

Operating System

Macro Assembler Manual

under the licence from Microsoft Corporation

Printed in Taiwan

Microsoft Corporation

Information in this document is subject to change without
notice_ and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is
against the law to copy the Microsoft Macro Assembler Manual
on magnetic tape, disk, or any other medium for any purpose
other than the purchaser's personal use.

(C) Microsoft Corporation 1981, 1983

Comments about this documentation may be sent to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, WA 98004

Microsoft is
Corporation.

a registered trademark

MS is a trademark of Microsoft Corporation.

Intel is a trademark of Intel Corporation.

under the licence from Microsoft Corporation

Printed in Taiwan

Document Number: 8407-200-01
Part Number: 14F16USP

of Microsoft

Contents

1 disk, with the following files:
M86.EXE
LINK.EXE
LIB.EXE
CREF.EXE
DEBUG.EXE

1 binder (titled Microsoft Macro Assembler Manual) with 5
manuals:

Microsoft Macro Assembler Utility Manual
Microsoft LINK Linker Utility Manual (Technical
Information Only)
Microsoft LIB Library Manager Manual
Microsoft CREF Cross-Reference Utility Manual
Microsoft DEBUG Utility Manual

System Requirements

Each utility requires different amounts of memory.

Macro Assembler - 96K bytes of memory minimum:
64K bytes for code and static data
32K bytes for run space

Microsoft LINK - SOK bytes of memory minimum:
40K bytes for code
lOK bytes for run space

Microsoft LIB - 38K bytes of memory minimum:
28K bytes for code
lOK bytes for run space

Microsoft CRE.F - 24K bytes of memory minimum:
14K bytes for code
lOK bytes for run space

Microsoft DEBUG - Memory minimum program-dependent
13K bytes for code
Run space program-dependent

Disk drive (s)
One disk drive if and only if output is sent to the
same physical disk from which the input vas taken.
None of the utility programs allows time to swap
disks during operation on a one-drive
configuration. Therefore, two disk drives is a
more practical configuration.

Microsoft

Welcome to the Microsoft(R) family of products.

Microsoft Corporation continues to supply
high-quality software for all types of users.

consistently

In addition to the Macro Assembler and Microsoft BASIC
interpreter, Microsoft sells other full-feature language
compilers, language subsets, and operating system products.
Microsoft offers a "family" of software products that both
look alike from one product to the next, and can be used
together for effective program development.

For more information about other
contact:

Microsoft Corporation
10700 Northup Way
Bellevue, WA 98004
(206) 828-8080

Microsoft products,

Contents

Genera1 Introduction

Major Features
Using These Manuals
Syntax Notation
Learning More about Assembly Language Programming
Overview of Program Development

Microsoft Macro Assemb1er Uti1ity

Introduction

Chapter 1 Creating a Macro Assembler Source File

Chapter 2 Names: Labels, Variables, and Symbols

Chapter 3 Expressions: Operands and Operators

Chapter 4 Action: Instructions and Directives

Chapter 5 Assembling a Macro Assembler Source File

Chapter 6 8087 Support

Chapter 7 Macro Assembler Messages

Appendices

r"ndex for Macro Assembler

GENERAL INTRODUCTION

The Microsoft Macro Assembler Manual includes utility
programs used for developing assembly language programs. In
addition, the Microsoft LINK Linker Utility and DEBUG are
used with of Microsoft's 16-bit language compilers.

Major Features

Macro Assembler Utility

Microsoft's Macro Assembler is a powerful assembler for
8086 based computers.

Macro Assembler supports most of the directives found in
Microsoft's Macro Assembler for the 8080 Macros and
conditionals are Intel 8080 standard.

Macro Assembler
ASM-86, except
directives.

is upward compatible with Intel's
Intel codemacros, macros, and a few $

Macro Assembler offers relaxed typing so that if you
enter a typeless operand for an instruction that accepts
only one type of operand, Macro Assembler assembles the
statement correctly instead of returning an error
message.

GENERAL INTRODUCTION Page 2

Microsoft LINK Linker Utility (Technical Information Only)

MS-LINK is a virtual linker, which can link programs
that are larger than available memory.

MS-LINK produces relocatable executable obje~t code.

MS-LINK processes overlays that you define.

MS-LINK can perform multiple library searches, using a
dictionary library search method.

MS-LINK prompts you for input and output modules and
other link session parameters.

MS-LINK can be ~un with an automatic response file to
answer the Linker prompts.

Microsoft LIB Library Manager

MS-LIB can add, delete, and extract modules in your
library of program files.

MS-LIB prompts you for input and output file and module
names.

MS-LIB can be run with an automatic response file to
answer the library prompts.

MS-LIB produces a cross-reference of symbols in the
library modules.

Microsoft CREF Cross-Reference Utility

MS-CREF produces a cross-reference listing of all
symbolic names in the Macro Assembler source program,
giving both the source line number of the definition and
the source line numbers of all other references to the

.symbols.

Microsoft DEBUG Utility

DEBUG provides a controlled testing environment for
binary and executable object files.

DEBUG eliminates the need to reassemble a program to see
if a problem has been fixed by a minor change.

GENERAL INTRODUCTION

DEBUG allows you to alter the contents
contents of a CPU register, and
reexecute a program to check on the
changes.

Using These Manuals

Page 3

of a file or the
then immediately
validity of the

These manuals are designed to be used as a set and
individually. Each manual is mostly self-contained and
refers to the other manuals only at junctures in the
software. The overview given below describes the flow or
program development from creating a source file through
program execution. The processes described in this overview
are echoed and expanded in overviews in each of the manuals
contained in the Microsoft Macro Assembler M~nual.

~~~ 

Also, note that each manual has its own index. 

Figure 1 illustrates an overview of the Microsoft Macro 
Assembler Manual. 



GENERAL INTRODUCTION 

Refer to 
DEBUG 

Refer to 
MS-LINK 

Refer to 
MS-CREF 

Refer to 
MS-LIB 

Macro 
Assembler 

Man1.i al 

~ 

... DEBUG 
Manual 

~ 
MS-LINK 

Manual 

__._ MS-CREF ,... 
Manual 

MS-LIB 
Manual 

Figure 1. Overview, Macro Assembler Manual 

Page 4 

Each of these manuals is used independently. References 
between manuals reflect junctures in the software. 



GENERAL INTRODUCTION Page 5 

Syntax Notation 

The following notation is used throughout this manual in 
descriptions of command and statement syntax: 

[ ] Square brackets indicate that the enclosed entry is 
optional. 

< > Angle brackets indicate data you must enter. When 
the angle brackets enclose lower case text, you 
must type in an entry defined by the text; for 
example, <filename>. When the angle brackets 
enclose upper case text, you must press the key 
named by the text; for example, <RETURN>. 

{ } Braces indicate that you have a choice between two 
or more entries. At least one of the entries 
enclosed in braces must be chosen unless the 
entries are also enclosed in square brackets. 

Ellipses indicate that an entry may be repeated as 
many times as needed or desired. 

CAPS Capital letters indicate portions of statements or 
commands that must be entered, exactly as shown. 

All other punctuation, such as commas, colons, slash marks, 
and equal signs, must be entered exactly as shown. 

Figure 2 illustrates the syntax notation used in this 
manual. 



GENERAL INTRODUCTION 

You have an option; 
you may stop here, 
or enter more. 

Enter a value 
here to replace the Enter as many more 
"dummy" entry and parameters as you 

Page 6 

the angle brarkets want, up to!end of line 

CALL (<parameter> [,<parameter> ••• ] ) <RETURN> 

I SnctuLon c=1 I 
Enter CAPS Upper case 
exactly as inside angle 

shown Figure 2. Syntax Notationbr~ckets; press 
this key 



GENERAL INTRODUCTION Page 7 

Learning Mor·e about Assembly Language Programming 

These manuals explain how to use .MS-DOS utilities and 
features, but they do not teach you how to program in 
assembly language. 

We assume that you have had some experience programming in 
assembly language. If you do not have any experience, we 
suggest two courses: 

1. Gain some experience on a less 
assembler. 

sophisticated 

2. Refer to any or all of the following book.s for 
assistance: 

Morse, Stephen P. The 8086 Primer. Rochelle Park, 
NJ: Hayden Publishing Co., 1980. 

Rector, Russell and George Alexy. The 8086 Book. 
Berkeley, CA: Osbourne/McGraw-Hill, 1980.~~ 

The 8086 Family User's Manual. 
Intel Corporation, 1979. 

8086/8087/8088 Macro 
Manual. Santa 
1980. 

Assembly 
Clara, CA: 

NOTE 

Santa Clara, CA: 

Language Reference 
Intel Corporation, 

Some of the information in 
these books was based on 
preliminary data and may not 
reflect the final functional 
state of the microprocessors. 
Information in your Microsoft 
manuals was based on 
Microsoft's development of its 
16-bit software for the 8086 
and 8088. 



GENERAL INTRODUCTION 

Overview of Program Development 

This overview describes generally 
development. Each step is described 
product manuals. The numbers in the 
numbers in the facing diagram. 

Page 8 

the steps of program 
fully in the individual 
descriptions match the 

1. Use EDLIN (the editor. in Microsoft's MS-DOS), or 
other MS-DOS editor, to create an 8086 assembly 
language source file.· Give the source file the 
filename extension .ASM (Macro Assembler recognizes 
.ASM as the default). 

2. Assemble the source file with Macro Assembler, 
which outputs an assembled object file with the 
default filename extension .OBJ (2a). Assembled 
files, your program files (2b), can be linked 
together in step 3. 

Macro Assembler (optionally) creates two types of 
listing file: 

(2c)a normal listing file which shows assembled 
code ·with relative addresses, source 
statements, and full symbol table1 

(2d)a cross-reference file, a special file with 
special control characters that allow MS-CREF 
(2e) to create a list showing the source line 
number of· every symbol's definition and all 
references to it (2f). When a cross-reference 
file is created, the normal listing file (with 
the .LST extension) has line number3 placed 
into it as references for line numhers 
following symbols in the cross-ceference 
listing. 

3. Link one or more .OBJ modules together, using 
MS-LINK, to produce an executable object file with 
the default filename extension .EXE (3a) . 

While developing your program, you may want to 
create a library file for M~-LINK to search to 
resolve external references. Use MS-LIB (3b) to 
create user library file (s) (1c) from existing 
library files (3c) and/or: user prugram object files 
(2b). 



GENERAL INTRODUCTION Page 9 

4. Run your assembled and linked program, the .EXE 
file (3a), under MS-DOS (4). If your program does 
not run properly, use the DEBUG utility to locate 
any errors. 



GENERAL INTRODUCTION Page 10 

1. EDLIN i:.... 
~ 

-:I 
source 

.ASM 

T 
(2c) listing 

...... .LST -. 

Macro 
2. Assembler 

_.. 
listing 

c2al1 .CRF 

-:I 
(2a) object 

_1_ 
(2b) 

userprog L.a. 
.OBJ r" .OBJ 

(2e) MS-CREF 

(3b) _i l ~ 
3. _! .. 

MS-LIB MS-LINK _...... 

l 
--.. listing 

('H) .• REF 
_1 l: 

(3c) user lib (3a) object 
.LIB .EXE 

~ 

4. MS-DOS Pro•3ram 
complete 

+ If it doesn't wor!;. 

t 



Microsoft® 
Macro Assembler 
Utility 

for 8086 and 8088 Microprocessors 

Microsoft Corporation 





System Requirements 

The Macro Assembler Utility requires 96K bytes of memory 
minimum: 

64K bytes for code and static data 
32K bytes for run space 

Disk drive(s) 
One disk drive if and only if output is sent to the 
same physical disk from which the input was taken. 
The Macro Assembler Utility does not allow time to 
swap disks during operation on a one-drive 
configuration. Therefore, two disk drives is a 
more practical configuration. 





Contents 

Intro<Iuction 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Chapter 

Features of Macro Assembler 1 
Overview of Macro Assembler Operation 8 

1 

1.1 
1. 2 
1.3 
1.4 
1. 5 
1.6 

2 

2.1 
2.2 
2.3 

3 

3.1 
3.2 
3.3 

4 

4.1 
4. 2 

5 

5.1 
5. 2 
5.3 
5.4 
5.5 

6 

6.1 

7 

7.1 
7.2 

Creating a Macro Assembler Source File 

General Facts about Source Files 1-1 
Statement Line Format 1-5 
Names 1-6 
Comments 1-8 
Action 1-9 
Expressions 1-10 

Names: Labels, Variables, and Symbols 

Labels 
Variables 
Symbols 

2-2 
2-5 

2-7 

Expressions: Operands and Operators 

Memory Organization 3-2 
Operands 3-8 
Operators 3-17 

Action: Instructions and Directives 

Instructions 4-2 
Directives 4-3 

Assembling a Macro Assembler Source File 

How to Start Macro Assembler 5-1 
Macro Assembler Command Characters 5-4 
Macro Assembler Command Prompts 5-5 
Macro Assembler Command Switches 5-7 
Formats of Listings and Symbol Tables 5-10 

8087 Support 

Switches 6-1 

Macro Assembler Messages 

Operating Messages 7-1 
Error Messages 7-2 



Appendix A ASCII Character Codes 

Appendix B Table of Macro Assembler Directives 

Appendix C Table of 8086 and 8087 Instructions 

Index 



INTRODUCTION 

Features of Macro Assembler 

Microsoft's Macro Assembler is a very powerful assembler for 
8086-based computers. Macro Assembler incorporates many 
features usually found only in large computer assemblers, 
Macro assembly, conditional assembly, and· a variety of 
assembler directives provide all the tools necessary to 
derive full use and full power from an 8086, 8087, or 8088 
microprocessor. Although Macro Assembler is more complex 
than any other microcomputer assembler, it is easy to use. 

Macro Assembler produces relocatable object code. Each 
instruction and directive statement is given a relative 
offset from its segment base. The assembled code can then 
be linked using Microsoft's MS-LINK utility to producE 
relocatable, executable object code. Relocatable code can 
be loaded anywhere in memory. Thus, the program can executE 
where it is most efficient, instead of in some fixed range 
of memory addresses. 

In addition, relocatable code means that programs can be 
created in modules, each of which can be assembled, tested, 
and perfected individuilly. This saves recoding time 
because testing and assembly are performed on smaller pieces 
of program code. Also, all modules can be error-free befor~ 
being linked together into larger modules or into the whol~ 
program. 



INTRODUCTION 

MOD 1 

no 

MOD 2 

Macro 
Assembler 

MOD 3 

Individual modules 
can be edited and 

.__~~.....-~----' assembled until they 

MS-LINK 

~---..----

full or part 
program file 

work correctly. 

When the individual 
modules are ready, 
they can be linked 
singly or into one 
or more larger 
modules. 

Figure 1. The Assembly Process 

Page 2 



INTRODUCTION Page 3 

Macro Assembler supports Microsott's complete 8080 macro 
facility, which is Intel 8080 standard. The macro facility 
permits the writing of blocks of code for a set of 
instructions used frequently. The need for recoding these 
instructions each time they are required in the program is 
eliminated. 

These blocks of code are called macros. The instructions 
are the macro definition. Each time the set of instructions 
is needed, instead of recoding the set of instructions, a 
simple "call" to a macro is placed in the source file. 
Macro Assembler expands the macro call by assembling the 
block of instructions into the program automatically. The 
macro call also passes parameters to the assembler for use 
during macro expansion. The use of macros reduces the size 
of a source module because the macro definitions are given 
only once; other occurrences are one-line calls. 

Macros can be "nested," 
inside another macro 
only by memory. 

that is, a macro can be called from 
block. Nesting of macros is limited 

The macro facility includes repeat, indefinite repeat, and 
indefinite repeat character directives for programming 
repeat block operations. The MACRO directive can also be 
used to alter the action of any instruction or directive by 
using its name as the macro name. When any instruction or 
directive statement is placed in the program, Macro 
Assembler first checks the symbol table it created to see if 
the instruction or directive is a macro name. If it is, 
Macro Assembler "expands" the macro call statement by 
replacing it with the body of instructions in the macro's 
definition. If the name is not defined as a macro, Macro 
Assembler tries to match the name with an instruction or 
directive. The MACRO directive also supports local symbols 
and conditional exiting from the block if further expansion 
is unnecessary. 



INTRODUCTION 

statement 
statement 
statement 
macro call 
statement 

When the assembler 
encounters a macro 
call, it finds the 
MACRO block and 
replaces the call 
with the block of 
statements that 
define the macro. 

name MACRO x 

ENDM 

name MACRO x 

Nested MACRO call: 
name defined else­

name 1 , 2 ~,....o-~~~~where as a macro, 
1 is "expanded" 

during assembly, 
as shown above. 

ENDM 

Figure 2. Assembler Macros 

Page 4 



INTRODUCTION Page 5 

Macro Assembler supports an expanded set of. conditional 
directives. Directives for evaluating a variety of assembly 
conditions can test assembly results and branch where 
required. Unneeded or unwanted portion3 of code will be 
left unassembled. Macro Assembler can test for blank or 
nonblank arguments, for defined or undefined symbols, for 
equivalence, for first assembly pass or second, and can 
compare strings for identity or difference. The conditional 
directives simplify the evaluation of assembly results, and 
make programming the testing code for conditions easier. 

Macro Assembl~r's conditional assembly facility also 
supports conditionals inside conditionals · ("nesting"). 
Conditional assembly blocks can be nested up to 255 levels. 



INTRODUCTION 

If condition 
is true, IF 
block is 
assembled up 
to ELSE, then 
skips to ENDIF. 
If no ELSE, 
IF block 
assembles en­
tire condi­
tional block. 

statement 
statement 
statement 
IF <exp true> 

ELSE 

END IF 
statement 
statement 

IF 

IF 

1:D;~· ] 
ELSE 

END IF 

END IF 

If condition 
is false, 
program skips 
to ELSE, then 
resumes at the 
next statement. 
If no ELSE, 
IF block skips 
to ENDIF and 
resumes with 
next statement. 

Nesting of 
conditionals 
is allowed up to 
255 levels. 

Figure 3. Conditional Stat~ments 

Page 6 



INTRODUCTION Page 7 

Macro Assembler supports all the major 8080 directives found 
in Microsoft's Macro Assembler for the 8080 processor. This 
means that any conditional, macro, or repeat blocks 
programmed under the 8080 Macro Assembler can be used under 
Macro Assembler for the 8086. Processor instructions and 
some directives (e.g., .PHASE, CSEG, DSEG) within the blocks 
will need to be converted to the 8086 instruction set. All 
the major Macro Assembler directives (pseudo-ops) for the 
8080 that are supported under Macro Assembler for the 8086 
will assemble as is, as long as the expressions to the 
directives are correct for the processor and the program. 
The syntax o~ directives is unchanged. Macro Assembler is 
upwardly-compatible, Macro Assembler for the 8080 processor 
and with Intel's ASM86(R), except Intel codemacros and 
macros. 

Some 8086 instructions take only one operand type. If a 
typeless operand is entered for an instruction that accepts 
only one type of operand (e.g., in the instruction PUSH 
[BX], [BX] has no size, but PUSH only takes a word), it 
would be wasteful to return an error for a lapse of memory 
or a typographical error. When the wrong type choice is 
given, Macro Assembler displays an error message but 
generates the "correct" code. That is, it always outputs 
instructions, not just NOP instructions. For example, if 
you enter: 

You may have 
meant one of 
three instructions: 

MO/V AL,WOR~~:) 
MOV AL,BYTE PTR WORDLBL 

(3) 
MOV AL,<other> 

(1) 
MOV AX,WORDLBL 

Macro Assembler generates instruction (2) because it assumes 
that when you specify a register, you mean that register and 
that sizei therefore, the other operand is the "wrong 
size." Macro Assembler accordingly modifies the "wrong" 
operand to fit the register size (in this case) or the size 
of whatever is the most likely "correct" operand in an 
expression. This eliminates some mundane debugging chores. 
An error message is still returned, however, because you may 
have misstated the operand the Macro Assembler assumes is 
"correct." 



INTRODUCTION Page 8 

Overview of Macro Assembler Operation 

The first task in developing a program is to create a source 
file. Use EDLIN (the resident editor in Microsoft's MS-DOS 
operating system), or any other 8086 editor compatible with 
your operating system, to create the Macro As.sembler source 
file. Macro Assembler assumes a default filename extension 
of .ASM for the source file. Creating the source file 
involves creating instruction and directive statements that 
follow the rules and constraints described in Chapters 1-4 
in this manual. 

When the source file is ready, ·run Macro Assembler as 
described in Chapter 5, "Assembling a Macro Assembler Source 
File." Refer to Chapter 7, "Macro Assembler Messages," for 
explanations of any messages displayed during or immediately 
after assembly. 

EDLIN I+ Ch 1-4 

l 
source 

.ASM 

I 
(messages) Macro Ch 5 

? Assembler 

1 l 
Ch 7 object 

.ASM 

Figure 4. Overview of Macro Assembler Operation 



INTRODUCTION Page 9 

Macro Assembler is a two-pass assembler. This means that 
the source file is assembled twice. But slightly different 
actions occur during each pass. During the first pass, the 
assembler: 

evaluates the statements and expands macro call 
statements 

calculates the amount of code it will generate 

builds a symbol table where all symbols, variables, 
labels, and macros are assigned values 

During the second pass, the assembler 

fills in the symbol, variable, label, and 
expression values from the symbol table 

expands macro call statements 

emits the relocatable object code into a file with 
the default filename extension .OBJ 

The .OBJ file is suitable for processing with the Microsoft 
LINK utility (MS-LINK). The .OBJ file can be stored as part 
of the user's library of object programs, which later can be 
linked with one or more .OBJ modules by MS-LINK (refer to 
the MS-LINK utility for further explanation and 
instructions). The .OBJ modules can also be processed with 
the Microsoft LIB Library Manager (refer to the Microsoft 
LIB Library Manager Manual for further explanation and 
TnStructions). 

The source file can also be assembled without creating an 
.OBJ file. All the other assembly steps are performed, but 
the object code is not sent to disk. Only erroneous source 
statements are displayed on the terminal screen. This 
practice is useful for checking the source code for errors. 
It is faster than creating an .OBJ file because no file is 
created or written. Modules can be test assembled quickly 
and errors corrected before the object code is put on disk. 
Modules that assemble without errors do not clutter the 
disk. 



INTRODUCTION 

PASS 1 

source 
.ASM 

I 
Macro 

Assembler 

l 
symbol -- def 
symbol -- def 
variable -- def 
variable -- def 
label -- def 
macro name 

. . 

PASS 2 

source 
.ASM 

Macro 
Assembler 

object 
.OBJ 

~ 

statement 
statement 
macro call 

-----
-----_.. -----

statement 

. 

T 
exact amount 
of code to 
be generated 

symbol 
table 

Figure 5. Pass 1 and Pass 2 

Page 10-



INTRODUCTION Page 11 

Macro Assembler will create, on command, a listing file and 
a cross-reference file. The listing file contains the 
beginning relative addresses (offsets from segment base) 
assigned to each instruction, the machine code translation 
of each statement (in hexadecimal values), and the statement 
itself. The listing also contains a symbol table which 
shows the values of all symbols, labels, and variables, plus 
the names of all macros. The listing file receives the 
default filename extension .LST. 

The cross-reference file contains a compact representation 
of variables, labels, and symbols. The cross-reference file 
receives the default filename extension .CRF. When this 
cross-reference file is processed by Microsoft CREF 
(MS-CREF) , the file is converted into an expanded symbol 
table that lists all the variables, labels, and symbols in 
alphabetical order; followed by the line number in the 
source program where each is defined; followed by the line 
numbers where each is used in the program. The final 
cross-reference listing receives the filename extension 
.REF. (Refer to the Microsoft CREF Cross-Reference Utility 
Manual for further explanation and instructions.) 

Figure 6 illustrates th~ files that Macro Assembler can 
produce. 

source 
.ASM 

I 
listing 

~ .LST 

Macro 
Assembler 

listing 

l 
.CRF 

object 
.OBJ listing ~ 

.REF ~ 
MS-CREF 





Chapter 1 

1.1 

1. 2 
1. 3 
1. 4 
1. 5 
1.6 

Contents 

Creating a Macro Assembler Source File 

General Facts about Source 
Naming Your Source File 
Legal Characters 1-2 
Numeric Notation 1-3 
What's in a Source File? 

Statement Line Format 1-5 
Names 1-6 
Comment·s 1-8 
Action 1-9 
Expressions 1-10 

Files 
1-1 

1-4 

1-1 





CHAPTER 1 

CREATING A MACRO ASSEMBLER SOURCE FILE 

To create a source file for Macro Assembler, you need to use 
an editor program, such as EDLIN in Microsoft's MS-DOS. You 
simply create a program file as you would for any other 
assembly or high-level programming language. Use the 
general facts and specific descriptions in this chapter and 
the three following chapters when creating the file. 

This chapter discusses the statement format and introduces 
descriptions of its components. In Chapter 2, you will find 
full descriptions of names: variables, labels, and symbols. 
Chapter 3 provides full descrip~ions of expressions and 
their components, operands and operators. Chapter 4 
includes full descriptions of the assembler directives. 

1.1 GENERAL FACTS ABOUT SOURCE FILES 

Naming Your Source File 

When you create a source file, you must name it. A filename 
may be any name that is legal for your operating system. 
When you run Macro Assembler to assemble your source file, 
Macro Assembler assumes that your source filename has the 
extension .ASM. 

You do not need to give your source filename the .ASM 
extension. However, if your source filename has has an 
extension other than .ASM, you must specify the extension 
name when you run Macro Assembler. (You do not need to 
specify the .ASM extension if your source filename has an 
extension of .ASM. Macro Assembler will supply the default 
extension for you.) 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-2 

Note that Macro Assembler gives the object file it outputs 
the default extension .OBJ. To avoid ~onfusion or the 
destruction of your source file, you should avoid giving a 
source file an extension of .OBJ. For similar reasons, you 
should also avoid the extensions .EXE, .LST, .CRF, and .REF. 

Legal Characters 

The legal characters for your symbol names are: 

A-Z 0-9 ? @ $ 

Only the numerals (0-9) cannot appear as the first character 
of a name (a numeral must appear as the first character of a 
numeric value). 

Additional special 
delimiters: 

characters act as operators 

(colon)--segment override operator 

or 

{period)--operator for field name of Record or 
Structure; may be used in a filename only if 
it is the first character 

[ ] (square brackets--around register names to 
indicate value in address in register, not 
value (data) in register 

( ) (parentheses) --operator in DUP express ions and 
operator to change precedence of operator 
evaluation 

< > (angle brackets) operators used around 
initialization values for Records or Structure, 
around parameters in !RP macro blocks, and to 
indicate literals 

The square brackets and angle brackets are also 
used for syntax notation in the discussions of the 
assembler directives (Section 4. 2, "Directives") • 
When these characters are operators and not syntax 
notation, you are told explicitly; for example, 
"angle brackets must be coded as shown." 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-3 

Numeric Notation 

The default input radix for all numeric values is decimal. 
The output radix for all listings is hexadecimal for code 
and data items and decimal for line numbers. The output 
radix can only be changed to octal radix by giving the /0 
switch when Macro Assembler is run (see Section 5.4, "Macro 
Assembler Command Switches"). There are two ways to change 
the input radix: 

1. With the .RADIX directive (see Section 4.2.1, 
•Memory Directives") 

2. By special notation appended to a numeric value: 

Radix Range 

Binary 0-1 

Octal 0-7 

Decimal 0-9 

Hexadecimal 0-9 
A-F 

Notation 

B 

Q or 0 

none or D 

H 

Example 

OlllOlOOB 

735Q or 6210 

9J84 (default) 
8149D* 

OFFH or 80H** 

* When .RADIX directive changes default radix to not 
decimal. 
**First character must be numeral from 0-9. 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-4 

What's in a Source File? 

A source file for Macro Assembler consists of instruction 
statements and directive statements. Instruction statements 
are made of 8086 instruction mnemonics and their operands, 
which command specific processes directly to the 8086 
processor. Directive statements are commands to Macro 
Assembler to prepare data for use in and by instructions. 

Statement line format is described in Section 1.2. The 
parts of a statement are described in Sections 1.3-1.6 and 
in Chapters 2-4. Statements are usually placed in blocks of 
code assigned to a specific segment (code, data, stack, 
extra). The segments may appear in any order in the source 
file. Within the segments, generally speaking, statements 
may appear in any order that creates a valid program. Some 
exceptions to random ordering do exist, which will be 
discussed under the affected assembler directives. 

Every segment must end with an end segment statement (ENDS); 
every procedure must end with an end procedure statement 
(ENDP); and every structure must end with an end structure 
statement (ENDS). Likewise, the source file must end with 
an END statement that tells Macro Assembler where program 
execution should begin. 

Section 3.1, "Memory Organization," describes how segments, 
groups, the ASSUME directive, and the SEG operator relate to 
one another and to your programming as a whole. This 
information is important and helpful for developing your 
programs. The information is presented in Chapter 3 as a 
prelude to the discussion of operands and operators. 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-5 

1. 2 STATEMENT LINE FORMAT 

Statements in source files follow a strict format, which 
allows some variation. 

Macro Assembler directive statements consist of four 
"fields": Name, Action, Expression, Comment. For example: 

FOO DB 

I I 
Name Action 

OD5E 

I 
Expression 

;create variable FOO 
;containing the value 0D5EH 

;Comment 

Macro Assembler instruction statements usually consist. of 
three "fields": Action, Expression, Comment. For example: 

MOV CX,FOO ;here's the count number 
I 

Action 
I . 

Expression 
I 

;Comment 

An instruction statement may have a Name field under certain 
circumstances; see the discussion in Section 1.3, "Names." 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-6 

1.3 lllAMBS 

The name field, when present, is the first entry on the 
statement line. The name may begin in any column, although 
normally names are started in column 1. 

Names may be any length you choose. However, Macro 
Assembler considers only the first 31 characters significant 
when your source file is assembled. 

One other significant use for names is· with the MACRO 
directive. Although all the rules covering names, described 
in Chapter 2, apply to MACRO names, the discussion of macro 
names is better left to the section describing the macro 
facility. 

Macro Assembler supports the use of names in a statement 
line for three purposes: to represent code, to represent 
data, and to represent constants. 

To make a name represent code, use: 

NAME: followed by a directive, instruction, or 
nothing at all 

NAME LABEL NEAR (for use inside its own segment 
only) 

NAME LABEL FAR (for use outside its own segment) 

EXTRN NAME:NEAR (for use outside its own module but 
inside .its own segment only) 

EXTRN NAME:FAR (for use outside its own module and 
segment) 

To make a name represent data, use: 

NAME LABEL <size> (BYTE, WORD, etc.) 

NAME DX <exp> 

EXTRN N~E:<size> (BYTE, WORD, etc.) 



CREATING A MACRO ASSEMBLER SOURCE FILE 

To make a name represent a constant, use: 

NAME EQU <constant> 

NAME = <constant> 

NAME SEGMENT <attributes> 

NAME GROUP <segment-names> 

Page 1-7 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-8 

1.4 COMMER'l"S 

Comments are never required for the successful operation of 
an assembly language program, but they are strongly 
recommended. 

If you use comments in your program, every comment on every 
line must be preceded by a semicolon. If you want to place 
a very long comment in your 'program, you can use the COMMENT 
directive. The COMMENT directive releases you from the 
required semicolon on every line (refer to COMMENT in 
Section 4.2.1, "Memory Directives"). 

Comments document the processing that is supposed' to happen 
at a particular point in a program. When comments are used 
in this manner, they can be useful for debugging, for 
altering code, or for updating code. Consider putting 
comments at the beginning of each segment, procedure, 
structure, module, and after each line in the code that 
begins a step in the processing. 

Comments 
add to 
program, 
·With the 

are ignored by Macro Assembler. Comments do not 
the memory required to assemble or to run your 
except in macro blocks where comments are stored 
code. 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-9 

1.5 ACTION 

The action field contains either an 8086 instruction 
mnemonic or a Macro Assembler assembler directive. Refer to 
Section 4.1, "Instructions," for a general discussion and to 
Appendix C for a list of 8086 instruction mnemonics. The 
Macro Assembler directives are described in detail in 
Section 4.2, "Directives." 

If the 
first 
action 
length 

name field is blank, the action field will be the 
entry in the statement format. In this case, the 
may appear in any column, 1 through maximum line 
(minus columns for action and expression) • 

The entry in the action field either directs the processor 
to perform a specific function or it directs the assembler 
to perform one of its functions. Instructions tell the 
processor to perform some action. An instruction may have 
the 4ata and/or addresses it needs built into it, or data 
and/or addresses may be found in the expression part of an 
instruction. For example: 

I opcode I I operand 11 data 11 data I 

I opr I lopmtl Tr 
supplied supplied or found 

supplied = part of the instruction 

found = assembler inserts data and/or address from the 
information provided by expression in instruction 
statements 

(opcode is the action part of an instruction) 

Directives give the assembler directions for I/O, memory 
organization, conditional assembly, .listing and 
cross-reference control, and definitions. 



CREATING A MACRO ASSEMBLER SOURCE FILE Pag'e 1-10 

1.6 EXPRESSIONS 

The expression field contains entries which are operands 
and/or combinations of operands and operators. 

Some instructions take no operands; some take one, and 
others take two. For two-operand instructions, the 
expression field consists of a destination operand and a 
source operand, in that order, separated by a comma. For 
exampl·e: 

I opco~ · [ dest-oper~, I source-operand I 

For one-operand instructions, the operand is a source or a 
destination operand, depending on the instruction. If one 
cc both of the operands is omitted, the instruction carries 
that information in its internal coding. 

Source operands are immediate operands, register operands, 
memory operands, or attribute operands. Destination 
operands are register operands and memory operands. 

For directives, the expression field usually consists of a 
single operand. For example: 

!directive! !operandi 

A directive operand is a data operand, a 
operand, or a constant, depending on 
directive. 

code (addressing) 
the nature of the 

For many instructions and directives, operands may be 
connected with operator~ to form a longer operand that looks 
like a mathematical expression. These operands are called 
complex operands. use of a complex operand permits you to 
specify addresses or data derived from several places. For 
example: 

MOV FOO[BX] ,AL 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-11 

The destination operand is the result of adding the address 
represented by the variable FOO and the address found in 
register BX. The processor is instructed to move the value 
in register AL to the destination calculated from these two 
operand elements. Another example: 

MOV AX,F00+5[BX] 

In this case, the source operand is the result of adding the 
value represented by the symbol FOO plus 5 plus the value 
found in the BX register. 



CREATING A MACRO ASSEMBLER SOURCE FILE Page 1-12 

Macro Assembler supports the following 
operators in the expression field (shown 
precedence): 

operands 
in order 

Operands 

Immediate 
(incl. symbols) 

Register 
Memory 

Operators 

LENGTH, SIZE, WIDTH, MASK, 
FIELD [ ] , ( ) , < > 

segment override(:) 

and 
of 

label 
variables 

simple 
PTR, OFFSET, SEG, TYPE, THIS 

indexed 
structures 

Attribute 
override 

PTR 
: (seg) 
SHORT 
HIGH 
LOW 

value returning 
OFFSET 
SEG 
THIS 
TYPE 
.TYPE 
LENGTH 
SIZE 

record specifying 
FIELD 
MASK 
WIDTH 

HIGH, LOW 

*, /, MOD, SHL, SHR 

+, -(unary), -(binary) 

EQ, NE, LT, LE, GT, GE 

NOT 

AND 

OR, XOR 

SHORT, • TYPE 

NOTE 

Some operators can be used as operands or as 
part of an operand expression. Refer to 
Sections 3.2, "Operands," and 3.3, "Operators," 
for· details of operands and operators. · 



Chapter 2 

2.1 
2.2 
2.3 

Contents 

Names: Labels. Variables. and Symbols 

Labels 2-2 
Variables 2-5 
Symbols 2-7 





CHAPTER 2 

NAMES: LABELS, VARIABLES, AND SYMBOLS 

Names are used in several ways throughout Macro Assembler, 
wherever any naming is allowed or required. 

Names are symbolic representations of values. 
may be addresses, data, or constants. 

The values 

Names may be any length you choose. However, Macro 
Assembler will truncate names longer than 31 characters when 
your source file is assembled. 

Names may be defined and used in a number of ways. This 
chapter introduces you to the basic ways to define and use 
names. You will discover additional uses as you study the 
chapters on Expressions and Action, and as you use Macro 
Assembler. 

Macro Assembler supports three types of names in statement 
lines: labels, variables, and symbols. This chapter covers 
how to define and use these three types of names. 



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-2 

2.1 LABELS 

Labels are names used as targets for JMP, CALL, and LOOP 
instructions. Macro Assembler assigns an address to each 
label as it is defined. When you use a label as an operand 
Eor JMP, CALL, or LOOP, Macro Assembler can substitute the 
~ttributes of the label for· the label name, sending 
?rocessing to the appropriate place. 

Labels are defined in one of four ways: 

1. <name>: 

Use a name followed immediately by a colon. This 
defines the name as a NEAR label. <name>: may be 
prefixed to any instruction and to all directives 
that allow a Name field. <name>: may also be 
placed o~ a line by itself. 

Examples: 

CLEAR SCREEN: MOV 
FOO: - DB OFH 
SUBROUTINE3: 

AL I 20H 

2. <name> 
<name> 

LABEL 
LABEL 

NEAR 
FAR 

Use the LABEL directive. Refer to the discussion 
of the LABEL directive in Section 4.2.1, "Memory 
Directives." 

NEAR and FAR are discussed under the Type Attribute 
below. 

Examples: 

FOO 
-GOO 

3. <name> 
<name> 

LABEL 
LABEL 

PROC 
PROC 

NEAR 
FAR 

NEAR 
FAR 

Use the PROC directive. 
the PROC directive 
Directives." 

Refer to the discussion of 
in Sectio11 4.2.1, "Memory 

NEAR is optional because it is the default if you 
enter only <name> PROC. NEAR and FAR are discussed 
under the Type Attribute below. 



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-3 

Examples: 

REPEAT PROC NEAR 
CHECKING PROC ;same as CHECKING PROC NEAR 
FIND CHR PROC FAR 

4. EXTRN <name>:NEAR 
EXTRN <name>:FAR 

Use the EXTRN directive. 

NEAR and FAR are discussed under the Type Attribute 
below. 

Refer to the discussion of the EXTRN directive in 
Section 4.2.1, "Memory Directives." 

Examples: 

EXTRN FOO:NEAR 
EXTRN ZOO:FAR 

A label has four attributes: segment, offset, type, and the 
CS ASSUME in effect when the label is defined. Segment is 
the segment where the label is defined. Offset is the 
distance from the beginning of the segment to the label's 
location. Type is either NEAR ot FAR. 

Segment 

Labels are defined inside segments. The segment must be 
assigned to the cs segment register to be addressable. The 
segment may be assigned to a group, in which case the group 
must be addressable through CS. Macro Assembler requires 
that a label be addressable through the CS register. 
Therefore, the segment (or group) attribute of a symbol is 
the base address of the segment (or group) where it is 
defined. 

Off set 
~~-

The offset 
beginning 
defined. 

attribute is the number of bytes from the 
of the label's segment to where the label is 

The offset is a 16-bit unsigned number. 



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-4 

Labels are one of two types: NEAR or FAR. NEAR labels are 
used for references from within the segment where the label 
is defined. NEAR labels may be referenced from more than 
one module, as long as the references are from a segment 
with the same name and attributes and have the same CS 
ASSUME. 

FAR labels are used for references from segments with a 
different CS ASSUME, or when there are more than 64K bytes 
between the label reference and the label definition. 

~EAR and FAR cause Macro Assembler to generate slightly 
diffe;ent code. NEAR labels supply their offset attribute 
only (a 2-byte pointer). FAR labels supply both their 
segment and offset attributes (a 4-byte pointer). 



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-5 

2.2 VARIABLES 

variables are names used in expressions as operands 
instructions and directives. A variable represents 
address where a specified value may be found. 

to 
an 

variables look much like labels and are defined alike in 
some ways. The differences are important. 

variables .are defined three ways: 

1. <name> <define-dir> ;no colon! 
<name> <struc-name> <expression> 
<name> <rec-name> <expression> 

<define-dir> is any of the five Define directives: 
DB, DW, DD, DQ, DT 

Example: 

START MOVE DW ? 

<struc-name> is a structure name defined by the 
STRUC directive. 

<rec-name> is a record name defined by the RECORD 
directive. 

Examples: 

CORRAL STRUC 

ENDS 
HORSE CORRAL <'SADDLE'> 

Note that HORSE will have the same size as the 
structure CORRAL. 

GARAGE RECORD CAR:8='P' 

SMALL GARAGE 10 DUP(<'Z'>) 

Note that SMALL will have the same size as the 
record GARAGE. 

See the DEFINE, STRUC, and RECORD directives in 
Section 4. 2 .1, "Memory Directives." 

2. <name> LABEL <size> 

Use the LABEL directive with one of the size 



~AMES: LABELS, VARIABLES, AND SYMBOLS Page 2-6 

specifiers. 

<size> is one of the following size specifiers: 

BYTE - specifies 1 byte 
WORD - specifies 2 bytes 
DWORD - specifies 4 bytes 
QWORD - specifies 8 bytes 
TBYTE - specifies 10 bytes 

Example: 

CURSOR LABEL WORD 

See LABEL directive in Section 4.2.1, "Memory 
Directives. 0 

3. EXTRN <name>:<size> 

Use the EXTRN directive with one of the size 
specifier·s described above. See EXTRN directive in 
Section 4.2.1, "Memory Directives." 

·Example: 

EXTRN FOO:DWORD 

·ariables also have the three attributes segment, offset, 
nd type (as do labels) • 

egment and Offset are the same for variables as for labels. 
he Type attribute is different. 

he type attribute is the size of the variable's location, 
s specified when the variable is defined. The size depends 
n which Define directive.was used or which size specifier 
as used to define the variable. 

Directive ~ Size 

DB BYTE 1 byte 
DW WORD 2 bytes 
DD WORD 4 bytes 
DQ QNORD 8 bytes 
DT TBYTE 10 bytes 



NAMES: LABELS, VARIABLES, AND SYMBOLS Page 2-7 

2.3 SYMBOLS 

Symbols are names defined without reference to a Define 
directive or to code. Like variables, symbols are also used 
in expressions as operands to instructions and directives. 

Symbols are defined three ways: 

1. <name> EQU <expression> 

Use the EQU directive. See EQU directive in 
Section 4.2.1, "Memory Directives." 

<expression> may be another symbol, an instruction 
mnemonic, a valid expression, or any other entry 
(such as text or indexed references}. 

Examples: 

FOO 
zoo 

EQU 
EQU 

7H 
FOO 

2. <name> = <expression> 

Use the equal sign directive. See Equal Sign 
directive in Section 4.2.1, "Memory Directives." 

<expression> may be any valid expression. 

Examples: 

GOO OFH 
GOO $+2 
GOO GOO+ FOO 

3. EXTRN <name>:ABS 

use the EXTRN directive with type ABS. See EXTRN 
directive in Section 4.2.1, "Memory Directives." 

Example: 

EXTRN BAZ :ABS 

BAZ must be defined by an EQU or 
valid expression. 

directive to a 





Chapter 3 

3.1 
3.2 
3.2.1 

3.2.2 
3.2.3 

3.3 
3.3.1 

3.3.2 
3.3.3 
3.3.4 
3.3.5 

Contents 

Expressions: Operands and Operators 

Memory Organization 3-2 
Operands 3-8 

Immediate Operands 3-9 
Data Items 3-9 
Symbols 3-9 

Register Operands 3-10 
Memory Operands 3-13 

Direct Memory Operands 3-13 
Indexed Memory Operands 3-14 
Structure Operands 3-15 

Operators 3-17 
Attribute Operators 3-17 

Override Operators 3-18 
Value Returning Operators 3-23 
Record Specific Operators 3-29 

Arithmetic Operators 3-33 
Relational Operators 3-34 
Logical Operators 3-35 
Expression Evaluation 3-36 

Precedence of Operators 3-36 





CHAPTER 3 

EXPRESSIONS: OPERANDS AND OPERATORS 

Chapter 1 provided a brief introduction to expressions. 
Basically, expression is the term used to indicate values on 
which an instruction or directive performs its functions. 

Every expression consists of at least one operand (a value). 
An expression may consist of two or more operands. Multiple 
operands are joined by operators. The result is a series of 
elements that looks like a mathematical expression. 

This chapter describes the types of operands and operators 
that Macro Assembler supports. The discussion of memory 
organization in a Macro Assembler program acts as a preface 
to the descriptions of operands and operators, and as a link 
to topics discussed in Chapter 2. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-2 

3.1 MEMORY ORGANIZATION 

Most of your assembly language program is written in 
s~gments. In the source file, a segment is a block of code 
that begins with a SEGMENT directive statement and ends with 
an ENDS directive. In an assembled and linked file, a 
segment is any block of code that is addressed through the 
same segment register and is not more than 64K bytes long. 

You should note that Macro Assembler leaves everything 
relating to segments to MS-LINK. MS-LINK resolves all 
references. For that reason, Macro Assembler does not check 
(because it cannot) to see if your references are entered 
with the correct distance type. Values such as OFFSET are 
also left to MS-LINK to resolve. 

Although a segment may not be more than 64K bytes long, you 
may, as long as you observe the 64K limit, divide a segment 
among two or more modules. (The SEGMENT statement in each 
module must be the same.) 

When the modules are linked together, the several segments 
become one. References to labels, variables, and symbols 
within each module acquire the offset from the beginning of 
the whole segment, not just from the beginning of their 
portion of the whole segment. (All divisions are removed.) 

You have the option of grouping several segments into a 
group using the GROUP directive. When you group segments, 
you tell Macro Assembler that you want to be able to ref er 
to all of these segments as a single entity. (This does not 
eliminate segment identity, nor does it make values within a 
particular segment less immediately accessible. It does 
make value relative to a group base.) The advantage of 
grouping is that you can refer to data items without 
worrying about segment overrides or changing segment 
registers. 

With this in mind, you should note that references within 
segments or groups are relative to a segment register. 
Thus, until linking is completed, the final offset of a 
reference is relocatable. For this reason, the OFFSET 
operator does not return a constant. The major purpose of 
OFFSET is to cause Macro Assembler to generate an immediate 
instructioni that is, to use the address of the value 
instead of the value itself. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-3 

There are two kinds of references in a program: 

1. Code references JMP, CALL, LOOPxx These 
references are relative to the address in the CS 
register. (You cannot override this assignment.) 

2. Data references - all other references These 
references are usually relative to the DS register, 
but this assignment may be overridden. 

When you give a forward reference in a program statement, 
for example: 

MOV AX,<ref> 

Macro Assembler first looks for the segment of the 
reference. Macro Assembler scans the segment registers for 
the SEGMENT of the reference, then the GROUP (if any) of the 
reference. 

However, the use of the OFFSET operator always returns the 
offset relative to the segment. If you want the offset 
relative to a GROUP, you must override this restriction by 
using the GROUP name and the colon operator. For example: 

MOV AX,OFFSET <group-name>:<ref> 

If you set a segment register to a group with the ASSUME 
directive, then you may also override the restriction on 
OFFSET by using the register name. For example: 

MOV AX,OFFSET DS:<ref> 

The result of both of these statements is the same. 

Code labels have four attributes: 

1. Segment - what segment the label belongs to 

2. Offset - the number of bytes from the beginning of 
its segment 

3. Type - NEAR or FAR 

4. CS ASSUME - the CS ASSUME the label was coded under 

When you enter a NEAR JMP or NEAR CALL, you are changing the 
offset (IP) in CS. Macro Assembler compares the CS ASSUME 
of the target (where the label is defined) with the current 
CS ASSUME. If they are different, Macro Assembler returns 
an error (you must use a FAR JMP or FAR CALL). 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-4 

When you enter a FAR JMP or FAR CALL, you are changing both 
the offset (IP) in CS and the paragraph number. The 
paragraph number is changed to the CS ASSUME of the target 
address. 

Let's take a common case, a segment called CODE, and a group 
(called DGROUP) that contains three segments (called DATA, 

CONST, and STACK). 

The program statements would be: 

DGROUP GROUP 
ASSUME 
MOV 
MOV 

DATA,CONST,STACK 
CS:CODE,DS:DGROUP,SS:DGROUP,ES:DGROUP 
AX,DGROUP ;CS initialized by entry; 
DS,AX ;you initialize DS, do this 

;as soon as possible, 
;especially before any 
;DS relative references 

As a diagram, this arrangement could be represented as 
follows: 

C 0 D E 

+ DS,ES,SS 

DAT A 

<64K C 0 N S T 

S TAC K 

_j 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-5 

Given this arrangement, a statemen: like 

MOV AX,<variable> 

causes Macro Assembler to find the best segment register to 
reach this variable. (The "best" register is the one that 
requires no segment overrides.) 

A statement like 

MOV AX,OFFSET <variable> 

tells Macro Assembler to return the offset of the variable 
relative to the beginning of the variable's segment. 

If this <variable> is in the CONST segment and you want to 
reference its offset from the beginning of DGROUP, you need 
a statement like the following: 

MOV AX,OFFSET DGROUP:<variable> 

Macro Assembler is a two-pass assembler. During pass 1, it 
builds a symbol table anJ calculates how much code is 
generated, but does not produce object code. If undefined 
items are found (including forward references), assumptions 
are made about the reference so that the correct number of 
bytes are generated on pass 1. Only certain types of errors 
are displayed: errors involving items that must be defined 
on pass 1. No listing is produced unless a /D switch is 
given when you run the assembler. The /D switch produces a 
listing for both passes. 

On pass 2, the assembler uses the values defined in pass 1 
to generate the object code. Definitions of references 
during pass 2 are checked against the pass 1 value, which is 
in the symbol table. Also, the amount of code generated 
during pass 1 must match the amount generated during pass 2. 
If either is different, Macro Assembler returns a phase 
error. 

Because pass 1 must keep correct track of the relative 
offset, some references must be known on pass 1. If they 
are not known, the relative offset will not be correct. 

The following references must be known on pass 1: 

1. IF /IFE <expres.sion> 
If <expression> is not known on pass 1, Macro 
Assembler does not know to assemble the conditional 
block (or which part to assemble if ELSE is used). 
On pass 2, the assembler would know and would 
assemble, resulting in a phase error. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-6 

2. <expression> DUP( .•. ) 

3. 

This operand explicitly changes the relative 
offset, so <expression> must be known on pass 1. 
The value in parentheses need not be known because 
it does not affect the number of bytes generated . 

. RADIX <expression> 
Because this directive changes the input radix, 
constants could have a different value, which could 
cause Macro Assembler to evaluate IF or DUP 
statements incorrectly. 

The biggest problem for the assembler is handling forward 
references. How can it know the kind of a reference when it 
still has not seen the definition? This is one of the main 
reasons for two passes. And, unless Macro Assembler can 
tell from the statement containing the forward reference 
what the size, the distance, or any other of its attributes 
are, the assembler can only take the safe route (generate 
the largest possible instruction in some cases, except for 
segment override or FAR). This results in extra code that 
does nothing. (Macro Assembler figures this out by pass 2, 
but it cannot reduce the size of the instructions without 
causing an error, so it puts out NOP instructions (90H). 

For this reason, Macro Assembler includes a number of 
operators to help the assembler. These operators tell Macro 
Assembler what size instruction to generate when it is faced 
with an ambiguous choice. As a benefit, you can also reduce 
the size of your program by using these operators to change 
the nature of the arguments to the instructions. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-7 

Examples: 

MOV AX,FOO ;FOO = forward constant 

This statement causes Macro Assembler to generate a move 
from memory instruction on pass 1. By using the OFFSET 
operator, we can cause Macro Assembler to generate an 
immediate operand instruction. 

MOV AX,OFFSET FOO ;OFFSET says use the address 
;of FOO 

Because OFFSET tells Macro Assembler to use the address of 
FOO, the assembler knows that the value is immediate. This 
method saves a byte of code. 

Similarly, if you have a CALL statement that calls to a 
label that may be in a different CS ASSUME, you can prevent 
problems by attaching the PTR operator to the label: 

CALL FAR PTR <forward-label> 

At the opposite extreme, you may have a JMP forward that is 
less than 127 bytes. You can save yourself a byte if you 
use the SHORT operator. 

JMP SHORT <forward-label> 

However, you must be sure that the target is indeed within 
127 bytes or Macro Assembler will not find it. 

The PTR operator can be used another way to save yourself a 
byte when using forward references. If you defined FOO as a 
forward constant, you might enter the statement: 

MOV [BX] ,FOO 

You may want to refer to FOO as a byte immediate. In this 
case, you could enter either of these statements (they are 
equivalent): 

MOV BYTE PTR [BX] ,FOO 

MOV [BX] ,BYTE PTR FOO 

These statements tell Macro Assembler that FOO is a byte 
immediate. A smaller instruction is generated. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-8 

3. 2 OPERABDS 

An operand may be any one of 
Register, or Memory operands. 
combining the types of operands. 

three types: Immediate, 
There is no restriction on 

The following list shows all the types and the items that 
comprise·them: 

Immediate operands 
Data items 
Symbols 

Register operands 

Memory operands 
Direct 

Labels 
Variables 
Offset (f ieldname) 

Indexed 
Base register 
Index register 
[constant] 
±_displacement 

Structure 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-9 

3.2.1 Immediate Operands 

Immediate operands are constant values that yo11 supply when 
you type a statement line. The value may be typed either as 
a data item or as a symbol. 

Instructions that take two operands permit an immediate 
cperand as the source operand only (the second operand in an 
instruction statement). For example: 

Data Items 

Macro Assembler recognizes values in forms other than 
decimal when special notation is appended. The default 
input radix is decimal. Any numeric values entered without 
numeric notation appended will be treated as a decimal 
value. These other values include ASCII characters as well 
as numeric values. 

Data Form ----
Binary 

Octal 

Decimal 

Hexadecimal 

ASCII 

10 real 

16 real 

Symbols 

Format ---
xxxxxxxxB 

xxxo 
xxxQ 

xxxxx 
xxxxxD 

xxxxH 

'xx' 
"xx" 

Example 

01110001B 

7350 (letter 0) 
412Q 

65535 (default) 
lOOOD (when .RADIX changes input 

radix to nondecimal) 

OFFFFH (1st digit must be 0-9) 

'OM' (more than two with DB only; 
"OM" bo~h forms are synonymous) 

xx.xxE&+xx 25.23E-7 (floating point format) 

x ... xR 8F76DEA9R (1st digit must be 0-9; 
the total number of digits 
must be 8, 16, or 20; or 9, 
17, 21 if first digit is 0) 

Symbol names equated with some form of constant information 
(see Section 2.3, "Symbols") may be used as immediate 
operands. Using a symbol constant in a statement is the 
same as using a numeric constant. Therefore, using the 
sample statement above, you cou.ld type: 



EXPRESSIONS: OPERAi.~DS AND OPERATORS Page 3-10 

MOV AX,FOO 

assuming FOO was defined as a constant symbol. For example: 

FOO EQU 9 

3.2.2 Register Operands 

The 8086 processor contains a number of registers. These 
registers are identified by two-letter symbols that the 
processor recognizes (the symbols are reserved). 

The registers are appropriated to different tasks: general 
registers, pointer registers, counter registers, index 
registers, segment registers, and a flag register. 

The general registers are two sizes: 8-bit and 16-bit. All 
other registers are 16-bit. 

The general registers are both 8-bit and 16-bit registers. 
Actually, the 16-bit general registers are composed of a 
pair of 8-bit registers, one for the low byte (bits 0-7) and 
one for the high byte (bits 8-15)~ Note, however, that each 
8-bit general register can be used independently from its 
mate. In this case, each 8-bit register contains bits 0-7. 

Segment registers are initialized by the user and contain 
segment base values. The segment register names (CS, DS, 
SS, ES) can be used with the colon segment override operator 
to inform Macro Assembler that an operand is in a different 
segment than specified in an ASSUME statement. (See the 
segment override operator in Section 3.3.1, "Attribute 
Operators.)" 

The flag register is one 16-bit register containing nine 
1-bit flags (six arithmetic flags and three control flags). 

Each of the registers (except segment registers and flags) 
can be an operand in arithmetic and logical operations. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-11 

Register/Memory Field Encoding: 

MOD=ll Register Mode 

R/M W=O W=l 

000 AL AX 
001 CL ex 
010 DL DX 
011 BL BX 
100 AH SP 
101 CH BP 
110 DH SI 
111 BH DI 

EFFECTIVE ADDRESS CALCULATION 

R/M MOD=OO MOD=Ol MOD=lO 

000 [BX]+[SI] [BX]+[SI]+DB [BX]+[SI]+Dl6 
001 [BX]+ [DI] [BX]+[DI]+D8 [BX]+[DI)+Dl6 
010 [BP]+(SI] [BP]+[SI]+D8 [BP]+[SI)+Dl6 
Oll [BP]+ [DI] [BP]+[DI)+DB [BP)+[DI)+Dl6 
100 [SI] [SI]+DB [SI)+Dl6 
101 [DI) [DI]+DB [DI]+Dl6 
llO DIRECT ADDRESS [BP]+DB [BP]+Dl6 
111 [BX] [BX]+DB [BX]+Dl6 

......____ 
Note: DB = a byte value; Dl6 a word value 

Other Registers: 

Segment :CS 
DS 
SS 
ES 

Flags: 

code segment 
data segment 
stack segment 
extra segment 

1-bit arithmetic flags 3 1-bit control flags 

CF 
PF 

carry flag 
parity flag 

DF 
IF 

direction flag 
interrupt-enable 
flag 



EXPRESSIONS: OPERANDS AND OPERATORS 

NOTE 

DI The BX, BP, SI, and 
registers are also used as 

The 
these 

memory operands. 
distinction is: when 
registers are enclosed in 
square brackets ] , they are 
memory operands; when they 
are not enclosed in square 
brackets, they are register 
operands (see Section 3.2.3, 
"Memory Operands"). 

Page 3-12 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-13 

3.2.3 Memory Operands 

A memory operand represents an address in memory. When you 
use a memory operand, you direct Macro Assembler to an 
address to find some data or instruct~on. 

A memory operand always consists of an offset from a base 
address. 

Memory operands fit into three categories: those that do 
not use a register (direct memory operands), those that use 
a base or index register (indexed memory operands), and 
structure operands. 

Direct Memory Operands 

Direct memory operands do not use a register, and consist of 
a single offset value. Direct memory operands are labels, 
simple variables, and offsets. 

Memory operands can be used as destination operands as well 
as source operands for instructions that take two operands. 
For example: 

MOV AX,FOO 
MOV FOO,CX 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-14 

Indexed Memory Operands 

Indexed memory operands use base and index registers, 
constants, displacement values, and variables, often in 
combination. When you combine indexed operands, you create 
an address expression. 

Indexed memory operands use square brackets to indicate 
indexing (by a register or by registers) or subscripting 
(for example, F00[5)). The square brackets are treated like 
plus signs (+). Therefore, 

F00[5) is equivalent to FOO+S 
5[FOO) is equivalent to 5+FOO 

The only difference between square brackets and 
occurs when a register name appears inside 
brackets. Then, the operand is indexed. 

The types of indexed memory operands are: 

Base registers: [BX] [BP) 

plus signs 
the square 

BP has SS as its default segment register; 
all others have DS as default. 

Index registers: [DI) [SI] 

[constant) Immediate in square brackets [8), [FOO] 

+Displacement 8-bit or 16-bit value. 
- Used only with another indexed operand. 

These elements may be combined 
restriction is that two base 
registers cannot be combined: 

[BX+BP] ;illegal 
[SI+DI) : illegal 

in any order. The only 
registers and two indexed 

Some examples of indexed memory operand combinations: 

[BP+8] 
[SI+BX] [4] 
16 [DI+BP+3] 
8[F00]-8 

More examples of equivalent forms: 

5 [BX] [SI] 
BX+5) [SI] 
[BX+SI+5] 
[BX]5[SI] 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-15 

Structure Operands 

Structure operands take the form <variable>.<field>. 

<variable> is any name you give when coding a statement line 
that initi3lizes a Structure field. The <variable> may be 
an anonymous variable, such as an indexed memory operand. 

<field> is a name defined by a DEFINE directive within a 
STRUC block. <field> is a typed constant. 

The period (.) must be included. 

Example: 

zoo 
GIRAFFE 
zoo 

LONG NECK 

STRUC 
DB ? 
ENDS 

zoo <16> 

MOV AL,LONG_NECK.GIRAFFE 

MOV AL,[BX] .GIRAFFE ianonymous variable 

The use of structure operands can be helpful in stack 
operations. If you set up the stack segment as a structure, 
setting BP to the top of the stack (BP eq~al to SP) , then 
you can access any value in the stack structure by field 
name indexed through BPi for example: 

[BP) .FLD6 

BP-+. +-SP 
FLDl 

FLD3 I FLD2 

STRUC ~ FLD4 

FLD6 I FLDS 

FLD7 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-16 

This method makes all values on the stack available all the 
time, not just the value at the top. Therefore, this method 
makes the stack a handy place to pass parameters to 
subroutines. 



EXPRESSIONS: OPERANDS AND OPERATORS 

3. 3 OPERATORS 

An operator may be one of four 
arithmetic, relational, or logical. 

Page 3-17 

types: attribute, 

Attribute operators are used with operands to overr~de their 
attributes, return the value of the attributes, or to 
isolate fields of records. 

Arithmetic, relational, and logical operators are used to 
combine or compare operands. 

3.3.l Attribute Operators 

Attribute operators used as operands perform one of three 
functions: 

Override an operand's attributes 

Return the values of operand attributes 

Isolate record fields (record specific operators) 

The following list shows all the attribute operators by 
type: 

Override operators 
PTR 
colon(:) (segment override) 
SHORT 
THIS 
HIGH 
LOW 

Value returning operators 
SEG 
OFFSET 
TYPE 
.TYPE 
LENGTH 
SIZE 

Record specific operators 
Shift count (Field name) 
WIDTH 
MASK 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-18 

override Operators 

These operators are used to override the segment, offset, 
type, or distance of variables and l~bels. 

Pointer (PTR) 

<attribute> PTR <expression> 

The PTR operator overrides the type (BYTE, WORD, 
DWORD) or the distance (NEAR, FAR) of an operand. 

<attribute> is the new attribute; the new type or 
new distance. 

<expression> is the operand whose attribute is to 
be overridden. 

The most important and frequent use for PTR is to 
assure that Macro Assembler understands what 
attribute'the expression is supposed to have. This 
is especially true for the type attribute. 
Whenever you place forward references in your 
program, PTR will make clear the distance or type 
of the expression. This way you can a~oid phase 
errors. 

The second use of PTR is to access data by type 
other than the type in the variable definition. 
Most often this occurs in structures. If the 
structure is defined as WORD but you want to access 
an item as a byte, PTR is the operator for this. 
However, a much easier method is to enter a second 
statement that defines the structure in bytes, too. 
This eliminates the need to use PTR for every 
reference to the structure. Refer to the LABEL 
directive in Section 4.2.1, "Memory Directives." 

Examples: 

CALL WORD PTR [BX] [SI] 
MOV BYTE PTR ARRAY 

ADD BYTE PTR F00,9 



EXPRESSIONS: OPERANDS AND' OPERATORS Page 3-19 

Segment Override (:) (colon) 

<segment-register>:<address-expression> 
<segment-name>:<address-expression> 
<group-name>:<address-expression> 

The segment override operator overrides the assumed 
segment of an address expression (which may be a 
label, a variable, or other memory operand). 

The colon operator helps with forward references by 
telling the assembler to what a reference is 
relative (segment, group, or segment register). 

Macro Assembler assumes that labels are addressable 
through the current CS register. Macro Assembler 
also assumes that variables are addressable through 
the current DS register, or possibly the ES 
register, by default. If the operand is in another 
segment and you have not alerted Macro Assembler 
through the ASSUME directive, you will need to use 
a segment override operator. Also, if you want to 
use a nondefault relative base (that is, not the 
default segment register), you will need to use the 
segment override operator for forward references. 
Note that if Macro Assembler can reach an operand 
through a nondefault segment register, it will use 
it, but the reference cannot be forward in this 
case. 

<segment-register> is one of the four segment 
register names: CS, DS, SS, ES. 

<segment-name> is a name defined by the SEGMENT 
directive. 

<group-name> is a name defined by the 
directive. 

Examples: 

MOV AX,ES: [BX+SI] 

MOV CSEG:FAR_LABEL,AX 

MOV AX,OFFSET DGROUP:VARIABLE 

GROUP 



EXPRESSIONS: OPERANDS AND OPERATORS Pag.e 3-20 

SHORT 

SHORT <label> 

SHORT overrides NEAR distance attributes of labels 
used as targets for the JMP instruction. SHORT 
tells Macro Assembler that the distance between the 
JMP statement and the <label> specified as its 
operand is not more than 127 bytes either 
direction. 

The major advantage of using the SHORT operator is 
to save a byte. Normally, the ~label> carries a 
2-byte pointer to its offset in its segment. 
Because a range of 256 bytes can be handled in a 
single byte, the SHORT operator eliminates the need 
for the extra byte (which would carry 00 or FF 
anyway). However, you must be sure that the target 
is within +127 bytes of the JMP instruction before 
using SHORT-:-

Example: 

JMP SHORT REPEAT 

REPEAT: 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-21 

THIS 

THIS <distance> 
THIS <type> 

The THIS operator creates an operand. The value of 
the operand depends on which argument you give 
THIS. 

The argument to THIS may be: 

1. A distance (NEAR or FAR) 

2. A type (BYTE, WORD, or DWORD) 

THIS <distance> creates an operand with the 
distance attribute you specify, an offset equal to 
the current location counter, and the segment 
attribute (segment base address) of the enclosing 
segment. 

THIS <type> creates an 
attribute you specify, 
current location counter, 
(segment base address) of 

Examples: 

operand with the type 
an off set equal to the 
and the segment attribute 
the enclosing segment. 

TAG EQU THIS BYTE same as TAG LABEL BYTE 

SPOT CHECK = THIS NEAR same as 
SPOT-CHECK LABEL NEAR 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-22 

HIGH,LOW 

HIGH <expression> 
LOW <expression> 

HIGH and LOW are provided for 8080 
language compatibility. HIGH and LOW 
isolation operators. 

assembly 
are byte 

HIGH isolates the high 8 bits of an absolute 16-bit 
value or address expression. 

LOW isolates the low 8 bits of an absolute 16-bit 
value or address expression. 

Examples: 

MOV AH,HIGH WORD VALUE ;get byte with sign bit 

MOV AL,LOW OFFFFH 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-23 

Value Returning Operators 

These operators return the attribute values of the operands 
that follow them but do not override the attributes. 

The value returning operators take labels and variables as 
their arguments. 

Because variables in Macro Assembler have three attributes, 
you need.to use value returning operators to isolate single 
attributes, as follows: 

SEG 
OFFSET 
TYPE 
LENGTH 

isolates the segment base address 
isolates the off set value 
isolates either type or distance 

and SIZE isolate the memory allocation 

SEG <label> 
SEG <variable> 

SEG returns 
address) of 
variable. 

Example: 

the 
the 

SE:lgment 
segment 

MOV AX,SEG VARIABLE NAME 

value (segment base 
enclosing the label or 

MOV AX,<segment-varTable>:<variable> 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-24 

OFFSET 

OFFSET <label> 
OFFSET <variable> 

OFFSET returns the offset value of the variable or 
label within its segment (the number of bytes 
between the segment base address and the address 
where the label or variable is defined). 

OFFSET is chiefly used to tell the assembler that 
the operand is an immediate operand. 

NOTES 

OFFSET does not make the value a constant. 
Only MS-LINK can resolve the final value. 

OFFSET is not required with uses of the DW 
or DD directives. The assembler applies an 
implicit OFFSET to variables in address 
expressions following DW and DD. 

Example: 

MOV BX,OFFSET FOO 

If you use an ASSUME to GROUP, OFFSET will not 
automatically return the offset of a variable from 
the base address of the group. Rather, OFFSET will 
return the segment offset, unless you use the 
segment override operator (group-name version). If 
the variable GOB is defined in a segment placed in 
DGROUP, and you want the offset of GOB in the 
group, you need to enter a statement like: 

MOV BX,OFFSET DGROUP:GOB 

You must be sure that the GROUP directive precedes 
any reference to a group name, including its use 
with OFFSET. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-25 

TYPE 

TYPE <label> 
TYPE <variable> 

If the operand is a variable, the TYPE operator 
returns a v~lue equal to the number of bytes of the 
variable type, as follows: 

1 
2 
4 
8 
10 

BYTE 
WORD 
DWORD 
QWORD 
TBYTE 
STRUC the number of bytes declared by STRUC 

If the operand is a 
returns NEAR (FFFFH) or 

Examples: 

label, the 
FAR (FFFEH) • 

MOV AX, (TYPE FOO_BAR) PTR [BX+SI] 

TYPE operator 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-26 

.TYPE 

.TYPE <variable> 

The .TYPE operator returns a byte that describes 
two characteristics of the <variable>: 1) the 
mode, and 2) whether it is External or not. The 
argument to .TYPE may be any expression (string, 
numeric, logical). If the expression is invalid, 
.TYPE returns zero. 

The byte that is returned is configured as follows: 

The lower two bits are the mode. If the lower two 
bits are: 

0 the mode is Absolute 
l the mode is Program Related 
2 the mode is Data Related 

The high bit (80H) is the 
high bit is on, the 
External. If the high bit 
is not External. 

External bit. If the 
expression contains an 
is off, the expression 

The Defined bit is 20H. This bit is on if the 
expression is locally defined, and it is off if the 
expression is undefined or external; If neither 
bit is on, the expression is invalid • 

• TYPE is usually used inside macros, where an 
argument type may need to be tested to make a 
decision regarding program flow; for example, when 
conditional assembly is involved. 

Example: 

FOO MACRO X 
LOCAL Z 

Z .TYPE X 
IF Z ••• 

• TYPE tests the mode and type of x. Depending on 
the evaluation of X, the block of code beginning 
with IF z ... may be assembled or omitted. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-27 

LENGTH 

LENGTH <variable> 

LENGTH accepts only one variable as its argument. 

LENGTH returns the number of 
WORD, DWORD, QWORD, TBYTE) 
variable. 

type units {BYTE, 
allocated for that 

If the variable is defined by a 
LENGTH returns the number of type 
that is, the number that precedes 
the expression. 

DUP expression, 
units duplicatedi 
the first DUP in 

If the variable is not defined by a DUP expression, 
LENGTH returns 1. 

Examples: 

FOO OW 100 DUP{l) 

MOV CX,LENGTH FOO iget number of elements 
iin array 
1LENGTH returns 100 

BAZ OW 100 DUP{l,10 DUP{?)) 

LENGTH BAZ is still 100, regardless 
expression following DUP. 

GOO DD (?) 

of the 

LENGTH GOO returns 1 because only one unit is 
involved. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-28 

SIZE 

SIZE <variable> 

SIZE returns the total number of bytes allocated 
for a variable. 

SIZE is the product of the value of LENGTH times 
the value of TYPE. 

Example: 

FOO OW 100 DUP(l) 

MOV BX,SIZE FOO :get total bytes in array 

SIZE 
SIZE 
SIZE 
SIZE 

LENGTH 
100 
100 

200 

X TYPE 
X WORD 
x 2 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-29 

Record Specific Operators 

Record specific operators are used to isolate fields in a 
record. 

Records are defined by the RECORD directive (see Section 
4.2.1, "Memory Directives"). A record ~ay be up to 16 bits 
long. The ~ecord is defined by fields, which may be from 
one to 16 bits long. To isolate one of the three 
characteristics of a record field, you use one of the record 
specific operators, as follows: 

Shift count Number of bits from low end of record to low 
end of field (number of bits to right shift the 
record to lowest bits of record) 

WIDTH The number of bits wide the field or record is 
' (number of bits the field or record contains) 

MASK Value of record if field contains its maximum 
value and all other fields are zero (all bits 
in field contain li all other bits contain 0) 

In the following discussions of the record 
operators, the following symbols are used: 

specific 

FOO a record defined by the RECORD directive 
FOO RECORD FIELD1:3,FIELD2:6,FIELD3:7 

BAZ a variable used to allocate FOO 
BAZ FOO < > 

FIELDl, FIELD2, and FIELD3 are the fields of the 
record FOO. 



EXPRESSIONS: OPERANDS AND OPERATORS 

Shift~count - (record-fieldname) 

<record-f ieldname> 

The shift count is derived from 
fieldname to be isolated. 

Page 3-30 

the record 

The shift count is the number of bits the field 
must be shifted right to place the lowest bit of 
the field in the 1-owest bit of the record byte or 
word. 

If a 16-bit record (FOO) contains three fields 
(FIELD!, FIELD2, and FIELD3), the record can be 
diagrammed as follows: 

11111 I WIDTH = 6 • .I 

FIELD! has a shift count of 13. 
FIELD2 has a shift count of 7. 
FIELD3 has a shift count of O. 

I I 

When you want to isolate the value in one of these 
fields, you enter its name as an operand. 

Example: 

MOV DX,BAZ 
MOV CL,FIELD2 
SHR DX,CL 

FIELD2 is now right shifted, ready for access. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-31 

WIDTH 

WIDTH <record-fieldname> 
WIDTH <record> 

When a <record-fieldname> is give~ as the argument, 
WIDTH returns the width of a record field as the 
number of bits in the record field. 

When a <record> is given as the argument, WIDTH 
returns the width of a record as the number of bits 
in the record. 

Using the diagram under shift count, WIDTH can be 
diagrammed as: 

I I I I 
FIELDl FIELD2 FIELD3 

The WIDTH of FIELDl equals 3. 
The WIDTH of FIELD2 equals 6. 
The WIDTH of FIELD3 equals 7. 

Example: 

MOV CL,WIDTH FIELD2 

The number of bits in FIELD2 is now in the count 
register. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-32 

MASK 

MASK <record-f ieldname> 

MASK accepts a field name as its only argument. 

MASK returns a bit-mask defined 
positions included by the field 
positions not included. The 
represents the maximum value for 
the field is masked. 

by 1 for bit 
and 0 for bit 
value return 

the record when 

Using the diagram used for shift count, MASK can be 
diagrammed as: 

11 I 11 I I I I 11 I I I I I I '' "1'' ''1'°' 0 1°' ', ........ 
1 F 8 0 

The MASK of FIELD2 equals 1F80H. 

Example: 

MOV DX,BAZ 
AND DX,MASK FIELD2 

FIELD2 is now isolated. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-33 

3.3.2 Arithmetic Operators 

Eight arithmetic operators provide the 
functions (add, subtract, divide, 
negation), plus two shift operators. 

common mathematical 
multiply, modulo, 

The arithmetic operators are used to combine operands to 
form an expression that results in a data item or an 
address. 

Except for + and - (binary), operands must be constants. 

For plus (+), one operand must .be a constant. 

For minus (-), the first (left) operand may be a 
nonconstant, or both operands may be nonconstants. The 
right must be a constant if the left is a constant. 

* 
I 

MOD 

SHR 

SHL 

Multiply 

Divide 

Modulo. Divide the left operand by the right 
operand and return the value of the remainder 
(modulo). Both operands must be absolute. 

Example: 

MOV AX,100 MOD 17 

The value moved into AX will be OFH (decimal 
15) • 

Shift Right. SHR is followed by an integer 
which specifies the number of bit positions 
the value is to be shifted right. 

Example: 

MOV AX,llOOOOOB SHR 5 

The value moved into AX will be llB (03). 

Shift Left. SHL is followed by an integer 
which specifies the number of bit positions 
the value is to be shifted left. 

Example: 

MOV AX,OllOB SHL 5 

The value moved into AX will be OllOOOOOOB 
(OCOH) 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-34 

- (Unary Minus) Indicates that following value is negative, 
as in a negative integer. 

+ Add. One operand must be a constanti 
may be a nonconstant. 

one 

Subtract the right operand from the left 
operand. The first (left) operand may be a 
nonconstant, or both operands may be 
nonconstants. But the right may be a 
nonconstant only if the left is also a 
nonconstant and in the same segment. 

3.3.3 Relational Operators 

Relational operators compare two constant operands. 

If the relationship between the two operands matches the 
operator, FFFFH is returned. 

If the relationship between the two operands does not match 
the operator, a zero is returned. 

Relational operators are most often used with conditional 
directives and conditional instructions to direct program 
control. 

EQ 

NE 

LT 

LE 

GT 

GE 

Equal. Returns true if the operands equal 
each other. 

Not Equal. Returns true if the operands are 
not equal to each other. 

Less Than. Returns true if the left operand 
is less than the right operand. 

Less than or Equal. Returns true if the left 
operand is less than or equal to the right 
operand. 

Greater Than. Returns true if the left 
operand is greater than the right operand. · .. 
Greater than or Equal. Returns true if the 
left operand is greater than or equal to the 
right operand. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-35 

3.3.4 Logical Operators 

Logical operators compare two constant operands bitwise. 

Logical operators compare the binary values of corresponding 
bit positions of each operand to evaluate the logical 
relationship defined by the logical operator. 

Logical operators can be used two ways: 

1. To combine operands in a logical relationship. In 
this case, all bits in the operands will have the 
same value (either 0000 or FFFFH). In fact, it is 
best to use these values for true (FFFFH) and false 
(0000) for the symbols you will use as operands, 
because in conditionals anything nonzero is true. 

2. In bitwise operations. In this case, the bits are 
different, and the logical operators act the same 
as the instructions of the same name. 

NOT Logical NOT. Returns true if left operand is 
true and right is false or if right is true 
and left is false. Returns false if both are 
true or both are false. 

AND Logical AND. Returns true if both operators 
are true. Returns false if either operator 
is false or if both are false. Both operands 
must be absolute values. 

OR Logical OR. Returns true if either operator 
is true or if both are true. Returns false 
if both operators are false. Both operands 
must be absolute values. 

XOR Exclusive OR. Returns true if either 
operator is true and the other is false. 
Returns false if both operators are true or 
if both operators are false. Both operands 
must be absolute values. 



EXPRESSIONS: OPERANDS AND OPERATORS Page 3-36 

3.3.5 Expression Evaluation: Precedence Of Operators 

Expressions are evaluated higher precedence operators first, 
then left to right for equal precedence operators. 

Parentheses can be used to alter precedence. 

For example: 

MOV AX,lOlB SHL 2*2 MOV AX,00101000B 

MOV AX,lOlB SHL (2*2) = MOV AX,OlOlOOOOB 

SHL and * are equal precedence. Therefore, their functions 
are performed in the order the operators are encountered 
(left to right). 

Precedence of Operators 

All operators in a single item have the same 
regardless of the order listed within the item. 
line breaks are used for visual clarity, not 
functional relations. 

1. LENGTH, SIZE, WIDTH, MASK 
Entries inside: parentheses ( ) 

angle brackets < > 
square brackets [ J 

precedence, 
Spacing and 

to indicate , 

Structure variable operand: <variable>.<field> 

2. Segment override operator: colon (:) 

3. PTR, OFFSET, SEG, TYPE, THIS 

4. HIGH, LOW 

5. *I /, MOD, SHL, SHR 

6. +, - (both unary and binary) 

7. EQ, NE, LT, LE, GT, GE 

8. Logical NOT 

9. Logical AND 

10. Logical OR, XOR 

11. SHORT , . TYPE 



Chapter 4 

4.1 
4. 2 
4.2.1 
4. 2. 2 
4.2.3 

4. 2. 4 

Contents 

Action: Instructions and Directives 

Instructions 4-2 
Directives 4-3 

Memory Directives 4-5 
Conditional Directives 4-37 
Macro Directives 4-41 

Repeat Directives 4-49 
Special Macro Operators 4-53 

Listing Directives 4-57 





CHAPTER 4 

ACTION: INSTRUCTIONS AND DIRECTIVES 

The action field contains either an 8086 instruction 
mnemonic or a Macro Assembler ass·embler directive. 

Following a name field entry (if any), action field entries 
may begin in any column. Specific spacing is not; required. 
The only benefit of consistent spacing is impro~~d 
readability. If a statement does not have a name field 
entry, the action field is the first entry. 

The entry in the action field either directs the processor 
to perform a specific function or directs the assembler to 
perform one of its functions. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-2 

4.1 INSTRUCTIONS 

Instructions tell the command processor to perform some 
action. An instruction may have the data and/or addresses 
it needs built into it, or data and/or addresses may be 
found in the expression part of an instruction. For 
example: 

I opcode 11operand11 data 11 data I 

l0Tll 0cmflTlr· I 
supplied supplied or found 

supplied = part of the instruction 

found = assembler inserts data and/or address from the 
information provided by expressions in instruction 
statements. 

(opcode equates to the binary code for the action 
of an instruction) 

Note that this manual does not contain detailed descriptions 
of the 8086 instruction mnemonics and their characteristics. 
For this, you will need to consult other texts. The 
followin9 texts are recommended: 

1. Morse, Stephen P. The 8086 Primer. Rochelle Park, 
NJ: Hayden Publishing Co., 1980. 

2. Rector, Russell and George Alexy. The 8086 Book. 
Berkeley, CA: Osbourne/McGraw-Hi11~980:---

3. ~ 8086 Family User's tianual. Santa Clara, CA: 
Intel Corporation, 1980. 

Appendix C contains both an alphabetical listing and a 
grouped , listing of the instruction mnemonics. The 
alphabetical listing shows the full name of the instruction. 
Following the alphabetical list is a list that groups the 
instruction mnemonics by the number and type of arguments 
they take. Within each group, the instruction mnemonics are 
arranged alphabetically. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-3 

4.2 DIRECTIVES 

Directives give the assembler directions and information 
about input and output, memory organization, conditional 
assembly, listing and cross-reference control, and 
definitions. 

The directives have been divided into groups by the function 
they perform. Within each group, the directives are 
described alphabetically. 

The groups are: 

Memory Directives 
Directives in this group are used to organize 
memory. Because there is no "miscellaneous" 
group, the memory directives group contains 
some directives that do not, strictly speaking, 
organize memory (for example, COMMENT). 

Conditional Directives 
Directives in this group are used to test 
conditions of assembly before proceeding with 
assembly of a block of statements. This group 
contains all of the IF (and related) 
directives. 

Macro Directives 
Directives in this group are used to create 
blocks of code called macros. This group also 
includes some special operators and directives 
that are used only inside macro blocks. The 
repeat directives are considered macro 
directives for descriptive purposes. 

Listing Directives 
Directives in this group are used to control 
the format and, to some extent, the content of 
listings that the assembler produces. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-4 

Appendix B contains a table of assembler directives, also 
grouped by function. Below is an alphabetical list of all 
the directives that Macro Assembler supports: 

ASSUME EVEN IRPC .RADIX 
EX I TM RECORD 

COMMENT EXTERN LABEL REPT 
.CREF .LALL 

GROUP .LFCOND .SALL 
DB .LIST SEGMENT 
DD IF .SFCOND 
DQ IFB MACRO STRUC 
DT IFDEF SUBTTL 
DW I FD IF NAME 

IFE .TFCOND 
ELSE IFIDN ORG TITLE 
END IFNB %OUT 
END IF IFNDEF .XALL 
ENDM PAGE .XCREF 
ENDP !Fl PROC .XL I ST 
ENDS IF2 PUBLIC 
EQU IRP PURGE 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-5 

4.2.1 Memory Directives 

ASSUME 

ASSUME <seg-reg>:<seg-name>[, ... ] 

or 

ASSUME NOT·HING 

ASSUME tells the assembler that the symbols in the 
segment or group can be accessed using this segment 
register. When the assembler encounters a 
variable, it automatically assembles the variable 
reference under the proper segment register. You 
may enter from 1 to 4 arguments to ASSUME. 

The valid <seg-reg> entries are: 

CS, DS, ES, and SS. 

The possible entries for <seg-name> Qre: 

1. The name of a segment declared with the SEGMENT 
directive 

2. The name of a group declared with the GROUP 
directive 

3. An expression: either SEG <variable-name> or 
SEG <label-name> (see SEG operator, Section 
3.3) 

4. The key word NOTHING. ASSUME NOTHING cancels 
all register assignments made by a previous 
ASSUME statement 

If ASSUME is not used or if NOTHING is typed for 
<seg-name>, each reference to variables, symbols, 
labels, and so forth in a particular segment must 
be prefixed by a segment register. For example, 
type DS:FOO instead of simply FOO. 

Example: 

ASSUME DS:DATA,SS:DATA,CS:CGROUP,ES:NOTHING 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-6 

COMMENT 

COMMENT<delim><text><delim> 

The first non-blank character encountered after 
COMMENT is the delimiter. The following <text> 
comprises a comment block which continues until the 
next occurrence of <delimiter>. 

COMMENT permits you to enter 
program without entering a 
each line. 

comments about your 
semicolon (;) before 

If you use COMMENT inside a macro block, the 
comment block will not appear on your listing 
unless you also place the .LALL directive in your 
source file. 

Example: 

Using an asterisk as the delimiter, the format of 
the comment block would be: 

COMMENT * 
any amount of text entered 
here as the comment bloc.k 

* ;return to normal mode 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-7 

DEFINE BYTE 
DEFINE WORD 
DEFINE DOUBLEWORD 
DEFINE QUADWORD~ 
DEF[l'!_E TENBYTES 

<varname> 
<var name> 
<var name> 
<var name> 
<varname> 

DB <exp>[,<exp>, •.. ] 
DW <exp>[,<exp>, .•. ] 
DD <exp>[,<exp>, ... ] 
DQ <exp>[,<exp>, ... ] 
DT <exp>[,<exp>, ... ] 

The DEFINE directives are used to define variables 
or to initialize portions of memory. 

If the optional <varname> is entered, the DEFINE 
directives define the name as a variable. If 
<varname> has a colon, it becomes a NEAR label 
instead of a variable. (See also, Section 2.1, 
"Labels," and Section 2.2, "Variables.") 

The DEFINE directives allocate memory in units 
specified by the second letter of the directive 
(each DEFINE directive may allocate one or more of 
its units at a time): 

DB allocates one byte (8 bits) 
DW allocates one word (2 bytes) 
DD allocates two words (4 bytes) 
DQ allocates four words (8 bytes) 
DT allocates ten bytes 

<exp> may be one or more of the following: 

1. A constnnt expression 

2. The character ? for indeterminate 
initialization. Usually the ? is used to 
reserve space without placing any particular 
value into it. (It is the ec:uivalent of the DS 
pseudo-op in MACR0-80). 

3. An address expression (for DW and DD only) 

4. An ASCII string (longer than two characters for 
DB only) 

5. <exp>DUP(?) 
When this type of expression is the only 
argument to a define directive, the define 
directive produces an uninitialized data block. 
This expression with the ? instead of q value 
results in a smaller object file because only 
the segment offset is, chanqed to reserve space. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-8 

6. <exp> DUP(<exp>[, ... ]) 
This expression, like item 5, produces a data 
block, but initialized with the value of the 
second <exp>. The first <exp> must be a 
constant greater than zero and must not be a 
forward reference. 

Example - Define Byte (DB): 

NUM BASE 
FILLER 

DB 
DB 

16 
? ;initialize with 

;indeterminate value 
ONE CHAR DB 
MULT CHAR DB 
MSG DB 

'M' 
'TOM JEROME EDWARD BOB DEAN' 
'MSGTEST' ,13,10 ;message, carriage return 

;and linefeed 
BUFFER DB 10 DUP(?) ;indeterminate block 
TABLE DB 100 DUP(5 DUP(4) ,7) 

;100 copies of bytes 
;with values 4,4,4,4,4,7 

NEW PAGE DB 
ARRAY DB 

OCH ;form feed character 
1,2,3,4,5,6,7 

Example - Define Word (DW): 

ITEMS 
SEGVAL 
BSIZE 
LOCATION 
AREA 
CLEARED 
SERIES 

DISTANCE 

DW TABLE,TABLE+l0,TABLE+20 
DW OFFFOH 
ow 4 * 128 
OW TOTAL + 1 
OW 100 DUP(?) 
PW 50 DUP (0) 
DW 2 DUP(2,3 DUP(BSIZE)) 
;two words with the byte values 
;2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,BSIZE 
OW START TAB -END TAB 1 
;difference of two labels is a constant 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-9 

Example - Define Doubleword (DD): 

DBPTR DD TABLE ;16-bit OFFSET, 
;then 16-bit 
;SEG base value 

SEC PER DAY DD 60*60*24 ;arithmetic is performed 

LIST 
HIGH 
FLOAT 

Example -

LONG REAL 

STRING 

HIGH 
LOW 
SPACER 

DD 
DD 
DD 

;by the assembler 
I XY I , 2 DUP (?) 
4294967295 ;maximum 
6.735E2 ;floating point 

Define Quadword (DQ): 

DQ 3.141597 ;decimal makes 
; it real 

DQ 'AB' ;no more than 
;characters 

DQ 18446744073709661615 ;maximum 
DQ -18446744073709661615 ;minimum 
DQ 2 DUP(?) ;uninit.data 

2 

FILLER DQ l DUP(?,?) ;initalized w I 
;indeterminate 
;value 

HEX REAL DQ OFDCBA9A98765432105R 

Example - Define Tenbytes (DT): 

ACCUMULATOR 
STRING 

DT 
DT 

PACKED DECIMAL DT 
FLOATING POINT DT 

? 
'CD' 

1234567890 
3.1415926 

;no more than 2 
;characters 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-10 

END 

END [<exp>] 

The END statement specifies the end of the program. 

If <exp> is present, it is the start address of the 
program. If several modules are to be linked, only 
the main module may specify the start of the 
program with the END <exp> statement. 

If <exp> is not present, then no start address is 
passed to MS-LINK for that program or module. 

Example: 

END START ;START is a label somewhere in the 
;program 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-11 

<name> EQU <exp> 

EQU assigns the value of <exp> to <name>. If <exp> 
is an external symbol, an error is generated. If 
<name> already has a value, an error is generated. 
If you want to be able to redefine a <name> in your 
program, use the equal sign (=) directive instead. 

In many cases, EQU is used as a primitive text 
substitution, like a macro. 

<exp> may be any one of the following: 

1. A symbol. <name> 
symbol in <exp>. 
symbol table. 

becomes 
Shown 

an 
as 

alias for the 
an Alias in the 

2. An instruction name. Shown as an Opcode in the 
symbol table. 

3. A valid expression. Shown as a Number or L 
(label) in the symbol table. 

4. Any other entry, including text, 
references, segment prefix and operands. 
as Text in the symbol table. 

index 
Shown 

Example: 

FOO EQU BAZ ;must be defined in this 
;module or an error 
;results 

B EQU [BP+8] ;index reference (Text) 
PS EQU DS: [BP+8] ;segment prefix 

;and operand (Text) 
CBD EQU AAD ;an instruction name 

; (Opcode) 
ALL EQU DEFREC<2,3,4> ;DEFREC = record name 

;<2,3,4> = initial values 
; for fields of record 

EMP EQU 6 ;constant value 
FPV EQU 6.3E7 ; floating point (text) 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-12 

<name> <exp> 

<exp> must be a valid expression. It is shown as a 
Number or L (label) in the symbol table (same as 
<exp> type 3 under the EQU directive above). 

The equal sign (=) allows the user to set and to 
·redefine symbols. The equal sign is like the EQU 
directive, except the user can redefine the symbol 
without generating an error. Re.definition may take 
place more than once, and redefinition may refer to 
a previous definition. 

Example: 

FOO 
FOO 

FOO 

FOO 

EQU 
5 
6; 

7 

F00+3 

;the same as FOO EQU 5 
;error, FOO cannot be 
;redefined by EQU 
;FOO can be redefined 
;only by another = 
;redefinition may refer 
;to a previous definition 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-13 

EVEN 

EVEN 

The EVEN directive causes the program counter to go 
to an even boundary; that is, to an address that 
begins a word. If the program counter is not 
already at an even boundary, EVEN causes the 
assembler to add a NOP instruction so that the 
counter will reach an even boundary. 

An error results if EVEN 
byte-aligned segment. 

Example: 

is used with 

Before: The PC points to 0019 hex (25 decimal) 

EVEN 

After: The PC points to lA hex (26 decimal) 
0019 hex now contains a NOP instruction 

a 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-14 

EXT RN 

EXTRN <name>:<type>[, ... ] 

<name> is a symbol that is defined in another 
module. <name> must have been declared PUBLIC in 
the module where <name> is defined. 

<type> may be any one of the following, but must be 
a valid type for <name>: 

1. BYTE, WORD, or DWORD 

2. NEAR or FAR for labels or procedures 
under a PROC directive) 

(defined 

3. ABS for pure numbers (implicit size is WORD, 
but includes BYTE) 

Unlike the 8080 assembler, placement of the EXTRN 
directive is significant. If the directive is 
given with a segment, the assembler assumes that 
the symbol is located within that segment. If the 
segment is not known, place the directive outside 
all segments, then use either 

ASSUME <seg-reg>:SEG <name> 

or an explicit segment pref ix. 

NOTE 

If a mistake is made and the symbol is not 
in the segment, MS-LINK will take the 
offset relative to the given segment, if 
~ossible. If the real segment is less than 
64K bytes away from the reference, MS-LINK 
may find the definition. If the real 
segment is more than 64K bytes away, 
MS-LINK will fail to make the link between 
the reference and the definition and will 
return an error message. 



ACTION: INSTRUCTIONS AND DIRECTIVES 

Example: 

In Same Segment: 

In Module 1: 

CSEG 

TAGN: 

CSEG 

SEGMENT 
PUBLIC TAGN 

ENDS 

In Module 2: 

CSEG 

CSEG 

SEGMENT 
EXTRN TAGN:NEAR 

JMP TAGN 
ENDS 

In Another Segment: 

In Module 1: 

CS EGA SEGMENT 
PUBLIC TAGF 

TAGF: 

CS EGA ENDS 

In Module 2: 

EXTRN TAGF:FAR 
CSEGB SEGMENT 

JMP TAGF 
CSEGB ENDS 

Page 4-15 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-16 

GROUP 

<name> GROUP <seg-name> [ , ••• .J 

The GROUP directive collects the segments named 
after GROUP (<seg-name>s) under one name. The 
GROUP is used by MS-LINK-so that it knows which 
segments should be loaded together (the order the 
segments are named here does not influence the 
order in which the segments are loaded. The order 
in which the segments are loaded is determined by 
the CLASS designation of the SEGMENT directive, or 
by the order you name object modules in response to 
the MS-LINK Object Module: prompt). 

All segments in a GROUP must fit into 64K bytes of 
memory. The assembler does not check this at all, 
but leaves the checking to MS-LINK. 

<seg-name> may be one of the following: 

1. A segment 
directive. 
reference. 

name, 
The 

assigned 
name may 

by 
be 

a 
a 

SEGMENT 
forward 

2. An expression: either SEG <var> 
or SEG <label> 

Both of these entries resolve themselves to a 
segment name (see SEG operator, Section 3.3). 

Once you have defined a group name, you can use the 
name: 

1. As an immediate value: 

MOV AX,DGROUP 
MOV DS,AX 

DGROUP is the paragraph address of the base of 
DGROUP. 

2. In ASSUME statements: 

ASSUME DS:DGROUP 

The DS register can now be used to reach any 
symbol in any segment of the group. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-17 

3. As an operand prefix (for segment override): 

MOV BX,OFFSET DGROUP:FOO 
DW DGROUP:FOO 
DD DGROUP:FOO 

DGROUP: forces the offset to be relative to 
DGROUP, instead of to the segment in which FOO 
is defined. 

Example (Using GROUP to combine segments): 

ln Module A: 

CGROUP GROUP XXX,YYY 
XXX SEGMENT 

ASSUME CS:CGROUP 

xxx ENDS 
yyy SEGMENT 

yyy ENDS 
END 

In Module B: 

CG ROUP GROUP zzz 
zzz SEGMENT 

ASSUME CS:CGROOP 

zzz ENDS 
END 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-18 

INCLUDE 

INCLUDE <filename> 

The INCLUDE directive inserts source code from an 
alternate assembly language source file into the 
current source file during assembly. Use of the 
INCLUDE directive eliminates the need to repeat an 
often-used sequence of statements in the current 
source file. 

The <filename> is any valid file specification for 
the operating system. If the device designation is 
other than the default, the source filename 
specification must include it. The default device 
designation is the currently logged drive or 
device. 

The included file is opened and assembled into the 
current source file immediately following the 
INCLUDE directive statement. When end-of-file is 
reached, assembly resumes with the next statement 
following the INCLUDE directive. 

Nested INCLUDES are allowed (the file inserted with 
an INCLUDE statement may contain an INCLUDE 
directive). However, this is not a recommended 
practice with small systems because of the amount 
of memory that may be required. 

The file specified must exist. If the file is not 
found, an error is displayed, and the assembly 
aborts. 

On a Macro Assembler listing, the letter C is 
printed between the assembled code ~nd the source 
line on each line assembled from an included file. 
See Section 5.5, "Formats of Listings and Symbol 
Tables," for a description of listing file formats. 

Example: 

INCLUDE ENTRY 
INCLUDE B:RECORD.TST 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-19 

LABEL 

<name> LABEL <type> 

By using LABEL to define a <name>, you cause the 
assembler to associate the current segment offset 
with <name>. 

The item is assigned a length of 1. 

<type> varies depending on the use of <name>. 
<name> may be used for code or for data. 

1. For code (for example, as a J~P or CALL operand): 

<type> may be either NEAR or FAR. <name> cannot be 
used in data manipulation instructions without 
using a type override. 

If you wish, you can define a NEAR label using the 
<name>: form (the LABEL directive is not used in 
this case). If you are defining a BYTE or WORD 
NEAR label, you can place the <name>: in front of 
a Define directive. 

When using a LABEL for code (NEAR or FAR) , 
segment must be addressable through the 
register. 

Example - For Code: 

LABEL FAR 

the 
cs 

SUBRTF 
SUBRT: (first instruction) ;colon NEAR label 



ACTIPN: INSTRUCTIONS AND DIRECTrvES 

2. For data: 

<type> may be BYTE, WORD, DWORD, 
or <record-name>. When STRUC 
used, <name> is assigned the size 
or record;. 

Example - For Data: 

BARRAY LA!lEL BYTE 
ARRAY DW 100 DUP(O) 

Page 4-20 

<structure-name>, 
or RECORD name is 
of the structure 

ADD 
ADD 

AL,BARRAY[99] 
AX,ARRAY[98] 

;ADD lOOth byte to AL 
;ADD 50th word to AX 

By defining the array two ways, you can access 
entries either by byte or by word. Also, you can 
use this method for STRUC. It allows you to place 
your data in memory as a table, and to access it 
without the offset of the STRUC. 

Defining the array two ways also permits you to 
avoid using the PTR operator. The double defining 
method is especially effective if you access the 
data different ways. It is easier to give the 
array a second name than to remember to use PTR. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-21 

NAME 

NAME <module-name> 

<module-name> must not be a reserved word. The 
module name may be any length, but Macro Assembler 
uses only the first six characters and truncates 
the rest. 

~he module name is passed to MS-LINK, but otherwise 
has no significance for the assembler. Macro 
Assembler does check to see if more than one module 
name has been declared. 

Every module has a name. Macro Assembler derives 
the module name from: 

1. A valid NAME directive statement 

2. If the module does not contain a NAME 
statement, Macro Assembler uses the first six 
characters of a TITLE directive statement. The 
first six characters must be legal as a name. 

Example: 

NAME CURSOR 



~CTION: INSTRUCTIONS AND DIRECTIVES Page 4-22 

)RG 

)RG <exp> 

The location counter is set to the value of <exp>, 
and the assembler assigns generated code starting 
with that value. 

All names used in <exp> must be known on pass 1. 
The value of <exp> must either evaluate to an 
absolute or must be in the same segment as the 
location counter. 

Example: 

ORG 

ORG 

120H 

$+2 

;2-byte absolute value 
;maximum=OFFFFH 
;skip two bytes 

Example - ORG to a boundary (conditional): 

CSEG 
BEGIN 

SEGMENT PAGE 
$ 

IF ($-BEGIN) MOD 256 ;if not already on 

END IF 

;256-byte boundary 
ORG ($-BEGIN)+256-(($-BEGIN) MOD 256) 

See Section 4.2.2, "Conditional Directives," for an 
explanation of conditional assembly. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-23 

PROC 

<procname> PROC [NEAR] 

<procname> 
RET 

ENDP 

or [FAR] 

The default, if no operand is specified, is NEAR. 
Use FAR if: 

1. The procedure name is an operating system entry 
point 

2. The procedure will be called from code which 
has another ASSUME CS value 

Each PROC block should contain a RET statement. 

The PROC directive serves as a structuring device 
to make your programs more understandable. 

The PROC directive, through the NEAR/FAR option, 
informs CALLS to the procedure to generate a NEAR 
or a FAR CALL, and RETs to generate a NEAR or a FAR 
RET. PROC is used, therefore, for coding 
simplification so that the user does not have to 
worry about NEAR or FAR for CALLS and RETs. 

A NEAR CALL or RETURN changes the IP but not the CS 
register. A FAR CALL or RETURN changes both the IP 
and the CS registers. 

Procedures are executed either in line, from a JMP, 
or from a CALL. 

PROCs may be nested, which means that they are put 
in line. 

Combining the PUBLIC directive with a PROC 
statement (both NEAR and FAR), permits you to make 
external CALLS to the procedure or to make other 
external references to the procedure. 



ACTION: INSTRUCTIONS AND DIRECTIVES 

Example: 

PUBLIC 
FAR NAME 

CALL 
RET 

FAR NAME 

PUBLIC 
NEAR NAME 

RET 
NEAR NAME 

FAR NAME 
PROC FAR 

NEAR NAME 

ENDP 

NEAR NAME 
PROC NEAR 

ENDP 

Page 4-24 

The second subroutine above can be called directly 
from a NEAR segment (that is, a segment addressable 
through the same CS and within 64K): 

CALL NEAR NAME 

A FAR segment (that is, 
not a NEAR segment) 
subroutine, which then 
indirect call): 

CALL FAR NAME 

any other segment that is 
must call to the first 
calls the second (an 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-25 

PUBLIC 

PUBLIC <symbol> [, ••• J 

Place a PUBLIC directive statement in any module 
that contains symbols you want to use in other 
modules without defining the symbol again. PUBLIC 
makes the listed symbol(s), which are defined in 
the module where the PUBLIC statement appears, 
available for use by other modules to be linked 
with the module that defines the symbol(s). This 
information is passed to MS-LINK. 

<symbol> may be a number, a variable, a label 
(including PROC labels). 

<symbol> may not be a register name or a symbol 
defined (with EQU) by floating point numbers or by 
integers larger than two bytes. 

Example: 

PUBLIC GET INFO 
GET INFO PROC FAR 

PUSH BP ;save caller's register 
MOV BP,SP ;get address parameters 

;body of subroutine 
POP BP ;restore caller's reg 
RET ;return to caller 

GET INFO ENDP 

Example - illegal PUBLIC: 

PUBLIC PIE BALD,HIGH VALUE 
PIE BALD EQU- 3.141G 
HIGH VALUE EQU 999999999 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-26 

.RADIX ----

.RADIX <exp> 

The default input base (or radix) for all constants 
is decimal. The .RADIX directive permits you to 
change the input radix to any base in the range 2 
to 16. 

<exp> is always in decimal radix, regardless of the 
current input radix. 

Example: 

MOV 
.RADIX 
MOV 

BX, OFFH 
16 
BX,OFF 

The two MOVs in this example are identical. 

The .RADIX directive does not affect the generated 
code values placed in the .OBJ, .LST, or .CRF 
output files. 

The .RADIX directive does not affect the DD, DQ, or 
DT directives. Numeric values entered in the 
expression of these directives are always evaluated 
as decimal unless a data type suffix is appended to 
the value. 

Example: 

.RADIX 16 
NUM HAND 
HOT-HAND 
COOL HAND 

DT 
DQ 
DD 

773 
773Q 
773H 

773 = decimal 
773 = octal here only 
now 773 = hexadecimal 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-27 

RECORD 

<recordname> RECORD <fieldname>:<width>[=<exp>], [ •.• ] 

<f ieldname> is 
specifies the 
by <fieldname>. 
default) value 
are not allowed 

the name of the field. <width> 
number of bits in the field defined 

<exp> contains the initial (or 
for the field. Forward references 

in a RECORD statement. 

<fieldname> becomes a value that can be used 
expressions. When you use <fieldname> in 
expression, its value is the shift count to 
the field to the far right. Using the 
operator with the <fieldname> returns a bit 
for that field. 

in 
an 

move 
MASK 
mask 

<width> is a constant in the range 1 to 16 that 
specifies the number of bits contained in the field 
defined by <fieldname>. The WIDTH operator returns 
this value. If the total width of all declared 
fields is larger than 8 bits, then the assembler 
uses two bytes. Otherwise, only one byte is used. 

The first field you declare goes into the most 
significant bits of the record. Successively 
declared fields are placed in the succeeding bits 
to the right. If the fields you declare do not 
total exactly 8 bits or exactly 16 bits, the entire 
record is shifted right so that the last bit of the 
last field is the lowest bit of the record. Unused 
bits will be in the high end of the record. 

Example: 

FOO RECORD HIGH:4,MID:3,LOW:3 

Initially, the bit map would be: 

I I I I I I I I I I 
<HIGH-> 

Total bits >8 means use a word; but total bits <16 
means right shift, place undeclared bits at high 
end of word. Thus: 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-28 

0 0 0 0 0 0 1 1 1 l 0 0 0 0 0 0 +-MASK 

not 
declared 

<HIGH-> <MID> <LOW> 

WIDTH shift count 

<exp> contains the initial value for the field. If 
the field is at least 7 bits wide, you can use an 
ASCII character as the <exp>. 

Example: 

HIGH:7='Q' 

To initialize records, use the same method used for 
DB. The format is: 

[<name>) <recordname> <[exp][, ••• )> 

or 

[<name>) <recordname> [<exp> DUP(<[exp][, ••• )>) 

The name is optional. When given, name is a label 
for the first byte or word of the record storage 
area. 

The recordname is the name used as a label for the 
RECORD directive. 

The [exp] (both forms) contains the values you want 
placed into the fields of the record. In the 
latter case, the parentheses and angle brackets are 
required only around the second [exp] (following 
DUP). If [exp] is left blank, either the default 
value applies (the value given in the original 
record definition), or the value is indeterminate 
(when not initialized in the original record 
definition). For fields that are already 
initialized to values you want, place consecutive 
commas to skip over (use the default values of) 
those fields. 

For example: 

FOO <,,7> 

From the previous example, the 7 would 
into the LOW field of the record FOO. 

be placed 
The fields 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-29 

HIGH and MID would be left as declared (in this 
case, uninitialized). 

Records may be used in expressions (as an operand) 
in the form: 

recordname<[value[, •.• ]]> 

The value entry is optional. The angle brackets 
must be coded as shown, even if the optional values 
are not given. A value entry is the value to be 
placed into a field of the record. For fields that 
are already initialized to values you want, place 
consecutive commas to skip over (use the default 
values of) those fields, as shown above. 

Example: 

FOO 

BAX 
JANE 

RECORD HIGH:S,MID:3,LOW:3 

FOO <> ;leave undeterminate here 
FOO 10 DUP(<l6,8>) ;HIGH=l6,MID=8, 

;LOW=? 

MOV DX,OFFSET JANE[2] 
;get beginning record address 

AND DX,MASK MID 
MOV CL,MID 
SHR DX,CL 
MOV CL,WIDTH MID 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-30 

SEGMENT ---

<segname> SEGMENT [<align>] [<combine>] [<'class'>] 

<segname> ENDS 

At runtime, all instructions that generate code and 
data are in (separate) segments. Your program may 
be a segment, part of a segment, several segments, 
parts of several segments, or a combination of 
these. If a program has no SEGMENT statement, an 
MS-LINK error (invalid object) will result at link 
time. 

The <segment name> must be a unique, legal name. 
The segment name must not be a reserved word. 

<align> may be PARA (paragraph 
WORD, or PAGE. 

default), BYTE, 

<combine> may be PUBLIC, COMMON, AT <exp>, STACK, 
MEMORY, or no entry (which defaults to not 
combinable, called Private in the Microsoft LINK 
section of the !'!_aero Assembler Manual). 

<class> name is used to group segments at link 
time. 

All three operands are passed to MS-LINK. 

The alignment type tells the Linker on what kind of 
boundary you want the segment to begin. The first 
address of the segment will be, for each alignment 
type: 

PAGE - address is xxxOOH (low byte is 0) 
PARA - address is xxxxOH (low nibble is 0) 

bit map - !xlx!x!x!O!O!O!O! 
WORD - address is xxxxeH (e=even number;low bit 

is 0) 
bit map - !xlx!xlxlxlxlxlOI 

BYTE - address is xxxxxH (place anywhere) 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-31 

The combine type tells MS-LINK how to arrange the 
segments- of a particular class name. The segments 
are mapped as follows for each combine type: 

None (not combinable or Private) 

Public 

Common 

0 Private segments are loaded separately 
and remain separate. They may be 
physically contiguous but not logically, 
even if the segments have the same name. 

O Each private segment has its own base 
address. 

and Stack Public segments of the same name and 
o class name are loaded contiguously. B Offset is from beginning of first segment 

loaded through last segment loaded. 
There is only one base address for all 
public segments of the same name and 
class name. (Combine type stack is 
treated the same as public. However, the 
Stack Pointer is set to the first address 
of the first stack segment. MS-LINK 
requires at least one stack segment.) 

Common segments of the same name and 
class name are loaded overlapping one 
another. There is only one base address 
for all common segments of the same name. 
The length of the common area is the 
length of the longest segment. 



l' .. Ol:'ION: INSTRUCTIONS AND DIRECTIVES Page 4-32 

Memory 

The memory combine type causes the segment(s) to be 
placed as the highest segments in memory. The 
first memory combinable segment encounter is placed 
as the highest segment in memory. Subsequent 
segments are treated the same as Common segments. 

NOTE 

This feature is not supported by MS-LINK. 
MS-LINK treats Memory segments the same as 
Public segments. 

AT <exp> 

The segment is placed at the PARAGRAPH address 
specified in <exp>. The expression may not be a 
forward reference. Also, the AT type may not be 
used to force loading at fixed addresses. Rather, 
the AT combine type permits labels and variables to 
be defined at fixed offsets within fixed areas of 
storage, such as ROM or the vector space in low 
memory. 

NOTE 

This restriction is imposed by MS-LINK and 
MS-DOS. 

Class names must be enclosed in 
Class names may be any legal 
Chapter 9 in the MS-DOS User's 
discussion. 

quotation marks. 
name. Refer to 
Guide for more 

Segment definitions may be nested. When segments 
are nested, the assembler acts as if they are not 
and handles them sequentially by appending the 
second part of the split segment to the first. At 
ENDS for the split segment, the assembler takes up 
the nested segment as the next segment, completes 
it, and goes on to subsequent segments. 
Overlapping segments are not permitted. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-33 

Example: 

For example: 

A SEGMENT A SEGMENT 

A ENDS 

The following arrangement is not allowed: 

A SEGMENT 

B SEGMENT 

A ENDS ;This is illegal! 

B ENDS 

In module A: 

SEGA 

SEGA 

SEGMENT PUBLIC 'CODE' 
ASSUME CS:SEGA 

ENDS 
END 

In module B: 

SEGA 

SEGA 

SEGMENT PUBLIC 'CODE' 
ASSUME CS:SEGA 

ENDS 

MS-LINK adds this segment to same 
named segment in module A (and 
others) if class name is the same. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-34 

STRUC 

<structurename> STRUC 

<structurename> ENDS 

The STRUC directive is very much like RECORD, 
except STRUC has a multiple byte capability. The 
allocation and initialization of a STRUC block are 
the same as for RECORDS. 

Inside the STRUC/ENDS block, the Define directives 
(DB, DW, DD, DQ, DT) may be used to allocate space. 

The Define directives and Comments set off by 
semicolons (;) are the only statement entries 
allowed inside a STRUC block. 

Any label on a Define directive inside a STRUC/ENDS 
block becomes a <fieldname> of the structure. 
(This is how structure fieldnames are defined.) 
Initial values given to fieldnames in the 
STRUC/ENDS block are default values for the various 
fields. These field values are of two types: 
overridable or not overridable. A simple field, a 
field with only one entry (but not a DUP 
expression), is overridable. A multiple field, a 
field with more than one entry, is not overridable. 
For example: 

FOO DB 1,2 ;is not 
over ridable 
BAZ DB 10 DUP(?) ; is not 
over ridable 
zoo DB 5 ;is over ridable 

If the <exp> following the Define directive 
contains a string, it may be overridden by anoth:r 
string. However, if the overriding string is 
shorter than the initial string, the assembler will 
pad with spaces. If the overriding string is 
longer, the assembler will truncate the extra 
characters. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-35 

Usually, structure fields are used as operands in 
some expression. The format for a reference to a 
structure field is: 

<variable>.<field> 

<variable> represents an anonymous variable, 
usually set up when the structure is allocated. To 
allocate a structure, use the structure name as a 
directive with a label (the anonymous variable of a 
structure reference) and any override values in 
angle brackets: 

FOO STRUCTURE 

FOO ENDS 

GOO FOO < I 7 I , 'JOE ' > 

.<field> represents a label given to a DEFINE 
directive inside a STRUC/ENDS block (the period 
must be coded as shown) . The value of <field> will 
be the offset within the addressed structure. 

Example: 

To define a structure: 

S STRUC 
FIELDl DB 
FIELD2 DB 
FIELD3 DB 
FIELD4 DB 
S ENDS 

1,2 
10 DUP(?) 
5 
'DOBOSKY' 

;not overridable 
;not overridable 
;over ridable 
;overridable 

The Define directives in this example define the 
fields of the structure, and the order corresponds 
to the order values are given in the initialization 
list when the structure is allocated. Every Define 
directive statement line inside a STRUC block 
defines a field, whether or not the field is named. 

To allocate the structure: 

DBAREA S 
4th 

<I I 7 I' ANDY'> ;overrides 3rd and 

;fields only 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-36 

To refer to a structure: 

MOV AL, [BX] .FIELD3 
MOV AL,DBAREA.FIELD3 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-37 

4.2.2 Conditional Directives 

Conditional directives allow users to design blocks of code 
which test for specific conditions. 

All conditionals follow the format: 

IFxxxx [argument] 

[ELSE 

l 
END IF 

Each IFxxxx must have a matching ENDIF to terminate the 
conditional. Otherwise, an 'Unterminated conditional' 
message is generated at the end of each pass. An ENDIF 
without a matching IF causes a Code 8, "Not in conditional 
block" error. 

Each conditional block may include the optional ELSE 
directive, which allows alternate code to be generated when 
the opposite condition exists. Only one ELSE is permitted 
for a given IF. An ELSE is always bound to the most recent, 
open IF. A conditional with more than one ELSE or an ELSE 
without a conditional will cause a Code 7, "Already had ELSE 
clause" error. 

Conditionals may be nested up to 255 levels. Any argument 
to a conditional must be known on pass 1 to avoid Phase 
errors and incorrect evaluation. For IF and IFE the 
expression must involve values which were previously 
defined, and the expression must be absolute. If the name 
is defined after an IFDEF or IFNDEF, pass 1 considers the 
name to be undefined, but it will be defined on pass 2. 

The assembler evaluates the conditional statement to TRUE 
(which equals any non-zero value), or to FALSE (which equals 
OOOOH). If the evaluation matches the condition defined in 
the conditional statement, the assembler either assembles 
the whole conditional block or, if the conditional block 
contains the optional ELSE directive, assembles from IF to 
ELSE; the ELSE to ENDIF portion of the block is ignored. 
If the evaluation does not match, the assembler either 
ignores the conditional block completely or, if the 
conditional block contains the optional ELSE directive, 
assembles only the ELSE to ENDIF portion; the IF to ELSE 
portion is ignored. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-38 

The following is a list of Macro Assembler conditional 
directives: IF <exp> 

IFE <exp> 

If <exp> evaluates to nonzero, the statements 
within the conditional block are assembled. 

If <exp> evaluates to 0, the statements in the 
conditional block are assembled. 

!Fl Pass 1 Conditional 

If the assembler is in pass 1, the statements in 
the conditional block are assembled. !Fl takes no 
expression. 

IF2 Pass 2 Conditional 

If the assembler is in pass 2, the statements in 
the conditional block are assembled. IF2 takes no 
expression. 

IFDEF <symbol> 

If the <symbol> is defined or has been declared 
External, the statements in the conditional block 
are assembled. 

IFNDEF <symbol> 

If the <symbol> is not defined or not declared 
External, the statements in the conditional block 
are assembled. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-39 

IFB <arg> 

The angle brackets around <arg> are required. 

If the <arg> is blank (none given) or null (two 
angle brackets with nothing in between, <>), the 
statements in the conditional block are assembled. 

IFB (and IFNB) are normally used inside macro 
blocks. The expression following the IFB directive 
is typically a dummy symbol. When the macro is 
called, the dummy will be replaced by a parameter 
passed by the macro call. If the macro call does 
not specify a parameter to replace the dummy 
following IFB, the expression is blank, and the 
block will be assembled. (IFNB is the opposite 
case.) Refer to Section 4.2.3, "Macro Directives," 
for a full explanation. 

IFNB <arg> 

The angle brackets around <arg> are required. 

If <arg> is not blank, the statements in the 
conditional block are assembled. 

IFNB (and IFB) are normally JSed inside macro 
blocks. The expression following the IFNB 
directive is typically a dummy symbol. When the 
macro is called, the dummy'will be replaced by a 
parameter passed by the macro call. If the macro 
call specifies a parameter to replace the dummy 
following IFNB, the expression is not blank, and 
the block will be assembled. (IFB is the opposite 
case.) Refer to Section 4.2.3, "Macro Directives," 
for a full explanation. 



ACTION: ,INSTRUCTIONS AND DIRECTIVES Page 4-40 

IFIDN <argl>,<arg2> 

The angle brackets around <argl> and <arg2> are 
required. 

If the string <argl> is identical to the string 
<arg2>, the statements in the conditional block are 
assembled. . 

IFIDN (and IFDIF) are normally used inside macro 
blocks. The expression following the IFIDN 
directive is typically two dummy symbols. When the 
macro is called, the dummys will be replaced by 
parameters passed by the macro call. If the macro 
call specifies two identical parameters to replace 
the dummys, the block will be assembled. (IFDIF is 
the opposite case.) Refer to Section 4.2.3, "Macro 
Directives," for a full 'explanation. 

IFDIF <argl>,<arg2> 

ELSE 

END IF 

The angle brackets around <argl> and <arg2> are 
required. 

If ·the string <argl> is different from the string 
<arg2>, the statements in the conditional block are 
assembled. 

IFDIF (and IFIDN) are normally used inside macro 
blocks. The expression following the IFDIF 
directive i's typically two dummy symbols. When the 
macro is called, the dummys will be replaced by 
parameters passed by the macro call. If the macro 
call specifies two different parameters to replace 
the dummys, the block will be assembled. (IFIDN is 
the opposite case.) 

The ELSE directive allows you to generate alternate 
code when the opposite condition exists. ELSE may 
be used with any of the conditional directives. 
Only one ELSE is allowed for each IFxxxx 
conditional directive. ELSE takes no expression. 

This directive terminates a conditional block. An 
ENDIF directive must be given for every IFxxxx 
di<ective used. ENDIF takes no expression. ENDIF 
closes tb~ most recent, unterminated IF. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-41 

4.2.3 Macro Directives 

The macro directives allow you to write blocks of code which 
can be repeated without recoding. The blocks of code begin 
with either the macro definition directive or one of the 
repetition directives, and end with the ENDM directive. All 
of the macro directives may be used inside a macro block. 
In fact, nesting of macros is limited only by memory. 

The macro directives of the Macro Assembler include: 

macro definition: 
MACRO 

termination: 
ENDM 
EXITM 

unique symbols within macro blocks: 
LOCAL 

undefine a macro: 
PURGE 

repetitions: 
REPT (repeat) 
IRP (indefinite repeat) 
IRPC (indefinite repeat character) 

The macro directives also include some ~pecial 
operators: 

& (ampersand) 

;; (double semicolon) 

(exclamation mark) 

% {percent sign) 

macro 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-42 

Macro Definition 

<name> MACRO [<dummy>, ... ] 

ENDM 

The block of statements from the MACRO statement 
line to the ENDM statement line comprises the body 
of the macro, or the macro's definition. 

<name> is like a label and conforms to the rules 
for forming symbols. After the macro has been 
definedi <name> is used to invoke the macro. 

A <dummy> is formed as any other name is formed. A 
<dummy> is a place holder that is replaced by a 
parameter in a one-for-one text substitution when 
the macro block is used. You should include all 
<dummy>s used inside the macro block on this line. 
The number of <dummy>s is limited only by the 
length of a line. If you specify more than one 
<dummy>, they must be separated by commas. Macro 
Assembler interprets a series of <dummy>s the same 
as any list of symbol names. 

NOTE 

A <dummy> is always recognized exclusively 
as a dummy. Even if a register name (such 
as AX or BH} is used as a <dummy>, it will 
be replaced by a parameter during 
expansion. 

One alternative is to list no <dummy>s; 

<name> MACRO 

This type of macro block allows you to call the 
block repeatedly, even if you do not want or need 
to pass parameters to the block. In this case, the 
block will not contain any <dummy>s. 

A macro block is not assembled when it is 
encountered. Rather, when you call a macro, the 
assembler "expands" the macro call statement by 
bringing in and assembling the appropriate macro 
block. 

MACRO is an extremely powerful directive. 
you can change the value and effect 

With it, 
of any 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-43 

instruction mnemonic, directive, label, variable, 
or symbol. When Macro Assembler evaluates a 
statement, it first looks at the macro table it 
builds during pass 1. If it sees a name there that 
matches an entry in a statement, it acts 
accordingly. (Remember: Macro Assembler evaluates 
macros, then instruction mnemonics/directives.) 

If you want to use the TITLE, SUBTTL, or NAME 
directives for the portion of your program where a 
macro block appears, you should be careful about 
the form of the statement. If, for example, you 
enter SUBTTL MACRO DEFINITIONS, Macro Assembler 
will assemble the statement as a macro definition 
with SUBTTL as the macro name and DEFINITIONS as 
the dummy. To avoid this problem, alter the word 
MACRO in some way; e.g., - MACRO, MACROS, and so 
on. 



~CTION: INSTRUCTIONS AND DIRECTIVES Page 4-44 

Calling a Macro 

To use a macro, enter a macro call statement: 

<name> [<parameter>, ..• ] 

<name> is the <name> of the macro block. A 
<parameter> ·replaces a <dummy> on a one-for-one 
basis. The number of parameters is limited only by 
the length of a line. If you enter more than one 
parameter, they must be separated by commas, 
spaces, or tabs. If you place angle brackets 
around parameters separated by commas, the 
assembler will pass all the items inside the angle 
brackets as a single parameter. For example: 

FOO 1,2,3,4,5 

passes five parameters to the macro, but 

FOO <l,2,3,4,5> 

passes only one. 

The number of parameters in the macro call 
statement need not be the same as the number of 
<dummy>s in the MACRO definition. If there are 
more parameters than <dummy>s, the extras are 
ignored. If there are fewer, the extra <dummy>s 
will be made null. The assembled code will include 
the macro block after each macro call statement. 

Example: 

GEN MACRO 
MOV 
ADD 
MOV 
ENDM 

XX,YY,ZZ 
AX,XX 
AX,YY 
ZZ,AX 

If you then enter a macro call statement: 

GEN DUCK,DON,FOO 

the assembler generates the statements: 

MOV AX,DUCK 
ADD AX,DON 
MOV FOO,AX 

On your program listing, these statements will be 
preceded by a plus sign (+) to indicate that they 
came from a macro block. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-45 

End Macro 

ENDM 

ENDM tells the assembler that the MACRO or Repeat 
block is ended. 

Every MACRO, REPT, IRP, and IRPC must be terminated 
with the ENDM directive. Otherwise, the 
"Unterminated REPT/IRP/IRPC/MACRO" message is 
generated at the end of each pass. An unmatched 
ENDM also causes an error. 

If you wish to be able to exit 
repeat block before expansion 
EXITM. 

from a MACRO or 
is completed, use 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-46 

EXITM 

'l'he EXITM directive is used inside a MACRO or 
Repeat block to terminate an expansion when some 
condition makes the remaining expansion unnecessary 
or undesirable. Usually EXITM is used in 
conjunction with a conditional directive. 

When an EXITM is assembled, the expansion is exited 
immediately. Any remaining expansion or repetition 
is not generated. If the block containing the 
EXITM is nested within another block, the outer 
level continues to be expanded. 

Example: 

FOO 
x 

x 

MACRO 

REPT 

!FE 
EXITM 
END IF 

x 
0 
x 
X+l 
X-OFFH ;test x 
;if true, exit REPT 

DB X 
ENDM 
ENDM 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-47 

LOCAL 

LOCAL <dummy>[,<dummy> .•• ] 

Example: 

The LOCAL directive is allowed only inside a macro 
definition block. A LOCAL statement must precede 
all other types of statements in the macro 
definition. 

When LOCAL is executed, the assembler creates a 
unique symbol for each <dummy> and substitutes that 
symbol for each occurrence of the <dummy> in the 
expansion. These unique symbols are usually used 
to define a label within a macro, thus eliminating 
multiple-defined labels on successive expansions of 
the macro. The symbols created by the assembler 
range from ??0000 to ??F'FFF. Users should avoid 
the form ??nnnn for their own symbols. 

0000 FUN SEGMENT 
ASSUME CS:FUN,DS:FUN 

FOO MACRO NUM,Y 
LOCAL A,B,C,D,E 

A: DB 7 
.B: DB 8 
C: DB y 

D: ow Y+l 
E: ow NUM+l 

JMP A 
ENDM 
FOO OCOOH,OBEH 

0000 07 + ??0000: DB 7 
0001 08 + ??0001: DB 8 
0002 BE + ??0002: DB OBEH 
0003 OOBF + ??0003: DW OBEH+l 
0005 OCOl + ??0004: DW OCOOH+l 
0007 EB F7 + JMP ??0000 

FOO 03COH,OFFH 
0009 07 + ??0005: DB 7 
OOOA 08 + ??0006: DB 8 
0008 FF + ??0007: DB OFFH 
oooc 0100 + ??0008: ow OFFH+l 
OOOE 03Cl + ??0009: DW 03COH+l 
0010 EB F7 + JMP ??0005 
0012 FUN ENDS 

END 

Notice that Macro Assembler has substituted LABEL 
names in the form ??nnnn for the instances of the 
dummy symbols. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-48 

PURGE 

PURGE <macro-name>[, ••• ] 

PURGE deletes the definition of the macro(s) listed 
after it. 

PURGE provides three benefits: 

1. It frees text space· of the macro body. 

2. It returns any instruction mnemonics or 
directives that were redefined by macros to 
their original function. 

3. It allows you to "edit out" macros from a macro 
library file~ You may find it useful to create 
a file that contains only macro definitions. 
This method allows you to use macros repeatedly 
with easy access to their definitions. 
Typically, you would then place an INCLUDE 
statement in your program file. Following the 
INCLUDE statement, you could place a PURGE 
statement to delete any macros you will not use 
in this program. 

It is not necessary to PURGE a macro 
redefining it. Simply place another 
statement in your program, reusing the 
name. 

Example: 

INCLUDE MACRO.LIB 
PURGE MACl 
MACl itries to invoke purged macro 

ireturns a syntax error 

before 
MACRO 
macro 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-49 

Repeat Directives 

The directives in this group allow the operations in a block 
of code to be repeated for the number of times you specify. 
The major differences between the Repeat directives and 
MACRO directive are: 

1. MACRO gives the block a name by which to call in 
the code wherever and whenever needed; the macro 
qlock can be used in many different programs by 
simply entering a macro call statement. 

2. MACRO allows parameters to be passed to the macro 
block when a MACRO is called; hence, parameters 
can be changed. 

Repeat directive parameters must be assigned as a part of 
the code block. If the parameters are known in advance and 
will not change, and if the repetition is to be performed 
for every program execution, then Repeat directives are 
convenient. With the MACRO directive, you must call in the 
MACRO each time it is needed. 

Note that each Repeat directive must be matched with the 
ENDM directive to terminate the repeat block. 



~CTION: INSTRUCTIONS AND DIRECTIVES Page 4-50 

REPT <exp> 

f!:NDM 

Repeat block of statements between REPT 
<exp> times. <exp> .is evaluated as 
unsigned number. If <exp> contains an 
symbol or undefined operands, an 
generated. 

Example: 

x 0 

and ENDM 
a 16-bit 
External 

error is 

REPT 10 ;generates 
;DB l - DB 

10 
x X+l 

DB x 
ENDM 

assembles as: 

0000 x 0 
REPT 10 ;generates 

;DB 1 - DB 
10 

x X+l 
DB x 
ENDM 

0000' 01 + DB x 
0001' 02 + DB x 
0002' 03 + DB x 
0003 I 04 + DB x 
0004' 05 + DB x 
0005' 06 + DB x 
0006' 07 + DB x 
0007' 08 + DB x 
0008' 09 + DB x 
0009' OA + DB x 

END 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-51 

Indefinite Repeat 

IRP <dummy>,<parameters inside angle brackets> 

ENDM 

Parameters must be enclosed in angle brackets. 
Parameters may ~be any legal symbol, string, 
numeric, or character constant. The block of 
statements is repeated for each parameter. Each 
repetition substitutes the next parameter for every 
occurrence of <dummy> in the block. If a parameter 
is null (i.e., <>), the block is processed once 
with a null parameter. 

Example: 

IRP 
DB 
ENDM 

X,<1,2,3,4,5,6,7,B,9,lO> 
x 

This example generates the same bytes (DB 1 to DB 
10) as the REPT example. 

When IRP is used inside a MACRO definition block, 
angle brackets around parameters in the macro call 
statement are removed before the parameters are 
passed to the macro block. An example, which 
generates the same code as above, illustrates the 
removal of one level of brackets from the 
parameters: 

FOO MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
Y,<X> 
y 

When the macro call statement 

FOO <l,2,3,4,5,6,7,8,9,10> 

is assembled, the macro expansion becomes: 

IRP 
DB 
ENDM 

Y,<1,2,3,4,5,6,7,8,9,10> 
y 

The angle brackets around the 
removed, and all items are 
parameter. 

parameters will be 
passed as a single 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-52 

Indefinite Repeat Character 

IRPC <dummy>,<string> 

ENDM 

The statements in the block are repeated once for 
each character in the string. Each repetition 
substitutes the next character in the string for 
every occurrence of <dummy> in the block. 

Example: 

IRPC 
DB 
ENDM 

X,0123456789 
X+l 

This example generates the same code (DB 1 to DB 
10) as the two previous examples. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-53 

Special Macro Operators 

Several special operators can be used in a macro block to 
select additional assembly functions. 

& Ampersand concatenates text or symbols. (The 
a~persand may not be used in a macro call 
statement.) A dummy parameter in a quoted string 
will not be substituted in expansion unless 
preceded immediately by an ampersand. To form a 
symbol from text and a dummy, put an ampersand 
between them. 

For 

The 

example: 

ERRGEN MACRO 
El<ROR&X: 

MOV 
JMP 
ENDM 

call ERRGEN A 

ERRORA: PUSH 
MOV 
JMP 

x 
PUSH BX 

BX, I &X' 
ERROR 

will then generate: 

B 
BX, 'A' 
ERROR 

In Macro Assembler, the ampersand will not appear 
in the expansion. One ampersand is removed each 
time a dummy& or &dummy is found. For complex 
macros, where nesting is involved, extra ampersands 
may be needed. You need to supply as many 
ampersands as there are levels of nesting. 



~CTION: INSTRUCTIONS AND DIRECTIVES Page 4-54 

For example: 

Correct form 

FOO 

X&&Z 

MACRO 
IRP 
DB 
ENDM 
ENDM 

x 
Z,<l,2,3> 
z 

Incorrect form 

FOO MACRO 
IRP 

X&Z DB 
ENDM 
ENDM 

x 
Z,<l,2,3> 
z 

When called, for example, by FOO BAZ, the expansion 
would be (correctly in the left column, incorrectly 
in the right): 

l. MACRO build, find <dummy>s and change to dl 

IRP Z,<1,2,3> IRP Z,<1,2,3> 
dl&Z DB z dlZ DB z 

ENDM ENDM 

2. MACRO expansion, substitute parameter text for 
dl 

IRP 
BAZ&Z DB 

ENDM 

Z,<1,2,3> IRP Z,<l,2,3> 
ZBAZZ DB Z 

ENDM 

3. !RP build, find dummys and change to dl 

BAZ&dl DB dl BAZZ DB dl 

4. IRP expansion, substitute parameter text for dl 

BAZl DB 1 BAZZ DB 1 
BAlz2 DB 2 BAZZ DB 2 
BAZ3 DB 3 BAZZ DB 3 

';here it's an error, 
;multi-defined symbol 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4~ss 

<text> Angle brackets cause Macro Assembler to treat the 
text between the angle brackets as a single 
literal. Placing parameters to a macro call inside 
angle brackets; or placing the list of parameters 
following the IRP directive inside angle brackets 
causes two results: 

1. All text within the angle brackets is seen as a 
single parameter, even if commas are used. 

2. Characters that have special functions are 
taken as literal characters. For example, the 
semicolon inside angle brackets <;> becomes a 
character, not the indicator that a comment 
follows. 

One set of angle brackets is removed each time the 
parameter is used in a macro. When using nested 
macros, you will need to supply as many sets of 
angle brackets around parameters as there are 
levels of nesting. 

In a macro or repeat block, a comment 
two semicolons is not saved as a 
expansion. 

preceded by 
part of the 

The default listing condition for macros is .XALL 
(see Section 4.2.4, "Listing Directives,• below). 

Under the influence of .XALL, comments in macro 
blocks are not listed because they do not generate 
code. 

If you decide to place the .LALL listing directive 
in your program, then comments inside macro and 
repeat blocks are saved and listed. This can be 
the cause of an "out of memory error.• To avoid 
this error, place double semicolons before comments 
inside macro and repeat blocks, unless you 
specifically want a comment to be retained. 

An exclamation point may be entered in an argument 
to indicate that the next character is to be taken 
literally. Therefore, !; is equivalent to<;>. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-56 

% The percent sign is used only in a macro argument 
to convert the expression that follows it (usually 
a symbol) to a number in the current radix. During 
macro expansion, the number derived from converting 
the expression is substituted for the dummy. Using 
the % special operator allows a macro call by 
value. (Usually, a macro call is a call by 
reference, with the text of the macro argument 
substituting exactly for the dummy.) 

The expression following the % must evaluate to an 
absolute (non-relocatable) constant. 

Example: 

PRINTE 

SYMl 
SYM2 

MACRO 
%OUT 
ENDM 
EQU 
EQU 
PRINTE 

MSG,N 
* MSG,N * 

100 
200 
<SYMl + SYM2 = >,%(SYM1 + SYM2) 

Normally, the macro call statement would cause the 
string (SYMl + SYM2) to be substituted for the 
dummy N. The result would be: 

%OUT * SYMl + SYM2 = (SYMl + SYM2) * 
When the % is placed in front of the parameter, 
the assembler generates: 

%OUT * SYMl + SYM2 300 * 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-57 

4.2.4 Listing Directives 

Listing directives perform two general functions: format 
control and listing control. Format control directives 
allow the programmer to insert page breaks and direct page 
headings. Listing directives turn on and off the listing of 
all or part of the assembled file. 

PAGE 

PAGE [<length>] [,<width>] 
PAGE [+] 

PAGE with no arguments or with the optional [,+] 
argument causes the assembler to start a new output 
page. The assembler puts a form feed character in 
the listing file at the end of the page. 

The PAGE directive with either the length or width 
arguments does not start a new listing page. 

The value of <length>, if included, becomes the new 
page length (measured in lines per page) and must 
be in the range 10 to 255. The default page length 
is 50 lines per page. 

The value of <width>, 
page width (measured 
the range 60 to 132. 
characters. 

if included, becomes the new 
in characters) and must be in 
The default page width is 80 

The plus sign (+) increments the major page number 
and resets the minor page number to one. Page 
numbers are in the form major-minor. The PAGE 
directive without the + increments only the minor 
portion of the page number. 

Example: 

PAGE + ;increment major,set minor to 1 

PAGE 58,60 ;page length=58 lines, 
;width=60 characters 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-58 

TITLE 

TITLE <text> 

TITLE specifies a title to be listed on the first 
line of each page. The <text> may be up to 60 
characters long. If mure than one TITLE is given, 
an error results. The first six characters of the 
title, if legal, are used as the module name, 
unless a NAME directive is used. 

Example: 

TITLE PROGl -- 1st Program 

If the NAME directive is not used, the module name 
is now PROGl--lst Program. This title text will 
appear at the top of every page of the listing. 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-59 

SUBTITLE 

SUBTTL <text> 

SUBTTL specifies a subtitle to be listed in 
page heading on the line after the title. 
<text> is truncated after 60 characters. 

each 
The 

Any number of SUBTTLs may be given in a program. 
Each time the assembler encounters SUBTTL, it 
replaces the <text> from the previous SUBTTL with 
the <text> from the most recently encountered 
SUBTTL. To turn off SUBTTL for part of the output, 
enter a SUBTTL with a null string for <text>. 

Example: 

SUBTTL SPECIAL I/O ROUTINE 

SUBTTL 

The first SUBTTL causes the subtitle SPECIAL I/O 
ROUTINE to be printed at the top of every page. 
The second SUBTTL turns off subtitle (the subtitle 
line on the listing is left blank). 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-60 

%OUT 

%OUT <text> 

The text is listed on the terminal during 
%OUT is useful for displaying progress 
long assembly or for displaying the 
conditional assembly switches. 

assembly. 
through a 
value of 

%OUT will output on both passes. If only one 
printout is desired, use the !Fl or IF2 directive, 
depending on which pass you want displayed. See 
Section 4.2.2, "Conditional Directives," for 
descriptions of the IFl and IF2 directives. 

Example: 

%OUT *Assembly half done* 

The assembler will send this message to the 
terminal screen when encountered. 

!Fl 
%OUT *Pass 1 started* 
END IF 

IF2 
%OUT *Pass 2 started* 
END IF 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-61 

.LIST 
:xLfST 

.LIST lists all lines with their code {the default 
condition) • 

• XLIST suppresses all listing. 

If you specify a listing file following the 
Listing: prompt, a listing file with all the 
source statements included will be printed. 

When .XLIST is encountered in the source file, 
source and object code will not be listed. .XLIST 
remains in effect until a .LIST is encountered • 

• XLIST overrides all other listing directives. 
Nothing will be listed, even if another listing 
directive {other than .LIST) is encountered. 

Example: 

.XLIST ;listing suspended here 

.LIST ;listing resumes here 



ACTION: INSTRUCTIONS AND DIRECTIVES Page 4-62 

.SFCOND ----

• LFCOND 

• TFCOND 

• XALL 

• SALL 

.SFCOND suppresses portions of the listing that 
contain conditional false expressions • 

.LFCOND assures 
expressions that 
default condition • 

the listing of 
evaluate false. 

conditional 
This is the 

.TFCOND toggles the current setting. .TFCOND 
operates independently from .LFCOND and .SFCOND • 
• TFCOND toggles the default setting, which is set 
by the presence or absence of the /X switch when 
the assembler is running. When /X is used, .TFCOND 
will cause false conditionals to list. When /X is 
not used, .TFCOND will suppress false conditionals • 

.XALL is the default • 

• XALL lists source code and object code produced by 
a macro, but source lines which do not generate 
code are not listed • 

• LALL lists the complete macro text for all 
expansions, including lines that do not generate 
code. Comments preceded by two semicolons (;;) 
will not be listed • 

.SALL suppresses listing of all text and object 
code produced by macros. 



ACTION· .. NSTRUCTIONS AND DIRECTIVES Page 4-63 

.CREF 
:xcR"EF 

.CREF 

.XCREF [<variable list>] 

.CREF is the default condition. .CREF remains in 
effect until Macro Assembler encounters .XCREF . 

. XCREF without arguments turns off the .CREF 
(default) directive. .XCREF remains in effect 
until Macro Assembler encounters .CREF. use .XCREF 
to suppress the creation of cross-references in 
selected portions of the file. Use .CREF to 
restart the creation of a cross-reference file 
after using the .XCREF directive. 

If you include one or more variables following 
.XCREF, these variables will not be placed in the 
listing or cross-reference file. All other 
cross-referencing, however, is not affected by an 
.XCREF directive with arguments. Separate the 
variables with commas. 

Neither .CREF nor .XCREF without arguments takes 
effect unless you specify a cross-reference file 
when running the assembler. .XCREF <variable list> 
suppresses the variables from the symbol table 
listing regardless of the creation of a 
cross-reference file. 

Example: 

.XCREF CURSOR,FOO,GOO,BAZ,ZOO 
;these variables will not be 
;in the listing or cross-reference file 





Chapter 5 

5.1 
5 .1.1 
5 .1. 2 
5.2 
5.3 
5.4 

5.5 
5.5.1 
5.5.2 

5.5.3 

Contents 

Assembling a Macro Assembler Source File 

How to Start Macro Assembler 5-1 
Method 1: Prompts 5-2 
Method 2: Command Line 5-3 

Macro Assembler Command Characters 5-4 
Macro Assembler Command Prompts 5-5 
Macro Assembler Command Switches 5-7 

Summary of Command Switches 5-9 
Formats of Listings and Symbol Tables 5-10 

Program Listing 5-10 
Differences Between Pass 1 and 
Pass 2 5-16 
Symbol Table Format 5-17 





CHAPTER 5 

ASSEMBLING A MACRO ASSEMBLER SOURCE FILE 

Assembling a program with Macro Assembler requires two types 
of commands: a command to start Macro Assembler, and 
answers to command prompts. In addition, four switches 
control alternate Macro Assembler features. Usually, you 
will type all the commands to Macro Assembler on the 
terminal keyboard. As an option, answers to the command 
prompts and any switches may be contained in response 
(batch) file. Two command characters are provided to assist 
you while entering assembler commands. These command 
characters are described in Section 5.2, "Command 
Characters." 

5.1 BOW TO START MACRO ASSEMBLER 

Macro Assembler may be started in two ways. By the first 
method, you type the commands in response to individual 
prompts. By the second method, you type all commands on the 
line used to start Macro Assembler. 

Summary of Methods to Start Macro Assembler 

Method 1 

Method 2 

MASM 

MASM <source>,<object>,<listing>, 
<cross-ref>[/switch .•. ] 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-2 

5.1.1 Method 1: Prompts 

Type: 

MASM 

Macro Assembler will be loaded into memory. Then, 
Assembler returns a series of four text prompts that 
one at ·a time. You answer the prompts as commands to 
Assembler to perform specific tasks. 

Macro 
appear 

Macro 

At the end of each line, you may specify one or more 
switches, each of which must be preceded by a forward slash 
(/). 

The command prompts are summarized here 
more detail in Section 5.3, "Macro 
Prompts." 

and described in 
Assembler Command 

Summary of Command Prompts 

PROMPT RESPONSES 
============================================================ 

Source filename [.ASM]: List .ASM file to be 
assembled. (There is no 
default: a filename 
response is required.) 

---------------------------~---+------------~---------------
Object filename [source.OBJ List filename for 

relocatable object code. 
(The default is 
source-filename.OBJ) 

-------------------------------+----------------------------
Source listing [NUL.LST]: List filename for listing. 

(The default is no listing 
file.) 

-------------------------------+----------------------------
Cross reference [NUL.CRF]: List filename for 

cross-reference file (used 
with MS-CREF to create a 
cross-reference listing). 
(The ·default is no 
cross-reference file.) 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-3 

5.1.2 Method 2: Command Line 

Type: 

MASM <source>,<object>,<listing>,<cross-ref>[/switch ... ] 

Macro Assembler will be loaded into memory. Then Macro 
Assembler immediately begins assembly. The entries 
following MASM are responses to the command prompts. The 
entry fields for the different prompts must be separated by 
commas. 

where: source is the source filename 

object is the name of the file to receive the 
relocatable output 

listing is the name of the file to receive the 
listing 

cross-ref is the name of the file to receive the 
cross-reference output 

/switch are optional switches, which may be placed 
following any of the response entries (just before 
any of the commas or after the the <cross-ref>, as 
shown). 

To select the default for a field, simply enter a second 
comma without space in between (see the example below). 

Example: 

MASM FUN,,FUN/D/X,FUN 

This example causes Macro Assembler to be loaded, then 
causes the source file FUN.ASM to be assembled. Macro 
Assembler then outputs the relocatable object code to a file 
named FUN.OBJ (default caused by two commas in a row), 
creates a listing file named FUN .LST for both ·assembly 
passes but with false conditionals suppressed, and creates a 
cross-reference file named FUN.CRF. If names were not 
listed for listing and cross-reference, these files would 
not be created. If listing file switches are given but no 
filename, the switches are ignored. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-4 

5.2 MACRO ASSEMBLER COMMAND CHARACTERS 

Macro Assembler provides two command characters. 

Semicolon 

CONTROL-C 

Use a single semicolon (;), followed 
immediately by a carriage return, at any 
time after responding to the first prompt 
(from Source filename: on) to select 
default responses to the remaining prompts. 
This feature saves time and eliminates the 
need to enter a series of carriage returns. 

NOTE 

Once the semicolon has been entered, 
you can no longer respond to any of 
the prompts for that assembly. 
Therefore, do not use the semicolon 
to skip over some prompts. For 
this, use the <RETURN> key. 

Example: 

Source filename [.ASM]: FUN 
Object filename [FUN.OBJ]: 

The remaining prompts will not appear, and 
Macro Assembler will use the default values 
(including no listing file and no 
cross-reference file). 

To achieve the same result, you could type: 

Source filename [.ASM]: FUN ; 

This response produces the same files as the 
previous example. 

Use <CONTROL-C> at any time to abort the 
assembly. If you enter an erroneous 
response, such as the wrong filename or an 
incorrectly spelled filename, you must press 
<CONTROL-C> to exit Macro Assembler. You 
can then restart Macro Assembler. If the 
error has been typed and not entered, you 
may delete the erroneous characters, but for 
that line only. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-5 

5.3 MACRO ASSEMBLER COMMAND PROMPTS 

Macro Assembler is commanded by entering responses to four 
text prompts. When you have typed a r.esponse to the current 
prompt, the next appears. When the last prompt has been 
answered, Macro Assembler begins assembly automatically 
without further command. When assembly is finished, Macro 
Assembler exits to the operating system. When the operating 
system prompt is displayed, Macro Assembler has finished 
successfully. If the assembly is unsuccessful, Macro 
Assembler displays the appropriate error message. 

Macro Assembler prompts you for the names of source, object, 
listing, and cross-reference files. 

All command prompts accept a file specification as a 
response. You may type: 

A filename only 

A device designation only 

A filename and an extension 

A device designation and filename, or 

A device designation, filename, and extension. 

Do not type only a filename extension. 

The following is a discussion of the command prompts that 
are displayed when you start Macro Assembler with Method 1: 

Source filename [.ASM]: 

Type the filename of your source program. Macro 
Assembler assumes by default that the filename 
extension is .ASM, as shown in square brackets in 
the prompt text. If your source program has any 
other filename extension, you must specify it along 
with the filename. Otherwise, the extension may be 
omitted. 

Object filename [source.OBJ]: 
Type the-filename: you want to receive the generated 
object code. If you simply press the carriage 
return key when this prompt appears, the object 
file will be given the same name as the source 
file, but with the filename extension .OBJ. If you 
want your object file to have a different name or a 
different filename extension, you must type your 
choice in response to this prompt. If you want to 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-6 

change only the filename but keep the .OBJ 
extension, type the filename only. To change the 
extension only, you must type both the filename and 
the extension. 

Source listing [NUL.LST]: 
Type the name of the file you want to receive the 
source listing. If you press the carriage return 
key, Macro Assembler does not produce this listing 
file. If you type a filename only, the listing is 
created and placed in a file with the name you type 
plus the filename extension .LST. You may also 
type your own extension. 

The source listing file will contain a list of all 
the statements in your source program and will show 
the code and offsets generated for each statement. 
The listing will also show any error messages 
generated during the session. 

Cross reference [NUL.CRFJ: 
Type the name of the file you want to receive the 
cross-reference file. If you press only the 
<RETURN> key, Macro Assembler does not produce this 
cross-reference file. If you type a filename only, 
the cross-reference file is created and placed in a 
file with the name you type plus the filename 
extension .CRF. You may also type your own 
extension. 

The cross-reference file is used as the source file 
for the Microsoft CREF Cross-Reference Utility 
(MS-CREF). MS-CREF converts this cross-reference 
file into a cross-reference listing, which you can 
use to aid you during program debugging. 

The cross-reference file contains a series of 
control symbols that identify records in the file. 
MS-CREF uses these control symbols to create a 
listing that shows all occurrences of every symbol 
in your program. The oceurrence that defines the 
symbol is also identified. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-7 

5.4 MACRO ASSEMBLER COMMAND SWITCHES 

The three Macro Assembler switches control assembler 
functions. Switches must be typed at the end of a prompt 
response, regardless of which method is used to start Macro 
Assembler. Switches may be grouped at the end of any one of 
the responses, or may be scattered at the end of several. 
If more than one switch is typed at the end of one response, 
each switch must be preceded by a forward slash (/). Do not 
specify only a switch as a response to a command prompt. 

Switch Function 

/D Produces a source listing on both assembler passes. 
The listings will, when compared, show where in the 
program phase errors occur and will, possibly, give 
you a clue to why the errors occur. The /D switch 
does not take effect unless you command Macro 
Assembler to create a source listing (type a 
filename in response to the Source listing: 
command prompt). 

/0 Outputs the listing file in octal radix. The 
generated code and the offsets shown on the listing 
will all be given in octal. The actual code in the 
object file will be the same as if the /0 switch 
were not given. The /0 switch affects only the 
listing file. 

/X Suppresses the listing of false conditionals. If 
your program contains conditional blocks, the 
listing file will show the source statements, but 
no code if the condition evaluates false. To avoid 
the clutter of conditional blocks that do not 
generate code, use the /X switch to suppress the 
blocks that evaluate ~alse from your listing. 

The /X switch does not affect any block of code in 
your file that is controlled by either the .SFCOND 
or .LFCOND directives. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-8 

If your source program contains the .TFCOND 
directive, the /X switch has the opposite effect. 
That is, normally the .TFCOND directive causes 
listing or suppressing of blocks of code that it 
controls. The first .TFCOND directive suppresses 
false conditionals, the second restores listing of 
false conditionals, and so on. When you use the /X 
switch, false conditionals are already suppressed. 
When Macro Assembler encounters the first .TFCOND 
directive, listing of false conditionals is 
restored. When the second .TFCOND is encountered 
(and the /X switch is used), false conditionals are 
again suppressed from the listing. 

Of course, the /X switch has no effect if no 
listing is created. See additional discussion 
under the .TFCOND directive in Section 4.2.4, 
"Listing Directives." 

The following chart illustrates the various effects 
of the conditional listing directives in 
combination with the /X switch. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-9 

Pseudo-op No /X /X 

(none) ON OFF 

.SFCOND OFF OFF 

.LFCOND ON ON 

.TFCOND OFF ON 

.TFCOND ON OFF 

.SFCOND OFF OFF 

.TFCOND OFF ON 

.TFCOND ON OFF 

.TFCOND OFF ON 

Summary of Command Switches 

SWITCH ACTION 
==.========================================================== 

/D Produce a listing on both assembler 
passes. 

-------------------+----------------------------------------
/0 Show generated object code and offsets 

ill ·octal radix on listing. 
-------------------+----------------------------------------

/X Suppress the listing of false 
conditionals. Also used with the 
.TFCOND directive. 

============================================================ 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-10 

5.5 FORMATS OF LISTINGS AND SYMBOL TABLES 

The source listing produced by Macro Assembler (created when 
you specify a filename in response to the Source listing: 
prompt) is divided into two parts. 

The first part of the listing shows: 

The line number for each line of the source file, 
if a cross-reference file is also being created. 

The offset of each source line that generates code. 

The code generated by each-source line. 

A plus sign (+), if the code came from a macro, or 
a letter C, if the code came from an INCLUDE file. 

The source statement line. 

The second part of the listing shows: 

Macros--name and length in bytes 

Structures and records--name, width and fields 

Segments and groups--name, size, align, combine, 
and class 

Syrnbols--name, type, value, and attributes 

The number of warning errors and severe errors 

5.5.l Program Listing 

The program portion of the listing is essentially your 
source program file with the line numbers, offsets, 
generated code, and (where applicable) a plus sign to 
indicate that the source statements are part of a macro 
block, or a letter C to indicate that the source statements 
are from a file input by•the INCLUDE.directive. 

If any errors occur during assembly, the error message will 
be prjnted directly below the itatement where the error 
occurred. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-11 

Part of a listing file follows this discussion, with notes 
explaining what the various entries represent. 

The comments have been moved down one line 
restrictions. If you print your 
column-paper, the comments shown here will 
same line as the rest of the statement. 

because of format 
listing on 132 
easily fit on the 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-12 

Explanatory notes are ~pliced into the listing at points of 
special interest. 

Summary of Listing Symbols 

R 

E 

nn: 

nn/ 

xx 

+ 

c 

Linker resolves entry to left of R 

External 

Segment name, group name, or segment variable 
used in MOV AX,<---->, DD <---->, JMP <---->, 
and so on. 

Statement has an EQU or ~ directive 

Statement contains a segment override 

REPxx or LOCK prefix instruction. Example: 

003C F3/ AS 

T 
REP 

T 
MOVSW ;move DS:SI to ES:DI 

;until CX=O 

DUP expression;xx is the value in parentheses 
following DUP; for example: DUP(?) places ?? 
where xx is shown here 

Line comes from a macro expansion 

Line comes from file named in INCLUDE directive 
statement 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-13 

Microsoft Macro Assembler 1-Dec-Sl PAGE 1-3 

EXTX PASCAL entry for initializing programs 

0000 STACK SEGMENT WORD STACK 'STACK' 
EQ~ THIS BYTE 

directive 
= 0000 HEAPbeg 
t._____Indicates EQU or 

;Base of heap before init 
0000 14 [ DB 20 DUP (?)~ 

= 0014 
0014 

0000 

0000 
0000 

0003 

0005 

T 
Offset 

oooc 

??~Shows 

1 
value in parentheses ~ 

Indicates DUP expression 
SKTOP EQU THIS BYTE 
STACK ENDS 

MAINSTARTUP SEGMENT 
DGROUP GROUP 

ASSUME 

'MEMORY' 
DATA,STACK<CONST,HEAP,MEMORY 
CS:MAINSTARTUP,DS:DGROUP, 
ES:DGROUP,SS:DGROUP 

PUBLIC BEGXQQ ;Main entry 

BEGXQQ PROC FAR 
BS R MOV AX,DGROUP 

SE DS 

SC 06 0022 R 

Generated 

26: SB lE 0002 

T 

Name 

;Get data segment value 
MOV DS,AX ;Set DS seg 

MOV CESXQQ,ES """'" 

~ · c:::::; · ~c t 

MOV 

Action Expression ommen 

;Highest 
;paragraph 

Segment 

J3X,ES:2 

overridy 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-14 

Microsoft Macro Assembler l-Dec-81 PAGE 1-4 

ENTX PASCAL entry for initializing programs 

OOll 
0013 
0017 
0019 

OOlC 

OOlC 

OOlE 

0020 

0022 

2B D8 
81 FB 1000 
7E 03 
BB 1000 

Dl E3 

Dl E3 

Dl E3 

Dl 3 

~macro these 

SUB 
CMP 
JLE 
MOV 

BX,AX ;Get I paras for DS 
BX,4096 ;More than 64K? 
SMLSTK ;No, use what we have 
BX,4096 ;Can only address 64k 

SMLSTK: +> REPT 4 

lines 

SHL BX,l 
;Convert para to offset 

ENDM 

SHL BX,l 
;Convert para to offset 

SHL BX,l 
;Convert para to offset 

SHL BX,l 
;Convert para to off set 

SHL BX,l 
;Convert para to offset 

macro number of 
block from macro directive repetitions 

0024 SB E3 MOV SP ,BX 
;Set stack to top of memory 

)069 E~AOOO ! JMP 

signal to linker 

FAR PTR STARTmain 

linker resolves: indicates 
or segment variable used in 
DD <---->; JMP <---->,etc. 
examples in this listing.) 

)Q6E BEGXQQ ENDP 

l07E MAIN STARTUP ENDS 

"' segment variable 

segment name, group name, 
MOV AX,<---->; 
(See other 

) 0 0 0 ENT XCM SEGMENT WORD 'CODE ' 
ASSUME CS:ENTXCM 
PUBLIC ENDXQQ,DOSXQQ 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-15 

Microsoft Macro Assembler l-Dec-81 PAGE 1-5 

ENTX 

0000 
0000 

0005 

0005 

OOOA 

OOOF 

0014 

i 
offset 

9A 

9A 

9A 

9A 

PASCAL entry for initializing programs 

STARTmain 
0000 -- E 

ENDXQQ 

0000 --E 

0000 --E 

0000 --E 

PROC FAR ;This code remains 
CALL ENTGQQ 

;call main program 

LABEL FAR 
;termination entry point 

CALL ENDOQQ 
;user system termination 

CALL ENDYQQ 
;close all open files 

CALL ENDUQQ 
;file system 
;termination 

C7 06 0020 R 0000 MOV DOSOFF,0 

linker 
signal; 
goes with 

External 
symbol 

number to left; shows DOSOFF is in segment 

00 2E 0020 R JMP DWORD PTR DOSOFF 
;return to DOS 

OOlE STARTmain ENDP 

0037 ENTXCM ENDS 

END BEGXQQ 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-16 

5.5.2 Differences Between Pass 1 And Pass 2 Listings 

If you specify the /D switch when you run Macro Assembler to 
assemble your file, the assembler produces a listing for 
both passes. The option is especially helpful for finding 
the source of phase errors. 

The following example was taken from a source file that 
assembled with9ut reporting any errors. When the source 
file was reassembled-using the /D switch, an error was 
produced· on pass 1, but not on pass 2 (which is when errors 
are usually reported) • 

Example: 

During Pass 1 a jump with a forward reference produces: 

0017 7E 00 
E r r o r 

0019 BB 1000 
OOlC SMLSTK: REPT 

JLE SMLSTK ;No, use what we have 
9:Symbol not defined 
MOV BX,4096 ;Can only address 64k 
4 

outing Pass 2 this same instruction is fixed up and does not 
return an error. 

0017 
0019 
OOlC 

7E 03 
BB 1000 

SMLSTK: REPT 

JLE 
MOV 
4 

SMLSTK ;No, use what we have 
BX,4096 ;Can only address 64k 

Notice that the JLE instruction's code now contains 03 
instead of 00; this is a jump of 3 bytes. 

The same amount of code was produced during both passes, so 
there was no phase error. The only difference in this case 
is one of content instead of size, 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-17 

5.5.3 Symbol Table Format 

The symbol table portion of a listing separates all 
"symbols" into their respective categories, showing 
appropriate descriptive data. This data gives you an idea 
how your program is using various symbolic values. and is 
useful when you debug. 

Also, you can use a cross-reference listing, produced by 
MS-CREF, to help you locate uses of the various "symbols" in 
your program. 

On the next page is a complete symbol table listing. 
Following the complete listing, sections from different 
symbol tables are shown with explanatory notes. 

For all sections of symbol tables, this rule applies: if 
there are no symbolic values in your program for a 
particular category, the heading for the category will be 
omitted from the symbol table listing. For example, if you 
use no macros in your program, you will not see a macro 
section in the symbol table. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Paqe 5-18 

Microsoft Macro Assembler MACRO 
Assembler date PAGE Symbols-1 
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMPlM.ASM) 

Macros: 

Name Length 

BIOSCALL 0002 
DISPLAY. 0005 
DOSCALL. 0002 
KEYBOARD 0003 
LOCATE 0003 
SCROLL . 0004 

Structures and records: 

Name Width # fields 
Shift Width Mask Initial 

PARMLIST . OOlC 0004 
BUFSIZE. 0000 
NAMESIZE 0001 
NAMETEXT 0002 
TERMINATOR OOlB 

Segments and groups: 

Name Size align combine class 

CSEG . 0044 PARA PUBLIC 'CODE' 
STACK. 0200 PARA STACK 'STACK' 
WORKAREA 0031 · PARA PUBLIC 'DATA' 

Symbols: 

Name Type Value Attr 

CLS. . N PROC 0036 CSEG Length =OOOE 
MAXCHAR. Number 0019 
MESSG. . L BYTE OOlC WORKAREA 
PARMS. . L OOlC 0000 WORKAREA 
RECEIVR. L FAR 0000 External 
START. . F PROC 0000 CSEG Length =0036 

Warning Severe 
Errors Errors 
0 0 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-19 

Macros: 

Name 

BIOSCALL 
DISPLAY. 
DOSCALL. 
KEYBOARD 
LOCATE 
SCROLL .· 

i 
names of macros 

Length +-number of 32-byte blocks 

0002 
0005 
0002 
0003 
0003 
0004 

macro occupies in memory 

This section of the symbol table tells you the names of your 
macros and how big they are in 32-byte block units. In this 
listing, the macro DISPLAY is 5 blocks long or (5 X 32 bytes 
=) 160 bytes long. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-20 

Structures and records: 

~xample for Structures 

PARMLIST •• 1BUFSIZE ••• 
NAMESIZE • 
NAMETEXT • 
TERMINATOR 

Name 

~field names of 
PARMLIST Structure 

Example for Records 

BAZ. • • 

FLDl • 
FLD2 

FLD3 
BAZl • 

BZl. 

BZ2. 

Name 

Width i fields ~ * 
Shift Width Mask Initial ~** 

OOlC 0004 

0000 ~ 0001 

0002 \ 
OOlB 

*** 
Offset of field 

into structure 
The number of bytes 

wide of Structure 

Width # fields 
Shift Width Mask Initial ~ * 

0008 0003~number of fields 
in Record 

0006 0002 ooco 0040 
0003 0003 0038 OOOO~initial 

value 
0000 
OOOB 
0003 

0000 

0003 
0002 
0008 

0003 

0007 0003 
'-MASK of field 

07F8 0400 maximum 
value 

0007 0002 

number of shift number of 
bits in Record count bits in field 

to right 

* This line applies to Structure Names (begin in column 1). 
**This line for fields of Records (indented). 
***Number of fields in Structure. 

This section lists your Structures and/or Records 
fields. The upper line of column headings 
Structure names, Record names, and field 
Structures. The lower line of column headings 
field names of Records. 

and their 
applies to 
names of 
applies to 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-21 

For Structures: 

Width (upper line) shows the number of bytes your 
Structure occupies in memory. 

1 fields shows how many fields comprise your 
Structure. 

For Records: 

Width (upper line) shows the number of bits the 
Record occupies. 

1 fields shows how many fields comprise your 
Record-.-

For Fields of Structures: 

For 

Shift shows the number of bytes the fields are 
offset into the Structure. 

The other columns are not used for 
Structures. 

Fields of Records: 

Shift is the shift count to the right. 

Width (lower line) shows the number of 
field occupies. 

Mask shows the maximum value of the 
expressed in hexadecimal, if one field 
and ANDed (the field is set to all l's 
other fields are set to all O's). 

fields of 

bits this 

record, 
is masked 
and all 

Using field BZl of the Record BAZl above to 
illustrate: 

0 0 0 0 0 l l l l l l l l 0 0 0 +-MASK = 07F8 

I I I I 
15 I 11 II II I I 11 I I 

WIDTH 0008 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-22 

Ini~ial shows the value specified as the initial value for 
the field, if any. 

When naming the field, you specified: 
fieldname:# = value 

Fieldname is the name of the field 

# is the width of the field in bits 

Value is th€ initial value you want this field to 
hold. The symbol table shows this value as if it 
is placed in the field and all other fields are 
masked (equal 0). Using the example and diagram 
from above: 

o o , o ' I ' o o o I o o o o I ' o o '""'". '"" 
I I I I I . I I I I I I I . I I I 

Initial = 80H 
80H = 128 decimal 

Segments and groups: 

AAAXQQ • 
DGROUP • 

DATA • 
STACK. 
CONST. 
HEAP • 
MEMORY 

Name 

ENTXCM • 
MAIN STARTUP 

Size align combine class 
/---called Private 

I in MS-LINK manual 
WORD NONE 'CODE'<--segment 0000 

GROUP 
0024 
0014 
0000 
0000 
0000 
0037 
007E 

<-------------------------group 

length 
of 

segment 

WORD PUBLIC 'DATA' 
WORD STACK 'STACK' 
WORD PUBLIC 'CONST' 
WORD PUBLIC 'MEMORY' 
WORD PUBLIC 'MEMORY' 
WORD NONE 'CODE' 
PARA NONE 'MEMORY' 

statement line entries 

segments 
of 

DGROUP 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-23 

For Groups: 

The name of the group will appear under the Name column, 
beginning in column 1 with the applicable Segment names 
indented 2 spaces. The word Group will ~ppear under the 
Size column. 

For Segments: 

The segment names may appear in column 1 (as here) if you do 
not declare them part of a group. If you declare a group, 
the segment names will appear indented under their group 
name. 

For all Segments, whether a part of a group or not: 

Size is the number of bytes the Segment occupies. 

Align is the type of boundary where the segment 
begins: 

PAGE= page - address is xxxOOH (low byte= O)i 
beg ins on a 256-byte boundary 

PARA = paragraph - address is xxxxOH 
(low nibble= O)i default 

WORD = word - address is xxxxeH 
(e = even numberi 
low bit of low byte = 0) 

bit map - !x!x!x!xlx!x!x!O! 

BYTE = byte - address is xxxxxH (anywhere) 

Combine describes how the Microsoft LINK Linker 
Utility will combine the various segments. (See. 
the Microsoft LINK Linker Utility Manual for a full 
description.) 

Class is the class name under 
combine segments in memory. 
Utility Manual and Chapter 9 of 
Guide for a full description.) 

which MS-LINK will 
(See MS-LINK Linker 
the MS-DOS User's 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-24 

Symbols: 

FOO. 
FOO! 
F002 
F003 
F004 
FOOS 

Symbols: 

BEGHQQ • 
BEGOQQ 
BEGXQQ • 
CESXQQ • 
CLNEQQ • 
CRCXQQ • 
CRDXQQ • 
CSXEQQ • 
CURHQQ • 
DOSOFF • 
DOSXQQ • 
ENDHQQ • 
ENDOQQ • 
ENDUQQ • 
ENDXQQ • 
ENDYQQ • 
ENTGQQ 
FREXQQ • 
HDRFQQ • 
HDRVQQ • 
HEAPBEG. 
HEAPLOW •• · 
INIUQQ • 
PNUXQQ 
RECEQQ • 
REFEQQ • 
REPEQQ • 
RESEQQ 
SKTOP. 
SMLSTK • 
STARTMAIN. 
STKBQQ • 
STKHQQ • • 

Name Type Value Attr 

Mumber 
Text 
Number 
Alias 
Text 
Opcode 

0005 
1.234 
0008 
FOO 
5 [BP] [DI] 

all formed by 
EQU or = 
directive 

Name Type 

• L WORD 
L FAR 
F PROC 
L WORD 
L WORD 

• L WORD 
L WORD 

• L WORD 
• L WORD 

L WORD 
F PROC 
L WORD 
L FAR 
L FAR 
L FAR 
L FAR 
L FAR 
F PROC 
L WORD 
L WORD 
BYTE 
BYTE 
L FAR 
L WORD 
L WORD 
L WORD 
L WORD 
L WORD 
BYTE 
L NEAR 
F PROC 
L WORD 
L WORD 

Value Attr 

0012 
0000 
0000 
0022 
0002 
OOlC 
OOlE 
0000 
0014 
0020 
OO!E 
0016 
0000 
0000 
0005 
0000 
0000 
006E 
0006 
0008 
0000 
0000 
0000 
0004 
0010 
oooc 
OOOE 
OOOA 
0014 
OOlC 
0000 
0018 
OOlA 

DATA Global 
External 

MAIN STARTUP Global Length=006E 
DATA- Global 
DATA Global Lieng th 
DATA Global of PROC 
DATA Global 
DATA Global 
DATA Global 
DATA 
ENTXCM Global Length =0019 
DATA Global 

External 
External 

ENTXCM Global 
External 
External 

MAIN STARTUP Global Length=OOlO 
DATA- Global 
DATA Global 
STACK ~EQU statements 
HEAP ( showing segment 

DATA 
DATA 
DATA 
DATA 
DATA 
STACK 

External 
Global 
Global 
Global 
Global 
Global 

MAIN STARTUP 
ENTXCM Length=OOlE 
DATA Global 
DATA Global 

Lrf Macro Assembler knows this length as one of the 
type lengths (BYTE, WORD, DWORD, QWORD, 
TBYTE), it shows that type name here. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-25 

This section lists all other symbolic values in your program 
that do not fit under the other categories. 

~ shows the symbol's type: 
L Label 
F = Far 
N = Near 
PROC = Procedure 
Number I 
Alias -----all defined by EQU or 
Text I 
Opcode 

directive 

These entries may be combined to form the various 
types shown in the example. 

For all procedures, the length of the procedure is 
given after its attribute (segment). 

You may also see an entry under Type like: 

L 0031 

This entry results from code such as the following: 

BAZ LABEL FOO 

where FOO is a STRUC that is 31 bytes long. 

BAZ will be shown in the symbol table with the L 
0031 entry. Basically, Number (and some other 
similar entries) indicates that the symbol was 
defined by an EQU or = directive. 

Value (usually) shows the numeric value the symbol 
represents. (In some cases, the Value column will show some 
text -- when the symbol was defined by EQU or = directive.) 

Attr always shows the segment of the symbol, if known. 
Otherwise, the Attr column is blank. Following the segment 
name, the tab.le will show either External, Global, or a 
blank (which means not declared with either the EXTRN or 
PUBLIC directive). The last entry applies to PROC types 
only. This is a length = entry, which is the length of the 
procedure. 



ASSEMBLING A MACRO ASSEMBLER SOURCE FILE Page 5-26 

If Type is Number, Opcode, Alias, or Text, th~ Symbols 
section of the listing will be structured differently. 
Whenever you see one of these four entries under Type, the 
symbol was created by an EQU directive or an = directive. 
All information that follows one of these entries is 
considered its "value," even if the "value" is simple text. 

Each of the four types shows a value as follows: 

Number shows a constant numeric value. 

Opcode shows a blank. The symbol is an alias for 
an instruction mnemonic. 

Sample directive statement: FOO EQU ADD 

Alias shows a symbol name which the named symbol 
equals. 

Sample directive statement: FOO EQU BAX 

Text shows the "text" the symbol represents. 
"Text" is any other operand to an EQU directive 
that does not fit one of· the other three categories 
above. 

Sample directive statements: 
GOO EQU 'WOW' 
BAZ EQU DS:8[BX] 
ZOO EQU 1. 234 



Chapter 6 

6.1 

Contents 

8087 Support 

Switches 6-1 





CHAPTER 6 

8087 SUPPORT 

Macro Assembler supports standard Intel 8087 instructions 
and operands. A list of the instructions and opcodes can be 
found in Appendix C of this manual. 

6.1 SWITCHES 

There are two switches that are used when running Macro 
Assembler with an 8087. These switches are /R (for Real) 
and /E (for Emulate). The /R and /E switches are described 
below. 

Switch 

/R 

/E 

Function 

Use the /R switch when the code being produced by 
Macro Assembler is going to be run on a real 8087 
machine (not an emulated machine). Code produced 
with the /R switch will only run on real 8087 
machines. 

Use the /E switch when the code being produced by 
Macro Assembler is going to be run on an emulated 
8087 machine. Code produced with the /E switch 
will also run on real 8087 machines with the 
appropriate emulator library. 

The emulator library is provided with some MS-DOS language 
products. It contains specific 8087 emulation routines. 
Refer to your language compiler user's guide for information 
on the emulator library that has been provided. If your 
code is going to run on an emulated 8087 machine, you must 
specify the appropriate emulator library when you link your 
code with MS-LINK. If the library is not specified, MS-LINK 
will return errors for those unresolved symbols that are 
defined in the emulator library. 





Chapter 7 

7.1 
7.2 

Contents 

Macro Assembler Messages 

Operating Messages 7-1 
Error Messages 7-2 

Assembler Errors 7-2 
I/O Handler Errors 7-13 
Runtime Errors 7-14 
Numerical List of Error Messages 7-15 





CHAPTER 7 

MACRO ASSEMBLER MESSAGES 

Most of the messages output by Macro Assembler are error 
messages. The nonerror messages output by Macro Assembler 
are the banner Macro Assembler displays when first started, 
the command prompt messages, and the end of (successful) 
assembly message. These nonerror messages are classified 
here as operating messages. The error messages are 
classified as assembler errors, I/O handler errors, and 
runtime errors. 

7.1 OPERATING MESSAGES 

Banner Message and Command Prompts: 

Macro Assembler v2.0 Copyright (C) Microsoft, Inc. 

Source filename [.ASM]: 
Object filename [source.OBJ]: 
Source listing [NUL.LST]: 
Cross reference [NUL.CRF]: 

End of Assembly Message: 

Warning 
Errors 
n 

Fatal 
Errors 
n (n=number of errors) 

(your disk operating system's prompt) 



MACRO ASSEMBLER MESSAGES Page 7-2 

7.2 ERROR MESSAGES 

If the assembler encounters errors, error messages are 
output, along with the numbers of warning and fatal errors, 
and control is returned to your disk operating system. The 
message is output either to your terminal screen or to the 
listing file if you command one be created. 

Error messages are divided into three categories: assembler 
errors, I/O handler errors, and runtime errors. In each 
category, messages are listed in alphabetical order with a 
short explanation where necessary. At the end of this 
chapter, the error messages are listed in a singl~ numerical 
order list but without explanations. 

Assembler Errors 

Already defined locally (Code 23) 

Tried to define a symbol as EXTERNAL that had 
already been defined locally. 

Already had ELSE clause (Code 7) 

Attempt to define an ELSE clause within an existing 
ELSE clause (you cannot nest ELSE without nesting 
IF ... ENDIF). 

Already have base register (Code 46) 

Trying to double base register. 

Already have index register (Code 47) 

Trying to double index address 

Block nesting error (Code 0) 

Nested procedures, segments, structures, macros, 
IRC, IRP, or REPT are not properly terminated. An 
example of this error is close of an outer level of 
nesting with inner level(s) still open. 



MACRO ASSEMBLER MESSAGES Page 7-3 

Byte register is illegal (Code 58) 

Use of one of the byte registers in context where 
it is illegal. For example, PUSH AL. 

Can't override ES segment (Code 67) 

Trying to override the ES segment in an instruction 
where this override is not legal. For example, 
store string. 

Can't reach with segment reg (Code 68) 

There is no ASSUME that makes 
reachable. 

Can't use EVEN on BYTE segment (Code 70) 

the variable 

Segment was declared to be byte segment and attempt 
to use EVEN was made. 

Circular chain of EQU aliases (Code 83) 

An alias EQU eventually points to itself. 

Constant was expected (Code 42) 

Expecting a constant and received something else. 

CS register illegal usage (Code 59) 

Trying to use the CS register illegally. For 
example, XCHG CS,AX. 

Directive illegal in STRUC (Code 78) 

All statements within STRUC blocks must either be 
comments preceded by a. semicolon ( i) , or one of the 
Define directives. 

Division by 0 or overflow (Code 29) 

An expression is given that results in a divide by 
o. 



MACRO ASSEMBLER MESSAGES Page 7-4 

DUP is tqq large for linker (Code 74) 

Nesting of DUP's was such that too large a record 
was created for the linker. 

8087 opcode can't be emulated (Code 84) 

Either the 8087 opcode or the operands you used 
with it produce an instruction that the emulator 
cannot support. 

Extra characters on line (Code 1) 

This occurs when sufficient information to define 
the instruction directive has been received on a 
line and superfluous characters beyond are 
received. 

Field cannot be overridden (Code 80) 

In a STRUC initialization statement, you tried to 
give a value to a field that cannot be overridden. 

Forward needs override (Code 71) 

This message is not currently used. 

Forward reference is illegal (Coae 17) 

Attempt to forward reference something that must be 
defined 'in pass 1. 

Illegal register value (Code 55) 

The register value specified does not fit into the 
"reg" field (the reg field is greater than 7). 

Illegal size for item (Code 57) 

Size of referenced item is illegal. 
shift of a double word. 

For example, 



MACRO ASSEMBLER MESSAGES Page 7-5 

Illegal use of external (Code 32) 

Use of an external in some illegal manner. For 
example, DB M DUP(?) where M is declared external. 

Illegal use of register (Code 49) 

Use of a register with an instruction where there 
is no 8086 or 8088 instruction possible. 

Illegal value for DUP count (Code 72) 

DUP counts must be a constant that is not 0 or 
negative. 

Improper operand type (Code 52) 

Use of an operand such that the opcode cannot be 
generated. 

Impr.oper use of segment reg (Code 61) 

Specification of a segment register where this is 
illegal. For example, an i1M1ediate move to a 
segment register. 

Index displ. must be constant (Code 54) 

Illegal use of index display. 

Label can't have seg. override (Code 65) 

Illegal use of segment override. 

Left operand must have segment (Code 38) 

Used something in right operand that required a 
segment in the left operand. (For example, •:.•) 

More values than defined with (Code 76) 

Too many fields given in REC or STRUC allocation. 



MACRO ASSEMBLER MESSAGES Page 7-6 

Must be associated with code (Code 45) 

Use of data related item where code item was 
expected. 

Must be associated with data (Code 44) 

Use of code related item where data related item 
was exected. For example, MOV AX,<code-label>. 

Must be AX or AL (Code 60) 

Specification of some register other than AX or AL 
where only these are acceptable. For example, the 
IN instruction. 

Must be index or base register (Code 48) 

Instruction requires a base or index register and 
some other register was specified in square 
brackets, [ ] • 

Must be declared in pass l (Code . 3) 

Assembler expecting a constant value but got 
something else. An example of this might be a 
vector size being a forward -eference. 

Must be in segment block (Code 69) 

Attempt to generate code when not in a segment. 

Must be record field name (Code 33) 

Expecting a record field name but got something 
else. 

Must be record or field name (Code 34) 

Expecting a record name or field name and received 
something else. 

ust be register (Code 18) 

Register unexpected as operand bu·t you furnished a 
symbol -- was not a register. 



MACRO ASSEMBLER MESSAGES Page 7-7 

Must be segment or group (Code 20) 

Must be 

Must be 

Expecting segment or group and something else was 
specif,ied. 

structure field name (Code 37) 

Expecting a structure field name but received 
something else. 

symbol type (Code 22) 

Must be WORD, ow, QW, BYTE, or TB but received 
something else. 

Must be var, label or constant (Code 36) 

Expecting a variable, label, or constant but 
recei.ved something else. 

Must have opcode after prefix (Code 66) 

Use of one of the prefix instructions without 
specifying any opcode after it. 

Near JMP/CALL to different cs (Code 64) 

Attempt to do a NEAR jump or call to a location in 
a different CS ASSUME. 

No immediate mode (Code 56) 

Immediate mode specified or an opcode that cannot 
accept the immediate. For example, PUSH. 

No or unreachable CS (Code 62) 

Trying to jump to a label that is unreachable. 

Normal type operand expected (Code 41) 

Received STRUCT, FIELDS, NAMES, BYTE, WORD, or ow 
when expecting a variable label. 



MACRO ASSEMBLER MESSAGES Page 7-8 

Not in conditional block (Code 8) 

An ENDIF or ELSE is specified without a previous 
conditional assembly directive active. 

Not proper align/combine type {Code 25) 

SEGMENT parameters are incorrect. 

One operand must be const (Code 39) 

This is an illegal use of the addition operator. 
"'-· 

Only initialize list legal (Code 77) 

Attempt to use STRUC name without angle brackets, 
< >. 

Operand combination illegal (Code 63) 

Specification of a two-operand instrucion where the 
combination specified is illegal. 

Operands must be same or 1 abs (Code 40) 

Illegal use of the subtraction operator. 

Operand must have segment {Code 43) 

Illegal use of SEG directive. 

Operand must have size (Code 35) 

Expected operand to have a size, but it did not. 

Operand not in IP segment (Code 51) 

Access of operand is impossible because it is not 
in the current IP segment. 

Operand types must match {Code 31) 

.Assembler gets 
arguments in a 
example, MOV. 

different kinds or sizes 
case where they must match. 

of 
For 



MACRO ASSEMBLER MESSAGES Page 7-9 

Operand was expected (Code 27) 

Assembler is expecting an operand but an operator 
was received. 

Operator was expected (Code 28) 

Assembler was expecting an operator but an operand 
was received. 

Override is of wrong type (Code 81) 

In a STRUC initialization statement, you tried to 
use the wrong size on override. For example, 
'HELLO' for DW field. 

Override with OUP is illegal (Code 79) 

In a STRUC initialization statement, you tried to 
use DUP in an override. 

Phase error between passes (Code 6) 

The program has ambiguous instruction directives 
such that the locati~n of a label in the program 
changed in value between pass 1 and pass 2 of the 
assembler. An example of this is a forward 
reference coded without a segment override where 
one is required. There would be an additional byte 
(the code segment override) generated in pass 2 
causing the next label to change. You can use the 
/D switch to produce a listing to aid in resolving 
phase errors between passes (see Section 5.4, 
"Macro Assembler Command Switches"). 

Redefinition of symbol (Code 4) 

This error occurs on pass 2 
definitions of a symbol. 

Reference to mult defined (Code 26) 

and succeeding 

The instruction references something that has been 
multi-defined. 



MACRO -ASSEMBLER MESSAGES Page 7-10 

Register already defined (Code 2) 

This will only occur if the assembler has internal 
logic errors. 

Register can't be forward ref (Code 82) 

Relative jump out of range (Code 53) 

Relative jumps must be within the range -128 +127 
of the current instruction, and the specific jump 
is beyond this range. 

Segment parameters are changed (Code 24) 

List of arguments to SEGMENT were not ·identical to 
the first time this segment was used. 

Shift count is negative (Code 30) 

A shift expression is generated that results in a 
negative shift count. 

Should have been group name (Code 12) 

Expecting a group name but something other than 
this was given. 

Symbol already different kind (Code 15) 

Attempt to define a symbol differently from a 
previous defin.ition. 

Symbol already external (Code 73) 

Attempt to define a symbol as local that is already 
external. 

Symbol has no segment (Code 21), 

Trying to use a variable.with SEG, and the variable 
has no known segment. 

i I 



MACRO ASSEMBLER MESSAGES Page 7-11 

Symbol is multi-defined (Code 5) 

This error occurs on a symbol that is later 
redefined. 

Symbol is reserved word (Code 16) 

Attempt to 
illegally. 
variable.) 

use 
(For 

Symbol not defined (Code 9) 

an assembler 
example, to 

reserved 
declare MOV 

A symbol is used that has no definition. 

Symbol type usage illegal (Code 14) 

Illegal use of a PUBLIC symbol. 

Syntax error (Code 10) 

word 
as a 

The syntax of the statement does not match any 
recognizable syntax. 

Type illegal in context (Code 11) 

The type specified is of an unacceptable size. 

Unknown symbol type (Code 3) 

Symbol statement has something in the type field 
that is unrecognizable. · 

Usage of ? (indeterminate) bad (Code 75) 

Improper use of the "?". For example, ?+5. 

' Value is out of range (Code 50) 

Value is too large for expected use. For example, 
MOV AL,5000. 



MACRO ASSEMBLER MESSAGES 

Wrong type of register (Code 19) 

Directive 
register, 
INC CS. 

or instruction expected 
but another was specified. 

Page 7-12 

one type of 
For example, 



MACRO ASSEMBLER MESSAGES Page 7-13 

I/O Handler Errors 

These error messages are generated by the I/O handlers. 
·These messages appear in a different format from the 
Assembler Errors: 

MASM Error -- error-message-text 
in: filename 

The filename is the name of the file being handled when the 
error occurred. 

The error-message-text is one of the following messages: 

Data format (Code 114) 

Device full (Code 108) 

Device name (Code 102) 

Device offline (Code 105) 

File in use (Code 112) 

File name (Code 107) 

File not found (Code 110) 

File not open (Code 113) 

File system (Code 104) 

Hard data (Code 101) 

Line too long (Code 115) 

Lost file (Code 106) 

Operation (Code 103) 

Protected file (Code 111) 

Unknown device (Code 109) 



MACRO ASSEMBLER MESSAGES Page 7-14 

Runtime Errors 

These messages may be displayed as your assembled program is 
being executed. 

Internal Error 

Usually caused by an arithmetic check. 
occurs, notify Microsoft Corporation. 

Out of Memory 

If it 

This message has no corresponding number. Either 
the source was too big or too many labels are in 
the symbol table. 



MACRO ASSEMBLER MESSAGES 

Numerical Order List of Error Messages 

Code Message 

0 Block nesting error 
1 Extra characters on line 
2 Register already defined 
3 Unknown symbol type 
4 Redefinition of symbol 
5 Symbo1 is multi-defin~d 
6 Phase error between passes 
7 Already had ELSE clause 
8 Not in conditional block 
9 Symbol not defined 

10 Syntax error 
11 Type illegal in context 
12 Should have been group name 
13 Must be declared in pass 1 
14 Symbol type usage illegal 
15 Symbol already different kind 
16 Symbol is reserved word 
17 Forward reference is illegal 
18 Must be register 
19 Wrong type of register 
20 Must be segment or group 
21 Symbol has no segment 
22 Must be symbol type 
23 Already defined locally 
24 Segment parameters are changed 
25 Not proper align/combine type 
26 Reference to mult defined 
27 Operand was expected 
28 Operator was expected 
29 Division by 0 or overflow 
30 Shift count is negative 
31 Operand types must match 
32 Illegal use of external 
33 Must be record field name 
34 Must be record or field name 
35 Operand must have size 
36 Must be var, label or constant 
37 Must be structure field name 
38 Left operand must have segment 
39 One operand must be const 
40 Operands must be same or 1 abs 
41 Normal type operand expected 
42 Constant was expected 
43 Operand must have segment 
44 Must be associated with data 
45 Must be associated with code 
46 Already have base register 
47 Already have index register 
48 Must be index or base register 
49 Illegal use of register 
50 Value is but of range 

Page 7-15 



'1ACRO ASSEMBLER MESSAGES Page 7-16 

51 Operand not in IP segment 
52 Improper operand type 
53 Relative jump out of range 
54 Index displ. must be constant 
55 Illegal register value 
56 No immediate mode 
57 Illegal size for item 
58 Byte register is illegal 
59 CS register illegal usage 
60 Must be AX or AL 
61 Improper use of segment reg 
62 No or unreachable CS 
63 Operand combination illegal 
64 Near JMP/CALL to different CS 
65 Label can't have seg. override 
66 Must have opcode after pref ix 
67 Can't override ES segment 
68 Can't reach with segment reg 
69 Must be in segment block 
70 Can't use EVEN on BYTE segment 
71 Forward needs override 
72 Illegal value for DUP count 
73 Symbol already external 
74 DUP is too large for linker 
75 Usage of ? (indeterminate) bad (Code 75) 
76 More values than defined with 
77 Only initialize list legal 
78 Directive illegal in STRUC 
79 Override with DUP is illegal 
80 Field cannot be overridden 
81 Override is of wrong type 
82 Register can't be forward ref 
83 Circular chain of EQU aliases 
84 8087 opcode can't be emulated 

101 
102 
103 
104 
105 
106 
107 
108 
109 
llO 
111 
ll2 
ll3 
ll4 
ll5 

Hard data 
Device name 
Operation 
File system 
Device offline 
Lost file 
File name 
Device full 
Unknown device 
File not found 
Protected file 
File in use 
File not open 
Data format 
Line too long 



Contents 

Appendix A ASCII Character Codes 

Appendix B Table of Macro Assembler Directives 

B.l Memory Directives B-1 
B.2 Macro Directives B-2 
B.3 Conditional Directives B-2 
B.4 Listing Directives B-2 
B.5 Attribute Operators B-3 
B.6 Precedence of Operators B-4 

Appendix C Table of 8086 and 8087 Instructions 

C.l 8086 Instruction Mnemonics, Alphabetical 
C.2 8087 Instruction Mnemonics, Alphabetical 
C.3 8086 Instruction Mnemonics by Argument 

Type C-6 
C.4 8087 Instruction Mnemonics by Argument 

Type C-10 

C-1 
C-4 





ASCII CHARACTER CODES 

APPENDIX A 

ASCII CHARACTER CODES 

Dec Hex CHR Dec Hex CHR 
000 OOH NUL 033 21H 
001 OlH SOH 034 22H 
002 02H STX 035 23H ll 
003 03H ETX 036 24H $ 
004 04H EOT 037 25H % 
005 05H ENQ 038 26H & 

006 06H ACK 039 27H I 

007 07H BEL 040 28H ( 

008 08H BS 041 29H ) 

009 09H HT 042 2AH * 
010 OAH LF 043 2BH + 
Oll OBH VT 044 2CH 
012 OCH FF 045 2DH 
013 OOH CR 046 2EH 
014 OEH so 047 2FH I 
015 OFH SI 048 30H 0 
016 lOH DLE 049 31H 1 
017 llH DCl 050 32H 2 
018 12H DC2 051 33H 3 
019 13H DC3 052 34H 4 
020 14H DC4 053 35H 5 
021 15H NAK 054 36H 6 
022 16H SYN 055 37H 7 
023 17H ETB 056 38H 8 
024 18H CAN 057 39H 9 
025 19H EM 058 3AH 
026 lAH SUB 059 3BH 
027 lBH ESCAPE 060 3CH < 
028 lCH FS 061 3DH 
029 lDH GS 062 3EH > 
030 lEH RS 063 3FH ? 
031 lFH us 064 40H @ 

032 20H SPACE 

Dec=decimal, Hex=hexadecimal (H), CHR=character. 
LF=Line Feel, FF=Form Feed, CR=Carriage Return, DEL=Rubout 



ASCII CHARACTER CODES 

Dec Hex CHR Dec Hex CHR 
065 41H A 097 61H a 
066 42H B 098 62H b 
067 43H c 099 63H c 
068 44H D 100 64H d 
069 45H E 101 65H e 
070 46H F 102 66H f 
071 47H G 103 67H g 
072 48H H 104 68H h 
:>73 49H I 105 69H i 
:>74 4AH J 106 6AH j 
)75 4BH K 107 6BH k 
)76 4CH L 108 6CH 1 
)77 4DH M 109 GDH m 
)78 4EH N 110 6EH n 
)79 4FH 0 111 6FH 0 

)80 50H p 112 70H p 
)81 51H Q 113 71H q 
)82 52H R 114 72i~ r 
)83 53H s 115 73H s 
)84 54H T 116 74H t 
)85 SSH u 117 75H u 
)86 56H v 118 76H v 
)87 57H w 119 77H w 
)88 58H x 120 78H x 
)89 59H y 121 79H y 
)90 5AH z 122 7AH z 
)91 5BH [ 123 7BH l )92 SCH \ 124 7CH 
)93 SDH ] 125 7DH 
)94 5EH A 126 7EH 
)95 SFH 128 7FH DEL 
)96 60H T 

>ec=decimal, Hex=hexadecimal (H), CHR=character • 
• F=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout 



APPENDIX B 

TABLE OF MACRO ASSEMBLER DIRECTIVES 

B.l MEMORY DIRECTIVES 

<name> 
<name> 
<name> 
<name> 
<name> 

ASSUME <seg-reg>:<seg-name>[,<seg-reg>: 
<seg-name> •.• ] 

ASSUME NOTHING 
COMMENT <delim><text><delim> 

DB <exp> 
DD <exp> 
DQ <exp> 
DT <exp> 
DW <exp> 

END [<exp>] 
<name> EQU <exp> 
<name> = <exp> 

EXTRN <name>:<type>[,<name>:<type> ••• ] 
PUBLIC <name>[,<name> ••• ] 

<name> LABEL <type> 
NAME <module-name> 

<name> PROC [NEAR] 
<name> PROC [FAR] 

I 
<proc-name> ENDP 

.RADIX <exp> 
<name> RECORD <field>: <width> [=<exp> J [, ••• ] 

<name> GROUP <segment-name>[, ••• ) 
<name> SEGMENT [<align>] [<combine>] [<class>] 

I 
<seg-name> ENDS 

EVEN 
ORG <exp> 

<name> STRUC 
I 

<struc-name> ENDS 



B.2 MACRO DIRECTIVES 

ENDM 
EX I TM 

Page B-2 

IRP <dummy>,<parameters in angle brackets> 
IRPC <dummy>,string 
COCAL <parameter>[,<parameter> ••• ] 

<name> MACRO <parameter>[,<parameter> ••• ) 
PURGE <macro-name>[, ••• ] 
REPT <exp> 

Special Macro Operators 
& (ampersand) - concantenation 
<text> (angle brackets - single literal) 
11 (double semicolons) - suppress comment 
! (exclamation point) - next character literal 
% (percent sign) - convert expression to number 

B.3 CONDITIONAL DIRECTIVES 

ELSE 
IF <exp> 
IFB <arg> 
IFDEF <symbol> 
IFDIF <argl>,<arg2> 
IFE <exp> 
IFIDN <argl>,<arg2> 
IFNB <arg> 
IFNDEF <symbol> 
!Fl 
IF2 

B.4 LISTING DIRECTIVES 

.CREF 

.LALL 

.LFCOND 

.LIST 
%OUT <text> 
PAGE <exp> 
.SALL 
.SFCOND 
SUBTTL <text> 
.TFCOND 
TITLE <text> 
.XALL 
.XCREF 
.XLIST 



Page B-3 

B.5 ATTRIBU'rE OPERATORS 

Override operators 

Pointer (PTR) 
<attribute> PTR <expression> 

Segment Override(:) (colon) 
<segment-register>:<address-expression> 
<segment-name>:<address-expression> 
<group-name>:<address-expression> 

SHORT 
SHORT <label> 

THIS 
THIS <distarwe> 
THIS <type> 

Value Returning Operators 

SEG 
SEG <label> 
SEG <variable> 

OFFSET 
OFFSET <label> 
OFFSET <variable> 

TYPE 
TYPE <label> 
TYPE <variable> 

.TYPE 
.TYPE <variable> 

LENGTH 
LENGTH <variable> 

SIZE 
SIZE <variable> 

Record Specific operators 

Shift-count - (Record fieldname) 
<record-f ieldname> 

MASK 
MASK <record-f ieldname> 

WIDTH 
WIDTH <record-fieldname> 
WIDTH <record> 



B.6 PRECEDENCE OP OPERATORS 

All operators in a single item 
regardless of ,the ord~r listed 
line breaks are used for visual 
functional relations. 

have the same 
within the item. 

clarity, not 

1. LENGTH, SIZE, WIDTH, MASK 
Entries inside: parenthesis ( ) 

angle brackets < > 
square brackets [ ) 

Page B-4 

precedence, 
Spacing and 

to indicate 

structure variable operand: <variable>.<field> 

2. segment override operator: colon (:) 

3. PTR, OFFSET, SEG, TYPE, THIS 

4. HIGH, LOW 

5. *, /, MOD, SHL, SHR 

6. +, - (both unary and binary) 

7. EQ, NE, LT, LE, GT, GE 

8. Logicai NOT 

9. Logical AND 

10. Logical OR, XOR 

11. SHORT , • TYPE 



APPENDIX C 

TABLE OF 8086 ARD 8087 INSTRUC'.rIONS 

Macro Assembler supports both the 8086 and 8087 mnemonics. 
The mnemonics are listed alphabetically with their full 
names. The 8086 instructions are also listed in groups 
based on the type of arguments the instruction takes. 

C.l 8086 INSTRUC'.rION MNEMONICS, ALPHABETICAL 

Mnemonic 

AAA 
AAD 
AAM 
AAS 
ADC 
ADD 
AND 
CALL 
CBW 
CLC 
CLD 
CLI 
CMC 
CMP 
CMPS 
CMPSB 
CMPSW 
CWD 
DAA 
DAS 
DEC 
DIV 
ESC 
HLT· 
IDIV 
IMUL 
IN 
INC 
INT 
INTO 

Full Name 

ASCII adjust for addition 
ASCII adjust for division 
ASCII adjust for multiplication 
ASCII adjust for subtraction 
Add with carry 
Add 
AND 
CALL 
Convert byte to word 
Clear carry flag 
Clear direction flag 
Clear interrupt flag 
Complement carry flag 
Compare 
Compare byte or word (of string) 
Compare byte string 
Compare word string 
Convert word to double word 
Decimal adjust for addition 
Decimal adjust for subtraction 
Decrement 
Divide 
Escape 
Halt 
Integer divide 
Integer multiply 
Input byte or word 
Increment 
Interrupt 
Interrupt on overflow 



Page C-2 

IRET Interrupt return 
JA Jump on above 
JAE Jump on above or equal 
JB Jump on below 
JBE Jump on below or equal 
JC Jump on carry 
JCXZ Jump on ex zero 
JE Jump on equal 
JG Jump on greater 
JGE Jump on greater or equal 
JL Jump on less than 
JLE Jump on less than or equal 
JMP Jump 
JNA Jump on not above 
JNAE Jump on not above or equal 
JNB Jump on not below 
JNBE Jump on not below or equal 
JNC Jump on no carry 
JNE Jump on not equal 
JNG Jump on not greater 
JNGE Jump on not greater or equal 
JNL Jump on not less than 
JNLE Jump on not less than or equal 
JNO Jump on not overflow 
JNP Jump on not parity 
JNS Jump on not sign 
JNZ Jump on not zero 
JO Jump on overflow 
JP Jump on parity 
JPE Jump on parity even 
JPO Jump on parity odd 
JS Jump on sign 
JZ Jump on zero 
LAHF Load AH with flags 
LOS Load pointer into OS 
LEA Load effective address 
LES Load pointer into ES. 
LOCK LOCK bus 
LOOS Load byte or word (of string) 
LOOSB Load byte (string) 
LOOSW Load word (string) 
LOOP LOOP 
LOO PE LOOP while equal 
LOOPNE LOOP while not equal 
LOOPNZ LOOP while not zero 
LOOPZ LOOP while zero 
MOV Move 
MOVS Move byte or word (of string) 
MOVBS Move byte (string) 
MOVSW Move word (string) 
MUL Multiply 
NEG Negate 
NOP No operation 
NOT NOT 
OR OR 



OUT 
POP 
POPF 
PUSH 
PUSHF 
RCL 
RCR 
REP 
RET 
ROL 
ROR 
SAHF 
SAL 
SAR 
SBB 
SCAS 
SCASB 
SCASW 
SHL 
SHR 
STC 
STD 
STI 
STOS 
STOSB 
STOSW 
SUB 
TEST 
WAIT 
XCHG 
XLAT 
XOR 

Output byte or word 
POP 
POP flags 
PUSH 
PUSH flags 
Rotate through carry left 
Rotate through carry right 
Repeat 
Return 
Rotate left 
Rotate right 
Store AH into flags 
Shift arithmetic left 
Shift arithmetic right 
Subtract with borrow 
Scan byte or word (of string) 
Scan byte (string) 
Scan word (string) 
Shift left 
Shift right 
Set carry flag 
Set direction flag 
Set interrupt flag 
Store byte or word (of string) 
Store byte (string) 
Store word (string) 
Subtract 
TEST 
WAIT 
Exchange 
Translate 
Exclusive OR 

Page C-3 



Page C-4 

C.2 8087 INSTROCTIOR MNBllORICS, ALPBABB"l'ICAL 

Mnemonic 

F2XM1 

FABS 
FADD 
FADDP 

FBLD 
FBSTP 

FCHS 
FCLEX 
FCOM 
FCOMP 
FCOMPP 

FDECSTP 
FD I SI 
FDIV 
FD I VP 
FDIVR 
FDIVRP 

FENI 

FFREE 

FI ADD 
FI COM 
FI COMP 
FIDIV 
FIDIVR 

FILO 
FIMUL 
FINCS!l'P 
FINIT 
FIST 
FISTP 
FI SUB 
FISUBR 

FLO 
FLDl 
FLDCW 
FLDENV 
FLDL2E 
FLDL2T 
FLDLG2 
FLDLN2 
FLDPI 
FLDZ 

Full Name 

Calculate 2X-l 

Take absolute value of top of stack 
Add real 
Add real and pop stack 

Load packed decimal onto top of stac.k 
Store-packed decimal and pop stack 

Change sign on the top stack element 
Clear exceptions after WAIT 
Compare real 
Compare real and pop stack 
Compare real and pop stack twice 

Decrement stack pointer 
Disable interrupts after WAIT 
Divide real 
Divide real and Pop stack 
Reversed real divide 
Reversed real divide and pop stack twice 

Enable interrupts after WAIT 

Free stack element 

Add integer 
Integer compare 
Integer compare and pop stack 
Integer divide 
Reversed integer divide 

Load integer onto top of stack 
Integer multiply 
Increment stack pointer 
Initialize processor after WAIT 
Store integer 
Store integer and pop stack 
Integer subtract 
Reversed integer subtract 

Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 
Load 

real onto top of stack 
+l.O onto top of stack 
control word 
8087 environment 
log 2 e onto top of stack 
log 2 10 onto top of stack 
log 10 2 onto top of stack 
log e 2 onto top of stack 
pi onto toP, of stack 
+o. o onto (op of stack 



FMUL 
FMULP 

FNCLEX 
FNDISI 
FNENI 
FNINIT 
FNOP 
FNSAVE 
FNSTCW 
FNSTENV 
FNSTSW 

FPATAN 
FPREM 
FPTAN 

FRNDINT 
FRSTOR 

FSAVE 
FSCALE 
FSQRT 
FST 
FSTCW 
FSTENV 
FSTP 
FSTSW 
FSUB 
FSUBP 
FSUBR 
FSUBRP 

FTST 

FWAIT 

FXAM 
FXCH 

FXTRACT 

FYL2X 
FYL2PI 

Multiply real 
Multiply real and pop stack 

Clear exceptions with no WAIT 
Disable interrupts with no WAIT 
Enable interrupts with no WAIT 
Initialize processor, with no WAIT 
No operation 
Save 8087 state with no WAIT 
Store control word without WAIT 
Store 8087 environment with no WAIT 
Store 8087 status word with on WAIT 

Partial arctangent function 
Partial remainder 
Partial tangent function 

Round to integer 
Restore state 

Save 8087 state after WAIT • 
Scale 
Square root 
Store real 
Store co.ntrol word with WAIT 
Store 8087 environment after WAIT 
Store real and pop stack 
Store 8087 status word after WAIT 
Subtract real 
Subtract real and pop stack 
Reversed real subtract 
Reversed real subtract and pop stack 

Test top of stack 

Page C-5 

Wait for last 8087 operation to complete 

Examine top of stack element 
Exchange contents of stack element and stack 
top 
Extract exponent and significand from number 
in top of stack 

Calculate Y:log 2 X 
Calculate Y:log 2 {x+l) 



Page C-6 

C.3 8086 INS'fRUCTION MNEMONICS BY ARGUMEN'l' TYPE 

In this section, the instructions are grouped according to 
the type of argument(s) they take. In each group the 
instructions are listed alphabetically in the first column. 
The formats of the instructions with the valid argument 
types are shown in the second column. If a format shows OP, 
that format is legal for all the instructions shown in that 
group. If a format is specific to one mnemonic, the 
mnemonic is shown in the format instead of OP. 

The following abbreviations are used in these lists: 

OP opcode; instruction mnemonic 

reg byte register (AL,AH,BL,BH,CL,CH,DL,DH) 
or word register (AX,BX,CX,DX,SI,DI,BP,SP) 

r/m register or memory address or indexed and/or based 

accum AX or AL register 

immed immediate 

mem memory operand 

segreg segment register (CS,DS,SS,ES) 

General 2 operand instructions 

Mnemonics 

ADC 
ADD 
AND 
CMP 
OR 
SBB 
SUB 
TEST 
XOR 

Argument Types 

OP reg,r/m 
OP r/m,reg 
OP accum, immed 
OP r /m, immed 

In addition, add to the arguments a sign extent for word 
immediate. 

CALL and JUMP ~ instructions 

Mnemonics 

CALL 
JMP 

Argument Types 

OP mem {NEAR}{FAR} direction 
OP r/m (indirect data -­
DWORD , WORD) 



Relative jumps 

Argument Type 

OP addr (+129 or -126 of IP at start, or 
+127 at end of jump instruction) 

Mnemonics 

JA JC JZ JNGE JNP 
JNBE JNAE JG JLE JPO 
JAE JBE JNLE JNG JNS 
JNB JNA JGE JNE JO 
JNC JCXZ JNL JNZ JP 
JB JE JL JNO JPE 

JS 

Loop instructions ~ same as Relative ~~ 

LOOP LOO PE LOOPZ LOOPNE LOOPNZ 

Return instruction 

Mnemonic Argument Type 

RET [immed] (optional, number of words to POP) 

No operand instructions 

Mnemonics 

AAA CLO DAA LODSB PUS HF STI 
AAD CLI DAS LODSW SAHF STOSB 
AAM CMC HLT MOVSB SCASB STOSW 
AAS CMPSB INTO MOVSW SCASW WAIT 
CBW CMPSW IRET NOP. STC XLATB 
CLC CWD LAHF POPF STD 

Load instructions 

Mnemonics Argument Type 

LDS OP r/m (except that OP reg is illegal) 
LEA 
LES 

Page C-7 



·Move instructions 

Mnemonic 

MOV 

Argument Types 

OP mem,accum 
OP accum,mem 
OP segreg, r/m 
(except CS is illegal) 

OP r/m,segreg 
OP r/m,reg 
OP reg,r/m 
OP reg,immed 
OP r /m, immed 

Push and ~ instructions 

Mnemonics 

PUSH 
POP 

Argument Types 

OP word-reg 
OP segreg 
(POP CS is illegal) 

OP r/m 

Shift/rotate ~ instructions 

Mnemonics 

RCL 
RCR 
ROL 
ROR 
SAL 
SHL 
SAR 
SHR 

Argument Types 

OP r/m,l 
OP r/m,CL 

Input/output instructions 

Mnemonics 

IN 

OUT 

Argument Types 

IN accum,byte-immed 
(immed = port 0-255) 
IN accum,DX 
OUT immed,accum 
OUT DX,accum 

Page C-B 



Increment/decrement instructions 

Mnemonics 

INC 
DEC 

Argument Types 

OP word-reg 
OP r/m 

Arith. multiply/division/negate/not 

Mnemonics 

DIV 
!DIV 
MUL 
IMUL 
NEG 
NOT 

Argument Type 

OP r/m (implies AX OP 
r/m, except NEG) 

(NEG implies AX OP NOP) 

Interrupt instruction 

Mnemonic 

INT 

Argument Types 

INT 3 (value 3 is 
one-byte instruction) 
INT byte-immed 

Exchange instruction 

Mnemonic 

XCHG 

Argument Types 

XCHG accum, reg 
XCHG reg,accum 
XCHG reg,r/m 
XCHG r/m,reg 

Page C-9 



Miscellaneous instructions 

Mnemonics 

XLAT 

Argument Types 

XLAT byte-mem (only checks argument, 
not in opcode) 

ESC ESC 6-bit-number,r/m 

String primitives 

Page C-10 

These instructions have 
operand(s), if they are 
overrid~ is involved. 

bits 
byte 

to 
oi; 

record only their 
word, and if a segment 

Mnemonic$: 

CMPS 

LODS 

MOVS 

SCAS 

STOS 

Argument Types 

CMPS byte-word,byte-word 
(CMPS right operand is ES) 
LODS byte/word,byte/word 
(LODS one argument = no ES) 

MOVS byte/word,byte/word 
(MOVS left operand is ES) 
SCAS byte/word,byte/word 
(SCAS one argument = ES) 
STOS byte/word,byte/word 
(STOS one argument = ES) 

Repeat prefix to string instructions 

Mnemonics 

LOCK 
REP 
REPE 
REPZ 
REP NE 
REPN'.": 

C.4 8087 INSTRUCTION MNEMONICS BY ARGUMENT TYPE 

No OEerands 

F2XM1 FABS FCHS FCLEX FCOMPP FDECSTP 
FD I SI FENI FINCSTP FIN IT FLDl FLD2E 
FLD2T FLDLG2 FLDLN2 FLDPI FLDZ FNCLEX 
FNDISI FNENI FNINIT FNOP FPATAN FPREM 
FPTAN FRNDINT FSCALE FSQRT FTST FXAM 
FXTRACT FYL2X FYL2XP1 FWAIT 



2-Argument Floating Arithmatic 

Mnemonics 

FADD 
FDIV 
FDIVR 
FMUL 
FSUB 
FSUBR 

Argument Types 

Blank 
mem 4,8 bytes 
ST ,ST (i) 
ST (i) ,ST 

Stack only floatil!9_ point arithmatic 

Mnemonics 

FAD DP 
FD I VP 
FDIVRP 
FMULP 
FSUBP 
FSUBRP 

Argument Types 

ST (i) 
ST 

Compare and store using stack 

Mnemonics Argument Types 

FCOM ST 
FCOMP ST (i) 
FST blank 

Stack 

Mnemonics Argument Types 

FFREE ST (i) 
FXCH blank 

Inte9er arithmatic 

Mnemonics 

FI ADD 
FI COM 
FI COMP 
FIDIV 
FIDIVR 
FIMUL 
FIST 
FI SUB 
FISUBR 

Argument Types 

mem 2, 4 bytes 

Page C-11 



Floating point load/store memory 

Mnemonics 

FU> 
FSTP 

Argument Types 

mem 4,8, or 10 bytes 

Integer load/store memory 

Mnemonics 

FILO 
FISTP , 

Argument Types 

mem 2,4, or 8 bytes 

Loa.d/store control or status 

Mnemonics 

FLDCW 
FNSTCW 
FNSTSW 
FSTCW 
FSTSW 

Argument Types 

mem 2 bytes 

Save/Restore 8087 environment 

Mnemonics 

FLDENV 
FNSTENV 
FSTENV 

Argument Types 

mem 14 bytes 

94-byte memory (8087 Sa~e/Restore entire state) 

Mnemonics 

FNSAVE 
FRSTOR 
FSAVE 

BCD load/store 

Mnemonics 

FBLD 
FBSTP 

Argument Types 

mem 94 bytes 

Argument Types 

mem 10. bytes 

Page C-12 



% 
%OUT 

INDEX 

4-53 
4-56 
4-60 

& 4-53 
.CREF 4-63 
.LALL 4-62 
.LFCOND 4-62 
.LI5T 4-61 
.RADIX 4-26 
.SALL 4-62 
.SFCOND 4-62 
.TFCOND 4-62 
.TYPE 3-26 
.XALL 4-62 
.XCREF 4-63 
.XL I ST 4-61 
/D (assembler switch) 5-9 7-9 
/0 (assembler switch) 5-9 
/X (assembler switch) 5-9 
8087 support . . . • • 6-1 
: (co1lon - segment override operator) ... 3-19 
; (command character) . . . 5-4 
; ; (macro operator) . • • 4-55 
<record-f ieldname 

(shift count) 3-30 
= (equal sign directive) 4-12 

Action • . • . • . 
Arithmetic operators 
Assembler errors 

1-10, 4-1 
3-33 
7-2 

Calling a Macro 4-44 
Colon (: - segment override operator) 3-19 
Command Characters 

CONTROL-C 
Command Characters 
Command Prompts • 

Cross-reference 
Object filename 
Source filename 
Source listing 
Summary of 

COMMENT 
Comments 
CONTROL-C (command character) 

Data items 

5-4 
5-4 
5-4 

5-2 
5-2 
5-2 
5-2 

5-2 
4-6 
1-9 
5-4 

3-9 



DB - Define Byte • • • 
DD - Define Doubleword 
DD - Define Doubleword 
Direct memory operands 
Directives 

%OUT 
.CREF 
.LALL 
.LFCOND 
.LIST 
.RADIX 
.SALL 
.SFCOND 
.TFCOND 
.XALL 
.XCREF 
.XLIST 
= (equal sign) 
COMMENT 
Conditional 
DB - Define Byte 
DD - Define Doubleword 
DQ - Define Quadword 
DT - Define Tenbytes 
DW - Define Word 
ELSE 
END 
ENDC 
END IF 
ENDM 
ENDP 
EQU 
EVEN 
EX I TM 
EXT RN 
GROUP 
IF 
I Fl 
IF2 
IFB 
IFDEF 
IFDIF 
IFE 
IFIDN 
IFNB 
IFNDEF 
,INCLUDE 
IRP 
IRPC 
LABEL 
Listing 
LOCAL 
MACRO 
Memory 

4-7 to 4-8 
4-9 
4-7 
3-13 

4-60 
4-63 
4-62 
4-62 
4-61 
4-26 
4-62 
4-62 
4-62 
4-62 
4-63 
4-61 
4-12 
4-6 
4-37 
4-7 to 4-8 
4-9 
4-9 
4-7, 4-9 
4-8 
4-40 
4-10. 
4-40 
4-40 
4-45 
4-23 
4-11 
4-13 
4-46 
4-14 
4-16 
4-38 
4-38 
4-38 
4-39 
4-38 
4-40 
4-38 
4-40 
4-39 
4-38 
4-18 
4-51 
4-52 
4-19 
4-57 
4-47 
4-42 
4-5 



NAME 
PAGE 
PROC 
PUBLIC 
PURGE 
RECORD 
REPT 
SEGMENT 
STRUCTURE 
SUB TTL 
TITLE 

Directives 
OD - Define Doubleword 
DQ - Define Quadword 
DW - Define Word 

Directives 
DQ - Define 
DQ - Define 
DT - Define 
DW - Define 

Quadword 
Quadword 
Tenbytes 
Word 

DW - Define word 

ELSE 
END 
ENDC 
ENDIF 
ENDM 
ENDP 
ENDS 
EQU 
Equal sign directive (=) 
Error messages 

numerical list 
EVEN 
EXITM 
Expression evaluation 
Expressions 
EXT RN 

Formats 

4-21 
4-57 
4-23 
4-25 
4-48 
4-27 
4-50 
4-30 
4-34 
4-59 
4-21, 4-58 

4-7 
4-7 
4-7 
4-1, 4-3 
4-9 
4-7 
4-7, 4-9 
4-8 
4-7 

4-40 
4-10 
4-40 
4-40 
4-45 
4-23 
4-34 
4-11 
4-12 

7-15 
4-13 
4-46 
3-36 
1-11, ,;3-1 
4-14 

program listing . . • • . . 5-10 
symbol table . • . . " • 5-17 

Formats of listings and symbol tables 5-10 

General Facts about Source Files 1-1 
GROUP 4-16 

HIGH 

I/O Handler errors 
IF 
I Fl 
IF2 
IFB 

3-22 

7-13 
4-38 
4-38 
4-38 
4-39 



IFDEF 4-38 
IFDIF 4-40 
!FE 4-38 
IFIDN 4-40 
IFNB 4-39 
IFNDEF 4-38 
Immediate operands • 3-9 
INCLUDE • • • • 4-18 
Indexed memory operands 3-14 
Instructions • • • • • • 4-1 to 4-2 
Instructions by argument type (Appendices) C-6 
Instructions, alphabetical (Appendices) C-1 
!RP . 4-51 
IRPC 4-52 

LABEL 
Labels • 
Legal characters 
LENGTH •••• 
LOCAL • • • • • 
Logical operators 
LOW 

MACRO 
MASK . . . . 
Memory directives 
Memory operands 
Memory organization 

NAME 
Names 

4-19 
2-2 
1-3 
3-27 
4-47 
3-35 

• 3-22 

4-42 
3-'-32 
4-5 

• 3-13 
3-2 

4-21 
1-7 
2-1 Names • • • • • 

Numeric notation • 1-4, 3-9 

OFFSET 
Offset attribute 
Operand summary 
Operands 
Operator summary 
Operators • • • • 
ORG • • • • • 
Override operators 
Overviews 

MACR0-86 operation 

PAGE 
Pass 1 listing versus pass-2 
Pointer (PTR) • • • • • 
Precedence of operators 
PROC • • • • • • • • 
Program listing format • 
PTR 
PUBLIC • 
PURGE 

• 3-24 
2-3 
1-13 
3-f; 
1-13 

• 3-17 
4-22 

• 3-18 

8 

4-57 
listing 
• 3-18 
• 3-36 

4-23 
5-10 
3-18 
4-25 
4-48 

5-16 



RECORD 
Register operands 
Relational operators 
REPT •.•• 
Runtime errors 

SEG •••• 
SEGMENT 
~egment attribute 

4-27 
3-10 
3-34 
4-50 
7-14 

Segment override operator (:) 
Shift count 

3-23 
<t-30 
2-3 
3-19 
3-30 
3-20 
3-28 
1-5 
1-1 

SHORT 
SIZE 
Source file contents 
Source file naming 
Special Macro Operators 

% 
& 
; ; 

Special Macro Operators 
Statement Format 

Action 
Comments 
Directives • 
Expressions 
Instructions 
Names 

Statement line format 
STRUCTURE 
Structure operands • 
SUBTTL 
Summary 

4-53 
• 4-56 
• 4-53 

4-53 
• 4-53 

1-10 
1-9 

• 1-6' 
1-11 

• 1-6 
1-7 

• 1-6 
4-34 
3-15 

• • 4-59 

Operands 
Operators 

Summary of listing 
Summary of methods 
Switches 

• 1-13 
1-13 

symbols • • 5-12 
to invoke MACRO 

MACR0-86 
Summary of . 5-9 

MACR0-86 
/D . 5-9, 
/0 . 5-9 
/X . 5-9 

Switches 5-7 
Symbol table format . 5-17 
Symbols 2-7 

THIS . 3-21 
TITLE . 4-21, 
TYPE . . . 3-25 
Type attribute . 2-4, 

Value returning operators . 3-23 

5-1 

7-9 

4-58 

2-6 



Variables 

WIDTH ·• 
2-5 

3-31 



MICR~ :::SQFTM 
10700 Northup Way, Bellevue, WA 98004 

Software 
Problem Report 

Name _______________________ _ 

Street ________________________ _ 

City ___________ State _____ Zip ____ _ 

Phone _____________ ~ Date ______ _ 

Instructions 

Use this form to report software bugs, documentation errors, or suggested 
enhancements. Mail the form to Microsoft. 

Category 

__ Software Problem 

__ Software Enhancement 

Software Description 

__ Documentation Problem 
(Document # _____ . 

__ Other 

Microsoft Product ___________________ _ 

Rev. _____ Registration# ____________ _ 

Operating System ___________________ _ 

Rev. _____ Supplier ______________ _ 

Other Software Used __________________ _ 

Rev. _____ Supplier ______________ _ 

Hardware Description 

Manufacturer~------ CPU_~--- Memory ___ KB 

Disk Size ___ " Density: Sides: 

Single__ Single __ 

Double__ Double __ 



Problem Description 

Describe the problem. (Also describe how to reproduce it, and your 
diagnosis and suggested correction.) Attach a listing if available. 

Part no.: SPROO 




