for checking the source code for errors.
It is. faster than creating an .OBJ file because no file
creating or writing is performed. Modules can be test
assembled quickly and errors corrected before the object
code is put on disk. Modules that assemble with errors do
not clutter the diskette.

PASS 1

source
.ASM ~ -

"

MACRO-86

'f

symbol -- def
symbol -- def
variable -- def
variable -- def
label -- def
macro name

statement
statement
macro call

statement

Page 12

exact amount
of code to

--------------- •• -------------------------be generated

PASS 2

~-ACRO-86

symbol
table

Page 13

MACRO-86 will create, on command, a listing file and a
cross-reference file. The listing file contains the
beginning relative addresses (offsets from segment base)
assigned to eac~ instruction, the machine code translation
of each statement (in hexadecimal values), and the statement
itself. And, the listing contains a symbol table which
shows the values of all symbols, labels, and variables, plus
the names of all macros. The listing file receives the
default filename extension .LST.

The cross reference file contains a compact representation
of variables, labels, and symbols. The cross reference file
receives the default filename extension .CRF. When this
cross reference file is processed by MS-CREF, the file is
converted into an expanded symbol table that lists all the
variables, labels, and symbols in alphabetical order,
followed by the line number of in the source program where
each is defined, followed by the line numbers where each is
used in the program. The final cross reference listing
receives the filename extension .REF. (Refer to the MS-CREF
Cross Reference Facility Manual for further explanation and
instructions.)

Page 14

MACRO-86

+--....... MS-CREF

System Requirements

The MACRO-86 Macro Assembler requires 96K bytes of memory
minimum:

64K bytes for code and static data
32K bytes for run space

1 disk drive
1 disk drive if and only if output is sent to the
same physical diskette from which the input was
taken. MACRO-86 does not allow time to swap
diskettes during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

Contents

Introduction

Features and Benefits of MACRO-86 3
Overview of MACRO-86 Operation 10

Chapter 1

1.1
1.2
1.3
1.4
1.5
1.6

Creating a MACRO-86 Source File

General Facts About Source Files
Statement Line Format 1-5
Names 1-6
Comments 1-7
Action 1-8
Expressions 1-9

1-1

Chapter 2 Names: Labels, Symbols, and Variables

2.1 Labels 2-2
2.2 Variables 2-5
2.3 Symbols 2-7

Chapter 3 Expression: Operands and Operators

3.1
3.2
3.3

Memory Organization
Operands 3-8
Operators 3-15

3-

Chapter 4 Action: Instructions and Directives

4.1 Instructions 4-2
4.2 Directives 4-3

Chapter 5 Assembling a MACRO-86 Source File

5.1
5.2
5.3
5.4

Invoking MACRO-86 5-1
MACRO-86 Command Prompts 5-6
MACRO-86 Command Switches 5-8
Formats of Listings and Symbol Tables

Chapter 6 MACRO-86 Messages

6.1 Operating Messages 6-1
6.2 Error Messages 6-2

Index

5-10

Contents

Chapter 1 Creating a MACRO-86 Source File

1.1 General Facts About Source Files
Naming Your Source File
Legal Characters 1-2
Numeric Notation 1-3
What's in a Source File? 1-4

1.2 Statement Line Format 1-5
1.3 Names 1-6
1.4 Comments 1-7
1.5 Action 1-8
1.6 Expressions 1-9

CHAPTER 1

CREATING A MACRO-86 SOURCE FILE

To create a source file for MACRO-86, you need to use an
editor program, such as EDLIN in Microsoft's MS-DOS. You
simply create a program file as you would for any other
assembly or high-level programming language. Use the
general facts and specific descriptions in this chapter and
the three following chapters when creating the file.

In this chapter, you will find discussions of the statement
format and introductory descriptions of its components. In
Chapter 2, you will find full descriptions of names:
variables, labels, and symbols. In Chapter 3, you will find
full descriptions of expressions and their components,
operands and operators. In Chapter 4, you will find full
descriptions of the assembler directives.

1.1 GENERAL FACTS ABOUT SOURCE FILES

Naming Your Source File

When you create a source file, you will need to name it. A
filename name may be any name that is legal for your
operating system. MACRO-86 expects a specific three
character filename extension, .ASM. Whenever you run
MACRO-86 to assemble your source file, MACRO-86 assumes that
your source filename has the filename extension .ASM. This
is not required. You may name your source file with any
extension you like. However, when you run MACRO-86, you
must remember to specify the extension. If you use .ASM,
you will not need to specify the extension. (Because of
this default action by MACRO-86, it is impossible to omit
the filename extension. When you assemble a~source file
without a filename extension, MACRO-86 will assume that the
source has a .ASM extension because you would not be
specifying an extension. When MACRO-86 searches the
diskette for the file, it will not find the correct file and
will either assemble the wrong file or will return an error
message stating that the file cannot be found.)

CREATING A MACRO-86 SOURCE FILE Page 1-2

Note, also, that MACRO-86 gives the object file it outputs
the default extension .OBJ. To avoid confusion or the
destruction of your source file, you will want to avoid
giving a source file an extension of .OBJ. For similar
reasons, you will also want to avoid the extensions .EXE.,
.LST, .CRF, and .REF.

Legal Characters

The legal characters for your symbol names are:

A-Z 0-9 ? @ $

Only the numerals (0-9) cannot appear as the first character
of a name (a numeral must appear as the first character of a
numeric value).

Additional special
delimiters:

characters act as

(colon) segment override operator

operators or

(period) operator for field name of Record or
Structure; may be used in a filename only if
it is the first character.

[(square brackets) around register names to
indicate value in address in register not value
(data) in register

() (parentheses) operator in DUP expressions and
operator to change precedence of operator
evaluation

< > (angle brackets) operators used around
initialization values for Records or Structure,
around parameters in IRP macro blocks, and to
indicate literals

The square brackets and angle brackets are also
used for syntax notation in the dicussions of the
assembler directives (Section 4.2). When these
characters are operators and not syntax notation,
you are told explicitly; for example, "angle
brackets must be coded as shown."

CREATING A MACRO-86 SOURCE FILE Page 1-3

Numeric Notation

The default input radix for all numeric values is decimal.
The output radix for all listings is hexadecimal for code
and data items and decimal for line numbers. The output
radix can only be changed to octal radix by giving the /0
switch when MACRO-86 is run (see Section 5.3, Command
Switches). The input radix may be changed two ways:

1. The .RADIX directive (see Section 4.2.1, Memory
Directives)

2. Special notation append to a numeric value:

Radix Range Notation ExamEle

Binary 0-1 B OlllOlOOB

Octal 0-7 Q or 735Q
0 (letter) 6210

Decimal 0-9 (none) 9384 (default)
or D 8l49D

(when .RADIX directive
changes default radix
to not decimal.)

Hexadecimal 0-9, H OFFH
A-F 80H

(first character must
be numeral in range
0-9)

CREATING A MACRO-86 SOURCE FILE Page 1-4

What's in a Source File?

A source file for MACRO-86 consists of instruction
statements and directive statements. Instruction statements
are made of 8086 instruction mnemonics and their operands,
which command specific processes directly to the 8086
processor. Directive statements are commands to MACRO-86 to
prepare data for use in and by instructions.

Statement format is described in Section 1.2. The parts of
a statement are described in Sections 1.3-1.6 and in
Chapters 2-4. Statements are usually placed in blocks of
code assigned to a specific segment (code, data, stack,
extra). The segments may appear in any order in the source
file. Within the segments, generally speaking, statements
may appear in any order that creates a valid program. Some
exceptions to random ordering do exist, which will be
discussed under the affected assembler directives.

Every segment must end with an end segment statement (ENDS),
every procedure must end with an end procedure statement
(ENDP) , and every structure must end with an end structure
statement (ENDS). Likewise, the source file must end with
an END statement that tells MACRO-86 where program execution
should begin.

Section 3.1, Memory Organization, describes how segments,
groups, the ASSUME directive, and the SEG operator relate to
one another and to your programming as a whole. This
information is important and helpful for developing your
programs. The information is presented in Chapter 3 as a
prelude to the discussion of operands and operators.

CREATING A MACRO-86 SOURCE FILE Page 1-5

1.2 STATEMENT LINE FORMAT

Statements in source files follow a strict format, which
allows some variations.

MACRO-86 directive statements consist of four "fields":
Name, Action, Expression, Comment. For example:

FOO DB

1 r
OD5EH

f
~create variable FOO
~containing the value OD5EH

r
Name Action Expression ~Comment

MACRO-86 Instruction statements usually
"fields": Action, Expression, Comment.

consist of
For example:

MOV CX,FOO ~here's the count number

i .
Act~on

T
Expression

i
~Comment

three

An instruction statement may have a Name field under certain
circumstances~ see the discussion of Names below.

CREATING A MACRO-86 SOURCE FILE Page 1-6

Names

The name field, when present, is the first entry on the
statement line. The name may begin in any column, although
normally names are started in column one.

Names may be any length you choose. However, MACRO-86
considers only the first 31 characters significant when your
source file is assembled.

One other significant use for names is with the MACRO
directive. Although all the rules covering names; described
in Chapter 2 apply the same to MACRO names, the discussion
of macro names is better left to the section described the
macro facility.

MACRO-86 supports the use of names in a statement line for
three purposes: to represent code, to represent data, and
to represent constants.

To make a name represent code, use:

NAME: followed by an directive, instruction, or
nothing at all

NAME LABEL NEAR (for use inside its own segment
only)

NAME LABEL FAR (for use outside its own segment)
EXTRN NAME:NEAR (for use outside its own module but

inside its own segment only)
EXTRN NAME:FAR (for use outside its own module and

segment)

To make a name represent data, use:

NAME LABEL <size> (BYTE, WORD, etc.)
NAME Dx <exp>
EXTRN NAME:<size> (BYTE, WORD, etc.)

To make a name represent a constant, use:

NAME EQU <constant>
NAME = <constant>
NAME SEGMENT <attributes>
NAME GROUP <segment-names>

CREATING A MACRO-86 SOURCE FILE Page 1-7

Comments

Comments are never required for the successful operation of
an assembly language program, but they are strongly
recommended.

If you use comments in your program, every comment on every
line must be preceded by a semicolon. If you want to place
a very long comment in your program, you can use the COMMENT
directive. The COMMENT directive releases you from the
required semicolon on every line (refer to COMMENT in
Section 4.2.1).

Comments are used to document the processing that is
supposed to happen at a particular point in a program. When
comments are used in this manner, they can be useful for
debugging, for altering code, or for updating code.
Consider putting comments at the beginning of each segment,
procedure, structure, module, and after each line in the
code that begins a step in the processing.

Comments are ignored by MACRO-a6. Comments do not add to
the memory required to assemble or to run your program,
except in macro blocks where comments are stored with the
code. Comments are not required for anything but human
understanding.

CREATING A MACRO-86 SOURCE FILE Page 1-8

Action

The action field contains either an 8086 instruction
mnemonic or a MACRO-86 assembler directive. Refer to
Section 4.1 for some general discussion and to Appendix C
for a list of 8086 instruction mnemonicso The MACRO-86
directives are described in detail in Section 4.2.

If the name field is blank, the action field will be the
first entry in the statement format. In this case, the
action may appear starting in any column, 1 through maximum
line length (less columns for action and expression).

The entry in the action field either directs the processor
to perform a specific function or directs the assembler to
perform one· of its functions. Instructions command
processor actions. An instruction may have the data and/or
addresses it needs built into it, or data and/or addresses
may be found in the expression part of an instruction. For
example:

lopcodet loperandl ldatal Idatal

~~.~~
supplied \ I /

supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the
information provided by expression in instruction
statements.

(opcode is the action part of an instruction)

Directives give the assembler directions for I/O, memory
organization, conditional assembly, listing and cross
reference control, and definitions.

CREATING A MACRO-86 SOURCE FILE Page 1-9

Expressions

The expression field contains entries which are operands
and/or combinations of operands and operators.

Some instructions take no operands, some take one, and some
take two. For two operand instructions, the expression
field consists of a destination operand and a source
operand, in that order, separated by a comma. For example:

lopcodel Idest-operandl,lsource-operandl

For one operand instructions, the operand is a source or a
destination operand, depending on the instruction. If one
or both of the operands is omitted, the instruction carries
that information in its internal coding.

Source operands are immediate operands, register operands,
memory operands, or Attribute operands. Destination
operands are register operands and memory operands.

For directives, the expression field usually consists of a
single operand. For example:

Idirectivel loperandl

A directive operand is a data operand, a
operand, or a constant, depending on
directive.

code (addressing)
the nature of the

For many instructions and directives, operands may be
connected with operators to form a longer operand that looks
like a mathematical expression. These operands are called
complex. Use of a complex operand permits you to specify
addresses or data derived from several places. For example:

MOV FOO[BX],AL

The destination operand is the result of adding the address
represent by the variable FOO and the address found in
register BX. The processor is instructed to move the value
in register AL to the destination calculated ffrom these two
operand elements. Another example:

MOV AX,FOO+S[BX]

In this case, the source operand is the result of adding the
value represented by the symbol FOO plus 5 plus the value
found in the BX register.

CREATING A MACRO-86 SOURCE FILE Page 1-10

MACRO-86 supports the following operands and operators in
the expression field (shown in order of precedence):

Operands

Immediate
(incl. symbols)

Register
Memory

label
variables

simple
indexed
structures

Attribute
override

PTR
: (seg)
SHORT
HIGH
LOW

value returning
OFFSET
SEG
THIS
TYPE
• TYPE
LENGTH
SIZE

record specifying
FIELD
MASK
WIDTH

Operators

LENGTH, SIZE, WIDTH, MASK, FIELD
[], (), < >

segment override(:)

P~R, OFFSET, SEG, TYPE, THIS,

HIGH, LOW

*, /, MOD, SHL, SHR

+, -(unary), -(binary)

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT, • TYPE

NOTE

Some operators can be used as
operands or as part of an
operand expression. Refer to
Sections 3.2, Operands, and
3.3, Operators, for details of
operands and operators.

Contents

Chapter 2 Names: Labels, Variables, and Symbols

2.1 Labels 2-2
2.2 Variables 2-5
2.3 Symbols 2-7

CHAPTER 2

NAMES: LABELS, VARIABLES, AND SYMBOLS

Names are used in several capacities throughout MACRO-86,
wherever any naming is allowed or required.

Names are symbolic representations of values.
may be addresses, data, or constants ••

The values

Names may be any length you choose. However, MACRO-86 will
truncate names longer than 31 characters when your source
file is assembled.

Names may be defined and used in a number of ways. This
chapter introduces you to the basic ways to define and use
names. You will discover additional uses as you study the
chapters on Expressions and Action, and as you use MACRO-86.

MACRO-86 supports three types of names in statement lines:
labels, variables, and symbols. This chapter covers how to
define and use these three types of names.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-2

2.1 LABELS

Labels are names used as targets for JMP, CALL, and LOOP
instructions. MACRO-86 assigns an address to each label as
it is defined. When you use a label as an operand for JMP,
CALL, or LOOP, MACRO-86 can substitute the attributes of the
label for the label name, sending processing to the
appropriate place.

Labels are defined one of four ways:

1. <name>:

Use a name followed immediately by a colon. This
defines the name as a NEAR label. <name>: may be
prefixed to any instruction and to all directives
that allow a Name field. <name>: may also be
placed on a line by itself.

Examples:

CLEAR SCREEN: MOV
FOO: - DB OFH
SUBROUTINE3:

AL,20H

2. <name>
<name>

"LABEL
LABEL

NEAR
FAR

Use the LABEL directive.
of ~he LABEL directive
Directives.

Refer to the discussion
in Section 4.2.1, Memory

NEAR and FAR are discussed under the Type Attribute
below.

Examples:

FOO
GOO

3. <name>
<name>

LABEL
LABEL

PROC
PROC

NEAR
FAR

NEAR
FAR

Use the PROC directive. Refer to the discussion of
the PROC directive in Section 4.2.1, Memory
Directives.

NEAR is optional because it is the default if you
enter only <name> PROC. NEAR and FAR are discussed
under the Type Attribute below.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-3

Examples:

REPEAT
CHECKING
FIND CHR

PROC
PROC
PROC

NEAR
isame
FAR

as CHECKING PROC NEAR

4. EXTRN <name>:NEAR
EXTRN <name>:FAR

Use the EXTRN directive.

NEAR and FAR are discussed under the Type Attribute
below.

Refer to the discussion of the EXTRN directive in
Section 4.2.1, Memory Directives.

Examples:

EXTRN FOO:NEAR
EXTRN ZOO:FAR

A label has four attributes: segment, offset, type, and the
CS ASSUME in effect when the label is defined. Segment is
the segment where the label is defined. Offset is the
distance from the beginning of the segment to the label's
location. Type is either NEAR or FAR.

Segment

Labels are defined" inside segments. The segment must be
assigned to the CS segment register to be addressable. (The
segment may be assigned to a group, in which case the group
must~addressable through CS.) (MACRO-86 requires that a
label be addressable through the CS register.) Therefore,
the segment (or group) attribute of a symbol is the base
address of the segment (or group) where it is defined.

Offset

The offset
beginning
defined.

attribute is the number of bytes from the
of the label's segment to where the label is

The offset is a l6-bit unsigned number.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-4

Labels are one of two types: NEAR or FAR. NEAR labels are
used for references from within the segment where the label
is defined. NEAR labels may be referenced from more than
one module, as long as the references are from a segment
with the same name and attributes and has the same CS
ASSUME.

FAR labels are used for references from segments with a
different CS ASSUME or is more than 64K bytes between the
l~bel reference and the label definition.

NEAR and FAR cause MACRO-86 to generate slightly different
code. NEAR labels supply their offset attribute only (a 2
byte pointer). FAR labels supply both their segment and
offset attributes (a 4 byte pointer).

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-5

2. 2 VARIABLES

Variables are names used in expressions (as operands to
instructions and directives).

A variable represents an address where a specified value may
be found.

Variables look much like labels and are defined in some ways
alike. The differences are important.

Variables are defined three ways:

1. <name> <define-dir> :no colon!
<name> <struc-name> <expression>
<name> <rec-name> <expression>

<define-dir> is any of the five Define directives:
DB, DW, DD, DQ, DT

Example:

START MOVE DW ?

<struc-name> is a structure name defined by the
STRUC directive.

<rec-name> is a record name defined by the RECORD
directive.

Examples:

CORRAL STRUC

ENDS
HORSE CORRAL <'SADDLE'>

Note that HORSE will have the same size as the
structure CORRAL.

GARAGE RECORD CAR:8='P'

SMALL GARAGE 10 DUP«'Z'»

Note that SMALL will have the same size as the
record GARAGE.

See the Define, STRUC, and RECORD directives in
Section 4.2.1, Memory Directives.

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-6

2. <name> LABEL <size>

Use the LABEL directive with one of the size
specifiers.

<size> is one of the following size specifiers:

BYTE - specifies 1 byte
WORD - specifies 2 bytes
DWORD - specifies 4 bytes
QWORD - specifies 8 bytes
TBYTE - specifies 10 bytes

Example:

CURSOR LABEL WORD

See LABEL directive in Section 4.2.1,
Directives.

3. EXTRN <name>:<size>

Memory

Use the EXTRN directive with one of the size
specifiers described above. See EXTRN directive in
Section 4.2.1, Memory Directives.

Example:

EXTRN FOO:DWORD

As do labels, variables also have the three attributes
segment, offset, and type.

Segment and Offset are the same for variables as for labels.
The Type attribute is different.

The type attribute is the size of the variable's location,
as specified ~hen the variable is defined. The size depends
on which Define directive was used or which size specifier
was used to define the variable.

Directive Tvpe Size

DB BYTE 1 byte
DW WORD 2 bytes
DD DWORD 4 bytes
DQ QWORD 8 bytes
DT TBYTE 10 bytes

NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-7

2.3 SYMBOLS

Symbols are names defined without reference to a Define
directive or to code. Like variables, symbols are also used
in expressions as operands to instructions and directives.

Symbols are defined three ways:

1. <name> EQU <expression>

Use the EQU directive. See EQU directive in
Section 4.2.1, Memory Directives.

<expression> may be another symbol, an instruction
mnemonic, a valid expression, or any other entry
(such as text or indexed references).

Examples:

Foa
ZOO

EQU
EQU

7H
FOO

2. <name> = <expression>

Use the equal sign directive. See Equal Sign
directive in Section 4.2.1, Memory Directives.

<expression> may be any valid expression.

Examples:

GOO
GOO
GOO

=
=
=

OFH
$+2
GOO+FOO

3. EXTRN <name>:ABS

Use the EXTRN directive with type ABS. See EXTRN
directive in Section 4.2.1, Memory Directives.

Example:

EXTRN BAZ:ABS

BAZ must be defined by an EQU or = directive to a
valid expression.

Chapter 3

3.1
3.2
3.2.1
3.2.2
3.2.3

3.3
3.3.1

3.3.2
3.3.3
3.3.4
3.3.5

Contents

Expressions: Operands and Operators

Memory Organization 3-2
Operands 3-8

Immediate Operands 3-9
Register Operands 3-10
Memory Operands 3-12

Direct Memory Operands 3-12
Indexed Memory Operands 3-13
Structure Operands 3-14

Operators 3-15
Attribute Operators 3-15

Override Operators 3-16
Value Returning Operators 3-21
Record Specific Operators 3-27

Arithmetic Operators 3-31
R~lationa1 Operators 3-32
Logical Operators 3-33
Expression Evaluation: Precedence of Operators 3-

CHAPTER 3

EXPRESSIONS: OPERANDS AND OPERATORS

Chapter 1 provided a brief introduction to expressions.
Basically, expression is the term used to indicate values on
which an instruction or directive performs its functions.

Every expression consists of at least one operand (a value).
An expression may consist of two or more operands. Multiple
operands are joined by operators. The result is a series of
elements that look like a mathematical expression.

This chapter describes the types of operands and operators
that MACRO-86 supports. The discussion of memory
organization in a MACRO-86 program acts as a preface to the
descriptions of operands and operator~, and as a link to
topics discussed in Chapter 2.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-2

3.1 MEMORY ORGANIZATION

Most of your assembly language program is written in
segments. In the source file, a segment is a block of code
that begins with a SEGMENT directive statement and ends with
an ENDS directive. In an assembled and linked file, a
segment is any block of code that is addressed through the
same segment register and is not more than 64K bytes long.

You should note that MACRO-86 leaves everything to do with
segments to MS-LINK. MS-LINK resolves all references. For
that reason, MACRO-86 does not check (because it cannot) if
your references are entered with the correct distance type.
Values such as OFFSET are also left to the linker to
resolve.

Although a segment may not be more than 64K bytes long, you
may, as long as you observe the 64K limit, divide a segment
among two or more modules. (The SEGMENT statement in each
module must be the same in every aspect.)

When the modules are linked together, the several segments
become one. References to labels, variables, and symbols
within each module acquire the offset from the beginning of
the whole segment, not just from the beginning of their
portion of the whole segment. (All divisions are removed.)

You have the option of grouping several segments into a
group, using the GROUP directive. When you group segments,
you tell ~ACRO-86 that you want to be able to refer to all
of these segments as a single entity. (This does not
eliminate segment identity, nor does it makes values within
a particular segment less immediately accessible. It does
make value relative to a group base.) The value of grouping
is that you can refer to data items without worrying about
segment overrides and about changing segment registers
often.

With this in mind, you should note that references within
segments or groups are' relative to a segment register.
Thus, until linking is completed, the final offset of a
reference is relocatable. For this reason, the OFFSET
operator does not return a constant. The major purpose of
OFFSET is to cause MACRO-86 to generate an immediate
instruction: that is, to use the address of 'the value
instead of the value itself.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-3

There are two kinds of references in a program:

1. Code references JMP, CALL, LOOPxx These
references are relative to the address in the CS
register. (You cannot override this assignment.)

2. Data references - all other references These
references are usually relative to the DS register,
but this assignment may be overridden.

When you give a forward reference in a program
statement, for example:

MOV AX,<ref>

MACRO-86 first looks for the segment of the reference.
MACRO-86 scans the segment registers for the SEGMENT of the
reference then the GROUP, if any, of the reference.

However, the use of the OFFSET operator always returns the
offset relative to the segment. If you want the offset
relative to a GROUP, you must override this restriction by
using the GROUP name and the colon operator, for example:

MOV AX,OFFSET <group-name>:<ref>

If you set a segment register to a group with the ASSUME
directive, then you may also override the restriction on
OFFSET by using the register name, for example:

MOV AX,OFFSET DS:<ref>

The result of both of these statements is the same.

Code labels have four attributes:

1. segment - what segment the label belongs to

2. offset - the number of bytes from the beginning of
its segment

3. type - NEAR or FAR

4. CS ASSUME - the CS ASSUME the label was coded under

When you enter a NEAR JMP or NEAR CALL, you
offset (IP) in CS. MACRO-86 compares the
target (where the label is defined) with
ASSUME. If they are different, MACRO-86
(you must use a" FAR JMP or CALL).

are changing the
CS ASSUME of the
the current CS
returns an error

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-4

When you enter a FAR J,MP or FAR CALL, you are changing both
the offset (IP) in CS and the paragraph number. The
paragraph number is changed to the CS ASSUME of the target
address.

Let's take a common case. a segment called CODEi and a
group (called DGROUP) that contains three segments (called
DATA, CONST, and STACK).

The program statements would be:

DGROUP GROUP
ASSUME
MOV
MOV

DATA,CONST,STACK
CS:CODE,DS:DGROUP,SS:DGROUP,ES:DGROUP
AX,DGROUP iCS initialized by entrYi
DS,AX iYOU initialize DS, do this

ias soon as possible, especially
:before any DS relative references

As a diagram, this arrangement could be represented as
follows:

-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- CS

COD E

-- -- - -- -- -- -- -- -- -- -- -- -- -- -- DS,ES,SS

D A T A

.
<64K CON S T

S T A C K

EXPRESSIONS: OPERANDS AND OPERATORS

Given this arrangement, a statement like:

MOV AX,<variable>

causes MACRO-86 to find the best segment register
this var iable. (The "best II register is the
requires no segment overrides.)

A statement like:

MOV AX,OFFSET <variable>

Page 3-5

to reach
one that

tells MACRO-86 to return the offset of the variable relative
to the beginning of the variable's segment.

If this <variable> is in the CONST segment and you want to
reference its offset from the beginning of DGROUP, you need
a statement like:

MOV AX,OFFSET DGROUP:<variable>

<0"'L'>
O -'-'S' E -, \)'5': <.. vc....r:~b\~ ';>

f"\ 0 V A X) \- ... - -

MACRO-86 is a two pass assembler. During pass 1, it builds
a symbol table and calculates how much code is generated but
does not produce object code. If undefined items are found
(including forward references), assumptions are made about
the reference so that the correct number of bytes are
generated on pass 1. Only certain types of errors are
displayed; errors involving items that must be defined on
pass 1. No listing is produced unless you give a /0 switch
is given when you run the assembler. The /0 switch produces
a listing for both passes.

On pass 2, the assembler uses the values defined in pass 1
to generate the object code. Definitions of references
during pass 2 are checked against the pass 1 value, which is
in the symbol table. Also, the amount of code generated
during pass 1 must match the amount generated during pass 2.
If either is different, MACRO-86 returns a phase error.

Because pass 1 must keep correct track of the. relative
offset, some references must be know on pass 1. If they are
not known, the relative offset will not be correct.

The following references must be known on pass 1:

1. IF/IFE <expression>
If <expression> is not known on pass 1,
does not know to assemble the conditional
which part to assemble if ELSE is used).
2, the assembler would know and would
resulting in a phase error.

MACRO-86
block (or

On pass
assemble,

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-6

2. <expression> DUP(•••)

3.

This operand explicitly changes the relative
offset, so <expression> must be known on pass 1.
The value in parentheses need not be known because
it does not, affect the number of bytes generated.

.RADIX <expression>
Because this directive changes
constants could have a different
cause MACRO-86 to evaluate IF
incorrectly.

the input radix,
value, which could

or DUP statements

The biggest problem for the assembler is handling forward
references. How can it know the kind of a reference when it
still has not seen the definition? This is one of the main
reasons for two passes. And, unless MACRO-86 can tell from
the statement containing the forward reference what the
size, the distance, or any other of its attributes are, the
assembler can only take the safe route, (generate the
largest possible instruction in some cases except for
segment override or FAR). This results in extra code that
does nothing. (MACRO-86 figures this out by pass 2, but it
cannot reduce the size of the instructions without causing
an error, so it puts out NOP instructions (90H).)

For this reason, MACRO-86 includes a number of operators to
help the assembler. These operators tell MACRO-86 what size
instruction to generate when it is faced with an ambiguous
choice. As a benefit, you can also reduce the size of your
program by using these operator~ to change the nature of the
arguments to the instructions.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-7

Some Examples ~. e t--\ 1\ '; }---\ \"u~L,-LI--~
, .) -'')Q .

MOV AX,FOO iFOO = forward constant -Vv~-~" cl-: ~ ~ V,,",-.lroJ--').-C-

GO"\.\. <C-:~ c~ts" - L~ 0 D \:) \
This statement causes MACRO-86 to generate a move from
memory instruction on pass 1. By using the OFFSET operator,
we can cause ~ACRO-86 to generate an immediate operand I
instruction. /_ ~_ ~ I.AA...Q.. "pyre" o-'(;.~.,,, .. ~-0.n-'\ ~ •• I"-O",L.Q...

MOV AX,OFFSET FOO iOFFSET says use the address of
FOO t:" DD dLc-'.--\ . ..:..t k c....-...rQ 0.....--- ~o..~

Because OFFSET tells MACRO-86 to use the address of FOO, the
assembler knows that the value is immediate. This ~thod
saves a byte of code. r3 c.,......;\- Ll.Lv~c.-} f)~l c:.,e_;t. c\te. '-.-.,.1--:-,< .0-) F 0 u I"

~~ S'dr.J~·e,,-~c:. ~Lu:.._ c;;: C) '-"-"<'~ L ~Q"~1- en, '1..Io--.!t Pc..A-l\-- ••
Similarly, if you have a CALL statement that calls to a
label that may be in a different CS ASSUME, you can prevent
problems by attaching the PTRI"0perat9,r to th~ \lal?,e,.l: U/" It

- lA~ <a. 0 ~ "r-~ r () r ~ \,. "- "'"0.. ('n.~ c..,'r

CALL FAR PTR <forward-label> It ." ••. _.1 "O"T-Q I,

~ T r • f'l (J. Q b L - eo- F t\ R ~~ 0-.\.. •• (. ,- \. ,'-___ ~< ~. t.v-<:"- JoA,. ~~ ,-...-\ '-)

At the opposite extreme, you may have a JMP forward that is
less than 127 bytes. You can save yourself a byte if you
use the SHORT operator.

JMP SHORT <forward-label>

However, you must be sure that the target is indeed within
127 bytes or MACRO-86 will not find it.

The PTR operator can be used another way to save yourself a
byte when using forward references. If you defined FOO as a
forward constant, you might enter the statement:

MOV [BX],FOO

You may want to refer to FOO as a byte immediate. In this
case, you could enter either of the statements (they are
equivalent):

MOV BYTE PTR [BX] ,FOO

MOV [BX],BYTE PTR FOO
h. t>V t:. \~'1.:l1 \- C\.lJ t:"D 0 r

These statements tell MACRO-86 that FOO is a byte immediate.
A smaller instruction is generated.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-8

3.2 OPERANDS

An operand may be anyone of three types: Immediate,
Registers, or Memory operands. There is no restriction on
combining the various types of operands.

The following list shows all the types and the items that
comprise them:

Immediate
Data items
Symbols

Registers

Memory operands
Direct

Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
±displacement

Structure

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-9

3.2.1 Immediate Operands

Immediate operands are constant values that you supply when
you enter a statement line. The value may be entered either
as a data item or as a symbol.

Instructions that take two operands permit an immediate
operand as the source operand only (the second operand in an
instruction statement). For example:

MOV AX,9

Data Items

The default input radix is decimal. Any numeric values
entered without numeric notation appended will be treated as
a decimal value. MACRO-86 recognizes values in forms other
than decimal when special notation is appended. These other
values include ASCII characters as well as numeric values.

Data Form Format Example ----
Binary xxxxxxxxB OlllOOOlB

Octal xxxO
xxxQ

Decimal xxxxx
xxxxxD

Hexadecimal xxxxH

ASCII 'xx'
"xx"

7350 (letter 0)
4l2Q

65535 (default)
10000 (when .RADIX changes input

radix to nondecimal)

OFFFFH (first digit must be 0-9)

'OM' (more than two with DB only~
"OM" both forms are synonomous)

10 real xx.xxE+xx 25.23E-7 (floating point format)

16 real

Symbols

x ••• xR 8F76DEA9R (first digit must be 0-9~
The total number of digits
must be 8, 16, or 20~ or 9,
17, 21 if first digit is 0)

Symbols names equated with some form of constant information
(see Section 2.3, Symbols) may be used as immediate
operands. Using a symbol constant in a statement is the
same as using a numeric constant. Therefore, using the
sample statement above, you could enter:

MOV AX,FOO

assuming FOO was defined as a constant symbol. For example:

FOO EQU 9

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-10

3.2.2 Register Operands

The 8086 processor contains a number of registers. These
registers are identified by two-letter symbols that the
processor recognizes (the symbols are reserved).

The registers are appropriated to different tasks: general
registers, pointer registers, counter registers, index
registers, segment registers, and a flag register.

The general registers are two sizes: 8 bit and 16 bit. All
other registers are 16 bit.

The general registers are both 8 bit and 16 bit registers.
Actually, the 16 bit general registers are composed of a
pair of 8 bit registers, one for the low byte (bits 0-7) and
one for the high byte (bits 8-15). Note, however, that each
8 bit general register can be used independently from its
mate. In this case, each 8 bit register contains bits 0-7.

Segment registers are initialized by the user and contain
segment base values. The segment register names (CS, DS,
SS, ES) can be used with the colon segment override operator
to inform MACRO-86 that an operand is in a different segment
than specified in an ASSUME statement. (See the segment
override operator in Section 3.3.1, Attribute Operators.)

The flag register is one l6-bit register containing nine 1
bit flags (six arithmetic flags and three control flags).

Each of the registers (except segment registers and flags)
can be an operand in arithmetic and logical operations.

Register/Memory Field Encoding:

MOD=ll Register Mode

R/M W=O W=l

000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
III BH DI

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-11

EFFECTIVE ADDRESS CALCULATION

RIM MOD=OO MOD=Ol MOD=lO

000 [BX]+[SI] [BX]+[SI]+D8 (BX]+[SI]+D16
001 [BX] + [DI] [BX]+[DI]+D8 [BX]+[DI]+D16
010 [BP]+[SI] [BP]+[SI]+D8 [BP]+[SI]+D16
all [BP]+[DI] [BP]+[DI]+D8 [BP]+[DI]+D16
100 [SI] [SI] +D8 [SI] +D16
101 [DI] [DI] +D8 [DI] +D16
110 DIRECT ADDRESS [BP] +D8 [BP] +D16
III [BX] [BX] +08 [BX] +016

Note: 08 = a byte value~ 016 = a word value

Other Registers:

Segment: CS code segment
OS data segment
SS stack segment
ES extra segment

Flags: 6 I-bit arithmetic flags 3 I-bit control flags

flag

CF
PF

AF
ZF
SF

carry flag
parity flag

auxiliary flag
zero flag
sign flag

NOTE

OF direction flag
IF interrupt-enable

TF trap flag

The BX, BP, SI, and OI
registers are also used as
memory operands. The
distinction is: when these
registers are enclosed in
square brackets [], they are
memory operands~ when they
are not enclosed in square
brackets, they are register
operands (see Section 3.2.3,
Memory Operands) •

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-12

3.2.3 Memory Operands

A memory operand represents an address in memory. When you
use a memory operand, you direct MACRO-86 to an address to
find some data or instruction.

A memory operand always consists of an offset from a base
address.

Memory operands fit into three categories: those that use a
base or index register (indexed memory operands), those that
do not use a register (direct memory operands), and
structure operands.

Direct Memory Operands

Direct memory operands do not use registers and consist of a
single offset value. Direct memory operands are labels,
simple variables, and offsets.

Memory operands can be used as destination operands as well
as source operands for instructions that take two operands.
For example:

MOV AX,FOO
MOV FOO,CX

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-13

Indexed Memory Operands

Indexed memory operands use base and index registers,
constants, displacement values, and variables, often in
combination. When you combine indexed operands, you create
an address expression.

Indexed memory operands use square brackets to indicate
indexing (by a register or by registers) or subscripting
(for example, FOO[S]). The square brackets are treated like
plus signs (+). Therefore,

FOO[S] is equivalent to FOO+S
S[FOO] is equivalent to S+FOO

The only difference between square brackets and
occurs when a register name appears inside
brackets. Then, the operand is seen as indexing.

The types of indexed memory operands are:

Base registers: [BX] [BP]

plus signs
the square

BP has SS as its default segment register;
all others have DS as default.

Index registers: [DI] [SI]

[constant] immediate in square brackets [8], [FOO]

+Displacement 8-bit or 16-bit value.
Used only with another indexed operand.

These elements may be combined in
restriction is that neither two
indexed registers can be combined:

[BX+BP] ;illegal
[SI+DI] ;illegal

any order. The only
base registers nor two

Some examples of indexed memory operand combinations:

[BP+8]
[SI+BX] [4]
16 [DI+BP+3]
8[FOO]-8

More examples of equivalent forms:

S [BX] [SI]
BX+S] [SIl
[BX+SI+S]
[BX]S[SI]

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-14

Structure Operands

Structure operands take the form <variable>.<field>.

<variable> is any name you give when coding a statement line:
that initializes a Structure field. The <variable> may be
an anonymous variable, such as an indexed memory operand.

<field> is a name defined by a DEFINE directive within a
STRUC block. <field> is a typed constant.

The period (.) must be included.

Example:

ZOO
GIRAFFE
ZOO

LONG NECK

STRUC
DB ?
ENDS

ZOO <16>

MOV AL,LONG_NECK.GlRAFFE

MOV AL,[BX].GIRAFFE ;anonymous variable

The use of structure operands can be helpful in stack
operations. If you set up the stack segment as a structure,
setting BP to the top of the stack (BP equal to SP), then
you can access any value in the stack structure by fieldname
indexed through BP; for example:

[BP] .FLD6

--- ---

BP~

FLDI

FLD3 I FLD2

STRUC FLD4

FLD6 I FLD5

FLD7

~SP

\
/
\
/
\
/
\
/
\}
/

This method makes all values on the stack are available all
the time, not just the value at the top. Therefore, this
method makes the stack a handy place to pass parameters to
subroutines.

EXPRESSIONS: OPERANDS AND OPERATORS

3.3 OPERATORS

An operator may be one of four
arithmetic, relational, or logical.

Page 3-15

types: attribute,

Attribute operators are used with operands to override their
attributes, return the value of the attributes, or to
isolate fields of Records.

Arithmetic, relational, and logical operators are used to
combine or compare operands.

3.3.1 Attribute Operators

Attribute operators used as operands perform one of three
functions:

Override an operand's attributes,

Return the values of operand attributes,

Isolate record fields (record specific operators) •

The following list shows all the attribute operators by
type:

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators
SEG
OFFSET
TYPE
• TYPE
LENGTH
SIZE

RECORD specific operators
Shift count (Field name)
WIDTH
MASK

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-16

Override operators

These operators are used to override the segment, offset,
type, or distance of variables and labels.

Pointer (PTR)

<attribute> PTR <expression>

The PTR operator overrides the type (BYTE, WORD,
DWORD) or the distance (NEAR, FAR) of an operand. ,no

- \' ""'-~~ .. PT"R" ~ C>J:~cJl. ~ W~AR./FA.R ":'r.Q.~/-.5J...,D
<attribute> is the new attribute; the new type or
new distance.

<expression> is the operand whose attribute is to
be overridden.

The most important and frequent use for PTR is to
assure that MACRO-86 understands what attribute the
expression is supposed to have. This is especially
true for the type attribute. Whenever you place
forward references in your program, PTR will make
clear the distance or type of the expression. This
way you can avoid phase errors.

The second use of PTR is to access data by type
other than the type in the variable definition.
Most often this occurs in structures. If the
structure is defined as WORD but you want to access
an item as a byte, PTR is the operator for this.
However, a much easier method is to enter a second
statement that defines the structure in bytes, too.
This eliminates the need to use PTR for every
reference to the structure. Refer to the LABEL
directive in Section 4.2.1, Memory Directives.

Examples:

CALL ~ [BX] [S I] s \..\..f-~~-~ ~ C'"'-~ '-"-- ~c..J...... Q.-v-<U1. - ~ &'0\.'l,-"t.
MOV BYTE PTR ARRAY)(s~+h~d)

ADD BYTE PTR FOO,9

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-17

Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>: <address-expression>

The segment override operator overrides the assumed
segment of an address expression (which may be a
label, a variable, or other memory operand) •

The colon operator helps with "forward references by
telling the assembler to what a reference is
relative (segment, group, or segment register).

MACRO-86 assumes that labels are addressable
through the current CS register. MACRO-86 assumes
that variables are addressable through the current
DS register, or possibly the ES register, by
default. If the operand is in another segment and
you have not alerted MACRO-86 through the ASSUME
directive, you will need to use a segment override
operator. Also, if you want to use a nondefault
relative base (that is, not the default segment
register) , you will need to use the segment
override operator for forward references. Note
that if MACRO-86 can reach an operand through a
nondefault segment register, it will use it, but
the reference cannot be forward in this case.

<segment-register> is one of the four segment
regist~r names: CS, DS, SS, ES.

<segment-name> is a name defined by the SEGMENT
directive.

<group-name> is a name defined by the
directive.

Examples:

MOV AX,ES:[BX+SI]

MOV CSEG:FAR_LABEL,AX

MOV AX,OFFSET DGROUP:VARIABLE

GROUP

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-1S

SHORT

SHORT <label>

SHORT overrides NEAR distance attribute of labels
used as targets for the JMP instruction. SHORT
tells MACRO-S6 that the distance between the JMP
statement and the <label> specified as its operand
is not more than 127 bytes either direction.

The major advantage of using the SHORT operator is
to save a byte. Normally, the <label> carries a
2-byte pointer to its offset in its segment.
Because a range of 256 bytes can be handled in a
single byte, the SHORT operator eliminates the need
for the extra byte (which would carry 00 or FF
anyway). However, you must be sure that the target
is within +127 bytes of the JMP instruction before
using SHORT:

Example:

JMP SHORT REPEAT
•

REPEAT:

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-19

THIS

THIS <distance>
THIS <type>

The THIS operator creates an operand. The value of
the operand depends on which argument you give
THIS.

The argument to THIS may be:

1. A distance (NEAR or FAR)

2. A type (BYTE, WORD, or DWORD)

THIS <distance> creates an operand with the
distance attribute you specify, an offset equal to
the current location counter, and the segment
attribute (segment base address) of the enclosing
segment.

THIS <type> creates an operand with the type
attribute you specify, an offset equal to the
current location counte~, and the segment attribute
(segment base address) of the enclosing segment.

Examples:

TAG EQU THIS BYTE same as TAG LABEL BYTE

SPOT CHECK = THIS NEAR same as SPOT CHECK LABEL
NEAR-

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-20

HIGH, LOW

HIGH <expression>
LOW <expression>

HIGH and LOW are provided for 8080
language compatibility. HIGH and LOW
isolation operators.

assembly
are byte

HIGH isolates the high 8 bits of an absolute l6-bit
value or address expression.

LOW isolates the low 8 bits of an absolute l6-bit
value or address expression.

Examples:

MOV AH,HIGH WORD VALUE iget byte with sign bit

MOV AL,LOW OFFFFH

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-21

Value Returning Operators

These operators return the attribute values of the operands
that follow them but do not override the attributes.

The value returning operators take labels and variables as
their arguments.

Because variables in MACRO-86 have three attributes, you
need to use value returning operators to isolate single
attributes, as follows:

SEG isolates the segment base address
OFFSET isolates the offset value
TYPE isolates either type or distance
LENGTH and SIZE isolate the memory allocation

SEG

SEG <label>
SEG <variable>

Example:

SEG returns
address) of
variable.

the
the

segment
segment

MOV AX,SEG VARIABLE NAME

value {segment base
enclosing the label or

MOV AX,<segment-variable>:<variable>

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-22

OFFSET

OFFSET <label>
OFFSET <variable>

OFFSET returns the offset value of the variable or
label within its segment (the number of bytes
between the segment base address and the address
where the label or variable is defined).

OFFSET is chiefly used to tell the assembler that
the operand is an immediate.

NOTE

OFFSET does not make the value a constant.
Only MS-LINK can resolve the final value.

NOTE

OFFSET is not required with uses of the DW
or DO directives. The assembler applies an
implicit OFFSET to variables in address
expressions following DW and DO.

Example:

MOV BX,OFFSET FOO

If you use an ASSUME to GROUP, OFFSET will not
automatically return the offset of a variable from
the base address of the group. Rather, OFFSET will
return the segment offset, unless you use the
segment override operator (group-name version). If
the variable GOB is defined in a segment placed in
DGROUP, and you want the offset of GOB in the
group, you need to enter a statment like:

MOV BX,OFFSET DGROUP:GOB

You must be sure that the GROUP directive precedes
any reference to a group name, including it use
with OFFSET.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-23

TYPE

TYPE <label>
TYPE <variable>

If the operand is a variable, the TYPE operator
returns a value equal to the number of bytes of the
variable type, as follows:

BYTE = 1
WORD = 2
DWORD = 4
QWORD = 8
TBYTE = 10
STRUC = the number of bytes declared by STRUC

If the operand is a label, the TYPE operator
returns NEAR (FFFFH) or FAR (FFFEH).

Examples:

MOV AX, (TYPE FOO_BAR) PTR [BX+SI]

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-24

• TYPE

.TYPE <variable>

The .TYPE operator returns a byte that describes
two characteristics of the <variable>: 1) the
mode, and 2) whether it is External or not. The
argument to .TYPE may be any expression (string,
numeric, logical). If the expression is invalid,
.TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two
bits are:

a the mode is Absolute (Gt:rYV"..x...c --'_·C)
1 the mode is Program Related
2 the mode is Data Related

The high bit (80H) is the External bit. If the
high bit is on, the expression contains an
External. If the high bit is off, the expression
is not External.

The Defined bit is 20H. This bit is on if the
expression is locally defined, and it is off if the
expression is undefined or external. If neither
bit is on, the expression is invalid •

• TYPE is usually used inside macros, where an
argument type may need to be tested to make a
decision regarding program flow~ for example, when
conditional assembly is involved.

Example:

FOO MACRO X
LOCAL Z

Z = .TYPE X
IF Z •••

• TYPE tests the mode and type of X. Depending on
the evaluation of X, the block of code beginning
with IF Z ••• may be assembled or omitted.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-25

LENGTH

LENGTH <variable>

LENGTH accepts only one variable as its argument.

LENGTH returns the number of
WORD, DWORD, QWORD, TBYTE)
variable.

type units (BYTE,
allocated for that

If the variable is defined by a DUP expression,
LENGTH returns the number of type units duplicated;
that is, the number that precedes the first DUP in
the expression.

If the variable is not defined by a DUP expression,
LENGTH returns 1.

Examples:

FOO DW 100 DUP(l)

MOV ex, LENGTH FOO ;get number of elements
;in array
;LENGTH returns 100

BAZ DW 100 DUP(l,lO DUP(?»

LENGTH BAZ is still 100,
regardless of the expression following DUP.

GOO DD (?)

LENGTH GOO returns 1 because only one unit is
involved.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-26

SIZE

SIZE <variable>

SIZE returns the total number of bytes allocated
for a variable.

SIZE is the product of the value of LENGTH times
the value of TYPE.

Example:

FOO OW 100 DUP(l)

MOV BX,SIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X 2
SIZE = 200

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-27

Record Specific operators

Record specific operators used to isolate fields in a
record.

Records are defined by the RECORD directive (see Section
4.2.1, Memory Directives). A record may be up to 16 bits
long. The record is defined by fields, which may be from
one to 16 bits long. To isolate one of the three
characteristics of a record field, you use one of the record
specific operators, as follows:

Shift count number of bits from low end of record to low
end of field (number of bits to right shift the
record to lowest bits of record)

WIDTH the number of bits wide the field or record is
(number of bits the field or record contains)

MASK value of record if field contains its maximum
value an all other fields are zero (all bits in
field contain 1; all other bits contain 0)

In the following discussions of the record
operators, the following symbols are used:

specific

Faa a record defined by the RECORD directive
Faa RECORD FIELD1:3,FIELD2:6,FIELD3:7

BAZ a variable used to allocate Faa
BAZ Faa < >

FIELD1, FIELD2, and FIELD3 are the fields of the
record Faa.

EXPRESSIONS: OPERANDS AND OPERATORS

Shift-count - (Record fieldname)

<record-fieldname>

The shift count is derived· from
fieldname to be isolated.

Page 3-28

the record

The shift count is the number of bits the field
must be right shifted to place the lowest bit of
the field in the lowest bit of the record byte or
word.

If a l6-bit record (FOO) contains three fields
(FIELD1, FIELD2, and FIELD3), the record can be
diagrammed as follows:

j=i=i=j=i=i=i=i=i=j=i=i=i=i=i=i=j
I I I

FIELDl FIELD2 FIELD3

FIELDl has a shift count of 13.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of O.

When you want to isolate the value in one of these
fields, you enter its name as an operand.

Example:

MOV DX,BAZ
MOV CL,FIELD2
SHR DX,CL

FIELD2 is now right shifted, ready for access.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-29

MASK

MASK <record-fieldname>

MASK accepts a field name as its only argument.

MASK returns a bit-mask defined by 1 for bits
positions included by the field and 0 for bit
positions not included. The value return
represents the maximum value for the record when
the field is masked.

Using the diagram used for shift count, MASK can be
diagrammed as:

·=i=i=·I=i=i=i=i=i=·I=i=i=i=i_i=i=· o 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 <---MASK
I I I

1 F 8 0

The MASK of FIELD2 equals lF80H.

Example:

MOV DX,BAZ
AND DX,MASK FIELD2

FIELD2 is now isolated.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-30

WIDTH

WIDTH <record-fieldname>
WIDTH <record>

When a <record-fieldname> is given as the argument,
WIDTH returns the width of a record field as the
number of bits in the record field.

When a <record> is given as the argument, WIDTH
returns the width of a record as the number of bits
in the record.

Using the diagram under Shift count, WIDTH can be
diagrammed as:

.
1

_,-,- -1-'-1-1-1- -'-1-'-'-'-'-1 ----------------

WI'nTH = 6

The WIDTH of FIELDl equals 3.
The WIDTH of FIELD2 equals 6.
The WIDTH of FIELD3 equals 7.

Example:

MOV CL,WIDTH FIELD2

The number of bits in FIELD2 is now in the
co"unt register.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-31

3.3.2 Arithmetic Operators

Eight arithmetic operators provide the
functions (add, subtract, divide,
negation), plus two shift operators.

common mathematical
multiply, modulo,

The arithmetic operators are used to combine operands to
form an expression that results in a data item or an
address.

Except for + and - (binary), operands must be constants.

For plus (+), one operand must be a constant.

For minus (-), the first (left) operand may be a
nonconstant, or both operands may be nonconstants. But, the
right may not be a nonconstant if the left is constant.

*
/

MOD

SHR

SHL

Multiply

Divide

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo). Both operands must be absolute.

Example:

MOV AX,lOO MOD 17

The value moved into AX will be OFH (decimal
15) •

Shift Right. SHR is followed by an integer
which specifies the number of bit positions
the value is to be right shifted.

Example:

MOV AX,llOOOOOB SHR 5

The value moved into AX will be lIB (03).

Shift Left. SHL is followed by an integer
which specifies the number of bit positions
the value is to be left shifted.

Example:

MOV AX,OllOB SHL 5

The value moved into AX will be OllOOOOOOB
(OCOH)

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-32

- (Unary Minus) Indicates that following value is negative,
as in a negative integer.

+ Add. One operand must be a constant~
may be a nonconstant.

Subtract the right operand from the
operand. The first (left) operand may
nonconstant, or both operands may
nonconstants. But, the right may

one

left
be a

be
be a

nonconstant only if the left is also a
nonconstant and in the same segment.

3.3.3 Relational Operators

Relational operators compare two constant operands.

If the relationship between the two operands matches the
operator, FFFFH is returned.

If the relationship between the two operands does not match
the operator, a zero is returned.

Relational operators are most often used with conditional
directives and conditional instructions to direct program
control.

EQ

NE

LT

LE

GT

GE

Equal. Returns true if the operands equal
each other.

Not Equal. Returns true if the operands are
not equal to each other.

Less Than. Returns true if the left operand
is less than the right operand.

Less than or Equal. Returns true if the left
operand is less than or equal to the right
operand.

Greater Than. Returns true if the left
operand is greater than the right operand.

Greater than or Equal. Returns true if the
left operand is greater than or equal to the
right operand.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-33

3.3.4 Logical Operators

Logical operators compare two constant operands bitwise.

Logical operators compare the binary values of corresponding
bit positions of each operand to evaluate for the logical
relationship defined by the logical operator.

Logical operators can be used two ways:

1. To combine operands in a logical relationship. In
this case, all bits in the operands will have the
same value (either 0000 or FFFFH). In fact, it is
best to use these values for true (FFFFH) and false
(OOOO) for the symbols you will use as operands
because in conditionals anything nonzero is true.

2. In bitwise operations. In this case, the bits are
different, and the logical operators act the same
as the instructions of the same name.

NOT Logical NOT. Returns true if left operand is
true and right is false or if right is true
and left is false. Returns false if both are
true or both are false.

AND Logical AND. Returns true if both operators
are true. Returns false if either operator
is false or if both are false. Both operands
must be absolute values.

OR Logical OR. Returns true if either operator
is true or if both are true. Returns false
if both operators are false. Both operands
must be absolute values.

XOR Exclusive OR. Returns true if either
operator is true and the other is false.
Returns false if both operators are true or
if both operators are false. Both operands
must be absolute values.

EXPRESSIONS: OPERANDS AND OPERATORS Page 3-34

3.3.5 Expression Evaluation: Precedence Of Operators

Expressions are evaluated higher precedence operators first,
then left to right for equal precedence operators.

Parentheses can be used to alter precedence.

For example:

MOV AX,lOlB SHL 2*2 = MOV AX,OOlOlOOOB

MOV AX,iOlB SHL (2*2) = MOV AX,OlOlOOOOB

SHL and * are equal precedence. Therefore, their functions
are performed in the order the operators are encountered
(left to right).

Precedence of Operators

All operators in a single item have the same
regardless of the order listed within the item.
line breaks are used for visual clarity, not
functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parenthesis ()

angle brackets < >
square brackets []

precedence,
Spacing and

to indicate

structure variable operand: <variable>.<field>

2. segment override operator: colon (:)

3. PTR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5. * I, MOD, SHL, SHR ,

6. +, - (both unary and binary)

7. EQ, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

Chapter 4

4.1
4.2
4.2.1
4.2.2
4.2.3

4.2.4

Contents

Action: Instructions and Directives

Instructions 4-2
Directives 4-3

Memory Directives 4-5
Conditional Directives 4-36
Macro Directives 4-40

Repeat Directives 4-48
Special Macro Operators 4-52

Listing Directives 4-56

CHAPTER 4

ACTION: INSTRUCTIONS AND DIRECTIVES

The action field contains either an 8086
mnemonic or a MACRO-86 assembler directive.

instruction

Following a name field entry (if any), action field entries
may begin in any column. Specific spacing is not required.
The only benefit of consistent spacing is improved
readability. If a statement does not have a name field
entry, the action field is the first entry.

The entry in the action field either directs the processor
to perform a specific function or directs the assembler to
perform one of its functions.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-2

4.1 INSTRUCTIONS

Instructions command processor actions. An instruction may
have the data and/or addresses it needs built into it, or
data and/or addresses may be found in the expression part of
an instruction. For example:

lopcodel

lopcodel

T . d suppll.e

_Ioperand I
loperandl

\
(datal (datal

laddr I I addr I

I /
supplied or found

supplied = part of the instruction

found = assembler inserts data and/or address from the
information provided by expression in instruction
statements.

(opcode equates to the binary code for the action
of- an instruction)

This manual does not contain detailed descriptions of the
8086 instruction mnemonics and their characteristics. For
this, you will need to consult other texts. For now, the
following texts exist:

1. Morse, Stephen P. The 8086 Primer. Rochelle Park,
NJ: - Hayden Publishing Co., 1980.

2. Rector, Russell and George Alexy. The 8086 Book.
Berkeley, CA: Osbourne/McGraw-Hill~98~

3. The 8086 Family User's Manual. Santa Clara, CA:
Intel Corporation, 1980.

Appendix C contains both an alphabetical listing and a
grouped listing of the instruction mnemonics. The
alphabetical listing shows the full name of the instruction.
Following the alphabetical list is a list that groups the
instruction mnemonics by the number and type of arguments
they take. Within each group, the instruction mnemonics are
arranged alphabetically.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-3

4.2 DIRECTIVES

Directives give the assembler directions for input and
output, memory organization, conditional assembly, listing
and cross reference control, and definitions.

The directives have been divided into groups by the function
they perform. Within each group, the directives are
described alphabetically.

The groups are:

Memory Directives
Directives in this group are used to organize
memory. Because there is no "miscellaneous"
group, the memory directives group contains
some directives that do not, strictly speaking,
organize memory, such as COMMENT.

Conditional Directives
Directives in this group are used to test
conditions of assembly before proceding with
assembly of a block of statements. This group
contains all of the IF (and related)
directives.

Macro Directives
Directives in this group are used to create
blocks of code called macros. This group also
includes some special operators and directives
that are used only inside macro blocks. The
repeat directives are considered macro
directives for descriptive purposes.

Listing Directi~es
Directives in this group are used to control
the format and, to some extent, the content of
listings that the assembler produces.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-4

Appendix B contains a table of assembler directives, also
grouped by function. Here below is an alphabetical list of
all the directives that MACRO-86 supports:

ASSUME EVEN IRPC • RADIX
EXITM RECORD

COMMENT EXTERN LABEL REPT
.CREF .LALL

GROUP .LFCOND .SALL
DB .LIST SEGMENT
DD IF .SFCOND
DQ IFB MACRO STRUC
DT IFDEF SUB TTL
DW IFDIF NAME

IFE .TFCOND
ELSE IFIDN ORG TITLE
END IFNB· %OUT
ENDIF IFNDEF .XALL
ENDM PAGE .XCREF
ENDP IFl PROC .XLIST
ENDS IF2 PUBLIC
EQU IRP PURGE

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-5

4.2.1 Memory Directives

ASSUME

ASSUME <seg-reg>:<seg-name>[, •••]

or

ASSUME NOTHING

Example:

ASSUME tells the assembler that the symbols in the
segment or group can be accessed using this segment
register. When the assembler encounters a
variable, it automatically assembles the variable
reference under the proper segment register. You
may enter from 1 to 4 arguments to ASSUME.

The valid <seg-reg> entries are:

CS, DS, ES, and SSe

The possible entries for <seg-name> are:

1. the name of a segment declared with the SEGMENT
directive

2. the name of a group declared with the GROUP
directive

3. an expression: either SEG <variable-name> or
SEG <label-name> (see SEG operator, Section
3.2)

4. the key word NO~HING. ASSUME NOTHING cancels
all register assignments made by a previous
ASSUME statement.

If ASSUME is not used or if NOTHING is entered for
<seg-name>, each reference to variables, symbols,
labels, and so forth in' a particular segment must
be prefixed by a segment register. For example,
DS:FOO instead of simply FOO.

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-6

COMMENT

COMMENT<delim><text><delim>

Example:

The first non-blank character encountered after
COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the
next occurrence of <delimiter>.

COMMENT permits you to enter
program without entering a
each line.

comments about your
semicolon (;) before

If you use COMMENT inside a macro block, the
comment block will not appear on your listing
unless you also place the .LALL directive in your
source file.

Using an asterisk as the delimiter, the format of
the comment block would be:

COMMENT *
any amount of text entered
here as the comment block

* ;return to normal mode

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-7

DEFINE BYTE
DEFINE WORD
DEFINE DOUBLEWORD
DEFINE QUADWORD
DEFINE TENBYTES

<varname>
<varname>
<varname>
<varname>
<varname>

DB <exp>[,<exp>, •••]
DW <exp>[,<exp>, •••]
DD <exp>[,<exp>, •••]
DQ <exp>[,<exp>, •••]
DT <exp>[,<exp>, •••]

The DEFINE directives are used to define variables
or to initialize portions of memory.

If the optional <varname> is entered, the DEFINE
directives define the name as a variable. If
<varname> has a colon, it becomes a NEAR label
instead of a variable. (See also, Section 2.1,
Labels, and Section 2.2, Variables.)

The DEFINE directives allocate memory in units
specified by the second letter of the directive
(each define directive may allocate one or more of
its units at a time):

DB allocates one byte (a bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates four words (a bytes)
DT allocates ten bytes

<exp> may be one or more of the following:

1. a constant expression

2. the character ? for indeterminate
initialization. Usually the? is used to
reserve space without placing any particular
value into it. (It is the equivalent of the DS
pseudo-op in MACRO-aO).

3. an address expression (for OW and DD only)

4. an ASCII string (longer than 2 characters for
DB only)

5. <exp>DUP(?)
When this type of expression is the only
argument to a define directive, the define
directive produces an uninitialized data block.
This expression with the? instead of a value
results in a smaller object file because only
the segment offset is changed to reserve space.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-8

6. <exp> DUP«exp>[, •••]) .
This expression, like item 5, produces a data
block, but initialized with the value of the
second <exp>. The first <exp> must be a
constant greater than zero and must not be a
forward reference.

Example - Define Byte (DB):

NUM BASE
FILLER

ONE CHAR
MULT CHAR
MSG -

BUFFER
TABLE

NEW PAGE
ARRAY

DB 16
DB ?

DB 'M'

;initialize with
;indeterminate value

DB 'MARC MIKE ZIBO PAUL BILL'
DB 'MSGTEST',13,10 ;message, carriage return,

;and linefeed
DB 10 DUP(?) ;indeterminate block
DB 100 DUP(5 DUP(4) ,7)
;100 copies of bytes with values 4,4,4,4,4,7
DB OCH ;form feed character
DB 1,2,3,4,5,6,7

Example - Define Word (DW):

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DISTANCE

DW TABLE,TABLE+10,TABLE+20
DW OFFFOH
DW 4 * 128
DW TOTAL + 1
DW 100 OUP (1)
ow 50 OUP (0)
OW 2 DUP (2,3 OUP (BSI ZE))
;two words with the byte values
;2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,BSIZE
OW START TAB - END TAB
;difference of two labels is a constant

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-9

Example - Define Doub1e\'lord (DD) :

DBPTR DD TABLE :16-bit OFFSET, then 16-bit
:SEG base value

SEC PER DAY DD 60*60*24 :arithmetic is performed
:by the assembler

LIST DD ' XY' ,2 DUP (?)
HIGH DD 4294967295 :maximum
FLOAT DD 6.735E2 :f1oating point

Example - Define Quadword (DQ) :

LONG REAL DQ 3.141597 :decima1 makes it real
STRING DQ 'AB' :no more than 2 characters
HIGH DQ 18446744073709661615 :maximum
LOW DQ -18446744073709661615 :minimum
SPACER DQ 2 DUP (?) :uninitia1ized data
FILLER DQ 1 DUP (?,?) :inita1ized with

:indeterminate value
HEX REAL DQ OFDCBA9A98765432105R

Example - Define Tenbytes (DT):

ACCUMULATOR DT
STRING DT
PACKED DECIMAL DT
FLOATING POINT DT

?
'CD'
1234567890
3.1415926

:no more than 2 characters

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-10

END

END [<exp>]

Example:

The END statement specifies the end of the program.

If <exp> is present, it is the start address of the
program. If several modules are to be linked, only
the main module may specify the start of the
program with the END <exp> statement.

If <exp> is not present, then no start address is
passed to MS-LINK for that program or module.

END START ;START is a' label somewhere in the
program

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-11

<name>

Example:

EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp>
is an external symbol, an error is generated. If
<name> already has a value, an error is generated.
If you want to be able to redefine a <name> in your
program, use the equal sign (=) directive instead.

In many cases, EQU is used as a primitive text
substitution, like a macro.

<exp> may be anyone of the following:

1. A symbol. <name> becomes an alias for the
symbol in <exp>. Shown as an Alias in the
symbol table.

2. An instruction name. Shown as an Opcode in the
symbol table.

3. A valid expression. Shown as a Number or L
(label) in the symbol table.

4. Any other entry, including text, index
references, segment prefix and operands. Shown
as Text in the symbol table.

FOO EQU

B EQU
P8 EQU

. CBD EQU
(Opcode)
ALL EQU

EMP EQU
FPV EQU

BAZ

[BP+8]
DS: [BP+8]

AAD

DEFREC<2,3,4>

6
6.3E7

;must be defined in this
;module or an error results
;index reference (Text)
;segment prefix
iand operand (Text)
ian instruction name

iDEFREC = record. name
i<2,3,4> = initial values
ifor fields of record
jconstant value
jfloating point (text)

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-12

Equal Sign

<name>

Example:

= <exp>

<exp> must be a valid expression. It is shown as a
Number or L (label) in the symbol table (same as
<exp> type 3 under the EQU directive above).

The equal sign (=) allows the user to set and to
redefine symbols. The equal sign is like the EQU
directive, except the user can redefine the symbol
without generatinq an error. Redefinition may take
place more than once, and redefinition may refer to
a previous definition.

FOO = 5
FOO EQU 6i

FOO = 7

FOO = FOO+3

ithe same as FOO EQU 5
ierror, FOa cannot be
iredefined by EQU
iFOa can be redefined
ionly by another =
iredefinition may refer
ito a previous definition

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-13

EVEN

EVEN

Example:

The EVEN directive causes the program counter to go
to an even boundary~ that is, to an address that
begins a word. If the program counter is not
already at an even boundary, EVEN causes the
assembler to add a NOP instruction so that the
counter will reach an even boundary.

An error results if EVEN is used with a byte
aligned segment.

Before: The PC points to 0019 hex (25 decimal)

EVEN

After: The PC points to lA hex (26 decimal)
0019 hex now contains an NOP instruction

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-14

EXTRN

EXTRN <name>:<type>[, •••]

<name> is a symbol that is defined in another
module. <name> must have been declared PUBLIC in
the module where <name> is defined.

<type> may be anyone of the following, but must be
a valid type for <name>:

1. BYTE, WORD, or DWORD

2. NEAR or FAR for labels or procedures (defined
under a PROC directive)

3. ABS for pure numbers (implicit size is WORD,
but includes BYTE).

Unlike the 8080 assembler, placement of the EXTRN
directive. is significant. If the directive is
given with\~ segment, the assembler assumes that
the symbol is located within that segment. If the
segment is not known, place the directive outside
all segments then use either:

ASSUME <seg-reg>:SEG <name>

or an explicit segment prefix.

NOTE

If a mistake is made and the symbol is not
in the segment, MS-LINK will take the
offset relative to the given segment, if
possible. If the real segment is more than I ~""J'" t hn.,,~
64K bytes away from the reference, MS-LINK
may find the definition. If the real
segment is more than 64K bytes away,
MS-LINK wi11~al1 to make the link between
the reference and the definition and will
not return an error message.

ACTION: INSTRUCTIONS AND DIRECTIVES

Example:

In Same Segment:

In Module 1:

CSEG

TAGN:

CSEG

SEGMENT
PUBLIC TAGN

ENDS

In Module 2:

CSEG

CSEG

SEGMENT
EXTRN TAGN:NEAR

JMP TAGN
ENDS

Page 4-15

In Another Segment:

In Module 1:

CSEGA SEGMENT
PUBLIC TAGF

TAGF:

CSEGA ENDS

In Module 2:

EXTRN TAGF:FAR
CSEGB SEGMENT

JMP TAGF
CSEGB ENDS

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-16

GROUP

<name> GROUP <seg-name>[, •••]

The GROUP directive collects the segments named
after GROUP «seg-name>s) under one name. The
GROUP is used by MS-LINK so that it knows which
segments should be loaded together (the order the
segments are named here does not influence the
order the segments are loaded; ~at is handled by
the CLASS designation of the SEGMENT directive, or
by the order you name object modules in response to
the MS-LINK Object module prompt).

All segments in a GROUP must fit into 64K bytes of
memory. The assembler does not check this at all,
but leaves the checking to MS-LINK.

<seg-name> may be one of the following:

1. A segment name,
directive. The
reference.

assigned by a SEGMENT
name may be a forward

2. An expression: either SEG <var>
or SEG <label>

Both of these entries resolve themselves to a
segment name (see SEG operator, Section 3.2).

Once you have defined a group name, you can use the
name:

1. As an immediate value:

MOV AX,DGROUP
MOV OS,AX

DGROUP is the paragraph address of the base of
DGROUP.

2. In ASSUME statements:

ASSUME OS:OGROUP

The OS register can now be used to reach any
symbol in any segment of the group.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-17

3. As an operand prefix (for segment override):

MOV BX,OFFSET DGROUP:FOO
DW DGROUP : FOO
DD DGROUP:FOO

DGROUP: forces the offset to be relative' to
DGROUP, instead of to the segment in which FOO
is defined.

Example (Using GROUP to combine segments):

In Module A:

CGROUP GROUP XXX,YYY
XXX SEGMENT

ASSUME CS:CGROUP

XXX ENDS
YYY SEGMENT

YYY ENDS
END

In Module B:

CGROUP GROUP ZZZ
ZZZ SEGMENT

ASSTJME CS:CGROUP

ZZZ ENDS
END

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-18

INCLUDE
"('n.A...~p _(tc... E. C) ~ s: lJ.-~ -<....9 b '\. \....J to> 'r J) OS""'\ c--Ir c. C- L ., ~

"~~~ ~~~~ "\ .v~'_ ~ .L.:.~" ~~O. "3 o-~\ \D'--'..

INCLUDE<filename> \.~ L "~" c:I't ":;u,-~lA ~~S,-,--A-"~~_

Example:

The INCLUDE directive inserts source code from an
alternate assembly language source file into the
current source file during assembly. Use of the
INCLUDE directive eliminates the need to repeat an
often-used sequence of statements in the current
source file.

The <filename> is any valid file specification for
the operating system. If the device designation is
other than the default, the source filename
specification must include it. The default device
designation is the currently logged drive or
device.

The included file is opened and assembled into the
current source file immediately following the
Include directive statement. When end-of-file is
reached, assembly resumes with the next statement
following the INCLUDE directive.

Nested includes are allowed (the file inserted with
an INCLUDE statement may contain an INCLUDE
directive). However, this is not a recommended
practice with small systems because of the amount
of memory that may be required.

The file specified must exist. If the file is not
found, an error is returned, and the assembly
aborts.

On a MACRO-86 listing, the letter C is printed
between the assembled code and the source line on
each line assembled from an included file. See
Section 5.4, Formats of Listings and Symbol Tables,
for a description of listing file formats.

INCLUDE ENTRY
INCLUDE B:RECORD.TST

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-19

LABEL

<name> LABEL <type>

By using LABEL to define a <name>, you cause the
assembler to associate the current segment offset
with <name>.

The item is assigned a length of 1.

<type> varies depending on the use of <name>.
<name> may be used for code or for data.

1. For code: (for example, as a JMP or CALL operand)

<type> may be either NEAR or FAR. <name> cannot be
used in data manipulation instuctions without using
a type override.

If you want, you can define a NEAR label using the
<name>: form (the LABEL directive is not used in
this case). If you are defining a BYTE or WORD
NEAR label, you can place the <name>: in front of
a Define directive.

When using a LABEL for code (NEAR or FAR),
segment must be addressable through the
register.

Example - For Code:

SUB RTF LABEL FAR
SUBRT: (first instruction) :colon = NEAR label

the
CS

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-20

2. For data:

<type> may be BYTE, WORD, DWORD, <structure-name>,
or <record-name>. When STRUC or RECORD name is
used, <name> is assigned the size of the structure
or record.

Example - For Data:

BARRAY LABEL BYTE
ARRAY OW 100 DUP(O)

ADD
ADD

AL,BARRAY[99]
AX ,ARRAY [98]

;ADD 100th byte to AL
;ADD 50th word to AX

By defining the array two ways, you can access
entries either by byte or by word. Also, you can
use this method for STRUC. It allows you to place
your data in memory as a table, and to access it
without the offset of the STRUC.

Defining the array two way also permits you to
avoid using the PTR operator. The double defining
method is especially effective if you access the
data different way. It is easier to give the array
a second name than to remember to use PTR.

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-21

NAME

NAME

Example:

<module-name>

<module-name> must not be a reserved word. The
module name may be any length, but MACRO-86 uses
only the first six characters and truncates the
rest.

The module name is passed to MS-LINK, but otherwise
has no significance for the assembler. MACRO-86
does check if more than one module name has been
declared.

Every module has a name.
module name from:

MACRO-86 derives the

1. a valid NAME directive statement

2. If the module does not contain a NAME
statement, MACRO-86 uses the first six
characters of a TITLE directive statement. The
first six characters must be legal as a name.

3. ~ ~ G L~ ~·._t.~ - ,\" C<_"_" . • ~'

NAME CURSOR

ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-22

ORG

ORG <exp>

Example:

The location counter is set to the value of <exp>,
and the assembler assigns generated code starting
with that value.

All names used in <exp> must be known on pass 1.
The value of <exp> must either evaluate to an
absolute or must be in the same segment as the
location counter.

ORG

ORG

l20H

$+2

;2-byte absolute value
imaximum=OFFFFH
;skip two bytes

Example - ORG to a boundary (conditional):

~~~~N ~EGM~ 

IF ($-B~GIN) OD 256 iif not already on 
;256 byte boundary 

$-BEGIN)+256-«$-BEGIN) MOD 256) 
ENDIF 

4.2.2, Conditional Directives, for an 
of conditional assembly. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-23 

PROC 

<procname> PROC [NEAR] 

<procname> 
~T 

ENDP 

or FAR 

The default, if no operand is specified, is NEAR. 
Use FAR if: 

the procedure name is an operating system entry 
point 

the procedure will be called from code which 
has another ASSUME CS value. 

Each PROC block should contain a RET statement. 

The PROC directive serves as a structuring device 
to make your programs more understandable. 

The PROC directive, through the NEAR/FAR option, 
informs CALLs to the procedure to generate a NEAR 
or a FAR CALL and RETs to generate a NEAR or a FAR 
RET. PROC is used, therefore, for coding 
simplification so that the user does not have to 
worry about NEAR or FAR for CALLs and RETs. 

A NEAR CALL or RETURN changes the IP but not the CS 
register. A FAR CALL or RETURN changes both the IP 
and the CS registers. 

Procedures are executed either in-line, from a JMP, 
or from a CALL. 

PROCs may be nested, which means that they are put 
in line. 

Combining the PUBLIC directive with a PROC 
statement (both NEAR and FAR), permits you to make 
external CALLs to the procedure or to make other 
external references to the procedure. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-24 

Example: 

PUBLIC 
FAR NAME PROC 

CALL 
RET 

FAR NAME ENDP 

PUBLIC 
NEAR NAME PROC 

RET 
NEAR NAME ENDP 

FAR NAME 
FAR-
NEAR NAME 

NEAR NAME 
NEAR-

The second subroutine above can be called directly 
from a NEAR segment (that is, a segment addressable 
through the same CS and within 64K): 

CALL NEAR NAME 

A FAR segment (that is, any other segment that is 
not a NEAR segment) must call to the first 
subroutine, which then calls the second: an 
indirect call: 

CALL FAR NAME 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-25 

PUBLIC 

PUBLIC 

Example: 

<symbol>[, ••• ] 

Place a PUBLIC directive statement in any module 
that contains symbols you want to use in other 
modules without defining the symbol again. PUBLIC 
makes the listed symbol(s), which are defined in 
the module where the PUBLIC statement appears, 
available for use by other modules to be linked 
with the module that defines the symbol(s). This 
information is passed to MS-LINK. 

<symbol> may be a number, a variable, a label 
including PROC labels). 

<symbol> may not be a register name or a symbol 
defined (with EQU) by floating point numbers or by 
integers larger than 2 bytes. 

PUBLIC 
GETINFO PROC 

PUSH 
MOV 

POP 
RET 

GETINFO ENDP 

GETINFO 
FAR 
BP 
BP,SP 

BP 

isave caller's register 
iget address parameters 
ibody of subroutine 
irestore caller's reg 
ireturn to caller 

Example - illegal PUBLIC: 

PUBLIC PIE BALD,HIGH VALUE 
PIE_BALD EQU 3.1416 -
HIGH VALUE EQU 999999999 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-26 

• RADIX 

• RADIX 

Example: 

Example: 

<exp> 

The default input base (or radix) for all constants 
is decimal. The .RADIX directive permits you to 
change the input radix to any base in the range 2 
to 16. 

<exp> is always in decimal radix, regardless of the 
current input radix. 

MOV 
• RADIX 
MOV 

BX,OFFH 
16 
BX,OFF 

The two MOVs in this example are identical. 

The .RADIX directive does not affect the generated 
code values placed in the .OBJ, .LST, or .CRF 
output files. -

The .RADIX directive does not affect the DD, DQ, or 
DT directives. Numeric values entered in the 
expression of these directives are always evaluated 
as decimal unless a data type suffix is appended to 
the value. 

NUM HAND 
HOT-HAND 
COOL HAND 

• RADIX 
DT 
DQ 
DD 

16 
773 ;773 = decimal 
773Q ;773 = octal here only 
773H ;now 773 = hexadecimal 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-27 

RECORD 

<recordname> RECORD <fieldname>:<width>[=<exp>],[ ••• ] 

<fieldname> is 
specifies the 
by <fieldname>. 
default) value 
are not allowed 

the name of the field. <width> 
number of bits in the field defined 

<exp> contains the initial (or 
for the field. Forward references 

in a RECORD statement. 

<fieldname> becomes a value that can be used in 
expressions. When you use <fieldname> in an 
expression, its value is the shift count to move 
the field to the far right. Using the MASK 
operator with the <fieldname> returns a bit mask 
for that field. 

<width> is a constant in the range 1 to 16 that 
specifies the number of bits contained in the field 
defined by <fieldname>. The WIDTH operator returns 
this value. If the total width of all declared 
fields is larger than 8 bits, then the assembler 
uses two bytes. Otherwise, only one byte is used. 

The first field you declare goes into the most 
significant bits of the record. Succesive1y 
declared fields are placed in the succeeding bits 
to the right. If the fields you declare do not 
total exactly 8 bits or exactly 16 bits, the entire 
record is right shifted so that the last bit of the 
last field is the lowest bit of the record. Unused 
bits will be in the high end of the record. 

For example: 

FOO RECORD HIGH:4,MID:3,LOW:3 

Initially, the bit map would be: 

Total bits >8 means use a word; but total bits <16 
means right shift, place undeclared bits at high 
end of word. Thus: 

o 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 <---MASK 

·1:i:i:i:i:i:·:i:i:i:·:i:i:·I=i=i=· 
not <HIGH-> <MID> <LOW> 

declared ------- ----------> 
WIDTH shift count 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-28 

<exp> contains the initial value for the field. If 
the field is at least 7 bits wide, the user can use 
an ASCII character as the <exp>. 

For example: 

HIGH:7='Q' 

To initialize records, use the same method used for 
DB. The format is: 

[<name>] <recordname> < [exp] [, ••• ]> 
or 
[<name>] <recordname> [<exp> DUP«[exp] [, ••• ]» 

The name is optional •. When given, name is a label 
for the first byte or word of the record storage 
area. 

The recordname is the name used as a label for .the 
RECORD directive. 

The exp (both forms) contains the values you want 
placed into the fields of the record. In the 
latter case, the parentheses and angle brackets are 
required only around the second exp (following 
DUP). If [exp] is left blank, either the default 
value applies (the value given in the original 
record defintion), or the value is indeterminant 
(waen not initialized in the original record 
definition). For fields that are already 
initialized to values you want, place consecutive 

,commas to skip over (use the default values of) 
those fields. 

For example: 

FOO <,,7> 

From the previous example, the 7 would be placed 
i,nto the LOW field of the record FOO., The fields 
HIGH and MID would be left as declared (in this 
case, uninitialized). 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-29 

Example: 

Records may be used in expressions (as an operand) 
in the form: 

recordname<[value[, ••• ]]> 

The value entry is optional. The angle brackets 
must be coded as shown, even if the optional values 
are not given. A value entry is the value to be 
placed into a field of the record. For fields that 
are already initialized to values you want, place 
consecutive commas to skip over (use the default 
values of) those fields, as shown above. 

FOO RECORD HIGH:5,MID:3,LOW:3 

BAX FOO 
JANE FOO 

<> ileave undeterminate Hhere 
10 DUP«16,8» iHIGH=16,MID=8, 
iLOW=? 

MOV DX,OFFSET JANE[2] 
iget beginning record address 

AND DX,MASK MID 
MOV CL,MID 
SHR DX,CL 
MOV CL,WIDTH MID 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-30 

SEGMENT 

<segname> SEGMENT [<align>] [<combine>] [<' class' >] 

<segname> ENDS 

At runtime, all instructions that generate code ahd 
data are in (separate) segments. Your program may 
be a segment, part of a segment, several segments, 
parts of several segments, or a combination of 
these. If a program has no SEGMENT statement, an 
MS-LINK error (invalid object) will result at link 
time. 

The <segment name> must be an unique, le.gal name. 
The segment name must not be a reserved word. 

<align> may be PARA (paragraph 
WORD, or PAGE. 

default), BYTE, 

<combine> may be PUBLIC, COMMON, AT <exp>, STACK, 
MEMORY, or no entry (which defaults to not 
combinable, called Private in the MS-LINK manual) • 

<class> name is used to group segments at link 
time. 

All three operands are passed to MS-LINK. 

The alignment tells the linker on what 
boundary you want the segment to begin. 
address of the segment will be, for each 
type: 

kind of 
The first 
alignment 

PAGE - address is xxxOOH (low byte is 0) 
PARA - address is xxxxOH (low nibble is 0) 

bit map - Ixlxlx\xlololo\ol 
WORD - address is xxxxeH (e=even number;low bit 

is 0) . 
bi t map - ..... , x--"r-x""',-x"",-x-'-,-x""",-x"T"", x~1 0~1 

BYTE - address is xxxxxH (place anywhere) 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-31 

None (not 

~ 
~ 

The combine type tells MS-LINK how to arrange the 
segments of a particular class name. The segments 
are mapped as follows for each combine type: 

combinable 

ffi: 
or Private) 
Private segments are loaded separately 
and remain separate. They may be 
physically contiguous but not logically, 
even if the segments have the same name. 
Each private segment has its own base 
address. 

Public and Stack 

~ GO 
~ 

Common 

Public segments of the same name and 
class name are loaded contiguously. 
Offset is from beginning of first segment 
loaded through last segment loaded. 
There is only one base address for all 
public segments of the same name and 
class name. (Combine type stack is 
treated the same as public. ~~~aver, the 
Stack Pointer is set to the ~ address 
of the first stack segment. MS-LINK 
requires at least one stack segment.) 

Common segments of the same name and 
class name are loaded overlapping one 
another. There is only one base address 
for all common segments of the same name. 
The length of the common area is the 
length of the longest segment. 

7 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-32 

Memory 

Ostensibly, the memory combine type causes the 
segment{s) to be placed as the highest segments in 
memory. The first memory combinable segment 
encounter is placed as the highest segment in 
memory. Subsequent segments are. treated the same 
as Common segments. 

NOTE 

This feature is not supported by MS-LINKo 
MS-LINK treats Memory segments the same as 
Public segments. 

AT <exp> 

The segment is placed at the PARAGRAPH address 
specified in <exp>. The expression may not be a 
forward reference. Also, the AT type may not be 
used to force loading at fixed addresses. Rather, 
the AT combine type permits labels and variables to 
be defined at fixed offsets within fixed areas of 
storage, such as ROM or the vector space in low 
memory. 

NOTE 

This restriction is imposed by MS-LINK and 
MS-DOS. 

Class names must be enclo~ed in quotation marks. 
Class names may be any legal name. Refer to 
Microsoft's MS-LINK Linker Utility manual for more 
discussion. 

Segment definitions may be nested. When segments 
are nested, the assembler acts as if they are not 
and handles them sequentially by appending the 
second part of the split segment to the first. At 
ENDS for the split segment, the assembler takes up 
the nested segment as the next segment, completes 
it, and goes on to subsequent se~ments. 
Overlapping segments are not permitted. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-33 

Example: 

For example: 

A SEGMENT A SEGMENT 

B SEGMENT A ENDS 
B SEGMENT 

• ---> 

B ENDS 
B ENDS 
A SEGMENT 

A ENDS 

A ENDS 

The following arrangement is not allowed: 

A SEGMENT 

B SEGMENT 

A ENDS iThis is illegal! 

BENDS 

In module A: 

SEGA SEGMENT PUBLIC 'CODE' 
ASSUME CS:SEGA 

SEGA ENDS 
END 

In module B: 

SEGA SEGMENT PUBLIC 'CODE' 
ASSUME CS:SEGA 

SEGA ENDS 
END 

iMS-LINK adds this segment to same 
inamed segment in module A (and 
iothers) if class name is the same. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-34 

STRUC 

<structurename> STRUC 

. 
<structurename> ENDS 

The STRUC directive is very much like RECORD, 
except STRUC has a multiple byte capability. The 
allocation and initialization of a STRUC block is 
the same as for RECORDs. 

Inside the STRUC/ENDS block, the Define directives 
(DB, DW, DD, DQ, DT) may be used to allocate space. 
The Define directives and comments set off by 
semicolons (:). are the only statement entries 
allowed inside a STRUC block. 

Any label on a Define directive inside a STRUC/ENDS 
block becomes a <fieldname> of the structure. 
(This is how structure fieldnames are defined.) 
Initial values given to fieldnames in the 
STRUC/ENDS block are default values for the various 
fields. These values of the fields are one of two 
types: overridable or not overridable. A simple 
field, a field with only one entry (but not a DUP 
expression), is overridable. A multiple field, a 
field with more than one entry is not overridable. 
For example: 

FOO 
BAZ 
ZOO 

DB 
DB 
DB 

1,2 
10 DUP(?) 
5 

:is not overridable 
:is not overridable 
:is overridable 

If the <exp> following the Define directive 
contains a string, it may be overridden by another 
string. However, if the overriding string 1S 
shorter than the initial string, the assembler will 
pad with spaces. If the overriding string is 
longer, the assembler will truncate the extra 
characters. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-35 

Example: 

usually, structure fields are used as operands in 
some expression. The format for a reference to a 
structure field is: 

<variable>.<field> 

<variable> represents an anonymous variable. 
usually set up when the structure is allocated. To 
allocate a structure, use the structure name as a 
directive with a label (the anonymous variable of a 
structure reference) and any override values in 
angle brackets: 

FOO STRUCTURE 

FOO ENDS 

GOO FOO <,7,,'JOE'> 

.<field> represents a label given to a DEFINE 
directive inside a STRUC/ENDS block (the period 
must be coded as shown). The value of <field> will 
be the offset within the addressed structure. 

To define a structure: 

S 
FIELDI 
FIELD2 
FIELD3 
FIELD4 
S 

STRUC 
DB 
DB 
DB 
DB 
ENDS 

1,2 
10 DUP(?) 
5 
'DOBOSKY' 

;not overridable 
;not overridable 
;overridable 
;overridable 

The Define directives in this exampl~ define the 
fields of the structure and the order corresponds 
to the order values are given in the initialization 
list when the structure is allocated. Every Define 
directive statement line inside a STRUC block 
defines a field, whether or not the field is named. 

To allocate the structure: 

DBAREA S <,,7,'ANDY'> ;overrides 3rd and 4th 
;fields only 

To refer to a structure: 

MOV AL,[BX].FIELD3 
MOV AL,DBAREA.FIELD3 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-36 

4.2.2 Conditional Directives 

Conditional directives allow users to design blocks of code 
which test for specific conditions then proceed accordingly. 

All conditionals follow the format: 

IFxxxx [argument] 

[ELSE 

. ] 
ENDIF 

Each IFxxxx must have a matching ENDIF to terminate the 
conditional. Otherwise, an 'Unterminated conditional' 
message is generated at the end of each pass. An ENDIF 
without a matching IF causes a Code 8, Not in conditional 
block error. 

Each conditional block may include the optional ELSE 
directive, which allows alternate code to be generated when 
the opposite condition exists. Only one ELSE is permitted 
for a given IF. An ELSE is always bound to the most recent, 
open IF. A conditional with more than one ELSE or an ELSE 
without a conditional will cause a Code 7, Already had ELSE 
clause error. 

Conditionals may be nested up to 255 levels. Any argument 
to a conditional must be known on pass I to avoid Phase 
errors and incorrect evaluation. For IF and IFE the 
expression must involve values which were previously 
defined, and the expression must be Absolute. If the name 
is defined after an IFDEF or IFNDEF, pass I considers the 
name to be undefined, but it will be defined on pass 2. 

The assembler evaluates the conditional statement to TRUE 
(which equals any non-zero value), or to FALSE (which equals 
OOOOH). If the evaluation matches the condition defined in 
the conditional statement, the assembler either assembles 
the whole conditional block or, if the conditional block 
contains the optional ELSE directive, assembles from IF to 
ELSE; the ELSE to ENDIF portion of the block is ignored. 
If the evaluation does not match, the assembler either 
ignores the conditional block completely or, if the 
conditional block contains the optional ELSE directive, 
assembles only the ELSE to ENDIF portion; the IF to ELSE 
portion is ignored. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-37 

IF <exp> 

IFE <exp> 

If <exp> evaluates to nonzero, the statements 
within the conditional block are assembled. 

If <exp> evaluates to 0, the statements in the 
conditional block are assembled. 

IFl Pass 1 Conditional 

If the assembler is in pass 1, the statements in 
the conditional block are assembled. IFl takes no 
expression. 

IF2 Pass 2 Conditional 

If the assembler is in pass 2, the statements in 
the conditional block are assembled. IF2 takes no 
expression. 

IFDEF <symbol> 

If·the <symbol> is defined or has been declared 
External, the statements in the conditional block 
are assembled. 

IFNDEF <symbol> 
~"'Y\.~ 

If the <symbol> is not defined @ not declared 
External, the statements in the conditional block 
are assembled. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-38 

IFB <arg> 

The angle brackets around <arg> are required. 

If the <arg> is blank (none given) or null (two 
angle brackets with nothing in between, <», the 
statements "in the conditional block are assembled. 

IFB (and IFNB) are normally used inside macro 
blocks. The expression following the IFB directive 
is typically a dummy symbol. When the macro is 
called, the dummy will be replaced by a parameter 
passed by the macro call. If the macro call does 
not specify a parameter to replace the dummy 
following IFB, the expression is blank, and the 
block will be assembled. (IFNB is the opposite 
case.) Refer to Section 4.2.3, Macro Directives, 
for a full explanation. 

IFNB <arg> 

The angle brackets around <arg> are required. 

If <arg> is not blank, the statements in the 
conditional block are assembled. 

IFNB (and IFB) are normally used inside macro 
blocks. The expression following the IFNB 
directive is typically a dummy symbol. When the 
macro is called, the dummy will be replaced by a 
parameter passed by the macro call. If the macro 
call specifies a parameter to replace the dummy 
following IFNB, the expression is not blank, and 
the block will be assembled. (IFB is the opposite 
case.) Refer to Section 4.2.3, Macro Directives, 
for a full explanation. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-39 

IFIDN <argl>,<arg2> 

The angle brackets around <argl> and <arg2> are 
required. 

If the string <argl> is identical to the string 
<arg2>, the statements in the conditional block are 
assembled. 

IFIDN (and IFDIF) are normally used inside macro 
blocks. The expression following the IFIDN 
directive is typically two dummy symbols. When the 
macro is called, the dummys will be replaced by 
parameters passed by the macro call. If the macro 
call specifies two identical parameters to replace 
the dummys, the block will be assembled. (IFDIF is 
the opposite case.) Refer to Section 4.2.3, Macro 
Directives, for a full explanation. 

IFDIF <argl>,<arg2> 

ELSE 

ENDIF 

The angle brackets around <argl> and <arg2> are 
required. 

If the string <argl> is different from the string 
<arg2>, the statements in the conditional block are 
assembled. . 

IFDIF (and IFIDN) are normally used inside macro 
blocks. The expression following the IFDIF 
directive is typically two dummy symbols. When the 
macro is called, the dummys will be replaced by 
parameters passed by the macro call. If the macro 
call specifies two different parameters to replace 
the dummys, the block will be assembled. (IFIDN is 
the opposite case.) 

The ELSE directive allows you to generate alternate 
code when the opposite condition exists. May be 
used with any of the conditional directives. Only 
one ELSE is allowed for each IFxxxx conditional 
directive. ELSE takes no expression. 

This directive terminates a conditional block. An 
ENDIF directive must be given for every IFxxxx 
directive used. ENDIF takes no expression. ENDIF 
closes the most recent, unterminated IF. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-40 

4.2.3 Macro Directives 

The macro directives allow you to write blocks of code which 
can be repeated without recoding. The blocks of code begin 
with either the macro definition directive or one of the 
repetition directives and end with the ENDM directive. All 
of the macro directives may be used inside a macro blocko 
In fact, nesting of macros is limited only by memoryo 

The macro directives of the MACRO-86 macro 
include: 

assembler 

macro definition: 
MACRO 

termination: 
ENDM 
EXITM 

unique symbols within macro blocks: 
LOCAL 

undefine a macro: 
PURGE 

repetitions: 
REPT (repeat) 
IRP (indefinite repeat) 
IRPC (indefinite repeat character) 

The macro directives also include some special 
operators: 

& . . , , 
! 
% 

macro 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-41 

Macro Definition 

<name> MACRO [<dummy>, ••• ] 

ENDM 

The block of statements from the MACRO statement 
line to the ENDM statement line comprises the body 
of the macro, or the macro's definition. 

<name> is like a LABEL and conforms to the rules 
for forming symbols. After the macro has been 
defined, <name> is used to invoke the macro. 

A <dummy> is formed as any other name is formed. A 
<dummy> is a place holder that is replaced by a 
parameter in a one-for-one text substitution when 
the MACRO block is used. You should include all 
dummys used inside the macro block on this line. 
The number of dummys is limited only by the length 
of a line. If you specify more than one dummy, 
they must be separated by commas. MACRO-86 
interprets a series of dummys the same as any list 
of symbol names. 

NOTE 

A dummy is always recognized exclusively as 
a dummy. Even if a register name (such as 
AX or BH) is used as a dummy, it will be 
replaced by a parameter during expansion. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-42 

One alternative is to list no dummys: 

<name> MACRO 

This type of macro block allows you to call the" 
block repeatedly, even if you do not want or need 
to pass parameters to the block. In this case, the 
block will not contain any dummys. 

A macro block is not assembled when it is 
encountered. Rather, when you call a macro, the 
assembler "expands" the macro call statement by 
bringing in and assembling the appropriate macro 
block. 

MACRO is an extremely powerful directive. with it, 
you can change the value and effect of any 
instruction mnemonic, directive, label, variable, 
or symbol. When MACRO-86 evaluates a statement, it 
first looks at the macro table it builds during 
pass 1. If it sees a name there that matches an 
entry in a statement, it acts accordingly. 
(Remember: MACRO-86, evaluates macros, then 
instruction mnemonics/directives.) 

If you want to use the TITLE, SUB TTL , or NAME 
directives for the portion of your program where a 
macro block appears, you should be careful about 
the form of the statement. If, for example, you 
enter SUB TTL MACRO DEFINITIONS, MACRO-86 will 
assemble the statement as a macro definition with 
SUBTTL as the macro name and DEFINITIONS as the 
dummy. To avoid this problem, alter the word MACRO 
in some way; e.g., - MACRO, MACROS, and so on. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-43 

Calling a Macro 

To use a macro, enter a macro call statement: 

<name> [<parameter>, ••• ] 

<name> is the <name> of the MACRO block. A 
<parameter> replaces a <dummy> on a one-for-one 
basis. The number of parameters is limited only by 
the length of a line. If you enter more than one 
parameter, they must be separated by commas, 
spaces, or tabs. If you place angle brackets 
around parameters separated by commas, the 
assembler will pass all the items inside the angle 
brackets as a single parameter. For example: 

FOO 1,2,3,4,5 

passes five parameters to the macro, but: 

FOO <1,2,3,4,5> 

passes only one. 

The number of parameters in the macro call 
statement need not be the same as the number of 
dummys in the MACRO definition. If there are more 
parameters than dummys, the extras are ignored. If 
there are fewer, the extra dummys will be made 
null. The assembled code will include the macro 
block after each macro call statement. 

EXAMPLE: 

GEN MACRO XX,YY,ZZ 
MOV AX,XX 
ADD AX,YY 
MOV ZZ,AX 
ENDM 

If you then enter a macro call statement: 

GEN DUCK,DON,FOO 

assembly generates the statements: 

MOV AX,DUCK 
ADD AX,DON 
MOV FOO,AX 

On your program listing, these statements will be 
preceded by a plus sign (+) to indicate that they 
carne from a macro block. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-44 

End Macro 

ENDM 

ENDM tells the assembler that the,MACRO or Repeat 
block is ended. 

Everv MACRO, REPT, IRP, and IRPC must be terminated 
with- the ENDM directive. Otherwise, the 
'Unterminated REPT/IRP/IRPC/MACRO' message is 
generated at the end of each pass. An unmatched 
ENDM also causes an error. 

If you wish to be able to exit 
repeat block before expansion 
EXITM. 

from a MACRO or 
is completed, use 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-45 

Exit Macro 

EXITM 

The EXITM directive is used inside a MACRO or 
Repeat block to terminate an expansion when some 
condition makes the remaining expansion unnec~ssary 
or undesirable. Usually EXITM is used in 
conjunction with a conditional directive. 

When an EXITM is assembled, the expansion is exited 
immediately. Any remaining expansion or repetition 
is not generated. If the block containing the 
EXITM is nested within another block, the outer 
level continues to be expanded. 

EXAMPLE: 

FOO 
X 

X 

MACRO 
= 
REPT 
= 
IFE 
EXITM 
ENDIF 
DB 
ENDM 
ENDM 

X 
o 
X 
X+l 
X-OFFH itest X 
iif true, exit REPT 

X 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-46 

LOCAL 

LOCAL <dummy>[,<dummy> ••• ] 

Example: 

The LOCAL directive is allowed only inside a MACRO 
definition block. A LOCAL statement must precede 
all other types of statements in the macro 
definition. 

When LOCAL is executed, the assembler creates a 
unique symbol for each <dummy> and substitutes that 
symbol for each occurrence of the <dummy> in the 
expansion. These unique symbols are usually used 
to define a label within a macro, thus eliminating 
multiple-defined labels on successive expansions of 
the macro. The symbols created by the assembler 
range from ??OOOO to ??FFFF. Users should avoid 
the form ??nnnn for their own symbols. 

0000 FUN SEGMENT 
ASSUME CS:FUN,DS:FUN 

FOO MACRO NUM,Y 
LOCAL A,B,C,D,E 

A: DB 7 
B: DB 8 
C: DB Y 
0: OW Y+l 
E: DW NUM+l 

JMP A 
ENDM 
FOO OCOOH,OBEH 

0000 07 + ??OOOO: DB 7 
0001 08 + ??0001: DB 8 
0002 BE + ??0002: DB OBEH 
0003 OOBF + ??0003: DW OBEH+l 
0005 OCOI + ??0004: DW OCOOH+l 
0007 EB F7 + JMP ??OOOO 

FOO 03COH,OFFH 
0009 07 + ??0005: DB 7 
OOOA 08 + ??0006: DB 8 
OOOB FF + ??0007: DB OFFH 
OOOC 0100 + ??0008: DW OFFH+l 
OOOE 03Cl + ??0009: DW 03COH+l 
0010 EB F7 + JMP ??0005 
0012 FUN ENDS 

END 

Notice that MACRO-86 has substituted LABEL names in 
the form ??nnnn for the instances of the dummy 
symbols. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-47 

PURGE 

PURGE <macro-name>[, ••• ] 

Example: 

PURGE deletes the definition of the macro(s) listed 
after it. 

PURGE provides two benefits: 

1. It frees text space of the macro body. 

2. It returns any instruction mnemonics or 
directives that were redefined by macros to 
their orignal function. 

3. It allows you to "edit out" macros from a macro 
library file. You may find it useful to create 
a file that contains only macro' definitions. 
This method allows you to use macros repeatedly 
with easy access to their definitions. 
Typically, you would then place an INCLUDE 
statement in your program file. Following the 
INCLUDE statement, you could place a PURGE 
statement to delete any macros you will not use 
in this program. 

It is not necessary to PURGE a macro before 
redefining it. Simply place another MACRO 
statement in your program, reusing the macro 
name. 

INCLUDE MACRO. LIB 
PURGE MAC 1 
MAC 1 itries to invoke purged macro 

ireturns a syntax error 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-48 

Repeat Directives 

The directives in this group allow the operations in a block 
of code to be repeated for the number of times you specify. 
The major differences between the Repeat directives and 
MACRO directive are: 

1. MACRO gives the block a name by which to call in 
the. code wherever and whenever needed: the macro 
block can be used in many different programs by 
simply entering a macro call statement. 

2. MACRO allows parameters to be passed to the MACRO 
block when a MACRO is called: hence, parameters 
can be changed. 

Repeat directive parameters must be assigned as a part of 
the code blcck. If the parameters are known in advance and 
will not change, and if the repetition is to be performed 
for every program execution, then Repeat directives are 
convenient. with the MACRO directive, you must call in the 
MACRO each time it is needed. 

Note that each Repeat directive must be matched with the 
ENDM directive to terminate the repeat block. 



ACTION: INSTRUCTIONS AND DIRECTIVES 

Repeat 

REPT <exp> 

ENDM 

Repeat block of statements between REPT 
<exp> times. <exp> is evaluated as 
unsigned number. If <exp> contains an 
symbol or undefined operands, an 
generated. 

EXAMPLE: 

X = 0 

Page 4-49 

and ENDM 
a l6-bit 
External 

error is 

REPT 10 igenerates DB 1 - DB 10 
X 

assembles as: 

0000 

0000' 
0001' 
0002' 
0003' 
0004' 
0005' 
0006' 
0007' 
0008' 
0009' 

X 

X 

01 + 
02 + 
03 + 
04- + 
05 + 
06 + 
07 + 
08 + 
09 + 
OA + 

= X+l 
DB X 
ENDM 

= 0 
REPT -10 igenerates DB 1 - DB 10 
= X+l 
DB X 
ENDM 
DB X 
DB X 
DB X 
DB X 
DB X 
DB X 
DB X 
DB X 
DB X 
DB X 

END 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-50 

Indefinite Repeat 

IRP <dummy>,<parameters inside angle brackets> 

ENDM 

Parameters must be enclosed in angle brackets. 
Parameters may --be any legal symbol, string, 
numeric, or character constant. The block of 
statements is repeated for each parameter. Each 
repetition substitutes the next parameter for every 
occurrence of <dummy> in the block. If a parameter 
is null (i.e., <», the block is processed once 
with a null parameter. 

EXAMPLE: 

IRP 
DB 
ENDM 

X,<1,2,3,4,5,6,7,8,9,10> 
X 

This example generates the same bytes (DB 1 DB 
10) as the REPT example. 

When IRP is used inside a MACRO definition block, 
angle brackets around parameters in the macro call 
statement are removed before the parameters are 
passed to the macro block. An example, which 
generates the same code as above, illustrates the 
removal of one level of brackets from the 
parameters: 

FOO MACRO 
IRP 
DB 
ENDM 
ENDM 

X 
Y,<X> 
Y 

When the macro call statement 

FOO <1,2,3,4,5,6,7,8,9,10> 

is assembled, the macro expansion becomes: 

IRP 
DB 
ENDM 

Y,<1,2,3,4,5,6,7,8,9,10> 
Y 

The angle brackets around the parameters are 
removed, and all items are passed as a single 
parameter. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-51 

Indefinite Repeat Character 

IRPC <dumrny>,<string> 

ENDM 

The statements in the block are repeated once for 
each character in the string. Each repetition 
substitutes the next character in the string for 
every occurrence of <dummy> in the block. 

EXAMPLE: 

IRPC 
DB 
ENDM 

X,0123456789 
X+1 

This example generates the same code (DB 1 - DB 10) 
as the two previous examples. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-52 

Special Macro Operators 

Several special operators can be used in a macro block to 
select add~tional assembly functions. 

& Ampersand concatenates text or symbols. (The & may 
not be used in a macro call statement.) A dummy 
parameter in a quoted string will not be 
substituted in expansion unless preceded 
immediately by &. To form a symbol from text and a 
dummy, put & between them. 

For example: 

ERRGEN 
ERROR&X: 

MACRO 
PUSH 
MOV 
mp 
ENDM 

X 
BX 
BX,'&X' 
ERROR 

The call ERRGEN A will then generate: 

E~O~: PUSH 
MOV 
mp 

B 
BX,'A' 
ERROR 

In MACRO-S6, unlike MACRO-SO, the ampersand will 
not appear in the expansion. One ampersand is 
removed each time a dummy& or &dummy is found. For 
complex macros, where nesting is involved, extra 
ampersands may be needed. You need to supply as 
many ampersands as there are levels of nesting. 



ACTION: INSTRUCTIONS AND DIRECTIVES 

For example: 

Correct form 

FOO 

X&&Z 

MACRO X 
IRP Z,<1,2,3> 
DB Z 
ENDM 
ENDM 

Page 4-53 

Incorrect form 

FOO 

X&Z 

MACRO X 
IRP Z,<1,2,3> 
DB Z 
ENDM 
ENDM 

When called, for example, by FOO BAZ, the expansion 
would be (correclyin the left column, incorrectly 
in the right): 

1. MACRO build, find dummies and change to dl 

IRP Z',<1,2,3> IRP Z,<1,2,3> 
dl&Z DB Z dlZ DB Z 

ENDM ENDM 

2. MACRO expansion, substitute parameter text for 

IRP Z,<1,2,3> IRP Z,<1,2,3> 
BAZ&Z DB Z BAZZ DB Z 

ENDM ENDM 

3. IRP build, find dummies and change to dl 

BAZ&dl DB dl BAZZ DB dl 

4. IRP expansion, substitute parameter text for dl 

BAZl 
BAZ2 
BAZ3 

DB 
DB 
DB 

1 
2 
3 

BAZZ 
BAZZ 
BAZZ 

DB 
DB 
DB 

1 
2 
3 

;here it's an error, 
;multi-defined symbol 

dl 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-54 

<text> Angle brackets cause MACRO-86 to treat the text 
between the angle brackets as a single literal. 
Placing either the parameters to a macro call or 
the list of parameters following the IRP directive 
inside angle brackets causes two results: 

. . , , 

1. All text within the angle brackets are seen as 
a single parameter, even if commas are used. 

2. Characters that have special functions are 
taken as literal characters. For example, the 
semicolon inside angle brackets <;> becomes a 
character, not the indicator that a comment 
follows. 

One set of angle brackets is removed each time the 
parameter is used in a macro. When using nested 
macros, you will need to supply as many sets of 
angle brackets around parameters as there are 
levels of nesting. 

In a macro or repeat block, a comment 
two semicolons is not saved as a 
expansion. 

preceded by 
part of the 

The default listing condition for macros is .XALL 
(see Section 4.2.4, Listing Directives, below). 
Under the influence of .XALL, comments in macro 
blocks are not listed because they do not generate 
code. 

If you decide to place the .LALL listing directive 
in your program, then comments inside macro and 
repeat blocks are saved and listed. This can be 
the cause of an out of memory error. To avoid this 
error, place double semicolons before comments 
inside macro and repeat blocks, unless you 
specifically want a comment to be retained. 

An exclamation point may be entered in an argument 
to indicate that the next character is to be taken 
literally. Therefore,!; is equivalent to <;>. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-55 

% The percent sign is used only in a· macro argument 
to convert the expression that follows it (usually 
a symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by 
value. (Usually, a macro call is a call by 
reference with the text of the macro argument 
substituting exactly for the dummy.) 

The expression following the % must eva1~ate to an 
absolute (non-relocatable) constant. 

Example: 

PRINTE 

SYM1 
SYM2 

MACRO 
%OUT 
ENDM 
EQU 
EQU 
PRINTE 

MSG,N 
* MSG,N * 
100 
200 
<SYMl + SYM2 = >,%(SYMl + SYM2) 

Normally, the macro call statement would cause the 
string (SYMl + SYM2) to be substituted for the 
dummy N. The result would be: 

%OUT * SYMl + SYM2 = (SYMl + SYM2) * 

When the % is placed in front of the parameter, 
the assembler generates: 

%OUT * SYM1 + SYM2 = 300 * 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-56 

4.3 LISTING DIRECTIVES 

Listing directives perform two general functions: format 
control and listing control. Format control- directives 
allow the programmer to insert page breaks and direct page 
headings. Listing control Directives turn on and off the 
listing of all or par.t of the assembled file. 

PAGE 

PAGE [<length>] [,<width>] 
PAGE [+] 

Example: 

PAGE with no arguments or with the optional [,+] 
argument causes the assembler to start a new output 
page. The assembler puts a form feed character in 
the listing file at the end of the page. 

The PAGE directive with either the length or width 
arguments does not start a new listing page. 

The value of <length>, if included, becomes the new 
page length (measured in lines per page) and must 
be in the range 10 to 255. The default page length 
is 50 lines per page. 

The value of <width>, if included, becomes the new 
page width (measured in characters) and must be in 
the range 60 to 132. The default page width is 80 
characters. 

The plus sign (+) increments the major page number 
and resets the minor page number to 1. Page 
numbers are in the form Major-minor. The PAGE 
directive without the + increments only the minor 
portion of the page number. 

PAGE + iincrement Major,set minor to 1 

. 
PAGE 58,60 ipage length=58 lines, 

:width=60 characters 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-57 

TITLE 

TITLE <text> 

Example: 

TITLE specifies a title to be listed on the first 
line of each page. The <text> may be up to 60 
characters long. If more than one TITLE is given, 
an error results. The first six characters of the 
title, if legal, are used as the module name, 
unless a NAME directive is used'. 

TITLE PROG1 -- 1st Program 

If the NAME directive is not used, the module name 
is now PROG1 -- 1st Program. This title text will 
appear at the top of every page of the listing. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-58 

SUBTITLE 

SUB TTL <text> 

Example: 

SUBTTL specifies a subtitle to be listed in each 
page heading on the line after the title. The 
<text> is truncated after 60 characters. 

Any number of SUBTTLs may be given in a program. 
Each time the assembler encounters SUBTTL, it 
replaces the <text> from the previous SUB TTL with 
the <text> from the most recently encountered 
SUBTTL. To turn off SUB TTL for part of the output, 
enter a SUBTTL with a null string for <text>. 

SUB TTL SPECIAL I/O ROUTINE 

SUBTTL 

The first SUBTTL causes the subtitle SPECIAL I/O 
ROUTINE to be printed at the top of every page. 
The second SUB TTL turns off subtitle (the subtitle 
line on the listing is left blank). 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-59 

%OUT 

%OUT <text> 

Example: 

The text is listed on the terminal during assembly. 
%OUT is useful for displaying progress through a 
long assembly or for displaying the value of 
conditional assembly switches. 

%OUT will output on both passes. If only one 
printout is desired, use the IFl or IF2 directive, 
depending on which pass you want displayed. See 
Section 4.2.2, Conditional Directives, for 
descriptions of the IFl and IF2 directives. 

%OUT *Assembly half done* 

The assembler will send this message to the 
terminal screen when encountered. 

IFl 
%OUT *Pass 1 started* 
ENDIF 

IF2 
%OUT *Pass 2 started* 
ENDIF 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-60 

.LIST 

.XLIST 

Example: 

.LIST lists all lines with their code (the default 
condition) • 

• XLIST suppresses all listing. 

If you specify a listing file following the Listing 
prompt, a listing file with all the source 
statements included will be listed. 

When .XLIST is encountered in the source file, 
source and object code will not be listed. .XLIST 
remains in effect until a .LIST is encountered • 

• XLIST overrides all other listing directives. So, 
nothing will be listed, even if another listing 
directive (other than .LIST) is encountered. 

.XLIST :listing suspended here 

.LIST :listing resumes here 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-61 

.SFCOND 

• LFCOND 

• TFCOND 

.SFCOND suppresses portions of the listing 
containing conditional expressions that evaluate as 
false • 

.LFCOND assures the listing of conditional 
expressions that evaluate false. This is the 
default condition • 

.TFCOND toggles the current setting. .TFCOND 
operates independently from .LFCOND and .SFCOND • 
• TFCOND toggles the default setting, which is set 
by the presence or absence of the IX switch when 
running the assembler. When IX is used, .TFCOND 
will cause false conditionals to list. When IX is 
not used, .TFCOND will suppress false conditionals. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-62 

.XALL 

• LALL 

• SALL 

.XALL is the default • 

• XALL lists source code and object code produced by 
a macro, but source lines which do not generate 
code are not listed • 

.LALL lists the complete macro text for all 
expansions, including lines that do not generate 
code. Comments preceded by two semicolons (11) 
will not be listed • 

.SALL suppresses listing of all text and object 
code produced by macros. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-63 

.CREF 

.XCREF 

.CREF 

.XCREF [<variable list>] 

Example: 

.CREF is the default condition. .CREF remains in 
effect until MACRO-86 encounters .XCREF • 

• XCREF without arguments turns off the .CREF 
(default) directive. .XCREF remains in effect 
until MACRO-86 encounters .CREF. Use .XCREF to 
suppress the creation of cross references in 
selected portions of the file. Use .CREF to 
restart the creation of a cross reference file 
after using the .XCREF directive. 

If you include one or more variables following 
.XCREF, these variables will not be placed in the 
listing or cross reference file. All other cross 
referencing, however, is not affected by an .XCREF 
directive with arguments. Separate the variables 
with commas. 

Neither .CREF nor .XCREF without arguments takes 
effect unless you specify a cross reference file 
when running the assembler. .XCREF <variable list> 
suppresses the variables from the symbol table 
listing regardless of the creation of a cross 
reference file. 

.XCREF CURSOR,FOO,GOO,BAZ,ZOO 
:these variables will not be 
:in the listing or cross reference file 



Chapter 5 

5.1 
5.1.1 

5.1.2 
5.2 
5.3 
5.4 
5.4.1 
5.4.2 

Contents 

Assembling a MACRO-86 Source File 

Invoking MACRO-86 5-1 
Method 1: MASM 5-2 

Summary of Command Prompts 5-3 
Summary of Command Switches 5-3 
Command Characters 5-4 

Method 2: MASM <filenames>[/switches] 5-5 
MACRO-86 Command Prompts 5-6 
MACRO-86 Command Switches 5-8 
Formats of Listings and Symbol Tables 5-10 

Program Listing 5-10 
Symbol Table Format 5-13 



CHAPTER 5 

ASSEMBLING A MACRO-86 SOURCE FILE 

Assembling with MACRO-86 requires two types of commands: a 
command to invoke MACRO-86 and answers to command prompts. 
In addition, four switches control alternate MACRO-86 
features. Usually, the user will enter all the commands to 
MACRO-86 on the terminal keyboard. As an option, answers to 
the command prompts and any switches may be contained in a 
Batch File (see the MS-DOS manual for Batch File 
instructions). Some Command Characters are provided to 
assist the user while entering assembler commands. 

5.1 INVOKING MACRO-86 

MACRO-86 may be invoked two ways. By the first method, the 
user enters the commands as answers to individual prompts. 
By the second method, the user enters all commands on the 
line used to invoke MACRO-86. 

Summary of Methods to invoke MACRO-86 

Method 1 MASM 

Method 2 MASM <source>,<object>,<listing>,<cross-ref>[/switch ••• ] 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-2 

5.1.1 Method 1: MASM 

Enter: 

MASM 

MACRO-86 will be loaded into memory. Then, MACRO-86 returns 
a series of four text prompts that appear one at a timeo 
The user answers the prompts as commands to MACRO-86 to 
perform specific tasks. 

At the end of each line, you may enter one or more switches, 
each of which must be preceded by a slash mark. If a switch 
is not included, MACRO-86 defaults to not performing the 
function described for the switches in the chart below. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-3 

The command prompts are summarized here and described in 
more detail in Section 2.2, Command Prompts. Following the 
summary of prompts is a summary of switches, which are 
described in more detail in Section 2.3, Switches. 

PROMPT RESPONSES 

Source filename [.ASM] : List .ASM file to be 
assembled. (no default: 
filename response 
required) 

Object filename [source.OBJ List filename for 
relocatable object code. 
(default: 
source-filename.OBJ) 

Source listing [NUL.LST] : List filename for listing 
(default: no listing file) 

Cross reference [NUL.CRF] : List filename for cross 
reference file (used with 
MS-CREF to create a cross 
reference listing) • 
(default: no cross 
reference file) 

SWITCH ACTION 

/0 Produce a listing on both assembler 
passes. 

/0 Show generated object code and offsets 
in octal radix on listing. 

/X Suppress the listing of false 
conditionals. Also used with the 
.TFCONO directive. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-4 

Command Characters 

MACRO-86 provides two Command Characters. 

; Use a single semicolon (;), followed immediately by 
a carriage return, at any time after responding to 
the first prompt (from Source filename on) to 
select default responses to the remaining prompts. 
This feature saves time and overrides the need to 
enter a series of carriage returns. 

NOTE 

Once the semicolon has been entered, the 
user can no longer respond to any of the 
prompts for that assembly. Therefore, do 
not use the semicolon to skip over some 
prompts. For this, use carriage return. 

Example: 

Source filename [.ASM]: FUN<CR> 
Object filename [FUN.OBJ]: ;<CR> 

The remaining prompts will not appear, and MACRO-86 
will use the default values (including no listing 
file and no cross reference file). 

To actieve exactly the same result, you could 
alternatively enter: 

Source filename [.ASM]: FUN; <CR> 

This response produces the same files as the 
previous example. 

Control-C Use Control-C at any time to abort the assembly. 
If you enter an erroneous response, such as the 
wrong filename or an incorrectly spelled filename, 
you must press Control-C to exit MACRO-86 then 
reinvoke MACRO-86 and start over. If the error has 
been typed and not entered, you may delete the 
erroneous characters, but for that line only. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-5 

5.1.2 Method 2: MASM <filenames>[/switches] 

Enter: 

MASM <source>,<object>,<listing>,<cross-ref>[/switch ••• ] 

MACRO-86 will be loaded into memory. Then MACRO-86 
immediately begins assembly. The entries following MASM are 
responses to the command prompts. The entry fields for the 
different prompts must be separated by commas. 

where: 

Example 

source is the source filename. 

object is the name of the file to receive the 
relocatable output 

listing is the name of the file to receive the 
listing 

cross-ref is the name of the file to receive the 
cross reference output 

Iswitch are optional switches, which may be placed 
following any of the response entries (just before 
any of the commas or after the the <cross-ref>, as 
shown) • 

To select the default for a field, simply enter a 
second comma without space in between (see the 
example below). 

MASM FUN"FUN/D/X,FUN 

This example causes MACRO-86 to be loaded, then causes the 
source file FUN.ASM to be assembled. MACRO-86 then outputs 
the relocatable object code to a file named FUN.OBJ (default 
caused by two commas in a row), creates a listing file named 
FUN.LST for both assembly passes but with false conditionals 
suppressed, and creates a cross reference file named 
FUN.CRF. If names were not listed for listing and cross 
reference, these files would not be created. If listing 
file swithces are given but no filename, the switches are 
ignored. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-6 

5.2 MACRO-86 COMMAND PROMPTS 

MACRO-86 is commanded by entering responses to four text 
prompts. When you have entered a response to the current 
prompt, the next appears. When the last prompt has been 
answered, MACRO-86 begins assembly automatically without 
further command. When assembly is finished, MACRO-86 exits 
to the operating system. When the operating system prompt 
is displayed, MACRO-86 has finished successfully. If the 
assembly is unsuccessful, MACRO-86 returns the appropriate 
error message. 

MACRO-86 prompts the user for the names of source, object, 
listing, and cross reference files. 

All command prompts accept a file specification as a 
response. You may enter: 

a filename only, 
a device designation only, 
a filename and an extension, 
a device designation and filename, 

or a device designation, filename, and extension. 

You may not enter only a filename extension. 

Source filename [.ASM]: 
Enter the filename of your source program. 
MACRO-86 assumes by default that the filename 
extension is .ASM, as shown in square brackets in 
the prompt text. If your source program has any 
other filename extension, you must enter it along 
with the filename. Otherwise, the extension may be 
omitted. 

Object filename [source.OBJ]: 
Enter the filename you want to receive the 
generated object code. If you simply press the 
carriage return key when this prompt appears, the 
object file will be given the same name as the 
source file, but with the filename extension .OBJ. 
If you want your object file to have a different 
name or a different filename extension, you must 
enter your choice(s) in response to this prompt. 
If you want to change only the filename but keep 
the .OBJ extension, enter the filename only. To 
change the extension only, you must enter both the 
filename and the extension. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-7 

Source listing [NUL.LST]: 
Enter the name of the file, if any, you want to 
receive the source listing. If you press the 
carriage return key, MACRO-86 does not produce this 
listing file. If you enter a filename only, the 
listing is created and placed in a file with the 
name you enter plus the filename extension .LST. 
You may also enter your own extension. 

The source listing file will contain a list of all 
the statements in your source program and will show 
the code and offsets generated for each statement. 
The listing will also show any error messages 
generated during the session. 

Cross reference [NUL.CRF]: 
Enter the name of the file, if any, you want to 
receive the cross reference file. If you press 
only the carriage return key, MACRO-86 does not 
produce this cross reference file. If you enter a 
filename only, the cross reference file is created 
and placed in a file with the name you enter plus 
the filename extension .CRF. You may also enter 
your own extension. 

The cross reference file is used as the source file 
for the MS-CREF Cross Reference Facility. MS-CREF 
converts this cross reference file into a cross 
reference listing, which you can use to aid you 
during program debugging. 

The cross reference file contains a series of 
control symbols that identify records in the file. 
MS-CREF uses these control symbols to create a 
listing that shows all occurrences of every symbol 
in your program. The occurrence that defines the 
symbol is also identified. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-8 

5.3 MACRO-86 COMMAND SWITCHES 

The three switches control alternate assembler functions. 
Switches must be entered at the end of a prompt response, 
regardless of which method is used to invoke MACRO-860 
Switches may be grouped at the end of anyone of the 
responses, or may be scattered at the end of several. If 
more than one switch is entered at the end of one response, 
each switch must be preceded by the slash mark (/). You may 
not enter only a switch as a response to a command prompt. 

Switch 

/D 

/0 

/X 

IT. 

Function 

Produce a source listing on both assembler passes. 
The listings will, when compared, show where in the 
program phase errors occur and will, possibly, give 
you a clue to why the errors occur. The /D switch 
does not take effect unless you command MACRO-86 to 
create a source listing (enter a filename in 
response to the Source listing command prompt). 

Output the listing file in octal radix. The 
generated code and the offsets shown on the listing 
will all be given in octal. The actual code in the 
object file will be the same as if the /0 switch 
were not given. The /0 switch affects only the 
listing file. 

Suppress the listing of false conditionals. If you 
program contains conditional blocks, the listing 
file will show the source statements but no code if 
the condition evaluates false. To avoid the 
clutter of conditional blocks that do not generated 
code, use the /X switch to suppress the blocks that 
evaluate false from your listing. 

The /X switch does not affect any block of code in 
your file that is controlled by either the .SFCOND 
or .LFCOND directives. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-9 

If your source program contains the .TFCOND 
directive, the IX switch has the opposite effect. 
That is, normally the .TFCOND directive causes 
listinq or suppressing of blocks of code that it 
controls. The first .TFCOND directive suppresses 
false conditionals, the second restores listing of 
false conditionals, and so on. When you u~e the IX 
switch, false conditionals are already suppressed. 
When MACRO-86 encounters the first .TFCOND 
directive, listing of false conditionals is 
restored. When the second .TFCOND is encountered 
(and the IX switch is used), false conditionals are 
again suppressed from the listing. 

Of course, the IX switch has no effect if no 
listing is created. See additional discussion 
under the .TFCOND directive in Chapter 4. 

The following chart illustrates the various effects 
of the conditional listing directives in 
combination with the IX switch. 

PSEUDO-OP 

(none) 

.SFCOND 

.LFCOND 

.TFCOND 

.TFCOND 

.SFCOND 

.TFCOND 

.TFCOND 

.TFCOND 

OFF 

ON 

OFF 

ON 

OFF 

OFF 
ON 

OFF 

IX 
OFF 

OFF 

ON 

ON 

OFF 

OFF 

ON 
OFF 

ON 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-10 

5.4 FORMATS OF LISTINGS AND SYMBOL TABLES 

The source listing produced by MACRO-86 (created when you 
specify a filename in response to the Source listing prompt) 
is divided into two parts. 

The first part of the listing shows: 

the line number for each line of the source file, 
if a cross reference file is also being created. 
the offset of each source line that generates codeG 
the code generated by each source line. 
a plus sign (+), if the code came from a macro or a 
letter C, if the code came from an INCLUDE file. 
the source statement line. 

The second part of the listing shows: 

Macros - name and length in bytes 
Structures and records - name, width and fields 
Segments and groups - name, size, align, combine, 
and class 
Symbols - name, type, value, and attributes 
the number of warning errors and severe errors 

5.4.1 Program Listing 

The program portion of the listing is essentially your 
source program fIe with the line numbers, offsets, generated 
code, and (where applicable) a plus sign to indicate that 
the source statements are part of a macro block a letter C 
to indicate that the source statements are from a file input 
by the INCLUDE directive. 

If any errors occur during assembly, the error message will 
be printed directly below the statement where the error 
occurred. 

On the next page is part of a listing file, with notes 
explaining what the various entries represent. 

The comments have been moved down one line because of format 
restrictions. If you print your listing on 132 column 
paper, the comments shown here would easily fit on the same 
line as the rest of the statement. 

Explanatory notes are spliced into the listing at points of 
special interest. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-11 

Summary of Listing Symbols 

R 

E 

= 

nn: 

= linker re~olves entry to left of R 

= External 

= segment name, group name, or segment variable 
used in MOV AX,<---->, DO <---->, JMP <---->, 
and so on. 

= statement has an EQU or = directive 

= statement contains a segment override 

nn/ = REPxx or LOCK prefix instruction. Example: 

xx 

+ 

C 

003C F3/ AS REP MOVSW imove OS:SI to ES:DI until CX=O 

L T 
= DUP expressionixx is the value in parentheses 

following DUPi for example: OUP(?) places ?? 
where xx is shown here 

= line comes from a macro expansion 

= line comes from file named in INCLUDE directive 
statement 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5--1~ 

Microsoft MACRO-86 MACRO Assembler l-Dee-8l PAGE 1-3 

ENTX PASCAL entry for initializing programs 

0000 
= 0000 

. , 
SEGMENT WORD STACK 
EQU THIS BYTE 

'STACK' 

t Indicates EQU or = 
STACK 
HEAPbeg 

directive t 

done 
0000 

= 0014 
0014 

0000 

0000 
0000 

value 
0003 

0005 

T 
offset 

OOOC 

~Base of heap before init 

14 DB 20 DUP(?) 
?? +--shows value in parentheses t 

] 

Indicates DUP expression I 

B8 ---- R 

8E D8 

8C 06 0022 R 

generated 
code 

26: 8B lE 0002 

L 

SKTOP 
STACK 

EQU 
ENDS 

THIS BYTE 

MAINSTARTUP SEGMENT 'MEMORY' 
DGROUP GROUP DATA,STACK,CONST,HEAP,MEMORY 

. , 
BEGXQQ 

I 
name 

segment override 

ASSUME CS:MAINSTARTUP,DS:DGROUP, 
ES:DGROUP,SS:DGROUP 

PUBLIC BEGXQQ ~Main entry 

PROC 
MOV 

FAR 
AX,DGROUP 
~get assumed data segment 

MOV DS,AX ~Set DS seg 

MOV CESXQQ,ES 
I, 

aet~on 

MOV 

comment 
expression 

BX,ES:2 ~Highest paragraph 

T 



Page 5-13 

Microsoft MACRO-86 MACRO Assembler l-Dec-8l PAGE 1-4 

ENTX PASCAL entry for initializing programs 

0011 2B D8 SUB BX,AX ~Get * paras for DS 
0013 81 FB 1000 CMP BX,4096 ~More than 64K? 
0017 7E 03 JLE SMLSTK ~No, use what we have 
0019 BB 1000 MOV BX,4096 ~Can only address 64k 

ODIC SMLSTK: REPT 4 
SHL BX,l 

~Convert para to offset 
ENDM 

ODIC Dl E3 + SHL BX,l 
~Convert para to offset 

ODIE D1 E3 + SHL BX,l 
~Convert para to offset 

0020 Dl E3 + SHL BX,l 
~Convert para to offset 

0022 Dl E3 + SHL BX,l 

I ~Convert para to offset 

macro these lines macro number of 
block from macro directive repetitions 

0024 8B E3 MOV SP,BX 
~Set stack to top of memory 

0069 EA 0000 ---- R JMP FAR PTR STARTmain 

006E 

007E 

0000 

I 1-signal to linker ~gment variable 

linker resolves: indicates segment name, group name, 
or segment variable used in MOV AX,<---->~ 
DO <---->~ JMP <---->,e""tc. (See other 

examples in this listing.) 

BEGXQQ ENDP 

MAINSTARTUP ENDS 

ENTXCM SEGMENT WORD 'CODE' 
ASSUME CS:ENTXCM 
PUBLIC ENDXQQ,DOS~QQ 



ASSEMBLING A MACRO-S6 SOURCE FILE 

Microsoft MACRO-S6 MACRO Assembler l-Dee-Sl 

ENTX PASCAL entry for initializing programs 

0000 
0000 9A 0000 ---- E 

0005 

0005 9A 0000 E 

OOOA 9A 0000 E 

OOOF 9A 0000 E 

0014 C7 06 0020 R 0000 

T LI:r-:~ offset . -- ----

linker 
signal: 
goes with 
number to 

00 2E 0020 R 

OOlE 

0037 

STARTrnain 

. 
I 

ENDXQQ 

External 
symbol 

left: shows 

STARTrnain 

ENTXCM 

PROC 
CALL 

LABEL 

CALL 

CALL 

CALL 

MOV 

J 

DOSOFF 

JMP 

ENDP 

ENDS 
END 

is 

Page 5~14 

PAGE 1-5 

FAR ;This code remains 
ENTGQQ 
;eall main program 

FAR 
; termination entry point 

ENDOQQ 
;user system termination 

ENDYQQ 
;elose all open files 

ENDUQQ 
:file system termination 

DOSOFF,O 

I 

in segment 

DWORD PTR DOSOFF 
; I. eturn to DOS 

BEGXQQ 



ASSEMBLING A MACRo-a6 SOURCE FILE Page 5-15 

Differences Between Pass 1 Listing and Pass 2 Listing 

If you give the ID switch when you run MACRO-a6 to assemble 
your file, the assembler produces a listing for both passe~. 
The option is especially helpful for finding the source of 
phase errors. 

The following example was taken from a source file that 
assembled without reporting any errors. When the source 
file was reassembled using the ID switch, an error was 
produced on pass 1, but not on pass 2 (which is when errors 
are usually reported). 

Example: 

During Pass 1 a jump with a forward reference produces: 

0017 7E 00 
Err 0 r 

0019 BB 1000 
OOlC 

JLE SMLSTK :No, use what we have 
9:Symbol not defined 

MOV BX,4096 :Can only address 64k 
SMLSTK: REPT 4 

During Pass 2 this same instruction is fixed up and does not 
return an error. 

0017 7E 03 
0019 BB 1000 
OOIC SMLSTK: 

JLE 
MOV 
REPT 

SMLSTK :No, use what we have 
BX,4096 :Can only address 64k 
4 

Notice that the JLE instructions code now contain 03 instead 
of 00: a jump of 3 bytes. 

The same amount of code was produced during both passes, so 
there was no phase error. The only difference is one of 
content instead of size, in this case. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-16 

5.4.2 Symbol Table Format 

The symbol table portion of a listing separates all 
"symbols" into their respective categories, showing 
appropriate descriptive data. This data gives you an idea 
how your program is using various symbolic values. Use this 
information to help you debug. 

Also, you can use a cross reference listing, produced by 
MS-CREF, to help you locate uses of the various "symbols" in 
your program. 

On the next page is a complete symbol table listing. 
Following the complete listing, sections from different 
symbol tables are shown with explanatory notes. 

For all sections of symbol tables, this rule applies: if 
there are no symbolic values in your program for a 
particular category, the heading for the category will be 
omitted from the symbol table listing. For example, if you 
use no macros in your program, you will not see a macro 
section in the symbol table. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-17 

Microsoft MACRO-86 MACRO 
Assembler date PAGE Syrnbols-l 
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMPIM.ASM) 

Macros: 

Name Length 

BIOSCALL · · · · · • 0002 
DISPLAY. · · · · · · 0005 
DOSCALL. · · · · 0002 
KEYBOARD · · · · 0003 
LOCATE · · · · · · · 0003 
SCROLL · · · · · · · 0004 

Structures and records: 

Name width * fields 
Shift width Mask Initial 

PARMLIST · · · · OOIC 0004 
BUFSIZE. · .. · · · 0000 
NAMESIZE · · · 0001 
NAME TEXT · · · · · 0002 
TERMINATOR · · · · OOIB 

Segments and groups: 

Name Size align combine class 

CSEG . · · · · · 0044 PARA PUBLIC 'CODE' 
STACK. · · · · · · · 0200 PARA STACK 'STACK' 
WORKAREA · · · · 0031 PARA PUBLIC 'DATA' 

Symbols: 

Name type Value Attr 

CLS. . · · · · · · · N PROC 0036 CSEG Length =OOOE 
MAXCHAR. Number 0019 
MESSG. · · · · · L BYTE OOIC WORKAREA 
PARMS. · · · · · L OOIC 0000 WORKAREA 
RECEIVR. · · · · · · L FAR 0000 External 
START. · · · · · F PROC 0000 CSEG Length =0036 

Warning Severe 
Errors Errors 
a a 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-18 

Macros: 

Name 

BIOSCALL • . . . . . . . DISPLAY. 
DOSCALL. • 
KEYBOARD • 
LOCATE • • • • 
SCROLL • • • • 

1 
names of macros 

Length +.---number of 32 byte blocks 

0002 
0005 
0002 
0003 
0003 
0004 

macro occupies 
in memory 

This section of the symbol table tells you the names of your 
macros and how big they are in 32-byte block units. In this 
listing, the macro DISPLAY is 5 blocks long or (5 X 32 bytes 
=) 160 bytes long. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-19 

Structures and records: 

Example for Structures 

Name 

PARMLIST • • • • • • 
BUFSIZE. • • • • • 
NAMESIZE • • • • • 
NAMETEXT • • • • • 
TERMINATOR • • • • 

field names of 
PARMLIST Structure 

Example for Records 

BAZ. • 
FLOl 
FL02 • 
FL03 •• 

Name 

BAZl • •••• • 
BZ1. • • • • 
BZ2. 

Width 
Shift 

This line applies to Structure Names 
J' (begin in column 1) 

* fields .J 
width Mask Initial 

OOlC 0004 

~This line 
for fields 
of Records 
(indented) • OOOO~ 0001 

0002 
OOlB 

Number of fields in 
Structure Offset of field 

into structure 
The number of bytes 

wide of Structure 

width # fields 
Shift width Mask Initial ~This line is 

for fields 
of records. 

0008 
0006 
0003 
0000 
OOOB 
0003 
0000 

0003~(------------number of fields in Record 
0002 OOcO 0040 
0003 0038 OOOO~initial value 
0003 0007,_0_0_0_3_ 
0002 - MASK of field 
0008 07F8 0400 (maximum value) 
0003 0007 0002 

number of shift number of 
bits in Record count bits in field 

to right 

This section lists your Structures and/or Records 
fields. The upper line of column headings 
Structure names, Record names, and to field 
Structures. The lower line of column headings 
field names of Records. 

For Structures: 

and their 
applies to 

names of 
applies to 

Width (upper line) shows the number of bytes your 
Structure occupies in memorv. 
! fields shows how many- fields comprise your 
Structure. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-20 

For Records: 
width (upper line) shows the number of bits the 
Record occupies. 
# fields shows how many fields comprise your 
Record. 

For Fields of Structures: 
Shift shows the number of bytes the fields is 
offset into the Structure. 
The other columns are not used for fields of 
Structures. 

For Fields of Records:' 
Shift is the shift count to the right. 

width (lower line) shows the number of bits this 
field occupies. 

Mask shows the maximum value of record, expressed 
rn--hexadecimal, if one field is masked and ANDed 
(field is set to alII's and all other fields are 
set to alIa's). 

Using field BZl of the Record BAZI above to 
illustrate: 

a a a a all 1 1 1 1 1 lOa 0' <---MASK = 07F8 . . . . . . . . . . . . . . . . . 
'-'-1-'-'-'-'-'-'-1-'-'-'-'-'-'-' 
15 - - -111 :~=_=_=_=_=_=_~I :-=-~ I I shift count = 0003 

WIDTH = 0008 

Initial shows the value specified as the initial 
value for the field, if any. 

When naming the field, you specified: 
fieldname:# = value 

fieldname is the name of the field 
# is the width of the field in bits 
value is the initial value you want this field 
to hold. The symbol table shows this value as 
if it is placed in the field and all other 
fields are masked (equal 0). Using the example 
and diagram from above: 

a a a a a lOa 010 a a a a a a ~---Initial = 0400 

initial = 80H 
80H = 128 decimal 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-21 

Segments and groups: 

AAAXQQ · · · · DGROUP · · · · DATA · · STACK. · CONST. · HEAP · · MEMORY · · · ENTXCM · · · · MAIN STARTUP · 

For Groups: 

Name 

· · · · · · · · · · · · · · · · · · · · · · · · · 

Size align 

0000 WORD 

combine class 
~called Private 

/ in MS-LINK manual 
NONE 'CODE' +--segment 

GROUP 4 +--------------------------group 
0024 
0014 
0000 
0000 
0000 
0037 
007E 

WORD 
WORD 
WORD 
WORD 
WORD 
WORD 
PARA 

PUBLIC 
STACK 
PUBLIC 
PUBLIC 
PUBLIC 
NONE 
NONE 

'DATA' 
'STACK' 
'CONST' 
'MEMORY' 
'MEMORY' 
'CODE' 
'MEMORY' 

l_ s~tments 
!DGROUP 

length 
of 

segment 

statement line entries 

the name of the group will appear under the Name column, 
beginning in column I with the applicable Segment names 
indented 2 spaces. The word Group will appear under the 
Size column. 

For Segments: 
the segment names may appear in column 1 (as here) if you do 
not declare them part of a group. If you declare a group, 
the segment names will appear indented under their group 
name. 

For all Segments, whether a part of a group or not: 

Size is the number of bytes the Segment occupies. 

Align is the type of boundary where the segment 
begins: 

PAGE = page - address is xxxOOH (low byte = 0); 
begins on a 256 byte boundary 

PARA = paragraph - address is xxxxOH 
(low nibble = 0); default 

WORD = word - address is xxxxeH 
(e = even number; 
low bit of low byte = 0) 

bit map - Ixlxlxlxlxlxlxlol 
BYTE = byte - address is xxxxxH (anywhere) 

Combine describes how MS-LINK Linker Utility 
will combine the various segments. (See 
MS-LINK Linker Utility Manual for a full 
descr iption. ) 

Class is the class name under 
will combine segments in memory. 

which MS-LINK 
(See MS-LINK 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-22 

Linker Utility Manual for a full description.) 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-23 

Symbols: 

Name Type Value Attr 

FOO. · · · · · · Number 0005 
FOOl · · · · · · Text 1.234 
FOO2 · · · · Number 0008 all formed by 
FOO3 · · · · · · · · Alias FOO EQU or = 
FOO4 · · · · Text 5 [BP] [DI] directive 
FOO5 · · · · Opcode 

Symbols: 

Name Type Value Attr 

BEGHQQ · · · · · · · L WORD 0012 DATA Global 
BEGOQQ · · · · · · · LFAR 0000 External 
BEGXQQ · · · · · · · F PROC 0000 MAIN STARTUP Global Length =006E 
CESXQQ · · · · · · · L WORD 0022 DATA- Global 

[length CLNEQQ · · · · · L WORD 0002 DATA Global 
CRCXQQ · · · · · · · LWORD OOIC DATA Global of PRoe 
CRDXQQ · · · · · · · L WORD OOlE DATA Global 
CSXEQQ · · · · · · · L WORD 0000 DATA Global 
CURHQQ · · · · · · · L WORD 0014 DATA Global 
DOSOFF · · · · · L WORD 0020 DATA 
DOSXQQ · · · · · · · F PROC OOIE ENTXCM Global Length =0019 
ENDHQQ · L WORD 0016 DATA Global 
ENDOQQ · · · · · L FAR 0000 External 
ENDUQQ · · · L FAR 0000 External 
ENDXQQ · · · · · · · L FAR 0005 ENTXCM Global 
ENDYQQ · · · · · · · L FAR 0000 External 
ENTGQQ · · · · · · · L FAR 0000 External 
FREXQQ · · · · · F PROC 006E MAIN STARTUP Global Length =0010 
HDRFQQ · · · · · L WORD 0006 DATA- Global 
HDRVQQ · · · · · · · L WORD 0008 DATA Global 
HEAPBEG. · · · · BYTE 0000 STACK I EQU statements 
HEAPLOW. · · · · BYTE 0000 HEAP showing segment 
INIUQQ · · · · · · · L FAR 0000 External 
PNUXQQ · · · · · · · L WORD 0004 DATA Global 
RECEQQ · L WORD 0010 DATA Global 
REFEQQ · · · · · · · L WORD oooe DATA Global 
REPEQQ · · · · · L WORD OOOE DATA Global 
RESEQQ · · · · · · · L WORD OOOA DATA Global 
SKTOP. · · · BYTE 0014 STACK 
SMLSTK · · · · · L NEAR OOIC MAIN STARTUP 
STARTMAIN. · · · F PROC 0000 EN TXCM Length =OOIE 
STKBQQ · L WORD 0018 DATA Global 
STKHQQ · · · · · L WORD OOIA DATA Global 

L:lf MACRO-86 knows this length as one of the 
type lengths (BYTE, WORD, DWORD, QWAORD, 
TBYTE) , it shows that type name here. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-24 

This section lists all other symbolic values in your program 
that do not fit under the other categories. 

shows the symbol's type: 
L = Label 
F = Far 
N = Near 
PROC = Procedure 

~~T~:r r all defined by EQU or = 
Text 
Opcode 

directive 

These entries may be combined to form the various 
types shown in the example. 

For all procedures, the length of the procedure is 
given after its attribute (segment) 

You may also see an entry under type like: 

L 0031 

This entry results from code such as the following: 

BAZ LABEL FOO 

where FOO is a STRUC that is 31 bytes long. 

BAZ will be shown in the symbol table with the L 
0031 entry. Basically, Number (and some other 
similar entries) indicates that the symbol was 
defined by an EQU or = directive. 

Value (usually) shows the numeric value the symbol 
represents. (In some cases, the Value column will show some 
text -- when the symbol was defined by EQU or = directive.) 

Attr always shows the segment of the symbol, if known. 
Otherwise, the A·ttr column is blank. Following the segment 
name, the table will show either External, Global, or a 
blank (which means· not declared with either the EXTRN or 
PUBLIC directive). The last entry applies to PROC types 
only. This is a length = entry, which is the length of the 
procedure. 



ASSEMBLING A MACRO-86 SOURCE FILE Page 5-25 

If type is Number, Opcode, Alias, or Text, the Symbols 
section of the listing will be structured differently. 
Whenever you see one of these four entries under type, the 
symbol was created by an EQU directive or an = directive. 
All information that follows one of these entries is 
considered its "value," even if the "value" is simple text. 

Each of the four types shows a value as follows: 

Number shows a constant numeric value 

Opcode shows a blank. The symbol is an alias for 
an instruction mnemonic. 

Sample directive statement: Faa EQU ADD 

Alias shows a symbol name which the 
equals 

Sample directive statement: 

Text shows the "text" the symbol 
"Text" is any other operand to an 
that does not fit one of the 
categories above. 

Sample directive statements: 
GOO EQU 'WOW' 
BAZ EQU DS:8[BX] 
ZOO EQU 1.234 

named symbol 

Faa EQU BAX 

represents. 
EQU directive 
other three 



Chapter 6 

6.1 
6.2 

Contents 

MACRO-86 Messages 

Operating Messages 6-1 
Error Messages 6-2 

Assembler Errors 6-2 
I/O Handler Errors 6-13 
Runtime Errors 6-14 
Numerical Order List of Error Messages 6-15 



CHAPTER 6 

MACRO-86 MESSAGES 

Most of the messages output by MACRO-86 are error messages. 
The nonerror messages output by MACRO-86 are the banner 
MACRO-86 displays when first invoked, the command prompt 
messages, and the end of (successful) assembly message. 
These nonerror messages are classified here as operating 
messages. The error messages are classified as assembler 
errors, I/O handler errors, and runtime errors. 

6.1 OPERATING MESSAGES 

Banner Message and Command Prompts: 

MACRO-86 vl.O Copyright (C) Microsoft, Inc. 

Source filename [.ASM]: 
Object filename [source.OBJ]: 
Source listing [NUL.LST]: 
Cross reference [NUL.CRF]: 

End of Assembly Message: 

Warning 
Errors 
n 

Fatal 
Errors 
n (n=number of errors) 

(your disk operating system's prompt) 



MACRO-86 MESSAGES Page 6-2 

6.2 ERROR MESSAGES 

If the assembler encounters errors, error messages are 
output, along with the numbers of warning and fatal errors, 
and control, is returned to your disk operating system. The 
message is output either to your terminal screen or to the 
listing file if you command one be created. 

Error messages are divided into three categories: assembler 
errors, I/O handler errors, and runtime errors. In each 
category, messages are listed in alphabetical order with a 
short explanation where necessary. At the end of this 
chapter, the error messages are listed in a single numerical 
order list but without explanations. 

Assembler Errors 

Already defined locally (Code 23) 

Tried to define a symbol as EXTERNAL that had 
already been defined locally. 

Already had ELSE clause (Code 7) 

Attempt to define an ELSE clause within an existing 
ELSE clause (you cannot nest ELSE without nesting 
IF ••• ENDIF). 

Already have base register (Code 46) 

Trying to double base register. 

Already have index register (Code 47) 

Trying to double index address 

Block nesting error (Code 0) 

Nested procedures, segments, structures, macros, 
IRC, IRP, or REPT are not properly terminated. An 
example of this error is close of an outer level of 
nesting with inner level(s) still open. 



MACRO-86 MESSAGES Page 6-3 

Byte register is illegal (Code 58) 

Use of one of the byte registers in context where 
it is illegal. For example, PUSH AL. 

Can't override ES segment (Code 67) 

Trying to override the ES segment in an instruction 
where this override is not legal. For example, 
store string. 

Can't reach ~ith segment reg (Code 68) 

There is no assume that makes 
reachable. 

Can't use EVEN on BYTE segment (Code 70) 

the variable 

Segment was declared to be byte segment and attempt 
to use EVEN was made. 

Circular chain of EQU aliases (Code 83) 

An alias EQU eventually points to itself. 

Constant was expected (Code 42) 

Expecting a constant and received something else. 

CS register illegal usage (Code 59) 

Trying to use the CS register illegally. For 
example, XCHG CS,AX. 

Directive illegal in STRUC (Code 78) 

All statements within STRUC blocks-must either be 
comments preceded by a semicolon (i), or one of the 
Define directives. 

Division by 0 or overflow (Code 29) 

An expression is given that results in a divide by 
o. 



MACRO-86 MESSAGES Page 6-4 

DUP is too large for linker (Code 74) 

Nesting of DUP's was such that too large a record 
was created for the linker. 

Extra characters on line (Code 1) 

This occurs when sufficient information to define 
the instruction directive has been received on a 
line and superfluous characters beyond are 
received. 

Field cannot be overridden (Code 80) 

In a STRUC initialization statement, you tried to 
give a value to a field that cannot be overridden. 

Forward needs override (Code 71) 

This message not currently used. 

Forward reference is illegal (Code 17) 

Attempt to forward reference something that must be 
defined in pass 1. 

Illegal register value (Code 55) 

The register value specified does not fit into the 
"reg" field (the reg field is greater than 7). 

Illegal size for item (Code 57) 

Size of referenced item is illegal. 
shift of a double word. 

Illegal use of external (Code 32) 

For example, 

Use of an external in some illegal manner. For 
example, DB M DUP(?) where M is declared external. 



MACRO-86 MESSAGES Page 6-5 

Illegal use of register (Code 49) 

Use of a register with an instruction where there 
is no 8086 or 8088 instruction possible. 

Illegal value for DUP count (Code 72) 

DUP counts must be a constant that is not 0 or 
negative. 

Improper operand type (Code 52) 

Use of an operand such that the opcode cannot be 
generat~d. 

Improper use of segment reg (Code 61) 

Specification of a segment register where this is 
illegal. For example, an immediate move to a 
segment register. 

Index displ. must be constant (Code 54) 

Label can't have seg. override (Code 65) 

Illegal use of segment override. 

Left operand must have segment (Code 38) 

Used something in right operand that required a 
segment in the left operand. (For example, ":.") 

More values than defined with (Code 76) 

Too many fields given in REC or STRUC allocation 

Must be associated with code (Code 45) 

Use of data related item where code item was 
expected. 



MACRO-86 MESSAGES Page 6-6 

Must be associated with data (Code 44) 

Use of code related item where data related item 
was exected. For example, MOV AX,<code-1abe1>. 

Must be AX or AL' (Code 60) 

Specification of some register other than AX or AL 
where only these are acceptable. For example, the 
IN instruction. 

Must be index or base register (Code 48) 

Instruction requires a base or index register and 
some other register was specified in square 
brackets, [ ]. 

Must be declared in pass 1 (Code 13) 

Assembler expecting a constant value but got 
something else. An example of this might be a 
vector size being a forward reference. 

Must be in segment block (Code 69) 

Attempt to generate code when not in a segment. 

Must be record ,field name (Code 33) 

Expecting a record field name but got something 
else. 

Must be record or field name (Code 34) 

Expecting a record name or field name and received 
something else. 

Must be register (Code 18) 

Register unexpected as operand but user furnished 
symbol -- was not a register. 

Must be segment or group (Code 20) 

Expecting segment or group and something else was 
sepcified. 



MACRO-86 MESSAGES Page 6-7 

Must be structure field name (Code 37) 

Expecting a structure field name but received 
something else. 

Must be symbol type (Code 22) 

Must be WORD, OW, QW, BYTE, or TB but received 
something else. 

Must be var, label or constant (Code 36) 

Expecting a variable, label, or constant but 
received something else. 

Must have opcode after prefix (Code 66) 

Use of one of the prefix instructions without 
specifying any opcode after it. 

Near JMP/CALL to different CS (Code 64) 

Attempt to do a NEAR jump or call to a location in 
a different CS ASSUME. 

No immediate mode (Code 56) 

Immediate mode specified or an opcode that cannot 
accept the immediate. For example, PUSH. 

No or unreachable CS (Code 62) 

. Trying to jump to a label that is unreachable. 

Normal type operand expected (Code 41) 

Received STRUCT, FIELDS, NAMES, BYTE, WORD, or OW 
when expecting a variable label. 

Not in conditional block (Code 8) 

An ENDIF or ELSE is specified without a previous 
conditional assembly directive active. 



MACRO-86 MESSAGES Page 6-8 

Not proper align/combine type (Code 25) 

SEGMENT parameters are incorrect. 

One operand must be const (C0de 39) 

This is an illegal use of the addition operator. 

Only initialize list legal (Code 77) 

Attempt to use STRUC name without angle brackets, 
< >. 

Operand combination illegal (Code 63) 

Specification of a two-operand instrucion where the 
combination specified is illegal. 

Operands must be same or 1 abs (Code 40) 

Illegal use of the subtraction operator. 

Operand must have segment (Code 43) 

Illegal use of SEG directive. 

Operand must have size (Code 35) 

Expected operand to have a size, but it did not. 

Operand not in IP segment (Code 51) 

Access of operand is impossible because it is not 
in the current IP segment. 

Operand types must match (Code 31) 

Assembler gets 
arguments in a 
example, MOV. 

different kinds or sizes 
case where they must match. 

of 
For 



MACRO-86 MESSAGES Page 6-9 

Operand was expected (Code 27) 

Assembler is expecting an operand but an operator 
was received. 

Operator was expected (Code 28) 

Assembler was expecting an operator but an operand 
was received. 

Override is of wrong type (Code 81) 

In a STRUC initialization statement, you tried to 
use the wrong size on override. For example, 
'HELLO' for OW field. 

Override with OUP is illegal (Code 79) 

In a STRUC initialization statement, you tried to 
use OUP in an override. 

Phase error between passes (Code 6) 

The program has ambiguous instruction directives 
such that the location of a label in the program 
changed in value between pass 1 and pass two of the 
assembler. An example of this is a forward 
reference coded without a segment override where 
one is required. There would be an additional byte 
(the code segment override) generated in pass 2 
causing the next label to change. You can use the 
/0 switch to produce a listing to aid in resolving 
phase errors between passes (see Section x.x, 
Switches). 

Redefinition of symbol (Code 4) 

This error occurs on pass 2 
definitions· of a symbol. 

Reference to mult defined (Code 26) 

and succeeding 

The instruction references something that has been 
multi-defined. 



MACRO-86 MESSAGES Page 6-10 

Register already defined (Code 2) 

This will only occur if the assembler has internal 
logic errors. 

Register can't be forward ref (Code 82) 

Relative jump out of range (Code 53) 

Relative jumps must be within the range -128 +127 
of the current instruction, and the specific jump 
is beyond this range. 

Segment parameters are changed (Code 24) 

List of arguments to SEGMENT were not identical to 
the first time this segment was used. 

Shift count is negative (Code 30) 

A shift expression is generated that results in a 
negative shift count. 

Should have been group name (Code 12) 

Expecting a group name but something other than 
this was given. 

Symbol already different kind (Code 15) 

Attempt to define a symbol differently from a 
previous definition. 

Symbol already external (Code 73) 

Attempt to define a symbol as local that is already 
external. 

Symbol has no segment (Code 21) 

Trying to use a variable with SEG, and the variable 
has no known segment. 



MACRO-86 MESSAGES Page 6-11 

Symbol is multi-defined (Code 5) 

This error occurs on a symbol that is later 
redefined. 

Symbol is reserved word (Code 16) 

Attempt to use 
illegally. (For 
variable.) 

Symbol not defined (Code 9) 

an assembler reserved word 
example, to declare MOV as a 

A symbol is used that has no definition. 

Symbol type usage illegal (Code 14) 

Illegal use of a PUBLIC symbol. 

Syntax error (Code 10) 

The syntax of the statement does not match any 
recognizable syntax. 

Type illegal in context (Code 11) 

The type specified is of an unacceptable size. 

Unknown symbol type (Code 3) 

Symbol statement has something in the type field 
that is unrecognizable. 

Usage of ? (indeterminate) bad (Code 75) 

Improper use of the "?". For example, ?+5. 

Value is out of range (Code 50) 

Value is too large for expected use. For example, 
MOV AL,5000. 



MACRo-a6 MESSAGES 

Wrong type of register (Code 19) 

Directive 
register, 
INC CS. 

or instruction expected 
but another was specified. 

Page 6-12 

one type of 
For example, 



MACRO-86 MESSAGES Page 6-13 

I/O Handler Errors 

These error messages are generated by the I/O handlers. 
These messages appear in a different format from the 
Assembler Errors: 

MASM Error -- error-message-text 
in: filename 

The filename is the name of the file being handled when the 
error occurred. 

The error-message-text is one of the following messages: 

Data format (Code 114) 

Device full (Code 108) 

Device name (Code 102) 

Device offline (Code 105) 

File in use (Code 112) 

File name (Code 107) 

File not found (Code 110) 

File not open (Code 113) 

File system (Code 104) 

Hard data (Code 101) 

Line too long (Code 115) 

Lost file (Code 106) 

Operation (Code 103) 

Protected file (Code 111) 

Unknown device (Code 109) 



MACRO-86 MESSAGES Page 6-14 

Runtime Errors 

These messages may be displayed as your assembled program is 
being executed. 

Internal Error 

Usually caused by an arithmetic check. 
occurs, notify Microsoft, Inc. 

Out of Memory 

If it 

This message has no corresponding number. Either 
the source was too big or too many labels are in 
the symbol table. 



MACRO-86 MESSAGES 

Numerical Order List of Error Messages 

Code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Message 

Block nesting error 
Extra characters on line 
Register already defined 
Unknown symbol type 
Redefinition of symbol 
Symbol is multi-defined 
Phase error between passes 
Already had ELSE clause 
Not in conditional block 
Symbol not defined 
Syntax error 
Type illegal in context 
Should have been group name 
Must be declared in pass 1 
Symbol type usage illegal 
Symbol already different kind 
Symbol is reserved word 
Forward reference is illegal 
Must be register 
Wrong type of register 
Must be segment or group 
Symbol has no segment 
Must be symbol type 
Already defined locally 
Segment parameters are changed 
Not proper align/combine type 
Reference to mu1t defined 
Operand was expected 
Operator was expected 
Division by 0 or overflow 
Shift count is negative 
Operand types must match 
Illegal use of external 
Must be record field name 
Must be record or field name 
Operand must have size 
Must be var, label or constant 
Must be structure field name 
Left operand must have segment 
One operand must be const 
Operands must be same or 1 abs 
Normal type operand expected 
Constant was expected 
Operand must have segment 
Must be associated with data 
Must be associated with_ code 
Already have base register 
Already have index register 
Must be index or base register 
Illegal use of register 
Value is out of range 

Page 6-15 



MACRO-86 MESSAGES Page 6-16 

51 Operand not in IP segment 
52 Improper operand type 
53 Relative jump out of range 
54 Index displ. must be constant 
55 Illegal register value 
56 No immediate mode 
57 Illegal size for item 
58 Byte register is illegal 
59 CS register illegal usage 
60 Must be AX or AL 
61 Improper use of segment reg 
62 No or unreachable CS 
63 Operand combination illegal 
64 Near JMP/CALL to different CS 
65 Label can't have seg. override 
66 Must have opcode after prefix 
67 Can't override ES segment 
68 Can't reach with segment reg 
69 Must be in segment block 
70 Can't use EVEN on BYTE segment 
71 Forward needs override 
72 Illegal value for DUP count 
73 Symbol already external 
74 DUP is too large for linker 
75 Usage of ? inate) bad (Code 75) 
76 More values than defined with 
77 Only initialize list legal 
78 Directive illegal in STRUC 
79 Override with DUP is illegal 
80 Field cannot be overridden 
81 Override is of wrong type 
82 Register can't be forward ref 
83 Circular chain of EQU aliases 

101 Hard data 
102 Device name 
103 Operation 
104 File system 
105 Device offline 
106 Lost file 
107 File name 
108 Device full 
109 Unknown device 
110 File not found 
111 Protected file 
112 File in use 
113 File not open 
114 Data format 
115 Line too long 



/D (assembler switch) 
/D (MACRO-86) •••• 
/0 (assembler switch) 
/X (assembler switch) 

INDEX 

• • 5-3 
• • • • 6-9 
• • • . 5-3 
• • • • 5-3 

<record-fie1dname> (shift count) 3-28 

= (equal sign directive) 

Action • • • • • • • • 
Arithmetic operators • 
Assembler errors • • • 

. . • 4-12 

• • 1-8, 4-1 
• • 3-31 

6-2 

Calling a Macro ••••••• 4-43 
Colon (: - segment override operator) 3-17 
Command Characters • • • • • • 5-4 

Control-C • • • • • • • • • 5-4 
1 ••••••••••••• 5-4 

Command Prompts 
Cross reference ••••• 0 5-3 
Object filename • • •• 5-3 
Source filename •••• 5-3 
Source listing • • • •• 5-3 
Summary of • • • • • 5-3 

COMMENT • • • • • •• •• 4-6 
Comments • • • • • • • • • • • 1-7 
Control-C (command character) 5-4 

Data items • • • • • • 3-9 
DB - Define Byte • • • 4-7 ~o 4-8 
DD - Define Doub1eword •••• 4-7, 4-9 
Differences between pass 1 listing and pass 2 listing 5-15 
Direct memory operands • • • • 3-12 
Directives •••••••••• 4-1, 4-3 

= (equal sign) • • • • • • • 4-12 
COMMENT • • • • • • 4-6 
Condi tiona1 • • • • • • 4-36 
DB - Define Byte • • • • • • 4-7 to 4-8 
DO - Define Doubleword • 4-7, 4-9 
DQ - Define Quadword •••• 4-7, 4-9 
DT - Define Tenbytes 4-7, 4-9 
OW - Define Word 4-7 to 4-8 
ELSE • • • • • • • • • • • • 4-39 
END • • • • • • 4-10 
ENDC • •• •• ••• 4-39 
ENDIF • • • • • • • • • • • 4-39 
ENDM • • • • • • • • • • • • 4-44 
ENDP • • • • • •• ••• 4-23 
EQU • • • • 4-11 
EVEN • • • •• •• • • • 4-13 



EXITM 4-45 
EXTRN 4-14 
GROUP 4-16 
IF 4-37 
IF1 4-37 
IF2 4-37 
IFB 4-38 
IFDEF 4-37 
IFDIF 4-39 
IFE 4-37 
IFIDN 4-39 
IFNB 4-38 
IFNDEF 4-37 
INCLUDE 4-18 
IRP 4-50 
IRPC • 4-51 
LABEL 4-19 
Listing 4-56 
LOCAL 4-46 
MACRO 4-41 
Memory 4-5 
NAME 4-21 
PAGE 4-56 
PROC 4-23 
PUBLIC 4-25 
PURGE 4-47 
RECORD 4-27 
REPT 4-49 
SEGMENT 4-30 
STRUCTURE 4-34 
SUB TTL 4-58 
TITLE 4-21, 4-57 
• RADIX 4-26 
%OUT 4-59 
.LIST 4-60 
.XLIST 4-60 
.SFCOND 4-61 
.LFCOND 4-61 
.TFCOND 4-61 
.XALL 4-62 
.LALL 4-62 
.SALL 4-62 
.CREF 4-63 
• XC REF 4-63 

DQ Define Quadword 4-7, 4-9 
DT Define Tenbytes 4-7, 4-9 
DW Define Word 4-7 to 4-8 

ELSE 4-39 
END 4-10 
ENDC 4-39 
ENDIF 4-39 
ENDM 4-44 
ENDP 4-23 
ENDS 4-34 
EQU 4-11 
Equal sign directive (=) 4-12 
Error messages 



numer ical list • • • •• 6-15 
EVEN • • • • • • • • • • • 4-13 
EXITM ••••••••••• 4-45 
Expression evaluation • • 3-34 
Expressions •••••• 1-9, 3-1 
EXTRN • • • • • • • • • • 4-14 

Formats 
program listing •••••• 5-10 
symbol table • • • • • • • • 5-16 

Formats of listings and symbol tables 5-10 

General Facts about Source Files 1-1 
GROUP ••••• • • 4-16 

HIGH • · . . . . · . 
I/O Handler errors · · · · IF . · · · · · · · · IF1 · · · · · · · · IF2 · · · · · · · IFB · · · · · · · · · IFDEF · · · · · · · IFDIF · · · · · · IFE · · · · · · · IFIDN · · · · · IFNB · · · · · · · IFNDEF · · · · · · · Immediate operands · · · · INCLUDE · · · · Indexed memory operands 
Instructions · · · · · IRP · · · · · · · · · · IRPC · · · · · 
LABEL • • • 
Labels • • • • • 
Legal characters • 
LENGTH • • • • • • • • 
LOCAL • • • · . . 
Logical operators 
LOW' • • • • • • • • • • • 

3-20 

· · 6-13 

· · 4-37 

· · 4-37 

· · 4-37 

· · 4-38 

· · 4-37 

· 4-39 

· · 4-37 

· · 4-39 

· 4-38 

· · 4-37 

· · 3-9 

· · 4-18 

· · 3-13 

· · 4-1 

· · 4-50 

· · 4-51 

• • 4-19 
• 2-2 

• • 1-2 
• • 3-25 

4-46 
3-33 

• • 3-20 

MACRO • • • 4-41 
MASK • • • • • • • • • • • • • 3-29 
Memory directives ••••• 4-5 
Memory operands ••• • 3-12 
Memory organization • • • • • 3-2 

• • 4-21 

to 4-2 

NAME. 
Names · . . . 
Numeric notation • 

• • • 1-6, 2-1 
• •••• 1-3, 3-9 

OFFSET. ••• •••• 3-22 
Offset attribute. ••••• 2-3 
Operand summary • •• ••• 1-10 
Operands. ••••••••• 3-8 
Operator summary • • • • • • • 1-10 



Operators • • • • • 
ORG • • • • • • • • 
Override operators • 
Overviews 

· . . . · . . . • 3-15 
• 4-22 
• 3-16 

MACRO-86 • • • • • 10 

PAGE · · · · · · Pass 1 listing versus pass 2 
Pointer (PTR) · · · · · Precedence of operators 
PROC · · ~ · · · · · · · · · Program listing format · PTR · · · · · · · · · · · · PUBLIC · · · · · PURGE · · · · · · · · · 
RECORD • • • • • • • • • 
Register operands • • • • • 
Relational operators • • 
REPT • • • • • • • • • • • • 
Runtime errors • 

· 4-56 
listing 

· 3-16 

· 3-34 

· 4-23 

· 5-10 

· 3-16 

· 4-25 

· 4-47 

• 4-27 
• 3-10 
• 3-32 
• 4-49 
• 6-14 

SEG • • • • • • • • • • • • • 3-21 
SEGMENT • • • • • • • • • 4-30 
Segment attribute • •• • 2-3 
Segment override operator (:) 3-17 
Shift count • • • • • • • • • 3-28 
SHORT • • • • • • • • 3-18 
SIZE • • • • • • • • • • • 3-26 
Source file contents • • • • • 1-4 
Source file naming • • • • • • 1-1 
Special Macro Operators • • • 4-52 

% •••••• • 4-55 
• • • • • • • 4-52 

~~ • • • • •• • •• 4-52 
& ••••••••••••• 4-52 

Statement Format 
Action • • • • • • • • • 1-8 
Comments • •• •• • • • 1-7 
Directives • • • • • • • • • 1-5 
Expressions • • • • • • • • 1-9 
Instructions • • • • • • 1-5 
Name • • • • • • • • • • • • 1-6 

Statement line format • • • • 1-5 
STRUCTURE • • • • • • • • 4-34 
Structure operands • • • • • • 3-14 
SUBTTL •• •• • • 4-5 8 
Summary 

Operands • • • • • • • • • • 1-10 
Operators • • • • • • • • • 1-10 

Summary of listing symbols • • 5-11 
Summary of methods to invoke MACRO-86 
Switches 

MACRO-86 
Summary of • 

MACRO-86 
• • 5-3 

5-15 

5-1 

/D •••••••••••• 5-3, 6-9 
/0 • • • • . • . . 5-3 



IX 
Switches (MACRO-86) 
Symbol table format 
Symbols 

THIS 
TITLE 
TYPE 
Type attribute 

Value returning operators 
Variables 

WIDTH 

• TYPE 
• RADIX 
%OUT • 
.LIST 
.XLIST • 
.SFCOND 
.LFCOND 
.TFCOND 
.XALL 
.LALL 
.SALL 
.CREF 
.XCREF 

• 

5-3 
5-8 
5-16 
2-7 

3-19 
4-21, 4-57 
3-23 
2-4, 2-6 

3-21 
2-5 

3-30 

• '3-24 
4-26 
4-59 
4-60 
4-60 
4-61 
4-61 
4-61 
4-62 
4-62 
4-62 
4-63 
4-63 

; (command 
% 

character) 5-4 

. . , , 
& 
: (colon 

4-55 
4-52 
4-52 
4-52 

segnlent override operator) 3-17 



Microsoft, Inc. 
Microsoft Building 
10700 Northup Way 
Bellevue, WA 98004 

MS-LINK 
linker 
utility 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of Microsoft, Inc. The software described in this document is furnished 
under a license agreement or non-disclosure agreement. The software may be used or copied only in 
accordance with the terms of the agreement. It is against the law to copy The MS-LINK Linker 
Utility on cassette tape, disk, or any other medium for any purpose other than personal convenience. 

© Microsoft, Inc., 1981 

LIMITED WARRANTY 

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with 
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product, 
including but not limited to any interruption of service, loss of business or anticipatory profits or 
consequential damages resulting from the use or operation of this product. This product will be exchanged 
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except 
for such replacement the sale or subsequent use of this program is without warranty or liability. 

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY 
MICROSOFT. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FIT
NESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. 

To report software bugs or errors in the documentation, please complete and return the Problem 
Report at the back of this manual. 

MS-LINK, MACRO-86, MS-LIB, MS-CREF, and MS-DOS (and its constituent program names 
EDLIN and DEBUG) are trademarks of Microsoft, Inc. 

8407B-IOO-Ol 



System Requirements 

The MS-LINK Linker Utility requires: 

49K bytes of memory minimum: 
40K bytes for code and data 
10K bytes for run space 

1 disk drive 
1 disk drive if and only if output is sent to the 
same physical d~skette from which the input was 
taken. MS-LINK does not allow time to swap 
diskettes during operation on a one-drive 
configuration. Therefore, two disk drives is a 
more practical configuration. 



Contents 

Introduction 

Features and Benefits of MS-LINK 
Overview of MS-LINK Operation 4 

Chapter 1 

1.1 
1.1.1 

1.1.2 
1.1.3 
1.2 
1.3 

Chapter 2 

Index 

Definitions 5 
Segment 5 
Class 5 
Group 5 

How MS-LINK Combines and Arranges Segments 6 
Files That MS-LINK Uses 9 

Input Files 9 
Output Files 9 
VM.TMP File 10 

RUNNING MS-LINK 

Invoking MS-LINK 1-1 
Method 1: LINK 1-2 
Summary of Prompts 1-2 
Summary of Switches 1-3 
Special Command Characters 

+ - continuation 1-3 
1-3 

1 - default remaining prompts 
Contro1-C - program termination 

1-4 

Method 2: LINK <fi1enames></switches> 
Method 3: LINK @<fi1espec> 1-6 

Command Prompts 1-8 
Switches 1-11 

ERROR MESSAGES6 

1-4 
1-5 



INTRODUCTION 

Features and Benefits of MS-LINK 

MS-LINK is a relocatable linker designed to link together 
separately produced modules of 8086 object code. The object 
modules must be 8086 files only. 

MS-LINK is user-friendly. For all the necessary and 
optional commands, MS-LINK prompts the user. The user's 
answers to the prompts are the commands for MS-LINK. 

The output file from MS-LINK (Run file) is not bound to 
specific memory addresses and, therefore, can be loaded and 
executed at any convenient address by the user's operating 
system. 

MS-LINK uses a dictionary-indexed library search method, 
which substantially reduces link time for sessions involving 
library searches. 

MS-LINK is capable of linking files totaling 384K bytes. 



Page 4 

Overview of MS-LINK Operation 

MS-LINK combines several object modules into one relocatable 
load module, or Run file. 

As it combines modules, MS-LINK resolves external references 
between object modules and can' search multiple library files 
for definitions for any external references left unresolved. 

MS-LINK also produces a list file that shows external 
references resolved and any error messages. 

MS-LINK uses available memory as much as possible. When 
available memory is exhausted, MS-LINK then creates a disk 
file and becomes a virtual linker. 

Compiler Assembler 

MS-LINK 

+--------+~ Lp--------~~------------+ 

up to 8 libraries 
may be searched 

used only if run 
file is larger 

than memory 

PUBLIC symbols 
cross referenced 



Page 5 

Definitions 

Three terms will appear in some of the error messages listed 
in Chapter 2. These terms describe the underlying 
functioning of MS-LINK. An understanding of the concepts 
that define these terms provides a basic understanding of 
the way MS-LINK works. 

1. Segment 
A Segment is a contiguous area of memory up to 
64K bytes in length. A Segment may be located 
anywhere in 8086 memory on a "paragraph" (16 
byte) boundary. The contents of a Segment are 
addressed by a Segment-register/offset pair. 

2. Group 
A Group is a collection of Segments which fit 
within 64K bytes of memory. The Segments are 
named to the Group by the assembler, by the 
compiler, or by you. The Group name is given 
by you in the assembly language program. For 
the high-level languages (BASIC, FORTRAN, 
COBOL, Pascal), the naming is carried out by 
the compiler. 

The Group is used for addressing Segments in 
memory. Each Group is addressed by a single 
Segment register. The Segments within the 
Group are addressed by the Segment register 
plus an offset. MS-LINK checks to see that the 
object modules of a Group meet the 64K byte 
constraint. 

3. Class 
A Class is a collection of Segments. The 
naming of Segments to a Class controls the 
order and relative placement of Segments in 
memory. The Class name is given by you in, the 
assembly language program. For the high-level 
languages (BASIC, FORTRAN, COBOL, Pascal), the 
naming is carried out by the compiler. The 
Segments are named to a Class at compile time 
or assembly time. The Segments of a Class are 
loaded into memory contiguously. The Segments 
are ordered within a Class in the order MS-LINK 
encounters the Segments in the object files. 
One Class precedes another in memory only if a 
Segment for the first Class precedes all 
Segments for the second Class in the input to 
MS-LINK. Classes may be loaded across 64K byte 
boundaries. The Classes will be divided into 
Groups for addressing. 



Page 6 

How MS-LINK Combines and Arranges Segments 

MS-LINK works with four combine types, which are declared in 
the source module for the assembler or compiler: private, 
public, stack, and cornmon. (The memory combine type 
available in Microsoft's MACRO-86 is treated the same as 
public. MS-LINK does not automatically place memory combine 
type as the highest segments.) 

MS-LINK combines segments for these combine types as 
follows: 

Private 

Public 

Cornmon 

~ a 

Private segments are loaded separately 
and remain separate. They may be 
physically contiguous but not logically, 
even if the segments have the same name. 
Each private segment has its own base 
address. 

Public segments of the same name and 
class name are loaded contiguously. 
Offset is from beginning of first segment 
loaded through last segment loaded. 
There is only one base address for all 
public segments of the same name and 
class name. (Combine types stack and 
memory are treated the same as public. 
However, the Stack Pointer is set to the 
first address of the first stack segment.) 

Common segments of the same name and 
class name are loaded overlapping one 
another. There is only one base address 
for all common segments of the same name. 
The length of the common area is the 
length of the longest segment. 



Page 7 

Placing segments in a Group in the assembler provides offset 
addressing of items from a single base address for all 
segments in that Group. 

DS:DGROUP---+XXXXOH~ ______ ~O -- relative offset 
A 

Any number of l- ----
other segments B 
may intervene --_ .... --.. __ _ Faa 
between segments C 
of a group. Thus, 
the offset of Faa 
may. be greater than 
the size of segments 
in group combined, but 
no larger than 64K. 

An operand of 
DGROUP:FOO 
returns the offset of 
Faa from the beginning 
of the first segment of 

DGROUP (segment A here) 

Segments are grouped by declared class names. MS-LINK loads 
all the segments belonging to the first class name 
encountered, then loads all the segments of the next class 
name encountered, and so on until all classes have been 
loaded. 

If your program contains: 

A SEGMENT 'Faa' 
B SEGMENT 'BAZ' 
C SEGMENT 'BAZ' 
D SEGMENT' ZOO' 
E SEGMENT 'Faa' 

They will be loaded as: 

'Faa' 
A 
E 

'BAZ' 
B 
C 

'zoo' 
D 



Page 8 

If you are writing assembly language programs, you can 
exercise control over the ordering of classes in memory by 
writing a dummy module and listing it first after the 
MS-LINK Object Modules prompt. The dummy module declares 
segments into classes in the order you want the classes 
loaded. 

For example: 

A 
A 
B 
B 
C 
C 
D 
D 
E 
E 

WARNING 

Do not use this method with 
BASIC, COBOL, FORTRAN, or 
Pascal programs. Allow the 
compiler and the linker to 
perform their tasks in the 
normal way. 

SEGMENT 'CODE' 
ENDS 
SEGMENT 'CaNST' 
ENDS 
SEGMENT 'DATA' 
ENDS 
SEGMENT STACK 'STACK' 
ENDS 
SEGMENT 'MEMORY' 
ENDS 

You should be careful to declare all classes to be used in 
your program in this module. If you do not, you lose 
absolute control over the ordering of classes. 

Also, if you want Memory combine type to be loaded as the 
last segments of your program, you can use this method. 
Simply add MEMORY between SEGMENT and 'MEMORY' in the E 
segment line above. Note, however, that these segments are 
loaded last only because you imposed this control on them, 
not because of any inherent capability in the linker or 
assembler operations. 



Page 9 

Files That MS-LINK Uses 

MS-LINK works with one or more input files, produces two 
output files, may create 'a virtual memory file, and may be 
directed to search one to eight library files. For each 
type of file, the user may give a three part file 
specification. The format for MS-LINK file specifications 
is: 

where: 

drv:filename.ext 

drv: is the drive designation. Permissible drive 
designations for MS-LINK are A: through 0:. The 
colon is always required as part of the drive 
designation. 

filename is any legal filename of one to eight 
characters • 

• ext is an one to three character extension to the 
filename. The period is always required as part of 
the extension. 

Input Files 

If no extensions are given in the input (Object) file 
specifications, MS··LINK recognizes by default: 

File 

Object 
Library 

Output Files 

Default Extension 

.OBJ 

.LIB 

MS-LINK appends to the output (Run and List) files the 
following default extensions: 

File 

Run 
List 

Default Extension 

.EXE 

.MAP 
(may not be overridden) 
(may be overridden) 



Page 10 

VM.TMP File 

MS-LINK uses available memory for 
files to be linked create an 
available memory, MS-LINK creates 
it VM.TMP. If MS-LINK needs to 
the message: 

the link session. If the 
output file that exceeds 

a temporary file and names 
create VM.TMP, it displays 

VM.TMP has been created. 
Do not change diskette in drive, <drv:> 

Once this message is displayed, the user must not remove the 
diskette from the default drive until the link session ends. 
If the diskette is removed, the operation of MS-LINK is 
unpredictable, and MS-LINK might return the error message: 

Unexpected end of file on VM.TMP 

MS-LINK uses VM.TMP as a virtual memory. The contents of 
VM.TMP are subsequently written to the file named following 
the Run File: prompt. VM.TMP is a working file only and is 
deleted at the end of the linking session. 

WARNING 

Do not use VM.TMP as a file 
name for any file. If the 
user has a file named VM.TMP 
on the default drive and 
MS-LINK requires the VM.TMP 
file, MS-LINK will delete the 
VM.TMP on disk and create a 
new VM.TMP. Thus, the 
contents of the previous 
VM.TMP file will be lost. 



CHAPTER 1 

RUNNING MS-LI~K 

Running MS-LINK requires two types of commands: a command 
to invoke MS-LINK and answers to command prompts. In 
addition, six switches control alternate MS-LINK features. 
Usually, the user will enter all the commands to MS-LINK on 
the terminal keyboard. ' As an option, answers to the command 
prompts and any switches may be contained in a Response 
File. Some special command characters are provided to 
assist the user while entering linker commands. 

1.1 INVOKING MS-LINK 

MS-LINK may be invoked three ways. By the first method, the 
user enters the commands as answers to individual prompts. 
By the second method, the user enters all commands on the 
line used to invoke MS-LINK. By the third method, the user 
creates a Response File that contains all the necessary 
commands. 

Summary of Methods to invoke MS-LINK 

Method 1 LINK 

Method 2 LINK <filenames>[/switches] 

Method 3 LINK @<filespec> 



RUNNING MS-LINK Page 1-2 

1.1.1 Method 1: LINK 

Enter: 

LINK 

MS-LINK will be loaded into memory. Then, MS-LINK returns a 
series of four text prompts that appear one at a time. The 
user answers the prompts as commands to MS-LINK to perform 
specific tasks. 

At the end of each line, you may enter one or more switches, 
each of which must be preceded by a slash mark. If a switch 
is not included, MS-LINK defaults to not performing the 
function described for the switches in the chart below. 

The command prompts are summarized here and described in 
more detail in Section 2.2, COMMAND PROMPTS. Following the 
summary of prompts is a summary of switches, which are 
described in more detail in Section 2.3, Switches. 

PROMPT 

Object Modules [.OBJ]: 

Run File [Object-file.EXE]: 

List File [Run-file.MAP]: 

Libraries [ ]: 

RESPONSES 

List .OBJ files to be 
linked, separated by a 
blank spaces or plus signs 
(+). If plus sign is last 
character entered, prompt 
will reappear. (no 
default: response 
required) 

List filename for 
executable object code. 
(default: 
first-Object-filename.EXE) 

List filename for listing 
(default: RUN filename) 

List filenames to be 
searched, separated by 
blank spaces or plus signs 
(+). If plus sign is last 
character entered, prompt 
will reappear. 
(default: no search) 



RUNNING MS-LINK Page 1-3 

SWITCH ACTION 

/DSALLOCATE Load data at high end of Data Segment. 
Required for Pascal and FORTRAN 
programs. 

/HIGH Place Run file as high as possible in 
memory. Do not use with Pascal or 
FORTRAN programs. 

/LINENUMBERS Include line numbers in List file. 

/MAP List all global symbols with 
definitions. 

/PAUSE Halt linker session and wait for 
carriage return key. 

/STACK:<number> Set fixed stack size in Run file. 

Command Characters 

MS-LINK provides three command characters. 

+ Use the plus sign (+) to separate entries and to 
extend the current physical line following the 
Object Modules and Libraries prompts. (A blank 
space may be used to separate object modules.) To 
enter a large number of responses (each which may 
also be very long), enter an plus sign/carriage 
return at the end of the physical line (to extend 
the logical line). If the plus sign/carriage 
return is the last entry following these two 
prompts, MS-LINK will prompt the user for more 
modules names. When the Object Modules or 
Libraries prompt appears again, continue to enter 
responses. When all the modules to be linked have 
been listed, be sure the response line ends with a 
module name and a carriage return and not a plus 
sign/carriage return. 

Example: 

Object Modules [.OBJ]: FUN TEXT TABLE 
CARE+<CR> 
Object Modules [.OBJ] : 
FOO+FLIPFLOP+JUNQUE+<CR> 
Object Modules [.OBJ]: CORSAIR<CR> 



RUNNING MS-LINK Page 1-4 

; Use a single semicolon (;) followed immediately by 
a carriage return at any time after the first 
prompt (from Run File on) to select default 
responses to the remaining prompts. This feature 
saves time and overrides the need to enter a series 
of carriage returns. 

NOTE 

Once the semicolon has been entered, the 
user can no longer respond to any of the 
prompts for that link session. Therefore, 
do not use the semicolon to skip over some 
prompts. For this, use carriage return. 

Example: 

Object Modules [.OBJ]: FUN TEXT TABLE CARE<CR> 
Run Module [FUN. EXE] : ;<CR> 

The remaining prompts will not appear, and 
MS-LINK will use the default values (including 
FUN.MAP for the List File). 

Contro1-C Use Contro1-C at any time to abort the link 
session. If you enter an erroneous response, such 
as the wrong filename or an incorrectly spelled 
filename, you must press Contro1-C to exit MS-LINK 
then reinvoke MS-LINK and start over. If the error 
has· been typed but not entered, you may delete the 
erroneous characters, but for that line only. 



RUNNING MS-LINK Page 1-5 

1.1.2 Method 2: LINK <filenames>[/switches] 

Enter: 

LINK <object-list>,<runfile>,<listfile>,<lib-list> [/switch ••• ] 

The entries following LINK are responses to the 
command prompts. The entry fields for the 
different prompts must be separated by commas. 

where: object list is a list of object modules, separated 
by plus signs 

runfile is the name of the file to receive the 
executable output 

listfile is the name of the file to receive the 
listing 

lib list is a list of library modules .to be 
searched 

/switch are optional switches, which may be placed 
following any of the response entries (just before 
any of the commas or after the <lib list>, as 
shown) • 

To select the default for a field, simply enter a 
second comma without spaces in between (see the 
example below). 

Example 

LINK FUN+TEXT+TABLE+CARE/P/M"FUNLIST,COBLIB.LIB 

This example causes MS-LINK to be loaded, then 
causes the object modules FUN.OBJ, TEXT.OBJ, 
TABLE.OBJ, and CARE.OBJ to be loaded. MS-LINK then 
pauses (caused by the /P switch). When the user 
presses any key, MS-LINK links the object modules, 
produces a global symbol map (the /M switch), 
defaults to FUN.EXE run file, creates a list file 
named FUNLIST.MAP, and searches the library file 
COBLIB.LIB. 



RUNNING MS-LINK Page 1-6 

1.1.3 Method 3: LINK @<filespec> 

Ent~r: 

LINK @<filespec> 

where: filespec is the name of a Response File. A 
Response File contains answers to the MS-LINK 
prompts (shown under method 1 for invoking), and 
may also contain any of the switches. Method 3 
permits the user to conduct the MS-LINK session 
without interactive (direct) user responses to the 
MS-LINK prompts. 

Before using 
the user must 
File. 

IMPORTANT 

method 
first 

3 to invoke MS-LINK, 
create the Response 

A Response File has text lines, one for each 
prompt. Responses must appear in the same order as 
the command prompts appear. 

Use switches and Special Command Characters in the 
Response File the same way as they are used for 
responses entered on the terminal keyboard. 

When the MS-LINK session begins, each prompt will 
be displayed in turn with the responses from the 
response file. If the response file does not 
contain answers for all the prompts, either in the 
form of filenames or the semicolon special 
character or carriage returns, MS-LINK will, after 
displaying the prompt which does not have a 
response, wait for the user to enter a legal 
response. When a leg~l response has been entered, 
MS-LINK continues the link session. 



RUNNING MS-LINK 

Example: 

FUN TEXT TABLE CARE 
/PAUSE/MAP 
FUNLIST 
COBLIB.LIB 

Page 1-7 

This Response File will cause MS-LINK to load the 
four Object modules. MS-LINK will pause before 
creating and producing a public symbol map to 
permit the user to swap diskettes (see discussion 
under /PAUSE in Section 2.3, Switches, before using 
this feature). When the user presses any key, the 
output files will be named FUN.EXE and FUNLIST.MAP, 
MS-LINK will search the library file COBLIB.LIB, 
and will use the default settings for the flags. 



RUNNING MS-LINK Page 1-8 

1.2 COMMAND PROMPTS 

MS-LINK is commanded by. entering responses to four text 
prompts. When you have entered a response to the current 
prompt, the next appears. When the last prompt has been 
answered, MS-LINK begins linking automatically without 
further command. When the link session is finished, MS-LINK 
exits to the operating system. When the operating system 
prompt is displayed, MS-LINK has finished successfully. If 
the link session is unsuccessful, MS-LINK returns the 
appropriate error message. 

MS-LINK prompts the user for the names of object, run, list 
files, and for libraries. The prompts are listed in their 
order of appearance. For prompts which can default to 
preset responses, the default response is shown in square 
brackets ([]) following the prompt. The Object 
Modules: prompt is followed by only a filename extension 
default response because it has no preset filename response 
and requires a filename from the user. 

Object Modules [.OBJ]: 
Enter a list of the object modules to be linked. 
MS-LINK assumes by default that the filename 
extension is .OBJ. If an object module· has any 
other filename extension, the extension must be 
given here. Otherwise, the extension may be 
omitted. 

Modules must be separated by plus signs .(+). 

Remember that MS-LINK loads Segments into Classes 
in the order encountered (see Section 1.2, 
DEFINITIONS). Use this information for setting the 
order in which the object modules are entered. 



RUNNING MS-LINK Page 1-9 

Run File [First-Object-filename.EXE]: 
The filename entered will be created to store the 
Run (executable) file that results from the link 
session. All Run files receive the filename 
extension .EXE, even if the user specifies an 
extension (the user specified extension is 
ignored) • 

If no response is entered to the Run File: prompt, 
MS-LINK uses the first filename entered in response 
to the Object Modules: prompt as the RUN filename. 

Example: 

Run File [FUN.EXE]: B:PAYROLL/P 

This response directs MS-LINK to create the Run 
file PAYROLL.EXE on drive B:. Also, MS-LINK will 
pause, which allows the user to insert a new 
diskette to receive the Run file. 

List File [Run-Filename.MAP]: 
----The List file contains an entry for each segment in 

the input (object) modules. Each entry also shows 
the offset (addressing) in the Run file. 

The default response is the Run filename with the 
default filename extension .MAP. 



RUNNING MS-LINK 

Libraries [ ]: 
The valid responses are one to eight 
filenames or simply a carriage re~urn. (A 
return only means no library search.) 
files must have been created by a library 
MS-LINK assumes by default that the 
extension is .LIB for library files. 

Page 1-10 

library 
carriage 
Library 

utility. 
filename 

Library filenames must be separated by blank spaces 
or plus signs (+). 

MS-LINK searches the library files in the order 
listed to resolve external references. When it 
finds the module that defines the external symbol, 
MS-LINK processes the module as another object 
module. 

If MS-LINK cannot find a library file on the 
diskettes in the disk drives, it returns the 
message: 

Cannot find library <library-name> 
Enter new drive letter: 

Simply press the letter for the drive designation 
(for example B). 

MS-LINK does not search within each library file 
sequentially. MS-LINK uses a method called 
dictionary indexed library search. This means that 
MS-LINK finds definitions for external references 
by index access rather than searching from the 
beginning of the file to the end for each 
reference. This indexed search reduces 
substantially the link time for any sessions 
involving library searches. 



RUNNING MS-LINK Page 1-11 

1.3 SWITCHES 

The six switches control alternate linker functions. 
Switches must be entered at the end of a prompt response, 
regardless of which method is used to invoke MS-LINK. 
Switches may be grouped at the end of anyone of the 
responses, or may be scattered at the end of several. If 
more than one switch is entered at the end of one response, 
each switch must be preceded by the slash mark (I). 

All switches may be abbreviated, from a single letter 
through the whole switch name. The only restriction is that 
an abbreviation must be a sequential sub-string from the 
first letter through the last entered; no gaps or 
transpositions are allowed. For example: 

Legal Illegal 

ID IDSL 
IDS IDAL 
IDSA 
IDSALLOCA 

IDLC 
IDSALLOCT 

IDSALLOCATE 
Use of the IDSALLOCATE switch directs MS-LINK to 
load all data (DGroup) at the high end of the Data 
Segment. Otherwise, MS-LINK loads all data at the 
low end of the Data Segm~nt. At runtime, the DS 
pointer is set to the lowest possible address and 
allows the entire OS segment to be used. Use of 
the IDSALLOCATE switch in combination with the 
default load low (that is, the IHIGH switch is not 
used), permits the user application to allocate 
dynamically any available memory below the area 
specifically allocated within OGroup, yet to remain 
addressable by the same OS pointer. This dynamic 
allocation is needed for Pascal and FORTRAN 
programs. 

NOTE 

The user's application program may 
dynamically allocate up to 64K bytes (or 
the actual amount available) less the 
amount allocated within OGroup. 



RUNNING MS-LINK Page 1-12 

/HIGH 
Use of the /HIGH switch causes MS-LINK to place the 
Run image as high as possible in memory. 
Otherwise, MS-LINK places the Run file as low as 
possible. 

IMPORTANT 

Do not use the /HIGH switch with Pascal or 
FORTRAN programs. 

/LINENUMBERS 

/MAP 

Use of the /LINENUMBERS switch directs MS-LINK to 
include in the List file the line numbers and 
addresses of the source statements in the input 
modules. Otherwise, line numbers are not included 
in the List file. 

NOTE 

Not all compilers produce object modules 
that contain line number information. In 
these cases, of course, MS-LINK cannot 
include line numbers. 

/MAP directs MS-LINK to list all public (global) 
symbols defined in the input modules. If /MAP is 
not given, MS-LINK will list only errors (which 
includes undefined globals). 

The symbols are listed alphabetically. For each 
symbol, MS-LINK lists its value and its 
segment:offset location in the Run file. The 
symbols are listed at the end of the List file. 



RUNNING MS-LINK Page 1-13 

/PAUSE 
The /PAUSE switch causes MS-LINK to pause in the 
link session when the switch is encountered. 
Normally, MS-~INK performs the linking session 
without stop from beginning to end. This allows 
the user to swap the diskettes before MS-LINK 
outputs the Run (.EXE) file. 

When MS-LINK encounters the /PAUSE switch, it 
displays the message: 

About to generate .EXE file 
Change disks <hit any key> 

MS-LINK resumes processing when the user presses 
any key. 

CAUTION 

Do not swap the diskette which will receive 
the List file, or the diskette used for the 
VM.TMP file, if created. 

/STACK:<number> 
number represents any positive numeric value (in 
hexadecimal radix) up to 65536 bytes. If the 
/STACK switch is not used for a link session, 
MS-LINK calculates the necessary stack size 
automatically. 

If a value from 1 to 511 is entered, MS-LINK uses 
512. 

All compilers and assemblers should provide 
information in the object modules that allow the 
linker to compute the required stack size. 

At least one object (input) module must contain a 
stack allocation statement. If not, MS-LINK will 
return a WARNING: NO STACK STATEMENT error message. 



CHAPTER 2 

ERROR MESSAGES 

All errors cause the link session to abort. Therefore, 
after the cause is found and corrected, MS-LINK must be 
rerun. 

ATTEMPT TO ACCESS DATA OUTSIDE OF SEGMENT BOUNDS, POSSIBLY 
BAD OBJECT MODULE 

Cause: probably a bad object file 

BAD NUMERIC PARAMETER 
Cause: numeric value not in digits 

CANNOT OPEN TEMPORARY FILE 
Cause: MS-LINK is unable to create the file VM.TMP 

because the disk directory is full. 
Cure: insert a new diskette. Do not change the 

diskette that will receive the list.MAP file. 

ERROR: DUP 
Cause: 

Cure: 

RECORD TOO COMPLEX 
DUP record in assembly 
complex. 
simplify DUP record 
program. 

language module 

in assembly 

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH 

is too 

language 

Cause: an assembly language instruction refers to an 
address with a short instruction instead of a 
long instruction. 

Cure: edit assembly language source and reassemble 

INPUT FILE READ ERROR 
Cause: probably a bad object file 



ERROR MESSAGES Page 2-2 

INVALID OBJECT MODULE 
Cause: object module{s) incorrectly formed or 

incomplete (as when assembly was stopped in the 
middle). 

SYMBOL DEFINED MORE THAN ONCE 
Cause: MS-LINK found two or more modules that define a 

single symbol name. 

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS CAPACITY OF 
LINKER 

Cause: the total size may not exceed 384K bytes and 
the number of segments may not exceed 255 

REQUESTED STACK SIZE EXCEEDS 64K 
Cure: specify a size < 64K bytes with the /STACK 

switch 

SEGMENT SIZE EXCEEDS 64K 
64K bytes is the addressing system limit. 

SYMBOL TABLE CAPACITY EXCEEDED 
Cause: very many, very long names entered: 

approximately 25K bytes. 

TOO MANY EXTERNAL SYMBOLS IN ONE MODULE 

exceeding 

The limit is 256 external symbols per module 

TOO MANY GROUPS 
The limit is 10 Groups 

TOO MANY LIBRARIES SPECIFIED 
The limit is 8. 

TOO MANY PUBLIC SYMBOLS 
The limit is 1024. 

TOO MANY SEGMENTS OR CLASSES 
The limit is 256 (Segments and Classes taken 
together) 



ERROR MESSAGES 

UNRESOLVED EXTERNALS: <list> 
The external symbols listed 
module among the modules 
spe~ified. 

VM READ ERROR 

Page 2-3 

have no defining 
or libraries files 

Cause: a disk problem; not MS-LINK caused. 

WARNING: NO STACK SEGMENT 
Cause: none of the object modules specified contains a 

statement allocating stack space, but the user 
entered the /STACK switch. 

WARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE 
Cause: a bad object module or an attempt to link 

modules MS-LINK cannot, handle (e.g., an 
absolute object module) • 

WRITE ERROR IN TMP FILE 
Cause: no more disk space remaining to expand VM.TMP 

file 

WRITE ERROR ON RUN FILE 
Cause: usually, not enough disk space for Run file 



INDEX 

.EXE · · · · · · · · · · · 9, 1-9 

.LIB · · · · · . · 9 
• MAP · · · · · · · · · . · 9, 1-9 
.OBJ · · · · · · · · · · · 9, 1-8 

Class • • • • 5, 1-8 
Command Characters • • • • 1-3 

Contro1-C • • • • •• • 1-4 
· . . . . . . . . . . . . 1-4 

+ • • • • • • • • • • • • • 1-3 
Command Prompts 

Libraries • • • • •• • 1-2, 
List File • • • • ••• 1-2, 
Object Modules. • •• • 1-2, 
Run File • • • • • • 1-2, 
Summary of • • • • • • • • • 1-2 

Contro1-C (command character) 1-4 

Drive designations • • • • • • 9 

Filename extensions - default 9 
.OBJ • • • • • • • • • • • • 9 
• EXE • • • • • • • • • • • • 9 
• MAP • • • • • • • • • • • • 9 

Files that MS-LINK uses • • • 9 

Group • 5 

1-10 
1-9 
1-8 
1-9 

How MS-LINK combines and arranges segments 6 

Invoking 
Summary of Methods 1-1 

Overview of MS-LINK operation 4 

Response File · 1-6 

Segment • •• • ••••• 5, 1-8 
Summary of methods to invoke • 1-1 
Switches 

MS-LINK 
Summary of • • • • • • • • 1-3 
/DSALLOCATE • • • •• 1-11 
/HIGH • • • • • • • • • • 1-12 
/LINENUMBERS •••••• 1-12 
/MAP . . • • • • •• . 1-12 
/PAUSE • • • • • • • • • • 1-13 
/STACK • •••• • 1-13 

VM.TMP •• • • • 10 



(command character) 
+ '( command char acter) 

. . . . 1-4 
1-3 



Microsoft, Inc. 
Microsoft Building 

10700 Northup Way 
Bellevue, WA 98004 

MS-LIB 
library 
manager 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of Microsoft, Inc. The software described in this document is furnished 
under a license agreement or non-disclosure agreement. The software may be used or copied only in 
accordance with the terms of the agreement. It is against the law to copy the MS-LIB Library 
Manager on cassette tape, disk, or any other medium for any purpose other than the purchaser's 
personal use. 

Copyright © Microsoft, Inc., 1981 

LIMITED WARRANTY 

MICnOSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with 
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product, 
including but not limited to any interruption of service, loss of business or anticipatory profits or 
consequential damages resulting from the use or operation of this product. This product will be exchanged 
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except 
for such replacement the sale or subsequent use of this program is without warranty or liability. 

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY 
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR 
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. 

To report software bugs or errors in the documentation, please complete and return the Problem 
Report at the back of this manual. 

MS-LIB, MS-LINK, MACRO-86, MS-CREF, and MS-DOS (and its constituent program names 
EDLIN and DEBUG) are trademarks of Microsoft, Inc. 

8407C-IOO-OO 



System Requirements 

The MS-LIB Library Manager requires: 

38R bytes of memory minimum: 
28K bytes for code 
10K bytes for run space 

1 disk drive 
1 disk drive if and only if output is sent to the 
same physical diskette from which the input was 
taken. None of the utility programs in this 
package allow time to swap diskettes during 
operation on a one-drive configuration. Therefore, 
two disk drives is a more practical configuration. 



Contents 

Introduction 

Features and Benefits of MS-LIB 
Overview of MS-LIB Operation 4 

Chapter 1 

1.1 
1.1.1 

1.1.2 
1.1.3 
1.2 
1.3 

Chapter 2 

Index 

RUNNING MS-LIB 

Invoking MS-LIB 1-1 
Method 1: LIB 1-2 
Summary of Command Prompts 1-2 
Summary of Command Characters 1-2 
Method 2: LIB <library><operations>,<listing> 
Method 3: LIB @<fi1espec> 1-5 

Command Prompts 1-7 
Command Characters 1-9 

+ - append 1-9 
- - delete 1-9 
* - extract 1-10 
; - default remalnlng prompts 1-10 
& - continuation 1-11 
Contro1-C - program abort 1-11 

ERROR MESSAGES 

1-3 



INTRODUCTION 

Features and Benefits 

MS-LIB creates and modifies library files that are used with 
Microsoft's MS-LINK Linker Utility. MS-LIB can add object 
files to a library, delete modules from a library, or 
extract modules from a library and place the extracted 
modules into separate object files. 

MS-LIB provides a means of creating either general or 
special libraries for a variety of programs or for specific 
programs only. with MS-LIB you can create a library for a 
language compiler, or you can create a library for one 
program only, which would permit very fast linking and 
possibly more efficient execution. 

You can modify individual modules within a library by 
extracting the modules, making changes, then adding the 
modules to the library again. You can also replace an 
existing module with a different module or with a new 
version of an existing module. 

The command scanner in MS-LIB is the same as the one used in 
Microsoft's MS-LINK, MS-Pascal, MS-FORTRAN, and other 16-bit 
Microsoft products. If you have used any of these products, 
using MS-LIB is familiar to you. Command syntax is 
straightforward, and MS-LIB prompts you for any of the 
commands it needs that you have not supplied. There are no 
surprises in the user interface. 



Page 4 

Overview of MS-LIB Operation 

MS-LIB performs two basic actions: it deletes modules from 
a library file, and it changes object files into modules and 
appends them to a library file. These two actions underlie 
five library manager functions: 

delete a module 

extract a module and place it in a separate object 
file 

append an object file as a module of a library 

replace a module in the library file with a new 
module 

create a library file 

During each library session, MS-LIB first deletes or 
extracts modules, then appends new ones. In a single 
operation, MS-LIB reads each module into memory, checks it 
for consistency, and writes it back to the file. If you 
delete a module, MS-LIB reads in that module but does not 
write it back to the file. When MS-LIB writes back the next 
module to be retained, it places the module at the end of 
the last module written. This procedure effectively "closes 
up" the disk space to keep the library file from growing 
larger than necessary.. When MS-LIB has read through the 
whole library file, it apends any new modules to the end of 
the file. Finally, MS-LIB creates the index, which MS-LINK 
uses to find modules and symbols in the library file, and 
qutputs a cross reference listing of the PUBLIC symbols in 
the library, if you request such a listing. (Building the 
library index may take some extra time, up to 20 second in 
some cases.) 

For example: 

LIB PASCAL+HEAP-HEAP; 

first deletes the library module HEAP from the library file, 
then adds the file HEAP.OBJ as the last module in the 
library. This order of execution prevents confusion in 
MS-LIB when a new version of a module replaces a version in 
the library file; Note that the replace function is simply 
the delete-append functions in succession. Also note that 
you can specify delete, append, or extract functions in any 
order; the order is insignificant to the MS-LIB command 
scanner. 



Consistency 
Check only 

Delete 
Module C: 
Module D 
written to 
space of 
Module C 

Append 
object file 
E.OBJ as new 
Module E at 
end of 
library file 

Page 5 

[J---
MS-LIB ~_8_8_D 

I 

!'-~-t_-----4_(-=-I

s}D MS-LIB [8-EI-CI 
T- . 

I 

MS-LIB [8-0-D 

1--
1 

~+) 



Extract 
Module E; 
place in a 
separate 
object file; 
return to lib 

8+-<* ~ 

Consistency 
Check, then 
output a 
cross 
reference 
listing of 
PUBLIC 
symbols 

rary 

.. 
T 

Page 6 

------------~*~--------------~ 

MS-LIB [@}[E 
I 

I I 
MS-LIB [G-~80J 

r 'T---



CHAPTER I 

RUNNING MS-LIB 

Running MS-LIB requires two types of commands: a command to 
invoke MS-LIB and answers to command prompts. Usually you 
will enter all the commands to MS-LIB on the terminal 
keyboard. As an option, answers to the command prompts may 
be contained in a Response File. Some special command 
characters exist. Some are used as a required part of 
MS-LIB commands. Others assist you while entering MS-LIB 
commands. 

1.1 INVOKING MS-LIB 

MS-LIB may be invoked three ways. By the first method, you 
enter the commands as answers to individual prompts. By the 
second method, you enter all commands on the line used to 
invoke MS-LIB. By the third method, you create a Response 
File that contains all the necessary commands. 

Summary of Methods to invoke MS-LIB 

Method I LIB 

Method 2 LIB <library><operations>,<listing> 

Method 3 LIB @<filespec> 



RUNNING MS-LIB Page 1-2 

1.1.1 Method 1: LIB 

Enter: 

LIB 

MS-LIB will be loaded into memory. Then, MS-LIB returns a 
series of three text prompts that appear one at a timeo You 
answer the prompts as commands to MS-LIB to perform specific 
tasks. 

The Command Prompts and Command Characters 
here. The Command Prompts and Command 
described fully in Sections 1.2 and 1.3. 

are summarized 
Characters are 

Summary of Command Prompts 

PROMPT RESPONSES 

Library file: List filename of library to be 
manipulated (default: filename 
extension .LIB) 

Operation: List command character(s) followed by 
module name(s) or object filename(s) 
(default action: no changes. default 
object filename extension: .OBJ) 

List file: List filename for a cross reference 
listing file (default: NUL: no file) 

Summary of Command Characters 

Character Action 

+ Append an object file as the last module 

- Delete a module from the library 

* Extract a module and place in an object file 

. Use default responses to remaining prompts , 

& Extend current physical line: repeat command 
prompt 

Control-C Abort library session. 



RUNNING r-1S-LIB Page 1-3 

1.1.2 Method 2: LIB <library><operations>,<listing> 

Enter: 

LIB <library><operations>,<listing> 

The entries following LIB are responses to the 
command prompts. The library and ooerations fields 
and all operations entries must be separated by one 
of the command characters plus, minus, and asterisk 
(+, -, *). If a cross reference listing is wanted, 
the name of the file must be separated from the 
last operations entry by a comma. 

where: library is the name of a library file. MS-LIB 
assumes that the filename extension is .OBJ, which 
you may override by specifying a different 
extension. If the filename given for the ·library 
field does not exist, MS-LIB will prompt you: 

Library file does not exist. Create? 

Enter Yes (or any response beginning with Y) to 
create a new library file. Enter No (or any other 
response not beginning with Y) to abort the library 
session. 

operations is deleting a module, appending an 
object file as a module, or extracting a module as 
an object file from the library file. Use the 
three command characters plus (+), minus (-), and 
asterisk (*) to direct MS-LIB what to do with each 
module or object file. 

listing is the name of the file you want to receive 
the cross reference listing of PUBLIC symbols in 
the modules in the library. The list is compiled 
after all module manipulation has taken place. 

To select the default for remaining field(s), you 
may enter the semicolon command character. 

If you enter a Librarv filename followed 
immediately by a semicolon, MS-LIB will read 
through the librarj file and perform a consistency 
check. No changes will be made to the modules in 
the library file. 

If you enter a Library filename followed 
i~mediately by a comma and a List filename, MS-LIB 
will. perform its consistency check of the library 
file, then produce the cross reference listing 
file. 



RUNNING MS-LIB Page 1-4 

Example 

LIB PASCAL-HEAP+HEAPi 

This example causes MS-LIB to delete the module 
HEAP from the library file PASCAL. LIB, then append 
the object file HEAP.OBJ as the last module of 
PASCAL.LIB (the module will be named HEAP). 

If you have many operations to perform during a 
library session, use the ampersand (&) command 
character to extend the line so tha~ you can enter 
additional object filenames and module names. Be 
sure to always include one of the command 
characters for operations (+, -, *) before the name 
of each module or object filename. 

Example 

LIB PASCAL<CR> 

causes MS-LIB to perform a consistency check of the 
library file PASCAL. LIB. No other action is 
performed. 

Example 

LIB P~SCAL,PASCROSS.PUB 

causes MS-LIB to perform a consistency check of the 
library file PASCAL. LIB, then output a cross 
reference listing file named PASCROSS.PUB. 



RUNNING MS-LIB Page 1-5 

1.1.3 Method 3: LIB @<filespec> 

Enter: 

LIB @<fi1espec> 

where: filespec is the name of a Response File. A 
Response File contains answers to the MS-LIB 
prompts (summarized under method 1 for invoking and 
described fully in Section 1.2). Method 3 permits 
you to conduct the MS-LIB session without 
interactive (direct) user responses to the MS-LIB 
prompts. 

IMPORTANT 

Before using method 3 to invoke MS-LIB, you 
must first create the Response File. 

A Response File has text lines, one .for each 
prompt. Responses must appear in the same order as 
the command prompts appear. 

Use Command Characters in the Response File the 
same way as they are used for responses entered on 
the terminal keyboard. 

When the library session begins, each prompt will 
be displayed in turn with the responses from the 
response file. If the response file does not 
contain answers for all the prompts, MS-LIB will 
use the default responses (no changes to the 
modules currently in the library file for 
Operation, and no cross reference listing file 
created). 

If you enter a Library filename followed 
immediately by a semicolon, MS-LIB will read 
through the library file and perform a consistency 
check. No changes will be made to the modules in 
the library file. 

If you enter a Library filename then only a 
carriage return of Operations then a comma and a 
List filename, MS-LIB will perform its consistency 
check of the library file, then produce--the cross 
reference listinq file. 



RUNNING MS-LIB 

Example: 

PASCAL<CR> 
+CURSOR+HEAP-HEAP*FOIBLES<CR> 
CROSSLST<CR> 

Page 1-6 

This Response File will cause MS-LIB to delete the 
module HEAP from the PASCAL. LIB library file, 
extract the module FOIBLES and place in an object 
file named FOIBLES.OBJ, then- append the object 
files CURSOR.OBJ and HEAP.OBJ as the last two 
modules in the library. Then, MS-LIB will create a 
cross reference file named CROSSLST. 



RUNNING MS-LIB Page 1-7 

1.2 COMMAND PROMPTS 

MS-LIB is commanded by entering responses to three text 
prompts. When you have entered your response to the current 
prompt, the next appears. When the last prompt has been 
answered, MS-LIB performs its library management functions 
without further command. When the library session is 
finished, MS-LIB exits to the operating system. When the 
operating system prompt is displayed, MS-LIB has finished 
the library session successfully. If the library session is 
unsuccessful, MS-LIB returns the appropriate error message. 

MS-LIB prompts you for the name of the library file, the 
operation(s) you want to perform, and the name you want to 
give to a cross reference listing file, if any. 

Library file: 
Enter the name of the library file that you want to 
manipulate. MS-LIB assumes that the filename 
extension is .LIB. You can override this 
assumption by g1v1ng a filename extension when you 
enter the library filename. Because MS-LIB can 
manage only one library file at a time, only one 
filename is allowed in response to this prompt. 
Additional responses, except the semicolon command 
character, are ignored. 

If you enter a library filename and follow it 
immediately with a semicolon command character, 
MS-LIB will perform a consistency check only, then 
return to the operating system. Any errors in the 
file will be reported. 

If the filename you enter does not exist, MS-LIB 
returns the prompt: 

Library file does not exist. Create? 

You must enter either Yes or No, in either upper or 
lower (or mixed) case. Actually, MS-LIB checks the 
response for the letter Y as the first charcter. 
If any other character is entered first, MS-LIB 
terminates and returns to the operating system. 



RUNNING MS-LIB Page 1-8 

Operation: 
Enter one of the three command characters for 
manipulating modules (+, , *) , followed 
immediately (no space) by the module name or the 

'object filename. Plus sign appends an object file 
as the last module in the library file (see further 
discussion under the description of plus sign 
below). Minus sign deletes a module from the 
library file. Asterisk extracts a module from the 
library and places it in a separate object file 
with the filename taken from the module name and a 
filename extension .OBJ. 

When you have a large number of modules to 
manipulate (more than can be typed on one line), 
enter an ampersand (&) as the last character on the 
line. MS-LIB will repeat the Operation prompt, 
which permits you to enter additional module names 
and object filenames. 

MS-LIB allows you to enter operations on modules 
and object files in any order you want. 

More information about order of execution and what 
MS-LIB does with each module is given in the 
descriptions of each Command Character. 

file: 
If vou want a cross reference list of the PUBLIC 
symbols in the modules in the library file after 
your manipulations, enter a filename in which you 
want MS-LIB to place the cross reference listing. 
If you do not enter a filename, no cross reference 
listing is generated (a NUL file). 

The response to the List file prompt is a file 
specification. Therefore, you can specify, along 
with the filename, a drive (or device) designation 
and a filename extension. The List f{le is not 
given a default filename extension. If you want 
the file to have a filename extension, you must 
specify it when entering the filename. 

The cross reference listing file contains two 
lists. The first list is an alphabetical listing 
of all PUBLIC symbols. Each symbol name is 
followed by the name of its module. The second 
list is an alphabetical list of the modules in the 
library. Under each module name is an alphabetical 
listing of the PUBLIC symbols in that module. 



RUNNING MS-LIB Page 1-9 

1.3 COMMAND CHARACTERS 

MS-LIB provides six command characters: three of the 
command characters are required in responses to the 
Operation prompt: the other three command characters 
provide you additional helpful commands to MS-LIB. 

+ The plus sign followed by an object filename 
appends the object file as the last module in the 
library named in reponse to the Library file 
prompt. When MS-LIB sees the plus sign, it assumes 
that the filename extension is .OBJ. You may 
override this assumption by specifying a different 
filename extension. 

MS-LIB strips the drive designation and the 
extension from the object file specification, 
leaving only the filename. For example, if the 
object file to be appended as a module to a library 
is: 

B:CURSOR.OBJ 

a response to the Operation prompt of: 

+B:CURSOR.OBJ 

causes MS-LIB to strip off the B: and the .OBJ, 
leaving only CURSOR, which becomes a module named 
CURSOR in the library. 

NOTE 

The distinction between an object file and 
a module (or object module) is that the 
file possesses a drive designation (even if 
it is default drive) and a filename 
extension. Object modules possess neither 
of these. 

The minus sign followed by a module name deletes 
that module from the library file. MS-LIB then 
"closes up" the file space left empty by the 
deletion. This cleanup action keeps the library 
file from growing larger than necessary with empty 
space. Remember that new modules, even replacement 
modules are added to the end of the file, not 
stuffed into space vacated by deleting modules. 



RUNNING MS-LIB Page 1-10 

* 

. , 

The asterisk followed by a module name extracts 
that module from the library file and places it 
into a separate object file. The module will still 
exist in the library (extract means, essentially, 
copy the module to a separate object file). The 
module name is used as the filename. MS-LIB adds 
the default drive designation and the filename 
extension .OBJ. For example, if the module to be 
extracted is: . 

CURSOR 

and the current default disk drive is A:, a reponse 
to the Operation prompt of: 

*CURSOR 

causes MS-LIB to extract the module named CURSOR 
from the library file and to set it up as an object 
file with the file specification of: 

default drive:CURSOR.OBJ 

(The drive designation and filename extension 
cannot be overridden. You can, however, rename the 
file, giving a new filename extension, and/or copy 
the file to a new disk drive, giving a new filename 
and/or filename extension.) 

Use a single semicolon (:) followed immediately by 
a carriage return at any time after responding to 
the first prompt (from Library file on) to select 
default responses to the remaining prompts. This 
feature saves time and overrides the need to answer 
additional prompts. 

NOTE 

Once the semicolon has been entered, you 
can no longer respond to any of the prompts 
for that library session. Therefore, do 
not use the semicolon to skip over some 
prompts. For this, use carriage return. 

~xample: 

Library file: FUN <CR> 
Operation: +CURSOR: <CR> 

The remaining prompt 
MS-LIB will use the 
reference file). 

will not appear, and 
default value (no cross 



RUNNING MS-LIB Page 1-11 

& Use the ampersand to extend the current physical 
line. This command character will only be needed 
for the Operation prompt. MS-LIB can perform many 
functions during a single library session. The 
number of modules you can append it limited only be 
disk space. The number of module you can replace 
or extract is also limited only by disk space. The 
number of modules you can delete is limited only by 
the number of modules in the library file. 
However, the line length for a response to any 
prompt is limited to the line length of your 
system. For a large number of responses to the 
Operation prompt, place an ampersand at the end of 
a line. MS-LIB will display the Operation prompt 
again, then enter more responses. You may use the 
ampersand character as many times as you need. For 
example: 

Library file: FUN<CR> 
Operation: +CURSOR-HEAP+HEAP*FOIBLES& 
Operation: *INIT+ASSUME+RIDE;<CR> 

MS-LIB will delete the module HEAP, extract the 
modules FOIBLES and INIT (creating two files, 
FOIBLES.OBJ and INIT.OBJ), then append the object 
files CURSOR, HEAP, ASSUME, and RIDE. Note, 
however, that MS-LIB allows you to enter your 
Operation reponses in any order. 

Control-C Use Control-C at any time to abort the library 
session. If you enter an erroneous response, such 
as the wrong filename or module name, or an 
incorrectly spelled filename or module name, you 
must press CTRL-C to exit MS-LIB then reinvoke 
MS-LIB and start over. If the error has been typed 
but not entered, you may delete the erroneous 
characters, but for that line only. 



CHAPTER 2 

ERROR MESSAGES 

<symbol> is a multiply defined PUBLIC. Proceed? 
Cause: two modules define the same public symbol. 

The user is asked to confirm the removal of the 
definition of the old symbol. A No response 
leaves the library in an undetermined state. 

Cure: Remove the PUBLIC declaration from one of 
the object modules and recompile or reassemble. 

Allocate error on VM.TMP 
Cause: out of space 

Cannot create extract. file 
Cause: no room in directory for extract file 

Cannot create list file 
Cause: No room in directory for library file 

Cannot nest response file 
Cause: '@filespec' in response (or indirect) file 

Cannot open VM.TMP 
Cause: no room for VM.TMP in disk directory 

Cannot write library file 
Cause: Out of space 

Close error on extract file 
Cause: out of space 

Error: An internal error has occurred. 
Contact Microsoft, Inc. 

Fatal Error: Cannot"open input file 
Cause: Mistyped object file name 

Fatal Error: Module is not in the library 
Cause: trying to delete a module that is not in 

the library 



ERRO,R MESSAGES 

Input file read error 
Cause: bad object module or faulty disk 

Invalid object module/library 
Cause: bad object and/or library 

Library Disk is full 
Cause: no more room on diskette 

Listing file write error 
Cause: out of space 

No library file specified 
Cause: no response to Library File prompt 

Read error on VM.TMP 
Cause: disk not ready for read 

Symbol table capacity exceeded 

Page 2-2 

Cause: too many public symbols (about 30K chars in 
symbols) 

Too many object modules 
Cause: more than 500 object modules 

Too many public symbols 
Cause: 1024 public symbols maximum 

Write error on library/extract file 
Cause: Out of space 

write error on VM.TMP 
Cause: out of space 



INDEX 

Command Characters · · · · · · 1-9 
Contro1-C · · · · · · · · · 1-2, 1-11 
Summary of · · · · · · · 1-2 
& · · · · · · · · · · · · · 1-11 . · · · 1-10 , 
* · · · · · · · 1-10 

· · · · · · · · · · · 1-9 
+ · · · · · · · · · · · 1-9 
& · · · · · · · · · · · · · 1-2 
; · · · · · · · · · · · · · 1-2 
* · · · · · · · 1-2 

· · · · · · · 1-2 
+ · · · · · · · · · · · · · 1-2 

Command Prompts · · · · · 1-7 
Library file · · · · · · · · 1-2, 1-7 
List file · · · · · · · · · 1-2, 1-8 
Operation · · · · · 1-2, 1-8 
Summary of · · · · · · · 1-2 

Consistency check · · · · 1-3, 1-5 
Control-C (command character) 1-2, 1-11 
Creating a new library · · 1-3, 1-7 

Error messages • • • 2-1 

Invoking 
Method 1 • • . • • • • • • • 1-2 
Method 2 • • • • • • 1-3 
Method 3 • • • • • • 1-5 
Summary of Methods • • • • • 1-1 

Invoking MS-LIB • • • • • • • 1-1 

Library file (command prompt) 1-2, 1-7 
List file (command prompt) '. • 1-2, 1-8 

Method 1 • 
Method 2 • 
Method 3 • 

· . . . . . . . . . 1-2 
• • • • • • • • 1-3 

• • • • 1-5 

Operation (command prompt) •• 1-2, 1-8 

Response File • •• •• • 1-5 
Running MS-LIB • • • • • • • • 1-1 

-Summary of methods to invoke • 1-1 

& (command character) · · · · 1-11 
; (command character) · · · · 1-10 
* (command character) · 1-10 · · · - (command character) 1-9 
+ (command character) · · · · 1-9 



& (command character) · · · · 1-2 
; (command character) · · · 1-2 

* (command character) · · 1-2 
- (command character) · · · · 1-2 
+ (command character) · · · · 1-2 



Microsoft, Inc. 
Microsoft Building 
10700 Northup Way 
Bellevue, WA 98004 

microsoft 
MS-CREF 
cross reference facility 
manual 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of Microsoft, Inc. The software described in this document is furnished 
under a license agreement or non-disclosure agreement .. The software may be used or copied only in 
accordance with the terms of the agreement. It is against the law to copy the MS-CREF Cross 
Reference Facility on cassette tape, disk, or any other medium for any purpose other than the 
purchaser's personal use. 

Copyright © Microsoft, Inc., 1981 

LIMITED WARRANTY 

MICROSOFT, Inc. shall have no liability or responsibility to purchaser or to any other person or entity with 
respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by this product, 
including but not limited to any interruption of service, loss of business or anticipatory profits or 
consequential damages resulting from the use or operation of this product. This product will be exchanged 
within twelve months from date of purchase if defective in manufacture, labeling, or packaging, but except 
for such replacement the sale or subsequent use of this program is without warranty or liability. 

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY 
MICROSOFT, INC. ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR 
FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED. 

To report software bugs or errors in the documentation, please complete and return the Problem 
Report at the back of this manual. 

MS-CREF, MACRO-86, MS-LINK, MS-LIB, and MS-DOS (and its constituent program names 
EDLIN and DEBUG) are trademarks of Microsoft, Inc. 

8407D-IOO-00 



INTRODUCTION 

Features and Benefits 

The MS-CREF Cross Reference Facility can aid you in 
debugging your assembly language programs. MS-CREF produces 
an alphabetical listing of all the symbols in a special file 
produced by your assembler. With this listing, you can 
quickly locate all occurrences of any symbol in your source 
program by line number. 

The MS-CREF produced listing is meant to be used with the 
symbol table produced by your assembler. 

The symbol table listing shows the value of each symbol, and 
its type and length, and its value. This information is 
needed to correct erroneous symbol definitions or uses. 

The cross reference listing produced by MS-CREF provides you 
the locations, speeding your search and allowing faster 
debugging. 



Page 4 

Overview of MS-CREF Operation 

MS-CREF produces a file with cross references for symbolic 
names in your program. 

First, you must create a cross reference file with the 
assembler. Then, MS-CREF takes this cross reference file, 
which has the filename extension .CRF, and turns it into an 
alphabetical listing of the symbols in the file. The cross 
reference listing file is given the default filename 
extension .REF. 

Beside each symbol in the listing, MS-CREF lists the line 
numbers in the source program where the symbol occurs in 
ascending sequence. The line number where the symbol is 
defined is indicated by a pound sign (#). 



source 
.ASM ...... -' -

Assembler 

MS-CREF 

FOO 20 64 123# 145 ••• 
GAD 21 45# 49 120 ••• 

Page 5 



System Requirements 

The MS-CREF Cross Reference Facility requires: 

24K bytes of memory minimum: 
14K bytes for code 
10K bytes for run space 

1 disk drive 
1 disk drive if and only if output is sent to the 
same physical diskette from which the input was 
taken. None of the utility programs in this 
package allow time to swap diskettes during 
operation on a one-drive configuration. Therefore, 
two disk drives is a more practical configuration. 



Contents 

Introduction 

Chapter 

Chapter 

Chapter 

Index 

Features and Benefits of MS-CREF 
Overview of MS-CREF Operation 4 

1 

1.1 
1.2 
1.2.1 

1.2.2 

2 

3 

3.1 
3.2 

RUNNING MS-CREF 

Creating a Cross Reference File 1-1 
Invoking MS-CREF 1-2 

Method 1: CREF 1-2 
Command Prompts 1-3 
Special Command Characters 1-4 

Method 2: CREF <crffi1e>,<listing> 1-5 

ERROR MESSAGES 

FORMAT OF MS-CREF COMPATIBLE FILES 

General Description of MS-CREF File Processing 3-1 
Format of Source File 3-2 



CHAPTER 1 

RUNNING MS-CREF 

Running MS-CREF requires two types of commands: a 
to invoke MS-CREF and answers to command prompts. 
enter all the commands to MS-CREF on the terminal 
Some special command characters exist to assist 
entering MS-CREF commands. 

command 
You will 

keyboard. 
you while 

Before you can use MS-CREF to create the cross reference 
listing, you must first have created a cross reference file 
using your assembler. This step is reviewed in Section 1.1. 

1.1 CREATING A CROSS REFERENCE FILE 

.A cross reference file is created during an assembly 
session. 

To create a cross reference file, answer the fourth 
assembler command prompt with the name of the file you want 
to receive the cross reference file. 

The fourth assembler prompt is: 

Cross reference [NUL.CRF]: 

If you do not enter a filename in response to this prompt, 
or if you in any other way use the default response to this 
prompt, the assembler will not create a cross reference 
file. Therefore, you must enter a filename. You may also 
specify which drive or device you want to receive the file 
and what filename extension vou want the file to have, if 
different from .CRF. If you change the filename extension 
from .CRF to anything else, you must remember to specify the 
filename extension when naming the.file in response to the 
first MS-CREF prompt (see Section 1.2.1). 



RUNNING MS-CREF Page 1-2 

When you have given a filename in response to the fourth 
assembler prompt, the cross reference file will be generated 
during the assembly session. 

You are now ready 
produced by the 
using MS-CREF. 

to convert the cross reference file 
assembler into a cross reference listing 

1.2 INVOKING MS-CREF 

MS-CREF may be invoked two ways. By the first method, you 
enter the commands as answers to individual prompts. By the 
second method, you enter all commands on the line used to 
invoke MS-CREF. 

Summary of Methods to invoke MS-CREF 

Method 1 CREF 

Method 2 CREF <crffile>,<listing> 



RUNNING MS-CREF Page 1-3 

1.2.1 Method 1: CREF 

Enter: 

CMF 

MS-CREF will be loaded into memory. ·Then, MS-CREF returns a 
series of two text prompts that appear one at a time. You 
answer the prompts to command MS-CMF to convert a cross 
reference file into a cross reference listing. 

Command Prompts 

Cross reference [.CRF]: 
Enter the name of the cross reference file you want 
MS-CREF to convert into a cross reference listing. 
The name of the file is the name you gave your 
assembler when you directed it to produce the cross 
reference file. 

MS-CREF assumes that the filename extension is 
.CRF. If you do not specify a filename extension 
when you enter the cross reference filename, 
MS-CREF will look for a file with the name you 
specify and the filename extension .CRF. If your 
cross reference file has a different extension, 
specify the extension when entering the filename. 

See Chapter 1, Format of MS-CREF Compatible Files, 
for a description of what MS-CMF expects to see in 
the cross reference file. You will need this 
information onlv if your cross reference file was 
not produced by a Microsoft assembler. 

Listing [crffile.MF]: 
Enter the name you want the cross reference listing 
file to have. MS-CREF will automatically give the 
cross reference listing the filename extension 
.MF. 

If you want you cross reference listing to have the 
same filename as the cross reference file but with 
the filename extension .MF, simply press the 
carriage return key when the Listing prompt 
appears. If you want your cross reference listing 
file to be named anything else and/or to have any 
other filename extension, you must enter a response 
following the Listing prompt. 

If vou want the listing file placed on a drive or 
device other than the default drive, specify the 
drive or device when entering your response to the 
Listing prompt. 



RUNNING MS-CREF Page 1-4 

Special Command Characters 

; Use a single semicolon (;) followed immediately by 
a carriage return at any time after responding to 
the Cross reference ~rompt to select the default 
response to the Listing prompt. This feature saves 
time and overrides the need to answer the Listing 
prompt. 

If you use the semicolon, MS-CREF gives the listing 
file the filename of the cross reference file and 
the default filename extension .REF. 

Example: 

Cross reference [.CRF]: FUN; 

MS-CREF will process the cross reference file named 
FUN.CRF and output a listing file named FUN.REF. 

Control-C Use Control-C at any time to abort the MS-CREF 
session. If you enter an erroneous response, (the 
wrong filename), or an incorrectly spelled 
filename, you must press Control-C to exit MS-CREF 
then reinvoke MS-CREF and start over. If the error 
has been typed but not entered, you may delete the 
erroneous characters, but for that line only. 



RUNNING MS-CREF Page 1-5 

1.2.2 Method 2: CREF <crffile>,<listing> 

Enter: 

CREF <crffile>,<listing> 

MS-CREF will be loaded into memory. Then, MS-CREF 
immediately procedes to convert your cross reference file 
into a cross reference listing. 

The entries following CREF are responses to the command 
prompts. The crffile and listing fields must be separate by 
a comma. 

where: crffile is the name of a cross reference file 
produced by your assembler. MS-CREF assumes that 
the filename extension is .CRF, which you may 
override by specifying a different extension. If 
the file named for the crffile does not exist, 
MS-CREF will display the message: 

Fatal I/O Error 110 
in File: <crffile>.CRF 

Control then returns to your operating system. 

listing is the name of the file you want to receive 
the cross reference listing of symbols in your 
program. 

To select the default filename and extension for 
the listing file, enter a semicolon after you enter 
the crffile name. 

Example: 

CREF FUN; <CR> 

This example causes MS-CREF to 
reference file FUN.CRF and 
file named FUN. REF. 

process the cross 
to produce a listing 

To give the listing file a different name, 
extension, or destination, simply specify these 
differences when entering the command line. 

CREF FUN,B:WORK.ARG 

This example causes MS-CREF to process 
reference file named RUN.CRF and to 
listinq file named WORK.ARG, which will 
on the diskette in drive B:. 

the cross 
produce a 

be placed 



RUNNING MS-CREF' Page 1-6 

1.3 FOR~AT OF CROSS REFERENCE LISTINGS 

The cross reference listing is an alphabetical list of all 
the symbols in your program. 

Each page is headed with the title of the program or program 
module. 

Then comes the list of symbols. Following each symbol name 
is a list of the line numbers where the symbol occurs in 
your program. The line number for the definition has a 
pound sign (#) appended to it. 

On the next page is a cross reference listing as an example: 



RUNNING MS-CREF Page 1-7 

MS-CREF (vers no. ) (date) 

ENTX PASCAL entry for initializing programs ""-comes from 
TITLE directive 

Symbol Cross Reference (:t is definition) Cref-1 

AAAXQQ · 3'7# 38 

BEGHQQ · · · · · · · 83 84# 154 176 
BEGOQQ · · · · · · · 33 162 
BEGXQQ · · · · · · · 113 126# 164 223 

CESXQQ · · · · · · · 97 99# 129 
CLNEQQ · · · · · 67 68# 
CODE · · · · · · 37 182 
CONST. · · · 104 104 105 110 
CRCXQQ · 93 94# 210 215 
CRDXQQ · 95 96# 216 
CSXEQQ · · · · · · · 65 66# 149 
CURHQQ · · · · · 85 86# 155 

DATA · · · · · · 64# 64 100 110 
DGROUP · · · · · · · 110# III III III 127 153 171 172 
DOSOFF · · · · · · · 98# 198 199 
DOSXQQ · 184 204# 219 

ENDHQQ · · · · · · · 87 88# 158 
ENDOQQ · · · · · 33# 195 
ENDUQQ · · · · · · · 31# 197 
ENDXQQ · · · · · · · 184 194# 
ENDYQQ · · · · · 32# 196 
ENTGQQ · · · · · · · 30# 187 
ENTXCl>1 · · · · · 182# 183 221 

FREXQQ · · · · · · · 169 170# 178 

HDRFQQ · · · · · · · 71 72# 151 
HDRVQQ · · · · · · · 73 74# 152 
HEAP · · · · · · 42 44 110 
HEAPBEG. · · · · · · 54# 153 172 
HEAPLOW. · · · · · · 43 171 

INIUQQ · · · · · 31 161 

MAIN STARTUP · · · · 109# III 180 
MEMORY · · · · · 42 48# 48 49 109 110 

PNUXQQ · 69 70 150 

RECEQQ · · · · · 81 82# 
REFEQQ · · · · · · · 77 78# 
REPEQQ · · · · · · · 79 80# 
RESEQQ · · · · · · · 75 76# 148 



RUNNING MS-CREF 

SKTOP. • • • • • • • 
SMLSTK • • • • • • • 
STACK. • • • 
STARTMAIN. • • • 
STKBQQ • • • • • 
STKHQQ • • • • • • • 

59# 
135 

53# 
163 

89 
91 

137# 
53 60 

186# 200 
90# 146 
92# 160 

Page 1-8 

110 



CHAPTER 2 

ERROR MESSAGES 

All errors cause MS-CREF to abort. Control is returned to 
your operating system. 

All error messages are displayed in the format: 

Fatal I/O Error <error number> 
in File: <filename> 

where: filename is the name of the file where the error 
occurs 

error number is one of the numbers in the following 
list of errors. 



ERROR MESSAGES 

Number 

101 

101 

Error 

Hard data error 
- Unrecoverable disk I/O error 

Device name error 
Illegal device specification (for 
X:FOO.CRF) 

103 Internal error 
Report to Microsoft, Inc. 

104 Internal error 
Report to Microsoft, Inc. 

105 Device offline 

Page 2-2 

example, 

disk drive door open, no printer attached, and 
so on. 

106 

108 

110 

111 

112 

113 

114 

115 

Internal error 
Report to Microsoft, Inc. 

Disk full 

File not found 

Disk is write protected 

Internal error 
Report to Microsoft, Inc. 

Internal error 
Report to Microsoft, Inc. 

Internal error 
Report to Microsoft, Inc. 

Internal error 
Report to Microsoft, Inc. 



CHAPTER 3 

FORMAT OF MS-CREF COMPATIBLE FILES 

MS-CREF will process files other than those generated by 
Microsoft's assembler as long as the file conforms to the 
format that MS-CREF expects. 

3.1 GENERAL DESCRIPTION OF MS-CREF FILE PROCESSING 

In essence, MS-CREF reads a stream of bytes from the cross 
reference file (or source file), sorts them, then emits them 
as a printable listing file (the .REF file). The symbols 
are held in memory as a sorted tree. References to the 
symbols are held in a linked list. 

~S-CREF keeps track of line numbers in the source file by 
the number of end-of-line characters it encounters. 
Therefore, every line in the source file must contain at 
least an end-of-line character (see chart below) • 

MS-CREF attempts to place a heading at the top of every page 
of the listing. The name it uses as a title is the text 
,passed by your assembler from a TITLE (or similar) directive 
in your source program. The title must be followed by a 
title symbol (see chart below). If MS-CREF encounters more 
than one title symbol in the source file, it uses the last 
title read for all page headings. If MS-CREF does not 
encounter a title symbol in the file, the title line on the 
listing is left blank. 



FORMAT OF MS-CREF COMPATIBLE FILES 

3.2 FORMAT OF SOURCE FILES 

MS-CREF uses the first three bytes of the source 
format specification data. - The rest of the 
processed as a series of records that either begin 
with a byte that identifies the type of record. 

First Three Bytes 

Page 3-2 

file as 
file is 
or end 

(The PAGE directive in your assembler, which takes arguments 
for page length and line length, will pass this information 
to the cross reference file.) 

First Byte 
The number of lines to be printed per page (page 
length range is from 1 to 255 lines). 

Second Byte 
The number of characters per line (line length 
range is from 1 to 132 characters). 

Third Byte 
The Page Symbol (07) that tells MS-CREF that the 
two preceding bytes define listing page size. 

If MS-CREF does not see these first three bytes in the file, 
it uses default values for page size (page length: 58 
lines; line length: 80 character~). 

Control Symbols 

The two charts show the 
recognizes and the byte 
recognize record types. 

types of records that MS-CREF 
values and placement it uses to 

Record have a Control Svrnbol (which identifies the record 
type) either as the first byte of the record or as the last 
byte. 



FORMAT OF MS-CREF COMPATIBLE FILES Page 3-3 

Records That Begin with a Control Symbol 

Byte value Control Symbol Subsequent Bytes 

01 Reference symbol Record is a reference 
to a symbol name 
(1 to 80 characters) 

02 Define symbol Record is a definition 
of a symbol name 
(1 to 80 characters) 

04 End of line (none) 

05 End of file lAH 

Records That End with a Control Symbol 

Byte value Control Symbol Preceding Bytes 

06 Title defined Record is title text 
(1 to 80 characters) 

07 Page length/ One byte for page length 
line length followed by one byte 

for line length 

For all record types, the byte value represents a control 
character, as follows: 

01 Control-A 
02 Control-B 
04 Control-D 
05 Control-E 
06 Control-F 
07 Control-G 



FORMAT OF MS-CREF COMPATIBLE FILES Page 3-4 

The Control Symbols are defined as follows: 

Reference symbol 
Record contains the name of a symbol that is 
referenced. The name may be from 1 to 80 ASCII 
characters long. Additional characters are 
truncated. 

Define symbol 
Record contains the 
defined. The name 
characters long. 
truncated. 

End of line 

name of a symbol that is 
may be from 1 to 80 ASCII 
Additional characters are 

Record is an end of line symbol character only (04H 
or Control-D) 

End of file 
Record is the end of file character (lAH) 

Title defined 
ASCII characters of the title to be printed at the 
top of each listing page. The title may be from 1 
to 80 characters long. Additional characters are 
truncated. The last title definition record 
encountered is used for the title placed at the top 
of all pages of the listing. If a title definition 
record is not encountered, the title line on the 
listing is left blank. 

Page length/line length 
The first byte of the record contains the number of 
lines to be printed per page (range is from 1 to 
255 lines). The second byte contains the- number of 
characters to be printed per page (range is from 1 
to 132 characters). The default page length is 58 
lines. The default line length is 80 characters. 

Summarv of CRF File Record Contents 

~ contents 

101isymbol name I 

1021symbol name I 

IQTI 

105llAl 

ltitle textl06! 

IPLILLl071 

length of record 

2-81 bytes 

2-81 bytes 

1 byte 

2 bytes 

2-81 bytes 

3 bytes 



INDEX 

Command Characters 1-4 
Control-C • • • • • 1-4 
; ............. 1-4 

Command Prompts 
Cross reference [.CRF] ••• 1-3 
Listing [crffile.REF] • 1-3 

Control symbols ••••••• 3-2, 3-4 
Control-C (command character) 1-4 
Creating a cross reference file 1-1 
Cross reference [.CRF] (command prompt) 1-3 

Default extensions 
• CRF • •••• 
• REF • . • • • 

Error messages • 

• • 4 
· • 4 

• • 2-1 

Format of cross reference listings 1-6 
Format of MS-CREF compatible files 3-1 

Invoking 
Method 1 • • • • • • • • • • 1-3 
Method 2 • • • • • • • • • • 1-5 
Summary of Methods • • • • • 1-2 

Invoking MS-CREF • •• •• 1-2 

Listing [crffile.REF] (command prompt) 1-3 

• • 1-3 Method 1 • 
Method 2 . • • • • 1-5 

Overview • • • 4 

Running MS-CREF • • 1-1 

Summary of CRF file record contents 3-4 
Summary of methods to invoke • 1-2 

~CRF (default extension) 
.REF (default extension) 
: (command character) 

• • • 4 
• • • 4 

• • 1-4 



Contents 

APPENDIX A ASCII Character Codes 

Appendix B Table of MACRO-86 Directives 

B.l Memory Directives B-1 
B.2 Macro Directives B-2 
B.3 Conditional Directives B-2 
B.4 Listing Directives B-2 
B.5 Attribute Operators B-3 
B.6 Precedence of Operators B-4 

Appendix C Table of 8086 Instructions 

C.l 8086 Instruction Mnemonics, Alphabetical C-l 
C.2 8086 Instruction Mnemonics by Argument Type C-4 



APPENDIX A 

ASCII CHARACTER CODES 

Dec Hex CHR Dec Hex CHR Dec Hex CHR 

000 OOH NUL 043 2BH + 086 56H V 
001 01H SOH 044 2CH 087 57H W 
002 02H STX 045 2DH 088 58H X 
003 03H ETX 046 2EH . 089 59H Y 
004 04H EOT 047 2FH / 090 5AH Z 
005 05H ENQ 048 30H 0 091 5BH [ 
006 06H ACK 049 31H 1 092 5CH \ 
007 07H BEL 050 32H 2 093 5DH ] 
008 08H BS 051 33H 3 094 5EH A 

009 09H HT 052 34H 4 095 5FH 
010 OAH LF 053 35H 5 096 60H T 

011 OBH VT 054 -36H 6 097 61H a 
012 OCH FF 055 37H 7 098 62H b 
013 ODH CR 056 38H 8 099 63H c 
014 OEH SO 057 39H 9 100 64H d 
015 OFH SI 058 3AH 101 65H e 
016 10H DLE 059 3BH 102 66H f 
017 11H DC1 060 3CH < 103 67H 9 
018 12H DC2 061 3DH = 104 68H h 
019 13H DC3 062 3EH > 105 69H i 
020 14H DC4 063 3FH ? 106 6AH j 
021 15H NAK 064 40H @ 107 6BH k 
022 16H SYN 065 41H A 108 6CH 1 
023 17H ETB 066 42H B 109 6DH m 
024 18H CAN 067 43H C 110 6EH n 
025 19H EM 068 44H D III 6FH 0 

026 1A1: SUB 069 45H E 112 70H P 
027 1BH ESCAPE 070 46H F 113 71H q 
028 1CH FS 071 47H G 114 72H r 
029 1DH GS 072 48H H 115 73H s 
030 1EH RS 073 49H I 116 74H t 
031 IFH US 074 4AH J 117 75H u 
032 20H SPACE 075 4BH K 118 76H v 
033 21H 076 4CH L 119 77H w 
034 22H " 077 4DH M 120 78H x 
035 23H # 078 4EH N 121 79H Y 
036 24H $ 079 4FH 0 122 7AH z 
037 25H % 080 SOH P 123 7BH ! 038 26H & 081 51H Q 124 7CH 
039 27H 082 52H R 125 7DH 
040 28H ( 083 53H S 126 7EH 
041 29H ) 084 54H T 127 7FH DEL 
042 2AH * 085 55H U 

Dec=decima1, Hex=hexadecima1 (H), CHR=character. 
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout 



APPENDIX B 

Table of MACRO-86 Directives 

B.I MEMORY DIRECTIVES 

<name> 
<name> 
<name> 
<name> 
<name> 

ASSUME <seg-reg>:<seg-name>[,<seg-reg>:<seg-name> ••• ] 
ASSUME NOTHING 
COMMENT <delim><text><delim> 

DB <exp> 
DD <exp> 
DQ <exp> 
DT <exp> 
DW <exp> 

END [<exp>] 
<name> EQU <exp> 
<name> = <exp> 

EXTRN <name>:<type>[,<name>:<type> ••• ] 
PUBLIC <name>[,<name> ••• ] 

<name> LABEL <type> 
NAME <module-name> 

<name> PROC [NEAR] 
<name> PROC [FAR] 

I 
<proc-name> ENDP 

.RADIX <exp> 
<name> RECORD <field>:<width> [=<exp>] [, ••• ] 

<name> GROUP <segment-name>[, ••• ] 
<name> SEGMENT [<align>] [<combine>] [<class>] 

I 
<seq-name> ENDS 

EVEN 
ORG <exp> 

<name> STRUC 
I 

<struc-name> ENDS 



B.2 MACRO DIRECTIVES 

ENDM 
EXITM 

Page B-2 

IRP <dummy>,<parameters in angle brackets> 
IRPC <dummy>,string 
LOCAL <parameter> [,<parameter>o 0.] 

<name> MACRO <parameter>[,<parameter> ••• ] 
PURGE <macro~name>[, ••• ] 
REPT <exp> 

Special Macro Operators 
& (ampersand) - concantenation 
<text> (angle brackets - single literal) 
;; (double semicolons) - suppress comment 
! (exclamation point) - next character literal 
% (percent sign) - convert expression to number 

B.3 CONDITIONAL DIRECTIVES 

ELSE 
ENDIF 
IF <exp> 
IFB <arg> 
IFDEF <symbol> 
IFDIF <argl>,<arg2> 
IFE <exp> 
IFIDN <argl>,<arg2> 
IFNB <arg> 
IFNDEF <symbol> 
IFI 
IF2 

B.4 LISTING DIRECTIVES 

.CREF 

.LALL 

.LFCOND 

.LIST 
%OUT <text> 
PAGE <exp> 
.SALL 
.SFCOND 
SUBTTL <text> 
.TFCOND 
TITLE <text> 
.XALL 
.XCREF 
.XLIST 



Page B-3 

B.5 ATTRIBUTE OPERATORS 

Override operators 

Pointer (PTR) 
<attribute> PTR <expression> 

Segment Override (:) (colon) 
<segment-register>:<address-expression> 
<segment-name>:<address-expression> 
<group-name>:<address-expression> 

SHORT 
SHORT <label> 

THIS 
THIS <distance> 
THIS <type> 

Value Returning Operators 

SEG 
SEG <label> 
SEG <variable> 

OFFSET 
OFFSET <label> 
OFFSET <variable> 

TYPE 
TYPE <label> 
TYPE <variable> 

• TYPE 
.TYPE <variable> 

L.t!:NGTH 
LENGTH <variable> 

SIZE 
SIZE <variable> 

Record Specific operators 

Shift-count - (Record fieldname) 
<record-fieldname> 

MASK 
MASK <record-fieldname> 

WIDTH 
WIDTH <record-fieldname> 
WIDTH <record> 



B.6 PRECEDENCE OF OPERATORS 

All operators in a single item have the same 
regardless of the order listed within the item. 
line breaks are used for visual clarity, not 
functional relations. 

1. LENGTH, SIZE, WIDTH, MASK 
Entries inside: parenthesis ( ) 

angle brackets < > 
square brackets [ ] 

Page B-4 

precedence, 
Spacing and 

to indicate 

structure variable operand: <variable>.<field> 

2. segment override operator: colon ( : ) 

3. PTR, OFFSET, SEG, TYPE, THIS 

4. HIGH, LOW 

5. * I, MOD, SHL, SHR , 
6. +, - (both unary and binary) 

7. EQ, NE, LT, LE, GT, GE 

8. Logical NOT 

9. Logical AND 

10. Logical OR, XOR 

11. SHORT,.TYPE 



APPENDIX C 

Table of 8086 Instructions 

The mnemonics are listed alphabetically with their full 
names. The 8086 instructions are also listed in groups 
based on the type of arguments the instruction takes. 

C.I 8086 INSTRUCTION MNEMONICS, ALPHABETICAL 

Mnemonic 

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
CALL 
CBW 
CLC 
CLD 
CLI 
CMC 
CMP 
CMPS 
CMPSB 
CMPSW 
CWD 
DAA 
DAS 
DEC 
DIV 
ESC 
HLT 
IDIV 
IMUL 
IN 
INC 
INT 
INTO 

Full Name 

ASCII adjust for addition 
ASCII adjust for division 
ASCII adjust for multiplication 
ASCII adjust for subtraction 
Add with carry 
Add 
AND 
CALL 
Convert byte to word 
Clear carry flag 
Clear direction flag 
Clear interrupt flag 
Complement carry flag 
Compare 
Compare byte or word (of string) 
Compare byte string 
Compare word string 
Convert word to double word 
Decimal adjust for addition 
Decimal adjust for subtraction 
Decrement 
Divide 
Escape 
Halt 
Integer divide 
Integer multiply 
Input byte or word 
Increment 
Interrupt 
Interrupt on overflow 



Mnemonic 

IRET 
JA 
JAE 
JB 
JBE 
JC 
JCXZ 
JE 
JG 
JGE 
JL 
JLE 
JMP 
JNA 
JNAE 
JNB 
JNBE 
JNC 
JNE 
JNG 
JNGE 
JNL 
JNLE 
JNO 
JNP 
JNS 
JNZ 
JO 
JP 
JPE 
JPO 
JS 
JZ 
LAHF 
LDS 
LEA 
LES 
LOCK 
LODS 
LODSB 
LODSW 
LOOP 
LOOPE 
LOOPNE 
LOOPNZ 
LOOPZ 
MOV 
MOVS 
MOVBS 
MOVSW 
MUL 
NEG 
NOP 
NOT 

Full Name 

Interrupt return 
Jump on above 
Jump on above or equal 
Jump on below 
Jump on below or equal 
Jump on carry 
Jump on CX zero 
Jump on equal 
Jump on greater 
Jump on greater or equal 
Jump on less than 
Jump on less than or equal 
Jump 
Jump on not above 
Jump on not above or equal 
Jump on not below 
Jump on not below or equal 
Jump on no carry 
Jump on not equal 
Jump on not greater 
Jump on not greater or equal 
Jump on not less than 
Jump on not less than or equal 
Jump on not overflow 
Jump on not parity 
Jump on not sign 
Jump on not zero 
Jump on overflow 
Jump on parity 
Jump on parity even 
Jump on parity odd 
Jump on sign 
Jump on zero 
Load AH with flags 
Load pointer into DS 
Load effective address 
Load pointer into ES 
LOCK bus 
Load byte or word (of string) 
Load byte (string) 
Load word (string) 
LOOP 
LOOP while equal 
LOOP while not equal 
LOOP while not zero 
LOOP while zero 
Move 
Move byte or word (of string) 
Move byte (strinq) 
Move word (string) 
Multiply 
Negate 
No operation 
NOT 

Page C-2 



Mnemonic 

OR 
OUT 
POP 
POPF 
PUSH 
PUSHF 
RCL 
RCR 
REP 
RET 
ROL 
ROR 
SAHF 
SAL 
SAR 
SBB 
SCAS 
SCASB 
SCASW 
SHL 
SHR 
STC 
STD 
STI 
STOS 
STOSB 
STOSW 
SUB 
TEST 
WAIT 
XCHG 
XLAT 
XOR 

Full Name 

OR 
Output byte or word 
POP 
POP flags 
PUSH 
PUSH flags 
Rotate through carry left 
Rotate through carry right 
Repeat 
Return 
Rotate left 
Rotate right 
Store AH into flags 
Shift arithmetic left 
Shift arithmetic right 
Subtract with borrow 
Scan byte or word (of string) 
Scan byte (string) 
Scan word (string) 
Shift left 
Shift right 
Set carry flag 
Set direction flag 
Set interrupt flag 
Store byte or word (of string) 
Store byte (string) 
Store word (string) 
Subtract 
TEST 
WAIT 
Exchange 
Translate 
Exclusive OR 

Page C-3 



Page C-4 
8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE 

C.2 8086 INSTRUCTION MN~10NICS BY ARGUMENT TYPE 

In this section, the instructions are grouped according to 
the type of argument{s) they take. In each group the 
instructions are listed alphabetically in the first column~ 
The formats of the instructions with the valid argument 
types are shown in the second column. If a format shows OP, 
that format is legal for all the instructions shown in that 
group. If a format is specific to one mnemonic, the 
mnemonic is shown in the format instead of OP. 

The following abbreviations are used in these lists: 

OP = opcode; instruction mnemonic 

reg = byte register (AL,AH,BL,~H,CL,CH,DL,DH) 
or word register (AX,BX,CX,DX,SI,DI,BP,SP) 

rim = register or memory address or indexed and/or 

accum = AX or AL register 

immed = immediate 

mem = memory operand 

segreg = segment register (CS,DS,SS,ES) 

General 1 operand instructions 

Mnemonics 

ADC 
ADD 
AND 
CMP 
OR 
SBB 
SUB 
TEST 
XOR 

Argument Types 

OP reg,r/m 
OP r/m,reg 
OP accum, immed 
OP r/m,immed 

~ and JUMP ~ instructions 

Mnemonics 

CALL 
JMP 

Argument Types 

OP mem {NEAR}{FAR} direction 
OP i-1m (indirect data -- DWORD, WORD) 

based 



Page C-5 
8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE 

Relative jumps 

Argument Type 

OP addr (+129 or -126 of IP at start, or 
+127 at end of jump instruction) 

Mnemonics 

JA JC JZ JNGE JNP 
JNBE JNAE JG JLE JPO 
JAE JBE JNLE JNG JNS 
JNB JNA JGE JNE JO 
JNC JCXZ JNL JNZ JP 
JB JE JL JNO JPE 

JS 

Loop instructions ~ ~ ~ Relative jumps 

LOOP LOOPE LOOPZ LOOPNE LOOPNZ 

Return instruction 

Mnemonic Argument Type 

RET 

Tf-\ET 

rimmed] 

":5--Q:'~ c: k -to G 

(optional, number of words to POP) 

No operand instructions 

Mnemonics 

AAA 
AAD 
AAM 
AAS 
CBW 
CLC 

CLD 
CLI 
CMC 
CMPSB 
CMPSW 
CWD 

Load instructions 

DAA 
DAS 
HLT 
INTO 
lRET 
LAHF 

Mnemonics Argument Type 0 

LODSB PUSHF STI 
LODSW SAHF STOSB 
MOVSB SCASB STOSW 
MOVSW SCASW WAIT 
NOP STC XLATB 
POPF STD 

LDS 
LEA 
LES 

OP rim (except that OP reg is illegal) 



8086 INSTRUCTION MNEMONICS BY ARGUMENT·TYPE 

Move instructions 

Mnemonic 

MOV 

Argument Types 

OP mem,accum 
OP accum,mem 
OP segreg,r/m (except CS is illegal) 
OP r/m,segreg 
OP r/m,reg 
OP reg, r /x:n 
OP reg,immed 
OP r/m,immed 

Push and E22 instructions 

Mnemonics 

PUSH 
POP 
P l) os \-\ F 
PDPF 

Argument Types 

OP word-reg 
OP segreg (POP CS is illegal) 
OP rim 

Shift/rotate type instructions 

Mnemonics 

RCL 
RCR 
ROL 
ROR 
SAL 
SHL 
SAR 
SHR 

Argument Types 

OP r/m,l 
OP r/m,CL 

Input/output instructions 

Mnemonics Argument Types 

Page C-6 

IN IN accum,byte-immed (immed = port 0-255) 
IN accum,DX 

OUT OUT immed,accum 
OUT DX,accum 



8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE 

Increment/decrement instructions 

Mnemonics 

INC 
DEC 

Argument Types 

OP word-reg 
OP rim 

Arith. multioly/division/negate/not 

Mnemonics 

DIV 
IDIV 
MUL 
IMUL 
NEG 
NOT 

Argument Type 

OP r/m (implies AX OP rim, except NEG) 

(NEG implies AX OP NOP) 

Interrupt instruction 

Mnemonic Argument Types 

Page C-7 

INT INT 3 (value 3 is one byte instruction) 
INT byte-irnrned 

Exchange instruction 

Mnemonic 

XCHG 

Argument Types 

XCHG accum,reg 
XCHG reg,accum 
XCHG reg,r/m 
XCHG r/m,reg 



1x: 

-Z 
... 

-:k 

x 

~ 

Page C-8 
8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE 

Miscellaneous instructions 

Mnemonics Argument Types 

XLAT 
ESC 

XLAT byte-mem (only checks argument, not in opcode) 
ESC 6-bit-number,r/m 

String primitives 

These instructions have bits to record only their operand(s}, if 
they are byte or word, and if a segment override is involved. 

Mnemonics Argument Types 

CMPS (S/W) CMPS byte-word, byte-word 
(CMPS right operand is ES) 

LaDS LaDS byte/word, byte/word 
(LaDS one argument = no ES) 

MOVS MOVS byte/word, byte/word 
(MOVS left operand is ES) 

SCAS SCAS byte/word,byte/word 

STOS \ ' 
(SeAS one argument = ES) 
STOS byte/word, byte/word 
(STOS one argument = ES) 

Repeat prefix to string instructions 

Mnemonics 

LOCK REP REPE REPZ 

C.LD 

"S-T U 

...Ii' 't"I.""'-- • - C' a .:' / -: ~t C ~ 7'- V -L- • ...J ." • .. , .. J, 

REPNE REPNZ 



GENERAL INDEX 

.EXE (MS-LINK) · · · . · · · 6-9, 1-9 

.LIB (MS-LINK) · · · 6-9 
• MAP (MS-LINK) · · · . · · · 6-9, 1-9 
.OBJ (MS-LINK) · · · 6-9, 1-8 

/D (assembler swi tch) (MACRO-86) 5-3 
/D (MACRO-86) (MACRO-86) · · 6-9 
/0 (assembler swi tch) (MACRO-86) 5-3 
/X (assembler swi tch) (MACRO-86) 5-3 

<record-fieldname> (shift count) (MACRO-86) 

= (equal sign directive) (MACRO-86) 4-12 

Action (MACRO-86) ••••• 1-8, 4-1 
Arithmetic operators (MACRO-86) 3-31 
Assembler errors (MACRO-86) 6-2 

Calling a Macro (MACRO-86). 4-43 
Class (MS-LINK) •••••• 6-5, 1-8 

3-28 

Colon (: - segment override operator) (MACRO-86) 3-17 
Command Characters 

Control-C (MACRO-86) • 5-4 
Control-C (MS-CREF) ••• 1-4 
Control-C (MS-LIB). . 1-2, 1-11 
Control-C (MS-LINK) • 1-4 
Summary of (MS-LIB) • 1-2 
~ (MS-CREF) ••••••• 1-4 
& {MS-LIB)..... • 1-11 
7 (MS-LIB) 1-10 
* (MS-LIB) • • • • • • 1-10 

(MS-LIB) • • • • 1-9 
+ (MS-LIB) • • • • 1-9 
& (MS-LIB)........ 1-2 
~ (MS-LIB) • • •• 1-2 
* (MS-LIB) • • •• 1-2 

(MS-LIB) • • •• 1-2 
+ (MS-LIB)........ 1-2 
~ (MS-LINK) ••• 1-4 
+ (MS-LINK) ••••..• 1-3 
~ (MACRO-86)....... 5-4 

Command Characters (MACRO-86) 5-4 
Command Characters (MS-CREF) 1-4 
Command Characters (MS-LIB) 1-9 
Command Characters (MS-LINK) 1-3 
Command Prompts 

Cross reference (MACRO-86) 5-3 
Cross reference [.CRF] (MS-CREF) 1-3 
Libraries (MS-LINK) ••• 1-2, 1-10 



Library file (MS-LIB) •• 1-2, 1-7 
List file (MS-LIB) •••• 1-2, 1-8 
List File (MS-LINK) ••• 1-2, 1-9 
Listing [crffile.REF] (MS-CREF) 1-3 
Object filename (MACRO-86) 5-3 
Object Modules (MS-LINK). 1-2, 1-8 
Operation (MS-LIB) •••• 1-2, 1-8 
Run File (MS-LINK) •••• 1-2, 1-9 
Source filename (MACRO-86) 5-3 
Source listing (MACRO-86) 5-3 
Summary of (MACRO-86) •• 5-3 
Summary of (MS-LIB) ••• 1-2 
Summary of (MS-LINK)... 1-2 

Command Prompts (MS-LIB) 1-7 
COMMENT (MACRO-86)..... 4-6 
Comments (MACRO-86) •••• 1-7 
Consistency check (MS-LIB). 1-3, 1-5 
Control symbols (MS-CREF) • 3-2, 3-4 
Control-C (command character) (MACRO-86) 5-4 
Control-C (command character) (MS-CREF) 1-4 
Control-C (command character) (MS-LIB) 1-2, 1-11 
Control-C (command character) (MS-LINK) 1-4 
Creating a cross reference file (MS-CREF) 1-1 
Creating a new library (MS-LIB) 1-3, 1-7 
Cross reference [.CRF] (command prompt) (MS-CREF) 1-3 

Data items (MACRO-86) ••• 3-9 
DB - Define Byte (MACRO-86) 4-7 to 4-8 
DD - Define Doubleword (MACRO-86) 4-7, 4-9 
Default extensions 

.CRF {MS-CREF)...... 2-4 
• REF {MS-CREF)...... 2-4 

Differences between pass 1 listing and pass 2 listing 
Direct memory operands (MACRO-86) 3-12 
Directives 

= (equal sign) (MACRO-86) 4-12 
COMMENT (MACRO-86).... 4-6 
Conditional (MACRO-86) •• 4-36 
DB - Define Byte (MACRO-86) 4-7 to 4-8 
DD - Define Doubleword (MACRO-86) 4-7, 4-9 
DQ - Define Quadword (MACRO-86) 4-7, 4-9 
DT - Define Tenbytes (MACRO-86) 4-7, 4-9 
DW - Define Word (MACRO-86) 4-7 to 4-8 
ELSE (MACRO-86) • 4-39 
END {MACRO-86)...... 4-10 
ENDC (MACRO-86) • 4-39 
ENDIF (MACRO-86) • 4-39 
ENDM (MACRO-86) • 4-44 
ENDP (MACRO-86) ••••• 4- 2 3 
EQU (MACRO-86). • 4-11 
EVEN (MACRO-86) ••• 4-13 
EXITM (MACRO-86) • 4-45 
EXTRN (MACRO-86) . 4-14 
GROUP (MACRO-86) . • • 4-16 
IF (MACRO-86) • • • • 4-37 
IFI (MACRO-86) • • 4-37 
IF2 (MACRO-86) • • • . 4-37 
IFB {MACRO-86)...... 4-38 

(MACRO-86) 5-15 



IFDEF (MACRO-S6) • • • 4-37 
IFDIF (MACRO-S6) . • • 4-39 
IFE (MACRO-S6). • 4-37 
IFIDN (MACRO-S6)..... 4-39 
IFNB (MACRO-S6)- ••• 4-3S 
IFNDEF (MACRO-S6) ••.. 4-37 
INCLUDE (r.1ACRO- S 6 ) • • 4-1S 
IRP (MACRO-S6).. 4-50 
IRPC (MACRO-S6) ••••• 4-51 
LABEL (MACRO-S6)..... 4-19 
Listing (MACRO-S6) 4-56 
LOCAL (MACRO-S6)..... 4-46 
MACRO (MACRO-S6)..... 4-41 
Memorv (MACRO-S6) • • 4-5 
NAME (MACRO-S6) ••••• 4-21 
PAGE (MACRO-S6) ••••• 4-56 
PROC (MACRO-S6) ••••• 4-23 
PUBLIC (MACRO-S6) •••• 4-25 
PURGE (MACRO-S6).. • 4-47 
RECORD (MACRO-S6) •••• 4-27 
REPT (MACRO-S6) ••••• 4-49 
SEGMENT (MACRO-S6).... 4-30 
STRUCTURE (MACRO-S6)... 4-34 
SUBTTL (MACRO-S6) •••• 4-5S 
TITLE (MACRO-S6).. . 4-21, 4-57 
• RADIX (MACRO-S6) • • 4-26 
%OUT (MACRO-S6) • • • 4-59 
.LIST (MACRO-S6) ••••• 4-60 
.XLIST (MACRO-S6) •••• 4-60 
.SFCOND (MACRO-S6) .••• 4-61 
.LFCOND (MACRO-S6) • • 4-61 
• TFCOND (MACRO-S 6) . • • • 4-61 
• XALL (MACRO-S 6) • • • • • 4-62 
.LALL (MACRO-S6) ••••• 4-62 
• SALL (MACRO-S6).. • 4-62 
.CREF (MACRO-S6). •• 4-63 
.XCREF (MACRO-S6) • • 4-63 

Directives (MACRO-S6) • 4-1, 4-3 
DQ - Define Quadword (MACRO-S6) 4-7, 4-9 
Drive designations (MS-LINK) 6-9 
DT - Define Tenbytes (MACRO-S6) 4-7, 4-9 
DW - Define Word (MACRO-S6) 4-7 to 4-S 

ELSE (MACRO-S6) · · · · · · 4-39 
END (MACRO-S6) . · · · · · · 4-10 
ENDC (MACRO-S6) · · · · · · 4-39 
ENDIF (MACRO-S6) · · 4-39 
ENDM (MACRO-S6) · · · · · · 4-44 
ENDP (MACRO-S6) · · · · 4-23 
ENDS (MACRO-S6) · · · · · · 4-34 
EQU (MACRO-S6) . · · · · 4-11 
Equal sign directive (=) (MACRO-S6) 4-12 
Error messages 

numerical list (MACRO-S6) 6-15 
Error messages (MS-CREF) 2-1 
Error messages (MS-LIB) · · 2-1 
EVEN (MACRO-S6) · · · · 4-13 
EXITM (MACRO-86) · · · · · · 4-45 



Expression evaluation (MACRO-86) 3-34 
Expressions (MACRO-86) .•• 1-9, 3-1 
EXT~~ (MACRO-86)...... 4-14 

Filename extensions - default 
.OBJ (MS-LINK) •••••• 6-9 
.EXE (MS-LINK) •••••• 6-9 
• MAP (MS-LINK)...... 6-9 

Filename extensions - default (MS-LINK) 6-9 
Files that MS-LINK uses (MS-LINK) 6-9 
Format of cross reference listings (MS-CREF) 1-6 
Format of MS-CREF compatible f.iles (MS-CREF) 3-1 
Formats 

program listing (MACRO-86) 5-10 
symbol table (MACRO-86) • 5-16 

Formats of listings and symbol tables (MACRO-86) 5-10 

General Facts about Source Files (MACRO-86) 1-1 
GROUP (~iACRO-86)...... 4-16 
Group (MS-LINK) ••••• e 6-5 

HIGH (MACRO-86) •• •••• 3-20 
How MS-LINK combines and arranges segments 

I/O Handler errors (MACRO-86) 6-13 
IF (MACRO-86) ••••••• 4-37 
IFl (MACRO-86)....... 4-37 
IF2 (MACRO-86)....... 4-37 
IFB (MACRO-86)....... 4-38 
IFDEF (MACRO-86) • • •• 4-37 
IFDIF (MACRO-86) • • 4-39 
IFE (MACRO-86)....... 4-37 
IFIDN (MACRO-86).... •• 4-39 
IFNB (MACRO-86) •••••• 4-38 
IFNDEF (MACRO-86) ••••• 4-37 
Immediate operands (MACRO-86) 3-9 
INCLUDE (MACRO-86).. ••• 4-18 

(MS-LINK) 6-6 

Indexed memory operands (MACRO-86) 3-13 
Instructions (MACRO-86) •• 4-1 to 4-2 
Instructions by argument type (Appendices) C-4 
Instructions, alphabetical (Appendices) C-l 
Invoking 

Method 1 (MS-CREF) • • 1-3 
Method 1 (MS-LIB) •••• 1-2 
Method 2 (MS-CREF).... 1-5 
Method 2 (MS-LIB) • • 1-3 
Method 3 (MS-LIB) • • 1-5 
Summary of Methods (MS-CREF) 1-2 
Summary of Methods (MS-LIB) 1-1 
Summary of Methods (MS-LINK) 1-1 

Invoking MS-CREF (MS-CREF). 1-2 
Invoking MS-LIB (MS-LIB) 1-1 
IRP (MACRO-8 6). •••. 4-50 
IRPC (MACRO-86) ••• • 4-51 

LABEL (MACRO-86).... 4-19 
Labels (MACRO-86) ••••• 2-2 
Legal characters (MACRO-86) 1-2 



LENGTH (MACRO-86) ••••• 3-25 
Library file (command prompt) (MS-LIB) 1-2, 1-7 
List file (command prompt) (MS-LIB) 1-2, 1-8 
Listing [crffi1e.REF] (command prompt) (MS-CREF) 1-3 
LOCAL (MACRO-86)...... 4-46 -
Logical operators (MACRO-86) 3-33 
LOW (MACRO-86).. • 3-20 

MACRO (MACRO-86) • • • • 4-41 
MASK (MACRO- 86) •••••• 3-2 9 
Memory directives (MACRO-86) 4-5 
Memory operands (MACRO-86). 3-12 
Memory organization (MACRO-86) 3-2 
Method 1 (MS-CREF) • • • 1-3 
Method 1 (MS-LIB) • 1-2 
Method 2 (MS-CREF) • 1-5 
Method 2 (MS-LIB) ••••• 1-3 
Method 3 (MS-LIB) •••.. 1-5 

NAME (MACRO-86) 
Names (MACRO-86) 
Names (MACRO-86) 
Numeric notation 

• • • • 4-21 
• . • • . . 1-6 

(MACRO-86) 2-1 
(MACRO-86) 1-3, 3-9 

OFFSET (MACRO-86) ••••• 3-22 
Offset attribute (MACRO-86) 2-3 
Operand summary (MACRO-86). 1-10 
Operands (MACRO-86) •• •• 3-8 
Operation (command prompt) (MS-LIB) 1-2, 1-8 
Operator summary (MACRO-86) 1-10 
Operators (MACRO-86).... 3-15 
ORG (MACRO-86)....... 4-22 
Override operators (MACRO-86) 3-16 
Overview (MS-CREF)..... 2-4 
Overview of MS-LINK operation (MS-LINK) 6-4 
Overviews 

MACRO-86 (MACRO-86) ••• 10 

PAGE (MACRO-86) •••••• 4-56 
Pass 1 listing versus pass 2 listing (MACRO-86) 5-15 
Pointer (PTR) (MACRO-86).. 3-16 
Precedence of operators (MACRO-86) 3-34 
PROC (MACRO-86) • • • • 4-23 
Program listing format .(MACRO-86) 5-10 
PTR (MACRO-86).. • 3-16 
PUBLIC (MACRO-86) ••••• 4-25 
PURGE (MACRO-86).. •• 4-47 

RECORD (MACRO-86) • • • 4-27 
Register operands (MACRO-86) 3-10 
Relational operators (MACRO-86) 3-32 
REPT (MACRO-86) •••••• 4-49 
Response File (MS-LIB)... 1-5 
Response File (MS-LINK) •. 1-6 
Running MS-CREF (MS-CREF) • 1-1 
Running MS-LIB (MS-LIB) •• 1-1 
Runtime errors (MACRO-86) • 6-14 



SEG {MACRO-S6)....... 3-21 
SEGMENT {MACRO-S6)..... 4-30 
Segment (l-1S-LINK) ••••• 6-5, I-S 
Segment attribute (MACRO-S6) 2-3 
Segment override operator (:) (MACRO-S6) 3-17 
Shift count {MACRO-S6)... 3-2S 
SHORT {MACRO-S6)...... 3-lS 
SIZE (MACRO-S6) •••••• 3-26 
Source file contents (MACRO-S6) 1-4 
Source file naming (MACRO-S6) 1-1 
Special Macro Operators 

% {MACRO-S6)....... 4-55 
(MACRO-S6) • • • • • • • 4-52 

;; (MACRO-S6) •••••• 4-52 
& {MACRO-S6)....... 4-52 

Special Macro Operators (MACRO-S6) 4-52 
Statement Format 

Action (MACRO-S6) •••• l-S 
Comments (MACRO-S6) • 1-7 
Directives (MACRO-S6) 1-5 
Expressions (MACRO-S6) 1-9 
Instructions (MACRO-S6) • 1-5 
Names {MACRO-S6)..... 1-6 

Statement line format (MACRO-S6) 1-5 
STRUCTURE {MACRO-S6).... 4-34 
Structure operands (MACRO-S6) 3-14 
SUBTTL (MACRO-S6) ••• 4-5S 
Summary 

Operands (MACRO-S6) ••• 1-10 
Operators (MACRO-S6)... 1-10 

Summary of CRF file record contents (MS-CREF) 3-4 
Summary of listing symbols (MACRO-S6) 5-11 
Summary of methods to invoke (MS-CREF) 1-2 
Summary of methods to invoke (MS-LIB) 1-1 
Summary of methods to invoke (MS-LINK) 1-1 
Summary of methods to invoke MACRO-S6 (MACRO-S6) 5-1 
Switches 

MACRO-S6 
Summary of (MACRO-S6) • 5-3 

MACRO-S6 
/0 (MACRO-S 6) ••• 5~3, 6-9 
/0 (MACRO-S6) ••••• 5-3 
/X (MACRO-S6) ••••• 5-3 

MS-LINK 
Summary of (MS-LINK) 1-3 
/DSALLOCATE (MS-LINK) • 1-11 
/HIGH (MS-LINK) •••• 1-12 
/LINENUMBERS (MS-LINK). 1-12 
/MAP (MS-LINK)..... 1-12 
/PAUSE (MS-LINK).... 1-13 
/STACK (MS-LINK).... 1-13 

Switches (MACRO-S6) (MACRO-S6) 5-S 
Symbol table format (MACRO-S6) 5-16 
Symbols (MACRO-S6)..... 2-7 
Syntax Notation (General Introduction) 11 

THIS (MACRO-S6) .••••• 3-19 
TITLE {MACRO-S6) .•••.• 4-21, 4-57 



TYPE (MACRO-86) •••.•• 3-23 
Type attribute (MACRO-86) • 2-4, 2-6 

Value returning operators (MACRO-86) 
Variables (MACRO-86).... 2-5 
VM.TMP (MS-LINK).... 6-10 

WIDTH (MACRO-86) • . 3-30 

• TYPE (MACRO-86)...... 3-24 
• RADIX (MACRO-86) ••••• 4-26 
%OUT (MACRO-86). • 4-59 
.LIST (MACRO-86).... •• 4-60 
.XLIST (MACRO-86) ••••• 4-60 
• SFCOND (MACRO-86).... •. 4-61 
• LFCOND (MACRO-86) . • • 4-61 
.TFCOND (MACRO-86)..... 4-61 
.XALL (MACRO-86)...... 4-62 
.LALL (MACRO-86).... •• 4-62 
.SALL (MACRO-86) ••••.• 4-62 
.CREF (MACRO-86)...... 4-63 
• XC REF (MACRO-86) •• • 4-63 

3-21 

.CRF (default extension) (MS-CREF) 2-4 

.REF (default extension) (MS-CREF) 2-4 
: (command character) (MS-CREF) 1-4 
& (command character) (MS-LIB) 1-11 
: (command character) (MS-LIB) 1-10 
* (command character) (MS-LIB) 1-10 
- (command character) (MS-LIB) 1-9 
+ (command character) (MS-LIB) 1-9 
& (command character) (MS-LIB) 1-2 
; (command character) (MS-LIB) 1-2 
* (command character) (MS-LIB) 1-2 
- (command character) (MS-LIB) 1-2 
+ (command character) (MS-LIB) 1-2 
: (command character) (MS-LINK) 1-4 
+ (command character) (MS-LINK) 1-3 
: (command character) (MACRO-86) 5-4 
% (MACRO-86)........ 4-55 

(MACRO-86) •• •• •• 4-52 
; ; (MACF.O-8 6) ••••••• 4-52 
& (MACRO-86).. •••• 4-52 
: (colon - segment override operator) (MACRO-86) 3-17 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	1_0-001
	1_0-002
	1_0-01
	1_0-04
	1_0-05
	1_0-06
	1_0-07
	1_0-08
	1_0-09
	1_0-10
	1_0-11
	1_0-12
	1_0-13
	1_0-14
	1_03
	1_04
	1_05
	1_1-00
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_2-00
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_3-00
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_3-07
	1_3-08
	1_3-09
	1_3-10
	1_3-11
	1_3-12
	1_3-13
	1_3-14
	1_3-15
	1_3-16
	1_3-17
	1_3-18
	1_3-19
	1_3-20
	1_3-21
	1_3-22
	1_3-23
	1_3-24
	1_3-25
	1_3-26
	1_3-27
	1_3-28
	1_3-29
	1_3-30
	1_3-31
	1_3-32
	1_3-33
	1_3-34
	1_4-00
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_4-08
	1_4-09
	1_4-10
	1_4-11
	1_4-12
	1_4-13
	1_4-14
	1_4-15
	1_4-16
	1_4-17
	1_4-18
	1_4-19
	1_4-20
	1_4-21
	1_4-22
	1_4-23
	1_4-24
	1_4-25
	1_4-26
	1_4-27
	1_4-28
	1_4-29
	1_4-30
	1_4-31
	1_4-32
	1_4-33
	1_4-34
	1_4-35
	1_4-36
	1_4-37
	1_4-38
	1_4-39
	1_4-40
	1_4-41
	1_4-42
	1_4-43
	1_4-44
	1_4-45
	1_4-46
	1_4-47
	1_4-48
	1_4-49
	1_4-50
	1_4-51
	1_4-52
	1_4-53
	1_4-54
	1_4-55
	1_4-56
	1_4-57
	1_4-58
	1_4-59
	1_4-60
	1_4-61
	1_4-62
	1_4-63
	1_5-00
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_5-17
	1_5-18
	1_5-19
	1_5-20
	1_5-21
	1_5-22
	1_5-23
	1_5-24
	1_5-25
	1_6-00
	1_6-01
	1_6-02
	1_6-03
	1_6-04
	1_6-05
	1_6-06
	1_6-07
	1_6-08
	1_6-09
	1_6-10
	1_6-11
	1_6-12
	1_6-13
	1_6-14
	1_6-15
	1_6-16
	1_I-01
	1_I-02
	1_I-03
	1_I-04
	1_I-05
	2_0-001
	2_0-002
	2_0-003
	2_0-004
	2_0-01
	2_0-04
	2_0-05
	2_0-06
	2_0-07
	2_0-08
	2_0-09
	2_0-10
	2_1-01
	2_1-02
	2_1-03
	2_1-04
	2_1-05
	2_1-06
	2_1-07
	2_1-08
	2_1-09
	2_1-10
	2_1-11
	2_1-12
	2_1-13
	2_2-01
	2_2-02
	2_2-03
	2_I-01
	2_I-02
	3_0-001
	3_0-002
	3_0-003
	3_0-004
	3_0-01
	3_0-04
	3_0-05
	3_0-06
	3_1-01
	3_1-02
	3_1-03
	3_1-04
	3_1-05
	3_1-06
	3_1-07
	3_1-08
	3_1-09
	3_1-10
	3_1-11
	3_2-01
	3_2-02
	3_I-01
	3_I-02
	4_0-001
	4_0-002
	4_0-01
	4_0-04
	4_0-05
	4_003
	4_004
	4_1-01
	4_1-02
	4_1-03
	4_1-04
	4_1-05
	4_1-06
	4_1-07
	4_1-08
	4_2-01
	4_2-02
	4_3-01
	4_3-02
	4_3-03
	4_3-04
	4_I-01
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07

