Vo ree
of the me
Microsoft + 5.0
Progra : nce Set

Complete documentation for
Microsoft Visual C++ version 5.0

soft’

|sual C++

Run-Time Library Reference

Microsoft Press

jostream Class
Library Reference

soft

MVQ isual C++

Run-Time Library Reference

Microsoft Press

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 1997 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Corporation.
Microsoft Visual C++ Run-Time Library Reference / Microsoft
Corporation
p. cm.
Includes index.
ISBN 1-57231-520-2
1. C++ (Computer program language) 2. Microsoft Visual C++.
1. Title.
QA76.73.C153M498 1997
005.26'8--dc21 97-2405
CIP

Printed and bound in the United States of America.
123456789 QMQM 210987

Distributed to the book trade in Canada by Macmillan of Canada, a division of Canada Publishing
Corporation.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
information about international editions, contact your local Microsoft Corporation office. Or contact
Microsoft Press International directly at fax (206) 936-7329,

Macintosh and Power Macintosh are registered trademarks of Apple Corporation, Inc. Intel is a
registered trademark of Intel Corporation. Microsoft, Microsoft Press, MS, MS-DOS, Visual C++,
Win 32, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.
Other product and company names mentioned herein may be the trademarks of their respective
owners.

Acquisitions Editor: Eric Stroo
Project Editor: Maureen Williams Zimmerman

Contents

Introduction v
About This Book v

Chapter 1 iostream Programming 1
What a Stream Is 1
Input/Output Alternatives 1
The iostream Class Hierarchy 2
Output Streams 2
Constructing Output Stream Objects 3
Using Insertion Operators and Controlling Format 4
Output File Stream Member Functions 7
The Effects of Buffering 10
Binary Output Files 10
Overloading the << Operator for Your Own Classes 11
Writing Your Own Manipulators Without Arguments 12
Input Streams 13
Constructing Input Stream Objects 13
Using Extraction Operators 14
Testing for Extraction Errors 14
Input Stream Manipulators 15
Input Stream Member Functions 15
Overloading the >> Operator for Your Own Classes 18
Input/Output Streams 18
Custom Manipulators with Arguments 19
Output Stream Manipulators with One Argument (int or long) 19
Other One-Argument Output Stream Manipulators 20
Output Stream Manipulators with More Than One Argument 21
Custom Manipulators for Input and Input/Output Streams 22
Using Manipulators with Derived Stream Classes 22
Deriving Your Own Stream Classes 22
The streambuf Class 23
Why Derive a Custom streambuf Class? 23
A streambuf Derivation Example 23

Chapter 2 Alphabetic Microsoft iostream Class Library Reference 29
iostream Class Hierarchy Diagram 29
iostream Class List 30

index 113

Introduction

Microsoft Visual C++e contains the C++ iostream class library, which supports
object-oriented input and output. This library follows the syntax that the authors of
the C++ language originally established and thus represents a de facto standard for
C++ input and output.

About This Book

Chapter 1, iostream Programming, provides information you need to get started

using iostream classes. After reading this material, you will begin to understand how
to write programs that process formatted text character streams and binary disk files
and how to customize the library in limited ways. The chapter includes advanced
information on how to derive iostream classes and create custom multiparameter
“manipulators.” These topics will get you started on extending the library and doing
specialized formatting. You will also learn about the relationship between the iostream
classes and their subsidiary buffer classes. You can then apply some of the iostream
library design principles to your own class libraries.

Chapter 2, Alphabetic Microsoft iostream Class Library Reference, begins with

a detailed class hierarchy diagram. The iostream class library reference follows,
arranged by classes in alphabetic order. Each class description includes a summary
of each member, arranged by category, followed by alphabetical listings of member
functions (public and protected), overloaded operators, data members, and
manipulators.

Public and protected class members are documented only when they are normally
used in application programs or derived classes. See the class header files for a
complete listing of class members.

CHAPTER 1

iostream Programming

This chapter begins with a general description of the iostream classes and then
describes output streams, input streams, and input/output streams. The end of the
chapter provides information about advanced iostream programming.

What a Stream Is

Like C, C++ does not have built-in input/output capability. All C++ compilers,
however, come bundled with a systematic, object-oriented I/O package, known as the
iostream classes. The “stream” is the central concept of the iostream classes. You can
think of a stream object as a “smart file” that acts as a source and destination for bytes.
A stream’s characteristics are determined by its class and by customized insertion and
extraction operators.

Through device drivers, the disk operating system deals with the keyboard, screen,
printer, and communication ports as extended files. The iostream classes interact with
these extended files. Built-in classes support reading from and writing to memory with
syntax identical to that for disk I/O, which makes it easy to derive stream classes.

Input/Output Alternatives

This product provides several options for I/O programming;:

¢ C run-time library direct, unbuffered I/O

e ANSI C run-time library stream I/O

¢ Console and port direct I/O

¢ The Microsoft Foundation Class Library

e The Microsoft iostream Class Library

The iostream classes are useful for buffered, formatted text I/O. They are also useful
for unbuffered or binary I/O if you need a C++ programming interface and decide not

to use the Microsoft Foundation classes. The iostream classes are an object-oriented
I/0 alternative to the C run-time functions.

iostream Class Library Reference

You can use iostream classes with the Microsofte Windows® operating system. String
and file streams work without restrictions, but the character-mode stream objects cin,
cout, cerr, and clog arc inconsistent with the Windows graphical user interface. You
can also derive custom stream classes that interact directly with the Windows
environment. If you link with the QuickWin library, however, the cin, cout, cerr, and
clog objects are assigned to special windows because they are connected to the
predefined files stdin, stdout, and stderr.

You cannot use iostream classes in tiny-model programs because tiny-model programs
cannot contain static objects such as cin and cout.

The 10stream Class Hierarchy

The class hierarchy diagram at the beginning of Chapter 2 shows some relationships
between iostream classes. There are additional “member” relationships between the
ios and streambuf families. Use the diagram to locate base classes that provide
inherited member functions for derived classes.

Output Streams

An output stream object is a destination for bytes. The three most important output
stream classes are ostream, ofstream, and ostrstream.

The ostream class, through the derived class ostream_withassign, supports the
predefined stream objects:

e cout standard output
e cerr standard error with limited buffering

e clog similar to cerr but with full buffering

Objects are rarely constructed from ostream or ostream_withassign; predefined
objects are generally used. In some cases, you can reassign predefined objects after
program startup. The ostream class, which can be configured for buffered or
unbuffered operation, is best suited to sequential text-mode output. All functionality
of the base class, ios, is included in ostream. If you construct an object of class
ostream, you must specify a streambuf object to the constructor.

The ofstream class supports disk file output. If you need an output-only disk,
construct an object of class ofstream. You can specify whether ofstream objects
accept binary or text-mode data before or after opening the file. Many formatting
options and member functions apply to ofstream objects, and all functionality of
the base classes ios and ostream is included.

If you specify a filename in the constructor, that file is automatically opened when
the object is constructed. Otherwise, you can use the open member function after
invoking the default constructor, or you can construct an ofstream object based on
an open file that is identified by a file descriptor.

Chapter 1 iostream Programming

Like the run-time function sprintf, the ostrstream class supports output to in-memory
strings. To create a string in memory using I/O stream formatting, construct an object
of class ostrstream. Because ostrstream objects are write-only, your program must
access the resulting string through a pointer to char.

Constructing Output Stream Objects

If you use only the predefined cout, cerr, or clog objects, you don’t need to construct
an output stream. You must use constructors for:

e File streams

e String streams

Output File Stream Constructors
You can construct an output file stream in one of three ways:

e Use the default constructor, then call the open member function.

ofstream myFile; // Static or on the stack
myFile.open("filename", iosmode);

ofstream* pmyFile = new ofstream; // On the heap
pmyFile->open("filename", iosmode);

¢ Specify a filename and mode flags in the constructor call.
ofstream myFile("filename", iosmode);

o Specify an integer file descriptor for a file already open for output. You can specify
unbuffered output or a pointer to your own buffer.
int fd = _open("filename", dosmode);
ofstream myFilel(fd); // Buffered mode (default)

ofstream myFile2(fd, NULL, @); // Unbuffered mode ofstream
myFile3(fd, pch, buflen); // User-supplied buffer

Output String Stream Constructors

To construct an output string stream, you can use one of two ostrstream constructors.
One dynamically allocates its own storage, and the other requires the address and size
of a preallocated buffer.

e The dynamic constructor is used like this:

char* sp;

ostrstream myString;

mystring << "this is a test" << ends;

sp = myString.str(); // Get a pointer to the string

The ends “manipulator” adds the necessary terminating null character to the string.
o The constructor that requires the preallocated buffer is used like this:

char s[32];
ostrstream myString(s, sizeof(s));
myString << "this is a test" << ends; // Text stored in s

iostream Class Library Reference

Using Insertion Operators and Controlling Format

This section shows how to control format and how to create insertion operators for
your own classes. The insertion (<<) operator, which is preprogrammed for all
standard C++ data types, sends bytes to an output stream object. Insertion operators
work with predefined “manipulators,” which are elements that change the default
format of integer arguments.

Output Width

To align output, you specify the output width for each item by placing the setw
manipulator in the stream or by calling the width member function. This example
right aligns the values in a column at least 10 characters wide:

#include <iostream.h>

void main()

{
double values[] = { 1.23, 35.36, 653.7, 4358.24 };
for(int i = 0@; i < 4; i++)
{
cout.width(10);
cout << values[i] << '\n"';
}
}
The output looks like this:
1.23
35.36
653.7
4358.24

Leading blanks are added to any value fewer than 10 characters wide.

To pad a field, use the fill member function, which sets the value of the padding
character for fields that have a specified width. The default is a blank. To pad the
column of numbers with asterisks, modify the previous for loop as follows:

for(int i = 0; i < 4; i++)

{
cout.width(10);
cout.fill("*');
cout << values[i] << endl
}
The endl manipulator replaces the newline character (' \n"). The output looks like
this:
******1 . 23
*****35 . 3 6
*****653 .7
***4358.24

Chapter 1

To specify widths for data elements in the same line, use the setw manipulator:

f#Hinclude <iostream.h>
#include <iomanip.h>

void main()

{
double values{] = { 1.23, 35.36, 653.7, 4358.24 };
char *names[] = { "Zoot", "Jimmy", "A1", "Stan" };
for(int 1 = 0; i < 4; i++)
cout << setw(6) << names[i]
<< setw(10) << values[i] << endl;
}

The width member function is declared in IOSTREAM.H. If you use setw or any
other manipulator with arguments, you must include IOMANIP.H. In the output,
strings are printed in a field of width 6 and integers in a field of width 10:

Zoot 1.23
Jimmy 35.36
Al 653.7

Stan 4358.24

Neither setw nor width truncates values. If formatted output exceeds the width, the
entire value prints, subject to the stream’s precision setting. Both setw and width
affect the following field only. Field width reverts to its default behavior (the
necessary width) after one field has been printed. However, the other stream format
options remain in effect until changed.

Alignment
Output streams default to right-aligned text. To left align the names in the previous
example and right align the numbers, replace the for loop as follows:
for (int 1 =0; 1 < 4; i++)
cout << setiosflags(ios::left)
<< setw(6) << names[i]

<< resetiosflags(ios::left)
<< setw(10) << values[i] << endl;

The output looks like this:

Zoot 1.23
Jimmy 35.36
Al 653.7

Stan 4358.24

The left-align flag is set by using the setiosflags manipulator with the ios::left
enumerator. This enumerator is defined in the ios class, so its reference must include
the ios:: prefix. The resetiosflags manipulator turns off the left-align flag. Unlike
width and setw, the effect of setiosflags and resetiosflags is permanent.

iostream Programming

iostream Class Library Reference

Precision

The default value for floating-point precision is six. For example, the number
3466.9768 prints as 3466.98. To change the way this value prints, use the setprecision
manipulator. The manipulator has two flags, ios::fixed and ios::scientific. If
jos::fixed is set, the number prints as 3466.976800. If ios::scientific is set, it prints

as 3.4669773+003.

To display the floating-point numbers shown in Alignment with one significant digit,
replace the for loop as follows:

for (int i =0; i < 4; i++)

cout << setiosflags(ios::left)
<< setw(6) .
<< names[i]
<< resetiosflags(ios::left)
<< setw(10)
<< setprecision(1)
<< values[i]
<< endl;

The program prints this list:

Zoot 1

Jimmy 4e+001
Al 7e+002
Stan 4e+003

To eliminate scientific notation, insert this statement before the for loop:
cout << setiosflags(ios::fixed);

With fixed notation, the program prints with one digit after the decimal point.

Zoot 1.2
Jimmy 35.4
Al 653.7
Stan 4358.2

If you change the ios::fixed flag to ios::scientific, the program prints this:

Zoot 1.2e+000
Jimmy 3.5e+001
Al 6.5e+002
Stan 4.4e+003

Again, the program prints one digit after the decimal point. If either ios::fixed or
ios::scientific is set, the precision value determines the number of digits after the
decimal point. If neither flag is set, the precision value determines the total number
of significant digits. The resetiosflags manipulator clears these flags.

Chapter 1 iostream Programming

Radix

The dec, oct, and hex manipulators set the default radix for input and output. For
example, if you insert the hex manipulator into the output stream, the object correctly
translates the internal data representation of integers into a hexadecimal output format.
The numbers are displayed with digits a through f in lowercase if the ios::uppercase
flag is clear (the default); otherwise, they are displayed in uppercase. The default radix
is dec (decimal).

Output File Stream Member Functions

Output stream member functions have three types: those that are equivalent to
manipulators, those that perform unformatted write operations, and those that
otherwise modify the stream state and have no equivalent manipulator or insertion
operator. For sequential, formatted output, you might use only insertion operators and
manipulators. For random-access binary disk output, you use other member functions,
with or without insertion operators.

The open Function for Output Streams

To use an output file stream (ofstream), you must associate that stream with a specific
disk file in the constructor or the open function. If you use the open function, you can
reuse the same stream object with a series of files. In either case, the arguments
describing the file are the same.

When you open the file associated with an output stream, you generally specify an
open_mode flag. You can combine these flags, which are defined as enumerators in
the ios class, with the bitwise OR (1) operator.

Flag Function

ios::app Opens an output file for appending.

ios::ate Opens an existing file (either input or output) and seeks the end.

ios::in Opens an input file. Use ios::in as an open_mode for an ofstream file
to prevent truncating an existing file.

ios::out Opens an output file. When you use ios::out for an ofstream object
without ios::app, ios::ate, or ios::in, ios::trunc is implied.

ios::nocreate Opens a file only if it already exists; otherwise the operation fails.

ios::noreplace Opens a file only if it does not exist; otherwise the operation fails.

ios::trunc Opens a file and deletes the old file (if it already exists).

ios::binary Opens a file in binary mode (default is text mode).

Three common output stream situations involve mode options:

e Creating a file. If the file already exists, the old version is deleted.

ostream ofile("FILENAME"); // Default is ios::out
ofstream ofile("FILENAME"™, jos::out); // Equivalent to above

iostream Class Library Reference

e Appending records to an existing file or creating one if it does not exist.

ofstream ofile("FILENAME", ios::app):
e Opening two files, one at a time, on the same stream.
ofstream ofile();
ofile.open("FILE1", ios::in);
// Do some output
ofile.close(); // FILELl closed
ofile.open(“FILE2", ios::in);
// Do some more output
ofile.close(); // FILE2 closed
// When ofile goes out of scope it is destroyed.

The put Function

The put function writes one character to the output stream. The following two
statements are the same by default, but the second is affected by the stream’s format
arguments:

cout.put('A'); // Exactly one character written
cout << 'A'; // Format arguments 'width' and 'fil1' apply

The write Function

The write function writes a block of memory to an output file stream. The length
argument specifies the number of bytes written. This example creates an output file
stream and writes the binary value of the Date structure to it:

#include <fstream.h>

struct Date

{
int mo, da, yr;
I
void main()
{
Date dt = { 6, 10, 92 };
ofstream tfile("date.dat™ , ios::binary):
tfile.write((char *) &dt, sizeof dt);
}

The write function does not stop when it reaches a null character, so the complete
class structure is written. The function takes two arguments: a char pointer and a
count of characters to write. Note the required cast to char* before the address of
the structure object.

The seekp and tellp Functions

An output file stream keeps an internal pointer that points to the position where data
is to be written next. The seekp member function sets this pointer and thus provides
random-access disk file output. The tellp member function returns the file position.
For examples that use the input stream equivalants to seekp and tellp, see “The seekg
and tellg Functions” on page 17.

Chapter 1 jostream Programming

The close Function for Output Streams

The close member function closes the disk file associated with an output file stream.
The file must be closed to complete all disk output. If necessary, the ofstream
destructor closes the file for you, but you can use the close function if you need to
open another file for the same stream object.

The output stream destructor automatically closes a stream’s file only if the
constructor or the open member function opened the file. If you pass the constructor
a file descriptor for an already-open file or use the attach member function, you
must close the file explicitly.

Error Processing Functions
Use these member functions to test for errors while writing to a stream:

Function Return value
bad Returns TRUE if there is an unrecoverable error.
fail Returns TRUE if there is an unrecoverable error or an “expected” condition,

such as a conversion error, or if the file is not found. Processing can often
resume after a call to clear with a zero argument.

good Returns TRUE if there is no error condition (unrecoverable or otherwise)
and the end-of-file flag is not set.

eof Returns TRUE on the end-of-file condition.

clear Sets the internal error state. If called with the default arguments, it clears

all error bits.

rdstate Returns the current error state. For a complete description of error bits,
see the Microsoft Foundation Class Library Reference.

The ! operator is overloaded to perform the same function as the fail function. Thus
the expression

if(lcout)...
is equivalent to
if(cout.fail())...

The void*() operator is overloaded to be the opposite of the ! operator; thus the
expression

if(cout)...
is equal to
if(tcout.fail())...

The void*() operator is not equivalent to good because it doesn’t test for the end of file.

iostream Class Library Reference

The Effects of Buffering

The following example shows the effects of buffering. You might expect the program
to print ptease wait, wait 5 seconds, and then proceed. It won’t necessarily work
this way, however, because the output is buffered.

fHinclude <iostream.h>
#include <time.h>

void main()

{
time_t tm = time(NULL) + 5;
cout << "Please wait...";
while (time(NULL) < tm)
cout << "\nAl1l done" << endl;
}

To make the program work logically, the cout object must empty itself when the
message is to appear. To flush an ostream object, send it the flush manipulator:

cout << "Please wait..." << flush;

This step flushes the buffer, ensuring the message prints before the wait. You can also
use the endl manipulator, which flushes the buffer and outputs a carriage return/line
feed, or you can use the cin object. This object (with the cerr or clog objects) is
usually tied to the cout object. Thus, any use of cin (or of the cerr or clog objects)
flushes the cout object.

Binary Output Files

10

Streams were originally designed for text, so the default output mode is text. In text
mode, the newline character (hexadecimal 10) expands to a carriage return/line feed
(16-bit only). The expansion can cause problems, as shown here:

#include <fstream.h>
int iarray[2] = { 99, 10 };
void main()
{
ofstream os("test.dat");
os.write((char *) iarray, sizeof(iarray));
}

‘You might expect this program to output the byte sequence { 99, 0, 10, 0 }; instead, it
outputs { 99, 0, 13, 10, 0 }, which causes problems for a program expecting binary
input. If you need true binary output, in which characters are written untranslated, you
have several choices:

Chapter 1 iostream Programming

¢ Construct a stream as usual, then use the setmode member function, which changes
. . N
the mode after the file is opened:
ofstream ofs ("test.dat");

ofs.setmode(filebuf::binary);
ofs.write(char*iarray, 4); // Exactly 4 bytes written

e Specify binary output by using the ofstream constuctor mode argument:

ffinclude <fstream.h>
f#finclude <fcntl.h>
fHinclude <io.h>
int jarray[2] = { 99, 10 };
void main()
{
ofstream os("test.dat", ios::binary);
ofs.write(iarray, 4); // Exactly 4 bytes written
}

¢ Use the binary manipulator instead of the setmode member function:
ofs << binary;
Use the text manipulator to switch the stream to text translation mode.

¢ Open the file using the run-time _open function with a binary mode flag:

filedesc fd = _open("test.dat”,
_0_BINARY | _O_CREAT | _O_WRONLY);
ofstream ofs(fd);
ofs.write((char*) diarray, 4); // Exactly 4 bytes written

Overloading the << Operator for Your Own Classes

Output streams use the insertion (<<) operator for standard types. You can also
overload the << operator for your own classes.

The write function example showed the use of a Date structure. A date is an ideal
candidate for a C++ class in which the data members (month, day, and year) are
hidden from view. An output stream is the logical destination for displaying such a
structure. This code displays a date using the cout object:

Date dt(1, 2, 92);
cout << dt;

To get cout to accept a Date object after the insertion operator, overload the insertion
operator to recognize an ostream object on the left and a Date on the right. The
overloaded << operator function must then be declared as a friend of class Date so it
can access the private data within a Date object.

11

iostream Class Library Reference

#include <iostream.h>

class Date
{
int mo, da, yr;
public:
Date(int m, int d, int y)
{
mo = m; da = d; yr = y;
}
friend ostream& operator<< (ostreamd& os, Date& dt);
}:
ostream& operator<< (ostream& os, Date& dt)
{
0s << dt.mo << '/' <L dt.da << '/' KL dt.yr;
return os;
}
void main()
{
Date dt(5, 6, 92);
cout << dt;
}
When you run this program, it prints the date:
5/6/92

The overloaded operator returns a reference to the original ostream object, which
means you can combine insertions:

cout << "The date is" << dt << flush;

Writing Your Own Manipulators Without Arguments

12

Writing manipulators that don’t use arguments requires neither class derivation nor
use of complex macros. Suppose your printer requires the pair <ESC>[to enter bold
mode. You can insert this pair directly into the stream:

cout << "regular " << '\033' << '[' << "boldface" << endl;
Or you can define the bo1d manipulator, which inserts the characters:

ostream& bold(ostream& os) {
return os << "\033' <K '[';
}
cout << "regular " << bold << "boldface” << endl;

Chapter 1 iostream Programming

The globally defined bo1d function takes an ostream reference argument and returns
the ostream reference. It is not a member function or a friend because it doesn’t
need access to any private class elements. The bo1d function connects to the stream
because the stream’s << operator is overloaded to accept that type of function, using
a declaration that looks something like this:

ostream& ostream::operator<< (ostream& (*_f)(ostream&)); {
(*_f)(*this);
return *this;

}

You can use this feature to extend other overloaded operators. In this case, it is
incidental that bo1d inserts characters into the stream. The function is called when it
is inserted into the stream, not necessarily when the adjacent characters are printed.
Thus, printing could be delayed because of the stream’s buffering.

Input Streams

An input stream object is a source of bytes. The three most important input stream
classes are istream, ifstream, and istrstream.

The istream class is best used for sequential text-mode input. You can configure
objects of class istream for buffered or unbuffered operation. All functionality of the
base class, io0s, is included in istream. You will rarely construct objects from class
istream. Instead, you will generally use the predefined cin object, which is actually an
object of class istream_withassign. In some cases, you can assign cin to other stream
objects after program startup.

The ifstream class supports disk file input. If you need an input-only disk file,
construct an object of class ifstream. You can specify binary or text-mode data. If
you specify a filename in the constructor, the file is automatically opened when the
object is constructed. Otherwise, you can use the open function after invoking the
default constructor. Many formatting options and member functions apply to ifstream
objects. All functionality of the base classes ios and istream is included in ifstream.

Like the library function sscanf, the istrstream class supports input from in-memory
strings. To extract data from a character array that has a null terminator, allocate and
initialize the string, then construct an object of class istrstream.

Constructing Input Stream Objects

If you use only the cin object, you don’t need to construct an input stream. You must
construct an input stream if you use:

» File stream

e String stream

13

iostream Class Library Reference

Input File Stream Constructors
There are three ways to create an input file stream:

e Use the void-argument constructor, then call the open member function:

ifstream myFile; // On the stack
myFile.open("filename", iosmode);

ifstream* pmyFile = new ifstream; // On the heap
pmyFile->open("filename”, iosmode);
o Specify a filename and mode flags in the constructor invocation, thereby opening
the file during the construction process:

ifstream myFile("filename", iosmode);

o Specify an integer file descriptor for a file already open for input. In this case you
can specify unbuffered input or a pointer to your own buffer:
int fd = _open("filename", dosmode);
ifstream myFilel(fd); // Buffered mode (default)

ifstream myFile2(fd, NULL, @); // Unbuffered mode
ifstream myFile3(fd, pch, buflen); // User-supplied buffer

Input String Stream Constructors
Input string stream constructors require the address of preallocated, preinitialized
storage:

char s[1 = "123.45";

double amt;

istrstream myString(s):

myString >> amt; // Amt should contain 123.45

Using Extraction Operators

The extraction operator (>>), which is preprogrammed for all standard C++ data
types, is the easiest way to get bytes from an input stream object.

Formatted text input extraction operators depend on white space to separate incoming
data values. This is inconvenient when a text field contains multiple words or when
commas separate numbers. In such a case, one alternative is to use the unformatted
input member function getline to read a block of text with white space included, then
parse the block with special functions. Another method is to derive an input stream
class with a member function such as GetNextToken, which can call istream
members to extract and format character data.

Testing for Extraction Errors

Output error processing functions, discussed in “Error Processing Functions” on page 9,
apply to input streams. Testing for errors during extraction is important. Consider this
statement:

cin >> n;

14

Chapter 1 iostream Programming

If n is a signed integer, a value greater than 32,767 (the maximum allowed value,
or MAX_INT) sets the stream’s fail bit, and the cin object becomes unusable. All
subsequent extractions result in an immediate return with no value stored.

Input Stream Manipulators

Many manipulators, such as setprecision, are defined for the ios class and thus apply
to input streams. Few manipulators, however, actually affect input stream objects. Of
those that do, the most important are the radix manipulators, dec, oct, and hex, which
determine the conversion base used with numbers from the input stream.

On extraction, the hex manipulator enables processing of various input formats. For
example, ¢, C, Oxc, 0xC, 0Xc, and 0XC are all interpreted as the decimal integer 12.
Any character other than 0 through 9, A through F, a through f, x, and X terminates
the numeric conversion. Thus the sequence "124n5" is converted to the number 124
with the ios::fail bit set.

Input Stream Member Functions

Input stream member functions are used for disk input. The member functions
include:

e The open Function

e The get Function

o The getline Function

o The read Function

e The seekg and tellg Functions

e The close Function

The open Function for Input Streams
If you are using an input file stream (ifstream), you must associate that stream with a
specific disk file. You can do this in the constructor, or you can use the open function.
In either case, the arguments are the same.

You generally specify an open_mode flag when you open the file associated with an
input stream (the default mode is ios::in). For a list of the open_mode flags, see “The
open Function for Output Streams” on page 70. The flags can be combined with the
bitwise OR (1) operator.

To read a file, first use the fail member function to determine whether it exists:

istream ifile("FILENAME", ios::nocreate):
if (ifile.fail())
// The file does not exist ...

15

iostream Class Library Reference

16

The get Function

The unformatted get member function works like the >> operator with two exceptions.
First, the get function includes white-space characters, whereas the extractor excludes
white space when the ios::skipws flag is set (the default). Second, the get function is
less likely to cause a tied output stream (cout, for example) to be flushed.

A variation of the get function specifies a buffer address and the maximum number of
characters to read. This is useful for limiting the number of characters sent to a specific
variable, as this example shows:

f#finclude <iostream.h>

void main()

{
char 1ine[25];
cout << " Type a line terminated by carriage return\n>";
cin.get(line, 25);
cout << ' " K< Tline;
}

In this example, you can type up to 24 characters and a terminating character. Any
remaining characters can be extracted later.

The getline Function

The getline member function is similar to the get function. Both functions allow a
third argument that specifies the terminating character for input. The default value
is the newline character. Both functions reserve one character for the required
terminating character. However, get leaves the terminating character in the stream
and getline removes the terminating character.

The following example specifies a terminating character for the input stream:

#include <iostream.h>

void main()

{
char 1ine[100];
cout << " Type a line terminated by 't'" << endl;
cin.getline(line, 100, 't');
cout << line;
}

The read Function

The read member function reads bytes from a file to a specified area of memory. The
length argument determines the number of bytes read. If you do not include that
argument, reading stops when the physical end of file is reached or, in the case of a
text-mode file, when an embedded EOF character is read.

Chapter 1 iostream Programming

This example reads a binary record from a payroll file into a structure:

finclude <fstream.h>
#include <fcnti.h>
fHinclude <io.h>

void main()

{
struct
{
double salary;
char name[23];
} employee;
ifstream is("payroll", ios::binary | ios::nocreate);
if(is) { // ios::operator void*()
is.read((char *) &employee, sizeof(employee));
cout << employee.name << ' ' << employee.salary << endl;
}
else {
cout << "ERROR: Cannot open file 'payroll'." << endl;
1
}

The program assumes that the data records are formatted exactly as specified by the
structure with no terminating carriage return or line feed characters.

The seekg and tellg Functions
Input file streams keep an internal pointer to the position in the file where data is to be
read next. You set this pointer with the seekg function, as shown here:

ftinclude <fstream.h>

void main()

{
char ch;
ifstream tfile("payroll"™, ios::binary | ios::nocreate);
if(tfile) {
tfile.seekg(8); // Seek 8 bytes in (past salary)
while (tfile.good()) { // EOF or failure stops the reading
tfile.get(ch);
if(!ch) break; // quit on null
cout << ch;
}
}
else {
cout << "ERROR: Cannot open file 'payroll'.” << endl;
}
}

To use seekg to implement record-oriented data management systems, multiply the
fixed-length record size by the record number to obtain the byte position relative to
the end of the file, then use the get object to read the record.

17

iostream Class Library Reference

The tellg member function returns the current file position for reading. This value is
of type streampos, a typedef defined in IOSTREAM.H. The following example reads
a file and displays messages showing the positions of spaces.

ffinclude <fstream.h>

void main()
{
char ch;
ifstream tfile("payroll™, ios::binary | ios::nocreate);
if(tfile) {
while (tfile.good()) {
streampos here = tfile.tellg();
tfile.get(ch);
if (ch=="")
cout << "\nPosition "™ << here << " is a space";

}
}
else {

cout << "ERROR: Cannot open file 'payroll’'.” << endl;
}

}

The close Function for Input Streams

The close member function closes the disk file associated with an input file stream and
frees the operating system file handle. The ifstream destructor closes the file for you
(unless you called the attach function or passed your own file descriptor to the
constructor), but you can use the close function if you need to open another file for the
same stream object.

Overloading the >> Operator for Your Own Classes

Input streams use the extraction (>>) operator for the standard types. You can write
similar extraction operators for your own types; your success depends on using white
space precisely.

Here is an example of an extraction operator for the Date class presented earlier:

istream& operator>> (istream& is, Date& dt)
{

is >> dt.mo >> dt.da >> dt.yr;

return is;

}

Input/Output Streams

An iostream object is a source and/or a destination for bytes. The two most important
I/O stream classes, both derived from iostream, are fstream and strstream. These
classes inherit the functionality of the istream and ostream classes described previously.

18

Chapter 1 iostream Programming

The fstream class supports disk file input and output. If you need to read from and
write to a particular disk file in the same program, construct an fstream object. An
fstream object is a single stream with two logical substreams, one for input and one
for output. Although the underlying buffer contains separately designated positions
for reading and writing, those positions are tied together.

The strstream class supports input and output of in-memory strings.

Custom Manipulators with Arguments

This section describes how to create output stream manipulators with one or more
arguments, and how to use manipulators for non-output streams.

¢ Output Stream Manipulators with One Argument (int or long)
e Other One-Argument Output Stream Manipulators

e Qutput Stream Manipulators with More Than One Argument
e Custom Manipulators for Input and Input/Output Streams

e Using Manipulators with Derived Stream Classes

Output Stream Manipulators with One Argument
(int or long)

The iostream class library provides a set of macros for creating parameterized
manipulators. Manipulators with a single int or long argument are a special case. To create
an output stream manipulator that accepts a single int or long argument (like setw), you
must use the OMANIP macro, which is defined in IOMANIP.H. This example defines a
fi11b1ank manipulator that inserts a specified number of blanks into the stream:

#include <iostream.h>
#include <iomanip.h>

ostream& fb(ostream& os, int 1)

{

for(int i=0; i < 1; i++)

0s <K " ';

return os;
}
OMANIP(int) fillblank(int 1)
{

return OMANIP(int) (fb, 1);
}
void main()
{

cout << "1@ blanks follow™ << fillblank(10) << ".\n";
}

19

iostream Class Library Reference

The IOMANIP.H header file contains a macro that expands OMANIP(int) into a
class, __ OMANIP._int, which includes a constructor and an overloaded ostream
insertion operator for an object of the class. In the previous example, the fi11blank
function calls the __OMANIP_int constructor to return an object of class
__OMANIP_int. Thus, fi11blank can be used with an ostream insertion operator.
The constructor calls the fb function. The expression OMANIP(long) expands to
another built-in class, __ OMANIP_long, which accommodates functions with a long
integer argument.

Other One-Argument Output Stream Manipulators

To create manipulators that take arguments other than int and long, you must use the
IOMANIPdeclare macro, which declares the classes for your new type, as well as the
OMANIP macro.

The following example uses a class money, which is a long type. The setpic
manipulator attaches a formatting “picture” string to the class that can be used by the
overloaded stream insertion operator of the class money. The picture string is stored as
a static variable in the money class rather than as data member of a stream class, so
you do not have to derive a new output stream class.

#include <iostream.h>
#include <iomanip.h>
jfinclude <string.h>

typedef char* charp;
IOMANIPdeclare(charp);

class money {
private:
long value;
static char *szCurrentPic;
public:
money(long val) { value = val; }
friend ostream& operator << (ostream& os, money m) {
// A more complete function would merge the picture
// with the value rather than simply appending it
0s << m.value << '[' << money::szCurrentPic << ']";
return os;
1
friend ostream& setpic(ostream& os, char* szPic) {
money::szCurrentPic = new char[strlen(szPic) + 1];
strcpy(money::szCurrentPic, szPic);
return os;
}
};
char *money::szCurrentPic; // Static pointer to picture

20

Chapter 1 iostream Programming

OMANIP(charp) setpic(charp ¢)
{

return OMANIP(charp) (setpic, c);
}

void main()
{

money amt = 35235.22;

cout << setiosflags(jos::fixed);

cout << setpic("iHHE,JHHE HHE.4HE") << "amount = " << amt << endl;
1

Output Stream Manipulators with More Than One
Argument

The following example shows how to write a manipulator, fi11, to insert a specific
number of a particular character. The manipulator, which takes two arguments, is
similar to setp1ic in the previous example. The difference is that the character pointer
type declaration is replaced by a structure declaration.

#include <iostream.h>
#include <iomanip.h>

struct fillpair {
char ch;
int cch;
1

IOMANIPdeclare(fillpair);

ostream& fp(ostream& os, fillpair pair)
{
for (int ¢ = 0@; ¢ < pair.cch; c++) {
os << pair.ch;
}
return os;

}

OMANIP(fillpair) fil1(char ch, int cch)
{
fillpair pair;

pair.cch = cch;
pair.ch = ch;
return OMANIP (fillpair)(fp, pair);

}
void main()
{
cout << "10@ dots coming”™ << fill1('.', 10) << "done" << endl;
}

21

iostream Class Library Reference

This example can be rewritten so that the manipulator definition is in a separate
program file. In this case, the header file must contain these declarations:

struct fillpair {
char ch;
int cch;

};

IOMANIPdectare(fillpair);

ostream& fp(ostream& o, fillpair pair);

OMANIP(fillpair) fi11(char ch, int cch);

Custom Manipulators for Input and Input/Output

Streams

The OMANIP macro works with ostream and its derived classes. The SMANIP,
IMANIP, and IOMANIP macros work with the classes ios, istream, and iostream,
respectively.

Using Manipulators with Derived Stream Classes

Suppose you define a manipulator, xstream, that works with the ostream class. The
manipulator will work with all classes derived from estream. Further suppose you
need manipulators that work only with xstream. In this case, you must add an
overloaded insertion operator that is not a member of ostream:

xstream& operator<< (xstream& xs, xstream& (*_f)(xstream&)) {
(*_f)(xs);
return xs;

}

The manipulator code looks like this:

xstream& bold(xstream& xs) {
return xs << '"\033' << '[';
}

If the manipulator needs to access xstream protected data member functions, you can
declare the bo1d function as a friend of the xstream class.

Deriving Your Own Stream Classes

Like any C++ class, a stream class can be derived to add new member functions, data
members, or manipulators. If you need an input file stream that tokenizes its input
data, for example, you can derive from the ifstream class. This derived class can
include a member function that returns the next token by calling its base class’s public
member functions or extractors. You may need new data members to hold the stream
object’s state between operations, but you probably won’t need to use the base class’s
protected member functions or data members.

22

Chapter 1 iostream Programming

For the straightforward stream class derivation, you need only write the necessary
constructors and the new member functions.

The streambuf Class

Unless you plan to make major changes to the iostream library, you do not need to
work much with the streambuf class, which does most of the work for the other
stream classes. In most cases, you will create a modified output stream by deriving
only a new streambuf class and connecting it to the ostream class.

Why Derive a Custom streambuf Class?

Existing output streams communicate to the file system and to in-memory strings. You
can create streams that address a memory-mapped video screen, a window as defined
by Microsoft Windows, a new physical device, and so on. A simpler method is to alter
the byte stream as it goes to a file system device.

A streambuf Derivation Example

The following example modifies the cout object to print in two-column landscape
(horizontal) mode on a printer that uses the PCL control language (for example,
Hewlett-Packard LaserJet printer). As the test driver program shows, all member
functions and manipulators that work with the original cout object work with the
special version. The application programming interface is the same.

The example is divided into three source files:

¢ HSTREAM.H—the LaserJet class declaration that must be included in the
implementation file and application file

e HSTREAM.CPP—the LaserJet class implementation that must be linked with the
application

e EXIOS204.CPP—the test driver program that sends output to a LaserJet printer

HSTREAM.H contains only the class declaration for hstreambuf, which is derived
from the filebuf class and overrides the appropriate filebuf virtual functions.

// hstream.h - HP LaserJet output stream header
f#include <fstream.h> // Accesses filebuf class
#include <string.h>

ffinclude <stdio.h> // for sprintf

class hstreambuf : public filebuf
{ 4
public:

hstreambuf(int filed);
virtual int sync();

virtual int overflow(int ch);
~hstreambuf();

23

iostream Class Library Reference

24

private:
int column, Tine, page;
char* buffer;

void convert(long cnt);
void newline(char*& pd, int& jj);
void heading(char*& pd, int& jj);

void pstring(char* ph, char*& pd, int& jj);

1

ostream& und(ostream& os);
ostream& reg(ostream& os);

HSTREAM.CPP contains the hstreambuf class implementation.

// hstream.cpp
ftinclude "hstream.h"

const
const
const
const
const
const
const
const

int
int
int
int
int
int
int
int

// Prolog
char prolog[] =

{ 0x1B,
0x1B,
0x1B,
0x18B,
0x18B,

REG =
UND =
R =
NL -
FF =
TAB -
LPP
TABW

I

0x01;
0x02;
0x0d;
0x0a;
0x0c;
0x09;
57
5;

/7
/1
/7
/7
/1
/7
1/
/1

- HP LaserJdet output stream

Regular font code
Underline font code
Carriage return character
Newline character
Formfeed character

Tab character

Lines per page

Tab width

defines printer initialization (font, orientation, etc.

0x45,
0x28,

0x31, ©0x30, 0x55,
0x26, Ox6C, 0x31, Ox4F,
0x26, 0x6C, 0x38, 0x44,
0x26, Ox6B, 0x32, 0x53};

// Reset printer
// 1IBM PC char set
// Landscape
// 8 lines per inch
// Lineprinter font

// Epilog prints the final page and terminates the output
char epilog[] = { 0x0C, 0x1B, 0x45 };

// Formfeed, reset

char uon[]l = { ©0x1B, @0x26, 0x64, 0x44, @ }; // Underline on
char uoff[] = { 0x1B, 0x26, 0x64, 0x40, 0 };// Underline off

hstreambuf::hstreambuf(int filed) :

{

column = line = page = 0;

int size = sizeof(prolog);
setp(prolog, prolog + size);
// Puts the prolog in the put area
filebuf::sync(); // Sends the prolog to the output file
= new char[1024]; // Allocates destination buffer

pbump(size);

buffer

filebuf(filed)

Chapter 1

hstreambuf::~hstreambuf()
{

sync(): // Makes sure the current buffer is empty
delete buffer; // Frees the memory
int size = sizeof(epilog);
setp(epilog, epilog + size);
pbump(size); // Puts the epilog in the put area
filebuf::sync(); // Sends the epilog to the output file
}
int hstreambuf::sync()
{
long count = out_waiting();
if (count) {
convert(count);
}
return filebuf::sync();
}

int hstreambuf::overflow(int ch)
{
long count = out_waiting();
if (count) {
convert(count);
}
return filebuf::overflow(ch);
}
// The following code is specific to the HP Laserdet printer

// Converts a buffer to HP, then writes it

void hstreambuf::convert(long cnt)

{
char *bufs, *bufd; // Source, destination pointers
int j = 0;

bufs = pbase();
bufd = buffer;
if(page == 0) {
newline(bufd, j);
}
for(int i = @; i < cnt; i++) {
char ¢ = *(bufs++); // Gets character from source buffer

if(c> "' ") { // Character is printable
* (bufd++) = c;
J+;
column++;

}

iostream Programming

25

iostream Class Library Reference

26

else if(¢ == NL) { // Moves down one Tline
*(bufd++) = c; // Passes character through
J++;
Tinet+;

newline(bufd, j); // Checks for page break, etc.
}
else if(¢ == FF) { // Ejects paper on formfeed
line = line - Tine % LPP + LPP;
newline(bufd, j); // Checks for page break, etc.

}
else if(¢ == TAB) { // Expands tabs
do {
*(bufd++) = ' ';
Jt++s
column++;
} while (column % TABW);
}

else if(¢ == UND) { // Responds to und manipulator
pstring(uon, bufd, j);

else if(¢ == REG) { // Responds to reg manipulator
pstring(uoff, bufd, j);

}
setp(buffer, buffer + 1024); // Sets new put area
pbump(j); // Tells number of characters in the dest buffer

// simple manipulators - apply to all ostream classes
ostream& und(ostream& os) // Turns on underscore mode
{

os << (char) UND; return os;
}

ostream& reg(ostream& os) // Turns off underscore mode
{

0s << (char) REG; return os;
}

void hstreambuf::newline(char*& pd, int& jj) {
// Called for each newline character

column = 0;

if ((Tine % (LPP*2)) == 0) { // Even page

page++;
pstring("\033&a+0L", pd, jj); // Set left margin to zero
heading(pd, jj): // Print heading

pstring("\@33*p@x77Y", pd, jj);// Cursor to (0,77) dots

if (((line % LPP) == 0) && (line % (LPP*2)) 1= 0) {
// 0dd page; prepare to move to right column
page++;
pstring("\@33*p@x77Y", pd, jj); // Cursor to (0,77) dots
pstring("\@033&a+88L", pd, jj): // Left margin to col 88

Chapter 1

void hstreambuf::heading(char*& pd, int& jj) // Prints heading

{

}

char hdg[20];
int i;

if(page > 1) {
*(pd+t) = FF;

Jitts
}
pstring("\033*p0x@Y", pd, jj): // Top of page
pstring(uon, pd, jj); // Underline on

sprintf(hdg, "Page %-3d", page);
pstring(hdg, pd, jj):

for(i=0; 1 < 86@; i++) { // Pads with blanks
*(pdt+) = "'y
Jit+s

}

sprintf(hdg, "Page %-3d", page+l) ;
pstring(hdg, pd, jj);

for(i=0; i < 80; i++) { // Pads with blanks
*(pdt+) ="' ';
Jitt;

}

pstring(uoff, pd, jj): // Underline off

// Outputs a string to the buffer
void hstreambuf::pstring(char* ph, char*& pd, int& jj)

{

}

EXIOS204.CPP reads text lines from the cin object and writes them to the modified

int len = strlen(ph);
strncpy(pd, ph, len);
pd += len;
Jj +=len;

cout object.

// exios204.cpp
// hstream Driver program copies cin to cout until end of file
f#include "hstream.h"

hstreambuf hsb(4); // 4=stdprn

void main()

{

char 1ine[200];
cout = &hsb; // Associates the HP LaserJet streambuf to cout
while(1) {

cin.getline(line, 200);

if(!cin.good()) break;

cout << Tine << endl;

jostream Programming

27

iostream Class Library Reference

28

Here are the main points in the preceding code:

The new class hstreambuf is derived from filebuf, which is the buffer class for
disk file I/O. The filebuf class writes to disk in response to commands from its
associated ostream class. The hstreambuf constructor takes an argument that
corresponds to the operating system file number, in this case 1, for stdout. This
constructor is invoked by this line:

hstreambuf hsb(1);

The ostream_withassign assignment operator associates the hstreambuf object
with the cout object:

ostream& operator =(streambuf* sbhp);
This statement in EXIOS204.CPP executes the assignment:
cout = &hsb;

The hstreambuf constructor prints the prolog that sets up the laser printer, then
allocates a temporary print buffer.

The destructor outputs the epilog text and frees the print buffer when the object
goes out of scope, which happens after the exit from main.

The streambuf virtual overflow and sync functions do the low-level output. The
hstreambuf class overrides these functions to gain control of the byte stream. The
functions call the private convert member function.

The convert function processes the characters in the hstreambuf buffer and
stores them in the object’s temporary buffer. The filebuf functions process the
temporary buffer.

The details of convert relate more to the PCL language than to the iostream
library. Private data members keep track of column, line, and page numbers.

The und and reg manipulators control the underscore print attribute by inserting
codes 0x02 and 0x03 into the stream. The convert function later translates these
codes into printer-specific sequences.

The program can be extended easily to embellish the heading, add more formatting
features, and so forth.

In a more general program, the hstreambuf class could be derived from the
streambuf class rather than the filebuf class. The filebuf derivation shown gets the
most leverage from existing iostream library code, but it makes assumptions about
the implementation of filebuf, particularly the overflow and sync functions. Thus
you cannot necessarily expect this example to work with other derived streambuf
classes or with filebuf classes provided by other software publishers.

CHAPTER 2

Alphabetic Microsoft 1ostream Class
Library Reference

1ostream Class Hierarchy Diagram
ios

— istream

— istrstream

I— istream_withassign .
. — lostream
L ifstream

fstream
L ostream
strstream

stdiostream
I— ofstream

— ostream_withassign
— ostrstream

streambuf lostream_init
filebuf

strstreambuf
stdiobuf

29

iostream Class Library Reference

1ostream Class List

Abstract Stream Base Class
ios

Input Stream Classes
istream

ifstream
istream_withassign
istrstream

Output Stream Classes
ostream

ofstream
ostream_withassign
ostrstream

Input/OQutput Stream Classes
iostream

fstream
strstream
stdiostream
Stream Buffer Classes
streambuf
filebuf
strstreambuf
stdiobuf

Predefined Stream Initializer Class

Tostream_init

30

Stream base class.

General-purpose input stream class and base class for other
input streams.

Input file stream class.
Input stream class for cin.
Input string stream class.

General-purpose output stream class and base class for other
output streams.

Output file stream class.
Output stream class for cout, cerr, and clog.
Output string stream class.

General-purpose input/output stream class and base class for
other input/output streams.

Input/output file stream class.
Input/output string stream class.
Input/output class for standard I/O files.

Abstract stream buffer base class.
Stream buffer class for disk files.

Stream buffer class for strings.

Stream buffer class for standard 1/O files.

Predefined stream initializer class.

filebuf::attach

class filebuf

#include <fstream.h>

The filebuf class is a derived class of streambuf that is specialized for buffered disk
file I/O. The buffering is managed entirely within the Microsoft iostream Class
Library. filebuf member functions call the run-time low-level I/O routines (the
functions declared in I0.H) such as _sopen, _read, and _write.

The file stream classes, ofstream, ifstream, and fstream, use filebuf member
functions to fetch and store characters. Some of these member functions are virtual
functions of the streambuf class.

The reserve area, put area, and get area are introduced in the streambuf class
description. The put area and the get area are always the same for filebuf objects.
Also, the get pointer and put pointers are tied; when one moves, so does the other.

Construction/Destruction—Public Members
filebuf Constructs a filebuf object.

~filebuf Destroys a filebuf object.
Operations—Public Members

open Opens a file and attaches it to the filebuf object.

close Flushes any waiting output and closes the attached file.

setmode Sets the file’s mode to binary or text.

attach Attaches the filebuf object to an open file.
Status/Information—Public Members

fd Returns the stream’s file descriptor.

is_open Tests whether the file is open.

See Also: ifstream, ofstream, streambuf, strstreambuf, stdiobuf

Member Functions
filebuf::attach

filebuf* attach(filedesc fd);
Attaches this filebuf object to the open file specified by fd.

3

filebuf::close

Return Value
The function returns NULL when the stream is already attached to a file; otherwise it
returns the address of the filebuf object.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen.
filedesc is a typedef equivalent to int.

filebuf::close
filebuf* close();

Flushes any waiting output, closes the file, and disconnects the file from the filebuf
object.

Return Value ,

If an error occurs, the function returns NULL and leaves the filebuf object in a closed
state. If there is no error, the function returns the address of the filebuf object and
clears its error state.

See Also: filebuf::open

filebuf::fd

filedesc fd() const;

Returns the file descriptor associated with the filebuf object; filedesc is a typedef
equivalent to int.

Return Value
The value is supplied by the underlying file system. The function returns EOF if the
object is not attached to a file.

See Also: filebuf::attach

filebuf::filebuf

filebuf();
filebuf(filedesc fd);
filebuf(filedesc fd, char* pr, int nlLength);

Parameters
fd A file descriptor as returned by a call to the run-time function _sopen. filedesc is a
typedef equivalent to int.

32

filebuf::open

pr Pointer to a previously allocated reserve area of length nLength.
nLength The length (in bytes) of the reserve area.

Remarks
The three filebuf constructors are described as follows:

filebuf() Constructs a filebuf object without attaching it to a file.
filebuf(filedesc) Constructs a filebuf object and attaches it to an open file.

filebuf(filedesc, char*, int) Constructs a filebuf object, attaches it to an open file,
and initializes it to use a specified reserve area.

filebuf::~filebuf

~filebuf();

Remarks
Closes the attached file only if that file was opened by the open member function.

filebuf::is_open
int is_open() const;

Return Value
Returns a nonzero value if this filebuf object is attached to an open disk file identified
by a file descriptor; otherwise 0.

See Also: filebuf::open

filebuf::open
filebuf* open(const char* szName, int nMode, int nProt = filebuf::openprot);

Opens a disk file and attaches it with this filebuf object.

Return Value
If the file is already open, or if there is an error while opening the file, the function
returns NULL; otherwise it returns the filebuf address.

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (1) operator. See the ofstream constructor for a list of
the enumerators.

33

filebuf::setmode

nProt The file protection specification; defaults to the static integer
filebuf::openprot, which is equivalent to the operating system default
(filebuf::sh_compat for MS-DOS). The possible values of nProt are:

¢ filebuf::sh_compat Compatibility share mode (MS-DOS only).
o filebuf::sh_none Exclusive mode—no sharing.

o filebuf::sh_read Read sharing allowed.

o filebuf::sh_write Write sharing allowed.

You can combine the filebuf::sh_read and filebuf::sh_write modes with the
logical OR (II') operator.

See Also: filebuf::is_open, filebuf::close, filebuf::~filebuf

filebuf::setmode

int setmode(int nMode = filebuf::text);

Parameter
nMode An integer that must be one of the static filebuf constants. The nMode
parameter must have one of the following values:

o filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs under MS-DOS).

o filebuf::binary Binary mode (no translation).

Return Value
The previous mode if there is no error; otherwise 0.

Remarks
Sets the binary/text mode of the stream’s filebuf object.

See Also: ios binary manipulator, ios text manipulator

class fstream

#include <fstream.h>

The fstream class is an iostream derivative specialized for combined disk file input
and output. Its constructors automatically create and attach a filebuf buffer object.

34

See filebuf class for information on the get and put areas and their associated pointers.

Although the filebuf object’s get and put pointers are theoretically independent, the
get area and the put area are not active at the same time. When the stream’s mode
changes from input to output, the get area is emptied and the put area is reinitialized.
When the mode changes from output to input, the put area is flushed and the get area
is reinitialized. Thus, either the get pointer or the put pointer is null at all times.

Construction/Destruction—Public Members
fstream Constructs an fstream object.

~fstream Destroys an fstream object.
Operations—Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Flushes any waiting output and closes the stream’s file.
setbuf Attaches the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/Information—Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also: ifstream, ofstream, strstream, stdiostream, filebuf

fstrcam::attach

Member Functions

fstream::attach

void attach(filedesc fd);
Attaches this stream to the open file specified by fd.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream’s error state.

See Also: filebuf::attach, fstream::fd

35

fstream::close

fstream::close

void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, fstream::open, fstream::is_open

fstream::fd

filedesc fd() const;

Remarks
Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also: filebuf::fd, fstream::attach

fstream::fstream

fstream();

fstream(const char* szName, int nMode, int nProt = filebuf::openprot);
fstream(filedesc fd);

fstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (1) operator. The nMode parameter must have one
of the following values:

e jos::app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream::seekp function.

e jos::ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

36

fstream::fstream

e jos::in The file is opened for input. The original file (if it exists) will not be
truncated.

e jos::out The file is opened for output.

o ios::trunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified, and ios::ate, ios::app, and ios:in are not
specified.

¢ ios::nocreate If the file does not already exist, the function fails.
e jos::noreplace If the file already exists, the function fails.
o ios::binary Opens the file in binary mode (the default is text mode).

Note that there is no ios::in or ios::out default mode for fstream objects. You must
specify both modes if your fstream object must both read and write files.

nProt The file protection specification; defaults to the static integer

filebuf::openprot, which is equivalent to the operating system default,
filebuf::sh_compat, under MS-DOS. The possible nProt values are as follows:

o filebuf::sh_compat Compatibility share mode (MS-DOS only).
o filebuf::sh_none Exclusive mode—no sharing.

o filebuf::sh_read Read sharing allowed.

o filebuf::sh_write Write sharing allowed.

The filebuf::sh_read and filebuf::sh_write modes can be combined with the
logical OR (Il') operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen.

filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value

(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks

The four fstream constructors are:

fstream() Constructs an fstream object without opening a file.

fstream(const char¥, int, int) Contructs an fstream object, opening the
specified file.

fstream(filedesc) Constructs an fstream object that is attached to an open file. -

fstream(filedesc, char*, int) Constructs an fstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

37

fstream::~fstream

All fstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

fstream::~fstream

~fstream();

Remarks
Flushes the buffer, then destroys an fstream object, along with its associated filebuf
object. The file is closed only if it was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

fstream::is_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise 0.

See Also: filebuf::is_open, fstream::open, fstream::close

fstream::open

void open(const char* szName, int nMode, int nProt = filebuf::openprot);
Opens a disk file and attaches it to the stream’s filebuf object.

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR () operator. See the fstream constructor for a list of the
enumerators. There is no default; a valid mode must be specified.

nProt The file protection specification; defaults to the static integer
filebuf::openprot. See the fstream constructor for a list of the other allowed
values.

Remarks
If the filebuf object is already attached to an open file, or if a filebuf call fails, the
ios::failbit is set. If the file is not found, then the ios::failbit is set only if the
ios::nocreate mode was used.

See Also: filebuf::open, fstream::fstream, fstream::close, fstream::is_open

38

fstream::rdbuf

filebuf* rdbuf() const;

Remarks
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

fstream::setmode

fstream::setbuf

streambuf* setbuf(char* pch, int nLength);
Attaches the specified reserve area to the stream’s filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

fstream::setmode

int setmode(int nMode = filebuf::text);

Sets the binary/text mode of the stream’s filebuf object. It can be called only after the
file is opened.

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs).

o filebuf::binary Binary mode (no translation).

See Also: ios binary manipulator, ios text manipulator

39

ifstream::attach

class ifstream

#include <fstream.h>

The ifstream class is an istream derivative specialized for disk file input. Its
constructors automatically create and attach a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the get area and the get pointer are active for the ifstream class.

Construction/Destruction—Public Members
ifstream Constructs an ifstream object.

~ifstream Destroys an ifstream object.
Operations—Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Closes the stream’s file.
setbuf Associates the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/Information—Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also: filebuf, streambuf, ofstream, fstream

Member Functions

ifstream::attach

void attach(filedesc fd);
Attaches this stream to the open file specified by fd.

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

40

Remarks
The function fails when the stream is already attached to a file. In that case, the
function sets ios::failbit in the stream’s error state.

See Also: filebuf::attach, ifstream::fd

ifstream::ifstream

ifstream::close
void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, closes the file and disconnects the file from the filebuf object. The filebuf object
is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, ifstream::open, ifstream::is_open

ifstream::fd
filedesc fd() const;

Return Value
Returns the file descriptor associated with the stream; filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also: filebuf::fd, ifstream::attach

ifstream::ifstream

ifstream();
ifstream(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);
ifstream(filedesc fd);

‘ ifstream(filedesc fd, char* pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (1) operator. The nMode parameter must have one
of the following values:

e jos::in The file is opened for input (default).

¢ ios::nocreate If the file does not already exist, the function fails.

!

ifstream::~ifstream

e jos::binary Opens the file in binary mode (the default is text mode).

Note that the ios::nocreate flag is necessary if you intend to test for the file’s
existence (the usual case).

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

o filebuf::sh_compat Compatibility share mode.
¢ filebuf::sh_none Exclusive mode—no sharing.
¢ filebuf::sh_read Read sharing allowed.

o filebuf::sh_write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical
OR () operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks
The four ifstream constructors are:

e ifstream() Constructs an ifstream object without opening a file.

¢ ifstream(const char¥*, int, int) Contructs an ifstream object, opening the
specified file.

o ifstream(filedesc) Constructs an ifstream object that is attached to an open file.

o ifstream(filedesc, char*, int) Constructs an ifstream object that is associated
with a filebuf object. The filebuf object is attached to an open file and to a
specified reserve area.

All ifstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area.

ifstream::~ifstream

~ifstream();

Remarks
Destroys an ifstream object along with its associated filebuf object. The file is closed
only if it was opened by the constructor or by the open member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

42

ifstream::1s_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise 0.

See Also: filebuf::is_open, ifstream::open, ifstream::close

ifstream::setbuf

ifstream::open
void open(const char* szName, int nMode = ios::in, int nProt = filebuf::openprot);

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing bits defined as ios enumerators that can be combined
with the OR () operator. See the ifstream constructor for a list of the
enumerators. The ios::in mode is implied.

nProt The file protection specification; defaults to the static integer filebuf::openprot.

See the ifstream constructor for a list of the other allowed values.

Remarks
Opens a disk file and attaches it to the stream’s filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, then the ios::failbit is set only if the ios::nocreate mode was used.

See Also: filebuf::open, ifstream::ifstream, ifstream::close, ifstream::is_open,
ios::flags

ifstream::rdbuf

filebuf* rdbuf() const;

Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream. (This
is not the character buffer; the filebuf object contains a pointer to the character area.)

ifstream::setbuf

streambuf* setbuf(char* pch, int nLength);

Attaches the specified reserve area to the stream’s filebuf object.

43

ifstream::setmode

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf, which is cast as a streambuf. The reserve
area will not be released by the destructor.

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

ifstream::setmode

int setmode(int nMode = filebuf::text);

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannnot be changed.

Parameters
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs).

o filebuf::binary Binary mode (no translation).

Remarks
This function sets the binary/text mode of the stream’s filebuf object. It may be called
only after the file is opened.

See Also: ios binary manipulator, ios text manipulator

class 10s

#include <iostream.h>

As the iostream class hierarchy diagram shows, ios is the base class for all the
input/output stream classes. While ios is not technically an abstract base class, you will
not usually construct ios objects, nor will you derive classes directly from ios. Instead,
you will use the derived classes istream and ostream or other derived classes.

Even though you will not use ios directly, you will be using many of the inherited
member functions and data members described here. Remember that these inherited
member function descriptions are not duplicated for derived classes.

44

Data Members (static)—Public Members
basefield Mask for obtaining the conversion base flags (dec, oct, or hex).

adjustfield Mask for obtaining the field padding flags (left, right, or internal).
floatfield Mask for obtaining the numeric format (scientific or fixed).
Construction/Destruction—Public Members
ios Constructor for use in derived classes.
~ios Virtual destructor.
Flag and Format Access Functions—Public Members
flags Sets or reads the stream’s format flags.
setf Manipulates the stream’s format flags.
unsetf Clears the stream’s format flags.
fill Sets or reads the stream’s fill character.
precision Sets or reads the stream’s floating-point format display precision.
width Sets or reads the stream’s output field width.
Status-Testing Functions—Public Members
good Indicates good stream status.
bad Indicates a serious I/O error.
eof Indicates end of file.
fail Indicates a serious I/O error or a possibly recoverable I/O formatting error.
rdstate Returns the stream’s error flags.
clear Sets or clears the stream’s error flags.
User-Defined Format Flags—Public Members

bitalloc Provides a mask for an unused format bit in the stream’s private flags
variable (static function).

xalloc Provides an index to an unused word in an array reserved for special-purpose
stream state variables (static function).

iword Converts the index provided by xalloc to a reference (valid only until the next
xalloc).

pword Converts the index provided by xalloc to a pointer (valid only until the next
xalloc).
Other Functions—Public Members
delbuf Controls the connection of streambuf deletion with ios destruction.

rdbuf Gets the stream’s streambuf object.

class ios

45

ios::bad
sync_with_stdio Synchronizes the predefined objects cin, cout, cerr, and clog with
the standard I/O system.
tie Ties a specified ostream to this stream.
" Operators—Public Members

operator void* Converts a stream to a pointer that can be used only for error
checking.

operator ! Returns a nonzero value if a stream I/O error occurs.
ios Manipulators

dec Causes the interpretation of subsequent fields in decimal format (the default
mode).

hex Causes the interpretation of subsequent fields in hexadecimal format.
oct Causes the interpretation of subsequent fields in octal format.

binary Sets the stream’s mode to binary (stream must have an associated filebuf
buffer).

text Sets the stream’s mode to text, the default mode (stream must have an associated
filebuf buffer).
Parameterized Manipulators
(#include <iomanip.h> required)
setiosflags Sets the stream’s format flags.
resetiosflags Resets the stream’s format flags.
setfill Sets the stream’s fill character.
setprecision Sets the stream’s floating-point display precision.

setw Sets the stream’s field width (for the next field only).

See Also: istream, ostream

Member Functions
10s::bad
int bad() const;

Return Value
Returns a nonzero value to indicate a serious I/O error. This is the same as setting the
badbit error state. Do not continue I/O operations on the stream in this situation.

See Also: ios::good, ios::fail, ios::rdstate

46

ios::delbuf

10s::bitalloc

static long bitalloc();

Remarks
Provides a mask for an unused format bit in the stream’s private flags variable (static
function). The ios class currently defines 15 format flag bits accessible through flags
and other member functions. These bits reside in a 32-bit private ios data member and
are accessed through enumerators such as jos::left and ios::hex.

The bitalloc member function provides a mask for a previously unused bit in the data
member. Once you obtain the mask, you can use it to set or test the corresponding
custom flag bit in conjunction with the ios member functions and manipulators listed
under “See Also.”

See Also: ios::flags, ios::setf, ios::unsetf, ios setiosflags manipulator, ios
resetiosflags manipulator

10s::clear
void clear(int nState = 0);

Parameter
nState If 0, all error bits are cleared; otherwise bits are set according to the following
masks (ios enumerators) that can be combined using the bitwise OR (|) operator.
The nState parameter must have one of the following values:

e ios::goodbit No error condition (no bits set).
o jos::eofbit End of file reached.
o jos::failbit A possibly recoverable formatting or conversion error.

e jos::badbit A severe I/O error.

Remarks
Sets or clears the error-state flags. The rdstate function can be used to read the
current error state.

See Also: ios::rdstate, ios::good, ios::bad, ios::eof

10s::delbuf

void delbuf(int nDelFlag);
int delbuf() const;

47

ios::eof

Parameter
nDelFlag A nonzero value indicates that ~ios should delete the stream’s attached
streambuf object. A 0 value prevents deletion.

Remarks
The first overloaded delbuf function assigns a value to the stream’s buffer-deletion
flag. The second function returns the current value of the flag.

This function is public only because it is accessed by the Iostream_init class. Treat it
as protected.

See Also: ios::rdbuf, ios::~ios

10s::eof
int eof() const;

Return Value
Returns a nonzero value if end of file has been reached. This is the same as setting the
eofbit error flag.

10s::fail
int fail() const;

Return Value
Returns a nonzero value if any I/O error (not end of file) has occurred. This condition
corresponds to either the badbit or failbit error flag being set. If a call to bad returns

0, you can assume that the error condition is nonfatal and that you can probably
continue processing after you clear the flags.

See Also: ios::bad, ios::clear

10s::fill
char fill(char cFill);
char fill() const;

Return Value
The first overloaded function sets the stream’s internal fill character variable to cFill
and returns the previous value. The default fill character is a space.

The second fill function returns the stream’s fill character.

48

Parameter

cFill The new fill character to be used as padding between fields.

See Also: ios setfill manipulator

ios::flags

10s::flags
long flags(long IFlags);

long flags() const;

Return Value

The first overloaded flags function sets the stream’s internal flags variable to [Flags
and returns the previous value.

The second function returns the stream’s current flags.

Parameter

IFlags The new format flag values for the stream. The values are specified by the
following bit masks (ios enumerators) that can be combined using the bitwise OR
(1) operator. The [Flags parameter must have one of the following values:

jos::skipws Skip white space on input.
ios::left Left-align values; pad on the right with the fill character.

ios::right Right-align values; pad on the left with the fill character (default
alignment).

ios::internal Add fill characters after any leading sign or base indication, but
before the value.

ios::dec Format numeric values as base 10 (decimal) (default radix).
ios::oct Format numeric values as base 8 (octal).
ios::hex Format numeric values as base 16 (hexadecimal).

ios::showbase Display numeric constants in a format that can be read by the
C++ compiler.

ios::showpoint Show decimal point and trailing zeros for floating-point
values.

ios::uppercase Display uppercase A through F for hexadecimal values and E
for scientific values.

ios::showpos Show plus signs (+) for positive values.

ios::scientific Display floating-point numbers in scientific format.

49

ios::good
o jos::fixed Display floating-point numbers in fixed format.

¢ jos::unitbuf Cause ostream::osfx to flush the stream after each insertion. By
default, cerr is unit buffered.

e jos::stdio Cause ostream::osfx to flush stdout and stderr after each insertion.

See Also: ios::setf, ios::unsetf, ios setiosflags manipulator, ios resetiosflags
manipulator, ios::adjustfield, ios::basefield, ios::floatfield

10s::good
int good() const;

Return Value
Returns a nonzero value if all error bits are clear. Note that the good member function
is not simply the inverse of the bad function.

See Also: ios::bad, ios::fail, ios::rdstate

10s::1nit
Protected —

void init(streambuf* psb);
END Protected

Parameter
psb A pointer to an existing streambuf object.

Remarks
Associates an object of a streambuf-derived class with this stream and, if necessary,
deletes a dynamically created stream buffer object that was previously associated. The
init function is useful in derived classes in conjunction with the protected default
istream, ostream, and iostream constructors. Thus, an ios-derived class constructor
can construct and attach its own predetermined stream buffer object.

See Also: istream::istream, ostream::ostream, iostream::iostream

10S::10S
ios(streambuf* psb);

Parameter
psb A pointer to an existing streambuf object.

50

Remarks
Constructor for ios. You will seldom need to invoke this constructor except in derived
classes. Generally, you will be deriving classes not from ios but from istream,
ostream, and iostream.

ios::precision

10S::~10S
virtual ~ios();

Remarks
Virtual destructor for ios.

10s::1word

long& iword(int nlndex) const;

Parameters
nindex An index to a table of words that are associated with the ios object.

Remarks
The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a 32-bit word.

See Also: ios::xalloc, ios::pword

10S::precision
int precision(int np);
int precision() const;

Return Value
The first overloaded precision function sets the stream’s internal floating-point
precision variable to np and returns the previous value. The default precision is six
digits. If the display format is scientific or fixed, the precision indicates the number of

digits after the decimal point. If the format is automatic (neither floating point nor
fixed), the precision indicates the total number of significant digits.

The second function returns the stream’s current precision value.

Parameter
np An integer that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

See Also: ios setprecision manipulator

51

ios::pword

10s::pword
void*& pword(int nindex) const;

Parameter
nindex An index to a table of words that are associated with the ios object.

Remarks
The xalloc member function provides the index to the table of special-purpose words.
The pword function converts that index to a reference to a pointer to a 32-bit word.

See Also: ios::xalloc, ios::iword

10s::rdbuf

streambuf* rdbuf() const;

Return Value
Returns a pointer to the streambuf object that is associated with this stream. The
rdbuf function is useful when you need to call streambuf member functions.

10s::rdstate

int rdstate() const;

Return Value
Returns the current error state as specified by the following masks (ios enumerators):

o jos::goodbit No error condition,

e jos::eofbit End of file reached.

ios::failbit A possibly recoverable formatting or conversion error.

e jos::badbit A severe I/O error or unknown state.

The returned value can be tested against a mask with the AND (&) operator.

See Also: ios::clear

10s::setf
long setf(long [Flags);
long setf(long [Flags, long IMask);

52

Return Value
The first overloaded setf function turns on only those format bits that are specified by
Isin IFlags. It returns a long that contains the previous value of all the flags.

The second function alters those format bits specified by 1s in IMask. The new values
of those format bits are determined by the corresponding bits in /Flags. It returns a
long that contains the previous value of all the flags.

Parameters
[Flags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the bitwise OR (|) operator.

IMask Format flag bit mask.

See Also: ios::flags, ios::unsetf, ios setiosflags manipulator

ios::tie

10s::sync_with_stdio
static void sync_with_stdio();

Remarks
Synchronizes the C++ streams with the standard 1/O system. The first time this
function is called, it resets the predefined streams (cin, cout, cerr, clog) to use a
stdiobuf object rather than a filebuf object. After that, you can mix I/O using these
streams with I/O using stdin, stdout, and stderr. Expect some performance decrease
because there is buffering both in the stream class and in the standard I/O file system.

After the call to sync_with_stdio, the ios::stdio bit is set for all affected predefined
stream objects, and cout is set to unit buffered mode.

10S::t1e
ostream* tie(ostream* pos);
ostream* tie() const;

Return Value
The first overloaded tie function ties this stream to the specified ostream and returns
the value of the previous tie pointer or NULL if this stream was not previously tied. A
stream tie enables automatic flushing of the ostream when more characters are
needed, or there are characters to be consumed.

By default, cin is initially tied to cout so that attempts to get more characters from
standard input may result in flushing standard output. In addition, cerr and clog are
tied to cout by default.

53

ios::unsetf

The second function returns the value of the previous tie pointer or NULL if this
stream was not previously tied.

Parameter
pos A pointer to an ostream object.

10s::unsetf

long unsetf(long [Flags);

Return Value
Clears the format flags specified by 1s in [Flags. It returns a long that contains the
previous value of all the flags.

Parameter
[Flags Format flag bit values. See the flags member function for a list of format
flags.

See Also: ios::flags, ios::setf, ios resetiosflags manipulator

10s::width
int width(int 2w);
int width() const;

Return Value
The first overloaded width function sets the stream’s internal field width variable to
nw. When the width is 0 (the default), inserters insert only the number of characters
necessary to represent the inserted value. When the width is not 0, the inserters pad
the field with the stream’s fill character, up to naw. If the unpadded representation of
the field is larger than nw, the field is not truncated. Thus, nw is a minimum field
width.

The internal width value is reset to O after each insertion or extraction.

The second overloaded width function returns the current value of the stream’s width
variable.

Parameter
nw The minimum field width in characters.

See Also: ios setw manipulator

54

10s::xalloc

static int xalloc();

Return Value
Provides extra ios object state variables without the need for class derivation. It does
so by returning an index to an unused 32-bit word in an internal array. This index can
subsequently be converted into a reference or pointer by using the iword or pword
member functions.

Any call to xalloc invalidates values returned by previous calls to iword and pword.

ios::iword, ios::pword

ios::adjustfield

Operators
10s::operator void*

operator void* () const;
An operator that converts a stream to a pointer that can be compared to 0.

Return Value
The conversion returns 0 if either failbit or badbit is set in the stream’s error state.See
rdstate for a description of the error state masks. A nonzero pointer is not meant to be
dereferenced.

See Also: ios::good, ios::fail

10s::0perator !
int operator !() const;

Return Value
Returns a nonzero value if either failbit or badbit is set in the stream’s error state. See
rdstate for a description of the error state masks.

See Also: ios::good, ios::fail

10s::adjustfield
static const long adjustfield;

Remarks
A mask for obtaining the padding flag bits (left, right, or internal).

55

ios::basefield

Example
extern ostream os;
if((os.flags() & ios::adjustfield) == jos::left)

See Also: ios::flags

10s::basefield

static const long basefield;

Remarks
A mask for obtaining the current radix flag bits (dec, oct, or hex).

Example
extern ostream 0s;
if((os.flags() & ios::basefield) == ios::hex)

See Also: ios::flags

10s::floatfield

static const long floatfield;

Remarks
A mask for obtaining floating-point format flag bits (scientific or fixed).

Example
extern ostream os;
if((os.flags() & ios::floatfield) == ios::scientific)

See Also: ios::flags

Manipulators
10s& binary

binary

Remarks
Sets the stream’s mode to binary. The default mode is text.

The stream must have an associated filebuf buffer.

See Also: ios text manipulator, ofstream::setmode, ifstream::setmode,
filebuf::setmode

56

10s& dec

dec

Remarks
Sets the format conversion base to 10 (decimal).

See Also: ios hex manipulator, ios oct manipulator

setfill

10s& hex

hex

Remarks
Sets the format conversion base to 16 (hexadecimal).

See Also: ios dec manipulator, ios oct manipulator

10s& oct

oct

Remarks
Sets the format conversion base to 8 (octal).

See Also: ios dec manipulator, ios hex manipulator

resetiosflags
SMANIP(long) resetiosflags(long [Flags);

#include <iomanip.h>

Parameter

IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (1) operator.

Remarks

This parameterized manipulator clears only the specified format flags. This setting

remains in effect until you change it.

setfill

SMANIP(int) setfill(int nFill);

#include <iomanip.h>

57

setiosflags

Parameter
nFill The new fill character to be used as padding between fields.

Remarks
This parameterized manipulator sets the stream’s fill character. The default is a space.
This setting remains in effect until the next change.

setiosflags
SMANIP(long) setiosflags(long (Flags);

#include <iomanip.h>

Parameter
IFlags Format flag bit values. See the flags member function for a list of format
flags. To combine these flags, use the OR (|) operator.

Remarks
This parameterized manipulator sets only the specified format flags. This setting
remains in effect until the next change.

setprecision
SMANIP(int) setprecision(int np);
#include <iomanip.h>

Parameter
np Aninteger that indicates the number of significant digits or significant decimal
digits to be used for floating-point display.

Remarks
This parameterized manipulator sets the stream’s internal floating-point precision
variable to np. The default precision is six digits. If the display format is scientific or
fixed, then the precision indicates the number of digits after the decimal point. If the
format is automatic (neither floating point nor fixed), then the precision indicates the
total number of significant digits. This setting remains in effect until the next change.

setw
SMANIP(int) setw(int nw);
#include <iomanip.h>

Parameter
nw The field width in characters.

58

Remarks
This parameterized manipulator sets the stream’s internal field width parameter. See
the width member function for more information. This setting remains in effect only
for the next insertion.

ios& text

10s& text

text
Sets the stream’s mode to text (the default mode).

Remarks
The stream must have an associated filebuf buffer.

See Also: ios binary manipulator, ofstream::setmode, ifstream::setmode,
filebuf::setmode

class 10stream

#include <iostream.h>

The iostream class provides the basic capability for sequential and random-access
I/O. It inherits functionality from the istream and ostream classes.

The iostream class works in conjunction with classes derived from streambuf (for
example, filebuf). In fact, most of the iostream “personality” comes from its attached
streambuf class. You can use iostream objects for sequential disk I/O if you first
construct an appropriate filebuf object. More often, you will use objects of classes
fstream and strstream.

Derivation
For derivation suggestions, see the istream and ostream classes.

Public Members
iostream Constructs an iostream object that is attached to an existing streambuf
object.

~jostream Destroys an iostream object.

Protected Members
iostream Acts as a void-argument iostream constructor.

See Also: istream, ostream, fstream, strstream, stdiostream

59

iostream::iostream

Member Functions
10stream::1ostream

Public -
iostream(streambuf* psb);
END Public

Protected —
iostream();
END Protected

Parameter
psb A pointer to an existing streambuf object (or an object of a derived class).

Remarks
Constructs an object of type iostream.

See Also: ios::init

10stream::~10stream

virtual ~iostream();

Remarks
Virtual destructor for the iostream class.

class Iostream_ 1nit

#include <iostream.h>

The Tostream_init class is a static class that initializes the predefined stream objects

cin, cout, cerr, and clog. A single object of this class is constructed “invisibly” in
response to any reference to the predefined objects. The class is documented for
completeness only. You will not normally construct objects of this class.

Public Members
Iostream_init A constructor that initializes cin, cout, cerr, and clog.

~Jostream_init The destructor for the Iostream_init class.

60

Tostream_init::~Jostream_init

Member Functions
Tostream_ init::Iostream_1init

Tostream_init();

Remarks
Iostream_init constructor that initializes cin, cout, cerr, and clog. For internal use
only.

Tostream_ init::~lostream_ init
~Jostream_init();

Remarks
Iostream_init destructor. For internal use only.

class 1stream

#include <iostream.h>

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two classes
work together; the istream class does the formatting, and the streambuf class does
the low-level buffered input.

You can use istream objects for sequential disk input if you first construct an
appropriate filebuf object. More often, you will use the predefined stream object cin
(which is actually an object of class istream_withassign), or you will use objects of
classes ifstream (disk file streams) and istrstream (string streams).

Derivation
It is not always necessary to derive from istream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated in “Deriving Your Own
Stream Classes” on page 22. The ifstream and istrstream classes are examples of
istream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new extraction operators for a derived istream class, then the rules of C++
dictate that you must reimplement all the base class extraction operators. See the
“Derivation” section of class ostream for an efficient reimplementation technique.

61

istream::eatwhite

Construction/Destruction — Public Members
istream Constructs an istream object attached to an existing object of a
streambuf-derived class.

~istream Destroys an istream object.

Prefix/Suffix Functions — Public Members
ipfx Check for error conditions prior to extraction operations (input prefix function).
isfx Called after extraction operations (input suffix function).

Input Functions — Public Members
get Extracts characters from the stream up to, but not including, delimiters.
getline Extracts characters from the stream (extracts and discards delimiters).
read Extracts data from the stream.
ignore Extracts and discards characters.
peek Returns a character without extracting it from the stream.
geount Counts the characters extracted in the last unformatted operation.
eatwhite Extracts leading white space.

Other Functions — Public Members
putback Puts characters back to the stream.
sync Synchronizes the stream buffer with the external source of characters.
seekg Changes the stream’s get pointer.
tellg Gets the value of the stream’s get pointer.

Operators — Public Members
operator >> Extraction operator for various types.

Protected Members
istream Constructs an istream object.

Manipulators
ws Extracts leading white space.

See Also: streambuf, ifstream, istrstream, istream_withassign

Member Functions
istream::eatwhite

void eatwhite();

62

Remarks

Extracts white space from the stream by advancing the get pointer past spaces
and tabs.

See Also: istream ws manipulator

istream::get

istream::gcount

Remarks

int gcount() const;

Returns the number of characters extracted by the last unformatted input function.
Formatted extraction operators may call unformatted input functions and thus reset
this number.

See Also: istream::get, istream::getline, istream::ignore, istream::read

istream::get

int get(); &

istream& get(char* pch, int nCount, char delim = ‘\n’);

istream& get(unsigned char* puch, int nCount, char delim = ‘\n’);
istream& get(signed char* psch, int nCount, char delim = “\n’);
istream& get(char& rch);

istream& get(unsigned char& ruch);

istream& get(signed char& rsch);

istream& get(streambuf& rsb, char delim = “\n’);

Parameters

pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).
rch, ruch, rsch A reference to a character.

rsb A reference to an object of a streambuf-derived class.

63

istream::getline

Remarks
These functions extract data from an input stream as follows:
Variation Description
get(); Extracts a single character from the stream and returns it.
get(char¥, int, char); Extracts characters from the stream until either delim is

found, the limit nCount is reached, or the end of file is
reached. The characters are stored in the array followed by a
null terminator.

get(char&); Extracts a single character from the stream and stores it as
specified by the reference argument.

get(streambuf&, char); Gets characters from the stream and stores them in a
streambuf object until the delimiter is found or the end of
the file is reached. The ios::failbit flag is set if the
streambuf output operation fails.

In all cases, the delimiter is neither extracted from the stream nor returned by the
function. The getline function, in contrast, extracts but does not store the delimiter.

See Also: istream::getline, istream::read, istream::ignore, istream::gcount

istream::getline

istream& getline(char* pch, int nCount, char delim = “\n’);
istream& getline(unsigned char* puch, int nCount, char delim = ‘\n’);
istream& getline(signed char* psch, int nCount, char delim = ‘\n’);

Parameters
pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to store, including the terminating
NULL.

delim The delimiter character (defaults to newline).

Remarks
Extracts characters from the stream until either the delimiter delim is found, the limit
nCount-1 is reached, or end of file is reached. The characters are stored in the
specified array followed by a null terminator. If the delimiter is found, it is extracted
but not stored.

The get function, in contrast, neither extracts nor stores the delimiter.

See Also: istream::get, istream::read

64

istream::ignore
istream& ignore(int nCount = 1, int delim = EOF);

Parameters
nCount The maximum number of characters to extract.

delim The delimiter character (defaults to EOF).

Remarks
Extracts and discards up to nCount characters. Extraction stops if the delimiter delim
is extracted or the end of file is reached. If delim = EOF (the default), then only the
end of file condition causes termination. The delimiter character is extracted.

istream::isfx

1stream::ipfx
int ipfx(int need = 0);

Return Value
A nonzero return value if the operation was successful; 0 if the stream’s error state is
nonzero, in which case the function does nothing.

Parameter
need Zero if called from formatted input functions; otherwise the minimum number
of characters needed.

Remarks
This input prefix function is called by input functions prior to extracting data from the
stream. Formatted input functions call ipfx(0), while unformatted input functions
usually call ipfx(1).

Any ios object tied to this stream is flushed if need = 0 or if there are fewer than need
characters in the input buffer. Also, ipfx extracts leading white space if ios::skipws
is set.

See Also: istream::isfx

1stream::1sfx
void isfx();

Remarks
This input suffix function is called at the end of every extraction operation.

65

istream::istream

1stream::istream

Public —»
istream(streambuf* psb);
END Public

Protected —
istream();
END Protected

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
Constructs an object of type istream.

See Also: ios::init

1stream::~istream

virtual ~istream();

Remarks
Virtual destructor for the istream class.

istream::peek
int peek();

Return Value
Returns the next character without extracting it from the stream. Returns EOF if the
stream is at end of file or if the ipfx function indicates an error.

istream::putback

istream& putback(char ch);

Parameter
ch The character to put back; must be the character previously extracted.

Remarks .
Puts a character back into the input stream. The putback function may fail and set the
error state. If ch does not match the character that was previously extracted, the result
is undefined.

66

istream::sync

istream::read

istream& read(char* pch, int nCount);
istream& read(unsigned char* puch, int nCount);
istream& read(signed char* psch, int nCount);

Parameters
pch, puch, psch A pointer to a character array.

nCount The maximum number of characters to read.

Remarks
Extracts bytes from the stream until the limit nCount is reached or until the end of file
is reached. The read function is useful for binary stream input.

See Also: istream::get, istream::getline, istream::gcount, istream::ignore

istream::seekg

istream& seekg(streampos pos);
istream& seekg(streamoff off, ios::seek_dir dir);

Parameters
pos The new position value; streampos is a typedef equivalent to long.

off The new offset value; streamoff is a typedef equivalent to long.
dir The seek direction. Must be one of the following enumerators:
e ios::beg Seek from the beginning of the stream.
e jos::cur Seek from the current position in the stream.
e ios:tend Seek from the end of the stream.
Remarks

Changes the get pointer for the stream. Not all derived classes of istream need
support positioning; it is most often used with file-based streams.

See Also: istream::tellg, ostream::seekp, ostream::tellp

istream::sync
int sync();

Synchronizes the stream’s internal buffer with the external source of characters.

67

istream::tellg

Return Value
EOF to indicate errors.

Remarks
Synchronizes the stream’s internal buffer with the external source of characters. This
function calls the virtual streambuf::sync function so you can customize its
implementation by deriving a new class from streambuf.

See Also: streambuf::sync

istream::tellg

streampos tellg();
Gets the value for the stream’s get pointer.

Return Value
A streampos type, corresponding to a long.

See Also: istream::seekg, ostream::tellp, ostream::seekp

Operators
istream::operator >>

istream& operator >>(char* psz);

istream& operator >>(unsigned char™* pusz);
istream& operator >>(signed char* pssz);
istream& operator >>(char& rch);
istream& operator >>(unsigned char& ruch);
istream& operator >>(signed char& rsch);
istream& operator >>(short& s);

istream& operator >>(unsigned short& us);
istream& operator >>(int& n);

istream& operator >>(unsigned int& un);
istream& operator >>(long& /);

istream& operator >>(unsigned long& u!);

istream& operator >>(float& f);

68

Remarks

istream& ws

istream& operator >>(double& d);

istream& operator >>(long double& I/d); (16-bit only)
istream& operator >>(streambuf* psb);

istream& operator >>(istream& (*fcn)(istream&));

istream& operator >>(ios& (*fcn)(ios&));

These overloaded operators extract their argument from the stream. With the last two
variations, you can use manipulators that are defined for both istream and ios.

Manipulators
istream& ws

Remarks

WS

Extracts leading white space from the stream by calling the eatwhite function.

See Also: istream::eatwhite

class 1stream_withassign

#include <iostream.h>

The istream_withassign class is a variant of istream that allows object assignment.
The predefined object cin is an object of this class and thus may be reassigned at run
time to a different istream object. For example, a program that normally expects input
from stdin could be temporarily directed to accept its input from a disk file.

Predefined Objects

The cin object is a predefined object of class ostream_withassign. It is connected to
stdin (standard input, file descriptor 0).

The objects cin, cerr, and clog are tied to cout so that use of any of these may cause
cout to be flushed.

Construction/Destruction—Public Members

istream_withassign Constructs an istream_withassign object.

~istream_withassign Destroys an istream_withassign object.

69

istream_withassign::istream_withassign

Operators—Public Members
operator = Indicates an assignment operator.

See Also: ostream_withassign

Member Functions
istream_withassign::istream_withassign

istream_withassign(streambuf* psb);
istream_withassign();

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
The first constructor creates a ready-to-use object of type istream_withassign,
complete with attached streambuf object.

The second constructor creates an object but does not initialize it. You must
subsequently use the second variation of the istream_withassign assignment operator
to attach the streambuf object, or use the first variation to initialize this object to
match the specified istream object.

See Also: istream_withassign::operator =

istream_withassign::~istream_withassign
~istream_withassign();

Remarks
Destructor for the istream_withassign class.

Operators
istream_withassign::operator =

istream& operator =(const istream& ris);
istream& operator =(streambuf* psb);

Remarks
The first overloaded assignment operator assigns the specified istream object to this
istream_withassign object.

70

istream_withassign::operator =

The second operator attaches a streambuf object to an existing istream_withassign
object, and it initializes the state of the istream_withassign object. This operator is
often used in conjunction with the void-argument constructor.

Example
char buffer[100];
class xistream; // A special-purpose class derived from istream
extern xistream xin; // An Xistream object constructed elsewhere

cin = xin; // cin is reassigned to xin
cin >> buffer; // xin used instead of cin

Example
char buffer[100];
extern filedesc fd; // A file descriptor for an open file
filebuf fb(fd); // Construct a filebuf attached to fd

cin = &fb; // fb associated with cin
cin >> buffer; // cin now gets its intput from the fb file

See Also: istream_withassign::istream_withassign

class istrstream

#include <strstrea.h>

The istrstream class supports input streams that have character arrays as a source.
You must allocate a character array before constructing an istrstream object. You can
use istream operators and functions on this character data. A get pointer, working in
the attached strstreambuf class, advances as you extract fields from the stream’s
array. Use istream::seekg to go backwards. If the get pointer reaches the end of the
string (and sets the ios::eof flag), you must call clear before seekg.

Construction/Destruction—Public Members
istrstream Constructs an istrstream object.

~istrstream Destroys an istrstream object.

Other Functions—Public Members
rdbuf Returns a pointer to the stream’s associated strstreambuf object.

str Returns a character array pointer to the string stream’s contents.

See Also: strstreambuf, streambuf, strstream, ostrstream

n

istrstream;:istrstream

Member Functions
1strstream::istrstream

istrstream(char* psz);
istrstream(char* pch, int nLength);

Parameters
psz A null-terminated character array (string).

pch A character array that is not necessarily null terminated.

nLength Size (in characters) of pch. If 0, then pch is assumed to point to a
null-terminated array; if less than O, then the array length is assumed to be
unlimited.

Remarks
The first constructor uses the specified psz buffer to make an istrstream object with
length corresponding to the string length.

The second constructor makes an istrstream object out of the first nLength characters
of the pch buffer.

Both constructors automatically construct a strstreambuf object that manages the
specified character buffer.

istrstream;:~istrstream

~istrstream();

Remarks
Destroys an istrstream object and its associated strstreambuf object. The character
buffer is not released because it was allocated by the user prior to istrstream
construction.

istrstream::rdbuf

strstreambuf* rdbuf() const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
Note that this is not the character buffer itself; the strstreambuf object contains a
pointer to the character area.

See Also: istrstream::str

72

istrstream::str

1strstream: :str

char* str();

Return Value
Returns a pointer to the string stream’s character array. This pointer corresponds to the
array used to construct the istrstream object.

See Also: istrstream::istrstream

class ofstream

#include <fstream.h>

The ofstream class is an ostream derivative specialized for disk file output. All of its
constructors automatically create and associate a filebuf buffer object.

The filebuf class documentation describes the get and put areas and their associated
pointers. Only the put area and the put pointer are active for the ofstream class.

Construction/Destruction—Public Members
ofstream Constructs an ofstream object.

~ofstream Destroys an ofstream object.
Operations—Public Members
open Opens a file and attaches it to the filebuf object and thus to the stream.
close Flushes any waiting output and closes the stream’s file.
setbuf Associates the specified reserve area to the stream’s filebuf object.
setmode Sets the stream’s mode to binary or text.
attach Attaches the stream (through the filebuf object) to an open file.
Status/information—Public Members
rdbuf Gets the stream’s filebuf object.
fd Returns the file descriptor associated with the stream.

is_open Tests whether the stream’s file is open.

See Also: filebuf, streambuf, ifstream, fstream

73

ofstream::attach

Member Functions

ofstream::attach
void attach(filedesc fd);

Parameter
fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

Remarks
Attaches this stream to the open file specified by fd. The function fails when the
stream is already attached to a file. In that case, the function sets ios::failbit in the
stream’s error state.

See Also: filebuf::attach, ofstream::fd

ofstream::close

void close();

Remarks
Calls the close member function for the associated filebuf object. This function, in
turn, flushes any waiting output, closes the file, and disconnects the file from the
filebuf object. The filebuf object is not destroyed.

The stream’s error state is cleared unless the call to filebuf::close fails.

See Also: filebuf::close, ofstream::open, ofstream::is_open

ofstream::fd
filedesc fd() const;

Return Value
Returns the file descriptor associated with the stream. filedesc is a typedef equivalent
to int. Its value is supplied by the underlying file system.

See Also: filebuf::fd, ofstream::attach

74

ofstream::1s_open
int is_open() const;

Return Value
Returns a nonzero value if this stream is attached to an open disk file identified by a
file descriptor; otherwise 0.

See Also: filebuf::is_open, ofstream::open, ofstream::close

ofstream::ofstream

ofstream::ofstream

ofstream();

ofstream(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);
ofstream(filedesc fd);

ofstream(filedesc fd, char™® pch, int nLength);

Parameters
szName The name of the file to be opened during construction.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the bitwise OR (|) operator. The nMode parameter must have one
of the following values:

e jos::app The function performs a seek to the end of file. When new bytes are
written to the file, they are always appended to the end, even if the position is
moved with the ostream::seekp function. '

e ios::ate The function performs a seek to the end of file. When the first new
byte is written to the file, it is appended to the end, but when subsequent bytes
are written, they are written to the current position.

e jos::in If this mode is specified, then the original file (if it exists) will not be
truncated.

e jos::out The file is opened for output (implied for all ofstream objects).

e jos::itrunc If the file already exists, its contents are discarded. This mode is
implied if ios::out is specified and ios::ate, ios::app, and ios:in are not
specified.

o ios::nocreate If the file does not already exist, the function fails.
¢ jos::noreplace If the file already exists, the function fails.

e jos::binary Opens the file in binary mode (the default is text mode).

75

ofstream::~ofstream

nProt The file protection specification; defaults to the static integer
filebuf::openprot that is equivalent to filebuf::sh_compat. The possible nProt
values are:

filebuf::sh_compat Compatibility share mode.

filebuf::sh_none Exclusive mode; no sharing.

filebuf::sh_read Read sharing allowed.

filebuf::sh_write Write sharing allowed.

To combine the filebuf::sh_read and filebuf::sh_write modes, use the logical
OR (') operator.

fd A file descriptor as returned by a call to the run-time function _open or _sopen;
filedesc is a typedef equivalent to int.

pch Pointer to a previously allocated reserve area of length nLength. A NULL value
(or nLength = 0) indicates that the stream will be unbuffered.

nLength The length (in bytes) of the reserve area (0 = unbuffered).

Remarks
The four ofstream constructors are:
Constructor Description
ofstream() Constructs an ofstream object without opening a file.
ofstream(const char¥, int, int) Contructs an ofstream object, opening the specified file.
ofstream(filedesc) Constructs an ofstream object that is attached to an

open file.

ofstream(filedesc, char*, int) Constructs an ofstream object that is associated with a

filebuf object. The filebuf object is attached to an open
file and to a specified reserve area.

All ofstream constructors construct a filebuf object. The first three use an internally
allocated reserve area, but the fourth uses a user-allocated area. The user-allocated
area is not automatically released during destruction.

ofstream::~ofstream

~ofstream();

Remarks
Flushes the buffer, then destroys an ofstream object along with its associated filebuf
object. The file is closed only if was opened by the constructor or by the open
member function.

The filebuf destructor releases the reserve buffer only if it was internally allocated.

76

ofstream::open

void open(const char* szName, int nMode = ios::out, int nProt = filebuf::openprot);

Parameters
szName The name of the file to be opened during construction.

nMode An integer containing mode bits defined as ios enumerators that can be
combined with the OR (1) operator. See the ofstream constructor for a list of the
enumerators. The ios::out mode is implied.

nProt The file protection specification; defaults to the static integer filebuf::openprot.
See the ofstream constructor for a list of the other allowed values.

Remarks
Opens a disk file and attaches it to the stream’s filebuf object. If the filebuf object is
already attached to an open file, or if a filebuf call fails, the ios::failbit is set. If the
file is not found, the ios::failbit is set only if the ios::nocreate mode was used.

See Also: filebuf::open, ofstream::ofstream, ofstream::close, ofstream::is_open

ofstream::setbuf

ofstream::rdbuf
filebuf* rdbuf() const;

Return Value
Returns a pointer to the filebuf buffer object that is associated with this stream.
(Note that this is not the character buffer; the filebuf object contains a pointer to
the character area.)

Example
extern ofstream ofs;
int fd = ofs.rdbuf()->fd(); // Get the file descriptor for ofs

ofstream::setbuf

streambuf* setbuf(char* pch, int nLength);
Attaches the specified reserve area to the stream’s filebuf object.

Return Value
If the file is open and a buffer has already been allocated, the function returns NULL;
otherwise it returns a pointer to the filebuf cast as a streambuf. The reserve area will
not be released by the destructor.

77

ofstream::setmode

Parameters
pch A pointer to a previously allocated reserve area of length nLength. A NULL
value indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

ofstream::setmode

int setmode(int nMode = filebuf::text);

Return Value
The previous mode; —1 if the parameter is invalid, the file is not open, or the mode
cannot be changed.

Parameter
nMode An integer that must be one of the following static filebuf constants:

o filebuf::text Text mode (newline characters translated to and from carriage
return/line feed pairs).

o filebuf::binary Binary mode (no translation).

Remarks
This function sets the binary/text mode of the stream’s filebuf object. It may be called
only after the file is opened.

See Also: ios binary manipulator, ios text manipulator

class ostream

#include <iostream.h>

The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf class
does the low-level buffered output.

You can use ostream objects for sequential disk output if you first construct an
appropriate filebuf object. (The filebuf class is derived from streambuf.) More often,
you will use the predefined stream objects cout, cerr, and clog (actually objects of
class ostream_withassign), or you will use objects of classes ofstream (disk file
streams) and ostrstream (string streams).

All of the ostream member functions write unformatted data; formatted output is
handled by the insertion operators.

78

class ostream

Derivation
It is not always necessary to derive from ostream to add functionality to a stream;
consider deriving from streambuf instead, as illustrated on page 22 in “Deriving
Your Own Stream Classes.” The ofstream and ostrstream classes are examples of
ostream-derived classes that construct member objects of predetermined derived
streambuf classes. You can add manipulators without deriving a new class.

If you add new insertion operators for a derived ostream class, then the rules of
C++ dictate that you must reimplement all the base class insertion operators. If,
however, you reimplement the operators through inline equivalence, no extra code
will be generated.

Construction/Destruction—Public Members
ostream Constructs an ostream object that is attached to an existing streambuf
object.

~ostream Destroys an ostream object.
Prefix/Suffix Functions—Public Members

opfx Output prefix function, called prior to insertion operations to check for error
conditions, and so forth.

osfx Output suffix function, called after insertion operations; flushes the stream’s
buffer if it is unit buffered.
Unformatted Output—Public Members
put Inserts a single byte into the stream.
write Inserts a series of bytes into the stream.
Other Functions—Public Members
flush Flushes the buffer associated with this stream.
seekp Changes the stream’s put pointer.
tellp Gets the value of the stream’s put pointer.

Operators—Public Members
operator << Insertion operator for various types.

Manipulators
endl Inserts a newline sequence and flushes the buffer.

ends Inserts a null character to terminate a string.
flush Flushes the stream’s buffer.

See Also: streambuf, ofstream, ostrstream, cout, cerr, clog

79

ostream::flush

Example

class xstream : public ostream

{

pubtic:
// Constructors, etc.
VA
inline xstream& operator << (char ch) // insertion for char
{

return (xstream&)ostream::operator << (ch);

}
Vo A
// Insertions for other types

3

Member Functions
ostream::flush

ostream& flush();

Remarks
Flushes the buffer associated with this stream. The flush function calls the sync
function of the associated streambuf.

See Also: ostream flush manipulator, streambuf::sync

ostream::opfx
int opfx();

Return Value
If the ostream object’s error state is not 0, opfx returns 0 immediately; otherwise it
returns a nonzero value.

Remarks
This output prefix function is called before every insertion operation. If another
ostream object is tied to this stream, the opfx function flushes that stream.

ostream::0sfx

void osfx();

Remarks
This output suffix function is called after every insertion operation. It flushes the
ostream object if ios::unitbuf is set, or stdout and stderr if ios::stdio is set.

80

ostream::ostream

Public —»
ostream(streambuf* psb);
END Public

Protected —
ostream();
END Protected

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
Constructs an object of type ostream.

See Also: ios::init

ostream::seekp

ostream::~ostream

virtual ~ostream();

Remarks
Destroys an ostream object. The output buffer is flushed as appropriate. The attached
streambuf object is destroyed only if it was allocated internally within the ostream
constructor.

ostream::put

ostream& put(char ch);

Parameter
ch The character to insert.

Remarks
This function inserts a single character into the output stream.

ostream::seekp

ostream& seekp(streampos pos);

ostream& seekp(streamoff off, ios::seek_dir dir);

81

ostream::tellp

Parameters
pos The new position value; streampos is a typedef equivalent to long.
off The new offset value; streamoff is a typedef equivalent to long.

dir The seek direction specified by the enumerated type ios::seek_dir, with values
including:

o jos::beg Seek from the beginning of the stream.
e jos::cur Seek from the current position in the stream.

e jos::end Seek from the end of the stream.

Remarks
Changes the position value for the stream. Not all derived classes of ostream need
support positioning. For file streams, the position is the byte offset from the beginning
of the file; for string streams, it is the byte offset from the beginning of the string.

See Also: ostream::tellp, istream::seekg, istream::tellg

ostream::tellp

streampos tellp();

Return Value
A streampos type that corresponds to a long.

Remarks
Gets the position value for the stream. Not all derived classes of ostream need support
positioning. For file streams, the position is the byte offset from the beginning of the
file; for string streams, it is the byte offset from the beginning of the string. Gets the
value for the stream’s put pointer.

See Also: ostream::seekp, istream::tellg, istream::seekg

ostream::write

ostream& write(const char* pch, int nCount);
ostream& write(const unsigned char* puch, int nCount);
ostream& write(const signed char* psch, int nCount);

Parameters
pch, puch, psch A pointer to a character array.

nCount The number of characters to be written.

82

Remarks

Inserts a specified number of bytes from a buffer into the stream. If the underlying file
was opened in text mode, additional carriage return characters may be inserted. The
write function is useful for binary stream output.

ostream::operator <<

Operators
ostream: :operator <<

Remarks

ostream& operator <<(char c/);

ostream& operator <<(unsigned char uch);
ostream& operator <<(signed char sch);

ostream& operator <<(const char* psz);

ostream& operator <<(const unsigned char* pusz);
ostream& operator <<(const signed char* pssz);
ostream& operator <<(short s);

ostream& operator <<(unsigned short us);
ostream& operator <<(int 1);

ostream& operator <<(unsigned int un);

ostream& operator <<(long !);

ostream& operator <<(unsigned long u!);
ostream& operator <<(float [);

ostream& operator <<(double d);

ostream& operator <<(long double /d); (16-bit only)
ostream& operator <<(const void* pv);

ostream& operator <<(streambuf* psb);

ostream& operator <<(ostream& (*fcn)(ostream&));

ostream& operator <<(ios& (*fcn)(ios&));

These overloaded operators insert their argument into the stream. With the last two
variations, you can use manipulators that are defined for both ostream and ios.

83

ostream& endl

Manipulators

ostream& endl

endl

Remarks

This manipulator, when inserted into an output stream, inserts a newline character and
then flushes the buffer.

ostream& ends

ends

Remarks
This manipulator, when inserted into an output stream, inserts a null-terminator
character. It is particularly useful for ostrstream objects.

ostreamé& flush

flush

Remarks
This manipulator, when inserted into an output stream, flushes the output buffer by
calling the streambuf::sync member function.

See Also: ostream::flush, streambuf::sync

class ostream_withassign

#include <iostream.h>

The ostream_withassign class is a variant of ostream that allows object assignment.
The predefined objects cout, cerr, and clog are objects of this class and thus may be
reassigned at run time to a different ostream object. For example, a program that
normally sends output to stdout could be temporarily directed to send its output to

a disk file.

Predefined Objects
The three predefined objects of class ostream_withassign are connected as follows:

cout Standard output (file descriptor 1).

84

ostream_withassign::~ostream_withassign

cerr Unit buffered standard error (file descriptor 2).
clog Fully buffered standard error (file descriptor 2).
Unit buffering, as used by cerr, means that characters are flushed after each insertion

operation. The objects cin, cerr, and clog are tied to cout so that use of any of these
will cause cout to be flushed.

Construction/Destruction — Public Members
ostream_withassign Constructs an ostream_withassign object.

~ostream_withassign Destroys an ostream_withassign object.

Operators — Public Members
operator = Assignment operator.

See Also: istream_withassign

Member Functions
ostream_withassign::ostream_withassign

ostream_withassign(streambuf* psb);
ostream_withassign();

Parameter
psb A pointer to an existing object of a streambuf-derived class.

Remarks
The first constructor makes a ready-to-use object of type ostream_withassign,
with an attached streambuf object.

The second constructor makes an object but does not initialize it. You must
subsequently use the streambuf assignment operator to attach the streambuf
object, or use the ostream assignment operator to initialize this object to match
the specified object.

See Also: ostream_withassign::operator =

ostream_withassign::~ostream_withassign

~ostream_withassign();

Remarks
Destructor for the ostream_withassign class.

85

ostream_withassign::operator =

Operators
ostream_withassign::operator =

ostream& operator =(const ostream&_os);
ostream& operator =(streambuf*_sp);

Remarks
The first overloaded assignment operator assigns the specified ostream object to this
ostream_withassign object.

The second operator attaches a streambuf object to an existing ostream_withassign
object, and initializes the state of the ostream_withassign object. This operator is
often used in conjunction with the void-argument constructor.

Example
filebuf fb("test.dat"); // Filebuf object attached to "test.dat"
cout = &fb; // fb associated with cout
cout << "testing"; // Message goes to "test.dat"™ instead of stdout

See Also: ostream_withassign::ostream_withassign, cout

class ostrstream

#include <strstrea.h>

The ostrstream class supports output streams that have character arrays as a
destination. You can allocate a character array prior to construction, or the constructor
can internally allocate an expandable array. You can then use all the ostream
operators and functions to fill the array.

Be aware that there is a put pointer working behind the scenes in the attached
strstreambuf class. This pointer advances as you insert fields into the stream’s array.
The only way you can make it go backward is to use the ostream::seekp function. If
the put pointer reaches the end of user-allocated memory (and sets the ios::eof flag),
you must call clear before seekp.

Construction/Destruction—Public Members
ostrstream Constructs an ostrstream object.

~ostrstream Destroys an ostrstream object.

Other Functions—Public Members
pcount Returns the number of bytes that have been stored in the stream’s buffer.

rdbuf Returns a pointer to the stream’s associated strstreambuf object.

86

ostrstream::~ostrstream

str Returns a character array pointer to the string stream’s contents and freezes
the array.

See Also: strstreambuf, streambuf, strstream, istrstream

Member Functions
ostrstream::ostrstream

ostrstream();
ostrstream(char* pch, int nLength, int nMode = ios::out);

Parameters
pch A character array that is large enough to accommodate future output stream activity.

nLength The size (in characters) of pch. If 0, then pch is assumed to point to a null-
terminated array and strlen(pch) is used as the length; if less than O, the array is
assumed to have infinite length.

nMode The stream-creation mode, which must be one of the following enumerators
as defined in class ios:

e ios::out Default; storing begins at pch.

e ios::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

e jos::app Same as ios::ate.
Remarks
The first constructor makes an ostrstream object that uses an internal, dynamic buffer.

The second constructor makes an ostrstream object out of the first nLength characters of
the pch buffer. The stream will not accept characters once the length reaches nLength.

ostrstream:;~ostrstream

~ostrstream();

Remarks
Destroys an ostrstream object and its associated strstreambuf object, thus releasing
all internally allocated memory. If you used the void-argument constructor, the
internally allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously frozen
by an str or strstreambuf::freeze function call.

See Also: ostrstream::str, strstreambuf::freeze

87

ostrstream::pcount

ostrstream::pcount

int pcount() const;

Return Value
Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

ostrstream::rdbuf

strstreambuf* rdbuf() const;

Return Value
Returns a pointer to the strstreambuf buffer object that is associated with this stream.
This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also: ostrstream::str

ostrstream::str

char* str();

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can, however,
subsequently unfreeze the array by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also: ostrstream::ostrstream, ostrstream::rdbuf, strstreambuf;::freeze

class stdiobuf

#include <stdiostr.h>

The run-time library supports three conceptual sets of I/O functions: iostreams
(C++ only), standard I/O (the functions declared in STDIO.H), and low-level /O
(the functions declared in I0.H). The stdiobuf class is a derived class of streambuf
that is specialized for buffering to and from the standard I/O system.

88

stdiobuf::stdiofile

Because the standard I/O system does its own internal buffering, the extra buffering
level provided by stdiobuf may reduce overall input/output efficiency. The stdiobuf
class is useful when you need to mix iostream IO with standard I/O (printf and

so forth).

You can avoid use of the stdiobuf class if you use the filebuf class. You must also use
the stream class’s ios::flags member function to set the ios::stdio format flag value.

Construction/Destruction—Public Members
stdiobuf Constructs a stdiobuf object from a FILE pointer.

~stdiobuf Destroys a stdiobuf object.

Other Functions—Public Members
stdiofile Gets the file that is attached to the stdiofile object.

See Also: stdiostream, filebuf, strstreambuf, ios::flags

Member Functions
stdiobuf::stdiobuf

stdiobuf(FILE* fp);

Parameter
Jp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).

Remarks
Objects of class stdiobuf are constructed from open standard I/O files, including
stdin, stdout, and stderr. The object is unbuffered by default.

stdiobuf::~stdiobuf

~stdiobuf();

Remarks
Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf::stdiofile

FILE* stdiofile();

Remarks
Returns the standard I/O file pointer associated with a stdiobuf object.

89

stdiostream::rdbuf

class stdiostream

#include <stdiostr.h>

The stdiostream class makes I/O calls (through the stdiobuf class) to the standard
I/0 system, which does its own internal buffering. Calls to the functions declared in
STDIO.H, such as printf, can be mixed with stdiostream 1/0 calls.

This class is included for compatibility with earlier stream libraries. You can avoid use
of the stdiostream class if you use the ostream or istream class with an associated
filebuf class. You must also use the stream class’s ios::flags member function to set
the ios::stdio format flag value.

The use of the stdiobuf class may reduce efficiency because it imposes an extra level
of buffering. Do not use this feature unless you need to mix iostream library calls with
standard 1/0O calls for the same file.

Construction/Destruction—Public Members
stdiostream Constructs a stdiostream object that is associated with a standard
I/0 FILE pointer.

~stdiostream Destroys a stdiostream object (virtual).

Other Functions—Public Members
rdbuf Gets the stream’s stdiobuf object.

See Also: stdiobuf, ios::flags

Member Functions

stdiostream::rdbuf

stdiobuf* rdbuf() const;

Return Value
Returns a pointer to the stdiobuf buffer object that is associated with this stream.
The rdbuf function is useful when you need to call stdiobuf member functions.

stdiostream::stdiostream
stdiostream(FILE* fp);

90

stdiostream::~stdiostream

Parameter
Jfp A standard I/O file pointer (can be obtained through an fopen or _fsopen call).
Could be stdin, stdout, or stderr.

Remarks
Objects of class stdiostream are constructed from open standard I/O files. An
unbuffered stdiobuf object is automatically associated, but the standard I/O system
provides its own buffering.

Example
stdiostream myStream(stdout);

stdiostream::~stdiostream

~stdiostream();

Remarks
This destructor destroys the stdiobuf object associated with this stream; however, the
attached file is not closed.

class streambuf

#include <iostream.h>

All the iostream classes in the ios hierarchy depend on an attached streambuf class
for the actual I/O processing. This class is an abstract class, but the iostream class
library contains the following derived buffer classes for use with streams:

o filebuf Buffered disk file I/O.
o strstreambuf Stream data held entirely within an in-memory byte array.

e stdiobuf Disk I/O with buffering done by the underlying standard I/O system.

All streambuf objects, when configured for buffered processing, maintain a fixed
memory buffer, called a reserve area, that can be dynamically partitioned into a get
area for input, and a put area for output. These areas may or may not overlap. With the
protected member functions, you can access and manipulate a get pointer for character
retrieval and a put pointer for character storage. The exact behavior of the buffers and
pointers depends on the implementation of the derived class.

The capabilities of the iostream classes can be extended significantly through the
derivation of new streambuf classes. The ios class tree supplies the programming
interface and all formatting features, but the streambuf class does the real work. The
ios classes call the streambuf public members, including a set of virtual functions.

91

class streambuf

The streambuf class provides a default implementation of certain virtual member
functions. The “Default Implementation” section for each such function suggests
function behavior for the derived class.

Character Input Functions—Public Members
in_avail Returns the number of characters in the get area.

sgetc Returns the character at the get pointer, but does not move the pointer.
snextc Advances the get pointer, then returns the next character.
sbumpce Returns the current character, and then advances the get pointer.
stossc Moves the get pointer forward one position, but does not return a character.
sputbackce Attempts to move the get pointer back one position.
sgetn Gets a sequence of characters from the streambuf object’s buffer.
Character Output Functions—Public Members
out_waiting Returns the number of characters in the put area.
sputc Stores a character in the put area and advances the put pointer.
sputn Stores a sequence of characters in the streambuf object’s buffer and advances

the put pointer.

Construction/Destruction—Public Members
~streambuf Virtual destructor.

Diagnostic Functions—Public Members
dbp Prints buffer statistics and pointer values.

Virtual Functions—Public Members
sync Empties the get area and the put area.
setbuf Attempts to attach a reserve area to the streambuf object.
seekoff Seeks to a specified offset.
seekpos Seeks to a specified position.
overflow Empties the put area.
underflow Fills the get area if necessary.
pbackfail Augments the sputbacke function.

Construction/Destruction—Protected Members
streambuf Constructors for use in derived classes.

Other Protected Member Functions—Protected Members
base Returns a pointer to the start of the reserve area.
ebuf Returns a pointer to the end of the reserve area.

blen Returns the size of the reserve area.

92

pbase Returns a pointer to the start of the put area.

pptr Returns the put pointer.

epptr Returns a pointer to the end of the put area.
eback Returns the lower bound of the get area.
gptr Returns the get pointer.

egptr Returns a pointer to the end of the get area.
setp Sets all the put area pointers.

setg Sets all the get area pointers.

pbump Increments the put pointer.

gbump Increments the get pointer.

setb Sets up the reserve area.

unbuffered Tests or sets the streambuf buffer state variable.
allocate Allocates a buffer, if needed, by calling doalloc.

doallocate Allocates a reserve area (virtual function).

See Also: streambuf::doallocate, streambuf::unbuffered

streambuf::base

Member Functions
streambuf::allocate

Protected —
int allocate();
END Protected

Return Value
Calls the virtual function doallocate to set up a reserve area. If a reserve area already
exists or if the streambuf object is unbuffered, allocate returns 0. If the space

allocation fails, allocate returns EOF.

See Also: streambuf::doallocate, streambuf::unbuffered

streambuf::base

Protected —
char* base() const
END Protected

93

streambuf::blen

Return Value
Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

See Also: streambuf::ebuf, streambuf::setb, streambuf::blen

streambuf::blen

Protected —
int blen() const;
END Protected

Return Value
Returns the size, in bytes, of the reserve area.

See Also: streambuf::base, streambuf::ebuf, streambuf::setb

streambuf::dbp

void dbp();

Remarks
Writes ASCII debugging information directly on stdout. Treat this function as part of
the protected interface.

Example
STREAMBUF DEBUG INFO: this = Q0E7:09DC
base()=00E7:0A0C, ebuf()=00E7:0C0C, blen()=512
eback()=0000:0000, gptr()=0000:0000, egptr()=0000:0000
pbase()=00E7:0A0C, pptr()=00E7:0A22, epptr()=00E7:0C0C

streambuf::doallocate

Protected —
virtual int doallocate();
END Protected

Return Value
Called by allocate when space is needed. The doallocate function must allocate a
reserve area, then call setb to attach the reserve area to the streambuf object. If the
reserve area allocation fails, doallocate returns EOF.

Remarks
By default, this function attempts to allocate a reserve area using operator new.

See Also: streambuf::allocate, streambuf::setb

94

streambuf::epptr

streambuf::eback

Protected —
char* eback() const;
END Protected

Return Value
Returns the lower bound of the get area. Space between the eback and gptr pointers is
available for putting a character back into the stream.

See Also: streambuf::sputbackc, streambuf::gptr

streambuf::ebuf

Protected —
char* ebuf() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the reserve area. The reserve area
consists of space between the pointers returned by base and ebuf.

See Also: streambuf::base, streambuf::setb, streambuf::blen

streambuf::egptr

Protected —
char* egptr() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the get area.

See Also: streambuf::setg, streambuf::eback, streambuf::gptr

streambuf::epptr

Protected —
char* epptr() const;
END Protected

Return Value
Returns a pointer to the byte after the last byte of the put area.

See Also: streambuf::setp, streambuf::pbase, streambuf::pptr

85

streambuf::gbump

streambuf::gbump

Protected —
void gbump(int nCount);
END Protected

Parameter
Count The number of bytes to increment the get pointer. May be positive or negative.

Remarks
Increments the get pointer. No bounds checks are made on the result.

See Also: streambuf::pbump

streambulf::gptr

Protected —
char* gptr() const;
END Protected

Return Value
Returns a pointer to the next character to be fetched from the streambuf buffer. This
pointer is known as the get pointer.

See Also: streambuf::setg, streambuf::eback, streambuf::egptr

streambuf::in_avail
int in_avail() const;

Return Value
Returns the number of characters in the get area that are available for fetching. These
characters are between the gptr and egptr pointers and may be fetched with a
guarantee of no errors.

streambuf::out_waiting

int out_waiting() const;

Return Value
Returns the number of characters in the put area that have not been sent to the final
output destination. These characters are between the pbase and pptr pointers.

9%

streambuf::pbackfail

streambuf::overflow

virtual int overflow(int nCh = EOF) = 0;

Return Value
EOF to indicate an error.

Parameter
nCh EOF or the character to output.

Remarks
The virtual overflow function, together with the sync and underflow functions,
defines the characteristics of the streambuf-derived class. Each derived class might
implement overflow differently, but the interface with the calling stream class is the
same.

The overflow function is most frequently called by public streambuf functions like
sputc and sputn when the put area is full, but other classes, including the stream
classes, can call overflow anytime.

The function “consumes” the characters in the put area between the pbase and pptr
pointers and then reinitializes the put area. The overflow function must also consume
nCh (if nCh is not EOF), or it might choose to put that character in the new put area
so that it will be consumed on the next call.

The definition of “consume” varies among derived classes. For example, the filebuf
class writes its characters to a file, while the strsteambuf class keeps them in its
buffer and (if the buffer is designated as dynamic) expands the buffer in response to a
call to overflow. This expansion is achieved by freeing the old buffer and replacing it
with a new, larger one. The pointers are adjusted as necessary.

Default Implementation
No default implementation. Derived classes must define this function.

See Also: streambuf::pbase, streambuf::pptr, streambuf::setp, streambuf::sync,
streambuf::underflow

streambulf’::pbackfail

virtual int pbackfail(int nCh);

Return Value
The nCh parameter if successful; otherwise EOF.

Parameter
nCh The character used in a previous sputbacke call.

97

streambuf::pbase

Remarks
This function is called by sputbacke if it fails, usually because the eback pointer
equals the gptr pointer. The pbackfail function should deal with the situation, if
possible, by such means as repositioning the external file pointer.

Default implementation
Returns EOF.

See Also: streambuf::sputbacke

streambuf::pbase

Protected —
char* pbase() const;
END Protected

Return Value
Returns a pointer to the start of the put area. Characters between the pbase pointer and
the pptr pointer have been stored in the buffer but not flushed to the final output
destination.

See Also: streambuf::pptr, streambuf::setp, streambuf::out_waiting

streambuf::pbump

Protected —
void pbump(int nCount);
END Protected

Parameter
nCount The number of bytes to increment the put pointer. May be positive or
negative.

Remarks
Increments the put pointer. No bounds checks are made on the result.

See Also: streambuf::gbump, streambuf::setp

streambuf::pptr

Protected —
char* pptr() const;
END Protected

98

streambuf::seekoff

Return Value
Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf object.

See Also: streambuf::epptr, streambuf::pbase, streambuf::setp

streambuf::sbumpc

int sbumpc();

Return Value
Returns the current character, then advances the get pointer. Returns EOF if the get
pointer is currently at the end of the sequence (equal to the egptr pointer).

See Also: streambuf::epptr, streambuf::gbump

streambuf::seekoff

virtual streampos seekoff(streamoff off, ios::seek_dir dir, int nMode =ios::in | ios::out);

Return Value
The new position value. This is the byte offset from the start of the file (or string). If
both ios::in and ios::out are specified, the function returns the output position. If the
derived class does not support positioning, the function returns EOF.

Parameters
off The new offset value,; streamoff is a typedef equivalent to long.

dir One of the following seek directions specified by the enumerated type seek_dir:
e ios::beg Seek from the beginning of the stream.
e jos::cur Seek from the current position in the stream.
e ios::end Seek from the end of the stream.

nMode An integer that contains a bitwise OR (|) combination of the enumerators
ios::in and ios::out.

Remarks
Changes the position for the streambuf object. Not all derived classes of streambuf
need to support positioning; however, the filebuf, strstreambuf, and stdiobuf classes
do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

99

streambuf::seekpos

Default Implementation
Returns EOF.

See Also: streambuf::seekpos

streambuf::seekpos

virtual streampos seekpos(streampos pos, int nMode = ios::in | ios::out);

Return Value
The new position value. If both ios::in and ios::out are specified, the function returns
the output position. If the derived class does not support positioning, the function
returns EOF.

Parameters
pos The new position value; streampos is a typedef equivalent to long.

nMode An integer that contains mode bits defined as ios enumerators that can be
combined with the OR () operator. See ofstream::ofstream for a listing of the
enumerators.

Remarks
Changes the position, relative to the beginning of the stream, for the streambuf
object. Not all derived classes of streambuf need to support positioning; however, the
filebuf, strstreambuf, and stdiobuf classes do support positioning.

Classes derived from streambuf often support independent input and output position
values. The nMode parameter determines which value(s) is set.

Default Implementation
Calls seekoff((streamoff) pos, ios::beg, nMode). Thus, to define seeking in a
derived class, it is usually necessary to redefine only seekoff.

See Also: streambuf::seekoff

streambuf::setb

Protected —
void setb(char* pb, char* peb, int nDelete =0);
END Protected

Parameters
pb The new value for the base pointer.
peb The new value for the ebuf pointer.

nDelete Flag that controls automatic deletion. If nDelete is not 0, the reserve area
will be deleted when: (1) the base pointer is changed by another setb call, or (2) the
streambuf destructor is called.

100

streambuf::setg

Remarks
Sets the values of the reserve area pointers. If both pb and peb are NULL, there is no
reserve area. If pb is not NULL and peb is NULL, the reserve area has a length of 0.

See Also: streambuf::base, streambuf::ebuf

streambuf::setbuf

virtual streambuf* setbuf(char* pr, int nLength);

Return Value
A streambuf pointer if the buffer is accepted; otherwise NULL.

Parameters
pr A pointer to a previously allocated reserve area of length nLengrh. A NULL value
indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

Remarks
Attaches the specified reserve area to the streambuf object. Derived classes may or
may not use this area.

Default Implementation
Accepts the request if there is not a reserved area already.

streambuf::setg

Protected —
void setg(char* peb, char* pg, char* peg);
END Protected

Parameters
peb The new value for the eback pointer.

pg The new value for the gptr pointer.
peg The new value for the egptr pointer.

Remarks
Sets the values for the get area pointers.

See Also: streambuf::eback, streambuf::gptr, streambuf::egptr

101

streambuf::setp

streambuf::setp

Protected —
void setp(char* pp, char* pep);
END Protected

Parameters
pp The new value for the pbase and pptr pointers.

pep The new value for the epptr pointer.

Remarks
Sets the values for the put area pointers.

See Also: streambuf::pptr, streambuf::pbase, streambuf::epptr

streambuf::sgetc
int sgetc();

Remarks
Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.

See Also: streambuf::sbumpc, streambuf::sgetn, streambuf::snextc,
streambuf::stossc

streambuf::sgetn
int sgetn(char* pch, int nCount);

Return Value
The number of characters fetched.

Parameters
pch A pointer to a buffer that will receive characters from the streambuf object.

nCount The number of characters to get.

Remarks
Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf object,
sgetn fetches whatever characters remain. The function repositions the get pointer to
follow the fetched characters.

See Also: streambuf::sbumpc, streambuf::sgetc, streambuf::snextc,
streambuf::stossc

102

streambuf::snextc

int snextc();

Return Value
First tests the get pointer, then returns EOF if it is already at the end of the get area.
Otherwise, it moves the get pointer forward one character and returns the character
that follows the new position. It returns EOF if the pointer has been moved to the end
of the get area.

See Also: streambuf::sbumpc, streambuf::sgetc, streambuf::sgetn,
streambuf::stossc

streambuf::sputc

streambuf::sputbackc

int sputbacke(char ch);

Return Value
EOF on fajlure.

Parameter
ch The character to be put back to the streambuf object.

Remarks
Moves the get pointer back one character. The ch character must match the character
just before the get pointer.

See Also: streambuf::sbumpe, streambuf’::pbackfail

streambuf::sputc

int sputc(int nCh);

Return Value
The number of characters successfully stored; EOF on error.

Parameter
nCh The character to store in the streambuf object.

Remarks
Stores a character in the put area and advances the put pointer.

This public function is available to code outside the class, including the classes
derived from ios. A derived streambuf class can gain access to its buffer directly
by using protected member functions.

See Also: streambuf::sputn

103

streambuf::sputn

streambuf::sputn

int sputn(const char* pch, int nCount);

Return Value
The number of characters stored. This number is usually nCount but could be less if
an error occurs.

Parameters
pch A pointer to a buffer that contains data to be copied to the streambuf object.

nCount The number of characters in the buffer.

Remarks
Copies nCount characters from pch to the streambuf buffer following the put pointer.
The function repositions the put pointer to follow the stored characters.

See Also: streambuf::sputc

streambuf::stossc

void stossc();

Remarks
Moves the get pointer forward one character. If the pointer is already at the end of the
get area, the function has no effect.

See Also: streambuf::sbumpc, streambuf::sgetn, streambuf::snextc,
streambuf::sgetc

streambuf::streambuf

Protected —

streambuf();

streambuf(char* pr, int nLength);
END Protected

Parameters
pr A pointer to a previously allocated reserve area of length nLength. A NULL value
indicates an unbuffered stream.

nLength The length (in bytes) of the reserve area. A length of 0 indicates an
unbuffered stream.

104

streambuf::unbuffered

Remarks
The first constructor makes an uninitialized streambuf object. This object is not
suitable for use until a setbuf call is made. A derived class constructor usually calls
setbuf or uses the second constructor.

The second constructor initializes the streambuf object with the specified reserve area
or marks it as unbuffered.

See Also: streambuf::setbuf

streambuf::~streambuf

Protected —
virtual ~streambuf();
END Protected

Remarks
The streambuf destructor flushes the buffer if the stream is being used for output.

streambuf::sync

virtual int sync();

Return Value
EOF if an error occurs.

Remarks
The virtual sync function, with the overflow and underflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
sync differently, but the interface with the calling stream class is the same.

The sync function flushes the put area. It also empties the get area and, in the process,
sends any unprocessed characters back to the source, if necessary.

Default Implementation
Returns 0 if the get area is empty and there are no more characters to output;
otherwise, it returns EOF.

See Also: streambuf::overflow

streambuf::unbuffered

Protected —

void unbuffered(int nState);
int unbuffered() const;

END Protected

105

streambuf’:

:underflow

Parameter

Remarks

nState The value of the buffering state variable; 0 = buffered, nonzero = unbuffered.

The first overloaded unbuffered function sets the value of the streambuf object’s
buffering state. This variable’s primary purpose is to control whether the allocate
function automatically allocates a reserve area.

The second function returns the current buffering state variable.

See Also: streambuf::allocate, streambuf::doallocate

streambuf::underflow

Remarks

mfvirtual int underflow() = 0;

The virtual underflow function, with the sync and overflow functions, defines the
characteristics of the streambuf-derived class. Each derived class might implement
underflow differently, but the interface with the calling stream class is the same.

The underflow function is most frequently called by public streambuf functions like
sgetc and sgetn when the get area is empty, but other classes, including the stream
classes, can call underflow anytime.

The underflow function supplies the get area with characters from the input source. If
the get area contains characters, underflow returns the first character. If the get area is
empty, it fills the get area and returns the next character (which it leaves in the get
area). If there are no more characters available, then underflow returns EOF and
leaves the get area empty.

In the strstreambuf class, underflow adjusts the egptr pointer to access storage that
was dynamically allocated by a call to overflow.

Default Implementation

No default implementation. Derived classes must define this function.

class strstream

106

#include <strstrea.h>

The strstream class supports I/O streams that have character arrays as a source and
destination. You can allocate a character array prior to construction, or the constructor
can internally allocate a dynamic array. You can then use all the input and output
stream operators and functions to fill the array.

Be aware that a put pointer and a get pointer are working independently behind the
scenes in the attached strstreambuf class. The put pointer advances as you insert
fields into the stream’s array, and the get pointer advances as you extract fields. The
ostream::seekp function moves the put pointer, and the istream::seekg function
moves the get pointer. If either pointer reaches the end of the string (and sets the
ios::eof flag), you must call clear before seeking.

Construction/Destruction—Public Members
strstream Constructs a strstream object.

~strstream Destroys a strstream object.

Other Functions—Public Members
pcount Returns the number of bytes that have been stored in the stream’s buffer.
rdbuf Returns a pointer to the stream’s associated strstreambuf object.

str Returns a pointer to the string stream’s character buffer and freezes it.

See Also: strstreambuf, streambuf, istrstream, ostrstream

strstream::rdbuf

Member Functions
strstream::pcount

int pcount() const;

Return Value
Returns the number of bytes stored in the buffer. This information is especially useful
when you have stored binary data in the object.

strstream: :rdbuf

strstreambuf* rdbuf() const;

Return Value

Returns a pointer to the strstreambuf buffer object that is associated with this stream.

This is not the character buffer; the strstreambuf object contains a pointer to the
character area.

See Also: strstream::str

107

strstream::str

strstream::str

char* str();

Return Value
Returns a pointer to the internal character array. If the stream was built with the
void-argument constructor, then str freezes the array. You must not send characters to
a frozen stream, and you are responsible for deleting the array. You can unfreeze the
the stream by calling rdbuf->freeze(0).

If the stream was built with the constructor that specified the buffer, the pointer
contains the same address as the array used to construct the ostrstream object.

See Also: strstreambuf::freeze, strstream::rdbuf

strstream.::strstream

strstream();
strstream(char* pch, int nLength, int nMode);

Parameters
pch A character array that is large enough to accommodate future output stream
activity.

nLength The size (in characters) of pch. If 0, pch is assumed to point to a
null-terminated array; if less than 0, the array is assumed to have infinite length.

nMode The stream creation mode, which must be one of the following enumerators
as defined in class ios:

e jos::in Retrieval begins at the beginning of the array.
o ios::out By default, storing begins at pch.

o ios::ate The pch parameter is assumed to be a null-terminated array; storing
begins at the NULL character.

o jos::tapp Same as ios::ate.

The use of the ios::in and ios::out flags is optional for this class; both input and
output are implied.

Remarks
The first constructor makes an strstream object that uses an internal, dynamic buffer
that is initially empty.

108

strstream::~strstream

The second constructor makes an strstream object out of the first nLength characters
of the psc buffer. The stream will not accept characters once the length reaches
nLength.

strstream::~strstream

~strstream();

Remarks
Destroys a strstream object and its associated strstreambuf object, thus releasing all
internally allocated memory. If you used the void-argument constructor, the internally
allocated character buffer is released; otherwise, you must release it.

An internally allocated character buffer will not be released if it was previously frozen
by calling rdbuf->freeze(0).

See Also: strstream::rdbuf

class strstreambuf

#include <strstrea.h>

The strstreambuf class is a derived class of streambuf that manages an in-memory
character array.

The file stream classes, ostrstream, istrstream, and strstream, use strstreambuf
member functions to fetch and store characters. Some of these member functions are
virtual functions defined for the streambuf class.

The reserve area, put area, and get area were introduced in the streambuf class
description. For strsteambuf objects, the put area is the same as the get area, but the
get pointer and the put pointer move independently.

Construction/Destruction—Public Members
strstreambuf Constructs a strstreambuf object.

~strstreambuf Destroys a strstreambuf object.

Other Functions—Public Members
freeze Freezes a stream.

str Returns a pointer to the string.

See Also: istrstream, ostrstream, filebuf, stdiobuf

109

strstreambuf::freeze

Member Functions
strstreambuf::freeze

void freeze(intn=1);

Parameter
n A 0 value permits automatic deletion of the current array and its automatic growth
(if it is dynamic); a nonzero value prevents deletion.

Remarks
If a strstreambuf object has a dynamic array, memory is usually deleted on
destruction and size adjustment. The freeze function provides a way to prevent that
automatic deletion. Once an array is frozen, no further input or output is permitted.
The results of such operations are undefined.

The freeze function can also unfreeze a frozen buffer.

See Also: strstreambuf::str

strstreambuf::str

char* str();

Return Value
Returns a pointer to the object’s internal character array. If the strstreambuf object
was constructed with a user-supplied buffer, that buffer address is returned. If the
object has a dynamic array, str freezes the array. You must not send characters to
a frozen strstreambuf object, and you are responsible for deleting the array. If a
dynamic array is empty, then str returns NULL.

Use the freeze function with a 0 parameter to unfreeze a strstreambuf object.

See Also: strstreambuf::freeze

strstreambuf::strstreambuf

strstreambuf();

strstreambuf(int nBytes);

strstreambuf(char* pch, int n, char* pstart =0);

strstreambuf(unsigned char* puch, int n, unsigned char* pustart =0);
strstreambuf(signed char* psch, int n, signed char* psstart = 0);

strstreambuf(void* (*falloc)(long), void (*ffree)(void*));

110

strstreambuf::strstreambuf

Parameters

Remarks

nBytes The initial length of a dynamic stream buffer.

pch, puch, psch A pointer to a character buffer that will be attached to the object.
The get pointer is initialized to this value.

n One of the following integer parameters:

e positive n bytes, starting at pch, is used as a fixed-length stream buffer.

e 0 The pch parameter points to the start of a null-terminated string that
constitutes the stream buffer (terminator excluded).

e negative The pch parameter points to a stream buffer that continues
indefinitely.

e pstart, pustart, psstart The initial value of the put pointer.

falloc A memory-allocation function with the prototype void * falloc(long). The
default is new.

ffree A function that frees allocated memory with the prototype void ffree(void*).
The default is delete.

The four streambuf constructors are described as follows:

Constructor Description

strstreambuf() Constructs an empty strstreambuf object with
dynamic buffering. The buffer is allocated internally
by the class and grows as needed, unless it is frozen.

strstreambuf(int) Constructs an empty strstreambuf object with a
dynamic buffer n bytes long to start with. The buffer
is allocated internally by the class and grows as
needed, unless it is frozen.

strstreambuf(char*, int, char*) Constructs a strstreambuf object from
already-allocated memory as specified by the
arguments. There are constructor variations for both
unsigned and signed character arrays.

strstreambuf(void *(*), void(*)) Constructs an empty strstreambuf object with
dynamic buffering. The falloc function is called for
allocation. The long parameter specifies the buffer
length and the function returns the buffer address. If
the falloc pointer is NULL, operator new is used. The
[free function frees memory allocated by falloc. If the
[free pointer is NULL, the operator delete is used.

m

strstreambuf::~strstreambuf

strstreambuf::~strstreambuf

~strstreambuf();

Remarks
Destroys a strstreambuf object and releases internally allocated dynamic memory
unless the object is frozen. The destructor does not release user-allocated memory.

112

<< (insertion operator) 4, 11-12
ostream class 83

= (assignment operator)
istream class 70
ostream class 86

>> (extraction operator) 14, 18
istream class 68

A

adjustfield data member, ios class 55
allocate member function, streambuf class 93
Arguments, inserting into streams,
ostream::operator<< 83
Arrays
internal character, returning pointer to,
ostrstream::str 88
strstreambuf objects, preventing memory deletion,
strstreambuf::freeze 110
Assignment operator
istream class 70
ostream class 86
attach member function
filebuf class 31
fstream class 35
ifstream class 40
ofstream class 74
Attaching
filebuf objects to specified open file,
filebuf::attach 31
streams
to already open file, ostream::attach 74
to specified open file, ifstream::attach 40
to specified open, filefstream::attach 35

B

bad member function

ios class 46

ofstream class 9
badbit member function, ios class, ios::rdstate 52
base member function, streambuf class 93
basefield data member, ios class 56

Index

beg, (beg, operator), ios class, streambuf::seekpos 100
Binary output files, output streams 10-11
Binary/text mode, setting
filebuf objects, filebuf::setmode 34
stream’s filebuf object, ifstream::setmode 44
streams, i0s& binary 56
streams, ofstream::setmode 78
bitalloc member function, ios class 47
blen member function, streambuf class 94
Book, overview v
Buffer-deletion flags, assigning value for stream,
ios::delbuf 47
Buffering
output streams, effects 10
state, setting for streambuf object,
stream::unbuffered 105
Buffers, flushing, ostream;;flush 80
Bytes, extracting from streams, istream 67

C

C++ synchronizing streams with standard C stdio
streams, i0s::sync_with_stdio 53
Changing position
relative to stream beginning,
streambuf::seekpos 100
relative to stream beginning,streambuf::seekpos 100
streambuf objects, streambuf::seekoff 99
streams, ostream::seekp 81
Character arrays, returning pointer to string stream’s,
istrstream::str 73
Characters
extracting
from stream, discarding, istream::ignore 65
putting back into stream, istream::putback 66
fill, setting for stream, setfill 57
inserting into output stream, ostream::put 81
newline, inserting into output streams,
ostreamé& endl 84
null-terminator, inserting into output streams,
ostream& ends 84

113

Index

14

Characters (continued)
returning number extracted by last unformatted input
function, istream::gcount 63
returning without extracting, istream::peek 66
clear member function
ios class 47
ofstream class 9
Clearing
error-bits, ios::clear 47
format flags
ios::unsetf 54
streams 57
close member function
filebuf class 32
ifstream::close 41
ofstream::close 74
ifstream class 41
input streams 18
ofstream class 9, 74
Closing files
associated with filebuf object, fstream::close 74
attached to filebuf object, filebuf::close 32
filebuf objects, ifstream::close 41
Constructors
filebuf 32
fstream 36
ifstream 41
ios 50
iostream 60
istream 66
istrstream 72
ofstream 75
ostream 81
ostrstream 87
stdiobuf 89
stdiostream 90
streambuf 104
strstream 108
strstreambuf 110
Counting bytes stored in stream buffers,
ostrstream::pcount 88
Creating
filebuf objects to specified open file,
filebuf::filebuf 32
fstream objects, fstream::fstream 36
ifstream objects, ifstream::ifstream 41
Tostream_init objects,
Tostream_init::Iostream_init 61
istream objects, istream::istream 66

Creating (continued)
istream_withassign objects,
istream_withassign::istream_withassign 70
istrstream objects, istrstream::istrstream 72
ofstream objects, ofstream::ofstream 75
ostream objects
iostream::iostream 60
ostream::ostream 81
ostream_withassign objects,
ostream_withassign::ostream_withassign 85
ostrstream objects, ostrstream::ostrstream 87
output file streams 3
stdiobuf objects, stdiobuf::stdiobuf 89
stdiostream objects, stdiostream::stdiostream 90
streambuf objects, streambuf::streambuf 104
strstream objects, strstream::strstream 108
strstreambuf objects, strstreambuf::strstreambuf 110
Customizing output stream manipulators 12

D

Data members, ios class 55
Data, extracting from streams, istream::get 63—-64
dbp member function, streambuf class 94
Debugging using stdout, streambuf::dbp 94
delbuf member function, ios class 47
Destroying
fstream objects, fstream::~fstream 38
ifstream objects, ifstream::~ifstream 42
iostream objects, iostream::~iostream 60
Iostream_init objects,
Tostream_init::~Iostream_init 61
istream objects, istream::~istream 66
istream_withassign objects,
istream_withassign::~istream_withassign 70
istrstream objects, istrstream::~istrstream 72
ofstream objects, ofstream::~ofstream 76

strstreambuf objects,
strstreambuf::~strstreambuf 112
Destroying

ostream objects, ostream::~ostream 81
ostream_withassign objects,
ostream_withassign::~ostream_withassign 85
ostrstream objects, ostrstream::~ostrstream 87
stdiobuf objects, stdiobuf::~stdiobuf 89
stdiostream objects, stdiostream::~stdiostream 91
streambuf objects, streambuf::~streambuf 105
strstream objects, strstream::~strstream 109

Destructors
~filebuf 33
~fstream 38
~ifstream 42
~ios 51
~iostream 60
~Jostream_init 61
~istream 66
~istream_withassign 70
~istrstream 72
~ofstream 76
~ostream 81
~ostream_withassign 85
~ostrstream 87
~stdiobuf 89
~stdiostream 91
~streambuf 105
~strstream 109
~strstreambuf 112
doallocate member function, streambuf class 94

E

eatwhite member function, istream class 62
eback member function, streambuf class 95
ebuf member function, streambuf class 95
egptr member function, streambuf class 95
eof member function
ios class 48
ofstream class 9
eofbit member function, ios class, ios::rdstate 52
epptr member function, streambuf class 95
Error bits
setting or clearing, ios::clear 47
testing if clear, ios::good 50
Errors
extraction 14
1/0, testing for serious, ios::bad 46
processing, ofstream class member functions 9
testing I/0, ios::fail 48
Extracting white space from streams, istream& ws 69
Extraction operators
input streams 14
istream class 68
overloading, input streams 18
testing for 14
using 14

Index

F

fail member function
ios class 48
ofstream class 9
failbit member function
fstream::open 38
ifstream::attach 40
ifstream::open 43
ios::rdstate 52
istream::get 63
ofstream::attach 74
ofstream::open 77
failbit member function, ios class, fstream::attach 35
fd member function
filebuf class 32
fstream class 36
ifstream class 41
ofstream class 74
File descriptors
associated with stream, returning, ifstream::fd 41
associated with streams, returning, fstream::fd 36
returning for filebuf object, filebuf::fd 32
streams, returning, ofstream::fd 74
filebuf class
consume defined 97
described 31
member functions
~filebuf 33
attach 31
close 32,41,74
fd 32
filebuf 32
is_open 33
open 33
setmode 34
filebuf constructor 32
~filebuf destructor 33
filebuf objects
attaching reserve area, fstream::setbuf 39
attaching specified reserve area to stream,
ifstream::setbuf 43
buffer associated with stream, returning pointer,
ifstream::rdbuf 43
closing and disconnecting, ifstream::close 41
closing connected file, filebuf::~filebuf 33
connecting to specified open file, filebuf::attach 31
constructors, ifstream::ifstream 41
creating, filebuf::filebuf 32
destroying, ifstream::~ifstream 42

115

Index

116

filebuf objects (continued)
disconnecting file and flushing, filebuf::close 32
fstream constructors, fstream::fstream 36
opening disk file for stream, ifstream::open 43
returning associated file descriptor, filebuf::fd 32
setting binary/text mode
filebuf::setmode 34
fstream::setmode 39
streams
attaching specified reserve area,
ofstream::setbuf 77
closing, ofstream::close 74
opening file for attachment, ofstream::open 77
returning pointer to associated,
ofstsream::rdbuf 77
testing for connection to open disk file,
filebuf::is_open 33
Files
closing, filebuf objects, filebuf::~filebuf 33

disconnecting from filebuf object, filebuf::close 32

end of, testing, ios::eof 48
name to be opened during construction,
filebuf::open 33
open
testing streams, ofstream::is_open 75
testing to attach to stream, ifstream::is_open 43
opening, attach to stream’s filebuf object,
fstream::open 38
testing for
connection to open, filebuf::is_open 33
stream attachment, fstream::is_open 38
fill member function, ios class 48
Flags
buffer-deletion, assigning value for stream,
ios::delbuf 47
error-state, setting or clearing, ios::clear 47
format clearing, ios::unsetf 54
format flag bits, defining, ios::bitalloc 47
output file stream 7-8
setting specified format bits, ios::setf 52
stream’s internal variable, setting, ios::flags 49
flags member function, ios class 49
floatfield data member, ios class 56
Floating point
format flag bits, obtaining, ios::floatfield 56
precision variable
setting for stream, setprecision 58
setting, ios::precision 51
flush member function, ostream class 80

Flushing
output buffers, ostream& flush 84
stream buffers, ostream::flush 80
Format
bits, setting, ios::setf 52
conversion base, setting to 10, ios& dec 57
conversion base, setting to 16, ios& hex 57
conversion base, setting to 8, ios& oct 57
flag bits, defining, ios::bitalloc 47
Format flags
clearing, ios::unsetf 54
streams
clearing specified, resetiosflags 57
setting, setiosflags 58
freeze destructor, 87
freeze member function, strstreambuf class 110
fstream class
constructor 36
described 18, 34
member functions
~fstream 38
attach 35
fd 36
fstream 36
is_open 38
open 38
rdbuf 39
setbuf 39
setmode 39
~fstream destructor 38
fstream objects, creating, fstream::fstream 36

G

gbump member function, streambuf class 96
gcount member function, istream class 63
Get areas
returning
lower bound, streambuf::eback 95
number of character available for fetching,
streambuf::in_avail 96
pointer to byte after last, streambuf::egptr 95
setting pointer values, streambuf::setg 101
get member function
input streams 16
istream class 63

Get pointers
advancing after returning current character,
streambuf::sbumpc 99
following fetched characters, streambuf::sgetn 102
getting value of, istream::tellg 68
incrementing, streambuf::gbump 96
moving
back, streambuf::sputbackc 103
forward one character, streambuf::stossc 104
returning
character at, streambuf::sgetc 102
to next character to be fetched from streambuf,
streambuf::gptr 96
testing, streambuf::snextc 103
getline member function
input streams 16
istream class 64
Getting stream position, ostream::tellp 82
good member function
ios class 50
ofstream class 9
goodbit member function, ios class, ios::rdstate 52
gptr member function, streambuf class 96

H

hex member function, ios class, ios::bitalloc 47
HR manipulator

ios class 56-57

istream class 69

ostream class 84
HR manipulator

ios class 57

/0
called before insert operations, ostream::opfx 80
clearing format flags, ios::unsetf 54
errors
determining if error bits are set, ios::operator
1) 55
returning current specified error state,
ios::rdstate 52
testing for serious, ios::bad 46
testing if error bits are clear, ios::good 50
testing, ios::fail 48
fill character, setting, setfill 57

Index

1/O (continued)
format flags
clearing specified, resetiosflags 57
setting, setiosflags 58
insert operations, called after, ostream::osfx 80
masks, padding flag bits, ios::adjustfield 55
obtaining floating-point format flag bits,
ios::floatfield 56
obtaining radix flag bits, ios::basefield 56
ostream objects, creating, iostream::iostream 60
providing object state variables without providing
class derivation, ios::xalloc 55
setting
floating-point precision variable,
ios::precision 51
specified format bits, ios::setf 52
stream’s mode to text, ios& text 59
streams
setting internal floating-point precision variable,
setprecision 58
synchronizing C++ with standard C stdio,
ios::sync_with_stdio 53
tying to specified ostream, jos::tie 53
testing for end-of-file, ios::eof 48
virtual overflow function, streambuf::overflow 97
I/O stream buffers, returning number of bytes stored in,
ostrstream::pcount 88
I/O stream classes See iostream classes
I/O streams
assigning istream object to istream_withassign
object, istream_withassign::operator = 70
attaching to specified open file, fstream::attach 35
called
after extraction operations, istream::isfx 65
before extraction operations, istream::ipfx 65
changing get pointer,istream::seekg 67
extracting
bytes from streams,istream::read 67
data from, istream::get 63, 64
white space from, istream::eatwhite 62
discarding characters, istream::ignore 65
extraction operators, istream::operator>> 68
getting value of get pointer, istream::tellg 68
manipulators, custom 22
putting extracted character back into stream,
istream::putback 66
returning character without extracting,
istream::peek 66

117

Index

118

1/O streams (continued)
setting internal field width variable 54

synchronizing internal buffer with external character

source, istream::sync 67
ifstream class
described 13, 40
member functions
~ifstream 42
attach 40
close 41
fd 41
ifstream 41
is_open 43
open 43
rdbuf 43
setbuf 43
setmode 44
ifstream constructor 41
~ifstream destructor 42
ifstream objects
creating, ifstream::ifstream 41
destroying, ifstream::~ifstream 42
ignore member function, istream class 65
in member function, ios class
streambuf::seekoff 99
streambuf::seekpos 100
in_avail member function, streambuf class 96
init member function, ios class 50
Input streams
described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
manipulators 15
manipulators, custom 22
objects, constructing
input file stream constructors 13
input string stream constructors 14
Inserting

arguments into streams, ostream::operator<< 83
characters into output stream, ostream::put 81

insertion operators
ostream class 83
overloading 11-12
using 4

Internal character arrays
returning pointer from stream, ostrstream::str 88
strstream class, returning pointer, strstream::str 108
Internal field width variable, setting, ios::width 54
Internal fill character variable, setting, ios::fill 48
ios class
constructor, ios::ios 50
data members
adjustfield 55
basefield 56
floatfield 56
operator 55
described 44
manipulators, HR 56
member functions
~ios 51
bad 46
badbit 52
bitalloc 47
clear 47
delbuf 47
eof 48
eofbit 52
fail 48
failbit 35, 38, 40, 43, 52, 63,74, 77
fill 48
flags 49
good 50
goodbit 52
hex 47
in 99-100
init 50
ios 50
iword 51
left 47
nocreate 38, 43, 77
out 99-100
precision 51
pword 52
rdbuf 52
rdstate 52
setf 52
stdio 53, 80
sync_with_stdio 53
tie 53
unitbuf 80
unsetf 54
width 54
xalloc 55

ios class (continued)
operators 55
virtual destructor, ios::~ios 51
ios constructor 50
~ios destructor 51
ios enumerators 52
iostream class
described 59
member functions
~jostream 60
~Iostream_init 61
iostream 60
Tostream_init 61
output streams, manipulators 21
iostream class library 20-23
iostream classes
flags 7-8
fstream class 18
hierarchy 2
input streams 15
described 13
extraction errors 14
extraction operators 14, 18
ifstream class 13
istream class 13
istrstream class 13
member functions 15-18
objects, constructing 13-14
output streams
binary output files 10-11
buffering, effects 10
deriving 23-24, 26-28
format control 4-7
insertion operator, overloading 11-12
insertion operators 4
manipulators 19-20, 22
manipulators, custom 12
objects, constructing 3
ofstream class 2
ofstream class member functions 7-9
ostream class 2
ostrstream class 3
strstream class 18
use 1
iostream constructor 60
~iostream destructor 60

iostream objects, destroying, iostream::~jostream 60

Tostream_init class
described 60
member function, iostream class 61
~Iostream_init destructor 61
Tostream_init objects
constructor, lostream_init::Iostream_init 61
destructor, Iostream_init::~Iostream_init 61
ipfx member function, istream class 65
is_open member function
filebuf class 33
fstream class 38
ifstream class 43
ofstream class 75
isfx member function, istream class 65
istream class
described 13, 61
extraction operators, istream::operator>> 68
manipulators, HR 69
member functions
~istream 66
~istream_withassign 70
close 18
eatwhite 62
geount 63
get 16, 63
getline 16, 64
ignore 65
ipfx 65
isfx 65
istream 66
istream_withassign 70
open 15
peek 66
putback 66
read 16-17, 67
seekg 17-18, 67
sync 67
tellg 17-18, 68
operators 68, 70
istream constructor 66
~istream destructor 66
istream objects
assigning to istream_withassign object,
istream_withassign::operator = 70
creating, istream::istream 66
destroying, istream::~istream 66
istream_withassign class described 69
~istream_withassign destructor 70

Index

istream_withassign member function, istream class 70

119

Index

120

istream_withassign objects
creating, istream_withassign::istream_withassign 70
destroying,
istream_withassign::~istream_withassign 70
istrstream class
described 13,71
member functions
~istrstream 72
istrstream 72
rdbuf 72
str 73
istrstream constructor 72
~istrstream destructor 72
istrstream objects
creating, istrstream::istrstream 72
destroying, istrstream::~istrstream 72
iword member function, ios class 51

L

left member function, ios class, ios::bitalloc 47

Manipulators
argument, more than one 21
custom, input streams 22
derived stream classes, using with 22
input streams 15
ios class 56
istream class 69
ostream class 84
output stream, custom 12
with one argument 19, 21
with one parameter 20
Masks
current radix flag bits, ios::basefield 56
floating-point format flag bits, ios::floatfield 56
padding flag bits, ios::adjustfield 55
Member functions
filebuf class 31-34
fstream class 35-36, 38-39
ifstream class 40-44
ios class 46-55
iostream class 60-61
Tostream_init class 61
istream class 62-68, 70, 72
close 18
get 16
getline 16

Member functions (continued)
istream class 62 — 68, 70, 72 (continued)
open 15
read 16-17
seekg 17-18
tellg 17-18
istrstream class 72-73
ofstream class 74-78
bad 9
clear 9
close 9
described 7
eof 9
fail 9
good 9
put 8
rdstate 9
seekp 8
tellp 8
write 8
ostream class 80-82, 85
ostream class 80, 85
ostrstream class 87-88
stdiobuf class 89
stdiostream class 90-91
streambuf class 93-106
strstream class 107-109
strstreambuf class 110-112
Memory allocation, preventing memory deletion for
strstreambuf object with dynamic array,
strstreambuf::freeze 110
Microsoft Windows and iostream programming 2

N

nocreate member function ios class
fstream::open 38
ifstream::open 43
ofstream::open 77

o)

ofstream class
described 2,73
flags 7-8
member functions
~ofstream 76
attach 74
bad 9
clear 9

Index

ofstream class (continued) ~ost ream destructor 81
member functions (continued)
close 9,74
described 7
eof 9
fail 9
fd 74
good 9
is_open 75
ofstream 75
open 7,77
put 8
rdbuf 77
rdstate 9
seekp 8
setbuf 77
setmode 78
tellp 8
write 8
ofstream constructor 75
~ofstream destructor 76
ofstream objects
creating, ofstream::ofstream 75
destroying, fstream::~fstream 38
destroying, ofstream::~ofstream 76
open member function
filebuf class 33
fstream class 38
ifstream class 43
input streams 15
ofstream class 7, 77
Opening files
for attachment to stream’s filebuf object,
ifstream::open 43
for attachment to stream’s filebuf,
ofstream::open 77
to attach to stream filebuf object, fstream::open 38
operator data member, ios class 55
Operators
assignment operator
istream class 70
ostream class 86
extraction, istream class 68
extraction operators, overloading 18
insertion operators, overloading 11-12
ios class 55
void* operator, ios class 55
opfx member function, ostream class 80
osfx member function, ostream class 80

121

Index

ostream class
described 2, 78
manipulators, HR 84
member functions
~ostream 81
~ostream_withassign 85
flush 80
opfx 80
osfx 80
ostream 81
ostream_withassign 85
put 81
seekp 81
tellp 82
write 82
operators 83, 86
ostream classes described 2
ostream constructor 81
ostream objects
assigning to ostream_withassign object,
ostream_withassign::operator= 86
creating
iostream::iostream 60
ostream::ostream 81
destroying, ostream::~ostream 81
ostream, tying stream to, ios::tie 53
ostream_withassign class, described 84
~ostream_withassign destructor 85
ostream_withassign member function
ostream class 85
ostream_withassign objects
assigning specified ostream object to,
ostream_withassign::operator= 86
creating,

ostream_withassign::ostream_withassign 85

destroying,

ostream_withassign::~ostream_withassign 85

ostrstream class
described 3, 86
member functions
~ostrstream 87
ostrstream 87
pcount 88
rdbuf 88
str 88
returning pointer to internal character array,
ostrstream::str 88
ostrstream constructor 87
~ostrstream destructor 87

122

ostrstream objects
creating, ostrstream::ostrstream 87
destroying, ostrstream::~ostrstream 87
out member function, ios class
streambuf::seekoff 99
streambuf::seekpos 100
out_waiting member function, streambuf class 96
Output streams
binary output files 10-11
buffering, effect 10
buffering, effects 10
constructing 3
deriving, streambuf class 23-24, 26-28
format control 4-7
insertion operators 11-12
manipulators
argument, more than one 21
custom 12
with one argument 19, 21
with one parameter 20
member functions, good 9
objects, constructing
output file stream constructors 3
output string stream constructors 3
ofstream class flags 7-8
ofstream member functions
bad 9
clear 9
close 9
described 7
eof 9
fail 9
open 7
put 8
rdstate 9
seekp 8
tellp 8
write 8
ostream class 2
ostrstream class 3
overflow member function, streambuf class 97
Overloading
extraction operators 18
insertion operators 11-12
Overview of book v

P

pbackfail member function, streambuf class 97
pbase member function, streambuf class 98
pbump member function, streambuf class 98
pcount member function
ostrstream class 88
strstream class 107
peek member function, istream class 66
Pointers
get
advancing past spaces, tabs, istream::eatwhite 62
changing for stream, istream::seekg 67
getting value, istream::tellg 68
incrementing, streambuf::gbump 96
put, incrementing, streambuf::pbump 98
repositioning external file pointer,
streambuf::pbackfail 97
returning stdiobuf object associated with stream,
stdiostream::rdbuf 90
returning to
filebuf buffer object associated with stream,
ofstream::rdbuf 77
filebuf object, fstream::rdbuf 39
internal character array from stream,
ostrstream::str 88
streambuf objects associated with stream,
ios::rdbuf 52
strstreambuf buffer object, ostrstream::rdbuf 88
stream’s filebuf buffer object, ifstream::rdbuf 43
pptr member function, streambuf class 98
precision member function, ios class 51
Predefined output stream object
cerr 2
clog 2
cout 2
Put areas
returning
first byte of, streambuf::pptr 98
number of characters available for fetching,
streambuf::out_waiting 96
pointer to byte after last, streambuf::epptr 95
pointer to start of, streambuf::pbase 98
setting pointer values, streambuf::setp 102
storing character, streambuf::sputc 103
put member function
ofstream class 8
ostream class 81

Index

Put pointers
following stored characters, streambuf::sputn 104
incrementing, streambuf::pbump 98

putback member function, istream class 66

pword member function, ios class 52

R

rdbuf member function
fstream class 39
ifstream class 43
ios class 52
istrstream class 72
ofstream class 77
ostrstream class 88
stdiostream class 90
strs tream class 107
strstream class 107
rdstate member function
ios class 52
ofstream class 9
read member function
input streams 16-17
istream class 67
Reserve areas
allocating, streambuf::doallocate 94
attaching to
streambuf object, streambuf::setbuf 101
stream’s filebuf object, ifstream::setbuf 43
returning
pointer to byte after last, streambuf::ebuf 95
pointer, streambuf::base 93
size in bytes, streambuf::blen 94
setting position values with, streambuf::setb 100
setting up, streambuf::allocate 93
Run-time, returning file pointer associated with stdiobuf
object, returning file pointer associated with stdiobuf
object 89

S

Sample programs, stream derivation 23-24, 26-28
sbumpc member function, streambuf class 99
seekg member function

input streams 17-18

istream class 67
seekoff member function, streambuf class 99

123

Index

124

seekp member function
ofstream class 8
ostream class 81
ostream class 81
seekpos member function, streambuf class 100
setb member function, streambuf class 100
setbuf member function
fstream class 39
ifstream class 43
ofstream class 77
streambuf class 101
setf member function, ios class 52
setg member function, streambuf class 101
setmode member function
filebuf class 34
fstream class 39
ifstream class 44
ofstream class 78
setp member function, streambuf class 102
Setting
binary/text mode
filebuf objects, filebuf::setmode 34
stream’s filebuf object, fstream::setmode 39
stream’s filebuf object, ifstream::setmode 44
streams, jos& binary 56
streams, ofstream::setmode 78
error-bits, ios::clear 47
format flags, streams, setioflags 58
streambuf object’s buffering state,
streambuf::unbuffered 105
stream’s internal flags, ios::flags 49
streams
fill character, setfill 57
format conversion base to 10, ios& dec 57
format conversion base to 16, ios& hex 57
format conversion base to 8, ios& oct 57
internal field width parameter, setw 58
internal field width variable, ios::width 54
internal floating-point precision variable,
setprecision 58
sgetc member function, streambuf class 102
sgetn member function, streambuf class 102
snextc member function, streambuf class 103
Special-purpose words table, providing index into
ios::iword 51
ios::pword 52
sputbackc member function, streambuf class 103
sputc member function, streambuf class 103
sputn member function, streambuf class 104

stdio member function, ios class
ios::sync_with_stdio 53
ostream::osfx 80
stdiobuf class
described 88
member functions
~stdiobuf 89
stdiobuf 89
stdiofile 89
stdiobuf constructor 89
~stdiobuf destructor 89
stdiobuf objects
creating, stdiobuf::stdiobuf 89
destroying, stdiobuf::~stdiobuf 89
returning C run-time file pointer,
stdiobuf::stdiofile 89
returning pointers, stdiostream::rdbuf 90
stdiofile member function, stdiobuf class 89
stdiostream class
described 90
member functions
~stdiostream 91
rdbuf 90
stdiostream 90
stdiostream constructor 90
~stdiostream destructor 91
stdiostream objects
creating, stdiostream::stdiostream 90
destroying, stdiostream::~stdiostream 91
stossc member function, streambuf class 104
str member function
istrstream class 73
ostrstream class 88
strstream class 108
strstreambuf class 110
Stream classes, deriving 22
Stream derivation sample program 23-24, 26-28
streambuf class
consume defined 97
custom, deriving 23
defining characteristics of derived class
streambuf::underflow 106
defining derived class characteristics 97
streambuf::sync 105
described 91
get area
returning lower bound, streambuf::eback 95
returning number of character available for
fetching, streambuf::in_avail 96

streambuf class (continued)
get area (continued)
returning pointer to byte after last,
streambuf::epptr 95
setting pointer values, streambuf::setg 101
get pointer
following fetched characters,
streambuf::sgetn 102
incrementing, streambuf::gbump 96
moving back, streambuf::sputbackc 103
moving forward one character,
streambuf::snextc 103
moving forward one character,
streambuf::stossc 104
returning character at, streambuf::sgetc 102
returning to next character to be fetched,

streambuf class (continued)
member functions (continued)

sputn 104

stossc 104
~streambuf 105
streambuf 104
sync 67, 84, 105
unbuffered 105
underflow 106
output streams, deriving 23-24, 26-28

put area

returning first byte, streambuf::pptr 98
returning pointer to start, streambuf::pbase 98
setting pointer values, streambuf::setp 102
storing character, streambuf::sputc 103

put pointer

streambuf::gptr 96
testing, streambuf::snextc 103
member functions

allocate 93
base 93

blen 94

dbp 94
doallocate 94
eback 95
ebuf 95
egptr 95
epptr 95
gbump 96
gptr 96
in_avail 96
out_waiting 96
overflow 97
pbackfail 97
pbase 98
pbump 98
pptr 98
sbumpc 99
seekoff 99
seekpos 100
setb 100
setbuf 101
setg 101
setp 102
sgetc 102
sgetn 102
snextc 103
sputbackc 103
sputc 103

following stored characters,
streambuf::sputn 104
incrementing, streambuf::pbump 98
repositioning external file pointer,
streambuf::pbackfail 97
reserve area
attaching to object, streambuf::setbuf 101
returning pointer to byte after last,
streambuf::ebuf 95
returning pointer, streambuf::base 93
returning size in bytes, streambuf::blen 94
setting position values, streambuf::setb 100
setting up, streambuf::allocate 93
returning
current character and advancing get pointer,
streambuf::sbumpc 99
number of characters available for fetching,
streambuf::out_waiting 96
pointer to byte after last, streambuf::egptr 95
virtual
overflow function, streambuf::overflow 97
sync function, streambuf::sync 105

Index

underflow function, streambuf::underflow 106

writing debugging information on stdout,
streambuf::dbp 94
streambuf constructor 104
~streambuf destructor 105
Streambuf objects
associated with stream, returning pointer to,
ios::rdbuf 52
associating with stream, ios::init 50
changing position relative to stream beginning,
streambuf::seekpos 100

125

Index

126

Streambuf objects (continued)

changing position, streambuf::seekoff 99
creating, streambuf::streambuf 104

reserve area, allocating, streambuf::doallocate 94
setting buffering state, streambuf::unbuffered 105
virtual destructor, streambuf::~streambuf 105

Streams

assigning istream object to istream_withassign
object, istream_withassign::operator = 70
associating streambuf object with, ios::init 50
attaching
to already open file, ofstream::attach 74
to specified open file, ifstream::attach 40
buffer-deletion flag, assigning value to,
ios::delbuf 47
buffers
flushing, ostream::flush 80
returning number of bytes stored in,
ostrstream::pcount 88
returning pointer to strstreambuf buffer object 88
C++, synchronizing with standard C stdio streams,
ios::sync_with_stdio 53
changing position value, ostream::seekp 81
characters
inserting into output, ostream::put 81
returning next without extracting,
istream::peek 66
returning number extracted by last unformatted
input function, istream::gcount 63
synchronizing internal buffer with external
character source, istream::sync 67
clearing format flags, ios::unsetf 54
defined 1
determining if error bits are set, ios::operator !() 55
errors
determining if error bits are set, ios::operator
10 55
if error bits are clear, ios::good 50
returning current specified error state,
ios::rdstate 52
extracting
and discarding characters, istream::ignore 65
data, istream::get 63, 64
white space, istream& ws 69
white space, istream::eatwhite 62
extraction operations
called after, istream::isfx 65
called before, istream::ipfx 65

Streams (continued)

extraction operations (continued)
operators, istream::operator>> 68
specified number of bytes, istream::read 67
file descriptor, returning, ofstream::fd 74
filebuf objects
attaching specified reserve area,
fstream::setbuf 39
attaching specified reserve area,
ifstream::setbuf 43
attaching specified reserve area,
ofstream::setbuf 77
closing, ofstream::close 74
opening file and attaching, fstream::open 38
opening for attachment, ofstream::open 77
returning pointer to associated,
ofstream::rdbuf 77
returning pointer to, ifstream::rdbuf 43
setting binary/text mode, fstream::setmode 39
setting binary/text mode, ofstream::setmode 78
flushing output buffer, ostreamé& flush 84
get pointers
changing, istream::seekg 67
getting value, istream::tellg 68
getting position value, ostream::tellp 82
input, putting character back into,
istream::putback 66
insert operations
called after, ostream::osfx 80
called before, ostream::opfx 80
inserting
arguments into, ostream::operator<< 83
bytes, ostream::write 82
newline character and flushing buffer, ostreamé&
endl 84
null-terminating character, ostreamé& ends 84
internal flags variable, setting, ios::flags 49
istream objects
creating, istream::istream 66
destroying, istream::~istream 66
masks
current radix flag bits, ios::basefield 56
floating-point format flag bits, ios::floatfield 56
object state variables, providing without class
derivation, ios::xalloc 55
opening file and attaching to filebuf object,
ifstream::open 43
padding flag bits, obtaining, ios::adjustfield 55

Streams (continued)
returning associated file descriptor
fstream::fd 36
ifstream::fd 41
returning pointer to associated filebuf object,
fstream::rdbuf 39
setting
binary/text mode, ifstream::setmode 44
fill character, setfill 57
floating-point precision variable,
ios::precision 51
format conversion base to 10, ios& dec 57
format conversion base to 16, ios& hex 57
format conversion base to 8, ios& oct 57
internal field width parameter, setw 58
internal field width variable, ios::width 54
internal fill character variable, ios::fill 48
internal floating-point precision variable,
setprecision 58
mode to text, ios& text 59
specified format bits, ios::setf 52
text to binary mode, ios& binary 56
special-purpose words table, providing index into
ios:tiword 51
ios::pword 52
streambuf objects, returning pointer to, ios::rdbuf 52
synchronizing internal buffer with external character
source, istream::sync 67
testing end-of-file, ios::eof 48
testing for attachment to open file
disk file, fstream::is_open 38
ifstream::is_open 43
ofstream::is_open 75
testing for serious I/O errors, ios::bad 46
tying to ostream, i0s::tie 53
virtual overflow function, streambuf::overflow 97
Strings, streams, returning pointer to character array,
istrstream::str 73
strstream class
buffer, returning number of bytes,
strstream::pcount 107
described 18, 106
member functions
~strstream 109
pcount 107
rdbuf 107
str 108
strstream 108

Index

strstream class (continued)
returning
number of bytes in buffer, strstream::pcount 107
pointer to internal character array,
strstream::str 108
pointer to strstreambuf object,
strstream::rdbuf 107
strstream constructor 108
~strstream destructor 109
strstream objects
creating, strstream::strstream 108
destroying, strstream::~strstream 109
returning pointer, strstream::rdbuf 107
strstreambuf class
described 109
member functions
~strstreambuf 112
freeze 87,110
str 110
strstreambuf 110
preventing automatic memory deletion,
strstreambuf::freeze 110
returning pointer to internal character array,
strstreambuf::str 110
strstreambuf constructor 110
~strstreambuf destructor 112
strstreambuf objects
creating, strstreambuf::strstreambuf 110
destroying, strstreambuf::~strstreambuf 112
returning pointer from associated stream,
ostrstream::rbuf 88
returning pointer to internal character array,
strstreambuf::str 110
sync member function
istream class 67
streambuf class 105
istream::sync 67
ostream;:HR 84
sync_with_stdio member function, ios class 53
Synchronizing C++ streams with standard C stdio
streams, i0s::sync_with_stdio 53

T

tellg member function
input streams 17-18
istream class 68

127

Index

128

tellp member function
ofstream class 8
ostream class 82
Testing for extraction operators 14
Text streams, setting mode to, ios& text 59
tie member function, ios class 53
Tiny-model programs and iostream programming 2

U

unbuffered member function, streambuf class 105
underflow member function, streambuf class 106
unitbuf member function, ios class, ostream::osfx 80
unsetf member function, ios class 54

vV

Variables
floating-point precision, setting, jos::precision 51
internal field width, setting, ios::width 54
internal fill character, setting, ios::fill 48
object state, providing without class derivation,
ios::xalloc 55
Virtual
sync function, streambuf class, streambuf::sync 105
underflow function, streambuf class,
streambuf::underflow 106
Void* operator, ios class 55, 57

w

Width
internal field variable, setting, ios::width 54
streams, setting internal field parameter, setw 58
width member function, ios class 54
write member function
ofstream class 8
ostream class 82

X

xalloc member function, ios class 55

Contributors to iostream Class Library Reference

Richard Carlson, Index Editor
David Adam Edelstein, Art Director
Roger Haight, Editor
Marilyn Johnstone, Writer
Seth Manheim, Writer
WASSER Studios, Production

G

Microsoft th e

Visual C++

in both hands.

This four-volume collection is the complete printed product documentation for Microsoft Visual C++
version 5.0, the development system for Win32° In book form, this information is portable, easy to access
and browse, and a comprehensive alternative to the substantial online help system in Visual C+-. The
volumes are numbered as a set—but you can buy any or all of the volumes, any time you need them. So
take hold of all the power. Get the MICROSOFT VISUAL C++ 5.0 PROGRAMMER’S REFERENCE SET.

wer of

i

El | E-] E':|
=

,,,,,, b P ‘ o

Volume 4 of the 4-volume
Visual C++ 5.0 Programmer's
Reference Set

Volume 3 of the 4-volume
Visual C++ 5.0 Programmer’'s
Reference Set

Volume 2 of the 4-volume
Visuat C++ 5,0 Programmer's.
Reference Set

Volume 1 of the 4-volume
Visual C++ 5.0 Programmer’s
Reference Set

jcrosoft N e
"VisualC++

jcrosoft * ' jcrosoft” .
"VisualC++ fsual C++

MFC Library Reference,
Part2

ic ft
‘Visual Cc++

MFC Library Reference,
Part 1

RunTime Library Reference :f', Language Reference

Microsoft® Visual C++® MFC Microsoft® Visual C++® MFC Microsoft® Visual C++® Microsoft® Visual C++°

Library Reference, Part 1 Library Reference, Part 2 Run-Time Library Reference Language Reference
U.S.A. $39.99 U.S.A. $39.99 U.S.A. $39.99 U.S.A. $29.99
U.K. £36.99 U.K. £36.99 UK £36.99 U.K. £27.49
Canada $53.99 Canada $53.99 Canada $53.99 Canada $39.99
ISBN 1-57231-518-0 ISBN 1-57231-519-9 ISBN 1-57231-520-2 ISBN 1-57231-521-0

Microsoft Press® products are available worldwide wherever quality computer books are sold. For more information, contact your book retailer, computer
reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspress/, or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

Microsoft Press

Prices and availability dates are subject to change.

A GUIDE FOR
DEVELOPERS &
MANAGERS

U.S.A. $22.95
U.K. £20.99
Canada $30.95

ISBN 1-57231-216-5

Microsoft Press® products are available worldwide wherever quality
computer books are sold. For more information, contact your book
retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at
www.microsoft.com/mspress/, or call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S.
(in Canada: 1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

in COM,
ActiveX.

When it comes to strategic technologies such as
these, what decision makers need first is a good
explanation—one that gives them a quick, clear
understanding of the parts and the greater whole.
And that's exactly what UNDERSTANDING ACTIVEX AND
OLE does. Here you'll learn the strategic significance
of the Component Object Model (COM) as the
foundation for Microsoft’s object technology. You'll
understand the evolution of OLE. You'll discover the
powerful ActiveX technology for the Internet. In all
these subjects and more, this book provides a firm
conceptual grounding without extraneous details or
implementation specifics. UNDERSTANDING ACTIVEX AND
OLE is also easy to browse, with colorful illustrations
and “fast track” margin notes. Get it quick. And get
up to speed on a fundamental business technology.

The Strategic Technology series is for
executives, business planners, software
designers, and technical managers who
need a quick, comprehensive introduction
to important technologies and their impli-
cations for business.

Microsoft Press

Blueprint for
excellence.

This classic from Steve McConnell is a practical guide to the art

A rachcal and science of constructing software. Examples are provided in C,
CODE bt o Pascal, Basic, Fortran, and Ada, but the focus is on successful
CO MPLETE St programming techniques. CODE COMPLETE provides a larger per-

spective on the role of construction in the software development
process that will inform and stimulate your thinking about your own
projects—enabling you to take strategic action rather than fight the
same battles again and again.

Get all of the Best Practices books.

INBUGGING
THE
DEVELOTMENT
IPROCESS

W R\TIN(.;
1 soup
CONt

Winner—
Software
Development

~ STEVE McCONNELL

USA. $35.00 Jolt Excellence
UK. £20.95 Award, 1994!
Canada $44.95
ISBN 1-55615-484-4
Rapld Development
Steve McConnell
U.S.A. $35.00 ($46.95 Canada; £32.49 U.K)

ISBN 1-55615-900-5

“Very few books | have encountered in the last few years have
given me as much pleasure to read as this one.”

—Ray Duncan
“The definitive book on software construction. This is a book that belongs on every Writing Solld Code
software developer’s bookshelf.” Steve Maguire
—Warren Keuffel, USA. $24.95 ($32.95 Canada; £21.95 U.K)
Software Development ISBN 1-55615-551-4

“I cannot adequately express how good this book really is...a work of brilliance.”

—Jeff Duntemann,
PC Techniques

“If you are or aspire to be a professional programmer, this may be the wisest $35
investment you'll ever make.”

—IEEE Micro

Migcrosoft Press® products are available worldwide wherever quality computer books are sold.
For more information, contact your book retailer, computer reseller, or local Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at www.microsoft.com/mspress/,
or call 1-800-MSPRESS in the U.S. (in Canada: 1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

Prices and availability dates are subject to change.

“Every working programmer should own this book.”
—IEEE Spectrum

Debugging the Development Process

Steve Maguire

U.S.A. $24.95 ($32.95 Canada; £21.95 UK.
ISBN 1-55615-650-2

“A milestone in the game of hitting milestones.”
—ACM Computing Reviews

Ics of Softy
Jim McCarthy

U.S.A. $24.95 ($33.95 Canada; £22.99 UK)
ISBN 1-55615-823-8

“I recommend it without reservation to every developer.”

—Jesse Berst, editorial director, |

Microsoft Press

Learn to create programmable
32-bit applications

()|_F Automatio

i you program for Microsoft® Windows? OLE Auto- P wicrosot” Prolessionat Reference

mation gives you real power—to create applications "

whose objects can be manipulated from external

applications, to develop tools that can access and

manipulate objects, and more. And the OLE AUTOMA-

TION PROGRAMMER'S REFERENCE gives you the power OLE Automation

to put OLE Automation to work. Everything is covered, ’

from designing applications that expose and access Progl' ammers Reference

OLE Automation Objects to creating type libraries. Creating Programmable 32-Bit Applications
. with OLE Automation.

So tap the power of OLE Automation. Make the

OLE AUTOMATION PROGRAMMER'’S REFERENCE your

essential guide.

- MicrosoftPress

U.S.A. $24.95

U.K. £22.99
Canada $33.95
Microsoft Press® products are available worldwide wherever quality computer ISBN 1-55615-851-3

books are sold. For more information, contact your book retailer, computer
reseller, or focal Microsoft Sales Office.

To locate your nearest source for Microsoft Press products, reach us at

www.microsoft.com/mspress/, or call 1-800-MSPRESS in the U.S. (in Canada:
1-800-667-1115 or 416-293-8464).

To order Microsoft Press products, call 1-800-MSPRESS in the U.S. (in Canada: = ®
1-800-667-1115 or 416-293-8464). ’cms r eSS

Prices and availability dates are subject to change.

Run-Time
Library Reference

soft’

isual C++

Run-Time Library Reference

IC

Introduction ix

C Run-Time Libraries ix
Building the Run-Time Libraries xi
Compatibility xi

ANSI C Compliance xi

UNIX xii

Win32 Platforms xii

Backward Compatibility xii
Required and Optional Header Files xiii
Choosing Between Functions and Macros xiii
Type Checking xv

Chapter 1 Run-Time Routines by Category 1
Argument Access 1
Buffer Manipulation 2
Byte Classification 2
Character Classification 3
Data Conversion 4
Debug Routines 6
Directory Control 9
Error Handling 9
Exception Handling Routines 10
File Handling 10
Floating-Point Support 11
Long Double 13
Input and Output 14
Text andTIE‘inary Mode File /O 15
Unicode Stream I/O in Text and Binary Modes 15
Stream I/O 16
Low-level /O 18
Console and Port /O 19

Contents

Contents

Internationalization 20
Locale 20
Code Pages 22
Interpretation of Multibyte-Character Sequences 23
Single-byte and Multibyte Character Sets 23
SBCS and MBCS Data Types 24
Unicode: The Wide-Character Set 24
Using Generic-Text Mappings 25
A Sample Generic-Text Program 27
Using TCHAR .H Data Types with _MBCS 29
Memory Allocation 31
Process and Environment Control 32
Searching and Sorting 34
String Manipulation 35
System Calls 37
Time Management 37

Chapter 2 Global Variables and Standard Types 39
Global Variables 39
_amblksiz 39
_daylight, _timezone, and _tzname 40
_doserrno, errno, _sys_errlist, and _sys_nerr 41
_environ, _wenviron 42
_fileinfo 43
_fmode 43
_osver, _winmajor, _winminor, _winver 44
_pgmptr, _wpgmptr 44
Control Flags 45
_CRTDBG_MAP_ALLOC 45
_DEBUG 46
_crtDbgFlag 46
Standard Types 46

Contents

Chapter 3 Global Constants 49
BUFSIZ 50
CLOCKS_PER_SEC, CLK_TCK 50
Commit-To-Disk Constants 50
Data Type Constants 51
EOF, WEOF 53
errno Constants 53
Exception-Handling Constants 54
EXIT_SUCCESS, EXIT_FAILURE 55
File Attribute Constants 55
File Constants 56
File Permission Constants 56
File Read/Write Access Constants 57
File Translation Constants 58
FILENAME_MAX 58
FOPEN_MAX, SYS_OPEN 58
_FREEENTRY, _USEDENTRY 59
fseek, _lseek Constants 59
Heap Constants 59
_HEAP_MAXREQ 60
HUGE_VAL 60
__LOCAL_SIZE 60
Locale Categories 61
_locking Constants 61
Math Error Constants 62
MB_CUR_MAX 62
NULL 63
Path Field Limits 63
RAND_MAX 63
setvbuf Constants 64
Sharing Constants 64
signal Constants 64

Contents

signal Action Constants 65

_spawn Constants 65

_stat Structure st_mode Field Constants 66
stdin, stdout, stderr 66

TMP_MAX, L_tmpnam 67

Translation Mode Constants 67
_WAIT_CHILD, _WAIT_GRANDCHILD 68
32-bit Windows Time/Date Formats 68

Chapter 4 Debug Version of the C Run-Time Library 69
_ASSERT, _ASSERTE Macros 69
_calloc_dbg 72
_CrtCheckMemory 74
_CrtDbgReport 79
_CrtDoForAlIClientObjects 85
_CrtDumpMemoryLeaks 89
_CrtIsValidHeapPointer 90
_CrtlsMemoryBlock 92
_CrtIsValidPointer 94
_CrtMemCheckpoint 96
_CrtMemDifference 97
_CrtMemDumpAllObjectsSince 98
_CrtMemDumpStatistics 108
_CrtSetAllocHook 109
_CrtSetBreakAlloc 110
_CrtSetDbgFlag 112
_CrtSetDumpClient 115
_CrtSetReportFile 117
_CrtSetReportHook 121
_CrtSetReportMode 126
_expand_dbg 130
_free_dbg 133
_malloc_dbg 134
_msize_dbg 135
_realloc_dbg 137
_RPT, _RPTF Macros 139

Vi

Contents

About the Alphabetic Reference 143

Appendixes

Appendix A Language and Country Strings 673
Language and Country Strings 673

Language Strings 673

Country Strings 675

Appendix B Generic-Text Mappings 677
Data Type Mappings 677
Constant and Global Variable Mappings 678
Routine Mappings 678

Index 683

Tables

Table R.1 Hexadecimal Values 191

Table R.2 Equivalence of iswctype(¢, desc) to Other isw Testing Routines 329
Table R.3 printf Type Field Characters 464

Table R.4 Flag Characters 465

Table R.5 How Precision Values Affect Type 467

Table R.6 Size Prefixes for printf and wprintf Format-Type Specifiers 468
Table R.7 Type Characters for scanf functions 496

Table R.8 Size Prefixes for scanf and wscanf Format-Type Specifiers 498

vii

Introduction

The Microsoft run-time library provides routines for programming for the
Microsoft Windows NT and Windows 95 operating systems. These routines
automate many common programming tasks that are not provided by the

C and C++ languages.

C Run-Time Libraries

The following table lists the release versions of the C run-time library files,

along with their associated compiler options and environment variables. Prior to
Visual C++ 4.2, the C run-time libraries contained the iostream library functions.

In Visual C++ 4.2, the old iostream library functions have been removed from
LIBC.LIB, LIBCMT.LIB, and MSVCRT.LIB. (This change was made because

the Standard C++ library has been added to Visual C++, and it contains a new set

of iostream libraries. Thus, two sets of iostream functions are now included in

Visual C++.) The old iostream functions now exist in their own libraries: LIBCLLIB,
LIBCIMT.LIB, and MSVCIRT.LIB. The new iostream functions, as well as many
other new functions, exist in the Standard C++ libraries: LIBCP.LIB, LIBCPMT.LIB,
and MSVCPRT.LIB.

The Standard C++ library and the old iostream library are incompatible, and only
one of them can be linked with your project. See “Port to the Standard C++ Library”
and the “Standard C++ Library Overview” for details.

When you build a release version of your project, one of the basic C run-time
libraries (LIBC.LIB, LIBCMT.LIB, and MSVCRT.LIB) is linked by default,
depending on the compiler option you choose (single-threaded, multithreaded,
or DLL). Depending on the headers you use in your code, a library from the
Standard C++ libraries or one from the old iostream libraries may also be linked:

Run-Time Library Reference

e If you include a “Standard C++ library header” in your code, a Standard
C++ library will be linked in automatically by Visual C++ at compile time.
For example:

#include <ios>

e If you include an “old iostream library header” an old iostream library will be
-linked in automatically by Visual C++ at compile time. For example:

f#Finclude <ios.h>

Note that headers from the Standard C++ library and the old iostream library

cannot be mixed.

Headers determine whether a Standard C++ library, an old iostream library, or neither
will be linked. Compiler options determine which of the libraries to be linked is the
default (single-threaded, multithreaded, or DLL). When a specific library compiler
option is defined, that library is considered to be the default and its environment
variables are automatically defined.

C Run-Time Library Characteristics Option Defined

(without iostream)

LIBC.LIB Single threaded, static link /ML

LIBCMT.LIB Multithreaded, static link /MT _MT

MSVCRT.LIB Multithreaded, dynamic link (import ~ /MD _MT, _DLL
library for MSVCRT.DLL)

Standard C++ Library Characteristics Option Defined

LIBCP.LIB Single threaded, static link /ML

LIBCPMT.LIB Multithreaded, static link /MT _MT

MSVCPRT.LIB Multithreaded, dynamic link (import /™MD _MT, _DLL
library for MSVCRT.DLL)

Old lostream Library Characteristics Option Defined

LIBCLLIB Single threaded, static link /ML

LIBCIMT.LIB Multithreaded, static link /MT _MT

MSVCIRT.LIB Multithreaded, dynamic link (import ~ /MD _MT, _DLL

library for MSVCIRT.DLL)

To build a debug version of your application, the _DEBUG flag must be defined and
the application must be linked with a debug version of one of these libraries. For more
information about using the debug versions of the library files, see “C Run-Time

Debug Libraries.”

Introduction

Building the Run-Time Libraries

There are two batch files provided for building the C run-time libraries from the
source code included with Visual C++:

¢ \Program Files\DevStudio\Vc\CRT\SRC\BLDWIN95.BAT, used when building
on Windows 95

o \Program Files\DevStudio\Vc\CRT\SRC\BLDNT.CMD, used when building on
Windows NT

When using either BLDNT.CMD or BLDWINO95.BAT, set the VSTOOLS environment
variable to the root of the Visual C++ installation (such as C:\Program Files\DevStudio
\Vc\Bin). If this environment variable is not set, an error message will be displayed
and the batch file will exit.

Compatibility

The Microsoft run-time library supports American National Standards Institute (ANSI)
C and UNIX C. In this book, references to UNIX include XENIX, other UNIX-like
systems, and the POSIX subsystem in Windows NT and Windows 95. The description
of each run-time library routine in this book includes a compatibility section for these
targets: ANSI, Windows 95 (listed as Win 95), and Windows NT (Win NT). All run-
time library routines included with this product are compatible with the Win 32 APL

ANSI C Compliance

The naming convention for all Microsoft-specific identifiers in the run-time
system (such as functions, macros, constants, variables, and type definitions) is
ANSI-compliant. In this book, any run-time function that follows the ANSI/ISO C
standards is noted as being ANSI compatible. ANSI-compliant applications should
only use these ANSI compatible functions.

The names of Microsoft-specific functions and global variables begin with a single
underscore. These names can be overridden only locally, within the scope of your
code. For example, when you include Microsoft run-time header files, you can still
locally override the Microsoft-specific function named _open by declaring a local
variable of the same name. However, you cannot use this name for your own global
function or global variable.

The names of Microsoft-specific macros and manifest constants begin with two
underscores, or with a single leading underscore immediately followed by an
uppercase letter. The scope of these identifiers is absolute. For example, you
cannot use the Microsoft-specific identifier _UPPER for this reason.

Xi

Run-Time Library Reference

UNIX

If you plan to transport your programs to UNIX, follow these guidelines:

e Do not remove header files from the SYS subdirectory. You can place the SYS
header files elsewhere only if you do not plan to transport your programs to UNIX.

e Use the UNIX-compatible path delimiter in routines that take strings representing
paths and filenames as arguments. UNIX supports only the forward slash (/) for
this purpose, whereas Win 32 operating systems support both the backslash (\) and
the forward slash (/). Thus this book uses UNIX-compatible forward slashes as
path delimiters in #include statements, for example. (However, the Windows NT
and Windows 95 command shell, CMD.EXE, does not support the forward slash
in commands entered at the command prompt.)

e Use paths and filenames that work correctly in UNIX, which is case sensitive. The file
allocation table (FAT) file system in Win 32 operating systems is not case sensitive;
the installable Windows NT file system (NTFS) of Windows NT preserves case for
directory listings but ignores case in file searches and other system operations.

Note In this version of Visual C++, UNIX compatibility information has been removed from the
function descriptions.

Win32 Platforms

The C run-time libraries support Windows 95 and Windows NT, but not Win 32s.
Windows 95 and Windows NT support the Win32 Application Programming
Interface (API), but only Windows NT provides full Unicode support. In addition,
any Win 32 application can use a multibyte character set (MBCS).

Backward Compatibility

xii

The compiler views a structure that has both an old name and a new name as two
different types. You cannot copy from an old structure type to a new structure type.
Old prototypes that take struct pointers use the old struct names in the prototype.

For compatibility with Microsoft C professional development system version 6.0
and earlier Microsoft C versions, the library OLDNAMES.LIB maps old names
to new names. For instance, open maps to _open. You must explicitly link with
OLDNAMES.LIB only when you compile with the following combinations of
command-line options:

¢ /Z1 (omit default library name from object file) and /Ze (the default—use
Microsoft extensions)

Introduction

e /link (linker-control), /NOD (no default-library search), and /Ze

For more information about compiler command-line options, see “Compiler
Reference” in the Visual C++ Programmer’s Guide.

Required and Optional Header Files

The description of each run-time routine in this book includes a list of the required
and optional include, or header (.H), files for that routine. Required header files need
to be included to obtain the function declaration for the routine or a definition used
by another routine called internally. Optional header files are usually included to take
advantage of predefined constants, type definitions, or inline macros. The following
table lists some examples of optional header file contents:

Definition Example

Macro definition If a library routine is implemented as a macro, the macro definition
may be in a header file other than the header file for the original
routine. For instance, the toupper macro is defined in the header file
CTYPE.H, while the function toupper is declared in STDLIB.H.

Manifest constant Many library routines refer to constants that are defined in header
files. For instance, the _open routine uses constants such as
_O_CREAT, which is defined in the header file FCNTL.H.

Type definition Some library routines return a structure or take a structure as an

argument. For example, stream input/output routines use a structure
of type FILE, which is defined in STDIO.H.

The run-time library header files provide function declarations in the ANSI/ISO C
standard recommended style. The compiler performs “type checking” on any routine
reference that occurs after its associated function declaration. Function declarations
are especially important for routines that return a value of some type other than int,
which is the default. Routines that do not specify their appropriate return value in
their declaration will be considered by the compiler to return an int, which can
cause unexpected results. See “Type Checking” for more information.

Choosing Between Functions and Macros

Most Microsoft run-time library routines are compiled or assembled functions, but
some routines are implemented as macros. When a header file declares both a function
and a macro version of a routine, the macro definition takes precedence, because it
always appears after the function declaration. When you invoke a routine that is
implemented as both a function and a macro, you can force the compiler to use the
function version in two ways:

xiii

Run-Time Library Reference

¢ Enclose the routine name in parentheses.

#include <ctype.h>
a = toupper(a); //use macro version of toupper
a = (toupper)(a); //force compiler to use function version of toupper

e “Undefine” the macro definition with the #undef directive:

ftinclude <ctype.h>
jfundef toupper

If you need to choose between a function and a macro implementation of a library
routine, consider the following trade-offs:

o Speed versus size. The main benefit of using macros is faster execution time.
During preprocessing, a macro is expanded (replaced by its definition) inline each
time it is used. A function definition occurs only once regardless of how many
times it is called. Macros may increase code size but do not have the overhead
associated with function calls.

¢ Function evaluation. A function evaluates to an address; a macro does not. Thus
you cannot use a macro name in contexts requiring a pointer. For instance, you
can declare a pointer to a function, but not a pointer to a macro.

¢ Macro side effects. A macro may treat arguments incorrectly when the macro
evaluates its arguments more than once. For instance, the toupper macro is
defined as:

ffdefine toupper(c) ((islower(c)) ? _toupper(c) : (c))
In the following example, the toupper macro produces a side effect:

f#include <ctype.h>

int a = 'm";

a = toupper(a++);
The example code increments a when passing it to toupper. The macro evaluates
the argument a++ twice, once to check case and again for the result, therefore

increasing a by 2 instead of 1. As a result, the value operated on by islower differs
from the value operated on by toupper.

¢ Type-checking. When you declare a function, the compiler can check the
argument types. Because you cannot declare a macro, the compiler cannot check
macro argument types, although it can check the number of arguments you pass
to a macro.

Xiv

Type Checking

Introduction

The compiler performs limited type checking on functions that can take a variable

number of arguments, as follows:

Function Call

Type-Checked Arguments

_cprintf, _cscanf, printf, scanf
fprintf, fscanf, sprintf, sscanf

_snprintf

_open
_sopen

_execl, _execle, _execlp, _execlpe

_spawnl, _spawnle, _spawnlp, _spawnlpe

First argument (format string)

First two arguments (file or buffer and format
string)

First three arguments (file or buffer, count, and
format string)

First two arguments (path and _open flag)

First three arguments (path, _open flag, and
sharing mode)

First two arguments (path and first argument
pointer)

First three arguments (mode flag, path, and first
argument pointer)

The compiler performs the same limited type checking on the wide-character

counterparts of these functions.

Xv

CHAPTER 1

Run-Time Routines by Category

This chapter lists and describes Microsoft run-time library routines by category.
For reference convenience, some routines are listed in more than one category.
Multibyte-character routines and wide-character routines are grouped with
single-byte-character counterparts, where they exist.

The main categories of Microsoft run-time library routines are:

Argument access Floating-point support

Buffer manipulation Input and output

Byte classification Internationalization

Character classification Memory allocation

Data conversion Process and environment control
Debug Searching and sorting

Directory control String manipulation

Error handling System calls

Exception handling Time management

File handling

Argument Access

The va_arg, va_end, and va_start macros provide access to function arguments
when the number of arguments is variable. These macros are defined in STDARG.H
for ANSI C compatibility, and in VARARGS.H for compatibility with UNIX
System V.

Run-Time Library Reference

Argument-Access Macros

Macro Use

va_arg Retrieve argument from list

va_end Reset pointer

va_start Set pointer to beginning of argument list

Buffer Manipulation

Use these routines to work with areas of memory on a byte-by-byte basis.

Buffer-Manipulation Routines

Routine Use

_memccpy Copy characters from one buffer to another until given character or given
number of characters has been copied

memchr Return pointer to first occurrence, within specified number of characters,
of given character in buffer

mememp Compare specified number of characters from two buffers

memcpy Copy specified number of characters from one buffer to another

_memicmp Compare specified number of characters from two buffers without regard
to case

memmove Copy specified number of characters from one buffer to another

memset Use given character to initialize specified number of bytes in the buffer

_swab Swap bytes of data and store them at specified location

When the source and target areas overlap, only memmove is guaranteed to copy the
full source properly.

Byte Classification

Each of these routines tests a specified byte of a multibyte character for satisfaction
of a condition. Except where specified otherwise, the test result depends on the
multibyte code page currently in use.

Note By definition, the ASCII character set is a subset of all multibyte-character sets.
For example, the Japanese katakana character set includes ASCII as well as non-ASCII
characters.

The manifest constants in the following table are defined in CTYPE.H:

Chapter 1 Run-Time Routines by Category

Multibyte-Character Byte-Classification Routines

Routine Byte Test Condition

isleadbyte Lead byte; test result depends on LC_CTYPE category setting of
current locale :

_ismbbalnum isalnum |l _ismbbkalnum

_ismbbalpha isalpha Il _ismbbkalnum

_ismbbgraph Same as _ismbbprint, but _ismbbgraph does not include the space
character (0x20)

_ismbbkalnum Non-ASCII text symbol other than punctuation. For example, in code
page 932 only, _ismbbkalnum tests for katakana alphanumeric

_ismbbkana Katakana (0xA1-0xDF), code page 932 only

_ismbbkprint Non-ASCII text or non-ASCII punctuation symbol. For example, in

code page 932 only, _ismbbkprint tests for katakana alphanumeric or
katakana punctuation (range: 0xA1— 0xDF).

_ismbbkpunct Non-ASCII punctuation. For example, in code page 932 only,
_ismbbkpunct tests for katakana punctuation.

_ismbblead First byte of multibyte character. For example, in code page 932 only,
valid ranges are 0x81-0x9F, 0xE0-0xFC.

_ismbbprint isprint |l _ismbbkprint. ismbbprint includes the space character (0x20)

_ismbbpunct ispunct |l _ismbbkpunct

_ismbbtrail Second byte of multibyte character. For example, in code page 932 only,
valid ranges are 0x40-0x7E, 0x80-0xEC.

_ismbslead Lead byte (in string context)

_ismbstrail Trail byte (in string context)

_mbbtype Return byte type based on previous byte

_mbsbtype Return type of byte within string

The MB_LEN_MAX macro, defined in LIMITS.H, expands to the maximum length in
bytes that any multibyte character can have. MB_CUR_MAX, defined in STDLIB.H,
expands to the maximum length in bytes of any multibyte character in the current locale.

Character Classification

Each of these routines tests a specified single-byte character, wide character, or multibyte
character for satisfaction of a condition. (By definition, the ASCII character set is a
subset of all multibyte-character sets. For example, Japanese katakana includes ASCII

as well as non-ASCII characters.) Generally these routines execute faster than tests you
might write. For example, the following code executes slower than a call to isalpha(c):

if ((c >= 'A') && (c <= "7")) || ((c >= 'a') && (c <= 'z"))
return TRUE;

Run-Time Library Reference

Character-Classification Routines

Routine Character Test Condition
isalnum, iswalnum, _ismbcalnum Alphanumeric

isalpha, iswalpha, _ismbcalpha Alphabetic

__isascii, iswascii ASCII

iscntrl, iswentrl Control

__iscsym

__iscsymf

isdigit, iswdigit, _ismbcdigit
isgraph, iswgraph, _ismbcgraph
islower, iswlower, _ismbclower
_ismbchira

_ismbckata

_ismbclegal

_ismbcl0

_ismbcll

_ismbcl2

_ismbesymbol

isprint, iswprint, _ismbcprint
ispunct, iswpunct, _ismbcpunct
isspace, iswspace, _ismbcspace
isupper, iswupper, _ismbcupper
iswctype

isxdigit, iswxdigit

Letter, underscore, or digit
Letter or underscore

Decimal digit

Printable other than space
Lowercase

Hiragana

Katakana

Legal multibyte character
Japan-level 0 multibyte character
Japan-level 1 multibyte character
Japan-level 2 multibyte character
Non-alphanumeric multibyte character
Printable

Punctuation

White-space

Uppercase

Property specified by desc argument
Hexadecimal digit

mblen Return length of valid multibyte character; result depends

on LC_CTYPE category setting of current locale

Data Conversion

These routines convert data from one form to another. Generally these routines
execute faster than conversions you might write. Each routine that begins with a
to prefix is implemented as a function and as a macro. See “Choosing Between
Functions and Macros” on page xiii for information about choosing an
implementation.

Data-Conversion Routines

Routine Use
abs Find absolute value of integer
atof Convert string to float

Data-Conversion Routines (continued)

Chapter 1 Run-Time Routines by Category

Routine

Use

atoi, _atoi64
atol
_ecvt

_fevt

_gevt

_itoa, _i64toa, _itow, _i6dtow
labs

_lItoa, _ltow

_mbbtombec

_mbcjistojms

_mbcjmstojis
_mbctohira
_mbctokata
_mbctombb

mbstowcs
mbtowce

strtod, westod
strtol, wcstol
strtoul, westoul

strxfrm, wesxfrm

__toascii
tolower, towlower, _mbctolower

_tolower
toupper, towupper, _mbctoupper

_toupper
_ultoa, _ultow

westombs

Convert string to int
Convert string to long
Convert double to string of specified length

Convert double to string with specified number of
digits following decimal point

Convert double number to string; store string in buffer
Convert int to string

Find absolute value of long integer

Convert long to string

Convert 1-byte multibyte character to corresponding
2-byte multibyte character

Convert Japan Industry Standard (JIS) character to
Japan Microsoft (JMS) character

Convert JMS character to JIS character
Convert multibyte character to 1-byte hiragana code
Convert multibyte character to 1-byte katakana code

Convert 2-byte multibyte character to corresponding
1-byte multibyte character

Convert sequence of multibyte characters to
corresponding sequence of wide characters

Convert multibyte character to corresponding wide
character

Convert string to double
Convert string to long integer
Convert string to unsigned long integer

Transform string into collated form based on
locale-specific information

Convert character to ASCII code

Test character and convert to lowercase if currently
uppercase

Convert character to lowercase unconditionally

Test character and convert to uppercase if currently
lowercase

Convert character to uppercase unconditionally
Convert unsigned long to string

Convert sequence of wide characters to corresponding
sequence of multibyte characters

(continued)

Run-Time Library Reference

Data-Conversion Routines (continued)

Routine Use

wctomb Convert wide character to corresponding multibyte
character

_wtoi Convert wide-character string to int

_wtol Convert wide-character string to long

Debug Routines

With this version, Visual C++ introduces debug support for the C run-time library.
The new debug version of the library supplies many diagnostic services that make
debugging programs easier and allow developers to:

o Step directly into run-time functions during debugging

¢ Resolve assertions, errors, and exceptions

¢ Trace heap allocations and prevent memory leaks

» Report debug messages to the user

To use these routines, the _DEBUG flag must be defined. All of these routines do
nothing in a retail build of an application.

Debug Versions of the C Run-time Library Routines

Routine Use

_ASSERT Evaluate an expression and generates a debug report
when the result is FALSE

_ASSERTE Similar to _ASSERT, but includes the failed
expression in the generated report

_CrtCheckMemory Confirm the integrity of the memory blocks allocated
on the debug heap

_CrtDbgReport Generate a debug report with a user message and send

_CrtDoForAllClientObjects
_CrtDumpMemoryLeaks

_CrtlIsValidHeapPointer
_CrtIsMemoryBlock

the report to three possible destinations

Call an application-supplied function for all
_CLIENT_BLOCK types on the heap

Dump all of the memory blocks on the debug heap
when a significant memory leak has occurred
Verify that a specified pointer is in the local heap

Verify that a specified memory block is located within
the local heap and that it has a valid debug heap block
type identifier

Chapter 1 Run-Time Routines by Category

Debug Versions of the C Run-time Library Routines (continued)

Routine Use

_CrtIsValidPointer Verify that a specified memory range is valid for
reading and writing

_CrtMemCheckpoint Obtain the current state of the debug heap and store it
in an application-supplied _CrtMemState structure

_CrtMembDifference Compare two memory states for significant differences

_CrtMemDumpAllObjectsSince

_CrtMemDumpStatistics
_CrtSetAllocHook
_CrtSetBreakAlloc

_CrtSetDbgFlag

_CrtSetDumpClient

_CrtSetReportFile

_CrtSetReportHook

_CrtSetReportMode

_RPT[0,1,2,3,4]

_RPTF[0,1,2,3,4]

_calloc_dbg

_expand_dbg

and return the results

Dump information about objects on the heap since a
specified checkpoint was taken or from the start of
program execution

Dump the debug header information for a specified
memory state in a user-readable form

Install a client-defined allocation function by hooking
it into the C run-time debug memory allocation process

Set a breakpoint on a specified object allocation order
number

Retrieve or modify the state of the _crtDbgFlag flag
to control the allocation behavior of the debug heap
manager

Install an application-defined function that is called
every time a debug dump function is called to dump
_CLIENT_BLOCK type memory blocks

Identify the file or stream to be used as a destination
for a specific report type by _CrtDbgReport

Install a client-defined reporting function by hooking it
into the C run-time debug reporting process

Specify the general destination(s) for a specific report
type generated by _CrtDbgReport

Track the application’s progress by generating a debug
report by calling _CrtDbgReport with a format string
and a variable number of arguments. Provides no
source file and line number information.

Similar to the _RPTr macros, but provides the source
file name and line number where the report request
originated

Allocate a specified number of memory blocks on the
heap with additional space for a debugging header and
overwrite buffers

Resize a specified block of memory on the heap by
expanding or contracting the block

(continued)

Run-Time Library Reference

Debug Versions of the C Run-time Library Routines (continued)

Routine Use

_free_dbg Free a block of memory on the heap

_malloc_dbg Allocate a block of memory on the heap with additional
space for a debugging header and overwrite buffers

_msize_dbg Calculate the size of a block of memory on the heap

_realloc_dbg Reallocate a specified block of memory on the heap by

moving and/or resizing the block

The debug routines can be used to step through the source code for most of the other
C run-time routines during the debugging process. However, Microsoft considers
some technology to be proprietary and, therefore, does not provide the source code
for these routines. Most of these routines belong to either the exception handling

or floating-point processing groups, but a few others are included as well. The
following table lists these routines:

C Run-time Routines that are Not Available in Source Code Form

acos _fpclass _nextafter

asin _fpieee_fit pow

atan, atan2 _fpreset printf, wprintfl
_cabs frexp _scalb

ceil _hypot scanf, wscanf'
_chgsign _isnan setjmp
_clear87, _clearfp _jo sin

_control87, _controlfp J1 sinh

_copysign _jn sqrt

cos Idexp _status87, _statusfp
cosh log tan

exp log10 tanh

fabs _logb _y0

_finite Iongjmp _yl

floor _matherr _yn

fmod modf

! Although source code is available for most of this routine, it makes an internal call to another routine for

which source code is not provided.

Some C run-time functions and C++ operators behave differently when called from
a debug build of an application. (Note that a debug build of an application can be
done by either defining the _DEBUG flag or by linking with a debug version of the
C run-time library.) The behavioral differences usually consist of extra features or
information provided by the routine to support the debugging process. The following
table lists these routines:

Chapter 1 Run-Time Routines by Category

Routines that Behave Differently in a Debug Build of an Application

C abort routine C++ delete operator

C assert routine C++ new operator

For more information about using the debug versions of the C++ operators in the
preceding table, see “Using the Debug Heap from C++.”

Directory Control

These routines access, modify, and obtain information about the directory structure.

Directory-Control Routines

Routine Use

_chdir, _wchdir Change current working directory

_chdrive Change current drive

_getewd, _wgetewd Get current working directory for default drive
_getdewd, _wgetdcwd Get current working directory for specified drive
_getdrive Get current (default) drive

_mkdir, _wmkdir Make new directory

_rmdir, _wrmdir Remove directory

_searchenv, _wsearchenv Search for given file on specified paths

Error Handling

Use these routines to handle program errors.

Error-Handling Routines

Routine Use

assert macro Test for programming logic errors; available in both the release
and debug versions of the run-time library

_ASSERT, _ASSERTE Similar to assert, but only available in the debug versions of

macros the run-time library

clearerr Reset error indicator. Calling rewind or closing a stream also
resets the error indicator.

_eof Check for end of file in low-level I/O

feof Test for end of file. End of file is also indicated when _read
returns 0.

ferror Test for stream 1/O errors

_RPT, _RPTF macros Generate a report similar to printf, but only available in the

debug versions of the run-time library

Run-Time Library Reference

Exception Handling Routines

Use the C++ exception-handling functions to recover from unexpected events during
program execution.

Exception-Handling Functions

Function Use

_set_se_translator Handle Win32 exceptions (C structured exceptions) as C++ typed
exceptions

set_terminate Install your own termination routine to be called by terminate

set_unexpected Install your own termination function to be called by unexpected

terminate Called automatically under certain circumstances after exception

is thrown. The terminate function calls abort or a function you
specify using set_terminate

unexpected Calls terminate or a function you specify using set_unexpected.
The unexpected function is not used in current Microsoft C++
exception-handling implementation

File Handling

10

Use these routines to create, delete, and manipulate files and to set and check
file-access permissions.

The C run-time libraries have a preset limit for the number of files that can be open at
any one time. The limit for applications that link with the single-thread static library
(LIBC.LIB) is 64 file handles or 20 file streams. Applications that link with either
the static or dynamic multithread library (LIBCMT.LIB or MSVCRT.LIB and
MSVCRT.DLL), have a limit of 256 file handles or 40 file streams. Attempting to
open more than the maximum number of file handles or file streams causes

program failure.

The following routines operate on files designated by a file handle:

File-Handling Routines (File Handle)

Routine Use

_chsize Change file size

_filelength Get file length

_fstat, _fstati6o4 Get file-status information on handle
_isatty Check for character device

_locking Lock areas of file

_setmode Set file-translation mode

Chapter 1 Run-Time Routines by Category

The following routines operate on files specified by a path or filename:

File-Handling Routines (Path or Filename)

Routine Use

_access, _waccess Check file-permission setting

_chmod, _wchmod Change file-permission setting

_fullpath, _wfullpath Expand a relative path to its absolute path name

_get_osfhandle Return operating-system file handle associated with existing
stream FILE pointer

_makepath, _wmakepath Merge path components into single, full path

_mktemp, _wmktemp Create unique filename

_open_osfhandle Associate C run-time file handle with existing
operating-system file handle

remove, _wremove Delete file

rename, _wrename Rename file

_splitpath, _wsplitpath Parse path into components

_stat, _stati64, _wstat, Get file-status information on named file

_wstati6d

_umask Set default permission mask for new files created by program

_unlink, _wunlink Delete file

Floating-Point Support

Many Microsoft run-time library functions require floating-point support from a
math coprocessor or from the floating-point libraries that accompany the compiler.
Floating-point support functions are loaded only if required.

When you use a floating-point type specifier in the format string of a call to a function
in the printf or scanf family, you must specify a floating-point value or a pointer to a
floating-point value in the argument list to tell the compiler that floating-point support
is required. The math functions in the Microsoft run-time library handle exceptions
the same way that the UNIX V math functions do.

The Microsoft run-time library sets the default internal precision of the math
coprocessor (or emulator) to 64 bits. This default applies only to the internal precision
at which all intermediate calculations are performed; it does not apply to the size of
arguments, return values, or variables. You can override this default and set the chip
(or emulator) back to 80-bit precision by linking your program with LIB/FP10.0BJ.
On the linker command line, FP10.0BJ must appear before LIBC.LIB, LIBCMT.LIB,
or MSVCRT.LIB.

11

Run-Time Library Reference

12

Floating-Point Functions

Routine Use

abs Return absolute value of int
acos Calculate arccosine

asin Calculate arcsine

atan, atan2

atof

Bessel functions
_cabs

ceil

_chgsign

_clear87, _clearfp
_control87, _controlfp

_copysign
cos

cosh
difftime
div

_ecvt

exp

fabs

_fevt

_finite

floor
fmod
_fpclass
_fpieee_flt

_fpreset
frexp
_gevt
_hypot

_isnan

labs
ldexp

Calculate arctangent

Convert character string to double-precision floating-point value
Calculate Bessel functions _j0, _j1, _jn, _y0, _y1, _yn

Find absolute value of complex number

Find integer ceiling

Reverse sign of double-precision floating-point argument

Get and clear floating-point status word

Get old floating-point control word and set new control-word
value

Return one value with sign of another

Calculate cosine

Calculate hyperbolic cosine

Compute difference between two specified time values

Divide one integer by another, returning quotient and remainder
Convert double to character string of specified length

Calculate exponential function

Find absolute value

Convert double to string with specified number of digits
following decimal point

Determine whether given double-precision floating-point value
is finite

Find largest integer less than or equal to argument
Find floating-point remainder
Return status word containing information on floating-point class

Invoke user-defined trap handler for IEEE floating-point
exceptions

Reinitialize floating-point math package
Calculate exponential value

Convert floating-point value to character string
Calculate hypotenuse of right triangle

Check given double-precision floating-point value for not a
number (NaN)

Return absolute value of long

Calculate product of argument and 2 to specified power

Chapter 1 Run-Time Routines by Category

Floating-Point Functions (continued)

Routine Use

Idiv Divide one long integer by another, returning quotient and
remainder

log Calculate natural logarithm

log10 Calculate base-10 logarithm

_logb Extract exponential value of double-precision floating-point

_Irotl, _Irotr
_matherr
max

__min

modf
_nextafter
pow

printf, wprintf
rand

_rotl, _rotr
_scalb

scanf, wscanf

sin
sinh
sqrt
srand

_status87, _statusfp

strtod
tan
tanh

argument

Shift unsigned long int left (_lrotl) or right (_Irotr)
Handle math errors

Return larger of two values

Return smaller of two values

Split argument into integer and fractional parts
Return next representable neighbor

Calculate value raised to a power

Write data to stdout according to specified format
Get pseudorandom number

Shift unsigned int left (_rotl) or right (_rotr)
Scale argument by power of 2

Read data from stdin according to specified format and write data
to specified location

Calculate sine

Calculate hyperbolic sine

Find square root

Initialize pseudorandom series

Get floating-point status word

Convert character string to double-precision value
Calculate tangent

Calculate hyperbolic tangent

Long Double

Previous 16-bit versions of Microsoft C/C++ and Microsoft Visual C++ supported
the long double, 80-bit precision data type. In Win32 programming, however, the
long double data type maps to the double, 64-bit precision data type. The Microsoft
run-time library provides long double versions of the math functions only for
backward compatibility. The long double function prototypes are identical to the
prototypes for their double counterparts, except that the long double data type
replaces the double data type. The long double versions of these functions should

not be used in new code.

13

Run-Time Library Reference

Double Functions and Their Long Double Counterparts

Long Double Long Double
Function Counterpart Function Counterpart
acos acosl frexp frexpl
asin asinl _hypot _hypotl
atan atanl ldexp 1dexpl
atan2 atan2l log logl
atof _atold log10 log101
Bessel functions joI, j1l, jni _matherr _matherrl
30, j1, jn
Bessel functions yo0l, y1l, ynl modf modfl
y0, y1,yn
_cabs _cabsl pow powl
ceil ceill sin sinl
cos cosl sinh sinhl
cosh coshl sqrt sqrtl
exp expl strtod _strtold
fabs fabsl tan tanl
floor floorl tanh tanhl
fmod fmodl

Input and Output

The I/O functions read and write data to and from files and devices. File I/O
operations take place in text mode or binary mode. The Microsoft run-time library has
three types of I/O functions:

e Stream I/0 functions treat data as a stream of individual characters.

o Low-level I/O functions invoke the operating system directly for lower-level
operation than that provided by stream I/O.

e Console and port I/O functions read or write directly to a console (keyboard and
screen) or an I/O port (such as a printer port).

Warning Because stream functions are buffered and low-level functions are not, these two
types of functions are generally incompatible. For processing a particular file, use either stream
or low-level functions exclusively.

14

Chapter 1 Run-Time Routines by Category

Text and Binary Mode File I/O

File I/O operations take place in one of two translation modes, text or binary,
depending on the mode in which the file is opened. Data files are usually processed in
text mode. To control the file translation mode, you can:

¢ Retain the current default setting and specify the alternative mode only when you
open selected files.

e Change the default translation mode directly by setting the global variable _fmode
in your program. The initial default setting of _fmode is _O_TEXT, for text mode.

When you call a file-open function such as _open, fopen, freopen, or _fsopen,

you can override the current default setting of _fmode by specifying the appropriate
argument to the function. The stdin, stdout, and stderr streams always open in text
mode by default; you can also override this default when opening any of these files.
Use _setmode to change the translation mode using the file handle after the file is
open.

Unicode™ Stream I/0 in Text and Binary Modes

When a Unicode stream I/O routine (such as fwprintf, fwscanf, fgetwc, fputwc,
fgetws, or fputws) operates on a file that is open in text mode (the default), two kinds
of character conversions take place:

e Unicode-to-MBCS or MBCS-to-Unicode conversion. When a Unicode stream-1/O
function operates in text mode, the source or destination stream is assumed to be a
sequence of multibyte characters. Therefore, the Unicode stream-input functions
convert multibyte characters to wide characters (as if by a call to the mbtowe
function). For the same reason, the Unicode stream-output functions convert wide
characters to multibyte characters (as if by a call to the wetomb function).

o Carriage return—linefeed (CR-LF) translation. This translation occurs before the
MBCS-Unicode conversion (for Unicode stream input functions) and after the
Unicode—MBCS conversion (for Unicode stream output functions). During input,
each carriage return-linefeed combination is translated into a single linefeed
character. During output, each linefeed character is translated into a carriage return
—linefeed combination.

However, when a Unicode stream-1/O function operates in binary mode, the file is
assumed to be Unicode, and no CR-LF translation or character conversion occurs
during input or output.

15

Run-Time Library Reference

Stream I/O

These functions process data in different sizes and formats, from single characters

to large data structures. They also provide buffering, which can improve performance.
The default size of a stream buffer is 4K. These routines affect only buffers created by
the run-time library routines, and have no effect on buffers created by the operating

16

system.

Stream I/0 Routines

Routine Use

clearerr Clear error indicator for stream

fclose Close stream

_fcloseall Close all open streams except stdin, stdout, and stderr
_fdopen, wfdopen Associate stream with handle to open file

feof Test for end of file on stream

ferror Test for error on stream

fflush Flush stream to buffer or storage device

fgetc, fgetwce Read character from stream (function versions of gete and

_fgetchar, _fgetwchar

fgetpos

fgets, fgetws
_fileno

_flushall

fopen, _wfopen
fprintf, fwprintf
fputc, fputwe

_fputchar, _fputwchar

fputs, fputws

fread

freopen, _wfreopen
fscanf, fwscanf
fseek

fsetpos

_fsopen, _wfsopen
ftell

fwrite

getwc)

Read character from stdin (function versions of getchar and
getwchar)

Get position indicator of stream

Read string from stream

Get file handle associated with stream
Flush all streams to buffer or storage device
Open stream

Write formatted data to stream

Write a character to a stream (function versions of pute and
putwc)

Write character to stdout (function versions of putchar and
putwchar)

Write string to stream

Read unformatted data from stream

Reassign FILE stream pointer to new file or device
Read formatted data from stream

Move file position to given location

Set position indicator of stream

Open stream with file sharing

Get current file position

Write unformatted data items to stream

Chapter | Run-Time Routines by Category

Stream 1/O Routines (continued)

Routine

Use

getc, getwe
getchar, getwchar

gets, getws
_getw

printf, wprintf
putc, putwe

putchar, putwchar

puts, _putws
_putw
rewind
_rmtmp
scanf, wscanf
setbuf
_setmaxstdio

setvbuf

_snprintf, _snwprintf

sprintf, swprintf

sscanf, swscanf

_tempnam, _wtempnam

tmpfile

tmpnam, _wtmpnam
ungetc, ungetwc
viprintf, vfwprintf
vprintf, vwprintf

_vsnprintf, _vsnwprintf

vsprintf, vswprintf

Read character from stream (macro versions of fgetc and fgetwc)

Read character from stdin (macro versions of fgetchar and
fgetwchar)

Read line from stdin
Read binary int from stream
Write formatted data to stdout

Write character to a stream (macro versions of fputc and
fputwce)

Write character to stdout (macro versions of fputchar and
fputwchar)

Write line to stream

Write binary int to stream

Move file position to beginning of stream
Remove temporary files created by tmpfile
Read formatted data from stdin

Control stream buffering

Set a maximum for the number of simultaneously open files at
the stream I/O level.

Control stream buffering and buffer size

Write formatted data of specified length to string
Write formatted data to string

Read formatted data from string

Generate temporary filename in given directory
Create temporary file

Generate temporary filename

Push character back onto stream

Write formatted data to stream

Write formatted data to stdout

Write formatted data of specified length to buffer
Write formatted data to buffer

When a program begins execution, the startup code automatically opens several
streams: standard input (pointed to by stdin), standard output (pointed to by stdout),
and standard error (pointed to by stderr). These streams are directed to the console
(keyboard and screen) by default. Use freopen to redirect stdin, stdout, or stderr to

a disk file or a device.

17

Run-Time Library Reference

Files opened using the stream routines are buffered by default. The stdout and stderr
functions are flushed whenever they are full or, if you are writing to a character
device, after each library call. If a program terminates abnormally, output buffers

may not be flushed, resulting in loss of data. Use fflush or _flushall to ensure that the
buffer associated with a specified file or all open buffers are flushed to the operating
system, which can cache data before writing it to disk. The commit-to-disk feature
ensures that the flushed buffer contents are not lost in the event of a system failure.

There are two ways to commit buffer contents to disk:

e Link with the file COMMODE.OB]J to set a global commit flag. The default setting
of the global flag is n, for “no-commit.”

o Set the mode flag to ¢ with fopen or _fdopen.

Any file specifically opened with either the c or the n flag behaves according to the
flag, regardless of the state of the global commit/no-commit flag.

If your program does not explicitly close a stream, the stream is automatically closed
when the program terminates. However, you should close a stream when your
program finishes with it, as the number of streams that can be open at one time is
limited. See _setmaxstdio for information on this limit.

Input can follow output directly only with an intervening call to fflush or to a
file-positioning function (fseek, fsetpos, or rewind). Output can follow input without
an intervening call to a file-positioning function if the input operation encounters the
end of the file.

Low-level I/O

18

These functions invoke the operating system directly for lower-level operation than
that provided by stream I/O. Low-level input and output calls do not buffer or
format data.

Low-level routines can access the standard streams opened at program startup using
the following predefined handles:

Stream Handle
stdin 0
stdout 1
stderr 2

Low-level I/O routines set the errno global variable when an error occurs. You must
include STDIO.H when you use low-level functions only if your program requires a
constant that is defined in STDIO.H, such as the end-of-file indicator (EOF).

Chapter 1 Run-Time Routines by Category

Low-Level 1/O Functions

Function Use
_close Close file
_commit Flush file to disk

_creat, _wcreat
_dup

_dup2

_eof

_Iseek, _lseeki6d
_open, _wopen
_read

_sopen, _wsopen
_tell, _telli64
_umask

_write

Create file

Return next available file handle for given file
Create second handle for given file
Test for end of file

Reposition file pointer to given location
Open file

Read data from file

Open file for file sharing

Get current file-pointer position

Set file-permission mask

Write data to file

_dup and _dup? are typically used to associate the predefined file handles with

different files.

Console and Port I/O

These routines read and write on your console or on the specified port. The console
I/O routines are not compatible with stream I/O or low-level I/O library routines. The
console or port does not have to be opened or closed before I/O is performed, so there
are no open or close routines in this category. In Windows NT and Windows 95, the
output from these functions is always directed to the console and cannot be redirected.

Console and Port I/O Routines

Routine Use

_cgets Read string from console

_cprintf Write formatted data to console

_cputs Write string to console

_cscanf Read formatted data from console

_getch Read character from console

_getche Read character from console and echo it
_inp Read one byte from specified /O port
_inpd Read double word from specified I/O port
_inpw Read 2-byte word from specified I/O port
_kbhit Check for keystroke at console; use before attempting to read from console

(continued)

19

Run-Time Library Reference

Console and Port I/0 Routines (continued)

Routine Use

_outp Write one byte to specified I/O port

_outpd Write double word to specified I/0 port
_outpw Write word to specified I/O port

_putch Write character to console

_ungetch “Unget” last character read from console so it

becomes next character read

Internationalization

The Microsoft run-time library provides many routines that are useful for creating
different versions of a program for international markets. This includes locale-related
routines, wide-character routines, multibyte-character routines, and generic-text
routines. For convenience, most locale-related routines are also categorized in this
reference according to the operations they perform. In this chapter and in this book’s
alphabetic reference, multibyte-character routines and wide-character routines are
described with single-byte-character counterparts, where they exist.

Locale

20

Use the setlocale function to change or query some or all of the current program
locale information. “Locale” refers to the locality (the country and language) for
which you can customize certain aspects of your program. Some locale-dependent
categories include the formatting of dates and the display format for monetary values.
For more information, see “Locale Categories” on page 61 in Chapter 3.

Locale-Dependent Routines

setlocale Category
Routine Use Setting Dependence
atof, atoi, atol Convert character to floating-point, LC_NUMERIC
integer, or long integer value, respectively
is Routines Test given integer for particular condition. =~ LC_CTYPE
isleadbyte Test for lead byte () LC_CTYPE
localeconv Read appropriate values for formatting LC_MONETARY,
numeric quantities LC_NUMERIC
MB_CUR_MAX Maximum length in bytes of any multibyte =~ LC_CTYPE
character in current locale (macro defined
in STDLIB.H)
_mbcepy Copy one multibyte character LC_CTYPE

Locale-Dependent Routines (continued)

Chapter 1 Run-Time Routines by Category

setlocale Category
Routine Use Setting Dependence
_mbclen Return length, in bytes, of given LC_CTYPE
multibyte character
mblen Validate and return number of bytes in LC_CTYPE
multibyte character
_mbstrlen For multibyte-character strings: validate LC_CTYPE
each character in string; return string
length
mbstowcs Convert sequence of multibyte characters LC_CTYPE
to corresponding sequence of wide
characters
mbtowc Convert multibyte character to LC_CTYPE
corresponding wide character
printf functions Write formatted output LC_NUMERIC
(determines radix
character output)
scanf functions Read formatted input LC_NUMERIC
(determines radix
character recognition)
setlocale, Select locale for program Not applicable
_wsetlocale
streoll, wescoll Compare characters of two strings LC_COLLATE
_stricoll, _wcsicoll Compare characters of two strings LC_COLLATE
(case insensitive)
_strncoll, _wcsncoll Compare first n characters of two strings LC_COLLATE
_strnicoll, Compare first n characters of two strings LC_COLLATE
_wcsnicoll (case insensitive)
strftime, wesftime Format date and time value according to LC_TIME
supplied format argument
_strlwr Convert, in place, each uppercase letter LC_CTYPE
in given string to lowercase
strtod, westod, Convert character string to double, long, LC_NUMERIC

strtol, westol,
strtoul, westoul
_strupr

strxfrm, wesxfrm

tolower, towlower

or unsigned long value

Convert, in place, each lowercase letter
in string to uppercase

Transform string into collated form
according to locale

Convert given character to corresponding
lowercase character

(determines radix
character recognition)
LC_CTYPE
LC_COLLATE
LC_CTYPE

(continued)

21

Run-Time Library Reference

Locale-Dependent Routines (continued)

setlocale Category
Routine Use Setting Dependence

toupper, towupper Convert given character to corresponding LC_CTYPE
uppercase letter

wcestombs Convert sequence of wide characters to LC_CTYPE
corresponding sequence of multibyte
characters

wctomb Convert wide character to corresponding LC_CTYPE
multibyte character

_wtoi, _wtol Convert wide-character string to int LC_NUMERIC
or long

Code Pages

A code page is a character set, which can include numbers, punctuation marks, and -
other glyphs. Different languages and locales may use different code pages. For
example, ANSI code page 1252 is used for American English and most European
languages; OEM code page 932 is used for Japanese Kanji.

A code page can be represented in a table as a mapping of characters to single-byte
values or multibyte values. Many code pages share the ASCII character set for
characters in the range 0x00—-0x7F.

The Microsoft run-time library uses the following types of code pages:

o System-default ANSI code page. By default, at startup the run-time system
automatically sets the multibyte code page to the system-default ANSI code page,
which is obtained from the operating system. The call

setlocale (LC_ALL, "");
also sets the locale to the system-default ANSI code page.

e Locale code page. The behavior of a number of run-time routines is dependent
on the current locale setting, which includes the locale code page. (For more
information, see “Locale-Dependent Routines.”) By default, all locale-dependent
routines in the Microsoft run-time library use the code page that corresponds to
the “C” locale. At run-time you can change or query the locale code page in use
with a call to setlocale.

e Multibyte code page. The behavior of most of the multibyte-character routines
in the run-time library depends on the current multibyte code page setting. By
default, these routines use the system-default ANSI code page. At run-time you
can query and change the multibyte code page with _getmbep and _setmbcp,
respectively.

22

Chapter 1 Run-Time Routines by Category

e The “C” locale is defined by ANSI to correspond to the locale in which C
programs have traditionally executed. The code page for the “C” locale (“C” code
page) corresponds to the ASCII character set. For example, in the “C” locale,
islower returns true for the values 0x61-0x7A only. In another locale, islower
may return true for these as well as other values, as defined by that locale.

Interpretation of Multibyte-Character Sequences

Most multibyte-character routines in the Microsoft run-time library recognize
multibyte-character sequences according to the current multibyte code page setting.
The following multibyte-character routines depend instead on the locale code page
(specifically, on the LC_CTYPE category setting of the current locale):

Locale-Dependent Multibyte Routines

Routine Use

mblen Validate and return number of bytes in multibyte character

_mbstrlen For multibyte-character strings: validate each character in string; return
string length

mbstowcs Convert sequence of multibyte characters to corresponding sequence of
wide characters

mbtowe Convert multibyte character to corresponding wide character

westombs Convert sequence of wide characters to corresponding sequence of

multibyte characters

wctomb Convert wide character to corresponding multibyte character

Single-byte and Multibyte Character Sets

The ASCII character set defines characters in the range 0x00-0x7F. There are a
number of other character sets, primarily European, that define the characters within
the range 0x00-0x7F identically to the ASCII character set and also define an
extended character set from 0x80-0xFF. Thus an 8-bit, single-byte-character set
(SBCS) is sufficient to represent the ASCII character set as well as the character sets
for many European languages. However, some non-European character sets, such as
Japanese Kanji, include many more characters than can be represented in a single-byte
coding scheme, and therefore require multibyte-character set (MBCS) encoding.

Note Many SBCS routines in the Microsoft run-time library handle multibyte bytes, characters,
and strings as appropriate. Many multibyte-character sets define the ASCII character set as a
subset. In many multibyte character sets, each character in the range 0x00—0x7F is identical to
the character that has the same value in the ASCII character set. For example, in both ASCII
and MBCS character strings, the one-byte NULL character (\0') has value 0x00 and indicates
the terminating null character.

23

Run-Time Library Reference

A multibyte character set may consist of both one-byte and two-byte characters.
Thus a multibyte-character string may contain a mixture of single-byte and double-
byte characters. A two-byte multibyte character has a lead byte and a trail byte. In a
particular multibyte-character set, the lead bytes fall within a certain range, as do the
trail bytes. When these ranges overlap, it may be necessary to evaluate the context to
determine whether a given byte is functioning as a lead byte or a trail byte.

SBCS and MBCS Data Types

Any Microsoft MBCS run-time library routine that handles only one multibyte
character or one byte of a multibyte character expects an unsigned int argument
(where 0x00 <= character value <= 0xFFFF and 0x00 <= byte value <= OxFF).
An MBCS routine that handles multibyte bytes or characters in a string context
expects a multibyte-character string to be represented as an unsigned char pointer.

Caution Each byte of a multibyte character can be represented in an 8-bit char. However, an
SBCS or MBCS single-byte character of type char with a value greater than 0x7F is negative.
When such a character is converted directly to an int or a long, the result is sign-extended by
the compiler and can therefore yield unexpected results.

Therefore it is best to represent a byte of a multibyte character as an 8-bit unsigned
char. Or, to avoid a negative result, simply convert a single-byte character of type
char to an unsigned char before converting it to an int or a long.

Because some SBCS string-handling functions take (signed) char® parameters, a type
mismatch compiler warning will result when _MBCS is defined. There are three ways
to avoid this warning, listed in order of efficiency:

1. Use the “type-safe” inline function thunks in TCHAR.H. This is the default behavior.

2. Use the “direct” macros in TCHAR.H by defining _MB_MAP_DIRECT on the
command line. If you do this, you must manually match types. This is the fastest
method, but is not type-safe.

3. Use the “type-safe” statically linked library function thunks in TCHAR.H. To do
s0, define the constant _NO_INLINING on the command line. This is the slowest
method, but the most type-safe.

Unicode: The Wide-Character Set

A wide character is a 2-byte multilingual character code. Any character in use in
modern computing worldwide, including technical symbols and special publishing
characters, can be represented according to the Unicode specification as a wide
character. Developed and maintained by a large consortium that includes Microsoft,

24

Chapter 1 Run-Time Routines by Category

the Unicode standard is now widely accepted. Because every wide character is always
represented in a fixed size of 16 bits, using wide characters simplifies programming
with international character sets.

A wide character is of type wchar_t. A wide-character string is represented as a
wchar_t[] array and is pointed to by a wchar_t* pointer. You can represent any
ASCII character as a wide character by prefixing the letter L to the character. For
example, L'\O' is the terminating wide (16-bit) NULL character. Similarly, you can
represent any ASCII string literal as a wide-character string literal simply by prefixing
the letter L to the ASCII literal (L"Hello").

Generally, wide characters take up more space in memory than multibyte characters
but are faster to process. In addition, only one locale can be represented at a time in
multibyte encoding, whereas all character sets in the world are represented
simultaneously by the Unicode representation.

Using Generic-Text Mappings

Microsoft Specific —

To simplify code development for various international markets, the Microsoft
run-time library provides Microsoft-specific “generic-text” mappings for many data
types, routines, and other objects. These mappings are defined in TCHAR.H. You can
use these name mappings to write generic code that can be compiled for any of the
three kinds of character sets: ASCII (SBCS), MBCS, or Unicode, depending on a
manifest constant you define using a #define statement. Generic-text mappings are
Microsoft extensions that are not ANSI compatible.

Preprocessor Directives for Generic-Text Mappings

#define : Compiled Version Example

_UNICODE Unicode (wide-character) _tesrev maps to _wesrev
_MBCS Multibyte-character _tesrev maps to _mbsrev
None (the default: SBCS (ASCII) _tesrev maps to strrev

neither _UNICODE
nor _MBCS defined)

For example, the generic-text function _tcsrev, defined in TCHAR.H, maps to
mbsrev if MBCS has been defined in your program, or to _wcsrev if _UNICODE
has been defined. Otherwise _tesrev maps to strrev.

The generic-text data type _'TCHAR, also defined in TCHAR.H, maps to type char

if _MBCS is defined, to type wechar_t if _UNICODE is defined, and to type char if
neither constant is defined. Other data type mappings are provided in TCHAR.H for

programming convenience, but _TCHAR is the type that is most useful.

25

Run-Time Library Reference

26

Generic-Text Data Type Mappings
Generic-Text Data SBCS (_UNICODE, _MBCS

Type Name Not Defined) _MBCS Defined _UNICODE Defined

_TCHAR char char wchar_t

_TINT int int wint_t

_TSCHAR signed char signed char wchar_t

_TUCHAR unsigned char unsigned char wchar_t

_TXCHAR char unsigned char wchar_t

_T or _TEXT No effect (removed by No effect (removed L (converts
preprocessor) by preprocessor) following

character or string
to its Unicode
counterpart)

For a complete list of generic-text mappings of routines, variables, and other objects,
see Appendix B, “Generic-Text Mappings,” on page 677.

The following code fragments illustrate the use of _TCHAR and _tesrev for mapping
to the MBCS, Unicode, and SBCS models.

_TCHAR *RetVal, *szString;
RetVal = _tcsrev(szString);

If MBCS has been defined, the preprocessor maps the preceding fragment to the
following code:

char *RetVal, *szString;
RetVal = _mbsrev(szString);

If _UNICODE has been defined, the preprocessor maps the same fragment to the
following code:

wchar_t *RetVal, *szString;
RetVal = _wcsrev(szString);

If neither _MBCS nor _UNICODE has been defined, the preprocessor maps the
fragment to single-byte ASCII code, as follows:

char *RetVal, *szString;
RetVal = strrev(szString);

Thus you can write, maintain, and compile a single source code file to run with
routines that are specific to any of the three kinds of character sets.

See Also: A Sample Generic-Text Program

Chapter 1 Run-Time Routines by Category

A Sample Generic-Text Program

The following program, GENTEXT.C, provides a more detailed illustration of the use
of generic-text mappings defined in TCHAR.H:

/*

* GENTEXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program

*/

ffinclude <stdio.h>
finclude <stdlib.h>
f#finclude <string.h>
f#Finclude <direct.h>
#include <errno.h>
f#finclude <tchar.h>

int __cdecl _tmain(int argc, _TCHAR **argv, _TCHAR **envp)
{

_TCHAR buff[_MAX_PATH];

_TCHAR *str = _T("Astring");

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

f#ifdef _UNICODE

printf(”Unicode version\n");
ffe1se /* _UNICODE */
ffifdef _MBCS

printf("MBCS version\n");
ffelse

printf("SBCS version\n");
ffendif
ffendif /* _UNICODE */

if (_tgetcwd(buff, _MAX_PATH) == NULL)
printf("Can't Get Current Directory - errno=%d\n", errno);
else
_tprintf(_T("Current Directory is '%s'\n"), buff);
tprintf(_T(""'%s' %hs %1s:\n"), str, amsg, wmsg);
_tprintf(_T("'%s'\n"), _tcsrev(str));
return 0;

}
If _MBCS has been defined, GENTEXT.C maps to the following MBCS program:

/*
* MBCSGTXT.C: use of generic-text mappings defined in TCHAR.H

* Generic-Text-Mapping example program
* MBCS version of GENTEXT.C
*/

f#include <stdlib.h>
#include <direct.h>

27

Run-Time Library Reference

28

int _cdecl main(int argc, char **argv, char **envp)
{

char buff[_MAX_PATH];

char *str = "Astring"”;

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("MBCS version\n");

if (_getcwd(buff, _MAX_PATH) == NULL) {
printf("Can't Get Current Directory - errno=%d\n", errno);

}
else {

printf("Current Directory is '%s'\n", buff);
}

printf("'%s"' %hs %1s:\n", str, amsg, wmsg);
printf("'%s'\n", _mbsrev(str));
return 0;

}

If _UNICODE has been defined, GENTEXT.C maps to the following Unicode
version of the program. For more information about using wmain in Unicode
programs as a replacement for main, see “Using wmain” in C Language Reference.

/*

* UNICGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program

* Unicode version of GENTEXT.C

*/

fHinclude <stdlib.h>
f#finclude <direct.h>

int __cdecl wmain(int argc, wchar_t **argv, wchar_t **envp)
{

wchar_t buff[_MAX_PATH];

wchar_t *str = L"Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("Unicode version\n");

if (_wgetcwd(buff, _MAX_PATH) == NULL) {
printf("Can't Get Current Directory - errno=%d\n", errno);

}
else {

wprintf(L"Current Directory is '%s'\n", buff);
}

wprintf(L"'%s"' %hs %1s:\n", str, amsg, wmsg);
wprintf(L""'%s'\n", wecsrev(str));
return 0;

Chapter 1 Run-Time Routines by Category

If neither _MBCS nor _UNICODE has been defined, GENTEXT.C maps to
single-byte ASCII code, as follows:

/*

* SBCSGTXT.C: use of generic-text mappings defined in TCHAR.H
* Generic-Text-Mapping example program

* Single-byte (SBCS) Ascii version of GENTEXT.C

*/

ffinclude <stdlib.h>
f#finclude <direct.h>

int __cdecl main(int argc, char **argv, char **envp)
{

char buff[_MAX_PATH];

char *str = "Astring";

char *amsg = "Reversed";

wchar_t *wmsg = L"Is";

printf("SBCS version\n");

if (_getcwd(buff, _MAX_PATH) == NULL) {
printf(”Can't Get Current Directory - errno=%d\n", errno};
}
else {
printf("Current Directory is '%s'\n", buff);
}

printf("'%s"' %hs %1s:\n", str, amsg, wmsg);
printf("'%s'\n", strrev(str));
return 0;

}

See Also: Appendix B, Generic-Text Mappings; Using Generic-Text Mappings

Using TCHAR.H Data Types with _MBCS

As the table of generic-text routine mappings indicates (see Appendix B, “Generic-
Text Mappings”), when the manifest constant _MBCS is defined, a given generic-text
routine maps to one of the following kinds of routines:

e An SBCS routine that handles multibyte bytes, characters, and strings appropriately.
In this case, the string arguments are expected to be of type char®*. For example,
_tprintf maps to printf; the string arguments to printf are of type char*. If you use
the _"TCHAR generic-text data type for your string types, the formal and actual
parameter types for printf match because _TCHAR* maps to char*.

29

Run-Time Library Reference

30

¢ An MBCS-specific routine. In this case, the string arguments are expected to be of

type unsigned char*. For example, _tcsrev maps to _mbsrev, which expects and
returns a string of type unsigned char*, Again, if you use the _'TCHAR generic-text
data type for your string types, there is a potential type conflict because _"TCHAR
maps to type char.

Following are three solutions for preventing this type conflict (and the C compiler
warnings or C++ compiler errors that would result):

o Use the default behavior. TCHAR.H provides generic-text routine prototypes for

routines in the run-time libraries, as in the following example.

char *_tcsrev(char *);
In the default case, the prototype for _tcsrev maps to _mbsrev through a thunk
in LIBC.LIB. This changes the types of the _mbsrev incoming parameters and
outgoing return value from _TCHAR * (i.e., char *) to unsigned char *. This

method ensures type matching when you are using _TCHAR, but it is relatively
slow because of the function call overhead.

Use function inlining by incorporating the following preprocessor statement in
your code.
fidefine _USE_INLINING

This method causes an inline function thunk, provided in TCHAR.H, to map the
generic-text routine directly to the appropriate MBCS routine. The following code
excerpt from TCHAR H provides an example of how this is done.

__inline char *_tcsrev(char *_sl)
{return (char *)_mbsrev((unsigned char *)_sl);}

If you can use inlining, this is the best solution, because it guarantees type matching
and has no additional time cost.

Use “direct mapping” by incorporating the following preprocessor statement in
your code.

f#define _MB_MAP_DIRECT
This approach provides a fast alternative if you do not want to use the default

behavior or cannot use inlining. It causes the generic-text routine to be mapped by

a macro directly to the MBCS version of the routine, as in the following example
from TCHAR.H.

ffdefine _tcschr _mbschr

When you take this approach, you must be careful to ensure that appropriate data
types are used for string arguments and string return values. You can use type casting
to ensure proper type matching or you can use the _TXCHAR generic-text data type.
_TXCHAR maps to type char in SBCS code but maps to type unsigned char in
MBCS code. For more information about generic-text macros, see Appendix B,
“Generic-Text Mappings.”

END Microsoft Specific

Chapter 1 Run-Time Routines by Category

Memory Allocation

Use these routines to allocate, free, and reallocate memory.

Memory-Allocation Routines

Routine Use

_alloca Allocate memory from stack

calloc Allocate storage for array, initializing every byte in allocated block to 0

_calloc_dbg Debug version of calloc; only available in the debug versions of the
run-time libraries

_expand Expand or shrink block of memory without moving it

_expand_dbg Debug version of _expand; only available in the debug versions of the
run-time libraries

free Free allocated block

_free_dbg Debug version of free; only available in the debug versions of the

_get_sbh_threshold

_heapadd
_heapchk
_heapmin
_heapset
_heapwalk
malloc
_malloc_dbg

_msize

_msize_dbg

_query_new_handler
_query_new_mode

realloc

_realloc_dbg
_set_new_handler

_set_new_mode
_set_sbh_threshold

run-time libraries

Return the upper limit for the size of a memory allocation that will be
supported by the small-block heap

Add memory to heap

Check heap for consistency

Release unused memory in heap

Fill free heap entries with specified value
Return information about each entry in heap
Allocate block of memory from heap

Debug version of malloc; only available in the debug versions of the
run-time libraries

Return size of allocated block

Debug version of _msize; only available in the debug versions of the
run-time libraries

Return address of current new handler routine as set by _set_new_handler

Return integer indicating new handler mode set by _set_new_mode for
malloc

Reallocate block to new size

Debug version of realloc; only available in the debug versions of the
run-time libraries

Enable error-handling mechanism when new operator fails (to allocate
memory) and enable compilation of Standard Template Libraries (STL)

Set new handler mode for malloc

Set the upper limit for the size of a memory allocation that will be
supported by the small-block heap

31

Run-Time Library Reference

Process and Environment Control

Use the process-control routines to start, stop, and manage processes from within a
program. Use the environment-control routines to get and change information about
the operating-system environment.

Process and Environment Control Functions

Routine Use

abort Abort process without flushing buffers or calling functions registered
by atexit and _onexit

assert Test for logic error

_ASSERT, Similar to assert, but only available in the debug versions of the

_ASSERTE macros run-time libraries

atexit Schedule routines for execution at program termination

_beginthread, Create a new thread on a Windows NT or Windows 95 process

_beginthreadex

_cexit Perform exit termination procedures (such as flushing buffers), then
return control to calling program without terminating process

_c_exit Perform _exit termination procedures, then return control to calling
program without terminating process

_cwait Wait until another process terminates

_endthread, Terminate a Windows NT or Windows 95 thread

_endthreadex

_execl, _wexecl
_execle, _wexecle
_execlp, _wexeclp
_execlpe, _wexeclpe

_€Xecv, _wexecy
_execve, _wexecve
_EXecvp, _wexecvp
_execvpe,

_wexecvpe
exit

_exit

getenv, _wgetenv

_getpid

32

Execute new process with argument list
Execute new process with argument list and given environment
Execute new process using PATH variable and argument list

Execute new process using PATH variable, given environment, and
argument list

Execute new process with argument array
Execute new process with argument array and given environment
Execute new process using PATH variable and argument array

Execute new process using PATH variable, given environment, and
argument array

Call functions registered by atexit and _onexit, flush all buffers, close
all open files, and terminate process

Terminate process immediately without calling atexit or _onexit or
flushing buffers

Get value of environment variable

Get process ID number

Chapter | Run-Time Routines by Category

Process and Environment Control Functions (continued)

Routine Use

longjmp Restore saved stack environment; use it to execute a nonlocal goto

_onexit Schedule routines for execution at program termination; use for
compatibility with Microsoft C/C++ version 7.0 and earlier

_pclose Wait for new command processor and close stream on associated pipe

perror, _wperror
_pipe

_popen, _wpopen
_putenv, _wputenv
raise

setjmp

signal

_spawnl, _wspawnl

_spawnle,
_wspawnle

_spawnlp,
_wspawnlp

_spawnlpe,
_wspawnlpe
_Spawny, _wspawny

_spawnve,
_wspawnve

_spawnvp,
_wspawnvp

_Spawnvpe,
_wspawnvpe

system, _wsystem

Print error message

Create pipe for reading and writing

Create pipe and execute command

Add or change value of environment variable

Send signal to calling process

Save stack environment; use to execute nonlocal goto
Handle interrupt signal

Create and execute new process with specified argument list

Create and execute new process with specified argument list and
environment

Create and execute new process using PATH variable and specified
argument list

Create and execute new process using PATH variable, specified
environment, and argument list

Create and execute new process with specified argument array

Create and execute new process with specified environment and
argument array

Create and execute new process using PATH variable and specified
argument array

Create and execute new process using PATH variable, specified
environment, and argument array

Execute operating-system command

In Windows NT and Windows 95, the spawned process is equivalent to the spawning
process. Therefore, the OS/2® wait function, which allows a parent process to wait for
its children to terminate, is not available. Instead, any process can use _cwait to wait
for any other process for which the process ID is known.

The difference between the _exec and _spawn families is that a _spawn function can
return control from the new process to the calling process. In a _spawn function, both
the calling process and the new process are present in memory unless _P_OVERLAY
is specified. In an _exec function, the new process overlays the calling process, so
control cannot return to the calling process unless an error occurs in the attempt to
start execution of the new process.

33

Run-Time Library Reference

The differences among the functions in the _exec family, as well as among those in
the _spawn family, involve the method of locating the file to be executed as the new
process, the form in which arguments are passed to the new process, and the method
of setting the environment, as shown in the following table. Use a functjon that passes
an argument list when the number of arguments is constant or is known at compile
time. Use a function that passes a pointer to an array containing the arguments when
the number of arguments is to be determined at run time. The information in the
following table also applies to the wide-character counterparts of the _spawn and
_exec functions.

_spawn and _exec Function Families

Use PATH Argument-
Variable to Passing

Functions Locate File Convention Environment Settings

_execl, _spawnl No List Inherited from calling process

_execle, _spawnle No List Pointer to environment table
for new process passed as last
argument

_execlp, _spawnlp Yes List Inherited from calling process

_execlpe, _spawnlpe Yes List Pointer to environment table
for new process passed as last
argument

_execv, _spawnv No Array Inherited from calling process

_execve, _spawnve No Array Pointer to environment table
for new process passed as last
argument

_execvp, _spawnvp Yes Array Inherited from calling process

_execvpe, _spawnvpe Yes Array Pointer to environment table
for new process passed as last
argument

Use the following functions for searching and sorting:

Searching and Sorting Functions

Function Search or Sort

bsearch Binary search

_Ifind Linear search for given value

_Isearch Linear search for given value, which is added to array if not found

gsort Quick sort

34

Chapter I Run-Time Routines by Category

String Manipulation

These routines operate on null-terminated single-byte character, wide-character, and
multibyte-character strings. Use the buffer-manipulation routines, described in Buffer
Manipulation, to work with character arrays that do not end with a null character.

String-Manipulation Routines

Routine

Use

_mbscoll, _mbsicoll, _mbsncoll,
_mbsnicoll

_mbsdec, _strdec, _wcsdec
_mbsinc, _strinc, _wcsinc

_mbslen
_mbsnbcat

_mbsnbemp
_mbsnbcnt

_mbsnbcpy
_mbsnbicmp

_mbsnbset
_mbsncent
_mbsnextc, _strnextc,
_wcsnexte

_mbsninc. _strninc, _wesnine

_mbsspnp, _strspnp, _wcsspnp
_mbstrlen

strcat, wescat, _mbscat
strchr, weschr, _mbschr
stremp, wesemp, _mbscmp

Compare two multibyte-character strings using multibyte
code page information (_mbsicoll and _mbsnicoll are
case-insensitive)

Move string pointer back one character
Advance string pointer by one character

Get number of multibyte characters in multibyte-character
string; dependent upon OEM code page

Append, at most, first n bytes of one multibyte-character
string to another

Compare first n bytes of two multibyte-character strings

Return number of multibyte-character bytes within
supplied character count

Copy n bytes of string

Compare n bytes of two multibyte-character strings,
ignoring case

Set first n bytes of multibyte-character string to specified
character

Return number of multibyte characters within supplied
byte count

Find next character in string

Advance string pointer by n characters

Return pointer to first character in given string that is not
in another given string

Get number of multibyte characters in multibyte-character
string; locale-dependent

Append one string to another
Find first occurrence of specified character in string
Compare two strings

(continued)

35

Run-Time Library Reference

String-Manipulation Routines (continued)

Routine

Use

streoll, wescoll, _stricoll,
_wesicoll, _strncoll, _wcsncoll,
_strnicoll, _wcsnicoll

strcpy, wescpy, _mbscpy
strespn, wesespn, _mbscspn,

_strdup, _wcsdup, _mbsdup
strerror

_strerror

strftime, wesftime

_stricmp, _wcsicmp, _mbsicmp

strlen, weslen, _mbslen,
_mbstrlen

_strlwr, _wcslwr, _mbslwr
strncat, wesncat, _mbsncat
strncmp, wesnemp, _mbsnemp
strncpy, wesnepy, _mbsncpy

_strnicmp, _wcsnicmp,
_mbsnicmp

_strnset, _wcsnset, _mbsnset
strpbrk, wespbrk, _mbspbrk

strrchr, wesrchr,_mbsrchr
_strrev, _wcsrev,_mbsrev
_strset, _wcsset, _mbsset
strspn, wesspn, _mbsspn
strstr, wesstr, _mbsstr
strtok, westok, _mbstok
_strupr, _wcsupr, _mbsupr

strxfrm, wesxfrm

36

Compare two strings using current locale code page
information (_stricoll, _wcsicoll, _strnicoll, and
_wesnicoll are case-insensitive)

Copy one string to another

Find first occurrence of character from specified character
set in string

Duplicate string

Map error number to message string

Map user-defined error message to string
Format date-and-time string

Compare two strings without regard to case
Find length of string

Convert string to lowercase

Append characters of string

Compare characters of two strings
Copy characters of one string to another

Compare characters of two strings without regard to case

Set first n characters of string to specified character

Find first occurrence of character from one string in
another string

Find last occurrence of given character in string
Reverse string

Set all characters of string to specified character

Find first substring from one string in another string
Find first occurrence of specified string in another string
Find next token in string

Convert string to uppercase

Transform string into collated form based on
locale-specific information

System Calls

Chapter 1 Run-Time Routines by Category

The following functions are Windows NT and Windows 95 operating-system calls:

System Call Functions

Function

Use

_findclose

_findfirst, _findfirsti6d,
_wfindfirst, _wfindfirsti64

_findnext, _findnexti64,
_wfindnext, _wfindnexti64

Release resources from previous find operations

Find file with specified attributes

Find next file with specified attributes

Time Management

Use these functions to get the current time and convert, adjust, and store it as
necessary. The current time is the system time.

The _ftime and localtime routines use the TZ environment variable. If TZ is not set,
the run-time library attempts to use the time-zone information specified by the
operating system. If this information is unavailable, these functions use the default
value of PST8PDT. For more information on TZ, see _tzset; also see _daylight,

timezone, and _tzname.

Time Routines

Function

Use

asctime, _wasctime
clock

ctime, _wctime
difftime

_ftime

_futime
gmtime
localtime

mktime

Convert time from type struct tm to character string
Return elapsed CPU time for process

Convert time from type time_t to character string
Compute difference between two times

Store current system time in variable of type struct
_timeb

Set modification time on open file
Convert time from type time_t to struct tm

Convert time from type time_t to struct tm with local
correction

Convert time to calendar value
(continued)

37

Run-Time Library Reference

38

Time Routines (continued)

Function

Use

_strdate, _wstrdate
strftime, wesftime
_strtime, _wstrtime
time

_tzset

_utime, _wutime

Return current system date as string

Format date-and-time string for international use
Return current system time as string

Get current system time as type time_t

Set external time variables from environment time
variable TZ

Set modification time for specified file using either
current time or time value stored in structure

Note In all versions of Microsoft C/C++ except Microsoft C/C++ version 7.0, and in all versions
of Microsoft Visual C++, the time function returns the current time as the number of seconds
elapsed since midnight on January 1, 1970. In Microsoft C/C++ version 7.0, time returned the
current time as the number of seconds elapsed since midnight on December 31, 1899.

CHAPTER 2

Global Variables and Standard Types

The Microsoft run-time library contains definitions for global variables, control flags,
and standard types used by library routines. Access these variables, flags, and types by
declaring them in your program or by including the appropriate header files.

Global Variables

The Microsoft run-time library provides the following global variables:

Variable

Description

amblksiz

daylight, _timezone,
_tzname

_doserrno, errno,
_sys_errlist, _sys_nerr

_environ, _wenviron
_fileinfo

_fimode

_osver, _winmajor,
_winminor, _winver

_pgmptr, _wpgmptr

Controls memory heap granularity

Adjust for local time; used in some date and time functions
Store error codes and related information

Pointers to arrays of pointers to strings that constitute process
environment

Specifies whether information regarding open files of a process
is passed to new processes

Sets default file-translation mode

Store build and version numbers of operating system

Initialized at program startup to value such as program name,
filename, relative path, or full path

_amblksiz

_amblksiz controls memory heap granularity. It is declared in MALLOC.H as

extern unsigned int _amblksiz;

39

Run-Time Library Reference

The value of _amblksiz specifies the size of blocks allocated by the operating system
for the heap. The initial requested size for a segment of heap memory is just enough to
satisfy the current allocation request (for example, a call to malloc) plus memory
required for heap manager overhead. The value of _amblksiz should represent a
trade-off between the number of times the operating system is to be called to increase
the heap to required size and the amount of memory potentially wasted (available but
not used) at the end of the heap.

The default value of _amblksiz is 8K. You can change this value by direct assignment
in your program. For example:

_amblksiz = 2045;

If you assign a value to _amblksiz, the actual value used internally by the heap
manager is the assigned value rounded up to the nearest whole power of 2. Thus, in
the previous example, the heap manager would reset the value of _amblksize to 2048.

_daylight, _timezone, and _tzname

_daylight, _timezone, and _tzname are used in some time and date routines to make
local-time adjustments. They are declared in TIME.H as

extern int _daylight;
extern long _timezone;
extern char *_tzname[2];

On a call to _ftime, localtime, or _tzset, the values of _daylight, _timezone, and
_tzname are determined from the value of the TZ environment variable. If you do not
explicitly set the value of TZ, _tzname[0] and _tzname[1] contain empty strings, but
the time-manipulation functions (_tzset, _ftime, and localtime) attempt to set the
values of _daylight and _timezone by querying the operating system for the default
value of each variable. The time-zone global variable values are as follows:

Variable Value

_daylight Nonzero if daylight-saving-time zone (DST) is specified in TZ; otherwise,
0. Default value is 1.

_timezone Difference in seconds between coordinated universal time and local time.
Default value is 28,800.

_tzname[0] Three-letter time-zone name derived from TZ environment variable.

_tzname[1] Three-letter DST zone name derived from TZ environment variable.

Default value is PDT (Pacific daylight time). If DST zone is omitted from
TZ, _tzname[1] is empty string.

40

Chapter 2 Global Variables and Standard Types

_doserrno, errno, _sys_errlist, and _sys_nerr

These global variables hold error codes used by the perror and strerror functions
for printing error messages. Manifest constants for these variables are declared in
STDLIB.H as follows:

extern int _doserrno;
extern int errno;

extern char *_sys_errlist[];
extern int _sys_nerr;

errno is set on an error in a system-level call. Because errno holds the value for

the last call that set it, this value may be changed by succeeding calls. Always check
errno immediately before and after a call that may set it. All errno values, defined as
manifest constants in ERRNO.H, are UNIX-compatible. The values valid for 32-bit
Windows applications are a subset of these UNIX values.

On an error, errno is not necessarily set to the same value as the error code returned by
a system call. For I/O operations only, use _doserrno to access the operating-system
error-code equivalents of errno codes. For other operations the value of _doserrno

is undefined.

Each errno value is associated with an error message that can be printed using perror
or stored in a string using strerror. perror and strerror use the _sys_errlist array
and _sys_nerr, the number of elements in _sys_errlist, to process error information.

Library math routines set errno by calling _matherr. To handle math errors
differently, write your own routine according to the _matherr reference description
and name it _matherr.

The following errno values are compatible with 32-bit Windows applications. Only
ERANGE and EDOM are specified in the ANSI standard.

Constant System Error Message Value
E2BIG Argument list too long 7
EACCES Permission denied 13
EAGAIN No more processes or not enough memory or 11
maximum nesting level reached

EBADF Bad file number 9
ECHILD No spawned processes 10
EDEADLOCK Resource deadlock would occur 36
EDOM Math argument 33
EEXIST File exists 17
EINVAL Invalid argument 22
EMFILE Too many open files 24

(continued)

H

Run-Time Library Reference

(continued)

Constant System Error Message Value
ENOENT No such file or directory 2
ENOEXEC Exec format error 8
ENOMEM Not enough memory 12
ENOSPC No space left on device 28
ERANGE Result too large 34
EXDEV Cross-device link 18

_environ, _wenviron

42

The _environ variable is a pointer to an array of pointers to the multibyte-character
strings that constitute the process environment. _environ is declared in STDLIB.H as

extern char **_environ;

In a program that uses the main function, _environ is initialized at program startup
according to settings taken from the operating-system environment. The environment
consists of one or more entries of the form

ENVVARNAME-=string

getenv and _putenv use the _environ variable to access and modify the environment
table. When _putenv is called to add or delete environment settings, the environment
table changes size. Its location in memory may also change, depending on the program’s
memory requirements. The value of _environ is automatically adjusted accordingly.

The _wenviron variable, declared in STDLIB.H as extern wchar_t **_wenviron;, is
a wide-character version of _environ. In a program that uses the wmain function,
_wenviron is initialized at program startup according to settings taken from the
operating-system environment.

In a program that uses main, _wenviron is initially NULL, because the environment
is composed of multibyte-character strings. On the first call to _wgetenv or _wputenv,
a corresponding wide-character string environment is created and is pointed to by
_wenviron.

Similarly, in a program that uses wmain, _environ is initially NULL because the
environment is composed of wide-character strings. On the first call to _getenv or
_putenv, a corresponding wide-character string environment is created and is pointed
to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously in a
program, the run-time system must maintain both copies, resulting in slower execution
time. For example, whenever you call _putenv, a call to _wputenv is also executed
automatically, so that the two environment strings correspond.

Chapter 2 Global Variables and Standard Types

Caution In rare instances, when the run-time system is maintaining both a Unicode version

and a multibyte version of the environment, these two environment versions may not correspond
exactly. This is because, although any unique multibyte-character string maps to a unique
Unicode string, the mapping from a unique Unicode string to a multibyte-character string is not
necessarily unique. Therefore, two distinct Unicode strings may map to the same multibyte string.

The following pseudocode illustrates how this can happen:

int i, §;

i = _wputenv("env_var_x=stringl"); // results in the implicit call:
// putenv ("env_var_z=stringl")

Jj = _wputenv("env_var_y=string2"™); // also results in implicit call:
// putenv(“env_var_z=string2")

In the notation used for this example, the character strings are not C string literals;
rather, they are placeholders that represent Unicode environment string literals in
the _wputenv call and multibyte environment strings in the putenv call. The
character-placeholders ‘x” and ‘y’ in the two distinct Unicode environment strings
do not map uniquely to characters in the current MBCS. Instead, both map to some
MBCS character ‘7’ that is the default result of the attempt to convert the strings.

Thus in the multibyte environment the value of “env_var_z” after the first implicit call
to putenv would be “string1”, but this value would be overwritten on the second
implicit call to putenv, when the value of “env_var_z” is set to “string2”. The
Unicode environment (in _wenviron) and the multibyte environment (in _environ)
would therefore differ following this series of calls.

_fileinfo

The _fileinfo variable determines whether information about the open files of a
process is passed to new processes by functions such as _spawn. _fileinfo is declared
in STDLIB.H as

extern int _fileinfo;

If _fileinfo is O (the default), information about open files is not passed to new
processes; otherwise the information is passed. You can modify the default value of
_fileinfo by setting the _fileinfo variable to a nonzero value in your program.

_fmode

The _fmode variable sets the default file-translation mode for text or binary
translation. It is declared in STDLIB.H as

extern int _fmode;

43

Run-Time Library Reference

The default setting of _fmode is _O_TEXT for text-mode translation. _O_BINARY
is the setting for binary mode.
You can change the value of _fmode in either of two ways:

¢ Link with BINMODE.OBJ. This changes the initial setting of _fmode to
_O_BINARY, causing all files except stdin, stdout, and stderr to be opened in
binary mode.

¢ Change the value of _fmode directly by setting it in your program.

_O0SVer, _winmajor, _winminor, _winver

These variables store build and version numbers of the 32-bit Windows operating
systems. Declarations for these variables in STDLIB.H are as follows:

extern unsigned int _osver;
extern unsigned int _winmajor;
extern unsigned int _winminor;
extern unsigned int _winver;

These variables are useful in programs that run in different versions of Windows NT
or Windows 95.

Variable Description

_osver Current build number

_winmajor Major version number

_winminor Minor version number

_winver Holds value of _winmajor in high byte and value of _winminor in low byte

_pgmptr, _wpgmptr

44

When a program is run from the command interpreter (CMD.EXE), _pgmptr is
automatically initialized to the full path of the executable file. For example, if
HELLO.EXE is in C:\BIN and C:\BIN is in the path, _pgmptr is set to
CABIN\HELLO.EXE when you execute

C> hello

When a program is not run from the command line, _pgmptr may be initialized to the
program name (the file’s base name without the extension), or to a filename, a relative
path, or a full path.

_wpgmptr is the wide-character counterpart of _pgmptr for use with programs that
use wmain. _pgmptr and _wpgmptr are declared in STDLIB.H as

extern char *_pgmptr;
extern wchar_t *_pgmptr;

Chapter 2 Global Variables and Standard Types

The following program demonstrates the use of _pgmptr.

/*
* PGMPTR.C: The following program demonstrates the use of _pgmptr.
*/

#include <stdio.h>
f#finclude <stdlib.h>
void main(void)
{
printf("The full path of the executing program is : %Fs\n",
_pgmptr);

Control Flags

The debug version of the Microsoft C run-time library uses the following flags to
control the heap allocation and reporting process.

Flag Description

_CRTDBG_MAP_ALLOC Maps the base heap functions to their debug version
counterparts

_DEBUG Enables the use of the debugging versions of the run-time
functions

_crtDbgFlag Controls how the debug heap manager tracks allocations

These flags can be defined with a /D command-line option or with a #define directive.
When the flag is defined with #define, the directive must appear before the header file
include statement for the routine declarations.

"CRTDBG_MAP_ALLOC

When the _CRTDBG_MAP_ALLOC flag is defined in the debug version of an
application, the base version of the heap functions are directly mapped to their debug
versions. This flag is declared in CRTDBG.H. This flag is only available when the
_DEBUG f{lag has been defined in the application.

45

Run-Time Library Reference

_DEBUG

The compiler defines _DEBUG when you specify the /MTd or /Mdd option. These
options specify debug versions of the C run-time library.

_crtDbgFlag

The _crtDbgFlag flag consists of five bit fields that control how memory allocations
on the debug version of the heap are tracked, verified, reported, and dumped. The bit
fields of the flag are set using the _CrtSetDbgFlag function. This flag and its bit
fields are declared in CRTDBG.H. This flag is only available when the _DEBUG flag
has been defined in the application.

Standard Types

The Microsoft run-time library defines the following standard types.

Type Description Declared In

clock_t structure Stores time values; used by clock. TIME.H

_complex structure Stores real and imaginary parts of MATH.H
complex numbers; used by _cabs.

_dev_t short or unsigned Represents device handles. SYS\TYPES.H

integer

div_t, Idiv_t structures Store values returned by div and 1div, STDLIB.H
respectively.

_exception structure Stores error information for _matherr. MATH.H

FILE structure Stores information about current state STDIO.H

_finddata_t, _wfinddata_t,
_wfinddatai64_t structures

46

of stream; used in all stream /O
operations.

_finddata_t stores file-attribute
information returned by _findfirst and
_findnext. _wfinddata_t stores
file-attribute information returned by
_wfindfirst and _wfindnext.
_wfinddatai64._t stores file-attribute
information returned by
_wfindfirsti64 and _wfindnexti64.

_finddata_t: IO.H
_wfinddata_t:
I10.H, WCHAR.H
_wfinddatai64_t:
I0.H, WCHAR.H

Chapter 2 Global Variables and Standard Types

(continued)
Type Description Declared In
_FPIEEE_RECORD Contains information pertaining to FPIEEE.H
structure IEEE floating-point exception; passed
to user-defined trap handler by
_fpieee_flt.
fpos_t Used by fgetpos and fsetpos to record ~ STDIO.H
(long integer, __int64, or information for uniquely specifying
structure, depending on the every position within a file.
target platform)
_HEAPINFO structure Contains information about next heap =~ MALLOC.H
entry for _heapwalk.
jmp_buf array Used by setjmp and longjmp to save SETJIMP.H
and restore program environment.
Iconv structure Contains formatting rules for numeric =~ LOCALE.H

_off_t long integer
_onexit_t pointer
_PNH pointer to function

ptrdiff_t integer
sig_atomic_t integer

size_t unsigned integer
_stat structure

time_t long integer
_timeb structure

tm structure

_utimbuf structure

values in different countries.
Represents file-offset value.
Returned by _onexit.

Type of argument to
_set_new_handler.

Result of subtraction of two pointers.

Type of object that can be modified
as atomic entity, even in presence of
asynchronous interrupts; used with
signal.

Result of sizeof operator.

Contains file-status information
returned by _stat and _fstat.

Represents time values in mktime and
time.

Used by _ftime to store current system
time.

Used by asctime, gmtime, localtime,
mktime, and strftime to store and
retrieve time information.

Stores file access and modification
times used by _utime to change
file-modification dates.

SYS\TYPES.H
STDLIB.H
NEW.H

STDDEF.H
SIGNAL.H

STDDEF.H and
other include files
SYS\STAT.H
TIME.H

SYS\TIMEB.H

TIME.H

SYS\UTIME.H

(continued)

47

Run-Time Library Reference

(continued)
Type Description Declared In
va_list structure Used to hold information needed by STDARG.H
va_arg and va_end macros. Called
function declares variable of type
va_list that can be passed as argument
to another function.
wchar_t internal type of a Useful for writing portable programs STDDEF.H,
wide character for international markets. STDLIB.H
wectrans_t integer Represents locale-specific character WCTYPE.H
mappings.
wetype_t integer Can represent all characters of any WCHAR.H
national character set.
wint_t integer Type of data object that can hold any WCHAR.H

48

wide character or wide end-of-file
value.

CHAPTER 3

Global Constants

The Microsoft run-time library contains definitions for global constants used by
library routines. To use these constants, include the appropriate header files as
indicated in the description for each constant. The global constants are listed in

the following table:

BUFSIZ

CLOCKS_PER_SEC, CLK_TCK
Commit-To-Disk Constants

Data Type Constants

EOF, WEOF

errno

Exception-Handling Constants
EXIT_SUCCESS, EXIT_FAILURE
File Attribute Constants

File Constants

File Permission Constants

File Read/Write Access Constants
File Translation Constants
FILENAME_MAX
FOPEN_MAX, _SYS_OPEN
_FREEENTRY, USEDENTRY
fseek, _lseek

Heap Constants

_HEAP_MAXREQ
HUGE_VAL

__LOCAL_SIZE

Locale Categories

_locking Constants

Math Error Constants
MB_CUR_MAX

NULL

Path Field Limits
RAND_MAX

setvbuf Constants

Sharing Constants

signal Constants

signal Action Constants
_spawn Constants

_stat Structure st_mode Field Constants
stdin, stdout, stderr
TMP_MAX, L_tmpnam
Translation Mode Constants

_WAIT_CHILD,
_WAIT_GRANDCHILD

32-bit Windows Time/Date Formats

49

Run-Time Library Reference

BUFSIZ

#include <stdio.h>

Remarks

BUFSIZ is the required user-allocated buffer for the setvbuf routine.

CLOCKS_PER_SEC, CLK_TCK

#include <time.h>

Remarks

The time in seconds is the value returned by the clock function, divided by
CLOCKS_PER_SEC. CLK_TCK is equivalent, but considered obsolete.

See Also: clock

Commit-To-Disk Constants

Microsoft Specific —»
#include <stdio.h>

Remarks

50

These Microsoft-specific constants specify whether the buffer associated with the
open file is flushed to operating system buffers or to disk. The mode is included in the
string specifying the type of read/write access ("'r", "w'", "a"", "r+", "w+", "a+").

The commit-to-disk modes are as follows:

C

Writes the unwritten contents of the specified buffer to disk. This commit-to-disk
functionality only occurs at explicit calls to either the fflush or the _flushall
function. This mode is useful when dealing with sensitive data. For example, if
your program terminates after a call to fflush or _flushall, you can be sure that
your data reached the operating system’s buffers. However, unless a file is opened
with the ¢ option, the data might never make it to disk if the operating system also
terminates.

Writes the unwritten contents of the specified buffer to the operating system’s
buffers. The operating system can cache data and then determine an optimal time to
write to disk. Under many conditions, this behavior makes for efficient program
behavior. However, if the retention of data is critical (such as bank transactions or
airline ticket information) consider using the ¢ option. The n mode is the default.

Note The ¢ and n options are not part of the ANSI standard for fopen, but are Microsoft
extensions and should not be used where ANSI portability is desired.

Chapter 3 Global Constants

Using the Commit-to-Disk Feature with Existing Code

By default, calls to the fflush or _flushall library functions write data to buffers
maintained by the operating system. The operating system determines the optimal time
to actually write the data to disk. The commit-to-disk feature of the run-time library
lets you ensure that critical data is written directly to disk rather than to the operating
system’s buffers. You can give this capability to an existing program without rewriting
it by linking its object files with COMMODE.OBJ.

In the resulting executable file, calls to fflush write the contents of the buffer directly
to disk, and calls to _flushall write the contents of all buffers to disk. These two
functions are the only ones affected by COMMODE.OBJ.

END Microsoft Specific

See Also: _fdopen, fopen

Data Type Constants

Remarks
Data type constants are implementation-dependent ranges of values allowed for
integral data types. The constants listed below give the ranges for the integral data
types and are defined in LIMITS.H.

Note The /J compiler option changes the default char type to unsigned.

Constant Value Meaning

SCHAR_MAX 127 Maximum signed char value

SCHAR_MIN -128 Minimum signed char value

UCHAR_MAX 255 Maximum unsigned char value
(0xff)

CHAR_BIT 8 Number of bits in a char

USHRT_MAX 65535 Maximum unsigned short value
(Oxffff)

SHRT_MAX 32767 Maximum (signed) short value

SHRT_MIN -32768 Minimum (signed) short value

UINT_MAX 4294967295 Maximum unsigned int value
(Dsiiisiiig)

ULONG_MAX 4294967295 Maximum unsigned long value
(Oxfffffffr)

INT_MAX 2147483647 Maximum (signed) int value

INT_MIN —2147483647-1 Minimum (signed) int value

LONG_MAX 2147483647 Maximum (signed) long value

(continued)

51

Run-Time Library Reference

(continued)
Constant Value Meaning
LONG_MIN —2147483647-1 Minimum (signed) long value
CHAR_MAX 127 Maximum char value
(255 if /] option used)
CHAR_MIN -128 Minimum char value
(0 if /J option used)
MB_LEN_MAX 2 Maximum number of bytes in

multibyte char

The following constants give the range and other characteristics of the double and
float data types, and are defined in FLOAT.H:

Constant

Value

Description

DBL_DIG
DBL_EPSILON

DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN
DBL_MIN_10_EXP
DBL_MIN_EXP
_DBL_RADIX
_DBL_ROUNDS
FLT_DIG

FLT_EPSILON

FLT_MANT_DIG
FLT_MAX
FLT_MAX_10_EXP
FLT_MAX_EXP
FLT_MIN
FLT_MIN_10_EXP
FLT_MIN_EXP
FLT_RADIX
FLT_ROUNDS

52

15
2.2204460492503131e-016

53
1.7976931348623158¢+308
308

1024
2.2250738585072014e-308
(=307)

(-1021)

2

1

6

1.192092896e—-07F

24
3.402823466e+38F
38

128
1.175494351e-38F
(=37

(-125)

2

1

of decimal digits of precision

Smallest such that
1.0+DBL_EPSILON !=1.0

of bits in mantissa
Maximum value

Maximum decimal exponent
Maximum binary exponent
Minimum positive value
Minimum decimal exponent
Minimum binary exponent
Exponent radix

Addition rounding: near

Number of decimal digits of
precision

Smallest such that
1.0+4FLT_EPSILON !=1.0

Number of bits in mantissa
Maximum value

Maximum decimal exponent
Maximum binary exponent
Minimum positive value
Minimum decimal exponent
Minimum binary exponent
Exponent radix

Addition rounding: near

Chapter 3 Global Constants

EOF, WEOF

Remarks

EOF is returned by an I/O routine when the end-of-file (or in some cases, an error) is
encountered.

WEOF yields the return value, of type wint_t, used to signal the end of a wide stream,
or to report an error condition.

See Also: putc, ungetc, scanf, fflush, _fcloseall, _ungetch, _putch, __isascii

errno Constants

Remarks

#include <errno.h>

The errno values are constants assigned to errno in the event of various error conditions.

ERRNO.H contains the definitions of the errno values. However, not all the definitions
given in ERRNO.H are used in 32-bit Windows operating systems. Some of the values
in ERRNO.H are present to maintain compatibility with the UNIX family of operating
systems.

The errno values in a 32-bit Windows operating system are a subset of the values for
errno in XENIX systems. Thus, the errno value is not necessarily the same as the actual
error code returned by a Windows NT or Windows 95 system call. To access the actual
operating system error code, use the _doserrno variable, which contains this value.

The following errno values are supported:

ECHILD No spawned processes.

EAGAIN No more processes. An attempt to create a new process failed because there
are no more process slots, or there is not enough memory, or the maximum nesting
level has been reached.

E2BIG Argument list too long.

EACCES Permission denied. The file’s permission setting does not allow the specified
access. This error signifies that an attempt was made to access a file (or, in some
cases, a directory) in a way that is incompatible with the file’s attributes.

For example, the error can occur when an attempt is made to read from a file that is
not open, to open an existing read-only file for writing, or to open a directory instead
of a file. Under MS-DOS operating system versions 3.0 and later, EACCES may
also indicate a locking or sharing violation.

The error can also occur in an attempt to rename a file or directory or to remove an
existing directory.

53

Run-Time Library Reference

EBADF Bad file number. There are two possible causes: 1) The specified file handle
is not a valid file-handle value or does not refer to an open file. 2) An attempt was
made to write to a file or device opened for read-only access.

EDEADLOCK Resource deadlock would occur. The argument to a math function is
not in the domain of the function.

EDOM Math argument.

EEXIST Files exist. An attempt has been made to create a file that already exists.
For example, the _O_CREAT and _O_EXCL flags are specified in an _open call,
but the named file already exists.

EINVAL Invalid argument. An invalid value was given for one of the arguments to a
function. For example, the value given for the origin when positioning a file pointer
(by means of a call to fseek) is before the beginning of the file.

EMFILE Too many open files. No more file handles are available, so no more files
can be opened.

ENOENT No such file or directory. The specified file or directory does not exist or
cannot be found. This message can occur whenever a specified file does not exist
or a component of a path does not specify an existing directory.

ENOEXEC Exec format error. An attempt was made to execute a file that is not
executable or that has an invalid executable-file format.

ENOMEM Not enough core. Not enough memory is available for the attempted
operator. For example, this message can occur when insufficient memory is
available to execute a child process, or when the allocation request in a _getcwd
call cannot be satisfied.

ENOSPC No space left on device. No more space for writing is available on the
device (for example, when the disk is full).

ERANGE Result too large. An argument to a math function is too large, resulting in
partial or total loss of significance in the result. This error can also occur in other
functions when an argument is larger than expected (for example, when the buffer
argument to _getcwd is longer than expected).

EXDEV Cross-device link. An attempt was made to move a file to a different device
(using the rename function).

Exception-Handling Constants

Remarks
The constant EXCEPTION_CONTINUE_SEARCH,
EXCEPTION_CONTINUE_EXECUTION, or
EXCEPTION_EXECUTE_HANDLER is returned when an exception

54

Chapter 3 Global Constants

occurs during execution of the guarded section of a try-except statement. The
return value determines how the exception is handled. For more information, see
“The Try-except Statement” in the C Language Reference.

EXIT_SUCCESS, EXIT_FAILURE

#include <stdlib.h>

Remarks
These are arguments for the exit and _exit functions and the return values for the
atexit and _onexit functions.

See Also: atexit, exit, _onexit

File Attribute Constants

#include <io.h>

Remarks
These constants specify the current attributes of the file or directory specified by the
function.

The attributes are represented by the following manifest constants:

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: 0x20

A_HIDDEN Hidden file. Not normally seen with the DIR command, unless the

/AH option is used. Returns information about normal files as well as files with this
attribute. Value: 0x02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
0x00

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: 0x01

_A_SUBDIR Subdirectory. Value: 0x10

_A_SYSTEM System file. Not normally seen with the DIR command, unless the
/AS option is used. Value: 0x04

Multiple constants can be combined with the OR operator (I).

See Also: _find Functions

55

Run-Time Library Reference

File Constants

#include <fentl.h>

Remarks
The integer expression formed from one or more of these constants determines the
type of reading or writing operations permitted. It is formed by combining one or
more constants with a translation-mode constant.

The file constants are as follows:

_O_APPEND Repositions the file pointer to the end of the file before every write
operation.

_O_CREAT Creates and opens a new file for writing; this has no effect if the file
specified by filename exists.

_O_EXCL Returns an error value if the file specified by filename exists. Only
applies when used with _O_CREAT.

_O_RDONLY Opens file for reading only; if this flag is given, neither _O_RDWR
nor _O_WRONLY can be given.

_O_RDWR Opens file for both reading and writing; if this flag is given, neither
_O_RDONLY nor _O_WRONLY can be given.

_O_TRUNC Opens and truncates an existing file to zero length; the file must have
write permission. The contents of the file are destroyed. If this flag is given, you
cannot specify _O_RDONLY.

_O_WRONLY Opens file for writing only; if this flag is given, neither
_O_RDONLY nor _O_RDWR can be given.

See Also: _open, _sopen

File Permission Constants

#include <sys/stat.h>

Remarks
One of these constants is required when _O_CREAT (_open, _sopen) is specified.

The pmode argument specifies the file’s permission settings as follows:

Constant Meaning

_S_IREAD Reading permitted
_S_IWRITE Writing permitted

_S_IREAD | _S_IWRITE Reading and writing permitted

56

Chapter 3 Global Constants

‘When used as the pmode argument for _umask, the manifest constant sets the
permission setting, as follows:

Constant Meaning

_S_IREAD Writing not permitted (file is read-only)
_S_IWRITE Reading not permitted (file is write-only)
_S_IREAD|_S_IWRITE Neither reading nor writing permitted

See Also: _open, _sopen, _umask, _stat structure

File Read/Write Access Constants

#include <stdio.h>

Remarks
These constants specify the access type ("a", "r", or "w") requested for the file. Both
the translation mode ("b" or "t") and the commit-to-disk mode ("c" or "n") can be
specified with the type of access.

The access types are described below.

nan

a" Opens for writing at the end of the file (appending); creates the file first if it
does not exist. All write operations occur at the end of the file. Although the file
pointer can be repositioned using fseek or rewind, it is always moved back to the
end of the file before any write operation is carried out.

"a+"" Same as above, but also allows reading.

o 0t

r'" Opens for reading. If the file does not exist or cannot be found, the call to open
the file will fail.

"r+" Opens for both reading and writing. If the file does not exist or cannot be
found, the call to open the file will fail.

"w' Opens an empty file for writing. If the given file exists, its contents are
destroyed.

w+" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

When the "r+", "w+", or "a+" type is specified, both reading and writing are allowed
(the file is said to be open for "update"). However, when you switch between reading
and writing, there must be an intervening fflush, fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation.

See Also: _fdopen, fopen, freopen, _fsopen, _popen

57

Run-Time Library Reference

File Translation Constants

Remarks

#include <stdio.h>

These constants specify the mode of translation ("'b" or 't""). The mode is included in
the string specifying the type of access ("'r", "w'', "a", "'r+", "w+", "a+").

’

The translation modes are as follows:

t Opens in text (translated) mode. In this mode, carriage-return/linefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading or reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

Note The t option is not part of the ANSI standard for fopen and freopen. It is a Microsoft
extension and should not be used where ANSI portability is desired.

b Opens in binary (untranslated) mode. The above translations are suppressed.

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. For more information about using text and binary modes, see
“Text and Binary Mode File I/O” on page 15 in Chapter 1.

See Also: _fdopen, fopen, freopen, _fsopen

FILENAME_MAX

Remarks

#include <stdio.h>

This is the maximum permissible length for filename.

See Also: Path Field Limits

FOPEN_MAX, _SYS_OPEN

Remarks

58

#include <stdio.h>

This is the maximum number of files that can be opened simultaneously.
FOPEN_MAX is the ANSI-compatible name. _SYS_OPEN is provided for
compatibility with existing code.

Chapter 3 Global Constants

_FREEENTRY, _USEDENTRY

#include <malloc.h>

Remarks

These constants represent values assigned by the _heapwalk routines to the _useflag
element of the _HEAPINFO structure. They indicate the status of the heap entry.

See Also: _heapwalk

fseek, lseek Constants

#include <stdio.h>

Remarks

The origin argument specifies the initial position and can be one of the manifest

constants shown below:

Constant Meaning

SEEK_END End of file

SEEK_CUR Current position of file pointer
SEEK_SET Beginning of file

See Also: fseek, _lIseek, _Iseeki64

Heap Constants

#include <malloc.h>

Remarks

These constants give the return value indicating status of the heap.

Constant
_HEAPBADBEGIN

_HEAPBADNODE
_HEAPBADPTR

_HEAPEMPTY
_HEAPEND
_HEAPOK

Meaning
Initial header information was not found or was invalid.

Bad node was found, or heap is damaged.

_pentry field of _HEAPINFO structure does not contain valid
pointer into heap (_heapwalk routine only).

Heap has not been initialized.
End of heap was reached successfully (_heapwalk routine only).

Heap is consistent (_heapset and _heapchk routines only). No
errors so far; _HEAPINFO structure contains information about
next entry (_heapwalk routine only).

See Also: _heapchk, _heapset, _heapwalk

59

Run-Time Library Reference

_HEAP_MAXREQ

#include <malloc.h>

Remarks
The maximum size of a user request for memory that can be granted.

See Also: malloc, calloc

HUGE_VAL

#include <math.h>

Remarks
HUGE_VAL is the largest representable double value. This value is returned by many
run-time math functions when an error occurs. For some functions, -HUGE_VAL is
returned.

__LOCAL_SIZE

Remarks
The compiler provides a symbol, _ LOCAL_SIZE, for use in the inline assembler
block of function prolog code. This symbol is used to allocate space for local
variables on the stack frame in your custom prolog code.

The compiler determines the value of __ LOCAL_SIZE. Its value is the total number
of bytes of all user-defined locals as well as compiler-generated temporary variables.
__LOCAL_SIZE can be used as an immediate operand; it cannot be used in an
expression. You must not change or redefine the value of this symbol. For example:

mov eax, _ LOCAL_SIZE ;Immediate operand
mov eax, [ebp - __LOCAL_SIZE] ;Expression

The following is a example of a naked function containing custom prolog and epilog
sequences using the __ LOCAL_SIZE symbol in the prolog sequence:

__declspec (naked) func()

{

int i;

int j;

_asm /* prolog */
{
push ebp
mov ebp, esp
sub esp, __ LOCAL_SIZE
}

60

Chapter 3 Global Constants

/* Function body */

__asm /* epilog */
{
mov esp, ebp
pop ebp
ret
}

}

For related information, see naked in the Language Quick Reference.

Locale Categories

#include <locale.h>

Remarks
Locale categories are manifest constants used by the localization routines to specify
which portion of a program’s locale information will be used. The locale refers to the
locality (or country) for which certain aspects of your program can be customized.
Locale-dependent areas include, for example, the formatting of dates or the display
format for monetary values.

Locale Category Parts of Program Affected

LC_ALL All locale-specific behavior (all categories)

LC_COLLATE Behavior of strcoll and strxfrm functions

LC_CTYPE Behavior of character-handling functions (except isdigit, isxdigit,
mbstowces, and mbtowe, which are unaffected)

LC_MAX Same as LC_TIME

LC_MIN Same as LC_ALL

LC_MONETARY Monetary formatting information returned by the localeconv function

LC_NUMERIC Decimal-point character for formatted output routines (for example,
printf), data conversion routines, and nonmonetary formatting
information returned by localeconyv function

LC_TIME Behavior of strftime function

See Also: localeconyv, setlocale, strcoll Functions, strftime, strxfrm

_locking Constants

#include <sys/locking.h>

Remarks
The mode argument in the call to the _locking function specifies the locking action to
be performed.

61

Run-Time Library Reference

The mode argument must be one of the following manifest constants:

_LK_LOCK Locks the specified bytes. If the bytes cannot be locked, the function
tries again after one second. If, after ten attempts, the bytes cannot be locked, the
function returns an error.

_LK_RLCK Same as _LK_LOCK.

_LK_NBLCK Locks the specified bytes. If bytes cannot be locked, the function
returns an error.

_LK_NBRLCK Same as _LK_NBLCK.

_LK_UNLCK Unlocks the specified bytes. (The bytes must have been previously
locked.)

See Also: _locking

Math Error Constants

#include <math.h>

Remarks
The math routines of the run-time library can generate math error constants.

These errors, described as follows, correspond to the exception types defined in
MATH.H and are returned by the _matherr function when a math error occurs.

Constant Meaning

_DOMAIN Argument to function is outside domain of function.

_OVERFLOW Result is too large to be represented in function’s return type.

_PLOSS Partial loss of significance occurred.

_SING Argument singularity: argument to function has illegal value. (For
example, value 0 is passed to function that requires nonzero value.)

_TLOSS Total loss of significance occurred.

_UNDERFLOW Result is too small to be represented.

See Also: _matherr

MB_CUR_MAX

#include <stdlib.h>

Context: ANSI multibyte- and wide-character conversion functions

62

Chapter 3 Global Constants

Remarks
The value of MB_CUR_MAX is the maximum number of bytes in a muitibyte
character for the current locale.

See Also: mblen, mbstowcs, mbtowc, wchar_t, westombs, wetomb, Data Type
Constants

NULL

Remarks
NULL is the null-pointer value used with many pointer operations and functions.

Path Field Limits

#include <stdlib.h>

Remarks
These constants define the maximum length for the path and for the individual fields
within the path:

Constant Meaning

_MAX _DIR Maximum length of directory component
_MAX_DRIVE Maximum length of drive component
_MAX_EXT Maximum length of extension component
_MAX_FNAME Maximum length of filename component
_MAX_PATH Maximum length of full path

The sum of the fields should not exceed _MAX_PATH.

RAND_MAX

#include <stdlib.h>

Remarks
The constant RAND_MAX is the maximum value that can be returned by the
rand function. RAND_MAX is defined as the value Ox7fff.

See Also: rand

63

Run-Time Library Reference

setvbuf Constants

#include <stdio.h>

Remarks

These constants represent the type of buffer for setvbuf.

The possible values are given by the following manifest constants:

Constant Meaning

_IOFBF Full buffering: Buffer specified in call to setvbuf is used and its size is
as specified in setvbuf call. If buffer pointer is NULL, automatically
allocated buffer of specified size is used.

_IOLBF Same as _IOFBF.

_IONBF No buffer is used, regardless of arguments in call to setvbuf.

See Also: setbuf

Sharing Constants

#include <share.h>

Remarks

The shflag argument determines the sharing mode, which consists of one or more
manifest constants. These can be combined with the oflag arguments (see “File

Constants”).

The constants and their meanings are listed below:

Constant Meaning

_SH_COMPAT Sets compatibility mode
_SH_DENYRW Denies read and write access to file °
_SH_DENYWR Denies write access to file
_SH_DENYRD Denies read access to file
_SH_DENYNO Permits read and write access

See Also: _sopen, _fsopen

signal Constants

#include <signal.h>

Remarks

The sig argument must be one of the manifest constants listed below (defined in

SIGNAL.H).

64

Chapter 3 Global Constants

SIGABRT Abnormal termination. The default action terminates the calling program
with exit code 3.

SIGFPE Floating-point error, such as overflow, division by zero, or invalid
operation. The default action terminates the calling program.

SIGILL Illegal instruction. The default action terminates the calling program.
SIGINT CTRL+C interrupt. The default action issues INT 23H.

SIGSEGYV Illegal storage access. The default action terminates the calling program.
SIGTERM Termination request sent to the program. The default action terminates

the calling program.

See Also: signal, raise

signal Action Constants

Remarks

#include <signal.h>

The action taken when the interrupt signal is received depends on the value of func.

The func argument must be either a function address or one of the manifest constants
listed below and defined in SIGNAL.H.

SIG_DFL Uses system-default response. If the calling program uses stream I/O,
buffers created by the run-time library are not flushed.

SIG_IGN Ignores interrupt signal. This value should never be given for SIGFPE,
since the floating-point state of the process is left undefined.

See Also: signal

_spawn Constants

Remarks

#include <process.h>

The mode argument determines the action taken by the calling process before and
during a spawn operation. The following values for mode are possible:

Constant Meaning

_P_OVERLAY Overlays calling process with new process, destroying calling process
(same effect as _exec calls).

_P_WAIT Suspends calling thread until execution of new process is complete
(synchronous _spawn).

(continued)

65

Run-Time Library Reference

(continued)

Constant Meaning

_P_NOWAIT or Continues to execute calling process concurrently with new process
_P_NOWAITO (asynchronous _spawn, valid only in 32-bit Windows applications).
_P_DETACH Continues to execute calling process; new process is run in background

with no access to console or keyboard. Calls to _cwait against new
process will fail. This is an asynchronous _spawn and is valid only in
32-bit Windows applications.

See Also: _spawn Functions

_stat Structure st mode Field Constants

#include <sys/stat.h>

Remarks

These constants are used to indicate file type in the st_mode field of the

_stat structure.

The bit mask constants are described below:

Constant Meaning

_S_IFMT File type mask

_S_IFDIR Directory

_S_TFCHR Character special (indicates a device if set)
_S_IFREG Regular

_S_IREAD Read permission, owner

_S_IWRITE Write permission, owner

_S_IEXEC Execute/search permission, owner

See Also: _stat, _fstat, Standard Types

stdin, stdout, stderr

FILE *stdin;
FILE *stdout;
FILE *stderr;

#include <stdio.h>

Remarks

These are standard streams for input, output, and error output.

66

Chapter 3 Global Constants

By default, standard input is read from the keyboard, while standard output and
standard error are printed to the screen.

The following stream pointers are available to access the standard streams:

Pointer Stream

stdin Standard input
stdout Standard output
stderr Standard error

These pointers can be used as arguments to functions. Some functions, such as
getchar and putchar, use stdin and stdout automatically.

These pointers are constants, and cannot be assigned new values. The freopen
function can be used to redirect the streams to disk files or to other devices. The
operating system allows you to redirect a program’s standard input and output at the
command level.

See Also: Stream I/O

TMP_MAX, L_tmpnam

#include <stdio.h>

Remarks
TMP_MAX is the maximum number of unique filenames that the tmpnam function
can generate. L_tmpnam is the length of temporary filenames generated by tmpnam.

Translation Mode Constants

#include <fcntl.h>

Remarks
The _O_BINARY and _O_TEXT manifest constants determine the translation mode
for files (_open and _sopen) or the translation mode for streams (_setmode).

The allowed values are:

_O_TEXT Opens file in text (translated) mode. Carriage return—linefeed (CR-LF)
combinations are translated into a single linefeed (LF) on input. Linefeed characters
are translated into CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading and reading/writing,
fopen checks for CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file ending with
CTRL+Z may cause fseek to behave improperly near the end of the file.

67

Run-Time Library Reference

_O_BINARY Opens file in binary (untranslated) mode. The above translations are
suppressed.

_O_RAW Same as _O_BINARY. Supported for C 2.0 compatibility.

For more information, see “Text and Binary Mode File I/0” and “File Translation.”

See Also: _open, _pipe, _sopen, _setmode

_WAIT_CHILD, _WAIT_GRANDCHILD

#include <process.h>

Remarks
The _cwait function can be used by any process to wait for any other process (if the
process ID is known). The action argument can be one of the following values:

Constant Meaning
_WAIT_CHILD Calling process waits until specified new process terminates.
_WAIT_GRANDCHILD Calling process waits until specified new process, and all

processes created by that new process, terminate.

See Also: _cwait

32-bit Windows Time/Date Formats

Remarks
The file time and the date are stored individually, using unsigned integers as bit fields.
File time and date are packed as follows:

Time

Bit Position: 01234 56789A BCDETF

Length: 5 6 5

Contents: hours minutes 2-second increments
Value Range: 0-23 0-59 0-29 in 2-second intervals
Date

Bit Position: 0123456 789A BCDEF

Length: 7 4 5

Contents: year month day

Value Range: 0-119 1-12 1-31

(relative to 1980)

68

CHAPTER ¢4

Debug Version of the
C Run-Time Library

Visual C++ has extensive debug support for the C run-time library, letting
you step directly into run-time functions when debugging an application.
The library also provides a variety of tools to keep track of heap allocations,
locate memory leaks, and track down other memory-related problems. This
chapter is an alphabetic reference of the debug functions and macros
available for these purposes.

_ASSERT, ASSERTE Macros

Evaluate an expression and generate a debug report when the result is
FALSE (debug version only).

_ASSERT(booleanExpression);
_ASSERTE(booleanExpression);

Macro Required Header Compatibility
_ASSERT <crtdbg.h> Win NT, Win 95
_ASSERTE <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Although _ASSERT and _ASSERTE are macros and are obtained by
including CRTDBG.H, the application must link with one of the libraries
listed above because these macros call other run-time functions.

Return Value
None

69

Run-Time Library Reference

Parameter

Remarks

70

booleanExpression Expression (including pointers) that evaluates to nonzero or 0.

The _ASSERT and _ASSERTE macros provide an application with a clean and
simple mechanism for checking assumptions during the debugging process. They are
very flexible because they do not need to be enclosed in #ifdef statements to prevent
them from being called in a retail build of an application. This flexibility is achieved
by using the _DEBUG macro. _ASSERT and _ASSERTE are only available when
_DEBUG is defined. When _DEBUG is not defined, calls to these macros are
removed during preprocessing.

_ASSERT and _ASSERTE evaluate their booleanExpression argument and when
the result is FALSE (0), they print a diagnostic message and call _CrtDbgReport to
generate a debug report. The _ASSERT macro prints a simple diagnostic message,
while _ASSERTE includes a string representation of the failed expression in the
message. These macros do nothing when booleanExpression evaluates to nonzero.

Because the _ASSERTE macro specifies the failed expression in the generated report,
it enables users to identify the problem without referring to the application source code.
However, a disadvantage exists in that every expression evaluated by _ASSERTE must
be included in the debug version of your application as a string constant. Therefore, if

a large number of calls are made to _ASSERTE, these expressions can take up a
significant amount of space.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report mode(s) and file defined for the _CRT_ASSERT report type.
By default, assertion failures and errors are directed to a debug message window.
The _CrtSetReportMode and _CrtSetReportFile functions are used to define the
destination(s) for each report type.

When the destination is a debug message window and the user chooses the Retry
button, _CrtDbgReport returns 1, causing the _ASSERT and _ASSERTE macros
to start the debugger, provided that “just-in-time” (JIT) debugging is enabled. See
“Debug Reporting Functions of the C Run-Time Library” for an example of an assert
message box under Windows NT.

For more information about the reporting process, see the _CrtDbgReport function.

The _RPT, _RPTF debug macros are also available for generating a debug report,
but they do not evaluate an expression. The _RPT macros generate a simple report
and the _ RPTF macros include the source file and line number where the report
macro was called, in the generated report. In addition to the _ASSERTE macros,
the ANSI assert routine can also be used to verify program logic. This routine is
available in both the debug and release versions of the libraries.

Example

Chapter 4 Debug Version of the C Run-Time Library

/*

DBGMACRO.C

In this program, calls are made to the _ASSERT and _ASSERTE
macros to test the condition 'stringl == string2'. If the
condition fails, these macros print a diagnostic message.
The _RPTn and _RPTFn group of macros are also exercised in
this program, as an alternative to the printf function.

* ok X F X F

*/

#include <stdio.h>
ffinclude <string.h>
f##include <malloc.h>
f#finclude <crtdbg.h>

int main()

{
char *pl, *p2;

/*

* The Reporting Mode and File must be specified

* before generating a debug report via an assert
* or report macro.

* This program sends all report types to STDOUT
*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode (_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);
/*

* Allocate and assign the pointer variables

*/
pl = malloc(10);
strcpy(pl, "I am pl");
p2 = malloc(10);
strcepy(p2, "I am p2");

~
*

Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

If the expression fails, _ASSERTE will
include a string representation of the

* ok ok ok % % Ok ¥

n

Run-Time Library Reference

* failed expression in the report.

* _ASSERT does not include the

* expression in the generated report.

*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
=« pl == p2.\n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pl, p2):
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' != '%s'\n", pl, p2);

free(p2);
free(pl);

return 0;
Output
Use the assert macros to evaluate the expression pl == p2.
dbgmacro.c(54) : Will _ASSERT find 'I am pl' == "I am p2' ?

dbgmacro.c(55) : Assertion failed

dbgmacro.c(57) : Will _ASSERTE find 'I am pl' == 'I am p2' ?
dbgmacro.c(58) : Assertion failed: pl == p2

'I am pl" != "I am p2°'
See Also: _RPT, _RPTF

_calloc_dbg

Allocates a number of memory blocks in the heap with additional space for a
debugging header and overwrite buffers (debug version only).

void *_calloc_dbg(size_t num, size_t size, int blockType, const char *filename,
w int linenumber);\

Routine Required Header Compatibility
_calloc_dbg <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

72

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

Upon successful completion, this function either returns a pointer to the user portion
of the last allocated memory block, calls the new handler function, or returns NULL.
See the following Remarks section for a complete description of the return behavior.
See the calloc function for more information on how the new handler function is used.

Parameters

Remarks

Example

num Requested number of memory blocks
size Requested size of each memory block (bytes)

blockType Requested type of memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linenumber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _calloc_dbg has
been called explicitly or the _CRTDBG_MAP_ALLOC environment variable has
been defined.

_calloc_dbg is a debug version of the calloc function. When _DEBUG is not defined,
calls to _calloc_dbg are removed during preprocessing. Both calloc and _calloc_dbg
allocate num memory blocks in the base heap, but _calloc_dbg offers several
debugging features: buffers on either side of the user portion of the block to test for
leaks, a block type parameter to track specific allocation types, and filename/linenumber
information to determine the origin of allocation requests.

_calloc_dbg allocates each memory block with slightly more space than the requested
size. The additional space is used by the debug heap manager to link the debug
memory blocks together and to provide the application with debug header information
and overwrite buffers. When the block is allocated, the user portion of the block is
filled with the value 0xCD and each of the overwrite buffers are filled with OxFD.

/*
* CALLOCD.C
* This program uses _calloc_dbg to allocate space for
* 40 long integers. It initializes each element to zero.
*/
f#include <stdio.h>
f#include <malloc.h>
f#include <crtdbg.h>

73

Run-Time Library Reference

Output

void main(void)

{
Tong *bufferN, *bufferC;
/*
* Call _calloc_dbg to include the filename and 1ine number
* of our allocation request in the header and also so we can
* allocate CLIENT type blocks specifically
*/
bufferN = (long *)_calloc_dbg(40, sizeof(long), _NORMAL_BLOCK,
- __FILE__, __LINE__);
bufferC = (long *)_calloc_dbg(40, sizeof(long), _CLIENT_BLOCK,
- __FILE_ , __LINE_);
if(bufferN != NULL && bufferC != NULL)
printf("Allocated memory successfully\n");
else
printf("Problem allocating memory\n");
/-k
* _free_dbg must be called to free CLIENT type blocks
*/
free(bufferN);
_free_dbg(bufferC, _CLIENT_BLOCK);
}

Allocated memory successfully

See Also: calloc, _malloc_dbg, _DEBUG

_CrtCheckMemory

74

Confirms the integrity of the memory blocks allocated in the debug heap (debug
version only).

int _CrtCheckMemory(void);
Routine Required Header Compatibility

_CrtCheckMemory <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

Return Value

Remarks

Example

If successful, _CrtCheckMemory returns TRUE; otherwise, the function returns FALSE.

The _CrtCheckMemory function validates memory allocated by the debug heap
manager by verifying the underlying base heap and inspecting every memory block.
If an error or memory inconsistency is encountered in the underlying base heap, the
debug header information, or the overwrite buffers, _CrtCheckMemory generates a
debug report with information describing the error condition. When _DEBUG is not
defined, calls to _CrtCheckMemory are removed during preprocessing.

The behavior of _CrtCheckMemory can be controlled by setting the bit fields

of the _crtDbgFlag flag using the _CrtSetDbgFlag function. Turning the
_CRTDBG_CHECK_ALWAYS_DF bit field ON results in _CrtCheckMemory
being called every time a memory allocation operation is requested. Although this
method slows down execution, it is useful for catching errors quickly. Turning the
_CRTDBG_ALLOC_MEM_DF bit field OFF causes _CrtCheckMemory to not
verify the heap and immediately return TRUE.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if corruption is detected in the heap:

_ASSERTE(_CrtCheckMemory());

/***

* EXAMPLE 1 *
* This simple program illustrates the basic debugging features *
* of the C runtime libraries, and the kind of debug output *
* that these features generate. *

kkkkkhkkkkkkkkhhhhhkhhhkhkkhkhkhhkkhhhhhkhhhhkhhhkkhkhkkdhkhhhhkhkhkkhkhxkkk /

#include <stdio.h>
#include <string.h>
#Finclude <malloc.h>
#include <crtdbg.h>

// This routine place comments at the head of a section of debug output
void OutputHeading(const char * explanation)
{

RPTl(CRT WARN. "\n\n%S!\n**************************************\
************************************\n"’ exp]anation);

}

// The following macros set and clear, respectively, given bits
// of the C runtime 1ibrary debug flag, as specified by a bitmask.
#ifdef _DEBUG
ftdefine SET_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag((a) | _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))
#define CLEAR_CRT_DEBUG_FIELD(a) \

_CrtSetDbgFlag(~(a) & _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

75

Run-Time Library Reference

felse
j#idefine SET_CRT_DEBUG_FIELD(a) ((void) 0)
{#idefine CLEAR_CRT_DEBUG_FIELD(a) ((void) @)
ffendif

void main()

{
char *pl, *p2;
_CrtMemState sl1, s2, s3;

// Send all reports to STDOUT

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

// Allocate 2 memory blocks and store a string in each
pl = malloc(34);
strcpy(pl, "This is the pl string (34 bytes).");

p2 = malloc(34);
strepy(p2, "This is the p2 string (34 bytes).");

OutputHeading(
"Use _ASSERTE to check that the two strings are identical”);
_ASSERTE(strcmp(pl, p2) == 0);
OutputHeading(
"Use a _RPT macro to report the string contents as a warning”);
_RPT2(_CRT_WARN, "pl points to '%s' and \np2 points to '%s'\n", pl, p2);

OQutputHeading(
"Use _CRTMemDumpAl110bjectsSince to check the pl and p2 allocations"”);
CrtMemDumpAl10bjectsSince(NULL);

free(p2);

OQutputHeading(
"Having freed p2, dump allocation information about pl only");
_CrtMemDumpA110bjectsSince(NULL);

// Store a memory checkpoint in the sl memory-state structure
_CrtMemCheckpoint(&sl);

// Allocate another block, pointed to by p2
p2 = malloc(38);
strcpy(p2, "This new p2 string occupies 38 bytes.”);

// Store a 2nd memory checkpoint in s2
_CrtMemCheckpoint(&s2);

76

Chapter 4 Debug Version of the C Run-Time Library

OutputHeading(

"Dump the changes that occurred between two memory checkpoints™);
if (_CrtMemDifference(&s3, &sl, &s2))

_CrtMemDumpStatistics(&s3);

// Free p2 again and store a new memory checkpoint in s2
free(p2);
_CrtMemCheckpoint(&s2);
OutputHeading(
"Now the memory state at the two checkpoints is the same");
if (_CrtMemDifference(&s3, &sl, &s2))
_CrtMemDumpStatistics(&s3):

strepy(pl, "This new pl string is over 34 bytes");
OutputHeading("Free pl after overwriting the end of the allocation");
free(pl);

// Set the debug-heap flag so that freed blocks are kept on the
// Tinked 1ist, to catch any inadvertent use of freed memory
SET_CRT_DEBUG_FIELD(_CRTDBG_DELAY_FREE_MEM_DF);

pl = malloc(10);
free(pl);
strcpy(pl, "Oops”)

OutputHeading("Perform a memory check after corrupting freed memory");
_CrtCheckMemory();

// Use explicit calls to _malloc_dbg to save file name and line number
// information, and also to allocate Client type blocks for tracking
pl = _malloc_dbg(40, _NORMAL_BLOCK, __ FILE_, _ LINE__):

p2 = _malloc_dbg(40, _CLIENT_BLOCK, _ FILE_ , _ LINE__);

strcpy(pl, "pl points to a Normal allocation block”™);

strcpy(p2, "p2 points to a Client allocation block™);

// You must use _free_dbg to free a Client block
OutputHeading(
"Using free() to free a Client block causes an assertion failure");
free(pl);
free(p2);

pl = malloc(10);
OutputHeading("Examine outstanding allocations (dump memory leaks)");
_CrtDumpMemorylLeaks();

// Set the debug-heap flag so that memory leaks are reported when
// the process terminates. Then, exit.

OutputHeading("Program exits without freeing a memory block");
SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF);

77

Run-Time Library Reference

Output

78

Use _ASSERTE to check that the two strings are identical:
hhkkkhkhkhkkhkhkhkhkhkhkhhkhkhkhkhhkhhkhkhkhkhkdhhhkhhhkhhhkhkhhhkhhhkhhhkhkhhkhhhhkhkhhkdkhhkhkhhhkkhkhkhkkik

C:\DEV\EXAMPLE1.C(56) : Assertion failed: strcmp(pl, p2) == 0

Use a _RPT macro to report the string contents as a warning:
*hkhkkdkhkhkhkkhkhkdkhkhkhkhkhkhkkhkhkkhkhkhkkkhkkhkhhkhkhkhkhkhhkkhhhkrhkhhkkhhkhkhkhkkkhhkhkkkhkhkhkhkkkhkhkkkk
pl points to 'This is the pl string (34 bytes).' and

p2 points to 'This is the p2 string (34 bytes).'

Use _CRTMemDumpAl10bjectsSince to check the pl and p2 allocations:
hhkhkkhkhkhkkhkhkhkrkkhkkhkkhkhhkhkhhkhkhkkhkkhkkhkhkhkhkhhhkhkhkhhkhkhkkhkhkhhkhkkkkhkhkhkhkkhkhkhkhkhkkhkhkkk
Dumping objects ->

{13} normal block at @x@0660B5C, 34 bytes long

Data: <This is the p2 s> 54 68 69 73 20 69 73 20 74 68 65 20 70 32 20 73
{12} normal block at 0x00660B1@, 34 bytes long

Data: <This is the pl s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump complete.

Having freed p2, dump aliocation information about pl only:
KhhkAAhhkAAAkhkkhkrkAkhkdkhkhkhkkdhkhkhhkhkhkkddkhkrhhkhhkkhkhkhkhkkhkrkhkhhkkkkhkhkhkhkkkkhkhkhkhkhhkhhkkhkhkhkhkkkkkk
Dumping objects ->

{12} normal block at 0x00660B1@, 34 bytes long

Data: <This is the pl s> 54 68 69 73 20 69 73 20 74 68 65 20 70 31 20 73
Object dump compiete.

Dump the changes that occurred between two memory checkpoints:

KhkA KA ARk KkAIhkhkhhkkhkhkhkhkhkkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkrkhhkhhhhkhkkhkkhkhkhkkhkhkkhkhkkkhhkhkhkhkkhkkk
® bytes in @ Free Blocks.

38 bytes in 1 Normal Blocks.

® bytes in @ CRT Blocks.

@ bytes in 0 IgnoreClient Blocks.

® bytes in @ (null) Blocks.

Largest number used: 4 bytes.

Total allocations: 38 bytes.

Now the memory state at the two checkpoints is the same:
hhkhkkkAhkkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkkhkhhdhhkhkkhkhkhkhkhkrdhkhkdhhkhkhkhkkdhhhkhkhkkhkhkhhkhkkkhkhkk

Free pl after overwriting the end of the allocation:
EARAKKAAAXAkAAAIAhAkAAkhkhkhkhkdkhkhkArAhhhkhkrkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkdhhkkhkrrhkhkrhhkrkhkrhkhkkhkhkhkkk
memory check error at 0x00660B32 = 0x73, should be OxFD.

memory check error at 0x00660B33 = 0x00, should be OxFD.

DAMAGE: after Normal block (#12) at 0x00660B10.

Chapter 4 Debug Version of the C Run-Time Library

Perform a memory check after corrupting freed memory:
*hkkkkhkhkhkkkhkhkhkhkkkhkkhkhkhAhkhkkhkhkhkkhkhkhAhkhkkhAkkkirrhhkhkhkhhhhkkkhkkhkkhhkhkhkkhkhkhkkrhkhkhohkkhkkrrhkhkkhkx
memory check error at 0x00660B10 = 0x4F, should be 0xDD.

memory check error at 0x80660B11 0x6F, should be @xDD.

memory check error at 0x00660B12 0x70, should be 0xDD.

memory check error at 0x00660B13 = 0x73, should be @xDD.

memory check error at 0x00660B14 0x00, should be @xDD.

DAMAGE: on top of Free block at 0x00660B10.

DAMAGED Tocated at 0x00660B10 is 1@ bytes long.

Using free() to free a Client block causes an assertion failure:
hkkkhkhkkkhkhkhkhkhkhkdhhhkhhkhhkhkhkhkhkhhhhhhhkhhkhkkhhhhkhhhhkhhkhhhkhkhhkdhhhkkhkhkhkhhkhkhkhkhhkhkhhkhkhhk

dbgheap.c(1039) : Assertion failed: pHead->nBlockUse == nBlockUse

Examine outstanding allocations (dump memory leaks):
*hkkkkhkhkkkkhkhkkhkkhkkhkhkkhkkkkkhkkkhkhkkkrkkkkkhkkhkkkkkkhkhkhkhkkkkkkhkhhkhkhkhkkkhkkhkhhkhkkhkkhkhkhkhkhkhhkhkhkk
Detected memory Tleaks!

Dumping objects ->

{18} normal block at 0x00660BE4, 10 bytes long

Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

Program exits without freeing a memory block:
dhkkkhkkhkkhhkhkhkhkhkhhkhkhkhhkkhkhhhkhhkhhhhkhkhhkhkhkhhkhhkhhhkhkhhkhkdhhkkhkhhhhkhkkhhkhkrhkhkkhhhkkik

Detected memory leaks!

Dumping objects ->

{18} normal block at 0xQ0660BE4, 10 bytes long
Data: < > CD CD CD CD CD CD CD CD CD CD

Object dump complete.

See Also: _crtDbgFlag, _CrtSetDbgFlag

_CrtDbgReport

Generates a report with a debugging message and sends the report to three possible
destinations (debug version only).

int _CrtDbgReport(int reportType, const char *filename, int linenumber,
« const char *moduleName, const char *format [, argument] ...);

Routine Required Header Compatibility

CrtDbgReport <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

79

Run-Time Library Reference

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

For all report destinations, _CrtDbgReport returns —1 if an error occurs and 0 if no
errors are encountered. However, when the report destination is a debug message
window and the user chooses the Retry button, _CrtDbgReport returns 1. If the
user chooses the Abort button in the debug message window, _CrtDbgReport
immediately aborts and does not return a value.

The _ASSERTI[E] and _RPT, _RPTF debug macros call _CrtDbgReport to
generate their debug report. When _CrtDbgReport returns 1, these macros start
the debugger, provided that “just-in-time” (JIT) debugging is enabled.

Parameters

Remarks

80

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT
filename Pointer to name of source file where assert/report occurred or NULL
linenumber Line number in source file where assert/report occured or NULL

moduleName Pointer to name of module ((EXE or .DLL) where assert/report
occurred

format Pointer to format-control string used to create the user message

argument Optional substitution arguments used by format

The _CrtDbgReport function is similar to the printf function, as it can be used to
report warnings, errors, and assert information to the user during the debugging
process. However, this function is more flexible than printf because it does not need
to be enclosed in #ifdef statements to prevent it from being called in a retail build of
an application. This is achieved by using the _DEBUG flag: When _DEBUG is not
defined, calls to _CrtDbgReport are removed during preprocessing.

_CrtDbgReport can send the debug report to three different destinations: a debug
report file, a debug monitor (the Visual C++ debugger), or a debug message window.
Two configuration functions, _CrtSetReportMode and _CrtSetReportFile, are used
to specify the destination(s) for each report type. These functions allow the reporting
destination(s) for each report type to be separately controlled. For example, it is
possible to specify that a reportType of _CRT_WARN only be sent to the debug
monitor, while a reportType of _CRT_ASSERT be sent to a debug message window
and a user-defined report file.

_CrtDbgReport creates the user message for the debug report by substituting the
argument[n] arguments into the format string, using the same rules defined by the

Example

Chapter 4 Debug Version of the C Run-Time Library

printf function. _CrtDbgReport then generates the debug report and determines the
destination(s), based on the current report modes and file defined for reportType.
When the report is sent to a debug message window, the filename, lineNumber, and
moduleName are included in the information displayed in the window.

The following table lists the available choices for the report mode(s) and file and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

Report Mode Report File _CrtDbgReport Behavior

CRTDBG.- Not applicable Writes message to Windows OutputDebugString
MODE_DEBUG APL

CRTDBG- Not applicable Calls Windows MessageBox API to create message
MODE_WNDW box to display the message along with Abort,

Retry, and Ignore buttons. If user selects Abort,
_CrtDbgReport immediately aborts. If user selects
Retry, it returns 1. If user selects Ignore, execution
continues and _CrtDbgReport returns 0. Note that
choosing Ignore when an error condition exists often
results in “undefined behavior.”

CRTDBG- __HFILE Writes message to user-supplied HANDLE, using

MODE_FILE the Windows WriteFile API, and does not verify
validity of file handle; the application is responsible
for opening the report file and passing a valid file

handle.
CRTDBG- _CRTDBG_- Writes message to stderr.
MODE_FILE FILE_STDERR
_CRTDBG _- _CRTDBG_- Writes message to stdout.
MODE_FILE FILE_STDOUT

The report may be sent to one, two, or three destinations, or no destination at all.
For more information about specifying the report mode(s) and report file, see the
_CrtSetReportMode and _CrtSetReportFile functions.

If your application needs more flexibility than that provided by _CrtDbgReport,
you can write your own reporting function and hook it into the C run-time library
reporting mechanism by using the _CrtSetReportHook function.

~
*

REPORT.C:

In this program, calls are made to the _CrtSetReportMode,
_CrtSetReportFile, and _CrtSetReportHook functions.

The _ASSERT macros are called to evaluate their expression.

When the condition fails, these macros print a diagnostic message
and call _CrtDbgReport to generate a debug report and the
client-defined reporting function is called as well.

The _RPTn and _RPTFn group of macros are also exercised in

* % ok ok ok X % o

81

Run-Time Library Reference

* this program, as an alternative to the printf function.

* When these macros are called, the client-defined reporting function
* takes care of all the reporting - _CrtDbgReport won't be called.

*/

#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

ftdefine FALSE 0
ftdefine TRUE !FALSE

/*
* Define our own reporting function.
* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
* Define a global int to keep track of
* how many assertion failures occur.
*/
int gl_num_asserts=0;
int OQurReportingFunction(int reportType, char *userMessage, int *retVal)
{
/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.

*/

fprintf(stdout, "Inside the client-defined reporting function.\n");
fflush(stdout);

/*

* When the report type is for an ASSERT,

* we'll report some information, but we also

* want _CrtDbgReport to get called -

* so we'll return TRUE.

*

* When the report type is a WARNing or ERROR,

* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -

* so we'll return FALSE.

*/

if (reportType == _CRT_ASSERT)

{

gl_num_asserts++;
fprintf(stdout, "This is the number of Assertion failures that
« have occurred: %d \n", gl_num_asserts);
fflush(stdout);
fprintf(stdout, "Returning TRUE from the client-defined reporting
«» function.\n");
fflush(stdout);
return(TRUE);
} else {

82

Chapter 4 Debug Version of the C Run-Time Library

fprintf(stdout, "This is the debug user message: %s \n", userMessage);
fflush(stdout);

fprintf(stdout, "Returning FALSE from the client-defined reporting

o function.\n");

fflush(stdout);

return(FALSE);

* By setting retVal to zero, we are instructing _CrtDbgReport

* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.

*/

retval = 0;
}
int main()
{

char *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/
_CrtSetReportHook(QurReportingFunction);

/*

* Define the report destination(s) for each type of report

* we are going to generate. In this case, we are going to

* generate a report for every report type: _CRT_WARN,

* _CRT_ERROR, and _CRT_ASSERT.

* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.

*

This program sends all report types to stdout.
*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);
/*
* Allocate and assign the pointer variables
*/
pl = malloc(10);
strepy(pl, "I am pl");
p2 = malloc(10);
strcpy(p2, "I am p2");

83

Run-Time Library Reference

Output

84

~
*

Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

"1f the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.

_ASSERT does not include the
expression in the generated report.

F % % % ok ok ok ¥ ok F Ok

*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
o pl == p2.\n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?2\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == "%s' ?\n", pl, p2):
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n "%s' != "%s'\n", pl, p2);

free(p2);
free(pl):;

return 0;

Inside the client-defined reporting function.

This is the debug user message: Use the assert macros to evaluate
« the expression pl == p2

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
o'l am pl* == "I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
« 'l am pl' == "I am p2' ?

Chapter 4 Debug Version of the C Run-Time Library

Returning FALSE from the client-defined reporting function.
Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pl == p2

Inside the client-defined reporting function.

This is the debug user message: 'I am pl' != 'I am p2'
Returning FALSE from the client-defined reporting function.

See Also: _CrtSetReportMode, _CrtSetReportFile, printf, DEBUG

_CrtDoForAllClientObjects

Calls an application-supplied function for all _CLIENT_BLOCK types in the heap
(debug version only).

void _CrtDoForAllClientObjects(void (*pfn)(void *, void *), void *context);
Routine Required Header Compatibility
_CrtDoForAllClientObjects <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

None

Parameters

Remarks

void (*pfn)(void * void *) Pointer to the application-supplied function to call

context Pointer to the application-supplied context to pass to the application-supplied
function

The _CrtDoForAllClientObjects function searches the heap’s linked list for memory
blocks with the _CLIENT_BLOCK type and calls the application-supplied function
when a block of this type is found. The found block and the context parameter are
passed as arguments to the application-supplied function. During debugging, an
application can track a specific group of allocations by explicitly calling the debug
heap functions to allocate the memory and specifying that the blocks be assigned the
_CLIENT_BLOCK block type. These blocks can then be tracked separately and
reported on differently during leak detection and memory state reporting.

85

Run-Time Library Reference

Example

86

If the _CRTDBG_ALLOC_MEM_DF bit field of the _crtDbgFlag flag is not
turned on, _CrtDoForAllClientObjects immediately returns. When _ DEBUG is not
defined, calls to _CrtDoForAllClientObjects are removed during preprocessing.

/*

*

DFACOBJS.C

* This program allocates some CLIENT type blocks of memory
and then calls _CrtDoForAll1ClientObjects to print out the contents

*

* of each client block found on the heap.
*/

#finclude <crtdbg.h>
ffinclude <stdio.h>
#include <malloc.h>
#include <stdlib.h>

/*
* My Memory Block linked-1ist data structure
*/
typedef struct MyMemoryBlockStruct
{
struct MyMemoryBlockStruct *NextPtr;
int blockType:
int allocNum;
} aMemoryBlock;
aMemoryBlock *HeadPtr;
aMemoryBlock *TailPtr;

* CreateMemoryBlock

* allocates a block of memory, fills in the data structure

* and adds the new block to the linked list
* Returns 1 if successful, otherwise 0
*/
int CreateMemoryBlock(
int allocNum,
int blockType
)

aMemoryBlock *blockPtr;
size_t size;

size = sizeof(struct MyMemoryBlockStruct);

if (blockType == _CLIENT_BLOCK)

blockPtr = (aMemoryBlock *) _malloc_dbg(size,

- __FILE_, __LINE__);
else

_CLIENT_BLOCK,

Chapter 4 Debug Version of the C Run-Time Library

blockPtr = (aMemoryBlock *) _malloc_dbg(size, _NORMAL_BLOCK,
- _FILE_ , _ LINE__);

if (blockPtr == NULL)
return(0);

blockPtr->allocNum = allocNum;
blockPtr->blockType = blockType:

blockPtr->NextPtr = NULL;
if (HeadPtr == NULL)
HeadPtr = blockPtr;
else
TailPtr->NextPtr = blockPtr;
TailPtr = blockPtr;
return(l);
1

/*

* RestoreMemoryToHeap

* restores all of the memory that we allocated on the heap
*/
void RestoreMemoryToHeap()

{
aMemoryBlock *blockPtr;
if (!HeadPtr)
return;
while (HeadPtr->NextPtr != NULL)
{
blockPtr = HeadPtr->NextPtr;
if (HeadPtr->blockType == _CLIENT_BLOCK)
_free_dbg(HeadPtr, _CLIENT_BLOCK);
else
_free_dbg(HeadPtr, _NORMAL_BLOCK);
HeadPtr = blockPtr;
}
}
/*

* MyClientObjectHook
* A hook function for performing some action on all
* client blocks found on the heap - In this case, print
* out the value stored at each memory address.
*/
void __cdecl MyClientObjectHook(
void * pUserData,
void * ignored
)

87

Run-Time Library Reference

88

}

aMemoryBlock *blockPtr;
Tong allocReqNum;
int success;

blockPtr = (aMemoryBlock *) pUserData;

/-k
* Let's retrieve the actual object allocation order request number
* and see if it's different from the allocation number we stored
* in our data structure.
*/
success = _CrtIsMemoryBlock((const void *) blockPtr,
(unsigned int) sizeof(struct MyMemoryBlockStruct),
&allocReqNum, NULL, NULL);
if (success)
printf("Block #%d \t Type: %d \t Allocation Number: %d\n",
blockPtr->allocNum, blockPtr->blockType, allocReqNum);

else

{
printf("ERROR: not a valid memory block.\n");
exit(1);

}

void main(void)

{

div_t div_result;
int i, success, tmpFtag;

* Set the _crtDbgFlag to turn debug type allocations.

* This will enable us to specify that blocks of type

* _CLIENT_BLOCK can be allocated and tracked separately.
* Turn off checking for internal CRT blocks.

*/

tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

tmpFlag |= _CRTDBG_ALLOC_MEM_DF;

tmpFtag &= _CRTDBG_CHECK_CRT_DF;

_CrtSetDbgFlag(tmpFlag);

/*

* We're going to allocate 22 blocks and every other block is
* going to be of type _CLIENT_BLOCK.

* Blocks numbered 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22
should all be _CLIENT_BLOCKS.

*

*/
HeadPtr = NULL;
printf("Allocating the memory ");
for (i=1; i < 23; i++)
{
div_result = div(i, 2);

if (div_result.rem > 0)

success = CreateMemoryBlock(i, _NORMAL_BLOCK);

Chapter 4 Debug Version of the C Run-Time Library

else
success = CreateMemoryBlock(i, _CLIENT_BLOCK);

if (!success)

{
printf(" ERROR.\n");
exit(1);
}
else
printf(".");
}

printf("™ done.\n");

/*

* We're going to call _CrtDoForAl11ClientObjects to make sure that
* only blocks numbered 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22
* got allocated as _CLIENT_BLOCKS.

*/

_CrtDoForAl11ClientObjects(MyClientObjectHook, NULL);

/*

* Restore the memory to the heap
*/

RestoreMemoryToHeap();

exit(@);

Output
The instruction at "0x00401153" referenced memory at "0x00000004".
The memory could not be “read".

See Also: _CrtSetDbgFlag

_CrtDumpMemoryLeaks

Dumps all of the memory blocks in the debug heap when a memory leak has occurred
(debug version only).

int _CrtDumpMemoryLeaks(void);
Routine Required Header Compatibility

_CrtDumpMemoryLeaks <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

89

Run-Time Library Reference

Return Value

Remarks

Example

_CrtDumpMemoryLeaks returns TRUE if a memory leak is found; otherwise, the
function returns FALSE.

The _CrtDumpMemoryLeaks function determines whether a memory leak has
occurred since the start of program execution. When a leak is found, the debug header
information for all of the objects in the heap is dumped in a user-readable form. When
_DEBUG is not defined, calls to _CrtDumpMemoryLeaks are removed during
preprocessing.

_CrtDumpMemoryLeaks is frequently called at the end of program execution to verify
that all memory allocated by the application has been freed. The function can be called
automatically at program termination by turning on the _CRTDBG_LEAK_CHECK_DF
bit field of the _crtDbgFlag flag using the _CrtSetDbgFlag function.

_CrtDumpMemoryLeaks calls _CrtMemCheckpoint to obtain the current state of the
heap and then scans the state for blocks that have not been freed. When an unfreed block
is encountered, _CrtDumpMemoryLeaks calls _CrtMemDumpAllObjectsSince to
dump information for all of the objects allocated in the heap from the start of program
execution.

By default, internal C run-time blocks (_ CRT_BLOCK) are not included in
memory dump operations. The _CrtSetDbgFlag function can be used to turn on the
_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks in the
leak detection process.

See Example 1 on page 75.

_CrtIsValidHeapPointer

90

Verifies that a specified pointer is in the local heap (debug version only).
int _CrtIsValidHeapPointer(const void *userData);

Routine Required Header Compatibility
_CrtlIsValidHeapPointer <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

Return Value

_CrtIsValidHeapPointer returns TRUE if the specified pointer is in the local heap;
otherwise, the function returns FALSE.

Parameter

Remarks

Example

userData Pointer to the beginning of an allocated memory block

The _CrtIsValidHeapPointer function is used to ensure that a specific memory
address is within the local heap. The “local” heap refers to the heap created and
managed by a particular instance of the C run-time library. If a dynamically linked
library (DLL) contains a static link to the run-time library, then it has its own instance
of the run-time heap, and therefore its own heap, independent of the application’s
local heap. When _DEBUG is not defined, calls to _CrtIsValidHeapPointer are
removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not
located within the local heap:

_ASSERTE(_CrtIsValidHeapPointer(userData));

/*

* ISVALID.C

* This program allocates a block of memory using _malloc_dbg

* and then tests the validity of this memory by calling _CrtIsMemoryBlock,
* _CrtIsValidPointer, and _CrtlsValidHeapPointer.

*/

include <stdio.h>
#include <string.h>
f#include <malloc.h>
f#include <crtdbg.h>

f#define TRUE 1
ftdefine FALSE ©

void main(void)
{
char *my_pointer;

/*

* Call _malloc_dbg to include the filename and 1ine number

* of our allocation request in the header information

*/

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10, _NORMAL_BLOCK,
- _FILE_, _ LINE__);

91

Run-Time Library Reference

/*

* Ensure that the memory got allocated correctly

*/

_CrtIsMemoryBlock((const void *)my_pointer, sizeof(char) * 10,
< NULL, NULL, NULL);

/*

* Test for read/write accessibility

*/

if (_CrtIsValidPointer((const void *)my_pointer, sizeof(char) * 10, TRUE))
printf("my_pointer has read and write accessibility.\n");

else

printf("my_pointer only has read access.\n");
/*
* Make sure my_pointer is within the local heap
*/

if (_CrtIsValidHeapPointer((const void *)my_pointer))
printf("my_pointer is within the local heap.\n"):

else
printf("my_pointer is not located within the local heap.\n");

free(my_pointer);
Output

my_pointer has read and write accessibility.
my _pointer is within the local heap.

_CrtIsMemoryBlock

Verifies that a specified memory block is in the local heap and that it has a valid
debug heap block type identifier (debug version only).

int _CrtIsMemoryBlock(const void *userData, unsigned int size,
< long *requestNumber, char **filename, int *linenumber);

Routine Required Header Compatibility

_CrtIsMemoryBlock <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

92

Chapter 4 Debug Version of the C Run-Time Library

Return Value

_CrtIsMemoryBlock returns TRUE if the specified memory block is located within
the local heap and has a valid debug heap block type identifier; otherwise, the
function returns FALSE.

Parameter

Remarks

Example

userData Pointer to the beginning of the memory block to verify

size Size of the specified block (bytes)

requestNumber Pointer to the allocation number of the block or NULL
filename Pointer to name of source file that requested the block or NULL

linenumber Pointer to the line number in the source file or NULL

The _CrtIsMemoryBlock function verifies that a specified memory block is located
within the application’s local heap and that it has a valid block type identifier. This
function can also be used to obtain the object allocation order number and source file
name/line number where the memory block allocation was originally requested.
Passing non-NULL values for the requestNumber, filename, and/or linenumber
parameters causes _CrtIsMemoryBlock to set these parameters to the values in the
memory block’s debug header, if it finds the block in the local heap. When _DEBUG
is not defined, calls to _CrtIsMemoryBlock are removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the specified address is not located
within the local heap:

_ASSERTE(_CrtIsMemoryBlock(userData, size, &requestNumber, &filename,
-« &linenumber));

/*

* ISVALID.C .

* This program allocates a block of memory using _malloc_dbg

and then tests the validity of this memory by calling _CrtIsMemoryBlock,
_CrtlsValidPointer, and _CrtlsValidHeapPointer.

* ¥

*/

fHinclude <stdio.h>
#include <string.h>
ffinclude <malloc.h>
#include <crtdbg.h>

fidefine TRUE 1
ftdefine FALSE ©

void main(void)

{
char *my_pointer;

93

Run-Time Library Reference

/*

* Call _malloc_dbg to include the filename and 1ine number
* of our allocation request in the header information

*/

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10,

« _NORMAL_BLOCK, __FILE__, __LINE__):

/*

* Ensure that the memory got allocated correctly

*/
_CrtIsMemoryBlock((const void *)my_pointer, sizeof(char) * 10,
-« NULL, NULL, NULL);

/*
* Test for read/write accessibility
*/
if (_CrtIsValidPointer((const void *)my_pointer, sizeof(char) * 10, TRUE))
printf("my_pointer has read and write accessibility.\n");
else
printf("my_pointer only has read access.\n");

/*

* Make sure my_pointer is within the local heap

*/

if (_CrtIsValidHeapPointer((const void *)my_pointer))
printf("my_pointer is within the local heap.\n");

else
printf("my_pointer is not located within the Tocal heap.\n");

free(my_pointer);
Output

my_pointer has read and write accessibility.
my_pointer is within the local heap.

_CrtIsValidPointer

Verifies that a specified memory range is valid for reading and writing (debug
version only).

int _CrtIsValidPointer(const void *address, unsigned int size, int access);

Routine Required Header Compatibility

_CrtIsValidPointer <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

9%

Chapter 4 Debug Version of the C Run-Time Library

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

_CrtIsValidPointer returns TRUE if the specified memory range is valid for the
specified operation(s); otherwise, the function returns FALSE.

Parameter

Remarks

Example

address Points to the beginning of the memory range to test for validity
size Size of the specified memory range (bytes)

access Read/Write accessibility to determine for the memory range

The _CrtIsValidPointer function verifies that the memory range beginning at
address and extending for size bytes, is valid for the specified accessibility
operation(s). When access is set to TRUE, the memory range is verified for both
reading and writing. When address is FALSE, the memory range is only validated
for reading. When _DEBUG is not defined, calls to _CrtIsValidPointer are
removed during preprocessing.

Because this function returns TRUE or FALSE, it can be passed to one of the
_ASSERT macros to create a simple debugging error handling mechanism. The
following example will cause an assertion failure if the memory range is not valid
for both reading and writing operations:

_ASSERTE(_CrtIsValidPointer(address, size, TRUE));

/*

* ISVALID.C

This program allocates a block of memory using _malloc_dbg

* and then tests the validity of this memory by calling _CrtlsMemoryBlock,
* _CrtlsValidPointer, and _CrtIsValidHeapPointer.

*/

*

f##include <stdio.h>
f#include <string.h>
finclude <malloc.h>
#include <crtdbg.h>

ftdefine TRUE 1
ffdefine FALSE 0

void main(void)

£

char *my_pointer;

95

Run-Time Library Reference

/*
* Call _malloc_dbg to include the filename and Tine number
* of our allocation request in the header information

*/

my_pointer = (char *)_malloc_dbg(sizeof(char) * 10, _NORMAL_BLOCK,
- __FILE_ , __ LINE__);

/*

* Ensure that the memory got allocated correctly

*/

_CrtIsMemoryBlock((const void *)my_pointer, sizeof(char) * 10,
« NULL, NULL, NULL);

/*

* Test for read/write accessibility

*/

if (_CrtIsValidPointer((const void *)my_pointer, sizeof(char) * 10, TRUE))
printf("my_pointer has read and write accessibility.\n");

else
printf("my_pointer only has read access.\n");
/*
* Make sure my_pointer is within the local heap
*/

if (_CrtisValidHeapPointer((const void *)my_pointer))
printf("my_pointer is within the Tocal heap.\n");

else
printf("my_pointer is not located within the local heap.\n");

free(my_pointer);
Output

my_pointer has read and write accessibility.
my_pointer is within the Tlocal heap.

_CrtMemCheckpoint

Obtains the current state of the debug heap and stores in an application-supplied
_CrtMemState structure (debug version only).

void _CrtMemCheckpoint(_CrtMemState *szate);
Routine Required Header Compatibility

_CrtMemCheckpoint <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “‘Compatibility” in the Introduction.

96

Chapter 4 Debug Version of the C Run-Time Library

Libraries
LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value
None
Parameter

state Pointer to _CrtMemState structure to fill with the memory checkpoint

Remarks
The _CrtMemCheckpoint function creates a snapshot of the current state of the
debug heap at any given moment, which can be used by other heap state functions
to help detect memory leaks and other problems. When _DEBUG is not defined,
calls to _CrtMemState are removed during preprocessing.

The application must pass a pointer to a previously allocated instance of the
_CrtMemState structure, defined in CRTDBG.H, in the state parameter. If
_CrtMemCheckpoint encounters an error during the checkpoint creation, the
function generates a _CRT_WARN debug report describing the problem.

Example
See Example 1 on page 75.

_CrtMemDifference

Compares two memory states and returns their differences (debug version only).

int _CrtMemDifference(_CrtMemState *stateDiff, const _CrtMemState *oldState,
« const _CrtMemState *newState);

Routine Required Header Compatibility

_CrtMemDifference <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version

LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value

If the memory states are significantly different, _CrtMemDifference returns TRUE;
otherwise, the function returns FALSE.

97

Run-Time Library Reference

Parameters

Remarks

Example

stateDiff Pointer to a _CrtMemState structure that will be used to store the
differences between the two memory states (returned)

oldState Pointer to an earlier memory state (_CrtMemState structure)

newState Pointer to a later memory state (_CrtMemState structure)

The _CrtMemDifference function compares oldState and newState and stores
their differences in stateDiff, which can then be used by the application to detect
memory leaks and other memory problems. When _DEBUG is not defined, calls
to _CrtMemDifference are removed during preprocessing.

newState and oldState must each be a valid pointer to a _CrtMemState structure,
defined in CRTDBG.H, that has been filled in by _CrtMemCheckpoint before
calling _CrtMemDifference. stateDiff must be a pointer to a previously allocated
instance of the _CrtMemState structure.

_CrtMemDifference compares the _CrtMemState field values of the blocks in
oldState to those in newState and stores the result in stateDiff. When the number
of allocated block types or total number of allocated blocks for each type differs
between the two memory states, the states are said to be significantly different.
The difference between the two states’ high water count and total allocations is
also stored in stateDIff.

By default, internal C run-time blocks (_CRT_BLOCK) are not included in
memory state operations. The _CrtSetDbgFlag function can be used to turn on
the _CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks
in leak detection and other memory state operations. Freed memory blocks
(_FREE_BLOCK) do not cause _ CrtMemDifference to return TRUE.

See Example 1 on page 75.

See Also: _crtDbgFlag

_CrtMemDumpAllObjectsSince

98

Dumps information about objects in the heap from the start of program execution or
from a specified heap state (debug version only).

void _CrtMemDumpAllObjectsSince(const _CrtMemState *state);

Routine Required Header Compatibility
_CrtMemDumpAll- <crtdbg.h> Win NT, Win 95
ObjectsSince

Chapter 4 Debug Version of the C Run-Time Library

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value
None
Parameter

Remarks

Example

state Pointer to the heap state to begin dumping from or NULL

The _CrtMemDumpAllObjectsSince function dumps the debug header information
of objects allocated in the heap in a user-readable form. The dump information can
be used by the application to track allocations and detect memory problems. When
_DEBUG is not defined, calls to _CrtMemDumpAllObjectsSince are removed
during preprocessing.

_CrtMemDumpAIllObjectsSince uses the value of the state parameter to determine
where to initiate the dump operation. To begin dumping from a specified heap state,
the state parameter must be a pointer to a _CrtMemState structure that has been
filled in by _CrtMemCheckpoint before _CrtMemDumpAllObjectsSince was
called. When state is NULL, the function begins the dump from the start of program
execution.

If the application has installed a dump hook function by calling _CrtSetDumpClient,
then every time _CrtMemDumpAllObjectsSince dumps information about a
_CLIENT_BLOCK type of block, it calls the application-supplied dump function as
well. By default, internal C run-time blocks (_CRT_BLOCK) are not included in
memory dump operations. The _CrtSetDbgFlag function can be used to turn on the

_CRTDBG_CHECK_CRT_DF bit of _crtDbgFlag to include these blocks. In addition,

blocks marked as freed or ignored (FREE_BLOCK, _IGNORE_BLOCK) are not
included in the memory dump.

/***

* EXAMPLE 2

This program illustrates several ways to use debugging hook
functions with the new debug versions of the C runtime
libraries. To add some realism, it has a few elements of an
actual application, including two bugs.

*

The program stores birthdate information in a linked Tist
of Client blocks. A Client-dump hook function validates the
birthday data and reports the contents of the Client blocks.
An allocation hook function logs heap operations to a text

* % % o ok oF %k ¥ X
* ok % ok ok o O o F F *

99

Run-Time Library Reference

file, and the report hook function logs reports to the same
text file.

NOTE: The allocation hook function explicitly excludes CRT
blocks (the memory allocated internaily by the C
runtime library) from its log. It is important to
understand why! The hook function uses fprintf() to
write to the log file, and fprintf() allocates a CRT
block. If CRT blocks were not excluded in this case,
an endless loop would be created in which fprintf()
would cause the hook function to be called, and the
hook would in turn call fprintf(), which would cause
the hook to be called again, and so on. The moral is:

--> IF YOUR ALLOCATION HOOK USES ANY C RUNTIME FUNCTION
THAT ALLOCATES MEMORY, THE HOOK MUST IGNORE CRT-TYPE
ALLOCATION OPERATIONS!

HINT: If you want to be able to report CRT-type blocks in
your allocation hook, use Windows API functions for
formatting and output, instead of C runtime functions.
Since the Windows APIs do not use the CRT heap, they
will not trap your hook in an endless Toop.

BUGS: There are two bugs in the program below, which the
debug heap features identify in several ways. One bug
is that the birthDay.Name field is not large enough
to hold several of the test names. The field should
be larger, and strncpy() should be used in place of
strcpy(). The second bug is that the while() Toop
in the printRecords() function should not end until
HeadPtr itself == NULL. This bug results not only in
an incomplete display of birthdays, but also in a
memory leak. In addition to these two bugs, Gauss'
birthday data is out of range (April 30, not 32).

F % ok R b ok o 3k b b O 3k 3 o o O X b b o o F % Ok o ok F 3k X X % ¥ % F F F
* Ok ok R oE % % R ok O b ¥ %k Ok ok %k % ok b F Xk % ok ok F X Ok S X X % ok F F

*
khkkkkkkkkkkkhhhdhkhhhhhhhhhhhhhhhhhhddhhhhhkhhhhrhhhhrhhhkrhkhhkkrk/

f#Hinclude <stdio.h>
#include <stdtlib.h>
#include <string.h>
f#finclude <malloc.h>
f#include <time.h>
#include <crtdbg.h>

/***

* DATA DECLARATIONS AND DEFINES *

***/

// The following arrays provide test data for the example program:
const char * Names[] =
{

"George Washington”,

"Thomas Jefferson”,

100

Chapter 4 Debug Version of the C Run-Time Library

"Carl Friedrich Gauss",
"Ludwig van Beethoven",
"Thomas Carlyle"

Y
const int Dates[] =
{
1732, 2, 11,
1743, 4, 13,
1777, 4, 32,
1795, 12, 4,
1770, 12, 16
Y
jtdefine TEST_RECS 5

// A generic sort of linked-list data structure, in this case for birthdays:
typedef struct BirthdayStruct
{
struct BirthdayStruct * NextRec;
int Year;
int Month;
int Day;
char Name[20];
} birthDay;

birthDay * HeadPtr;
birthDay * TailPtr;

J#idefine FILE_IO_ERROR 0
#define OUT_OF_MEMORY 1
fidefine TRUE 7
J##define FALSE 0

// Macros for setting or clearing bits in the CRT debug flag
{ifdef _DEBUG

fidefine SET_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag((a) |

+ _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

jfdefine CLEAR_CRT_DEBUG_FIELD(a) _CrtSetDbgFlag(~(a) &

-+ _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG))

ffelse

jfdefine SET_CRT_DEBUG_FIELD(a) ((void) 0)

fidefine CLEAR_CRT_DEBUG_FIELD(a) ((void) 0)

f#endif

[Fhhkdkhkkkhhhkhkhhkhhhkhhkhkhhkkkhkhhhkdhhhkkhkhkkhhhkhkkhkhhkhkhkhkkhhkhhkdhkddkkkk

* SPECIAL-PURPOSE ROUTINES *

***/

/* ERROR HANDLER

Handling serious errors gracefully is a real test of craftsmanship.
This function is just a stub; it doesn't really handle errors.

101

Run-Time Library Reference

102

*/
void FatalError(int ErrType)
{

}

exit(1);

/* MEMORY ALLOCATION FUNCTION
The createRecord function allocates memory for a new birthday record,
fills in the structure members, and then adds the record to a linked 1list.
In debug builds, it makes these allocations in Client blocks. If memory
is not available, it calls the error handler.

*/

void createRecord(
const int Year,
const int Month,
const int Day,

const char * Name
##ifdef _DEBUG
, const unsigned char * szFileName, int nlLine
ffendif
)
{
birthDay * ptr;
size_t n;

n = sizeof(struct BirthdayStruct);
ptr = (birthDay *) _malloc_dbg(n, _CLIENT_BLOCK, szFileName, nLine);
if(ptr == NULL)
FatalError(OUT_OF_MEMORY);
ptr->Year = Year;
ptr->Month = Month;
ptr->Day = Day;
strcpy(ptr->Name, Name);
ptr->NextRec = NULL;
if (HeadPtr == NULL) // If this is the first record in the Tlinked list
HeadPtr = ptr;
else
TailPtr->NextRec = ptr;
TailPtr = ptr;

/* BIRTHDAY DISPLAY FUNCTION
This function traverses the linked list, displays the birthday data,
and then frees the memory blocks used to store the birthdays.
*/
void printRecords()
{
birthDay * ptr;
char *months[] = {
nn' "Januar‘y", "February", "March", "Apl"ﬂ". "May", "June", nJu]y"’
"August", "September™, "October”, "November", "December” };

Chapter 4 Debug Version of the C Run-Time Library

if (HeadPtr == NULL) // Do nothing if list is empty
return;

printf("\n\nThis is the birthday list:\n");
while (HeadPtr->NextRec != NULL)
{
printf(" %s was born on %s %d, %d.\n",
HeadPtr->Name, months[HeadPtr->Month], HeadPtr->Day, HeadPtr->Year);
ptr = HeadPtr->NextRec;
_free_dbg(HeadPtr, _CLIENT_BLOCK);
HeadPtr = ptr;

/***

* DEBUG C RUNTIME LIBRARY HOOK FUNCTIONS AND DEFINES *
***/
{ifdef _DEBUG
Jdefine createRecord(a, b, c, d) \

createRecord(a, b, ¢, d, __FILE_, LINE_)
FILE *1ogFile; // Used to Tog allocation information
const char lineStr[] = { "-----------ommmmmmmime e \
-------------------------------------- \n" };

A hook function for dumping a Client block usually reports some
or all of the contents of the block in question. The function
below also checks the data in several ways, and reports corruption
or inconsistency as an assertion failure.

*/

void __cdecl MyDumpClientHook(
void * pUserData,
size_t nBytes

)
{
birthDay * bday;
bday = (birthDay *) pUserData;
_RPT4(_CRT_WARN, ™ The birthday of %s is %d/%d/%d.\n",
bday->Name, bday->Month, bday->Day, bday->Year);
_ASSERTE((bday->Day > @) && (bday->Day < 32));
_ASSERTE((bday->Month > @) && (bday->Month < 13));
_ASSERTE((bday->Year > @) && (bday->Year < 1996));
}

/* ALLOCATION HOOK FUNCTION

An allocation hook function can have many, many different
uses. This one simply logs each allocation operation in a file.
*/

103

Run-Time Library Reference

int __cdecl MyAllocHook(
int nAllocType,
void * pvData,
size_t nSize,

int nBlockUse,

long TRequest,

const unsigned char * szFileName,
int nLine

)

char *operation[]
char *blockTypel]

{"", "allocating”, "re-allocating”, "freeing" };
{ "Free", "Normal™, "CRT", "Ignore", "Client" };

if (nBlockUse == _CRT_BLOCK) // Ignore internal C runtime
- 1library allocations
return(TRUE);

_ASSERT((nAllocType > @) && (nAllocType < 4));
_ASSERT((nBlockUse >= @) && (nBlockUse < 5));

fprintf(TogFile,
"Memory operation in %s, line %d: %s a %d-byte
<« '%s" block (# %1d)\n",
szFileName, nLine, operation[nAllocTypel, nSize,
blockType[nBlockUse], TRequest);
if (pvData != NULL)
fprintf(logFile, ™ at %X", pvData);

return(TRUE); // Allow the memory operation to proceed

/* REPORT HOOK FUNCTION
Again, report hook functions can serve a very wide variety of purposes.
This one logs error and assertion failure debug reports in the
log file, along with 'Damage' reports about overwritten memory.

By setting the retVal parameter to zero, we are instructing _CrtDbgReport
to return zero, which causes execution to continue. If we want the
function to start the debugger, we should have _CrtDbgReport return one.
*/
int MyReportHook(
int nRptType,
char *szMsg,
int *retVal
)

char *RptTypes[] = { "Warning™, "Error", "Assert” };

if ((nRptType > @) || (strstr(szMsg, "DAMAGE")))
fprintf(logFile, "%s: %s", RptTypes[nRptTypel, szMsg):

104

Chapter 4 Debug Version of the C Run-Time Library

retVal = 0;

return(TRUE); // Allow the report to be made as usual
}
fendif // End of {ifdef _DEBUG

[ERxRkkkkkkkkkkkkkkkkkhhkkkkhkhkhhhhhhhkkhhhhhhhhhkhhhhhhhkhkhkhkhhhkrk

* MAIN FUNCTION *
***/
void main()
{

int i, j;

#ifdef _DEBUG
_CrtMemState checkPtl;
char timeStr[10], dateStr[10]; // Used to set up log file

// Send all reports to STDOUT, since this example is a console app
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

// Set the debug heap to report memory leaks when the process terminates,
// and to keep freed blocks in the linked 1ist.

SET_CRT_DEBUG_FIELD(_CRTDBG_LEAK_CHECK_DF | _CRTDBG_DELAY_FREE_MEM_DF);

// Open a log file for the hook functions to use

TogFile = fopen("MEM-LOG.TXT", "w");

if (logFile == NULL)

FatalError(FILE_IO_ERROR);

_strtime(timeStr);

_strdate(dateStr);

fprintf(TlogFile,
"Memory Allocation Log File for Example Program,
run at %s on %s.\n", timeStr, dateStr);

fputs(1ineStr, logFile);

// Install the hook functions
_CrtSetDumpClient(MyDumpClientHook);
_CrtSetAllocHook(MyAllocHook);
_CrtSetReportHook(MyReportHook);

ffendif // End of {ifdef _DEBUG
HeadPtr = NULL;
// Create a trial birthday record.
createRecord(1749, 3, 23, "Pierre de Laplace");

105

Run-Time Library Reference

Output

106

// Check the debug heap, and dump the new birthday record. --Note that

// debug C runtime library functions such as _CrtCheckMemory() and

// _CrtMemDumpAl10bjectsSince() automatically disappear in a release build.
_CrtMemDumpA110bjectsSince(NULL)

_CrtCheckMemory();

CrtMemCheckpoint(&checkPtl);

// Since everything has worked so far, create more records
for (i =0, j =0; i < TEST_RECS; i++, j+=3)
createRecord(Dates[j], Dates[j+1], Dates[j+2], Names[i]):

// Examine the results
_CrtMemDumpAl110bjectsSince(&checkPtl);
_CrtMemCheckpoint(&checkPtl);
_CrtMemDumpStatistics(&checkPtl);
_CrtCheckMemory();

// This fflush needs to be removed...
fflush(logFile);

// Now try displaying the records, which frees the memory being used
printRecords();

// 0K, time to go. Did I forget to turn out any lights? I could

// check explicitly using _CrtDumpMemorylLeaks(), but I have set
// _CRTDBG_LEAK_CHECK_DF, so the C runtime library debug heap will
// automatically alert me at exit of any memory leaks.

f#ifdef _DEBUG

fclose(logFile);

f#endif

Screen output:

Dumping objects ->
C:\DEV\EXAMPLE2.C(327) : {13} client block at @x00661B38, subtype 0,
- 36 bytes long:

The birthday of Pierre de Laplace is 3/23/1749.

Object dump complete.

Dumping objects ->

C:\DEV\EXAMPLE2.C(338) : {18} client block at 0x@0661CB4, subtype 0,
- 36 bytes long:

The birthday of Thomas Carlyle is 12/16/1770.

C:\DEV\EXAMPLE2.C(338) : {17} client block at 8x00661C68, subtype 0,
-« 36 bytes long:

The birthday of Ludwig van Beethoven is 12/4/1795.

C:\DEV\EXAMPLE2.C(338) : {16} client block at 0x@0661C1C, subtype 0,
- 36 bytes long:

The birthday of Carl Friedrich Gauss is 4/32/1777.

C:\DEVNEXAMPLE2.C(219) : Assertion failed: (bday->Day > @) &&

- (bday->Day < 32)

C:\DEV\EXAMPLE2.C(338) : {15} client block at 0x00661BD®, subtype @,
-+ 36 bytes long:

The birthday of Thomas Jefferson is 4/13/1743.

C:\DEV\NEXAMPLE2.C(338) :

- 36 bytes long:
The birthday of George Washington is 2/11/1732.

Object

dump complete.

O bytes in @ Free Blocks.

0 bytes in @ Normal Blocks.

6442 bytes in 12 CRT Blocks.

0 bytes in @ IgnoreClient Blocks.
216 bytes in 6 (null) Blocks.
Largest number used: 6658 bytes.
Total allocations: 6658 bytes.
memory check error at 0x00661C8C = 0x@@, should
after (null) block (#17) at 0x00661C68.

DAMAGE :

(null)
(nul1l)
memory

DAMAGE :

(null)
(null)
memory

DAMAGE :

DAMAGE :

allocated at file C:\DEV\EXAMPLE2.C(338).

located at 0x00661C68 is 36 bytes long.
check error at 0x00661C40 = 0x@0, should
after (null) block (#16) at 0x00661C1C.

allocated at file C:\DEV\EXAMPLE2.C(338).

located at 0x00661C1C is 36 bytes long.

check error at 0x00661C40 = 0x@0, should
after (null) block (#16) at 0x00661C1C.
memory check error at 0x00661C8C = 0x00, should
after (null) block (#17) at ©0x00661C68.

This is the birthday list:

Pierre de Laplace was born on March 23, 1749.

Chapter 4 Debug Version of the C Run-Time Library

be OxFD.

be OxFD.

be OxFD.

be OxFD.

George Washington was born on February 11, 1732.
Thomas Jefferson was born on April 13, 1743.
Carl Friedrich Gauss was born on April 32, 1777.
Ludwig van Beethoven was born on December 4, 1795.
Detected memory leaks!
Dumping objects ->

C:\DEV\EXAMPLE2.C(338) :

- 36 bytes long:

The birthday of Thomas Carlyle is 12/16/1770.

Object

dump complete.

Log file output:

Allocation Log File for Example

operation in C:\DEV\EXAMPLE2.C,
allocating a 36-byte
operation in C:\DEV\EXAMPLEZ2.C,
allocating a 36-byte
operation in C:\DEV\EXAMPLE2.C,
allocating a 36-byte
operation in C:\DEV\EXAMPLE2.C,
allocating a 36-byte
operation in C:\DEV\EXAMPLE2.C,
allocating a 36-byte
operation in C:\DEV\EXAMPLE2.C,
aliocating a 36-byte

Program,

'Client'

line 338:

'Client’

line 338:

‘Client’

line 338:

'‘Client’

Tine 338:

'‘Client’

line 338:

‘Client’

run at 14:11:01 on 04/28/95.

line 327:

block (#
block (#
block (#
block (#
block (#

block (#

{14} client block at 0x00661B84, subtype 0,

{18} client block at 0x@0661CB4, subtype @,

13)
14)
15)
16)
17)

18)

107

Run-Time Library Reference

Assert: C:\DEV\EXAMPLE2.C(219) : Assertion failed:
(bday->Day > 0) && (bday->Day < 32)
Warning: DAMAGE: after (null) block (#17) at 0x00661C68.
Warning: DAMAGE: after (null) block (#16) at 0x00661C1C.
Memory operation in (null), line @: freeing a 0-byte 'Client' block (# @)
at 661B38Memory operation in (null), Tine 0:
freeing a @-byte 'Client' block (# 0)
at 661B84Memory operation in (null), line 0:
freeing a @-byte 'Client' block (# @)
at 661BDOMemory operation in (null), line 0:
freeing a 0-byte 'Client' block (# 0)
at 661C1CError: DAMAGE: after (null) block (#16) at 0x00661C1C.
Memory operation in (null), line @: freeing a @-byte 'Client' block (# @)
at 661C68Error: DAMAGE: after (null) block (#17) at 0x00661C68.

See Also: _crtDbgFlag

_CrtMemDumpStatistics

Dumps the debug header information for a specified heap state in a user-readable form
(debug version only).

void _CrtMemDumpStatistics(const _CrtMemState *state);

Routine Required Header Compatibility

_CrtMemDumpStatistics <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value
None
Parameter

state Pointer to the heap state to dump

Remarks
The _CrtMemDumpStatistics function dumps the debug header information for a
specified state of the heap in a user-readable form. The dump statistics can be used
by the application to track allocations and detect memory problems. The memory
state may contain a specific heap state, or the difference between two states. When
_DEBUG is not defined, calls to _CrtMemDumpStatistics are removed during
preprocessing.

108

Ixample

Chapter 4 Debug Version of the C Run-Time Library

The state parameter must be a pointer to a _CrtMemState structure that has been
filled in by _CrtMemCheckpoint or returned by _ CrtMemDifference before
_CrtMemDumpStatistics is called.

See Example 1 on page 75.

_CrtSetAllocHook

Installs a client-defined allocation function by hooking it into the C run-time debug
memory allocation process (debug version only).

_CRT_ALLOC_HOOK _CrtSetAllocHook(_CRT_ALLOC_HOOK allocHook);
Routine Required Header Compatibility
_CrtSetAllocHook <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

_CrtSetAllocHook returns the previously defined allocation hook function.

Parameter

Remarks

allocHook New client-defined allocation function to hook into the C run-time debug
memory allocation process

_CrtSetAllocHook allows an application to hook its own allocation function into the
C run-time debug library memory allocation process. As a result, every call to a debug
allocation function to allocate, reallocate, or free a memory block triggers a call to the
application’s hook function. _CrtSetAllocHook provides an application with an easy
method for testing how the application handles insufficient memory situations, the
ability to examine allocation patterns, and the opportunity to log allocation information
for later analysis. When _DEBUG is not defined, calls to _CrtSetAllocHook are
removed during preprocessing.

The _CrtSetAllocHook function installs the new client-defined allocation function
specified in allocHook and returns the previously defined hook function. The following
example demonstrates how a client-defined allocation hook should be prototyped:

int YourAllocHook(int allocType, void *userData, size_t size, int blockType,
long requestNumber, const unsigned char *filename, int TineNumber);

109

Run-Time Library Reference

Example

The allocType argument specifies the type of allocation operation (HOOK_ALLOC,
_HOOK_REALLOC, _HOOK_FREE) that triggered the call to the allocation’s hook
function. When the triggering allocation type is _HOOK_FREE, userData is a pointer
to the user data section of the memory block about to be freed. However, when the
triggering allocation type is _HOOK_ALLOC or _HOOK_REALLOC, userData

is NULL because the memory block has not been allocated yet.

size specifies the size of the memory block in bytes, b1ockType indicates the type
of the memory block, requestNumber is the object allocation order number of the
memory block, and if available, filename and 1ineNumber specify the source file
name and line number where the triggering allocation operation was initiated.

After the hook function has finished processing, it must return a Boolean value, which
tells the main C run-time allocation process how to continue. When the hook function
wants the main allocation process to continue as if the hook function had never been
called, then the hook function should return TRUE. This causes the original triggering
allocation operation to be executed. Using this implementation, the hook function can
gather and save allocation information for later analysis, without interfering with the
current allocation operation or state of the debug heap.

When the hook function wants the main allocation process to continue as if the
triggering allocation operation was called and it failed, then the hook function should
return FALSE. Using this implementation, the hook function can simulate a wide
range of memory conditions and debug heap states to test how the application handles
each situation.

See Example 2 on page 99.

_CrtSetBreakAlloc

110

Sets a breakpoint on a specified object allocation order number (debug version only).
long _CrtSetBreakAlloc(long IBreakAlloc);

Routine Required Header Compatibility

_CrtSetBreakAlloc <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Chapter 4 Debug Version of the C Run-Time Library

{eturn Value

_CrtSetBreakAlloc returns the previous object allocation order number that had a
breakpoint set.

Yarameter

lemarks

Zxample

IBreakAlloc Allocation order number, for which to set the breakpoint

_CrtSetBreakAlloc allows an application to perform memory leak detection by
breaking at a specific point of memory allocation and tracing back to the origin of the
request. The function uses the sequential object allocation order number assigned to
the memory block when it was allocated in the heap. When _DEBUG is not defined,
calls to _CrtSetBreakAlloc are removed during preprocessing.

The object allocation order number is stored in the I[Request field of the
_CrtMemBlockHeader structure, defined in CRTDBG.H. When information about a
memory block is reported by one of the debug dump functions, this number is
enclosed in curly brackets; for example, {36}.

/*

*

SETBRKAL.C

* In this program, a call is made to the _CrtSetBreakAlloc routine

to verify that the debugger halts program execution when it reaches
* a specified allocation number.

*/

*

jHinclude <malloc.h>
jHinclude <crtdbg.h>

void main()

{
long allocReqNum;
char *my_pointer;

/*

* Allocate "my_pointer"” for the first

* time and ensure that it gets allocated correctly

*/ :
my_pointer = malloc(10);
_CrtisMemoryBlock(my_pointer, 10, &allocReqNum, NULL, NULL);
/*

* Set a breakpoint on the allocation request

* number for "my_pointer"

*/
_CrtSetBreakAlloc(allocRegqNum+2);
_crtBreakAlloc = allocReqNum+2;

/*

* Alternate freeing and reallocating "my_pointer"

* to verify that the debugger halts program execution
* when it reaches the allocation request

11

Run-Time Library Reference

Output

*/

free(my_pointer);
my_pointer = malloc(10);
free(my_pointer);
my_pointer = malioc(19);
free(my_pointer);

The exception Breakpoint
A breakpoint has been reached.
(0x0000003) occurred in the application at location 0x00401255.

_CrtSetDbgFlag

Retrieves and/or modifies the state of the _crtDbgFlag flag to control the allocation
behavior of the debug heap manager (debug version only).

int _CrtSetDbgFlag(int newFlag);
Routine Required Header Compatibility

_CrtSetDbgFlag <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

_CrtSetDbgFlag returns the previous state of _crtDbgFlag.

Parameter

Remarks

112

newFlag New state for the _crtDbgFlag

The _CrtSetDbgFlag function allows the application to control how the debug heap
manager tracks memory allocations by modifying the bit fields of the _crtDbgFlag
flag. By setting the bits (turning on), the application can instruct the debug heap
manager to perform special debugging operations, including checking for memory
leaks when the application exits and reporting if any are found, simulating low
memory conditions by specifying that freed memory blocks should remain in the
heap’s linked list, and verifying the integrity of the heap by inspecting each memory
block at every allocation request. When _DEBUG is not defined, calls to
_CrtSetDbgFlag are removed during preprocessing.

Chapter 4 Debug Version of the C Run-Time Library

The following table lists the bit fields for _crtDbgFlag and describes their behavior.
Because setting the bits results in increased diagnostic output and reduced program
execution speed, most of the bits are not set (turned off) by default. For more
information about these bit fields, see “Using the Debug Heap.”

Bit field Default Description
_CRTDBG_ALLOC- ON ON: Enable debug heap allocations and use of memory
_MEM_DF block type identifiers, such as _CLIENT_BLOCK.

_CRTDBG_CHECK- OFF
_ALWAYS_DF

_CRTDBG_CHECK- OFF
_CRT_DF

_CRTDBG_DELAY- OFF
_FREE_MEM_DF

_CRTDBG_LEAK- OFF
_CHECK_DF

OFF: Add new allocations to heap’s linked list, but set
block type to _IGNORE_BLOCK.

ON: Call _CrtCheckMemory at every allocation and
deallocation request.
OFF: _CrtCheckMemory must be called explicitly.

ON: Include _CRT_BLOCK types in leak detection
and memory state difference operations.

OFF: Memory used internally by the run-time library is
ignored by these operations.

ON: Keep freed memory blocks in the heap’s linked
list, assign them the _FREE_BLOCK type, and fill
them with the byte value 0xDD.

OFF: Do not keep freed blocks in the heap’s linked list.

ON: Perform automatic leak checking at program exit
via a call to _CrtDumpMemoryLeaks and generate an
error report if the application failed to free all the
memory it allocated.

OFF: Do not automatically perform leak checking at
program exit.

newFlag is the new state to apply to the _crtDbgFlag and is a combination of the
values for each of the bit fields. To change one or more of these bit fields and create a
new state for the flag, follow these steps:

1. Call _CrtSetDbgFlag with newFlag equal to _CRTDBG_REPORT_FLAG to
obtain the current _crtDbgFlag state and store the returned value in a temporary

variable.

2. Turn on any bits by OR-ing the temporary variable with the corresponding
bitmasks (represented in the application code by manifest constants).

3. Turn off the other bits by AND-ing the variable with a bitwise NOT of the

appropriate bitmasks.

4. Call _CrtSetDbgFlag with newFlag equal to the value stored in the temporary
variable to set the new state for _crtDbgFlag.

The following lines of code demonstrate how to simulate low memory conditions
by keeping freed memory blocks in the heap’s linked list and prevent
_CrtCheckMemory from being called at every allocation request:

113

Run-Time Library Reference

Example

114

// Get the current state of the flag
// and store it in a temporary variable
int tmpFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

// Turn On (OR) - Keep freed memory blocks in the
// heap’s linked 1ist and mark them as freed
tmpFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

// Turn Off (AND) - prevent _CrtCheckMemory from
// being called at every allocation request
tmpFlag &= ~_CRTDBG_CHECK_ALWAYS_DF;

// Set the new state for the flag
_CrtSetDbgFlag(tmpFlag);

/*
*
*

*

*/

SETDFLAG.C
This program concentrates on allocating and freeing memory
blocks to test the functionality of the _crtDbgFlag flag..

#include <string.h>
fFHinclude <malloc.h>
#Hinclude <crtdbg.h>

void main()

{

char *pl, *p2;
int tmpDbgFlag;

/*

* Set the debug-heap flag to keep freed blocks in the
* heap's linked list - This will allow us to catch any
* inadvertent use of freed memory

*/

tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);
tmpDbgFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

tmpDbgFlag |= _CRTDBG_LEAK_CHECK_DF;

_CrtSetDbgFlag(tmpDbgFlag);

/*

* Allocate 2 memory blocks and store a string in each
*/

pl = (char *) malloc(34);

p2 = (char *) malloc(38);

strcpy(pl, "pl points to a Normal allocation block™);
strcepy(p2, "p2 points to a Client allocation block");

/*

* Free both memory blocks
*/

free(p2);

free(pl);

Chapter 4 Debug Version of the C Run-Time Library

/*

* Set the debug-heap flag to no longer keep freed blocks in the
* heap's linked 1ist and turn on Debug type allocations (CLIENT)
*/

tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

tmpDbgFlag |= _CRTDBG_ALLOC_MEM_DF;

tmpDbgFlag &= _CRTDBG_DELAY_FREE_MEM_DF;

CrtSetDbgFlag(tmpDbgFlag);

1% .

* Explicitly call _malloc_dbg to obtain the filename and 1ine number
* of our allocation request and also so we can allocate CLIENT type

* blocks specifically for tracking

*/
pl = (char *) _malloc_dbg(40, _NORMAL_BLOCK, _FILE__, _ LINE__);
p2 = (char *) _malloc_dbg(40, _CLIENT_BLOCK, _FILE _, __LINE__);

strcpy(pl, "pl points to a Normal allocation block™);
strcpy(p2, "p2 points to a Client allocation block");

/*
* _free_dbg must be called to free the CLIENT block
*/

_free_dbg(p2, _CLIENT_BLOCK);

free(pl);

/*
* Allocate pl again and then exit - this will leave unfreed
* memory on the heap
*/
pl = (char *) malloc(10);
}
Output
Debug Error!
Program: C:\code\setdflag.exe
DAMAGE: after Normal block (#31) at 0x002D06A8.
Press Retry to debug the application.

See Also: _crtDbgFlag, _CrtCheckMemory

_CrtSetDumpClient

Installs an application-defined function to dump _CLIENT_BLOCK type memory
blocks (debug version only).

_CRT_DUMP_CLIENT _CrtSetDumpClient(_CRT_DUMP_CLIENT dumpClient);

Routine Required Header Compatibility
_CrtSetDumpClient <crtdbg.h> Win NT, Win 95

115

Run-Time Library Reference

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version

LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value

_CrtSetDumpClient returns the previously defined client block dump function.

Parameter

Remarks

Example

116

dumpClient New client-defined memory dump function to hook into the C run-time
debug memory dump process

The _CrtSetDumpClient function allows the application to hook its own function
to dump objects stored in _CLIENT_BLOCK memory blocks into the C run-time
debug memory dump process. As a result, every time a debug dump function such
as _CrtMemDumpAllObjectsSince or _CrtDumpMemoryLeaks dumps a
_CLIENT_BLOCK memory block, the application’s dump function will be called
as well. _CrtSetDumpClient provides an application with an easy method for
detecting memory leaks in and validating or reporting the contents of data stored
in _CLIENT_BLOCK blocks. When _ DEBUG is not defined, calls to
_CrtSetDumpClient are removed during preprocessing.

The _CrtSetDumpClient function installs the new application-defined dump
function specified in dumpClient and returns the previously defined dump function.
An example of a client block dump function is as follows:

void DumpClientFunction(void *userPortion, size_t blockSize);

The userPortion argument is a pointer to the beginning of the user data portion of
the memory block and b1ockSize specifies the size of the allocated memory block
in bytes. The client block dump function must return void. The pointer to the
client dump function that is passed to _CrtSetDumpClient is of type
_CRT_DUMP_CLIENT, as defined in CRTDBG.H:

typedef void (__cdecl *_CRT_DUMP_CLIENT)(void *, size_t);

See Example 2 on page 99.

Chapter 4 Debug Version of the C Run-Time Library

_CrtSetReportFile

Identifies the file or stream to be used by _CrtDbgReport as a destination for a
specific report type (debug version only).

_HFILE _CrtSetReportFile(int reportType, _HFILE reportFile);
Routine Required Header Compatibility

_CrtSetReportFile <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

Upon successful completion, _CrtSetReportFile returns the previous report file
defined for the report type specified in reportType. If an error occurs, the report file
for reportType is not modified and_CrtSetReportFile returns
_CRTDBG_HFILE_ERROR.

Parameters

Remarks

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT
reportFile New report file for reportType, see the following table

_CrtSetReportFile is used in conjunction with the _CrtSetReportMode function

to define the destination(s) for a specific report type generated by _CrtDbgReport.
When _CrtSetReportMode has been called to assign the _CRTDBG_MODE_FILE
reporting mode for a specific report type, _CrtSetReportFile should then be called

to define the specific file or stream to use as the destination. When _DEBUG is not
defined, calls to _CrtSetReportFile are removed during preprocessing.

The _CrtSetReportFile function assigns the new report file specified in reportFile to
the report type specified in reporiType and returns the previously defined report file
for reportType. The following table lists the available choices for reportFile and the
resulting behavior of _CrtDbgReport. These options are defined as bit-flags in
CRTDBG.H.

117

Run-Time Library Reference

Example

118

Report File _CriDbgReport Behavior

_HFILE _CrtDbgReport writes the message to a user-supplied
HANDLE and does not verify the validity of the file
handle. The application is responsible for opening and
closing the report file and passing a valid file handle.

_CRTDBG_FILE_STDERR _CrtDbgReport writes message to stderr.
_CRTDBG_FILE_STDOUT _CrtDbgReport writes message to stdout.
_CRTDBG_REPORT_FILE _CrtDbgReport is not called and the report file for

reportType is not modified. _CrtSetReportFile simply
returns the current report file for reportType.

When the report destination is a file, _CrtSetReportMode is called to set the file
bit-flag and _CrtSetReportFile is called to define the specific file to use. The
following code fragment demonstrates this configuration:

_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);

The report file used by each report type can be separately controlled. For example,
it is possible to specify that a reportType of _CRT_ERROR be reported to stderr,
while a reportType of _CRT_ASSERT be reported to a user-defined file handle
or stream.

~
*

REPORT.C:

In this program, calls are made to the _CrtSetReportMode,
_CrtSetReportFile, and _CrtSetReportHook functions.

The _ASSERT macros are called to evaluate their expression.

When the condition fails, these macros print a diagnostic message
and call _CrtDbgReport to generate a debug report and the
client-defined reporting function is called as well.

The _RPTn and _RPTFn group of macros are also exercised in

this program, as an alternative to the printf function.

When these macros are called, the client-defined reporting function
takes care of all the reporting - _CrtDbgReport won't be called.

* % ok ok o ok F F % * F

*
~

f#finclude <stdio.h>
#include <string.h>
#include <malloc.h>
#finclude <crtdbg.h>

/*

Define our own reporting function.
We'll hook it into the debug reporting
process later using _CrtSetReportHook.

Define a global int to keep track of
how many assertion failures occur.

* % o ¥ * F

*/

Chapter 4 Debug Version of the C Run-Time Library

int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)

{

}

/*

*

Tell the user our reporting function is being called.

* In other words - verify that the hook routine worked.

*/

fprintf("Inside the client-defined reporting function.\n", STDOUT):;
fflush(STDOUT) ;

/*

*

* % ok Ok ok K o F

*/

if
{

When the report type is for an ASSERT,
we'll report some information, but we also
want _CrtDbgReport to get called -

so we'll return TRUE.

When the report type is a WARNing or ERROR,

we'll take care of all of the reporting. We don't
want _CrtDbgReport to get called -

so we'll return FALSE.

(reportType == _CRT_ASSERT)

gl_num_asserts++;

fprintf("This is the number of Assertion failures that have occurred:
« %d \n", g1l_num_asserts, STDOUT);

fflush(STDOUT) ;

fprintf("Returning TRUE from the client-defined reporting

« function.\n", STDOUT):

fflush(STDOUT) ;

return(TRUE);

} else {

*/

fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
fflush(STDOUT);

fprintf("Returning FALSE from the client-defined reporting

- function.\n", STDOUT);

fflush(STDOUT);

return(FALSE);

By setting retVal to zero, we are instructing _CrtDbgReport

to continue with normal execution after generating the report.
If we wanted _CrtDbgReport to start the debugger, we would set
retVal to one.

retVal = 0;

int main()

{

char *pl, *p2;

119

Run-Time Library Reference

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/
_CrtSetReportHook(OurReportingFunction);

/*

* Define the report destination(s) for each type of report

* we are going to generate. In this case, we are going to

* generate a report for every report type: _CRT_WARN,

* _CRT_ERROR, and _CRT_ASSERT.

* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.

*

This program sends all report types to STDOUT.
*/

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*

* Allocate and assign the pointer variables
*/

pl = malloc(10);

strcpy(pl, "I am pl");

p2 = malloc(10);

strcpy(p2, "I am p2");

~
*

Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

If the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.

_ASSERT does not include the
expression in the generated report.

* ok ok o R X % Ok X ¥ %

*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
- pl == p2.\n");
_RPTF2(_CRT_WARN, "\n Will1 _ASSERT find '%s' == '%s' ?\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pl, p2);
_ASSERTE(pl == p2);

120

Output

Chapter 4 Debug Version of the C Run-Time Library
_RPT2(_CRT_ERROR, "\n \n '%s' != "%s'\n", pl, p2);

free(p2);
free(pl);

return 0;
}

Inside the client-defined reporting function.

This is the debug user message: Use the assert macros to evaluate the
- expression pl == p2

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
«'I am pl' == "I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
«'I am pl' == "I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pl == p2

Inside the client-defined reporting function.

This is the debug user message: 'I am pl' != 'l am p2°'

Returning FALSE from the client-defined reporting function.

See Also: _CrtDbgReport

_CrtSetReportHook

Installs a client-defined reporting function by hooking it into the C run-time debug
reporting process (debug version only).

_CRT_REPORT_HOOK _CrtSetReportHook(_CRT_REPORT_HOOK reportHook);
Routine Required Header Compatibility
_CrtSetReportHook <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

121

Run-Time Library Reference

Return Value

_CrtSetReportHook returns the previous client-defined reporting function.

Parameter

Remarks

Example

122

reportHook New client-defined reporting function to hook into the C run-time debug
reporting process

_CrtSetReportHook allows an application to use its own reporting function into the
C run-time debug library reporting process. As a result, whenever _CrtDbgReport is
called to generate a debug report, the application’s reporting function is called first.
This functionality enables an application to perform operations such as filtering debug
reports so it can focus on specific allocation types or send a report to destinations not
available by using _CrtDbgReport. When _DEBUG is not defined, calls to
_CrtSetReportHook are removed during preprocessing.

The _CrtSetReportHook function installs the new client-defined reporting function
specified in reportHook and returns the previous client-defined hook. The following
example demonstrates how a client-defined report hook should be prototyped:

int YourReportHook(int reportType, char *message, int *returnValue);

where reportType is the debug report type (CRT_WARN, _CRT_ERROR,
_CRT_ASSERT), message is the fully assembled debug user message to be contained
in the report, and returnvalue is the value specified by the client-defined reporting
function that should be returned by _CrtDbgReport. See the _CrtSetReportMode
function for a complete description of the available report types.

If the client-defined reporting function completely handles the debug message such
that no further reporting is required, then the function should return TRUE. When the
function returns FALSE, _CrtDbgReport will be called to generate the debug report
using the current settings for the report type, mode, and file. In addition, by specifying
the _CrtDbgReport return value in returnValue, the application can also control
whether a debug break occurs. See _CrtSetReportMode, _CrtSetReportFile, and
_CrtDbgReport for a complete description of how the debug report is configured
and generated.

~
*

REPORT.C:

In this program, calls are made to the _CrtSetReportMode,
_CrtSetReportFile, and _CrtSetReportHook functions.

The _ASSERT macros are called to evaluate their expression.

When the condition fails, these macros print a diagnostic message
and call _CrtDbgReport to generate a debug report and the
client-defined reporting function is called as well.

The _RPTn and _RPTFn group of macros are also exercised in

this program, as an alternative to the printf function.

When these macros are called, the client-defined reporting function
takes care of all the reporting - _CrtDbgReport won't be called.

* % Ok Sk Ok F ok ¥ F F X

*
~

Chapter 4 Debug Version of the C Run-Time Library

fHinclude <stdio.h>

f#Hinclude <string.h>
f#Hinclude <malloc.h>
jHnclude <crtdbg.h>

/%
Define our own reporting function.

We'll hook it into the debug reporting
process later using _CrtSetReportHook.

Define a global int to keep track of
how many assertion failures occur.

* ok ok F F X

*/
int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retVal)
{
/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.
*/
fprintf("Inside the client-defined reporting function.\n"™, STDOUT);
fflush(STDOUT) ;

~
*

When the report type is for an ASSERT,
we'll report some information, but we also
want _CrtDbgReport to get called -

so we'll return TRUE.

When the report type is a WARNing or ERROR,

we'll take care of all of the reporting. We don't
want _CrtDbgReport to get called -

so we'll return FALSE.

* % o % F b F A %

*/
if (reportType == _CRT_ASSERT)
{
gl_num_asserts++;
fprintf("This is the number of Assertion failures that have
- occurred: %d \n", gl_num_asserts, STDOUT);
fflush(STDOUT) ;
fprintf("Returning TRUE from the client-defined reporting
<« function.\n", STDOUT);
fflush(STDOUT);
return(TRUE);
} else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT);
fflush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting
« function.\n", STDOUT);
fflush(STDOUT);
return(FALSE);

123

Run-Time Library Reference

124

}
/*
* By setting retVal to zero, we are instructing _CrtDbgReport
* to continue with normal execution after generating the report.
* If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.
*/
retVal = 0;
int main()

char *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is calied to generate
* a debug report, our function will get called first.
*/
_CrtSetReportHook(OurReportingFunction);

* Define the report destination(s) for each type of report

* we are going to generate. In this case, we are going to

* generate a report for every report type: _CRT_WARN,

* _CRT_ERROR, and _CRT_ASSERT.

* The destination(s) is defined by specifying the report mode(s)

* and report file for each report type.

* This program sends all report types to STDOUT.

*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT):
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*

* Allocate and assign the pointer variables
*/

pl = malloc(10);

strepy(pl, "I am pl");

p2 = malloc(10);

strcpy(p2, "I am p2");

/*
Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

* F F F X X

Output

Chapter 4 Debug Version of the C Run-Time Library

If the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.

_ASSERT does not include the
expression in the generated report.

* % ok o ¥

*/
_RPT@(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
o pl == p2.\n");
_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == '%s' ?\n", pl, p2);
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n 'Z%s' != "%s'\n", pl, p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.

This is the debug user message: Use the assert macros to evaluate the
- expression pl == p2

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
- 'I am pl' == "I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
- 'I am pl' == 'I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pl == p2

Inside the client-defined reporting function.

This is the debug user message: 'I am pl' != "I am p2'

Returning FALSE from the client-defined reporting function.

125

Run-Time Library Reference

_CrtSetReportMode

Specifies the general destination(s) for a specific report type generated by
_CrtDbgReport (debug version only).

int _CrtSetReportMode(int reportType, int reportMode);
Routine Required Header Compatibility

CrtSetReportMode <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

Upon successful completion, _CrtSetReportMode returns the previous report
mode(s) for the report type specified in reportType. If an error occurs, the report
mode(s) for reportType are not modified and_CrtSetReportMode returns —1.

Parameters

Remarks

126

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT

reportMode New report mode(s) for reportType, see the table in the Remarks section

_CrtSetReportMode is used in conjunction with the _CrtSetReportFile function to
define the destination(s) for a specific report type generated by _CrtDbgReport. If
_CrtSetReportMode and _CrtSetReportFile are not called to define the reporting
method(s) for a specific report type, then _CrtDbgReport generates the report type
using default destinations: Assertion failures and errors are directed to a debug message
window, warnings from Windows applications are sent to the debugger, and warnings
from console applications are directed to stderr. When _DEBUG is not defined, calls
to _CrtSetReportMode are removed during preprocessing.

The following table lists the report types defined in CRTDBG.H.

Report Type Description

_CRT_WARN Warnings, messages, and information that does not need immediate
attention. }

_CRT_ERROR Errors, unrecoverable problems, and issues that require immediate
attention.

_CRT_ASSERT Assertion failures (asserted expressions that evaluate to FALSE).

Example

Chapter 4 Debug Version of the C Run-Time Library

The _CrtSetReportMode function assigns the new report mode specified in
reportMode to the report type specified in reportType and returns the previously
defined report mode for reportType. The following table lists the available choices for
reportMode and the resulting behavior of _CrtDbgReport. These options are defined
as bit-flags in CRTDBG.H.

Report Mode _CrtDbgReport Behavior
_CRTDBG_MODE_DEBUG Writes the message to an output debug string.
_CRTDBG_MODE_FILE Writes the message to a user-supplied file handle.

_CrtSetReportFile should be called to define the
specific file or stream to use as the destination.

_CRTDBG_MODE_WNDW Creates a message box to display the message along
with the Abort, Retry, and Ignore buttons.
_CRTDBG_REPORT_MODE It is not called, and the report mode for reportType is

not modified. _CrtSetReportMode simply returns the
current report mode for reportType.

Each report type may be reported using one, two, or three modes, or no mode at all.
Therefore, it is possible to have more than one destination defined for a single report
type. For example, the following code fragment causes assertion failures to be sent to
both a debug message window and to stderr:

_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE | _CRTDBG_MODE_WNDW);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDERR);

In addition, the reporting mode(s) for each report type can be separately controlled.
For example, it is possible to specify that a reportType of _CRT_WARN be sent to an
output debug string, while _CRT_ASSERT be displayed using a a debug message
window and sent to stderr, as illustrated above.

~
*

REPORT.C:

In this program, calls are made to the _CrtSetReportMode,
_CrtSetReportFile, and _CrtSetReportHook functions.

The _ASSERT macros are called to evaluate their expression.

When the condition fails, these macros print a diagnostic message
and call _CrtDbgReport to generate a debug report and the
client-defined reporting function is called as well.

The _RPTn and _RPTFn group of macros are also exercised in

this program, as an alternative to the printf function.

When these macros are called, the client-defined reporting function
takes care of all the reporting - _CrtDbgReport won't be called.

* % o % % %k % X %k X %

*
~

#include <stdio.h>
#include <string.h>
f#include <malloc.h>
#include <crtdbg.h>

127

Run-Time Library Reference

/*

* Define our own reporting function.

* We'll hook it into the debug reporting
* process later using _CrtSetReportHook.
*
*
*

Define a global int to keep track of
how many assertion failures occur.
*/
int gl_num_asserts=0;
int OurReportingFunction(int reportType, char *userMessage, int *retvVal)
{
/*
* Tell the user our reporting function is being called.
* In other words - verify that the hook routine worked.

*/

fprintf("Inside the client-defined reporting function.\n", STDOUT);
fflush(STDOUT);

/*

* When the report type is for an ASSERT,

* we'll report some information, but we also

* want _CrtDbgReport to get called -

* so we'll return TRUE.

*

* When the report type is a WARNing or ERROR,

* we'll take care of all of the reporting. We don't
* want _CrtDbgReport to get called -

* so we'll return FALSE.

*/

if (reportType == _CRT_ASSERT)

{

gl_num_asserts++;
fprintf("This is the number of Assertion failures that have
« occurred: %d \n", gl_num_asserts, STDOUT);
fflush(STDOUT);
fprintf("Returning TRUE from the client-defined reporting
o function.\n", STDOUT);
fflush(STDOUT);
return(TRUE);
} else {
fprintf("This is the debug user message: %s \n", userMessage, STDOUT):
fflush(STDOUT);
fprintf("Returning FALSE from the client-defined reporting
« function.\n", STDOUT);
fflush(STDOUT);
return(FALSE);

/*

* By setting retVal to zero, we are instructing _CrtDbgReport

to continue with normal execution after generating the report.
If we wanted _CrtDbgReport to start the debugger, we would set
* retVal to one.

*/

* ¥

128

Chapter 4 Debug Version of the C Run-Time Library

retVal = 0;
}
int main()
{

char *pl, *p2;

/*
* Hook in our client-defined reporting function.
* Every time a _CrtDbgReport is called to generate
* a debug report, our function will get called first.
*/
_CrtSetReportHook(OurReportingFunction);

* Define the report destination(s) for each type of report

* we are going to generate. In this case, we are going to

* generate a report for every report type: _CRT_WARN,

* _CRT_ERROR, and _CRT_ASSERT.

* The destination(s) is defined by specifying the report mode(s)
* and report file for each report type.

* This program sends all report types to STDOUT.

_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);

/*

* Allocate and assign the pointer variables
*/

pl = malloc(10@);

strcpy(pl, "I am pl");

p2 = malloc(10);

strcpy(p2, "I am p2");

~
*

Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

If the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.

_ASSERT does not include the
expression in the generated report.

X % o % ok o X X F ok o X

*/

129

Run-Time Library Reference

Output

_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the

w expression pl == p2.\n");

_RPTF2(_CRT_WARN, "\n Will _ASSERT find '%s' == '%s' ?\n", pl, p2);
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, “\n\n Wil1 _ASSERTE find '%s' == '%s' ?\n", pl, p2);
_ASSERTE(pl == p2);

_RPT2(_CRT_ERROR, "\n \n '%s' != "%s'\n", pl, p2);

free(p2);
free(pl);

return 0;

Inside the client-defined reporting function.

This is the debug user message: Use the assert macros to evaluate the
- expression pl == p2

Returning FALSE from the cltient-defined reporting function.

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(54) : Will _ASSERT find
« 'l am pl' == "I am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 1
Returning TRUE from the client-defined reporting function.
dbgmacro.c(55) : Assertion failed

Inside the client-defined reporting function.

This is the debug user message: dbgmacro.c(57) : Will _ASSERTE find
- 'l am pl' == '[am p2' ?

Returning FALSE from the client-defined reporting function.

Inside the client-defined reporting function.

This is the number of Assertion failures that have occurred: 2
Returning TRUE from the client-defined reporting function.
dbgmacro.c(58) : Assertion failed: pl == p2

Inside the client-defined reporting function.

This is the debug user message: 'I am pl®' != "I am p2’

Returning FALSE from the client-defined reporting function.

_expand_dbg

130

Resizes a specified block of memory in the heap by expanding or contracting the
block (debug version only).

void *_expand_dbg(void *userData, size_t newSize, int blockType,
= const char *filename, int linenumber);

Routine Required Header Compatibility
_expand_dbg <crtdbg.h> Win NT, Win 95

Chapter 4 Debug Version of the C Run-Time Library

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

Upon successful completion, _expand_dbg returns a pointer to the resized memory
block, otherwise it returns NULL.

Parameters

Remarks

userData Pointer to the previously allocated memory block
newSize Requested new size for block (bytes)

blockType Requested type for resized block: _CLIENT_BLOCK or
_NORMAL_BLOCK

Jilename Pointer to name of source file that requested expand operation or NULL

linenumber Line number in source file where expand operation was requested or
NULL

The filename and linenumber parameters are only available when _expand_dbg has
been called explicitly or the _CRTDBG_MAP_ALLOC environment variable has
been defined.

The _expand_dbg function is a debug version of the _expand function. When
_DEBUG is not defined, calls to _expand_dbg are removed during preprocessing.
Both _expand and _expand_dbg resize a memory block in the base heap, but
_expand_dbg accommodates several debugging features: buffers on either side of
the user portion of the block to test for leaks, a block type parameter to track specific
allocation types, and filenamel/linenumber information to determine the origin of
allocation requests.

_expand_dbg resizes the specified memory block with slightly more space than the
requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The resize is accomplished by either
expanding or contracting the original memory block. _expand_dbg does not move
the memory block, as does the _realloc_dbg function.

When newSize is greater than the original block size, the memory block is expanded.
During an expansion, if the memory block cannot be expanded to accommodate the

requested size, the block is expanded as much as possible. When newSize is less than
the original block size, the memory block is contracted until the new size is obtained.

131

Run-Time Library Reference

Example

/*
EXPANDD.C
This program allocates a block of memory using _malloc_dbg
and then calls _msize_dbg to display the size of that block.
Next, it uses _expand_dbg to expand the amount of
memory used by the buffer and then calls _msize_dbg again to
display the new amount of memory allocated to the buffer.

* ok X ok * F

*/

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void main(void)

{
long *buffer;
size_t size;

/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header
*/
buffer = (long *)_malloc_dbg(40 * sizeof(long), _NORMAL_BLOCK,
- __FILE__, __LINE__);:
if(buffer == NULL)
exit(1);

/*

* Get the size of the buffer by calling _msize_dbg

*/

size = _msize_dbg(buffer, _NORMAL_BLOCK);

printf("Size of block after _malloc_dbg of 4@ Tongs: %u\n", size);

/*

* Expand the buffer using _expand_dbg and show the new size

*/

buffer = _expand_dbg(buffer, size + (40 * sizeof(long)), _NORMAL_BLOCK,
- _ FILE__, __LINE__);

if(buffer == NULL)

exit(1);
size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _expand_dbg of 4@ more longs: %u\n", size);

free(buffer);
exit(@);

Output
Size of block after _malloc_dbg of 40 longs: 160
Size of block after _expand_dbg of 40 more longs: 320

See Also: '_malloc_dbg

132

Chapter 4 Debug Version of the C Run-Time Library

_free_dbg

Frees a block of memory in the heap (debug version only).
void _free_dbg(void *userData, int blockType);
Routine Required Header Compatibility

_free_dbg <crtdbg.h> Win NT, Win 95
For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value

None

Parameters

Remarks

Example

userData Pointer to the allocated memory block to be freed

blockType Type of allocated memory block to be freed: _CLIENT_BLOCK,
_NORMAL_BLOCK, or _IGNORE_BLOCK

The _free_dbg function is a debug version of the free function. When _DEBUG is not
defined, calls to _free_dbg are removed during preprocessing. Both free and _free_dbg
free a memory block in the base heap, but _free_dbg accommodates two debugging
features: the ability to keep freed blocks in the heap’s linked list to simulate low
memory conditions and a block type parameter to free specific allocation types.

_free_dbg performs a validity check on all specified files and block locations

before performing the free operation — the application is not expected to provide this
information. When a memory block is freed, the debug heap manager automatically
checks the integrity of the buffers on either side of the user portion and issues an error
report if overwriting has occurred. If the _CRTDBG_DELAY_FREE_MEM_DF bit
field of the _crtDbgFlag flag is set, the freed block is filled with the value 0xDD,
assigned the _FREE_BLOCK block type, and kept in the heap’s linked list of
memory blocks.

See Example 2 on page 99.
See Also: _malloc_dbg

133

Run-Time Library Reference

_malloc_dbg

Allocates a block of memory in the heap with additional space for a debugging header
and overwrite buffers (debug version only).

void *_malloc_dbg(size_t size, int blockType, const char *filename, int linenumber);

Routine Required Header Compatibility

_malloc_dbg <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version

LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value

Upon successful completion, this function either returns a pointer to the user portion
of the allocated memory block, calls the new handler function, or returns NULL. See
the following Remarks section for a complete description of the return behavior. See
the malloc function for more information on how the new handler function is used.

Parameters
size Requested size of memory block (bytes)

blockType Requested type of memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested allocation operation or NULL

linenumber Line number in source file where allocation operation was requested or
NULL

The filename and linenumber parameters are only available when _malloc_dbg has
been called explicitly or the _CRTDBG_MAP_ALLOC environment variable has
been defined.

Remarks
_malloc_dbg is a debug version of the malloc function. When _DEBUG is not
defined, calls to _malloc_dbg are removed during preprocessing. Both malloc and
_malloc_dbg allocate a block of memory in the base heap, but _malloc_dbg offers
several debugging features: buffers on either side of the user portion of the block
to test for leaks, a block type parameter to track specific allocation types, and
filenamel/linenumber information to determine the origin of allocation requests.

134

Example

Chapter 4 Debug Version of the C Run-Time Library

_malloc_dbg allocates the memory block with slightly more space than the requested
size. The additional space is used by the debug heap manager to link the debug
memory blocks together and to provide the application with debug header information
and overwrite buffers. When the block is allocated, the user portion of the block is
filled with the value OxCD and each of the overwrite buffers are filled with OxFD.

See Example 1 on page 75.

_msize_dbg

Calculates the size of a block of memory in the heap (debug version only).
size_t _msize_dbg(void *userData, int blockType);

Routine Required Header Compatibility

_msize_dbg <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version

LIBCMTD.LIB Multithread static library, debug version

MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version
Return Value

Upon successful completion, _msize_dbg returns the size (bytes) of the specified
memory block, otherwise it returns NULL.

Parameters

Remarks

userData Pointer to the memory block for which to determine the size

blockType Type of the specified memory block: _CLIENT_BLOCK or
_NORMAL_BLOCK

_msize_dbg is a debug version of the _msize function. When _DEBUG is not defined,
calls to _msize_dbg are removed during preprocessing. Both _msize and _msize_dbg
calculate the size of a memory block in the base heap, but _msize_dbg adds two
debugging features: It includes the buffers on either side of the user portion of the memory
block in the returned size, and it allows size calculations for specific block types.

135

Run-Time Library Reference

Example

/*
REALLOCD.C
This program allocates a block of memory using _malloc_dbg
and then calls _msize_dbg to display the size of that block.
Next, it uses _realloc_dbg to expand the amount of
memory used by the buffer and then calls _msize_dbg again to
display the new amount of memory allocated to the buffer.

* ok % ok F

*/

#include <stdio.h>
#include <malloc.h>
#Hinclude <stdlib.h>
#include <crtdbg.h>

void main(void)

{
Tong *buffer;
size_t size;
/*
* Call _malloc_dbg to include the filename and 1ine number
* of our allocation request in the header
*/
buffer = (long *)_malloc_dbg(40 * sizeof(long), _NORMAL_BLOCK,
- __FILE___, __LINE__);
if(buffer == NULL)
exit(1);
/*
* Get the size of the buffer by calling _msize_dbg
*/
size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 longs: %u\n", size);
/*
* Reallocate the buffer using _realloc_dbg and show the new size
*/
buffer = _realloc_dbg(buffer, size + (40 * sizeof(long)),
» _NORMAL_BLOCK, __FILE__, __LINE__);
if(buffer == NULL)
exit(1);
size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _realloc_dbg of 40 more longs:
- %u\n", size);
free(buffer);
exit(0);
}

Output
Size of block after _malloc_dbg of 40 longs: 160
Size of block after _realloc_dbg of 4@ more longs: 320

See Also: _malloc_dbg

136

Chapter 4 Debug Version of the C Run-Time Library

_realloc_dbg

Reallocates a specified block of memory in the heap by moving and/or resizing the
block (debug version only).

void *_realloc_dbg(void *userData, size_t newSize, int blockType,
= const char *filename, int linenumber);

Routine Required Header Compatibility
_realloc_dbg <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Return Value
Upon successful completion, this function either returns a pointer to the user portion of
the reallocated memory block, calls the new handler function, or returns NULL. See the
following Remarks section for a complete description of the return behavior. See the
realloc function for more information on how the new handler function is used.

Parameters
userData Pointer to the previously allocated memory block

newSize Requested size for reallocated block (bytes)

blockType Requested type for reallocated block: _CLIENT_BLOCK or
_NORMAL_BLOCK

filename Pointer to name of source file that requested realloc operation or NULL

linenumber Line number in source file where realloc operation was requested or
NULL

The filename and linenumber parameters are only available when _realloc_dbg has
been called explicitly or the _CRTDBG_MAP_ALLOC environment variable has
been defined.

Remarks
_realloc_dbg is a debug version of the realloc function. When _DEBUG is not
defined, calls to _realloc_dbg are removed during preprocessing. Both realloc
and _realloc_dbg reallocate a memory block in the base heap, but _realloc_dbg
accommodates several debugging features: buffers on either side of the user portion
of the block to test for leaks, a block type parameter to track specific allocation types,
and filename/linenumber information to determine the origin of allocation requests.

137

Run-Time Library Reference

_realloc_dbg reallocates the specified memory block with slightly more space than
the requested newSize. newSize may be greater or less than the size of the originally
allocated memory block. The additional space is used by the debug heap manager to
link the debug memory blocks together and to provide the application with debug
header information and overwrite buffers. The reallocation may result in moving the
original memory block to a different location in the heap, as well as changing the size
of the memory block. If the memory block is moved, the contents of the original block
are copied over.

Example

/*
REALLOCD.C
This program allocates a block of memory using _malloc_dbg
and then calls _msize_dbg to display the size of that block.
Next, it uses _realloc_dbg to expand the amount of
memory used by the buffer and then calls _msize_dbg again to
display the new amount of memory allocated to the buffer.

* % ok ¥ F F

*/

f#finclude <stdio.h>
#include <malloc.h>
#include <stdlib.h>
#include <crtdbg.h>

void main(void)
{
Tong *buffer;
size_t size;
/*
* Call _malloc_dbg to include the filename and line number
* of our allocation request in the header

*/

buffer = (long *)_malloc_dbg(40 * sizeof(long), _NORMAL_BLOCK,
- _FILE_, __LINE__);

if(buffer == NULL)

exit(1);

/*

* Get the size of the buffer by calling _msize_dbg

*/

size = _msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _malloc_dbg of 40 Tongs: %u\n", size);

/*
* Reallocate the buffer using _realloc_dbg and show the new size
*/
buffer = _realloc_dbg(buffer, size + (40 * sizeof(long)),
« _NORMAL_BLOCK, _FILE__, _LINE__);
if(buffer == NULL)
exit(1);
size = msize_dbg(buffer, _NORMAL_BLOCK);
printf("Size of block after _realloc_dbg of 4@ more longs:
- %u\n", size);

138

Output

Chapter 4 Debug Version of the C Run-Time Library

free(buffer);
exit(0);

Size of block after _malloc_dbg of 40 longs: 160
Size of block after _realloc_dbg of 40 more longs: 320

See Also: _malloc_dbg

_RPT, RPTF Macros

Track an application’s progress by generating a debug report (debug version only).

'_RPTO(reportType, format);

_RPT1(reportType, format, argl);

_RPT2(reportType, format, argl, arg2);

_RPT3(reportType, format, argl, arg2, arg3);
_RPTA4(reportType, format, argl, arg2, arg3, arg4);
_RPTFO(reportType, format);

_RPTFI1(reportType, format, argl);

_RPTF2(reportType, format, argl, arg2);

_RPTF3(reportType, format, argl, arg2, arg3);
_RPTFA4(reportType, format, argl, arg2, arg3, arg4);

Macro Required Header Compatibility
_RPT macros <crtdbg.h> Win NT, Win 95
_RPTF macros <crtdbg.h> Win NT, Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBCD.LIB Single thread static library, debug version
LIBCMTD.LIB Multithread static library, debug version
MSVCRTD.LIB Import library for MSVCRTD.DLL, debug version

Although these are macros and are obtained by including CRTDBG.H, the application
must link with one of the libraries listed above because these macros call other
run-time functions.

Return Value

None

Parameters

reportType Report type: _CRT_WARN, _CRT_ERROR, _CRT_ASSERT
format Format-control string used to create the user message

argl Name of first substitution argument used by format

139

Run-Time Library Reference

Remarks

Example

140

arg2 Name of second substitution argument used by format
arg3 Name of third substitution argument used by format

arg4 Name of fourth substitution argument used by format

All of these macros take the reportType and format parameters. In addition, they might
also take argl through arg4, signified by the number appended to the macro name. For
example, _RPTO0 and _RPTF0 take no additional arguments, _RPT1 and _RPTF1 take
argl, _RPT2 and _RPTF2 take arg! and arg2, and so on.

The _RPT and _RPTF macros are similar to the printf function, as they can be used
to track an application’s progress during the debugging process. However, these
macros are more flexible than printf because they do not need to be enclosed in #ifdef
statements to prevent them from being called in a retail build of an application. This
flexibility is achieved by using the _DEBUG macro. The _RPT and _RPTF macros
are only available when the _DEBUG flag is defined. When _DEBUG is not defined,
calls to these macros are removed during preprocessing.

The _RPT macros call the _CrtDbgReport function to generate a debug report with
a user message. The _RPTF macros create a debug report with the source file and line
number where the report macro was called, in addition to the user message. The user
message is created by substituting the arg[n] arguments into the format string, using
the same rules defined by the printf function.

_CrtDbgReport generates the debug report and determines its destination(s), based
on the current report modes and file defined for reportType. The _CrtSetReportMode
and _CrtSetReportFile functions are used to define the destination(s) for each report

type.

When the destination is a debug message window and the user chooses the Retry
button, _CrtDbgReport returns 1, causing these macros to start the debugger,
provided that “just-in-time” (JIT) debugging is enabled.

Two other macros exist that generate a debug report. The _ASSERT macro
generates a report, but only when its expression argument evaluates to FALSE.
_ASSERTE is exactly like _ASSERT, but includes the failed expression in the
generated report.

DBGMACRO.C

In this program, calls are made to the _ASSERT and _ASSERTE
macros to test the condition 'stringl == string2'. If the
condition fails, these macros print a diagnostic message.
The _RPTn and _RPTFn group of macros are also exercised in
this program, as an alternative to the printf function.

Chapter 4 Debug Version of the C Run-Time Library

fHinclude <stdio.h>
#include <string.h>
#include <malloc.h>
#include <crtdbg.h>

int main()
{
char *pl, *p2;

* The Reporting Mode and File must be specified

* before generating a debug report via an assert
* or report macro.

* This program sends all report types to STDOUT

*/
_CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ERROR, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ERROR, _CRTDBG_FILE_STDOUT);
_CrtSetReportMode(_CRT_ASSERT, _CRTDBG_MODE_FILE);
_CrtSetReportFile(_CRT_ASSERT, _CRTDBG_FILE_STDOUT);
/*

* Allocate and assign the pointer variables

*/
pl = malioc(10);
strcpy(pl, "I am pl");
p2 = malloc(10);
strepy(p2, "I am p2");

~
*

Use the report macros as a debugging
warning mechanism, similar to printf.

Use the assert macros to check if the
pl and p2 variables are equivalent.

If the expression fails, _ASSERTE will
include a string representation of the
failed expression in the report.
_ASSERT does not include the
expression in the generated report.

* % ok ok F o ok k ok ¥

*/
_RPTO(_CRT_WARN, "\n\n Use the assert macros to evaluate the expression
o pl == p2.\n");
_RPTF2(_CRT_WARN, "\n Wil1 _ASSERT find '%s' == '%s' ?\n", pl, p2):
_ASSERT(pl == p2);

_RPTF2(_CRT_WARN, "\n\n Will _ASSERTE find '%s' == "%s' ?\n", pl, p2);
_ASSERTE(pl == p2);

14

Run-Time Library Reference

_RPT2(_CRT_ERROR, "\n \n '%s' != '%s'\n", pl, p2);

free(p2);
free(pl);

return 0;

Output

Use the assert macros to evaluate the expression pl == p2.
dbgmacro.c(54) : Will _ASSERT find 'I am pl' == 'I am p2' ?
dbgmacro.c(55) : Assertion failed

dbgmacro.c(57) : Will _ASSERTE find 'I am pl’' == 'I am p2' ?
dbgmacro.c(58) : Assertion failed: pl == p2

'T am pl' != "I am p2'

142

abort

About the Alphabetic Reference

The following topics describe, in alphabetical order, the functions and macros in the
Microsoft run-time library. In some cases, related routines are clustered in the same
description. For example, the standard, wide-character, and multibyte versions of
strchr are discussed in the same place, as are the various forms of the exec functions.
Differences are noted where appropriate. To locate any function that does not appear
in the expected position within the alphabetic reference, choose Search from the Help
menu and type the name of the function you are looking for.

abort

Aborts the current process and returns an error code.

void abort(void);

Routine Required Header Compatibility

abort <process.h> or <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Remarks

abort does not return control to the calling process. By default, it terminates the
current process and returns an exit code of 3.

The abort routine prints the message “abnormal program termination” and then
calls raise(SIGABRT). The action taken in response to the SIGABRT signal depends
on what action has been defined for that signal in a prior call to the signal function.
The default SIGABRT action is for the calling process to terminate with exit code 3,
returning control to the calling process or operating system. abort does not flush
stream buffers or do atexit/_onexit processing.

abort determines the destination of the message based on the type of application that
called the routine. Console applications always receive the message via stderr. In a
single or multithreaded Windows application, abort calls the Windows MessageBox
API to create a message box to display the message along with an OK button. When
the user selects OK, the program aborts immediately.

143

abs

When the application is linked with a debug version of the run-time libraries, abort
creates a message box with three buttons: Abort, Retry, and Ignore. If the user selects
Abort, the program aborts immediately. If the user selects Retry, the debugger is called
and the user can debug the program if Just-In-Time (JIT) debugging is enabled. If the
user selects Ignore, abort continues with its normal execution: creating the message
box with the OK button.

Example
/* ABORT.C: This program tries to open a
* file and aborts if the attempt fails.
*/

#Hinclude <stdio.h>
J#Hinclude <stdlib.h>

void main(void)
{
FILE *stream;

if((stream = fopen("NOSUCHF.ILE", "r™)) == NULL)

{
perror("Couldn't open file");
abort();

}

else

fclose(stream);

Output
Couldn't open file: No such file or directory

abnormal program termination

See Also: _exec Function Overview, exit, raise, signal, _spawn Function Overview,
_DEBUG

abs

Calculates the absolute value.

int abs(int n);

Routine Required Header Compatibility

abs <stdlib.h> or <math.h> ANSI, Win 95, Win NT

144

abs

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
The abs function returns the absolute value of its parameter. There is no error return.

Parameter
n Integer value

Example
/* ABS.C: This program computes and displays
* the absolute values of several numbers.
*/

#include <stdio.h>
#include <math.h>
f#include <stdlib.h>

void main(void)

{
int ix = -4, iy;
long 1x = -41567L, 1ly;
double dx = -3.141593, dy;

iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);

1y = Tabs(1x);
printf("The absolute value of %1d is %1d\n", 1x, 1y):

dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);

Output
The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

See Also: _cabs, fabs, labs

145

_access, _waccess

_aCCEeSS, _wacCcCess

Determine file-access permission.

int _access(const char *parh, int mode);
int _waccess(const wchar_t *path, int mode);

Routine Required Header Optional Headers Compatibility
_access <io.h> <errno.h> Win 95, Win NT
_waccess <wchar.h> or <io.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Each of these functions returns 0 if the file has the given mode. The function returns
-1 if the named file does not exist or is not accessible in the given mode; in this case,
errno is set as follows:

EACCES Access denied: file’s permission setting does not allow specified access.
ENOENT Filename or path not found.

Parameters
path File or directory path

mode Permission setting

Remarks
When used with files, the _access function determines whether the specified file exists
and can be accessed as specified by the value of mode. When used with directories,
_access determines only whether the specified directory exists; in Windows NT, all
directories have read and write access.

mode Value Checks File For

00 Existence only

02 Write permission

04 Read permission

06 Read and write permission

146

Example

Output

acos

_waccess is a wide-character version of _access; the path argument to _waccess is a
wide-character string. _waccess and _access behave identically otherwise.

Generic-Text Routine Mappings

TCHARH _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Routine Not Defined
_taccess _access _access _waccess

/* ACCESS.C: This example uses _access to check the
* file named "ACCESS.C"™ to see if it exists and if
* writing is allowed.

*/

#include <io.h>

f#finclude <stdio.h>

f#include <stdlib.h>

void main(void)

{
/* Check for existence */
if((_access("ACCESS.C", 0)) != -1)
{
printf("File ACCESS.C exists\n");
/* Check for write permission */
if((_access("ACCESS.C", 2)) != -1)
printf("File ACCESS.C has write permission\n");
}
}

File ACCESS.C exists
File ACCESS.C has write permission

See Also: _chmod, _fstat, _open, _stat

aCoOS

Calculates the arccosine.
double acos(double x);

Routine Required Header Optional Headers Compatibility

acos <math.h> <errno.h> ANSI, Win 95, Win NT

147

acos

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

The acos function returns the arccosine of x in the range 0 to 7¢ radians. If x is less
than —1 or greater than 1, aces returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter

Example

Output

148

x Value between —1 and 1 whose arccosine is to be calculated

/* ASINCOS.C: This program prompts for a value in the range

* -1 to 1. Input values outside this range will produce
_DOMAIN error messages.If a valid value is entered, the

* program prints the arcsine and the arccosine of that value.
*/

*

#include <math.h>

f#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void)

{
double x, y;
printf("Enter a real number between -1 and 1: ");
scanf("%1f", &x);
y = asin(x);
printf("Arcsine of %f = %f\n", x, ¥y):
y = acos(x);
printf("Arccosine of %f = %f\n", X, y);
}

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

See Also: asin, atan, cos, _matherr, sin, tan

_alloca

_alloca

Allocates memory on the stack.
void *_alloca(size_t size);

Routine Required Header Compatibility

_alloca <malloc.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

The _alloca routine returns a void pointer to the allocated space, which is guaranteed
to be suitably aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. A stack overflow exception is generated
if the space cannot be allocated.

Parameter

Remarks

size Bytes to be allocated from stack

_alloca allocates size bytes from the program stack. The allocated space is automatically
freed when the calling function exits. Therefore, do not pass the pointer value returned
by _alloca as an argument to free.

There are restrictions to explicitly calling _alloca in an exception handler (EH). EH
routines that run on x86-class processors operate in their own memory “frame”: They
perform their tasks in memory space that is not based on the current location of the
stack pointer of the enclosing function. The most common implementations include
Windows NT structured exception handling (SEH) and C++ catch clause expressions.
Therefore, explicitly calling _alloca in any of the following scenarios results in
program failure during the return to the calling EH routine:

e Windows NT SEH exception filter expression: __except (alloca())
e Windows NT SEH final exception handler: __finally { alloca() }

e C++ EH catch clause expression

However, _alloca can be called directly from within an EH routine or from an
application-supplied callback that gets invoked by one of the EH scenarios listed
above.

See Also: calloc, malloc, realloc

149

asctime, _wasctime

asctime, _wasctime

Converts a tm time structure to a character string.

char *asctime(const struct tm *timeptr);
wchar_t *_wasctime(const struct tm *timeptr);

Routine Required Header Compatibility
asctime <time.h> ANSI, Win 95, Win NT
_wasctime <time.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

asctime returns a pointer to the character string result; _wasctime returns a pointer to
the wide-character string result. There is no error return value.

Parameter

Remarks

150

timeptr Time/date structure

The asctime function converts a time stored as a structure to a character string. The
timeptr value is usually obtained from a call to gmtime or localtime, which both
return a pointer to a tm structure, defined in TIME.H.

timeptr Field Value
tm_hour Hours since midnight (0-23)
tm_isdst Positive if daylight saving time is in effect; 0 if daylight saving time is

not in effect; negative if status of daylight saving time is unknown. The
C run-time library assumes the United States’s rules for implementing
the calculation of Daylight Saving Time (DST).

tm_mday Day of month (1-31)

tm_min Minutes after hour (0-59)
tm_mon Month (0-11; January = 0)

tm_sec Seconds after minute (0-59)
tm_wday Day of week (0-6; Sunday = 0)
tm_yday Day of year (0-365; January 1 = 0)
tm_year Year (current year minus 1900)

asctime, _wasctime

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and localtime functions for information on configuring
the local time and the _tzset function for details about defining the time zone
environment and global variables.

The string result produced by asctime contains exactly 26 characters and has the form
Wed Jan 02 02:03:55 1980\n\0. A 24-hour clock is used. All fields have a constant
width. The newline character and the null character occupy the last two positions of
the string. asctime uses a single, statically allocated buffer to hold the return string.
Each call to this function destroys the result of the previous call.

_wasctime is a wide-character version of asctime. _wasctime and asctime behave
identically otherwise.

Generic-Text Routine Mapping:

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tasctime asctime asctime _wasctime

Example
/* ASCTIME.C: This program places the system time
* in the long integer aclock, transiates it into the
* structure newtime and then converts it to string
* form for output, using the asctime function.
*/

#include <time.h>
fHinclude <stdio.h>

struct tm *newtime;
time_t aclock;

void main(void)

{
time(&aclock); /* Get time in seconds */
newtime = localtime(&aclock); /* Convert time to struct */
/* tm form */
/* Print local time as a string */
printf("The current date and time are: %s", asctime(newtime));
}

Output
The current date and time are: Sun May 01 20:27:01 1994

See Also: ctime, _ftime, gmtime, localtime, time, _tzset

151

asin

asin

Calculates the arcsine.
double asin(double x);

Routine Required Header Compatibility

asin <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

The asin function returns the arcsine of x in the range —7t/2 to 7t/2 radians. If x is less
than -1 or greater than 1, asin returns an indefinite (same as a quiet NaN). You can
modify error handling with the _matherr routine.

Parameter

Example

152

x Value whose arcsine is to be calculated

/* ASINCOS.C: This program prompts for a value in the range

* -1 to 1. Input values outside this range will produce

* _DOMAIN error messages.If a valid value is entered, the

* program prints the arcsine and the arccosine of that value.
*/

#include <math.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

void main(void)

{
double x, y;

printf("Enter a real number between -1 and 1: ");
scanf("%1f", &x);

y = asin(x);

printf("Arcsine of %f = %f\n", X, ¥y);

y = acos(x);

printf("Arccosine of %f = %f\n", X, y);

Output

assert

Enter a real number between -1 and 1: .32696
Arcsine of 0.326960 = 0.333085
Arccosine of 0.326960 = 1.237711

See Also: acos, atan, cos, _matherr, sin, tan

assert

Evaluates an expression and when the result is FALSE, prints a diagnostic message
and aborts the program.

void assert(int expression);
Routine Required Header Compatibility
assert <assert.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Parameter

Remarks

expression Expression (including pointers) that evaluates to nonzero or 0

The ANSI assert macro is typically used to identify logic errors during program
development, by implementing the expression argument to evaluate to false only
when the program is operating incorrectly. After debugging is complete, assertion
checking can be turned off without modifying the source file by defining the identifier
NDEBUG. NDEBUG can be defined with a /D command-line option or with a
#define directive. If NDEBUG is defined with #define, the directive must appear
before ASSERT.H is included.

assert prints a diagnostic message when expression evaluates to false (0) and calls
abort to terminate program execution. No action is taken if expression is true
(nonzero). The diagnostic message includes the failed expression and the name

of the source file and line number where the assertion failed.

The destination of the diagnostic message depends on the type of application that
called the routine. Console applications always receive the message via stderr. In a

153

assert

Example

154

single- or multithreaded Windows application, assert calls the Windows MessageBox
API to create a message box to display the message along with an OK button. When
the user chooses OK, the program aborts immediately.

When the application is linked with a debug version of the run-time libraries, assert
creates a message box with three buttons: Abort, Retry, and Ignore. If the user selects
Abort, the program aborts immediately. If the user selects Retry, the debugger is called
and the user can debug the program if Just-In-Time (JIT) debugging is enabled. If the
user selects Ignore, assert continues with its normal execution: creating the message
box with the OK button. Note that choosing Ignore when an error condition exists can
result in “undefined behavior.”

The assert routine is available in both the release and debug versions of the C
run-time libraries. Two other assertion macros, _ASSERT and _ASSERTE, are also
available, but they only evaluate the expressions passed to them when the _DEBUG
flag has been defined.

/* ASSERT.C: In this program, the analyze_string function uses

* the assert function to test several conditions related to

* string and length. If any of the conditions fails, the program
* prints a message indicating what caused the failure.

*/

#include <stdio.h>
f#include <assert.h>
f#include <string.h>

void analyze_string(char *string); /* Prototype */

void main(void)

{
char testl[] = "abc", *test2 = NULL, test3[] = "";
printf ("Analyzing string '%s'\n", testl);
analyze_string(testl);
printf ("Analyzing string '%s'\n", test2);
analyze_string(test2);
printf ("Analyzing string '%s'\n", test3);
analyze_string(test3);

}

/* Tests a string to see if it is NULL, */
/* empty, or longer than @ characters */
void analyze_string(char * string)

{
assert(string != NULL); /* Cannot be NULL */
assert(*string != '\0'); /* Cannot be empty */
assert(strlen(string) > 2); /* Length must exceed 2 */
}

Output

Analyzing string 'abc'
Analyzing string '(null)’
Assertion failed: string != NULL, file assert.c, line 24

abnormal program termination

See Also: abort, raise, signal, _ASSERT, _ASSERTE, _DEBUG

atan, atan2

atan, atan?

Calculates the arctangent of x (atan) or the arctangent of y/x (atan2).

double atan(double x);
double atan2(double y, double x);

Routine Required Header Compatibility
atan <math.h> ANSI, Win 95, Win NT
atan2 <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

atan returns the arctangent of x. atan2 returns the arctangent of y/x. If x is 0, atan
returns 0. If both parameters of atan2 are 0, the function returns 0. You can modify
error handling by using the _matherr routine. atan returns a value in the range —m/2
to 7/2 radians; atan2 returns a value in the range —x to « radians, using the signs of
both parameters to determine the quadrant of the return value.

Parameters

Remarks

X,y Any numbers

The atan function calculates the arctangent of x. atan2 calculates the arctangent of
y/x. atan2 is well defined for every point other than the origin, even if x equals 0 and
y does not equal 0.

155

atexit

Example
/* ATAN.C: This program calculates
* the arctangent of 1 and -1.
*/

#include <math.h>
f#include <stdio.h>
f#include <errno.h>

void main(void)
{
double x1, x2, y;

printf("Enter a real number: ");

scanf("%1f", &x1);

y = atan(x1);

printf("Arctangent of %f: %f\n", x1, y);

printf("Enter a second real number: ");

scanf("%1f", &x2);

y = atan2(x1, x2);

printf("Arctangent of %f / %f: %f\n", x1, x2, y):

Output
Enter a real number: -862.42
Arctangent of -862.420000: -1.569637
Enter a second real number: 78.5149
Arctangent of -862.420000 / 78.514900: -1.480006

See Also: acos, asin, cos, _matherr, sin, tan

atexit

Processes the specified function at exit.
int atexit(void (__cdecl *func)(void));

Routine Required Header Compatibility

atexit <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version

156

atexit

To generate an ANSI-compliant application, use the ANSI-standard atexit function
(rather than the similar _onexit function).

Return Value
atexit returns O if successful, or a nonzero value if an error occurs.

Parameter
func Function to be called

Remarks
The atexit function is passed the address of a function (func) to be called when the
program terminates normally. Successive calls to atexit create a register of functions
that are executed in LIFO (last-in-first-out) order. The functions passed to atexit
cannot take parameters. atexit and _onexit use the heap to hold the register of
functions. Thus, the number of functions that can be registered is limited only by
heap memory.

Example
/* ATEXIT.C: This program pushes four functions onto
* the stack of functions to be executed when atexit
* is called. When the program exits, these programs
* are executed on a "last in, first out" basis.
*/

f#include <stdlib.h>
f##include <stdio.h>

void fnl(void), fn2(void), fn3(void), fnd4(void);

void main(void)
{
atexit(fnl);
atexit(fn2);
atexit(fn3);
atexit(fnd4);
printf("This is executed first.\n");

}

void fnl()

‘ printf("next.\n");

}

void fn2()

{ printf(“"executed ");
}

void fn3()

i printf("is ");

157

atof, atoi, _atoi64, atol

void fn4()
{

printf("This ");
}

Output
This is executed first.
This is executed next.

See Also: abort, exit, _onexit

atof, atoi, _atoi64, atol

Convert strings to double (atof), integer (atoi, _atoi64), or long (atol).

double atof(const char *string);

int atoi(const char *string);

__int64 _atoi64(const char *string);
long atol(const char *string);

Routine Required Header Compatibility

atof <math.h> and <stdlib.h> ANSI, Win 95, Win NT
atoi <stdlib.h> ANSI, Win 95, Win NT
_atoi64 <stdlib.h> Win 95, Win NT

atol <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Each function returns the double, int, __int64 or long value produced by interpreting
the input characters as a number. The return value is O (for atoi and _atoi64), OL (for
atol), or 0.0 (for atof) if the input cannot be converted to a value of that type. The
return value is undefined in case of overflow.

Parameter
string String to be converted

Remarks
These functions convert a character string to a double-precision floating-point value
(atof), an integer value (atoi and _atoi64), or a long integer value (atol). The input

158

Example

atof, atoi, _atoi64, atol

string is a sequence of characters that can be interpreted as a numerical value of the
specified type. The output value is affected by the setting of the LC_NUMERIC
category in the current locale. For more information on the LC_NUMERIC category,
see setlocale. The longest string size that atof can handle is 100 characters. The
function stops reading the input string at the first character that it cannot recognize as
part of a number. This character may be the null character ('\0') terminating the string.

The string argument to atof has the following form:
[whitespace] [sign] [digits] [.digits] [{d 1 D | e | E }[signldigits]

A whitespace consists of space and/or tab characters, which are ignored; sign is either
plus (+) or minus (-); and digits are one or more decimal digits. If no digits appear
before the decimal point, at least one must appear after the decimal point. The decimal
digits may be followed by an exponent, which consists of an introductory letter (d, D,
e, or E) and an optionally signed decimal integer.

atoi, _atoi64, and atol do not recognize decimal points or exponents. The string
argument for these functions has the form:

[whitespace] [signldigits
where whitespace, sign, and digits are exactly as described above for atof.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_ttoi atoi atoi _wtoi

_ttol atol atol _wtol

/* ATOF.C: This program shows how numbers stored
* as strings can be converted to numeric values
* using the atof, atoi, and atol functions.

*/

fHinclude <stdlib.h>
f#include <stdio.h>

void main(void)
{
char *s; double x; int i; long 1;

s =" -2309.12E-15"; /* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: %e\n", s, x);

s = "7.8912654773d210"; /* Test of atof */
x = atof(s);
printf("atof test: ASCII string: %s\tfloat: Z%e\n", s, x);

159

_beginthread, _beginthreadex

Output

s =" -9885 pigs"; /* Test of atoi */
i = atoi(s);
printf("atoi test: ASCII string: %s\t\tinteger: %d\n", s, i);

s = "98854 dollars"; /* Test of atol */
1 = atol(s);
printf("atol test: ASCII string: %s\t\tlong: %1d\n", s, 1);

}

atof test: ASCII string: -2309.12E-15 float: -2.309120e-012
atof test: ASCII string: 7.8912654773d210 float: 7.891265e+210
atoi test: ASCII string: -9885 pigs integer: -9885

atol test: ASCII string: 98854 dollars Tong: 98854

See Also: _ecvt, _fevt, _gevt, setlocale, strtod, westol, strtoul

_beginthread, _beginthreadex

Create a thread.

unsigned long _beginthread(void(__cdecl *start_address)(void *),
- unsigned stack_size, void *arglist);

unsigned long _beginthreadex(void *security, unsigned stack_size,
w unsigned (__stdcall *start_address)(void *), void *arglist, unsigned initflag,
« unsigned *thrdaddr);

Routine Required Header Compatibility
_beginthread <process.h> Win 95, Win NT
_beginthreadex <process.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBCMT.LIB Multithread 3static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

To use _beginthread or _beginthreadex, the application must link with one of the
multithreaded C run-time libraries.

Return Value

160

If successful, each of these functions returns a handle to the newly created thread.
_beginthread returns —1 on an error, in which case errno is set to EAGAIN if there
are too many threads, or to EINVAL if the argument is invalid or the stack size is
incorrect. _beginthreadex returns O on an error, in which case errno and doserrno
are set.

_beginthread, _beginthreadex

Parameters

Remarks

start_address Start address of routine that begins execution of new thread
stack_size Stack size for new thread or 0
arglist Argument list to be passed to new thread or NULL

security Security descriptor for new thread; must be NULL for Windows 95
applications

initflag Initial state of new thread (running or suspended)
thrdaddr Address of new thread

The _beginthread function creates a thread that begins execution of a routine at
start_address. The routine at start_address must use the __cdecl calling convention
and should have no return value. When the thread returns from that routine, it is
terminated automatically.

_beginthreadex resembles the Win32 CreateThread API more closely than does
_beginthread. _beginthreadex differs from _beginthread in the following ways:

e _beginthreadex has three additional parameters: initflag, security, threadaddr.
The new thread can be created in a suspended state, with a specified security
(Windows NT only), and can be accessed using thrdaddr, which is the thread
identifier.

o The routine at start_address passed to _beginthreadex must use the __stdcall
calling convention and must return a thread exit code.

e _beginthreadex returns 0 on failure, rather than —1.

o A thread created with _beginthreadex is terminated by a call to _endthreadex.

You can call _endthread or _endthreadex explicitly to terminate a thread; however,
_endthread or _endthreadex is called automatically when the thread returns from
the routine passed as a parameter. Terminating a thread with a call to endthread or
_endthreadex helps to ensure proper recovery of resources allocated for the thread.

_endthread automatically closes the thread handle (whereas _endthreadex does not).
Therefore, when using _beginthread and _endthread, do not explicitly close the
thread handle by calling the Win32 CloseHandle API. This behavior differs from the
Win32 ExitThread API.

Note For an executable file linked with LIBCMT.LIB, do not call the Win32 ExitThread API;
this prevents the run-time system from reclaiming allocated resources. _endthread and
_endthreadex reclaim allocated thread resources and then call ExitThread.

The operating system handles the allocation of the stack when either _beginthread or
_beginthreadex is called; you do not need to pass the address of the thread stack to
either of these functions. In addition, the stack_size argument can be 0, in which case
the operating system uses the same value as the stack specified for the main thread.

161

_beginthread, _beginthreadex

Example

162

arglist is a parameter to be passed to the newly created thread. Typically it is the
address of a data item, such as a character string. arglist may be NULL if it is not
needed, but _beginthread and _beginthreadex must be provided with some value to
pass to the new thread. All threads are terminated if any thread calls abort, exit, _exit,
or ExitProcess.

*

/* BEGTHRD.C illustrates multiple threads using functions:

_beginthread _endthread

This program requires the multithreaded library. For example,
compile with the following command line:
CL /MT /D "_X86_" BEGTHRD.C

If you are using the Visual C++ development environment, select the
Multi-Threaded runtime Tibrary in the compiler Project Settings
dialog box.

* ok ok ok ok ok ok %k *F K F OF

*
~

#include <windows.h>

f#include <process.h> /* _beginthread, _endthread */
#include <stddef.h>

#include <stdlib.h>

f#tinclude <conio.h>

void Bounce(void *ch);
void CheckKey(void *dummy);

/* GetRandom returns a random integer between min and max. */
f#fdefine GetRandom(min, max) ((rand() % (int)(((max) + 1) - (min))) + (min))

BOOL repeat = TRUE; /* Global repeat flag and video variable */
HANDLE hStdQut; /* Handle for console window */
CONSOLE_SCREEN_BUFFER_INFO csbi; /* Console information structure */

void main()
{
CHAR ch = 'A';

hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);

/* Get display screen's text row and column information. */
GetConsoleScreenBufferInfo(hStdOut, &csbi);

/* Launch CheckKey thread to check for terminating keystroke. */
_beginthread(CheckKey, @, NULL):

_beginthread, _beginthreadex

/* Loop until CheckKey terminates program. */
while(repeat)

{
/* On first loops, launch character threads. */
_beginthread(Bounce, 0, (void *) (ch++));
/* Wait one second between loops. */
Sleep(1000L);
}

}

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
{

_getch();

repeat = 0; /* _endthread implied */

}

/* Bounce - Thread to create and and control a colored Tetter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*/
void Bounce(void *ch)
{
/* Generate letter and color attribute from thread argument. */
char blankcell = 0x20;
char blockcell = (char) ch;
BOOL first = TRUE;
COORD oldcoord, newcoord;
DWORD result;

/* Seed random number generator and get initial location. */
srand(_threadid);
newcoord.X = GetRandom(@, csbi.dwSize.X - 1);
newcoord.Y = GetRandom(@, csbi.dwSize.Y - 1);
while(repeat)
{
/* Pause between loops. */
Sleep(100L);

/* Blank out our old position on the screen, and draw new letter. */
if(first)
first = FALSE;
else
WriteConsoleOutputCharacter(hStdOut, &blankcell, 1, oldcoord, &result);
WriteConsoleOutputCharacter(hStdOut, &blockcell, 1, newcoord, &result);

163

Bessel Functions

/* Increment the coordinate for next placement of the block. */
oldcoord.X = newcoord.X;

oldcoord.Y = newcoord.Y;

newcoord.X += GetRandom(-1, 1)

newcoord.Y += GetRandom(-1, 1);

/* Correct placement (and beep) if about to go off the screen. */
if(newcoord.X < 0)
newcoord.X = 1;
else if(newcoord.X == csbi.dwSize.X)
newcoord.X = csbi.dwSize.X - 2;
else if(newcoord.Y < 0)
newcoord.Y = 1;
else if(newcoord.Y == csbi.dwSize.Y)
newcoord.Y = csbi.dwSize.Y - 2;

/* If not at a screen border, continue, otherwise beep. */

else
continue;
Beep(((char) ch - 'A') * 100, 175);
}
/* _endthread given to terminate */
_endthread();

}
See Also: _endthread, abort, exit

Bessel Functions

The Bessel functions are commonly used in the mathematics of electromagnetic
wave theory.

_J0, _j1, _jn These routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

_y0, _y1, _yn These routines return Bessel functions of the second kind: orders
0, 1, and n, respectively.

Example
/* BESSEL.C: This program illustrates Bessel functions,
* including: _Jjo _j1 _jn _y@0 _yl _yn
*/

f#Finclude <math.h>
#include <stdio.h>

void main(void)

{
double x = 2.387;
int n =3, c;

164

Bessel Functions

printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n")
printf(" First\t\toO\t_jo(x)\t%f\n", _jo(x
printf(™ First\t\tINt_jl(x)\t%f\n", _jl(x
for(¢ = 2; ¢ < 5; ct+t+)

printf(" First\t\t%d\t_jn(n, x)\t%f\n", c, _jn(C c, x));
printf(" Second\tO\t_y0(x)\t%f\n", _y0(x));
printf(" Second\tl\t_yl(x)\t%f\n", _yl(x));
for(¢ =2; ¢ < 5; ct+)

printf(" Second\t%d\t_yn(n, x)\t%f\n", ¢, _yn(c, x));

) ;:
))

}
Output

Bessel functions for x = 2.387000:
Kind Order Function Result
First 0 _jo(x) 0.009288
First 1 _j1C x) 0.522941
First 2 _jnCn, x) 0.428870
First 3 _jnCn, x) 0.195734
First 4 _jnCn, x) 0.063131
Second @0 _y@(x) 0.511681
Second 1 _yl(x) 0.094374
Second 2 _yn(n, x) -0.432608
Second 3 _yn(n, x) -0.819314
Second 4 _yn(n, x) -1.626833

See Also: _matherr

Bessel Functions: _j0, _j1, _jn

Compute the Bessel function.

double _jO(double x);

double _j1(double x);

double _jn(int 1, double x);

Routine Required Header Compatibility
_jo <math.h> Win 95, Win NT
_j1 <math.h> Win 95, Win NT
_jn <math.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

165

Bessel Functions

Return Value

Each of these routines returns a Bessel function of x. You can modify error handling
by using _matherr.

Parameters
x Floating-point value

n Integer order of Bessel function

Remarks

The _jO, _j1, and _jn routines return Bessel functions of the first kind: orders 0, 1,
and n, respectively.

Example
/* BESSEL.C: This program illustrates Bessel functions,
* including: _je _j1 _jn _y0 _yl _yn
*/

#include <math.h>
f#tinclude <stdio.h>

void main(void)

{
double x = 2.387;
int n =3, c;
printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
printf(" First\t\to\t_jo(x)\t%f\n", _jo(x));
printf(" First\t\tI\t_j1(x)\t%f\n", _jl(x));
for(¢ =2; ¢ < 5; ctt+)
printf(" First\t\t%Zd\t_jn(n, x)\t%f\n", ¢, _jnC c, x));
printf(" Second\t@\t_y@(x)\t%f\n", _y0(x));
printf(" Second\t1\t_yl(x)\t%f\n", _yl(x));
for(¢ = 2; ¢ < 5; ct+)
printf(" Second\t%d\t_yn(n, x)\t%f\n", ¢, _yn(c, x)):
}
Output
Bessel functions for x = 2.387000:
Kind Order Function Result
First 0 _jo(x) 0.009288
First 1 _JIC x) 0.522941
First 2 _jnCn, x) 0.428870
First 3 _jnCn, x) 0.195734
First 4 _jnC n, x) 0.063131
Second 0 _yo(x) 0.511681
Second 1 _yl(x) 0.094374
Second 2 _yn(n, x) -0.432608
Second 3 _yn(n, x) -0.819314
Second 4 _yn(n, x) -1.626833

See Also: _matherr

166

Bessel Functions

Bessel Functions: _y0, _y1, _yn

Compute the Bessel function.

double _y0(double x);

double _y1(double x);

double _yn(int 1, double x);

Routine Required Header Compatibility
_y0 <math.h> Win 95, Win NT
yl <math.h> Win 95, Win NT
_yn <math.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Each of these routines returns a Bessel function of x. If x is negative, the routine sets
errno to EDOM, prints a_DOMAIN error message to stderr, and returns
_HUGE_VAL. You can modify error handling by using _matherr.

Parameters
x Floating-point value

n Integer order of Bessel function
Remarks

The _y0, _y1, and _yn routines return Bessel functions of the second kind: orders
0, 1, and n, respectively.

Example
/* BESSEL.C: This program illustrates Bessel functions,
* including: _jo _j1 _jn _y®0 _yl _yn
*/

#include <math.h>
#include <stdio.h>

void main(void)

{
double x = 2.387;
int n =3, c;

167

bsearch

printf("Bessel functions for x = %f:\n", x);
printf(" Kind\t\tOrder\tFunction\tResult\n\n");
printf(" First\t\tO\t_jo(x)\t%f\n", _jO(x));
printf(" First\t\tI\t_jl(x)\t%f\n", _jl(x));
for(¢ = 2; c < 5; ctt+)
printf(" First\t\t%d\t_jn(n, x)\t%f\n", c, _jnC c, x) J;
printf(" Second\tO\t_y0(x)\t%f\n", _y0(x));
printf(" Second\tI\t_yl(x)\t%f\n", _yl(x));
for(¢ =2; c¢c <5; ct+)
printf(" Second\t%d\t_yn(n, x)\t%f\n", c, _yn(¢, x));

}
Output

Bessel functions for x = 2.387000:
Kind Order Function Result
First 0 _jo(x) 0.009288
First 1 _J1C x) 0.522941
First 2 _jnCn, x) 0.428870
First 3 _jnCn, x) 0.195734
First 4 _JjnCn, x) 0.063131
Second %] _y0(x) 0.511681
Second 1 _yl(x) 0.094374
Second 2 _ynCn, x) -0.432608
Second 3 _yn(Cn, x) -0.819314
Second 4 _yn(n, x) -1.626833

See Also: _matherr

bsearch

Performs a binary search of a sorted array.

void *bsearch(const void *key, const void *base, size_t num, size_t width,
int (__cdecl *compare) (const void *eleml, const void *elem?2));

Routine Required Header Compatibility

bsearch <stdlib.h> and <search.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

bsearch returns a pointer to an occurrence of key in the array pointed to by base. If
key is not found, the function returns NULL. If the array is not in ascending sort order
or contains duplicate records with identical keys, the result is unpredictable.

168

bsearch
Parameters
key Object to search for
base Pointer to base of search data
num Number of elements
width Width of elements
compare Function that compares two elements: elem] and elem?2
eleml Pointer to the key for the search
elem2 Pointer to the array element to be compared with the key
Remarks
The bsearch function performs a binary search of a sorted array of num elements,
each of width bytes in size. The base value is a pointer to the base of the array to be
searched, and key is the value being sought. The compare parameter is a pointer to a
user-supplied routine that compares two array elements and returns a value specifying
their relationship. bsearch calls the compare routine one or more times during the

search, passing pointers to two array elements on each call. The compare routine
compares the elements, then returns one of the following values:

Value Returned by compare Routine Description

<0 eleml less than elem2

0 eleml equal to elem?2
>0 eleml greater than elem?2

Example
/* BSEARCH.C: This program reads the command-line
* parameters, sorting them with gsort, and then
* uses bsearch to find the word "cat."”
*/

##include <search.h>
##include <string.h>
#finclude <stdio.h>

int compare(char **argl, char **arg2):; /* Declare a function for compare */

void main(int argc, char **argv)
{
char **result;
char *key = "cat";
int i;
/* Sort using Quicksort algorithm: */
gsort((void *)argv, (size_t)argc, sizeof(char *), (int (*)(const
void*, const void*))compare);
for(i = 0; i < argc; ++i) /* Qutput sorted 1list */
printf("%s ", argv[il);

169

_cabs

/* Find the word "cat" using a binary search algorithm: */
result = (char **)bsearch((char *) &key, (char *)argv, argc,
sizeof(char *), (int (*)(const void*, const void*))compare);

if(result)

printf("\n%s found at %Fp\n", *result, result);
else

printf("\nCat not found!\n");

}

int compare(char **argl, char **arg2)
{
/* Compare all of both strings: */
return _strcmpi(*argl, *arg2);

Output
[C:\work]bsearch dog pig horse cat human rat cow goat
bsearch cat cow dog goat horse human pig rat
cat found at 002D0008

See Also: _lIfind, _Isearch, gsort

_cabs

Calculates the absolute value of a complex number.
double _cabs(struct _complex z);

Routine Required Header Compatibility

_cabs <math.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_cabs returns the absolute value of its argument if successful. On overflow _cabs returns
HUGE_VAL and sets errno to ERANGE. You can change error handling with _matherr.

Parameter
z Complex number

Remarks
The _cabs function calculates the absolute value of a complex number, which must be
a structure of type _complex. The structure z is composed of a real component x and
an imaginary component y. A call to _cabs produces a value equivalent to that of the
expression sqrt(z.x*z.x + z.y*z.y).

170

Example

Output

/* CABS.C: Using _cabs, this program calculates
* the absolute value of a complex number.

*/

ffinclude <math.h>

#include <stdio.h>

void main(void)
{

struct _complex number = { 3.0, 4.0 };
double d;

d = _cabs(number);

printf("The absolute value of %f + %fi is %f\n",
number.x, number.y, d);

The absolute value of 3.000000 + 4.0000007i is 5.000000
See Also: abs, fabs, labs

calloc

calloc

Allocates an array in memory with elements initialized to 0.
void *calloc(size_t num, size_t size);

Routine Required Header Compatibility

calloc <stdlib.h> and <malloc.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

calloc returns a pointer to the allocated space. The storage space pointed to by the
return value is guaranteed to be suitably aligned for storage of any type of object. To
get a pointer to a type other than void, use a type cast on the return value.

Parameters

num Number of elements

size Length in bytes of each element

171

ceil

Remarks

Example

Output

The calloc function allocates storage space for an array of num elements, each of
length size bytes. Each element is initialized to O.

calloc calls malloc in order to use the C++ _set_new_mode function to set the new
handler mode. The new handler mode indicates whether, on failure, malloc is to call
the new handler routine as set by _set_new_handler. By default, malloc does not call
the new handler routine on failure to allocate memory. You can override this default
behavior so that, when calloc fails to allocate memory, malloc calls the new handler
routine in the same way that the new operator does when it fails for the same reason.
To override the default, call

_set_new_mode(1)

early in your program, or link with NEWMODE.OB]J.

When the application is linked with a debug version of the C run-time libraries, calloc
resolves to _calloc_dbg.

/* CALLOC.C: This program uses calloc to allocate space for
* 40 Tong integers. It initializes each element to zero.
*/

#include <stdio.h>

#Hinclude <maltoc.h>

void main(void)
{
long *buffer;

buffer = (long *)calloc(4@, sizeof(long));
if(buffer != NULL)

printf("Allocated 40 long integers\n");
else

printf("Can't allocate memory\n");
free(buffer);

Allocated 40 Tong integers

See Also: free, malloc, realloc

ceil

172

Calculates the ceiling of a value.

double ceil(double x);

ceil

Routine Required Header Compatibility
ceil <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

The ceil function returns a double value representing the smallest integer that is
greater than or equal to x. There is no error return.

Parameter

Example

Output

x Floating-point value

/* FLOOR.C: This example displays the largest integers

* less than or equal to the fioating-point values 2.8

* and -2.8. It then shows the smallest integers greater
* than or equal to 2.8 and -2.8.

*/

#include <math.h>
#include <stdio.h>

void main(void)
{
double y;

y = floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

y = ceil(2.8);
printf("The ceil of 2.8 is %f\n", y);:
y = ceil(-2.8);
printf("The ceil of -2.8 is %f\n", y);

The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See Also: floor, fmod

173

_cexit, _c_exit

_cexit, _c_exit
Perform cleanup operations and return without terminating the process.

void _cexit(void);
void _c_exit(void);

Routine Required Header Compatibility
_cexit <process.h> Win 95, Win NT
_c_exit <process.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

None

Remarks
The _cexit function calls, in last-in-first-out (LIFO) order, the functions registered by
atexit and _onexit. Then _cexit flushes all I/O buffers and closes all open streams
before returning. _c_exit is the same as _exit but returns to the calling process without
processing atexit or _onexit or flushing stream buffers. The behavior of exit, _exit,
_cexit, and _c_exit is as follows:

Function Behavior

exit Performs complete C library termination procedures, terminates
process, and exits with supplied status code

_exit Performs “quick” C library termination procedures, terminates process,
and exits with supplied status code

_cexit Performs complete C library termination procedures and returns to
caller, but does not terminate process

_c_exit Performs “quick” C library termination procedures and returns to caller,
but does not terminate process

See Also: abort, atexit, _exec Functions, exit, _onexit, _spawn Functions, system

_cgets
Gets a character string from the console.

char *_cgets(char *buffer);

174

_cgets

Routine Required Header Compatibility

_cgets ' <conio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

_cgets returns a pointer to the start of the string, at buffer[2]. There is no error return.

Parameter

Remarks

Example

buffer Storage location for data

The _cgets function reads a string of characters from the console and stores the string
and its length in the location pointed to by buffer. The buffer parameter must be a
pointer to a character array. The first element of the array, buffer[0], must contain the
maximum length (in characters) of the string to be read. The array must contain enough
elements to hold the string, a terminating null character ('\0"), and two additional bytes.
The function reads characters until a carriage-return—linefeed (CR-LF) combination

or the specified number of characters is read. The string is stored starting at buffer[2].
If the function reads a CR-LF, it stores the null character ('\0"). _cgets then stores the
actual length of the string in the second array element, buffer [1]. Because all editing
keys are active when _cgets is called, pressing F3 repeats the last entry.

/* CGETS.C: This program creates a buffer and initializes

* the first byte to the size of the buffer: 2. Next, the

* program accepts an input string using _cgets and displays
* the size and text of that string.

*/

f#finclude <conio.h>
##include <stdio.h>

void main(void)

{
char buffer[82] = { 80 }; /* Maximum characters in 1lst byte */
char *result;

printf("Input line of text, followed by carriage return:\n");

result = _cgets(buffer); /* Input a line of text */
printf("\nLine length = %d\nText = %s\n", buffer[1l], result);

175

_chdir, _wchdir

Output
Input line of text, followed by carriage return:
This is a line of text

Line length = 22
Text = This is a line of text.

See Also: _getch

_chdir, _wchdir

Change the current working directory.

int _chdir(const char *dirname);
int _wchdir(const wchar_t *dirname);

Routine Required Header Optional Headers Compatibility
_chdir <direct.h> <errno.h> Win 95, Win NT
_wchdir <direct.h> or <wchar.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns a value of 0 if successful. A return value of —1 indicates that
the specified path could not be found, in which case errno is set to ENOENT.

Parameter
dirname Path of new working directory

Remarks
The _chdir function changes the current working directory to the directory specified by
dirname. The dirname parameter must refer to an existing directory. This function can
change the current working directory on any drive and if a new drive letter is specified
in dirname, the default drive letter will be changed as well. For example, if A is the
default drive letter and \BIN is the current working directory, the following call changes
the current working directory for drive C and establishes C as the new default drive:

_chdir("c:\\temp");

When you use the optional backslash character (\) in paths, you must place two
backslashes (\\) in a C string literal to represent a single backslash (V).

_wchdir is a wide-character version of _chdir; the dirname argument to _wchdir is a
wide-character string. _wchdir and _chdir behave identically otherwise.

176

_chdrive

Generic-Text Routine Mapping:

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tchdir _chdir _chdir _wchdir
Example

/* CHGDIR.C: This program uses the _chdir function to verify
* that a given directory exists.
*/

#include <direct.h>
#include <stdio.h>
#include <stdlib.h>

void main(int argc, char *argv[])
{
if(_chdir(argv[1]))
printf("Unable to locate the directory: %s\n", argv[l]);
else
system("dir *.wri");

Output
Volume in drive C is CDRIVE
Volume Serial Number is QE17-1702

Directory of C:\write

04/21/95 01:06p 3,200 ERRATA.WRI
04/21/95 01:06p 2,816 README.WRI
2 File(s) 6,016 bytes

71,432,116 bytes free
See Also: _mkdir, _rmdir, system

_chdrive

Changes the current working drive.
int _chdrive(int drive);

Routine Required Header Compatibility

_chdrive <direct.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

177

_chdrive

Return Value

_chdrive returns a value of 0 if the working drive is successfully changed. A return value
of —1 indicates an error.

Parameter

Remarks

Example

178

drive Number of new working drive

The _chdrive function changes the current working drive to the drive specified by drive.
The drive parameter uses an integer to specify the new working drive (1=A, 2=B, and so
forth). This function changes only the working drive; _chdir changes the working
directory.

/* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*/

#include <stdio.h>
f#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void main(void)

{
int ch, drive, curdrive;
static char path[_MAX_PATH];
/* Save current drive. */
curdrive = _getdrive();
printf("Available drives are: \n");
/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drivet++)
if(!_chdrive(drive))
printf("%c: ", drive + 'A' - 1);
while(1)
{
printf("\nType drive Tetter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)
break;
if(isalpha(ch))
_putch(ch);
if(_getdcwd(toupper(ch) - 'A' + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path);
}
/* Restore original drive.*/
_chdrive(curdrive);
printf("\n");
}

Output

_chmod, _wchmod

Available drives are:

A: B: C: L: M: 0: U: V:

Type drive letter to check or ESC to quit: ¢
Current directory on that drive is C:\CODE

Type drive Tletter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:
See Also: _chdir, _fullpath, _getcwd, _getdrive, _mkdir, _rmdir, system

_chgsign

Reverses the sign of a double-precision floating-point argument.
double _chgsign(double x);

Routine Required Header Compatibility
_chgsign <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_chgsign returns a value equal to its double-precision floating-point argument x, but
with its sign reversed. There is no error return.

Parameter

x Double-precision floating-point value to be changed

See Also: fabs, _copysign

_chmod, wchmod

Change the file-permission settings.

int _chmod(const char *filename, int pmode);
int _wchmod(const wchar_t *filename, int pmode);

179

_chmod, _wchmod

Routine Required Header Optional Headers Compatibility

_chmod <io.h> <sys/types.h>, Win 95, Win NT
<sys/stat.h>, <errno.h>

_wchmod <io.h> or <wchar.h> <sys/types.h>, Win NT
<sys/stat.h>, <errno.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns O if the permission setting is successfully changed. A
return value of —1 indicates that the specified file could not be found, in which case
errno is set to ENOENT.

Parameters
filename Name of existing file

pmode Permission setting for file

Remarks
The _chmod function changes the permission setting of the file specified by filename.
The permission setting controls read and write access to the file. The integer
expression pmode contains one or both of the following manifest constants, defined
in SYS\STAT.H:

S_IWRITE Writing permitted

_S_IREAD Reading permitted
_S_IREAD | _S_IWRITE Reading and writing permitted

Any other values for pmode are ignored. When both constants are given, they are
joined with the bitwise-OR operator (|). If write permission is not given, the file is
read-only. Note that all files are always readable; it is not possible to give write-only
permission. Thus the modes _S_IWRITE and _S_IREAD | _S_IWRITE are
equivalent.

_wchmod is a wide-character version of _chmod; the filename argument to _wchmod
is a wide-character string. _wchmeod and _chmod behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tchmod _chmod _chmod _wchmod

180

Example

Output

/* CHMOD.C: This program uses _chmod to

* change the mode of a file to read-only.
* It then attempts to modify the file.

*/

f#include <sys/types.h>
#include <sys/stat.h>
f#include <io.h>
#include <stdio.h>
f#finclude <stdlib.h>

void main(void)

{
/* Make file read-only: */
if(_chmod("CHMOD.C"™, _S_IREAD) == -1)
perror("File not found\n");
else
printf("Mode changed to read-only\n");
system("echo /* End of file */ >> CHMOD.C");
/* Change back to read/write: */
if(_chmod("CHMOD.C", _S_IWRITE) == -1)
perror("File not found\n");
else
printf("Mode changed to read/write\n");
system("echo /* End of file */ >> CHMOD.C");
}

Mode changed to read-only
Access is denied
Mode changed to read/write

See Also: _access, _creat, _fstat, _open, _stat

_chsize

_chsize

Changes the file size.
int _chsize(int handle, long size);

Routine Required Header Optional Headers Compatibility

_chsize <jo.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

181

_chsize

Return Value

_chsize returns the value 0 if the file size is successfully changed. A return value of
-1 indicates an error: errno is set to EACCES if the specified file is locked against
access, to EBADF if the specified file is read-only or the handle is invalid, or to
ENOSPC if no space is left on the device.

Parameters

Remarks

Example

Output

182

handle Handle referring to open file

size New length of file in bytes

The _chsize function extends or truncates the file associated with handle to the length
specified by size. The file must be open in a mode that permits writing. Null
characters ('\0') are appended if the file is extended. If the file is truncated, all data
from the end of the shortened file to the original length of the file is lost.

/* CHSIZE.C: This program uses _filelength to report the size
* of a file before and after modifying it with _chsize.
*/

#include <io.h>
#include <fcntl.h>
f#include <sys/types.h>
#include <sys/stat.h>
f#include <stdio.h>

void main(void)

{
int fh, result;
unsigned int nbytes = BUFSIZ;
/* Open a file */
if((fh = _open("data"™, _O_RDWR | _O_CREAT, _S_IREAD
| _S_IWRITE)) !=-1)
{
printf("File length before: %1d\n", _filelength(fh));
if((result = _chsize(fh, 329678)) == 0)
printf("Size successfully changed\n");
else
printf("Problem in changing the size\n");
printf("File length after: %1d\n", _filelength(fh));
_close(fh);
}
}

File length before: 0
Size successfully changed
File length after: 329678

See Also: _close, _creat, _open

_clear87, _clearfp

_clear87, _clearfp

Get and clear the floating-point status word.

unsigned int _clear87(void);
unsigned int _clearfp(void);

Routine Required Header Compatibility
_clear87 <float.h> Win 95, Win NT
_clearfp <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Example

The bits in the value returned indicate the floating-point status before the call to
_clear87 or _clearfp. See FLOAT.H for a complete definition of the bits returned by
_clear87. Many of the math library functions modify the 8087/80287 status word,
with unpredictable results. Return values from _clear87 and _status87 become more
reliable as fewer floating-point operations are performed between known states of
the floating-point status word.

The _clear87 function clears the exception flags in the floating-point status word,
sets the busy bit to 0, and returns the status word. The floating-point status word is
a combination of the 8087/80287 status word and other conditions detected by the
8087/80287 exception handler, such as floating-point stack overflow and underflow.

_clearfp is a platform-independent, portable version of the _clear87 routine. It is
identical to _clear87 on Intele (x86) platforms and is also supported by the MIPS®
and ALPHA platforms. To ensure that your floating-point code is portable to MIPS or
ALPHA, use _clearfp. If you are only targeting x86 platforms, you can use either
_clear87 or _clearfp.

/* CLEAR87.C: This program creates various floating-point

* problems, then uses _clear87 to report on these problems.

* Compile this program with Optimizations disabled (/0d).

* Otherwise the optimizer will remove the code associated with
* the unused floating-point values.

*/

#finclude <stdio.h>
fHinclude <float.h>

183

clearerr

Output

void main(void)

{
double a = le-40, b;
float x, y:
printf("Status: %.4x - clear\n", _clear87());
/* Store into y is inexact and underflows: */
y = a;
printf("Status: %.4x - inexact, underflow\n", _clear87());
/* y is denormal: */
b=y;
printf("Status: %.4x - denormal\n", _clear87());
}

Status: 0000 - clear
Status: 0003 - inexact, underflow
Status: 80000 - denormal

See Also: _control87, _status87

clearerr

Resets the error indicator for a stream
void clearerr(FILE *stream);

Routine Required Header Compatibility

clearerr <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Parameter

Remarks

184

stream Pointer to FILE structure

The clearerr function resets the error indicator and end-of-file indicator for stream.
Error indicators are not automatically cleared; once the error indicator for a specified
stream is set, operations on that stream continue to return an error value until clearerr,
fseek, fsetpos, or rewind is called.

Example

Output

/* CLEARERR.C: This program creates an error
* on the standard input stream, then clears
* it so that future reads won't fail.

*/

#include <stdio.h>

void main(void)
{
int c;
/* Create an error by writing to standard input. */
putc('c', stdin);
if(ferror(stdin))
{
perror("Write error"”);
clearerr(stdin);

}

/* See if read causes an error. */
printf("Will input cause an error? ");
¢ = getc(stdin);
if(ferror(stdin))
{

perror("Read error");

clearerr(stdin);

Write error: No error
Will input cause an error? n

See Also: _eof, feof, ferror, perror

clock

clock

Calculates the processor time used by the calling process.

clock_t clock(void);
Routine Required Header Compatibility

clock <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

185

clock

Return Value
clock returns the number of clock ticks of elapsed processor time. The returned value
is the product of the amount of time that has elapsed since the start of a process and
the value of the CLOCKS_PER_SEC constant. If the amount of elapsed time is
unavailable, the function returns —1, cast as a clock_t.

Remarks
The clock function tells how much processor time the calling process has used.
The time in seconds is approximated by dividing the clock return value by the value
of the CLOCKS_PER_SEC constant. In other words, clock returns the number
of processor timer ticks that have elapsed. A timer tick is approximately equal to
1/CLOCKS_PER_SEC second. In versions of Microsoft C before 6.0, the
CLOCKS_PER_SEC constant was called CLK_TCK.

Example
/* CLOCK.C: This example prompts for how long
* the program is to run and then continuously
* displays the elapsed time for that period.
*/

#include <stdio.h>
#include <stdlib.h>
f#include <time.h>

void sleep(clock_t wait);

void main(void)

{
long i = 600000L;
clock_t start, finish;
double duration;
/* Delay for a specified time. */
printf("Delay for three seconds\n");
sleep((clock_t)3 * CLOCKS_PER_SEC);
printf("Done!\n");
/* Measure the duration of an event. */
printf("Time to do %1d empty loops is ", i);
start = clock();
while(i--)
finish = clock();
duration = (double)(finish - start) / CLOCKS_PER_SEC;
printf("%2.1f seconds\n", duration);
}

186

Output

/* Pauses for a specified number of milliseconds. */
void sleep(clock_t wait)

{
clock_t goal;
goal = wait + clock():
while(goal > clock())
}

Delay for three seconds
Done!
Time to do 600000 empty loops is 0.1 seconds

See Also: difftime, time

_close

_close

Closes a file.
int _close(int handle);

Routine Required Header Optional Headers Compatibility

_close <io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_close returns 0 if the file was successfully closed. A return value of —1 indicates
an error, in which case errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter

Remarks

Example

handle Handle referring to open file

The _close function closes the file associated with handle.

/* OPEN.C: This program uses _open to open a file

* named OPEN.C for input and a file named OPEN.OUT
* for output. The files are then closed.

*/

187

_commit

Output

fHinclude <fentl.hd>
f#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#include <stdio.h>

void main(void)

{

int fhl, fh2;

fhl = _open("OPEN.C", _O_RDONLY);

if(fhl == -1)
perror("open failed on input file");

else

{
printf("open succeeded on input file\n");
_close(fhl);

}

fh2 = _open("OPEN.OUT", _O_WRONLY | _O_CREAT, _S_IREAD |

_S_IWRITE);

if(fh2 == -1)
perror("Open failed on output file");

else

{
printf("Open succeeded on output file\n");
_close(fh2);

}

}

Open succeeded on input file
Open succeeded on output file

See Also: _chsize, _creat, _dup, _open, _unlink

_commit

188

Flushes a file directly to disk.
int _commit(int handle);

Routine Required Header Optional Headers Compatibility

_commit <io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

_commit

Return Value
_commit returns 0 if the file was successfully flushed to disk. A return value of -1
indicates an error, and errno is set to EBADF, indicating an invalid file-handle
parameter.

Parameter
handle Handle referring to open file

Remarks
The _commit function forces the operating system to write the file associated with
handle to disk. This call ensures that the specified file is flushed immediately, not at
the operating system’s discretion.

Example

~
*

COMMIT.C illustrates Tow-level file I/0 functions including:
_close_commit memset_open _write

This is example code; to keep the code simple and readable
return values are not checked.

* %k F X F

*
~

#include <io.h>

#include <stdio.h>
##include <fcntl.h>
fHinclude <memory.h>
#Hinclude <errno.h>

j#fdefine MAXBUF 32
int log_receivable(int);

void main(void)

{
int fhandle;
fhandle = _open("TRANSACT.LOG", _O_APPEND | _O_CREAT |
_O0_BINARY | _O_RDWR);
log_receivable(fhandle);
_close(fhandle);
}

int log_receivable(int fhandle)

{

/* The log_receivable function prompts for a name and a monetary
* amount and places both values into a buffer (buf). The _write
* function writes the values to the operating system and the
* _commit function ensures that they are written to a disk file.
*/

int 1;
char buf[MAXBUF];

189

_control87, _controlfp

memset(buf, "\@', MAXBUF);
/* Begin Transaction. */

printf("Enter name: ");
gets(buf);
for(i = 1; buf{i] != '\0'; i++);

/* Write the value as a '\@' terminated string. */
_write(fhandle, buf, i+l);
printf("\n");

memset(buf, '\0', MAXBUF);

printf("Enter amount: $");

gets(buf);

for(i = 1; buf[i] != "\0"; i++);

/* Write the value as a '\@' terminated string. */
_write(fhandle, buf, i+l);

printf("\n");

/* The _commit function ensures that two important pieces of
* data are safely written to disk. The return value of the
* _commit function is returned to the calling function.
*/
return _commit(fhandle);
}

See Also: _creat, _open, _read, _write

_control87, _controlfp

Get and set the floating-point control word.

unsigned int _control87(unsigned int new, unsigned int mask);
unsigned int _controlfp(unsigned int new, unsigned int mask);

Routine Required Header Compatibility
_control87 <float.h> Win 95, Win NT
_controlfp <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
The bits in the value returned indicate the floating-point control state. See FLOAT.H
for a complete definition of the bits returned by _control87.

190

_control87, _controlfp

Parameters
new New control-word bit values

mask Mask for new control-word bits to set

Remarks
The _control87 function gets and sets the floating-point control word. The floating-
point control word allows the program to change the precision, rounding, and infinity
modes in the floating-point math package. You can also mask or unmask floating-point
exceptions using _control87. If the value for mask is equal to 0, _control87 gets the
floating-point control word. If mask is nonzero, a new value for the control word is set:
For any bit that is on (equal to 1) in mask, the corresponding bit in new is used to update
the control word. In other words, fpcntrl = ((fpcntrl & ~mask) | (new & mask)) where
Jfpentrl is the floating-point control word.

Note The run-time libraries mask all floating-point exceptions by default.

_controlfp is a platform-independent, portable version of _control87. It is nearly identical
to the _control87 function on Intel (x86) platforms and is also supported by the MIPS and

ALPHA platforms. To ensure that your floating-point code is portable to MIPS or ALPHA,
use _controlfp. If you are targeting x86 platforms, use either _control87 or _controlfp.

The only other difference between _control87 and _controlfp is that _controlfp does
not interfere with the DENORMAL OPERAND exception mask. The following
example demonstrates the difference:

_contro187(_EM_INVALID, _MCW_EM); // DENORMAL is unmasked by this call
_controlfp(_EM_INVALID, _MCW_EM); // DENORMAL exception mask remains unchanged

The possible values for the mask constant (mask) and new control values (new) are shown
in Table R.1. Use the portable constants listed below (_ MCW_EM, _EM_INVALID,
and so forth) as arguments to these functions, rather than supplying the hexadecimal
values explicitly.

Table R.1 Hexadecimal Values

Mask Hex Value Constant Hex Value

_MCW_EM 0x0008001F

(Interrupt

exception)
_EM_INVALID 0x00000010
_EM_DENORMAL 0x00080000
_EM_ZERODIVIDE 0x00000008
_EM_OVERFLOW 0x00000004
_EM_UNDERFLOW 0x00000002
_EM_INEXACT 0x00000001

(continued)

191

_control87, _controlfp

Example

192

Table R.1 Hexadecimal Values (continued)

Mask Hex Value Constant Hex Value
_MCW_IC 0x00040000
(Infinity control)
_IC_AFFINE 0x00040000
_IC_PROJECTIVE 0x00000000
_MCW_RC 0x00000300
(Rounding control)
_RC_CHOP 0x00000300
_RC_UP 0x00000200
_RC_DOWN 0x00000100
_RC_NEAR 0x00000000
_MCW_PC 0x00030000
(Precision control)
_PC_24 (24 bits) 0x00020000
_PC_53 (53 bits) 0x00010000
. _PC_64 (64 bits) 0x00000000

/* CNTRL87.C: This program uses _control87 to output the control
* word, set the precision to 24 bits, and reset the status to

* the default.
*/

#include <stdio.h>
#include <float.h>

void main(void)
{
double a = 0.1;

/* Show original control word and do calculation. */
printf("Original: 0x%.4x\n", _control87(@, 0));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

/* Set precision to 24 bits and recalculate. */

printf("24-bit: ©0x%.4x\n", _control87(_PC_24, MCW_PC));

printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

/* Restore to default and recalculate. */
printf("Default: 0x%.4x\n",

_control87(_CW_DEFAULT, oOxfffff));
printf("%1.1f * %1.1f = %.15e\n", a, a, a * a);

cos, cosh

Output
Original: 0x9001f
0.1 * 0.1 = 1.000000000000000e-002
24-bit: 0xa001f
0.1 * 0.1 = 9.999999776482582e-003
Default: 0@x001f
0.1 * 0.1 =1.000000000000000e-002

See Also: _clear87, _status87

_copysign

Return one value with the sign of another.

double _copysign(double x, double y);
Routine Required Header Compatibility

_copysign <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_copysign returns its double-precision floating point argument x with the same sign as
its double-precision floating-point argument y. There is no error return.

Parameters
x Double-precision floating-point value to be changed

y Double-precision floating-point value

See Also: fabs, _chgsign

cos, cosh

Calculate the cosine (cos) or hyperbolic cosine (cosh).

double cos(double x);
double cosh(double x);

Routine Required Header Compatibility
coS <math.h> ANSI, Win 95, Win NT
cosh <math.h> ANSI, Win 95, Win NT

193

cos, cosh

For additional compatibility information, see “Compatihility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

The cos and cosh functions return the cosine and hyperbolic cosine, respectively, of x.
If x is greater than or equal to 2%, or less than or equal to -2 aloss of significance in
the result of a call to cos occurs, in which case the function generates a _TLOSS error
and returns an indefinite (same as a quiet NaN).

If the result is too large in a cosh call, the function returns HUGE_VAL and sets
errno to ERANGE. You can modify error handling with _matherr.

Parameter

Example

Output

194

x Angle in radians

/* SINCOS.C: This program displays the sine, hyperbolic
* sine, cosine, and hyperbolic cosine of pi / 2.
*/

f#Hinclude <math.h>
f#Hinclude <stdio.h>

void main(void)

{
double pi = 3.1415926535;
double x, y;

x=pi/ 2;

y =sin(x);

printf("sin(%f) = %f\n", x, ¥y);
y = sinh(x);

printf("sinh(%f) = %f\n",x, y);
y =cos(x);

printf("cos(%f) = %f\n", x, y);
y = cosh(x);

printf("cosh(%f) = %f\n",x, y);

sin(1.570796) = 1.000000
sinh(1.570796) = 2.301299
cos(1.570796) = 0.000000
cosh(1.570796) = 2.509178

See Also: acos, asin, atan, _matherr, sin, tan

_cprintf

_cprintf

Formats and prints to the console.
int _cprintf(const char *format [, argument] ...);

Routine Required Header Compatibility

_cprintf <conio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_cprintf returns the number of characters printed.

Parameters

Remarks

Example

format Format-control string

argument Optional parameters

The _cprintf function formats and prints a series of characters and values directly to
the console, using the _putch function to output characters. Each argument (if any) is
converted and output according to the corresponding format specification in format.
The format has the same form and function as the format parameter for the printf
function. Unlike the fprintf, printf, and sprintf functions, _cprintf does not translate
linefeed characters into carriage return-linefeed (CR-LF) combinations on output.

/* CPRINTF.C: This program displays
* some variables to the console.
*/

f#inciude <conio.h>

void main(void)

{
int i=-16, h = 29;
unsigned u = 62511;
char c="A";
char s[] = "Test";
/* Note that console output does not transiate \n as
* standard output does. Use \r\n instead.
*/
_cprintf("%d %.4x %u %c %s\r\n", i, h, u, c, s);
1

195

_cputs

Output
-16 ©001d 62511 A Test

See Also: _cscanf, fprintf, printf, sprintf, vfprintf

_cputs

Puts a string to the console.
int _cputs(const char *string);

Routine Required Header Compatibility

_cputs <conio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, _cputs returns a 0. If the function fails, it returns a nonzero value.

Parameter
string Output string

Remarks
The _cputs function writes the null-terminated string pointed to by string directly to
the console. A carriage return-linefeed (CR-LF) combination is not automatically
appended to the string.

Example
/* CPUTS.C: This program first displays
* a string to the console.
*/

f#include <conio.h>

void main(void)

{
/* String to print at console.
* Note the \r (return) character.
*/
char *buffer = "Hello world (courtesy of _cputs)!\r\n";
_cputs(buffer);
1

196

_creat, _wcreat

Output
Hello world (courtesy of _cputs)!

See Also: _putch

_creat, _wcreat

Creates a new file.

int _creat(const char *filename, int pmode);
int _wcreat(const wchar_t *filename, int pmode);

Routine Required Header Optional Headers Compatibility
_creat <io.h> <sys/types.h>, Win 95, Win NT
<sys/stat.h>, <errno.h>
_wcreat <io.h> or <sys/types.h>, Win NT
<wchar.h> <sys/stat.h>, <errno.h>

For additional compatibility information, see ‘“Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions, if successful, returns a handle to the created file. Otherwise
the function returns —1 and sets errno as follows:

errno Setting Description
EACCES Filename specifies an existing read-only file or specifies a directory
instead of a file
EMFILE No more file handles are available
ENOENT The specified file could not be found
Parameters

filename Name of new file
pmode Permission setting
Remarks
The _creat function creates a new file or opens and truncates an existing one.

_wcreat is a wide-character version of _creat; the filename argument to _wcreat
is a wide-character string. _wcreat and _creat behave identically otherwise.

197

_creat, _wcreat

Example

198

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tcreat _creat _creat _wcreat

If the file specified by filename does not exist, a new file is created with the given
permission setting and is opened for writing. If the file already exists and its permission
setting allows writing, _creat truncates the file to length 0, destroying the previous
contents, and opens it for writing. The permission setting, pmode, applies to newly
created files only. The new file receives the specified permission setting after it is
closed for the first time. The integer expression pmode contains one or both of the
manifest constants _S_IWRITE and _S_IREAD, defined in SYS\STAT.H. When

both constants are given, they are joined with the bitwise-OR operator (|). The

pmode parameter is set to one of the following values:

S_IWRITE Writing permitted

_S_IREAD Reading permitted
_S_IREAD | _S_IWRITE Reading and writing permitted

If write permission is not given, the file is read-only. All files are always readable;
it is impossible to give write-only permission. Thus the modes _S_IWRITE and
_S_IREAD | _S_IWRITE are equivalent. Files opened using _creat are always
opened in compatibility mode (see _sopen) with _SH_DENYNO.

_creat applies the current file-permission mask to pmode before setting the
permissions (see _umask). _creat is provided primarily for compatibility with
previous libraries. A call to _open with _O_CREAT and _O_TRUNC in the
oflag parameter is equivalent to _creat and is preferable for new code.

/* CREAT.C: This program uses _creat to create
* the file (or truncate the existing file)

* named data and open it for writing.

*/

#include <sys/types.h>
#include <sys/stat.h>
#include <io.h>
#finclude <stdio.h>
Finclude <stdlib.h>

void main(void)

{
int fh;

_cscanf

fh = _creat("data", _S_IREAD | _S_IWRITE);

if(fh == -1)
perror("Couldn't create data file");
else
{
printf("Created data file.\n");
_close(fh);
1

Output
Created data file.

See Also: _chmod, _chsize, _close, _dup, _open, _sopen, _umask

_cscanf

Reads formatted data from the console.
int _cscanf(const char *format [, argument] ...);

Routine Required Header Compatibility

_cscanf <conio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_cscanf returns the number of fields that were successfully converted and assigned.
The return value does not include fields that were read but not assigned. The return
value is EOF for an attempt to read at end of file. This can occur when keyboard input
is redirected at the operating-system command-line level. A return value of 0 means
that no fields were assigned.

Parameters
format Format-control string

argument Optional parameters

199

ctime, _wctime

Remarks

Example

Output

The _cscanf function reads data directly from the console into the locations given by
argument. The _getche function is used to read characters. Each optional parameter
must be a pointer to a variable with a type that corresponds to a type specifier in
format. The format controls the interpretation of the input fields and has the same
form and function as the format parameter for the scanf function. While _cscanf
normally echoes the input character, it does not do so if the last call was to _ungetch.

/* CSCANF.C: This program prompts for a string

* and uses _cscanf to read in the response.

* Then _cscanf returns the number of items

* matched, and the program displays that number.
*/

#include <stdio.h>
JHinclude <conio.h>

void main(void)
{
int result, i[3];

_cprintf("Enter three integers: ");
result = _cscanf("%i %i %i", &i[@], &i[1l], &i[2]):
_cprintf("\r\nYou entered ");
while(result--)
_eprintf("%i ", ilresult]);
_cprintf("\r\n");
}

Enter three integers: 1 2 3
You entered 3 2 1

See Also: _cprintf, fscanf, scanf, sscanf

ctime, _wctime

200

Convert a time value to a string and adjust for local time zone settings.

char *ctime(const time_t *timer);
wchar_t *_wctime(const time_t *timer);

Routine Required Header Compatibility
ctime <time.h> ANSI, Win 95, Win NT
_wctime <time.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns a pointer to the character string result. If time
represents a date before midnight, January 1, 1970, UTC, the function
returns NULL.

Parameter

Remarks

timer Pointer to stored time

The ctime function converts a time value stored as a time_t structure into a character

string. The timer value is usually obtained from a call to time, which returns the

number of seconds elapsed since midnight (00:00:00), January 1, 1970, coordinated

universal time (UTC). The string result produced by ctime contains exactly 26
characters and has the form:

Wed Jan 02 02:03:55 1980\n\0@

A 24-hour clock is used. All fields have a constant width. The newline character
("\n") and the null character ('"\Q') occupy the last two positions of the string.

The converted character string is also adjusted according to the local time zone
settings. See the time, _ftime, and localtime functions for information on
configuring the local time and the _tzset function for details about defining
the time zone environment and global variables.

A call to ctime modifies the single statically allocated buffer used by the gmtime
and localtime functions. Each call to one of these routines destroys the result of
the previous call. ctime shares a static buffer with the asctime function. Thus,

a call to ctime destroys the results of any previous call to asctime, localtime,

or gmtime.

_wctime is a wide-character version of ctime; _wctime returns a pointer to a
wide-character string. _wectime and ctime behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H _UNICODE & _MBCS Not _MBCS Defined _UNICODE Defined
Routine Defined
_tctime ctime ctime _wctime

ctime, _wctime

201

_cwait

Example
/* CTIME.C: This program gets the current
* time in time_t form, then uses ctime to
* display the time in string form.
*/

f#include <time.h>
f#finclude <stdio.h>

void main(void)

{

time_t Ttime;

time(&l1time);

printf("The time is %s\n", ctime(<ime));
}

Output
The time is Fri Apr 29 12:25:12 1994

See Also: asctime, _ftime, gmtime, localtime, time

_cwait

Waits until another process terminates.
int _cwait(int *termstat, int procHandle, int action);

Routine Required Header Optional Headers Compatibility

_cwait <process.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
When the specified process has “successfully” completed, _cwait returns the handle
of the specified process and sets termstat to the result code returned by the specified
process. Otherwise, _cwait returns —1 and sets errno as follows:

Value Description

ECHILD No specified process exists, procHandle is invalid, or the call to the
GetExitCodeProcess or WaitForSingleObject API failed

EINVAL action is invalid

202

_cwait

Parameters

Remarks

Example

termstat Pointer to a buffer where the result code of the specified process will be
stored, or NULL

procHandle Handle to the current process or thread

action NULL: Ignored by Windows NT and Windows 95 applications; for other
applications: action code to perform on procHandle

The _cwait function waits for the termination of the process ID of the specified
process that is provided by procHandle. The value of procHandle passed to _cwait
should be the value returned by the call to the _spawn function that created the
specified process. If the process ID terminates before _cwait is called, _cwait
returns immediately. _cwait can be used by any process to wait for any other
known process for which a valid handle (procHandle) exists.

termstat points to a buffer where the return code of the specified process will be
stored. The value of termstat indicates whether the specified process terminated
“normally” by calling the Windows NT ExitProcess API. ExitProcess is called
internally if the specified process calls exit or _exit, returns from main, or reaches
the end of main. See GetExitCodeProcess for more information regarding the
value passed back through termstat. If _cwait is called with a NULL value for
termstat, the return code of the specified process will not be stored.

The action parameter is ignored by Windows NT and Windows 95 because
parent-child relationships are not implemented in these environments. Therefore,
the OS/2 wait function, which allows a parent process to wait for any of its
immediate children to terminate, is not available.

/* CWAIT.C: This program launches several processes and waits
* for a specified process to finish.
*/

#include <windows.h>
f#finclude <process.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

/* Macro to get a random integer within a specified range */
f#define getrandom(min, max) ((rand() % (int)(((max) + 1)
- - (min))) + (min))

struct PROCESS
{

int nPid;
char name[40];

203

_cwait

} process[4] = { { @, "Ann" }, { @, "Beth" }, { @, "Carl” },
- { 0, "Dave" } };

void main(int argc, char *argv[])
{

int termstat, c;

srand((unsigned)time(NULL)); /* Seed randomizer */
/* If no arguments, this is the calling process */

if(argc == 1)

{

/* Spawn processes in numeric order */
for(¢ = 0; c < 4; ct+){
_flushall();
process[c].nPid = spawnl(_P_NOWAIT, argv[Q], argv[0],
process[c].name, NULL);
}

/* Wait for randomly specified process, and respond when done */
¢ = getrandom(@0, 3);

printf("Come here, %s.\n", process[c].name);

_cwait(&termstat, process[c]l.nPid, _WAIT_CHILD);

printf("Thank you, %s.\n", process[c].name);

}

/* If there are arguments, this must be a spawned process */
else
{

/* Delay for a period determined by process number */
Sleep((argv[11[0] - 'A' + 1) * 1000L);
printf("Hi, Dad. It's %s.\n", argv[l]);

Output
Hi, Dad. It's Ann.
Come here, Ann.
Thank you, Ann.
Hi, Dad. It's Beth.
Hi, Dad. It's Carl.
Hi, Dad. It's Dave.

See Also: _spawn Functions

204

difftime

difftime

Finds the difference between two times.

double difftime(time_t timerl, time_t timer0);

Routine Required Header Compatibility

difftime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

difftime returns the elapsed time in seconds, from timer0 to timerl. The value
returned is a double-precision floating-point number.

Parameters
timerl Ending time

timer0 Beginning time

Remarks
The difftime function computes the difference between the two supplied time values
timer0 and timerl.

Example
/* DIFFTIME.C: This program calculates the amount of time
* needed to do a floating-point multiply 10 million times.
*/

Hinclude <stdio.h>
#include <stdlib.h>
f##include <time.h>

void main(void)
{
time_t start, finish;
long loop;
double result, elapsed_time;

printf("Multiplying 2 floating point numbers 10 million times...\n");

205

div

Output

time(&start);

for(loop = 0; loop < 10000000; Toop++)
result = 3.63 * 5.27;

time(&finish);

elapsed_time = difftime(finish, start);
printf("\nProgram takes %6.0f seconds.\n", elapsed_time);

Multiplying 2 floats 1@ million times...

Program takes 2 seconds.

See Also: time

div

Computes the quotient and the remainder of two integer values.
div_t div(int numer, int denom);

Routine Required Header Compatibility

div <stdlib.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

div returns a structure of type div_t, comprising the quotient and the remainder. The
structure is defined in STDLIB.H.

Parameters

Remarks

206

numer Numerator

denom Denominator

The div function divides numer by denom, computing the quotient and the remainder.
The div_t structure contains int quot, the quotient, and int rem, the remainder. The
sign of the quotient is the same as that of the mathematical quotient. Its absolute value
is the largest integer that is less than the absolute value of the mathematical quotient.
If the denominator is 0, the program terminates with an error message.

_dup, _dup2

Example
/* DIV.C: This example takes two integers as command-line
* arguments and displays the results of the integer
* division. This program accepts two arguments on the
* command line following the program name, then calls
* div to divide the first argument by the second.
* Finally, it prints the structure members quot and rem.

#include <stdlib.h>
fHinclude <stdio.h>
#include <math.h>

void main(int argc, char *argv[])

{
int x,y;
div_t div_result;
x = atoi(argv[l]);
y = atoi(argv[2]);
printf("x is %d, y is %d\n", x, y);
div_result = div(x, y);
printf("The quotient is %d, and the remainder is %d\n",
div_result.quot, div_result.rem);
1

Output
X is 876, y is 13
The quotient is 67, and the remainder is 5

See Also: 1div

_dup, _dup2

Create a second handle for an open file (_dup), or reassign a file handle (_dup2).

int_dup(int handle);
int _dup2(int handlel, int handle?2);

Routine Required Header Compatibility
_dup <io.h> Win 95, Win NT
_dup2 <io.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

207

_dup, _dup2

Return Value

_dup returns a new file handle. _dup2 returns O to indicate success. If an error occurs,
each function returns —1 and sets errno to EBADF if the file handle is invalid, or to
EMPFILE if no more file handles are available.

Parameters

Remarks

Example

208

handle, handlel Handles referring to open file
handle2 Any handle value

The _dup and _dup2 functions associate a second file handle with a currently open
file. These functions can be used to associate a predefined file handle, such as that for
stdout, with a different file. Operations on the file can be carried out using either file
handle. The type of access allowed for the file is unaffected by the creation of a new
handle. _dup returns the next available file handle for the given file#. _dup2 forces
handle2 to refer to the same file as handlel. If handle2 is associated with an open file
at the time of the call, that file is closed.

Both _dup and _dup2 accept file handles as parameters. To pass a stream (FILE *)
to either of these functions, use _fileno. The fileno routine returns the file handle
currently associated with the given stream. The following example shows how to
associate stderr (defined as FILE * in STDIO.H) with a handle:

cstderr = _dup(_fileno(stderr));

/* DUP.C: This program uses the variable old to save the original
* stdout. It then opens a new file named new and forces stdout to
* refer to it. Finally, it restores stdout to its original state.
*/

#include <io.h>

f#include <stdlib.h>

#include <stdio.h>

void main(void)

{
int old;
FILE *new;
old = _dup(1); /* "o1d" now refers to "stdout" */
/* Note: file handle 1 == "stdout" */
if(old == -1)
{
perror("_dup(1) failure");
exit(1);
}

write(old, "This goes to stdout first\r\n", 27);
if((new = fopen("data", "w")) == NULL)
{
puts("Can't open file 'data'\n");
exit(1);
}

Output

_ecvt

/* stdout now refers to file “"data" */
if(-1 == _dup2(_fileno(new), 1))
{
perror("Can't _dup2 stdout");
exit(1);
}
puts("This goes to file 'data'\r\n");

/* Flush stdout stream buffer so it goes to correct file */
fflush(stdout);:
fclose(new);

/* Restore original stdout */
_dup2(old, 1);
puts("This goes to stdout\n");

puts("The file 'data' contains:");
system("type data");

This goes to stdout first
This goes to file 'data’

This goes to stdout
The file "data' contains:

This goes to file 'data’'

See Also: _close, _creat, _open

_ecvt

Converts a double number to a string.

char *_ecvt(double value, int count, int *dec, int *sign);
Function Required Header Compatibility
_ecvt <stdlib.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

_ecvt returns a pointer to the string of digits. There is no error return.

209

_ecvt

Parameters

Remarks

Example

Output

210

value Number to be converted
count Number of digits stored
dec Stored decimal-point position

sign Sign of converted number

The _ecvt function converts a floating-point number to a character string. The value
parameter is the floating-point number to be converted. This function stores up to
count digits of value as a string and appends a null character ('\0'). If the number of
digits in value exceeds count, the low-order digit is rounded. If there are fewer than
count digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to an
integer value giving the position of the decimal point with respect to the beginning of
the string. A O or negative integer value indicates that the decimal point lies to the left
of the first digit. The sign parameter points to an integer that indicates the sign of the
converted number. If the integer value is 0, the number is positive. Otherwise, the
number is negative.

_ecvt and _fevt use a single statically allocated buffer for the conversion. Each call
to one of these routines destroys the result of the previous call.

/* ECVT.C: This program uses _ecvt to convert a
* floating-point number to a character string.
*/

f#Hinclude <stdlib.h>
#include <stdio.h>

void main(void)

{
int decimal, sign;
char *buffer;
int precision = 10;
double source = 3.1415926535;
buffer = _ecvt(source, precision, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
source, buffer, decimal, sign);
}

source: 3.1415926535 buffer: '3141592654' decimal: 1 sign: @
See Also: atof, _fevt, _gevt

_endthread, _endthreadex

_endthread, endthreadex

void _endthread(void);
void _endthreadex(unsigned retval);

Function Required Header Compatibility
_endthread <process.h> Win 95, Win NT
_endthreadex <process.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Parameter

retval Thread exit code

Remarks
The _endthread and _endthreadex functions terminate a thread created by
_beginthread or _beginthreadex, respectively. You can call _endthread or
_endthreadex explicitly to terminate a thread; however, _endthread or
_endthreadex is called automatically when the thread returns from the routine
passed as a parameter to _beginthread or _beginthreadex. Terminating a thread
with a call to endthread or _endthreadex helps to ensure proper recovery of
resources allocated for the thread.

Note For an executable file linked with LIBCMT.LIB, do not call the Win32 ExitThread
API; this prevents the run-time system from reclaiming allocated resources. _endthread
and _endthreadex reclaim allocated thread resources and then call ExitThread.

_endthread automatically closes the thread handle. (This behavior differs from
the Win32 ExitThread API.) Therefore, when you use _beginthread and
_endthread, do not explicitly close the thread handle by calling the Win32
CloseHandle API.

Like the Win32 ExitThread API, _endthreadex does not close the thread
handle. Therefore, when you use _beginthreadex and _endthreadex, you
must close the thread handle by calling the Win32 CloseHandle APL

211

_endthread, _endthreadex

Example

212

/* BEGTHRD.C illustrates multiple threads using functions:

*

* _beginthread _endthread

*

*

* This program requires the multithreaded library. For example,

* compile with the following command line:

* CL /MT /D "_X86_" BEGTHRD.C

* .

* If you are using the Visual C++ development environment, select the
* Multi-Threaded runtime 1ibrary in the compiler Project Options dialog
* box.

*

*/

#Finclude <windows.h>

ffinclude <process.h> /* _beginthread, _endthread */
#include <stddef.h>

JFinclude <stdlib.h>

JHnclude <conio.h>

void Bounce(void *ch);:
void CheckKey(void *dummy);

/* GetRandom returns a random integer between min and max. */
fidefine GetRandom(min, max) ((rand() % (int)(((max) + 1) - (min))) + (min))

BOOL repeat = TRUE; /* Global repeat flag and video variable */
HANDLE hStdOut; /* Handle for console window */
CONSOLE_SCREEN_BUFFER_INFO csbi; /* Console information structure */

void main()
{
CHAR ch = "A'";

hStdOut = GetStdHandle(STD_OUTPUT_HANDLE);

/* Get display screen's text row and column information. */
GetConsoleScreenBufferInfo(hStdQut, &csbi);

/* Launch CheckKey thread to check for terminating keystroke. */
_beginthread(CheckKey, @, NULL);

/* Loop until CheckKey terminates program. */
while(repeat)
{
/* On first loops, launch character threads. */
_beginthread(Bounce, 0, (void *) (ch++));

/* Wait one second between loops. */
Sleep(1000L);

_endthread, _endthreadex

/* CheckKey - Thread to wait for a keystroke, then clear repeat flag. */
void CheckKey(void *dummy)
{

_getch();

repeat = 0; /* _endthread implied */

}

/* Bounce - Thread to create and and control a colored letter that moves
* around on the screen.
*
* Params: ch - the letter to be moved
*/
void Bounce(void *ch)
{
/* Generate letter and color attribute from thread argument. */
char blankcell = 0x20;
char blockcell = (char) ch;
BOOL first = TRUE;
COORD oldcoord, newcoord;
DWORD result;

/* Seed random number generator and get initial location. */
srand(_threadid);
newcoord.X = GetRandom(@, csbi.dwSize.X - 1);
newcoord.Y = GetRandom(@, csbi.dwSize.Y - 1);
while(repeat)
{
/* Pause between loops. */
Sleep(100L);

/* Blank out our old position on the screen, and draw new letter. */
if(first)

first = FALSE;
else

writeCohsoleOutputCharacter(hStdOut, &blankcell, 1, oldcoord, &result);
WriteConsoleQutputCharacter(hStdOut, &blockcell, 1, newcoord, &result);

/* Increment the coordinate for next placement of the block. */
oldcoord.X = newcoord.X;
oldcoord.Y = newcoord.Y;
newcoord.X += GetRandom(-1,
newcoord.Y += GetRandom(-1,

1);
1):
/* Correct placement (and beep) if about to go off the screen. */
if(newcoord.X < 0)

newcoord.X = 1;
else if(newcoord.X == csbi.dwSize.X)

newcoord.X = csbi.dwSize.X - 2;
else if(newcoord.Y < 0)

newcoord.Y = 1;
else if(newcoord.Y == csbhi.dwSize.Y)

newcoord.Y = csbi.dwSize.Y - 2;

213

_eof

/* If not at a screen border, continue, otherwise beep. */
else
continue;

Beep(((char) ch - 'A') * 100, 175);

}

/* _endthread given to terminate */

_endthread();

}

See Also: _beginthread

_eof

Tests for end-of-file.
int _eof(int handle);

Function Required Header Optional Headers Compatibility

_eof <io.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_eof returns 1 if the current position is end of file, or 0 if it is not. A return value of -1
indicates an error; in this case, errno is set to EBADF, which indicates an invalid file
handle.

Parameter
handle Handle referring to open file

Remarks
The _eof function determines whether the end of the file associated with handle has
been reached.

Example

/* EOF.C: This program reads data from a file
* ten bytes at a time until the end of the
* file is reached or an error is encountered.
*/

#include <io.h>

ffinclude <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

void main(void)

214

Output

_exec, _wexec Functions

int fh, count, total = 0;
char buf[10];
if((fh = _open("eof.c", _O_RDONLY)) == - 1)
{
perror("Open failed");
exit(1);
}
/* Cycle until end of file reached: */
while(!_eof(fh))
{
/* Attempt to read in 1@ bytes: */
if((count = _read(fh, buf, 10)) == -1)
{
perror("Read error");
break;
}
/* Total actual bytes read */
total += count;
}
printf("Number of bytes read = %d\n", total);
_close(fh);

Number of bytes read = 754

See Also: clearerr, feof, ferror, perror

_exec, _wexec Functions

Each of the functions in this family loads and executes a new process.

_execl, _wexecl _execv, _wexecv
_execle, _wexecle _execve, _wexecve
_execlp, _wexeclp _execvp, _wexecvp
_execlpe, _wexeclpe _execvpe, _wexecvpe

The letter(s) at the end of the function name determine the variation.

_exec Function

Suffix Description

e envp, array of pointers to environment settings, is passed to new process.

1 Command-line arguments are passed individually to _exec function.
Typically used when number of parameters to new process is known in
advance

P PATH environment variable is used to find file to execute.

v argv, array of pointers to command-line arguments, is passed to _exec.

Typically used when number of parameters to new process is variable.

215

_exec, _wexec Functions

Remarks

216

Each of the _exec functions loads and execute a new process. All _exec functions
use the same operating-system function. The _exec functions automatically handle
multibyte-character string arguments as appropriate, recognizing multibyte-character
sequences according to the multibyte code page currently in use. The _wexec
functions are wide-character versions of the _exec functions. The _wexec functions
behave identically to their _exec family counterparts except that they do not handle
multibyte-character strings.

Generic-Text Routine Mappings:

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_texecl _execl _execl _wexecl

_texecle _execle _execle _wexecle

_texeclp _execlp _execlp _wexeclp

_texeclpe _execlpe _execlpe _wexeclpe

_texecv _execv _execv _wexecv

_texecve _execve _execve _wexecve

_texecvp _execvp _execvp _Wexecvp

_texecvpe _execvpe _execvpe _wexecvpe

When a call to an _exec function is successful, the new process is placed in the
memory previously occupied by the calling process. Sufficient memory must be
available for loading and executing the new process.

The cmdname parameter specifies the file to be executed as the new process. It can
specify a full path (from the root), a partial path (from the current working directory),
or a filename. If cmdname does not have a filename extension or does not end with a
period (.), the _exec function searches for the named file. If the search is unsuccessful,
it tries the same base name with the .COM extension and then with the .EXE, .BAT,
and .CMD extensions. If cmdname has an extension, only that extension is used in the
search. If cmdname ends with a period, the _exec function searches for cimdname with
no extension. _execlp, _execlpe, _execvp, and _execvpe search for cmdname (using
the same procedures) in the directories specified by the PATH environment variable.
If cmdname contains a drive specifier or any slashes (that is, if it is a relative path), the
_exec call searches only for the specified file; the path is not searched.

Parameters are passed to the new process by giving one or more pointers to character
strings as parameters in the _exec call. These character strings form the parameter list
for the new process. The combined length of the inherited environment settings and
the strings forming the parameter list for the new process must not exceed 32K bytes.
The terminating null character ('\0") for each string is not included in the count, but
space characters (inserted automatically to separate the parameters) are counted.

_exec, _wexec Functions

The argument pointers can be passed as separate parameters (in _execl, _execle,
_execlp, and _execlpe) or as an array of pointers (in _execv, _execve, _execvp, and
_execvpe). At least one parameter, arg0, must be passed to the new process; this
parameter is argv[0] of the new process. Usually, this parameter is a copy of
cmdname. (A different value does not produce an error.)

The _execl, _execle, _execlp, and _execlpe calls are typically used when the number
of parameters is known in advance. The parameter arg0 is usually a pointer to
cmdname. The parameters argl through argn point to the character strings forming
the new parameter list. A null pointer must follow argn to mark the end of the
parameter list.

The _execv, _execve, _execvp, and _execvpe calls are useful when the number of
parameters to the new process is variable. Pointers to the parameters are passed as an
array, argv. The parameter argv[0] is usually a pointer to cmdname. The parameters
argv[1] through argv[n] point to the character strings forming the new parameter

list. The parameter argv[n+1] must be a NULL pointer to mark the end of the
parameter list.

Files that are open when an _exec call is made remain open in the new process. In
_execl, _execlp, _execv, and _execvp calls, the new process inherits the environment
of the calling process. _execle, _execlpe, _execve, and _execvpe calls alter the
environment for the new process by passing a list of environment settings through the
envp parameter. envp is an array of character pointers, each element of which (except
for the final element) points to a null-terminated string defining an environment
variable. Such a string usually has the form NAME=value where NAME is the name
of an environment variable and value is the string value to which that variable is set.
(Note that value is not enclosed in double quotation marks.) The final element of the
envp array should be NULL. When envp itself is NULL, the new process inherits the
environment settings of the calling process.

A program executed with one of the _exec functions is always loaded into memory as
if the “maximum allocation” field in the program’s .EXE file header were set to the
default value of 0xFFFFH. You can use the EXEHDR utility to change the maximum
allocation field of a program; however, such a program invoked with one of the
_exec functions may behave differently from a program invoked directly from the
operating-system command line or with one of the _spawn functions.

The _exec calls do not preserve the translation modes of open files. If the new process
must use files inherited from the calling process, use the _setmode routine to set the
translation mode of these files to the desired mode. You must explicitly flush (using
fflush or _flushall) or close any stream before the _exec function call. Signal settings
are not preserved in new processes that are created by calls to _exec routines. The
signal settings are reset to the default in the new process.

217

_exec, _wexec Functions

Example
/* EXEC.C illustrates the different versions of exec including:
_execl _execle _execlp _execlpe
_execv _execve _execvp _execvpe

Although EXEC.C can exec any program, you can verify how
different versions handie arguments and environment by
compiling and specifying the sample program ARGS.C. See
SPAWN.C for examples of the similar spawn functions.

* %k % F F F %

*/

#finclude <stdio.h>
#include <conio.h>
f#finclude <process.h>

char *my_env[] = /* Environment for exec?le */
{

"THIS=environment will be",

"PASSED=to new process by",

"the EXEC=functions",

NULL
};

void main()

{
char *args[4], prog[80];
int ch;

printf("Enter name of program to exec: ");
gets(prog);
printf(" 1. _execl 2. _execle 3. _execlp 4. _execlpe\n");
printf(" 5. _execv 6. _execve 7. _execvp 8. _execvpe\n");
printf("Type a number from 1 to 8 (or @ to quit): ™);
ch = _getche();
if((ch < '1") || (ch > '8"))
exit(1);
printf("\n\n");

/* Arguments for _execv? */
args[0] = prog;

args[1] = "exec??";

args[2] "two";

args[3] = NULL;

switch(ch)

{

case '1':
_execl(prog, prog, "_execl"”, "two", NULL);
break;

case '2":
_execle(prog, prog, "_execle", "two", NULL, my_env);
break;

case '3'":
_execlp(prog, prog, "_execip"”, "two", NULL);
break;

218

_exec, _wexec Functions

case '4':
_execlpe(prog, prog, "_execlpe", "two", NULL, my_env);
break;
case '5':
_execv(prog, args);
break;
case '6':
_execve(prog, args, my_env);
break;
case '7"':
_execvp(prog, args);
break;
case '8':
_execvpe(prog, args, my_env);
break;
default:
break;
}

/* This point is reached only if exec fails. */
printf("\nProcess was not execed.”);
exit(0);

}

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

_execl, _wexecl

Load and execute new child processes.

int _execl(const char *cmdname, const char *arg0, ... const char *argn, NULL);
int _wexecl(const wchar_t *cmdname, const wchar_t *argo0, ...
= const wchar_t *argn, NULL);

Function Required Header Optional Headers Compatibility

_execl <process.h> <errno.h> Win 95, Win NT

_wexecl <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

219

_exec, _wexec Functions

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to be executed

argO0, ... argn List of pointers to parameters
Remarks

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

_execle, _wexecle

Load and execute new child processes.

int _execle(const char *cmdname, const char *arg0, ... const char *argn,
« NULL, const char *const *envp);

int _wexecle(const wchar_t *cmdname, const wchar_t *arg0, ...
o const wchar_t *argn, NULL, const char *const *envp);

Function Required Header Optional Headers Compatibility

_execle <process.h> <errno.h> Win 95, Win NT

_wexecle <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

220

Return Value

_exec, _wexec Functions

If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or
the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters .

cmdname Path of file to execute

arg0, ... argn List of pointers to parameters

envp Array of pointers to environment settings

Remarks

Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter and also passing an array of pointers to environment

settings.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example

See Example on page 218.

_execlp, _wexeclp

Load and execute new child processes.

int _execlp(const char *cmdname, const char *arg0, ... const char *argn, NULL);
int _wexeclp(const wchar_t *cmdname, const wchar_t *arg0, ...
« const wchar_t *argn, NULL);

Function Required Header Optional Headers Compatibility

_execlp <process.h> <errno.h> Win 95, Win NT

_wexeclp <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

221

_exec, _wexec Functions

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, these functions do not return to the calling process. A return value of -1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute

arg0, ... argn List of pointers to parameters
Remarks
Each of these functions loads and executes a new process, passing each command-line

argument as a separate parameter and using the PATH environment variable to find
the file to execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

_execlpe, _wexeclpe

Load and execute new child processes.

int _execlpe(const char *cmdname, const char *arg0, ... const char *argn,
« NULL, const char *const *envp);

int _wexeclpe(const wchar_t *cmdname, const wchar_t *arg0, ...
- const wchar_t *argn, NULL, const wchar_t *const *envp);

222

_exec, _wexec Functions

Function Required Header Optional Headers Compatibility

_execlpe <process.h> <errno.h> Win 95, Win NT

_wexeclpe <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute
arg0, ... argn List of pointers to parameters
envp Array of pointers to environment settings

Remarks
Each of these functions loads and executes a new process, passing each command-line
argument as a separate parameter and also passing an array of pointers to environment
settings. These functions use the PATH environment variable to find the file to
execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

223

_exec, _wexec Functions

_eXecv, _wexecv

Load and execute new child processes.

int _execv(const char *cmdname, const char *const *argy);
int _wexecv(const wchar_t *cmdname, const wchar_t *const *argv);

Function Required Header Optional Headers Compatibility

_execy <process.h> <errno.h> Win 95, Win NT

_wexecv <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute

argv Array of pointers to parameters

Remarks
Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

224

_exec, _wexec Functions

_EXeCve, _wexecve

Load and execute new child processes.

int _execve(const char *cindname, const char *const *argv, const char *const *envp);
int _wexecve(const wchar_t *cmdname, const wchar_t *const *argv,
« const wchar_t *const *envp);

Function Required Header Optional Headers Compatibility

_execve <process.h> <errno.h> Win 95, Win NT

_wexecve <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute

argv Array of pointers to parameters
envp Array of pointers to environment settings

Remarks
Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments and an array of pointers to environment settings.

See Also: abort, atexit, exit, _onexit, _spawn Function Qverview, system

225

_exec, _wexec Functions

Example
See Example on page 218.

_EXecCvp, _wexXecvp

Load and execute new child processes.

int _execvp(const char *cmdname, const char *const *argv);
int _wexecvp(const wchar_t *cmdname, const wchar_t *const *argv);

Function Required Header Optional Headers Compatibility

_execvp <process.h> <errno.h> Win 95, Win NT

_wexecvp <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute

argv Array of pointers to parameters
Remarks
Each of these functions loads and executes a new process, passing an array of pointers

to command-line arguments and using the PATH environment variable to find the file
to execute.

226

_exec, _wexec Functions

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

_execvpe, _wexecvpe

Load and execute new child processes.

int _execvpe(const char *cmdname, const char *const *argv, const char *const *envp);
int _wexecvpe(const wchar_t *cmdname, const wchar_t *const *argv,
- const wchar_t *const *envp);

Function Required Header Optional Headers Compatibility

_execvpe <process.h> <errno.h> Win 95, Win NT

_wexecvpe <process.h> or <errno.h> Win NT
<wchar.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, these functions do not return to the calling process. A return value of —1
indicates an error, in which case the errno global variable is set.

errno Value Description

E2BIG The space required for the arguments and environment settings
exceeds 32K.

EACCES The specified file has a locking or sharing violation.

EMFILE Too many files open (the specified file must be opened to determine
whether it is executable).

ENOENT File or path not found.

ENOEXEC The specified file is not executable or has an invalid executable-file
format.

ENOMEM Not enough memory is available to execute the new process; or

the available memory has been corrupted; or an invalid block exists,
indicating that the calling process was not allocated properly.

Parameters
cmdname Path of file to execute

argv Array of pointers to parameters
envp Array of pointers to environment settings

227

exit, _exit

Remarks
Each of these functions loads and executes a new process, passing an array of pointers
to command-line arguments and an array of pointers to environment settings. These
functions use the PATH environment variable to find the file to execute.

See Also: abort, atexit, exit, _onexit, _spawn Function Overview, system

Example
See Example on page 218.

exit, _exit

Terminate the calling process after cleanup (exit) or immediately (_exit).

void exit(int status);
void _exit(int status);

Function Required Header Compatibility
exit <process.h> or <stdlib.h> ANSI, Win 95, Win NT
_exit <process.h> or <stdlib.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Parameter

status Exit status

Remarks
The exit and _exit functions terminate the calling process. exit calls, in last-in-
first-out (LIFO) order, the functions registered by atexit and _onexit, then flushes
all file buffers before terminating the process. _exit terminates the process without
processing atexit or _onexit or flushing stream buffers. The status value is typically
set to 0 to indicate a normal exit and set to some other value to indicate an error.

Although the exit and _exit calls do not return a value, the low-order byte of status

is made available to the waiting calling process, if one exists, after the calling process
exits. The szatus value is available to the operating-system batch command
ERRORLEVEL and is represented by one of two constants: EXIT_SUCCESS,
which represents a value of 0, or EXIT_FAILURE, which represents a value of 1.
The behavior of exit, _exit, _cexit, and _c_exit is as follows:

228

exp

Function Description

exit Performs complete C library termination procedures, terminates the
process, and exits with the supplied status code.

_exit Performs “quick” C library termination procedures, terminates the
process, and exits with the supplied status code.

_cexit Performs complete C library termination procedures and returns
to the caller, but does not terminate the process.

_c_exit Performs “quick™ C library termination procedures and returns
to the caller, but does not terminate the process.
Example

/* EXITER.C: This program prompts the user for a yes

* or no and returns an exit code of 1 if the

* user answers Y or y; otherwise it returns 0. The

* error code could be tested in a batch file.

*/

#include <conio.h>
f#finclude <std1ib.h>

void main(void)
{

int ch;

_cputs("Yes or no? ");

ch = _getch();

_cputs("\r\n");

if(toupper(ch) == "Y')
exit(1);

else
exit(@);

}

See Also: abort, atexit, _cexit, _exec Function Overview, _onexit, _spawn
Function Overview, system

exp

Calculates the exponential.

double exp(double x);

Function Required Header Compatibility

exp <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.
Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version

229

_expand

Return Value
The exp function returns the exponential value of the floating-point parameter, x,
if successful. On overflow, the function returns INF (infinite) and on underflow,
exp returns 0.

Parameter
x Floating-point value

Example
/* EXP.C */

ffinclude <math.h>
#include <stdio.h>

void main(void)

{

double x = 2.302585093, y;

y = exp(x);

printf("exp(%f) = %f\n", x, y);
}

Output
exp(2.302585) = 10.000000

See Also: log

_expand

Changes the size of a memory block.
void *_expand(void *memblock, size_t size);

Function Required Header Compatibility

_expand <malloc.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_expand returns a void pointer to the reallocated memory block. _expand, unlike
realloc, cannot move a block to change its size. Thus, if there is sufficient memory
available to expand the block without moving it, the memblock parameter to _expand
is the same as the return value.

230

_expand

_expand returns NULL if there is insufficient memory available to expand the block
to the given size without moving it. The item pointed to by memblock is expanded as
much as possible in its current location.

The return value points to a storage space that is guaranteed to be suitably aligned for
storage of any type of object. To check the new size of the item, use _msize. To get a
pointer to a type other than void, use a type cast on the return value.

Parameters
memblock Pointer to previously allocated memory block

size New size in bytes

Remarks
The _expand function changes the size of a previously allocated memory block by
trying to expand or contract the block without moving its location in the heap. The
memblock parameter points to the beginning of the block. The size parameter gives
the new size of the block, in bytes. The contents of the block are unchanged up to the
shorter of the new and old sizes. memblock can also point to a block that has been freed,
as long as there has been no intervening call to calloc, _expand, malloc, or realloc. If
memblock points to a freed block, the block remains free after a call to _expand.

When the application is linked with a debug version of the C run-time libraries,
_expand resolves to _expand_dbg.

Example
/* EXPAND.C */

#include <stdio.h>
#include <malloc.h>
f#finclude <stdlib.h>

void main(void)

{
char *bufchar;
printf("Allocate a 512 element buffer\n");
if((bufchar = (char *)calloc(512, sizeof(char))) == NULL)
exit(1);
printf("Allocated %d bytes at %Fp\n",
_msize(bufchar), (void *)bufchar);
if((bufchar = (char *)_expand(bufchar, 1024)) == NULL)
printf("Can't expand");
else
printf("Expanded block to %d bytes at %Fp\n",
_msize(bufchar), (void *)bufchar);
/* Free memory */
free(bufchar);
) exit(0);

Output
Allocate a 512 element buffer
Allocated 512 bytes at 002C12BC
Expanded block to 1024 bytes at 002C12BC

231

fabs

See Also: calloc, free, malloc, _msize, realloc

fabs

Calculates the absolute value of the floating-point argument.
double fabs(double x);

Function Required Header Compatibility

fabs <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

fabs returns the absolute value of its argument. There is no error return.

Parameter

Example

Output

232

x Floating-point value

/* ABS.C: This program computes and displays
* the absolute values of several numbers.
*/

f#include <stdio.h>
f#include <math.h>
f#include <stdlib.h>

void main(void)

{
int ix = -4, iy;
long 1x = -41567L, 1ly;
double dx = -3.141593, dy;
iy = abs(ix);
printf("The absolute value of %d is %d\n", ix, iy);
1y = labs(1x);
printf("The absolute value of %1d is %1d\n", 1x, ly);
dy = fabs(dx);
printf("The absolute value of %f is %f\n", dx, dy);
}

The absolute value of -4 is 4
The absolute value of -41567 is 41567
The absolute value of -3.141593 is 3.141593

fclose, _fcloseall

See Also: abs, _cabs, labs

fclose, fcloseall

Closes a stream (fclose) or closes all open streams (_fcloseall).

int fclose(FILE *stream);
int _fcloseall(void);

Function Required Header Compatibility
fclose <stdio.h> ANSI, Win 95, Win NT
_fcloseall <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

fclose returns O if the stream is successfully closed. _fcloseall returns the total number
of streams closed. Both functions return EQF to indicate an error.

Parameter

Remarks

Example

stream Pointer to FILE structure

The fclose function closes stream. _fcloseall closes all open streams except stdin,
stdout, stderr (and, in MS-DOSe, _stdaux and _stdprn). It also closes and deletes
any temporary files created by tmpfile. In both functions, all buffers associated with
the stream are flushed prior to closing. System-allocated buffers are released when the
stream is closed. Buffers assigned by the user with setbuf and setvbuf are not
automatically released.

/* FOPEN.C: This program opens files named "data"
* and "data2".It wuses fclose to close "data" and
* _fcloseall to close all remaining files.

*/

fHinclude <stdio.h>
FILE *stream, *stream2;
void main(void)

{
int numclosed;

233

_fevt

Output

/* Open for read (will fail if file "data" does not exist) */
if((stream = fopen("data", "r")) == NULL)

printf("The file 'data' was not opened\n");
else

printf("The file 'data' was opened\n"”);

/* Open for write */
if((stream2 = fopen("data2", “w+")) == NULL)
printf("The file 'data2' was not opened\n"”);
else
printf("The file 'data2' was opened\n"”);

/* Close stream */
if(fclose(stream))
printf("The file 'data' was not closed\n");

/* A11 other files are closed: */
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numciosed);

The file 'data' was opened
The file 'data2' was opened
Number of files ciosed by _fcloseall: 1

See Also: _close, _fdopen, fflush, fopen, freopen

_fevt

Converts a floating-point number to a string.
char *_fevt(double value, int count, int *dec, int *sign);

Function Required Header Compatibility

_fevt <stdlib.h> Win 95, Win NT

For additional compatibility information, see “‘Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_fevt returns a pointer to the string of digits. There is no error return.

Parameters

234

value Number to be converted

count Number of digits after decimal point

Remarks

Example

Output

_fevt

dec Pointer to stored decimal-point position

sign Pointer to stored sign indicator

The _fevt function converts a floating-point number to a null-terminated character
string. The value parameter is the floating-point number to be converted. _fevt stores
the digits of value as a string and appends a null character ('\0'). The count parameter
specifies the number of digits to be stored after the decimal point. Excess digits are
rounded off to count places. If there are fewer than count digits of precision, the string
is padded with zeros.

Only digits are stored in the string. The position of the decimal point and the sign of
value can be obtained from dec and sign after the call. The dec parameter points to an
integer value; this integer value gives the position of the decimal point with respect to
the beginning of the string. A zero or negative integer value indicates that the decimal
point lies to the left of the first digit. The parameter sign points to an integer indicating
the sign of value. The integer is set to 0 if value is positive and is set to a nonzero
number if value is negative.

_ecvt and _fevt use a single statically allocated buffer for the conversion. Each call to
one of these routines destroys the results of the previous call.

/* FCVT.C: This program converts the constant

* 3.1415926535 to a string and sets the pointer
* *puffer to point to that string.

*/

#Hinclude <stdlib.h>
#include <stdio.h>

void main(void)

{
int decimal, sign;
char *buffer;
double source = 3.1415926535;
buffer = _fcvt(source, 7, &decimal, &sign);
printf("source: %2.10f buffer: '%s' decimal: %d sign: %d\n",
source, buffer, decimal, sign);
}

source: 3.1415926535 buffer: '31415927' decimal: 1 sign: 9
See Also: atof, _ecvt, _gcvt

235

_fdopen, _wfdopen

_fdopen, _witdopen

Associate a stream with a file that was previously opened for low-level I/O.

FILE *_fdopen(int andle, const char *mode);
FILE *_wfdopen(int handle, const wchar_t *mode);

Function Required Header Compatibility
_fdopen <stdio.h> Win 95, Win NT
_wfdopen <stdio.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Each of these functions returns a pointer to the open stream. A null pointer value
indicates an error.

Parameters
handle Handle to open file

mode Type of file access

Remarks
The _fdopen function associates an I/O stream with the file identified by handle, thus
allowing a file opened for low-level I/O to be buffered and formatted. _wfdopen is
a wide-character version of _fdopen; the mode argument to _wfdopen is a
wide-character string. _wfdopen and _fdopen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tfdopen _fdopen _fdopen _wfdopen

The mode character string specifies the type of file and file access.

The character string mode specifies the type of access requested for the file, as
follows:

"r" Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w'" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

236

_fdopen, _wfdopen

"a" Opens for writing at the end of the file (appending); creates the file first if it
doesn’t exist.

"r+

”

Opens for both reading and writing. (The file must exist.)

"

w+'" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+'" Opens for reading and appending; creates the file first if it doesn’t exist.

When a file is opened with the ""a'" or "a+"" access type, all write operations occur
at the end of the file. The file pointer can be repositioned using fseek or rewind, but
is always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten. When the "'r+", ""'w+"", or ""a+'" access
type is specified, both reading and writing are allowed (the file is said to be open for
“update’). However, when you switch between reading and writing, there must be an
intervening fflush, fsetpos, fseek, or rewind operation. The current position can be
specified for the fsetpos or fseek operation, if desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, carriage return—linefeed (CR-LF)
combinations are translated into single linefeeds (LF) on input, and LF characters
are translated to CR-LF combinations on output. Also, CTRL+Z is interpreted as
an end-of-file character on input. In files opened for reading/writing, fopen
checks for a CTRL+Z at the end of the file and removes it, if possible. This is
done because using the fseek and ftell functions to move within a file that ends
with a CTRL+Z may cause fseek to behave improperly near the end of the file.

b Open in binary (untranslated) mode; the above translations are suppressed.

¢ Enable the commit flag for the associated filename so that the contents of the
file buffer are written directly to disk if either fflush or _flushall is called.

n Reset the commit flag for the associated filename to “no-commit.” This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBJ. The global commit flag default is “no-commit” unless you
explicitly link your program with COMMODE.OBJ.

The t, ¢, and n mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

If t or b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and
returns NULL. For a discussion of text and binary modes, see “Text and Binary
Mode File I/O.”

237

_fdopen, _wfdopen

Example

238

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows:

Characters in

mode String Equivalent offag Value for _open/_sopen
a _O_WRONLY | _O_APPEND
(usually _O_WRONLY | _O_CREAT | _O_APPEND)
a+ _O_RDWRI|_O_APPEND
(usually_O_RDWR | _O_APPEND | _O_CREAT)
r _O_RDONLY
r+ _O_RDWR
w _O_WRONLY (usually _O_WRONLY | _O_CREAT | _O_TRUNC)
w+ _O_RDWR (usually _O_RDWR | _O_CREAT | _O_TRUNC)
b _O_BINARY
t _O_TEXT
c None
n None

/* _FDOPEN.C: This program opens a file using low-
* level I/0, then uses _fdopen to switch to stream
* access. It counts the tines in the file.

*/

#include <stdlib.h>
f#Finclude <stdio.h>
#include <fcntl.h>
#include <io.h>

void main(void)

{
FILE *stream;
int fh, count = 0;
char inbuf[128];

/* Open a file handle. */
if((fh = _open("_fdopen.c", _O_RDONLY)) == -1)
exit(1);

/* Change handle access to stream access. */
if((stream = _fdopen(fh, "r")) == NULL)
exit(1);

while(fgets(inbuf, 128, stream) != NULL)
count++;

/* After _fdopen, close with fclose, not _close. */
fclose(stream);
printf("Lines in file: %d\n", count);
}
Output
Lines in file: 32

See Also: _dup, fclose, fopen, freopen, _open

feof

feof

Tests for end-of-file on a stream.
int feof(FILE *stream);

Function Required Header Compatibility

feof <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
The feof function returns a nonzero value after the first read operation that attempts to
read past the end of the file. It returns O if the current position is not end of file. There
is no error return.

Parameter
stream Pointer to FILE structure

Remarks
The feof routine (implemented both as a function and as a macro) determines whether
the end of stream has been reached. When end of file is reached, read operations
return an end-of-file indicator until the stream is closed or until rewind, fsetpos,
fseek, or clearerr is called against it.

Example
/* FEOF.C: This program uses feof to indicate when
* it reaches the end of the file FEOF.C. It also
* checks for errors with ferror.
*/

#include <stdio.h>
#include <stdlib.h>

239

ferror

void main(void)
{
int count, total = 0;
char buffer[100];
FILE *stream;
if((stream = fopen("feof.c", "r")) == NULL)
exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
{
/* Attempt to read in 1@ bytes: */
count = fread(buffer, sizeof(char), 100, stream };
if(ferror(stream)) {
perror("Read error" };
break;
}

/* Total up actual bytes read */

total += count;
}
printf("Number of bytes read = %d\n", total);
fclose(stream);

Output
Number of bytes read = 745

See Also: clearerr, _eof, ferror, perror

ferror

Tests for an error on a stream.
int ferror(FILE *stream);

Function Required Header Compatibility

ferror <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If no error has occurred on stream, ferror returns 0. Otherwise, it returns a
nonzero value.

240

ferror

Parameter
stream Pointer to FILE structure

Remarks
The ferror routine (implemented both as a function and as a macro) tests for a reading
or writing error on the file associated with stream. If an error has occurred, the error
indicator for the stream remains set until the stream is closed or rewound, or until
clearerr is called against it.

Example
/* FEOF.C: This program uses feof to indicate when
* it reaches the end of the file FEOF.C. It also
* checks for errors with ferror.
*/

#finclude <stdio.h>
#finclude <stdlib.h>

void main(void)

{
int count, total = 0;
char buffer[100];
FILE *stream;

if((stream = fopen("feof.c", "r")) == NULL)
exit(1);

/* Cycle until end of file reached: */
while(!feof(stream))
{
/* Attempt to read in 10 bytes: */
count = fread(buffer, sizeof(char), 100, stream);
if(ferror(stream)) {
perror("Read error");
break;
}

/* Total up actual bytes read */
total += count;

}
printf("Number of bytes read = %d\n", total);
fclose(stream);

Output
-Number of bytes read = 745

See Also: clearerr, _eof, feof, fopen, perror

24

fflush

fflush

Flushes a stream.

int fflush(FILE *stream);

Function Required Header Compatibility

fflush <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
fflush returns 0 if the buffer was successfully flushed. The value 0 is also returned in
cases in which the specified stream has no buffer or is open for reading only. A return
value of EOF indicates an error.

Note If fflush returns EOF, data may have been lost due to a write failure. When setting up a
critical error handler, it is safest to turn buffering off with the setvbuf function or to use low-level
I/0 routines such as _open, _close, and _write instead of the stream 1/O functions.

Parameter
stream Pointer to FILE structure

Remarks
The fflush function flushes a stream. If the file associated with stream is open for output,
fflush writes to that file the contents of the buffer associated with the stream. If the
stream is open for input, fflush clears the contents of the buffer. fflush negates the effect
of any prior call to ungetc against stream. Also, fflush(NULL) flushes all streams
opened for output. The stream remains open after the call. fflush has no effect on an
unbuffered stream.

Buffers are normally maintained by the operating system, which determines the

optimal time to write the data automatically to disk: when a buffer is full, when a stream
is closed, or when a program terminates normally without closing the stream. The
commit-to-disk feature of the run-time library lets you ensure that critical data is

written directly to disk rather than to the operating-system buffers. Without rewriting an
existing program, you can enable this feature by linking the program’s object files with
COMMODE.OB]. In the resulting executable file, calls to _flushall write the contents
of all buffers to disk. Only _flushall and fflush are affected by COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see “Stream I/O” on
page 16 in Chapter 1, fopen, and _fdopen.

242

Example

Output

fgetc, fgetwc, _fgetchar, _fgetwchar

/* FFLUSH.C */

f#finclude <stdio.h>
f#finclude <conio.h>

void main(void)

{
int integer;
char string[81];

/* Read each word as a string. */

printf("Enter a sentence of four words with scanf: ");
for(integer = @; integer < 4; integer++)
{

scanf("%s", string);
printf("%s\n", string);
}

/* You must flush the input buffer before using gets. */
fflush(stdin);

printf("Enter the same sentence with gets: ");

gets(string);

printf("%s\n", string);

Enter a sentence of four words with scanf: This is a test
This

is

a

test

Enter the same sentence with gets: This is a test

This is a test

See Also: fclose, _flushall, setvbuf

fgetc, fgetwc, _fgetchar, _fgetwchar

Read a character from a stream (fgetc, fgetwc) or stdin (_fgetchar, _fgetwchar).

int fgetc(FILE *stream);
wint_t fgetwc(FILE *stream);
int _fgetchar(void);

wint_t _fgetwchar(void);

Function Required Header Compatibility

fgetc <stdio.h> ANSI, Win 95, Win NT
fgetwe <stdio.h> or <wchar.h> ANSI, Win 95, Win NT
_fgetchar <stdio.h> Win 95, Win NT
_fgetwchar <stdio.h> or <wchar.h> Win 95, W_in NT

243

fgetc, fgetwc, _fgetchar, _fgetwchar

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

fgetc and _fgetchar return the character read as an int or return EQF to indicate an
error or end of file. fgetwc and _fgetwchar return, as a wint_t, the wide character
that corresponds to the character read or return WEOF to indicate an error or end of
file. For all four functions, use feof or ferror to distinguish between an error and an
end-of-file condition. For fgetc and fgetwc, if a read error occurs, the error indicator
for the stream is set.

Parameter

Remarks

244

stream Pointer to FILE structure

Each of these functions reads a single character from the current position of a file; in
the case of fgetc and fgetwe, this is the file associated with stream. The function then
increments the associated file pointer (if defined) to point to the next character. If the
stream is at end of file, the end-of-file indicator for the stream is set. Routine-specific
remarks follow.

Routine Remarks

fgetc Equivalent to getc, but implemented only as a function, rather than as a
function and a macro.
fgetwe Wide-character version of fgetc. Reads c as a multibyte character or a

wide character according to whether stream is opened in text mode or
binary mode.

_fgetchar Equivalent to fgetc(stdin). Also equivalent to getchar, but
implemented only as a function, rather than as a function and a macro.
Microsoft-specific; not ANSI-compatible.

_fgetwchar Wide-character version of _fgetchar. Reads c as a multibyte character
or a wide character according to whether stream is opened in text mode
or binary mode. Microsoft-specific; not ANSI-compatible.

For more information about processing wide characters and multibyte characters in text
and binary modes, see “Unicode Stream I/O in Text and Binary Modes” on page 15.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_fgettc fgetc fgetc fgetwe

_fgettchar fgetchar fgetchar _fgetwchar

fgetpos

Example
/* FGETC.C: This program uses getc to read the first
* 80 input characters (or until the end of input)
* and place them into a string named buffer.
*/

Jinclude <stdio.h>
#include <stdlib.h>

void main(void)

{
FILE *stream;
char buffer[81];
int i, ch;
/* Open file to read line from: */
if((stream = fopen("fgetc.c”, "r")) == NULL)
exit(0);
/* Read in first 80 characters and place them in "buffer”: */
ch = fgetc(stream);
for(i=0; (i < 80) && (feof(stream) == 0); i++)
{
buffer[i] = (char)ch;
ch = fgetc(stream);
}
/* Add null to end string */
buffer[i] = '\@"';
printf("%s\n", buffer);
fclose(stream);
}

Output
/* FGETC.C: This program uses getc to read the first
* 80 input characters (or

See Also: fputc, getc

Gets a stream’s file-position indicator.
int fgetpos(FILE *stream, fpos_t *pos);

Function Required Header Compatibility
fgetpos <stdio.h> ANSI, Win 95, Win NT

245

fgetpos

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, fgetpos returns 0. On failure, it returns a nonzero value and sets errno
to one of the following manifest constants (defined in STDIO.H): EBADF, which
means the specified stream is not a valid file handle or is not accessible, or EINVAL,
which means the stream value is invalid.

Parameters

Remarks

Example

246

stream Target stream

pos Position-indicator storage

The fgetpos function gets the current value of the stream argument’s file-position
indicator and stores it in the object pointed to by pos. The fsetpos function can later
use information stored in pos to reset the stream argument’s pointer to its position at
the time fgetpos was called. The pos value is stored in an internal format and is
intended for use only by fgetpos and fsetpos.

/* FGETP0S.C: This program opens a file and reads
* bytes at several different locations.
*/

#include <stdio.h>

void main(void)

{
FILE *stream;
fpos_t pos;
char buffer[20];

if((stream = fopen("fgetpos.c", "rb")) == NULL)
printf("Trouble opening file\n");
else
{
/* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream);
if(fgetpos(stream, &pos) != 0)
perror("fgetpos error");
else
{
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.10s\n", pos, buffer);

Output

fgets, fgetws

/* Set a new position and read more data */
pos = 140;
if(fsetpos(stream, &pos) !=0)

perror("fsetpos error");

fread(buffer, sizeof(char), 10, stream);

printf("10 bytes at byte %1d: %.10s\n", pos, buffer);
fclose(stream);

}

10 bytes at byte 10: .C: This p
10 bytes at byte 140:

FIL
See Also: fsetpos

fgets, fgetws

Get a string from a stream.

char *fgets(char *string, int n, FILE *stream);
wchar_t *fgetws(wchar_t *string, int n, FILE *stream);

Function Required Header Compatibility
fgets <stdio.h> ANSI, Win 95, Win NT
fgetws <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Each of these functions returns string. NULL is returned to indicate an error or an
end-of-file condition. Use feof or ferror to determine whether an error occurred.

Parameters

string Storage location for data
n Maximum number of characters to read
stream Pointer to FILE structure

247

fgets, fgetws

Remarks
The fgets function reads a string from the input stream argument and stores it in
string. fgets reads characters from the current stream position to and including the
first newline character, to the end of the stream, or until the number of characters read
is equal to n—1, whichever comes first. The result stored in string is appended with a
null character. The newline character, if read, is included in the string.

fgets is similar to the gets function; however, gets replaces the newline character with
NULL. fgetws is a wide-character version of fgets.

fgetws reads the wide-character argument string as a multibyte-character string or a
wide-character string according to whether stream is opened in text mode or binary
mode, respectively. For more information about using text and binary modes in
Unicode and multibyte stream-1/O, see “Text and Binary Mode File I/O” and
“Unicode Stream I/O in Text and Binary Modes” on page 15.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
. Not Defined
_fgetts fgets fgets fgetws

Example
/* FGETS.C: This program uses fgets to display
* a line from a file on the screen.
*/

ffinclude <stdio.h>

void main(void)

{
FILE *stream;
char 1ine[l0@0];
if((stream = fopen("fgets.c", "r")) != NULL)
{
if(fgets(line, 100, stream) == NULL)
printf("fgets error\n");
else
printf("%s", 1ine);
fciose(stream);
}
}

248

_filelength, _filelengthi64

Output
/* FGETS.C: This program uses fgets to display

See Also: fputs, gets, puts

_filelength, _filelengthi64

Get the length of a file.

long _filelength(int handle);
__int64 _filelengthi64(int handle);

Function Required Header Compatibility
_filelength <io.h> Win 95, Win NT
_filelengthi64 <io.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Both _filelength and _filelengthi64 return the file length, in bytes, of the target file
associated with handle. Both functions return a value of —1L to indicate an error, and
an invalid handle sets errno to EBADF.

Parameter
handle Target file handle

Example
/* CHSIZE.C: This program uses _filelength to report the size
* of a file before and after modifying it with _chsize.
*/

#Hinclude <io.h>
#include <fcntl.h>
f#finclude <sys/types.h>
fHinclude <sys/stat.h>
#include <stdio.h>

void main(void)
{
int fh, result;
unsigned int nbytes = BUFSIZ;

249

_fileno

Output

/* Open a file */
if((fh = _open("data"™, _O_RDWR | _O_CREAT, _S_IREAD
| _S_IWRITE)) !=-1)

{
printf("File length before: %1d\n", _filelength(fh));
if((result = _chsize(fh, 329678)) == 0)
printf("Size successfully changed\n");
else
printf("Problem in changing the size\n");
printf("File length after: %1d\n", _filelength(fh));
_close(fh);
}

File Tength before: 0
Sijze successfully changed
File length after: 329678

See Also: _chsize, _fileno, _fstat, _fstati6d, _stat, _stati6d

_fileno

Gets the file handle associated with a stream.
int _fileno(FILE *stream);

Function Required Header Compatibility

_fileno <stdio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_fileno returns the file handle. There is no error return. The result is undefined if
stream does not specify an open file.

Parameter

Remarks

250

stream Pointer to FILE structure

The _fileno routine returns the file handle currently associated with stream. This
routine is implemented both as a function and as a macro. For details on choosing
either implementation, see “Choosing Between Functions and Macros” on page xiii.

_find, _wfind Functions

Example
/* FILENO.C: This program uses _fileno to obtain
* the file handle for some standard C streams.
*/

#include <stdio.h>

void main(void)

{
printf("The file handle for stdin is %d\n", _fileno(stdin));
printf("The file handle for stdout is %d\n", _fileno(stdout));
printf("The file handle for stderr is %d\n", _fileno(stderr));
}

Output
The file handle for stdin is @
The file handle for stdout is 1
The file handle for stderr is 2

See Also: _fdopen, _filelength, fopen, freopen

_find, _wfind Functions

These functions search for and close searches for specified filenames.

e _findclose
o _findnext, _findnexti64, _wfindnext, _wfindnexti64
o _findfirst, _findfirsti6d, _wfindfirst, _wfindfirsti64

Remarks
The _findfirst function provides information about the first instance of a filename
that matches the file specified in the filespec argument. Any wildcard combination
supported by the host operating system can be used in filespec. File information is

returned in a _finddata_t structure, defined in IO.H. The _finddata_t structure
includes the following elements:

unsigned attrib File attribute

time_t time_create Time of file creation (—1L for FAT file systems)

time_t time_access Time of last file access (—1L for FAT file systems)

time_t time_write Time of last write to file

_fsize_t size Length of file in bytes

char name[_MAX_FNAME] Null-terminated name of matched file/directory,
without the path

In file systems that do not support the creation and last access times of a file, such as
the FAT system, the time_create and time_access fields are always —1L.

251

_find, _wfind Functions

Example

252

_MAX_FNAME is defined in STDLIB.H as 256 bytes.

You cannot specify target attributes (such as _A_RDONLY) by which to limit the find
operation. This attribute is returned in the attrib field of the _finddata_t structure and
can have the following values (defined in 10.H).

_A_ARCH Archive. Set whenever the file is changed, and cleared by the BACKUP
command. Value: 0x20

_A_HIDDEN Hidden file. Not normally seen with the DIR command, unless the
/AH option is used. Returns information about normal files as well as files with
this attribute. Value: 0x02

_A_NORMAL Normal. File can be read or written to without restriction. Value:
0x00

_A_RDONLY Read-only. File cannot be opened for writing, and a file with the
same name cannot be created. Value: 0x01

_A_SUBDIR Subdirectory. Value: 0x10

_A_SYSTEM System file. Not normally seen with the DIR command, unless the
/A or /A:S option is used. Value: 0x04

_findnext finds the next name, if any, that matches the filespec argument specified in
a prior call to _findfirst. The fileinfo argument should point to a structure initialized
by a previous call to _findfirst. If a match is found, the fileinfo structure contents are
altered as described above. _findclose closes the specified search handle and releases
all associated resources. The handle returned by _findfirst must first be passed to
_findclose, before modification operations such as deleting can be performed on the
directories that form the path passed to _findfirst.

The _find functions allow nested calls. For example, if the file found by a call to
_findfirst or _findnext is a subdirectory, a new search can be initiated with another
call to _findfirst or _findnext.

_wfindfirst and _wfindnext are wide-character versions of _findfirst and _findnext.
The structure argument of the wide-character versions has the _wfinddata_t data
type, which is defined in IO.H and in WCHAR.H. The fields of this data type are the
same as those of the _finddata_t data type, except that in _wfinddata_t the name
field is of type wchar_t rather than type char. Otherwise _wfindfirst and _wfindnext
behave identically to _findfirst and _findnext. Functions _findfirsti64, _findnexti64,
_wfindfirsti64, and _wfindnexti64 also behave identically except they use and

return 64-bit file lengths.

/* FFIND.C: This program uses the 32-bit _find functions to print
* a list of all files (and their attributes) with a .C extension
* in the current directory.

*/

Output

#include <stdio.h>

f#include <io.h>

#include <time.h>

void main(void)

{

struct _finddata_t c_file;
long hFile;

/* Find first .c file in current directory */
if((hFile = _findfirst("*.c", &c_file)) == -1L)
printf("No *.c files in current directory!\n");

els
{

e

printf("Listing of .c files\n\n");

printf("\nRDO HID SYS ARC FILE
printf("--- --- --- --- ---- ---- %25¢
printf((c_file.attrib & _A_RDONLY)
printf((c_file.attrib & _A_SYSTEM)
printf((c_file.attrib & _A_HIDDEN)
printf((c_file.attrib & _A_ARCH)

"y

) e) e

Y
Y
Y

printf(" %-12s %.24s %91d\n",
c_file.name, ctime(&(c_file.time_write)),

/* Find the rest of the .c files */
while(_findnext(hFile, &c_file) == 0)

{

}

printf((c_file.attrib & _A_RDONLY)
printf((c_file.attrib & _A_SYSTEM)
printf((c_file.attrib & _A_HIDDEN)
printf((c_file.attrib & _A_ARCH)

)) e D

printf(" %-12s %.24s %91d\n",
c_file.name, ctime(&(c_file.time_write)), c_file.size);

_findclose(hFile);

Listing of .c files

RDO HID SYS ARC

N N

N N
N N
N N

N
N
N
N

Y

Y
Y
Y

FILE DATE

CWAIT.C Tue Jun 01 04:07:26 1993
SPRINTF.C Thu May 27 04:59:18 1993
CABS.C Thu May 27 ©4:58:46 1993

BEGTHRD.C Tue Jun 01 04:00:48 1993

< < < =<

----\n",
N ")
N ")
N ")
N ")

[of

_find, _wfind Functions

DATE %25c SIZE\n", ' ');

)

_file.size);

=Z2=Z==

SIZE
1611
617
359
3726

)
)
)
)

253

_find, _wfind Functions

_findclose

Closes the specified search handle and releases associated resources.
int _findclose(long kandle);

Function Required Header Compatibility

_findclose <io.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, _findclose returns 0. Otherwise, it returns ~1 and sets errno to
ENOENT, indicating that no more matching files could be found.

Parameter
handle Search handle returned by a previous call to _findfirst

_findfirst, _findfirsti64, _wfindfirst, _wfindfirsti64

Provides information about the first instance of a filename that matches the file
specified in the filespec argument.

long _findfirst(char *filespec, struct _finddata_t *fileinfo);

__int64 _findfirsti64(char *filespec, struct _finddata_t *fileinfo);

long _wfindfirst(wchar_t *filespec, struct _wfinddata_t *fileinfo);
__int64 _wfindfirsti64(wchar_t *filespec, struct _wfinddata_t *fileinfo);

Function Required Header Compatibility
_findfirst <io.h> Win 95, Win NT
_findfirsti64 <io.h> Win 95, Win NT
_wiindfirst <io.h> or <wchar.h> Win NT
_wfindfirsti64 <io.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

254

_find, _wfind Functions

Return Value
If successful, _findfirst and _wfindfirst return a unique search handle identifying
the file or group of files matching the filespec specification, which can be used in a
subsequent call to _findnext or _wfindnext, respectively, or to _findclose. Otherwise,
_findfirst and _wfindfirst return —1 and set errno to one of the following values:

ENOENT File specification that could not be matched
EINVAL Invalid filename specification

Parameters
filespec Target file specification (may include wildcards)

fileinfo File information buffer

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tfindfirst _findfirst _findfirst _wfindfirst

_tfindfirsti6d _findfirsti64 _findfirsti64 _wfindfirsti64

_findnext, _findnexti64, wfindnext, wfindnexti64

Find the next name, if any, that matches the filespec argument in a previous call to
_findfirst, and then alters the fileinfo structure contents accordingly.

int _findnext(long handle, struct _finddata_t *fileinfo);

__int64 _findnexti6d(long handle, struct _finddata_t *fileinfo);
int _wfindnext(long handle, struct _wfinddata_t *fileinfo);
__int64 _wfindnexti64(long handle, struct _wfinddata_t *fileinfo);

Function Required Header Compatibility
_findnext <io.h> Win 95, Win NT
_findnexti64 <io.h> Win 95, Win NT
_wfindnext <io.h> or <wchar.h> Win NT
_wfindnexti64 <io.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
If successful, _findnext and _wfindnext return 0. Otherwise, they return —1 and set
errno to ENOENT, indicating that no more matching files could be found.

255

_finite

Parameters
handle Search handle returned by a previous call to _findfirst

fileinfo File information buffer

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tfindnext _findnext _findnext _wfindnext

_tfindnexti64 _findnexti64 _findnexti64 _wfindnexti64

Determines whether given double-precision floating point value is finite.

int _finite(double x);

Function Required Header Compatibility

_finite <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_finite returns a nonzero value (TRUE) if its argument x is not infinite, that is,
if -INF < x < +INF. It returns O (FALSE) if the argument is infinite or a NaN.

Parameter
x Double-precision floating-point value

See Also: _isnan, _fpclass

floor

Calculates the floor of a value.

double floor(double x);

Function Required Header Compatibility

floor <math.h> ANSI, Win 95, Win NT

256

floor

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
The floor function returns a floating-point value representing the largest integer that is
less than or equal to x. There is no error return.

Parameter
x Floating-point value

Example
/* FLOOR.C: This exampie displays the largest integers
* less than or equal to the floating-point values 2.8
* and -2.8. It then shows the smallest integers greater
* than or equal to 2.8 and -2.8.
*/

J#include <math.h>
f#inciude <stdio.h>

void main(void)
{
double y;

y = floor(2.8);
printf("The floor of 2.8 is %f\n", y);
y = floor(-2.8);
printf("The floor of -2.8 is %f\n", y);

y =ceil(2.8);

printf("The ceil of 2.8 is %f\n", y);
y = ceil(-2.8);

printf("The ceil of -2.8 is %f\n", y);

Output
The floor of 2.8 is 2.000000
The floor of -2.8 is -3.000000
The ceil of 2.8 is 3.000000
The ceil of -2.8 is -2.000000

See Also: ceil, fmod

257

_flushall

_flushall

Flushes all streams; clears all buffers.
int _flushall(void);

Function Required Header Compatibility

_flushall <stdio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Remarks

Example

258

_flushall returns the number of open streams (input and output). There is no error
return.

By default, the _flushall function writes to appropriate files the contents of all buffers
associated with open output streams. All buffers associated with open input streams
are cleared of their current contents. (These buffers are normally maintained by the
operating system, which determines the optimal time to write the data automatically to
disk: when a buffer is full, when a stream is closed, or when a program terminates
normally without closing streams.)

If a read follows a call to _flushall, new data is read from the input files into the
buffers. All streams remain open after the call to _flushall.

The commit-to-disk feature of the run-time library lets you ensure that critical data is
written directly to disk rather than to the operating system buffers. Without rewriting
an existing program, you can enable this feature by linking the program’s object files
with COMMODE.OBJ. In the resulting executable file, calls to _flushall write the
contents of all buffers to disk. Only _flushall and fflush are affected by
COMMODE.OBJ.

For information about controlling the commit-to-disk feature, see “Stream I/O”,

fopen, and _fdopen.

/* FLUSHALL.C: This program uses _flushall
* to flush all open buffers.
*/

#include <stdio.h>

Output

void main(void)

{

int numflushed;

numflushed = _flushall();

printf(“There were %d streams flushed\n", numflushed);
}

There were 3 streams flushed

See Also: _commit, fclose, fflush, _flushall, setvbuf

fmod

fmod

Calculates the floating-point remainder.
double fmod(double x, double y);

Function Required Header Compatibility

fmod <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

fmod returns the floating-point remainder of x / y. If the value of y is 0.0, fmod
returns a quiet NaN. For information about representation of a quiet NaN by the
printf family, see printf.

Parameters

Remarks

Example

x,y Floating-point values

The fmod function calculates the floating-point remainder fof x/ y such that x =i *y
+ f, where i is an integer, f has the same sign as x, and the absolute value of fis less
than the absolute value of y.

/* FMOD.C: This program displays a
* floating-point remainder.
*/

#include <math.h>
#include <stdio.h>

259

fopen, _wfopen

void main(void)

{
double w = -10.0, x = 3.0, y = 0.0, z;
z = fmod(x, y);
printf("The remainder of %.2f / %.2f is %f\n", w, X, z);
printf("The remainder of %.2f / %.2f is %f\n", X, y. z);
}

Output
The remainder of -10.00 / 3.00 is -1.000000

See Also: ceil, fabs, floor

fopen, _wiopen

Open a file.

FILE *fopen(const char *filename, const char *mode);
FILE *_wfopen(const wchar_t *filename, const wchar_t *mode);

Function Required Header Compatibility
fopen <stdio.h> ANSI, Win 95, Win NT
_wfopen <stdio.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

The ¢, n, and t mode options are Microsoft extensions for fopen and _fdopen and
should not be used where ANSI portability is desired.

Return Value
Each of these functions returns a pointer to the open file. A null pointer value
indicates an error.

Parameters
filename Filename

mode Type of access permitted
Remarks
The fopen function opens the file specified by filename. _wfopen is a wide-character

version of fopen; the arguments to _wfopen are wide-character strings. _wfopen and
fopen behave identically otherwise.

260

fopen, _wfopen

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_tfopen fopen fopen _wfopen

The character string mode specifies the type of access requested for the file, as
follows:

r' Opens for reading. If the file does not exist or cannot be found, the fopen call
fails.

"w'" Opens an empty file for writing. If the given file exists, its contents are
destroyed.

a" Opens for writing at the end of the file (appending) without removing the EOF

marker before writing new data to the file; creates the file first if it doesn’t exist.

"r+" Opens for both reading and writing. (The file must exist.)

w+'" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it doesn’t exist.

When a file is opened with the "a'' or "a+"' access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus, existing data cannot be overwritten.

The ""a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The ""a+" mode does
remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

When the "r+", "w+", or "a+" access type is specified, both reading and writing are
allowed (the file is said to be open for “update”). However, when you switch between
reading and writing, there must be an intervening fflush, fsetpos, fseek, or rewind
operation. The current position can be specified for the fsetpos or fseek operation,

if desired.

In addition to the above values, the following characters can be included in mode to
specify the translation mode for newline characters:

t Open in text (translated) mode. In this mode, CTRL+Z is interpreted as an end-of-
file character on input. In files opened for reading/writing with ""a+", fopen checks
for a CTRL+Z at the end of the file and removes it, if possible. This is done because

261

fopen, _wfopen

262

using fseek and ftell to move within a file that ends with a CTRL+Z, may cause
fseek to behave improperly near the end of the file.

Also, in text mode, carriage return—linefeed combinations are translated into single
linefeeds on input, and linefeed characters are translated to carriage return-linefeed
combinations on output. When a Unicode stream-I/O function operates in text mode
(the default), the source or destination stream is assumed to be a sequence of
multibyte characters. Therefore, the Unicode stream-input functions convert multibyte
characters to wide characters (as if by a call to the mbtowe function). For the same
reason, the Unicode stream-output functions convert wide characters to multibyte
characters (as if by a call to the wetomb function).

b Open in binary (untranslated) mode; translations involving carriage-return and
linefeed characters are suppressed.

If t or b is not given in mode, the default translation mode is defined by the global
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL.

For more information about using text and binary modes in Unicode and multibyte
stream-1/O, see “Text and Binary Mode File I/O” and “Unicode Stream I/O in Text
and Binary Modes” on page 15.

¢ Enable the commit flag for the associated filename so that the contents of the file
buffer are written directly to disk if either fflush or _flushall is called.

n Reset the commit flag for the associated filename to “no-commit.” This is the
default. It also overrides the global commit flag if you link your program with
COMMODE.OBI. The global commit flag default is “no-commit” unless you
explicitly link your program with COMMODE.OBJ.

Valid characters for the mode string used in fopen and _fdopen correspond to oflag
arguments used in _open and _sopen, as follows:

Characters

in mode Equivalent oflag Value for _open/_sopen

String

a _O_WRONLY | _O_APPEND (usually _O_WRONLY | _O_CREAT | _O_APPEND)
a+ _O_RDWR | _O_APPEND (usually _O_RDWR | _O_APPEND | _O_CREAT)
r _O_RDONLY

r+ _O_RDWR

w _O_WRONLY (usually _O_WRONLY [_O_CREAT | _O_TRUNC)

w4+ _O_RDWR (usually _O_RDWR | _O_CREAT | _O_TRUNC)

b _O_BINARY

t _O_TEXT

c None

n None

_fpclass
Example

/* FOPEN.C: This program opens files named "data"

* and "data2".It uses fclose to close "data" and

* _fcloseall to close all remaining files.

*/
jHinclude <stdio.h>

FILE *stream, *stream2;

void main(void)

{
int numclosed;
/* Open for read (will fail if file “data" does not exist) */
if((stream = fopen("data™, "r")) == NULL)
printf("The file 'data' was not opened\n");
else
printf("The file 'data' was opened\n”);
/* Open for write */
if((stream2 = fopen("data2", "wt+")) == NULL)
printf("The file 'data2’' was not opened\n");
else
printf("The file 'data2' was opened\n");
/* Close stream */
if(fclose(stream))
printf("The file ‘'data' was not closed\n”);
/* A11 other files are closed: */
numclosed = _fcloseall();
printf("Number of files closed by _fcloseall: %u\n", numclosed);
}

Output
The file 'data’ was opened
The file 'data2' was opened
Number of files closed by _fcloseall: 1

See Also: fclose, _fdopen, ferror, _fileno, freopen, _open, _setmode

_fpclass

Returns status word containing information on floating-point class.
int _fpclass(double x);

Function Required Header Compatibility
_fpclass <float.h> Win 95, Win NT

263

_fpieee_flt

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_fpclass returns an integer value that indicates the floating-point class of its argument
x. The status word may have one of the following values, defined in FLOAT.H.

Value Meaning
_FPCLASS_SNAN Signaling NaN
_FPCLASS_QNAN Quiet NaN
_FPCLASS_NINF Negative infinity (—INF)
_FPCLASS_NN Negative normalized non-zero
_FPCLASS_ND Negative denormalized
_FPCLASS_NZ Negative zero (-0)
_FPCLASS_PZ Positive 0 (+0)
_FPCLASS_PD Positive denormalized
_FPCLASS_PN Positive normalized non-zero
_FPCLASS_PINF Positive infinity (+INF)
Parameter

x Double-precision floating-point value

See Also: _isnan

_fIpieee_flt

Invokes user-defined trap handler for IEEE floating-point exceptions.

int _fpieee_f1t(unsigned long exc_code, struct _EXCEPTION_POINTERS *exc_info,
o int handler(FPIEEE_RECORD %));

Function Required Header Compatibility
_fpieee_flt <fpieee.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

264

Return Value
The return value of _fpieee_flt is the value returned by handler. As such, the IEEE
filter routine may be used in the except clause of a structured exception-handling

(SEH) mechanism.

Parameters

Remarks

Example

exc_code Exception code

exc_info Pointer to the Windows NT exception information structure

handler Pointer to user’s IEEE trap-handler routine

The _fpieee_flt function invokes a user-defined trap handler for IEEE floating-point
exceptions and provides it with all relevant information. This routine serves as an
exception filter in the SEH mechanism, which invokes your own IEEE exception

handler when necessary.

The _FPIEEE_RECORD structure, defined in FPIEEE.H, contains information
pertaining to an IEEE floating-point exception. This structure is passed to the
user-defined trap handler by _fpieee_fit.

_FPIEEE_RECORD Field

Description

unsigned int
RoundingMode,
unsigned int Precision

unsigned int Operation

_FPIEEE_VALUE
Operandl,
_FPIEEE_VALUE
Operand2,
_FPIEEE_VALUE Result

These fields contain information on the floating-point
environment at the time the exception occurred.

Indicates the type of operation that caused the trap. If the type is
a comparison (_FpCodeCompare), you can supply one of the
special _FPIEEE_COMPARE_RESULT values (as defined
in FPIEEE.H) in the Result.Value ficld. The conversion type
(_FpCodeConvert) indicates that the trap occurred during a
floating-point conversion operation. You can look at the
Operand1 and Result types to determine the type of
conversion being attempted.

These structures indicate the types and values of the proposed
result and operands:

OperandValid Flag indicating whether the responding value
is valid.

Format Data type of the corresponding value. The format type
may be returned even if the corresponding value is not valid.
Value Result or operand data value.

/* FPIEEE.C: This program demonstrates the implementation of
* a user-defined floating-point exception handier using the

* _fpieee_f1t function
*/

ffinclude <fpieee.h>
f#finclude <excpt.h>
#include <float.h>

int fpieee_handler(_FPIEEE_RECORD *);

_fpieee_flt

265

_fpieee_flt

int fpieee_handler(_FPIEEE_RECORD *pieee)

{
// user-defined ieee trap handler routine:
// there is one handler for all
// IEEE exceptions

// Assume the user wants all invalid
// operations to return 0.

if ((pieee->Cause.InvalidOperation) &&
(pieee->Result.Format == _FpFormatFp32))

pieee->Result.Value.Fp32Value = 0.0F;

return EXCEPTION_CONTINUE_EXECUTION;
}
else
return EXCEPTION_EXECUTE_HANDLER;
1

ftdefine _EXC_MASK \
_EM_UNDERFLOW + \
_EM_OVERFLOW + \
_EM_ZERODIVIDE + \
_EM_INEXACT

void main(void)
{
/! ...

—try {
// unmask invalid operation exception
_control fp(_EXC_MASK, _MCW_EM);

// code that may generate
// fp exceptions goes here
}
__except (_fpieee_f1t(GetExceptionCode(),
GetExceptionInformation(),
fpieee_handler)){

// code that gets control

// if fpieee_handler returns
// EXCEPTION_EXECUTE_HANDLER goes here

}

/...
}

See Also: _control87

266

_fpreset

Resets the floating-point package.
void _fpreset(void);

Function Required Header Compatibility

_fpreset <float.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Remarks

Example

The _fpreset function reinitializes the floating-point math package. _fpreset is usually
used with signal, system, or the _exec or _spawn functions. If a program traps floating-
point error signals (SIGFPE) with signal, it can safely recover from floating-point
errors by invoking _fpreset and using longjmp.

/* FPRESET.C: This program uses signal to set up a
* routine for handling floating-point errors.
*/

fHinclude <stdio.h>
fHinclude <signal.h>
ffinclude <setjmp.h>
jHnclude <stdlib.h>
f##include <float.h>
ffinclude <math.h>
fFinclude <string.h>

f#ipragma warning(disable : 4113) /* C4113 warning expected */

Jjmp_buf mark; /* Address for long jump to jump to */
int fperr; /* Global error number */

void __cdecl fphandler(int sig, int num); /* Prototypes */
void fpcheck(void);

void main(void)

{
double nl, n2, r;
int jmpret;

_fpreset

267

_fpreset

/* Unmask all floating-point exceptions. */
_control87(@, _MCW_EM);

/* Set up floating-point error handler. The compiler

* will generate a warning because it expects

* signal-handling functions to take only one argument.
*/

if(signal(SIGFPE, fphandler) == SIG_ERR)

fprintf(stderr, "Couldn't set SIGFPE\n");
abort(); '}

/* Save stack environment for return in case of error. First
* time through, jmpret is @, so true conditional is executed.
* If an error occurs, jmpret will be set to -1 and false
* conditional will be executed.

*/

jmpret = setjmp(mark);

if(jmpret == 0)

{

printf("Test for invalid operation - ");

printf("enter two numbers: ");

scanf("%1f %1f", &nl, &n2);

r=nl/ n2;

/* This won't be reached if error occurs. */
printf("\n\n%4.3g9 / %4.39 = %4.39\n", nl, n2, r);

r=nl *n2;
/* This won't be reached if error occurs. */
printf("\n\n%4.3g * %4.3g = %4.3g\n", nl, n2, r);

}
else
fpcheck();
}
/* fphandler handles SIGFPE (floating-point error) interrupt. Note

that this prototype accepts two arguments and that the
prototype for signal in the run-time library expects a signal
handler to have only one argument.

The second argument in this signal handler allows processing of
_FPE_INVALID, _FPE_OVERFLOW, _FPE_UNDERFLOW, and
_FPE_ZERODIVIDE, all of which are Microsoft-specific symbols
that augment the information provided by SIGFPE. The compiler
will generate a warning, which is harmliess and expected.

* Ok bk ok K Ok *

*

*/

void fphandler(int sig, int num)

{
/* Set global for outside check since we don't want
* to do I/0 in the handler.
*/

268

fprintf, fwprintf

fperr = num;
/* Initialize floating-point package. */
_fpreset();
/* Restore calling environment and jump back to setjmp. Return
* -1 so that setjmp will return false for conditional test.
*/
longjmp(mark, -1);
}
void fpcheck(void)
{
char fpstr[30];
switch(fperr)
{
case _FPE_INVALID:
strcpy(fpstr, "Invalid number");
break;
case _FPE_OVERFLOW:
strcpy(fpstr, "Overflow");

break;
case _FPE_UNDERFLOW:
strcpy(fpstr, "Underflow");
break;
case _FPE_ZERODIVIDE:
strepy(fpstr, "Divide by zero");
break;
default:
strcpy(fpstr, "Other floating point error");
break;
}
printf("Error %d: %s\n", fperr, fpstr);

Output
Test for invalid operation - enter two numbers: 5 0
Error 131: Divide by zero

See Also: _exec Function Overview, signal, _spawn Function Overview, system

fprintt, fwprintt
Print formatted data to a stream.

int fprintf(FILE *stream, const char *format [, argument]...);
int fwprintf(FILE *stream, const wchar_t *format [, argument 1...);

Function Required Header Compatibility
fprintf <stdio.h> ANSI, Win 95, Win NT
fwprintf <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

269

fprintf, fwprintf

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

fprintf returns the number of bytes written. fwprintf returns the number of wide
characters written. Each of these functions returns a negative value instead when
an output error occurs.

Parameters

Remarks

Example

270

stream Pointer to FILE structure
format Format-control string

argument Optional arguments

fprintf formats and prints a series of characters and values to the output stream. Each
function argument (if any) is converted and output according to the corresponding
format specification in format. For fprintf, the format argument has the same syntax
and use that it has in printf.

fwprintf is a wide-character version of fprintf; in fwprintf, format is a
wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_ftprintf fprintf fprintf fwprintf

For more information, see “Format Specifications” on page 463.

/* FPRINTF.C: This program uses fprintf to format various

* data and print it to the file named FPRINTF.OUT. It

* then displays FPRINTF.QOUT on the screen using the system
* function to invoke the operating-system TYPE command.

*/

f#incliude <stdio.h>
ftinclude <process.h>

FILE *stream;

void main(void)

{
int i=10;
double fp = 1.5;

Output

fputc, fputwc, _fputchar, _fputwchar

char s[] = "this is a string";
char c="\n";

stream = fopen("fprintf.out"™, "w");
fprintf(stream, "7%s%c", s, ¢);
fprintf(stream, "%d\n", i);
fprintf(stream, "%f\n", fp);
fclose(stream);

system("type fprintf.out");

this is a string
10
1.500000

See Also: _cprintf, fscanf, sprintf

fputc, fputwc, _fputchar, _fputwchar

Writes a character to a stream (fputc, fputwc) or to stdout (_fputchar, _fputwchar).

int fputc(int ¢, FILE *stream);

wint_t fputwe(wint_t ¢, FILE *stream);
int _fputchar(int ¢);

wint_t _fputwchar(wint_t ¢);

Function Required Header Compatibility

fputc <stdio.h> ANSI, Win 95, Win NT
fputwce <stdio.h> or <wchar.h> ANSI, Win 95, Win NT
_fputchar <stdio.h> Win 95, Win NT
_fputwchar <stdio.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns the character written. For fputc and _fputchar, a
return value of EOF indicates an error. For fputwc and _fputwchar, a return value
of WEOF indicates an error.

Parameters

¢ Character to be written

stream Pointer to FILE structure

P4l

fputc, fputwe, _fputchar, _fputwchar

Remarks

Example

272

Each of these functions writes the single character c to a file at the position indicated
by the associated file position indicator (if defined) and advances the indicator as
appropriate. In the case of fputc and fputwe, the file is associated with stream. If the
file cannot support positioning requests or was opened in append mode, the character
is appended to the end of the stream. Routine-specific remarks follow.

Routine Remarks

fputc Equivalent to putc, but implemented only as a function, rather than as a
function and a macro.

fputwe Wide-character version of fputc. Writes ¢ as a multibyte character or a wide
character according to whether stream is opened in text mode or binary mode.

_fputchar Equivalent to fpute(stdout). Also equivalent to putchar, but implemented
only as a function, rather than as a function and a macro. Microsoft-specific;
not ANSI-compatible.

_fputwchar Wide-character version of _fputchar. Writes ¢ as a multibyte character or a
wide character according to whether stream is opened in text mode or binary
mode. Microsoft-specific; not ANSI-compatible.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_fputtc fputc fputc fputwe

_fputtchar _fputchar _fputchar _fputwchar

/* FPUTC.C: This program uses fputc and _fputchar
* to send a character array to stdout.
*/

JHinclude <stdio.h>

void main(void)

{
char strptrl[] = "This is a test of fputc!!\n";
char strptr2[] = "This is a test of _fputchar!!\n";
char *p;
/* Print 1ine to stream using fputc. */
p = strptrl;
while((*p != '\0') && fputc(*(p++), stdout) != EOF) ;
/* Print line to stream using _fputchar. */
p = strptr2;
while((*p != '\0@') && _fputchar(*(p++)) != EOF)
}

See Also: fgetc, putc

fputs, fputws

Write a string to a stream.

int fputs(const char *string, FILE *stream);
int fputws(const wchar_t *string, FILE *stream);

Function Required Header Compatibility
fputs <stdio.h> ANSI, Win 95, Win NT
fputws <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns a nonnegative value if it is successful. On an error,
fputs returns EOF, and fputws returns WEOF.

Parameters

Remarks

Example

string Output string

stream Pointer to FILE structure

Each of these functions copies string to the output stream at the current position.
fputws copies the wide-character argument string to stream as a multibyte-character
string or a wide-character string according to whether stream is opened in text mode
or binary mode, respectively. Neither function copies the terminating null character.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_fputts fputs fputs fputws

/* FPUTS.C: This program uses fputs to write
* a single Tine to the stdout stream.
*/

#include <stdio.h>

void main(void)
{

fputs("Hello world from fputs.\n", stdout);
}

fputs, fputws

273

fread

Output

Hello world from fputs.
See Also: fgets, gets, puts, _putws

fread

Reads data from a stream.
size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header Compatibility

fread <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

fread returns the number of full items actually read, which may be less than count if
an error occurs or if the end of the file is encountered before reaching count. Use the
feof or ferror function to distinguish a read error from an end-of-file condition. If size
or count is 0, fread returns 0 and the buffer contents are unchanged.

Parameters

Remarks

274

buffer Storage location for data
size Item size in bytes
count Maximum number of items to be read

stream Pointer to FILE structure

The fread function reads up to count items of size bytes from the input stream and
stores them in buffer. The file pointer associated with stream (if there is one) is
increased by the number of bytes actually read. If the given stream is opened in text
mode, carriage return—linefeed pairs are replaced with single linefeed characters.
The replacement has no effect on the file pointer or the return value. The file-pointer
position is indeterminate if an error occurs. The value of a partially read item cannot
be determined.

fread

Example
/* FREAD.C: This program opens a file named FREAD.OUT and
* writes 25 characters to the file. It then tries to open
* FREAD.OUT and read in 25 characters. If the attempt succeeds,
* the program displays the number of actual items read.
*/

#include <stdio.h>

void main(void)
{
FILE *stream;
char Tist[30];
int i, numread, numwritten;

/* Open file in text mode: */
if((stream = fopen("fread.out™, "w+t")) != NULL)
{
for (i =0; i < 25; i++)
Tist[i] = (char)('z' - i);
/* Write 25 characters to stream */
numwritten = fwrite(list, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

}
else
printf(“Problem opening the file\n");

if((stream = fopen("fread.out", "r+t")) != NULL)

{
/* Attempt to read in 25 characters */
numread = fread(1ist, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

}

else
printf("File could not be opened\n");

Output
Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrqponmlkjihgfedcb

See Also: fwrite, _read

275

free

free

Deallocates or frees a memory block.

void free(void *memblock);

Function Required Header Compatibility
free <stdlib.h> and ANSI, Win 95, Win NT
<malloc.h>

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
None
Parameter

Remarks

Example

276

memblock Previously allocated memory block to be freed

The free function deallocates a memory block (memblock) that was previously
allocated by a call to calloc, malloc, or realloc. The number of freed bytes is
equivalent to the number of bytes requested when the block was allocated (or
reallocated, in the case of realloc). If memblock is NULL, the pointer is ignored
and free immediately returns. Attempting to free an invalid pointer (a pointer to a
memory block that was not allocated by calloc, malloc, or realloc) may affect
subsequent allocation requests and cause errors.

After a memory block has been freed, _heapmin minimizes the amount of free
memory on the heap by coalescing the unused regions and releasing them back to
the operating system. Freed memory that is not released to the operating system is
restored to the free pool and is available for allocation again.

When the application is linked with a debug version of the C run-time libraries, free
resolves to _free_dbg. For more information about how the heap is managed during
the debugging process, see “Using C Run-Time Library Debugging Support.”

/* MALLOC.C: This program allocates memory with
* malloc, then frees the memory with free.
*/

#

Output

freopen, _wfreopen

include <stdlib.h> /* For _MAX_PATH definition */
##include <stdio.h>
#include <malloc.h>
void main(void)
{
char *string;

/* Allocate space for a path name */
string = malloc(_MAX_PATH);
if(string =— NULL)
printf("Insufficient memory available\n");
else
{
printf("Memory space allocated for path name\n");
free(string);
printf("Memory freed\n");

Memory space allocated for path name
Memory freed

See Also: _alloca, calloc, malloc, realloc, _free_dbg, _heapmin

freopen, _wireopen

Reassign a file pointer.

FILE *freopen(const char #*path, const char *mode, FILE *stream);
FILE *_wfreopen(const wchar_t *path, const wchar_t *mode, FILE *stream);

Function Required Header Compatibility
freopen <stdio.h> ANSI, Win 95, Win NT
_wfreopen <stdio.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns a pointer to the newly opened file. If an error occurs,
the original file is closed and the function returns a NULL pointer value.

277

freopen, _wfreopen
Parameters
path Path of new file
mode Type of access permitted
stream Pointer to FILE structure
Remarks
The freopen function closes the file currently associated with stream and reassigns
stream to the file specified by path. _wfreopen is a wide-character version of

_freopen; the path and mode arguments to _wfreopen are wide-character strings.
_wfreopen and _freopen behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tfreopen freopen freopen _wfreopen

freopen is typically used to redirect the pre-opened files stdin, stdout, and stderr to
files specified by the user. The new file associated with stream is opened with mode,
which is a character string specifying the type of access requested for the file, as
follows:

r'" Opens for reading. If the file does not exist or cannot be found, the freopen
call fails.

"w' Opens an empty file for writing. If the given file exists, its contents are
destroyed.

a'" Opens for writing at the end of the file (appending) without removing the EOF

marker before writing new data to the file; creates the file first if it does not exist.

"r+'" Opens for both reading and writing. (The file must exist.)

" "

w+'" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"

a+" Opens for reading and appending; the appending operation includes the
removal of the EOF marker before new data is written to the file and the EOF
marker is restored after writing is complete; creates the file first if it does not exist.

Use the "w'" and "w+'"' types with care, as they can destroy existing files.

When a file is opened with the ""a" or "a+'" access type, all write operations take
place at the end of the file. Although the file pointer can be repositioned using fseek
or rewind, the file pointer is always moved back to the end of the file before any write
operation is carried out. Thus, existing data cannot be overwritten.

The "a" mode does not remove the EOF marker before appending to the file. After
appending has occurred, the MS-DOS TYPE command only shows data up to the
original EOF marker and not any data appended to the file. The ""a+'' mode does

278

Example

freopen, _wfreopen

remove the EOF marker before appending to the file. After appending, the MS-DOS
TYPE command shows all data in the file. The "a+"" mode is required for appending
to a stream file that is terminated with the CTRL+Z EOF marker.

‘When the "r+", "w+", or "a+"" access type is specified, both reading and writing are
allowed (the file is said to be open for “update”). However, when you switch between
reading and writing, there must be an intervening fsetpos, fseek, or rewind operation.
The current position can be specified for the fsetpos or fseek operation, if desired. In
addition to the above values, one of the following characters may be included in the
mode string to specify the translation mode for new lines.

t Open in text (translated) mode; carriage return-linefeed (CR-LF) combinations are
translated into single linefeed (LF) characters on input; LF characters are translated
to CR-LF combinations on output. Also, CTRL+Z is interpreted as an end-of-file
character on input. In files opened for reading or for writing and reading with
"a+", the run-time library checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using fseek and ftell to move within a file may
cause fseek to behave improperly near the end of the file. The t option is a
Microsoft extension that should not be used where ANSI portability is desired.

b Open in binary (untranslated) mode; the above translations are suppressed.

If t or b is not given in the mode string, the translation mode is defined by the default
mode variable _fmode.

For a discussion of text and binary modes, see ‘““Text and Binary Mode File I/O”
on page 15 in Chapter 1.

/* FREOPEN.C: This program reassigns stderr to the file
* named FREOPEN.OUT and writes a line to that file.
*/

f#include <stdio.h>
f#Hinclude <stdlib.h>

FILE *stream;

void main(void)

{
/* Reassign "stderr" to "freopen.out”: */
stream = freopen("freopen.out", "w", stderr);

if(stream == NULL)

fprintf(stdout, "error on freopen\n");
else
{

279

frexp

fprintf(stream, "This will go to the file 'freopen.out'\n");
fprintf(stdout, "successfully reassigned\n");
fclose(stream);

}

system("type freopen.out");

Output
successfully reassigned
This will go to the file 'freopen.out’

See Also: fclose, _fdopen, _fileno, fopen, _open, _setmode

frexp

Gets the mantissa and exponent of a floating-point number.

double frexp(double x, int *expptr);

Function Required Header Compatibility

frexp <math.h> ANSI, Win 95, Win NT

For additional compatibility information, see “‘Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

frexp returns the mantissa. If x is 0, the function returns O for both the mantissa and
the exponent. There is no error return.

Parameters
x Floating-point value

expptr Pointer to stored integer exponent

Remarks
The frexp function breaks down the floating-point value (x) into a mantissa () and an
exponent (r), such that the absolute value of m is greater than or equal to 0.5 and less
than 1.0, and x = m*2n. The integer exponent » is stored at the location pointed to by
expptr.

Example
/* FREXP.C: This program calculates frexp(16.4, &n)

* then displays y and n.
*/

#include <math.h>
f#finclude <stdio.h>

280

Output

fscanf, fwscanf

void main(void)

{

double x, y;

int n;

X = 16.4;

y = frexp(x, &n);

printf("frexp(%f, &n) = %f, n = %d\n", x, ¥y, n);
}

frexp(16.400000, &n) = 0.512500, n =5
See Also: ldexp, modf

fscanf, fwscanf

Read formatted data from a stream.

int fscanf(FILE *stream, const char *format [, argument]...);
int fwscanf(FILE *streamn, const wchar_t *format [, argument]...);

Function Required Header Compatibility
fscanf <stdio.h> ANSI, Win 95, Win NT
fwscanf <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns the number of fields successfully converted and
assigned; the return value does not include fields that were read but not assigned.

A return value of O indicates that no fields were assigned. If an error occurs, or if the
end of the file stream is reached before the first conversion, the return value is EOF
for fscanf or WEOF for fwscanf.

Parameters

stream Pointer to FILE structure
format Format-control string
argument Optional arguments

281

fscanf, fwscanf

Remarks

Example

282

The fscanf function reads data from the current position of stzream into the locations
given by argument (if any). Each argument must be a pointer to a variable of a type
that corresponds to a type specifier in format. format controls the interpretation of the
input fields and has the same form and function as the format argument for scanf; see
scanf for a description of format. If copying takes place between strings that overlap,
the behavior is undefined.

fwscanf is a wide-character version of fscanf; the format argument to fwscanf is a
wide-character string. These functions behave identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_ftscanf fscanf fscanf fwscanf

For more information, see “Format Specification Fields — scanf functions and wscanf
functions” on page 495.

/* FSCANF.C: This program writes formatted
* data to a file. It then uses fscanf to

* read the various data back from the file.
*/

#include <stdio.h>
FILE *stream;

void main(void)
{
long 1;
float fp;
char s[81];
char c¢;

stream = fopen("fscanf.out", "w+");
if(stream == NULL)
printf("The file fscanf.out was not opened\n");
else
{
fprintf(stream, "%s %1d %f%c", "a-string”,
65000, 3.14159, 'x')

/* Set pointer to beginning of file: */
fseek(stream, OL, SEEK_SET);

/* Read data back from file: */
fscanf(stream, "%s", s);
fscanf(stream, "%1d", &1);

Output

fseek

fscanf(stream, "%f", &fp);
fscanf(stream, "%c", &c);
/* Output data read: */
printf("%s\n", s);

printf("%1d\n", 1);
printf("%f\n", fp);
printf("%c\n", ¢);

fclose(stream);

a-string
65000
3.141590
X

See Also: _cscanf, fprintf, scanf, sscanf

fseek

Moves the file pointer to a specified location.

int fseek(FILE *stream, long offset, int origin);

Function Required Header Compatibility

fseek <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, fseek returns 0. Otherwise, it returns a nonzero value. On devices
incapable of seeking, the return value is undefined.

Parameters

stream Pointer to FILE structure
offset Number of bytes from origin

origin Initial position

283

fseek

Remarks

Example

284

The fseek function moves the file pointer (if any) associated with stream to a new
location that is offset bytes from origin. The next operation on the stream takes place
at the new location. On a stream open for update, the next operation can be either a
read or a write. The argument origin must be one of the following constants, defined
in STDIO.H:

SEEK_CUR Current position of file pointer
SEEK_END End of file
SEEK_SET Beginning of file

You can use fseek to reposition the pointer anywhere in a file. The pointer can also
be positioned beyond the end of the file. fseek clears the end-of-file indicator and
negates the effect of any prior ungetc calls against stream.

When a file is opened for appending data, the current file position is determined by
the last I/O operation, not by where the next write would occur. If no I/O operation
has yet occurred on a file opened for appending, the file position is the start of

the file.

For streams opened in text mode, fseek has limited use, because carriage return—
linefeed translations can cause fseek to produce unexpected results. The only fseek
operations guaranteed to work on streams opened in text mode are:

o Seeking with an offset of O relative to any of the origin values.

¢ Seeking from the beginning of the file with an offset value returned from a call
to ftell.

Also in text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using fseek and ftell to
move within a file that ends with a CTRL+Z may cause fseek to behave improperly
near the end of the file.

/* FSEEK.C: This program opens the file FSEEK.OUT and
* moves the pointer to the file's beginning.
*/

f#include <stdio.h>

void main(void)
{
FILE *stream;
char 1ine[81];
int result;

Output

stream = fopen("fseek.out”, "w+");
if(stream == NULL)
printf("The file fseek.out was not opened\n");
else
{
fprintf(stream, "The fseek begins here: "
"This is the file 'fseek.out'.\n");
result = fseek(stream, 23L, SEEK_SET):
if(result)
perror("Fseek failed");
else
{
printf("File pointer is set to middle of first line.\n");
fgets(line, 80, stream);
printf("%s", line);

}
fclose(stream);

File pointer is set to middle of first line.
This is the file 'fseek.out'.

See Also: ftell, _Iseek, rewind

fsetpos

{setpos

Sets the stream-position indicator.
int fsetpos(FILE *stream, const fpos_t *pos);

Function Required Header Compatibility

fsetpos <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

If successful, fsetpos returns 0. On failure, the function returns a nonzero value

and sets errno to one of the following manifest constants (defined in ERRNO.H):

EBADF, which means the file is not accessible or the object that stream points
to is not a valid file handle; or EINVAL, which means an invalid stream value
was passed.

285

fsetpos

Parameters

Remarks

Example

286

stream Pointer to FILE structure

pos Position-indicator storage

The fsetpos function sets the file-position indicator for stream to the value of pos,
which is obtained in a prior call to fgetpos against stream. The function clears the
end-of-file indicator and undoes any effects of ungetc on stream. After calling
fsetpos, the next operation on stream may be either input or output.

/* FGETPOS.C: This program opens a file and reads

* bytes at several different locations.

ffinclude <stdio.h>

void main(void)

{

FILE *stream;
fpos_t pos;
char buffer[20];

if((stream = fopen("fgetpos.c", "rb")) == NULL)
printf("Trouble opening file\n");
else
{
/* Read some data and then check the position. */
fread(buffer, sizeof(char), 10, stream);
if(fgetpos(stream, &pos) != 0)
perror("fgetpos error");
else
{
fread(buffer, sizeof(char), 10, stream);
printf("10 bytes at byte %1d: %.10s\n", pos, buffer);
}

/* Set a new position and read more data */
pos = 140;
if(fsetpos(stream, &pos) != 0)

perror("fsetpos error”);

fread(buffer, sizeof(char), 10, stream);

printf("10 bytes at byte %1d: %.1@s\n", pos, buffer);
fclose(stream);

}

Output

_fsopen, _wfsopen

10 bytes at byte 10: .C: This p
10 bytes at byte 140:
{

FIL

See Also: fgetpos

_fsopen, _wisopen

Open a stream with file sharing.

FILE *_fsopen(const char *filename, const char *mode, int shflag);
FILE *_wfsopen(const wchar_t *filename, const wehar_t *mode, int shflag);

Function Required Header Optional Headers Compatibility
_fsopen <stdio.h> <share.h>1 Win 95, Win NT
_wfsopen <stdio.h> or <wchar.h> <share.h>1 Win NT

1 For manifest constant for shflag parameter.

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns a pointer to the stream. A NULL pointer value
indicates an error.

Parameters

Remarks

filename Name of file to open
mode Type of access permitted

shflag Type of sharing allowed

The _fsopen function opens the file specified by filename as a stream and prepares the
file for subsequent shared reading or writing, as defined by the mode and shflag
arguments. _wfsopen is a wide-character version of _fsopen; the filename and mode
arguments to _wfsopen are wide-character strings. _wfsopen and _fsopen behave
identically otherwise.

287

_fsopen, _wfsopen

288

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tfsopen _fsopen _fsopen _wfsopen

The character string mode specifies the type of access requested for the file, as
follows:

"r'"" Opens for reading. If the file does not exist or cannot be found, the _fsopen call

fails.

"w' Opens an empty file for writing. If the given file exists, its contents are
destroyed.

a'" Opens for writing at the end of the file (appending); creates the file first if it
does not exist.

"

"r+'" Opens for both reading and writing. (The file must exist.)

" "

w+'" Opens an empty file for both reading and writing. If the given file exists, its
contents are destroyed.

"

"a+" Opens for reading and appending; creates the file first if it does not exist.

Use the "w'' and ""'w+" types with care, as they can destroy existing files.

When a file is opened with the "a" or ""a+"" access type, all write operations occur at
the end of the file. The file pointer can be repositioned using fseek or rewind, but is
always moved back to the end of the file before any write operation is carried out.
Thus existing data cannot be overwritten. When the "'r+", ""w+'"", or ""a+'" access
type is specified, both reading and writing are allowed (the file is said to be open for
“update”). However, when switching between reading and writing, there must be an
intervening fsetpos, fseek, or rewind operation. The current position can be specified
for the fsetpos or fseek operation, if desired. In addition to the above values, one of
the following characters can be included in mode to specify the translation mode for
new lines:

t Opens a file in text (translated) mode. In this mode, carriage return—linefeed
(CR-LF) combinations are translated into single linefeeds (LF) on input and
LF characters are translated to CR-LF combinations on output. Also, CTRL+Z
is interpreted as an end-of-file character on input. In files opened for reading or
reading/writing, _fsopen checks for a CTRL+Z at the end of the file and removes
it, if possible. This is done because using fseek and ftell to move within a file
that ends with a CTRL+Z may cause fseek to behave improperly near the end
of the file.

b Opens a file in binary (untranslated) mode; the above translations are suppressed.

Example

Output

_fsopen, _wfsopen

If t or b is not given in mode, the translation mode is defined by the default-mode
variable _fmode. If t or b is prefixed to the argument, the function fails and returns
NULL. For a discussion of text and binary modes, see “Text and Binary Mode

File I/0.”

The argument siflag is a constant expression consisting of one of the following
manifest constants, defined in SHARE.H:

_SH_COMPAT Sets Compatibility mode for 16-bit applications
_SH_DENYNO Permits read and write access

_SH_DENYRD Denies read access to file

_SH_DENYRW Denies read and write access to file
_SH_DENYWR Denies write access to file

/* FSOPEN.C:
*/

#include <stdio.h>
f#include <stdlib.h>
#Hinclude <share.h>

void main(void)
{
FILE *stream;

/* Open output file for writing. Using _fsopen allows us to
* ensure that no one else writes to the file while we are
* writing to it.

*/

if((stream = _fsopen("outfile", "wt"™, _SH_DENYWR)) != NULL)

{

fprintf(stream, "No one else in the network can write "
"to this file until we are done.\n");
fclose(stream);

}

/* Now others can write to the file while we read it. */

system("type outfile");

No one else in the network can write to this file until we are done.

See Also: fclose, _fdopen, ferror, _fileno, fopen, freopen, _open, _setmode, _sopen

289

_fstat, _fstati64

_fstat, fstati64

Get information about an open file.

int _fstat(int handle, struct _stat *buffer);
__int64 _fstati64(int handle, struct _stat *buffer);

Function Required Header Compatibility
_fstat <sys/stat.h> and <sys/types.h> Win 95, Win NT
_fstati64 <sys/stat.h> and <sys/types.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_fstat and _fstati64 return O if the file-status information is obtained. A return value of —
1 indicates an error, in which case errno is set to EBADF, indicating an invalid file
handle.

Parameters
handle Handle of open file

buffer Pointer to structure to store results

Remarks
The _fstat function obtains information about the open file associated with handle and
stores it in the structure pointed to by buffer. The _stat structure, defined in
SYS\STAT.H, contains the following fields:

st_atime Time of last file access.

st_ctime Time of creation of file.
st_dev If a device, handle; otherwise 0.

st_mode Bit mask for file-mode information. The _S_IFCHR bit is set if handle
refers to a device. The _S_IFREG bit is set if handle refers to an ordinary file.
The read/write bits are set according to the file’s permission mode. _S_IFCHR
and other constants are defined in SYS\STAT.H.

st_mtime Time of last modification of file.
st_nlink Always 1 on non-NTFS file systems.
st_rdev If a device, handle; otherwise 0.

st_size Size of the file in bytes.

290

Example

Output

If handle refers to a device, the st_atime, st_ctime, and st_mtime and st_size fields
are not meaningful.

Because STAT.H uses the _dev_t type, which is defined in TYPES.H, you must
include TYPES.H before STAT.H in your code.

/* FSTAT.C: This program uses _fstat to report
* the size of a file named F_STAT.OUT.
*/

#include <io.h>
#include <fcntl.h>
ffinclude <time.h>
#finclude <sys/types.h>
#Hinclude <sys/stat.h>
#include <stdio.h>
f#Hinclude <stdlib.h>
f#Hinclude <string.h>

void main(void)

{
struct _stat buf;
int fh, result;
char buffer[] = "A line to output";
if((fh = _open("f_stat.out", _O_CREAT | _O_WRONLY |
_O_TRUNC)) == -1
_write(fh, buffer, strlen(buffer));
/* Get data associated with "fh": */
result = _fstat(fh, &buf);
/* Check if statistics are valid: */
if(result 1=0)
printf("Bad file handle\n");
else
{
printf("File size : %1d\n", buf.st_size);
printf("Time modified : %s", ctime(&buf.st_ctime));
}
_close(fh);
}
File size H]

Time modified : Tue Mar 21 15:23:08 1995
See Also: _access, _chmod, _filelength, _stat

_fstat, _fstati64

291

ftell

ftell

Gets the current position of a file pointer.
long ftell(FILE *stream);

Function Required Header Optional Headers Compatibility

ftell <stdio.h> <errno.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
ftell returns the current file position. The value returned by ftell may not reflect the
physical byte offset for streams opened in text mode, because text mode causes carriage
return—linefeed translation. Use ftell with fseek to return to file locations correctly. On
error, ftell returns —1L and errno is set to one of two constants, defined in ERRNO.H.
The EBADF constant means the stream argument is not a valid file-handle value or
does not refer to an open file. EINVAL means an invalid stream argument was passed
to the function. On devices incapable of seeking (such as terminals and printers), or
when stream does not refer to an open file, the return value is undefined.

Parameter
stream Target FILE structure

Remarks
The ftell function gets the current position of the file pointer (if any) associated with
stream. The position is expressed as an offset relative to the beginning of the stream.

Note that when a file is opened for appending data, the current file position is
determined by the last I/O operation, not by where the next write would occur. For
example, if a file is opened for an append and the last operation was a read, the file
position is the point where the next read operation would start, not where the next
write would start. (When a file is opened for appending, the file position is moved to
end of file before any write operation.) If no I/O operation has yet occurred on a file
opened for appending, the file position is the beginning of the file.

In text mode, CTRL+Z is interpreted as an end-of-file character on input. In files
opened for reading/writing, fopen and all related routines check for a CTRL+Z at the
end of the file and remove it if possible. This is done because using ftell and fseek to
move within a file that ends with a CTRL+Z may cause ftell to behave improperly
near the end of the file.

292

_ftime

Example
/* FTELL.C: This program opens a file named FTELL.C
* for reading and tries to read 100 characters. It
* then uses ftell to determine the position of the
* file pointer and displays this position.
*/

fHinclude <stdio.h>
FILE *stream;

void main(void)

{
long position;
char 1ist[100];
if((stream = fopen("ftell.c™, "rb"™)) != NULL)
{
/* Move the pointer by reading data: */
fread(1ist, sizeof(char), 100, stream);
/* Get position after read: */
position = ftell(stream);
printf("Position after trying to read 100 bytes: %1d\n",
position);
fclose(stream);
}
}

Output
Position after trying to read 100 bytes: 100

See Also: fgetpos, fseek, _lseek, _tell

_ftime

Gets the current time.
void _ftime(struct _timeb *fimeptr);

Function Required Header Compatibility

_ftime <sys/types.h> and <sys/timeb.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_ftime does not return a value, but fills in the fields of the structure pointed to by timeptr.

293

_ftime

Parameter

Remarks

Example

Output

294

timeptr Pointer to _timeb structure

The _ftime function gets the current local time and stores it in the structure pointed to
by timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four fields:

dstflag Nonzero if daylight savings time is currently in effect for the local time zone.
(See _tzset for an explanation of how daylight savings time is determined.)

millitm Fraction of a second in milliseconds.

time Time in seconds since midnight (00:00:00), January 1, 1970, coordinated
universal time (UTC).

timezone Difference in minutes, moving westward, between UTC and local time. The
value of timezone is set from the value of the global variable _timezone (see _tzset).

/* FTIME.C: This program uses _ftime to obtain the current
* time and then stores this time in timebuffer.
*/

f#include <stdio.h>

#include <sys/timeb.h>

#include <time.h>

void main(void).

{
struct _timeb timebuffer;
char *timeline;
_ftime(&timebuffer);
timeline = ctime(& (timebuffer.time));
printf("The time is %.19s.%hu %s", timeline, timebuffer.millitm,
- &timeline[20]);
}

The time is Tue Mar 21 15:26:41.341 1995

See Also: asctime, ctime, gmtime, localtime, time

_fullpath, _wfullpath

_fullpath, _wtfullpath

Create an absolute or full path name for the specified relative path name.

char *_fullpath(char *absPath, const char *relPath, size_t maxLength);
wchar_t *_wfullpath(wchar_t *absPath, const wchar_t *relPath, size_t maxLength);

Function Required Header Compatibility
_fullpath <stdlib.h> Win 95, Win NT
_wfullpath <stdlib.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

Each of these functions returns a pointer to a buffer containing the absolute path name
(absPath). If there is an error (for example, if the value passed in relPath includes a
drive letter that is not valid or cannot be found, or if the length of the created absolute
path name (absPath) is greater than maxLength) the function returns NULL.

Parameters

Remarks

absPath Pointer to a buffer containing the absolute or full path name
relPath Relative path name

maxLength Maximum length of the absolute path name buffer (absPath). This length
is in bytes for _fullpath but in wide characters (wchar_t) for _wfullpath.

The _fullpath function expands the relative path name in relPath to its fully qualified
or “absolute” path, and stores this name in absPath. A relative path name specifies a
path to another location from the current location (such as the current working
directory: “.”). An absolute path name is the expansion of a relative path name that
states the entire path required to reach the desired location from the root of the
filesystem. Unlike _makepath, _fullpath can be used to obtain the absolute path name

for relative paths (relPath) that include “./” or “../” in their names.

For example, to use C run-time routines, the application must include the header

files that contain the declarations for the routines. Each header file include statement
references the location of the file in a relative manner (from the application’s working
directory):

#include <stdlib.h>

295

_fullpath, _wfullpath

Example

296

when the absolute path (actual file system location) of the file may be:
\\machine\shareName\msvcSrc\crt\headerFiles\stdlib.h

_fullpath automatically handles multibyte-character string arguments as appropriate,
recognizing multibyte-character sequences according to the multibyte code page
currently in use. _wfullpath is a wide-character version of _fullpath; the string
arguments to _wfullpath are wide-character strings. _wfullpath and _fullpath behave
identically except that _wfullpath does not handle multibyte-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tfullpath _fullpath _fullpath _wfullpath

If the absPath buffer is NULL, _fullpath calls malloc to allocate a buffer of size
_MAX_PATH and ignores the maxLength argument. It is the caller’s responsibility to
deallocate this buffer (using free) as appropriate. If the relPath argument specifies a
disk drive, the current directory of this drive is combined with the path.

/* FULLPATH.C: This program demonstrates how _fullpath
* creates a full path from a partial path.
*/

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <direct.h>
char full[_MAX_PATH], part[_MAX_PATHI;

void main(void)

{
while(1)
{
printf("Enter partial path or ENTER to quit: ");
gets(part);
if(part[0] == 0)
break;
if(_fullpath(full, part, _MAX_PATH) != NULL)
printf("Full path is: %s\n", full);
else
printf("Invalid path\n");
}
}

See Also: _getcwd, _getdewd, _makepath, _splitpath

_futime

_futime

Sets modification time on an open file.
int _futime(int andle, struct _utimbuf *filetime);

Function Required Header Optional Headers Compatibility

_futime <sys/utime.h> <errno.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

_futime returns O if successful. If an error occurs, this function returns —1 and errno
is set to EBADF, indicating an invalid file handle.

Parameters

Remarks

Example

handle Handle to open file

filetime Pointer to structure containing new modification date

The _futime routine sets the modification date and the access time on the open file
associated with handle. _futime is identical to _utime, except that its argument is the
handle to an open file, rather than the name of a file or a path to a file. The _utimbuf
structure contains fields for the new modification date and access time. Both fields
must contain valid values.

/* FUTIME.C: This program uses _futime to set the
* file-modification time to the current time.
*/

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
f#Hnclude <io.h>
f#include <sys/types.h>
#include <sys/stat.h>
#include <sys/utime.h>

void main(void)
{

int hFile;

297

fwrite

/* Show file time before and after. */
system("dir futime.c");

hFile = _open("futime.c", _O_RDWR);

if(_futime(hFile, NULL) == -1)
perror("_futime failed\n");
else
printf("File time modified\n");

close (hFile);

system("dir futime.c");

Output
Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:30p 601 futime.c
1 File(s) 601 bytes
16,269,312 bytes free
Volume in drive C is CDRIVE
Volume Serial Number is 1D37-7A7A

Directory of C:\code

05/03/95 01:36p 601 futime.c
1 File(s) 601 bytes
16,269,312 bytes free
File time modified

fwrite

Writes data to a stream.
size_t fwrite(const void *buffer, size_t size, size_t count, FILE *stream);

Function Required Header Compatibility

fwrite <stdio.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

298

Return Value

fwrite returns the number of full items actually written, which may be less than
count if an error occurs. Also, if an error occurs, the file-position indicator cannot
be determined.

Parameters

Remarks

Example

buffer Pointer to data to be written
size Item size in bytes
count Maximum number of items to be written

stream Pointer to FILE structure

The fwrite function writes up to count items, of size length each, from buffer to the
output stream. The file pointer associated with stream (if there is one) is incremented
by the number of bytes actually written. If stream is opened in text mode, each
carriage return is replaced with a carriage-return—linefeed pair. The replacement has
no effect on the return value.

/* FREAD.C: This program opens a file named FREAD.OQUT and

* writes 25 characters to the file. It then tries to open

* FREAD.OUT and read in 25 characters. If the attempt succeeds,
* the program displays the number of actual items read.

*/

J#include <stdio.h>

void main(void)
{
FILE *stream;
char 1ist[30];
int i, numread, numwritten;
/* Open file in text mode: */
if((stream = fopen("fread.out", "w+t™)) != NULL)
{
for (i =10; i < 25; i++)
Tist[i] = (char)('z' - 1);
/* Write 25 characters to stream */
numwritten = fwrite(1ist, sizeof(char), 25, stream);
printf("Wrote %d items\n", numwritten);
fclose(stream);

}
else
printf("Problem opening the file\n"™);

fwrite

299

_gevt

if((stream = fopen("fread.out", "r+t")) != NULL)

{
/* Attempt to read in 25 characters */
numread = fread(1ist, sizeof(char), 25, stream);
printf("Number of items read = %d\n", numread);
printf("Contents of buffer = %.25s\n", list);
fclose(stream);

}

else
printf("File could not be opened\n");

Output
Wrote 25 items
Number of items read = 25
Contents of buffer = zyxwvutsrgponmlkjihgfedcb

See Also: fread, _write

_gevt

Converts a floating-point value to a string, which it stores in a buffer.
- char *_gcvt(double value, int digits, char *buffer);
Routine Required Header Compatibility

_gevt <stdlib.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

_gevt returns a pointer to the string of digits. There is no error return.

Parameters
value Value to be converted
digits Number of significant digits stored

buffer Storage location for result

Remarks
The _gcevt function converts a floating-point value to a character string (which
includes a decimal point and a possible sign byte) and stores the string in buffer. The
buffer should be large enough to accommodate the converted value plus a terminating
null character, which is appended automatically. If a buffer size of digits + 1 is used,

300

getc, getwc, getchar, getwchar

the function overwrites the end of the buffer. This is because the converted string
includes a decimal point and can contain sign and exponent information. There is no
provision for overflow. _gevt attempts to produce digits digits in decimal format. If it
cannot, it produces digits digits in exponential format. Trailing zeros may be
suppressed in the conversion.

Example
/* _GCVT.C: This program converts -3.1415e5

* to its string representation.
*/

#include <stdlib.h>
fHinclude <stdio.h>

void main(void)
{
char buffer[50];
double source = -3.1415e5;
_gcvt(source, 7, buffer);
printf("source: %f buffer: '%s'\n", source, buffer);
_gcvt(source, 7, buffer);
printf("source: %e buffer: '%s'\n", source, buffer);

Output
source: -314150.000000 buffer: '-314150.°
source: -3.141500e+005 buffer: '-314150.°'

See Also: atof, _ecvt, _fevt

getc, getwce, getchar, getwchar

Read a character from a stream (getc, getwc), or get a character from stdin (getchar, getwchar).

int getc(FILE *stream);
wint_t getwc(FILE *stream);
int getchar(void);

wint_t getwchar(void);

Routine Required Header Compatibility

getc <stdio.h> ANSI, Win 95, Win NT
getwc <stdio.h> or <wchar.h> ANSI, Win 95, Win NT
getchar <stdio.h> ANSI, Win 95, Win NT
getwchar <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

301

getc, getwc, getchar, getwchar

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns the character read. To indicate an read error or end-of-
file condition, getc and getchar return EOF, and getwc and getwchar return WEOF.
For getc and getchar, use ferror or feof to check for an error or for end of file.

Parameter

Remarks

Example

302

stream Input stream

Each of these routines reads a single character from a file at the current position and
increments the associated file pointer (if defined) to point to the next character. In the
case of getc and getwc, the file is associated with stream (see “Choosing Between
Functions and Macros” on page xiii). Routine-specific remarks follow.

Routine Remarks

getc Same as fgetc, but implemented as a function and as a macro.

getwce Wide-character version of getc. Reads a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

getchar Same as _fgetchar, but implemented as a function and as a macro.

getwchar Wide-character version of getchar. Reads a multibyte character or a
wide character according to whether stream is opened in text mode or
binary mode.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_gettc getc getc getwce

_gettchar getchar getchar getwchar

/* GETC.C: This program uses getchar to read a single line
* of input from stdin, places this input in buffer, then
* terminates the string before printing it to the screen.
*/

f#include <stdio.h>

void main(void)
{

Output

_getch, _getche

char buffer[81];
int i, ch;
printf(“Enter a line: ");

/* Read in single line from "stdin": */
for(i = 0; (i < 80) & ((ch = getchar()) != EOF)
&& (ch != '"\n'); i++)
buffer(i] = (char)ch;

/* Terminate string with null character: */
buffer[i] = '\0';
printf("%s\n", buffer);

Enter a line: This is a test
This is a test

See Also: fgetc, _getch, pute, ungetc

_getch, _getche

Get a character from the console without echo (_getch) or with echo (_getche).

int _getch(void);
int _getche(void);

Routine Required Header Compatibility
_getch <conio.h> Win 95, Win NT
_getche <conio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Remarks

Both _getch and _getche return the character read. There is no error return.

The _getch function reads a single character from the console without echoing.
_getche reads a single character from the console and echoes the character read.
Neither function can be used to read CTRL+C. When reading a function key or
an arrow key, _getch and _getche must be called twice; the first call returns 0 or
0xEQ, and the second call returns the actual key code.

303

_getewd, _wgetcwd

Example
/* GETCH.C: This program reads characters from
* the keyboard until it receives a 'Y' or '
*/

y .

#Hinclude <conio.h>
ffinclude <ctype.h>

void main(void)

{
int ch;
_cputs("Type 'Y' when finished typing keys:
do
{
ch = _getch();
ch = toupper(ch);
} while(ch = "Y");
_putch(ch);
_putch("\r'); /* Carriage return */
_putch("\n'); /* Line feed */
}

Output
Type 'Y' when finished typing keys: Y

See Also: _cgets, getc, _ungetch

"y,

_getcwd, _wgetcwd

Get the current working directory.

char *_getcwd(char *buffer, int maxlen);
wchar_t *_wgetcwd(wchar_t *buffer, int maxlen);

Routine Required Header Compatibility
_getewd <direct.h> Win 95, Win NT
_wgetewd <direct.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

304

_getcwd, _wgetcwd

Return Value
Each of these functions returns a pointer to buffer. A NULL return value indicates
an error, and errno is set either to ENOMEM, indicating that there is insufficient
memory to allocate maxlen bytes (when a NULL argument is given as buffer), or
to ERANGE, indicating that the path is longer than maxlen characters.

Parameters
buffer Storage location for path

maxlen Maximum length of path

Remarks
The _getewd function gets the full path of the current working directory for the
default drive and stores it at buffer. The integer argument maxlen specifies the
maximum length for the path. An error occurs if the length of the path (including the
terminating null character) exceeds maxlen. The buffer argument can be NULL; a
buffer of at least size maxlen (more only if necessary) will automatically be allocated,
using malloc, to store the path. This buffer can later be freed by calling free and
passing it the _getcwd return value (a pointer to the allocated buffer).

_getewd returns a string that represents the path of the current working directory. If
the current working directory is the root, the string ends with a backslash (\). If the

current working directory is a directory other than the root, the string ends with the

directory name and not with a backslash.

_wgetcwd is a wide-character version of _getewd; the bujffer argument and return
value of _wgetcwd are wide-character strings. _wgetcwd and _getewd behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tgetcwd _getewd _getewd _wgetcwd
Example
// GETCWD.C

/* This program places the name of the current directory in the
* puffer array, then displays the name of the current directory
* on the screen. Specifying a length of _MAX_PATH leaves room
* for the longest legal path name.

*/

#include <direct.h>
#inciude <stdlib.h>
#Hinclude <stdio.h>

void main(void)

{
char buffer[_MAX_PATH];

305

_getdewd, _wgetdewd

/* Get the current working directory: */
if(_getcwd(buffer, _MAX_PATH) == NULL)
perror("_getcwd error");
else
printf("%s\n", buffer);

Output
C:\code

See Also: _chdir, _mkdir, _rmdir

_getdewd, _wgetdcwd

Get full path name of current working directory on the specified drive.

char *_getdcwd(int drive, char *buffer, int maxlen);
wchar_t *_wgetdewd(int drive, wchar_t *buffer, int maxlen);

Routine Required Header Compatibility
_getdewd <direct.h> Win 95, Win NT
_wgetdcwd <direct.h> or <wchar.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
Each of these functions returns buffer. A NULL return value indicates an error, and
errno is set either to ENOMEM, indicating that there is insufficient memory to
allocate maxlen bytes (when a NULL argument is given as buffer), or to ERANGE,
indicating that the path is longer than maxlen characters.

Parameters
drive Disk drive

buffer Storage location for path
maxlen Maximum length of path
Remarks
The _getdcwd function gets the full path of the current working directory on the
specified drive and stores it at buffer. An error occurs if the length of the path

(including the terminating null character) exceeds maxlen. The drive argument
specifies the drive (0 = default drive, 1 = A, 2 = B, and so on). The buffer argument

306

Example

_getdewd, _wgetdcwd

can be NULL; a buffer of at least size maxlen (more only if necessary) will
automatically be allocated, using malloc, to store the path. This buffer can later be
freed by calling free and passing it the _getdewd return value (a pointer to the
allocated buffer).

_getdcwd returns a string that represents the path of the current working directory. If
the current working directory is set to the root, the string ends with a backslash (\).
If the current working directory is set to a directory other than the root, the string ends
with the name of the directory and not with a backslash.

_wgetdcewd is a wide-character version of _getdcwd; the buffer argument and return
value of _wgetdcwd are wide-character strings. _wgetdcwd and _getdcwd behave
identically otherwise.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tgetdewd _getdewd _getdewd _wgetdewd

/* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*/

#include <stdio.h>
f#include <conio.h>
#include <direct.h>
#include <stdlib.h>
#include <ctype.h>

void main(void)

{
int ch, drive, curdrive;
static char path[_MAX_PATH];

/* Save current drive. */
curdrive = _getdrive();

printf("Available drives are: \n");

/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drivet+t+)
if(!_chdrive(drive))
printf("%c: ", drive + A" - 1);

while(1)
{
printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)
break;

307

_getdrive

if(isalpha(ch))
_putch(ch);
if(_getdcwd(toupper(ch) - "A' + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path):
}

/* Restore original drive.*/
_chdrive(curdrive);
printf("\n");

Output
Available drives are:
A: B: C: L: M: 0: U: V:
Type drive letter to check or ESC to quit: c
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:
See Also: _chdir, _getcwd, _getdrive, _mkdir, _rmdir

_getdrive

Gets the current disk drive.
int _getdrive(void);

Routine Required Header Compatibility

_getdrive <direct.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_getdrive returns the current (default) drive (1=A, 2=B, and so on). There is no

error return.
Example
/* GETDRIVE.C illustrates drive functions including:
* _getdrive _chdrive _getdcwd
*/

308

Output

f#finclude <stdio.h>
#include <conio.h>
f#Hinclude <direct.h>
#include <stdlib.h>
#finclude <ctype.h>

void main(void)

{
int ch, drive, curdrive;
static char path[_MAX_PATH];
/* Save current drive. */
curdrive = _getdrive();
printf("Available drives are: \n");
/* If we can switch to the drive, it exists. */
for(drive = 1; drive <= 26; drive++)
if(!_chdrive(drive))
printf("%c: ", drive + 'A" - 1);
while(1)
{
printf("\nType drive letter to check or ESC to quit: ");
ch = _getch();
if(ch == 27)
break;
if(isalpha(ch))
_putch(ch);
if(_getdcwd(toupper(ch) - 'A'" + 1, path, _MAX_PATH) != NULL)
printf("\nCurrent directory on that drive is %s\n", path);
}
/* Restore original drive.*/
_chdrive(curdrive);
printf("\n");
}

Available drives are:

A: B: C: L: M: 0: U: V:

Type drive letter to check or ESC to quit: ¢
Current directory on that drive is C:\CODE

Type drive letter to check or ESC to quit: m
Current directory on that drive is M:\

Type drive letter to check or ESC to quit:
See Also: _chdrive, _getewd, _getdewd

_getdrive

309

getenv, _wgetenv

getenv, _wgetenv

Get a value from the current environment.

char *getenv(const char *varname);
wchar_t *_wgetenv(const wchar_t *varname);

Routine Required Header Compatibility
getenv <stdlib.h> ANSI, Win 95, Win NT
_wgetenv <stdlib.h> or <wchar.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns a pointer to the environment table entry containing
varname. It is not safe to modify the value of the environment variable using the
returned pointer. Use the _putenv function to modify the value of an environment
variable. The return value is NULL if varname is not found in the environment table.

Parameter

Remarks

310

varname Environment variable name

The getenv function searches the list of environment variables for varname. getenv
is not case sensitive in Windows NT and Windows 95. getenv and _putenv use the
copy of the environment pointed to by the global variable _environ to access the
environment. getenv operates only on the data structures accessible to the run-time
library and not on the environment “segment” created for the process by the operating
system. Therefore, programs that use the envp argument to main or wmain may
retrieve invalid information.

_wgetenv is a wide-character version of getenv; the argument and return value
of _wgetenv are wide-character strings. The _wenviron global variable is a
wide-character version of _environ.

In an MBCS program (for example, in an SBCS ASCII program), _wenviron is
initially NULL because the environment is composed of multibyte-character strings.
Then, on the first call to _wputenv, or on the first call to _wgetenv if an (MBCS)
environment already exists, a corresponding wide-character string environment is
created and is then pointed to by _wenviron.

Example

Similarly in a Unicode (_wmain) program, _environ is initially NULL because
the environment is composed of wide-character strings. Then, on the first call to
_putenv, or on the first call to getenv if a (Unicode) environment already exists, a
corresponding MBCS environment is created and is then pointed to by _environ.

When two copies of the environment (MBCS and Unicode) exist simultaneously
in a program, the run-time system must maintain both copies, resulting in slower
execution time. For example, whenever you call _puteny, a call to _wputenv is
also executed automatically, so that the two environment strings correspond.

Caution In rare instances, when the run-time system is maintaining both a Unicode version
and a multibyte version of the environment, these two environment versions may not
correspond exactly. This is because, although any unique multibyte-character string maps to
a unique Unicode string, the mapping from a unique Unicode string to a multibyte-character
string is not necessarily unique. For more information, see “_environ, _wenviron.”

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_tgetenv getenv getenv _wgetenv

To check or change the value of the TZ environment variable, use getenv,
_putenv and _tzset as necessary. For more information about TZ, see tzset and
see “_daylight, timezone, and _tzname.”

/* GETENV.C: This program uses getenv to retrieve
* the LIB environment variable and then uses

* _putenv to change it to a new value.

*/

ffinclude <stdlib.h>
ffinclude <stdio.h>

void main(void)
{
char *libvar;

/* Get the value of the LIB environment variable. */
libvar = getenv("LIB");

if(libvar != NULL)
printf("Original LIB variable is: %s\n", libvar);

/* Attempt to change path. Note that this only affects the environment
* variable of the current process. The command processor's environment

* is not changed.
*/
_putenv("LIB=c:\\mylib;c:\\yourlib");

getenv, _wgetenv

3N

_getmbcp

/* Get new value. */
libvar = getenv("LIB");

if(Tibvar != NULL)
printf("New LIB variable is: %s\n", Tibvar);

Output
Original LIB variable is: C:\progra~l\devstu~1\vc\1ib
New LIB variable is: c:\mylib;c:\yourlib

See Also: _puteny

_getmbcp

int _getmbcp(void);
Routine Required Header Compatibility
_getmbcp <mbctype.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_getmbcp returns the current multibyte code page. A return value of O indicates that a
single byte code page is in use.

See Also: _setmbcp

_get_osthandle

Gets operating-system file handle associated with existing stream FILE pointer.
long _get_osfhandle(int filehandle);
Routine Required Header Compatibility

_get_osfhandle <jo.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

312

_getpid

Return Value
If successful, _get_osfhandle returns an operating-system file handle corresponding
to filehandle. Otherwise, it returns —1 and sets errno to EBADF, indicating an invalid
file handle.

Parameter
filehandle User file handle

Remarks
The _get_osfhandle function returns filehandle if it is in range and if it is internally
marked as free.

See Also: _close, _creat, _dup, _open

Gets the process identification.
int _getpid(void);
Routine Required Header Compatibility

_getpid <process.h> Win 95, Win NT

For additional compatibility information, see ‘“Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_getpid returns the process ID obtained from the system. There is no error return.

Remarks
The _getpid function obtains the process ID from the system. The process ID
uniquely identifies the calling process.

Example
/* GETPID.C: This program uses _getpid to obtain
* the process ID and then prints the ID.
*/

JHinclude <stdio.h>
f#finclude <process.h>

¥01d main(void)

/* If run from command 1ine, shows different ID for
* command line than for operating system shell.
*/
printf("\nProcess id: %d\n", _getpid());
}

313

_get_sbh_threshold

Output

Process id: 193

See Also: _mktemp

_get_sbh_threshold

Returns the upper limit for the size of a memory allocation that will be supported
by the small-block heap.

size_t _get_sbh_threshold(void);
Routine Required Header Compatibility

_get_sbh_threshold <malloc.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Remarks

This function returns the upper limit for the size of a memory allocation that will
be supported by the small-block heap.

Call this function to get the current threshold value for the small-block heap.
The default threshold size is 480 bytes for Windows 95 and all Windows NT
platforms except the DEC Alpha platforms, and 896 bytes for DEC Alpha
Platforms.

See Also: _set_sbh_threshold

gets, _getws

314

Get a line from the stdin stream.

char *gets(char *buffer);
wchar_t *_getws(wchar_t *buffer);

Routine Required Header Compatibility
gets <stdio.h> ANSI, Win 95, Win NT
_getws <stdio.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB - Import library for MSVCRT.DLL, retail version

Return Value

Each of these functions returns its argument if successful. A NULL pointer
indicates an error or end-of-file condition. Use ferror or feof to determine
which one has occurred.

Parameter

Remarks

Example

Output

buffer Storage location for input string

The gets function reads a line from the standard input stream stdin and stores it in
buffer. The line consists of all characters up to and including the first newline
character ("\n'). gets then replaces the newline character with a null character ('\0")
before returning the line. In contrast, the fgets function retains the newline character.
_getws is a wide-character version of gets; its argument and return value are
wide-character strings.

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined

_getts gets gets _getws

/* GETS.C */

#include <stdio.h>

void main(void)

{

char 1ine[81];

printf("Input a string: ");

gets(line);

printf("The line entered was: %s\n", line);
}

Input a string: Hello!
The Tine entered was: Hello!

See Also: fgets, fputs, puts

gets, _getws

315

_getw

_getw

Gets an integer from a stream.
int _getw(FILE *stream);
Routine Required Header Compatibility

_getw <stdio.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

_getw returns the integer value read. A return value of EOF indicates either an error
or end of file. However, because the EOF value is also a legitimate integer value, use
feof or ferror to verify an end-of-file or error condition.

Parameter

Remarks

Example

316

stream Pointer to FILE structure

The _getw function reads the next binary value of type int from the file associated
with stream and increments the associated file pointer (if there is one) to point to the
next unread character. _getw does not assume any special alignment of items in the
stream. Problems with porting may occur with _getw because the size of the int type
and the ordering of bytes within the int type differ across systems.

/* GETW.C: This program uses _getw to read a word
* from a stream, then performs an error check.
*/

#include <stdio.h>
#include <stdlib.h>

void main(void)
{
FILE *stream;
int 1i;

if((stream = fopen("getw.c", "rb")) == NULL)
printf("Couldn't open file\n");

else

{
/* Read a word from the stream: */
i = _getw(stream);

gmtime

/* If there is an error... */
if(ferror(stream))
{

printf("_getw failed\n");

clearerr(stream);
}
else

printf("First data word in file: 0x%.4x\n", i);
fclose(stream);

Output
First data word in file: 0x47202a2f

See Also: _putw

gmtime

Converts a time value to a structure.

struct tm *gmtime(const time_t *timer);

Routine Required Header Compatibility

gmtime <time.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

gmtime returns a pointer to a structure of type tm. The fields of the returned structure
hold the evaluated value of the fimer argument in UTC rather than in local time. Each
of the structure fields is of type int, as follows:

tm_sec Seconds after minute (0-59)
tm_min Minutes after hour (0-59)
tm_hour Hours since midnight (0-23)
tm_mday Day of month (1-31)
tm_mon Month (0—11; January = 0)
tm_year Year (current year minus 1900)

tm_wday Day of week (0—6; Sunday = 0)

317

gmtime

tm_yday Day of year (0—365; January 1 = 0)

tm_isdst Always 0 for gmtime

The gmtime, mktime, and localtime functions use the same single, statically
allocated structure to hold their results. Each call to one of these functions destroys the
result of any previous call. If timer represents a date before midnight, January 1, 1970,
gmtime returns NULL. There is no error return.

Parameter

Remarks

Example

Output

318

timer Pointer to stored time. The time is represented as seconds elapsed since
midnight (00:00:00), January 1, 1970, coordinated universal time (UTC).

The gmtime function breaks down the fimer value and stores it in a statically
allocated structure of type tm, defined in TIME.H. The value of timer is usually
obtained from a call to the time function.

Note The target environment should try to determine whether daylight savings time is in effect.
The C run-time library assumes the United States’s rules for implementing the calculation of
Daylight Savings Time (DST).

/* GMTIME.C: This program uses gmtime to convert a long-
* integer representation of coordinated universal time
* to a structure named newtime, then uses asctime to
* convert this structure to an output string.

*/

#include <time.h>
#include <stdio.h>

void main(void)

{

struct tm *newtime;

long 1time;

time(<ime);

/* Obtain coordinated universal time: */

newtime = gmtime(&1time);

printf("Coordinated universal time is %s\n",

asctime(newtime));

}

Coordinated universal time is Tue Mar 23 02:00:56 1993

See Also: asctime, ctime, _ftime, localtime, mktime, time

_heapchk

_heapadd

Adds memory to the heap.
int _heapadd(void *memblock, size_t size);

Routine Required Header Optional Headers Compatibility

_heapadd <malloc.h> <errno.h> None

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
If successful, _heapadd returns 0; otherwise, the function returns —1 and sets errno
to ENOSYS.
Parameters

memblock Pointer to heap memory

size Size in bytes of memory to add

Remarks
Beginning with Visual C++ Version 4.0, the underlying heap structure was moved to the
C run-time libraries to support the new debugging features. As a result, _heapadd is no
longer supported on any Win32 platform and will immediately return -1 when called from
an application of this type.

See Also: free, _heapchk, _heapmin, _heapset, _heapwalk, malloc, realloc

_heapchk

Runs consistency checks on the heap.

int _heapchk(void);
Routine Required Header Optional Headers Compatibility

_heapchk <malloc.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

319

_heapchk

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_heapchk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information is bad or cannot be found
_HEAPBADNODE Bad node has been found or heap is damaged
_HEAPBADPTR Pointer into heap is not valid

_HEAPEMPTY Heap has not been initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapchk sets errno to ENOSYS.

Remarks
The _heapchk function helps debug heap-related problems by checking for minimal
consistency of the heap.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the C run-time
libraries to support the new debugging features. As a result, the only Win32 platform that is
supported by _heapchk is Windows NT. The function returns _HEAPOK and sets errno to
ENOSYS, when it is called by any other Win32 platform.

Example
/* HEAPCHK.C: This program checks the heap for
* consistency and prints an appropriate message.
*/

#include <matloc.h>
#include <stdio.h>

void main(void)

{
int heapstatus;
char *buffer;

/* Allocate and deallocate some memory */
if((buffer = (char *)malloc(100)) != NULL)
free(buffer);

/* Check heap status */
heapstatus = _heapchk();
switch(heapstatus)

{

320

Output

_heapmin

case _HEAPOK:
printf(" 0K - heap is fine\n");
break;

case _HEAPEMPTY:
printf("” OK - heap is empty\n");
break;

case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;

case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;

0K - heap is fine
See Also: _heapadd, _heapmin, _heapset, _heapwalk

_heapmin

Releases unused heap memory to the operating system.
int _heapmin(void);

Routine Required Header Optional Headers Compatibility

_heapmin <malloc.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

Remarks

If successful, _heapmin returns 0; otherwise, the function returns —1 and sets errno
to ENOSYS.

The _heapmin function minimizes the heap by releasing unused heap memory to the
operating system.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the C run-time
libraries to support the new debugging features. As a result, the only Win32 platform that is
supported by _heapmin is Windows NT. The function returns —1 and sets errno to ENOSYS,
when it is called by any other Win32 platform.

See Also: free, _heapadd, _heapchk, _heapset, _heapwalk, malloc

321

_heapset

_heapset

Checks heaps for minimal consistency and sets the free entries to a specified value.
int _heapset(unsigned int fill);
Routine Required Header Optional Headers Compatibility

_heapset <malloc.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries
LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value
_heapset returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found
_HEAPBADNODE Heap damaged or bad node found
_HEAPEMPTY Heap not initialized

_HEAPOK Heap appears to be consistent

In addition, if an error occurs, _heapset sets errno to ENOSYS.

Parameter
Sill Fill character

Remarks
The _heapset function shows free memory locations or nodes that have been
unintentionally overwritten.

_heapset checks for minimal consistency on the heap, then sets each byte of
the heap’s free entries to the fill value. This known value shows which
memory locations of the heap contain free nodes and which contain data that
were unintentionally written to freed memory.

Note In Visual C++ Version 4.0, the underlying heap structure was moved to the

C run-time libraries to support the new debugging features. As a result, the only Win32
platform that is supported by _heapset is Windows NT. The function returns _HEAPOK
and sets errno to ENOSYS, when it is called by any other Win32 platform.

322

Example

Output

_heapwalk

/* HEAPSET.C: This program checks the heap and
* fi1ls in free entries with the character 'Z’.
*/

#include <malloc.h>
finclude <stdio.h>
##include <stdlib.h>

void main(void)
{
int heapstatus;
char *buffer;

if((buffer = malloc(1)) == NULL) /* Make sure heap is */
exit(0); /* initialized */
heapstatus = _heapset('Z'); /* Fi11 in free entries */
switch(heapstatus)
{
case _HEAPOK:
printf("0K - heap is fine\n");
break;
case _HEAPEMPTY:
printf("0K - heap is empty\n");
break;
case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;
case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;
1
free(buffer);

0K - heap is fine
See Also: _heapadd, _heapchk, _heapmin, _heapwalk

_heapwalk

Traverses the heap and returns information about the next entry.
int _heapwalk(_HEAPINFO *entryinfo);
Routine Required Header Optional Headers Compatibility

_heapwalk <malloc.h> <errno.h> Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

323

_heapwalk

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value

_heapwalk returns one of the following integer manifest constants defined in
MALLOC.H:

_HEAPBADBEGIN Initial header information invalid or not found
_HEAPBADNODE Heap damaged or bad node found

_HEAPBADPTR _pentry field of _HEAPINFO structure does not contain valid
pointer into heap

_HEAPEND End of heap reached successfully
_HEAPEMPTY Heap not initialized
_HEAPOK No errors so far, _HEAPINFO structure contains information about

next entry.

In addition, if an error occurs, _heapwalk sets errno to ENOSYS.

Parameter

Remarks

324

entryinfo Buffer to contain heap information

The _heapwalk function helps debug heap-related problems in programs. The
function walks through the heap, traversing one entry per call, and returns a pointer to
a structure of type _ HEAPINFO that contains information about the next heap entry.
The _HEAPINFO type, defined in MALLOC.H, contains the following elements:

int *_pentry Heap entry pointer
size_t _size Size of heap entry

int _useflag Flag that indicates whether heap entry is in use

A call to _heapwalk that returns _HEAPOK stores the size of the entry in the _size
field and sets the _useflag field to either _FREEENTRY or _USEDENTRY (both
are constants defined in MALLOC.H). To obtain this information about the first entry
in the heap, pass _heapwalk a pointer to a _HEAPINFO structure whose _pentry
member is NULL.

Note Beginning with Visual C++ Version 4.0, the underlying heap structure was moved to the

C run-time libraries to support the new debugging features. As a result, the only Win32 platform
that is supported by _heapwalk is Windows NT. When it is called by any other Win32 platform,
_heapwalk returns _HEAPEND and sets errno to ENOSYS.

Example

/

*

* ok ok *

*/

HEAPWALK.C: This program "walks" the heap, starting

at the beginning (_pentry = NULL). It prints out each
heap entry's use, location, and size. It also prints
out information about the overall state of the heap as
soon as _heapwalk returns a value other than _HEAPOK.

#include <stdio.h>
J#include <malloc.h>

void heapdump(void);

void main(void)

{

}

char *buffer;

heapdump();
if((buffer = malloc(59)) != NULL)
{
heapdump();
free(buffer);
}
heapdump();

void heapdump(void)
{

_HEAPINFO hinfo;
int heapstatus;
hinfo._pentry = NULL;

while((heapstatus = _heapwalk(&hinfo)) == _HEAPOK)

{ printf("%6s block at %Fp of size %4.4X\n",

(hinfo._useflag == _USEDENTRY ? "USED" :

hinfo._pentry, hinfo._size);
}

switch(heapstatus)
{
case _HEAPEMPTY:
printf("OK - empty heap\n");
break;
case _HEAPEND:
printf("OK - end of heap\n");
break;
case _HEAPBADPTR:
printf("ERROR - bad pointer to heap\n");
break;
case _HEAPBADBEGIN:
printf("ERROR - bad start of heap\n");
break;
case _HEAPBADNODE:
printf("ERROR - bad node in heap\n");
break;
}

_heapwalk

325

_hypot

Output
USED block at ©02C0004 of size 0014
USED block at 902C001C of size 0054
USED block at 002C0074 of size 0024
USED btock at 202C009C of size 0010
USED block at 002C00BQ of size 0018
USED block at 002C00CC of size 000C
USED block at 002C00DC of size 001C
USED block at 002CQQFC of size 0010
USED block at 002C0110 of size 0014
USED block at 002C0128 of size 0010
USED block at 002C013C of size 0028
USED block at 002C0168 of size 0088
USED block at 802C01F4 of size 001C
USED block at 002C0214 of size 0014
USED block at 002C022C of size 0010
USED block at 002C0240 of size 0014
USED block at 002C0258 of size 0010
USED block at 002C026C of size 000C
USED block at 002C027C of size 0010
USED block at 002C0290 of size 0014
USED block at 002CQ2A8 of size 0010
USED bTock at 002C02BC of size 0010
USED block at 002C02D0 of size 1000
FREE block at 002C12D4 of size ED2C
0K - end of heap

See Also: _heapadd, _heapchk, _heapmin, _heapset

_hypot

Calculates the hypotenuse.
double _hypot(double x, double y);
Routine Required Header Compatibility

_hypot <math.h> Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
_hypot returns the length of the hypotenuse if successful or INF (infinity) on
overflow. The errno variable is set to ERANGE on overflow. You can modify error
handling with _matherr.

326

_inp, _inpw, _inpd

Parameters
x,y Floating-point values

Remarks
The _hypot function calculates the length of the hypotenuse of a right triangle, given
the length of the two sides x and y. A call to _hypet is equivalent to the square root
of x2 + y2.

Example
/* HYPOT.C: This program prints the
* hypotenuse of a right triangle.
*/

#include <math.h>
#include <stdio.h>

void main(void)

{
double x = 3.0, y = 4.0;
printf("If a right triangle has sides %2.1f and %2.1f, "
"its hypotenuse is %2.1f\n", x, y, _hypot(x, y));
}

Output
If a right triangle has sides 3.0 and 4.0, its hypotenuse is 5.0

See Also: _cabs, _matherr

_1inp, _inpw, _inpd
Input a byte (_inp), a word (_inpw), or a double word (_inpd) from a port.

int _inp(unsigned short port);
unsigned short _inpw(unsigned short port);
unsigned long _inpd(unsigned short port);

Routine Required Header Compatibility
_inp <conio.h> Win 95
_inpw <conio.h> Win 95
_inpd <conio.h> Win 95

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

327

is, isw Routines

Return Value

The functions return the byte, word, or double word read from porz. There is no error
return.

Parameter

Remarks

port Port number

The _inp, _inpw, and _inpd functions read a byte, a word, and a double word,
respectively, from the specified input port. The input value can be any unsigned
short integer in the range 0—65,535.

See Also: _outp

1S, 1SwW Routines

Remarks

328

isalnum, iswalnum islower, iswlower
isalpha, iswalpha isprint, iswprint
__isascii, iswascii ispunct, iswpunct
isentrl, iswentrl isspace, iswspace
__isesym, __iscsymf isupper, iswupper
isdigit, iswdigit isxdigit, iswxdigit
isgraph, iswgraph iswctype

These routines test characters for specified conditions.

The is routines produce meaningful results for any integer argument from —1 (EOF) to
UCHAR_MAX (0xFF), inclusive. The expected argument type is int.

Warning For the is routines, passing an argument of type char may yield unpredictable
results. An SBCS or MBCS single-byte character of type char with a value greater than 0x7F
is negative. If a char is passed, the compiler may convert the value to a signed int or a signed
long. This value may be sign-extended by the compiler, with unexpected results.

The isw routines produce meaningful results for any integer value from —1 (WEOF)
to OxFFFF, inclusive. The wint_t data type is defined in WCHAR.H as an unsigned
short; it can hold any wide character or the wide-character end-of-file (WEOF) value.

For each of the is routines, the result of the test for the specified condition depends
on the LC_CTYPE category setting of the current locale; see setlocale for more
information. In the “C” locale, the test conditions for the is routines are as follows:

isalnum Alphanumeric (A~Z, a-z, or 0-9)

isalpha Alphabetic (A-Z or a-z)

is, isw Routines

__isascii ASCII character (0x00-0x7F)

isentrl Control character (0x00-0x1F or 0x7F)
__iscsym Letter, underscore, or digit

__liscsymf Letter or underscore

isdigit Decimal digit (0-9)

isgraph Printable character except space ()

islower Lowercase letter (a—z)

isprint Printable character including space (0x20—0x7E)
ispunct Punctuation character

isspace White-space character (0x09-0x0D or 0x20)
isupper Uppercase letter (A-Z)

isxdigit Hexadecimal digit (A-F, a—f, or 0-9)

For the isw routines, the result of the test for the specified condition is independent of

locale. The test conditions for the isw functions are as follows:

iswalnum iswalpha or iswdigit

iswalpha Any wide character that is one of an implementation-defined set for which
none of iswentrl, iswdigit, iswpunct, or iswspace is true. iswalpha returns true
only for wide characters for which iswupper or iswlower is true.

iswascii Wide-character representation of ASCII character (0x0000-0x007F).
iswentrl Control wide character.

iswctype Character has property specified by the desc argument. For each valid
value of the desc argument of iswctype, there is an equivalent wide-character
classification routine, as shown in the following table:

Table R.2 Equivalence of iswctype(c, desc) to Other isw Testing Routines

Value of desc Argument iswctype(¢, desc) Equivalent
_ALPHA iswalpha(c)
_ALPHA | _DIGIT iswalnum(c)
_CONTROL iswentrl(¢)
_DIGIT iswdigit(¢)
_ALPHA | _DIGIT | _PUNCT iswgraph(c)
_LOWER iswlower(¢)
_ALPHA | _BLANK | _DIGIT | _PUNCT iswprint(¢)
_PUNCT iswpunct(c)
_SPACE iswspace(¢)
_UPPER iswupper(c)
_HEX iswxdigit(c)

329

is, isw Routines

Example

330

iswdigit Wide character corresponding to a decimal-digit character.
iswgraph Printable wide character except space wide character (L').

iswlower Lowercase letter, or one of implementation-defined set of wide characters
for which none of iswentrl, iswdigit, iswpunct, or iswspace is true. iswlower
returns true only for wide characters that correspond to lowercase letters.

iswprint Printable wide character, including space wide character (L'").

iswpunct Printable wide character that is neither space wide character (L' ') nor wide
character for which iswalnum is true.

iswspace Wide character that corresponds to standard white-space character or is
one of implementation-defined set of wide characters for which iswalnum is false.
Standard white-space characters are: space (L' "), formfeed (L'\f"), newline (L'\n"),
carriage return (L'\r'), horizontal tab (L'\t"), and vertical tab (L"\V').

iswupper Wide character that is uppercase or is one of an implementation-defined
set of wide characters for which none of iswentrl, iswdigit, iswpunct, or iswspace
is true. iswupper returns true only for wide characters that correspond to uppercase
characters.

iswxdigit Wide character that corresponds to a hexadecimal-digit character.

/* ISFAM.C: This program tests all characters between 0x@
* and Ox7F, then displays each character with abbreviations
* for the character-type codes that apply.

* Editor's note: the following output is significantly
* shortened with the use of ellipses. This full output
* is too long and repetitive.

*/

#include <stdio.h>
#include <ctype.h>

void main(void)

{
int ch;
for(ch = @; ch <= 0x7F; ch++)
{

printf("%.2x ", ch);
printf(" %c™, isprint(ch) ? ch :'\DT)
printf("%4s"™, isalnum(ch) ? “AN" : "");

printf("%3s"™, isalpha(ch) 2?2 "A" : "");
printf("%3s™, __isascii(ch) ? "AS™ : "");
printf("%3s", iscntri(ch) ? "C" : "");
printf("%3s", __iscsym(ch) ? "CS "™ = "");

printf("%3s", __iscsymf(ch) 7 "CSF" : "");
printf("%3s", isdigit(ch) ? "D" : "");
printf("%3s"™, isgraph(ch) 2 "G" : "");
printf("%3s", islower(ch) ? "L" : "");

Output

+ %~ . 20 3R T

printf(
printf(
printf(
printf(
printf(
printf(

"%3s",
"%3s",
"%3s",
"%3s",

"\n");

ispunct(ch)
isspace(ch)
isprint(ch)
isupper(ch)
"%3s", isxdigit(ch)

OOOMOMOMmODO MmN

?
?
?
?
?

PU
PU
PU
PU
PU
PU
PU
PU
PU
PU
PU

"py" .

nsn

"pR" :

"U"
vy

S PR
PR
PR
PR
PR
PR

PR
PR
PR
PR
PR

is, isw Routines

331

is, isw Routines

332

2c
2d
2e
2f
30
31
32
33
34

39
3a
3b
3c
3d

O N WNFHOO N

NN <XEZ<CH{UVXOUTVOZIrRUHIOTMMOO®DIE VDV

AN

>r>>r>>rPP>>P>>P>>>>P>>>r>>>>r>>r>

()

CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF
CSF

(e B e Bl e B o Bl = o B o B oo B w |

OO0 OOOOOOOOOOOONOOOHOOOHOOODOOND

OOOOOOOOOMOOMm

[oNoNoNN)

PU
PU
PU
PU

PU
PU
PU

PU

CcCCcCcCcCcCcCcCcCcaococaoccccococaocacaocaoccaccacacaccc

>X DX > X > 3 > X< X

> > X X X X

is, isw Routines

5c \ AS G PU PR

5d) AS G PU PR

se A AS G PU PR

5 _ AS CS CSF G PU PR

60 - AS G PU PR

61 a AN A AS CS CSF G L PR X
62 b AN A AS CS CSF G L PR X
63 c AN A AS CS CSF G L PR X
64 d AN A AS CS CSF G L PR X
65 e AN A AS CS CSF G L PR X
66 f AN A AS CS CSF G L PR X
67 g AN A AS CS CSF G L PR

68 h AN A AS CS CSF 6 L PR

69 i AN A AS CS CSF 6 L PR

6a j AN A AS CS CSF 6 L PR

6b k AN A AS CS CSF G L PR

6c 1 AN A AS CS CSF G L PR

6d m AN A AS CS CSF G L PR

6e n AN A AS CS CSF G L PR

6f o AN A AS CS CSF G L PR

706 p AN A AS CS CSF G L PR

71 q AN A AS CS CSF G L PR

72 r AN A AS CS CSF G L PR

73 s AN A AS CS CSF G L PR

74 t AN A AS CS CSF G L PR

75 u AN A AS CS CSF G L PR

76 v AN A AS CS CSF 6 L PR

77 w AN A AS CS CSF G L PR

78 x AN A AS CS CSF G L PR

79 'y AN A AS CS CSF G L PR

7a. z AN A AS CS CSF G L PR

4 T AS G PU PR

7¢c | AS G PU PR

7d) AS G PU PR

7e ~ AS G PU PR

7f

See Also: setlocale, to Function Overview

1salnum, iswalnum

int isalnum(int ¢);
int iswalnum(wint_t c);

Each of these routines returns true if ¢ is a particular representation of an
alphanumeric character.

Routine Required Header Compatibility
isalnum <ctype.h> ANSI, Win 95, Win NT
iswalnum <ctype.h> or <wchar.h> ANSI, Win 95, Win NT

333

is, isw Routines

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version

LIBCMT.LIB Multithread static library, retail version

MSVCRT.LIB Import library for MSVCRT.DLL, retail version
Return Value

isalnum returns a non-zero value if either isalpha or isdigit is true for ¢, that is, if ¢
is within the ranges A—Z, a-z, or 0-9. iswalnum returns a non-zero value if either
iswalpha or iswdigit is true for c. Each of these routines returns 0 if ¢ does not
satisfy the test condition.

The result of the test condition for the isalnum function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalnum, the result of the test condition is independent of locale.

Parameter
¢ Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_istalnum isalnum _ismbcalnum iswalnum

1salpha, iswalpha

int isalpha(int ¢);
int iswalpha(wint_t ¢);

Each of these routines returns true if ¢ is a particular representation of an alphabetic

character.

Routine Required Header Compatibility

isalpha <ctype.h> ANSI, Win 95, Win NT
iswalpha <ctype.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

334

is, isw Routines

Return Value
isalpha returns a non-zero value if ¢ is within the ranges A-Z or a-z. iswalpha
returns a non-zero value only for wide characters for which iswupper or iswlower is
true, that is, for any wide character that is one of an implementation-defined set for
which none of iswentrl, iswdigit, iswpunct, or iswspace is true. Each of these
routines returns 0 if ¢ does not satisfy the test condition.

The result of the test condition for the isalpha function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For
iswalpha, the result of the test condition is independent of locale.

Parameter
¢ Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_istalpha isalpha _ismbcalpha iswalpha

__1sascli, iswascii
int __isascii(int ¢);
int iswascii(wint_t ¢);

Each of these routines returns true if ¢ is a particular representation of an ASCII

character.

Routine Required Header Compatibility

__isascii <ctype.h> Win 95, Win NT
iswascii <ctype.h> or <wchar.h> ANSI, Win 95, Win NT

For additional compatibility information, see “Compatibility” in the Introduction.

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSVCRT.LIB Import library for MSVCRT.DLL, retail version

Return Value
__isascii returns a non-zero value if ¢ is an ASCII character (in the range 0x00-0x7F).
iswascii returns a non-zero value if ¢ is a wide-character representation of an ASCII
character. Each of these routines returns O if ¢ does not satisfy the test condition.

The result of the test condition for the __isascii function depends on the LC_CTYPE
category setting of the current locale; see setlocale for more information. For iswascii,
the result of the test condition is independent of locale.

335

is, isw Routines

Parameter
¢ Integer to test

Generic-Text Routine Mappings

TCHAR.H Routine _UNICODE & _MBCS _MBCS Defined _UNICODE Defined
Not Defined
_istascii __isascii __isascii iswascii

1scntrl, iswentrl

int iscntrl(int ¢);
int iswentrl(wint_t ¢);

Each of these routi