
Designed for

.
Microsoft•
Windows NT"
Windows"98

CD-ROM

included The Essential Guide to
Microsoft Visual C++ 6.0

Beck Zaratian
Microsoft Press

Microsoft
Visual C++ 6.0
Programmer's
Guide

Beck Zaratian

Microsoft® Press

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 1998 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Microsoft Visual Studio Core Reference Set I Microsoft Corporation.

p. cm.
Includes index.
ISBN 1-57231-884-8
1. Microsoft Visual BASIC. 2. BASIC (Computer program language)

I. Microsoft Corporation.
QA76.73.B3M5598 1998
005 .26'8--dc21

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 wcwc 3 2 1 0 9 8

Distributed in Canada by ITP Nelson, a division of Thomson Canada Limited.

A CIP catalogue record for this book is available from the British Library.

98-6655
CIP

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com

Macintosh and Power Macintosh are registered trademarks of Apple Computer, Inc., used under
license. ActiveX, CodeView, Developer Studio, Microsoft, Microsoft Press, Microsoft QuickBasic,
MSDN, MS-DOS, QuickC, Visual Basic, Visual C++, Visual FoxPro, Visual InterDev, Visual J++,
Visual Studio, Win32, Windows, and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

Acquisitions Editor: Eric Stroo
Project Editor: Saul Candib
Manuscript and Technical Editing: Labrecque Publishing

Part No. 097-0001981
Copyright © 1998 by Beck Zaratian

To Christine

PART 1 Basics

Chapter 1 The Environment 3

Chapter 2 App Wizard 31

PART 2 Editors

Chapter 3 The Text Editor 63

Chapter 4 Resources 107

Chapter 5 Dialog Boxes and Controls 201

PART 3 Programming Assistance

Chapter 6 ClassWizard 265

Chapter 7 The Gallery 293

PART4 ActiveX Controls

Chapter 8 Using ActiveX Controls 329

Chapter 9 Writing ActiveX Controls Using MFC 373

Chapter 10 Writing ActiveX Controls Using A TL 423

PART 5 Advanced Topics

Chapter 11 The Debugger 515

Chapter 12 Compiler Optimization 571

Chapter 13 Customizing Visual C++ 613

PART6 ~endixes

Appendix A ASCII and ANSI File Formats 653

Appendix B MFC Classes Supported by ClassWizard 659

Appendix C A VBScript Primer 665

iv

ABLE OF ON.TEN
. ... ~ . -

Introduction xiii

What You Should Already Know xv

A Brief History of Visual C++ xv

What's in this Book xviii

Example Code xxi

The Companion CD xxii

A Few Definitions xx iv

Further Reading xxvi

PART 1 Basics

Chapter 1 The Environment 3

Toolbars and Menus 6

Environment Windows 8

Online Help 15

MSDN Library 17

Working Outside the Environment 29

Chapter 2 App Wizard 31
Advantages of AppWizard 31

Running AppWizard 35

Creating a DLL with AppWizard 57

PART 2 Editors

Chapter 3 The Text Editor 63

Launching the Text Editor 64

Documents 66

Navigating Through a Document 76

Searching for Text 82

Programming Aids 88

The Advanced Command 93

v

TABLE OF CONTENTS

Unbound Commands 95

An Introduction to Macros 99

Customizing the Editor 101

Editing Text Outside Developer Studio 103

Chapter 4 Resources 107
System Resources 108

The RC Resource Script File 109

The Resource.h Header File 111

An Example of an AppWizard Resource 115

Introducing the DiskPie1 Example Program 116

Menus and Accelerator Keys 119

String Resources and the Status Bar 135

Bitmaps, Toolbars, Icons, and Cursors 144

Adding Code to DiskPie1 167

Unbound Commands (Revisited) 186

Trimming Resource Data 188

Chapter 5 Dialog Boxes and Controls 201
The Dialog Script 202

The Dialog Editor 204

Example 1: Revising an About Dialog 218

Example 2: A Simple Modeless Dialog 221

Example 3: Adding a Dialog to an AppWizard Program 234

Dialog-Based Applications 242

PART 3 Programming Assistance

Chapter 6 ClassWizard 265
Accessing ClassWizard 266

The ClassWizard Dialog 267

vi

TABLE OF CONTENTS
' ' . '

The WizardBar 281

How ClassWizard Recognizes Classes 285

Creating a Dialog Class with ClassWizard 287

Chapter 7 The Gallery 293
Example: Adding a Property Sheet 295

Example: Adding a Splash Screen and Clock 298

Creating a Custom Component 300

PART4 ActiveX Controls

Chapter 8 Using ActiveX Controls 329
A Little Background 330

Control Containers 333

Communication Between Container and ActiveX Control 347

Writing a Container Application 356

Working Without the Dialog Editor 366

Chapter 9 Writing ActiveX Controls Using MFC 373
Visual C++ Tools for Creating ActiveX Controls 374

ControlWizard 376

Licensing 383

Example 1: A Do-Nothing ActiveX Control 390

Example 2: The Tower ActiveX Control 393

Adding Property Pages to an ActiveX Control Project 418

Chapter 10 Writing ActiveX Controls Using ATL 423
ATL and Container Applications 424

ATL and ActiveX Controls 428

Example 1: The Pulse ActiveX Control 443

Example 2: The TowerATL ActiveX Control 485

Comparing Component Models 510

vii

TABLE OF CONTENTS

PART 5 Advanced Topics

Chapter 11 The Debugger 515
Debug vs. Release 516

Using the Debugger 517

Breakpoints 518

How a Breakpoint Returns Control to the Debugger 519

Building a Debug Version 523

The Debugger Interface 524

Example: Developing and Debugging the ShockWave Program 545

Special Debugging Cases 563

Chapter 12 Compiler Optimization 571
An Optimization Primer 572

Optimization Switches 588

From Debug to Release 603

Benchmarking Visual C++ 605

Chapter 13 Customizing Visual C++ 613
The Options Dialog 614

The Customize Dialog 617

Tool bars 621

Adding a Command to the Tools Menu 625

Macros 634

Developer Studio Add·lns 643

PART6 Appendixes

Appendix A ASCII and ANSI File Formats 653

Appendix B MFC Classes Supported by ClassWizard 659

viii

, TABLE OF CONTENTS
. .

Appendix C A VBScript Primer 665
Variables 666

Operators 669

Controlling Program Flow 671

Objects 676

Debugging a VBScript Macro 679

Library Functions 680

Index 697

ix

Acknowledgments

Second editions are easier to write than first editions, a writer's maxim
that one begins to question half way through the second edition. But I
enjoyed writing (or rather, expanding) this book, largely because I again
had the help of dedicated people. Although the Microsoft Press team who
handled the earlier edition have moved on to other tasks-a given in the
fluid universe of book publishing-their contributions still live in the
book, stamping it forever with their care and competence.

For the first edition, Lucinda Rowley served as project editor, devoting
much time and a keen eye to reviewing manuscripts while handling a
thousand other chores. (In that edition, titled Microsoft Visual C++
Owner's Manual, I dubbed Lucinda "the editor every writer dreams of."
Still feel that way.) Manuscript editor Vicky Thulman pored over each
sentence and technical editors Linda Ebenstein and Jim Johnson ensured
that those sentences were accurate.

Saul Candib took over as project editor for this edition, while Jim Fuchs,
Mary DeJong, and Michael Hochberg served as technical editors, carefully
reviewing new material. Labrecque Publishing of San Francisco provided
manuscript editing, page composition, proofreading, and production man­
agement; for these services, thanks go to Chrisa Hotchkiss, Curtis Philips,
Lisa Bravo, Andrea Fox, and Lisa Labrecque.

xi

Acknowledgments

xii

Assistance of course came not only from the offices of Press and Labrecque,
but also from the labyrinthine hallways of Building 42 on the Microsoft
campus, home of the Visual C++ department. As before, Laura Hamilton
generously acted as liaison-I'm glad I don't have to write a book like
this without her help. Laura is a superb editor, and can claim credit for
much of what is good both in this book and in the online Visual C++
User's Guide.

This edition builds on the help of the many people in the Visual C++
group (and elsewhere) who offered valuable suggestions and corrections
for the first edition. Others reviewed new material for this edition, repre­
senting a collective effort that assures the book's continued accuracy and
viability. My thanks go (in alphabetical order) to Dennis Andersen, Cathy
Anderson, Chuck Bell, Diane Berkeley, Patricia Cornette, Stacey Doerr,
Chris Flaat, Jocelyn Garner, Anita George, Eric Gunnerson, Karl Hilsmann,
Mark Hopkins, Simon Koeman, Chris Koziarz, Louis Lafreniere, Martin
Lovell, Michael Maio, Bruce McKinney, Diane Melde, Daryn Robbins,
Steve Ross, David Schwartz, Scott Semyan, Terri Sharkey, George Shep­
herd, Kathy Shoesmith, Suzanne Sowinska, Yefim Sigal, Chuck Sphar,
Yeong-Kah Tam, Donn Trenton, and Laura Wall. Some of these people are
friends whom I've known for years. Others I've never met face-to-face,
communicating only through the twin miracles of e-mail and Federal
Express.

Barbara Ellsworth at Microsoft deserves special mention, since without
her the book would not have been written. Thanks, Barb.

Introduction

\ \.
\ .

Formerly titled
Microsoft Visual C++ Owner's Manual

This book is about Microsoft Visual C++. Not the C++ language, not the
MFC library, just Visual C++ itself.

True, Visual C++ already comes with a sort of programmer's guide-it's
called online help. The vastness of the help system will probably inspire
in you the confident belief that what you want to know is in there some­
where. But that's the problem with online help: it works best when you
know what you're looking for. This book complements online help, but
does not replace it. Purposes and styles of the help system and the written
word are inherently too different for one to supplant the other. Where
one dispenses information, the other teaches, if you see what I mean.
Where one has breadth the other has depth. In presenting the cold facts
as tersely as possible, online help can't afford to elaborate, giving you
instead a list of steps to follow to accomplish some task but rarely taking
the time to paint a larger view. You get the how that informs but not the
why that teaches.

This book intends to make you a proficient user of Visual C++. It unfolds
in a logical progression of material, demonstrates how parts of the whole
interact, clarifies with sample code, and generally acts as a tutor. More­
over, you can curl up with it in your favorite chair. These are exactly
the advantages that online help lacks. Help, on the other hand, offers
immediacy and breadth. The many megabytes of help text can touch every

xiii

Introduction

xiv

obscure corner of Visual C++, while this book covers only the essentials.
Start with this book to acquire a solid grounding in the art of Visual C++,
then turn to online help as you become more experienced and your ques­
tions more arcane. Paradoxically, the more adept you are with the product
the more online help will be of service to you.

The book is older than its title. The first edition appeared as Microsoft
Visual C++ Owner's Manual, becoming Microsoft's official guide for
Visual C++ version 5. But Microsoft has retitled this second edition to
position it as part of a five-volume set of Programmer's Guides document­
ing the development tools of Visual Studio 98, including Visual Basic,
Visual J++, Visual FoxPro, and Visual InterDev. The Guides function
independently, however, so if your interest is confined to Visual C++,
you've come to the right place. Any similarities between this Guide and
the others stops at the cover, since the other books are printed copies of
online help, exact reproductions of the online documentation that comes
with each product. You will find this book very different from the other
Guides in the set.

Microsoft has good reasons for renaming the book, but I regret losing the
original title. I chose Owner's Manual to convey as clearly as possible the
focus of the book to make sure that you, the reader, have an idea of what's
covered and what isn't. A hundred years ago in an age more tolerant of
lengthy titles I could have tacked on something like, Being a Tutorial,
Companion, and Reference Intending to Further Knowledge of and Famil­
iarity with the Microsoft Visual C++ Compiler, Without Digressing into the
Interesting Though Ancillary Subjects of the C++ Programming Language
and the Microsoft Foundation Class Library. Admittedly, that scholarly
title wouldn't be entirely accurate. Visual C++ is so integrally tied to the
C++ language and the MFC library that it's impossible to talk intelligently
about Visual C++ while remaining mute on the other two subjects. The
chapters that follow present many example fragments and programs, the
purpose of which is to illustrate some aspect of Visual C++. Code must
have commentary-it's useless otherwise-and descriptions of the exam­
ple programs necessarily spill over into the topics of technique and MFC.
But these occurrences are isolated and do not distract from the main focus

Introduction

of how to use the compiler. Other excellent books are available that
explain C++ programming and the MFC library.

This book describes version 6 of Visual C++, but owners of earlier ver­
sions can also benefit from a reading. Some aspects of Visual C++ have
changed considerably since previous versions, but many other areas have
changed little or not at all. These days Visual C++ comes in a deceptively
slim package containing a few flyers, some printed material, and a CD­
ROM or two. But since you've read this far you probably realize an
immense amount of material exists in Visual C++. I call it a "compiler"
only for lack of a better name. Besides the compiler itself, Visual C++ pro­
vides a linker, a make utility, a debugger, a text editor, resource editors, a
development environment, the Microsoft Foundation Class library (MFC),
run-time libraries, many thousands of lines of source code, and a lot more.
To repeat: this book does not examine everything. My aim is to help you
master Visual C++, not bury you in minutiae.

What You Should Alrready Know
A book of this type has to begin on the learning curve somewhere above
point zero. Start too low and discussions become hopelessly muddled
with preliminary explanations. Start too high and the author loses much
of his audience (besides coming across as a pinhead). The trick is to speak
in one voice to a readership made up of widely varied skills and interests,
yet lose no one when speaking of esoterica and insult no one when pre­
senting the fundamentals. The book makes no great demands. I assume
you are already familiar with the C and C++ programming languages, have
programmed before for Windows, and have at least a nodding acquain­
tance with MFC. You don't have to be an expert by any means, but you'll
find the text and sample code easier to follow if you understand basic
ideas such as pointers, classes, and messages. Fortunately, there's nothing
abstract about a compiler. It's just software.

A Brief History of Visual C++
One can make a case that the roots of Visual C++ began not with Microsoft
but with Borland. Some readers may remember Turbo Pascal, which

xv

Introduction

xvi

brought to DOS the idea of the integrated development environment or
IDE. IDE is yet another abbreviation in a field already top-heavy with
them. It just means the editor and the compiler work together, both acces­
sible from the same place. You write your source code in the editor, hit
the Compile button to launch the compiler, and when it finds an error the
compiler sets the editor's cursor on the offending statement, ready for you
to correct the problem. The idea is to provide an environment for program
development that the programmer never has to leave.

The C language was catching on at this time (c. 198 7), and Turbo Pascal
led to Turbo C. Microsoft countered with a similar product named
QuickC. I was contracted to do some programming work associated with
QuickC and ended up writing a few chapters of a how-to book included in
the package, titled C for Yourself. (The title wasn't my idea.) QuickC sold
as a stand-alone product but was also included as part of Microsoft's C
compiler, which we called Big C. At the time, Big C stood at version 5.

Its competition included names from what now seems a misty past: Com­
puter Innovations, Datalight, Lattice, Manx. Others of that era have sur­
vived, notably Borland and Watcom (now PowerSoft). Their fine products
continue to provide healthy competition for Microsoft.

The purpose of pairing QuickC with Big C was so programmers could
write code in QuickC's convenient IDE. QuickC offered fast compile times,
mostly because it made only the faintest attempts at code optimization.
(We'll talk about optimization later in this book and see how it can affect
build times.) When it came to optimizing, QuickC was happy to enregister
some variables, insert a few LEAVE instructions, and call it a day. The
result was quick compiler turnaround. After a program was debugged and
running in QuickC, the programmer could then create a release version
with Big C, which was far more serious about code optimization. It wasn't
unusual to shave 15 percent or more off the size of a program when com­
piled with Big C.

QuickC and Turbo C introduced many to C programming, but never
earned the permanent affection of developers. For one thing, the editors
of both products were not very good. (The QuickC editor was later incor­
porated into Microsoft QuickBasic and still exists today in Microsoft

Introduction

Windows 95 as the DOS editor Edit.com.) Another problem with IDEs
under DOS was that they took up a lot of memory, leaving little for execut­
ing the program under development. You often had to exit the IDE to run
and debug your program. Many programmers who used QuickC in devel­
opment work (myself included) relied only on its command line version.

But then Windows 3.0 came along.

Windows 3.0 and especially 3.1 ushered in the era of the serious IDE for
the personal computer. The constraints of memory disappeared. And if you
were going to program for Windows, a Windows environment seemed a
natural place to be. It was clear that programming for Windows in Windows
produces better products. Windows is a mindset, and working in it all day
gives one better instincts about what a program should or should not do.

To the surprise of many, Microsoft concentrated its efforts in shoring up
the internals of its C compiler rather than in upgrading its interface for the
new age. When version 7 came out it was still a DOS-based product that
ran either in a DOS box in Windows or with an extended memory man­
ager (it came with Qualitas's 386Max right in the box). As a concession,
version 7 offered a character-mode IDE named Programmer's Workbench
that was cumbersome by today's standards. Nevertheless, the Workbench
demonstrated a natural evolution from the days of QuickC. Many com­
mands from its menus still seem modern, such as New, Open, Save As,
Build, and Open Project.

The important contribution that version 7 made to the programming world
was not its IDE but its support for C++. For the first time, Microsoft desig­
nated its compiler "CIC++" to emphasize its new dual nature. It was like
watching a cell undergo mitosis. The support involved more than simply
expanding the compiler to recognize new commands of the C++ superset.
CIC++ version 7 also introduced version 1 of the Microsoft Foundation
Class library, complete with source code. C++ would not be so popular a
vehicle for Windows programming today without this competent set of
prewritten classes, which Microsoft wisely gave away to developers.

With the next major release, Microsoft abandoned most of its product's
ties to DOS. Microsoft CIC++ version 8, which sported a real Windows
IDE, became known as Visual C++ version 1. The name capitalized on the

xvii

Introduction

success of the earlier Visual Basic but the two products never compared
very well. Where Visual Basic allows the developer to build a working
Windows program with lots of clicking and little coding, Visual C++ cre­
ates only starter source files through special dynamic link libraries called
wizards. As we'll see in Chapter 2, wizards save much of the repetitive
front-end work of development, the kind of work common to many Win­
dows programs written with MFC.

After Visual C++ 1.5, Microsoft decided not to invest any more effort in
supporting 16-bit programming. Visual C++ 2 still offered 16-bit support,
but since then Visual C++ creates only 32-bit applications. There never
was a Visual C++ 3. The release number skipped from 2 to 4 to synchro­
nize Visual C++ and MFC, thus ending a small source of confusion. The
consolidation was short-lived, however, since Visual C++ and MFC again
use different version numbers.

The popularity of the Internet has clearly influenced the product's design,
and in its fourth release Visual C++ introduced new library classes
designed for Internet programming. Version 5 also added some new
classes, but concentrated more on improving the product's interface to
provide a better online help system, much superior macro capabilities,
and support for sharing classes and other code within a team of develop­
ers. Version 5 also integrated the Active Template Library and signifi­
cantly improved the compiler's ability to optimize code. As we will see in
later chapters, version 6 extends these improvements even further.

What's in this Book

xviii

The book is divided into six main sections, each covering a general subject
about Visual C++ and its development environment. Discussions are
intentionally kept basic up through Chapter 3, which covers the text edi­
tor. This helps ensure that every reader, whether novice or expert, is able
to successfully navigate the Visual C++ development environment and
write source code in the text editor. Beginning with Chapter 4, discussions
gradually become more technical.

Introduction

Part 1-Basics
Much of what we call Visual C++ is actually its development environ­
ment, named Microsoft Developer Studio. Distinguishing between the two
isn't important, and usually the terms are interchangeable. But you can't
use Visual C++ effectively until you learn your way around Developer
Studio. (Developer Studio sounds a lot like Visual Studio, but they have no
relationship, so you can forget about Visual Studio throughout this book.)

Chapter 1 is an orientation session, introducing Developer Studio and
describing the main windows you will encounter when working in the
environment. The chapter also explains how to use Microsoft Developer
Network (MSDN), which serves as the online help system for all Microsoft
programming products, including Visual C++.

Chapter 2 introduces App Wizard, the Visual C++ wizard program that cre­
ates starter files for a typical Windows application using MFC. We'll use
App Wizard throughout the book to create some of the example programs.

Part 2-Editors
Visual C++ provides three different editors-one for creating text source
code, another for menus and graphics files, and the third for dialog boxes.
Each editor gets its own chapter, starting with the text editor in Chapter 3.

This chapter examines important menu commands, shows shortcuts for
opening text documents, and introduces macros.

Chapter 4 describes Visual C++'s multitalented graphics editor, used to
create resource data including menus, bitmaps, icons, and toolbars. This
chapter is lengthy, as befits the amount of material it needs to cover. An
example program named DiskPie1 takes shape as the chapter progresses.
Each main section first describes how to use the graphics editor to create a
particular interface element such as a menu or toolbar, and then demon­
strates by adding the element to the DiskPie1 program. By the end of the
chapter, the program is a useful utility that displays disk and memory
usage in the form of a pie chart.

Chapter 5 covers the dialog editor, showing how to use Visual C++ to
design dialog boxes and create dialog-based applications like the Win­
dows Character Map and Phone Dialer utilities. The chapter demonstrates

xix

Introduction

xx

with several examples, including one that creates a property sheet, also
known as a tabbed dialog.

Part 3-Programming Assistance
The chapters in Part 3 show how to use two essential tools in Visual C++
to speed program development. Chapter 6 introduces ClassWizard, which
is hard to describe but easy to love. When developing MFC applications,
you will find ClassWizard invaluable for creating and maintaining classes.

The Gallery, described in Chapter 7, offers a collection of add-in compo­
nents that you can incorporate into your projects with just a few clicks of
the mouse. Visual C++ comes with a number of ready-made components
consisting of both class source code and ActiveX controls. Chapter 7 also
demonstrates how to create your own components for the Gallery.

Part 4-ActiveX Controls
Chapter 8 introduces ActiveX controls and shows how to use them in your
applications. Chapters 9 and 10 take the opposite tack and explain how to
write an ActiveX control using either MFC or the Active Template Library
(ATL). Chapter 9 presents a well-documented example named Tower that
takes you step by step through the creation and coding of an ActiveX con­
trol that relies on MFC. Chapter 10 then creates the same control using the
Active Template Library, providing a clear illustration of the differences
between the two approaches. The results can be embedded in any applica­
tion that supports ActiveX controls.

Part 5-Advanced Topics
Chapter 11 covers the essential subject of the debugger, one of Visual C++'s
most perfect elements. The chapter examines the internals of debugging,
describes the debugger windows and toolbars, then puts the debugger
through its paces by fixing the hidden flaws of an example program.

After an application is debugged, you will want to turn on compiler
optimizations to create a release version. Chapter 12 covers the often
poorly understood subject of compiler optimization, showing you exactly
what each of the many Visual C++ optimization switches do-and why.

Introduction

By the time you get to Chapter 13 you will have spent a lot of time in the
Developer Studio environment, enough to know what you like and what
you would prefer to change. This chapter shows how to customize
Visual C++ to suit your tastes. It also demonstrates through examples how
to program macros and add-in utilities that integrate seamlessly into
Developer Studio.

Part 6-Appendixes
Appendix A presents standard tables that list ASCII and ANSI characters.
You may find the ANSI table in Appendix A more useful than similar
information in online help because the table shows octal numbers for the
characters. There's a good reason for this. As we'll see in Chapter 5,

including upper ANSI characters in dialog text requires the character's
number in octal form. Armed with this information, you can add useful
symbols such as © and 1.4 to text strings displayed in a dialog.

Appendix B briefly describes the MFC classes that ClassWizard supports,
serving as a quick reference designed to help you select the most appropri­
ate base for your new class.

Appendix C provides an introduction to Microsoft Visual Basic Scripting
Edition, better known as VBScript. Visual C++ incorporates VBScript as
its macro language, so a primer is helpful if you have never before used
VBScript or a similar Visual Basic dialect. Although recording macros in
Visual C++ requires no knowledge of VBScript, you can create a general­
purpose macro only by using VBScript programming.

Example Code
Nearly every example program in this book is written in C++ and uses
MFC. (The two exceptions are a cursor demonstration program in Chapter
4 and a small console-based utility presented in Chapter 13.) But I rely on
C for some of the code fragments within the text. I find C++ isn't as good a
medium as C for succinctly illustrating a programming idea, and besides
the advantages of clarity and brevity, C serves as a sort of lingua franca
among today's programmers. In theory, C++ programmers understand
straight C but the reverse is not necessarily true. On the other hand, C has
no place in demonstrating MFC applications. I occasionally present

xxi

Introduction

equivalent C and C++ code when I think the idea is important enough and
the differences significant enough to warrant translations.

Many of the chapters in the book cover topics that are best demonstrated
by example, and I've tried to include sample programs that are at once
interesting, useful, and illustrative. Some of the programs are created with
App Wizard and others are not, thus simulating as wide a range of pro­
gramming practices as possible. Nearly every program is supplemented
with a thorough discussion in the book text. The text also includes source
code listings, so you needn't open a source file in the editor to follow a
discussion. Program code strives for clarity over elegance, so you will no
doubt see sections of code that you would handle differently in your own
development work. For example, I've included very little error checking
in the programs. The programs were created in Windows 95, but most
have been tested under Microsoft Windows NT.

The Companion CD

xx ii

The project files for all sample programs are on the companion CD
attached to the back cover of the book. To copy all the projects to your
hard disk, run the Setup program by following these steps:

1. Click the Start button on the Windows taskbar and choose tile Run
command.

2. Type "d:\setup" in the Run dialog, where d represents the drive let-
ter of your CD-ROM drive.

The Setup program copies more than 3 MB of files from the CD to your
hard disk, placing them in a subfolder named Visual C++ Programmer's
Guide (or whatever name you specify). Running Setup is entirely optional,
and you can retrieve files manually from the CD if you prefer. You will
find all files located in the Code subfolder.

Nested subfolders refer to the chapter number where the program is
described and to the project name. The subfolder Chapter.05\MfcTree,
for example, holds all the files required to build the MfcTree program
presented in Chapter 5. Each project folder has a subfolder named Release
that contains the program executable file, so you can try out a sample

Introduction

program without having to build it. If you want to follow a discussion in
the text by building the sample program, start Visual C++ and choose the
Open Workspace command from the File menu. Browse for the project
folder on your hard disk and double-click the project's DSW file.

Project names for the example programs are kept to eight characters or
less. This convention accommodates those readers who prefer to use an
older text editor that may not recognize long filenames. Some older CD
drives also have problems with long filenames.

The companion CD includes a program I wrote named Index. Index is not
a sample program, so you won't find it described anywhere in the book
chapters. Index supplements the book index, performing a full-text search
through all the chapters and the appendixes. It ensures that if a subject is
mentioned anywhere in this book, you can find it. The program is actually
an electronic form of what bibliographers call a concordance-given one
or more words, it tells you on what pages and in what paragraphs the
words occur. To use the program, copy the files Index.exe, Index.hlp, and
Index.key from the CD to your hard disk, making sure you place the three
files in the same folder. Or you can run Index straight from the CD if you
prefer. Here's what the program looks like:

.~ and r or r not jte~pl~t.~ ., d
Co'· ;ind r or (" not j1i~:ar; ; ... l::l .

.. ··:cc>.:L::l

The four combo boxes in the Index dialog window each accept a single
word. The words can form a phrase such as "Active Template Library" or

xxiii

Introduction

xx iv

simply specify unconnected words that occur together in the same para­
graph or on the same page. The program also searches for plurals and
word variations formed by -ed and -ing, and is intelligent enough to
account for slight changes in spelling. Searching for the words edit, han­
dle, and debug, for example, also locates occurrences of the words edits,
handling, and debugged. Letter case of the search words does not matter, a
simplification that on rare occasions may lead to an unexpected match, as
when Index locates the word guiding when searching for the acronym
GUID. To run a search, click either the Search button or the book icon.

The four combo boxes remember previous search words, so you do not
have to retype an entry. To recall a word you entered previously, expose
the box's list and select the word. Pop-up help messages explain other fea­
tures of the program. Just click the small question mark button at the
upper-right corner of the dialog and then click a control window or group
box area. Users of Windows NT 3.51 must press the Fl key for help.

Index identifies each paragraph on a page by a number such as 2 or 7. As
you scan a page to find a particular paragraph indicated by the program,
keep in mind these rules that determine what the program considers a
paragraph to be:

• The caption of a figure constitutes a separate paragraph, as does
each row of a table.

• Each line of source code (except blank lines) represents a paragraph.

• A partial paragraph at the top of a page does not count as a separate
paragraph because Index assumes the text belongs to the paragraph
at the bottom of the preceding page.

The Index program recognizes the Boolean operators AND, OR, and NOT.
If you are a little rusty on Boolean logic in full-text searches, Chapter 1

describes how to use the same operators when searching the MSDN online
help system. See Table 1-1 on page 26 for examples.

Introduction

A Few Definitions
Before getting further into the book, a few terms should be defined, such
as build, project, target, configuration, and application framework. Since
I'll use these words in the chapters that follow, it's best to define them now.

Build means to compile and link, transforming a collection of source files
into an executable application. You compile a source file; you link object
files; you build a project. Project has two related meanings. It can mean
the end-product-that is, the application you build-but the term more
correctly refers to the collection of files that create the application, includ­
ing source files, precompiled headers, resource scripts, graphics files, and
whatever else is required to build the program. Visual C++ lets you open
only one project at a time, which means you have ready access to all the
project files and can edit, build, or debug. Each project can hold any num­
ber of nested subprojects, an arrangement that makes sense when you are
developing a program consisting of more than one executable element. For
example, you might develop an application as a main project while main­
taining an auxiliary dynamic link library as a separate subproject.

When you build a project, the application you create is one of two types,
either release or debug. Visual C++ sometimes uses the term target to refer
to the build type. The project's release target is the executable program
you give to your end-users. The debug target is the executable you work
on during program development. The project settings, known as the con­
figuration, determine the type of executable-release or debug-that
Visual C++ creates when building the project.

The MFC library of general classes is designed to make Windows program­
ming easier by representing the Win32 API as a set of class objects. A
program using MFC takes advantage of tested code that serves as an appli­
cation framework, handling many tasks the application would otherwise
have to take care of itself. The only costs of these hidden services are a
potentially larger executable size and a certain built-in rigidity common
to most MFC programs. Through its classes, the framework dictates the
structure of the application but not the details. However, MFC does not
seriously constrain the programmer's creativity, as evidenced by the many
diverse Windows applications written with MFC.

xxv

Introduction

Further Reading

xxvi

Recommending books is an uncomfortable responsibility and I don't take
it on lightly. Books are expensive, not just in terms of money but espe­
cially in terms of time. That said, here are a few works that I believe repre­
sent worthwhile investments for programmers using Visual C++. They all
happen to be published by Microsoft Press, but that's only because I don't
get out much.

• To begin learning about MFC, I believe you can't do better than Jeff
Prosise's Programming Windows 95 with MFG. I like this book. It's
well written, clear, and stays consistently with its subject without
wandering off somewhere else.

• Another good work on MFC is David Kruglinski's Inside Visual C++.
Don't let the title fool you-this book concentrates on MFC, cover­
ing topics that the Prosise book does not such as database manage­
ment and OLE. The discussions and all the example programs
assume the reader is using Visual C++.

• If you are new to Windows programming, want grounding in the
basics, and prefer to program in the C language rather than C++,
consider Programming Windows 95 by Charles Petzold and Paul
Yao. The latest of a series of editions that first appeared almost a
decade ago, this book is justly famous for the clarity it brings to the
subject of Windows programming. Note the caveats, though-except
for the last chapter, the book makes no mention of C++ or MFC.

• For a good introduction to ActiveX, try David Chappell's Under­
standing ActiveX and OLE. Though it has nothing to say about
Visual C++ and very little about programming, this readable book
offers a good overview of a complex subject.

Feedback
If you have any suggestions for future editions of this book, drop me a
line. I will try to read every piece of e-mail I receive (I'm pretty diligent
about these things), though I can't promise an answer. You can reach me
via the Internet at beckz@witzendsoft.com.

The Environment

\
\ l.nap1er

The Visual C++ package comprises many separate pieces such as editors,
compiler, linker, make utility, a debugger, and various other tools
designed for the task of developing CIC++ programs for Microsoft Win­
dows. Fortunately, the package also includes a development environment
named Developer Studio. Developer Studio ties all the other Visual C++
tools together into an integrated whole, letting you view and control the
entire development process through a consistent system of windows,
dialogs, menus, toolbars, shortcut keys, and macros. To use an analogy,
the environment is like a control room with monitors, dials, and levers
from which a single person can operate the machines of a sprawling fac­
tory. The environment is roughly everything you see in Visual C++. Every­
thing else runs behind the scenes under its management.

Distinguishing between the product Visual C++ and its environment
Developer Studio serves little purpose because the latter so completely
represents the former. Rather than deal with yet another name, this book
applies the term Visual C++ in a general sense that refers interchangeably
to both the entire product and its development environment. Microsoft
itself has adopted this course, and users of previous versions will notice
that windows once labeled Developer Studio have been retitled Vis-
ual C++. We will resurrect the old name in the final chapter, however,

3

Basics

4

when discussing how utility programs can integrate with the Developer
Studio program to become part of the environment.

Let's begin this chapter with a summary of some of the many services pro­
vided by the Visual C++ environment that are designed to assist program
development. Chapter numbers in parentheses indicate where in the book
we will examine these services in detail:

• Windows that provide views of different aspects of the development
process, from lists of classes and source files to compiler messages
(this chapter).

• Menu access to an extensive system of online help (this chapter).

• A text editor for creating and maintaining source files (Chapter 3),

an intelligent dialog editor for designing dialog boxes (Chapter 5),

and a graphics editor for creating other interface elements such as
bitmaps, icons, mouse cursors, and toolbars (Chapter 4).

• Wizards that create starter files for a program, giving you a head
start on the mundane task of setting up a new project. Visual C++
provides wizards for various types of Windows programs, including
standard applications with optional database and Automation sup­
port (Chapter 2), dynamic link libraries, dialog-based applications
(Chapter 5), extensions for a Web server using the Internet Server
API (ISAPI), and ActiveX controls (Chapters 9 and 10).

• ClassWizard, an assistant that helps create and maintain classes for
MFC applications (Chapter 6).

• Drop-in executable components maintained by the Gallery (Chap­
ter 7) that add instant features to your programs.

• An excellent debugger (Chapter 11).

• Logical and convenient access to commands through menus and
toolbars. You can customize existing menus and toolbars in Vis­
ual C++ or create new ones (Chapter 13).

• The ability to add your own environment tools through macros and
add-in dynamic link libraries (Chapter 13). You can develop these
additions yourself or purchase them from various vendors.

Figure 1-1.

l: The Environment

Figure 1-1 shows a typical view of the Visual C++ main window. The
environment's appearance has changed only slightly since the previous
version, and its style and many of its commands remain unaltered. If you
are familiar with the Developer Studio environment from previous ver­
sions of Visual C++ or other Microsoft products, you may want only to
skim this chapter to touch on the new features, especially the revised
online help system. If you have never used Visual C++ before, you will
find that like any large Windows program it may take some getting used
to. Don't underestimate its depth-just when you think you've discovered
everything about Visual C++, another corridor opens up. But the interface
is intelligent and so forgiving that it encourages experimentation, always
the best teacher.

, Workspace 'Cube': 1 project[s)
El·· ~:.·~-~-~~~-·.·.!.!"!.~!]

8·/d Source Files
! ·· [t] Cube. cpp

i \":::::~ ~~~:~:c.cpp
; :.. ~ ~~~~f;;;~~p
i L. [£) Stdafx.cpp

S·· CJ Header Files
l±J ··CJ Resource Files

A typical view of Visual C++'s main window.

This chapter is a start, introducing you to the Visual C++ environment
shell and describing the interface and windows you will encounter when
working on a development project. We won't worry about individual tools
and menu commands at this stage, since every chapter that follows
describes at least one menu and toolbar and the various commands they
contain. At one time Developer Studio also served as host environment for

5

Basics

Visual J++ and Visual InterDev, but here we concentrate only on how the
environment applies to Visual C++ and CIC++ projects.

Toolbars and Menus

6

Visual C++ comes with an arsenal of predefined toolbars that provide one­
click access to the most frequently used commands. And if you don't see
what you need, you can augment the environment's collection of toolbars
with custom toolbars of your own design. Each toolbar is identified by a
name that appears in the bar's title strip:

: .

I'"@'.! lia: g"' I ~ ~ 1·::;: .. !.': : .. ·.... .. : ... : .. '

11Elll'i2(1 ~j~e~rc~ ~!1.i.ll? 1'.£].['!M '
. . : .. :: ''"' .~·· :· ... #11 ~ '~f ~·I • ~ ,,f;~I

tl:t:t!1lil1YiMitBlltli#Si;·1
!,·A ~i~~ ~[~l:i~:·•~··•.·Ja.0,!

As described in the next section, toolbars are often "docked" into position,
in which case the title strip disappears. For example, Figure 1-1 shows
what the Standard, Build, and Edit toolbars look like in their docked loca­
tions at the top of the Visual C++ main window. Toolbar arrangement is
up to you. You can move toolbars around on the screen, adjust their rect­
angular shapes by dragging an edge, and make any set of toolbars visible
or invisible. While you may prefer to have some toolbars such as Standard
and Build visible at all times, other toolbars normally become visible only
when you work in a window that requires them. The Debug toolbar, for
instance, is visible by default only during a debugging session. The Colors
and Graphics toolbars (described in Chapter 4, Resources) are visible only
in the graphics editor, because that's the only place you need them. Figure
1-2 shows a list of toolbar names contained in the Customize dialog, in
which you can toggle a toolbar's visibility on and off by clicking a check
box. To open the dialog, click the Customize command on the Tools
menu. (Chapter 13, Customizing Visual C++, has much more to say about
the Customize dialog).

As the mouse cursor passes over a toolbar button, the button takes on a
distinctive raised appearance. The status bar at the bottom of the main

Figure 1-2.

1: The Environment

·,: o~ls l k~~bo~rd I A~d:ins ~~d~a~;~· F;l~~ . I
Ioolbars:

ffi~~i ~-~·~-••••llJ··~· . p;: ~how ToolTips
~Standard P:: With shortcut lie.vs
~Build ·
DBuild MiniBar : L· l::arge buttons
OATL
OResource
~Edit
DDebug
DBrowse
.rJ D ata.~as.e I.,.

New... . I
C~elele : .···· 1

Beset .. I
Reset8ll ··1

l Close.

Turning tool bars on and off in the Customize dialog.

window displays a brief description of the button and, if the cursor rests
momentarily on the button, a small pop-up "tooltip" window appears con­
taining the button name. On request, Visual C++ can even display
enlarged versions of its toolbars:

Normal size Large size

Both the tooltips and enlargement options are controlled in the Customize
dialog box shown in Figure 1-2.

The Visual C++ menu bar is a special form of toolbar. Although you can
hide the menu bar only in full-screen mode, it otherwise behaves much
like a normal toolbar. Menu names on the Visual C++ menu bar take on
the same raised appearance as toolbar buttons when the mouse cursor
passes over them. When you click a menu name to pull down a menu, the
name seems to recess into the screen. With a menu open, glide the cursor
from one menu name to another to pull down other menus.

7

Basics

Context Menus

The Visual C++ environment almost always responds to clicks of the
right mouse button, usually displaying a pop-up context menu with
commands appropriate to the situation. Even when no windows are
open in Visual C++, right-clicking the empty client area produces a
menu with commands that make windows visible and toggle toolbars
on and off. To expose the same menu, right-click anywhere on a
toolbar except its title strip. Experiment with the right button as you
work, and you will uncover a wealth of other convenient shortcuts.

You can drag tool bars and the menu bar into new positions on the screen
by clicking and holding any area of the bar that is not a button or menu
name. If the toolbar's title strip is not visible, the vertical separator bars
that appear in many of the toolbars are a good place to "grab" a bar for
dragging. Because of the docking feature, moving toolbars in Visual C++
is sometimes not as straightforward as you might expect. The next sec­
tion delves into the secrets of repositioning windows and toolbars on
the screen.

Environment Windows

8

Besides its many dialog boxes, Visual C++ displays two types of windows,
called document windows and <lockable windows. Document windows
are normal framed child windows that contain source code text and
graphics documents. The Window menu lists commands that display doc­
ument windows on the screen in a cascade or tiled arrangement. All other
Visual C++ windows, including toolbars and even the menu bar, are
<lockable. The environment has two main <lockable windows, called
Workspace and Output, that are made visible through commands on the
View menu. Other <lockable windows, described in Chapter 11, The
Debugger, appear during a debugging session. This section first looks at
some of the characteristics common to all <lockable windows, and then
examines the Workspace and Output windows individually.

1: The Environment

A <lockable window can be attached to the top, bottom, or side edges of
the Visual C++ client area, or disconnected to float free anywhere on the
screen. Dockable windows, whether floating or docked, always appear on
top of document windows. This ensures that floating toolbars remain visi­
ble as focus shifts from one window to another, but it also means that
document windows can occasionally seem to get lost. This can be discon­
certing the first few times it happens, but have faith that the document
window is still there. If you are working on source code in the text editor,
for instance, and then turn on a <lockable window that occupies the entire
Visual C++ client area, the source code document disappears, buried
beneath the new window. If the overlaying window is docked into posi­
tion, you cannot bring the source document window back to the top. The
only solution is to either turn off the overlaying window or drag it out of
the way. We'll see how to turn <lockable windows on and off in a moment.

As you drag a <lockable window, a moving outline appears that shows
what the window's new location will be when you release the left mouse
button. The outline is a fuzzy gray line until it comes in contact with an
edge of the environment's client area or the edge of another docked win­
dow, at which point the outline changes to a thin black line. The change is
a visual cue to notify you that dropping the window will cause it to dock
into place against the nearest edge. A toolbar docks into a horizontal posi­
tion against the top or bottom edge of the client area and into a vertical
position when placed against the left or right side. You can reorient the
toolbar's placement by pressing the Shift key while dragging the toolbar.

Getting a window to dock in the desired size and position sometimes
takes several attempts. To dock a window so that it occupies the entire cli­
ent area, drag it upward until the mouse cursor comes in contact with the
top edge of the client area, and then release the mouse button. To coax the
docked window back to a smaller size, drag the window until the cursor
touches the left edge of the client area. This forces the window to undock,
allowing you to drag the window by its title bar to a different location.

When you move a dockable window around on the screen, the window
may seem to have a mind of its own, clinging tenaciously to an edge of the
Visual C++ main window or to any other docked window it comes in

9

Basics

Figure 1-3.

10

contact with. You can prevent this in two ways. The first method is to
press the Ctrl key while moving the window to temporarily suppress its
docking feature. The second method works only for windows, not
toolbars, disabling the window's docking ability until you enable it again.
Right-click inside the window and choose the Docking View command
from the window's context menu to turn off the command's check box
icon. The Window menu also provides access to the Docking View com­
mand, as shown in Figure 1-3.

: Workspace 'Cube': 1 project[s)
El~Cubefiles

©·{j Source Files

$ dH~.~.~.~i.f.iJi~.l
ffi ... CJ Resource Files

Toggling a window's docking mode with the Docking View command.

Disabling a window's docking feature affects the window's behavior in
several ways:

• The window appears as a normal document window, with buttons
in the title bar that minimize, maximize, and close the window.

• The window's position is arranged along with any open document
windows when you choose the Cascade or Tile command from the
Window menu.

• The window cannot be moved above the client area of the
Visual C++ main window as it can whenin docking mode.

• Given input focus, the window can be closed with the Close com­
mand on the Window menu. The Close command otherwise does
not affect a window in docking mode, even if it has focus.

When a window or toolbar is docked, distinctive raised knurls, sometimes
called gripper bars, appear at the window's top or left edge, as shown in
Figure 1-4. Double-clicking the gripper bars makes a window or toolbar
float free; double-clicking the title bar of the floating window or toolbar

Figure 1-4.

1: The Environment

Gripper bars
El-·· =~~ Cube classes i

ffi .. :~· .. C,lij;·~·~·i6ig
S···"r: CCube.6.pp
S···"r: CCubeDoc
S···"r: CCubeView
ffi ... •~ CMainFrame
ffi ... D Globals

When docked, windows, toolbars, and the menu bar have raised gripper bars.

returns it to its previous docked position. You can also drag a window by
its gripper bars into another docked or free-floating location.

The window arrangement you create in Visual C++ lasts for the duration
of the project or until you change it. The next time you open the project,
windows appear as you left them. Windows belonging to utility programs
executed within the environment are not subject to the environment's
rules, however. Such windows are neither document nor docking win­
dows, and their characteristics are determined by the utility program, not
Visual C++.

The Workspace and Output Windows
Visual C++ displays information about a project in the Workspace and
Output dockable windows, shown in Figures 1-1 (page 5), 1-6 (page 13),

and 1-7 (page 14). We'll encounter these important windows throughout
the book, especially the Workspace window, so it's worthwhile spending
some time examining how they work.

To make the Workspace or Output window visible, click its name on the
View menu, as shown in Figure 1-5, on the next page. (The command is
not a toggle, so clicking it again does not make the window invisible.) The
windows are also activated by their own buttons on the Standard toolbar,
which when clicked make the windows visible or invisible.

11

Basics

Figure 1-5.

12

-~
l
.@J 'i:i;ff~:~b·: '\'.;: ·:' · .. ·. . . :
;~ fr~p~;ti~; . '11t+~nt~r: ·· ..

Displaying the Workspace and Output windows. The tool buttons
are on the Standard toolbar.

In addition to using the toolbar buttons, you can hide the Workspace and
Output windows in several other ways:

• If the window is floating, click the Close button on the window's
title bar.

• If the window is docked, click the small X button located above or
to the right of the window's gripper bars (see Figure 1-4).

• Right-click anywhere in the window to display a context menu and
choose the menu's Hide or Close command. Which command
appears on the menu depends on whether the window's docking
mode is on or off, but both commands have the same effect.

• If the window's docking feature is disabled, click the window to
give it focus and choose the Close command from the Window menu.

The Workspace window presents different perspectives of your project.
Select a tab at the bottom of the window to display a list of the project's
classes, resources, data sources, or files. Click the small plus(+) or minus
(-)buttons in the window to expand or contract a list. Expanding the list
of classes, for example, displays the names of member functions, as shown
in the first screen of Figure 1-6. Double-clicking the text of a list heading
adjacent to a folder or book icon has the same effect as clicking the head­
ing's plus/minus button.

Figure 1-6.

1: The Environment

;~~~~~»~iw~:::~~-~~~~o·.,

El j ~'~ ,.!>..t:!'!.'! .. ~.!!1.!.!.t:!.l
!±l·91:: CAboutDlg
El·•i: CDemoApp
· i· · ~ CDemoApp(]

;······ ~ lnitlnstance[]
; ······ ~ OrApP6.bout[]

rtJ····•r: CD emoD oc
rtJ -•r.: CDemoView
ltl ·91:: CMainFrame
B·El Globals

! ~ theApp

~ •r~ ClassView ~~J Resource\/iew @] FileView fj Data View

i=l---~~~~!~~iw:;g:_:J .. P.rgj~_(:_t[~J.i
f:'.:J·EJ Source Files
· ···lfJ Demo.cpp

ltJ Demo.re
i... .. [tJ D emoD oc. cpp

·· l±l DemoView.cpp
i : BJ MainFrm.cpp
! L ... BJ St~fK.cpp

EH·· D Header Files
IB· D Resource Files

' ' ~,:l ClassView J@B ResourceView I ~ FileVie\"I fj Data View '

Four panes of the Workspace window.

EJ···ti.!>..t:!'!.'! .. !'".!.'!':J.'.!:.'".! . .!
IB ···D Accelerator
El··El Dialog
; '···· [:;3 IDD_ABOUTBOX

rE·Dlcon
B·El Menu
! L.~ IDR_MAINFRAME

&J ... D String Table
S 8 Toolbar

:.~ IDR_MAINFRAME
ffi-··DVersion

I

"';:j Clas.View li5i:J R~sourceView Jffil FileViewJ (j DataViewJ 1

E1 t:ffii .. !>..t:!'!.'!.i
El· tl F:\ (TEXT]

S·eJ Tables
! l±l··IIJ TEST.TXT
ffi-··DViews

The Workspace window can display up to four panes of information,
described here:

II ClassView-Lists classes and member functions in the project. To
open the class source file in the Visual C++ text editor, double-click
the desired class or function in the list.

II Resource View-Lists project resource data such as dialog boxes and
bitmaps. As with the ClassView pane, double-clicking a data item in
the Resource View list opens the appropriate editor and loads the
resource.

m FileView-Lists the project's source files. Copying a source file to
the project folder does not automatically add the file to the list in
the File View pane. You must specifically add new files to the pro­
ject using the Add To Project command on the Project menu.

• Data View-Displays information about data sources for database
projects. The Data View tab appears only in database projects hosted
by the Visual C++ Enterprise Edition that are connected to a data

13

Basics

Figure 1-7.

14

source compliant with the Open Database Connectivity (ODBC)
standard.

Right-clicking an item in the Workspace window displays a context menu
containing frequently used commands. Commands on the menu depend
on which item is clicked. Right-clicking a source file in the File View
pane, for example, displays a context menu that lets you quickly open or
compile the file. You can also toggle individual Workspace panes on and
off. Right-click any tab at the bottom of the Workspace window to display
a context menu, and then choose the desired command from the menu list
to make the pane visible or invisible.

The Output window (shown in Figure 1-7) has four tabs named Build,
Debug, Find In Files 1, and Find In Files 2. The Build tab displays status
messages from the compiler, linker, and other tools. The Debug tab is
reserved for notifications from the debugger alerting you to conditions
such as unhandled exceptions and memory violations. Any messages your
application generates through the OutputDebugString API function or
afxDump class library also appear in the Debug tab.

-----:---:--------------Configuration: Cube - llin3 2 Release-----------•,:.
Compiling ...
Cube.cpp ;:

Cube.obj - 0 error(s), 0 warning(s)
r .. ·.

IJilTh. Build l Debuti }.,: Find in Files 1 k Find in File; IJ • ..!J

;-

The Ouput window.

The remaining two tabs of the Output window display the results of the
Find In Files command chosen from the Edit menu. (This useful feature,
similar to the UNIX grep command, is examined in more detail in Chap­
ter 3, The Text Editor.) By default, the Find In Files search results appear
in the Find In Files 1 tab of the Output window, but a check box in the
Find In Files dialog allows you to divert output to the Find In Files 2 tab.
The Output window can contain other tabs as well. We'll see in Chapter
13 how to add a custom tool to Visual C++ that can display messages in its
own tab of the Output window.

1: The Environment

Online Help
Visual C++ provides three different sources of online help:

• Standard HLP files displayed with the WinHlp32 viewer

• Pop-up help messages in dialogs

• The Microsoft Developer Network Library, known as MSDN

The standard HLP files cover commands and windows of the environ­
ment, and are displayed only if you press the Fl key when the Help
menu's Use Extension Help command is checked, or if Visual C++ can
determine no specific context for a help topic. For example, consider this
line in a typical source document opened in the text editor:

DECLARE_MESSAGE_MAP() II MFC message map macro

The effect of pressing Fl in this case depends on the position of the flash­
ing caret in the text editor window. If the caret rests within or at the begin­
ning of the macro name and extension help is turned off, pressing Fl
opens the MSDN Library window and displays information about the
DECLARE_MESSAGE_MAP macro. If the caret instead rests on a blank
line, there is no clear context for online help. In this case, pressing the Fl
key produces information about the text editor window itself, displayed in
the WinHlp32 viewer:

Text Editor Window

The Text Editor window displays text files of any type, such as
language source and header files.

You can right-click on this window to bring up a shortcut menu of
commands. Note The shortcut menu commands change
depending on the type of file you are editing.

Pop-up messages-the second source of online help-are available in the
many dialog boxes displayed in the environment. Labels and the occa­
sional hint do their best to make clear the purpose of edit boxes and

15

Basics

Figure 1-8.

16

buttons in a dialog, but when labels are insufficient you can always query
for more explanation about a particular control through any of these
methods:

• Give the control focus and press the Fl key. Clicking a check box or
radio button to give it focus may turn a switch on or off. If this is not
what you want, remember to restore the switch to its former setting
when you are finished reading the help message.

• Right-click the control to expose the What's This? pop-up button. If
the control is an edit box, right-click the control's label text rather
than the edit box itself. Clicking the What's This? button displays
help text for the control.

• Click the question mark button at the upper right corner of the dia­
log box, and then click the control for which you want information.

These three methods all have the same effect, executing WinHlp32 to
display a brief pop-up message like the one shown in Figure 1-8. The
message disappears when you click a mouse button or press a key.

The third source for online help is the one you will probably use the most
often while working in Visual C++. MSDN is generally logical and easy to
use, but it is also immense. As we'll see in the next section, using the
MSDN library to its full potential takes a little practice.

Click here ...

Getting help in a typical Developer Studio dialog.

... and then click
a control.

1: The Environment

MSIDN Library
Once available only by subscription, the MSDN Library now serves as the
online help system for the entire suite of Visual Studio development tools,
including Visual C++. Because it is shared equally by all tools, MSDN
runs as a separate application and is not tightly integrated into any single
development environment. To access MSDN from within Visual C++,
the Help menu's Use Extension Help command must be unchecked.
Choosing the Contents, Search, or Index command from the Visual C++
Help menu causes the environment to run MSDN by executing the Win­
dows \HH.exe program, which loads the MSDN table of contents from the
file MSDNVS98.col, located in the MSDN98\98VS\1033 folder. (The
name of the containing folder reflects system localization settings-1033
is a language code for United States English.)

The Library provides an immense trove of information touching almost
every facet of Microsoft programming tools and Win32 programming. It
comprises thousands of articles covering everything from Visual C++ to
Visual J++, from MFC to ActiveX, and from the abs function to z-ordering.
MSDN also includes the full text of several respected books published by
Microsoft such as Bruce McKinney's Hardcore Visual Basic and Kraig
Brockschmidt's Inside Ole, 2nd Edition. You can also find Knowledge Base
articles, recent issues of Microsoft Systems Journal, full documentation of
application and device driver development kits, conference papers, exam­
ple source code, and a lot more. The interface is not perfectly conceived
for this release, but MSDN's sheer volume of information is truly amazing.

The MSDN help system stores its text in a series of "chum" files recogniz­
able by their CHM extension; the extension refers to the compiled HTML
format in which the files are written. CHM files are like individual vol­
umes of the MSDN encyclopedia, each containing articles devoted to a
particular subject such as ActiveX or the complete Win32 API reference.
Every file is paired with a separate index file that has the same name and
a CHI extension. During installation of MSDN, the setup program writes
all CHI index files to your hard disk but copies from the CD-ROM only
those CHM files you specifically request. CHM files take up a lot of disk
space, so you will probably prefer to install only those topics you are most

17

Basics

18

likely to visit often. During execution MSDN has access to all CHM files,
whether they are on your hard disk or left behind on the CDs. If the pro­
gram cannot locate a required CHM file on your hard disk, it prompts for
replacement of the correct CD. Which MSDN topics you should install on
your system thus depends on how often you anticipate using MSDN,
which subjects interest you most, and how willing you are to shuffle CDs.

The first time you call upon the MSDN Library to search for an article, it
creates the MSDNVS98.chw keyword file, which contains a list of individ­
ual words used in all the articles along with pointers to where each word
appears in the text. Compiling keyword references this way speeds up
searches for particular words and phrases, as we'll see in a moment. Cre­
ating the keyword file is a one-time occurrence that may take several min­
utes, during which an animated message informs you of what is
happening:

ri· '(-::1
~

The process requires many megabytes of free disk space in the system's
TEMP folder. If the TEMP environment variable currently points to a RAM
disk of insufficient size, reset the variable in your AutoExec.bat file and
reboot before searching the first time in MSDN. After MSDN creates the
keyword file, you can restore the original TEMP setting.

Figure 1-9 shows a typical MSDN article displayed in the Library's two­
paned window. The two panes are designed to work together, the left pane
accepting input criteria for the article you want and the right pane dis­
playing the located article itself.

Articles appear one at a time in the window's right pane, connected to
other related articles through a web of hypertext links. Hypertext links,
also known as hyperlinks, are special words or phrases within the article
text. Links are underlined and appear in a distinctive color that makes
them immediately recognizable. When the cursor passes over a hypertext

Figure 1-9.

Figure 1-10.

1: The Environment

;Eilef.di! Y:ier> .!lo J:ielp

F~<ml .:Ii] 1} <!), ¢i s> (@)
j. Hide ··Locate 'Previous Next Back Forward Stop

;'i;,ctive Subset · I
: I Entire Collecl1on . . •. a I
r::~~7j;:--1-~~~~r;;:;;;:j-·----·-·- --- ---i

El Q1J MSDN Library Visual Studio 6 .0 • I
! , [±] ~ Welcome to the MSDN Library

I'. l±l • Visual Studio Documentation i
l±J • Visual Basic Documentation i
B (() Visual C++ Documentation !

@) Visual C++ Start Page 1

l±l • Visual C++ Documentation Map I
l±l • V\lhat's New in Visual C++ 6.0 · 1
8

C:O r;,;~~i~~~~;~~~~~~;;~f (fa; · I 1

@) If You Want to Comment on~h:· e D.o .. c .. , .. •.· I l±l Using Visual C++ : ,,. . !

, . :. : . •. : : -~

@) ~ ~
Aetre~h Home Print

Getting Started
with Visual c++
6.0

CJ Beginning Your
Program You have
designed your program.
Now it's time to create
your Visual C++ project
with its initial files and

Accessing online help through the MSDN Library application.

link in the MSDN Library window, the cursor assumes the shape of a
pointing hand (Figure 1-10). Clicking anywhere on a link removes the cur­
rent article from the MSDN window and replaces it with the new article

~ Qt} 1f ·,o,· ¢i S> @
Show· . ..Locate Prev~ Next · Back . Forward Stop

~
Print

@) ~
Aetrem Home

:

• What do you want to know more about?

: L . -,-earning to Program with
MFC

:

Tutorials for MFC
TheMFC Scribble tutorial walks you through developing a simple
tv1~c ... ~ppli~~tion ... Each ~h~pt:r :xpl~i.~ .. :. a .~:Y"!~l~s: 1 :~ill, .. ()rt()()l· ~

Click a hyperlink to jump from one MSDN article to another.

19

Basics

20

referenced by the hypertext link. The effect is very much like browsing
Web pages on the Internet.

Interfacing with the right half of the MSDN window is extremely easy­
you need do no more than scroll the window if necessary to read the help
text and click any hypertext links that look interesting. Only one topic at a
time appears in the window, so it is always clean and uncluttered. For
more viewing area, you can turn off the window's left pane by clicking the
Hide tool button, though unfortunately the entire window shrinks as a
result instead of remaining a constant size. You may find it easier to col­
lapse or expand the left pane by dragging the vertical splitter bar left or
right, thus maintaining the overall size of the MSDN window.

The window's left pane holds four tabs labeled Contents, Index, Search,
and Favorites. Each tab provides a different means of navigating the wide
seas of online help.

Contents Tab
MSDN groups topics according to subject matter under headings and sub­
headings, an arrangement that forms a table of contents. It's like the table
of contents of a book, only interactive. You begin by searching for a gen­
eral subject, then explore down paths of information that become increas­
ingly specific to find topics that interest you. The table of contents serves
best when you have in mind a general subject-the debugger, for instance,
or programming with OpenGL-and you want to see what documents are
available for that subject.

Choosing the Contents command from the Visual C++ Help menu opens.
the MSDN window and displays the table of contents. Expand the table
until you find the title of the article you are searching for, either by
double-clicking headings (identified by book icons) or by clicking the
small plus sign (+) buttons shown in Figure 1-9. Article titles in the table
of contents lie at the end of the hierarchical chain, each distinguished
by an icon representing a sheet of paper with a dog-eared corner.
Double-clicking a title in the list opens the article in the MSDN window's
right pane.

1 : The Environment

By default, the table of contents summarizes the entire collection of
MSDN articles. You can narrow the display by defining a branch of the
table of contents hierarchy as an information subset. Subsets allow you to
focus on topics of a particular category. As an example, here's how to
create a subset of articles pertaining only to the MFC Reference:

1. Choose the Define Subset command from MSDN's View menu.

2. In the Define Subset dialog, expand the table of contents by double­
clicking the multi-volume heading labeled "MSDN Library Visual
Studio 6.0," and then do the same to the "Visual C++ Documenta­
tion" and "Reference" nested subheadings. Select the subheading
named "Microsoft Foundation Class Library and Templates" and
click the Add button to create the subset.

3. Type a name for the new subset in the edit box at the bottom of the
Define Subsets dialog, and then click the Save and Close buttons.

To switch among subsets when using online help, select a subset from the
drop-down list labeled Active Subset:

.; · ~ciive.sui:!set

El IJ:2l M~Q!i~!!:lr~tx YJ~~~t.§tl:lfflft?:.91
El ('.Q) Visual C++ Documentation

El ('.Q) Reference

El ('.Q) Microsoft Foundation Class Library and Templates

Index Tab
The Index tab is generally where you should turn first to search online
help, particularly when you have a reasonably clear idea of the subject
you are looking for. The Index tab displays a comprehensive index of the
entire MSDN file set, much like the index of a printed book. To locate an
index entry, type a keyword in the edit box at the top of the dialog. As
you type, the index in the list box automatically scrolls to the typed key­
word. For example, the MSDN index includes the entries "exception han­
dling," "handling exceptions," and "C++ exception handling," so typing
any of these terms locates topics that pertain to the subject of exception

21

Basics

Figure 1-11.

22

handling. When you find the index entry you want, double-click it. If the
entry targets only a single article, MSDN displays it immediately; other­
wise the Topics Found dialog appears listing all the articles that the index
entry refers to, as shown in Figure 1-11. Open an article in the dialog by
double-clicking its title in the list or by selecting the title and clicking the
Display button.

It Entire Collection
I!•• ·~ ,~·;c;-;•'"'''•"'•'~ CC-,'=c;co-c;;-o; A

IE~~:;:,: :·~:J~f1r~~~l.'.~f~e~J:<'.1. Micros~ft c++ s.upports two kin?s of .

i!jTyPeinthetey~. d .. tofin .. d: :,···························:···········.··.i··.·· •... ··.··I exception handling, c++ eMcept1on handling I:: I · · ~ · · · . (try, throw, catch) and structured eMception

Ii·· ::::~on.hand.~'.~~~f"''~:"•'."'W'"'~~J: ~fin~1Y~).1%~~~~le, you should us~

I, :~~~, ,
9
lc!!!Ctt!@'lll"IN"'

TiUe',, , ;; Location I~.;.:
Microsoft Foundation Class Library and Te .. .
Microsoft Foundation Class library and Te .. .
1Jm+1•1~d&t~'a1,1.1m1.i;m-
Windows CE: Platform SDK tr

;,,

L

The Index tab provides a comprehensive index of MSDN articles.

Search Tab
MSDN is more than a passive set of help files. It also includes a search
engine that scans the MSDNVS98.chw keyword file to determine which
topic files contain a specific word or phrase, a process called full-text
searching. Full-text searches are launched from MSDN's Search tab (Fig­
ure 1-12), allowing you to look for topics that contain a specified word or
phrase. The MSDN search engine is intelligent, able to understand word
variations, wildcards, Boolean associations, and the NEAR proximity
operator. Although using these features efficiently requires more thought
and planning on your part, they allow you to refine search parameters to
increase the chances of finding only those topics that interest you most.

Figure 1-12.

1: The Environment

,·.:~#~~Hiad~.x .·.· ~e~ch I r~~or~es I .
!;; T.l'P~ in the~d(•l to seaich . ·
j • I "exception handling"
~ ... <·;···;··~: :···· . : ·; ~····· ... : .. :

l se1ec1 iopic: Found: 305

Title Location Rank •
Visual C++ 4.2 standard Template library Tuto ... Technical Articles 1
A Crash Course on the Depths of V\11n32 struc... Periodicals 1997 2

!:~:::,~u~~~~~xq:~t~~:?~~~~:::·~:~:~::~~·~::·~~~··:;~~~:::~:~:::·:··~::~!:~~~: ! .
Exception Handling CIC++ Languages and C++ Libraries 6 I.;
Exception Handling Topics (SEH) Visual C++ Programmer's Guide L
The Microsoft V\11n32 Programming Model: A Prl... Backgrounder .. s

The Search tab lets you search for topics that contain specific words or phrases.

After examining the various options available from the Search tab, we'll
focus on how to refine a search using wildcards and operators.

At the top of the tab, type the word or phrase you want to search for,
enclosing phrases in double quotation marks to distinguish them from
individual words. (Single quotation marks are ignored.) For instance,
searching for the words displayed in Figure 1-12 finds only topics that
contain the phrase "exception handling." Typing the same words without
the quotation marks means that you want to search for topics that contain
both the words "exception" and "handling," but not necessarily occurring
together as a phrase. Searching for quotation marks is not possible.

Three check boxes in the Search tab govern switches through which you
can further specify how and where to search. The Search Previous Results
check box lets you confine searches to only those articles already listed in
the Search tab. Turning on the Match Similar Words check box instructs
MSDN to accept words that are grammatical variations of the search word
(or words) you have typed in the first text box. The variations involve
common word suffixes such as s, ed, and ing, forcing MSDN to recognize
the words edits and edited, for instance, as matches for the keyword edit.
Broadening the search criteria this way is of course apt to find more top­
ics. The Match Similar Words switch applies to all search words typed in
the edit box, so that searching for the phrase handle exception with the
switch turned on also finds topics that contain close variations such as

23

Basics

24

handled exceptions. MSDN recognizes even those variations that do not
contain the full keyword, finding words such as handler and handled
when searching for the keyword handling.

Turning on the Search Titles Only check box narrows the search consider­
ably because it causes MSDN to scan only article titles, not the body of
text within articles. Thus, searching for the phrase exception handling
with the check box turned on finds titles such as "Exception Handling
Topics (SEH)" and "Type-Safe Exception Handling," but not other related
topics such as "Compiler Warning C4530," which mentions exception
handling within its text.

When the search is completed, MSDN lists the titles of all articles that
mention the given search string, and displays the number of located arti­
cles at the upper right corner of the list. The list is sorted in descending
rank, determined by the number of times the requested search string
occurs in the topic document. To sort the list by title or article location,
click the button at the top of the appropriate list column. Double-clicking
a list entry in the Search tab displays the article with all matched strings
highlighted in the text, allowing you to quickly locate each occurrence of
a string. Highlighted strings repeated often in the text may seem a little
distracting, giving an article the aspect of a ransom note. To remove the
highlights from the display, choose the Highlights command twice from
the View menu or click the Previous and Next tool buttons to temporarily
move to another article and then return. You can also use the Find In This
Topic command on the Edit menu to find text within the displayed article.

Here are some basic rules and a few caveats for formulating search param­
eters in the Search tab:

• Searches are not case-sensitive, so you can type a search phrase in
uppercase or lowercase letters.

• By default, MSDN finds only whole words. For instance, a search
for key does not find "keyboard." Wildcards can override this
default behavior, as explained shortly.

• You can search for any combination of letters and numbers, includ­
ing single characters (a, b, c, 1, 2, 3, etc.), but not simple words such

1: The Environment

as an, and, as, at, be, but, by, do, for, from, have, he, in, it, near, not,
of, on, or, she, that, the, there, these, they, this, to, we, when, which,
with, and you. MSDN ignores these words when attempting to
match text so that searching for handle exceptions can also find top­
ics that contain the phrase "handle the exception" or "handle an
exception."

a MSDN accepts apostrophes in a search string but ignores other
punctuation marks such as periods, commas, colons, semicolons,
and hyphens. This ensures that strings will be found regardless of
context, but it also opens opportunities for spurious matches.
Searching for the phrase exception handling, for example, can con­
ceivably locate an unrelated topic that contains text like this:

Messages are an exception. Handling a message ...

Wildcards and operators
A search string can be formed as a general expression using the standard
question mark(?) and asterisk(*) wildcard characters, provided the char­
acters are not inside double quotation marks. The question mark wildcard
represents a single character in the expression so that searching for the
string 80?86 can find "80286," "80386," and "80486" (but not "8086").

The asterisk wildcard represents any sequence of zero or more characters.
Searching for *wnd*, for example, locates text such as "wnd," "CWnd,"
"HWND," and "wndproc." The asterisk wildcard ensures that MSDN finds
all words related by a common root word. To locate words such as "key­
board," "keystroke," and "keypress," for instance, type key* instead of key
as the search string. Naturally, this approach may turn up unrelated
search hits such as "keyword" and "key _type." Operators can further
refine search criteria to minimize such unwanted side effects.

MSDN recognizes the Boolean operators AND, OR, and NOT, and the
proximity operator NEAR. The best way to describe the effects of these
operators is through the examples shown in Table 1-1, on the following
page. The NEAR operator assumes strings are "near" each other when they
are separated by no more than eight recognized words. MSDN provides no
means of specifying a different criterion for determining proximity.

25

Basics

Table 1-1.

26

Operator Example Result

AND debug AND window Finds topics that contain both the strings
debug and window anywhere within the
text but not topics that contain only one of
the strings.

OR mf c 0 R "faun d a - Finds topics that contain one or both of the
ti on 1 i bra ry" strings.

NOT el 1 i pse NOT cdc Finds topics that contain only the first of
the given strings but not both. The exam­
ple to the left specifies that topics contain­
ing the string ellipse should be skipped if
they also contain the word cdc, thus ignor­
ing topics about the CDC::Ellipse function.

NEAR handl * NEAR Finds topics in which the given strings are
exception separated by no more than eight words.

The effects of string operators in MSDN's Search tab.

To connect two words by an operator, type the operator between the words
separated by spaces, as shown in Table 1-1; letter case does not matter.
You can also click the arrow button (..,.) adjacent to the combo box and
select the desired operator from the small pop-up menu.

Operators have no implied order of precedence, and MSDN evaluates
expressions in normal left-to-right order. Use parentheses if necessary to
associate strings unambiguously with operators. MSDN ignores parenthe­
ses inside double quotation marks, so it is not possible to search the topic
files for parenthetical remarks. The Search tab treats each white space in a
search string as an AND operator, assuming AND in the absence of other
operators, parentheses, or double quotation marks. Thus entering any of
the following search strings in the Search tab has the same effect:

debug AND window AND breakpoint
(debug AND window) breakpoint
debug window AND breakpoint
debug window breakpoint

1: The Environment

Previous versions of the Info Viewer help system allowed use of the C lan­
guage equivalents of the Boolean operators, replacing AND, OR, and NOT
with the ampersand(&), vertical bar (I), and exclamation mark(!) opera­
tors. MSDN ignores these characters, so they all have the effect of the AND
operator.

Search strategies
The method you should use to search online help depends not so much
on what you are looking for but rather on how well you can describe what
you are looking for. If you can associate one or two specific keywords with
a subject, searching through the MSDN index is usually the most efficient
way to find topics of interest. Like the index of a book, the MSDN index
provides a connection between a keyword and a relatively small list of rel­
evant articles, allowing you to quickly zero in on the information you
need. A full-text search, on the other hand, casts a wider net, often pre­
senting you with many more articles to select from than those referenced
in the index. The results of your search depend on how carefully you
phrase search strings and make use of search operators. After conducting a
full-text search, it can be a tedious process to pore over each article in the
search list looking only for the ones that best address your question.

If the subject area is new to you, you may prefer an overview and general
background information. In this case, the MSDN table of contents might be
your best recourse. Start by looking at the overall organization of the table
of contents to see what is there. Sometimes a few index or full-text
searches will help you locate a region of the table to focus on. After you
have found an interesting topic this way, you can determine where the
topic title occurs in the table of contents by clicking the Locate button on
the MSDN toolbar. The Previous and Next buttons select the adjacent arti­
cle listed in the table of contents, letting you browse through related
articles in sequence. Many topics begin with a helpful row of standard
hypertext links that take you to a home page, a subject overview, a list of
frequently asked questions, and so on.

Favorites Tab
When winding through corridors of help text by jumping from one article
to another, you will inevitably want to go back to an article you passed

27

Basics

Figure 1-13.

28

earlier. The Favorites tab shown in Figure 1-13 helps out here, maintain­
ing a list of bookmarks that flag selected articles so you can immediately
return to them. The flags are like the list of favorite places or bookmarks
maintained by a Web browser, and you will find them invaluable for
retracing your steps when exploring online help. Titles added to the list
remain permanently listed until removed, so the Favorites tab appears as
you left it when you start the MSDN program.

The title of the current article-that is, the article displayed in the right
pane-appears at the bottom of the Favorites tab. Click the Add button to
add the title to the list; double-clicking a title in the list recalls the article.

Exception Handling
Exception Handling Mechanisms

~~£Fet!§fiJiaiJ!i11~:9Y~rfi~~m
Exception Handling Topics (General)

The Favorites tab keeps a list of those articles you may want to revisit.

Accessing the World Wide Web
By embedding the Internet Explorer browser, MSDN can reach out to other
information sources on the Web wherever they may be. An article can
contain Internet addresses (universal resource locators or URLs) as hyper­
text links, so MSDN opens a Web page as seamlessly as any other article
in the library.

To specify a target Web site, choose the URL command from the Go menu
and enter the site's address. Figure 1-14 shows an example.

1 : The Environment

file. ,Edit ~iew .G.o J:ielp

" MICROSOFT 1 PRODUCTS 1 SEARCH 1 SUPPORT 1 SHOP 1 WRITE us 1 Microsoft· a
~) : ~1~ l. com:un1ty~, I WQ'~~·. f , ro~~.81.~;"l~s .. I _Tr~~1ng 1 Sit~.;_nfo .• I

ESSENTIALS ¢

Figure 1-14. Accessing a Web site through MSDN.

Working Outside the Environment
Most Visual C++ tools are available to you only from inside the Developer
Studio environment, but the compiler, linker, resource compiler, and
make program are exceptions. These programs execute as 32-bit console­
based utilities. When you build an application by compiling and linking,
Visual C++ spawns the make program to execute the two compilers and
the linker. Their output messages, which normally go to the system's stan­
dard output device, are captured and displayed in the environment's Out­
put window. It is possible to build applications without the environment,
executing the four programs from the command line as NMake.exe,
CL.exe, Link.exe, and RC.exe.

But working outside Developer Studio is impractical. The list of features
at the beginning of this chapter gives some idea of the wealth of assistance
that the environment contributes to program development, especially (but
not exclusively) for C++ development using the MFC library. Unless you
have legacy source files in the C language and a workable make file that
you do not want to disturb, you will almost certainly find development
work easier and far more productive inside the environment. Chapter 3,

The Text Editor, explains how to stay with your old text editor if you pre­
fer, but Developer Studio is much more than just a text editor. Without it,
Visual C++ is eviscerated. Every chapter of this book describes how to use
some part of the environment to create and maintain CIC++ programs.
This chapter is only the beginning.

29

\ Lnap1er

App Wizard
One of the most remarkable technologies of Visual C++ is its "wizards."
Each wizard specializes in setting up a project for a particular type of pro­
gram, giving you a head start in creating a new project so you don't have
to start from scratch. Running as a dynamic link library under the Devel­
oper Studio environment, a wizard queries for the features you want in
your new program, then generates starter source files in which much of
the mundane coding for the requested features has been done for you.
Visual C++ provides a variety of wizards for specialty projects such as
ActiveX controls and Developer Studio add-in utilities. There's even a
wizard that helps you create your own custom wizards. We'll encounter
some of these types of projects in later chapters, but this chapter concen­
trates on Visual C++'s flagship wizard, called App Wizard. Except for
differences in wording here and there, App Wizard has changed little in
version 6 from previous versions. If you have used App Wizard before,
you can safely skip this chapter.

Advantages of AppWizard
App Wizard specializes in setting up a development project for a typical
C++ Windows application that uses the Microsoft Foundation Class
library.

31

Basics

32

If you want to write your program in C or prefer not to use MFC, forget
App Wizard. Use the Win32 Application Wizard instead, as App Wizard
will do nothing for you. Earlier versions of App Wizard were designed
especially to create applications based on the document/view architec­
ture, in which a program's data is maintained by document objects and
presented to the user through view objects. MFC itself is heavily biased
toward such a program structure. AppWizard has become more flexible in
the latest version of Visual C++, able to prepare applications without
built-in document support, an option suitable for many smaller programs
that do not read or create files. You might call this compact type of logic
"view-only architecture" instead of document/view, since the created
application contains a view class that handles display, but does not pro­
vide a corresponding class for a document object. AppWizard can also
create a dialog-based application that does not rely on document/view,
interfacing with the user instead through a single dialog box. Chapter 5,

Dialog Boxes and Controls, describes how to create dialog-based applica­
tions in Visual C++ with and without App Wizard.

Each class in the generated project gets its own implementation file and
header file. The completeness of the source code in the files ranges from
empty stub functions to fully formed program elements such as a toolbar
and an About box that the user can invoke from the Help menu. App­
Wizard contributes code for a variety of program features, including:

• Single-document, multi-document, and dialog-based interfaces

• A docking toolbar, status bar, and printing support

• Menus with commands for typical operations such as Open, Save,
Print, Cut, Copy, and Paste

• Starter files for context-sensitive help

• An About box that displays program information and the MFC icon

• Database support

• OLE/ ActiveX support for compound documents, Automation, and
ActiveX controls

• Support for Messaging API (MAPI) and Windows Sockets

Figure 2-1.

2: AppWizard

In this chapter we'll look at how to use App Wizard to create a new project
that comes preloaded with these and other features. To give you an idea of
how much work AppWizard saves you, Figure 2-1 shows what a typical
application looks like right out of the box, built from the project files that
AppWizard generates. No other programming is needed.

A basic application created by App Wizard.

App Wizard runs only once at the inception of a project, offering enough
options to get you started but no more. You are not entirely cast adrift,
however, because App Wizard sets up the project in a way that allows
you to continue development using other Visual C++ tools such as Class­
Wizard. For example, you will notice special comment statements when
you look at the source files that App Wizard generates. As we'll see in
Chapter 6, ClassWizard uses the comments to monitor the project's classes.

The number of source files that App Wizard generates for a project
depends on the features you request; Table 2-1, on the following page,
shows a typical list. Each implementation file in the list has a correspond­
ing header file with the same name.

You might be tempted to dismiss AppWizard as training wheels for begin­
ners, too confining for hard-core programmers. And if you regularly create
the same types of projects, beginning a new project by copying and revis­
ing the source files from a previous project may have advantages over

33

Basics

Table 2-1.

34

File

project.cpp

projectView .cpp

projectDoc.cpp

MainFrm.cpp

StdAfx.cpp

project.re

Resource.h

Description

Main application source file.

Source code for the program's view class.

Source code for the program's document class.

Source code for the class CMainFrame. Derived either
from MFC's CFrameWnd or CMDIFrameWnd, this
class controls the program's main window.

Used to build a precompiled header file named pro­
ject.pch. The precompiled header contains a compiled
form of the MFC include files used by the project, the
names of which begin with the prefix "Afx." The result­
ing object data makes the precompiled header file large,
often over 6 MB in size. But the header file significantly
reduces build times by saving the compiler the work of.
recompiling the same unchanging code each time.

Contains project resource data (described in Chapter 4,
Resources).

Contains #define statements for the project's manifest
constants.

Source files typically generated by App Wizard. The italicized word project repre­
sents the project name.

enlisting App Wizard to create a new set of files for you. But wizard tech­
nology in Visual C++ has matured to the point where it's a mistake to
avoid AppWizard because it somehow seems too easy. In less than 60 sec­
onds you can step over the often tedious setup stages of a development
project and immediately start production coding. And you can rely on the
source code that AppWizard writes to be error-free, an assurance you do
not have when cutting and pasting code between projects. If the type of
program you have in mind is the type that App Wizard specializes in,
don't hesitate. You can save a lot of time by setting the project up with
App Wizard.

2: AppWizard

Running AppWizard

Figure 2-2.

An App Wizard project begins with the New command on the environ­
ment's File menu:

Clicking New displays the Projects tab of the New dialog box, which lists
the Visual C++ wizards. To run the App Wizard that creates a project for a
typical Windows application, select the icon labeled MFC App Wizard
(exe), as shown in Figure 2-2. We'll concentrate on this AppWizard for
now. A sister AppWizard invoked by the MFC AppWizard (dll) icon sets
up your project for the development of a dynamic link library, as we'll see
later in the chapter.

Cluster Resource Type Wizard
Custom AppWizard

;jffiJ Database Project

D evS tudio Add-in Wizard

To create a project for a typical Windows application, select
the MFG App Wizard (exe) icon.

Enter a name for the project. As mentioned earlier, AppWizard uses the
project name to identify various files in the project, so keep the name

35

Basics

Figure 2-3.

36

reasonably short. Once a project is created, there is no practical way to
change its name. By default, Visual C++ places App Wizard projects in the
Common \MsDev98 \My Projects folder; if you prefer another location,
specify a path in the Location text box. The OK button is not enabled until
you select an icon in the list and enter a project name.

When you click OK, App Wizard presents a series of up to six steps in the
form of dialog boxes. In each step, the left side of the dialog box displays a
picture that gives a visual cue of the settings that the dialog is prompting
for. Click the Finish button at any step to complete App Wizard and accept
default settings in the remaining steps. To step forward or backward
through the series of dialog boxes, click the Next button or the Back button.

Step 1: Program lnterf ace
In Step 1 of App Wizard, shown in Figure 2-3, specify the type of applica­
tion you want, choosing either single-document interface (SDI), multiple­
document interface (MDI), or dialog-based interface. To create a simple
Windows application that does not require a document object to read data
from a disk file, disable the check box labeled Document/View Architec­
ture Support.

For an SDI application that handles only one document object at a time,
turn on the Single Document radio button. This selection is also suitable

Select the application's interface in Step 1 of App Wizard.

2: AppWizard

for an application that does not conform explicitly to the document/view
architecture. An SDI application has less overhead than a comparable MDI
application, so the SDI application's executable file is smaller.

An MDI application has the advantage of being able to handle any number
of documents at once, displaying each document in a separate window.
The user can work in different document windows and save each docu­
ment as a separate file. As we'll see in the next two chapters, the Vis-
ual C++ environment is itself an example of an MDI application, able to
display both text and nontext data in various editor windows.

The third interface option creates a dialog-based application. This selec­
tion is suitable for a small utility program that does not require a main
window because the user interacts with the program through a single dia­
log box. A dialog-based interface isn't as limiting as it may sound, and
Chapter 5, Dialog Boxes and Controls, demonstrates how to create a dia­
log-based application that displays a property sheet dialog box that can
accept and display a large amount of information. The Phone Dialer utility
that comes with Windows is an example of a dialog-based application.

Because Chapter 5 covers dialog-based applications in detail, the dialog­
based interface option is not described here. However, much of the infor­
mation in this chapter applies to dialog-based applications.

AppWizard's Step 1 also queries for the national language you want for
your program's interface. The available languages depend on the
App Wizard libraries you have installed on your system; click the arrow
button adjacent to the text box to display the language options. Each lan­
guage relies on its own dynamic link library installed by default in the
folder Common \MsDev98\bin \ide. The name of a library file takes the
form Appwzxxx.dll, where xxx represents a three-letter code for the lan­
guage-for example, enu for United States English, deu for German, and
fra for standard French. Figure 2-4, on the following page, shows what the
File menu looks like in three different languages for an application gener­
ated by AppWizard.

37

Basics

Figure 2-4.

Figure 2-5.

38

English German French

.f ditiol'! .. ;~fichage '. ·.1
f!oliveau·' · · · ttii+~r"·
Quvrir.:. · Ctrl+O ;

" .E.nregistrer Ctil+S · '

!~~TSTI·hc~f.7~
J;· ·. : Ape~u ~ant tmpresS1on.. •· ·

!!,'8'~tr£!71""'·"#H.. @
;~,. -: • , < , ~' • • ,.<:~ ·.- '~''" ' 'li/ fl~~tel :· :;

An application's File menu in three different languages.

Step 2: Database Support
AppWizard's Step 2 (shown in Figure 2-5) queries for the database sup­
port you want for your project. This step and the following steps assume
that you selected either the Single Document or Multiple Documents
option with document/view support in Step 1.

Select database support in App Wizard's Step 2.

If your project does not use a database, click the Next button to skip this
step and continue to Step 3. As shown in Figure 2-5, four radio buttons
determine the extent of database support AppWizard adds to the project:

2: AppWizard

m None-Excludes the database support libraries from the project
build. If your project does not use a database, select the None radio
button to avoid adding unnecessary code to the project files. You
can add database support to your project at a later time.

II Header files only-Includes database header files and libraries in
the build, but App Wizard generates no source code for database
classes. You must write all source code yourself. This option is
appropriate for a project that does not initially use a database but to
which you plan to add database support in the future.

Cl Database view without file support-Includes database header files
and libraries, and also creates a record view and records et. The
resulting application supports documents but not serialization.

CJ Database view with file support-Same as the above setting, except
that the resulting application has support for both database docu­
ments and serialization.

If you choose to include a database view using either of the last two
options, you cannot continue to the next step until you define a source for
the data.

Data sources
To define a data source, click the Data Source button to display the Data­
base Options dialog box shown in Figure 2-6, on the following page.

The Database Options dialog box prompts for a data source that conforms
to the standards of either Open Database Connectivity (ODBC), Microsoft
Data Access Objects (DAO), or OLE database (OLE DB). ODBC functions
are implemented in drivers specific to a database management system
such as Microsoft Access, Oracle, or dBase. Visual C++ provides a collec­
tion of ODBC drivers; others are available from various vendors. For a list
of drivers included with Visual C++, see the article titled "ODBC Driver
List" in online help.

When you select ODBC as the type of data source for your program, App­
Wizard generates code that calls the ODBC Driver Manager, which passes
each call to the appropriate driver. The driver in turn interacts with the
target database management system using Structured Query Language

39

Basics

Figure 2-6.

40

Identify a data source in the Database Options dialog box.

(SQL). ODBC support ensures that an application can access data in differ­
ent formats and configurations.

Selecting ODBC enables a drop-down list of all data sources registered
with the ODBC Data Source Administrator. A data source includes both
data and the information required to access the data. To register or unregis­
ter a data source, run the Administrator by double-clicking the 32-bit
ODBC icon in Control Panel. Visual C++ normally sets up the Administra­
tor during installation, but if you requested a custom installation of Visual
C++, the Administrator might not exist on your system. If the 32-bit ODBC
icon does not appear in Control Panel, run the Visual C++ Setup program
again and install the necessary ODBC database support files.

DAO is the standard for Microsoft products such as Access and Visual
Basic. Using the Microsoft Jet database engine, DAO provides a set of
access objects including database objects, tabledef and querydef objects,
and recordset objects. Though DAO works best with MDB files like those
created by Microsoft Access, a DAO program can also access ODBC data
sources through Microsoft Jet.

OLE DB is a new data access strategy that allows a client application,
called a consumer, to retrieve data from any data source equipped with a
data translator, called a provider. The provider, which appears to the con­
sumer application as a set of Component Object Model (COM) objects,

Figure 2-7.

2: AppWizard

generally does not create the data, but instead serves as a go-between that
accesses the data in its native format (whatever that might be) and passes
it on to the consumer in a recognizable form. Figure 2-7 illustrates how
the consumer communicates with the provider, not with the original cre­
ator of the data source.

--------- 1. Load
provider

Consumer

2. Request data _____ ..__ __ _

Provider
3. Access

4. Receive ------- data
------data

Data Creator

Data Source

Typical interactions in OLE DB between data consumer and provider.

An advantage of OLE DB is that there need not be any prior agreement
between consumer and provider about the format of the data. At a mini­
mum, the provider is responsible for translating the data into a form the
consumer understands, usually in a tabular format. A provider can also
add enhancements to the raw data, such as query processing or sorting by
specified criteria. Selecting the OLE DB option in AppWizard's Database
Options dialog is the first step to creating a data consumer application, not
a data provider. The option generates code taken from a library of class
templates, called the OLE DB Consumer Templates, which provide wrap­
pers for OLE DB class objects such as CDataSource and CSession. Visual
C++ provides another wizard, ATL COM App Wizard, that assists in writ­
ing provider applications. Chapter 10, Writing ActiveX Controls Using
ATL, has more to say about ATL COM AppWizard and the Active Tem­
plate Library, though from the perspective of writing ActiveX controls, not
OLE DB providers.

41

Basics

42

Recordset type
Specify the type of recordset your program will use by selecting one of the
three radio buttons in the Recordset Type section of the Database Options
dialog box. The radio buttons govern the three options described here:

• Snapshot-A snapshot recordset holds a view of data as the data
existed at the time the snapshot was created. A snapshot is static,
meaning that the recordset does not reflect changes to the original
data until refreshed through a call to the Requery function of class
CRecordset or CDaoRecordset.

II Dynaset-The contents of a dynaset recordset are dynamic, meaning
that the recordset is automatically updated to reflect the most recent
changes to the underlying records. However, a dynaset holds a fixed
set of records. Once the dynaset is created, new records created by
other users are not added to the set.

II Table-The Table option is enabled only when DAO is selected for
the data source type. This option allows your program to use DAO
objects to manipulate data in a base table. When you click OK to
close the Database Options dialog box with the Table radio button
selected, another dialog box appears in which you can choose the
tables you want your program to use.

Step 3: OLE and ActiveX Support
In App Wizard's Step 3 (Figure 2-8), set the desired type of OLE and
ActiveX support for your program. The five radio buttons in the top half of
the dialog box control the type of compound document support
App Wizard adds to your program. Here are descriptions of the compound
document support options:

II None-App Wizard does not generate any code for compound docu­
ment support.

• Container-App Wizard creates a program that can contain linked
and embedded objects.

II Mini-server-The program functions as a mini-server, able to create
compound document objects that a container application can

Figure 2-8.

2: AppWizard

is;:~~-~~==~): ~:i~~~?mpound docllment support would yo•J like to

< fta~k

r. (tfa~~
r .Container

r Mjni-server

!" foll-1erver

!" Both container _gnd server

What other Sl1pport would yo1J like to include?

r AJJtomation

P ActiveX Cornrols

.tlext> I Cancel I

Specify OLE/ActiveX support in App Wizard's Step 3.

incorporate into its own documents. The resulting document
appears to the user as a single document, but in reality it is formed
from different sources. A mini-server writes its data directly to a
container's document, not a disk file, so mini-servers create objects
that a container application can embed but not link. A mini-server
application cannot run as a stand-alone program, but must be
launched instead by a container. Microsoft Draw is an example of a
mini-server.

a Full-server-The program that App Wizard creates can function as a
full-server application, possessing all the attributes of a mini-server
plus additional capabilities. Like a mini-server, a full-server applica­
tion can be launched by a container, but can also run as a stand­
alone Windows application. App Wizard adds support for storing
data to disk files, so a full-server application can support linking as
well as embedding.

a Both container and server-App Wizard generates code that enables
your program to function as both a container application able to
embed objects, and as a server application able to provide objects.

Selecting an option for compound documents, either for a container
or server application, lets you choose additional support for Active

43

Basics

Figure 2-9.

44

documents. Active documents provide a higher degree of integration
between client and server than do normal embedded documents, allowing
a document maintained by one application to appear inside the window
of another application. Figure 2-9 shows an example of this type of inte­
gration, in which Internet Explorer-the container, in this case-has
opened a document created by the server Microsoft Word.

If you want your container or server program to have the ability to serial­
ize compound data-that is, save documents and objects to disk-turn on
the radio button to request support for compound files. Though conceptu­
ally a single file, a compound file actually represents a consortium of dif­
ferent files, one file containing the document and other files containing
the objects linked to the document. When a compound document is saved,
the container is responsible for writing its own document object to disk. It
then passes on to servers a request for them to save to the same "storage"
their respective objects that the container is using.

Two check boxes at the bottom of the Step 3 dialog box query for Automa­
tion and ActiveX control support. By default, AppWizard activates the
ActiveX Controls option; if your program will not embed ActiveX con­
trols, clear the check box. This decision is not irrevocable, and you can
easily add support for ActiveX controls to an MFC program later by
including a single line of code. For an explanation of how to retrofit
ActiveX control support to an existing MFC program, see page 343 in
Chapter 8, Using ActiveX Controls.

Active Document

This is an example of an Active document, in which the server Microsoft Word appears inside the

window of the container Internet Explorer 4. 0. The container has incorporated menu commands

of both applications into a single menu system while providing normal access to all toolbars.

An example of an Active document container and server working together.

Figure 2-10.

2: AppWizard

Step 4: User lnterf ace Features
App Wizard's Step 4, shown in Figure 2-10, gives you control over which
user interface elements AppWizard will create for your program.

'CID~~@jiji}.;.~:··; '· . ·. ,::.··
i l Wh.:it features would you like to include?

:.·.! Lnc:J Ed;t v; •• IITjdo• H•!Ji:
~ri11t ...
Pri11tPre:!iitw
P!i•tSet•p ...

~:lit

~·;~i.;:~ ~~~~E=~~~~~ ~i
~ c••ck Dos. ~· Radio B4tto• tj

0 R•dlo Botto• ~
k%'iw)

P' frinting and print preview

r. Context·semitive H.1ilp

P' ,2D controls
r MAP! (Messi:iging AP!)
r Y:£indows Socket~

How do }'OU want your toolbars to look?

C. Internet J;.~plorer ReBars

How many files would you fike on your recenl file list?

,··6dvlled ,

Select user interface features for your program in App Wizard's Step 4.

App Wizard automatically generates code and data for a menu system,
toolbar, and status bar for the program's main window. The toolbar con­
tains buttons that mimic the menu commands, 'and the status bar displays
descriptive help messages for commands and toolbar buttons. A help
message appears in the status bar when the cursor rests momentarily on a
menu command or toolbar button, as illustrated here:

I - .&dlt · Yiew· •~indow • !::!elp~
in· it······ ti~~ . :.: ::;;··eii,~r-r::I· :1
1 1 · k' · · · · · · 'i! ·:' IJ p~n ~r{·~;,isting.cio~um~nt ;·~ ~j I l~ ... ;»:,, .. ;~~,~~.L. ~----~ .. -:• ;I.':~ ..._ _________ __.

Resting the cursor here... ...displays this in the status bar.

When no command is selected, the status bar displays a message such
as "Ready" or "For Help, press Fl" or any other message you wish. The
status bar also includes indicators for the keyboard's Caps Lock, Num
Lock, and Scroll Lock keys. The MFC framework updates the indicators

45

Basics

46

automatically as your program runs, so you need add no other code to
incorporate the feature.

The radio buttons labeled Normal and Internet Explorer ReBars offer two
different styles for the application's toolbar. Selecting the ReBars option
generates code for the toolbar using MFC's new CReBar class, resulting
in the flat toolbar style found in Visual C++, Internet Explorer, and other
applications. A flat toolbar is resizable-hence the shorthand term
"rebar"-and displays flat buttons that become raised only when the
mouse cursor passes over them. The subjects of menus, toolbars, and
status bars are examined in more detail in Chapter 4, Resources.

Printing support
By default, AppWizard activates the Printing And Print Preview check
box. This option adds starter code to an application's view class that over­
rides three virtual functions of MFC's CView:

lll
II CDemoView printing

BOOL CDemoView::OnPreparePrinting(CPrintinfo* pinfo)
{

II default preparation
return DoPreparePrinting(plnfo);

}

void CDemoView::OnBeginPrinting(CDC* l*pDC*I, CPrintinfo* l*plnfo*I)
{

II TODO: add extra initialization before printing
}

void CDemoView::OnEndPrinting(CDC* l*pDC*I, CPrintinfO* l*plnfo*I)
{

II TODO: add cleanup after printing
}

The overrides provide skeleton functionality for printing in a document/
view program, but you have more work ahead of you before your program
can intelligently print a document. For a good description of how to add
printing capabilities to an MFC program, see Chapter 10, Printing and
Print Preview, in Jeff Prosise's Programming Windows 95 with MFG.

MSDN online help also provides information in a series of articles

2: AppWizard

beginning with "Printing and Print Preview Topics." Locate the article
by typing its title in the MSDN Search tab with the Search Titles Only
check box set.

Online help
Activating the check box labeled Context-Sensitive Help signals App­
Wizard that you want your program to provide online help. AppWizard
adds source code and a collection of files to the project that get you started
on creating a complete help system. AppWizard takes care of document­
ing all the commands and toolbar buttons that it adds to your program,
such as New, Open, Cut, and Paste. The descriptions are clear and well
written, requiring no further work on your part. You need only enhance
the help file by documenting those commands you add to the program
yourself. This section first describes the help system that App Wizard cre­
ates, then briefly explains how to enhance it with your own help text.

When you request context-sensitive help for your program, App Wizard
creates a subfolder named HLP in the project folder. Among the files in
the HLP subfolder is a topic file named AfxCore.rtf. If you request printing
support for your project, App Wizard adds another topic file named
AfxPrint.rtf. Written in rich-text format, AfxCore.rtf and AfxPrint.rtf con­
tain help text describing the features that App Wizard has contributed to
the project. The HLP subfolder also contains a help project file that has
the same name as the project and an HPJ extension. When you build your
project, Visual C++ executes a batch file called MakeHelp.bat before
launching the compiler. MakeHelp.bat runs the Makehm.exe Help Mainte­
nance utility, which reads symbol definitions in the project's Resource.h
file and creates a help map file, recognizable by its HM extension. The
batch file then runs the Hcrtf.exe help compiler, which assembles infor­
mation drawn from the help map, the project's HPJ file, and the text in the
RTF files, to create an HLP file that the Windows WinHlp32 help file
viewer can read.

App Wizard also writes source instructions that run WinHlp32 and load
the project's HLP file in response to the user's requests for help. The entire
help interface is accomplished through four entries added to the message
map in the project's MainFrm.cpp file, as shown on the next page.

47

Basics

Figure 2-11.

48

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

ON_COMMAND(ID_HELP_FINDER, CFrameWnd::OnHelpFinder)
ON_COMMAND(ID_HELP, CFrameWnd::OnHelp)
ON_COMMAND(ID_CONTEXT_HELP, CFrameWnd::OnContextHelp)
ON_COMMAND(ID_DEFAULT_HELP, CFrameWnd::OnHelpFinder)

END_MESSAGE_MAP()

Each entry in the map points to one of three functions provided by the
MFC framework. The functions are called in response to different events,
each function invoking WinHlp32 and displaying appropriate text from
the project's help file. The following table describes when the functions
are called:

This function is called ...

OnHelpFinder

OnHelp

OnContextHelp

When the user ...

Selects the Help Topics command from the
Help menu.

Presses the Fl key to receive help on the
current context.

Presses Shift+Fl or clicks the Help button on
the toolbar.

Selecting the Help Topics command from the Help menu displays a typical
Help Topics dialog box in the WinHlp32 viewer, as shown in Figure 2-11.

Menus

111 File menu

111 Edit menu

111 Viewmenu

111 Window menu

111 Help menu

~~~!:l:nrn• <<add your application-specific topics here>> 

The Help Topics dialog box. 



2: AppWizard 

The user can navigate the Help Topics dialog box to find help on the 
desired topic. 

AppWizard also adds a Help button to your program's toolbar, similar to 
the small question mark button that appears in the upper-right corner of 
Developer Studio dialog boxes. Clicking the Help button changes the cur­
sor image to an arrow with a question mark. The user can then click on 
any part of the program window, including menu commands, the status 
bar, and toolbar buttons: 

re.~~~~=:~~:~~~t~=~~=:,=~~:~~r::~~:;til 

I i'b !iii ~~Y;fr~Wriiil <~ 'f 
~ ...... -~? .4.- - ~IHelpl 

Invoking the Help tool causes the program to execute WinHlp32, which 
displays a help window describing the clicked element. For example, 
requesting help by clicking the Save button as illustrated above displays 
the help window shown in Figure 2-12. 

To enhance the help system with descriptions of other features that you 
program yourself, load Af:xCore.rtf in a word processor that recognizes the 
rich-text format. Don't use the WordPad utility that comes with Windows 
for this chore. Although WordPad reads rich-text documents, it does not 
save information expected by the help compiler. Rich-text documents are 
in normal ASCII format, so in a pinch you can make small changes with a 
text editor. 

The first step in creating your own help text is to search for the string 
"<<YourApp>>" and replace each occurrence with your application's 
name. Double angle brackets(<<>>) in the document enclose placeholder 
text that suggests the type of help text you should add. Replace both the 
suggestions and the brackets with new text. Remove any parts of the top­
ics that do not apply to your application, taking your cue for the necessary 
formatting from the text placed in the file by App Wizard. Topics in the 
file must be separated with a hard page break. 

49 



Basics 

Figure 2-12. 

50 

' 
.EiJe· fdit Bookmark .Qptions J:jelp 

. · .. 
'~ 

~ontent~ index J ~ J frint J ' ' 

Save command (File menu) 

Use this commend to seve the ective document to its current ne.me end 
directory. When you seve e document for the first time. «YourApp» 
displays the Save As dialog box so you cen neme your document. If you 
went to chenge the neme end directory of en existing document before you 
se.ve it choose the Save .As command. 

Shortcuts 

Toolber: ~ 
Keys: CTRL+S 

• mm·,•••m 

Help window for the program's Save command. 

Help authoring is a large subject, and a complete description is not possi­
ble here. Online help describes how to use the Help Workshop utility 
provided with Visual C++ to build on the help system that AppWizard 
creates. 

The Advanced button 
In the lower right corner of AppWizard's Step 4 dialog box is an 
Advanced button that, when clicked, displays a two-tabbed dialog box 
titled Advanced Options. The first tab, labeled Document Template 
Strings, lets you rewrite certain character strings stored in the program's 
data that are used by Windows and the MFC framework. If you selected 
the Active Document Server check box in App Wizard's third step, you 
must specify in the Document Template Strings tab a file extension for 
your application's document files. Type the extension string in the tab's 
first edit box, as shown on the next page. 



2: AppWizard 

Document Template Strings I Window Styles I 

File type l D: 

jDemo.Document 

Language: Main frame J;:aption: 

English [United States I ID emo 

Doc type name: filter name: 

I Demo .------

File new name (short 
name): 

jDemo 

File type name (long 
name~ 

jDemo Document 

The system recognizes files with this extension as belonging to your server 
application in the same way it associates DOC files, for example, with 
Microsoft Word. App Wizard fills the remaining boxes with strings appro­
priate for your application, which you can accept or revise as you desire. 
We'll look at these strings in more detail in Chapter 4 in the section titled 
"The Document String," beginning on page 139. 

The dialog's second tab, labeled Window Styles, lets you control both 
the appearance of your program's main window and, if you selected the 
Multiple Document option in Step 1, the appearance of your program's 
document windows. Selecting the Use Split Window check box at the 
top of the Window Styles tab adds this function to an SDI project's 
MainFrm.cpp file: 

BOOL CMainFrame::OnCreateClient( LPCREATESTRUCT /*lpcs*/, 

{ 

} 

CCreateContext* pContext) 

return m_wndSplitter.Create( this, 
2, 2, 
CSize( 10, 10 ), 
pContext ); 

An MDI project receives a similar OnCreateClient function in its Child­
Frm.cpp file. For an SDI application, the OnCreateClient function enables 
splitter bars in your program's main window. A Split command in the 
program's View menu turns on the splitter bars, allowing your program to 

51 



Basics 

Figure 2-13. 

52 

display data in one, two, or four different panes of the same window. For 
an MDI application, App Wizard places the Split command on the pro­
gram's Window menu where it controls splitter bars for each child win­
dow. Figure 3-4 on page 71 shows an example of splitter bars used in the 
Visual C++ text editor. 

Step 5: Using the MFC Library 
App Wizard's Step 5, shown in Figure 2-13, asks for the style of program 
you want to create, whether you want additional source code comments, 
and how you prefer your program to link to the MFG library. 

Selecting source file comments and MFG library options. 

Project style 
App Wizard offers two variations of program style determined by radio 
buttons at the top of the Step 5 dialog. The default radio button, labeled 
MFC Standard, is the correct choice for creating a normal Windows appli­
cation with a view class derived from CView. Upcoming chapters in this 
book use the MFC Standard setting when employing App Wizard to create 
sample programs, so it's worthwhile to spend some time here examining 
the effects of the second radio button. The button is labeled Windows 
Explorer because the application that App Wizard creates has an appear­
ance and user interface similar to the well-known Explorer utility that 
comes with Windows. 



2: AppWizard 

The main window of an Explorer-type application is split into twq side­
by-side panes, each pane showing a different display and each governed 
by its own class. The view class for the left pane derives from MFC's 
CTree View, making the pane suitable for displaying a list of items related 
through a tree-like hierarchy, such as a company's personnel list, a geneal­
ogy chart, or the layout of files and folders on a hard disk. The view class 
corresponding to the right pane derives from CListView, designed to dis­
play a list of items that pertain in some way to the current selection in the 
left pane. Like Explorer, the program's toolbar contains four additional 
buttons that modify the pane's appearance, allowing the user to choose 
different display arrangements of large or small icons. Here's an idea of 
how a typical Explorer-type application might look: 

3 4 
Second item Third item Fourth item 

B · First level 

!·mml 
j .... S ublevel 2 
L.. Sublevel 3 

The items in the tree view control comprising the left pane have small 
plus and minus buttons that expand or collapse the list. The application 
adds the buttons and hierarchy lines by setting style flags in the window's 
CREATESTRUCT structure: 

BOOL CLeftView::PreCreateWindow(CREATESTRUCT& cs) 
{ 

} 

cs.style I= TVS_HASLINES I TVS_HASBUTTONS I TVS_LINESATROOT: 
return CTreeView::PreCreateWindow(cs): 

We haven't yet talked about the Visual C++ editors with which you can 
examine and revise a program, but if you are interested in reviewing the 
source code for the simple application pictured above, you will find the 
project files on the companion CD in the folder Code\Chapter.02\Demo. 
The Demo project was created using App Wizard, choosing the Single 

53 



Basics 

54 

Document option in Step 1 and the Windows Explorer option in Step 5, 

and accepting AppWizard's defaults for the remaining selections. Demo is 
a rudimentary project, created only to suggest the type of code you should 
add to an Explorer-type application generated by AppWizard. Chapter 3, 

The Text Editor, and Chapter 4, Resources, describe in much more depth 
how to use the Visual C++ editors to access and view projects such as 
those found on the companion CD. 

Source file comments 
Requesting source file comments causes AppWizard to add helpful "to 
do" notes to the generated source code. The notes appear as comments 
similar to the ones shown here, suggesting source instructions you should 
add to make a feature or function operable: 

void CDemoDoc::Serialize(CArchive& ar) 
{ 

} 

if (ar.IsStoring()) 
{ 

} 

else 
{ 

} 

II TODD: add storing code here 

II TODD: add loading code here 

Selecting the option to add source file comments also causes App Wizard 
to place a ReadMe. txt file in the project folder. The ReadMe file acts as a 
table of contents for the entire project, providing brief descriptions of all 
the files that AppWizard generates. 

Linking to the MFC library 
The third query in Step 5 determines how your program links to MFC. By 
default, the As A Shared DLL radio button is selected, meaning that 
App Wizard sets up the application to link dynamically to the MFC library 
contained in a separate file. This type of link significantly reduces the 
application's executable size and typically results in a more efficient use 
of system resources. 

However, linking dynamically to MFC requires the presence of the 
Mfcnn.dll library file, where nn in the filename represents the MFC 



L: AppWizard 

version number. The file is usually located in the Windows System or 
System32 folder. If your application links dynamically to MFC and you 
distribute the application for general use on systems that might not have 
the Mfcnn.dll library, you should provide the file to users as part of your 
application package. If your application uses Unicode, provide the 
Mfcnnu.dll file instead. Microsoft allows you to freely distribute these 
library files with your application. Your application's installation program 
can search for the presence of the MFC library file on the user's hard disk 
and copy the file to the System folder if it is not already there. The 
Msvcrt.dll file must also be copied if it does not exist because MFC uses 
the shared version of the C run-time library. Libraries remain backward 
compatible with older applications, so your installation program need not 
copy the MFC and C run-time library files if the user's System folder 
already contains newer versions of the files. 

There are additional considerations if your dynamically linked applica­
tion is intended for overseas markets where it is likely to run on systems 
set up for a different language. The MFC library file contains string data 
such as dialog text and help messages that a program can access. You 
must ensure that your application does not access and display library 
strings written in a language other than the user's native language. There 
are two ways to solve this problem. The simplest solution is to write your 
application so that it uses its own string data exclusively without access­
ing text provided by the library. (Chapter 4, Resources, covers this subject 
in more detail.) You can then distribute Mfcnn.dll without regard to the 
user's regional settings. 

The second solution involves writing your installation program so that it 
queries the host system for its local language, copies the redistributable 
file Mfcnnxxx.dll to the System folder, and renames the file Mfcnnloc.dll. 
(The xxx in the filename represents the three-letter code for the host lan­
guage, such as deu for German and fra for standard French.) For more 
information on this topic, see Technical Notes 56 and 57 in online help, 
located through the "MFC components" entry in the MSDN index. 

If you prefer to link your application statically to MFC, select the radio 
button labeled As A Statically Linked Library. Static linking means that 

55 



Basics 

Figure 2-14. 

56 

your application does not depend on the presence of the MFC library file, 
though it still requires the Msvcrt.dll file. The cost of static linking is a 
larger executable size and potentially the inefficient use of memory. 
Linking statically to MFC is not possible with the Learning Edition of 
Visual C++. 

The MFC linking option you choose in Step 5 is only the initial setting for 
the project, and you can select a different option at any time during devel­
opment. Before building the project, choose the Settings command from 
the Project menu and, in the dialog box's General tab, choose either static 
or dynamic linking. 

Step 6: Classes and Filenames 
AppWizard's sixth and last step itemizes the classes that AppWizard will 
create for the project. To change the name of a class, select it in the list 
and enter a new name in the Class Name text box. Other text boxes show 
the names of the files that App Wizard creates for the class source code. 
The names are only suggestions, and you can enter new filenames for all 
classes in the list except the application class (named CDemoApp in Fig­
ure 2-14). The source file containing the application class takes its name 
from the project, and so cannot be altered. 

Specifying class names in App Wizard's Step 6. 



L: AppWizard 

Figure 2-15. 

When you click the Finish button, App Wizard displays a summary sheet 
that lists the project features you have selected (Figure 2-15). The sum­
mary gives you one final chance to cancel the project. Clicking OK causes 
App Wizard to create the project at the location listed at the bottom of the 
summary sheet. 

Appfication type ol Demo: 
Multip~ Document Interface Application targeting: 

Win32 

Classes to be created: 
Application: CDernoApp in Derno.h and Demo.cpp 
Fiame: CMainFrame in MainFrm.h and MainFrm.cpp 
MDIChildFrame; CChildFrame in ChildFrrn.h and Ch11dFrrn.cpp 
Document CDemoDoc in DemoDoc.h and DemoDoc.cpp 
View: COemoView in DemoView.h and OemoVrew.cpp 

Features: 
+Initial loolbar in main frame 
+ Initial status bar in main frame 
+ Printing and Print Preview support in view 
+ 30 Controls 
+Uses shared DU implementation (MFC42.DLL) 
+Active'. : Controls support enabled 
+ Localizable text in: 

Engli$h {United States} 

A summary of project features selected in App Wizard. 

Creating a DLL with AppWizard 
If you intend to develop a dynamic link library instead of a normal Win­
dows application, select the MFC App Wizard (dll) icon in the New dialog 
box (see Figure 2-3 on page 36). This particular AppWizard displays only 
the single step shown in Figure 2-16 on the following page, which queries 
for information such as how your dynamic link library should link to MFC. 

The wizard offers three different linking options, each with advantages 
and disadvantages. The first two options result in a dynamic link library 
that any Win32 program can access. The third option is more limiting 
because it creates a dynamic link library that can be used only by applica­
tions or other libraries that themselves use MFC. The linking options are 
described on the next page. 

57 



Basics 

Figure 2-16. Setting up a DLL project with App Wizard. 

58 

• Regular DLL with MFC statically linked-Your dynamic link 
library links statically to MFC, enabling it to run on any Win32 sys­
tem without relying on the presence of the MFC library file. 

• Regular DLL using shared MFC DLL-In order to run, your dynamic 
link library requires access to the correct version of the MFC library 
file. This reduces the size of the finished executable, but might 
require distribution of the MFC library file with your product as 
explained in the previous section. Consider this option especially if 
your dynamic link library is designed to operate with applications 
that dynamically link to the same version of MFC, since a single 
instance of MFC can then service both the calling applications and 
your library. 

• MFC Extension DLL (using shared MFC DLL)-This option is simi­
lar to the preceding option with the important difference that the 
calling process must also link dynamically to the correct version of 
the MFC library. An MFC Extension DLL provides classes that 
enhance or supplement the functionality of existing MFC classes. 
For more information about writing an MFC Extension DLL, refer to 
Technical Note 33, "DLL Version of MFC," in MSDN online help. 



2: AppWizard 

Check the Automation check box if you want to expose your dynamic link 
library to Automation clients such as Microsoft Excel and Visual Basic. 
Check the Windows Sockets check box to add support for communicating 
over the Internet or any network system that uses the TCP /IP protocol. 
Selecting Windows Sockets support causes App Wizard to add a call to 
MFC's AfxSocketinit function: 

BOOL CDemoApp::Initinstance() 
{ 

} 

if (!AfxSocketinit()) 
{ 

} 

AfxMessageBox(IDP_SOCKETS_INIT_FAILED); 
return FALSE; 

return TRUE; 

You must of course write the actual communication code yourself. 

Managing the Module State 
In keeping with the straightforward nature of dynamic link libraries, the 
code that App Wizard generates for a library project is austere compared to 
all the source code it writes for a normal application. A single CPP file 
named for the project contains a message map and the class constructor. 
The file also includes a comment block explaining that exported functions 
in the library may need to invoke MFC's AFX_MANAGE_STATE macro. 
It depends on whether your library links statically or dynamically to the 
MFC library DLL. Static linkage to MFC does not require AFX_MANAGE_ 
STATE, but since linker settings for your project can easily change during 
development, it's best to assume at the outset that a dynamic link library 
using MFC services links dynamically to the MFC library. Exported func­
tions that call MFC should therefore begin by invoking the AFX_MAN­
AGE_STATE macro like this: 

extern "C" _decl spec( dll export ) void WINAPI ExportedFuncti on() 
{ 

#ifdef _AFXDLL 
AFX_MANAGE_STATE( AfxGetStaticModuleState() ); 

59 



Basics 

60 

//endi f 

} 

Within each thread's local storage, MFC maintains a pointer to a structure 
called the module state, which contains information specific to the pro­
cess module currently being serviced by the MFC library. When an appli­
cation enters an exported function in your dynamic link library, the 
module state pertains to the calling application, not your library. Before 
passing execution on to MFC, the exported function should first alter the 
pointer to reference the DLL's own module state. This is the purpose of 
the AFX_MANAGE_STATE macro, which temporarily switches the mod­
ule state pointer to reference the current module-that is, your dynamic 
link library-then restores the original pointer when the exported function 
goes out of scope and returns to the calling application. AFX_MANAGE_ 
ST A TE is not necessary in exported functions called by the MFC library 
itself, such as Initlnstance and handler functions listed in a message map, 
because MFC takes care of setting the correct module state before the call. 

The AFX_MANAGE_ST ATE macro should appear near the beginning of a 
function, even before definitions of object variables, because their con­
structors may themselves include calls into the MFC library. The #ifdef 
condition block shown in the fragment ensures that the compiler includes 
the macro code only for a library that links dynamically to MFC. If linkage 
is static, the Visual C++ compiler does not predefine the _AFXDLL con­
stant. For more detailed information about the AFX_MANAGE_ST ATE 
macro, refer to Technical Note 58, "MFC Module State Implementation," 
in MSDN online help. 







Chapter 

The Text Editor 
Visual C++ provides a true programming text editor that is designed spe­
cifically for the task of "cutting code." The editor integrates very well with 
other environment tools such as the debugger, and offers a wide range of 
sophisticated features including Undo/Redo, customizable keystroke com­
mands, and instant access to Win32 and MFC references. 

A text editor requires little in the way of preamble-as a programmer, 
you've already used at least one editor and probably several-so let's 
begin. This chapter covers the most important aspects of the Visual C++ 
text editor, describing useful and hidden features and showing you how to 
use the editor effectively. Even if you decide to remain with your current 
editor for most of your coding tasks, you should at least skim this chapter 
to get an idea of the Visual C++ editor's abilities. Sooner or later you will 
find it convenient to remain in the Developer Studio environment when 
editing text, if only to make quick revisions to fix compiler errors. There 
are also some tips at the end of the chapter you may find useful. 

Because it is a Windows product, the Visual C++ text editor saves its text 
files in the ANSI file format. For a discussion of the ANSI standard and 
tables of both the ASCII and ANSI character sets, refer to Appendix A. 

63 



Editors 

Launching the Text Editor 

Figure 3-1. 

64 

When you first enter Visual C++, you don't see the text editor. Nor do you 
see a button that says "Start the text editor" or even the word "editor" 
mentioned in any of the menus. In the object-oriented environment of 
Visual C++, you worry only about the type of document you want, not 
about what tool you need to create it. The environment oversees several 
editors besides the text editor, so you need only indicate that you want to 
create or revise a text document rather than, say, a graphics document. 
Visual C++ infers from the document type which editor to start. 

To begin a new document from scratch, pull down the File menu and 
choose the New command. On the Files tab of the New dialog shown in 
Figure 3-1, Visual C++ displays a list of document types you can create, 
arranging the list in alphabetical order. 

Selecting a document type in the New dialog. 

Enter a document name if you prefer, and then select from the list either 
Active Server Page, CIC++ Header File, C++ Source File, HTML Page, 
Macro File, SQL Script File, or Text File. Click the OK button to start the 
text editor, which appears in the form of a blank document window. 
There is little fanfare when this happens and the menus and toolbars 
hardly change. The continuity ensures a common appearance and 



3: The Text Editor 

behavior among the Visual C++ editors, making the entire product easier 
to learn and use. If the new document appears as a full-size window, only 
a few visual clues (besides the document itself) indicate that you are now 
in the text editor rather than the Visual C++ main window. One clue is a 
small page icon that appears at the left edge of the menu bar. Another 
visual indication is the appearance of the document name enclosed in 
brackets in the title bar at the top of the main window. If you do not enter 
a document name in the New dialog, the editor invents one for you, giving 
the new document a temporary name like Textl or Cppl. The name serves 
as a placeholder until you save the document and provide a more descrip­
tive name for the file. 

Beneath the surface, other changes occur within the menus. As we'll see 
in later chapters, the menus are common to all the Visual C++ editors, 
including the text editor. When the text editor starts, many of the menu 
commands that were disabled in the main window appear in normal text 
rather than gray text to indicate that the commands are now active. 
Visual C++ automatically enables appropriate menu commands for which­
ever editor has input focus. For example, because searching for text has 
meaning only in the text editor, the Find command on the Edit menu 
appears in normal text when the text editor is active but is gray when the 
graphics editor has focus. Figure 3-2, on the next page, briefly describes 
the menus available when the text editor is active. 

Other commands are available as well. For example, if you delete text in 
the editor and then change your mind, the Edit menu offers the Undo and 
Redo commands. These commands remember a history of deletions start­
ing with the most recent deletion. To restore text from earlier deletions, 
keep clicking Undo or press Ctrl+Z repeatedly until you work your way 
back through the history to the text you want restored. This has the side 
effect of restoring more recent deletions in reverse order, which may not 
be what you want. The Redo command on the Edit menu (also activated 
by pressing the Ctrl+ Y key combination) reverses the most recent Undo 
command, letting you "undo an undo." 

65 



Editors 

Get context-sensitive help. 

Arrange document windows. 
Customize the editor; create macros. 

Compile the source file being edited. 

Select compiler/linker options. 
Insert another file into the document. 

Display other windows; toggle full-screen view. 
Cut, copy, or paste text; find and replace. 

Open, save, or print document. 

Figure 3-2. Text editor menus. 

Documents 

66 

This section is the longest of the chapter, describing how to create, open, 
view, save, and print a text document. As I mentioned in the Introduction 
at the beginning of the book, some of the material covered here will proba­
bly seem like a review if you have used a Windows-based text editor or 
word processor before. But even experienced Windows users may benefit 
from the topics on viewing and printing a document, since they cover 
material specific to the Visual C++ text editor. 

For the record, the words "document" and "file" are commonly used 
interchangeably when referring to text editing. Opening a file and opening 
a document have the same meaning. 

Opening a Document 
The Visual C++ text editor complies with MDI (multiple document inter­
face), so you can have any number of documents open at the same time. 
Repeating the steps of opening a document with the New command 
creates a second empty document, this time with a default name like 
Text2 or Cpp2. If the window is full size, the name of the current docu­
ment-that is, the document that has the input focus-appears in the title 
bar at the top of the screen. You can switch between open documents by 
pressing Ctrl + F6 or by selecting the desired document name from the 
Window menu. 



l: The Text Editor 

A document is created only once during its life. When you save a new 
document to disk, it exists from that point on as a file and must be opened 
rather than created when you want to work on it again. Use one of the fol­
lowing methods to open an existing document: 

II Click the Open button on the Standard toolbar. 

i~t~:t.~'.~'.;;;;~:~j 

I ~ 11·~ I &1 " I ,Yo ; : , __ ti j 

I open [Ctrl+OJI 

• Press Ctrl+O. 

• Choose Open from the File menu. 

• Choose the Recent Files command from the File menu and choose 
the desired filename. 

The first three methods invoke the Open dialog, which allows you to 
browse through folders to find the file you want to open. The last method 
skips the Open dialog box altogether, presenting a list of most recently 
used files, called the MRU list, from which you can open a file directly. 

Most recently used files list 
By default, the MRU list contains the last four files accessed through any 
of the Visual C++ editors, not just the text editor. To display the MRU list, 
pull down the File menu and rest the cursor momentarily on the Recent 
Files command. Selecting a filename in the list opens the document in the 
appropriate editor. The MRU list is a welcome convenience when you 
work on the same few files. For even a small programming project, how­
ever, you may find yourself continually editing more than four source 
files, so even recently accessed files can quickly disappear from the MRU 
list. Fortunately, Visual C++ lets you expand the list to hold more file­
names. Click Options on the Tools menu, and then scroll right if necessary 
to select the Workspace tab. Enter a new value in the text box labeled 
Recent File List Contains, as shown on the next page. 

67 



Editors 

68 

The Workspace tab provides another option that affects the appearance of 
the MRU list. If you prefer to see the list directly on the File menu instead 
of on a separate submenu, clear the check box labeled Show Recently 
Used Items On Submenus. The additional document and project names, 
however, can make the File menu seem overcrowded. 

The Open dialog 
If the file you want does not appear in the most recently used files list, 
you must use the Open command and identify the file in the Open dialog. 
The dialog's default directory list displays files in the current project 
folder, so usually you won't have far to browse for the file. 

Select a group of files to open in a single step by holding the Ctrl key 
down as you click the files in the directory listing. Each click adds a file to 
the group of selected files. To deselect a file from the group, click its file­
name again with the Ctrl key pressed. When you click the Open button, 
the text editor opens all the selected files at once as separate documents. If 
the files you want to open appear sequentially in the directory list, there's 
an even faster way to select them. Click the first file to select it, then hold 
the Shift key down while clicking the last file of the group. All files in the 
list between the two you clicked are added to the selection group. To 
remove a file from the group, click it while pressing the Ctrl key. 



::S: The Text Editor 

,b'i'll OTE The file list in the Open dialog does not usually show all the files in a 
611'1 folder because of the filter setting in the Files Of Type combo box. A filter is 

a group of related file extensions; for example, the default C++ Files filter 
forces the Open dialog to include in the list only files with the extensions C, 
CPP, CXX, TU, H, TLH, INL, and RC. To list other filenames-say, those with 
HPP or TXT extensions-select the appropriate filter in the Files Of Type box. 

The Open dialog includes a check box labeled Open As Read-Only. This 
check box takes its job description seriously-when activated, it prevents 
you from making any changes to the open document. You can only scroll 
through the document, print it, and copy selected text to the Clipboard. 
Normally, you can remove the read-only lock by choosing Save As from 
the File menu and saving the document under a different name, thus 
ensuring that the original file is not altered. Visual C++ version 6 lets you 
prevent even this harmless circumvention of the read-only lock. On the 
Compatibility tab of the Options dialog (invoked through the Tools menu), 
set the check mark in the box labeled Protect Read-Only Files From 
Editing. When this option is in effect, a read-only document cannot be 
saved under a different name. 

Viewing a Document 
Though the text editor uses the screen intelligently, space can sometimes 
get cramped in Visual C++ when several windows are visible. For the larg­
est possible view of your source code, choose Full Screen from the View 
menu as shown in Figure 3-3, on the next page, or press Alt+V and then 
U. Title bar, menus, and toolbars disappear to provide maximum room. To 
switch back to normal view, press the Esc key or click the button on the 
floating Full Screen toolbar. You can access menus in full-screen view by 
pressing the Alt key followed by the first letter of the menu you want­
Alt+F for the File menu, for example. (The Alt key activates the menu bar, 
so the two keys do not need to be pressed simultaneously.) Press the Right 
and Left arrow keys to move to adjacent menus. You cannot, however, use 
the mouse to glide to adjacent menus the way you can when the entire 
menu bar is visible. 

If you find the Full Screen toolbar distracting, remove it by clicking the 
toolbar's close button. With the Full Screen toolbar disabled, your only 

69 



Editors 

Figure 3-3. 

70 

:1o=···Fi~so~rce s~~bofs . ..'- · · 
·· · : Redourde Includes; .. :: . 

l,ill"'f4%H!!!' :':·, .w~r~;~~e~.: '. 
: .Qutput . . . . . Alt+2 · 
i · ., Qebug Windows .. 

l
.[~:fff1efr~sb« · :· .•....•...•. ·· :: :" 
!,~ frop~~i~;··:·•·Al,t+E~te;····· 

The View and Window menus. 

· I6oli t::.:::::..~;::~;;:;; 
I;~: 
!HEusf!nt . 

I

] ° K. QockingView Alt~~6 
@:!' 'GIQse· · 

j: 
0

,. Cl~~e.AIJ .. 
1·~~et;t ... >· .. •.·.·,,·:.··;: 

11:z~~"•···· 
!8 Tile i:l.drizontalll'. 
" IJj. lile y ertk:?llv ·. 

idutput. ·· 
! : : ,2 Demo:bmp· ·. 

I~ 

means of returning to normal viewing from full-screen mode is to press 
the Esc key. To re-enable the toolbar in full-screen view, press Alt+ T to 
display the Tools menu, and then click the Customize command. On the 
Toolbars tab of the Customize dialog, activate the Full Screen check box in 
the list of toolbars. In the same way, you can make other toolbars or even 
the menu bar visible in full-screen mode. 

The Window menu provides a list of all documents that are currently 
open, including those in other Visual C++ editors. The list in Figure 3-3, 

for example, contains a text document called Test.cpp and a bitmap open 
in the graphics editor (described in the next chapter). You can switch 
between the open documents by pulling down the Window menu and 
clicking the name of the document you want to work with. To see all doc­
ument windows at once, choose either the Cascade, Tile Horizontally, or 
Tile Vertically commands. 

Text editor document windows have multiple "splitter" panes, allowing 
you to view one, two, or four different parts of the same document at once. 
Figure 3-4 shows a four-pane view of a simple document. 



Figure 3-4. 

3: The Text Editor 

A typical document window split into four panes. 

Visual C++ creates each text window using MFC's CSplitterWnd class, so 
splitter panes are enabled automatically when you create or open a docu­
ment. The splitter bars that separate the panes initially appear as two 
small buttons, one button placed at the top of the vertical scroll bar and 
the other button tucked into the far left corner of the horizontal scroll bar. 
To position a splitter bar, drag its button into the window's client area and 
release. You can expose both bars in one step by choosing the Split com­
mand from the Window menu. The Split command centers an outline of 
the splitter bars in the window. Move the mouse to position the bars as 
desired, and then click to lock them into place. 

Because splitter panes do not have their own independent scroll bars, the 
most useful split view employs only two panes, one on top of the other. 
To make a two-pane view, drag the vertical splitter bar to the far left or 
right of the window until the bar disappears. Jump from one pane to the 
other by clicking inside a pane or by pressing the F6 key. 

A two-pane split view is very convenient for two horizontal views of a 
document, but is much less effective for vertical side-by-side views 
because each pane cannot scroll independently of the other. Fortunately, 
another command on the Window menu neatly provides two or more ver­
tical views of a document. With a single document open in the text editor, 
click the New Window command to open another window containing the 
same document. This is not the same as opening the file again-the new 
window simply provides a second view of the original document in the 
editor workspace. Each window has its own scroll system and flashing 
cursor, so you can simultaneously view various parts of the document. To 

71 



Editors 

72 

arrange the windows for side-by-side viewing, click the Tile Vertically 
command on the Window menu. Click inside a window or press Ctrl+F6 
to jump between views. 

You can create additional views by clicking New Window again. Although 
the view windows operate independently of each other, they all reflect the 
contents of a single document. Any change you make in one window 
immediately appears in all windows. 

Saving a Document 
When you begin typing in a document window, an asterisk appears next 
to the document name both in the title bar and in the list of open docu­
ments on the Window menu. The asterisk lets you know that the docu­
ment has changed in some way and that the contents of the document 
workspace in memory now differ from the file on disk. Unlike your word 
processor, the Visual C++ text editor does not automatically save your 
work-in-progress at regular intervals. As you type new source code, get in 
the habit of frequently saving your work to disk using any one of these 
methods: 

• Click the Save button on the Standard tool bar. 

• Press Ctrl+S. 

• Choose Save from the File menu. 

When you save a document, the asterisk appended to the name in the title 
bar disappears. It reappears the moment you again alter the text. If you 
close a document when the asterisk is visible, the editor prompts you to 
first save the document. 

In recommending that you save your work regularly, I'm speaking of when 
you edit a document for an extended period of time. As you type, ask 
yourself occasionally, "If the power went out right now, would I be 



3: The Text Editor 

disappointed?" If the answer is yes, press Ctrl+S. Saving the document is 
not important, however, during cycles of code correction when you make 
small changes to the source and then recompile it. Before relinquishing 
control to the compiler, the text editor automatically saves the document. 
It has to, because the compiler reads the file from disk, not from the edi­
tor's workspace in memory. 

The first time you save an unnamed document, the Save As dialog opens. 
This is where you give the file a name and an extension. Give a source file 
an appropriate extension of CPP or C, because the compiler judges the 
contents of a file by its extension and compiles it as either a C++ or C pro­
gram accordingly. If you do not specify an extension, Visual C++ adds one 
that is appropriate for the document type you selected from the New dia­
log (Figure 3-1 on page 64). For example, selecting C++ Source File from 
the dialog causes the editor to automatically add a CPP extension to the 
new filename. 

Many programmers prefer an extension of HPP for header files specific to 
C++. It's hard to argue with the logic of this idea, but it carries a small bur­
den of inconvenience in Visual C++. When you choose Open, the dialog at 
first displays only files with extensions of C, CPP, CXX, TLI, H, TLH, INL, 
and RC. To see a file with an HPP extension, you must change the file type 
filter either to C++ Include Files or to All Files. Otherwise, giving a header 
file an extension of HPP causes no confusion in Visual C++. Actually, you 
can name header files with any extension you want because Visual C++ 
scans source files for #include statements when creating a project. Any 
file referenced by an #include statement, regardless of its file extension, is 
also added to the project and appears in the list of header files in the 
File View tab of the Workspace window. 

When you save a new document and give it a name, that name replaces 
the default in the title bar and on the Window menu. Thereafter, when­
ever you save the file the editor overwrites the previous version on disk 
without prompting you with the Save As dialog. The editor does not first 
give the previous version a BAK extension or otherwise preserve it. Once 
you save a document, its former version on disk is gone forever. If you 

73 



Editors 

Figure 3-5. 

74 

need several variations of your source, choose Save As from the File menu 
and give each source version a different filename. 

Printing a Document 
To print the document that has input focus, click Print on the File menu 
or press Ctrl+P to open the Print dialog. If you want to print only a portion 
of a source listing-say, a single subroutine-first select the desired text. 
Doing so enables the Selection radio button in the Print dialog, shown in 
Figure 3-5. 

The Print dialog box. 

The Selection radio button indicates that only the selected text rather than 
the entire document will be printed. You can override the setting by click­
ing the All radio button. 

The dialog shows the printer to which Windows will send the print job. 
To designate any other printer attached to your system, click the Printer 
combo box and choose from the list of available printers. Click OK to 
begin a print job. With print spooling enabled (which is likely), control 
returns almost immediately to the text editor, allowing you to continue 
working. You can print several jobs in rapid succession, though monitor­
ing the progress of your print jobs requires an excursion to the Printers 
folder. Click the Start button on the taskbar, choose Settings, and then 
click Printers. Select the desired printer and click Open on the File menu 
to see the current queue of your print jobs. 

When print spooling is active, your opportunity to cancel a print job from 
the editor lasts only a few moments. Once the system print spooler has 
control of the print job, the Cancel button disappears from the screen. 
After that, you can cancel a print job only from the Printers folder. If for 



Table 3-1. 

3: The Text Editor 

some reason print spooling is disabled, the text editor must wait until the 
printer finishes before it returns control to you. 

The Visual C++ text editor offers a limited amount of formatting for the 
printed page, letting you set margins and specify a header and footer to 
appear on each page. Choose Page Setup from the File menu, then type the 
desired text into the Header or Footer text box in the Page Setup dialog. 
Use the codes in Table 3-1 to include real-time information in the header 
or footer text. 

Print code 

&F 

&P 

&T 

&D 

&L 

&C 

&R 

Meaning 

Filename of printed document 

Current page number 

System time in the format appropriate for the current language 
setting, such as 11:54:31 AM 

System date in the format appropriate for the current language 
setting, such as 12/16/98 

Aligns header or footer text with left margin 

Centers header or footer text between margins 

Aligns header or footer text with right margin 

Print codes for including information in headers and footers. 

There's no need to memorize these codes. Just click the arrow button adja­
cent to the text box in the Page Setup dialog to display a list of formatting 
options, and then click an option in the list to insert its code into your 
header or footer text. Print codes can be either uppercase or lowercase. 

Combine print codes with normal text in any way you wish. For example, 
a header that identifies the name of the printed file and the date of the 
printing might look like this: 

&RFile: &F; Date: &D page &P 

The &R code at the start of the text forces the header against the page's 
right margin, a feature that word processors refer to as "flush right" or 
"align right." The &P code prints a page number, beginning with 1 for the 

75 



Editors 

first page. The page number is relative to the print job, not the document 
text. If you print text selected from the middle of the document, the &P 
code still marks the first printed page as page 1. No print code exists for 
the total page count, so it is not possible to number each page in the form 
"Page 1of20," for example. And because print codes in the header and 
footer apply to the entire print job, there is no option for specifying &R for 
odd-numbered pages and &L for even-numbered pages to alternate align­
ment from right to left. 

A header or footer can occupy no more than 40 characters on a single line. 
Each print code counts as two characters. Tabs are not allowed in the text. 

Navigating Through a Document 

76 

Sure, you can move through a document by pressing arrow keys or sliding 
the scroll bar. But as we'll see, other methods can help you navigate the 
text editor more precisely and efficiently. First, we should agree on some 
terminology. The familiar cursor of DOS-based text editors has a different 
name in Windows. Windows calls the blinking indicator a "caret" because 
its function is similar to that of a proofreader's caret symbol (A) used to 
indicate where new text should be inserted. The word "cursor" is reserved 
in Windows for the arrow (or other image) that shows the current mouse 
position. Visual C++ online help calls the caret an "insertion point," but 
as a Windows programmer you should know the technical difference 
between cursor and caret. Then when you encounter API functions such 
as ShowCaret and SetCaretPos, they will hold no mysteries for you. 

Keystrokes for moving the caret in the text editor should seem familiar to 
anyone who has used a Windows word processor. Table 3-2 describes the 
main text editor caret-movement keys. 

Moving in Virtual Space 
There has never been a consensus among text editors about what to do 
when the caret reaches the end of a line. What should happen when the 
user presses the Right arrow key? Some (thankfully few) editors take no 
action at all, adamantly refusing to move the caret. Other editors see text 
as a continuous stream; pressing the Right arrow key at the end of a line 
simply wraps the caret to the beginning of the next line. If you hold down 



Table 3-2. 

3: The Text Editor 

;ceystroke 

Left arrow, 
Right arrow 

Up arrow, 
Down arrow 

Ctrl +Left arrow, 
Ctrl+Right arrow 

Home, End 

Ctrl+Home, 
Ctrl+End 

Page Up, 
Page Down 

Caret movement 

Moves backward or forward one character. If the 
caret rests at the beginning of a line, the Left arrow 
moves the caret to the end of the preceding line. If 
the caret rests at the end of a line, the effect of the 
Right arrow depends on the virtual space setting. 

Moves up or down one line. If the target line is 
shorter than the current line, the position of the caret 
depends on the virtual space setting. 

Moves backward or forward by one word. The editor 
treats many punctuation marks as separate words. 
For example, you must press Ctrl+Right arrow seven 
times to move through the phrase can 'ti won't. 

Moves to the beginning or end of a row. 

Moves to the beginning or end of the document. 

Scrolls up or down by the number of lines visible in 
the window. The editor overlaps scrolls by one line, 
which means that as you press Page Down to scroll 
through a document, the line at the bottom of one 
view becomes the top line of the next view. There is 
no way to change the scroll overlap. 

Text editor caret-movement keys. 

the Right arrow long enough, you eventually move the caret through the 
document all the way to the bottom. Still other editors allow the caret to 
drift off the edge of the line and continue to move right into blank (or vir­
tual) space. The beauty of this approach is that it lets you treat the com­
puter screen as a sheet of paper-just move the caret and type wherever 
you want. But virtual space has both advantages and disadvantages. 

Consider what happens when the caret rests at the end of the first line of 
the following fragment and you want to move to the second line: 

b SendMessage( hwnd, MY_MESSAGE, wParam, lParam ): 
b *= 2: 

77 



Editors 

78 

Without virtual space, pressing the Right arrow moves the caret immedi­
ately to the beginning of the second line. Pressing the Down arrow moves 
the caret to the end of the second line. A virtual-space editor, however, 
requires two keystrokes to move to either position. You must press the 
Down arrow, then either Home or End. On the other hand, a virtual-space 
editor facilitates adding a comment to the second line. Just move the caret 
down into the blank space and type: 

b = SendMessage( hwnd, MY_MESSAGE, wParam, lParam ): 
b *= 2: // Double it 

By the way, those other editors are correct: a document is a continuous 
stream of text. You can't have holes in it. So the Visual C++ editor intelli­
gently "tabifies" the gap between existing text and any new text added to 
the line in virtual space. The editor fills the gap with tabs as much as pos­
sible, then adds spaces for the last few columns only if necessary. 

Both schools have their adherents. Ever customizable, the Visual C++ text 
editor leaves the choice to you, letting you change the virtual space setting 
to your preference by following these steps: 

1. From the Tools menu, choose Options. 

2. Click the Compatibility tab. 

3. Set or clear the Enable Virtual Space check box. 

Matching Delimiters 
The text editor recognizes delimiter pairs that enclose blocks of CIC++ 

source code, letting you with a single keystroke move the caret from one 
delimiter to its matching counterpart. The editor can distinguish three dif­
ferent delimiters: parentheses (),curly braces { }, and square brackets [ ]. 

Delimiters occur in matching pairs that serve as bookends for blocks of 
source code. Each pair establishes a delimiter level and may enclose any 
number of nested sublevels. The following fragment shows a typical 
example in which levels are delimited by curly braces: 



3: The Text Editor 

if (msg = WM_USER) 
{ II Begin 1eve1 A 

for ( i =0; i < 5; i++) 
{ II Begin 1 evel B 

} I I End 1eve1 B 
} II End level A 

With the caret adjacent to any delimiter, press Ctrl+] to move to the 
matching delimiter. To select the text within a level, press Shift+Ctrl+]. 

Parentheses in C and C++ serve as delimiters for different code elements 
such as if statement expressions and function parameter lists. However, 
levels defined by parentheses do not depend on statement type, only on 
how they appear in the text. The following line illustrates the idea, show­
ing three levels labeled A, B, and C: 

if (HeapAlloc( GetProcessHeap( ), 0, sizeof (DEVMODE) )) AL s l ________ =-=-________ c_I_ ~ 

The two inmost groups have the same level (C), and both are contained in 
levels A and B. When the caret lies next to the first parenthesis (which 
begins level A), pressing Ctrl +] moves the caret to the last parenthesis at 
the end of level A, skipping over the intervening parentheses. 

The editor determines to what level a delimiter belongs by using an old 
programmer's trick for checking source code: it counts the parentheses. 
There must be an equal number of open and closed parentheses within 
any level or the code is wrong. To move to the end of level A from the first 
parenthesis, the editor searches forward for a matching closed parenthesis 
while keeping a tally. For every open (right-facing) parenthesis it finds, it 
increments the tally by one. Every closed (left-facing) parenthesis decre­
ments the tally. The tally becomes zero when the editor finds the delim­
iter at the end of the level at which it started. 

The editor also recognizes the conditional compiler directives #if, #ifdef, 
#else, #elif, and #endif as delimiters, though it uses different keystrokes 
for navigating among them. When the caret is anywhere inside a block of 
conditional directives, you can move to the next directive by pressing 

79 



Editors 

80 

Ctrl+J to move backward or Ctrl+K to move forward. Adding the Shift key 
to the combination selects the text as the caret moves to the next condi­
tional directive. 

Bookmarks 
A text editor bookmark saves your place in a document, allowing you to 
quickly return to a marked line no matter where you are in the text. If 
you've relied in the past on your editor's Go To command to navigate back 
to an interesting area of your document, you will see the advantages of 
bookmarks. Go To aims for a line number, but as you add or delete text 
elsewhere in the document, a row of text can be pushed or pulled away 
from its original position. Go To drops you at whatever new line has 
moved into the slot. With a bookmark, you don't have to remember a 
line's number to get back to it, and the bookmark remains anchored to its 
line as the document grows or shrinks in size. The Visual C++ text editor 
offers two types of bookmarks, called named and unnamed. 

Named bookmarks 
A named bookmark becomes a permanent fixture of your document until 
you remove it. It marks a precise position in the text, remaining in place 
between editing sessions. In fact, you can jump from one document to a 
named bookmark in another document even if the second document is 
not open. The text editor automatically opens the second document if 
necessary and drops the caret at the position that the bookmark points to. 

To set a named bookmark, place the caret at the position you want to 
mark and click Bookmarks on the Edit menu to display the Bookmark 
dialog. Type a descriptive name if desired, and then click the Add button 
to add the new bookmark to the list. When you close the dialog, the new 
bookmark is set. You can return to a bookmark either indirectly or 
directly. The indirect method is most convenient if you don't have a lot of 
bookmarks in your document. Just press F2 to jump forward to the next 
bookmark or press Shift+F2 to jump backward. Or click one of the Next 
Bookmark buttons on the Edit toolbar for the same results: 



3: The Text Editor 

The direct method for moving the caret to a named bookmark requires 
another visit to the Bookmark dialog. Either double-click the target book­
mark in the list or select the bookmark and click the Go To button. You 
can also reach a named bookmark via the Go To command on the Edit 
menu, though it requires more work with the mouse. 

Internally, a named bookmark is a 32-bit offset from the beginning of the 
document that marks a specific location in the text. When you add or 
delete a byte of text anywhere in front of a named bookmark, the editor 
increments or decrements the bookmark's value. The bookmark thus con­
tinues to point to its target, regardless of how the text changes around it. 
Unlike a word processor, the editor does not save named bookmarks 
inside the document file when you close the document because the extra­
neous characters would only confuse the compiler. 

Unnamed bookmarks 
So persistent a bookmark may often seem like overkill. A named book­
mark is inconvenient when you want only to mark a passage in your 
source code, refer back to it once or twice when editing other parts of the 
document, and then forget it. For quick marking, use an unnamed book­
mark instead. An unnamed bookmark is temporary, lasting only until you 
remove it or close the document. It marks a line, not a precise caret posi­
tion. When you jump to an unnamed bookmark, the caret lands at the 
beginning of the marked line. If you delete the line you also delete the 
unnamed bookmark. 

The advantage of an unnamed bookmark is that it is easy to set and even 
easier to remove. To mark a line with an unnamed bookmark, press 
Ctrl+F2 with the caret anywhere on the line or click the toolbar button 
with the plain flag, shown on the next page. 

81 



Editors 

I Toggle Bookmark [Ctrl+F2ll 

If the selection margin is enabled (as described later in this chapter), a box 
icon appears in the margin to the left of the marked line. Otherwise, the 
editor marks the entire line with a distinctive color. 

You can jump to an unnamed bookmark by clicking the toolbar buttons or 
by pressing the F2 or Shift+F2 keys. Each keypress moves the caret 
sequentially forward or backward through every bookmark in the docu­
ment, both named and unnamed. 

You have several choices for removing an unnamed bookmark: 

• Place the caret on the line and press Ctrl + F2 again to toggle the 
bookmark off. 

• Press Shift+Ctrl+F2. This removes all unnamed bookmarks in the 
document. 

• Just ignore it. Unnamed bookmarks in a document disappear when 
you close the document. 

Searching for Text 

82 

The editor offers three variations on the familiar theme of searching for 
text. You can 

• Search for text in an open document 

• Replace text in an open document 

• Search for text in disk files 

The first two operations are practically universal among text editors. 
Searching for text in disk files may be a more unusual feature but is 
extremely useful, displaying a list of files that contain a particular word or 
phrase. Here's a detailed look at all three search operations. 



3: The Text Editor 

Searching for Text in an Open Document 
Like most text editors, the Visual C++ editor can scan through a document 
and locate a given word or phrase, called a search string. There are two 
ways to specify a search string. The most convenient method makes use of 
the combo box located on the Standard toolbar: 

; I~ ls~arch string C£J: 
~ 

Either type the string in the combo box or click the box's arrow button and 
select a previously entered string from the list. Press Enter to begin the 
search. When the editor locates the string, it highlights the string in the 
document window and places the caret at the first character of the high­
lighted text. As long as the combo box holds focus, you can continue to 
scan through the document for the next occurrence of the string by press­
ing the Enter key. To return to editing mode, press Esc or click anywhere 
in the document window. You can then continue to search for the same 
string by pressing F3 to search forward or Shift+F3 to search backward. 
Visual C++ provides toolbar buttons for these commands, though you 
must add them yourself to a toolbar. The section "Creating Toolbar But­
tons for Commands" on page 98 explains how. Here's what the search 
buttons look like when placed on the Edit toolbar: 

The second way to specify a search string involves the Find dialog. 
Although less direct than the first method, the Find dialog offers more 
alternatives. For instance, if an occurrence of the string you want to search 
for happens to be on the screen, you can borrow the string without having 
to retype it. For a single word, just click the word to set the caret on it; 
otherwise, select the text you want to search for by dragging the mouse 
cursor over it. Then open the Find dialog by pressing Ctrl+F or by choos­
ing the Find command from the Edit menu. When the dialog appears, it is 
already initialized with the selected text. 

83 



Editors 

84 

You can refine the search with parameters that specify case sensitivity and 
whether or not the string should be matched only to a whole word. Click 
the Match Case check box to define a case-sensitive search in which the 
editor finds only text that matches the search string exactly. For example, 
a case-sensitive search for "abc" finds only that string, whereas a case­
insensitive search for the same string may find abc, ABC, or Abe. Click the 
Match Whole Word Only check box to ignore occurrences of the search 
string contained in another word. A whole-word search for "any" finds 
only instances that appear as an entire word, ignoring words like com­

pany, many, and anywhere. 

Click the Mark All button in the Find dialog to flag each search hit with 
an unnamed bookmark. This option lets you return to occurrences of a 
string throughout an editing session while continuing to use the Find 
command to search for other strings. 

An interesting variation of the editor's search capabilities is a command 
called Incremental Search that begins searching as you type the search 
string. Press Ctrl+I in an open document and the prompt "Incremental 
Search:" appears in the status bar at the lower left corner of the window. 
As you type the search string, the editor immediately begins searching 
through the document, usually locating the string before you finish typing 
it. When the editor finds the word you are looking for, press Enter or an 
arrow key to return to edit mode. To search again for the same string, click 
the appropriate tool bar button or press the F3 key. The Shift +Ctrl +I key 
combination reverses Incremental Search so that the editor searches back­
ward from the caret position instead of forward. 

Replacing Text 
To search for text with the aim of replacing it with other text, choose 
Replace from the Edit menu. This presents you with a dialog similar to the 
Find dialog except that it queries for two strings instead of one. The first 
box takes a normal search string. In the second box, type the string with 
which you want to replace any occurrence of the found text. If you leave 
the second box empty, the editor replaces all search hits with nothing­
that is, it deletes all occurrences of the search string from the document. 



Figure 3-6. 

::s: The Text Editor 

To selectively search and replace, click the Replace button when the edi­
tor finds the search string. It then automatically jumps to the next occur­
rence of the string. Clicking the Find Next button skips over the text 
without altering it. The Replace All button replaces all occurrences of the 
search string in one step. You can search and replace only in the forward 
direction and only in the current document, but not in multiple files. 

If you select more than one line of text before invoking the Replace dialog, 
the Selection radio button is automatically turned on, indicating the editor 
will confine the search-and-replace operation to the selected section. 
Clicking the Whole File radio button overrides the setting. Although you 
can select a column of text in the editor by dragging the mouse cursor 
downward and right while pressing the Alt key, you cannot normally 
restrict replacements to a selected column. The Selection radio button is 
disabled if the selection is columnar. A macro can overcome this limita­
tion, however, and Chapter 13 presents an example macro that lets you 
search and replace within a marked column. 

Searching for Te'ct in Disk Files 
UNIX users know this feature as grep. Given a search string, the editor can 
locate all files in a folder that contain the string. It can also "drill down" 
in its search, scanning through any nested subfolders. Click the Find In 
Files command on the Edit menu to open the dialog box shown in Fig­
ure 3-6. The dialog prompts for a search string, file type, and the folder in 
which you want the editor to begin searching. 

··Find.what: · h~~r,~~.:t~i-~~ 
In file:s/file;!,ypes: ·· J.-x.-c;-x.c-p-p;x-.c-xx-;x-.tli-;x.-h;-x.t-lh,-.x.i-nl,-.x.-rEJ-· 

1 
In fgldei: ·· 1€{~;;~~~:::~::~:::~~~·:·8}'..~tl 

I> .. ··.··· ----
1 Q: M'.9l~h !::':lho;I~ word ontv 
I< o,Matchcase· 

I> ;b R.eg~1a7expiessioh · 
1····''"''.. · ... -

The Find In Files dialog box, used for searching disk files. 

85 



Editors 

86 

The default folder is the current project folder; if you want to search in 
another folder, enter the path in the In Folder box or click the adjacent 
button with the enigmatic three dots to browse for the new folder. The 
Look In Subfolders check box tells the editor whether to continue search­
ing through any nested subfolders or to confine its search only to the indi­
cated folder. By default, this check box is turned on. Click the Advanced 
button to specify any folders other than nested subfolders in which you 
want the editor to search. There are some handy check boxes for including 
subfolders that contain the project source and include files. 

We saw in Chapter 1 that the Find In Files command normally displays 
its file list in the Find In Files 1 tab of the Output window (shown in 
Figure 1-7, on page 14). To direct the command's output instead to the 
Find In Files 2 tab, turn on the Output To Pane 2 check box, shown in 
Figure 3-6. Turning the check box on or off allows you to maintain two 
separate file lists so that the results of a search do not overwrite the results 
of a previous search. 

Once you have set the search parameters, click the Find button. When 
Visual C++ finds a file that contains the given search string, it lists the 
filename and path in the Output window. Each entry in the list also 
includes a copy of the line in which the string first occurs in the file, so 
you can see how the string is used in context. Double-clicking a file in the 
list opens it in the text editor. 

Before conducting a file search, Visual C++ first saves any unsaved docu­
ments open in the text editor, ensuring that the most up-to-date version of 
each file is searched. You can adjust this behavior in the Editor tab of the 
Options dialog through two check boxes labeled Save Before Running 
Tools and Prompt Before Saving Files. Clearing the first check box 
instructs Visual C++ not to save open documents before searching, thus 
restricting its searches to documents as they existed the last time you 
saved them. If you prefer that Visual C++ leaves the decision to you 
whether or not to save a document when you invoke the Find In Files 
command, set both check boxes. This causes the editor to first query for 
permission before saving each open document. 



Table 3-3. 

3: The Text Editor 

Searching with Regular Expressions 
The search dialogs we've seen so far contain a check box labeled Regular 
Expression. A regular expression is formed by one or more special charac­
ters that represent a string of text. We've already used something similar 
in the Open and Save As dialogs, in which a file type of, say, *.cpp means 
"any file with a CPP extension." The asterisk wildcard acts as a regular 
expression that represents any text forming a valid filename. 

Regular expressions for search strings are more sophisticated than 
wildcards, giving you precise control in refining a search string. Table 3-3 

lists the default regular expression characters. The editor interprets these 
characters as regular expressions only when you check the Regular 
Expression check box in the dialog. If the box is not checked, the editor 
treats the characters literally and does not expand them into regular 
expressions. 

Character 

[ ] 

[I\] 

* 

+ 

I\ 

$ 

\ 

Meaning 

Any single character 

Any character or range of 
characters within the brackets 

Any character or range except 
those following the caret 

None or more of the preceding 
character or expression 

One or more of the preceding 
character or expression 

Beginning of a line 

End of a line 

The next character is not a 
regular expression 

Regular expression characters. 

Example 

" .. do" matches redo and 
undo but not outdo 

"sl[aou]g" matches slag, 
slog, and slug 

"sl[ "r-z]g" matches slag and 
slog but not slug 

"re*d" matches rd, red, and 
reed 

"re+d" matches red and 
reed, but not rd 

""word" matches word only 
if word begins a line 

"word$" matches word only 
if word ends a line 

"word\$" matches word$ 
(without recognizing$ as an 
end-of-line character) 

87 



Editors 

You don't have to memorize the table. All variations of the Find dialog 
provide an online version of Table 3-3 through a small button to the right 
of the combo box in which you type the search string. Click the button for 
a menu ofregular expressions, and then select the ones you want. 

The plus character ( +) lets you designate a string. To get an idea of how 
this works, consider the regular expression [a-zA-Z]. It means any one 
character within the range of characters contained in the brackets-in 
other words, a single letter. Append a plus sign to the expression and the 
meaning changes. The plus sign means "one or more of these characters." 
The editor thus interprets [a-zA-Z]+ as any string of letters-that is, any 
word. Similarly, the regular expression [0-9] means a digit, but [0-9]+ 
expands to mean any positive integer, regardless of its size. 

Regular expression searches are always case-sensitive. Even if you turn off 
the Match Case check box in the Find dialog, a search for the regular 
expression [0-9a-f]+ finds only hexadecimal numbers like Ox37ac but not 
Ox7 A4B. To find the latter number, you must include uppercase letters in 
the regular expression like this: [0-9a-fA-F]+. 

Programming Aids 

88 

Coding for Windows and MFC forces even the most experienced develop­
ers to never stray far from massive reference books and online documenta­
tion when coding. Few of us ever commit to memory more than a tiny 
amount of the information necessary to write Windows programs, and we 
spend a lot of time looking up parameter lists and confirming the spelling 
of function and variable names. But the Visual C++ text editor has abilities 
designed to help free the developer from these endless interruptions. This 
section describes the newest and best of these features, a typing assistant 
called Statement Completion. 

Statement Completion is a blanket term for a trio of programming tools 
named List Members, Parameter Info, and Type Info. In an almost literal 
sense, these tools put a condensed version of the Win32 and MFC refer­
ence material at your fingertips. 



Figure 3-7. 

3: The Text Editor 

List Members 
Designed to speed code entry and minimize typographical errors, the edi­
tor's List Members feature remains continually close at hand as you type. 
Through a pop-up window, List Members provides a huge list of MFC 
class members, C run-time functions, manifest constants, structure names, 
Win32 API functions, and class members of the current project, allowing 
you to select from the list to complete the word you are currently typing. 
The List Members window appears automatically when you type the 
scope resolution operator(::), member-of operator(.), or pointer-member 
operator(->). As you continue to type a member name, the window's 
selection bar moves to the list entry that best completes the name. Fig-
ure 3-7 illustrates, showing how the List Members window zeroes in on 
the CDC::SetMapMode function even before you finish typing it. 

void CDemoView: :OnDraw(CDC* pDC) 
{ 

CDemoDoc* pDoc = GetDocument(); 
ASSERT_VALID(pDoc); 

// Set coordinate system 
pD,C::~ 

· AbortDoc 

E) AbortPath 
E) AddMetaFileComment 
Qi AngleArc 
E) Arc 
Qi ArcTo 
Qi AssertValid 

'J Attach 
E) BeginPath 
E) BitBlt 

The window appears when the editor 
detects the pointer-member operator. 

void CDemoView: :OnDraw(CDC* pDC) 
{ 

CDemoDoc* pDoc = GetDocument(); 
ASSERT_VALID(pDoc); 

.t SetMapMode 

i,,',,,',,,I'. ') SetMapperFlags 'J SetMiterlimit 
E) SetOutputDC 

11 Qi SetPixel 
: t;J. SetPixelV . 

The selection bar locates the complete 
name as you continue typing. 

The List Members window displayed in the text editor. 

The text editor inserts the highlighted list entry into the document when 
you type a nonletter character such as a space or semicolon. The process 
is smoother than it sounds, especially after a little practice, because mem­
ber names in source code are almost always followed by punctuation-a 

89 



Editors 

90 

left parenthesis after a function name, or a semicolon or equals sign after a 
variable. The scenario illustrated in Figure 3-7, for example, is logically 
completed by typing a left parenthesis, producing this result: 

II Set coordinate system 
pDC->SetMapMode( 

The editor dismisses the List Members window, inserts the highlighted 
entry SetMapMode at the caret position, and follows it with the left paren­
thesis, ready for you to continue typing the function's parameters. As we 
will see in the next section, Statement Completion does not abandon you 
at this point, and invokes the Parameter Info tool to assist you in finishing 
the parameter list. As the Members List window disappears, the next logi­
cal tool automatically takes its place. 

Pressing the Tab key or Ctrl+Enter completes the word and dismisses the 
pop-up Members List window, but without adding a character. You can 
invoke the List Members pop-up window at any time in the text editor 
by pressing the Ctrl+Alt+ T key combination. In positioning the selection 
bar in the List Members window, the editor takes its cue from the text 
immediately to the left of the caret. Invoking List Members after typing cv, 

for example, displays the window with the selection bar positioned at the 
CView entry: 

The list entry is outlined in this example rather than highlighted because 
of the difference in letter case between the typed word cv and the entry 
CView. List Members ignores letter case when positioning the selection 
bar, so you can type entirely in lowercase if you prefer, though you must 
then press Enter or Tab to make the selection. This can be helpful when 



3: The Text Editor 

dealing with inconsistent function names like Unmap ViewOfFile and 
UnMapAndLoad, always difficult to remember. 

Although the key combination remains the easiest means of displaying the 
window, you can also access the List Members command from the Edit 
menu or by right-clicking in a document window to bring up a context 
menu. The List Members pop-up window includes in its list only those 
symbol names that are valid for the current class or object. For example, 
the list contains the PrevDlgCtrl function when you are typing a member 
name for an object derived from CDialog, since PrevDlgCtrl is a member of 
that class. The same function does not appear in the list when you are 
adding a member to a class derived from, say, CString. 

The Edit menu also contains a command called Complete Word, implying 
the existence of yet another Statement Completion tool. But Complete 
Word is not a new tool at all but merely a shortcut form of List Members. 
Rather than pressing Ctrl+Alt+T to invoke the List Members command, 
you will probably come to prefer the easier key combination of Ctrl+Space 
to execute Complete Word. Usually, both key combinations have exactly 
the same effect, displaying the List Members window with the selection 
bar positioned at the first entry that correctly completes the word you are 
typing. But should the list contain only one possibility that completes 
your word, interacting with the List Members window can seem an unnec­
essary distraction. In this case, the Ctrl+Spacebar combination streamlines 
the operation by completing your word without displaying the List Mem­
bers window. Pressing Ctrl+Spacebar after typing CreateMul, for example, 
completes your typing in a single step because the text editor determines 
without ambiguity that you intend to type CreateMultiProfileTransform 
and not CreateMutex. 

Parameter Info 
The Parameter Info feature works hand-in-glove with List Members, pop­
ping up as a discreet tooltip window when you type the first parenthesis 
after a function name. The tooltip window serves as an on-screen cue 
card, displaying the function's prototype and required parameters: 

m_ wndSta t usBar. Set Indicators<!,__ _____________ ___, 
jBOOL Set!ndicators (const UINT *lpIDArray, int nIDCount)! 

91 



Editors 

92 

The prototype remains on the screen as you continue filling in the func­
tion's parameter list, and then disappears when you type the closing 
parenthesis. If the function is overloaded to accept different sets of param­
eters, the Parameter Info window displays the prototypes one at a time. 
Numbers at the far left of the tooltip window indicate how many over­
loaded versions exist for the function. Cycle from one prototype view to 
the next by pressing Ctrl+PgUp or by clicking anywhere inside the tooltip 
window: 

m_ wndSta t usBar. GetPaneText (!;----------------. 
I ;~11 of 2 r~: CString GetPane Text (int nlnde><)I 

m_wndStatusBar. GetPaneText (!;--------------------. 
lii2 of 2 !'} void GetPaneText (int nlndeM, CString &rString)I 

The Parameter Info tooltip appears automatically when you need it, but 
can be invoked explicitly when the caret is positioned anywhere on or to 
the right of a recognized function name. Choose the command either from 
the Edit menu or by pressing the Ctrl+Shift+Spacebar key combination. 
Right-clicking a function name in a document also provides access to the 
command through the editor's context menu. As with any other command 
in Visual C++, you can assign a key combination of your own choosing to 
invoke Parameter Info. The section titled "Unbound Commands" later in 
this chapter explains how. 

Type Info 
Type Info is similar to Parameter Info, appearing as a tooltip window that 
displays information about a variable or function. If Type Info recognizes 
the symbol name beneath the mouse cursor, the tooltip window appears 
automatically, disappearing when you move the cursor. You can also 
choose Type Info from the Edit menu or the context menu, or by pressing 
the Ctrl + T key combination. The latter method is convenient when you 
want information about a symbol you have just typed or pasted into the 
document from the List Members window. When the editor's caret lies 
within or adjacent to a function name, Type Info displays the same 



3: The Text Editor 

information as Parameter Info, listing the function prototype. When 
invoked for a defined type, Type Info displays the typedef statement that 
creates the alias: 

OLECHAR 
I typedef unsigned short 0 LE CHAR :I 

Type Info is perhaps most useful when called into service to display infor­
mation about a variable. It shows the variable's declaration, so you no lon­
ger have to comb through source code or resort to the class's header file to 
confirm a variable's type. For example, the name of the indicators variable 
shown here gives no indication of its type, but the Type Info window 
immediately identifies the variable as an array of unsigned integers: 

// Set status bar panes 
statusbar.Setindicators( indicator~, 3 ); 

I unsigned int indicators[] :I 

The tendency of Type Info and other windows to pop up uninvited may 
seem distracting to you. If so, click the Options command on the Tools 
menu and clear the appropriate check boxes in the dialog's Editor tab (Fig­
ure 3-11 on page 102). You can still invoke Type Info, Parameter Info, and 
List Members at any time through their respective key combinations or 
menu commands. 

The Advanced Command 
The Advanced command near the bottom of the Edit menu represents a 
collection of options that can be very useful when working on a text docu­
ment. Rest the cursor briefly on the Advanced command to display the 
secondary menu shown on the next page. 

93 



Editors 

94 

. r:·:1~ci~~~~I~l's:;~w~~:,:;::;::,. ·: '?:~ c1r1+1 ·•· 

! for~~ S~lectiori • : . , . . Alt+F~ 
8dvanced ~ ~ 

1i· · 1atiiiysei~~1iot1 
Ir · : untabify se1eC:t16n . . . 
'IL •'M.a~~·se1ecti00 ypperca~e··.: ctrl+Shift+U 

J:: ·· Make Selectlon L~1/Yercase : · Ctrl+U · 
1!a:bYie~Y:l'.hi.tespac~ · <: ./ . • : Ctrl+Shift~S 

As you see, the menu provides access to the Incremental Search command 
described earlier, though pressing Ctrl+I is a more convenient way to 
invoke the command. The Format Selection command inserts tabs to set 
indentation levels in blocks of CIC++ code delimited by curly braces { } . 
The command can turn code like this: 

if (msg = WM_USER) 
{ 

for (i=0; i < 5; i++) 
{ 

II Additional code 
} 

} 

into this: 

if (msg WM_USER) 
{ 

} 

for (i=0; i < 5; i++) 
{ 

II Additional code 
} 

The Format Selection command works by scanning selected text for curly 
braces to determine nested levels. Lines of text in the first level are 
indented one tab position, lines in the second level are indented two posi­
tions, and so forth. 

The Tabify Selection command changes a selected series of space charac­
ters into an equivalent string of tabs. The Untabify Selection command 
reverses the process, expanding tabs into spaces. The effects of either com­
mand are best seen by turning on the View Whitespace toggle switch, 
which makes spaces and tabs visible in a document. When the switch is 



3: The Text Editor 

on, each space character in the text appears as a small dot ( · ) and each 
tab character as a guillemet (» ). 

The remaining two commands on the secondary menu act as their names 
suggest. The Make Selection Uppercase command changes all letters 
within a selection to uppercase, while the Make Selection Lowercase com­
mand does the reverse. Nonletter characters in the selection such as num­
bers and punctuation marks are not affected. 

Unbound Commands 

Figure 3-8. 

Every Visual C++ command has a descriptive internal name. For instance, 
the Incremental Search and Tabify commands just described have internal 
names of Searchlncremental, SelectionTabify, and SelectionUntabify. 
Online help refers to many other commands you won't find on the 
menus-commands with names like GoToNextErrorTag, LineTranspose, 
and LineDeleteToStart. There are two reasons why help prefers to identify 
commands by internal name rather than by key combination such as F4 or 
Shift+Alt+ T. First, you can change a key combination for a command to 
anything you like. Second, many commands do not have keystrokes already 
assigned to them. Such commands are said to be "unbound." To use an un­
bound command you must first assign it a key combination of your choice. 

Beneath the surface of the Developer Studio environment lies an extensive 
set of commands-there are many more commands available than those 
that appear in menus and on toolbar buttons. Click Keyboard Map on the 
Help menu to see a list of command names, shown in Figure 3-8. 

Select Keyboard Map from the Help menu to display a list of Visual C++ 

commands. 

95 



Editors 

96 

The default list in the Help Keyboard window is called "Bound Com­
mands," meaning that these are the commands that already have key 
combinations assigned to them. To see a list of both bound and unbound 
commands that pertain only to the text editor, select Edit from the combo 
box and click the Command button above the second column to sort the 
list alphabetically by command. As you scroll through the list, you will 
see in the Keys column that most commands already have assigned key 
combinations, but many do not. The set of unbound commands makes 
available a large selection of features that otherwise cannot be accessed 
through menus, toolbars, or the keyboard. 

How you access a command is up to you. Visual C++ lets you add any 
bound or unbound command to a menu or toolbar, as described in Chap­
ter 13, Customizing Visual C++. But since crowded menus and toolbars 
tend to be counterproductive, it's often best to enable an unbound com­
mand by assigning it a key combination. The only disadvantage is that you 
must then memorize the keystroke that invokes the command. ' 

No one intends for you to enable all unbound commands at once. Choose 
only those you think will benefit you most, giving them key combinations 
that best suit your style and that will most likely jog your memory. As an 
example, let's add to the text editor two useful commands called 
WordUpperCase and WordLowerCase, which change the case of the word 
under the caret in the current document. By default, WordUpperCase and 
W ordLowerCase have no key combinations assigned to them, nor are there 
toolbar buttons or menu options for invoking the commands. There is no 
way to use the commands until you specify key combinations for them. 

Here's how to enable the commands. From the Tools menu, choose Cus­
tomize to open the Customize dialog, and then click the Keyboard tab. 
Select Edit from the Category combo box and make sure that Text appears 
in the Editor box. These settings mean we're setting a keystroke for a com­
mand that applies only to the text editor. The commands listed in the 
Commands box are sorted alphabetically. Scroll down to the bottom of the 
list to find the WordUpperCase entry, and then click the entry to select it. 
A brief description of the command appears at the lower left corner of the 
dialog, but the Current Keys box remains blank, indicating that no 



Figure 3-9. 

3: The Text Editor 

command key is currently assigned to WordUpperCase. To assign a key, 
click the Press New Shortcut Key text box and press whatever key combi­
nation you want to invoke the command. If you press Ctrl+U, the dialog 
informs you that the key combination is currently assigned to the 
SelectionLowercase command. That doesn't mean you can't attach Ctrl+U 
to WordUpperCase if you want; it's only a reminder that if you do so, 
pressing Ctrl+U will no longer invoke SelectionLowercase, which would 
then become an unbound command. Alt+U is a better choice for Word­
UpperCase, because Ctrl+U is already in use. When you press Alt+U, the 
dialog tells you that the keystroke is currently unassigned (see Figure 3-9). 

Click the Assign button and the keystroke is ready to use. 

:·assign j 
Bemove I 

I' i R~~etAll: ·1 
r 

.J. 
. , Press new shortcut key; 

1!!' 1Demscmlrip!11.ti~on:1 ... •.•.~-g( ..... g l~it,+~, 
Im Makes .the word uppercase 
: J ~ 

Assigning a key combination to a text editor command. 

Do the same for the WordLowerCase command, assigning it a keystroke of 
Alt+L. When you press Alt+L in the Press New Shortcut Key text box, a 
message informs you that the key combination is used to gain menu 
access. The message refers to the Layout menu, which is available only 
when the dialog editor is active. Because the Layout menu has nothing to 
do with the text editor, choosing Alt+L does not lead to a conflict of key­
strokes. When the text editor is active, Alt+L invokes the WordLowerCase 
command; when the dialog editor is active, Alt+L pulls down the Layout 
menu as before. 

97 



Editors 

98 

To use the new WordUpperCase and WordLowerCase commands, open a 
text document and place the caret anywhere on a word. Pressing Alt+U or 
Alt+L invokes the commands, changing the case of all letters from the 
caret position to the end of the word. By coincidence, the new commands 
also duplicate the SelectionUppercase and SelectionLowercase commands 
because they act on any selected block of text, not on just a single word. 
The Selection commands are now superfluous, which isn't a tragedy. The 
new Alt+U and Alt+L keystrokes are easier to use and remember than the 
equivalent Shift+Ctrl+U (SelectionUppercase) and Ctrl+U (Selection­
Lowercase) key combinations. The duplication applies only to selected 
text, however, because both SelectionUppercase and SelectionLowercase 
affect the character adjacent to the caret when there is no selected text. 

Creating Toolbar Buttons for Commands 
If you are a fan of toolbars and find yourself frequently using commands 
like WordUpperCase and WordLowerCase that have no predefined toolbar 
buttons, you might want to create new buttons for the commands. You can 
place a button on any existing toolbar or even create a new toolbar. To 
demonstrate, here's how to create toolbar buttons for the new WordUpper­
Case and WordLowerCase commands. In the Commands tab of the Cus­
tomize dialog, select All Commands from the Category box to display an 
alphabetical list of Visual C++ commands. Scroll down the list to find 
WordUpperCase, and then drag the entry from the list and drop it onto 
one of the environment's toolbars, such as the Edit toolbar. If you prefer to 
create a new tool bar for the buttons instead of using an existing tool bar, 
simply drag the WordUpperCase entry out of the dialog and drop it onto 
an area of the screen not covered by a toolbar. Visual C++ automatically 
creates a new toolbar to hold the button. Drag the WordLowerCase com­
mand from the list to the same toolbar. 

Because WordUpperCase and WordLowerCase have no predefined icons, 
the Button Appearance dialog opens (Figure 3-10), from which you can 
choose an icon for each new button. None of the available icon images 
reflect the unusual functions of WordUpperCase and WordLowerCase, but 
you can combine image and text to make a button's function unambigu­
ous. Select an icon in the Button Appearance dialog, click the Image And 



3: The Text Editor 

Figure 3-10. 

Assign to: \.v'ordUpperCase 

r.' Image only 

C !ext only 
C lmage,gnd text 

['~] 0 rill 00 ttl pf c;J:~ J> £1 0 
~©@.ao•o,,[O~ i r01 

~ o rru % ~~"Oil f®rK~ it~ 
~~+-+-t"'rl 

I c::::::::::::9:ts::~:::::::::~il 
Cancel I 
.B.0:sd I ,.I 
F'.::i?l\:' -

Visual C++ offers a choice of icons for a new toolbar button. 

Text radio button, and type the button text in the text box at the bottom of 
the dialog. Here's what a new toolbar might look like with buttons for both 
the WordUpperCase and WordLowerCase commands: 

Unbound commands aren't just for the text editor. The next chapter 
describes how to use these same methods to implement useful commands 
for the graphics editor as keystrokes or toolbar buttons. Chapter 13 dis­
cusses in more detail the subject of creating toolbars in the Visual C++ 
environment, explaining how to rename and delete toolbars, how to copy 
buttons from one toolbar to another, and how to customize button images. 

An Introduction to Macros 
You can think of a bound command as a predefined macro-that is, a set 
of instructions assigned to a keystroke. The environment also lets you cre­
ate your own macros for the text editor by recording keystrokes and mouse 
clicks, combining them into a single reusable command that becomes part 
of the normal Visual C++ command set. You can execute a macro through 

99 



Editors 

100 

a keystroke, menu command, or toolbar button just as you can any other 
command. In fact, macros are nearly indistinguishable from normal bound 
commands, making them a very elegant way to extend the environment's 
capabilities. This section is only an introduction to the subject of macros. 
Because macros apply to the entire Developer Studio environment, not 
just to the text editor, we defer a more detailed discussion until Chap-
ter 13, Customizing Visual C++. For now, we can create a simple macro 
for the text editor just by turning on the command recorder. 

To demonstrate, here's how to create a macro that builds on the Untabify 
Selection command described earlier. The macro expands the command 
to untabify an entire document, and not just selected text. First close all 
documents in the editor to prevent alterations to existing text, and then 
begin recording the new macro by pressing Ctrl+Shift+R or by choosing 
the Record Quick Macro command from the Tools menu. This exposes the 
Record toolbar and adds the image of a cassette tape to the mouse cursor, 
indicating that Visual C++ is now recording every keystroke and mouse 
click. The macro comprises four steps: 

1. On the Edit menu, click the Select All command to select the entire 
document. 

2. Choose Advanced from the Edit menu and click the Untabify Selec­
tion command. 

3. Press Ctrl+Home to return the caret to the top of the document.. 

4. Click the Stop Recording button on the Record toolbar to end the 
recording. 



3: The Text Editor 

We now have a new macro. Visual C++ stores the macro in the Common\ 
MsDev98\Macros folder in a file named GlobalTemporary.dsm. (The file 
extension stands for Developer Studio macro.) The file contains a single 
Visual Basic subroutine containing instructions that invoke the three com­
mands we just recorded: 

Sub GlobalTemporary 
ActiveDocument.Selection.SelectAll 
ActiveDocument.Selection.Untabify 
ActiveDocument.Selection.StartOfDocument 

End Sub 

(Appendix C, A VBScript Primer, examines in much more detail the 
macro source language, Visual Basic Scripting Edition.) To experiment 
with the macro, open a representative document and turn on the View 
Whitespace command in the Advanced submenu to make the macro's 
effects visible. Now run the macro by pressing Ctrl+Shift+P or by clicking 
the Play Quick Macro command on the Tools menu. The effect is the same 
as retyping the recorded keystrokes manually. 

The GlobalTemporary macro is unique in that it does not appear in the list 
of Visual C++ commands shown in Figure 3-8 on page 95. It is reserved for 
the "quick" macro created through the Record Quick Macro command. 
Recording another macro through the same command overwrites the pre­
vious macro, so that only one quick macro exists at a time. 

Customizing the Editor 
The Visual C++ text editor is willing to change many of its characteristics 
to better accommodate your working style. We've already examined the 
Customize command on the Tools menu, which lets you customize tool­
bars and assign custom keystrokes to commands. To change other charac­
teristics of the editor's interface, choose Options from the Tools menu. 

The Options command displays the dialog shown in Figure 3-11, on the 
next page, letting you specify text editor characteristics such as: 

• Appearance, saving documents, and Statement Completion options 

• Tabs and indents 

101 



Editors 

Figure 3-11. 

102 

• Emulations 

• Fonts 

The Editor tab of the Options dialog box. 

In the dialog's Editor tab, click your preferences for how and when the 
editor should save a document. (The check box labeled Automatic Reload 
Of Externally Modified Files is described in the next section.) You can 
also specify whether the editor saves altered files automatically before 
compiling and whether it prompts you before saving a document. 

The Selection Margin check box in the same tab deserves special mention. 
The selection margin is a shaded column about one-half inch wide on the 
left side of a document window. The margin takes its name from the fact 
that by clicking in the column you can select the entire line adjacent to 
the click position. The margin also holds the icons for bookmarks and, as 
we'll see in Chapter 11, debugger breakpoints. If you prefer to recover that 
half-inch for document display, clear the check box to disable the selec­
tion margin. 

To a limited extent, the Visual C++ text editor can emulate the behavior 
of the BRIEF or Epsilon programmer's editors. If you are accustomed to 
either of these products, you may prefer to turn on the appropriate emula­
tion option. Click the Compatibility tab, and then choose either of the 



.:S: The Text Editor 

editors from the list or set the desired options by turning on individual 
check boxes. 

The Format tab lets you specify font styles and colors for the editor win­
dows. Click Source Windows from the Category list to see the current font. 
By default, the font is 10-point Courier, but you can change it to any style 
or size you prefer. The Colors area lets you adjust background and fore­
ground colors for various markers and text in the editor, such as source 
comments and HTML tags. To change colors, select an entry from the list 
and choose the desired colors from the combo boxes. 

Editing Text Outside Developer Studio 
Text editors share many characteristics with word processors, one of 
which is that users tend to be passionate about their favorites. Visual C++ 
gives you a very competent programming editor but if you currently use 
and enjoy another editor, I won't try to dissuade you. You may be more 
productive with a product you already know well. And if you never ven­
ture into the Developer Studio environment, you have no choice but to 
use another editor. The Visual C++ text editor is an integral part of Devel­
oper Studio, not a separate program. You can access the editor only from 
Developer Studio. 

A big advantage of the Visual C++ text editor shows off what an integrated 
development environment is all about. When the compiler finds errors in 
your source code, it automatically sets the editor's caret at the first offend­
ing statement, ready for you to type in a correction. Double-click on the 
next error in the list and the caret moves to the correct location in your 
source. After editing, just click the Compile button on the Build toolbar to 
resubmit the revised text to the compiler. Visual C++ automatically saves 
the new source to disk for you. Working in an editor outside of the envi­
ronment involves a bit more effort. You must switch to the editor, move 
the caret to the line number indicated for each compiler error, save the file 
after making corrections, and switch back to Visual C++ to recompile. 

If you decide to use another text editor for composing and maintaining 
source code, you should make two small changes to the Visual C++ envi­
ronment. First, if you use your other editor regularly, you may find it more 

103 



Editors 

convenient to run it from its own dedicated command on the Tools menu. 
By placing a new command on the Tools menu, you can launch your 
preferred editor from within the environment. If your editor accepts file­
names from the command line, you can configure the command so that 
your editor automatically loads source files when it starts. The subject of 
adding a new Tools command to start a text editor (or any other external 
program) is thoroughly covered in Chapter 13. 

The second change you should make is a small alteration to the default 
settings. When working on a file in another editor, you will often have the 
same file open in Visual C++. This happens during cycles of compiling 
and debugging the code, because the debugger loads the source file. When 
you alter and save the file in your editor and then switch back to Vis-
ual C++ to recompile, the environment recognizes its open copy is no lon­
ger current. By default, it displays the message box shown in Figure 3-12, 

which offers to reload the new file from disk. Your answer to the query 
will almost always be Yes or, at least, that you don't care. To prevent this 
polite but insistent message every time you pop back into Visual C++, 
click Options on the Tools menu. Place a check mark in the box labeled 
Automatic Reload Of Externally Modified Files in the Editor tab shown in 
Figure 3-11 to permit the editor to load altered files automatically without 
prompting you. 

When you use another editor, you in effect make a pact with Visual C++ 
that you will not change a document simultaneously in both editors. How­
ever, the environment intelligently handles simultaneous changes to a 
document. Visual C++ recognizes external alterations because it checks 
the date and time signatures of all files open in the text editor whenever 

Figure 3-12. Resolving document versions when an outside editor has changed a file. 

104 



j: The Text Editor 

the environment regains input focus. For the sake of safety, the environ­
ment reloads any file that has a more recent signature, but the Automatic 
Reload Of Externally Modified Files setting applies only while the editor's 
own copy of a document remains unchanged. If a document in the editor 
has been altered by even one character, Visual C++ displays the message 
box shown in Figure 3-12 regardless of the setting in the Automatic 
Reload Of Externally Modified Files check box. This gives you control 
over determining which version of the document is the correct one. 

105 





Chapter 

Resources 
Normally when we speak of a program's data, we mean the variables refer­
enced in the source by names like x and pString. A typical Windows 
application also has another kind of data called resources, which contain 
text and graphics that determine the look and feel of the program's user 
interface. A program's resources define interface elements such as: 

•Menus 

• Accelerator keys 

• Bitmaps, cursors, and icons 

• Dialog boxes and controls 

• Character strings 

• Toolbars 

When Windows loads a program, it reads code and values for initialized 
data from the program's executable file and copies them into allocated 
memory. With some exceptions, resource data are left behind in the pro­
gram's executable file on disk. Resources are read at run-time rather than 
at load-time, extracted from the EXE or DLL file on an as-needed basis 
when the program creates a window, displays a dialog, or loads a bitmap. 

107 



Editors 

Visual C++ provides several resource editors with which you can create 
and modify a project's resource data. In some respects this chapter is a 
continuation of the preceding chapter, which describes how to create and 
edit text documents with the Visual C++ text editor. Though the definition 
of the word "document" must be expanded here to include forms besides 
pure text, the principle of editing remains the same. 

The subject of resources and resource editors is large, occupying both this 
chapter and the next. This chapter covers resource data for interface ele­
ments that the user generally first encounters in a program, including 
menus, toolbars, accelerators, icons, and mouse cursors. The important 
subject of dialog boxes and controls is left for Chapter 5. 

System Resources 

108 

Just so there is no confusion later, I should also mention system resources, 
which form a common pool ofresource data that Windows makes avail­
able to applications. System resources are in effect loaned out to programs 
with the understanding they will be returned, either explicitly when the 
application frees a handle or implicitly when the application terminates. 
Some system resources such as mouse cursors are provided so that each 
program does not have to create its own. Although an application can 
display its own unique cursor (as we'll see later in the chapter), it's much 
easier to use the arrow, hourglass, and other bitmaps that the system 
provides. Besides being convenient for the programmer, this also ensures 
that the user is not presented with a bewildering variety of cursors when 
switching between programs. 

Other system resources such as device contexts and the system caret can­
not be duplicated by an application and have no real analogy to the pro­
gram resources described in this chapter. Although it has no direct bearing 
on a program's appearance, memory is also commonly referred to as a sys­
tem resource because it is doled out as heap allocations to programs that 
request it. Controls are another potential source of confusion when talking 
about resources. In its resource data, a program declares only the type of 
control it wants to use, the window coordinates, and perhaps an initial 
state. The display and operation of the control are handled by the system. 



4: Resources 

If the line between system resources and program resources seems indis­
tinct at times, don't worry. As you learn more about resources in this 
chapter, the differences will become clear. 

The RC Resource Script File 
A project defines its resources in a source file that has an RC extension 
and typically the same name as the project. The RC file contains only text 
much like a program source file, so you can view it with a text editor. 
Inside you will find tables that define character strings and the contents of 
menus but no graphics data containing bitmaps and icons. Graphics 
resources are stored in separate files, the names and locations of which are 
recorded in the RC file. The RC extension indicates that the file serves as 
source code for the resource compiler, a separate part of Visual C++ that 
compiles the text and graphics of the program's resources into object form, 
which the linker then binds to the EXE file. A project's RC file is often 
called a resource script or resource definition file. 

A resource script file is optional. A Windows program that does not inter­
act with the user does not require resources, and it's even possible for a 
program to create all its resources on-the-fly at run time. But as you will 
see in this chapter, resource scripts make life easier for the developer 
because the scripts separate the user interface elements from the source 
code. By working with the Visual C++ resource editors, the developer can 
design a program's interface, see what it looks like, and alter it with a few 
clicks of the mouse. And for programs intended for the international mar­
ket, resource scripts are a necessity because they allow the translator to 
work on the user interface while leaving the program source code 
untouched. 

Visual C++ recognizes only one main RC file per project. If you try to add 
an extra RC file using the Project menu's Add To Project command, the 
environment warns you that the file won't be compiled when building the 
project, as shown on the next page. 

109 



Editors 

110 

·. MUitipie .rc.fil~s ~~st ih i~kpr6i~ci.bn1~ cine·c~n b~ ~aik~da$· · 
·included in ~he build. The others wiHb·~·eitcJud~ fr~.~~th~ build., 

. IEJ:::::9.K'.::::;:::JI: :.· . . . - ' . <;.:'/ .:~· "·; 

Nevertheless, a project can have any number of resource script files, 
though all second-level files can be added only through #include state­
ments in the main RC file. For instance, AppWizard automatically creates 
a second resource file with the project's name and an extension of RC2, 
which provides a good place to put any resources you have previously 
developed and tested and that require no further modifications. To see 
how the RC2 file is included in a project created by AppWizard, open the 
project and choose Resource Includes from the View menu. Then scroll 
down in the Compile-Time Directives control to the following line (in 
which project represents the project name): 

#include "res\project.rc2" // non-Microsoft Visual C++ resources 

Any resources included in supplemental files are compiled and linked to 
the project's executable file but are not accessible when you are working 
on the main RC file with one of the Visual C++ resource editors. That's 
why only complete and tested resources should go in the RC2 file. The 
resource compiler reads all script files and produces a compiled binary 
form with a RES extension that is analogous to an OBJ object file gener­
ated by the CIC++ compiler. 

The Workspace window described in Chapter 1, The Environment, lists 
the project's resources defined in the main RC file. When the project is 
open, click the Resource View tab and expand the list by clicking the plus 
signs adjacent to the folder icons. To open a resource in the appropriate 
editor (which we'll do shortly), double-click the resource in the list. Fig­
ure 4-1 shows resources displayed in the Resource View pane of a typical 
AppWizard project named Demo. 

The default RC file created by AppWizard is extensive, containing lengthy 
string tables, menu scripts, and code pertaining to cross-platform develop­
ment. If you accept all of App Wizard's defaults when creating a new 



4: Resources 

Figure 4-1. 

B···Esi.P..~~.Q .. !~.~.Q~.~-~~-~.J 
El··E:J Accelerator 
j L.. .. ~ IDR_MAINFRAME 

Ei .. e Dialog 
j L ... §l IDD_ABOUTBOX 
$ .. ·81con 
1 1 .... m 10R_DEMorYPE 
! L .... @ IDR_MAINFRAME 
B··E:J Menu 
i L.. ... ~ IDR_MAINFRAME 
$ .. ·8 String Table 
j L .... ~ String Table 
$ .. ·-S Toolbar 
! L .. .!!i!J IDR_MAINFRAME 
B· .. ;q Version 

'. .... @S VS_ VERSION_INFO 

The Resource View pane of the Workspace window. 

application, you can end up with an RC file of nearly 400 lines. You might 
be tempted to modify the RC file in a text editor, deleting the extraneous 
lines of code generated by App Wizard and reducing the file size to man­
ageable proportions. But doing so means trouble later when you modify a 
resource with one of the Visual C++ resource editors. Although you may 
end up with a valid RC file, Visual C++ unfortunately no longer recog­
nizes it as a product of AppWizard. You can still revise a resource with 
an editor, but when you save the revisions, Visual C++ overwrites your 
minimalist RC file with a new one containing many of the extraneous 
AppWizard additions you had previously removed. The only alternative 
is to save the modified resources under a different filename, then use the 
text editor to copy the lines you want from the new file and paste them 
into the original resource script. I recommend you learn to live with the 
large RC files that App Wizard generates and, except for small changes, 
revise resources only through the resource editors. 

The Resource.h Header File 
Each resource in a project is identified in the RC file either by a constant 
identifier or, less frequently, by a name in the form of a character string. 
Resources in the fictitious Demo program of Figure 4-1, for example, are 

111 



Editors 

Table 4-1. 

112 

all identified by constant values: IDR_MAINFRAME for the menu and 
toolbar, IDR_DEMOTYPE for one of the program's icons, and IDD_ 
ABOUTBOX for the About dialog. The constants that identify a project's 
resources are normally defined in a file named Resource.h, which serves 
as the main header file for the project's RC file. AppWizard creates 
Resource.h automatically as part of a project, assigning standard MFC 
prefixes to the resource identifiers. Table 4-1 lists some of the identifier 
prefixes that MFC uses. 

Prefix 

IDR_ 

IDD_ 

me_ 
IDS_ 

IDP_ 

ID_ 

Resource type 

Main menu, toolbars, accelerator table, and the application icon 

Dialog boxes 

Controls and cursors 

Strings 

Prompt strings for message boxes 

Menu commands 

Standard MFG identifier prefixes. 

Constant identifiers can be formed by letters (either uppercase or lower­
case), numerals, and underscores, but cannot begin with a numeral. 

C programmers know identifier numbers as manifest constants or 
"defines," but Visual C++ sometimes refers to them as symbols. Tech­
nically, a symbol is a name in the source code, such as a variable or a 
function name, that labels a memory address. We'll see in Chapter 11, 

The Debuger, how the compiler can generate a list of a program's symbols 
that the debugger reads to learn the names of variables and functions in 
the program. Don't confuse resource symbols with symbols in your source 
code. No doubt the Visual C++ designers chose the word symbol to pro­
mote the idea that the resource script is also a type of source code and 
that a resource identifier is analogous to a variable name in the pro-
gram source. 

You can change the name or numerical value of a resource identifier listed 
in the Resource View pane of the Workspace window. First expose the 



4: Resources 

identifier name by expanding the appropriate folder icon, as shown in Fig­
ure 4-1 on page 111. Then click the identifier in the list to select it, and 
click Properties on the View menu. You can also right-click an identifier 
and choose Properties from the pop-up context menu. Either way, change 
the identifier's name by retyping it in the ID control. At the same time, 
you can assign a new numerical integer value by adding it to the name 
like this: 

IDD_ABOUTBOX_NEW = 3001 

When you press the Enter key, an asterisk appears adjacent to the project 
line at the top of the Resource View pane, indicating a change has been 
made but not yet saved. Choose the Save command from the File menu to 
have Visual C++ rewrite the Resource.h file, replacing the #define state­
ment for the old identifier with the new identifier. 

In theory, you can assign to a resource any identifier value from 1 through 
65,535 (OxFFFF). However, Windows reserves values of OxFOOO and above 
for items on the system menu and MFC reserves values OxEOOO through 
OxEFFF for internal use, so you should keep your own identifier values in 
the range 1 through 57,343 (OxDFFF). The value is limited to WORD size 
rather than DWORD size because WM_COMMAND messages pass the 
identifier value in the low word of the wParam message parameter. 

You can also change, add, or delete identifier symbols in the Resource 
Symbols browser shown in Figure 4-2 on the next page, provided the RC 
file was created by App Wizard or one of the Visual C++ resource editors. 
To open the browser, click Resource Symbols on the View menu. The 
browser shows all the identifiers defined in the Resource.h file; to rename 
an identifier or change its value, select it from the list and click the 
Change button. The New button lets you add new identifiers to the 
Resource.h file and assign values to them. After you close the Resource 
Symbols dialog, right-click the project line in the Resource View pane and 
choose the Save command to write the new values to the Resource.h file. 

The symbol browser is designed to work best with RC files created either 
by App Wizard or by one of the Visual C++ resource editors. You can view 
the definitions of all identifiers referenced in a project's RC file, but the 

113 



Editors 

Figure 4-2. 

114 

~·ot»:::li:otRitt~tix··········· ······························1·i10··································:;;···· 
~,. , V* 'h:"< ,,., .,, ,, ,,,:i. ·~» ., ~ , ·~'~ .. h' 

129 
128 

v F j;· ·.·• tlew ... · 

""i; _____ .... 
'. !t ..__ __ _, 

; ~. 

The Resource Symbols browser, invoked through the Resource Symbols command 
on the View menu. 

browser can modify only identifiers defined in the Resource.h header file. 
It treats identifiers defined in other included files as read-only and pro­
vides no means for changing their names or values. To see these identifi­
ers, click the Show Read-Only Symbols check box in the browser dialog. 
For example, AppWizard adds to the RC file this line, which we will meet 
again later in the chapter: 

1/i ncl ude "afxres. h" 

When you enable the Show Read-Only Symbols check box, the browser 
includes in the list all the symbols defined in the Afxres.h file. You can 
distinguish read-only symbols in the list because modifiable symbols 
appear in boldface type. 

A check mark in the In Use column indicates that a symbol identifies a 
resource in the RC file. As you develop a program you will probably 
change the names of identifiers occasionally. There is nothing wrong with 
this, but Visual C++ adds a definition for the new identifier name to 
Resource.h without deleting the old name. Consequently, some identifiers 
tend to end up as orphans, defined in Resource.h but not used anywhere 
in the RC file. The In Use column lets you easily spot any orphaned iden­
tifiers. To delete a symbol identifier-that is, remove its #define statement 



4: Resources 

from the Resource.h file-select it from the list and click the Delete but­
ton. The deletion takes effect when you next click the Save command. 
Remember, though, that the browser is telling you only that an unchecked 
symbol does not appear in the RC file. That doesn't mean the symbol isn't 
used elsewhere in the source code or in another resource file. 

An Example of an AppWizard Resource 
Before getting any more deeply immersed in descriptions, let's look at part 
of the resource script file that App Wizard generates for the fictitious Demo 
program. As we've seen, App Wizard automatically creates a resource 
script for an About dialog box, complete with an MFC icon. The dialog 
script in the generated Demo.re file looks like this: 

IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 217. 55 
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU 
CAPTION "About Demo" 
FONT 8. "MS Sans Serif" 
BEGIN 

ICON IDR_MAINFRAME,IDC_STATIC.11,17,20,20 
LTEXT "Demo Version 1.0",IDC_STATIC,40,10,119,8,SS_NOPREFIX 
LTEXT "Copyright (C) 1998",rnc_srATIC,40,25,119,8 
DEFPUSHBUTTON "OK",IDOK,178,7,32,14,WS_GROUP 

END 

The above instructions define the dialog box shown here, which is 
invoked by choosing About from Demo's Help menu: 

Demo Version 1.0 

Copyright (C) 1998 

Not bad for having written zero lines of code. However, App Wizard isn't 
for every occasion. To show what life is like without App Wizard, the rest 
of the chapter develops a resource-laden program from scratch without 
App Wizard and discusses the pros and cons of this approach. 

115 



Editors 

Introducing the DiskPie1 Example Program 

116 

Here we begin a series of sections that develop step by step an example 
program called DiskPie1. Each section concentrates on a single resource 
type, beginning with menus and accelerators and following with status 
bars, bitmaps, and toolbars. A section begins with a general discussion of 
a resource type and ends by making a contribution to DiskPie1, demon­
strating how to create or revise a resource with the appropriate Visual C++ 
editor. By the time we're finished, DiskPie1 will be a useful utility that 
shows at a glance current memory usage and available disk space. 

In keeping with good development practice, we'll "spec" the program at 
the outset before writing any code. The specifications will give you an 
idea of the resources we will be adding to the program and make it easier 
to see how they work together to form a consistent interface. Here are 
DiskPie1's specifications in brief: 

• Description-DiskPie1 is a small utility program written with MFC 
that displays a two-piece pie chart. Depending on menu or toolbar 
selections, the chart shows current space allocations for memory on 
a designated disk drive. One portion of the pie represents occupied 
space while the second portion, offset slightly from the first, shows 
free space. Labels clearly identify both portions. 

• Main window-The program has four menus named File, Chart, 
View, and Help. The File menu contains only an Exit command, 
and the Help menu has an About command that displays program 
information. The View menu allows the user to show or hide the 
toolbar and status bar. The Chart menu at first contains only one 
command called Memory, which displays memory usage. At run­
time, DiskPie1 searches for disk drives attached to the system, 
including RAM disks and remote network drives, and adds them to 
the Chart menu. The program ignores floppy disk drives, CD drives, 
and other removable media. 

• Toolbar and accelerators-A <lockable toolbar and keyboard com­
mands supplement the program's menus, allowing the user to 



4: Resources 

display a usage chart by clicking a button or by pressing a key to 
indicate a drive designation C through Z. 

• Status bar-Identifies the current menu or toolbar selection. 

• Context menu-Disk.Piel does not provide a context menu. 

Disk.Piel could easily begin life as skeleton code generated by App Wizard, 
but I chose not to do this for two reasons. First, Disk.Piel isn't the kind of 
document/view application that App Wizard has in mind when it creates 
files, and removing extraneous resource scripts generated by AppWizard 
can be tedious and not very interesting. Second, we've already talked 
about AppWizard. It's time to see what it's like to create a project from 
the ground up in Visual C++. The sections that follow don't ignore App­
Wizard by any means-they all describe AppWizard defaults so you can 
see what is gained or lost by using App Wizard to create a small project 
like Disk.Piel. 

The discussions assume that DiskPiel begins as an empty project with no 
source files. If you would like to follow the steps outlined here and create 
the project from scratch, choose New from the File menu, and then click 
the Projects tab and the Win32 Application icon. Type the project name 
and click the OK button. The Win32 Application wizard displays only a 
single step, offering to set up a new project in three different degrees of 
readiness; click the Finish button to accept the default selection for an 
empty project: 

r. [~~m.et~:P.!.~.~:s\J · ~ 
. . (' A .-imple W"1n32 applicatiori. 

('.A typic<il ''Hello ~o.rld!" applic<ition. ~~l 
...._ 

If you have already run the Setup program to copy the Disk.Piel project 
files from the companion CD to your hard disk, you may prefer to open 
the project and follow the discussions without creating the resources 

117 



Editors 

118 

Opening an Existing Project 

A new project, like a new file, begins with the New command, enlist­
ing the services of one of the Visual C++ wizards (like App Wizard or 
Win32 Application) to set up the new project. Once the wizard fin­
ishes, the New command is not used again for that project. To open 
an existing project such as any of those installed from the companion 
CD, choose the Open Workspace command from the File menu and 
navigate to the project folder. For a project that you have worked on 
recently, the Recent Workspaces command on the same menu offers 
more convenience. 

If you prefer, the Visual C++ environment can automatically open 
your most recent project at startup. This feature is very convenient 
for lengthy projects to which you devote most of your time. Click 
Options on the Tools menu and scroll to the right to find the Work­
space tab, then activate. the check box labeled Reload Last Workspace 
At Startup. 

yourself. To open the finished project, choose Open Workspace from the 
File menu and browse for the DiskPiel project folder on your hard disk. 
Double-click the DiskPiel.dsw file to open the project. 

Configuring the DiskPie1 Project 
The Win32 Application wizard generates only a few files that form a bare 
project. The wizard also assumes the project does not use MFC-an incor­
rect assumption for DiskPiel. After selecting Win32 Application to create 
an MFC program like DiskPiel, you must configure the project to recog­
nize the MFC library. As described in Chapter 2, AppWizard, this is done 
through a switch in the General tab of the Project Settings dialog. Invoke 
the dialog by choosing Settings from the Project menu, select All Con­
figurations from the combo box in the dialog's upper left corner, and 
choose either static or dynamic linkage for the project. Figure 4-3 shows 
the latter choice. 

Once the fledgling DiskPiel project is open and properly configured, we 
can start creating resources for it and add the DiskPiel.rc and Resource.h 



4: Resources 

Figure 4-3. 

El ,,::: I "· 

L..CJ Source Files 
j ... Cl Header Files 
L..CJ Resource Files 

.~~~--·"""'--·==----1 
! 

~--------~! 
I 

.----------~I 
. _..:. .... '.:..: ...... ~ .................... ~ ...................... :.. ... '. ..... '.:.:.:: .. :-~.~-j 
. r · AHow per-corifigura\ion _dependencies 

Selecting dynamic linking to MFG in the Project Settings dialog. 

files. DiskPiel is heavy with resources for such a small program, so most 
of the work involves creating the resource data. We'll write the actual 
code for the program last, after the resources are complete. 

Menus and Accelerator Keys 
Figure 4-4 on the next page shows the menu system that App Wizard cre­
ates by default. You can see the correspondence between the menus in the 
figure and the menu script that App Wizard places in the RC file: 

IDR_MAINFRAME MENU PRELOAD DISCARDABLE 
BEGIN 

PO PUP "&File" 
BEGIN 

END 

MENUITEM "&New\tCtrl+N", 
MENU ITEM "&Open ... \ tCtrl +O", 
MENUITEM "&Save\tCtrl+S", 
MENUITEM "Save &As ... ", 
MENUITEM SEPARATOR 
MENU ITEM "&Print. .. \tCtrl+P", 
MENUITEM "Print Pre&view", 
MENU ITEM "P&rint Setup ... ", 
MENUITEM SEPARATOR 
MENU ITEM "Recent File", 
MENUITEM SEPARATOR 
MENUITEM "E&xit", 

POPUP "&Edit" 

ID_FI LE_NEW 
ID_FI LE_OPEN 
ID_FI LE_SAVE 
ID_FI LE_SAVE_AS 

ID_FI L E_P RI NT 
ID_FILE_PRINT_PREVIEW 
ID_FILE_PRINT_SETUP 

ID_FILE_MRU_FILEl,GRAYED 

ID_APP _EXIT 

119 



Editors 

Figure 4-4. 

120 

END 

BEGIN 

END 

MENUITEM "&Undo\tCtrl+Z", 
MENUITEM SEPARATOR 
MENUITEM "Cu&t\tCtrl+X", 
MENU ITEM "&Copy\tCtrl+C", 
MENUITEM "&Paste\tCtrl+V", 

POPUP "&View" 
BEGIN 

END 

MENUITEM "&Toolbar", 
MENU ITEM "&Status Bar", 

POPUP "&Help" 
BEGIN 

MENU ITEM "&About Demo ... ", 
END 

The menu system generated by App Wizard. 

ID_EDIT_UNDO 

ID_ED I T_C UT 
ID_EDIT_COPY 
ID_ED I T_PASTE 

ID_V I EW_ TOOLBAR 
ID_VIEW_STATUS_BAR 

ID_APP_ABOUT 

The first line of the script gives the menu bar an identification number of 
IDR_MAINFRAME, which is defined in the Resource.h file that App Wiz­
ard adds to the project. Like all identifiers in the file, IDR_MAINFRAME is 
only AppWizard's default name; you can specify any name or value you 
want for a resource. 

The PRELOAD and DISCARDABLE directives are not necessary in the 
script of a Win32 application. PRELOAD, which has meaning only for 
16-bit applications, tells Windows to copy the menu resource data into 
memory when it first loads the program rather than later reopening the 
program's EXE file and reading the menu data when the program creates 
the main window. The DISCARDABLE directive is not required because 
in Win32 all resources are discardable. This means that the operating 



4: Resources 

system can freely delete a program's resource data from physical memory 
to make the memory available to other processes. When the program again 
has focus and needs the deleted resource, the system rereads the data from 
the program's EXE file. This is possible because resources are static read­
only data, and the copy in memory is the same as on disk. In contrast, 
removing dynamic data from memory involves the virtual memory man­
ager, which must first save the data to the system swap file before the 
memory can be used for other purposes. 

The indentations in the resource script show levels enclosed between 
BEGIN and END statements. The first level defines the complete menu 
resource including the menu bar, which is called a top-level menu. 
Secondary levels of BEGIN-END pairs specify the contents of each drop­
down menu. Each POPUP statement is followed by a menu title that 
appears on the menu bar, and subsequent MENUITEM statements specify 
the commands listed on the menu. A line in a menu is called a command 
or menu item. 

Some menu commands include keyboard combinations, such as Ctrl+N 
for New and Ctrl+O for Open. Known as accelerator keys, these key com­
binations serve as shortcuts that let the user choose a command without 
going through the menu system. For example, Ctrl+O immediately dis­
plays the Open dialog box-exactly the same effect as choosing Open from 
the File menu. The trouble with accelerator keys is that the user must 
memorize them; they appear on the menu only as a memory aid to remind 
the user that an easier way exists to choose a command. Accelerator keys 
require an additional table in the RC file, which we'll look at shortly. 

The \ t before the accelerator key combination is a tab character that aligns 
the accelerators neatly on the menu. You can also use \a instead of \t to 
right-justify the text on the menu, provided you are consistent. If you use 
\a to align an accelerator key combination on any line of a menu, you 
should not use \ t on any of the other lines. Doing so confuses Windows 
and results in a ragged alignment of the menu text. The \a character gives 
you finer control over the menu width than does \t. If text on the menu 
seems too crowded, type a few spaces in front of the \a character to widen 
the menu and further separate the accelerator keys from the commands. 

121 



Editors 

122 

The ampersand(&) in each menu command prefaces the letter that serves 
as a mnemonic key for the command. As Figure 4-4 shows, a mnemonic 
letter appears underscored in the menus to identify it for the user. A mne­
monic key should be unique to a menu or menu bar-a Format menu, for 
example, should have a mnemonic other than "F" to avoid conflicting 
with the File menu. But using unique mnemonics is a recommendation, 
not a rule; if a menu bar or drop-down menu contains the same mnemonic 
in two or more places, Windows highlights each command in turn as the 
user presses the mnemonic key, and only activates the chosen command 
when the Enter key is pressed. The menu editor, described in the next sec­
tion, can check for duplicate mnemonics through a command on its pop­
up context menu. Right-click anywhere in the editor work area to invoke 
the menu: 

Mnemonics and accelerator keys aren't the same thing. An accelerator key 
activates a command without going through the menu system, whereas an 
underscored mnemonic key is available only when a menu is visible. 

Each menu command has an associated identifier that begins with an ID_ 
prefix followed by a name that describes the command. The identifier 
name, including the ID_ prefix, is entirely up to you; the menu script on 
page 119 shows only what App Wizard comes up with. (As we'll see, how­
ever, there are advantages to using certain symbol names that MFC has 
already defined.) It's through the command identifiers that a program 
refers to menu events. When the user clicks a menu command or presses 



4: Resources 

an accelerator key, Windows sends a WM_COMMAND message to the 
main window procedure with the command's identifier in the low word 
of wParam. If the command is in response to the user pressing an accelera­
tor key, the high word of wParam has a value of TRUE; if in response to a 
menu selection, the high word is FALSE. 

AC program traditionally handles menu commands by checking the 
wParam parameter of a WM_ COMMAND message in a series of switch­
case statements: 

switch (msg) 
{ 

} 

case WM_COMMAND: 
switch (LOWORD (wParam)) 
{ 

} 

case ID_FILE_NEW: 
On Fil eNew (): 
break; 

case ID_FILE_OPEN: 
OnFileOpen (); 
break; 

MFC programs accomplish the same thing with a message map: 

BEGIN_MESSAGE_MAP(CMyFrame, CFrameWnd) 
ON_COMMAND(ID_FILE_NEW, OnFileNew) 
ON_COMMAND(ID_FILE_OPEN, OnFileOpen) 

END_MESSAGE_MAP () 

Creating Menus for DiskPie1 
When creating a menu resource from scratch as we'll be doing for 
DiskPie1, choose Resource from the Insert menu to display the list of 
resource types shown on the next page, and then double-click the list's 
Menu entry to invoke the menu editor. 

123 



Editors 

Figure 4-5. 

124 

~ Accelerator 
~Bitmap 

[±]-·ID Cursor 
l±l·~ Dialog 

[!1 HTML 
~Icon 
~IMenul 
~ String Table 
[!11J Toolbar 
llBJ Version 

The project must be open and you might have to hide the Workspace or 
Output window to uncover the editor work area. When you design and 
save your menu, Visual C++ writes the menu script to the project's RC file 
and writes identifier #define statements to the Resource.h file. Thereafter, 
the environment automatically invokes the menu editor when you open a 
menu resource. To display a list of a project's menu identifiers, double­
click the Menu entry in the Resource View pane (see Figure 4-1 on page 
111). Start the menu editor either by double-clicking the resource's identi­
fier in the list or by right-clicking the identifier and choosing Open from 
the context menu. 

Figure 4-5 shows what the menu editor looks like as we progressively add 
menus to the Disk.Piel project. The top-level menu-that is, the menu 
bar-contains a dotted rectangle called the new-item box that indicates 
the insertion point for menu caption text. When you type an entry on the 
menu bar and press Enter, a drop-down menu appears with its own new­
item box. A fuzzy border indicates which new-item box is active, either 

Step 1: 
File menu 

Step 2: 
Chart menu 

Step 3: 
View menu 

Step 4: 
Help menu 

Creating DiskPie1 's menus using the Visual C++ menu editor. 



4: Resources 

the one in the menu bar or the one in the drop-down menu. If you want to 
type an entry in a new-item box that isn't active, click the box first to 
select it. Anything you type goes into the active new-item box and simul­
taneously into the Caption control of the Menu Item Properties dialog 
shown in Figure 4-6 on page 128. To go back and change a caption or 
menu item, either select the item and type the new text or double-click the 
item to invoke the Menu Item Properties dialog. The dialog's tendency to 
disappear is sometimes inconvenient when you are jumping between 
menu items. In such cases, click the push-pin button at the top left corner 
of the dialog, which forces the dialog to remain visible. 

The File menu for DiskPiel has only one command, called Exit. To create 
the menu, first type &File in the menu bar new-item box, press Enter, and 
then type E&xit as the menu item text. If you press Enter at this point, the 
menu editor helpfully gives the command an identifier called ID_FILE_ 
EXIT, which is an amalgam of the menu caption and menu item text. It 
also adds a #define statement for ID_FILE_EXIT to the Resource.h file. 

Let's stop a minute and figure out why this might cause problems later. 
When you save the new menu resource, Visual C++ sees there is no RC 
file for the project and automatically creates one for you. It also adds these 
lines to the RC file: 

#include "afxres.h" 
#include "resource.h" 

MFC provides the Afxres.h header to save you the trouble of having to 
define for every project the same common identifiers that appear in typi­
cal Windows programs. On the theory that most Windows programs have 
a File, Edit, View, and Help menu, Afxres.h defines a host of identifiers 
such as ID_FILE_OPEN, ID_EDIT_COPY, and ID_APP _ABOUT. This 
leaves Resource.h for the new resource identifiers you define yourself. 
By chance, Afxres.h has no definition for ID_FILE_EXIT, but what if it 
did? In that case, you would get an error when compiling the RC file 
because ID_FILE_EXIT would be defined twice, once in Afxres.h and once 
in Resource.h. 

The resource scripts that AppWizard generates do not have this potential 
problem of name collision. All the menu items that App Wizard generates 

125 



Editors 

126 

are defined in Afxres.h, so AppWizard does not add definitions for them 
to Resource.h. For a non-AppWizard project like DiskPiel, you have three 
choices for preventing duplicate definitions when using the resource 
editors: 

• Open the RC file in the text editor and remove the #include state­
ment for Afxres.h. 

• Give resource identifiers your own names without accepting the edi­
tor's default names that may be in Afxres.h. 

• Edit the Resource.h file and delete any identifiers already defined in 
Afxres.h. 

The trouble with the first option is that it forces you to also remove from 
the file all other Visual C++ trappings that require definitions in Afxres.h. 
The second solution is more secure. When naming resource identifiers 
yourself, MFC Technical Note 20 recommends adding the prefix IDM_ to 
menu identifiers, since IDM_ is never used as an identifier prefix in 
Afxres.h. Specify the identifier name in the Menu Item Properties dialog, 
and optionally set a value for the identifier at the same time like this: 

IOM_FILE_EXIT=1001 

Make sure each menu identifier has a unique value, of course. 

There are good reasons for adopting the third solution in the above list of 
options despite its inelegance. Consider what happens if you identify the 
Exit command in your program with a name like IDM_FILE_EXIT. For an 
MFC application like DiskPie1, you must then supply a handler function 
for the WM_ COMMAND message that carries the identifier, and also add a 
line to the message map that points to the handler. The results might look 
like this: 

ON_COMMAND (IOM_FILE_EXIT, OnFileExit) // In the message map 

void CMainFrame::OnFileExit() //Handler for IDM_FILE_EXIT 
{ 

SendMessage( WM_CLOSE, 0, 0 ); 
} 



4: Resources 

Afxres.h contains several special identifier names for which MFC supplies 
its own handler functions, saving the application the trouble of doing so. 
One of these special identifiers is ID_APP _EXIT, which is automatically 
caught by an MFC function that closes the application. By assigning the 
value ID_APP _EXIT to the Exit menu command, DiskPie1 does not have to 
supply its own code to handle the Exit menu selection. For similar rea­
sons, the two menu items on DiskPiel's View menu are assigned the val­
ues ID_VIEW_TOOLBAR and ID_VIEW_STATUS_BAR. MFC recognizes 
these special values and calls its own handler functions to display or hide 
the toolbar and status bar. DiskPie1 simply uses the identifiers in its menu 
script for the Toolbar and Status Bar commands, and the MFC framework 
takes care of everything else. 

The disadvantage of giving commands special identifier names such as 
ID_APP _EXIT or ID_ VIEW _TOOLBAR is that the menu editor writes defi­
nitions for the names in the Resource.h file, thus duplicating definitions 
already in Afxres.h. We have to use the text editor to delete the extraneous 
definitions in Resource.h after creating the resources. 

The names of the identifiers for DiskPiel's menu items are specified by 
typing them into the Menu Item Properties dialog. Here's a summary of 
the results: 

Menu title Item caption Identifier 

&File E&xit ID_APP _EXIT 

&Chart &Memory\ tCtrl +M IDM_MEMORY 

&View &Toolbar ID_ VIEW_TOOLBAR 

&View &Status bar ID_ VIEW_STATUS_BAR 

&Help &About Disk.Piel ... ID_APP _ABOUT 

The Menu Item Properties dialog shown in Figure 4-6 on the next page 
lets you refine the appearance of a menu item. For example, if a menu 
command is inactive when your program first begins, the text of the menu 
item should appear gray to cue the user that the command is currently dis­
abled. Specify gray text for a menu item by clicking the Grayed check box 
in the dialog. To place a check mark adjacent to the menu command, click 
Checked. Specifying grayed text or check marks in the resource script isn't 

127 



Editors 

Figure 4-6. 

128 

l~~~-------·-J 
· ··•· [l Sep~rato~ . [}PQp·up ~~~~;2::fo,e;~~:.,-~'~ __ B:j! 
t :! [l'. Checked·· .• [l yrayed •. q: HeJp. .. . •. ' . ·• · ..•. · ... ····• ·.·····• < .•....•. 
1 \j ··.P;oropt{ '. l==~~·:=~c~c~c-·~~;~-z~:c;:~c~;-~·c--==7;~;;~=~~"~:=··7l ··•••· 

The Menu Item Properties dialog for a menu resource. 

necessary for an MFC program like DiskPiel, because the framework 
updates the menus automatically. 

If you want a menu command to invoke a cascading pop-up menu, click 
the Pop-up check box in the Menu Item Properties dialog. The arrow sym­
bol (~) that appears next to the menu item tells the user that the command 
displays a nested pop-up menu. The editor displays another new-item box 
for the pop-up menu, in which you type commands as in any other menu. 
(The Recent Files command on the environment's File menu gives an 
example of a cascading pop-up menu.) 

For programs like DiskPiel that have a status bar, the Prompt text box in 
the dialog provides a convenient place to type a description that appears 
in the status bar when the user highlights the command on the menu. 
We'll add DiskPiel's menu descriptions in a later section using the Vis­
ual C++ string editor. When you see how repetitive the descriptions are, 
you'll agree the string editor is a better choice. 

DiskPiel's menus are standard fare. The only interesting addition is the 
separator bar at the bottom of the Chart menu. Placing a separator bar last 
on a menu may seem odd at first glance, but DiskPiel adds more com­
mands to the Chart menu at run-time. The separator bar exists as a parti­
tion for two groups of menu commands: the Memory command at the 
top and Disk commands such as Disk C and Disk D at the bottom. To 
create a separator bar on a menu, click the Separator check box shown in 
Figure 4-6. 

If you want to insert a new menu or menu command, drag the new-item 
box to the desired position. As you drag the box, a horizontal or vertical 



4: Resources 

insertion line appears adjacent to the cursor. Release the mouse button to 
drop the new-item box, then type the new menu caption normally. You 
can also drag and drop individual menu items or entire menus to change 
the order in which they appear. To change the order of the Chart and View 
menus, for example, drag the View menu to the left until you see a vertical 
insertion line appear in the space between File and Chart. Release the 
mouse button and you're done. 

When you create a new menu resource as we are doing here, the menu 
editor wants to name the new resource something like IDR_MENU1. The 
resource symbol name appears on the first line of the menu script in the 
RC file: 

IDR__MENUl MENU PRELOAD DISCARDABLE 

A name like IDR_MENUl is fine for the menu, but it may not be a good 
choice for an MFC program like DiskPiel. As a single-document interface 
(SDI) program, DiskPiel can register templates for its resources with a 
single call to the CSingleDocTemplate constructor, provided the resources 
all have the same identifier value. It does not matter what the identifier 
value is or even if different identifier names are given to the resources, so 
long as the menu, toolbar, accelerator table, and status bar resources are 
all represented by the same constant number. If your program does not 
call CSingleDocTemplate or its MDI equivalent CMultiDocTemplate, you 
don't need to worry about identifying resources like menus and accelera­
tors with the same symbol value. 

By default, the resource editors give different names and values to all 
identifiers for the main window resources, so the Resource.h file might 
end up looking like this: 

#define IDR__MENUl 
#define IDR__ACCELERATORl 
#define IDR__ICONl 
#define IDR__TOOLBARl 

101 
102 
103 
104 

If you accept default names when creating resources, you must then edit 
the Resource.h file to give the identifiers a common value before using 
CSingleDocTemplate. We won't accept default names for DiskPiel; 
instead we'll assign to the menu and other resources the same generic 

129 



Editors 

130 

symbol identifier used by App Wizard, IDR_MAINFRAME. This ensures 
that CSingleDocTemplate always gets a single value common to all 
resources. To change the menu's identifier, double-click the menu bar 
anywhere but on a menu name to call up the Menu Properties dialog, type 
in IDR_MAINFRAME, and press Enter. 

At this point, the project's RC file does not yet exist. To save the first 
resource of a project, click either Save or Save As on the File menu and 
give the file the same name as the project, which in this case is DiskPiel. 
Visual C++ then creates the DiskPiel.rc file, writes the menu resource 
script to it, and creates the Resource.h file to hold the new definitions. 
Don't forget to edit the Resource.h file with the text editor at some point to 
delete the unwanted definitions for ID_APP _EXIT, ID_ VIEW _TOOLBAR, 
ID_ VIEW _STATUS_BAR, and ID_APP _ABOUT. 

The next step is to add the DiskPiel.rc file to the project. Choose the Add 
To Project command from the Project menu, then click Files on the cas­
cading menu as shown here: 

t,dd To Pro1ect ~ 

Double-click the new DiskPiel.rc file displayed in the file list to add it to 
the project. It isn't necessary to do the same for the Resource.h file 
because Visual C++ automatically recognizes header files as project 
dependencies. From this point on, DiskPiel is an actual project. The next 
time we create a resource for DiskPiel, we'll save the resource with the 
Save command rather than Save As, since the DiskPiel.rc file now exists. 

You can use the text editor to view the menu script that Visual C++ writes 
to the DiskPiel.rc file. Load the RC file as a text document by clicking 
Open on the File menu to display the Open dialog. Select Text from the 



Figure 4-7. 

4: Resources 

Open As combo box at the bottom of the dialog, then double-click 
DiskPie1.rc in the file list. Here's what the new menu script looks like in 
the file: 

IDR_MAINFRAME MENU DISCARDABLE 
BEGIN 

END 

PO PUP "&File" 
BEGIN 

MENU ITEM "E&xi t", 
END 
POPUP "&Chart" 
BEGIN 

END 

MENUITEM "Memory\tCtrl+M", 
MENUITEM SEPARATOR 

POPUP "&View" 
BEGIN 

MENUITEM "&Toolbar", 
MENU ITEM "&Status bar", 

END 
POPUP "&Help" 
BEGIN 

MENUITEM "&About DiskPiel ... ", 
END 

ID_APP_EXIT 

IDM_MEMORY 

ID_V I EW_ TOOLBAR 
ID_VIEW_STATUS_BAR 

ID_APP_ABOUT 

Figure 4-7 shows what the finished menus look like for DiskPie1. The 
Disk C and Disk D commands on the Chart menu do not appear in the 
menu script above because these commands are added to the menu at run 
time. The icon on the title bar is created later in the chapter. 

- Q1art ~iew !:ielp 
:1·. 'i~i{"' ·1 .. 

DiskPie1's menu system. 

!; file 6111 .¥!~:~~ .. · !:iele ... 

1.•. n···.,.·.· . .i M0m0ry Ctrl+M 
i : . ············.·· ... ·:·· .· 
1 : DiskQ C 
! ,• . DiskQ. D 
I 

If you want to dismiss the menu editor from the screen before continuing 
to the next section, choose the Close command from either the File menu 
or the Window menu. Make sure that the editor has input focus before 
applying the command. 

131 



Editors 

Figure 4-8. 

132 

Creating Accelerator Keys for DiskPie1 
Some future version of Visual C++ may scan for accelerator key combina­
tions in the menu script and automatically generate a corresponding accel­
erator table. For now, we have to do it by hand. Since the above script has 
only one accelerator key-Ctrl+M for the Memory command-you might 
assume the table of accelerator keys in DiskPiel.rc will be short and sim­
ple. But in fact the table is fairly lengthy because we have to add key­
strokes for items not yet on the menus but that may be added at run time. 
We'll do this with the Visual C++ accelerator editor. 

For an existing accelerator table such as the one created by App Wizard, 
start the accelerator editor as you would any other resource editor, from 
the project's ResourceView pane. Double-click the entry in the Accelerator 
folder to launch the editor. To create a new table from scratch for a project 
like DiskPiel, start the accelerator editor by choosing Resource from the 
Insert menu and double-clicking Accelerator in the Resource Type list. 

Figure 4-8 shows a partial list of DiskPiel's accelerator keys, which 
include Ctrl+M for the Memory command and 24 keys ranging from C 
through Z. These letter keys represent disk drives, serving as accelerators 
for the Disk commands that DiskPiel adds to the Chart menu at run time. 
Because disk drives (including remote drives) can have any letter designa­
tion up to Z, DiskPiel.rc must include all possible accelerators in the 

Creating DiskPie1 's accelerator table with the Visual C++ accelerator editor. 



4: Resources 

table. This won't cause any problems when the program runs because 
DiskPiel ignores keypresses that don't correspond to an existing drive. 

To add an accelerator key to the table, double-click the new-item box 
(which appears as a dotted rectangle) to invoke the Accel Properties dia­
log, then type the accelerator key and its identifier. For example, add the 
Ctrl+M accelerator key for DiskPiel's Memory command by typing Min 
the Key control and IDM_MEMORY in the ID control. By assigning to the 
Ctrl+M accelerator the same identifier given to the Memory command in 
the menu editor, we ensure that pressing Ctrl+M in DiskPiel and choosing 
Memory from the Chart menu have the same effect. In either case, the 
same procedure gets called to display the pie chart for memory usage. 

The accelerators for DiskPiel's Disk commands all have identifiers like 
IDM_DISK_C, IDM_DISK_D, and so on. Notice in Figure 4-8 that none of 
these accelerators are combined with other keys such as Ctrl or Shift, thus 
allowing the user to simply press a letter key such as C or D to display a 
usage chart for the C or D drive. To set or remove a combination key for an 
accelerator, check or uncheck the Ctrl, Alt, or Shift check box in the Modi­
fiers area of the Accel Properties dialog. 

Removing keys from the table is easy in the accelerator editor: just select 
the table entry and press the Delete key. To select a block of entries, click 
the first entry of the block, then hold down the Shift key and click the last 
entry of the block. Adding names to the table takes more work, especially 
if you have lots of keys. For symbol identifiers that have sequential names 
such as the ones in the DiskPiel table, a text editor with macro capabili­
ties is sometimes more convenient. If you create the accelerator table in 
the RC file using a text editor, remember to add appropriate definitions to 
the Resource.h file. If an accelerator key corresponds to a menu command, 
remember also to give the accelerator the same identifier as the menu item. 

The Clipboard can be of service in the accelerator editor when adding a 
group of accelerators that have similar names such as IDM_DISK_C 
through IDM_DISK_Z. Type the first entry completely, select it in the list, 
and press Ctrl+C to copy it to the Windows Clipboard, then repeatedly 
press Ctrl+V to paste a series of duplicates into the accelerator editor. 
Next, double-click the first entry to invoke the Accel Properties dialog and 

133 



Editors 

Figure 4-9. 

134 

click the pushpin button so the dialog remains on the screen. You can 
then move down the list to select entries and modify identifier names and 
keys as required. 

Click Save on the File menu to save the new accelerator table. The editor 
gives the resource an identifier like IDR_ACCELERATOR1, which you can 
see in the Resource View pane of the Workspace window. For DiskPie1, 
this isn't a desirable name for the same reason that IDR_MENU1 isn't a 
desirable name for the menu resource. Right-click the identifier in the 
Resource View pane and click Properties on the context menu that pops 
up, then change the resource symbol name to IDR_MAINFRAME, as illus­
trated in Figure 4-9. This is the same name given to the menu resource 
earlier. 

13-.. 8 DiskPiel resources• 
6·-E::l Acc~ele_rat_or --~ 
i L. ~HOR ACCELERATORl I 
B·E::l Menu 

'····~ IDR_MAINFRAME 

Changing the identifier name for the accelerator table. 

Choose the Save command again to set the new IDR_MAINFRAME identi­
fier for the accelerator table. A fragment shows what the accelerator table 
now looks like in the updated DiskPie1.rc file: 

IDR_MAINFRAME ACCELERATORS DISCARDABLE 
BEGIN 

"C", IDM_D IS K_C , VI RTKEY, NO INVERT 
"D", IDM_D IS K_D , VIRTKEY, NO INVERT 
"E"' IDM_D IS K_E, VIRTKEY, NO INVERT 

"X"' IDM_D IS K_X , VIRTKEY, NO INVERT 
"Y"' IDM_DISK_Y, VIRTKEY, NO INVERT 
"Z"' IDM_D IS K_Z , VI RTKEY, NO INVERT 

END 



4: Resources 

DiskPie1's Resource.h file contains corresponding definitions for the 
identifiers: 

#define IDM_MEMORY 130 
#define IDM_DISK_C 131 
#define IDM_DISK_D 132 
/ldefi ne IDM_DISK_E 133 

#define IDM_DISK_X 152 
#define IDM_DISK_Y 153 
#define I DM_DISK_Z 154 

The actual values you get for the IDM_DISK identifiers do not matter, but 
two good reasons exist for keeping the values sequential. First, sequential 
values for IDM_DISK_C through IDM_DISK_Z allow a single procedure in 
DiskPie1 to handle all menu commands or accelerator keys C through Z by 
using MFC's ON_COMMAND_RANGE macro. We'll iron out the details 
when we start adding code to DiskPie1. The second reason for using 
sequential identifier values has to do with how Windows loads strings 
contained in a program's resource data. That's next. 

String Resources and the Status Bar 
When the user highlights a command on one of the menus, DiskPie1 dis­
plays a description of the command in the status bar at the lower left cor­
ner of the window. The same thing happens when the mouse cursor 
passes over a button on the toolbar. The descriptions are part of the pro­
gram's data known as string resources, which are text strings stored in the 
resource area of the executable file. A Windows program can store any 
kind of read-only text as string resources; status bar descriptions are only 
one example. 

This section begins with a general discussion of string resources, 
then narrows its view with a look at status bar descriptions. It finishes 
by composing DiskPie1's status bar descriptions using the Visual C++ 
string editor. 

135 



Editors 

136 

String Resources 
A string resource is no different from any other string in the program's 
data except that it must be read from the executable file into a buffer. A 
C program reads a string resource by calling the LoadString API function; 
an MFC program can call the LoadString member function of the CString 
class. And, at least in the case of status bar descriptions, an MFC program 
does not have to do even that. MFC provides default code that can load 
description strings automatically, as we'll see later. 

A string resource is defined in the program's RC file in a string table, 
which is a list of strings identified by the STRINGT ABLE keyword and 
bracketed either by BEGIN-END statements or by curly braces: 

STRINGTABLE 
{ 

} 

ID_STRINGl "Text for string resource 411" 
ID_STRING2 "Text for string resource 412" 

A string resource in Win32 is limited to 4097 characters and can occupy 
no more than a single line in the resource script. An RC file can have mul­
tiple string tables, each with any number of strings. 

String resources offer two main advantages over normal data strings. First, 
a string resource is not loaded into memory until it's needed, allowing a 
program to store "off-line" any text data it may never use. Consider a pro­
gram that optionally displays helpful hints to the user, perhaps in a mes­
sage box. Though many users may appreciate this feature, others will want 
no part of it and quickly turn the option off. By storing the hints as string 
resources, the program does not waste memory on the unused text every 
time it runs. The second advantage of string resources is that by organiz­
ing a program's string data as resources, the developer keeps the strings 
in one place rather than scattered throughout several source modules. 
Among other benefits, this allows a translator to create a foreign language 
version of the program by revising only the scripts in the RC file, after 
which the developer can recompile the file and relink. The source code is 
never touched. 

You can add or modify string resources in the RC file using either a text 
editor or the Visual C++ string editor. If you change the name of a string 



4: Resources 

identifier, the string editor offers the advantage of automatically adding to 
the Resource.h file a definition for the new identifier. The string editor does 
not, however, replace instances of the old identifier in your source code. 

Prompt Strings and Tooltips 
Command descriptions in the status bar (a.k.a. prompt strings or flybys) 
have quickly become standard procedure in Windows applications. We've 
all been mystified at one time or another by a terse menu command or an 
inscrutable toolbar button covered with abstract art that offers little clue to 
its function. Discreetly tucked away in the status bar, prompt strings help­
fully elaborate for the new user without intruding on the experienced user. 

It's impressive how little programming effort prompt strings require. You 
tie a prompt string to a particular menu command and toolbar button by 
giving all three elements the same resource identifier. Then create a status 
bar and add the CBRS_FLYBY flag to the toolbar style. MFC takes care of 
the rest, displaying the correct string when a menu command is high­
lighted or the mouse cursor rests on a toolbar button. 

Adding the CBRS_TOOLTIPS flag to the toolbar style enables a variation 
of prompt strings called tooltips. A tooltip is a small pop-up window that 
displays a brief description when the mouse cursor passes over a toolbar 
button. The Visual C++ environment uses tooltips to identify its own 
toolbar buttons, though the feature is optional. (To enable tooltips in 
Visual C++, turn on the Show ToolTips check box in the Toolbars tab of 
the Customize dialog, invoked by clicking Customize on the Tools menu.) 
Tooltip text is part of a prompt string, tacked onto the end with a \n 
newline character like this: 

ID_PROMPTl "Prompt string text in the status bar\nTooltip text" 

Here's a simple example that illustrates the relationship between menus, 
toolbars, prompt strings, and tooltips. Although the code fragments that 
follow describe an MFC program that only opens and saves a document, 
the associated steps shown in boldface type apply to non-MFC programs 
as well. 

137 



Editors 

138 

1. Give the same identifier to corresponding menu items, toolbars, and 
prompt strings in the RC resource script file. 

IDR_MAINFRAME MENU 
BEGIN 

END 

POPUP "&File" 
BEGIN 

MENU ITEM "&Open", 
MENUITEM "&Save", 

END 

IDR_MAINFRAME BITMAP 
IDR_MAINFRAME TOOLBAR 16, 15 
BEGIN 

BUTTON ID_FILE_OPEN 
BUTTON ID_FILE_SAVE 

END 

STRINGTABLE 
BEGIN 

ID_FI LE_OPEN 
ID_FILE_SAVE 

"res\\Toolbar.bmp" 

ID_FI LE_OPEN 
ID_FI LE_SAVE 

"Open an existing document\nOpen" 
"Save the active document\nSave" 

END 

2. Create the menu in the source code. 
To create the main window and attach the menu in one step, call the 
CFrameWnd::Create member function: 

Create( NULL, "Simple Demo", WS_OVERLAPPEDWINDOW, rectDefault, 
NULL, MAKEINTRESOURCE CIDR_MAINFRAME) ); 

Or use this code to load the menu separately after creating the main 
window: 

CMenu menu; 
menu.LoadMenu( IDR_MAINFRAME ); 
SetMenu( &menu ); 
menu.Detach (); 

3. Create the toolbar. 

CToolBar toolbar; II In the header file 

II Style defaults to WS_CHILD I WS_VISIBLE I CBRS_TOP 
toolbar.Create( this ); 
toolbar.LoadToolBar( IDR_MAINFRAME ); 



4: Resources 

II Add flyby and tooltip flags to style 
toolbar.SetBarStyle( toolbar.GetBarStyle() I 

CBRS_FLYBY I CBRS_TOOLTIPS ); 

4. Create and initialize the status bar. 

CStatusBar statusbar: II In the header file 

UINT n!ndicator = ID_SEPARATOR; II Single pane in status bar 
statusbar.Create( this ); 
statusbar.Set!ndicators( &n!ndicator, 1 ); 

AppWizard generates similar code to do all this for you. You need only 
invoke the string editor and remove unneeded string resources, replacing 
them with strings that describe new commands in your program's menus. 
We'll get to the string editor in a moment, but first there's one more string 
resource to meet. 

The Document String 
When we're finished with DiskPiel, it will have six program resources, 
each labeled with the identifier IDR_MAINFRAME: 

• The application icon 

• The menu for the main window 

• The menu's accelerator table 

• The toolbar window 

• The toolbar bitmap 

• A string resource that identifies the document 

The last item in the list is called a document string, which consists of 
seven substrings separated by \n newline characters. When creating an 
SDI or MDI project in App Wizard, you can preview the seven substring 
components of the document string by clicking the Advanced button in 
AppWizard's fourth step. (The Advanced button is described in Chapter 2 

on page 50.) Clicking the button displays the Advanced Options dialog, in 
which you can retype the default substrings for the project if you want to 
change them. 

139 



Editors 

140 

Had we used App Wizard to create DiskPie1, AppWizard would have 
defined a default document string like this in the DiskPie1.rc file: 

STRINGTABLE PRELOAD DISCARDABLE 
BEGIN 

IDILMAINFRAME "DiskPiel\n\nDiskPiel\n\n\n 
DiskPiel.Document\nDiskPiel Document" 

END 

(Like all string resources, the document string must appear as a single line 
in the RC file but for space reasons is shown above on two lines.) The 
substrings contain text and names that MFC assigns to the program and 
the documents it creates. In the order shown, the substrings specify: 

• The program name that appears in the title bar of the main window 

• The name assigned to new documents that the program creates 

• A general document descriptor used in MDI applications that can 
open more than one type of document 

• The document descriptor combined with a wildcard file specifica­
tion, as it appears in the file-type lists of the Open and Save As 
dialogs 

• The default extension given to documents that the program creates 

• A name that identifies the document type in the system Registry 

• A general descriptor for the type of document that the program 
creates 

Since DiskPie1 does not create documents, we're interested in the docu­
ment string only because of the second substring. When this substring is 
empty, MFC gives a default name of "Untitled" to new documents. You 
may have already noticed that programs created by AppWizard often have 
"Untitled" in their title bar along with the program name. For a program 
like DiskPie1 that doesn't save its data, calling its display "Untitled" can 
only confuse the user. One solution is to provide text for the second 
substring that describes the program, not the document-something like 
"Disk Usage." We'll do that in the next section. 



Figure 4-10. 

4: Resources 

Creating String Resources for DiskPie1 
For an AppWizard project that already has a string table in its RC script 
file, start the string editor by double-clicking String Table in the 
Resource View pane of the Workspace window. To create a new string 
table for a project like DiskPiel, choose Resource from the Insert menu 
and double-click String Table in the Resource Type list. 

The string editor is as prosaic as the strings themselves. The only interest­
ing parts are the horizontal lines in the editor window, which you can see 
in Figure 4-10. These lines show divisions in the string table between 
groups of strings called segments, each of which holds a maximum of 16 

strings. The value of the string identifier determines which string belongs 
to which segment. Strings with identifier values of 0 through 15 belong to 
the first segment, strings with values of 16 through 31 belong to the sec­
ond segment, and so forth. 

A segment acts something like a read-ahead buffer found on many disk 
drives, in which the disk controller reads not only a requested sector of 
the disk but a number of following sectors as well, storing them in a mem­
ory buffer for later use. Read-ahead buffers speed disk usage because one 
disk access is generally followed by more, which the controller can ser­
vice by reading from the buffer instead of the disk. Following the same 
logic, the system reads string resources from the executable file one seg­
ment at a time. When a program calls the LoadString API function to read 
an individual string from its resource data, Windows reads the entire 

Value Caption 

I 
142 Usage for drive N\nDrive N 

IDM_DISK_O 143 Usage for drive O\nDrive 0 

·-:g~~g:1~~r-----1···-r:r-~:~1:~:~-~s~:i:~:·~----------···------·-·------· 
IDM_DISK_S 147 Usage for drive S\nDrive S 
IDM_DISK_ T I 148 Usage for drive T\nDrive T 
IDM_DISK_U 149 UsagefordriveU\nDriveU 
IDM_DISK_V 150 UsagefordriveV\nDriveV 
IDM_DISK_W 1

1 

151 UsagefordriveW\nDriveW 
IDM_DISK_X 152 UsagefordriveX\nDriveX 
IDM_DISK_Y J 153 UsagefordriveY\nDriveY 
IDM_DISK_Z I 154 UsagefordriveZ\nDriveZ 
AFX_IDSJDLEMESSAGE i 57345 Read_y 

...................... ::::::::::::::::::::r:::::::::::::::::::::::::r:::::::::::::::::::::···································· .. ································································ 

The Visual C++ string editor. 

141 



Editors 

Table 4-2. 

142 

segment to which the string belongs on the assumption that if the program 
wants one string now, it will soon request the others. For this reason, you 
should try to group related strings by giving them sequential identifier val­
ues. You would probably do that anyway, but now you know why it's a 
good idea. 

Like the other Visual C++ resource editors, the string editor indicates 
where the next string is placed in the table by displaying a new-item box 
as a dotted rectangle. To enter a new string, select the new-item box and 
start typing the string text. The String Properties dialog appears with a 
default symbol identifier. Rewrite the identifier name if you wish, or 
select a name from the drop-down list of the dialog's combo box. The list 
contains all identifiers defined for the project, including those in the 
Afxres.h file, allowing you to select a name such as IDM_MEMORY 
instead of typing it. The string editor automatically sorts the table entries 
by identifier value. 

You can add special characters to a string by typing the escape sequences 
shown in Table 4-2. For a list of the ASCII and ANSI values mentioned in 
the table, refer to Appendix A. 

Escape sequence 

\n 

\r 

\t 

\a 

\\ 

\ddd 

Meaning 

New line (ASCII value #10) 

Carriage return (ASCII value #13) 

Tab character (ASCII value #9) 

Bell character (ASCII value #7) 

Backslash ( \ ) 

Any ANSI character, where ddd is an octal number 
ranging from 001 through 377 (255 decimal) that 
identifies the character 

Escape sequences for special characters in a string resource. 

The string table in the DiskPie1.rc file contains all the program's string 
resources: 



4: Resources 

STRINGTABLE DISCARDABLE 
BEGIN 

END 

IDR_MAINFRAME 
IDM_MEMORY 
IDM_DISK_C 
IDM_DISK_D 
IDM_DISK_E 

IDM_DISK_X 
IDM_DISK_Y 
IDM_DISK_Z 
AFX_IDS_IDLEMESSAGE 
AFX_IDS_SCS I Z E 
AFX_IDS_SCMOVE 
AFX_IDS_SCMINIMIZE 
AFX_IDS_SCMAXIMIZE 
AFX_IDS_SCCLOSE 
AFX_IDS_SCRESTORE 

"DiskPiel\nDisk Usage\n\n\n\n\n\n" 
"Memory usage\nMemory" 
"Usage for drive C\nDrive C" 
"Usage for drive D\nDrive D" 
"Usage for drive E\nDrive E" 

"Usage for drive X\nDrive X" 
"Usage for drive Y\nDrive Y" 
"Usage for drive Z\nDrive Z" 
"Ready" 
"Change the window size" 
"Change the window position" 
"Reduce the window to an icon" 
"Enlarge the window to full size" 
"Close the DiskPiel application" 
"Restore the window to normal size" 

The first string in the list is DiskPie1's document string, which has the 
same identifier as the program's other resources: 

IDR_MAINFRAME "DiskPiel\nDisk Usage\n\n\n\n\n\n" 

This string specifies text that replaces the "Untitled" caption that MFC 
would otherwise write in the title bar. Take a look at DiskPie1's title bar in 
Figure 4-20 on page 167 and you will see how MFC takes the bar's text 
from the first two substrings of the document string. It's possible to 
remove "Disk Usage" entirely from the title bar, though this requires more 
than just deleting the second substring in the resource line. You must 
override the CMainFrame::PreCreateWindow virtual function, clearing the 
FWS_ADDTOTITLE flag that MFC adds by default to the window style: 

BOOL CMainFrame::PreCreateWindow( CREATESTRUCT& cs ) 
{ 

cs.style &= -FWS_ADDTOTITLE; 
return CFrameWnd::PreCreateWindow( cs ); 

} 

The last strings in the string table have special identifier symbols with an 
AFX_ prefix, indicating that the symbols are defined in the Afxres.h file. 
For example, MFC recognizes the identifier AFX_IDS_IDLEMESSAGE and 
displays the string assigned that value in the status bar when the program 

143 



Editors 

is waiting for user input. By convention, the string simply reads "Ready." 
The other AFX_ symbols identify prompt strings for DiskPiel's system 
menu, which is invoked by clicking the program's icon or by right­
clicking in the title bar. The appropriate AFX_ string appears in the status 
bar when the user selects an item on the system menu. As we'll see when 
writing the DiskPie2 program at the end of the chapter, it's often not nec­
essary to include these prompt strings at all. 

Bitmaps, Toolbars, Icons, and Cursors 

144 

The Visual C++ graphics editor is where you create and revise a program's 
graphics resources, which can consist of bitmaps, toolbars, icons, and 
cursors. Icons and cursors are bitmaps that have a narrow purpose-icons 
appear on taskbar buttons or in a directory listing, and cursors serve as 
designs for the mouse cursor when it's positioned inside the program cli­
ent area. A toolbar is a window that contains several bitmap images over­
laid on buttons in a horizontal row. Anything else, such as an image dis­
played in a window or an animated picture in a dialog, is called a bitmap. 

The Visual C++ environment provides one graphics editor for all occa­
sions, so you don't have to learn four different utilities. You may see refer­
ences in online help to a "toolbar editor" or an "icon editor," but these are 
just shorthand terms that mean the Visual C++ graphics editor applied to a 
particular type of resource. The graphics editor can handle multiple docu­
ments of different resource types. Figure 4-11 on page 146 shows the edi­
tor with two different documents open, one a familiar 16-by-15 bitmap 
and the other a two-color 32-by-32 mouse cursor. 

The editor's appearance differs only slightly for each resource type, indi­
cating the kind ofresource you are working on by an icon in the upper left 
corner of the document window. Table 4-3 shows the icon for each 
resource document and lists the extensions for the file types that the 
graphics editor reads and writes. 

When you use the Open command to open an existing resource document 
with any of the extensions listed in the third column of Table 4-3, Vis­
ual C++ automatically starts the graphics editor adjusted for the proper 
resource type. 



Table 4-3. 

4: Resources 

Resource Icon Input file type Output file type 

Bitmap ~ BMP, DIB, EPS, GIF, JPG BMP 

Tool bar f±i:±i BMP BMP 

Cursor ID CUR CUR 

Icon ~ ICO ICO 

Graphics editor icons and file types. 

DiskPiel has menus, accelerator keys, and string data, but no graphics 
resources yet. For a project under development like DiskPiel, there are 
two slightly different ways to create a new graphics resource. The method 
you choose depends on what you have in mind for the image file. If you 
have a project open and want to add a new graphics resource to the pro­
ject, choose Resource from the Insert menu and double-click either 
Bitmap, Cursor, Icon, or Toolbar in the list. Visual C++ launches the 
graphics editor, displaying in the title bar an assigned identifier for the 
resource document. Depending on the resource type, the identifier is a 
generic name like IDB_BITMAP1, IDC_CURSOR1, IDI_ICON1, or IDR_ 
TOOLBAR1. Subsequent resources opened in the editor receive similar 
identifiers that increment the digit, such as IDI_ICON2, IDI_ICON3, and so 
forth. When you save a graphics resource to a file, Visual C++ gives the 
file the same name as the identifier minus the prefix, and then defines the 
identifier in the project's Resource.h file. For example, saving a resource 
named IDB_BITMAP1 adds this line to the RC file: 

IDB_BITMAPl BITMAP DISCARDABLE "res\\bitmapl.bmp" 

and adds a line like this to the Resource.h file: 

#define IDB_BITMAPl 130 

There's no need to accept these nondescript names, however. Before 
saving a resource, give it a descriptive identifier by clicking Properties on 
the View menu and typing a new identifier name. In the same Properties 
dialog, you can also specify a name for the graphics file. 

145 



Editors 

Figure 4-11. 

146 

The Visual C++ graphics editor with two open documents. 

The second method for launching the graphics editor lets you create a new 
graphics resource without adding it to the list of project files. You may 
want to do this, for example, when creating a library of resources or 
designing bitmaps for toolbar buttons. This method does not require an 
open project; just click New on the File menu and in the Files tab choose 
the resource type you want from the list, either Bitmap File, Icon File, or 
Cursor File. 

The work area of the graphics editor is split into two panes. By default the 
left pane shows the image in its actual size and the right pane shows an 
enlargement blown up approximately 36 (6 x 6) times. The enlarged image 
has an overlaying grid, each square of the grid representing a pixel in the 
actual-size image. If you have used a paint program before, such as the 
Paint utility that comes with Microsoft Windows, the Visual C++ graphics 
editor should seem familiar. 

Select either image for painting by clicking anywhere in the left or right 
pane. For detailed work you will probably want to concentrate on the 
larger work area and observe the effects in the actual-size image. The split­
ter bar that .separates the panes is moveable; just drag it left or right with 
the mouse. To begin drawing, select an appropriate tool by clicking a 



Figure 4-12. 

4: Resources 

Graphics toolbar Colors palette Transparency selector 

' ffiffiIDffifflij 
! C::J C,) J 
o~p 

~ <U~ 
)A 

Tools in the Visual C++ graphics editor. 

button on the Graphics toolbar shown in Figure 4-12. As with any other 
toolbar in the Visual C++ environment, you can dock or undock the 
Graphics toolbar by dragging it into or out of position. 

The graphics editor tools are intelligent and friendly enough to learn with 
a few minutes of experimentation. There are a few points, however, that 
may not seem intuitive and therefore warrant a brief discussion. First, the 
background color of the image depends on the graphics type. Icons and 
cursors have only a "transparent" background color, rendered blue-green 
in the editor window. When Windows draws an icon or cursor on the 
screen, it draws only the foreground colors; any pixels underlying the 
transparent background color are not erased. The background color of bit­
maps, on the other hand, is opaque. A bitmap is drawn on the screen as a 
block that overwrites everything under it. Background transparency is prob­
ably the most important difference between the graphics resource types. 

The transparency selector box appears at the bottom of the Graphics 
toolbar when you click the Rectangle Selection, Irregular Selection, or 
Text buttons, and is the toolbar version of the Draw Opaque command on 
the editor's Image menu. To understand the purpose of the selector box, 
think of an image in terms of two tiers, where one tier overlays the other. 
The upper tier is a floating image that you can move and set into position; 
the bottom tier, called the base image, is fixed. The selector box lets you 

147 



Editors 

148 

set the background transparency of the upper tier, but does not affect the 
transparency of the base image itself. Selecting the top icon of the trans­
parency selector box means that background pixels in the overlaying 
image tier should be treated as foreground colors, making the upper tier a 
solid rectangular block. The bottom icon of the selector box makes the 
upper tier transparent, in effect removing background pixels from the tier. 
For example, here's what the letter "A" might look like when typed on a 
base image with transparency on and off: 

~~11·;~~~ 
,,,~ 

~f .· Base image 

The background color of the base bitmap image-white, in this case­
remains opaque regardless of the transparency setting, so that displaying 
the bitmap on the screen overwrites any pixels covered by the bitmap's 
square area. A program can simulate transparent pixels when displaying a 
bitmap, however, by first masking out the bitmap's background color and 
replacing it with a copy of the screen area on which the bitmap will 
appear. If you are interested in this technique, you can find a good expla­
nation complete with a derived class for transparent bitmaps in Jeff 
Prosise's Programming Windows 95 with MFG, in the chapter titled 
"Bitmaps, Palettes, and Regions." Often you just want to ensure that a 
bitmap has the same background color as the window it's displayed in, 
giving the illusion of transparency. There's an easy way to do that, which 
is explained in the next section. 

Another hidden feature of the graphics editor is that the left and right 
mouse buttons generally correspond to the foreground and background 
colors, respectively. For example, clicking a color in the Colors palette 
with the left mouse button selects the foreground color; clicking with the 



Table 4-4. 

4: Resources 

right button selects the background color. You can draw on the image with 
either color by dragging or clicking the appropriate mouse button. 

Table 4-4 summarizes the toolbar buttons found in the graphics editor. 
Buttons normally appear flat in the Graphics toolbar, as pictured in Fig­
ure 4-12. Table 4-4 shows the buttons in their raised form to help distin­
guish them from one another. 

Graphics toolbar buttons. 

Button Description 

The Rectangle Selection and Irregular Selection tools let you mark 
off a portion of the image to move, clear, or copy. Click the but­
ton, then drag the crosshairs or cursor point over the rectangle or 
region you want to mark. When you release the mouse button, a 
selection box appears around the marked area. You can move the 
selection by dragging it with the mouse, clear it by pressing Del, 
or copy it to the Clipboard by pressing Ctrl+C. 

The Select Color tool lets you pick a drawing color from the 
image itself rather than from the Colors palette. Click the button 
on the toolbar, then click any square on the image that has the 
color you want. The left mouse button picks the foreground 
color and the right button picks the background color. 

The Erase tool changes the cursor to a block that you drag over 
the image to erase pixels. Erased pixels are changed to the cur­
rent background color, which depends on the resource type. As 
mentioned earlier, the background of icons and cursors is trans­
parent. The background color of bitmaps is the opaque color 
shown in the upper left corner of the Colors palette. To change 
the size of the eraser block, click one of the size icons in the 
selector box at the bottom of the toolbar. 

The Fill tool changes pixels of one color to the current fore­
ground or background color. Click the Fill button, then click 
anywhere in the image on the color you want to change. Use the 
left mouse button to fill with the foreground color and the right 
button to fill with the background color. The editor changes all 
contiguous pixels of that color to the fill color. The pixels must 
touch either horizontally or vertically; pixels that touch diago­
nally are not considered contiguous. 

(continued) 

149 



Editors 

150 

Table 4-4. continued 

Button Description 

To change the size of the selected image, execute the Magnify 
tool and select a value of 1, 2, 6, or 8. The magnification value 
specifies the number of horizontal screen pixels that correspond 
to one pixel in the actual-size image. If the enlarged image has a 
grid, the magnification value determines the width and height 
of each square of the grid. 

Click one of the buttons pictured at left to execute a freehand 
drawing tool, then drag either mouse button to leave a trail of 
pixels of the foreground or background color. The Pencil tool 
draws only a thin line one pixel wide. Use the Brush to paint 
thicker lines, choosing the brush thickness from the selector box 
at the bottom of the toolbar. 

The Air Brush paints a random pattern of color, simulating the 
effect of lightly spraying on paint. Choose the density and size 
of the spray in the toolbar's selector box. 

The line-drawing tools draw straight or curved lines by "rubber­
banding" from the initial click position. Click where you want 
the line to start, drag the cursor to the line's end point, and then 
release the mouse button to set the line. The Curve tool requires 
an extra step: after releasing the mouse button to set the end 
point, move the cursor to establish the line's curvature. When 
the line is shaped the way you want, double-click to set the 
line. (You must double-click the same mouse button used to 
drag the cursor.) If you change your mind while drawing a line, 
press the Esc key or click the other mouse button to start over. 

The Text tool displays a small window for typing text that ap­
pears on the image in the current foreground color. Choose the 
text transparency in the transparency selector box as described 
earlier, then press Esc when finished to close the Text tool. 

These tools draw rectangles, round rectangles, and ellipses, 
either filled or unfilled. Select a tool, then draw the shape in 
either the foreground or background color by dragging the 
mouse cursor on the image from the upper left to the lower right 
of the area you want to cover. Holding down the Shift key con­
strains the shape, making a rectangle into a square or an ellipse 
into a circle. To cancel while dragging the cursor, press Esc or 
click the other mouse button. 



4: Resources 

Bitmaps 
When you start the graphics editor for a new bitmap, it presents you with 
a clean work area 48 pixels square. Bitmaps don't have to be square, how­
ever-they can be rectangular of any size up through 2048 pixels on a 
side. To resize the work area, drag one of the resizing handles at the edge 
of the work area, noting the new size in the editor's status bar as you drag 
the handle. You can also type the desired size in the Bitmap Properties 
dialog, invoked by clicking Properties on the View menu. 

Here's an example of how a C program might display a bitmap resource. 
The fragment assumes the bitmap is originally saved in the file Res \Bit­
map.bmp and identified in the program's RC file by the name Bitmap­
Demo, which is the same string given to the LoadBitmap function to load 
the resource: 

II Resource declaration in the RC file 
BitmapDemo BITMAP "res\\bitmap.bmp" 

II In the C source file 
HBITMAP hbm; II Declare a global handle for the bitmap 

II Load the bitmap in WinMain or the Initinstance procedure 
static char szAppName[J = "BitmapDemo": 
hbm = LoadBitmap( hinstance. szAppName ): 

II Display the bitmap in the window procedure 
case WM_PAINT: 

hdc = BeginPaint( hwnd, &ps ); 
hdcMemory = CreateCompatibleDC( hdc ); 
GetObject( hbm, sizeof (BITMAP), &bm ); 
SelectObject( hdcMemory, hbm ); 
BitBlt( hdc, x. y, bm.bmWidth, bm.bmHeight, 

hdcMemory, 0, 0, SRCCOPY ); 
DeleteDC( hdcMemory ); 
EndPaint( hwnd, &ps ); 
break: 

The steps are similar for displaying the bitmap in an MFC program. First, 
initialize a CBitmap object with the resource: 

bitmap.LoadBitmap( szAppName ); 

151 



Editors 

152 

Then display the image in the window's OnDraw function: 

BITMAP bm; 
CDC dcMemory; 

bitmap.GetObject( sizeof (BITMAP), &bm ); 
dcMemory.CreateCompatibleDC( pDC ); 
dcMemory.SelectObject( &bitmap ); 
pDC->BitBlt( x, y, bm.bmWidth, bm.bmHeight, &dcMemory, 0, 0, SRCCOPY ); 

Before closing this section on bitmaps, let's revisit the subject of bitmap 
transparency one last time. We already know that a bitmap's background 
color is opaque, but if the image's background color is white and the 
bitmap is displayed in a window that is also white, the bitmap's square 
shape is hidden. Only the nonwhite foreground colors stand out, giving 
the illusion of a transparent background. But what if the window isn't 
white? In that case, the bitmap displayed in the preceding code fragments 
appears with its background color exposed as a square, which may not be 
what you want. 

Application windows usually take on the system window color identified 
as COLOR_ WINDOW, which by default is white. However, a program can 
change the system window color by calling SetSysColors, or the user can 
change the color in the Display section of the Windows Control Panel. (If 
you want to try it, select Window from the Item combo box in the Appear­
ance tab of the Display Properties dialog, choose a new color from the 
Color drop-down list, and click OK.) A program can ensure the back­
ground color of a bitmap always matches the COLOR_ WINDOW color by 
loading the bitmap using the Loadlmage API function rather than 
LoadBitmap, specifying the LR_LOADTRANSPARENT flag like this: 

hbm = Loadimage( hinstance, szAppName, IMAGE_BITMAP, 
0, 0, LR_LOADTRANSPARENT ); 

This function looks at the color of the first pixel in the image, which lies 
in the upper left corner of the rectangular bitmap and presumably is part 
of the background. Loadlmage then replaces the corresponding entry in 
the bitmap's color table with the current COLOR_ WINDOW color. Thus 
all pixels in the image that make up the background are displayed in the 



4: Resources 

default window color. The only caveat is that LR_LOADTRANSP ARENT 
doesn't work if the bitmap has more than 256 colors. 

We're not through with Loadlmage yet. The function also loads icon 
images, as we'll see in a later section. But right now let's take a look at 
how a bitmap can become a toolbar. 

Toolbars 
Creating a toolbar in Visual C++ is merely a matter of designing a bitmap 
that contains the images for the toolbar buttons. The bitmap is stored as a 
BMP file and referenced in the project's RC file with an identifier name: 

IDR_TOOLBAR BITMAP "res\\toolbar.bmp" 

Both the name of the identifier and the name of the file are up to you. 
DiskPiel names its toolbar resource IDR_MAINFRAME to match the pro­
gram's other resources, allowing a call to the CSingleDocTemplate con­
structor as explained earlier. 

The toolbar bitmap is a series of images that overlay the toolbar buttons, 
one image for each button. By default, each image is 16 pixels wide and 15 

pixels high, which is suitable for a toolbar button that has the standard 
size of 24 pixels wide by 22 pixels high. By dragging the edges of the edi­
tor workspace box in typical Windows fashion, you can set an image size 
that is larger or smaller, wider or thinner. The new size applies to all 
images in the tool bar, since you can't have buttons of different sizes in one 
toolbar. When you save your work, Visual C++ automatically specifies the 
new size of the toolbar buttons in the RC file. 

If AppWizard generates the project for you, it creates a file called 
Toolbar.bmp in the project's Res folder. The file contains images for 
toolbar buttons that correspond to the commands New, Open, Save, Cut, 
Copy, Paste, Print, and Help. Figure 4-13 on the next page shows an 
enlargement of the bitmap in Toolbar.bmp and the resulting toolbar. 

The following fragment shows the script that AppWizard writes to the 
program's RC file to create the toolbar. As you would expect, each button 
in the toolbar script has the same identifier as the corresponding menu 
command in the menu script listed on page 119. 

153 



Editors 

Toolbar bitmap 

Resulting toolbar 
8,1fEf 'Gi! ~· ~·· r¥ti~'P .~.;;;;;...i.;;;;;;.,::•~,;;;.=~~ .• : . . l 

Figure 4-13. The default toolbar generated by App Wizard. 

154 

IDILMAIN FRAME BITMAP MOVEABLE PURE "res\\Toolbar.bmp" 

IDILMAINFRAME TOOLBAR DISCARDABLE 16, 15 
BEGIN 

BUTTON ID_FILE_NEW 
BUTTON ID_FILE_OPEN 
BUTTON ID_FILE_SAVE 
SEPARATOR 
BUTTON ID_EDIT_CUT 
BUTTON ID_EDIT_COPY 
BUTTON ID_EDIT_PASTE 
SEPARATOR 
BUTTON ID_FILE_PRINT 
BUTTON ID_APP_ABOUT 

END 

The BITMAP statement in the script points to the project's Toolbar.bmp 
file where the bitmap is stored. The TOOLBAR statement identifies the 
toolbar resource with the IDR_MAINFRAME value, and also specifies for 
each button an image size of 16 pixels by 15 pixels. A SEPARATOR state­
ment forces a space between adjacent buttons, which are defined by BUT­
TON statements. 

An MFC program creates a toolbar by calling CToolBar::Create. When the 
function returns, the toolbar it creates is merely an empty child window. 
The next step is to call CToolBar::LoadToolBar to read the toolbar button 
data, load the toolbar bitmap, and paint the buttons, all in one step. 
Windows provides an empty button for every BUTTON statement in the 
toolbar script and draws a corresponding section of the bitmap image over 
each button. For example, to load the toolbar defined in the above script, 



Figure 4-14. 

4: Resources 

a program can declare a CToolBar object named m_toolbar and include 
these lines in the source: 

m_toolbar.Create( this ); 
m_toolbar.LoadToolBar( IDR_MAINFRAME ); 

II Create the tool bar window 
II Load the bitmap images 

There are two approaches for creating a toolbar from scratch in Visual 
C++. The first will seem familiar by now: in an open project, click 
Resource on the Insert menu and double-click Toolbar in the Resource 
Types list. This launches the toolbar variation of the graphics editor, 
which displays the three split panes shown in Figure 4-14. The bottom 
two panes show actual-size and enlarged views of the current toolbar but­
ton you are working on, and the top pane shows a view of the entire 
toolbar. As you begin work on a button, the button image automatically 
appears in the toolbar view, changing in real-time as you edit. When 
finished with a button, click the blank new-item button in the top pane 
for a fresh work area for the next button. You can change the position of 
a button by dragging it within the toolbar, or delete a button by dragging 
it completely off the toolbar. To add a separator gap between buttons like 
the one in Figure 4-14, drag a button right or left approximately half the 
width of the button. You can close a gap the same way. 

Creating a toolbar in the Visual C++ graphics editor. 

Don't worry about the blank new-item button when you save the toolbar. 
It isn't included in the toolbar script that the editor writes to the RC file. 

155 



Editors 

When working on the program's main toolbar, give each button the same 
identifier used for the corresponding menu items, such as ID_FILE_NEW 
or ID_FILE_PRINT. Enter the button's identifier in the Toolbar Button 
Properties dialog, displayed either by double-clicking anywhere in the 
work area or by choosing Properties from the View menu. 

The second method for creating a toolbar calls for designing the bitmap 
images first, then converting the result to a toolbar. For DiskPiel, this 
method turns out to be more convenient. 

Creating a Toolbar for DiskPie1 
DiskPiel is unusual in that it determines at run-time the number of 
toolbar buttons required and their corresponding images. The toolbar 
script in DiskPiel.rc has only one entry: 

IDR_MAINFRAME TOOLBAR 16, 15 
BEGIN 

BUTTON IDM_MEMORY 
END 

Buttons that display usage charts for disk drives are added when the pro­
gram starts. For example, if DiskPiel finds four disk drives with designa­
tions of C, D, P, and R, it specifies five buttons when it creates the 
toolbar-one button for the Memory command and the other four for the 
disk drives. Since there is no way to know beforehand what drive designa­
tions DiskPiel will find for each system it runs on, the toolbar bitmap for 
DiskPiel has button images for 24 different disk drives, labeled C through 
Z. As each of the 25 images is 16 pixels wide, DiskPiel's entire toolbar 
bitmap is 400 pixels wide and 15 pixels high. Figure 4-15 gives you a 
close-up view of some of the button images. 

Enlargement of the first five images in the bitmap 

Entire bitmap shown actual size 

Figure 4-15. DiskPie1 's toolbar bitmap. 

156 



4: Resources 

The bitmap was not nearly as difficult to compose as you might think, tak­
ing only about 20 minutes. The secret is to tell the graphics editor you are 
creating a bitmap rather than a toolbar. The first step is the same in either 
case: start the graphics editor by clicking Resource on the Insert menu. For 
wide toolbar bitmaps with repeating images like the bitmap in Figure 4-15, 
choose Bitmap instead of Toolbar from the list of resource types. This lets 
you work on the button images in a continuous strip rather than as a col­
lection of individual buttons. Converting an ordinary bitmap to a toolbar 
is easy in the graphics editor, which is designed to let you do just that. 

Here are the steps for making a wide toolbar bitmap with repeating 
images. Double-click anywhere in the blank area of the editor workspace 
to invoke the Bitmap Properties dialog. Type in the toolbar identifier, 
which for DiskPie1 is IDR_MAINFRAME, and give a filename to the BMP 
file. Multiply the width of one toolbar button by the number of buttons 
and type this number as the bitmap width. The height of the bitmap is the 
height of a button. For DiskPiel, the dialog looks like this: 

1 Hei_ght: · 115 

lr;~Y??1~~r:~fl1.P. ... m 

Press the Enter key to return to the work area, which now has the new 
dimensions. The next step paints the entire work area light gray so that 
each image blends with its button. Click the light gray color box in the 
Colors palette and select the ever-useful Fill tool in the Graphics toolbar. 

Click anywhere inside the work area grid to paint the entire area light 
gray. Now draw the image of the first button in a 16-by-15 block (or what­
ever the button size) within the work area. Once you have drawn the first 
image, you can reproduce it by clicking the Rectangle Selection tool and 
dragging the cursor over the image's 16-by-15 block, as shown in Figure 
4-16. Drag with either the left or right mouse button, depending on 

157 



Editors 

whether you intend to move the image or copy it. Use the left mouse but­
ton if you want to move the image elsewhere in the bitmap work area. 
When you release the button, a selection frame appears around the image, 
allowing you to reposition the selected area by dragging it. Dragging the 
frame with the Ctrl key pressed moves a copy of the selected image rather 
than the image itself, but there's a better way to duplicate an image. 

To make a copy of an image, click the Rectangle Selection tool and select 
the image with the right mouse button pressed instead of the left button. 
When you release the mouse button, a copy of the selected image follows 
the cursor. Position the copy anywhere in the work area and click to drop 
it into place. Clicking the left button drops a copy of the image; clicking 
the right button drops a mask of the image in which foreground pixels are 
converted to the current background color and background pixels are 
treated as transparent holes in the image. You can make any number of 
copies this way. When finished, press the Esc key or select another tool to 
return to normal editing mode. 

You will find alignment much easier if the image spans the entire 16-by-
15 block like the disk drive image shown in Figure 4-16. If the image is 
narrower than the block, paint a temporary black line that spans the 16-
pixel width along the top or bottom row of the block. You can then see 
exactly what you are dragging when copying the image. If you intend to 
label each button with text as was done in Figure 4-15 on page 156, add 
the labels last after all the images are in place. Click the Text tool, type the 
letter, and drag the letter image into position. Press Esc after each letter to 
cancel the Text tool. 

When you are finished designing your bitmap, click Toolbar Editor on the 
Image menu to convert the bitmap to a toolbar. Accept the suggested 

1. Click the 
Rectangle 
Selection tool. 

2. Drag over the 3. Position the duplication and click. 
image with the 
right mouse button. 

Figure 4-16. Duplicating a selected image. 

158 



4: Resources 

button size of 16-by-15 pixels in the New Toolbar Resource dialog. You 
can toggle back and forth between toolbar and bitmap with the same 
Toolbar Editor command. Click Save on the File menu to write the new 
toolbar script to the RC file and save the toolbar bitmap as the BMP file 
you named earlier in the Bitmap Properties dialog box. Visual C++ assigns 
default identifier values for the buttons in the new toolbar script, which 
now looks something like this in the DiskPie1.rc file: 

IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15 
BEGIN 

BUTTON ID_BUTTON40030 
BUTTON ID_BUTTON40031 
BUTTON ID_BUTTON40032 

END 

The button identifiers must eventually be changed to the same values 
given to the corresponding menu commands-that is, IDM_MEMORY, 
IDM_DISK_C, IDM_DISK_D, and so forth. This ensures that clicking a 
toolbar button has the same effect as selecting the equivalent menu com­
mand. We could have specified the correct button identifiers in the graph­
ics editor using the Toolbar Button Properties box, invoked by selecting a 
button and double-clicking anywhere in the work area. But that work isn't 
necessary. DiskPie1 assigns the correct values to the buttons when it 
determines at run time how many buttons must appear on the toolbar. We 
will edit the toolbar script later, replacing it with the stub script cited at 
the beginning of this section, and also remove from the Resource.h file the 
extraneous #define statements for the button identifiers. 

Icons 
An icon is a special bitmap designed to visually represent a program or 
document. Usually the icon is assigned to a frame window so that the 
image appears in the window's title bar; when assigned to the program's 
main window, the icon resource is called the program icon or application 
icon. This section concentrates on how to create an application icon, 
which is the most common use of an icon resource. But an icon is an icon, 
and whether it represents the main window or another object on the 
screen, an icon is created the same way in the Visual C++ graphics editor. 

159 



Editors 

160 

An icon resource can contain more than one image, which often means 
different sizes of the same design. For example, Microsoft recommends 
that a Windows program provide three images of its icon resource, each 
image in a different size: 

• A 16-color image 16 pixels square, which Windows displays in the 
program's title bar, on a taskbar button, and in a directory listing 
with small icons. 

• A 16-color image 32 pixels square, used in dialog windows such as 
About boxes and to represent a program on the desktop or in a 
directory listing showing large icons. 

• A 256-color image 48 pixels square, used in place of 32-by-32 icons 
in Windows 98 when the Use Large Icons option is checked in the 
Effects tab of the system's Display Properties dialog. (To open the 
dialog, right-click a blank area of the desktop and choose Properties. 
Windows 95 requires installation of the Microsoft Plus! pack, in 
which case the Use Large Icons option is located in the dialog's 
Plus! tab.) 

You can see examples of large and small application icons in the Explorer 
window or by invoking the Save As or Open dialog in the Visual C++ 
environment. Right-click in the blank area of the directory list window 
and choose Large Icons from the View command of the context menu. The 
Small Icons command on the same menu shows 16-by-16 images. 

An attractive and unique icon is considered good practice in Windows 
programming, but is not a requirement. If a program includes no icon at 
all in its resources, it can still use one of the standard system icons identi­
fied in the Winuser.h file as IDI_APPLICA TION and IDI_ WINLOGO. The 
system icons look like this in their 16-pixel size: 

IDl_APPLICATION I DI_ WIN LOGO 

Three images encapsulated in a single icon resource can add almost 5,000 
bytes to the size of an executable file. If this seems too much, you can 



4: Resources 

create an icon with a single 16-by-16 or 32-by-32 image, which Windows 
scales appropriately when displaying icons of other sizes. You may be dis­
appointed with the results, however, since scaled curves and diagonal 
lines are prone to ragged "pixelation" effects. 

The next section shows how to create icons with the Visual C++ graphics 
editor, but first let's look at how a program loads an icon resource. AC 
program usually loads its application icon when creating the main pro­
gram window. If the icon resource contains only one image size, the pro­
gram can call the Loadlcon API function-the same approach used in 
older versions of Windows. But to load multiple images from the same 
icon resource, a program should use the Loadlmage function instead. The 
program must also call RegisterClassEx with a pointer to a WNDCLASSEX 
structure to set both small and large icon images for the window class, 
since the old WNDCLASS structure used with the RegisterClass function 
accepts only one icon handle. Here's a code fragment that loads two icon 
images, one 16 pixels square and the other 32 pixels square: 

II Declare the icon in the .RC file 
IconDemo ICON "res\\appicon.ico" 

II In WinMain, initialize the WNDCLASSEX structure with image handles 
static char szAppName[J = "IconDemo": 
WNDCLASSEX wndclass: 

wndclass.cbSize sizeof (wndclass): 
wndclass.hicon Loadlmage( hinstance, szAppName, IMAGE_ICON, 

32, 32, LR_DEFAULTCOLOR ): 
wndclass.hiconSm = Loadimage( hinstance, szAppName, IMAGE_ICON, 

16, 16, LR_DEFAULTCOLOR ): 

RegisterClassEx( &wndclass ): 

An MFC program doesn't have to worry about any of this. App Wizard 
provides two icons for a project, one icon to serve as the application icon, 
and the other to represent documents that the application creates. The RC 
file identifies the icon resources as IDR_MAINFRAME and IDR_project­
TYPE, where project represents the project name. App Wizard stores the 

161 



Editors 

162 

icons, shown here, in the project's Res folder as the files project.ico and 
projectDoc .ico: 

project.ico projectDoc. ico 

App Wizard automatically generates code that correctly loads the applica­
tion icon along with the program's other resources. To replace a generic 
App Wizard icon with your own design, close the project workspace and 
choose New from the File menu. Double-click Icon File in the Files tab to 
launch the graphics editor, design the new icon, and save it in the pro­
ject's Res folder, overwriting the existing project.ico or projectDoc.ico file. 

If you've written your MFC program without App Wizard's help, loading 
an application icon is still very easy. If the main window class is derived 
from CFrameWnd, identify the ICO file with the special AFX_IDI_STD_ 
FRAME value defined in MFC's Afxres.h header file. For example, an icon 
resource stored in a file named Applcon.ico is identified in the project's 
RC file like this: 

/fi ncl ude "afxres. h" 

AFX_IDI_STD_FRAME ICON appicon.ico 

If the window class is derived from CMDIFrame Wnd, use this line instead: 

AFX_IDI_STD_MDIFRAME ICON appicon.ico 

If the icon file contains both a small and large image, MFC loads the 
images and correctly attaches them to the frame window, so that the 
small image appears in the title bar and the large image appears in the 
About box. If you look through the MFC source code to learn more about 
how allthis works, you_ will see that CWinApp::Loadlcon does not call 
::Loadlmage as described earlier. Instead, it calls ::FindResource with a 
value of RT_GROUP _ICON to load all images in the icon resource, and 
then searches the resource for the image that most closely matches the 



Figure 4-17. 

4: Resources 

required size. CWinApp::Loadlcon retrieves the image by calling the API 
function ::Loadlcon with the instance value returned by ::FindResource. 

Creating an Icon for DiskPie1 
DiskPie1's application icon is created in the open project by clicking the 
Resource command on Visual C++'s Insert menu, then double-clicking 
Icon in the Resource Type list. The graphics editor defaults to a 16-color 
work area 32 pixels square, which Windows calls the large or standard 
icon size. The editor displays the current size of Standard (32 x 32) in the 
Device combo box located just above the work area. The box's drop-down 
list contains only this one size, meaning the icon you are working on cur­
rently has one image, which is 32 pixels square. 

The Visual C++ graphics editor can create an icon resource with any num­
ber of images, each with a different size or color capacity. To see the other 
sizes available, you have your choice of pressing the Insert key, choosing 
New Device Image from the Image menu, or clicking the New Device 
Image button: 

All of these methods invoke the New Icon Image dialog shown in Fig-
ure 4-17, which lists the image sizes that are available but not yet attached 
to the icon. If you don't see the image size you want in the list, click the 
Custom button and specify a new image size. 

Iarget device: 
r32;<tf25s ·caiois··--........ ········ ················ 

Selecting a new image size for an icon. 

163 



Editors 

164 

The New Icon Image dialog provides the means for including multiple 
images in a single icon resource. After you have drawn the standard 32-
by-32 image, select another size from the dialog and begin again. If you 
want to switch back to the original 32-by-32 image, click the drop-down 
arrow in the Device combo box and choose Standard (32 x 32) from the 
exposed list. When you select a new image size from the New Icon Image 
dialog, the entry disappears from the dialog's list and is transferred to the 
combo box list. In other words, the Device combo box lists the image sizes 
currently in the icon, while the New Icon Image dialog shows the avail­
able sizes you can add to the icon. To remove the current image from the 
icon, click Delete Device Image on the Image menu. 

The DiskPiel icon has three image sizes, ranging from 16 to 48 pixels 
square: 

Small 
(16 x 16) 

Standard 
(32 x 32) 

Plus! 
(48 x 48) 

Normally, the images in a program's icon have the same picture, but dif­
ferent sizes. I gave the three images different designs to clearly show that 
Windows extracts the correct image from DiskPiel's resource data rather 
than just scale the 32-by-32 image. Double-click anywhere in the editor 
work area to open the Icon Properties dialog and assign the IDR_MAIN­
FRAME identifier to the resource, and then save your work. 

Mouse Cursors 
The specifications for DiskPiel do not call for designing a custom mouse 
cursor, but let's take a moment here to see how it's done in Visual C++. A 
mouse cursor is a monochrome bitmap 32 pixels square with a transparent 
background and a "hot spot." The hot spot is the single pixel in the bit­
map that Windows recognizes as the cursor coordinate. When a program 
receives a WM_MOUSEMOVE or WM_LBUTTONDOWN message, for 
example, the x and y cursor coordinates held in the message's lParam 
value represent the pixel under the cursor's hot spot: 



Figure 4-18. 

4: Resources 

case WM_LBUTTONDOWN: 
x = LOWORD( lParam ); 
y = HIWORD( lParam ); 

II X-coordinate of mouse click 
II Y-coordinate of mouse click 

To create a mouse cursor, either choose New from the File menu and 
double-click Cursor File in the Files tab or, for an existing project, choose 
Resource from the Insert menu. Double-clicking Cursor in the list gives 
you a blank slate on which to design your new cursor. If you prefer to 
begin with a standard Windows cursor image, expand the Cursor heading 
and choose from IDC_NODROP, IDC_POINTER, or IDC_POINTER_COPY. 
The editor displays a work area 32 pixels square on which to draw the 
cursor. If you already have an image you want to use but it's in another 
form-say, a 32-by-32 bitmap-first open the bitmap in the graphics editor 
and press Ctrl+C to copy its image to the Clipboard. Then open the new 
cursor and press Ctrl + V to paste the bitmap image into the cursor work 
area. Colors in the bitmap are converted to black or transparent, depend­
ing on their intensity. If you don't like the results, press the Del key to 
delete the cursor image. 

When the graphics editor loads a cursor image, a Set Hotspot button 
appears above the work area window. You can see the button in Figure 
4-18 labeled with the coordinates (0,13), placing the hot spot at the nose of 
the rodent in the image. Click the Set Hotspot button, then click the point 
on the image grid where you want to set the cursor hot spot. Choose Save 
from the File menu when you are finished, and Visual C++ saves the 

Creating a custom mouse cursor in the Visual C++ graphics editor. 

165 



Editors 

166 

image as a CUR file, adding a resource definition to the project's RC file 
that looks like this: 

rnc_cuRSORl CURSOR DISCARDABLE "res\\cursorl.cur" 

Setting the new cursor as a program's default cursor involves a call to the 
LoadCursor API function. In a C program, this is typically done when 
initializing the WNDCLASS or WNDCLASSEX structure for the window. 
Here's how to set up the new IDC_CURSOR1 resource: 

WNDCLASSEX wndclass; 
wndclass.hCursor = LoadCursor( hlnstance, 

MAKEINTRESOURCE (IDC_CURSORl) ); 

RegisterClassEx( &wndclass ); 

For a cursor resource identified by a string name rather than a value, the 
approach is nearly the same: 

II Resource declaration in the RC file 
MouseDemo CURSOR "mouse.cur" 

II Load and set resource during initialization in the C source file 
static char szAppName[J = "MouseDemo"; 
WNDCLASSEX wndclass; 

wndclass.hCursor = LoadCursor( hlnstance, szAppName ); 

You can do the same thing in an MFC program with the AfxRegisterWnd­
Class global function. The following example uses a generic icon for the 
last argument of AfxRegisterWndClass, but a real application should pro­
vide a handle to its own icon: 

CString wndclass = AfxRegisterWndClass( CS_HREDRAW I CS_VREDRAW, 
::LoadCursor( hlnstance, szAppName ), 
(HBRUSH) (COLOR_WINDOW + 1), 
theApp.LoadStandardlcon( IDI_APPLICATION ) ); 

These commands cause Windows to display the new cursor whenever the 
mouse pointer is positioned in the program's client area. Figure 4-19 
shows what the cursor designed above looks like in a program. (You can 
find the source code for this tiny C program in the Code \Chapter.04 \ 
Mouse subfolder on the companion CD.) 



Figure 4-19. 

But. Mousie, thou art no thy lane 
In proving foresight may be vain: 
The best laid schemes o' mice an' men 

Gang aft a-gley. 
An' lea'e us nought but grief an' pain 

For promis'd joy. 

- Burns 

The new mouse cursor as it appears in a program. 

So much for cursors. Let's get back to the DiskPie1 program. 

4: Resources 

Adding Code "to DiskPie1 

Figure 4-20. 

At this point DiskPie1 has a menu, accelerator keys, toolbar, status bar, 
icon-all the resource data it needs. Now it's time to add code to make it 
go. If you have followed the genesis of DiskPie1 in this chapter, you will 
recognize the user interface elements in Figure 4-20. The application icon, 
menu, toolbar, and status bar were designed in previous sections using the 
Visual C++ resource editors. 

During creation of its main window, DiskPie1 finds all attached fixed 
disks, including remote drives and RAM disks, and for each one does the 

I 
following: 

a Adds a command called Disk x to the Chart menu, where xis the 
drive designation letter 

The DiskPie1 program, showing available space on an 8-MB RAM disk. 

167 



Editors 

168 

• Adds a button to the toolbar, selecting the button image from the 24 
images in the toolbar bitmap that represent drives C through Z 

Text at the lower left corner identifies the chart type as either memory, 
local fixed disk, RAM disk, or remote drive. Charts are composed of two 
pieces, one labeled "Used" and the other labeled "Free." The total amount 
of memory or disk capacity represented by the chart appears at the lower 
right corner. 

Though a relatively small program, DiskPie1 complies with the common 
C++ practice of dividing classes into separate source files. The complete 
program listing follows, taken from the source files on the companion CD 
in the Code \Chapter.04 \DiskPie1 subfolder. If you have created the 
resources for a new DiskPie1 project by following the steps in this chapter, 
you may wish to complete the project and build your own version of the 
program. In this case, copy the H and CPP source files to your project 
folder and add the four CPP files using the Add To Project command on 
the Project menu. The code expects an About box, so use the text editor to 
copy and paste the script from the DiskPie1.rc file on the CD to your own 
RC file. Remember to pare the toolbar script so that it looks like the one on 
page 159. 

This table of contents describing the DiskPie1 source files will help you 
find your way around the code in Listing 4-1. 

Source File 

DiskPie 

MainFrml 

DiskDoc 

Disk View 

Description 

Initlnstance function; displays the About dialog. 

Creates the main window; determines the available 
drives and adds a menu command and toolbar button for 
each drive. 

Determines current memory and disk usage. 

Contains the OnDraw function, which displays the pie 
chart for the current usage data. 



Listing 4-1. 

4: Resources 

DiskPie1 source files. 

Resource.h 

II ************************************************************* 
II 
II Resource.h 
II 
II ************************************************************* 

#define IDD_ABOUTBOX 100 
#define IDR_MAINFRAME 101 
#define IDM_MEMORY 130 
#define IDM_DISK_C 131 
ffdefi ne IDM_DISK_D 132 
#define IDM_DISK_E 133 
#define IDM_DISK_F 134 
#define IDM_DISK_G 135 
#define IDM_DISK_H 136 
#define IDM_DISK_I 137 
#define IDM_DISK_J 138 
#define IDM_DISK_K 139 
#define IDM_DISK_L 140 
#define IDM_DISK_M 141 
#define IDM_DISK_N 142 
#define IDM_DISK_O 143 
#define IDM_DISK_P 144 
#define IDM_DISK_Q 145 
#define IDM_DISK_R 146 
#define I DM_DISK_S 147 
f/def i ne IDM_DISK_T 148 
#define IDM_DISK_U 149 
#define IDM_DISK_V 150 
#define IDM_DISK_W 151 
#define IDM_DISK_X 152 
#define IDM_DISK_Y 153 
#define IDM_DISK_Z 154 

DiskPie1 .re 

II ************************************************************* 
II 
II Di skPi el. re· 
II 
II ************************************************************* 

#include "resource.h" 

(continued) 

169 



Editors 

170 

Listing 4-1. continued 

#include "afxres.h" 

IDR_MAINFRAME 
IDR_MAINFRAME 

IDR_MAINFRAME MENU 
BEGIN 

POPUP "&File" 
BEGIN 

ICON 
BITMAP 

MENUITEM "E&xit", 
END 
POPUP "&Chart" 
BEGIN 

END 

MENUITEM "&Memory\tCtrl+M", 
MENUITEM SEPARATOR 

POPUP "&View" 
BEGIN 

END 

MENU ITEM "&Tool bar", 
MENU ITEM "&Status Bar", 

POPUP "&Help" 
BEGIN 

"res\\diskpiel.ico" 
"res\\toolbar.bmp" 

ID_APP _EXIT 

IDM_MEMORY 

ID_V I EW_ TOOLBAR 
ID_VIEW_STATUS_BAR 

MENU ITEM "&About Di skPi el .•• ", 
END 

ID_APP_ABOUT 

END 

IDR_MAINFRAME ACCELERATORS 
BEGIN 

"M"' IDM_MEMORY, 
"C"' IDM_DISK_C, 
"D"' IDM_D IS K_D, 
"E"' IDM_DISK_E, 
"F"' IDM_D IS K_F, 
"G", IDM_D IS K_G, 
"H", IDM_D IS K_H , 
"I"' IDM_DISK_I, 
"J"' IDM_D IS K_J , 
"K", IDM_DISK_K, 
"L"' IDM_D IS K_L, 
"M"' IDM_D IS K_M, 
"N", IDM_D IS K_N , 
"O", IDM_DISK_O, 
"P"' IDM_DISK_P, 
"Q", IDM_DISK_Q, 
"R", IDM_DISK_R, 
"S", I DM_D I SK_S, 

VIRTKEY, CONTROL 
VI RTKEY 
VI RTKEY 
VIRTKEY 
VI RTKEY 
VIRTKEY 
VI RTKEY 
VI RTKEY 
VIRTKEY 
VI RTKEY 
VI RTKEY 
VI RTKEY 
VIRTKEY 
VI RTKEY 
VIRTKEY 
VI RTKEY 
VI RTKEY 
VI RTKEY 



4: Resources 

"T", IDM_DISK_T, 
"U", IDM_DISK_U, 
"V", IDM_DISK_V, 
"W", IDM_D IS K_W, 
"X", IDM_D IS K_X , 
"Y", IDM_DISK_Y, 
"Z", IDM_D IS K_Z , 

END 

IDR_MAINFRAME TOOLBAR 16, 15 
BEGIN 

BUTTON IDM_MEMORY 
END 

IDD_ABOUTBOX DIALOG DISCARDABLE 
STYLE DS_MODALFRAME I WS_POPUP I 
CAPTION "About DiskPiel" 
FONT 8, "MS Sans Serif" 
BEGIN 

VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 

0, 0, 240, 65 
WS_CAPTION I WS_SYSMENU 

ICON 
LTEXT 
LTEXT 

IDR_MAINFRAME,IDC_STATIC,10,22,20,20 
"DiskPiel Version 1.0",roc_sTATIC,45,10,115,8 

END 

"""Microsoft Vi sua 1 C++ Programmer's Gui de"'"', 
IDC_STATIC,45,26,140,8 

LTEXT "Copyright \251 1998, Beck Zaratian". 
IDC_STATIC,45,42,115,8 

DEFPUSHBUTTON "OK",IDOK,195,10,35,40,WS_GROUP 

STRINGT AB LE 
BEGIN 

IDR_MAIN FRAME 
IDM_MEMORY 
IDM_DISK_C 
IDM_DISK_D 
IDM_DISK_E 
IDM_DISK_F 
IDM_DISK_G 
IDM_DISK_H 
IDM_DISK_I 
IDM_DISK_J 
IDM_DISK_K 
IDM_DISK_L 
IDM_DISK_M 
IDM_DISK_N 
IDM_DISK_O 
IDM_DISK_P 
IDM_DISK_Q 

"DiskPiel\nDisk Usage\n\n\n\n\n\n" 
"Memory usage\nMemory" 
"Usage for drive C\nDrive C" 
"Usage for drive D\nDrive D" 
"Usage for drive E\nDrive E" 
"Usage for drive F\nDrive F" 
"Usage for drive G\nDrive G" 
"Usage for drive H\nDrive H" 
"Usage for drive I\nDrive I II 
"Usage for drive J\nDrive J" 
"Usage for drive K\nDrive K" 
"Usage for drive L\nDrive L" 
"Usage for drive M\nDrive M" 
"Usage for drive N\nDrive N" 
"Usage for drive O\nDrive O" 
"Usage for drive P\nDrive P" 
"Usage for drive Q\nDrive Q" 

(continued) 

171 



Editors 

172 

Listing 4-1. continued 

IDM_DISK_R "Usage for drive R\nDrive R" 
IDM_DISK_S "Usage for drive S\nDrive S" 
IDM_DISK_T "Usage for drive T\nDri ve T" 
IDM_DISK_U "Usage for drive U\nDrive U" 
IDM_DISK_V "Usage for drive V\nDrive V" 
IDM_DISK_W "Usage for drive W\nDrive W" 
IDM_DISK_X "Usage for drive X\nDrive X" 
IDM_DISK_Y "Usage for drive Y\nDrive Y" 
I DM_DISK_Z "Usage for drive Z\nDrive Z" 
AFX_IDS_IDLEMESSAGE "Ready" 
AFX_IDS_SCSIZE "Change the window size" 
AFX_IDS_SCMOVE "Change the window position" 
AFX_IDS_SCMINIMIZE "Reduce the window to an icon" 
AFX_IDS_SCMAXIMIZE "Enlarge the window to full size" 
AFX_IDS_SCCLOSE "Close the DiskPiel application" 
AFX_IDS_SCRESTORE "Restore the window to normal size" 

END 

DiskPie.h 

II ************************************************************* 
II 
II DiskPie.h 
II 
II ************************************************************* 

class CDiskPieApp : public CWinApp 
{ 

public: 
virtual BOOL Initinstance(): 
afx_msg void OnAppAbout(); 

DECLARE_MESSAGE_MAP() 
} ; 

DiskPie.cpp 

II ************************************************************* 
II 
II DiskPie.cpp 
II 
II ************************************************************* 

#define VC_EXTRALEAN 

#include <afxwin.h> 



4: Resources 

#include <afxext.h> 
#include "resource.h" 
#include "DiskPie.h" 
#include "DiskDoc.h" 
#include "MainFrml.h" 
1/include "DiskView.h" 

CDiskPieApp theApp; 

BEGIN_MESSAGE_MAP (CDiskPieApp, CWinApp) 
ON_COMMAND (ID_APP_ABOUT, OnAppAbout) 

END_MESSAGE_MAP () 

BOOL CDiskPieApp::Initinstance() 
{ 

CSingleDocTemplate* pDocTemplate: 
pDocTemplate = new CSingleDocTemplate( IDR_MAINFRAME, 

RUNTIME_CLASS (CDiskDoc), 
RUNTIME_CLASS (CMainFrame), 
RUNTIME_CLASS (CDiskView)); 

AddDocTemplate(pDocTemplate): 

CCommandlineinfo cmdinfo: 
if (!ProcessShellCommand(cmdinfo)) 

return FALSE: 

return TRUE; 

class CAboutDlg public CDialog 
{ 

public: 
CAboutDlg(): 
enum { IDD = IDD_ABOUTBOX }; 

} ; 

CAboutDlg::CAboutDlg() CDialog(CAboutDlg::IDD) 
{ 
} 

void CDiskPieApp::OnAppAbout() 
{ 

} 

CAboutDlg aboutDlg; 
aboutDlg.DoModal(); 

(continued) 

173 



Editors 

174 

Listing 4-1. continued 

DiskDoc.h 

II ************************************************************* 
II 
II DiskDoc.h 
II 
II ************************************************************* 

class CDiskDoc : public CDocument 
{ 

DECLARE_DYNCREATE (CDiskDoc) 

public: 
static int 
static DWORD 
static int 
static UINT 

int 
void 
void 

} ; 

DiskDoc.cpp 

iDriveType[24J; 
dwTotal, dwFree; 
iChartType; 
nCurrent; 

GetDriveCount(); 
GetMemoryUsage(); 
GetDiskUsage( UINT nID ); 

II ************************************************************* 
II 
II DiskDoc.cpp 
II 
II ************************************************************* 

#define VC_EXTRALEAN 

#include <afxwin.h> 
#include "resource.h" 
#include "DiskPie.h" 
#include "DiskDoc.h" 

#define PIE_MEMORY 0; 

IMPLEMENT_DYNCREATE (CDiskDoc, CDocument) 

int 
int 
UINT 
DWORD 

CDiskDoc::iDriveType[24J 
CDiskDoc::iChartType = PIE_MEMORY; 
CDiskDoc::nCurrent = IDM_MEMORY; 
CDiskDoc::dwTotal, CDiskDoc::dwFree; 



4: Resources 

void CDiskDoc::GetMemoryUsage () 
{ 

} 

MEMORYSTATUS ms; 

::GlobalMemoryStatus( &ms ); 
dwTotal = ms.dwTotalPhys; 
dwFree = ms.dwAvailPhys; 
iChartType = PIE_MEMORY; 
nCurrent = IDM_MEMORY; 

void CDiskDoc::GetDiskUsage( UINT nID 
{ 

szDrive[J = "x:\\\0"; char 
DWORD 
DWORD 

dwSectsPerClust, dwBytesPerSect, dwFreeClusts 
dwTotalClusts, dwBytesPerClust; 

GetDriveCount(); 

if (iDriveType[nID - IDM_DISK_C] 
iDriveType[nID - IDM_DISK_C] 
iDriveType[nID - IDM_DISK_C] 

DRIVE_FIXED 11 

DRIVE_REMOTE I I 
DRIVE_RAMDISK) 

szDrive[0] =(char) CnID - IDM_DISK_C) + 'C'; 
if (::GetDiskFreeSpace( szDrive, &dwSectsPerClust, 

&dwBytesPerSect, &dwFreeClusts, &dwTotalClusts )) 

dwBytesPerClust = dwSectsPerClust * dwBytesPerSect; 
dwTotal = dwBytesPerClust * dwTotalClusts; 
dwFree = dwBytesPerClust * dwFreeClusts; 

iChartType = iDriveType[nID - IDM_DISK_C]; 
nCurrent nID; 

} 
} 

} 

int CDiskDoc::GetDriveCount() 
{ 

int i, cDrives 0; 
char szDrive[J "x:\\\0"; 

for (szDrive[0J='C'; szDrive[0J <= 'Z'; szDrive[0]++) 
{ 

i =(int) (szDrive[0] - 'C'); 
iDriveType[i] = ::GetDriveType( szDrive ); 

(continued) 

175 



Editors 

176 

Listing 4-1. continued 

} 

if (iDriveType[i] 
iDriveType[iJ 
iDriveType[iJ 

{ 

cDrives++: 
} 

return cDrives: 
} 

DiskView.h 

DRIVE_FIXED 11 
ORI VE_REMOTE 11 
DRIVE_RAMDISK) 

II ************************************************************* 
II 
II DiskView.h 
II 
II ************************************************************* 

class CDiskView : public CView 
{ 

DECLARE_DYNCREATE (CDiskView) 

private: 
static COLORREF rgbColor[2]: 
static CString strType[J: 

void Getlabel( CString* str, double e, PCSTR strTail ); 

protected: 
virtual void 
afx_msg void 
afx_msg void 

OnDraw( CDC* pDC ): 
OnMemoryUpdate( CCmdUI* pCmdUI ): 
OnDiskUpdate( CCmdUI* pCmdUI ): 

DECLARE_MESSAGE_MAP () 
} : 

DiskView.cpp 

II ************************************************************* 
II 
II DiskView.cpp 
II 
II ************************************************************* 

#define VC_EXTRALEAN 



4: Resources 

#include <afxwin.h> 
#include "resource.h" 
#include "DiskView.h" 
#include "DiskDoc.h" 
#include "math.h" 

#define PI 3.141592654 
#define RADIUS 900 
#define S LI C E_O FF SET 12 
#define MEM_COLOR RGB ( 0. 
#define DISK_COLOR RGB ( 0. 

COLORREF CDiskView::rgbColor[2] 
CString CDiskView::strType[J 

255, 255) II Cyan 
255, 0) II Green 

{ MEM_COLOR, DISK_COLOR }; 
{ "Memory", 

" Fixed disk", 
"Remote drive", 
" RAM disk" }; 

IMPLEMENT_DYNCREATE (CDiskView, CView) 

BEGIN_MESSAGE_MAP (CDiskView, CView) 
ON_UPDATE_COMMAND_UI (IDM_MEMORY, OnMemoryUpdate) 
ON_UPDATE_COMMAND_UI_RANGE (!DM_DISK_C, IDM_DISK_Z, 

OnDiskUpdate) 
END_MESSAGE_MAP() 

lllllllllllllllllllllllllll///l/////l//lllllllll/llll/l//lllllll 
II Paint the pie chart 

void CDiskView::OnDraw( CDC* pDC ) 
{ 

CPen 
CB rush 
CRect 
CString 
int 
double 

pen; 
brush; 
rect; 
str; 
x, y, i. iColor; 
dUseSweep, dFreeSweep; 

II Color is cyan for memory chart, green for drive charts 

iColor CCDiskDoc::nCurrent == IDM_MEMORY) ? 0 : 1; 

II Set coord system so origin is at center of client area 

GetClientRect( rect ); 
pDC->SetMapMode( MM_ISOTROPIC ); 
pDC->SetWindowExt( RADIUS+100, RADIUS+l00 ); 

(continued) 

177 



Editors 

178 

Listing 4-1. continued 

pDC->SetViewportExt( rect.rightl2, -rect.bottoml2 ): 
pDC->SetViewportOrg( rect.rightl2, rect.bottoml2 ); 

II Create solid brush of current color for "Used" pie slice 

pen.CreatePen( PS_SOLID, 1, rgbColor[iColorJ ); 
brush.CreateSolidBrush( rgbColor[iColorJ ); 
pDC->SelectObject( &pen ): 
pDC->SelectObject( &brush ); 

II Sweep angles in radians for "Free" and "Used" pie slices 

dFreeSweep = (double) (PI*2 * 
CDiskDoc::dwFreelCDiskDoc::dwTotal); 

dUseSweep = (double) PI*2 - dFreeSweep; 

II For "Used" slice, sweep counterclockwise from due north 

x =-(int) (sin( dUseSweep) *RADIUS); 
y = (int) (cos( dUseSweep) *RADIUS): 
pDC->Pie( -RADIUS, RADIUS, RADIUS, -RADIUS, 0, RADIUS,x,y ); 

II Create hatched brush of current color for "Free" slice 

pDC->SelectStockObject( WHITE_BRUSH ); 
pDC->SelectStockObject( BLACK...PEN ); 
brush.DeleteObject(): 
pen.DeleteObject(): 
pen.CreatePen( PS_SOLID, l, rgbColor[iColorJ ); 
brush.CreateHatchBrush( HS_CROSS, rgbColor[iColorJ ); 
pDC->SelectObject( &pen ); 
pDC->SelectObject( &brush ); 

II Compute new center for "Free" slice, slightly offset 
II from original center, then paint the "Free" slice 

x = (int) (sin( PI - dUseSweepl2 
y = -(int) (cos( PI - dUseSweepl2 
pDC->OffsetWindowOrg( x, y ): 
pDC->OffsetViewportOrg( x, y ); 

* SLICE_OFFSET): 
* SLICE_OFFSET); 

x = (int) (sin( dFreeSweep * RADIUS): 
y = (int) (cos( dFreeSweep * RADIUS): 
if (abs (x) > 4) 

pDC->Pie( -RADIUS, RADIUS, RADIUS, -RADIUS, 
x, y, 0, RADIUS ): 



4: Resources 

pDC->SelectStockObject( BLACK_PEN ); 
pDC->SelectStockObject( WHITE_BRUSH ); 
pDC->SetBkMode( TRANSPARENT); 
pen.DeleteObject(); 
brush.DeleteObject(); 

II Label "Free" slice 

Getlabel ( &str, CDiskDoc: :dwFree, "Free" ) ; 
pDC->TextOut( 10, RADIUSl2, str ); 

II Ensure "Used" label doesn't occur near "Free" label 

x =-(int) (sin( dUseSweepl2 ) * RADIUS); 
y = (int) (COS( dUseSweepl2 ) * RADIUS); 
if ( y > 0 && (y - RADIUSl2) < 25) 
{ 

} 

x =-(RADIUS - 10); 
y 0: 

Getlabel( &str, 
(CDiskDoc::dwTotal - CDiskDoc::dwFree), "Used"); 

pDC->TextOut( x, y, str ); 

II Restore mapping mode so we can use DrawText function 

pDC->SetMapMode( MM_TEXT ); 
pDC->SetWindowExt( rect.right, rect.bottom ); 
pDC->SetViewportExt( rect.right, rect.bottom ); 
pDC->SetViewportOrg( 0, 0 ); 
pDC->SetWindowOrg( 0, 0 ); 

II Write "Total" at bottom right corner of window 

Getlabel( &str, CDiskDoc::dwTotal, "Total"); 
pDC->DrawText( str, rect, 

DT_SINGLELINE I DT_BOTTOM I DT_RIGHT ); 

II Write device type at bottom left corner of window 

i = 0: 
if (CDiskDoc::iChartType == DRIVE_FIXED) 

i = 1; 
if (CDiskDoc::iChartType == DRIVE_REMOTE) 

i = 2: 
if (CDiskDoc::iChartType == DRIVE_RAMDISK) 

i = 3; 

(continued) 

179 



Editors 

180 

Listing 4-1. continued 

pDC->DrawText( strType[iJ. rect. 
DT_SINGLELINE I DT_BOTTOM I DT_LEFT ); 

} 

void CDiskView::GetLabel( CString* str, doubled, PCSTR strTail) 
{ 

char ch = 'K'; 

d I= 1024; 
if (d > 1024) 
{ 

} 

d I= 1024; 
ch = 'M'; 

II 'K' for kilobytes 

II If amount is greater than 
II 1024 kilobytes, divide 
II again by 1024 to convert 
II to megabytes 

str->Format( "%.2f %c%s%s", d. ch. "b ", strTail ); 
} 

llllllllllllllllllllllllllllllllllllllllllllllllllll/11111111111 
II Make sure menu check marks and toolbar buttons are in sync 

void CDiskView::OnMemoryUpdateC CCmdUI* pCmdUI ) 
{ 

pCmdUI->SetCheck( COiskDoc::nCurrent == IDM_MEMORY ): 
} 

void CDiskView::OnDiskUpdate( CCmdUI* pCmdUI ) 
{ 

pCmdUI->SetCheck( CDiskDoc::nCurrent == pCmdUI->m_nID ); 
} 

Mainfrm1.h 

II ************************************************************* 
l/ 
II MainFrml.h 
II 
II ************************************************************* 

class CMainFrame : public CFrameWnd 
{ 

DECLARE_DYNCREATE (CMainFrame) 

private: 
CToolBar 
CStatusBar 
CDiskDoc 

tool bar; 
statusbar; 
diskdoc; 



4: Resources 

protected: 
afx_msg int 
afx_msg void 
afx_msg void 
afx_msg void 

OnCreate( LPCREATESTRUCT lpCreateStruct ); 
OnMemory (); 
OnDisk( UINT nID ); 
OnSetFocus( CWnd* ); 

DECLARE_MESSAGE_MAP() 
} ; 

MainFrm1 .cpp 

II ************************************************************* 
II 
II MainFrml.cpp 
II 
II ************************************************************* 

#define VC_EXTRALEAN 

#include <afxwin.h> 
#include <afxext.h> 
#include <afxcmn.h> 
#include "resource.h" 
#include "DiskPie.h" 
#include "DiskDoc.h" 
//include "MainFrml.h" 
#include "DiskView.h" 

IMPLEMENT_DYNCREATE (CMainFrame, CFrameWnd) 

BEGIN_MESSAGE_MAP (CMainFrame, CFrameWnd) 
ON_WM_CREATE () 
ON_WM_SETFOCUS () 
ON_COMMAND (IDM_MEMORY, OnMemory) 
ON_COMMAND_RANGE (IOM_DISK_C, IDM_DISK_Z, OnDisk) 

END_MESSAGE_MAP () 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllll/111 
II Create main window, toolbar, and status bar 

int CMainFrame::OnCreate( LPCREATESTRUCT lpCreateStruct 
{ 

int 
char 
CMenU* 

i ' j ; 
szMenu[J 
pmenu; 

"Disk &x\tx\0"; 

static canst UINT indicator ID_SEPARATOR; 

(continued) 

181 



Editors 

182 

Listing 4-1. continued 

} 

static canst UINT nButtons[] = { IDM_MEMORY, ID_SEPARATOR, 
IDM_DISK_C, IDM_DISK_D, IDM_DISK_E, IDM_DISK_F, 
IDM_DISK_G, IDM_DISK_H, IDM_DISK_I. IDM_DISK_J, 
IDM_DISK_K. IDM_DISK_L, IDM_DISK_M. IDM_DISK_N, 
IDM_DISK_O, IDM_DISK_P, IDM_DISK_Q, IDM_DISK_R, 
IDM_DISK_S, IDM_DISK_T, IDM_DISK_U, IDM_DISK_V, 
IDM_DISK_W. IDM_DISK_X, IDM_DISK_Y. IDM_DISK_Z }; 

if (CFrameWnd::OnCreate( lpCreateStruct) == -1) 
return -1; 

statusbar.Create( this ); 
statusbar.Setindicators( &indicator, 1 ); 

toolbar.Create( this ); 
toolbar.SetWindowText( "Charts" ); 
toolbar.LoadToolBar( IDR_MAINFRAME ); 
toolbar.SetBarStyle( toolbar.GetBarStyle() I 

CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC ); 

toolbar.SetButtons( nButtons, diskdoc.GetDriveCount() + 2 ); 
toolbar.SetButtonStyle( 0, TBBS_CHECKGROUP ); 

pmenu = GetMenu()->GetSubMenu( 1 ); 

for (i=0, j=2; i < 24; i++) 
{ 

} 

if (CDiskDoc::iDriveType[iJ == DRIVE_FIXED I I 
CDiskDoc::iDriveType[iJ == DRIVE_REMOTE I I 
CDiskDoc::iDriveType[i] == DRIVE_RAMDISK) 

{ 

} 

szMenu[6] = 'C' +(char) i; 
szMenu[BJ = 'C' +(char) i; 
pmenu->InsertMenu( 0xFFFF, MF_BYPOSITION. 

IDM_DISK_C+i. szMenu); 
toolbar.SetButtoninfo( j++, IDM_DISK_C+i, 

TBBS_CHECKGROUP, i+l); 

toolbar.EnableDocking( CBRS_ALIGN_ANY ); 
EnableDocking( CBRS_ALIGN_ANY ); 
DockControlBar( &toolbar ); 

return 0; 



4: Resources 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II Respond to menultoolbarlaccelerator commands 

void CMainFrame::OnMemory () 
{ 

} 

diskdoc.GetMemoryUsage (); 
Invalidate (); 

void CMainFrame::OnDisk( UINT nID 
{ 

} 

diskdoc.GetDiskUsage( nID ); 
Invalidate (); 

llllllllllllllllllllllllllllllllllllllllllllllll/111111111111111 
II When focus regained, refresh display in case data has changed 

void CMainFrame::OnSetFocus( CWnd* ) 
{ 

} 

if (CDiskDoc::nCurrent == IDM_MEMORY) 
diskdoc.GetMemoryUsage(); 

else 
diskdoc.GetDiskUsage( CDiskDoc::nCurrent ); 

If you would like to follow the logic flow of the program, the important 
steps begin in the MainFrml.cpp module. The CMainFrame::OnSetFocus 
function is called whenever Windows sends a WM_SETFOCUS message 
to inform the main window it is gaining input focus. This happens when 
DiskPie1 first starts and whenever the user switches back to DiskPie1 from 
another application. The function thus serves two purposes. It saves 
CMainFrame::OnCreate the trouble of calling DiskDoc::GetMemoryUsage 
to initialize data at program startup, and it also ensures that when the user 
runs another program or deletes a file, the current chart is automatically 
redrawn to reflect the new conditions when DiskPie1 regains focus. 

Given a list of attached drives, the CMainFrame::OnCreate function 
inserts into the Chart menu commands such as Disk C and Disk D for each 
attached drive. It also adds toolbar buttons for the drives, selecting the 
appropriate section of the toolbar bitmap according to the drive designa­
tion letter. The button for drive D, for example, is painted with the 

183 



Editors 

184 

bitmap's 16-by-15 section that contains the image of a disk drive and the 
letter D. (The complete toolbar bitmap with its 25 image sections appears 
in Figure 4-15 on page 156.) 

The user can request a chart either for memory or a disk drive by 

• Choosing a command from the Chart menu 

• Clicking a toolbar button 

• Pressing Ctrl+M for memory, or pressing any letter key C through Z 
for a disk drive 

These events are handled by the CMainFrame::OnMemory and CMain­
Frame::OnDisk functions, which receive control through the class's mes­
sage map: 

BEGIN_MESSAGE_MAP (CMainFrame, CFrameWnd) 

ON_COMMAND (IDM_MEMORY, OnMemory) 
ON_COMMAND_RANGE (IDM_DISK_C, IDM_DISK_Z, OnDisk) 

END_MESSAGE_MAP () 

You may recall that when creating DiskPie1's accelerator keys earlier in 
the chapter, we made sure that the values of the identifiers IDM_DISK_C 
through IDM_DISK_Z were ordered sequentially. The above message map 
shows why. Because the identifiers have sequential values, the program 
can use MFC' s ON_ COMMAND _RANGE macro to route requests for any 
disk drive to the OnDisk function. From the drive identifier, which is 
passed as a parameter, OnDisk determines the drive for which the user has 
requested a chart. OnMemory does not require ON_COMMAND_RANGE 
because there is only one memory chart. 

The mechanics of determining memory and disk usage is consigned to two 
functions in the DiskDoc.cpp module. The two functions, called CDisk­
Doc::GetMemoryUsage and CDiskDoc::GetDiskUsage, employ similar 
logic. They retrieve the information they need from the system by calling 
the GlobalMemoryStatus and the GetDiskFreeSpace API functions, then 
use the information to determine values for the dwTotal and dwFree mem­
ber variables, which contain the number of total and free bytes for the 



4: Resources 

current chart. It makes no difference to the drawing function whether the 
data in the variables represents memory or disk space. After determining 
the current usage numbers, the OnMemory and OnDisk functions call 
Invalidate to force the display of a new chart. 

The scene now shifts to the CDiskView::OnDraw function in the Disk­
View.cpp file. This function uses the public dwTotal and dwFree values 
to determine sweep angles for the two pieces of the pie chart: 

II Sweep angles in radians for "Free" and "Used" pie slices 
dFreeSweep =(double) (PI*2 * CDiskDoc::dwFreelCDiskDoc::dwTotal ); 
dUseSweep = (double) PI*2 - dFreeSweep; 

OnDraw paints the "Used" slice first, sweeping the arc counterclockwise 
from the 12 o'clock position by the dUseSweep angle. The "Free" slice is 
offset slightly from the "Used" slice, drawn with a clockwise arc of dFree­
Sweep radians. OnDraw attaches labels to both sections and displays the 
chart. Requesting another chart starts the whole process over again. 

A pie chart represents a snapshot of a current condition. The only con­
venient way to refresh a chart while DiskPiel has focus is to press the 
accelerator key for the chart. Memory usage in a preemptive multitasking 
system like Windows is especially dynamic, changing every microsecond. 
If you continually press Ctrl+M while Visual C++ compiles a project in 
the background, you can see the effects of the rapid allocations and 
deallocations of physical memory. Adding an On Timer function would 
update the display on a more regular basis. 

More serious is DiskPiel's inability to account for the dynamics of drive 
attachments. We've seen how the CMainFrame::OnCreate function adds 
menu commands and toolbar buttons for disk drives attached to the sys­
tem, including any remote drives provided through a network. The menu 
and toolbar then remain unchanged through the program's lifetime even 
though the user may subsequently add or detach a network drive, or an 
attachment may disappear because of problems on the server end. How­
ever, such an occurrence is not fatal-DiskPiel still works correctly 
because CDiskDoc::GetDiskUsage always enumerates drives before dis­
playing a chart. An enhancement to the program would add logic to 

185 



Editors 

recheck drive attachments when refreshing the display and add or remove 
menu commands and toolbar buttons accordingly. 

Unbound Commands (Revisited) 

Figure 4-21. 

186 

The previous chapter described how to bind commands named Word­
UpperCase and WordLowerCase to the text editor command set by assign­
ing key combinations and toolbar buttons to invoke the commands. The 
Visual C++ environment also provides many useful unbound commands 
designed for the graphics editor that you can implement using the same 
procedure described in Chapter 3, The Text Editor. To see a list of 
unbound and bound commands for the graphics editor, click Keyboard 
Map on the Help menu and select Image from the combo box in the Help 
Keyboard dialog. Figure 4-21 shows a sampling of the list. 

Commands for the graphics editor, displayed by selecting 
Keyboard Map from the Help menu. 

Many of the Image commands in the list already have keyboard assign­
ments. Figure 4-21 shows that pressing the A key, for instance, invokes 
the Airbrush tool and pressing the plus ( +) or minus (-) keys increases or 
decreases the brush size. But other commands are not available until you 
assign keystrokes or create toolbar buttons for them. To demonstrate, this 
section shows how to assign a keystroke combination for the first com­
mand in the list, called Image3dRectangleTool, which is a variation of the 
graphics editor's Rectangle tool. 

From the Tools menu, choose Customize and click the Keyboard tab. 
Select Image from both the Category and Editor combo boxes, which tells 
Visual C++ to recognize the new keyboard command only in the graphics 



4: Resources 

editor (also known as the image editor). Choose Image3dRectangleTool 
from the list of commands, click the Press New Shortcut Key text box, and 
type a key combination for the command, such as Shift+Ctrl+3. The dialog 
says that the key combination is currently unassigned, so we don't have to 
wonder whether we are taking Shift+Ctrl+3 away from some other com­
mand. Click the Assign button and then the Close button to dismiss the 
dialog. 

The Image3dRectangleTool command is designed for bitmaps, so to see it 
in action start the graphics editor by choosing New from the File menu 
and double-clicking Bitmap File in the Files tab. When you press Shift+ 
Ctrl+3 (or whatever key combination you assigned to the command), the 
image cursor changes to the same pixelated crosshairs used for the Rectan­
gle tool. But the new cursor produces a slightly different effect when 
drawing a rectangle. As you drag the cursor from the upper left corner of 
the rectangle to the lower right, the top and left sides are painted in the 
current foreground color while the right and bottom sides appear in the 
background color. Dragging with the right button reverses the colors. With 
the right combination of colors, nested rectangles take on a three­
dimensional look, letting you quickly create images like these: 

Image3dRectangleTool is only one of many keyboard commands you 
might find useful when working in the graphics editor. The similar 
Image WindowRectangleTool, for instance, quickly draws bitmap images 
of buttons in their normal, pressed, and inactive states-a time saver when 
designing owner-drawn buttons. Browse through the list and see what you 
like. If you want to create a toolbar button for a command, the procedure 
is explained in the "Unbound Commands" section in Chapter 3, beginning 
on page 95. 

187 



Editors 

Trimming Resource Data 

188 

Windows programs often carry around excess baggage in the form of 
unused or inefficient resource data, inflating the size of the program file 
and, worse still, wasting memory. Even resources that are never used can 
make their way into memory only to sit idle, tying up a piece of the virtual 
pool. With a little effort you can make sure your own programs do not 
have this problem. This section explores a few techniques for minimizing 
the size of a program's resource data and, by making some minor revisions 
to the Disk.Piel program, demonstrates how it is often possible to trim a 
significant amount of resource data from an application. 

The first thing to remember is that you don't have to keep everything App­
Wizard throws at you. Strings can be the worst offenders, as they are some­
times too verbose or even unnecessary. Win32 resource strings are stored 
in a program file as Unicode strings, which means every character you 
delete saves two bytes instead of one. If you remove a menu command 
from an RC file generated by App Wizard, be sure to remove the prompt 
string that goes with it. And don't forget the corresponding accelerator key. 

AppWizard adds prompt strings to the RC file that describe the commands 
in a program's system menu: 

STRINGTABLE 
BEGIN 

END 

AFx_ros_SCSIZE 
AFX_IDS_SCMOVE 
AFX_IDS_SCMINIMIZE 
AFX_IDS_SCMAXIMIZE 
AFx_rns_SCCLOSE 
AFX_IDS_SCRESTORE 

"Change the window size" 
"Change the window position" 
"Reduce the window to an icon" 
"Enlarge the window to full size" 
"Close the active window ... " 
"Restore the window to normal size" 

The MFC library file contains these same strings, so if your program links 
dynamically with MFC you can safely delete the strings from your RC file 
without changing the program's behavior. (However, if your program is 
destined for international markets where it may run on a system config­
ured for a different spoken language, other factors may affect your deci­
sion whether to use strings supplied by the MFC library file. See the 



4: Resources 

discussion about overseas markets and dynamic linking to MFC, begin­
ning on page 55 in Chapter 2.) Besides freeing a few resource strings, 
dynamic linking to MFC rather than static linking dramatically reduces 
the size of an executable file because the MFC code is in the DLL, not in 
the calling application. The user benefits, of course, only if two or more 
programs running simultaneously use the MFC library. 

I mentioned earlier in the chapter that if an application provides only one 
icon image 32 pixels square, Windows automatically scales the image to 
16-by-16 or 48-by-48 pixels as necessary. If the icon image contains only 
straight lines and rectangles, scaling usually does not degrade the image. 
For icon images that are not affected by scaling, you might consider 
including only one 32-by-32 image instead of two or three images of dif­
ferent sizes. 

You can further reduce the space requirements of icons and bitmaps by 
keeping their colors to a minimum. For example, by default the graphics 
editor's New Icon Image dialog (see Figure 4-17 on page 163) sets 256 col­
ors for icon images that are 48 pixels square in size. But many icon 
images, like the DiskPiel icon, contain only a few colors. Specifying 16 
colors for an image uses only 4 bits per pixel rather than the 8 bits per 
pixel required by 256 colors. This simple step reduces by half the space 
occupied by the 48-by-48 image, a savings which, combined with the 
smaller color table contained in the icon, adds up to two kilobytes of 
resource data. To create a 16-color 48-by-48 icon image in the graphics 
editor, press the Insert key to invoke the New Icon Image dialog, click the 
Custom button in the dialog, and fill in the appropriate control boxes. 

DiskPiel devotes a lot of resource space to its large toolbar bitmap, as you 
can see in Figure 4-15 on page 156. Of the 25 images in the bitmap, 24 are 
duplicates, differing only in the letter that overlays the repeating image of 
the disk drive. In such cases, it's possible to provide one image and make 
it serve any number of toolbar buttons. At the cost of a little extra code, 
DiskPiel can dispense with 23 of its toolbar images, resulting in signifi­
cant savings in program size. Here's how it's done. 

189 



Editors 

190 

The DiskPie2 Program 
The release version of the DiskPie1.exe file is 24,576 bytes in size. By jetti­
soning much of its resource data, the new DiskPie2 program slims down 
to 17 ,920 bytes, decreasing the size by nearly a third without appreciably 
changing the program. DiskPie2 adopts four techniques to reduce the size 
of its resource data: 

• With the exception of a "Ready" message, the program contains no 
prompt strings in its resource data. Relying instead on prompt 
strings provided by the MFC library file, DiskPie2 displays general 
descriptions in its status bar for all commands except those selected 
in the Chart menu. 

• Without prompt strings, DiskPie2 must generate tooltip text on 
demand. The code to generate the tooltips occupies less space than 
would the tooltip strings themselves, resulting in an overall 
decrease in program size. 

• The 48-by-48 icon image has a color table with 16 rather than 256 
colors. 

• The DiskPie2 toolbar bitmap has only two images instead of the 25 
images required by DiskPie1. 

Two views of the toolbar bitmap show the images used for DiskPie2's 
toolbar buttons: 

Actual size Enlargement 

The images duplicate the first two images that DiskPie1 uses for its toolbar 
except that the second image is unlabeled, making it suitable for repre­
senting any disk drive. DiskPie2 adds drive designations such as "C:" and 
"D:" to the buttons at run time. You can see the results in Figure 4-22. 



Figure 4-22. 

Listing 4-2. 

4: Resources 

Fixed disk 
Ready 

The DiskPie2 program. 

973.44 Mb Total ! 

The new Disk.Pie2 program requires changes to three of DiskPie1 's source 
files to create updated versions named Disk.Pie2.rc, MainFrm2.h, and 
MainFrm2.cpp. Listing 4-2 shows the revised code, in which Disk.Pie2.rc 
sheds the unneeded prompt strings, and MainFrm2.cpp receives added 
instructions for labeling the toolbar buttons and constructing tooltip text. 

DiskPie2 source files. 

DiskPie2.rc 

II ************************************************************** 
II 
II DiskPie2.rc 
II 
II ************************************************************** 

ft i n cl u de " res o u r c e . h" 
#include "afxres.h" 

IDILMAINFRAME 
IDILMAINFRAME 

IDILMAINFRAME MENU 
BEGIN 

POPUP "&File" 

ICON 
BITMAP 

"res\\DiskPie2.ico" 
"res\\toolbar.bmp" 

(continued) 

191 



Editors 

192 

Listing 4-2. continued 

BEGIN 

END 

MENU ITEM "E&xi t", 
END 
POPUP "&Chart" 
BEGIN 

END 

MENU ITEM "&Memory\ tCtrl +M", 
MENUITEM SEPARATOR 

POPUP "&View" 
BEGIN 

MENU ITEM "&Tool bar", 
MENU ITEM "&Status Bar", 

END 
POPUP "&Help" 
BEGIN 

MENUITEM "&About DiskPie2 •.• ", 
END 

IDR_MAINFRAME ACCELERATORS 
BEGIN 

"M", IDM_MEMORY, 
"C", IDM_DISK_C, 
"D", IDM_DISK_D, 
"E"' IDM_DISK_E, · 
"F", IDM_DISK_F, 
"G", IDM_DISK_G, 
"H", IDM_DISK_H, 
"I", IDM_DISK_I, 
"J"' IDM_DISK_J, 
"K"' IDM_DISK_K, 
"L", I DM_DISK_L, 
"M", IDM_D IS K_M, 
"N"' IDM_DISK_N, 
"O"' I DM_DISK_O, 
"P", IDM_DISK_P, 
"Q", IDM_DISK_Q, 
"R" I IDM_DISK_R, 
"S", IDM_DISK_S, 
"T", IDM_DISK_T, 
"U", IDM_DISK_U, 
"V", IDM_DISK_V, 
"W", IDM_DISK_W, 
"X"' I DM_DISK_X, 
"Y"' IDM_DISK_Y, 
"Z", IDM_DISK_Z, 

END 

ID_APP _EXIT 

IDM_MEMORY 

ID_VIEW_TOOLBAR 
ID_VIEW_STATUS_BAR 

ID_APP_ABOUT 

VIRTKEY, CONTROL 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VI RTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VI RTKEY 
VIRTKEY 
VI RT KEY 
VIRTKEY 
VI RT KEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 
VIRTKEY 



4: Resources 

IDR_MAINFRAME TOOLBAR 16, 15 
BEGIN 

BUTTON IDM_MEMORY 
END 

IDD_ABOUTBOX DIALOG 0, 0, 240, 65 
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION 
CAPTION "About Di skPi e2" 
FONT 8, "MS Sans Serif" 
BEGIN 

I WS_SYSMENU 

ICON 
LTEXT 
LTEXT 

IDR_MAINFRAME,IDC_STATIC,10,22,20,20 
"DiskPie2 Version l.0",IDc_STATIC.45,10,115,8 

LTEXT 

DEFPUSHBUTTON 
END 

STRINGTABLE 
BEGIN 

"""Microsoft Visual C++ Programmer's Guide""", 
IDC_STATIC,45,26,140,8 
"Copyright \251 1997, Beck Zaratian", 
IDC_STATIC,45,42,115,8 
"OK", IDOK, 195, 10, 35, 40, WS_GROUP 

I DR_MAI N FRAME 
AFX_IDS_IDLEMESSAGE 

END 

"DiskPie2\nDisk Usage\n\n\n\n\n\n" 
"Ready" 

Mainfrm2.h 

II ************************************************************** 
II 
II MainFrm2.h 
II 
II ************************************************************** 

class CMainFrame : public CFrameWnd 
{ 

DECLARE_DYNCREATE (CMainFrame) 

private: 
CToolBar 
CStatusBar 
CDiskDoc 

tool bar: 
statusbar: 
diskdoc: 

protected: 
afx_msg int 
afx_msg void 
afx_msg void 

OnCreate( LPCREATESTRUCT lpCreateStruct ); 
OnNewChart( UINT nID ): 
OnSetFocus( CWnd* ): 

(continued) 

193 



Editors 

194 

Listing 4-2. continued 

afx_msg BOOL OnTooltip( UINT id, NMHDR* pNMHDR, LRESULT*): 

DECLARE_MESSAGE_MAP() 
} : 

Mainfrm2.cpp 

II ************************************************************** 
II 
II MainFrm2.cpp 
II 
II ************************************************************** 

#define VC_EXTRALEAN 

#include <afxwin.h> 
#include <afxext.h> 
#include <afxcmn.h> 
#include "resource.h" 
#include "DiskPie.h" 
#include "DiskDoc.h" 
#include "MainFrm2.h" 
#include "DiskView.h" 

IMPLEMENT_DYNCREATE CCMainFrame, CFrameWnd) 

BEGIN_MESSAGE_MAP (CMainFrame, CFrameWnd) 
ON_WM_CREATE {) 
ON_WM_SETFOCUS () 
ON_COMMAND_RANGE (IOM_MEMORY, IDM_OISK_Z, OnNewChart) 
ON_NOTIFY_EX( TTN_NEEDTEXT, 0, OnTooltip ) 

END_MESSAGE_MAP () 

111111111111111111/llllllllllllllllllllllllllllllllllllllllllllll 
II Create main window, toolbar, and status bar 

int CMainFrame::OnCreate( LPCREATESTRUCT lpCreateStruct 
{ 

int 
char 
char 
CMenU* 

i • j: 
szDisk[J 
szMenu[J = 
pmenu; 

"x:\0": 
"Disk &x\tx\0": 

static canst UINT indicator = ID_SEPARATOR; 

if (CFrameWnd::OnCreate( lpCreateStruct ) == -1) 
return -1: 



4: Resources 

} 

statusbar.Create( this ); 
statusbar.Setlndicators( &indicator, 1 ); 

toolbar.Create( this ); 
toolbar.SetWindowText( "Charts" ); 
toolbar.LoadToolBar( IDR_MAINFRAME ); 
toolbar.SetBarStyle( toolbar.GetBarStyle() I 

CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC ); 

toolbar.SetButtons( NULL, diskdoc.GetDriveCount() + 2 ); 
toolbar.SetButtonlnfo( 0, IDM_MEMORY, TBBS_CHECKGROUP, 0 ); 
toolbar.SetButtonText( 0, "Memory" ); 

II The second "button" is a separator 
toolbar.SetButtonlnfo( 1, ID_SEPARATOR, 

TBBS_SEPARATOR TBBS_CHECKGROUP, 0 ); 
pmenu = GetMenu()->GetSubMenu( 1 ); 

for (i=0, j=2; i < 24: i++) 
{ 

} 

if (CDiskDoc::iDriveType[iJ 
CDiskDoc::iDriveType[iJ 
CDiskDoc::iDriveType[iJ 

DR! VE_FI XED 11 

DRIVE_REMOTE 11 

DRIVE_RAMDISK) 

} 

szDisk[0] 'C' +(char) i; 
szMenu[6] 'C' +(char) i; 
szMenu[BJ 'C' +(char) i; 
pmenu->InsertMenu( 0xFFFF, MF_BYPOSITION, 

IDM_DISK_C+i, szMenu); 
toolbar.SetButtonlnfo( j, IDM_OISK_C+i, 

TBBS_CHECKGROUP, 1 ); 
toolbar.SetButtonText( j++, szDisk ); 

toolbar.SetSizes( CSize( 45, 40 ), CSize( 16, 15 ) ); 

toolbar.EnableDocking( CBRS_ALIGN_ANY ); 
EnableDocking( CBRS_ALIGN_ANY ); 
DockControlBar( &toolbar ); 

return 0; 

lllll/lllllllllllllllllllllllllllllllllllllllllll/111111111111111 
II Respond to menultoolbar/accelerator commands 

(continued) 

195 



Editors 

196 

Listing 4-2. continued 

void CMainFrame::OnNewChart( UINT nID 
{ 

} 

COiskOoc::nCurrent = nID; 
OnSetFocus( NULL); 
Invalidate(); 
toolbar.Invalidate(): II Necessary when bar is floating 

llllllllll//l/l/llll!llllllllllllllllllllllllllllllllllllllllll/I 
II When focus regained, refresh display in case data has changed 

void CMainFrame::OnSetFocus( CWnd* ) 
{ 

} 

if (COiskDoc::nCurrent == IOM_MEMORY) 
diskdoc.GetMemoryUsage(); 

else 
diskdoc.GetDiskUsage( CDiskDoc::nCurrent ); 

lllll/llllllll/lllllllll/llllllllllllllllllll/lllllllllllllllllll 
II When TTN_NEEDTEXT notification received, generate tooltip text 

BOOL CMainFrame::OnTooltip( UINT id, NMHDR* pNMHDR, LRESULT* 
{ 

} 

static char szMemTip[J = "Memory usage chart\0"; 
static char szDiskTip[J = "Usage chart for drive x\0": 
TOOLTIPTEXT* pTTT = (TOOLTIPTEXT*) pNMHDR; 
UINT nID = pNMHDR->idFrom; 

if (nID == IDM_MEMORY) 
pTTT->lpszText = szMemTip; 

else 
( 

} 

szDiskTip[22] = (char) (nID - IDM_DISK_C) + 'C'; 
pTTT->lpszText = szDiskTip; 

return TRUE: 

Besides their file sizes, the only obvious difference between DiskPiel and 
DiskPie2 is the appearance of their toolbars. Because DiskPie2 makes use 
of a single disk drive image for its toolbar buttons, the program must label 



4: Resources 

the buttons with text at run time. The CMainFrame::OnCreate function 
handles this task in a for loop that runs through every attached drive: 

for (i=0, j=2; i < 24; i++) 
{ 

} 

pmenu->InsertMenu( 0xFFFF, MF_BYPOSITION, IDM_DISK_C+i, szMenu); 
toolbar.SetButtoninfo( j, IDM_DISK_C+i, TBBS_CHECKGROUP, 1 ); 
toolbar.SetButtonText( j++, szDisk ); 

toolbar.SetSizes( CSize( 45, 40 ), CSize( 16, 15 ) ); 

The call to CToolBar::SetButtonlnfo duplicates the same instruction in 
DiskPie1 except for the last parameter, which is the zero-based index of 
the button's image in the toolbar bitmap. Where DiskPie1 used the loop 
counter to select the button image from among the 24 images available, 
DiskPie2 makes do with only one disk drive image. But rather than 
leaving each button looking like its neighbor, the code also calls 
CTooJBar::SetButtonText to add a drive designation. The added text 
requires more room on each button, so the code finishes by calling 
CToolBar::SetSizes to enlarge the buttons to a size of 45-by-40 pixels, as 
opposed to DiskPie1 's 24-by-22 ,pixels. 

Tooltips and Prompt Strings on Demand 
Without prompt strings in its resource data, DiskPie2 must assemble its 
tooltip text as needed at run time. When the system is about to display a 
tooltip window, it notifies the program through a TTN_NEEDTEXT notifi­
cation message, which DiskPie2 handles in its CMainFrame::OnTooltip 
function. The message provides a pointer to a TOOL TIPTEXT structure, 
which is an expanded form of NMHDR structure: 

typedef struct 
{ 

NMHDR hd r; 
LPTSTR lpszText; 
char szText[80]; 
HINSTANCE hinst; 
UINT uFlags; 

} TOOLTIPTEXT, FAR *LPTOOLTIPTEXT; 

197 



Editors 

198 

The hdr.idFrom value identifies the toolbar button over which the cursor 
has paused. From this value OnTooltip determines the appropriate tooltip 
text, points lpszText to the new text string, and returns a value of TRUE. 
The function maintains its tooltip text in two static strings: 

static char szMemTi p[J = "Memory usage cha rt \0"; 
static char szDiskTip[J = "Usage chart for drive x\0"; 

A value of IDM_MEMORY in hdr.idFrom indicates tooltip text is required 
for the first toolbar button, in which case the code points the lpszText 
structure member to the string szMemTip. If hdr.idFrom identifies one of 
the disk usage buttons IDM_DISK_C through IDM_DISK_Z, OnTooltip 
points lpszText to the szDiskTip string after replacing the x placeholder 
character with the appropriate drive letter C through Z. DiskPie2's too~tips 
are thus easy to create because most of them differ only by a single 
character. 

Through a somewhat similar technique, DiskPie2 could have been written 
to generate its missing status bar prompts on demand. Status bar prompts 
require a considerable amount of hit testing to determine over which 
toolbar button or menu command the cursor is positioned. The MFC 
framework takes care of this work automatically during idle time process­
ing, continuously updating the status bar through the program's CCmdUI 
object. The secret to on-the-fly prompt messages is to provide only enough 
string resources to take advantage of the framework's hit testing, then 
build the full prompt string in an override of the CStatusBar::OnSetText 
function. DiskPie2, for example, could use drive designation letters as 
minimal prompt strings in the program's RC file: 

STRINGTABLE 
BEGIN 

IDM_MEMORY 
IDM_DISK_C 
IDM_DISK_D 

END 

IDM_DISK_X 
IDM_DISK_Y 
I DM_DISK_Z 

"Memory usage" 
"C" 
"D" 

"X" 
"Y" 
"Z" 



4: Resources 

To hook the OnSetText function, declare a class derived from CStatusBar 
and use it to create the status bar in CMainFrame: 

class CStatusHook : public CStatusBar 
{ 

protected: 
afx_msg LRESULT OnSetText( WPARAM wParam, LPARAM lParam ); 
DECLARE_MESSAGE_MAP() 

} ; 

class CMainFrame : public CFrameWnd 
{ 

DECLARE_DYNCREATE (CMainFrame) 
private: 

CStatusHook statusbar; 

A message map and the OnSetText handler function trap the WM_SET­
TEXT message that the system sends when about to display one of the 
abbreviated prompt strings in the status bar. The handler function forms a 
complete prompt string by inserting the single-character prompt into a 
more verbose text string, repaints JParam to the constructed string, and 
passes control on to the base's OnSetText function. Instead of writing only 
a single letter like "C" in the status bar, the system now displays the more 
meaningful string "Disk C usage chart." Here's how the handler function 
might construct such a prompt message: 

BEGIN_MESSAGE_MAP (CStatusHook, CStatusBar) 
ON_MESSAGE( WM_SETTEXT, OnSetText ) 

END_MESSAGE_MAP () 

LRESULT CStatusHook::OnSetText( WPARAM wParam, LPARAM lParam) 
{ 

} 

II Constructed string must be static 
static char szDisk[] ="Disk x usage chart\0"; 

II If display is only 1 character, convert it to full string 
if (lstrlen( (LPCTSTR) lParam ) == 1) 
{ 

} 

szDisk[5] 
l Pa ram 

*((LPCTSTR) lParam); 
(LPARAM) szDisk; 

II Set drive letter 
II Repaint lParam 

return CStatusBar::OnSetText( wParam, lParam ); 

199 



Editors 

200 

Generating prompt strings at run time is usually worthwhile only if the 
implementing code takes less space than the resource data it replaces. The 
technique is sometimes useful, though, when prompt strings must reflect 
some dynamic program condition such as user input that cannot be antici­
pated as read-only string resources. 



Chapter 

Dialog Boxes and Controls 
Dialog boxes and controls are usually mentioned in the same breath 
because it is rare to see one without the other. A control is a child window 
with a special talent-a button, for instance, or a check box or a progress 
indicator-and a dialog box is the parent window that contains one or 
more controls in its client area. The marriage of dialog boxes and controls 
is so well established that the whole collection is usually just called a 
"dialog." 

While many dialogs such as About boxes do no more than convey infor­
mation to the user, other dialogs query for input, providing a convenient 
place in which to type a filename or click a button to make a selection. If 
this reminds you of toolbars, you're right-a toolbar is a type of dialog. 
And like toolbars, most dialogs are part of the user interface elements that 
compose a program's resources. 

Some dialogs, however, are not part of a program's resource data. Dialogs 
such as message boxes and the so-called common dialogs are provided by 
the system, invoked through API functions like MessageBox and GetOpen­
FileName or through MFC classes like CFileDialog. It's even possible for a 
program to design and create a dialog at run time using the DialogBox­
Indirect API function, which takes a structure as input rather than data 
from the program's resource area. Such dialogs are strictly a programming 

201 



Editors 

problem, not a resource you create in Visual C++, so you won't find any 
discussions of them here. 

This chapter forms the second half of our discussion of resource data 
begun in the preceding chapter. We'll start with a look at the resource 
script that defines a dialog in a project's RC file, and then get into the 
Visual C++ dialog editor, which makes dialog design as easy as point-and­
click. The chapter demonstrates the editor's abilities with several example 
programs, one of which shows how to create a property sheet, also known 
as a tabbed dialog. 

The Dialog Script 

202 

Adding a dialog to a program is easy. Each dialog exists in the resource 
data area as a series of commands compiled from a script in the project's 
RC file. The commands specify such details as the size of the dialog win­
dow, the caption in the title bar, and the placement of controls. Revising a 
dialog is often only a matter of editing the script in the RC file. 

To take a ready example, we saw in Chapter 4, Resources, that AppWizard 
generates a command on the Help menu and all necessary source code for 
an About box dialog, an extra feature that is becoming more common in 
Windows programs these days. App Wizard also writes a script in the pro­
ject's RC file that defines what the dialog and its controls look like. Here's 
another look at the script: 

IDD_ABOUTBOX DIALOG DISCARDABLE 
CAPTION "About Demo" 

0, 0, 217, 55 

STYLE DS_MODALFRAME I WS_POPUP I 
FONT 8, "MS Sans Serif" 

WS_CAPTION I WS_SYSMENU 

BEGIN 

END 

ICON 
LTEXT 

LTEXT 
DEFPUSHBUTTON 

IDR_MAINFRAME,IDC_STATIC,11,17,20,20 
"Demo Version 1.0", 
IDC_STATIC,40,10,119,8,SS_NOPREFIX 
"Copyright ( C) 1998", IDC_STATI C, 40, 25, 119, 8 
"OK",IDOK,178,7,32,14,WS_GROUP 

The first line of the script identifies the resource with the symbol IDD_ 
ABOUTBOX, which is defined in the project's Resource.h file. The 
DISCARDABLE keyword is followed by four numbers that specify the size 



5: Dialog Boxes and Controls 

of the dialog. The first two numbers (0, 0) set the origin coordinates at the 
upper-left corner of the dialog window. All other coordinates in the script 
are relative to the origin, with positive x toward the right and positive y 

toward the bottom of the screen. The next two numbers determine the 
dimensions of the dialog window, in this case giving the window a width 
of 217 and height of 55 dialog units. 

A dialog unit is not a pixel, and does not even represent the same distance 
in the x and y directions. The size of a dialog unit depends on the font 
used for the dialog text, which by default is the system font. (In the above 
script, the optional FONT directive specifies the dialog font as 8-point MS 
Sans Serif.) One dialog unit in the horizontal x direction equals 74 the 
average character width for the dialog's font. In the vertical y direction, a 
dialog unit is Ya the character height. Since Windows adopts a font mea­
suring system in which character heigh! serves as the font size, one verti­
cal dialog unit for a dialog using an 8-point font is one point, or ?-j2 inch. 

Although it makes placement of the controls more difficult to visualize, 
tying the dialog unit to the font size means that a dialog box remains the 
same size at different screen resolutions. It also ensures that controls stay 
in relative position to each other if the dialog font changes, since a larger 
or smaller font merely causes the dialog window and its contents to inflate 
or deflate in size. A program that places a control in a dialog window at 
run time should first determine the dialog's "base units" by calling the 
GetDialogBaseUnits API function. The base units define the relationship 
between dialog units and pixels for the current screen resolution. The 
MapDialogRect function performs the conversion automatically, translat­
ing a coordinate in dialog units to an equivalent number of screen pixels. 
MSDN online help describes both of these API functions in more detail. 

The STYLE directive in the dialog script specifies various flags that affect 
the dialog's appearance, such as the WS_CAPTION flag that gives the dia­
log a title bar. The DS_MODALFRAME flag has nothing to do with the 
dialog's modal style, which depends solely on how the program creates 
the dialog. Modal style means that only windows belonging to other pro­
grams can receive input focus while the dialog is visible, so the user must 
close the dialog before continuing to run the program (or at least the 

203 



Editors 

thread) responsible for the dialog. About boxes, for example, are modal 
dialogs, blocking program execution until dismissed. Modeless dialogs are 
less insistent, allowing the user to switch to another window within the 
program without closing the dialog. The Find command of the Visual C++ 
text editor displays a good example of a modeless dialog. A sample pro­
gram called Color presented later in the chapter demonstrates how to use 
Visual C++ to create a dialog with modeless style. 

Despite its name, the WS_SYSMENU flag merely places a Close button at 
the far right side of the dialog's title bar, since child windows cannot have 
true system menus. The optional CAPTION directive specifies the text 
that appears in the title bar. 

Control definition statements for the dialog are bracketed by BEGIN and 
END statements. Each definition contains the same type of four-number 
series as used in the script's first line, where the first two numbers give 
the x and y coordinates of the upper-left corner of the control relative to 
the dialog origin, and the next two numbers specify the width and height 
of the control window. Again, all coordinates and dimensions are in dia­
log units. 

The dialog script gives the About box a push button labeled OK and three 
static controls, one of which contains a copy of the program icon. We'll 
meet these and other controls in sample code later in the chapter. For a 
complete list of controls including common controls, pay a visit to MSDN 
online help or consult one of the many available references such as Pro­

gramming Windows 95 by Charles Petzold. 

The About dialog that App Wizard gives you can certainly stand some 
improvement-your name in the copyright line, if nothing else. Let's first 
take a look at the Visual C++ dialog editor, and then use the editor to add 
flair to the About dialog that App Wizard creates. 

The Dialog Editor 

204 

In the old days of Windows programming, developers had to design a 
dialog sight unseen by writing a script in the RC file, then compiling and 
running the program to see what the dialog actually looked like. This trial­
and-error process usually required several iterations to get controls 



5: Dialog Boxes and Controls 

correctly positioned and working. But those days are over. It's the 
resource editors more than anything else that make Visual C++ "visual," 
and once you start designing dialogs with the dialog editor you will never 
go back to the old way. Not only can you put together a professional­
quality dialog with a few mouse clicks, seeing it take form on the screen as 
you create it, you can also test a working model of the dialog right in the 
editor. A control doesn't look quite right? Change your mind about a mne­
monic key? The editor makes revisions a pleasure, and when you have fin­
ished you know exactly how the dialog will behave and what it will look 
like in the running program. And as we'll see in the next chapter, the dia­
log editor also integrates well with ClassWizard, which can automatically 
generate code to initialize and retrieve data from the dialog's controls. 

As with other resources, you may often find it easier to make small 
changes to an existing dialog script by editing the RC file with a text edi­
tor. Nothing wrong with that. But for most revisions and especially when 
creating a new dialog, the dialog editor is your best bet. Like the other 
Visual C++ resource editors, the dialog editor is launched in one of two 
ways, depending on whether you want to create a new dialog or continue 
working on one that already exists in the project's RC file. To create a new 
dialog from scratch, click Resource on the Insert menu to bring up the 
Insert Resource box, then select Dialog from the list: 

~ Accelerator 
~Bitmap 

[fr~ Cursor 
a§lm 
~ \· [Si IDD_DIALOGBAR 

! § IDD_FORMVIEW 
\·§ IDD_DLE_PROPPAGE_LARGE 
)··fSi IDD_OLE_PROPPAGE_SMALL 
;... § IDD_PROPPAGE_LARGE 
i·§ IDD_PROPPAGE_MEDIUM 
L§ IDD_PROPPAGE_SMALL 

[!) HTML 

¥)" !:0
0
n 

Expanding the Dialog entry in the Insert Resource box reveals identifiers 
for special dialog shapes such as IDD_DIALOGBAR, which has the dimen­
sions of a toolbar. To create a normal dialog with default OK and Cancel 
buttons, double-click the Dialog entry without expanding it. 

205 



Editors 

Figure 5-1. 

206 

To continue working on an existing dialog, open the project and click the 
dialog's identifier listed in the Resource View pane of the Workspace win­
dow. If you want to edit a dialog in a project other than the current pro­
ject, click Open on the File menu and open the other project's RC file. 
This brings up a list of the other project's resources from which you can 
select the desired dialog. You cannot, however, save the resource into the 
current project because Visual C++ cannot merge a dialog script from one 
RC file into another. The text editor provides the most practical means of 
copying another project's dialog into the current project. Open the other 
project's RC file in the text editor as described in Chapter 4, select and 
copy the desired script, and paste it into the current RC file. Also define 
any necessary identifiers in the project's Resource.h file. You can then 
open the re~ource in the current project and edit it normally. 

Figure 5-1 shows the Workspace window for a fictitious AppWizard proj­
ect called Demo in which clicking the IDD_ABOUTBOX identifier starts 
the dialog editor and loads the program's About box dialog. 

g. ·E:il Demo 1esou1ces 
tB .... a Accelerator 
S·C. Dialog 
! ' ..... mu.P.:_[L~:~.Q.Q.t@x.1 
$··Dlcon ~ 
$·· .. DMenu 
ffi .... a String Table 
riJ ... a Toolbar 
G:J .... aversion 

Double-clicking a dialog identifier in the 
Workspace window launches the dialog editor. 

When you start the dialog editor for an existing dialog, the editor reads the 
script in the RC file and replicates the dialog in the editor work area. (If 
the Workspace or Output window is in docking mode, it may overlay the 
dialog editor window. If so, right-click each overlaying window and 
choose the Hide command from the context menu.) Figure 5-2 shows 
Demo's About dialog box loaded into the editor, ready for revision. 

Though it looks real enough, the About box pictured in Figure 5-2 is only 
a nonworking representation, a canvas for you to paint on. Clicking a 



Figure 5-2. 

:>: lJ1a1og Boxes and Controls 

Ready 

The dialog editor. 

button or edit box in the dialog work area selects the control but does not 
activate it. The ruler guides shown in Figure 5-2 are optional, and you can 
turn them off by choosing Guide Settings from the Layout menu. The two 
toolbars, called Controls and Dialog, require a little more explanation. 

The Controls Toolbar 
The Controls toolbar provides one-click access to controls that you can 
place in the dialog window. Click the toolbar button for the control you 
want and drag the control from the toolbar into position in the dialog box. 
A dotted rectangle shows an outline of the control window as you drag it, 
giving you an idea of the control's size and position before you release the 
mouse button to drop it into place. As an alternative to dragging and drop­
ping, simply click anywhere in the dialog window after selecting a button 
from the Controls toolbar. The control window appears centered at the 
click location. Figure 5-3 on the next page identifies the control types 
available on the Controls toolbar. 

Once you have dragged the controls you want from the Controls toolbar 
into the dialog work area, the next step is to arrange the controls in an eye­
pleasing order. The Dialog toolbar helps out here, but first we have to talk 
about selecting control windows in the dialog. 

207 



Editors 

Figure 5-3. 

208 

F'~w'"' 
i.;JtC:-· _ Selection 
f ab! .1-· - Edit box 
l f,c;}- Check box 
l ~fl_ List box 
I:~~._; r ·~ ... _'. _ Spin 
(>,~>1 
!ffii!; 1

-. - Hot key 
! '• 
!Et-. - Tab control 

j E2lJ.!- Date-time picker 
I'!}'-' - Custom control 
L,;1 

The Controls toolbar. 

[ :~- Picture 
HL] '.- Group box 
L ... : 
t ®; J- Radio button 
I ~ J_ Horizontal scroll bar 

i mn U- Progress indicator 
I lili] 1_ List control 
1: .:i 

J El ~- Animate 
\ El .- Month calendar re J- Extended combo box 
~<-....:->.< ~;;,,~}. 

Selecting and Arranging Controls 

"-'. _Static text 

l~s !- Button 
I•~ !_. - Combo box 
k: :.i 

i,m. ~; Vertical scroll bar 

!· ···~r:-• _slider 

I.Jr~ .!- Tree control 
Lj,,b L Rich edit 
l-···~ 

j'13}- IP address 
;;" .. , . .,;,,, 

When you drop a control window into the dialog box, a shaded rectangle 
surrounding the control indicates that the control is selected. The shaded 
selection rectangle has eight sizing handles, which are small squares 
placed at the corners and sides of the rectangle. As is typical in Windows, 
you can resize a selected control window by dragging one of the sizing 
handles with the mouse cursor or, for more precise work, by holding 
down the Shift key while pressing the arrow keys. Each keypress changes 
the size of the control by one dialog unit. You can also select and resize 
the dialog box itself by clicking anywhere in the work area other than on a 
control window. 

It's not necessary to carefully position a control window when you drag it 
into the dialog because it's easy to move a control that's already in place. 
Click the control in the dialog work area to select the control window, and 
drag it using the mouse or move it using the arrow keys. To make align­
ment easier, turn on the grid by clicking the Toggle Grid button on the 
Dialog toolbar: 

When the grid is visible in the dialog window, a control moves only from 
one grid line to another, a feature sometimes known as "snap-to-grid." By 
default, horizontal and vertical grid spacing is five dialog units, but you 



Figure 5-4. 

5: Dialog Boxes and Controls 

la_yout guides-] 
C None 

C ,§_~~~~rs and guides 
c;-:, !Grid 
~ ..... , 

Grid spac,.,i.t,,),,,,g'.,,.,,-••• ,.,,.,,,,-,., ,~ Y{idth: IC DLUs 

Hs:ight: EJ DLUs 

The Guide Settings box. 

OK I 
Cancel , , , 

can change the spacing in the Guide Settings dialog shown in Figure 5-4. 

Click Guide Settings on the Layout menu to call up the dialog. 

If the snap-to-grid feature prevents you from arranging the controls the 
way you want, just turn off the grid. If you turn it back on later, the editor 
does not disturb the placement of control windows alre_ady in the dialog. 
To temporarily suppress the snap-to-grid feature, press the Alt key as you 
drag a control. 

It is often more convenient to move or resize controls as a group rather 
than one at a time. The dialog editor offers two methods for selecting sev­
eral controls at once. The first method is to sequentially click the controls 
you want to select while holding down the Shift key. The second method 
works best for controls arranged as a group. Click the Selection tool on the 
Controls toolbar and drag a dotted rectangle over the controls to select 
them. Figure 5-5 on the next page illustrates the procedure. 

If you want to deselect a control from a selected group, click the control 
while holding down the Shift key. You can add a control to the group the 
same way. When multiple controls are selected, the sizing handles of all 
but one control in the group appear hollow to show they are inactive. The 
remaining control with solid sizing handles is said to be the dominant 
control of the group, from which the editor determines how the group as a 
whole should be resized or aligned. For example, the Checkl control in 
Figure 5-5 is the dominant control of the three controls in the selected 
group because it's the only one with solid sizing handles. Clicking another 

209 



Editors 

Figure 5-5. 

Figure 5-6. 

210 

Drag the mouse 
cursor from here ... _'""'."""'""''""''"""""'''' 

... to here ... 

r·· , .,, ., <-<.,, = ~ ~, ~., ·;·"<"·· ~·,..,,~= :".,, ~-~ 

f ll"'··:·:'-:·'11.-,·'.'.-.<·11 
r •O: 'check r •. 
' llF'>:.;, .. :g ............ . 
· QC.'l:ladiol·G 

g~'.~~~~~:'.:i:·a , _ ... and release the mouse button. 

Selecting several controls at once. 

control in the group with the Ctrl key pressed makes it the new dominant 
control. 

Only solid sizing handles are active; if a sizing handle is hollow, the con­
trol cannot be resized in that direction. Combo box controls have active 
sizing handles on only two sides. This is because the drop-down area of 
the control, normally not visible, is also part of the control window and 
must be considered when establishing the window size. Figure 5-6 illus­
trates how to change the size of the drop-down area of combo box controls. 

You can make a copy of a control and place it in the work area by dragging 
the control's window with the Ctrl key pressed, as illustrated in Figure 5-7. 

This creates a new window that is a clone of the original except that it has 
its own identifier value. 

[:·~~·,:-.p~:~:ij . 
a ............... l:f.·.-.-.. : _ CllCk the button to expose 

the drop-down area ... 

ct:':::·.:>:;· '::::::,>.::O 
.. ·· · · · ·~· ·_· ·_··_ ... then drag the bottom sizing handle. 

Changing the size of a combo box. 



Figure 5-7. 

Figure 5-8. 

5: Dialog Boxes and Controls 

g.·.·.·.·.·.·.g·.·.·;·.·,-.g 

:.\.;_;~.~~~?.~.-.·~ -. - Click a control to select it. 

(" Radio1 · With the Ctrl key pressed, drag 
,__ .. . ··~ -. - the copy to the desired location. 

(" Radio1 
~-··'····;-:·a.·.·.·,·.···:11! _. _ Release the mouse button. 
a(" Radio1 a 
i·:'>,·-:···a·.·-;'.',;, .. j 

Duplicating a control window in the dialog editor. 

The Dialog Toolbar 
Now that you know how to select a group of controls, the Dialog toolbar 
shown in Figure 5-8 will make more sense. Dragging controls around in 
the dialog is fine for approximate positions, but for precise alignment of 
the control windows you should use the tools on the Dialog toolbar. They 
let you position control windows in neatly aligned rows and columns 
within the dialog box, giving the dialog an orderly and professional 
appearance. The toolbar also sports a test mode switch that lets you take 
your new dialog for a test drive, so to speak, to see how it looks and 
behaves in the real world. 

Toggle grid or rulers 

Make same width, height, or both 

Space horizontally or vertically 

Center horizontally or vertically 

Align left, right, top, or bottom 

Test drive 

The Dialog toolbar. 

211 



Editors 

212 

All the Dialog toolbar buttons have equivalent commands on the Layout 
menu, so you can turn the toolbar off if you prefer to work without it. To 
show or hide the toolbar, choose Customize from the Tools menu, click 
the Toolbars tab, and click the Dialog check box in the list. 

As you see in Figure 5-8, the toolbar arranges the buttons in five logical 
groups for aligning, centering, spacing, and adjusting the size of controls, 
and for turning the grid and ruler guides on and off. The alignment, spac­
ing, and size adjustment tools, which appear grayed in Figure 5-8, are 
enabled only when two or more controls are selected in the dialog. 

The next few sections demonstrate some of the effects of the Dialog tools. 
It usually takes several tools to nudge a group of controls into the desired 
position, so you have to give some thought to the order in which you 
apply the tools. Nothing about control placement is written in stone, how­
ever, and if the effect of a tool is not whatyou expected, just click Undo 
on the Edit menu. 

Alignment tools 
The alignment tools align the controls of a selected group with the domi­
nant control. For example, clicking the Align Left button changes the x 
coordinates of selected controls to match the x coordinate of the dominant 
control without affecting they coordinates: 

Click the Align Left tool ... 

... to change this ... . .. to this. 



5: Dialog Boxes and Controls 

Centering tools 
The centering tools act on a single selected control or a group of controls, 
positioning the selection at the horizontal or vertical center of the dialog 
client area: 

Click the Center Vertical tool ... n~[ 

... to change this ... . .. to this. 

1 ... :·.:::·:·<:·:.::·.:.·::·:·:·:·:·t OK -~· Apply ".". . 
. ·.·.·.·.·.· .·.·.·.·.·.· 

Cancel., 

Spacing tools 
The spacing tools work only on a selected group of three or more controls. 
They are unique among the Dialog tools in that it makes no difference 
which of the selected controls is dominant. Horizontal spacing changes 
the x coordinates of all controls in the group except the leftmost and 
rightmost controls, spacing the other controls of the group evenly in the 
horizontal direction. The vertical spacing tool does the same thing for the 
y coordinates, spacing the controls evenly in the vertical direction. In the 
example shown on the next page, the vertical spacing tool-to which the 
editor gives the confusing name of Space Down-repositions only the 
Apply button; the OK and Cancel buttons remain in place. 

213 



Editors 

214 

Click the Space Down tool ... 

... to change this ... ... to this. 

Size-adjustment tools 
The size-adjustment tools act on a selected group of two or more controls. 
Size adjustment does not move the control windows, but only changes the 
height and/ or width of the selected controls to match the dimensions of 
the dominant control in the selection: 

Click the Make Same Width tool ... 

... to change this ... ... to this. 

Control Properties 
Each control placed in the dialog work area has a Properties dialog box in 
which you can specify an identifier and value for the control, type in a 
label, and set style flags appropriate for the control window. To expose a 
control's Properties box, right-click the control window in the work area 
and choose Properties from the pop-up context menu. You can also select 
a control and click the Properties command on the View menu. The 



Figure 5-9. 

5: Dialog Boxes and Controls 

Properties dialog differs slightly in appearance and content for each con­
trol type; Figure 5-9 shows what it looks like for a check box control. 

P'. Vi1ible 

JJ Dis,gbled 

r ,!lroup 

R: TabstoQ 

J;.9ption: j&~-e~, 
f'""'. .tielplD 

The Properties dialog for a check box control. 

In Chapter 4 you may have become accustomed to double-clicking an item 
in the Visual C++ graphics editor to call up an appropriate Properties box, 
but the technique does not have the same effect in the dialog editor. 
Double-clicking a control window in the dialog work area can have one 
of three results, depending on the circumstances and the control type: 

Cl If the control accepts user input, double-clicking the control win­
dow invokes a dialog titled Add Member Function that lets you 
quickly add a stub handler function for the control. 

• Double-clicking a static control or the dialog window itself opens 
the dialog class source file in the text editor and positions the caret 
at the class constructor. 

• If the project has no Class Wizard database CL W file (described in the 
next chapter), double-clicking a control other than a static control 
has no effect. This behavior differs from version 5, in which double­
clicking without a CLW file displays the control's Properties box. 

If the control accepts user input, such as a check box or slider control, 
assign a unique mnemonic key when you type the control caption. A mne­
monic key enables the user to move input focus to the control by pressing 
a key on the keyboard. The previous chapter described mnemonic keys for 
menu commands, and mnemonics for control labels are no different. Just 
precede any character in the caption with an ampersand (&) to identify the 

215 



Editors 

216 

character as the control's mnemonic. The check box in Figure 5-9, for 
example, has the caption "&Red," in which the mnemonic is the letter "R." 

For a slider control or a text entry control such as an edit box, assign its 
mnemonic key in the static control label, as this simple example shows: 

In this case, pressing Alt+D sets focus at the Date edit box, and pressing 
Alt+A sets focus at the Amount edit box. (The Alt key is optional when 
neither edit box has focus.) For the mnemonics to work, each edit box 
must follow its static control label in sequential tabbing order, which is 

discussed next. 

Tabbing Order 
Mnemonics aren't the only way to give input focus to a particular control. 
The user can click the control with the mouse or tab to the control by 

repeatedly pressing the Tab key. Each time the system senses the Tab key, 
it moves input focus to the next control in a hierarchy called the tabbing 

order. 

The tabbing order is implied by the sequence of control statements in the 
dialog script of the RC file. For instance, when the dialog defined in the 
script below first appears, the IDC_COMB01 combo box control has 
the input focus. Pressing the Tab key moves input focus from the IDC_ 
COMB01 control to the other controls in the order shown. When the 
ID_CANCEL button has focus, pressing Tab again cycles the focus back 
to the beginning of the list to IDC_COMB01: 

IDD_DEMO_DLG DIALOG 0, 0, 247, 65 
STYLE DS_MODALFRAME I DS_3DLOOK I WS_POPUP I WS_VISIBLE I WS_CAPTION 
CAPTION "Demo Dialog" 
FONT 8, "MS Sans Serif" 
BEGIN 



5: Dialog Boxes and Controls 

END 

COMBOBOX IDC_COMBOl,15,15,159,80,WS_VSCROLL I 
WS_TABSTOP I CBS_DROPDOWN I CBS_AUTOHSCROLL 

CONTROL "and", IDC_RADIOl, "Button", BS_AUTORADIOBUTTON 
WS_GROUP I WS_TABSTOP,14,39,25,10 

CONTROL "or", IDC_RADI02, "Button", BS_AUTORADIOBUTTON I 
WS_TABSTOP,44,39,20,10 

COMBOBOX IDC_COMB02,69,39,106,80,WS_VSCROLL I WS_GROUP 
WS_TABSTOP I CBS_DROPDOWN I CBS_AUTOHSCROLL 

DEFPUSHBUTTON "OK",IDOK,196,12,44,17,WS_GROUP 
PUSHBUTTON "Cancel",ID_CANCEL,196,34,44,17,WS_GROUP 

The dialog editor insulates you from the details of what goes on in the RC 
file, but you still have to worry about tabbing order in a dialog that queries 
for user input. Checking the order is usually the last thing you do in the 
editor before hitting the test switch on the Dialog toolbar. Choose Tab 
Order from the Layout menu to display your dialog's current tabbing 
order, which appears as sequential numbers adjacent to the dialog con­
trols. Here's what the work area looks like for the dialog defined in the 
preceding script: 

lfl andll or."······· 

To revise the tabbing order, click each control in sequence beginning with 
the first control-that is, the control that you want to have input focus 
when the dialog first appears. If the existing order is correct only up to a 
certain point, you might find it easier to just change the part that's wrong. 
Press the Ctrl key while clicking the control window that has the highest 
correct tabbing order number, then release the Ctrl key and continue click­
ing controls in the desired sequence until the order is correct. For exam­
ple, to change the order of controls 4 through 6, click control 3 with the 
Ctrl key pressed, then in sequential order click the controls you want to 
have tabbing numbers of 4, 5, and 6. Press the Enter key to set the order 
and return to editing mode. 

217 



Editors 

Correct tabbing order is especially important for controls that appear in 
groups, such as radio buttons and check boxes. Chapter 6, ClassWizard, 
briefly returns to the subject of tabbing order and the role it plays in mak­
ing a group of radio buttons mutually exclusive so that setting one button 
in the group automatically clears the others. 

Example 1: Revising an About Dialog 

Figure 5-10. 

218 

Here's an easy example that demonstrates some of the capabilities of the 
dialog editor. Say you want to revise the About box introduced earlier in 
the chapter for the fictitious Demo project. Figure 5-10 shows one possi­
bility, a somewhat more elaborate About box for an equally fictitious 
program called SpiffyDemo. 

The revised About box. 

The bitmap logo was previously created in the Visual C++ graphics editor 
and saved to a file called XYZCorp.bmp. Other than that, the changes 
were made entirely in the dialog editor in only a few steps and about five 
minutes of work. If you would like to try revising the About box yourself, 
begin with a throw-away AppWizard project called Demo. Then follow 
the steps outlined here: 

1. Create the logo-Click Resource on the Insert menu and choose 
Bitmap to launch the Visual C++ graphics editor. Design the logo 
bitmap and choose Properties from the View menu to give the new 
bitmap resource an identifier and optionally specify the filename. 
Click Save on the File menu when you are finished. 



Picture 

5: Dialog Boxes and Controls 

2. Launch the dialog editor and load the About box-In the 
Resource View pane of the Workspace window, double-click IDD_ 
ABOUTBOX to start the dialog editor. 

3. Resize the dialog-Select the dialog window by clicking anywhere 
in the gray dialog work area that isn't occupied by a control and 
drag the bottom sizing handle to enlarge the window. 

4. Change the caption-With the dialog window selected, click the 
Properties command on the View menu and rewrite the caption in 
the Dialog Properties box. 

5. Add the logo-Select the MFC icon in the dialog work area and 
delete it by pressing the Del key, then replace it with the new bit­
map created in Step 1 that represents the company logo. To add a 
bitmap to a dialog, click the Picture button on the Controls toolbar 
and drop the control anywhere in the dialog-the position need not 
be exact. With the picture control selected, use the Properties com­
mand to invoke the Picture Properties box for the new picture con­
trol. (To select hollow controls like pictures, click the frame that 
surrounds the control, because the editor does not recognize a click 
inside the frame as targeting the control.) Choose Bitmap from the 
list in the Type box and type the bitmap identifier in the Image box. 
Be sure to type the same identifier given to the bitmap in Step 1. 

You can add an icon to the dialog in the same way by selecting Icon 
rather than Bitmap in the Type box. 

6. Edit the dialog text-Each of the two lines of text in the dialog is a 
static control. Invoke the Text Properties box for each static control 
and revise the text in the Caption box. In the above example, "Demo" 
was changed to SpiffyDemo and the copyright line expanded to 
include XYZ Corporation. Replace the "(C)" copyright symbol in the 
original text with \251, which is the octal code for the© ANSI char­
acter. (For a list of other ANSI characters that you can add to a text 
control in the same manner, refer to Appendix A.) 

219 



Editors 

Static Text 

220 

7. Add the phone numbers-This step requires the Group Box tool and 
the Static Text tool from the Controls toolbar. First, click the Group 
Box button and drag its image into the lower blank area of the dia­
log. Enlarge it as required, then click the Properties command again 
to call up the Group Box Properties dialog and change the caption to 
"Phone Numbers." Next, click the Static Text button and drag it 
inside the group box in the dialog. With the static control window 
still selected, make two more copies of it by dragging the control a 
short distance with the Ctrl key pressed. Drop the copies onto sepa­
rate lines, one slightly beneath the other. Alignment isn't important 
at this stage because it's easily taken care of later. 

By default, a static control contains the single word "Static." Bring 
up the Text Properties dialog for each of the three static controls and 
in the Caption box, replace "Static" with the new text and telephone 
number. Clicking the pushpin button at the upper-left corner of the 
Properties dialog keeps it from disappearing between selections. 

The \t tab character helps to space and align telephone numbers in 
the three static controls, as in "Sales:\t\t\t(206) 555-1212." How­
ever, typing the \ t character in the Caption box extends the static 
control only a single space, so text following the \t character might 
not appear in the control window. To see the text, you must lengthen 
each static control manually by dragging the control's right sizing 
handle. 

8. Align the controls-Turn on the grid and drag the controls into 
position using the mouse. The three text controls with telephone 
numbers should be aligned and evenly spaced. Set the first line 
where you want it, then select all three lines and click both the 
Align Left and Space Down buttons on the Dialog toolbar: 



5: Dialog Boxes and Controls 

To add balance to the dialog, the above example also enlarges the 
OK button. Just click the button to select it and drag the sizing han­
dles as desired. 

9. Test-Click the test drive switch on the Dialog toolbar to see what 
the finished product looks like. To return to editing mode, click the 
dialog's OK button or press Esc. 

When you save your work, the dialog editor overwrites the original script 
in the RC file with the new script for the revised About box: 

IDD_ABOUTBOX DIALOG DISCARDABLE 0, 0, 217, 129 
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU 
CAPTION "About XYZ Spi ffyDemo" 
FONT 8, "MS Sans Serif" 
BEGIN 

END 

CONTROL 

LTEXT 

LTEXT 

DEFPUSHBUTTON 
GROUPBOX 
LTEXT 

LTEXT 

LTEXT 

IDB_XYZCORP, IDC_STATIC, "Static", 
SS_BITMAP,17,16,85,10 
"SpiffyDemo Version 1.0", 
IDC_STATIC,21,33,119,8,SS_NOPREFIX 
"Copyright \251 1998, XYZ Corporation", 
IDC_STATIC,21,45,119,8 
"OK", IDOK, 166, 15, 32, 40, WS_GROUP 
"Phone Numbers", IDC_STATI C, 17, 65, 181. 56 
"Technical Support:\t(206) 555-1212", 
IDC_STATIC,33,82,140,8 
"Customer Service:\t(206) 555-1212", 
IDC_STATIC,33,94,142,8 
"Sales:\t\t\t(206) 555-1212", 
IDC_STATIC,33,106,141,8 

The first CONTROL statement of the script refers to the IDB_XYZCORP 
bitmap, which contains the company logo created with the graphics editor 
in Step 1. The resource compiler knows where to find the IDB_XYZCORP 
bitmap because the graphics editor recorded the filename elsewhere in the 
RC file: 

IDB_XYZCORP BITMAP MOVEABLE PURE "res\\xyzcorp.bmp" 

Example 2: A Simple Modeless Dialog 
An About box is a modal dialog, refusing to let the user continue working 
in the program until clicking OK to close the dialog. A modeless dialog, 

221 



Editors 

222 

on the other hand, lets the user switch to another window in the same 
program and resume working. The dialog remains on the screen until 
dismissed. 

Whether your dialog ultimately is modal or modeless depends solely on 
how your program creates the dialog at run time, not on how you design it 
in the dialog editor. You design modal and modeless dialogs the same way 
with one exception: a modeless dialog must have a style flag of WS_ VISI­
BLE. Set the flag by right-clicking in the dialog work area and choosing 
Properties from the context menu to invoke the Dialog Properties box, 
then turn on the Visible check box in the More Styles tab: 

! •. ;!~i:!;·uc~·;~~~~,;:: Jr;~s.~1~~.::·11 • ~1~~~· s~1~;·: ·1.;·E~J~~~~~~,h1~E.·1·.· ... '; .... 
!'..F[j. '.sys~~~ ~.Qd~1 
Iii t~A.b~olute ar~n 
1 insiW~~~~J .< . · 

l{:f p• Fo~te~fHel(; 
r---------------------....__. 

This adds the WS_ VISIBLE flag to the dialog script's STYLE statement in 
the RC file. 

A C program creates a modeless dialog by calling the CreateDialog API 
function or one of its variations, such as CreateDialoglndirect: 

hDlg = CreateDialog( hlnst, MAKEINTRESOURCE (IDD_DIALOGl), 
hwnd, DlgProc ); 

In this example, hlnst is the program's instance handle, IDD_DIALOGl is 
the identifier for the dialog script in the RC file, hwnd is the handle of the 
dialog's owner, and DlgProc is a pointer to the procedure that runs the 
dialog and receives its messages. 

AC++ program using MFC creates a modeless dialog with the CDialog:: 

Create function. The following lines assume the CMyDlg class is a deriva­
tive ofMFC's CDialog: 

CMyDlg* pDlg = new CMyDlg; 
pDlg->Create( IDD_DIALOGl, this ); 



Figure 5-11. 

5: Dialog Boxes and Controls 

There is an important difference between CDialog::Create and CDialog:: 

DoModal. Because the latter function creates a modal dialog, it does not 
return until the dialog is closed. Create returns immediately, allowing the 
program to continue while the modeless dialog remains on the screen. The 
dialog exists until the program destroys it: 

delete pDlg; 

The Color program presented in this section displays a modeless dialog 
with three slider controls (also called trackbars) that adjust the red, green, 
and blue components of the main window's background color. As you 
move a slider "thumb" with the mouse or arrow keys, the main window 
changes color by taking on the new color component, which can vary in 
value from 0 through a high-intensity 255. With adequate video hardware, 
you can in theory display any of 16,777 ,216 (2563) different colors by 
moving the slider bars. Figure 5-11 shows the program window with the 
modeless Color dialog displayed. 

Color is an MFC program, but was not created with App Wizard. (The next 
section shows how to create a new dialog in an App Wizard application.) 
The Color project begins with the selection of the Win32 Application icon 
in the Projects tab of the New dialog. Type Color as the project name and 

The Color program. 

223 



Editors 

224 

click OK. Start the dialog editor by clicking Resource on the Insert menu 
and double-clicking Dialog in the list of resource types. The new dialog 
starts out with default OK and Cancel buttons; select the buttons in the 
work area and press the Del key to delete them. 

Color's dialog contains only three different control types, created with the 
Static Text, Button, and Slider tools from the editor's Controls toolbar. 
The slider bars form three distinct lines in the dialog, labeled Red, Green, 
and Blue in Figure 5-11. The dialog design calls for creating the Red (top) 
line first by placing a slider control between two static text controls, all of 
which are then aligned and spaced. Initialize captions for the text controls 
to Red and x in the Text Properties dialog. The x serves as a placeholder 
that Color overwrites at run time with the current value of the slider 
thumb position. Give the slider control a static-edge border and a pointed 
thumb button. These styles are set in the Slider Properties dialog, invoked 
by right-clicking the slider control window in the dialog and choosing 
Properties: 

1. In the Styles tab, select Bottom/Right in the Point box for the thumb 
style. 

2. In the Extended Styles tab, click the Static Edge check box. 

The Green and Blue lines are just clones of the Red line, copied by select­
ing the three controls of the Red line as a group, and then dragging the 
group with the Ctrl key pressed as explained earlier in the chapter. 

At this point, the dialog editor work area looks like the one shown on the 
next page. Finishing the dialog requires only changing the second and 
third captions to Green and Blue, aligning the controls, and adding an OK 
push button at the bottom of the dialog window. Assign the button an 
identifier symbol of IDOK, and set the Default Button check box in the 
Styles tab of the button's Properties dialog. 



5: Dialog Boxes and Controls 

Red l ;Ji----------:; 

Red 

When you duplicate a selected control, the dialog editor automatically 
assigns the new control a different identifier symbol, ensuring that each 
control in the dialog is uniquely identified. The new symbol has the same 
name as the original with an added numeral. For example, the Red slider 
control in the first line was given an identifier of IDC_SLIDE_RED. When 
you create the Green and Blue lines by copying the Red line, the editor 
assigns identifiers named IDC_SLIDE_REDl and IDC_SLIDE_RED2 to the 
new controls. (In the Color program, these identifiers were later changed 
to IDC_SLIDE_GREEN and IDC_SLIDE_BLUE in the Properties box for 
each control.) When you save the dialog, the editor writes #define state­
ments for the new identifiers in the Resource.h file. The results are sum­
marized here: 

Control Identifiers in the Color Dialog 

Top line Middle line Bottom line 

Color static control IDC_STATIC IDC_STATIC IDC_STATIC 

Slider control IDC_SLIDE - IDC_SLIDE - IDC_SLIDE -
RED GREEN BLUE 

x static control IDC_STATIC - IDC_STATIC - IDC_STATIC -
RED GREEN BLUE 

The captions for the Color static controls (the leftmost controls) should be 
Red, Green, and Blue. The caption of the rightmost static control is x for 
all three lines. 

225 



Editors 

Listing 5-1. 

226 

Color's source code requires only one main file, two header files named 
Resource.hand Color.h, and a resource script file named Color.re that 
defines the dialog. A brief synopsis of the program begins on page 232, 

following the source listing (Listing 5-1). 

Source files for the Color program. 

Resource.h 

II ************************************************************** 
II 
II Resource.h 
II 
II ************************************************************** 

#define I DR_MAI N FRAME 128 

#define IOD_ABOUTBOX 100 
#define IDD_COLOR_DIALOG 101 
#define IDC_ST A TI C_RED 102 
/fdefi ne IDC_STATIC_GREEN 103 
#define IDG_STA TI C_B LUE 104 
1/defi ne IDG_SLIOE_RED 105 
#define I OC_SLI DE_GREEN 106 
//define IDC_S LID E_B LUE 107 
#define IDM_COLOR 200 

Color.re 

II ************************************************************** 
II 
II Color.re 
II 
II ************************************************************** 

#include "resource.h" 
//include "afxres.h" 

AFX_IOI_STD_FRAME 

IDR_MAINFRAME MENU 
BEGIN 

POPUP "&Options" 
BEGIN 

MENUITEM "&Color", 
MENUITEM SEPARATOR 

ICON "res\\Color.ico" 

IDM_COLOR 



5: Dialog Boxes and Controls 

END 

MENUITEM "E&xit", IO_APP_EXIT 
END 
POPUP "&Help" 
BEGIN 

MENUITEM "&About Color ... ", 
END 

IO_APP _ABOUT 

IDD_ABOUTBOX DIALOG 0, 0, 240, 65 
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION 
CAPTION "About Color" 

I WS_SYSMENU 

FONT 8, "MS Sans Serif" 
BEGIN 

END 

ICON 
LTEXT 
LTEXT 

LTEXT 

DEFPUSHBUTTON 

AFX_IDI_STD_FRAME,IDC_STATIC,10,22,20,20 
"Color Version l.0",!Dc_STATIC,45,10,115,8 
"""Microsoft Visual C++ Programmer's Gui de""", 
IDC_STATIC,45,26,140,8 
"Copyright \251 1998, Beck Zaratian", 
IDC_STATIC,45,42,115,8 
"OK",IDOK,195,10,35,40,WS_GROUP 

IDD_COLOR_DIALOG DIALOGEX 0, 0, 186, 132 
STYLE WS_POPUP I WS_VISIBLE I WS_CAPTION 
CAPTION "Col or" 

I WS_SYSMENU 

FONT 8, "MS Sans Serif" 
BEGIN 

END 

LTEXT 
LTEXT 
LTEXT 
CONTROL 

CONTROL 

CONTROL 

LTEXT 
LTEXT 
LTEXT 
DEFPUSHBUTTON 

"Red", IDC_STATIC, 16, 15, 14. 8 
"Green".IDc_sTATIC,16,49,20,8 
"Blue",IOC_STATIC,16,83,14,8 
"Sl i derl", rnc_SLIDE_RED, "msctl s_trackbar32", 
TBS_NOTICKS I WS_TABSTOP,42,10,106,21. 
WS_EX_STA TI CED GE 
"Sl i derl". rnc_su DE_GREEN, "msctl s_t rackba r32", 
TBS_NOTICKS I WS_TABSTOP,42,44,106,21. 
WS_ELSTATICEDGE 
"Sl i derl". IOC_SLIDE_BLUE, "msctl s_trackbar32", 
TBS_NOTICKS I WS_TABSTOP,42,78,106,21, 
WS_EX_STATICEDGE 
"x", rnc_srATic_Rrn, 158, 15 .12. 8 
"x",IOC_STATIC_GREEN,158,49,12,8 
"x",IDC_STATIC_BLUE,158,83,12,8 
"OK",IDOK,68,111,50,14 

(continued) 

227 



Editors 

228 

Listing 5-1. continued 

Color.h 

II ************************************************************** 
II 
II Color.h 
II 
II ************************************************************** 

#include "Resource.h" 

class CColorApp : public CWinApp 
{ 

public: 
virtual BOOL Initinstance(); 

} ; 

lllllllllllllllllllll!!l/lll/llll/l/lll!lll/l!lllllllllllllllll/I 
II CColorDlg dialog 

class CColorDlg : public CDialog 
{ 

public: 
int 
BOOL 

nColor[3]; 
bCreate: 

CColorDlg (); 

protected: 
virtual 
vi rtua 1 
afx_msg 
afx_msg 

BOOL 
void 
void 
void 

OninitDialog (); 
OnOK (); 
OnCancel (): 
OnHScroll( UINT nCode, UINT nPos, 

CScrollBar* pScroll ); 

DECLARE_MESSAGE_MAPO 
} : 

llllll/l!l/J///!lll/llll!llll//llll!/lllll/lll/lllll/llllllllll!I 
II CMainFrame 

class CMainFrame public CFrameWnd 
{ 

pub 1; c: 
CColorDlg* pColorDlg: 

CMainFrame(); 



5: Dialog Boxes and Controls 

-CMai nFrame(); 

protected: 
afx_msg void OnAbout(); 
afx_msg BOOL OnEraseBkgnd( CDC* pDC ); 
afx_msg void OnColor(); 
DECLARE_MESSAGE_MAP() 

} ; 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllll/111111 
II CAboutDlg dialog 

class CAboutDlg : public CDialog 
{ 

public: 
CAboutDlg(); 

} ; 

CAboutDlg::CAboutDlg() CDialog( IDD_ABOUTBOX) 
{ 
} 

Color.cpp 

II ************************************************************** 
II 
II Color.cpp 
II 
II ************************************************************** 

#define VC_EXTRALEAN 
#include <afxwin.h> 
#include <afxcmn.h> 
1,!include "Color.h" 

CColorApp theApp; 

BOOL CColorApp::Initinstance() 
{ 

} 

m_pMainWnd = new CMainFrame; 
m_pMainWnd->ShowWindow( m_nCmdShow ); 
m_pMainWnd->UpdateWindow (); 

return TRUE; 

llllllllllllllllllllllllllllllllllllllllllllllllllllllllll/111111 
(continued) 

229 



Editors 

230 

Listing 5-1. continued 

II CMainFrame 

BEGIN_MESSAGE_MAP (CMainFrame, CFrameWnd) 
ON_COMMAND (IDM_COLOR, OnColor) 
ON_COMMAND (ID_APP_ABOUT, OnAbout) 
ON_WM_ERASEBKGND () 

END_MESSAGE_MAP () 

CMainFrame::CMainFrame () 
{ 

} 

pColorDlg = new CColorDlg; 

Create( NULL, "Col or", WS_OVERLAPPEDWINDOW, rectDefault, 
NULL, MAKEINTRESOURCE (IDR_MAINFRAME) ); 

CMainFrame::~CMainFrame () 
{ 

delete pColorDlg; 
} 

void CMainFrame::OnColor() 
{ 

} 

if (pColorDlg->bCreate) 
pColorDlg->SetFocus(); 

else 
{ 

II If the dialog already exists, 
II give it focus 
II Otherwise, create it 

if (pColorDlg->Create( IDD_COLOR_DIALOG, this )) 
pColorDlg->bCreate = TRUE; 

} 

BOOL CMainFrame::OnEraseBkgnd( CDC* pDC ) 
{ 

} 

CBrush brush; 
CRect rect; 
COLORREF rgbBackGnd = RGB ((BYTE) pColorDlg->nColor[0], 

(BYTE) pColorDlg->nColor[lJ, 
(BYTE) pColorDlg->nColor[2]); 

GetClientRect( &rect ); 
brush.CreateSolidBrush( rgbBackGnd ); 
pDC->FillRect( rect, &brush ); 

return TRUE; 



5: Dialog Boxes and Controls 

void CMainFrame::OnAbout() 
{ 

} 

CAboutDlg aboutDlg; 
aboutDlg.DoModal(); 

llllllllllllllllllllll/llllllllllllllllllllllllll/lllllllllll/111 
II CColorDlg dialog 

BEGIN_MESSAGE_MAP (CColorDlg, CDialog) 
ON_WM_HSCROLL () 

END_MESSAGE_MAP () 

CColorDlg::CColorDlg () 
{ 

nColor[0] = 0; 
nColor[l] = 128; 
nColor[2J 0; 

II Initial color is 
II medium-intensity green 

bCreate = FALSE; II Haven't created the dialog yet 
} 

BOOL CColorDlg::OninitDialog () 
{ 

CSliderCtrl* pSlide[3J; 
CString szColorValue; 
int i; 

for (i=0; i < 3; i++) 
{ 

pSlide[i] = (CSliderCtrl*) GetDlgitem(IDC_SLIDE_RED + i); 
pSlide[iJ->SetRange( 0, 255 ); 
pSlide[iJ->SetPos( nColor[iJ ); 
szColorValue.Format( "%d", nColor[iJ ); 
SetDlgitemText( i + IDC_STATIC_RED, szColorValue ); 

} 

Seticon( AfxGetApp()->Loadicon( AFX_IDI_STD_FRAME ), FALSE ); 

return TRUE; 
} 

void CColorDlg::OnHScroll( UINT nCode, UINT nPos, 
CScrollBar* pScroll ) 

{ 

CSliderCtrl* pSlide = (CSliderCtrl*) pScroll; 
CString szColorValue; 

(continued) 

231 



Editors 

232 

Listing 5-1. continued 

int i = pSlide->GetDlgCtrlID () - IDC_SLIDE_RED; 

} 

nColor[iJ pSlide->GetPos (); 
szColorValue.Format( "%d", nColor[i] ); 

II Slider position is 
II component 0-255 

II Write current component value in the "x" static control 
SetDlgltemText( i + IDC_STATIC_RED, szColorValue ); 

AfxGetMainWnd()->Invalidate (); 

void CColorDlg::OnOK () 
{ 

OnCancel (): II Close dialog when OK clicked 
} 

II Close on OK, Esc, and dialog's Close command 
void CColorDlg::OnCancel () 
{ 

if (DestroyWindow ()) 
((CMainFrame*) AfxGetMainWnd())->pColorDlg->bCreate FALSE; 

} 

All of the program's important work is performed by two classes, CMain­

Frame for the main window and a CDialog derivative named CColorDlg 

that drives the modeless dialog. The CColorDlg constructor initializes an 
array of color values for the main window's background color, which 
begins as medium-intensity green. Since the red, green, and blue compo­
nents of the window background color can vary in value from 0 through 
255, the OninitDialog function sets each slider scroll range from 0 through 
255. This means that an integer number in that range represents the posi­
tion of a thumb button at any moment, conveniently determining the cur­
rent value of the color component. 

When the user moves a slider thumb, the CColorDlg::OnHScroll function 
gets control and figures out which slider is being moved by calling Get­

DlgCtrlID. The function then calls GetPos to get the new thumb position, 
writes that value to the nColor array and to the static text control in the 
dialog, and calls the Invalidate function. 



5: Dialog Boxes and Controls 

The call to Invalidate causes the operating system to send the main win­
dow a WM_ERASEBKGND message to tell the window to repaint itself. 
This message gives an application like Color a chance to paint its own 
background. Most applications ignore the WM_ERASEBKGND message, 
in which case Windows paints the window with whatever default back­
ground color the program specified when it created the window (usually 
white). Color.cpp traps the WM_ERASEBKGND message in its CMain­
Frame::OnEraseBkGnd function, which declares a COLORREF object 
based on the current red, green, and blue color components stored in the 
nColor array: 

COLORREF rgbBackGnd RGB ((BYTE) pColorDlg->nColor[0], 
(BYTE) pColorDlg->nColor[lJ, 
(BYTE) pColorDlg->nColor[2]); 

OnEraseBkGnd then creates a brush from rgbBackGnd, paints the window 
with it, and returns a value of TRUE. The TRUE return value tells the 
operating system it should not clear the window with the default color 
because the application has already taken care of repainting the 
background. 

All this explains why the program takes the unusual step of creating the 
modeless dialog object before the main window: 

CMainFrame::CMainFrame () 
{ 

} 

pColorDlg =new CColorDlg; 

Create( NULL, "Col or", WS_OVERLAPPEDWINDOW, rectDefault, NULL, 
MAKEINTRESOURCE (IDR_MAINFRAME) ); 

The operating system sends a WM_ERASEBKGND message immediately 
after the main window comes into existence, so creating the CColorDlg 
object first ensures that the OnEraseBkGnd function reads an nColor array 
with valid color values. 

233 



Editors 

234 

Example 3: Adding a Dialog 
to an AppWizard Program 

Figure 5-12. 

If you prefer to begin your projects with the help of App Wizard, the Color 
program presented in the previous section may not seem relevant at first 
glance. Actually, it is relevant-adding a new dialog to a program involves 
the same steps regardless of whether App Wizard created the program. But 
App Wizard produces code of a rigorous form that can be a little difficult 
to match against the compact style of Color.cpp. To show you exactly 
what is involved in adding a new dialog to an AppWizard program, this 
section demonstrates the necessary steps using an example App Wizard 
program called MfcTree. 

The MfcTree dialog shown in Figure 5-12 is nothing fancy-just a tree 
view of some MFC classes and an OK button. But it serves well for the 
purposes of illustration and will be improved upon later in the chapter 
and again in Chapter 13. 

~ .. c.ontrol bars 
i !±l· CControlB ar 
~ .. Controls 
S·· Dialog boxes 
; B .. CDialog 

$·· CCommonD ialog 
1 .... COlePropert.vPage 
!.. .. CPropert.vP age 

~ .. Frame windows 
~ .. Other windows 

The MfcTree program. 

The program is created in five steps: 

1. Run AppWizard to create the MfcTree project. 

2. Create the dialog resource in the dialog editor. 

3. Add source files to the project for the new dialog class. 



5: Dialog Boxes and Controls 

4. Revise the menu. 

5. Add required source code to the project source files. 

We'll take these steps one at a time. 

Step 1: Run AppWizard to Create the MfcTree Project 
Click New on the File menu and select the Projects tab in the New dialog. 
Choose the MFC App Wizard (exe) icon, name the new project MfcTree, 
and then click the OK button to run AppWizard. Accept the App Wizard 
defaults with these exceptions: select the Single Document Interface in 
Step 1 and clear the check boxes for docking toolbar and print support in 
Step 4. To keep filenames short on the companion CD, the default 
MfcTreeDoc and MfcTree View filenames were changed to MfcDoc and 
MfcView, but this step is entirely optional. 

Step 2: Create the MfcTree Dialog 
Now that MfcTree is an open project, we can design its dialog resource. 
Launch the dialog editor by clicking Resource on the Insert menu and 
double-clicking Dialog in the list of resource types. Select the default Can­
cel button in the work area and press the Del key to remove the button. 
Right-click anywhere in the dialog work area and choose Properties from 
the context menu to invoke the Dialog Properties box. Change the dialog 
caption to MFC Tree and the dialog identifier to IDD_MFC_DIALOG. 

Lf~:=k Adding the tree v~ew contr~l is next. From the Co~trols too~bar, drag the 
-~1 I Tree Control tool mto the dialog work area and resize the dialog work area 

_TreeControl_ d l d . d Cl' kP . h v· · k h an contra as esue . ic roperhes on t e iew menu to mvo e t e 
Tree Control Properties box and change the identifier symbol to IDC_ 
MFC_TREE. In the Styles tab, click the Has Buttons, Has Lines, and Lines 
At Root check boxes, as shown here: 

235 



Editors 

236 

These style changes add small plus and minus icons to the list view 
which, when clicked, collapse or expand levels in the list hierarchy. Move 
the OK button to the bottom of the dialog and center both controls using 
the horizontal spacing tool described earlier in the chapter. The dialog 
now looks like this in the editor work area: 

f? .. E.xpanded Node 
I ~ .. E,xpanded Node 

I l i::::~::: 
j ffl· Collapsed Node 
! .... Leaf 

Choose Save from the File menu to save the new dialog script to the 
MfcTree.rc file. Visual C++ automatically adds #define statements for the 
new identifiers to the Resource.h file. Close the dialog editor by clicking 
the Close command on the File menu. 

Step 3: Add Source Files for the CMfcD/g Dialog Class 
We now have a new dialog resource but it needs a class derived from 
CDialog to run it. In the next chapter we'll see how to use Class Wizard to 
generate a skeleton dialog class and automatically add its files to the pro­
ject, but for now we can do the same thing using the text editor. Create 
source files named MfcDlg.h and MfcDlg.cpp to contain the new CMfcDlg 

dialog class (Listing 5-2). We need only these bare files at this point to 
add the CMfcDlg class to the project. We'll add source code to the files 
in Step 5. 

To create new source files from scratchfor an open project like MfcTree, 
rest the cursor on the Add To Project command on the Project menu, then 
click New on the secondary menu that appears. Select the type of file you 
want to create-either a header file or a source implementation file-and 
enter a filename. Click OK to launch the text editor, which presents a 
blank document window. 



Listing 5-2. 

5: Dialog Boxes and Controls 

Skeleton source files for the CMfcDlg class. 

MfcDlg.h 

II ************************************************************** 
II 
II Mf cDl g. h 
II 
II ************************************************************** 

class CMfcDlg : public CDialog 
{ 

public: 
CMfcDlg( CWnd* pParent NULL); 

protected: 
virtual BOOL OninitDialog(); 

} : 

MfcDlg.cpp 

II ************************************************************** 
II 
II MfcDlg.cpp 
II 
II ************************************************************** 

lh ncl ude "stdafx. h" 
/ti ncl ude "Mf cTree. h" 
lh ncl ude "MfcDl g. h" 

CMfcDlg::CMfcDlg( CWnd* pParent) 
CDialog( IDD_MFC_DIALOG, pParent 

{ 

} 

BOOL CMfcDlg::OninitDialog() 
{ 

return TRUE: 
} 

If you type the two source files in the text editor, save them to the proj­
ect's folder when you are finished. As an alternative to typing, you can 
copy both files in their complete form from the Chapter.05\MfcTree 
folder on the companion CD. Copying the files requires you to add them 

237 



Editors 

238 

manually to the project. Choose Add To-Project and click Files on the 
pop-up secondary menu, then double-click the MfcDlg.cpp file in the list 
of files to add it to the project: 

B Mfctree 

It isn't necessary to add the MfcDlg.h file in the same way, because Vis­
ual C++ recognizes the header file as a dependency of MfcDlg.cpp. 

Step 4: Modify the Menu 
MfcTree requires a menu command to invoke the dialog but does not need 
all the other commands that AppWizard puts on the menus. Using the 
Visual C++ menu editor described in Chapter 4, revise MfcTree's menus to 
look like this: 

Open the resource in the menu editor by double-clicking the IDR_MAIN­
FRAME menu identifier in the Resource View pane of the Workspace win­
dow. Double-click the MFC Tree menu item in the menu editor to display 
the Menu Item Properties box. Type in IDM_OPTIONS_MFC as the item's 
identifier and press the Enter key. 

Step 5: Add Required Source Code 
If you typed the MfcDlg.cpp file as listed in Step 3, the file contains only a 
class constructor and a stub function called OnlnitDialog. The Onlnit­

Dialog function needs to initialize the tree view control with the shaded 
code shown on the following pages. As you see, it can take a lot of instruc­
tions to initialize a tree view. If you are following these steps by building 
MfcTree yourself, there is no need to type in all the lines. Just type the 



5: Dialog Boxes and Controls 

first group or cut and paste the code from the MfcDlg.cpp source file in 
the Chapter.05 \MfcTree folder of the companion CD. 

The OnlnitDialog function initializes a pointer named pTree that points to 
the dialog's tree view control, identified as IDC_MFC_TREE. The function 
then repeatedly calls the CTreeCtrl:Insertltem function to add to the con­
trol a hierarchical list containing some of the MFC classes derived from 
CWnd. The second parameter for Insertltem identifies the item's parent. 
An item is inserted into the list one level lower in the hierarchy than the 
parent. The second parameter is either the HTREEITEM value returned by 
a previous call to Insertltem for the parent level or, if there is no parent 
level, the value TVI_ROOT. The TVI_SORT flag instructs the tree view 
control to sort the root items in alphabetical order: 

BOOL CMfcDlg::OninitDialog() 
{ 

HTREEITEM hRoot, hlevell, hlevel2, hlevel3, hlevel4, hlevel5: 
CTreeCtrl* pTree = (CTreeCtrl*) GetDlgitem( IDC_MFC_TREE ); 

hRoot pTree->Insertitem( "Frame windows". TVLROOT, TVLSORT ) : 
hlevell pTree->Insertitem( "CFrameWnd", hRoot ); 
hlevel2 = pTree->Insertitem( "CMDIChildWnd", hlevell ): 
hlevel2 = pTree->Insertitem( "CMDIFrameWnd", hlevell ); 
hlevel2 pTree->Insertitem( "COlePFrameWnd", hlevell ); 

hRoot pTree->Insertitem( "Control bars". TVLROOT. TVLSORT ) : 
hlevell pTree->Insertitem( "CControlBar", hRoot ); 
hlevel2 pTree->Insertitem( "CDialogBar", hlevell ); 
hlevel2 pTree->Insertitem( "COleResizeBar", hlevell ); 
hlevel2 pTree->Insertitem( "CStatusBar", hlevell ); 
hlevel2 pTree->Insertitem( "CToolBar", hlevell ); 

hRoot pTree-> Insert Item( "Other windows", TV LROOT. TVLSORT ) : 
hlevell pTree->Insertitem( "CPropertySheet", hRoot ); 
hlevell pTree->Insertitem( "CSplitterWnd", hRoot ); 

hRoot pTree->Insertitem( "Dialog boxes", TVI_ROOT, TVLSORT ); 
hlevell pTree->Insertitem( "CDialog", hRoot ); 
hlevel2 pTree->Insertitem( "CCommonDialog", hlevell ): 
hlevel3 pTree->Insertitem( "CColorDialog", hlevel2 ); 
hlevel3 ptree->Insertitem( "CFileDialog", hlevel2 ); 
hlevel3 pTree->Insertitem( "CFindReplaceDialog", hlevel2 ); 
hlevel3 pTree->Insertitem( "CFontDialog", hlevel2 ); 
hlevel3 pTree->Insertitem( "COleDialog", hlevel2 ); 

239 



Editors 

240 

hLevel4 = 
hLevel4 = 
hLevel4 = 
hLevel4 = 
hLevel4 = 
hLevel4 = 
hLevel5 = 
hLevel4 = 
hLevel4 = 
hLevel3 = 
hLevel3 = 
hLevel2 
hLevel2 

hRoot 
hLevell 
hLevel2 
hLevel3 
hlevel3 
hLevel3 
hLevel3 
hLevel2 
hLevel3 
hLevel4 = 
hLevel4 

pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 

pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 

pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 
pTree->Insertitem( 

hRoot 
hLevell 
hLevell 
hLevel2 
hLevell 
hLevell 
hLevell 
hLevell 
hLevell 
hLevel2 
hLevel2 
hLevell 
hLevell 
hLevell 
hLevell 
hLevell 
hLevell 
hLevell 
hlevell 
hLevell 
hLevell 
hLevell 

= pTree->Insertitem( 
= pTree->Insertitem( 

pTree->Insertitem( 

"COl eBusyDi a 1 og", h Leve 13 ) ; 
"COleChangeiconDialog", hlevel3 ); 
"COleChangeSourceDialog", hlevel3 ); 
"COleConvertDialog", hLevel3 ); 
"COleinsertDialog", hLevel3 ); 
"COleLinksDialog", hLevel3 ); 
"COleUpdateDialog", hlevel4 ); 
"COlepasteSpecialDialog", hLevel3 ): 
"COlePropertiesDialog", hlevel3 ); 
"CPageSetupDialog", hlevel2 ); 
"CPrintDialog", hLevel2 ); 
"COlePropertyPage", hLevell ); 
"CPropertyPage", h Leve 11 ) : 

"Views", TVLROOT, TVLSORT ) ; 
"CVi ew", hRoot ) ; 
"CCtrlView", hlevell ); 
"CEditView", hlevel2 ); 
"CListView", hLevel2 ); 
"CRichEditView", hLevel2 ); 
"CTreeView", hLevel2 ); 
"CScrol l View", hLevel 1 ) : 
"CFormView", hLevel2 ); 
"CDaoRecordView", hLevel3 ); 
"CRecordView", hLevel3 ); 

"Controls", TVLROOT, TVI_SORT ); 
"CAnimateCtrl", hRoot ); 
"CButton", hRoot ); 
"CBitmapButton", hLevel 1 ) : 
"CComboBox", hRoot ); 
"CEdit", hRoot ); 
"CHeaderCtrl", hRoot ); 
"CHotKeyCtrl", hRoot ) ; 
"CListBox", hRoot ); 
"CCheckListBox", hLevell ); 
"CDragL i stBox", hLevel 1 ) ; 
"CListCtrl", hRoot ); 
"COleCtrl", hRoot ); 
"CProgressCtrl", hRoot ); 
"CRi chEditCtrl", hRoot ) ; 
"CScrollBar", hRoot ); 
"CSl i derCtrl ", hRoot ) ; 
"CSpinButtonCtrl", hRoot ); 
"CStat i c"·" h Root ) : 
"CStatusBarCtrl", hRoot ) ; 
"CTabCtrl", hRoot ); 
"CToolbarCtrl", hRoot ); 



5: Dialog Boxes and Controls 

} 

hlevell pTree->Insertitem( "CToolTipCtrl", hRoot ); 
hlevel 1 pTree->Insertitem( "CTreeCtrl ", hRoot ) ; 

return TRUE; 

Although the above code will do for now, it's not very efficient. The 
MfcTree3 program introduced in Chapter 13, Customizing Visual C++, 
shows a cleaner method for implementing a series of calls to Insertltem. 

Next, edit the files MfcTree.cpp and MfcTree.h in the text editor to add a 
function called OnMfcTree. The OnMfcTree handler function gets control 
when the user clicks the MFC Tree command on the program's Options 
menu. To add OnMfcTree, open the MfcTree.cpp document by double­
clicking its filename in the File View pane of the Workspace window. 
Insert the following line somewhere near the beginning of the source code: 

#include "MfcDlg.h" 

Also, edit the message map in MfcTree.cpp so that it looks like this: 

BEGIN_MESSAGE_MAP(CMfcTreeApp, CWinApp) 
//{{AFX_MSG_MAP(CMfcTreeApp) 
ON_COMMAND(ID_APP_ABOUT, OnAppAbout) 
ON_COMMAND(IDM_OPTIONS_MFC, OnMfcTree) 
//}}AFX_MSG_MAP 

END_MESSAGE_MAP() 

Add the OnMfcTree function to MfcTree.cpp: 

///ll////ll////ll/////l/////ll////ll////ll////ll///l////////////ll/// 
II CMfcTreeApp message handlers 

void CMfcTreeApp::OnMfcTree() 
{ 

} 

CMfcDlg mfcDlg; 
mfcDlg.DoModal(); 

and declare it in the MfcTree.h file: 

//Implementation 
//{{AFX_MSG(CMfcTreeApp) 
afx_msg void OnAppAbout(); 
afx_msg void OnMfcTree(); 

241 



Editors 

I/} }AFX_MSG 
DECLARE_MESSAGE_MAP() 

MfcTree is now ready for building. Click the Set Active Configuration 
command on the Build menu and select the Win32 Release target, then 
build and test the application. 

Dialog-Based Applications 

242 

All the action in MfcTree is in the dialog, not in the main window. The 
program would be more convenient to use if it dispensed with the main 
window entirely and just displayed the dialog, saving the user the trouble 
of clicking a menu command to invoke the dialog. You've seen such 
dialog-based applications before-the Character Map, Calculator, and 
Phone Dialer utilities that come with Windows are all examples of how a 
program can efficiently interact with the user through a single dialog that 
substitutes for the main window. In this section we'll look at how to write 
a dialog-based application in Visual C++ and build a couple of example 
programs to demonstrate the technique. 

A dialog-based application written in C doesn't initialize a WNDCLASS 
or WNDCLASSEX structure, doesn't call RegisterClass to register the 
window class, and doesn't call Create Window to create a main window. 
It doesn't call Show Window and Update Window and doesn't even have a 
message loop with calls to GetMessage and DispatchMessage. It doesn't 
need these things-all interaction with the user takes place in the dialog, 
and Windows handles that. The program need only create the dialog 
like this: 

int WINAPI WinMain( HINSTANCE hlnst, HINSTANCE hlnstPrev, 
LPSTR szCmdLine, int nCmdShow ) 

{ 

} 

DialogBox( hlnst, MAKEINTRESOURCE (IDD_DIALOG), 
NULL, DlgProc ); 

return( 0 ); 

In this code fragment, the IDD_DIALOG value identifies the dialog script 
in the program's RC file, and DlgProc is a pointer to the procedure that 



Figure 5-13. 

5: Dialog Boxes and Controls 

receives the system messages such as WM_INITDIALOG and WM_ 
COMMAND. 

An MFC program doesn't have a visible WinMain function or a message 
pump anyway, so the amount of code saved with a dialog interface is less 
dramatic. But MFC offers the advantage of App Wizard, which can gener­
ate boilerplate code for a dialog-based application. 

Example 4: A Dialog-Based Version of MfcTree 
The code that AppWizard writes for a dialog-based application is cleaner 
and easier to follow than the code it generates for a normal application. 
Clicking the Dialog Based radio button in App Wizard's Step 1 (shown in 
Figure 5-13) causes AppWizard to create source files for two classes, one 
for the application and the other for the dialog object. 

App Wizard generates a resource script for the dialog window that con­
tains only an OK button, a Cancel button, and a static control with the 
admonishment "Place dialog controls here." The dialog also includes a 
Help button if you clicked the Context-Sensitive Help check box in App­
Wizard's Step 2. (For more information about this switch, see page 47 in 
Chapter 2.) The idea is for you to run the dialog editor after creating the 
project and add to the dialog whatever controls your application requires. 

r:;:-•iliiiiiir f;I!mifill. 1t3ljrntrf11 iiiiiiiilih \\/hat type.of appli~ion would you tiketo 7reate?: .. 

CEJ. 
lc~~·.•I (':Multiple.documents · 

Creating a dialog-based application in App Wizard. 

243 



Editors 

244 

In version 6 of Visual C++, the dialog editor starts automatically when 
App Wizard finishes. In earlier versions, you must start the editor yourself 
by double-clicking the dialog identifier in the ResourceView window. 

Creating a dialog-based version of MfcTree with App Wizard involves only 
three steps, compared to the five steps outlined in the preceding section: 

Steps Main-window version Dialog-based version 
~~~~~~~~~~~~~~-~~~~~~ 

1.

2.

3.

4.

5.

Run AppWizard to
create the project.

Create or modify
the dialog.

Insert source files for
the new dialog class.

Revise the menu.

Add required source
code.

./

./

Steps 3 and 4, which create a new class for the dialog and modify the
main menu, are not required for the dialog-based version of MfcTree.
App Wizard automatically generates skeleton source files for the dialog
class, and eliminating the main window also eliminates the need for a
menu. Even the source code that AppWizard produces is easier to modify
because you need only edit the CMfcDlg::OnlnitDialog function, adding
the Insertltem calls after the function's "to do" line. As before, the gray
shading in the fragment below indicates the new source lines, which are
the same as tliose added to the original version of MfcTree introduced
earlier:

BOOL CMfcDlg::OnlnitDialog()
{

CDialog::OnlnitDialog();

II TODO: Add extra initialization here
HTREEITEM hRoot. hleveli. hlevel2, hlevel3, hlevel4, hlevel5;
CTreeCtrl* pTree = (CTreeCtrl*) GetDlgltem(IDC_MFC_TREE);

hRoot pTree~>Insertltem("Frame windows", TVI_ROOT. TVI_SORT);
hlevell pTree->Insertltem("CFrameWnd". hRoot);

Figure 5-14.

5: Dialog Boxes and Controls

hlevel2 = pTree->Insertitem("CMDIChildWnd", hlevell);

II Add the rest of the source code here
}

Figure 5-14 shows what a dialog-based version of the MfcTree program
looks like. In essence, it's the same program as the original version shown
in Figure 5-12 on page 234 except that the main window has been elimi­
nated, the dialog title bar now contains the application icon and system
menu, and the program is easier to create and use. If you want to try out
the new version yourself, you will find it in the Chapter.05 \MfcTree2
folder on the companion CD.

gi .. Control bars
l±J .. Controls
fti .. Dialog boxes
El· Frame windows
l rfl raifllVj!I
$.. D_ther windows
! [.... CPropertySheet
l L. .. CSplitterWnd

[fl· Views

. OK

The dialog-based version of the MfcTree program.

Example 5: A Dialog-Based
Application Without AppWizard
App Wizard shines when writing dialog-based applications, probably
because such applications are more uniform in their methods and App­
Wizard is thus less likely to add code you don't want. Still, AppWizard
may not be appropriate for your particular needs. If you are interested in
writing a dialog-based application without using App Wizard, this section
shows how. It illustrates with an example program called DirListl that
shows a directory listing in a dialog. But to make things a little more inter­
esting, the dialog that DirListl presents to the user is a property sheet,
often called a tabbed dialog.

245

Editors

.__ __ ___.

246

Property sheets can present a lot of information without overwhelming
the user, neatly solving the problem of overcrowding in a dialog box. But
in essence a property sheet is just a dialog-or rather a series of dialogs
called pages, one overlaying the other. You design each page of a property
sheet with the dialog editor as you would any other dialog. The dialog
script for a page in the RC file looks the same as a normal dialog, except
that all the pages of a property sheet have the same size. Windows dis­
plays the dialogs as property sheet pages when a program calls the
PropertySheet API function or creates an MFC CPropertySheet object.

Incidentally, you may have already run across a tool called Tab Control on
the dialog editor's Controls tool bar. This control displays a set of tabbed
pages that can act as a property sheet within a dialog, but does not turn
your dialog into a property sheet.

Figure 5-15 shows the first and second pages, labeled Location and Date,
of the DirListl property sheet dialog.

The Date tab makes use of the new Date-Time Picker control, allowing the
user to select dates through a pop-up calendar. Although controls in the
Date and Size pages function correctly, the pages exist only for demon­
stration purposes and have no effect in this version of the program. (The
DirList2 project, introduced in Chapter 7, The Gallery, makes use of the
Date and Size pages.) The important activity in DirListl takes place in the
Location page, which displays a directory listing in a list box control.
DirListl fills the list box with a directory listing by making a single call to
the CWnd: :DlgDirList function:

DlgDirlist(pDir, IDC_LIST, IDC_DIRPATH, DDL_ALL);

The parameter pDir points to a null-terminated string containing the
directory path. The constant IDC_LIST identifies the list box control that
displays the directory listing, and IDC_DIRP ATH identifies a static control
to which DlgDirList writes the path string. DDL_ALL is a constant defined
in the source code that combines the flags DDL_DRIVES, DDL_DIREC­
TORY, and DDL_HIDDEN. These flags tell DlgDirList to include drives,

Figure 5-15.

5: Dialog Boxes and Controls

Location j Date J Size

D~ectory: f:\demo

Up l Directory Level

............... .idemo. ncb
demo.re
demodoc. cpp
demodoc.h
demoview.cpp
demoview.h

List these files: j·.·

. Location · Date I Si~e
r. 8nydate

r between

mainfrm.cpp
mainfrm.h
resource.h
stdafx.cpp
stdaf~.h
(..]

OK Cancel

j 121311s9. EL
, , /28/983

(' ~ithin previOt.IS n month(s)

r n day[s]

OK 1: C~cl · 1

[res]
[·a·]
[·b·J
[·c·) '
[·d·)
[·e·)

The Location and Date tabs of the DirList1 program.

subdirectories, and hidden files in the directory list. Clicking on a drive or
subdirectory in the list changes the path and refreshes the listing. The
large button labeled Up 1 Directory Level in the Location tab allows the
user to climb back up the path.

The property sheet dialog in DirListl makes use of only five control types:
push buttons, radio buttons, a list box, edit controls, and spin boxes. If
you are interested in how the controls are assembled, open the DirListl.rc
file and launch the dialog editor by double-clicking one of the dialog iden­
tifiers shown on the next page.

247

Editors

Listing 5-3.

248

B-·B Dirlist1 .re
El·B Dialog
; i····~ IDD_ABOUTBOX

! ~ ll•l!ltdmll ~
i m IDD_PAGE2 ~

. L .. ~ IDD_PAGE3
rtJ··CJ Icon
ffi .. CJ S Iring Table

IDD_PAGE1, IDD_PAGEZ, and IDD_PAGE3 identify the dialog's Location
page, Date page, and Size page, respectively. Listing 5-3 shows the
source code for the DirList1 project; commentary beginning on page 260

describes the code highlights.

Source files for the DirList1 program.

Resource.h

II **
II
II Resource.h
II
II **

#define IDD_ABOUTBOX 100
#define IDD_D IRLI ST 101
#define IDI_DRIVE 102
#define IDLFOLDER 103
#define IDLFILE 104
#define ID LAPP ICON 105
1/def i ne IDC_DIRPATH 110
#define IDC_LIST 111
#define I DC_BUTTONl · 120
1/def i ne IDC_EDITl 121
1/def i ne IDC_EDIT2 122
#define IDC_RADIOl 123
1/def i ne IDC_RADI02 124
#define IOC_RADI03 125
#define IOC_RADI04 126
#define IDC_SPINl 127
#define IDCSPIN2 128
#define IDCDATETIMEl 130
#define IDCDATETIME2 131
1/defi ne IDD_PAGEl 1001

!>: Dialog Boxes and Controls

#define IDD_PAGE2 1002
#define IDD_PAGE3 1003

Dirlist1 .re

II **
II
II DirListl.rc
II
II **

#include "resource.h"
#include "afxres.h"

ID LAPP ICON

STRINGTABLE
BEGIN

IDD_ABOUTBOX
END

ICON "res\\dirlist.ico"

"&About DirList ... "

IDD_ABOUTBOX DIALOG 0, 0, 240, 65
STYLE DS_MODALFRAME I WS_POPUP I WS_CAPTION I WS_SYSMENU
CAPTION "About Di rectory Li st"
FONT 8, "MS Sans Serif"
BEGIN

ICON
LTEXT

IDI_APPICON,IDC_STATIC,10,22,20,20
"Di rectory Li st Version 1. 0",
IDC_STATIC,45,10,115,8

LTEXT """Microsoft Visual C++ Programmer's Guide""",
IDC_STATIC,45,26,140,8

END

LTEXT "Copyright \251 1998, Beck Zaratian",
IDC_STATIC,45,42,115,8

DEFPUSHBUTTON "OK",IDOK,195,10,35,40,WS_GROUP

ll/111111111111
II
II Property page 1 - "Location"
II

IDD_PAGEl DIALOG 0, 0, 282, 135
STYLE DS_MODALFRAME DS_3DLOOK I WS_POPUP I

WS_VISIBLE I WS_CAPTION
CAPTION "Location"
FONT 8, "MS Sans Serif"

(continued)

249

Editors

250

Listing 5-3. continued

BEGIN

END

LTEXT
LTEXT
PUSHBUTTON

LISTBOX

LTEXT
EDITTEXT

"Di rectory:", I DC_STATIC, 10, 5, 35, 10
"",IDC_DIRPATH,50,5,220,10
"Up 1 Directory Level",IDC_BUTTONl,
10,17,260,15
IDC_LIST,9,38,260,73,
LBS_STANDARD I LBS_MULTICOLUMN I WS_HSCROLL
"Li st these fi 1 es:", IDC_STATIC, 37, 115,47,10
IDC_EDITl,91,113,100,15,ES_AUTOHSCROLL

lll
II
II Property page 2 - "Date"
II

IDD_PAGE2 DIALOG 0, 0, 282, 135
STYLE DS_MODALFRAME I DS_3DLOOK I WS_POPUP I

WS_VISIBLE I WS_CAPTION
CAPTION "Date"
FONT 8, "MS Sans Serif"
BEGIN

CONTROL

CONTROL

CONTROL

CONTROL

GROUPBOX

CONTROL

LTEXT
CONTROL

EDI TT EXT
CONTROL

LTEXT

"&Any date",IDC_RADIOl,"Button",
BS_AUTORADIOBUTTON I WS_GROUP I WS_TABSTOP,
15,10,40,10
"&between",IDC_RADI02,"Button",
BS_AUTORADIOBUTTON I WS_TABSTOP,
100,23.43.10
"&within previous",IDC_RADI03,"Button",
BS_AUTORADIOBUTTON I WS_TABSTOP,100,80,63,10
"within &previous",IDC_RADI04,"Button",
BS_AUTORADIOBUTTON I WS_TABSTOP,100,105,63,10
"Only files dated:", IDC_STATIC,
70,10,200,115,WS_GROUP
"DateTimePickerl",IDC_DATETIMEl,
"SysDateTimePick32", DTS_RIGHTALIGN
WS_TABSTOP,170,20,50,15
"and",IDC_STATIC,128,50,13,8,NOT WS_GROUP
"Date Ti me Pi ckerl", IDC_DATETIME2,
"SysDateTimePi ck32", DTS_RIGHTALIGN I
WS_TABSTOP,170,45,50,15
IDC_EDITl,170,76,35,16,ES_NUMBER
"Spin3",IDC_SPIN1,"msctls_updown32",
UDS_SETBUDDYINT I UDS_ALIGNRIGHT I
UDS_AUTOBUDDY I UDS_ARROWKEYS, 205,75,11,14
"month(s)",IDC_STATIC,216,80,40,11,
NOT WS_GROUP

5: Dialog Boxes and Controls

END

EDITTEXT
CONTROL

LTEXT

IDC_EDIT2,170,101,35,16,ES_NUMBER
"Spi n3". roc_sPIN2. "msctl s_updown32".
UDS_SETBUDDYINT I UDS_ALIGNRIGHT I
UDS_AUTOBUDDY I UDS_ARROWKEYS,205,100,11,14
"day(s)",IDC_STATIC,220,105,40,11,
NOT WS_GROUP

////////II///

II
II Property page 3 - "Size"
II

IDD_PAGE3 DIALOG 0, 0, 282, 135
STYLE DS_MODALFRAME I DS_3DLOOK I WS_POPUP I

WS_VISIBLE I WS_CAPTION
CAPTION "Size"
FONT 8, "MS Sans Serif"
BEGIN

END

CONTROL

CONTROL

EDITTEXT
CONTROL

LTEXT
EDI TT EXT
CONTROL

LTEXT

Dirlist1.h

"&Any size", IDC_RADIOl, "Button",
BS_AUTORADIOBUTTON I WS_GROUP I WS_TABSTOP,
15,20,42,10
"&Only files between:", IDC_RADI02. "Button".
BS_AUTORADIOBUTTON,15,40,75,10
IDC_EDITl,50,60,48,16,ES_NUMBER I WS_GROUP
"Spin3",roc_sPINl,"msctls_updown32",
UDS_SETBUDDYINT I UDS_ALIGNRIGHT I
UDS_AUTOBUDDY I UDS_ARROWKEYS,98,62,11,14
"and". rDc_STATIC .111. 65, 13. 8. NOT WS_GROUP
IDC_EDIT2,140,60,48,16,ES_NUMBER
"Spi n3". roc_sPIN2. "msctl s_updown32",
UDS_SETBUDDYINT I UDS_ALIGNRIGHT I
UDS_AUTOBUDDY I UDS_ARROWKEYS,188,61,11,14
"kilobytes", IDC_STATIC,201,65,31,9,
NOT WS_GROUP

II **
II
II DirListl.h
II
II **

class CDirListApp public CWinApp
(continued)

251

Editors

252

Listing 5-3. continued

{

public:
BOOL Init!nstance ();

} ;

class CAboutDlg public CDialog
{

public:
CAboutDlg():

} ;

lll
II CPagel property page

class CPagel : public CPropertyPage
{

private:
BOOL bEditFocus;
CString strDirectory, strFilter:
void GetCurrentDirectory ():
void Showlist ();

public:
CPagel () CPropertyPage(IDD_PAGEl) {}

protected:
virtual void DoDataExchange(CDataExchange* pDX):
virtual BOOL OninitDialog ();
afx_msg void OnEditGainFocus ();
afx_msg void OnEditloseFocus ();
afx_msg void OnUpllevel ();
afx_msg void OnSelChange ():
DECLARE_MESSAGE_MAP ()

} ;

llllllllllllll!l/lllllllllllllllllllllllll/lll/lllllllll!l/ll!lll
II CPage2 property page

class CPage2 : public CPropertyPage
{

public:
int
CTime
int
int

nAnyDate;
timeMin, timeMax;
PrevDays:
PrevMonths;

5: Dialog Boxes and Controls

CPage2 () : CPropertyPage(IDD_PAGE2) {}

protected:

} ;

vi rtua 1 void
virtual BOOL

DoDataExchange(CDataExchange* pDX);
OnlnitDialog ();

////l/llllll!l/lll/l////l//ll///////lll/l////lllll/l//lllll////I/
II CPage3 property page

class CPage3 : public CPropertyPage
{

public:
int
OW ORD
DWORD

nAnySize;
MinSize;
MaxSize;

CPage3 () : CPropertyPage(IDD_PAGE3) {}

protected:
virtual void
virtual BOOL

} ;

DoDataExchange(CDataExchange* pDX);
OnlnitDialog ();

/llll/llllll/lllll/ll!//lllll/l///lllll///llll/l////llll////ll/ll
I I Cli stSheet

class CListSheet public CPropertySheet
{

public:
CPagel pagel;
CPage2 page2;
CPage3 page3;
CListSheet(LPCTSTR szCaption);

protected:

} ;

virtual BOOL OnlnitDialog();
afx_msg void OnSysCommand(UINT nID, LPARAM lParam);
DECLARE_MESSAGE_MAP()

(continued)

253

Editors

254

Listing 5-3. continued

Dirlist1 .cpp

II **
II
II Dirlistl.cpp
II
II **

Iii ncl ude "afxwi n. h"
/finclude "afxdlgs.h"
/finclude "afxcmn.h"
Iii ncl ude "resource. h"
/finclude "dirlistl.h"

lldefi ne DDL_ALL DDL_DIRECTORY I DDL_DRIVES I DDL_HIDDEN

CDirListApp DirListApp;

BOOL CDirListApp::Initinstance ()
{

}

CListSheet sh("Directory List");
sh.DoModal ();

return FALSE:

II Create property sheet
II and display dialog

II Return FALSE to exit

CAboutDlg::CAboutDlg() CDialog(IDD_ABOUTBOX)
{
}

lllllllllllllllllllllllllll/lllllllllllllllllllllllllllllllllll/I
II CListSheet property sheet

CListSheet::CListSheet(LPCTSTR szCaption
CPropertySheet(szCaption)

{

}

AddPage(&pagel):
AddPage(&page2);
AddPage(&page3);

BEGIN_MESSAGE_MAP (CListSheet. CPropertySheet)
ON_WM_SYSCOMMAND()

END_MESSAGE_MAP()

5: Dialog Boxes and Controls

BOOL CListSheet::OnlnitDialog()
{

CPropertySheet::OnlnitDialog():

II Add "About ... " command to system menu
CMenu* pSysMenu = GetSystemMenu(FALSE):
CString str:
str.LoadString(IDD_ABOUTBOX):
pSysMenu->AppendMenu(MF_SEPARATOR):
pSysMenu->AppendMenu(MF_STRING, IDD_ABOUTBOX, str):

II Remove Apply button, since it's not needed
CButton* button= (CButton *) GetDlgitem(ID_APPLY_NOW):
button->DestroyWindow():

II Set 16-by-16 and 32-by-32 icon images
HICON hlcon =CHICON) ::Loadlmage(DirListApp.m_hlnstance,

MAKEINTRESOURCE(IDI_APPICON),
IMAGE_ICON, 16, 16, LR_DEFAULTCOLOR):

Setlcon(hlcon, FALSE):

return TRUE:
}

void CListSheet::OnSysCommand(UINT nID, LPARAM lParam)
{

}

if (nID == IDD_ABOUTBOX)
{

}

else
{

}

CAboutDlg dlgAbout:
dlgAbout.DoModal():

CPropertySheet::OnSysCommand(nID, lParam):

///Ill///////////////
II CPagel property page

BOOL CPagel::OnlnitDialog ()
{

bEditFocus FALSE:
strFilter "*·*":

GetCurrentDirectory ():
ShowList ():

(continued)

255

Editors

256

Listing 5-3. continued

return CDialog::OninitDialog ();
}

void CPagel::GetCurrentDirectory ()
{

}

PTSTR pDir =new char[MAX_PATH];

::GetCurrentDirectory(MAX_PATH, pDir);
strDirectory = pDir;

if (strDirectory.Right(1 != "\\")
strDirectory += "\\";

delete [] pDir;

void CPagel::ShowList ()
{

PTSTR pDir =new char[MAX_PATH];

lstrcpy(pDir, strDirectory);
lstrcat(pDir, strFilter);

II Append backslash

DlgDirlist(pDir, IDC_LIST, IDC_DIRPATH, DDL_ALL);

delete [] pDir;
}

BEGIN_MESSAGE_MAP (CPagel, CPropertyPage)
ON_EN_SETFOCUS (IDC_EDITl, OnEditGainFocus)
ON_EN_KILLFOCUS (IDC_EDITl, OnEditloseFocus)
ON_BN_CLICKED (IDC_BUTTONl, OnUpllevel)
ON_LBN_SELCHANGE (IDC_LIST, OnSelChange)

END_MESSAGE_MAP ()

void CPagel::OnEditGainFocus ()
{

bEditFocus = TRUE;
}

void CPagel::OnEditloseFocus ()
{

}

bEditFocus = FALSE;
GetDlgitemText(IDC_EDITl. strFilter);
Show Li st () ;

void CPagel: :OnUpllevel ()

5: Dialog Boxes and Controls

{

}

II If Enter pressed in edit control, refresh list

if (bEditFocus)
{

}

GetDlgitemText(IDC_EDITl, strFilter);
Showlist ();

II Else go up one directory level

else
{

}

II When strDirectory == "d:\", we're already at root
if (strDirectory.Right(2) != ":\\")
{

}

II Remove '\' at end of string
strDirectory.GetBufferSetlength(

strDirectory.Getlength() - 1);
strDirectory.ReleaseBuffer ();

II Find last '\' and truncate strDirectory string
int clastSlash = strDirectory.ReverseFind('\\');
if (clastSlash != -1)

{

}

strDirectory.GetBufferSetLength(cLastSlash+l);
strDirectory.ReleaseBuffer ():
Showlist ():

void CPagel::OnSelChange ()
{

char szitem[MAX_PATHJ;
char *pitem = szitem:
int i:

i = SendDlgitemMessage(IDC_LIST, LB_GETCURSEL, 0, 0);
SendDlgitemMessage(IDC_LIST, LB_GETTEXT, i, (LPARAM)szitem);

II We're interested only in drives [-d-J or subdirs [subdir]
if Cszitem[0J == '[')
{

if (lstrcmp(szitem, "[..]")) II Ignore parent"[..]"
{

(continued)

257

Editors

258

Listing 5-3. continued

pitem++; II Skip 1st bracket '['

}
}

}

II If drive, change "[-d-J" to "d:"
if (pitem[0] '-' && pitem[2J == '-')
{

}

pitem++;
pitem[1J = ':';
pitem[2J = '\0';
strDirectory = pitem;

II Skip 1st hyphen '-'
II Overwrite 2nd '-'
II Truncate string
II New directory

II If subdir, change "[subdirJ" to "subdir"
else
{

}

i = lstrlen(szitem);
pitem[i-2] = '\0';
strDirectory += pitem;

strDirectory += "\\";
ShowList ();

II Truncate with NULL
II Append new subdir

II Append backslash
II Refresh list

void CPage1::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX);
DDX_Text(pDX, IDC_EDIT1, strFilter);
DDV_MaxChars(pDX, strFilter, 128);

ll/11111111
II CPage2 property page

BOOL CPage2::0ninitDialog ()
{

CSpinButtonCtrl* spin;

II Initialize variables
nAnyDate = 0;
PrevDays 1:
PrevMonths = 1;
timeMin = 0:
timeMax = CTime::GetCurrentTime();

5: Dialog Boxes and Controls

II Set limits of spin buttons
spin= (CSpinButtonCtrl *) GetDlgitem(IDC_SPINl);
spin->SetRange(1, 100); II Within x months
spin= (CSpinButtonCtrl *) GetDlgitem(IDC_SPIN2);
spin->SetRange(1, 365); II Within x days

return CDialog::OninitDialog ();

void CPage2::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX);
DDX_DateTimeCtrl(pDX, IDC_DATETIMEl, timeMin);
DDX_DateTimeCtrl(pDX, IDC_DATETIME2, timeMax);
DDX_Radio(pDX, IDC_RADIOl, nAnyDate);
DDX_Text(pDX, IDC_EDITl, PrevMonths);
DDX_Text(pDX, IDC_EDIT2, PrevDays);

ll/11111111
II CPage3 property page

BOOL CPage3::0ninitDialog ()
{

}

CSpinButtonCtrl* spin;

II Initialize variables
nAnySize = 0;
MinSize 0;
MaxSize = 100;

II Set limits of spin buttons
spin= (CSpinButtonCtrl *) GetDlgitem(IDC_SPINl);
spin->SetRange(0, 9999); II Min size
spin= (CSpinButtonCtrl *) GetDlgitem(IDC_SPIN2);
spin->SetRange(1, 9999); II Max size

return CDialog::OninitDialog ();

void CPage3::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX);
DDX_Radio(pDX, IDC_RADIOl, nAnySize);
DDX_Text(pDX, IDC_EDITl, MinSize);
DDX_Text(pDX, IDC_EDIT2, MaxSize);

259

Editors

260

The program's Initlnstance function first creates a CListSheet object,
which derives from MFC's CPropertySheet class. The DoModal member
function displays the property sheet:

CListSheet sh("Directory List");
sh.DoModal ();

II Make propsheet object
II and display dialog

When the object's OnlnitDialog function gets control, it adds a command
to the system menu that invokes the program's About box, then removes
the unneeded Apply button that the framework has placed in the dialog.
The OnlnitDialog function also demonstrates how a dialog-based applica­
tion can set two icon images, a small image 16 pixels square that serves as
the application icon on the dialog's title bar, and a large image 32 pixels
square that appears in the About box. Both images are stored in the pro­
ject's DirList.ico file. The MFC framework automatically extracts the large
image when it creates the application window, so DirList1 must load the
small image itself by calling the Loadlmage API function introduced in
Chapter 4:

II Set the 16-by-16 icon image
HICON hicon =CHICON) ::Loadimage(DirListApp.m_hinstance,

MAKEINTRESOURCE(IDI_APPICON),
IMAGE_ICON, 16, 16, LR_DEFAULTCOLOR);

Seticon(hicon, FALSE);

Calling Loadlmage is necessary in this case because the Loadlcon function
recognizes only a single 32-by-32 icon image-or more correctly, an image
with dimensions that match the SM_CXICON and SM_CYICON system
metric values. Passing a parameter value of FALSE to the Setlcon function
sets the small 16-by-16 image as the application icon.

By itself, a CListSheet object is an empty dialog window. The CListSheet
constructor adds the three property pages by calling the AddPage member
function. AddPage takes a pointer to a CPropertyPage object, created by
passing the dialog identifier to the CPropertyPage base initializer. For
example, here's how DirList1.h declares the CPropertyPage object for the
first page of the property sheet:

public:
CPagel () : CPropertyPage(IDD_PAGEl) {}

::>: u1a1og tsoxes ana Lontro1s

The AddPage function takes care of translating the dialog resource into a
property page with a tab that contains the dialog caption, such as Location
or Size.

When the first page is ready for display, its CPage1 ::OnlnitDialog function
calls the GetCurrentDirectory API function, appends a "*. *" filter to the
current path, and calls DlgDirList to write the directory listing to the list
box. The strFilter string contains the filter, which the user can change
through an edit control. The most interesting part of the program takes
place in the CPage1 ::OnSelChange function, which gets control when the
user selects an item in the list box. If the user selects a filename, the func­
tion ignores the selection. If the selected item is a disk drive, the drive
designation replaces the path in strDirectory, which then becomes the
string d: \, where dis the selected drive letter. Selecting a subdirectory in
the list box appends the subdirectory name to the path in strDirectory.
When the path changes, OnSelChange calls ShowList to display the direc­
tory listing for the new path. OnSelChange distinguishes between file­
names, drives, and subdirectories from the way that CWnd::DlgDirList
writes them in the list box. Drive designations are contained in square
brackets and hyphens, such as "[-a-]" or "[-c-]." Subdirectories are
enclosed in square brackets without the hyphens. Filenames do not have
brackets or hyphens.

While calling DlgDirList to add the directory listing is certainly conve­
nient, the technique suffers from two serious defects. First, the directory
listing is unattractive, not at all up to current Windows standards. And
second, the DlgDirList function recognizes long filenames only in Win­
dows NT. To address both concerns, we have to dispense with the list box
entirely and try something else. We'll do that in Chapter 7 when we create
a new class derived from MFC's CListView and add it to Visual C++'s col­
lection of components, called the Gallery.

But there is another subject more pressing right now than the Gallery.
Some of the work done in this chapter turns out to have been unneces­
sary-or at least, it could have been simplified. You may recall that in
building the MfcTree project, we wrote stub functions for the MfcDlg.h
and MfcDlg.cpp source files and also manually inserted entries into a

261

Editors

262

message map. These tasks could have been more easily handled in Class­
Wizard. ClassWizard is a natural partner to the dialog editor; use the edi­
tor to design a dialog and Class Wizard to generate source code to run the
dialog. The next chapter shows how.

\ \.._I ICIJJLt:I

ClassWizard
After creating a project with App Wizard, you have the option of working
with a Visual C++ "programmer's assistant" called ClassWizard. In a
broad sense, ClassWizard has the same relationship to classes that
App Wizard has to applications. ClassWizard gets you started on writing a
new class by generating an implementation CPP file and a header file with
appropriate stub functions. Filling in the functions with actual code is
your responsibility.

ClassWizard is designed to assist in four areas, generating code for:

m New classes derived from one of the many MFC classes that receive
messages or manage control windows

Iii Member functions that handle messages

El OLE/ ActiveX methods, properties, and event firing

!I Exchange and validation functions for data entered into dialog
controls

ClassWizard recognizes and supports MFC base classes that interface in
some way with the user. With a few exceptions such as CRecordSet and
CHttpServer, the base classes are derived from CCmdTarget, capable of
responding to messages or managing controls in a dialog box. There are

265

Programming Assistance

266

over 50 MFC classes from which you can create a derived class using
ClassWizard; refer to Appendix Bin this book for a complete list.

Accessing ClassWizard

Figure 6-1.

You cannot access ClassWizard from an empty project. The project must
have at least an RC file attached to it, even if the RC file is empty. Once
the RC file is attached to a project (AppWizard does this automatically),
you can invoke the ClassWizard dialog by choosing the ClassWizard com­
mand from the View menu, as shown in Figure 6-1.

Class Wizard from the View menu.

Two points about ClassWizard might not be obvious. First, its services are
entirely optional. You can develop your project from start to finish with­
out ever dealing with Class Wizard, if you prefer. Second, you can use
Class Wizard to add new classes to an MFC project even if the project did
not originate with App Wizard. Class Wizard compiles a database of the
project's classes and stores it in a file that has the same name as the
project with a CLW extension. If you always use ClassWizard to create
new classes for the project, the CLW file remains up-to-date. However,
Visual C++ does not lock you into an all-or-nothing relationship with
ClassWizard, and you are free to write a new class on your own or to copy
code from other source files outside the current project. In these cases
where a class originates from a source other than ClassWizard, there is an
easy way to update the CLW database. After you add the new class source
files to the project using the Add To Project command on the Project
menu, delete the CLW file and invoke ClassWizard again. Visual C++
detects that the database does not exist and offers to create it again:

The Class'vlizard database "F:\Demo\Demo.clw" does not e~:ist.
Would .vou like to build it from your source files?

lC:::::::::~:~:~:::::::JI .: No

6: ClassWizard

When you click Yes to accept the offer to build the new database, a dialog
titled Select Source Files appears with a list of the implementation and
header files that Visual C++ will read to build the class database. If you
have inserted all the new source files into the project, the list should
already be complete, so you need do nothing more than click OK. A prog­
ress indicator briefly indicates that Visual C++ is building the database
file, after which the Class Wizard dialog appears.

The ClassWizard Dialog

Figure 6-2.

Figure 6-2 shows the main ClassWizard dialog. I call it the "main" dialog
because Class Wizard can manifest itself in over 20 different dialogs,
depending on circumstances. The dialog in Figure 6-2 acts as a sort of
main entrance to ClassWizard, and is titled MFC ClassWizard to remind
you that it deals only with MFC classes. ClassWizard won't help you cre­
ate a class derived from anything other than one of the supported MFC

ON_ID_APP _ABOUT:COMMAND

The MFG Class Wizard dialog.

267

Programming Assistance

Table 6-1.

268

classes; for a class with any other base, you must write the code yourself
from scratch using the text editor or the New Class command on the Insert
menu. The New Class command is described in more detail later in the
chapter.

The five tabs of the MFC Class Wizard dialog have very different purposes
and are not all relevant to any one particular class. Table 6-1 can help you
determine which tab (or tabs) you need, depending on what you want to
do for your class.

Tab

Message Maps

Member
Variables

Automation

ActiveX Events

Class Info

Purpose

Add or delete member functions that handle messages.

Add or delete member variables attached to classes that
use controls. Generally, these are dialog classes derived
from CDialog, CPropertyPage, CRecordView, or
CDaoRecordView.

Add a property or method to a class that supports Auto­
mation, such as an ActiveX control class.

Add support for firing events, usually to a class that
implements an ActiveX control. This tab is not used
when developing a container application that receives a
fired event.

Miscellaneous information about the project's classes.

The five tabs of the MFG Class Wizard dialog box.

The first two tabs of the Class Wizard dialog, labeled Message Maps and
Member Variables, are described in the next two sections. Discussions of
the Automation and ActiveX Events tabs are deferred until Chapters 8 and
9, which demonstrate how ClassWizard can help in the development of
projects involving ActiveX controls.

Message Maps Tab
The Message Maps tab is where you specify message-handling functions
for your class. The two combo boxes and the first two list boxes in the tab
are arranged so that each control displays a progressively higher level of
detail-in other words, the contents of one control depend on the current

Table 6-2.

6: ClassWizard

selection in the preceding control. The Class Name combo box lists the
classes of the project selected in the Project combo box; the Object IDs box
shows the identifiers associated with the class selected in the Class Name
box; and the Messages box displays messages and other information for
the current selection in the Object IDs box. Table 6-2 shows the relation­
ship between the item selected in the Object IDs box and the contents of
the Messages box.

Selection in Object IDs box

Class name

Menu command identifier

Control identifier

Contents of Messages bmc

WM_ messages and class virtual functions
that handle messages.

ON_COMMAND and ON_UPDATE_COM­
MAND_UI macros for menu command
messages.

Control notification messages. Reflected
messages are marked with an equal sign
(=)prefix.

In the Message Maps tab, the selection in the Object IDs box determines the con­
tents of the Messages box.

When you select a message or virtual function in the Messages box, a terse
description of the selected item appears at the bottom of the MFC Class­
Wizard dialog. For more detailed information about the selected item,
you switch to MSDN online help as described in Chapter 1, The Environ­
ment, and search the index. Unlike older versions of Visual C++, pressing
the Fl key displays general information about the Messages box itself, not
the selected item.

To add a message handler function to the selected class, double-click the
message or virtual function in the Messages box. The Member Functions
box contains a list of the current class functions, which in Figure 6-2 are
Initlnstance and OnAppAbout. The "W" identifies OnAppAbout as a
function that handles a system message with a WM_ prefix, which in this
case is WM_COMMAND containing the ID_APP _ABOUT menu value. The
"V" identifies Initlnstance as an overridden virtual function.

269

Programming Assistance

Figure 6-3.

270

For each message handler function you add to a class, ClassWizard makes
three changes to the class's source files:

• Adds a function declaration to the header file

• Adds a function definition with skeleton code to the CPP implemen­
tation file

• Adds an entry for the function to the class's message map

Member Variables Tab
The Member Variables tab pertains to classes that use controls, which
are almost always classes derived from either CDialog, CPropertyPage,
CForm View, CRecordView, or CDaoRecordView. A class derived from
one of these five MFC classes is called a dialog class because it requires
an identifier for a dialog resource. The Member Variables tab is where
you specify member variables that receive data from controls in the
class's dialog.

To add a member variable to a dialog class, expose the Member Variables
tab and select the class from the Class Name box. In the Control IDs box,
select the identifier of the control to which you want to attach the new
variable, then click the Add Variable button to open the Add Member
Variable dialog shown in Figure 6-3.

The Add Member Variable dialog box, invoked from the Member Variables tab.

6: ClassWizard

Type the variable name after the optional "m_" prefix and, depending on
the control type, select either Value or Control in the Category box. The
Value setting means that the variable contains the control's data, such as
the text or numerical value that the user types into an edit box. The Con­
trol setting means that the variable represents the control itself. As an
example, consider a member variable for a check box control. Selecting
the Value category makes the member variable Boolean, able to contain a
value of TRUE or FALSE that indicates the state of the check box.
Selecting the Control category, however, makes the variable a CButton
object that represents the check box control. If you want to use the vari­
able to determine whether the user has turned the check box on or off,
select the Value category. Select the Control category if you want to use
the variable to alter the check box in some way at run time, such as chang­
ing its caption by calling CButton::SetWindowText or setting the check
box state by calling CButton::SetCheck.

Table 6-3, on the next page, lists the available variable types for standard
controls. Here are some points to keep in mind as you read the table:

• Edit boxes are especially adept at passing data to variables of many
different types. The "numerical" data type mentioned in the table is
a catch-all term that includes BYTE, short, int, DINT, long, DWORD,
float, and double.

• Class Wizard does not list static controls identified by the generic
IDC_STATIC value. To associate a static control with a variable, first
assign the control an identifier other than IDC_ST ATIC.

• Of a group of radio buttons, only the identifier for the group's first
button appears in the Control IDs box. The reason why other buttons
of the group are not included will become clear later in the chapter
when we discuss how a single variable associated with the group's
first button represents the entire group.

• As indicated in the table, push button controls do not allow vari­
ables of the Value category, because these controls do not accept
data from the user.

271

Programming Assistance

Table 6-3.

272

Control

Check box

Check box (3-state)

Combo box

Edit box

List box

Push button

Radio button

Scroll bar

Static text

Data type

Value category Control category

BOOL CButton

int CButton

CString or int CComboBox

CString, BOOL, numerical, CEdit
COleDateTime or
COleCurrency

CString or int CListBox

int

int

CString

CButton

CButton

CScrollBar

CStatic

Variable types of the Value and Control categories for standard controls.

By using ClassWizard to add member variables to a dialog class, you take
advantage of a terrific labor-saving feature that ClassWizard provides free:
automatic generation of source code for dialog data exchange and dialog
data validation, better known as DDX/DDV. Data exchange and validation
apply only to member variables for which the Value category is selected­
that is, variables that have a type listed in the middle column of Table 6-3.

Dialog data exchange takes care of getting data into and out of a control.
When the dialog first appears, each control window is automatically ini­
tialized with the value of the corresponding member variable. When the
user closes the dialog by clicking the OK button or by pressing the Enter
key, the flow is reversed, and whatever value or text a control contains is
copied back to the variable. Dialog data validation makes sure that a value
falls within prescribed limits. Both the exchange and validation mecha­
nisms are provided by the MFC framework through a collection of func­
tions listed in Tables 6-4 and 6-5. Each function has a prefix of DDX_ or
DDV _ to identify it as a function for either data exchange or data
validation.

Table 6-4.

6: ClassWizard

Gets/sets data ... for a control
E>Cchange function of this type ... of this type

DDX_CBindex int Combo box

DDX_CBString CString Combo box

DDX_CBStringExact CString Combo box

DDX_Check int Check box

DDX_DateTimeCtrl CTime Date-time picker

DDX_LBindex int List box

DDX_LBString CString List box

DDX_LBStringExact CString List box

DDX_MonthCalCtrl CTime Month calendar

DDX_Radio int Radio button

DDX_Scroll int Scroll bar

DDX_Text CString or numerical (BYTE, Edit control
short, int, UINT, long, etc.)

Common dialog data exchange functions.

Dialog data exchange (DDX)
MFC provides a variety of dialog data exchange functions that move data
between controls and member variables in a dialog class. Along with the
common functions listed in Table 6-4, there are specialized exchange
functions for recordset data and data returned by ActiveX controls. The
DDX_Control function transfers data for several different types of controls,
such as Animate and IP Address. For detailed information about the data
exchange functions, consult Visual C++ online help.

The DDX_Radio function listed in Table 6-4 warrants a little more discus­
sion. This function is unique among the data exchange functions in that it
applies to a group of controls rather than a single control. DDX_Radio
returns an int value that indicates which radio button of a group the user
has turned on-0 for the first button of the group, 1 for the second button,
and so forth. A value of -1 means that all of the buttons in the group are
clear. You can call DDX_Radio to determine the state of a single radio but­
ton provided it is the only button in the group. In this case, a returned

273

Programming Assistance

Table 6-5.

274

value of 0 means the button is on, and a value of -1 means the button is
off. Setting up a group of radio buttons is usually done in the dialog edi­
tor, as we'll see in a moment.

Dialog data validation {DDV)
Table 6-5 lists the eight dialog data validation functions, which apply only
to member variables for controls that accept data entered from the key­
board-namely, edit controls and combo boxes.

Validation function

DDV_MinMaxByte

DDV_MinMaxlnt

DDV_MinMaxUint

DDV_MinMaxLong

DDV_MinMaxDWord

DDV_MinMaxFloat

DDV_MinMaxDouble

DDV_MaxChars

Verifies that ...

A BYTE value is within specified limits.

An int value is within specified limits.

A UINT value is within specified limits.

A long value is within specified limits.

A DWORD value is within specified limits.

A float value is within specified limits.

A double value is within specified limits.

The length of a CString string does not
exceed a specified maximum.

Dialog data validation functions.

When you add a member variable for an edit control or combo box and
then select the control in the Control IDs box in the Member Variables tab,
one of two prompts appears at the bottom of the tab. The prompt depends
on whether the variable holds numerical or text data; in either case, enter
the variable's limiting values for validation:

Minimum/maximum limits of a number Maximum string length

All but one of the dialog data validation functions monitor numerical
data, ensuring that a value entered by the user falls between specified

o: uassvv1zara

minimum and maximum limits. The exception is the DDV_MaxChars
function, which verifies that the number of characters typed into an edit
control or combo box does not exceed a given maximum. Unlike the
exchange functions listed in Table 6-4, the validation functions take
action only when the dialog is closed, not when it first appears. If a value
entered in a control falls outside the specified limits, the validation func­
tion for the control displays a message box informing the user of the prob­
lem. When the message box is dismissed, the offending control has focus,
signaling the user to re-enter the data. The user cannot close the dialog by
clicking OK unless all the data validation functions are satisfied.

The DoDataExchange function
ClassWizard adds a member function called DoDataExchange to the dia­
log class's CPP file. This function contains all the calls to the data
exchange and validation functions that the dialog requires. For a single
edit control that accepts an integer from 1 through 99, for example,
ClassWizard writes a DoDataExchange function that looks like this:

void CDemoDlg::DoDataExchange(CDataExchange* pDX)
{

}

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CDemoDlg)
DDX_Text(pDX, IDC_EDIT, m_nEditVal);
DDV_MinMaxint(pDX, m_nEditVal, 1, 99);
//} }AFX_DATA_MAP

DoDataExchange is a complete function, not stub code to which you must
make further additions. Since the framework calls DoDataExchange when
the dialog both begins and ends, it is sometimes convenient to add initial­
ization and clean-up code to it, but otherwise you can usually forget that
the function exists. If you delete a variable in the Member Variables tab,
ClassWizard removes any data exchange and validation calls for the vari­
able in the DoDataExchange function.

ClassWizard and AppWizard write a DoDataExchange function for every
dialog in a project, even dialogs that have no controls that accept user
input. For instance, the About box class generated by AppWizard has a
DoDataExchange function even though none of the dialog's controls-an

275

Programmmg Assistance

276

icon, two lines of static text, and a push button-can receive data from the
user. If you want a control to merely display data without allowing the
user to change a value, you should delete any of the control's DDX/DDV
function calls that ClassWizard adds to DoDataExchange. Another option
is to remove the DoDataExchange function entirely, as we'll see in an
example later in the chapter.

When creating a dialog, you should be thinking early in the design process
about how the dialog's class will incorporate dialog data exchange and
validation. As you may recall from Chapter 5, the dialog editor allows you
to set properties of each control by turning appropriate check boxes on or
off in the control's Properties box. When setting properties for a control
that uses dialog data exchange and validation, keep these points in mind:

a For an edit control that accepts only simple integers of decimal base
(rather than hexadecimal base), set the Number check box in the
Styles tab of the Edit Properties dialog. This gives the control a style
flag of ES_NUMBER, causing it to ignore any character that is not a
digit from 0 through 9, including commas and periods.

• If a combo box or list box accepts only freeform numerical data,
access the control's Properties dialog and turn off its sorting option.
For a combo box and normal list box, clear the Sort property check
box in the Styles tab; for a list control, make sure the Sort selection
is None in the Styles tab. Because these controls sort numbers by the
ASCII values of the digits, not numerical values, they sort a list of
numbers correctly only when entries have a fixed number of digits
and include leading zeros, such as 001 and 099.

• When you create a group of radio buttons, set the Auto property for
each button in the group. This makes the radio buttons mutually
exclusive so that clicking one button automatically clears all others
in the group.

• Set the Group property only for the first radio button of a group and
ensure all other buttons in the group follow the first in sequential
tabbing order. Failure to do so disables the dialog's ability to move
focus from one radio button to the next as the user presses the arrow
keys. Also set the Group property for the control that immediately

o; L1assvv1zara

follows the last radio button of a group. This signals the end of the
previous group and the beginning of another. Running the program
in the debugger will tell you when a group of radio buttons is not
properly delimited by Group properties, because when the dialog
appears the debugger displays this message in the Output window:

Warning: skipping non-radio button in group.

Adding a Class to a Project
All five of the MFC Class Wizard dialog tabs have an Add Class button, so
you can start a new class from any tab in the dialog. After clicking the
Add Class button, select one of these two options for the class's origin:

B New-Create a new CPP file and H file that contain the skeleton
source code generated by Class Wizard.

a From a type library-Create source code for a class based on an
OLE type library. The type library can be a stand-alone file, usually
with a TLB extension, or it can be contained as resource data within
a program such as a dynamic link library. The dynamic link library
usually has an extension of OLB (object library), OCX (ActiveX con­
trol), or DLL. For example, choosing any of the ActiveX controls
described in Chapter 8 adds class source code to your project gener­
ated from the type library information in the OCX file. After you
locate and select the desired type library file, select a class from
among the list of classes that Class Wizard garners from information
in the library and displays in the Confirm Classes dialog. If you
wish to rename the selected class for the current project, enter a new
name in the Class Name control. You can also specify the names of
the CPP and H files that ClassWizard creates.

Both options automatically update the CLW database for the new class. To
create a new class by copying an existing class from another project, three
different methods are available. The most direct way to borrow an existing
class is to copy the source code to your project folder and add the CPP file
to the project using the Add To Project command. Click Files in the pop­
up secondary menu, then double-click the class's CPP file in the list of
files. As mentioned in the previous chapter, it isn't necessary to add the

277

Programmmg Assistance

Figure 6-4.

278

header file the same way because Visual C++ recognizes the header file as
a dependency. The second method requires inserting an existing project
by choosing the Insert Project Into Workspace command from the Project
menu. You can then freely borrow source files from the inserted project.
The third method for importing an existing class is through the Gallery,
which is discussed in Chapter 7.

Rather than adding an existing class from a type library, you will probably
most often select the New option to have ClassWizard start a new derived
class that you want to develop. Clicking New displays the New Class dia­
log shown in Figure 6-4, in which you enter a name for your class and
select its base from among the MFC classes that ClassWizard supports.

The New Class dialog invoked from Class Wizard.

To name the class source files, ClassWizard adds CPP and H file exten­
sions to the class name you specify, minus any "C" prefix. If you prefer
another name for either file, click the Change button.

Whether the Dialog ID control is active in the New Class dialog depends
on the selected base class. When you select as the base one of the five
MFC dialog classes (CDialog, CPropertyPage, CForm View, CRecordView,
or CDaoRecordView), the Dialog ID control becomes active, prompting for
the resource identifier of the dialog associated with the new class. The
best way to create a dialog-based class is to first design and save the dialog
resource in the dialog editor and then, while the editor is still active and

b: uassw1zard

has input focus, access ClassWizard to create the new class for the dialog.
We'll do exactly that for an example later in the chapter.

The appearance of the radio buttons in the Automation group box
depends on whether the selected base class supports Automation. When
you select a base class such as CHttpFilter, a discreet message informs you
that Automation is not an option. For base classes that are Automation­
aware, however, the Automation radio button is enabled. Turning on this
button directs ClassWizard to write code to the generated source files that
makes the new class a programmable object, visible to Automation client
applications such as Microsoft Excel. Appendix B in this book identifies
which MFC classes are Automation-aware. If you would like more infor­
mation about Automation, Inside Visual C++ by David Kruglinski devotes
a lucid chapter to the subject, complete with references to ClassWizard.

Clicking the Createable By Type ID radio button generates code that
allows other ActiveX applications to create an Automation object of your
new class. Class Wizard automatically combines the names of the project
and the class to form the type identifier shown in the edit control, a
scheme that helps ensure the identifier is unique. The type identifier, also
known as the programmatic identifier, can be used by an ActiveX client
application to specify the object. An Excel macro, for example, can create
an object of CNewClass like this:

Set DemoObj = CreateObject("Demo.NewClass"

Adding a non-MFC class
The ClassWizard dialog is not your only means of adding a class to a pro­
ject. Clicking the New Class command on the Insert menu displays the
dialog shown in Figure 6-5 on the next page, which shares the same name
as and looks very similar to the dialog pictured in Figure 6-4. The only
difference is the addition of the Class Type box at the top of the dialog,
indicating the dual nature of the New Class command.

The default selection for the class type is MFC Class, which causes the
dialog to behave identically to the New Class dialog of Figure 6-4. Choose
a base MFC class in the Base Class control and set the Automation radio
buttons, just as before. To create a new form-based class, select Form Class

279

Programming Assistance

Figure 6-5.

280

in the Class Type box, and then choose a base class of either CF arm View,
CDialog, CRecordView, or CDaoRecordView. The third alternative for class
type is Generic Class, which causes Visual C++ to generate stub code for a
class not derived from MFC. Visual C++ is only borrowing technology
from Class Wizard for this feat, and if you prefer to see the New Class com­
mand as just another part of Class Wizard, I won't disagree. But keep in
mind that the variation of the New Class dialog pictured in Figure 6-4 is
only for classes derived from MFC, to which you can always apply the full
potential of Class Wizard, a tool designed from the ground up for MFC.
Creating a generic, non-MFC class with the New Class command generates
stub code, but otherwise orphans the class from the other features of
Class Wizard.

The New Class dialog, accessed by choosing the
New Class command from the Insert menu.

The Generic Class setting in the dialog enables a list box from which you
can select a base for the new class. The generated source code consists of
only stub functions for the class constructor and destructor, contained in a
CPP file and H file named for the class. For example, here's the declara­
tion that the New Class command writes to the header file for a class
derived from the fictitious CBaseClass:

b: uassw1zard

class CDerivedClass public CBaseClass
{

public:
CDerivedClass();
virtual ~CDerivedClass();

} ;

Visual C++ offers other offshoots of Class Wizard besides the New Class
command. As we'll see next, the WizardBar acts as a sort of side door to
ClassWizard that is often more convenient than the main entrance.

The WizardBar

Figure 6-6.

The WizardBar is a dockable toolbar that tracks the caret position or cur­
rent selection as you move around in the text and dialog editors. The bar
continually adjusts its appearance and options to reflect whatever class
you are currently dealing with. Opening the implementation file for the
CMainFrame class, for example, automatically initializes the WizardBar
for that class, offering a convenient means of quickly navigating to decla­
rations and definitions of member functions. Turn the WizardBar on and
off as you would any of the other Visual C++ toolbars, by clicking the Cus­
tomize command on the Tools menu and selecting the appropriate check
box in the Toolbars tab.

Figure 6-6 shows a typical view of the WizardBar.

~:;:::;77 ~~;k~,tL~~~~::-~>_, ~~irE

l CMainFrame . iJI (AUdass ~emb:rs) d. , iJL<> PreCr.eale\llind~w "' iJ ffi. :... Menu

Classes Identifiers Functions Default

The WizardBar.

The WizardBar's three combo boxes encapsulate information displayed in
the Message Maps tab of the MFC Class Wizard dialog, and any changes
made in ClassWizard are instantly reflected in the WizardBar. Table 6-6

on the next page describes the WizardBar's boxes and buttons.

The arrow button at the far right of the WizardBar displays the drop-down
menu of options shown in Figure 6-7 on page 283.

281

Programming Assistance

Table 6-6.

282

Wizard Bar
control

Classes

Identifiers

Functions

Default

Menu

Description

Displays the name of the class currently open in the editor
and provides a drop-down list of all classes in the project.
Entries in the box are grayed when neither the text editor
nor the dialog editor has focus.

Lists symbol identifiers used by the current class. (The
name of the current class appears in the WizardBar's
Classes box.)

Contains the names of virtual functions and CCmdTarget
procedures for the current class.

Clicking the "wand" icon at the far right of the WizardBar
executes the default command of the WizardBar menu. The
default command depends on the current document and
selections in the WizardBar. For example, if the class
implementation file is open in the text editor and the caret
is inside a function block, the default action is Go To Func­
tion Declaration, which opens the class header file and
positions the caret at the function's prototype. The default
action then changes to Go To Function Definition, sending
the caret back to the implementation CPP file. The default
action is always the first command listed on the WizardBar
menu, shown in Figure 6-7.

Displays the WizardBar menu of available options,
described in the bulleted list beginning on the next page.

Controls on the WizardBar.

The contents of the menu reflect the document currently active, so com­
mands such as Go To Next Function are available only when a source doc­
ument is open in the text editor. In the following descriptions of the menu
commands, the word "current" refers to settings in the WizardBar. The
current class, for instance, is the class displayed in the WizardBar's
Classes box, shown in Figure 6-6.

Figure 6-7.

6: ClassWizard

.§o To Function Definition

Go To Function Decjaration

Add Windows Message .!:iandler ...

Add Virtual function ...

Add Member Function ...

Delete

Go To Class Q.efinition

.!:!ewClas:s ...

NewFQrm ..

Go To Ne~t Function

Go To Pre~ious Function

Open!nclude File ...

Wi~ardBar Help

The WizardBar menu, displayed by clicking the arrow button on the WizardBar.

• Go To Function Definition-Opens the source CPP file if necessary
and places the caret at the first line of the current function, identi­
fied in the WizardBar's Functions box.

• Go To Function Declaration-Places the caret at the prototype of
the current function.

• Add Windows Message Handler-Invokes the New Windows Mes­
sage Handler dialog. This dialog lets you quickly add a stub message
handler function to a window class descended from CWnd.

• Add Virtual Function-Overrides a virtual function of the base
class. This command displays two lists, one containing virtual func­
tions that are available for overriding, and the other showing those
functions already overridden by the current class. The lists provide
the same information as the Messages box in the MFC Class Wizard
dialog, but are easier to use and more convenient to navigate.

• Add Member Function-Adds a stub member function to the cur­
rent class. Enter the function's return type, declaration, and access
label as shown on the next page.

283

Programming Assistance

284

When you click the OK button, Visual C++ adds both declaration and defi­
nition code for the new function to the class source files:

II In the class header file
public:

void NewFunction(inti. CString &str);

II In the class CPP implementation file
void CMainFrame::NewFunction(inti. CString &str)
{
}

• Delete-Removes the current function from the class's source. After
querying for confirmation, Visual C++ deletes the function's declara­
tion and comments out the implementation code. The editor's Undo
command cannot restore a deleted function.

• Go To Class Definition-Places the caret at the implementation of
the current class's constructor function.

• New Class-Equivalent to the New Class command on the Insert
menu (described on page 279 in the section "Adding a non-MFC
class").

• New Form-Displays the New Form dialog, which generates stub
code for a new form-based class derived from CF arm View, CDialog,

CRecordView, or CDaoRecordView. This produces the same results
as selecting the Form Class type in the New Class dialog.

• Go To Next/Previous Function-In an implementation file, sends
the caret forward or backward to the next function definition. In a
header file, sends the caret to the adjacent function declaration.

6: ClassWizard

II Open Include File-Scans the current document for #include state­
ments, then presents a list of all included files. To open a file in the
text editor, double-click its filename in the list.

• WizardBar Help-Displays a topic titled "Overview: WizardBar" in
the MSDN Help window. From there you can jump to other topics
pertaining to the WizardBar.

The WizardBar provides quick access to ClassWizard and is a convenient
alternative to the ClassWizard dialogs. Once you know the ins and outs of
Class Wizard, the features of the WizardBar will seem familiar. Although
this chapter concentrates on accessing ClassWizard through its various
dialogs, the information applies equally to the WizardBar tools.

~ow ClassWozard Recognizes Classes
The CL W database file is in ASCII text form, so you might be interested
in reading through it, using the text editor. The database itemizes each
class in the project, keeping a record of the class's base and source files.
Resource data such as dialogs, menus, and accelerators are also itemized
in the file along with their identifiers.

To construct the CLW database file, Visual C++ scans every source file
attached to the project looking for special commented lines. You've seen
these comments before in App Wizard programs; they begin either with //{{
or //}}, acting as brackets that mark declarations, message map entries, and
other code pertaining to class members. The comments have no purpose
other than identifying class information for inclusion in the CLW data­
base. If you write a class without Class Wizard but later want to use
ClassWizard to add other functions or data to the class, you must include
the commented lines as described below. Otherwise, the comments are
not necessary.

Each comment delimiter contains one of the thirteen keywords listed in
Table 6-7 on the next page. Most of the keywords are used in pairs, one
keyword marking a declaration in the class's header file while its counter­
part, which has a _MAP suffix, marks a corresponding entry in a message
map in the CPP file. For example, here's how Visual C++ recognizes a
message handler function in a class named CDemoApp, derived from

285

Programming Assistance

Table 6-7.

286

ICeyword

AFX_DATA

AFX_DATA_INIT

AFX_DAT A_MAP

AFX_DISP

AFX_DISP _MAP

AFX_EVENT

AFX_EVENT_MAP

AFX_FIELD

AFX_FIELD_INIT

AFX_FIELD_MAP

AFX_MSG

AFX_MSG_MAP

AFX_ VIRTUAL

File

H

CPP

CPP

H

CPP

H

CPP

H

CPP

CPP

H

CPP

H

Description

Member variable declaration for dia­
log data exchange

Initialization of a dialog data
exchange member variable in a dia­
log class's constructor

Dialog data exchange call in a dialog
class's DoDataExchange function

Automation declaration

Automation mapping

ActiveX event declaration

ActiveX event mapping

Declaration of a member variable
used for database record field
exchange

Initialization of a record field
exchange member variable in a
recordset class's constructor

Record field exchange call in a
recordset class's DoFieldExchange
member function

Prototype for a function that appears
in a message map

Message map entry

Declaration of a virtual function
override

Comment keywords required by Class Wizard.

MFC's CWinApp. In the CPP implementation file, the special AFX_MSG_
MAP comments bracket a message map entry for the handler function
CDemoApp::OnAppAbout, making the entry recognizable to ClassWizard:

BEGIN_MESSAGE_MAPCCDemoApp, CWinApp)
//{{AFX_MSG_MAP(CDemoApp)
ON_COMMAND(ID_APP_ABOUT, OnAppAbout)
I/}} AFLMSG_MAP

END_MESSAGE_MAP()

6: ClassWizard

ClassWizard also needs to read the function's prototype, so the
OnAppAbout declaration in the header file is marked with corresponding
AFX_MSG comments:

public:
//{{AFX_MSG(CDemoApp)
afx_msg void OnAppAbout();
I/}} AFX_MSG
DECLARE_MESSAGE_MAP()

With this information recorded in the CLW database, ClassWizard knows
that the CDemoApp class contains a member function named OnAppAbout
that is called when the program receives an ID_APP _ABOUT identifier
contained in a WM_ COMMAND message. The afx_msg prefix in the func­
tion prototype is included for the benefit of Class Wizard; otherwise, it is
not required.

ClassWizard and AppWizard automatically add the correct delimiter com­
ments when generating source code, insulating you from these details. But
if you want to use Class Wizard in a project that did not originate with
AppWizard, Table 6-7 shows how to convert existing class source files to
make them recognizable to Class Wizard. The table describes the types of
functions and declarations marked by the comment keywords and indi­
cates in which source file a keyword is used.

Creating a Dialog Class with ClassWizard
After designing a new dialog resource for an MFC program, you must also
provide a class derived from CDialog (or one of the other dialog-based
classes) to display the dialog and respond to its messages. Usually, Class­
Wizard is your next logical step after finishing with the dialog editor. We
might well have used ClassWizard, for example, when writing the Mfc­
Tree program in Chapter 5. Recall that MfcTree displays a simple dialog
containing a tree list of some MFC classes. In Chapter 5 we wrote a class
called CMfcDlg to run the dialog, first using the text editor to write skele­
ton implementation and header files named MfcDlg.cpp and MfcDlg.h,
then adding the files to the project by choosing the Add To Project com­
mand from the Insert menu. Class Wizard can take care of both steps.

287

Programming Assistance

288

As a demonstration, let's back up and create the skeleton MfcDlg.cpp and
MfcDlg.h files again, this time using Class Wizard instead of writing the
files from scratch in the text editor. To get a clear idea of the work that
ClassWizard automates, you might want to review the short section titled
"Add Source Files for the CMfcDlg Dialog Class" beginning on page 239 in
Chapter 5. That section describes the third of the five steps used to build
MfcTree.exe.

In beginning this exercise, assume that MfcTree's dialog has just been cre­
ated and saved in the dialog editor. With the IDD_MFC_DIALOG resource
still open in the dialog editor, click ClassWizard on the View menu. Class­
Wizard detects the new dialog resource and asks if you would like to cre­
ate a new class for it:

~~iii'~~
1

! ; IDD_MFC_DIALOG is a new resource. Since it · I·:· OK I
{ is a dialog resource you probably wantto create · u .· •. ·.· · • :•.a new cla.ssfor it You can also select an . . :L' .. . ,

existing class; ·

It's possible to add a class for which the source code already exists. For
example, you might have already written the dialog class before you cre­
ated and saved the resource in the dialog editor. In that case, you would
click the Select An Existing Class radio button to attach the dialog to the
class and prevent ClassWizard from generating new CPP and H source
files. For this demonstration, however, the default Create A New Class
radio button is the right choice since the CMfcDlg class doesn't exist yet.

Clicking the OK button opens the familiar New Class dialog. Enter CMfc­

Dlg in the Name box to give a name to the new class. Skip the Change
button to accept the default names of MfcDlg.cpp and MfcDlg.h that Class­
Wizard proposes for the source files. Because it knows we are creating a
class for the new dialog, Class Wizard has already selected CDialog as the
base class. It has also filled in the Dialog ID box with the dialog identifier

Figure 6-8.

Figure 6-9.

6: ClassWizard

IDD_MFC_DIALOG, which the dialog editor wrote to the MfcTree.rc file.
Figure 6-8 shows what the New Class dialog should look like.

r:Cl.:issinformalion----------J

! Name: jcMfcDlg.

i. File name: :MTci5Ti~PP·--···-------~~_:_~

; ' . £;hange... I

OK

Cancel

] tl. ase class: j CDialog ::J. T ! I
I ll""''"' j1oo_MFc_o1ALOG ::JJ

Creating the new CMfcDlg class in Class Wizard's New Class dialog.

Click the OK button to close the New Class dialog and uncover the MFC
ClassWizard dialog shown in Figure 6-9. This is where you generate skele­
ton code for the new CMfcDlg class. CMfcDlg needs only an OnlnitDialog

function, which gets control just before the IDD_MFC_DIALOG dialog

Adding the OnlnitDialog member function to the CMfcDlg class.

289

Programming Assistance

290

appears. In the Object IDs box, select CMfcDlg, and then double-click
WM_INITDIALOG in the Messages box to add the OnlnitDialog function.

The names of the two member functions that Class Wizard creates appear
in the Member Functions box at the bottom of the dialog. The selected
item in the box indicates that the ON_ WM_INITDIALOG message map
macro is responsible for routing control to the OnlnitDialog function when
the program receives a WM_INITDIALOG message. The items in the
CMfcDlg tree view do not change, so the DoDataExchange function is not
needed. If you want to delete DoDataExchange, select it in the Member
Functions box and click the Delete Function button. Doing so, however,
removes only the function prototype from the MfcDlg.h header file:

ll{{AFX_VIRTUAL(CMfcDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);
I/} }AFLVIRTUAL

II DDXIDDV support

The DoDataExchange source code still exists untouched in the MfcDlg.cpp
file, because ClassWizard deletes only code within comment delimiters,
never implementation code. A message reminds you of this fact:

If you click the Yes button, you enter into an agreement with ClassWizard
that you will delete the DoDataExchange source code yourself in the text
editor. Otherwise, you run the risk of defining DoDataExchange twice if
you later decide to add the function back to the MfcDlg.cpp file. When
Class Wizard adds a new member function, it doesn't scan the file first to
see if the function already exists-it just writes the new function shell:

void CMfcDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
}

t>: uassw1zara

Failure to delete the original implementation of DoDataExchange results
in a compiler error, because the compiler won't accept two definitions of
the same function.

When you exit the MFC ClassWizard dialog, ClassWizard adds the new
MfcDlg.cpp and MfcDlg.h files to the project, both of which contain stub
functions for the CMfcDlg class. Once you add code to the class's Onlnit­
Dialog function as described in Chapter 5, the new files are functionally
equivalent to the ones written from scratch and are much easier to create.
If you would like to compare the new source code with the old, you can
find the original MfcDlg source files in the Chapter.05\MfcTree folder on
the companion CD. The corresponding MfcDlg.cpp and MfcDlg.h files
generated with the help of Class Wizard are in the Chapter.06\MfcTree
folder.

291

'\

The Gallery
The Gallery is a sort of toolbox into which Microsoft has placed an assort­
ment of "canned code" called components that you can add to your own
projects. You can also use the Gallery to warehouse any of your own
classes that you might want to later reuse. The Gallery holds three main
types of components: source code, dialog resources, and ActiveX controls.
Through the Gallery, you can browse your hard disk or network for a com­
ponent, and then insert it into your project with a click of the mouse.
Because a component can be stored anywhere, the Gallery serves as both
a personal repository for code, storing components for your own private
use, and a global code pool, allowing developers linked through a network
to share a communal collection of components.

The prepackaged components that come with the Gallery are stored in two
folders created by the Visual C++ installation program, one folder for
source code components, the other folder for ActiveX controls. The
Visual C++ Components folder contains shortcuts to dynamic link librar­
ies that automatically add source code and resources to a project. The sec­
ond folder, named Registered ActiveX Controls, contains shortcut links to
all the ActiveX controls registered on your system. Some of the registered
controls are provided license-free with Visual C++, so you can redistribute
them with your own applications. There is a lot to say about ActiveX
controls, most of it not directly pertaining to the Gallery, so the subject is

293

Programming Assistance

Figure 7-1.

294

deferred until Part 4 of this book. This chapter focuses on how to access
the Gallery and build your own collection of reusable objects.

Visual C++ is not your only available source for prepackaged components.
Many vendors offer component tools in both source code and binary form,
advertising in trade journals and on the Internet. Prepackaged components
tend to be flashier than the ones you create yourself because they can
automate the entire process of adding a component to a project. Operating
as executable libraries that the Visual C++ environment loads and runs,
these professional packages can insert graphics resources and rewrite a
project's existing files by adding functions and #include statements as
necessary-usually to the point where there is little or no programming
left for you to do. And prepackaged components often provide their own
online help.

The Gallery displays its wares in the Components And Controls Gallery
dialog pictured in Figure 7-1. When a C++ project is open in the environ­
ment, you can access the Gallery dialog by resting the cursor momentarily
on the Add To Project command on the Project menu. This displays a sec­
ondary drop-down menu from which you choose the Components And
Controls command. If the dialog's More Info button is enabled when you
select a component from the list, the component can describe itself

The Gallery's Visual C++ Components folder.

1: 1 ne CJa11ery

through its own online help. To insert a Gallery component into your
project, select its icon and click the Insert button.

In Visual C++ version 4, the Gallery (then known as Component Gallery)
was apt to get crowded if you regularly created projects with App Wizard.
Each time App Wizard executed, it automatically added a new category to
Component Gallery and installed all project classes, such as CMainFrame
and CAboutDlg, as source code components. By default, ClassWizard also
added to the project category any new classes you created. The onus was
on the user to occasionally clean out unwanted additions in Component
Gallery, though many programmers simply ignored the expanding list of
components or were unaware of what App Wizard and ClassWizard were
doing behind the scenes. The entire Component Gallery database was
stored in a single file called Gallery.dat, so there was no convenient way
to share components with other developers.

Although the function of the Gallery in version 6 has not changed, its
methods have been improved. Gallery.dat no longer exists, its database
replaced by individual component files that can exist anywhere on a disk
or network. And both App Wizard and ClassWizard no longer add classes
to the Gallery. As we'll see in the next chapter, ActiveX controls can
become part of the Gallery database without your expressed permission,
but the same is not true for other component types. You must take specific
steps to add a component to the Gallery, including any components you
want to salvage from version 4 projects. A later section explains how to
add a new component to the Gallery, but for now let's take a look at some
of the prepackaged components that come with Visual C++.

Example: Adding a Property Sheet
Chapter 5, Dialog Boxes and Controls, described how to use the dialog edi­
tor to create a property sheet dialog and incorporate it into a program. The
Gallery comes with a component called Property Sheet that makes the job
even easier. This section and the following section demonstrate Property
Sheet and some of the other components that ship with Visual C++, first
showing how to add a property sheet to a project called Gadgets, then
dressing up the program even more with other code borrowed from the

295

Programming Assistance

296

Gallery. Gadgets starts out as a typical AppWizard project, then becomes
more sophisticated as you add components to it. Here are the steps for set­
ting up the project and adding the first component:

1. Choose New from the File menu to open the New dialog, and in the
Projects tab choose the MFC AppWizard (exe) icon. Type Gadgets as
the project name and click OK.

2. As AppWizard steps through its screens, select the Single Document
radio button in the first step and deselect the status bar, docking
toolbar, and printing support in the fourth step. Accept the default
settings in the other steps.

3. When AppWizard finishes and Visual C++ opens the project, choose
Add To Project from the Project menu and click the Components
And Controls command on the secondary menu to display the Com­
ponents And Controls Gallery dialog.

4. Open the Visual C++ Components folder in the dialog and double­
click the Property Sheet component icon. (You may have to scroll
through the list to find the icon.) The Gallery queries with a message
box to confirm that you really want to insert the component.

5. Visual C++ loads and runs the component's executable library,
which displays a dialog asking various questions about the type of
property sheet you want to create. Just click the Next button to ac­
cept all the defaults. When finished, close the Gallery dialog.

You will find that the Property Sheet component has automatically placed
in the Gadgets folder source files for the new property sheet class. The
component has also modified four of the existing files in the Gadgets pro­
ject: the Resource.h file now contains definitions required by the property
sheet class; Gadgets.re has been updated with dialog scripts for two prop­
erty pages; and the MainFrm.h and MainFrm.cpp files contain new code
for a function called OnProperties.

A "to do" comment in the OnProperties function explains that you must
connect the function to a message handler so that the property sheet is

1: 1 ne lJallery

displayed when the user clicks a menu command. This requires only
two steps:

1. Add an entry for the function to the message map in MainFrm.cpp.
The new map entry, shown here as a shaded line, must be inserted
between the ClassWizard comment delimiters:

//{{AFX_MSG_MAP(CMainFrame)
ON_COMMAND (IDM_PROPSHEET, OnProperties)
I/} }AFX_MSG_MAP

2. In the Resource View pane of the Workspace window, expand the
Menu folder and double-click the IDR_MAINFRAME menu resource
to launch the menu editor. Edit the menu system so that it looks
like this:

r:g~I?h1}t~~~~;'.:f~::'.:::~:'.:'.:::'.:T~ '.'''''~''"2J
I · · 8bout Gadgets ...

I r:::::::~:::::::::::::::::::::~:;:::::::::=:::::::i

When you add the Property Sheet command to the Options menu,
be sure to give it an identifier value of IDM_PROPSHEET in the
Menu Item Properties dialog. This is the same identifier used in the
shaded line added to the message map in the first step.

Using the Build toolbar, change the active project configuration to Win32
Release, build Gadgets.exe, and run it. Choosing the Property Sheet com­
mand from the program's Options menu displays the boilerplate property
sheet dialog shown in Figure 7-2 on the next page. The two pages of the
dialog are ready to be fleshed out with controls using the dialog editor.
From start to finish, the whole operation takes only a few minutes. Prop­
erty sheets have never been so painless.

297

Programming Assistance

298

Figure 7-2. The Gadgets program with its property sheet displayed.

Example: Adding a Splash Screen and Clock
A splash screen is a bitmap image that appears briefly at program startup.
Large Windows programs (such as Visual C++ and even Windows itself)
often put up a splash screen before displaying a main window while they
load files and perform other initialization procedures. This not only gives
the user something attractive to look at while the program is busy, it also
conveys an impression of responsiveness. The Gadgets program is so
small that it doesn't really need a splash screen, but that needn't stop us.
Let's also add a status bar with a clock while we're at it. You won't believe
how easy all this is.

The components we need, called Splash Screen and Status Bar, are identi­
fied with these large icons in the Visual C++ Components folder of the
Gallery dialog:

Splash screen Status bar

Add each component to the open Gadgets project by double-clicking the
component icon. The Status Bar component runs a dialog that lets you
choose whether the new status bar displays the date and time. To include
the time in the status bar, click the Use System Default radio button in the

Figure 7-3.

7: The Gallery

second step. (Accept default settings for the other steps.) When you close
the Gallery, you will find code has been added to the MainFrm.cpp file
that creates a status bar with a small clock at the far right side. You need
only add this shaded line to the message map in MainFrm.cpp:

//{{AFX_MSG_MAP(CMainFrame)
ON_COMMAND (IDM_PROPSHEET, OnProperties)
ON_WM_CREATE ()
I/} }AFX_MSG_MAP

The Splash Screen component provides a file named Splsh16.bmp that
contains a generic bitmap image. For a splash screen of your own design,
create a new 16-color image in the graphics editor and save it under the
same filename, overwriting the original Splsh16.bmp file. The default
duration of the splash screen display is% second (750 milliseconds), but
you can change this by modifying the line

SetTimer(l, 750, NULL);

in the Splash.cpp file. To see the new components in action, rebuild the
Gadgets program and run it. Figure 7-3 shows what the new program
looks like.

The Gadgets program with its new splash screen, status bar, and clock.

299

Programming Assistance

300

Creating a Custom Component
The Gallery is infinitely expandable. You can add to its collection by cre­
ating your own custom components-a dialog box, for example, or a new
class. A custom component consists of source code for a class, usually a
single CPP implementation file and an H header file. If the class is derived
from one of the MFC dialog classes (CDialog, CFormView, CPropertyPage,
CRecordView, or CDaoRecordView), the component also includes resource
data for the dialog.

There are good reasons for saving your work as a new component. First,
the Gallery serves as a convenient warehouse for reusable source code.
When you develop a class for a project and save it as a component, you do
not have to later pore through disk files looking for the source code to add
the class to a new project. A second reason for creating new components
is especially compelling for developers linked by a network, who can now
add to and draw from a central data bank of components. Before develop­
ing a new class, you can check the Gallery to see whether someone has
already done the work for you.

To add a component to the Gallery, right-click its class in the ClassView
pane of the Workspace window and choose the Add To Gallery command
from the context menu. Figure 7-4 illustrates the steps for a class named
CNewComponent.

Clicking the Add To Gallery command creates a new subfolder if neces­
sary in the Gallery's main folder. The subfolder has the same name as the
project and contains the new component file, which has an OGX exten­
sion. The OGX component file is not a pointer to the original class source
code; rather, it contains bound copies of the CPP and H text files that
define the class. If the class is dialog-based, the OGX file also includes a
copy of the dialog's resource script. Because the OGX file archives a com­
plete copy of the code, a component can outlive its project. Even when
project files are deleted or moved, the Gallery can always produce the
original source code. This means that a component is a snapshot of code
as it exists at the time you add it to the Gallery. A component is not auto­
matically updated along with the source code; to update a component,
you must add the class to the Gallery again.

Figure 7-4.

7: The Gallery

[£!~.;,.,·· ·~.~.....,..;.:~.·-··_;;;:;;:;;:_····_'.;,_;;;:,;;:,_:_:._;;:_·~.·" .•. :._; • -~·-···~-.. ~· ... ,,. •. _,_,.,._ .•••.•• ,T::'l

L.~r.:u"==~~:"fl.L::1':=·-l• .,,=_·:<=====· ·=···=·=--=· --=··::::::::::·· ··=··=·. ::::· ·=·· ·=·· =· ·=: =·J.;;JJ!!!:X=il

I
: El-·· ;;~~ Demo classes
l r±l····Dt: C.O.boutD lg
Ii ~---.•i: CDemcApp
;, ~-···111-r: CDemoDoc
i; ~-···"1: CDemoView
j; lB····"r: CMainFrame .@o to Definition
i! ~ -r;&Jffl!.jiii.f.;;~HI Add Member Function .. .
!; ffi CJ Globals Add Member ~ariable .. .
I:

1

_ . . ::. .. Add Vir_tual .E unction ...

j · DLJ ClassView I~ Resowce\ c: ;: Add Windows Message .tiandler ...
!....:::===:::.=====«';Ii;; R~ferences ...

: ii D erjved Classes ...

: ~ ftase Classes ...

Group by Agcess

Adding a class to the Gallery.

The custom components you create have certain limitations. For one
thing, the More Info button in the Gallery dialog is inactive for custom
components because there is no direct way to add online help to explain
how the component works. Nor can a custom component automatically
modify existing source files in a project the way that the Property Sheet
and Splash Screen components do. Creating professional-quality compo­
nents suitable for the software market requires Microsoft's Component
Builder's Kit, which lets you create executable components that can use
the online help system. Microsoft does not charge for the kit, but currently
it is available only to software companies, not to individuals. To request
a copy of the Builder's Kit, send an inquiry on your company's letter­
head to:

Visual C++ Manager
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

Example: A Custom Component for Directory Listings
This section demonstrates the process of creating a custom component,
first outlining a new class named CDirListCtrl and then adding it to the

301

Programming Assistance

Figure 7-5.

302

Gallery. Derived from MFC's CListCtrl class, CDirListCtrl displays a direc­
tory listing in a list view common control, attaching small icons that help
the eye quickly distinguish between drives, folders, and files (Figure 7-5).
Clicking a drive or folder in the list automatically changes the path and
refreshes the list. And because CDirListCtrl does not use the DlgDirList

API function, it correctly displays long filenames in Windows 95. If this
seems like something we could have used in Chapter 5 for the DirListl
program, you're right. A later section shows how to add the CDirListCtrl

custom component to create a new version of the program called DirList2.

The CDirListCtrl list view control in a typical dialog box.

Listing 7-1 shows the source code for the CDirListCtrl class, contained in
the DirCtrl.h and DirCtrl.cpp files located in the Code \Chapter.07\DirCtrl
folder on the companion CD. CDirListCtrl contains five public member
functions, three of which are declared inline in the DirCtrl.h header file.
Of the other two public functions, Create sets up the list view control and
ShowList refreshes the directory listing in the control. The path of the
displayed directory is stored in the private strDirectory string. Changing
the listing is a two-step procedure in which the creator of the CDirListCtrl

object first calls the SetPath function to change the directory path, and
then calls ShowList to display the new directory.

Listing 7-1.

7: The Gallery

Source files for the CDirListCtrl class.

DirCtrl.h

II **
II
II DirCtrl .h
II
II **

#define DL_DRIVE 1
#define DL_FOLDER 2
#define DL_FILE 4
#define DL_ALL 7

typedef BOOL (CALLBACK *PCALLBACK)(PWIN32_FIND_DATA);

class CDirlistCtrl : public CListCtrl
{

private:
int
CString
CListBox
CimageList
CDialog*

BOOL
void
PCALLBACK

public:

iListFlags, idcPath;
strDirectory, strFilter;
listDummy;
imageList;
pDialog;

FindFiles(DWORD dwFlags);
GetCurrentDirectory ();
pCall Back;

ShowList(CString& Filter); BOOL
void
void
void
void

GetPath(CString& strPath) {strPath = strDirectory;}
SetPath(CString& strPath) {strDirectory = strPath;}
SetCallBack(PCALLBACK pCB) {pCallBack = pCB;}
Create(CDialog* pDlg, LPRECT prect, int idcControl,

int idcStatic, int iFlags=DL_ALL, int idiicon=0);

protected:
BOOL GetDirectoryList(int iType);
afx_msg void OnSelChange(NMHDR* pnumhdr, LRESULT* pResult);

DECLARE_MESSAGE_MAP ()
} ;

{continued)

303

Programming Assistance

304

Listing 7-1. continued

DirCtrl.cpp

II **
II
II DirCtrl.cpp
II
II **

#include "afxcmn.h"
#include "di rctrl. h"
#define IDC_DUMMY 48888

void CDirListCtrl ::Create(CDialog* pDlg, LPRECT prect,
int idcControl, int idcStatic,
int iFlags, int idilcon)

{

pDialog pDlg;
idcPath idcStatic;
pCallBack = NULL;

II Save ptr to dialog object
II Save ID of static control
II Assume no call-back

II Create DirListCtrl control
if (!CreateEx(WS_EX_CLIENTEDGE, WC_LISTVIEW, NULL,

LVS_LIST I LVS_SINGLESEL I LVS_ALIGNLEFT I
WS_VISIBLE I WS_CHILD, prect->left, prect->top,
prect->right, prect->bottom,

{

}

pDi a 1 og- >m_hWnd. (HMENU) i dcContro 1))

MessageBox("Failed to create DirListCtrl");
return:

II Associate "file". "folder". and "drive" icons with control
imagelist.Create(16, 16, TRUE, 1, 0);
if (idilcon)
{

}

imagelist.Add(AfxGetApp()->Loadicon(
imagelist.Add(AfxGetApp()->Loadicon(
imagelist.Add(AfxGetApp()->Loadicon(
imageList.Add(AfxGetApp()->Loadicon(
imageList.Add(AfxGetApp()->Loadicon(

SetimageList(&imageList, LVSIL_SMALL);

II Create dummy list box
CRect rectDummy;
rectDummy.SetRectEmpty ();

idilcon)

idilcon +
idi!con +
idi!con +
idilcon +

) ;
1)) ;

2)) ;

3)) :
4)) :

7: The Gallery

}

listDummy.Create(WS_CHILD I LBS_SORT, rectDummy,
pDialog, IDC_DUMMY);

II Start with current directory
GetCurrentDirectory ();
ilistFlags = iFlags;

BOOL CDirlistCtrl ::Showlist(CString& Filter)
{

static int
BOOL
int
UINT
PSTR
char

iType[3] = { DL_DRIVE, DL_FOLDER, DL_FILE };
bRetCode = FALSE;
i, j, n, nicon. nitem = 0;
uType;
pitem new char[MAX_PATHJ:
szRoot[] {"x: \ \ \0"}:

if (Filter.IsEmpty ())
strFilter = "*·*":

else
{

strFilter = Filter;
strFilter.Trimleft ();
if (strFilter.GetAt(0) == '\\')
{

II Remove leading
II white spaces or
II backslash

}
}

strFilter.SetAt(0, ' ');
strFilter.Trimleft ();

II Update static control and empty the list

pDialog->SetDlgitemText(idcPath, strDirectory);
DeleteAllitems ();

II Show directory list in this order: drives, folders, files

for (n=0, j=DL_DRIVE; n < 3; n++, j <<= 1)
{

if ((ilistFlags & j))
{

if (GetDirectorylist(iType[n]))
{

bRetCode = TRUE;

II Copy list from dummy box to list view control
i = 0;

(continued)

305

Programming Assistance

306

Listing 7-1. continued

}

while (listDummy.SendMessage(LB_GETTEXT, i++,
(LPARAM) pltem) != LB_ERR)

{

}
}

}
}

delete [] pltem;
return bRetCode:

if (lstrcmp(pltem, 11
") &&

{

}

l strcmp(pltem, " .. 11
))

II Determine which icon the listed item
II should have: floppy, hard disk, etc.

switch (j)
{

}

case DL_DRIVE:
szRoot[0J = *pltem;
nlcon = 1;
uType = ::GetDriveType(szRoot);
if (uType == DRIVE_REMOVABLE)

nlcon = 0;
if (uType == DRIVE_CDROM)

nlcon = 2;
break;

case DL_FOLDER:
nlcon = 3;
break;

default:
nlcon = 4;

Insertltem(nltem, pltem, nlcon);
SetltemData(nltem++, iType[nJ):

II Clean up

BEGIN_MESSAGE_MAP (CDirListCtrl, CListCtrl)
ON_NOTIFY_REFLECT (LVN_ITEMCHANGED, OnSelChange)

END_MESSAGE_MAP ()

1: ine ua11ery

void CDirlistCtrl ::OnSelChange(NMHDR* pnumhdr, LRESULT* pResult)
{

}

NM_LISTVIEW* pnmlv = (NM_LISTVIEW*) pnumhdr:

II Get item selected in list view
if ((pnmlv->uNewState) & LVIS_FOCUSED)
{

}

II Is it a drive, folder, or file?
int iType = GetitemData(pnmlv->iitem):

if (iType != DL_FILE)
{

II Ignore files

}

CString stritem = GetitemText(pnmlv->iitem, 0):

II If drive selected, replace directory
if (iType == DL_DRIVE)

strDirectory = stritem: II Directory= "d:"

II If folder selected, append it to current path
else

strDirectory += stritem:

strDirectory += "\\":

if (!Showlist(strFilter))
{

II Append "subdir"

II Append '\'

II New dir listing

II If error, reset to current directory
GetCurrentDirectory ():
strFilter.Empty ():
Showlist(strFilter):

}

*pResult = 0:

BOOL CDirlistCtrl ::GetDirectoryList(int iType)
{

DWORD dwDrives;
char szDrive[J "A:":
BOOL bRet:

II Empty the dummy list box
listDummy.SendMessage(LB_RESETCONTENT, 0, 0):

switch (iType)

(continued)

307

Programming Assistance

308

Listing 7-1. continued

{

}

case DL_DRIVE:
dwDrives = ::GetlogicalDrives ():
for (: dwDrives && szDrive[0] <= 'Z': ++szDrive[0])
{

}

if CdwDrives & 1)
listDummy.SendMessage(LB_ADDSTRING. 0.

(LPARAM) szDrive):
dwDrives »= 1:

bRet = TRUE:
break:

case DL_FOLDER:
bRet = FindFiles(FILE_ATTRIBUTE_DIRECTORY):
break;

case DL_FILE:
bRet = FindFiles(0L);
break;

return bRet:

BOOL CDirlistCtrl::FindFiles(DWORD dwFlags)
{

WIN32_FIND_DATA fd;
HANDLE hFind:
CString
BOOL

str = "*·*":
bOkay;

if (dwFlags -- 0)
str = strFilter;

hFind = ::FindFirstFile(strDirectory + str. &fd):
if (hFind == INVALID_HANDLE_VALUE)

return FALSE:

while <TRUE)
{

if (dwFlags

{

(fd.dwFileAttributes &
FILE_ATTRIBUTE_DIRECTORY))

bOkay = (pCallBack) ? pCallBack(&fd) TRUE;
if (bOkay)

listDummy.SendMessage(LB_ADDSTRING, 0,

1: I he CJallery

(LPARAM) fd.cFileName):

}

}

if (!::FindNextFile(hFind, &fd))
break;

::FindClose(hFind);

return TRUE:

void CDirlistCtrl::GetCurrentDirectory ()
{

PTSTR pDir = new char[MAX_PATH];

::GetCurrentDirectory(MAX_PATH, pDir):
strDirectory = pDir:

if (strDirectory.Right(1 != "\\")
strDirectory += "\\":

delete [] pDir:

II Append backslash

The Create function, which is called only once to create the control, is
prototyped like this in the DirCtrl.h header file:

void Create(CDialog* pDlg, LPRECT prect, int idcControl,
int idcStatic, int iFlags=DL_ALL, int idiicon=0);

Table 7-1 on the next page explains the function's six parameters.

The caller provides in its resource data up to five icon images, each
16 pixels square, that represent the various drive types and filenames
displayed in the list view control. Figure 7-5 on page 302 illustrates possi­
ble icon images, which include a floppy disk drive, hard disk, CD-ROM
drive, file folder, and a small diamond shape to represent files. Create
attaches each icon to the control by calling the CimageList::Add function,
beginning with the floppy disk drive icon identified by the idilcon param­
eter. Identifiers for the other icon images follow in sequential order, so
that idilcon+ 1 is the identifier for the hard disk image, idilcon+2 is the
identifier for the CD-ROM drive image, and so forth. The icons are
optional, and need.not be present.

309

Programming Assistance

Table 7-1.

310

Parameter

pDlg

pre ct

idcControl

idcStatic

iFlags

idilcon

Description

The this pointer for the containing dialog box.

Pointer to a RECT structure that contains the dimensions
of the list view control within the dialog window.

Identifier of the list view control.

Identifier of a static control in the dialog. The ShowList
function writes the current directory path to the
idcStatic control.

Bit flags defined in DirCtrl.h that determine the contents
of the directory listing. Values can be any combination
of DL_DRIVE, DL_FOLDER, and DL_FILE. The default
DL_ALL value includes all three types in the listing.

Identifier value for the first of five possible icons dis­
played in the directory listing.

Parameters of the Create function.

Before it exits, the Create function calls CListBox::Create to set up an
invisible list box control called listDummy. The JistDummy list box is
never displayed, serving only as an intermediate storage bin for the file­
names that make up the directory listing. The name of each file and folder
that the FindFiles function locates in the directory is added to the list­
Dummy list box. Since the list box is created with the LBS_SORT flag, it
automatically sorts its collection of strings as it receives each file and
folder name. When the ShowList function extracts the strings from the list
box, the list box delivers the strings one by one in alphabetical order.

The SetCallBack inline function takes the address of an optional callback
routine. If the pCallBack address is not null, the FindFiles function
assumes the callback routine exists and calls it for each file before adding
the filename to the listDummy list box:

bOkay = (pCallBack) ? pCallBack(&fd) TRUE;
if (bOkay)

listDummy.SendMessage(LB_ADDSTRING, 0, (LPARAM) fd.cFileName);

By returning TRUE or FALSE from the callback routine, the creator of the
CDirListCtrl object can accept or reject any file. We'll see later in the

7: The Gallery

chapter how the DirList2 program takes advantage of this feature to win­
now the files that appear in the directory list.

Creating the CDirListCtrl class
Before we can add CDirListCtrl as a component, we need a temporary pro­
ject to contain the source files. This is because the Class View pane of the
Workspace window is accessible only in an open project. Creating a tem­
porary project is therefore necessary when the class you want to add to the
Gallery exists as source code that does not belong to a project. Once the
class is added to the Gallery, you can then delete the temporary project.
The name of the project does not matter.

You can create a temporary project to contain an existing class in two
ways. The first method relies on App Wizard. Click New on the File menu,
select the MFC App Wizard (exe) icon in the Projects tab, and type a pro­
ject name. (The steps outlined below assume the project name is DirCtrl.)
Click the Finish button in AppWizard to accept all the defaults, which are
not important because we will throw away all the generated files anyway.

The second method for creating a temporary project to contain a compo­
nent class does not rely on AppWizard. Such a project needs only a stub
RC file with the same name as the project-the RC file can even be empty.
To create the project, select the Win3 2 Application icon (instead of the
App Wizard icon) in the Projects tab of the New dialog, give the project a
name such as DirCtrl, and click OK. At the wizard's next step, accept the
default setting specifying an empty project and click the Finish button.
Next, use the text editor to create an empty RC file and save it to the
DirCtrl project folder. With the new project open, choose the Add To
Project command from the Project menu and click Files on the secondary
menu. In the Insert Files Into Project dialog, double-click the stub RC file
to add it to the project. This is all that's required to enable ClassWizard,
which is now accessible through the ClassWizard command on the View
menu. When you invoke ClassWizard, Visual C++ detects that no CLW file
yet exists for the project and offers to build a new file. You must click Yes
at this offer and OK in the subsequent Select Source Files dialog to pro­
ceed to the MFC ClassWizard dialog.

311

Programming Assistance

312

Whichever method you use to create the new project, click the Add Class
button in the MFC ClassWizard dialog, then choose New to invoke the
New Class dialog pictured in Figure 6-4 on page 278. Type CDirListCtrl for
the class name and select CListCtrl as the base class. Click the Change but­
ton and rename the generated source files to DirCtrl.h and DirCtrl.cpp.
When you close the ClassWizard dialog, Visual C++ writes stub code for
the new CDirListCtrl class and automatically adds the files to the project.

The next step is to provide source code for the new class. Copy to the
DirCtrl project folder the DirCtrl.cpp and DirCtrl.h files from the Code\
Chapter.07\DirCtrl folder on the companion CD, overwriting the stub files
that ClassWizard just created. Also copy the files DirCtrl.ico, Floppy.ico,
HardDisk.ico, CD-ROM.ico, Folder.ico, and File.ico to the project folder;
we will need these files later.

Creating the CDirListCtrl component
CDirListCtrl is now a working class but not yet a finished and usable com­
ponent. Expose the project's ClassView pane and right-click CDirListCtrl

in the list of classes, then select the Add To Gallery command from the
context menu, as shown in Figure 7-4 on page 301. Visual C++ combines
both DirCtrl.cpp and DirCtrl.h into a single file named DirListCtrl.ogx and
stores the OGX file in a new Gallery folder named DirCtrl. The paragraphs
that follow have more to say about this new Gallery folder, so don't con­
fuse it with the original DirCtrl project folder.

Open the DirCtrl folder in the Gallery to see the new component, which
appears in large icon view like this:

Dir List Ctrl. og:-:

It takes some extra work, but you can dress up the component's plain
appearance. The first step is to move the OGX file out of the DirCtrl folder
and replace it with a shortcut file. Right-click the new DirListCtrl.ogx icon

7: The Gallery

and choose the Cut command from the context menu. Create a new sub­
folder in the main folder of the Gallery dialog by right-clicking in any
blank area of the large list box and choosing the New command. Give the
new folder a generic name like OGX Files, then paste the DirListCtrl.ogx
file into the new folder. Right-click the DirListCtrl.ogx icon, choose the
Create Shortcut command from the context menu, then cut and paste the
shortcut file back into the original DirCtrl folder.

Stay with me-we're almost finished. At this point, the original OGX file
has been moved to a folder called OGX Files and replaced by a shortcut in
the DirCtrl folder. Our final step is to improve the appearance of the short­
cut icon in the DirCtrl folder. Give the shortcut icon a more descriptive
name-Directory List, for example-by right-clicking the icon and choos­
ing Rename. Component OGX files do not have their own icons, but short­
cut links do. The main reason for substituting a shortcut for the original
OGX file is so that we can attach an icon to distinguish the new Directory
List component. Right-click the Directory List icon, choose Properties, and
then click the Change Icon button in the Shortcut tab of the Properties dia­
log. Enter (or browse for) the path to the DirCtrl.ico file you copied earlier
from the companion CD. When you click OK to close the Properties dia­
log, the component now looks like this in the DirCtrl folder:

n,,,,
0-'i,

Directory List

A little work, certainly, but the component looks better than what we
started with. If you don't mind the effort, you can drop all your new com­
ponent files into the OGX Files folder and replace them with shortcuts the
same way.

Unfortunately, Visual C++ provides no easy way to attach a description to
a new class component, neither in the OGX file nor in its shortcut. It's up
to the filename to convey to other developers the essentials of your com­
ponent's purpose. Creating a component that can describe itself requires

313

Programming Assistance

314

the Component Builder's Kit cited earlier. Figure 7-1 on page 294 shows
how such a description appears in the Gallery when the Dialog bar com­
ponent is selected. Although beyond the scope of this chapter, building
the Directory List component using the Builder's Kit would allow us to
attach a similar description that appears when the DIR icon is selected in
the dialog, something like:

Displays a sorted directory listing in a list view control,
complete with icons representing drives, folders, and files.

After exiting the Gallery, you can add the CDirListCtrl class to any open
project by displaying the DirCtrl folder in the Gallery dialog and double­
clicking the shortcut for the Directory List component. Now that the com­
ponent has been installed in the Gallery, the DirCtrl project has served its
purpose and is no longer needed. DirListCtrl.ogx contains the class source
code, so you can safely close the project and delete the original DirCtrl.cpp
and DirCtrl.h files along with the other files in the DirCtrl project folder.
Don't delete the ICO files copied earlier from the CD, however. The Direc­
tory List shortcut link points to the DirCtrl.ico file, which contains the
DIR icon that represents the component. And when you insert the new
CDirListCtrl class into a project, it may require some or all of the remain­
ing files such as HardDisk.ico and Folder.ico. The next section demon­
strates the new Directory List component with an example program
named DirList2.

Example: The Dirlist2 Program
You may recall that the DirList1 program introduced in Chapter 5 uses the
DlgDirList API function to display a directory listing in a list box control.
The listing is not only plain in appearance and difficult to read, it displays
long filenames only in Windows NT because DlgDirList does not recognize
long filenames in Windows 95. The DirList2 program presented here fixes
these shortcomings by incorporating the new Directory List component.

The DirList2 program pictured in Figure 7-6 is dialog-based like its prede­
cessor DirList1, using a property sheet to interact with the user. Besides
the more attractive directory listing provided by the Directory List control,

Figure 7-6.

7: The Gallery

Directory: F:\Dirlist2\

GE:
GF:

~G:

Up 1 Directory Level ·

3A:
38:
:;;JC:
~ D: DRelease

DRES
DirCtrl.cpp
DirCtrl.h
DIRLIST2.CPP

:·
"' --~ -~ -"'~~ -~"~

Close

The DirList2 program.

Dirlist;
Dirlist;
DIRLIS
Dirlist~

DirList2 also makes use of the property sheet's Date and Size tabs,
enabling the user to filter the list by file size or date. For example, the pro­
gram can display only files created within the last month that are, say,
between 5 and 10 KB in size. This additional filtering is accomplished
using the CDirListCtrl callback feature described earlier.

With minor additions that we'll cover in a moment, the DirList2 program
uses the same Resource.h file and the same RC file as the DirListl pro­
gram. The contents of these files are listed in Chapter 5, beginning on page
261. If you would like to build the DirList2 program yourself and have not
executed the Setup program to install the sample projects from the com­
panion CD, click New on the File menu and select the Projects tab.
Because DirList2 is not an App Wizard program, click the Win32 Applica­
tion icon to create the project. Enter the project name and accept the
default settings when the wizard's dialog appears. After Visual C++ cre­
ates the empty project, click Settings on the Project menu. In the General
tab of the Project Settings dialog, select the option Use MFC In A Shared
DLL, as pictured on the next page.

315

Programming Assistance

316

Copy to the project folder the files DirList2.cpp, DirList2.h, DirList2.rc,
and Resource.h from the Code \Chapter.07\DirList2 folder on the compan­
ion CD. Also copy the DirList.ico file to the DirList2\Res subfolder so that
DirList2 has an application icon. Attach the DirList2.cpp and DirList2.rc
files to the project by choosing Add To Project from the Project menu and
then choosing the Files command from the secondary menu.

Because the DirList2 program makes use of the new CDirListCtrl class, we
still need a few more files. Of course this is the whole purpose of the exer­
cise: adding the source files for CDirListCtrl is a snap now that the class
has been installed in the Gallery. Open the Gallery dialog by choosing
Add To Project again from the Project menu and clicking Components
And Controls. In the DirCtrl folder of the Gallery, double-click the icon
for the new Directory List component. The source files DirCtrl.cpp and
DirCtrl.h are automatically extracted from the DirListCtrl.ogx component
file and added to the project.

Unfortunately, the Gallery cannot also provide the ICO files that CDirList­

Ctrl requires for the icons used in the directory listing. Except by building
the component with Microsoft's Builder's Kit, there is no way to bundle
the ICO files along with the source code in the OGX file, thus delivering
all the necessary files to a project in one step. The user of the component
must copy the ICO files manually. DirList2 requires only the drive
and folder icons, which are contained in the Floppy.ico, HardDisk.ico,
CD-ROM.ico, and Folder.ico files located in the DirCtrl project folder
created earlier. Copy these four files to the DirList2\Res folder.

7: The Gallery

This is the kind of extra step that must be well documented for a custom
component like Directory List. Since a custom component cannot provide
online help in the Gallery dialog, the best way to document the compo­
nent is by including a block of comments at the beginning of the CPP file.
For Directory List, the comments should make clear four requirements for
any project that uses the component:

II The ICO files must be copied to the project's Res folder.

iiil The RC file must include lines like these for each icon used in the
control:

IDLFLOPPY
IDI_HARDDISK
IDLCD_ROM
IDI_FOLDER
IDLFILE

ICON
ICON
ICON
ICON
ICON

"res\ \Floppy. i co"
"res\\HardDisk.ico"
"res\\CD-ROM.ico"
"res\\Folder.ico"
"res\\File.ico"

a The identifiers IDI_FLOPPY, IDI_HARDDISK, IDI_CD_ROM, IDI_
FOLDER, and IDI_FILE must be defined in the project's Resource.h
file. IDI_FLOPPY can be any value; the remaining identifier values
must be incremented by one in the order given.

iiiil All source files that use the class must contain the line:

#include "dirctrl.h"

DirList2 operates in much the same way as DirList1, except that the
CPage1 class includes a new member function called CheckDateSize.

CheckDateSize is a callback function registered with a call to CDirList­
Ctrl ::SetCallBack. As described in the source code commentary on page
309, CDirListCtrl::FindFiles calls the callback for each filename it proposes
to add to the directory list, giving the callback a pointer to a WIN32_
FIND_FILE structure that contains information about the file. CheckDate­
Size determines whether the file conforms to filters that the user has set in
the Size and Date pages, and returns a value of TRUE or FALSE to allow
or disallow the file.

The revised source files are listed beginning on the next page. The Dir­
List2.rc and Resource.h files are not included here because they differ
only slightly from their counterparts in Chapter 5, incorporating

317

Programming Assistance

Listing 7-2.

318

additional lines for the icon resources IDI_FLOPPY, IDI_HARDDISK, IDI_
CD_ROM, and IDI_FOLDER. Because the program elects to leave filenames
in the list unmarked by an icon, IDI_FILE is not defined. You can find all
files in the Code \Chapter.07\DirList2 subfolder on the companion CD.

Source files for the DirList2 program.

Dirlist2.h

II **
II
II Dirlist2.h
II
II **

class CDirListApp : public CWinApp
{

public:
BOOL !nit Instance ();

} ;

class CAboutDlg public CDialog
{

public:
CAboutDlg();

} ;

class CPage2;
class CPage3;

II Forward reference

lll
II CPagel property page

class CPagel : public CPropertyPage
{

private:
BOOL
co; rL; stctrl
CString
static CPage2*
static CPage3*

bEditChange;
dirlist;
strFilter, strOldFilter;
pDate;
pSize;

static BOOL CALLBACK CheckDateSize(PWIN32_FIND_OATA pfd);

public:
CPagel () CPropertyPage(IDD_PAGEl) {}

/: The Gallery

protected:
virtual void DoDataExchange(CDataExchange* pDX):
virtual BOOL OninitDialog ();
virtual BOOL OnSetActive ();
afx_msg void OnUplLevel ():
afx_msg void OnEditGainFocus ():
afx_msg void OnEditChanging ():
afx_msg void OnEditloseFocus ();
DECLARE_MESSAGE_MAP ()

} :

lll
II CPage2 property page

class CPage2 : public CPropertyPage
{

public:
int nAnyDate, PrevDays, PrevMonths:
CTime timeMin, timeMax:

CPage2 () : CPropertyPage(IDD_PAGE2) {}

protected:
virtual void
virtual BOOL

} :

DoDataExchange(CDataExchange* pDX);
OninitDialog ():

lll/111
II CPage3 property page

class CPage3 : public CPropertyPage
{

public:
int nAnySize:
DWORD MinSize, MaxSize:

CPage3 () : CPropertyPage(IDD_PAGE3) {}

protected:
virtual void
virtual BOOL

} :

DoDataExchange(CDataExchange* pDX):
OninitDialog ():

lll/11111111111111111
II CListSheet

[continued)

319

Programming Assistance

320

Listing 7-2. continued

class CListSheet public CPropertySheet
{

public:
CPagel pagel;
CPage2 page2;
CPage3 page3;
CListSheet(LPCTSTR szCaption);

protected:
virtual BOOL OninitDialog();
afx_msg void OnSysCommand(UINT nID, LPARAM lParam);
DECLARE_MESSAGE_MAP()

} ;

Dirlist2.cpp

II **
II
II DirList2.cpp
II
II **

1/include "afxwin.h"
1/include "afxdlgs.h"
1/include "afxcmn.h"
1/include "resource.h"
1/i ncl ude "di rctrl. h"
ffi ncl ude "di rl i st2. h"

CDirListApp DirListApp;

BOOL CDirListApp::Initinstance ()
{

}

CListSheet sh("Directory List");
sh.DoModal ();

return FALSE;

II Create object
II and display dialog

II Exit DirList2

CAboutDlg::CAboutDlg()
{

CDialog(IDD_ABOUTBOX)

}

llllll//lllll///lllll//ll/lll//ll//l/l/l//lll/ll/llll//ll//ll/I//
II CListSheet property sheet

7: The Gallery

CListSheet::CListSheet(LPCTSTR szCaption
CPropertySheet(szCaption)

{

AddPage(&page!):
AddPage(&page2):
AddPage(&page3);

}

BEGIN_MESSAGE_MAP (CListSheet, CPropertySheet)
ON_WM_SYSCOMMAND()

END_MESSAGE_MAP()

BOOL CListSheet::OninitDialog()
{

CButton* button;

CPropertySheet::OninitDialog():

II Add "About ... " menu item to system menu
CMenU* pSysMenu = GetSystemMenu(FALSE);
CString str;
str.LoadString(IDD_ABOUTBOX);
pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDD_ABOUTBOX, str);

II Remove Apply and Cancel buttons and rename OK button
button= (CButton *) GetDlgitem(ID_APPLY_NOW);
button->DestroyWindow();
button= (CButton *) GetDlgitem(IDCANCEL);
button->DestroyWindow();
button = (CButton *) GetDlgitem(IDOK);
button->SetWindowText("Close");

II Set the 16-by-16 image (see closing remarks in Chapter 5)
HICON hlcon =CHICON) ::Loadimage(DirListApp.m_hlnstance,

MAKEINTRESOURCE(IDI_APPICON),
IMAGE_ICON, 16, 16, LR_DEFAULTCOLOR);

Seticon(hicon, FALSE):

}

II Activate OninitDialog for each page to init variables
SetActivePage(2);
SetActivePage(1);
SetActivePage(0):

return TRUE:

(continued)

321

Programming Assistance

322

Listing 7-2. continued

void CListSheet::OnSysCommand(UINT nID, LPARAM lParam)
{

}

if (n!D == IDD_ABOUTBOX)
{

}

else
{

}

CAboutDlg dlgAbout;
dlgAbout.DoModal();

CPropertySheet::OnSysCommand(nID, lParam);

ll/11111111111111
II CPagel property page

CPage2* CPagel::pDate;
CPage3* CPagel::pSize;

BOOL CPagel::OninitDialog ()
{

II Static pointers to
II Date and Size pages

RECT rect = { 15, 60, 390, 102 }: II DirCtrl dimensions

}

strFilter "*·*";
bEditChange = FALSE:
pDate = (CPage2*) ((CListSheet*) GetParent())->GetPage(1):
pSize = (CPage3*) ((CListSheet*) GetParent())->GetPage(2);

dirlist.Create(this, &rect, IDC_DIRCTRL, IDC_DIRPATH,
DL_ALL, IDI_FLOPPY);

dirlist.SetCallBack(&CheckDateSize);

return CDialog::OninitDialog ();

BOOL CPagel::OnSetActive ()
{

dirlist.Showlist(strFilter):
return CPropertyPage::OnSetActive ();

}

BEGIN_MESSAGE_MAP (
ON_EN_SETFOCUS
ON_EN_CHANGE
ON_EN_KILLFOCUS
ON_BN_CLICKED

END_MESSAGE_MAP ()

CPagel, CPropertyPage)
(IDC_EDITl, OnEditGainFocus)
(IDC_EDITl, OnEditChanging)
(IDC_EDITl, OnEditloseFocus)
(IDC_BUTTONl, OnUpllevel)

7: The Gallery

II These three functions ensure that when the user types in
II another filter string (such as "*.txt"), the directory
II listing is automatically updated to reflect the change.
II ---

void CPagel::OnEditGainFocus ()
{

GetDlgitemText(IDC_EDITl. strOldFilter);
}

void CPagel::OnEditChanging ()
{

bEditChange = TRUE;
}

void CPagel::OnEditloseFocus ()
{

if (bEditChange)
{

bEditChange = FALSE:
UpdateData(TRUE);

II If user enters a new filter string, update the list
if (strFilter != strOldFilter)

}
}

{

}

dirlist.Showlist(strFilter):
strOldFilter = strFilter:

void CPagel: :OnUpllevel ()
{

CString strPath;

II If Enter pressed in edit control. refresh list
if (GetFocus() == GetDlgitem(IDC_EDITl))

OnEditloseFocus ():

II Else go up one directory level
else
{

dirlist.GetPath(strPath);

II When strPath == "d:\", we're already at root
if (strPath.Right(2) != ":\\")

(continued)

323

Programming Assistance

324

Listing 7-2. continued

{

}

}

}

II Remove '\' at end of string
strPath.GetBufferSetlength(strPath.Getlength()-1);
strPath.ReleaseBuffer ();

II Find last '\' and truncate strPath string
int clastSl ash = strPath. ReverseFi nd('\ \') :
if (clastSlash != -1)
{

}

strPath.GetBufferSetlength(clastSlash + 1);
strPath.ReleaseBuffer ();
dirlist.SetPath(strPath);
dirlist.Showlist(strfilter);

II Each time it finds a file that is a candidate for inclusion in
II the directory list, CDirlistCtrl ::FindFiles calls this static
II callback function.
II ---

BOOL CPagel::CheckDateSize(PWIN32_FIND_DATA pfd)
{

II Accept all subdirectories regardless of date/size criteria
if (pfd->dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

return TRUE;

II If options set in Date page, filter files by date criteria
if (pDate->nAnyDate)
{

CTime timeFile(pfd->ftlastWriteTime):

if (pDate->nAnyDate == 1)
{

}

else
{

II Reject file not dated within min/max period
if (timeFile <= pDate->timeMin I I

timeFile > pDate->timeMax)
return FALSE:

CTime timeNow = CTime::GetCurrentTime();
CTimeSpan timeAge(timeNow.GetTime() -

timeFile.GetTime());

7: The Gallery

}

}
}

II Reject file older than specified number of months
if (pDate->nAnyDate == 2 && pDate->PrevMonths)

if (timeAge.GetDays()/30 >= pDate->PrevMonths)
return FALSE;

II Reject file older than specified number of days
if (pDate->nAnyDate == 3 && pDate->PrevDays)

if (timeAge.GetDays() >= pDate->PrevDays)
return FALSE;

II If options set in Size page, filter files by size criteria
if (pSize->nAnySize)
{

}

if (pSize->MinSize &&
pfd->nFileSizeLow < pSize->MinSize*1024)
return FALSE;

if (pSize->MaxSize &&
pfd->nFileSizeLow > pSize->MaxSize*1024)
return FALSE:

return TRUE:

void CPagel::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX);
DOX_Text(pDX, IOC_EOITl, strFilter);
DDV_MaxChars(pDX, strFilter, 128);

//I/I/II///
II CPage2 property page

BOOL CPage2::0ninitDialog ()
{

CSpinButtonCtrl* spin:

II Initialize variables
nAnyDate 0:
PrevDays 1:
PrevMonths 1:
timeMin
timeMax

0:
CTime::GetCurrentTime():

(continued)

325

Programming Assistance

326

Listing 7-2. continued

}

II Set limits of spin buttons
spin= CCSpinButtonCtrl *) GetDlgitem(IDC_SPINl):
spin->SetRange(1, 100):
spin= (CSpinButtonCtrl *) GetDlgitem(IDC_SPIN2):
spin->SetRange(1, 365):

return CDialog::OninitDialog ():

void CPage2::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX):
DDX_DateTimeCtrl(pDX, IDC_DATETIMEl, timeMin);
DDX_DateTimeCtrl(pDX, IDC_DATETIME2, timeMax);
DDX_Radio(pDX, IDC_RADIOl, nAnyDate);
DDX_Text(pDX, IDC_EDITl, PrevMonths);
DDX_Text(pDX, IDC_EDIT2, PrevDays);

lll/1111111111111
II CPage3 property page

BOOL CPage3::0ninitDialog ()
{

CSpinButtonCtrl* spin;

II Initialize variables
nAnySize = 0;
MinSize = 0;
MaxSize = 100;

II Set limits of spin buttons
spin = (CSpinButtonCtrl *) GetDl gltem(
spin->SetRange(0, 9999) ;

spin = CCSpinButtonCtrl *) GetDlgitem(
spin->SetRange(l, 9999) :

return CDialog::OninitDialog ();
}

IDC_SPINl

rnc_sPIN2

void CPage3::DoDataExchange(CDataExchange* pDX)
{

}

CPropertyPage::DoDataExchange(pDX);
DDX_Radio(pDX. IDC_RADIOl. nAnySize):
DDX_Text(pDX, IDC_EDITl, MinSize);
DDX_Text(pDX, IDC_EOIT2, MaxSize);

) ;

II Min size
) ;

II Max size

LI ldfJU:~I

Using ActiveX Controls
ActiveX controls are executable components designed to be dropped into
a window or a Web page to perform some self-contained function. To the
user, they seem very much like the normal Windows controls we've
encountered in previous chapters, which are added to a program through
the dialog editor or the Gallery. But unlike normal controls, ActiveX con­
trols are equally at home on a Web page or in a dialog box, allowing devel­
opers to touch two distinct markets at once.

If you are interested in ActiveX controls-and as a developer, you should
be-it's probably because you want either to use them or to write them.
Visual C++ can help you do both. This chapter covers the first half of the
subject, describing how to use ActiveX controls in a client application
called a container. Chapters 9 and 10 deal with the second half, describing
two different approaches to writing an ActiveX control. This chapter pre­
sents introductory information concerning ActiveX controls, so if you
would like a primer on the subject, you should read this chapter first.

To keep discussions to a manageable length, the example programs in
these chapters use MFC. The MFC framework takes care of the many hun­
dreds of details of ActiveX programming, smoothing development to the
point where writing a container or an ActiveX control is no more difficult
than any other programming project in Windows. Writing an MFC con­
tainer application that uses an existing ActiveX control often requires

329

ActiveX Controls

little or no knowledge of the underlying precepts. While there can be good
arguments against using MFC when writing ActiveX controls-it's purely
an issue of size, as we'll see in the next chapter-the arguments are less
valid when applied to containers. So completely does MFC wrap the pro­
cess of client/server interaction that it has become difficult to justify writ­
ing a container application without the help of the MFC class library or
similar support. However, if you prefer not to use MFC, the Active Tem­
plate Library (ATL) offers a viable alternative. Visual C++ includes an
example project called AtlCon that demonstrates how to write a container
application using A TL. The source files are located in the folder MSDN\
Samples\ VC98\ATL \AtlCon. Chapter 10 looks a little more closely at the
type of support A TL offers for the development of container applications.

Although this chapter and the following two chapters delve into the re­
quirements and internal operations of ActiveX controls, they are intended
only as an introduction to what is a large subject, suitable for an entire
book. The chapters concentrate on showing you some of the ways in
which Visual C++ makes the programmer's life easier when dealing with
ActiveX controls, whether you are writing a control or the container appli­
cation that uses the control. For more detailed coverage of a field likely to
become even more important to Internet programming, consult specialized
references such as Kraig Brockschmidt's Inside OLE, Second Edition, the
entire text for which you can find in MSDN online help.

A Little Background

330

The name is new, but the technology is mature. ActiveX controls form
only part of Microsoft's ActiveX technologies, which are based on Compo­
nent Object Model (COM) and OLE. OLE used to stand for Object Linking
and Embedding, but because object embedding has long since been only a
minor part of OLE's abilities, Microsoft has gotten away from using the
name as an acronym. Today, OLE has taken on new meaning and no lon­
ger has a version number. It has evolved from a technology created for a
specific purpose to become a general architecture on which other specific
technologies, ActiveX among them, are based. OLE defines a standard
blueprint for creating and connecting diverse program components,

8: Using ActiveX Controls

including server modules called OLE custom controls. At least, they used
to be called OLE controls-Microsoft now calls them ActiveX controls.

So what is an OLE/ActiveX control? The short answer is that an OLE/
ActiveX control is a dynamic link library that operates as a COM-based
server and can be embedded in a container host application. The long
answer-well, in a way this chapter is the long answer. Let's start with
some history to see exactly what an OLE control does before taking on the
more involved subject of how it works.

Perhaps the first type of component software that caught the attention of
Windows developers was the custom control of the Visual Basic Extension
model. Custom controls were familiarly known as VBXs, named for the
three-letter extension appended to the control filename. The VBX archi­
tecture allowed developers to create efficient and reusable additions to
Visual Basic programs that could be placed as self-contained components
in a window, called a form in Visual Basic. The advantages of VBX con­
trols were three-fold:

• A VBX was capable of visual display and interaction with the user.

!! The Visual Basic application could program a VBX through func­
tions called methods exported by the VBX.

• As a dynamic link library, a VBX control was reusable in binary
form instead of source code.

As we'll see, ActiveX controls offer these same advantages.

A VBX control also allowed programmers to compensate for some of the
limitations inherent in Visual Basic. For example, since VBX controls
were often written in C or assembly language, they could use pointers,
which are not native to the BASIC language, to assist an application with
pointer-intensive operations such as hashing and sorting. A problem with
the VBX model is that it was not designed to gracefully make the transi­
tion to other languages and platforms. AC++ programmer, for instance,
cannot easily create a VBX derivative because a VBX is not represented by
a class. Further, the VBX model is a 16-bit standard tied to the segmented
architecture of Intel processors. However, the active market in VBX

331

ActiveX Controls

332

controls proved that component software could play an integral (and mar­
ketable) role in Windows development.

The OLE control standard was designed to fill the next level, bringing the
advantages of VBX-type components to all languages capable of Win32
programming. These languages include Visual Basic itself (since version
4.0), as well as its derivatives Access Basic, Visual Basic for Applications
(VBA), WordBasic, and Visual Basic Scripting (VBScript).

Reflecting the way VBXs took their name, OLE controls are often called
OCXs from the OCX extension usually added to the filename. There are
other conventions common to OCXs and VBXs, indicative of how one
evolved from the other. For example, Microsoft borrowed from VBX termi­
nology the three interface types that define the communication between
an OLE control and its client, the container application:

• Methods-Functions that the OLE control exposes to the container
application, allowing the client to call into the control.

• Properties-Public data within the control and the container that
serve to describe one party to the other. At startup, a control can
read the container's properties and adjust its initialization proce­
dures so that it matches the container's appearance and characteris­
tics. While the control is active, the container can read the control's
properties to learn its current status and, if the control allows,
rewrite the properties to alter the control's behavior.

• Events-Notifications that the control sends to the container inform­
ing the container of occurrences within the control. As described in
more detail later in the chapter, an event notification takes place by
calling a function in the container, known as "firing" the event.

At about the time when people were noticing the limitations of 16-bit
VBXs, OLE-called OLE 2 in those days-had matured to the point that it
could spin off a logical successor to VBXs in the form of OLE controls,
now called ActiveX controls.

8: Using ActiveX Controls

Control Containers

Figure 8-1.

An ActiveX control is the server, and the container application is the cli­
ent. ActiveX controls are best approached from the client's side of the
equation, so this section begins a discussion of how a container can
extend its abilities through an existing ActiveX control, demonstrating
with a few examples and a little experimentation. Fortunately, there are a
number of ready-made samples from which to choose. Visual C++ and
Internet Explorer come with a collection of license-free ActiveX controls,
some of which are listed in the Gallery dialog pictured in Figure 8-1. To
bring up the Gallery dialog, choose the Add To Project command from the
Project menu and click Components And Controls on the secondary
menu. Then double-click the Registered ActiveX Controls folder to dis­
play the list of controls.

• 1 Calendar Control 8. 0
§@Chart Object
[,I) CircCtl Class
mcommon Dialog Control,
~Crystal Report Control 4.
~DBCombo Control, versic

ActiveX controls in the Gallery.

Table 8-1 on the next page lists some of the license-free ActiveX controls
that Microsoft makes available. If the More Info button is enabled when
you select a control's icon in the Gallery, it means that the control can
describe itself through online help. Click the More Info button to view the
control's documentation.

333

ActiveX Controls

Filename

AniBtn32.ocx

BtnMenu.ocx

DBGrid32.ocx

IELabel.ocx

IEMenu.ocx

IEPopWnd.ocx

IEPrld.ocx

IEStock.ocx

IETimer.ocx

KeySta32.ocx

Marquee.ocx

MCI32.ocx

334

Description

Animated button-Uses a bitmap or metafile to create a
button with changing images.

Menu-Displays a button and a pop-up menu, as shown
in Figure 8-2 on page 336.

Grid-A spreadsheet control that displays cells in a stan­
dard grid pattern. The user can select cells and-unlike the
older Grid32 control-enter data directly into a cell. Cells
can also be filled programmatically by the container or tied
to recordset data for automatic updating.

Label-Displays text rotated at an angle or along a spec­
ified curve.

Pop-up menu-Displays a pop-up menu, as shown in
Figure 8-2.

Pop-up window-Displays an HTML document in a pop­
up window.

Preloader-Downloads the contents of a specified URL
and stores it in a cache. The control fires an event after
completing the download.

Stock ticker-Downloads and displays the contents of a
URL at a specified fixed interval. As its name suggests, this
control is useful for displaying data that continually
changes, like the stock ticker tape shown in Figure 8-2.

Timer-An invisible control that fires an event at a
specified interval.

Key state-Displays and optionally modifies states of the
Caps Lock, Num Lock, Insert, and Scroll Lock keys.

Marquee-Scrolls text in an HTML file in either the hori­
zontal or vertical direction and can be configured to
change the amount and delay of scrolling.

Multimedia-Manages the recording and playback of mul­
timedia files on Media Control Interface (MCI) devices.
This control can display a set of push buttons that issue
MCI commands to devices such as audio boards, MIDI
sequencers, CD-ROM drives, audio CD players, video disc
players, and video tape recorders and players. The control
also supports the playback of Video for Windows A VI files.

Table 8-1.

8: Using ActiveX Controls

Filename

MSCal.ocx

MSChart.ocx

MSComm32.ocx

MSMask32.ocx

PicClp32.ocx

Description

Calendar-An on-screen calendar from which the user
can select dates.

Chart-A sophisticated charting control that accepts
numerical data, and then displays one of several types of
charts, including line, bar, and column charts. The control
renders displays in either two or three dimensions, as
shown in Figure 8-2 and Figure 8-3 on page 339.

Comm-Provides support for serial communications,
handling data transmission to and from a serial port.

Masked edit-An enhanced edit control that ensures
input conforms to a predefined format. For example, a
mask of"##:##??" restricts input to a time format, such
as "11:18 AM."

Picture clip-Displays a clipped rectangular area of a
bitmap, and can also divide a bitmap into a grid formed by
a specified number of rows and columns.

Some of the ActiveX controls available from Microsoft.

The "IE" prefix in some of the filenames in Table 8-1 stands for Internet
Explorer, indicating the controls are included with that program. The OCX
files can be anywhere on your system but are usually placed in the Win­
dows \OCCache and Windows \System subfolders. If for some reason you
do not have these files and want to follow the demonstrations in this
chapter, copy the files from the OCX folder on the companion CD to your
OCCache, System, or System32 folder. Don't assume this small sampling
represents the latest word in ActiveX controls, however. New controls
appear on the market every day, many of them demonstration versions
that you can use in your own applications without charge. If you would
like to browse the Internet for some of the controls available, these two
addresses offer free downloads and provide links to other Web sites of
interest to application developers:

http:! lwww.microsoft.com/ com/
http ://www.activex.com

335

ActiveX Controls

Figure 8-2.

336

Animated button

Stock ticker

Chart

rn~;.:F~~~'!I ·::··:·: :·:···:;:,;:·:·:·::.,.-F:·:·:··:··:: ,._,

1 _ ·:_ This"ra the fir$t ~em
~ : · This iflhe seccind ~ein · ·

)mi$ the thii~ item .· .• _ .:
· . : :_Na way this fa l~e f:lth_ ltel)l
l · This h the fifth Item

Menu

Pop-up menu

A few of the Microsoft ActiveX controls as they might appear in a container.

When you copy a control file to your hard disk from the companion CD
or another source, register it using the RegSvr32.exe utility found in the
VC98\Bin subfolder. RegSvr32 calls the control's self-registration func­
tion, which writes identifying information about the control to the system
Registry. Until a control is registered, a container application normally has
no way to locate it for embedding. Click the Start button and execute Reg­
Svr32 from the Run dialog, specifying an OCX file in the command line:

regsvr32 \windows\occache\anibtn32.ocx

If your system PATH statement does not include the VC98\Bin folder,
specify the correct path when typing regsvr32. To unregister an ActiveX
control-that is, to remove its entry from the Registry-run RegSvr32
again the same way, but include the switch "/u" before the filename.
Unregistering a control does not delete its OCX file from your disk.

You can also run RegSvr32 from within Visual C++ by clicking the Regis­
ter Control command on the Tools menu. By default, however, the com­
mand assumes you want to register a control under construction and is
therefore set up to register only the project target file. Chapter 13, Custom­
izing Visual C++, explains how to modify tools like Register Control so

8: Using ActiveX Controls

that you can specify any file as a command line argument, not just a file in
the current project.

Adding an Active}(Control to a Web Page
Before inserting an ActiveX control into your project, you may want to
take a look at the control first. All you need are a text editor and a browser
that supports ActiveX, one to create an HTML document and the other to
view it. HTML stands for Hypertext Markup Language, which defines a
simple convention for creating Web pages that is well-documented in vari­
ous books and articles. You can learn most of what you need to know
about HTML with only a few minutes of study. The Visual C++ text editor
is HTML-aware to a limited extent, automatically color-coding tags and
other document elements in the display window.

To use an ActiveX control in an HTML document, you must first locate
the control's 32-digit class identifier number. We'll talk more about
CLSIDs in the next chapter, but for now all you need to know is how to
look up the number. The Registry editor provides a convenient way to
find a control's CLSID. Click the Start button and type regedit or regedit32
in the Run dialog, depending on whether your system is Windows 95 or
Windows NT. Click the Find command on the Registry editor's Edit menu
and type the control's filename.

For example, a search for ietimer.ocx in the Registry editor finds this hier­
archy in the Registry:

The 32-digit number at the bottom of the window is the CLSID for the
Timer ActiveX control. Searching for ielabel.ocx in the same way turns up
this CLSID for the Label ActiveX control:

99b42120-6ec7-11cf-a6c7-00aa00a47dd2

337

ActiveX Controls

Listing 8-1.

338

With these two numbers in hand, you can write a simple HTML document
that uses the Timer and Label controls to display text that seems to tum­
ble, endlessly bouncing off the bottom of a colored box:

To see the animation, use a Web browser such as Internet Explorer or any
ActiveX-aware authoring tool to open the Tumble.htm document located
in the Code \Chapter.08 folder on the companion CD. In Internet Explorer
3.0 and later versions, click the Open command and navigate to the docu­
ment, then double-click to open it. Listing 8-1 shows the contents of the
Tumble.htm document.

The Tumble.htm document.

<OBJECT
classid="clsid:59ccb4a0-727d-llcf-ac36-00aa00a47dd2"
id=timerl

>
<PARAM NAME="Interval" value="100">
<PARAM NAME="Enabled" value="TRUE">
</OBJECT>

<OBJECT
classid="clsid:99b42120-6ec7-llcf-a6c7-00aa00a47dd2"
id=label
width=150
height=150

>
<PARAM NAME="Angle" value="0">
<PARAM NAME="Alignment" value="?">
<PARAM NAME="BackStyle" value="l">
<PARAM NAME="BackColor" value="255">
<PARAM NAME="Fontltalic" value="-1">
<PARAM NAME="FontUnderline" value="-1">

Figure 8-3.

H: using Act1vex lontrols

<PARAM NAME="Caption" value="Tumbling text!">
<PARAM NAME="FontName" value="Times New Roman">
<PARAM NAME="FontSize" value="l8">
<!OBJECT>

<SCRIPT LANGUAGE="VBSCRIPT">
sub timerLtimer

label.Angle= (label.Angle+ 5) mod 360
end sub
<!SCRIPT>

The Test Container Utility
Visual C++ provides a tool named Test Container that does just what its
name suggests, allowing you to load and experiment with registered
ActiveX controls without having to create your own container application.
Click the ActiveX Control Test Container command on the Tools menu to
start the Test Container, which is pictured in Figure 8-3 with two typical
ActiveX controls called Button Menu and Microsoft Chart, both provided
on the companion CD. The program's executable file is TstCon32.exe,
located in the Common\ Tools subfolder on your hard disk.

To load a control in the Test Container, either choose the Insert New Con­
trol command from the Edit menu or click the New Control button on the
tool bar, then choose the desired control from the list displayed in the
Insert Control dialog. A control may first appear only as a small box in the
Test Container window; if so, resize the control by dragging a corner. The

The Test Container utility, invoked through the Tools menu.

339

ActiveX Controls

Figure 8-4.

340

initial size of a control depends on the startup dimensions (if any) the
control h_as requested from the container. An example project in the next
chapter demonstrates how an ActiveX control written with MFC can call
the COleControl::SetlnitialSize function to establish its startup dimen­
sions. As Figure 8-3 demonstrates, several controls can run at once in the
Test Container; select from among the active controls by clicking just
inside the rectangular border that frames each control window. When a
control is selected, sizing handles appear on its border frame and the
Invoke Methods and Properties tools become enabled on the Test Con­
tainer toolbar.

The selected ActiveX control can be programmed throught its method
functions. Click the Invoke Methods tool or choose the corresponding
command from the Control menu to bring up the Invoke Methods dialog
pictured in Figure 8-4. The drop-down list of the Method Name combo
box itemizes all of the control's methods, which fall into two categories
called normal methods and property methods. Normal methods are
labele~ Method in the drop-down list. Property methods are marked either
PropGet or PropPut, depending on whether they correspond to a prop­
erty's "get" method, which retrieves the property value, or "put" method,
which writes the value. Figure 8-4, for instance, shows that the Button
Menu control exports both types of methods, allowing a container to read

Programming a control through the Test Container's Invoke Methods dialog.

u: using Act1vex Lontro1s

or write the control's Caption property-that is, the text that appears on
the button-through get and put methods.

To add an item to the Button Menu control's pop-up menu, a container
calls the Addltem method. We can do the same thing using the Invoke
Methods dialog, adding a list of menu items like the ones shown in Fig­
ure 8-3 on page 339. Select Addltem in the Method Name box, then type
the desired text in the edit box labeled Parameter Value. When you click
the Invoke button, the Test Container calls the Addltem method to add the
text to the control's list of menu commands. Close the Invoke Methods
dialog and click the Button Menu control to see the new command.

When selecting a put method for a property of integer type, you must also
make a selection such as VT _I4 in the Parameter Type box. Determine the
correct parameter type by first invoking the corresponding get method and
noting the return value, or choose VT_UNKNOWN in the Parameter Type
box. If a put method takes more than one parameter, select each variable
in turn in the Parameters list box and click the Set Value button after typ­
ing its value. When all values appear correctly in the Value column, click
Invoke to pass the parameters to the method.

Color properties such as BackColor are 24-bit COLORREF values, which
can be represented as VT_I4 integer types. The three bytes of a COLOR­
REF value correspond to the red, green, and blue components of the
whole color, as demonstrated by the Color example project of Chapter 5.
Although a COLORREF value is most easily expressed as a hexadecimal
number like OxFF for bright red, the Invoke Methods dialog recognizes
only values typed in decimal format. To enter a new color value in the
dialog, type a number such as 16,711,680 for bright blue, 65,280 for bright
green, or 255 for bright red. Selecting VT_COLOR in the Parameter Type
box enables a button labeled Choose Color that displays an assortment of
sample colors. However, this option currently does not correctly translate
a selected color to a valid method parameter.

Many controls provide their own property sheet, which the Test Container
makes accessible through the Properties tool button. Clicking the tool
causes the Test Container to issue an OLEIVERB_PROPERTIES verb to

I Properties I the control, telling it to display its property sheet if it has one. Double-

341

Activex Controls

342

clicking the border of a control's window also invokes the command, as
does choosing Properties from the Test Container's Edit menu.

The Test Container window is divided by a movable splitter bar into two
horizontal views. The bottom view normally displays a real-time record of
events fired by the selected control. The record, called an event log, can be
rerouted elsewhere by choosing the Logging command from the Test Con­
tainer's Options menu. During development of an ActiveX control, the
event log can save a lot of guesswork, letting you quickly test whether
your control's events are firing correctly. We'll look at the event log fea­
ture again in the next chapter when testing an example ActiveX control.

Adding an ActiveX Control to a Dialog Box
While any class derived from CWnd can embed an ActiveX control, MFC
is optimized for dialog containers. This is fine, because ActiveX controls,
like normal controls, commonly appear in dialog boxes. The optimization
is reflected in Visual C++, which provides features that help you create a
container application for ActiveX controls used by one of the dialog-based
classes described in Chapter 6, ClassWizard-that is, CDialog, CProperty­
Page, CFormView, CRecordView, or CDaoRecordView. Adding a registered
ActiveX control to a dialog takes only a few clicks of the mouse, first in
the Gallery, and then in the Visual C++ dialog editor.

The dialog editor in some ways makes a more convenient testing area for
ActiveX controls than the Test Container utility. For one thing, the dialog
editor displays a Properties box even if the control does not provide its
own property sheet. For example, if you double-click the border of the
Button Menu control in the Test Container window, a message box
appears saying that "Property pages are not supported." But if you invoke
the Properties command for the same control in the dialog editor, the edi­
tor adds to its normal Properties box an extra tab labeled All that lists the
control's properties and allows you to edit them. The All tab provides
more convenient access to the control's properties than the involved pro­
cedure of invoking methods in the Test Container utility.

Here's how to see an ActiveX control at work in a dialog box-no pro­
gramming required. The dialog editor itself serves as the control client, as
demonstrated here with the Animated Button ActiveX control. If you

o: using ACCIVeJ\ Lomro1s

prefer to work with the complete project described in these steps, open
Demo.dsw in the Code \Chapter.08\AniButtn folder on the companion
CD. Run Demo.exe and click the About command on the Help menu.

Step 1: Create a dummy project
Use AppWizard to create a throwaway project, giving it any name you like
and accepting all defaults. By default, App Wizard makes every applica­
tion an ActiveX control container by turning on the ActiveX Controls
check box in Step 3:

!Siijii--tm:ij-iliiti ~~~~?mpound document support would you like to
File Edit Yiew Vi•dow Hel

lo t!2n..~
r.cont~
('. · Mjni·$erver

, C Ful~,!!erver

finish I : ; . · c~r.c~l: I

Selecting the ActiveX Controls option brings a lot of additional code into
play to support control containment, but the framework takes care of
everything. On the surface, the option merely adds this line to the applica­
tion class Initlnstance function:

AfxEnableControlContainer():

and this line to the StdAfx.h file:

#include <afxdisp.h> II MFC OLE automation classes

If you have an existing MFC project that you want to turn into a control
container, use the text editor to manually make the above changes to the
code. To get the same results, you can also add to the project the ActiveX

343

ACtlVeA l.OntrOIS

344

Control Containment component located in the Visual C++ Components
folder of the Gallery.

Step 2: Insert the ActiveX control
When AppWizard finishes creating the project, choose the Add To Project
command from the Project menu, then click Components And Controls on
the secondary menu to display the Gallery dialog. Select the Anibutton
Control icon in the Registered ActiveX Controls folder and click the Insert
button. Accept the default settings in the Confirm Classes dialog, then exit
the Gallery.

Going into the Gallery isn't strictly necessary because you can also add
an ActiveX control to a project from the dialog editor. When the dialog
editor's work area appears (as described in the next step), right-click any­
where in the work area and choose Insert ActiveX Control from the con­
text menu. This brings up a list of the same registered controls shown in
the Gallery dialog. Just double-click a control in the list to add it to the
dialog.

Step 3: Add the control to a dialog and initialize
Technically, a dialog container is not a parent window for the ActiveX
control but only provides what COM calls a site, a word that should not be
taken too literally. A site serves as a go-between for an embedded object
and its container, in this case handling communication between the
ActiveX control and the dialog window. Any dialog will do for demon­
stration purposes, even the project's About box. Better still, we don't even
need to build the project to use the new control. All we need is a site, and
the About box simulation in the dialog editor provides that.

Double-click the IDD _ABOUTBOX identifier in the Resource View pane of
the Workspace window to start the dialog editor and load the About box.
When the editor's window appears, its Controls toolbar has a new button
that represents the inserted Anibutton control:

Figure 8-5.

o; using AcuveJ\ Lomro1s

The tool isn't a permanent addition to the tool bar, existing only for this
project. To add the Anibutton component to another project, you must go
through Step 2 again to insert the control. As for getting the control into
the dialog work area, there's no special treatment required. Just drag it
into the dialog box as you would any of the other control tools, then right­
click the select~d control in the dialog and click Properties on the context
menu to invoke the control's Properties dialog. Figure 8-5 shows the Con­
trol tab of the Anibutton Control Properties dialog, which is where we'll
start initializing the control.

1~~d cc9 ·1

: ~ave CCB 1.

The Control tab of the Anibutton Control Properties dialog.

~11 OTE If certain entries are missing from the Registry, Visual C++ displays a
6111 message that incorrectly states the Animated Button control requires a

design-time license. If this message appears when you follow the steps out­
lined here, it indicates either that you have installed Visual C++ with only
USER privileges or that the Registry is corrupted. Reinstalling Visual C++
seems to be the only solution. For more information about this potential
problem and a list of other ActiveX controls known to be susceptible to it,
visit this Knowledge Base site:

http://support.microsoft.com/support!kb!artic/es!Q 15510159. asp

The following list walks you through the initialization settings required
for this demonstration project. The settings are made in five of the Prop­
erties dialog's tabs.

345

Activex controls

346

• Control tab-Click the combo boxes in the Control tab and select the
entries shown in Figure 8-5.

• General 2 tab-To specify text displayed in the control window,
type Click Here! in the Caption box. Also set the check box labeled
HideFocusBox, which prevents a dotted rectangle from appearing
around the caption text when the control has focus.

• Frame Settings tab-The Anibutton control can hold a number of
bitmaps that serve as the button images. For our demonstration, any
bitmaps will do, including the system wallpaper image files in the
Windows folder. Click the Load button and navigate to the Win­
dows folder to display a list of BMP files, which have names such as
Black Thatch, Blue Rivets, Sandstone, and Triangles. Select a file
from the list and click the Insert button. Click the Load button again
and repeat until you have added five or six different bitmaps to the
control. When finished, you can check each bitmap entry by moving
the scroll bar.

• Fonts tab-This is where you select the font for the caption that
appears on the button. The font in Figure 8-6 is Times New Roman
with an italic style and a point size of 32.

• Colors tab-Because the bitmap image stretches to fill the control
window, the background color doesn't matter. Set the foreground
color of the caption text by selecting ForeColor from the Property
Name text box and clicking the white color patch.

An earlier section of this chapter noted that not all ActiveX controls pro­
vide their own property sheet, but it so happens that the Anibutton con­
trol does. The property pages listed above are resources contained in the
AniBtn32.ocx executable file, which the dialog editor extracts and adds to
its own General and All tabs to form the complete Properties dialog shown
in Figure 8-5. This convenience means you don't have to interact with two
dialogs, one provided by the control and the other by the dialog editor.

8: Using ActiveX Controls

Figure 8-6.

Step 4: Test the control
Enlarge the control in the dialog work area by dragging its sizing handles,
then reposition the control window in the center of the dialog box. Turn
on the editor's test mode switch on the Dialog toolbar:

Click several times in the new ActiveX control window to cycle through
the bitmap images, one of which is shown in Figure 8-6. Click the dialog's
OK button to return to editing mode.

~. Copyright© 1999

~'
::~1.:*'' _,:;;\'• .
%~

1 · ok·

The Anibutton ActiveX control in a typical dialog.

Now that we have some idea of the many forms an ActiveX control can
take, let's dissect one to see how it operates.

Communication Between
Container and ActiveX Control

An ActiveX control server attaches very efficiently to a client process.
Although not strictly necessary, an ActiveX control usually operates as
a dynamic link library, which means that the control executes in the
address space of the client process. For this reason, an ActiveX control is

347

ActiveX Controls

Figure 8-7.

348

often referred to as an in-process server. A container program does not
load the ActiveX control by calling the LoadLibrary API function as it
would to load a normal DLL. Instead it calls CoCreatelnstance to request
the run-time services of the Component Object Model framework to load
the library and set up an initial communication point between the client
and the control server. The communication point is called an interface.
The container calls into an interface, traditionally represented in a dia­
gram as a small circle like the one in Figure 8-7, and the call is routed to
the correct function in the server. Notice in the diagram that once the ini­
tial interface is in place and all parties are talking to each other, COM
drops out of the picture.

Container 1. Call CoCreatelnstance COM
Program Framework

4. Return to container

2. Consult Registry to
locate ActiveX control

3. Get object interface

5. Container calls
interface members

Object

ActiveX Control

Connecting an ActiveX control to a container.

Each interface is an array of pointers to functions that the ActiveX control
exports. The array is often called av-table because it is exactly analogous
to a C++ table of pointers to virtual functions. Because only the interface's
single step of indirection stands between the client and an in-process
server, calls to an ActiveX control are practically as fast as calls to a nor­
mal dynamic link library.

Not all COM servers operate in-process. A server EXE application runs in
its own address space, either on the same machine as the client or on
another machine attached through a network. In either case, client and

8: Using ActiveX Controls

server are separated by process boundaries and cannot communicate
directly. For out-of-process servers, COM loads two dynamic link libraries
to handle communcation. The first library, called a proxy, is mapped to
the client's address space; the other library, called a stub, is mapped to the
server's space. When the client calls into the proxy's interface, the proxy
bundles the function parameters into a packet and sends them to the stub
via a remote procedure call (RPC). The stub converts the information in
the packet back to a parameter list and calls the target function in the
server. Any communication from the server winds its way back to the cli­
ent through the same path. The process of connecting the client and server
through the proxy and stub libraries is called marshaling. As you would
expect, marshaling is slower than the more straightforward interaction
between a client and an ActiveX control, since an in-process server does
not rely on remote procedure calls for communicating with the client
and does not require marshaling unless the communication is between
threads. (Chapter 10, Writing ActiveX Controls Using ATL, discusses
interthreaded marshaling in more detail.)

Communication runs in both directions between an ActiveX control and
its container, so the container application must provide its own set of
interfaces to receive calls from the control. Microsoft publishes guidelines
specifying a minimum set of interfaces that a container should support.
The guidelines are documented in online help, accessible through the
Index tab of the MSDN Library window. Choose the Index command from
Visual C++'s Help menu, then type required interfaces to locate the article
of that title.

By supporting these interfaces, a container application ensures it can
interoperate with any ActiveX control that also complies with the guide­
lines. Table 8-2 on the next page describes the eight interfaces your con­
tainer should support to comply with the OLE/ ActiveX specifications.

Providing only the first three interfaces in Table 8-2 gives you a com­
pound document container but not a control container. Writing a con­
tainer program with MFC frees you from having to worry about the details
of interface support. As described earlier in this chapter, selecting ActiveX
control support in App Wizard for a container project adds to the source

349

AdiveX Controls

Table 8-2.

350

code a call to the framework's AfxEnableControlContainer function. This
function sets up all the interfaces listed in Table 8-2. Once the interfaces
are in place, communication between an ActiveX control and its container
takes place through events, methods, and properties.

Events
Although an ActiveX control is self-contained, it can keep the container
application informed of activity within the control by firing events. The

Interface Description

IOleClientSite Used by an embedded object to query the container about
the size of the client site and characteristics of the user in­
terface. The IOleClientSite interface also provides services
such as the RequestNewObjectLayout function through
which the control can request a new size for its site.

IAdviseSink Used by an object to inform the container of changes in
the object's data.

IOlelnPlaceSite Manages interaction between the container and the
object's site.

IOleControlSite Provides various services for an embedded ActiveX con­
trol. For example, the TranslateAccelerator function asks
the container to process a specified keypress, and the
OnFocus function tells the control if it has input focus.

IOlelnPlaceFrame Used by an ActiveX control to govern the display of
resources such as composite menus.

IOleContainer Allows the control to force its container to remain in a
running state or to query about other controls embed­
ded in the same document or window.

IErrorlnfo Required for containers that support dual interfaces
(described in Chapter 10).

!Dispatch Used by the control to access the container's ambient
properties (described in the section titled "Properties,"
on page 354) and to call the container's event handler
functions. The container implements a separate
!Dispatch interface for properties and events.

Interfaces a container should support to comply with the OLE/ActiveX
specifications.

8: Using ActiveX Controls

events fired by a particular control are whatever the control developer
thinks the container application might want to know about. For example,
the control can fire an event in response to a mouse click within the con­
trol window or to pass on to the container any keyboard input collected
when the control has focus. A fired event might signal the completion of
some task such as locating a URL, downloading data, or sorting a list. One
can draw an analogy between event firing and the way a normal control
sends notification messages such as CBN_DROPDOWN or BN_DOUBLE­
CLICKED to its parent window, except that an ActiveX control fires an
event by calling a function in the container, not by sending a message.

The function in the container that receives the fired event is a type of
callback. If the container application wants to be notified of a particular
control event, it must provide a function-known as an event handler or
event implementation function-to receive the call. The container stores
a list of pointers to its event handlers in an !Dispatch v-table known as
the event sink. The event sink connects each event with its own handler
function. The container application does not have to provide a handler
function for every event that a control fires, nor does every ActiveX con­
trol fire events.

The OLE/ ActiveX standards predefine a number of stock events that
inform a container about occurrences in the control window. For example,
to notify the container when the mouse is clicked inside the control win­
dow, a control using MFC can set up the stock Click event through the
EVENT_STOCK_ CLICK macro:

BEGIN_EVENT_MAP(CDemoCtrl, COleControl)
//{{AFX_EVENT_MAP(CDemoCtrl)
EVENT_STOCK_CLICK()
//}}AFX_EVENT_MAP

END_EVENLMAP()

The control requires no other code because the framework takes care of
sensing the mouse click and firing the event. If the container wants to
know when a mouse click occurs in the control's window, it provides a
handler function for the Click event, which is referenced in a matching
event sink map.

351

ActiveX Controls

Figure 8-8.

352

BEGIN_EVENTSINK_MAP(CDemoContainer, CDialog)
//{{AFX_EVENTSINK_MAPCCDemoContainer)
ON_EVENT(CDemoContainer, IDC_CTRL, DISPID_CLICK,

OnClick, VTS_NONE)
//}}AFX_EVENTSINK_MAP

END_EVENTSINK_MAP()

Parameters for the ON_EVENT macro in the above fragment may need
some explanation. CDemoContainer is the container's class, which is
derived from CDialog. The constant IDC_CTRL identifies the control in
the class's dialog window. DISPID_CLICK is the Click event's dispatch
identifier (dispid for short). Dispatch identifiers for stock events are
defined in the OleCtl.h file, each with a DISPID_ prefix. Any event that is
not stock is called a custom event to which OLE assigns a positive dis­
patch identifier, reserving negative identifiers for stock events. The
macro's fourth parameter points to the container's member function that
handles the event, named OnClick in this example. The VTS_NONE
parameter specifies that the Click event has no parameters.

Table 8-3 lists function prototypes for the stock events defined by the
OLE/ ActiveX specifications. All stock events except Error can occur qnly
while the ActiveX control has input focus. An event prototype may se1em
to imply the existence of a single function when in fact there are usually
at least three functions involved, as idealized in Figure 8-8. At a low lev~l,

Firing a typical event.

8: Using ActiveX Controls

Event prototype

void FireClick()

void FireDblClick()

void FireError(SCODE scode,
LPCSTR lpszDescription,
UINT nHelpID = 0)

void FireKeyDown(short* pnChar,
short nShiftState)

void FireKeyPress(short* pnChar

void FireKeyUp(short* pnChar,
short nShiftState)

void FireMouseDown(short nButton,
short nShiftState,
float x, float y)

void FireMouseMove(short nButton,
short nShiftState, float x, float y

void FireMouseUp(short nButton,
short nShiftState, float x, float y

Event fired when ...

Any mouse button (left, middle, or right) is
clicked in the control window. The Mouse­
Down and MouseUp stock events fire before
Click.

Any mouse button is double-clicked in the
control window.

The control detects an error.

The control receives a WM_SYSKEYDOWN
or WM_KEYDOWN message.

The control receives a WM_CHAR message.

The control receives a WM_SYSKEYUP or
WM_KEYUP message.

Any mouse button (left, middle, or right) is
pressed, generating a WM_xBUTTONDOWN
message.

The control receives a WM_MOUSEMOVE
message.

Any mouse button is released, generating a
WM_xBUTTONUP message.

Table 8-3. Stock events defined by OLE/ ActiveX.

a control fires an event by calling the container's IDispatch::Invoke
method, passing it parameters appropriate for the event. But at a higher
level two additional functions exist, one in the ActiveX control that wraps
the call to IDispatch::Invoke, and the other in the container that ultimately
handles the call. Both functions share the same parameter list and in effect
behave as a single function, hiding the low-level !Dispatch activity that
occurs between them. Function names are arbitrary. MFC forms the names
of firing functions by adding the prefix Fire to an event name-the Fire­

Click function, for example, triggers the Click event.

353

ActiveX Controls

354

Methods
A method is the opposite of an event handler function. While event han­
dler functions are located in the container and called by the control, meth­
ods are located in the control and called by the container. The container
can call a method to learn a condition or to request the control to take
some action.

OLE/ActiveX predefines three stock methods, called DoClick, Refresh, and
AboutBox, none of which take a parameter or return a value. DoClick
causes the control to fire its Click stock event (if it supports it), the Refresh
method tells the control to invalidate its window and repaint itself, and
AboutBox tells the control to display an informative dialog box. Any other
method an ActiveX control exports is called a custom method, designed
by the author of the control. To the container, a method appears as a nor­
mal function exported by a dynamic link library, with an optional parame­
ter list of up to 15 parameters and a return value of any type.

Properties
Properties are public data contained within both the container and control
that each exposes to the other. OLE/ ActiveX defines four categories of
properties called stock, custom, ambient, and extended. Stock and custom
properties belong to the control, and ambient and extended properties
belong to the container.

Stock and custom properties
Stock properties specify typical control characteristics defined by the
ActiveX standards, such as the control's foreground and background col­
ors, the text displayed in its window, and the font used for the text. Cus­
tom properties are any other data that the control designer wants to
expbse to the container. A container reads and writes a control's proper­
ties by calling functions known in MFC as Get and Set methods, which are
exported by the control. These are the same get/put property methods we
encountered when working with the Test Container's Invoke Methods dia­
log. The difference is strictly a matter of nomenclature-whereas MFC
begins method names with the prefixes Get and Set, COM terminology
prefers get and put (in lowercase). Typically, each property has a corre­
sponding Get/Set method pair, but a control can prevent the container

Table 8-4.

o: using Act1vex Lontro1s

from changing a control property simply by not exporting a Set method for
it. Chapter 9, Writing ActiveX Controls Using MFC, demonstrates how this
is done.

Table 8-4 shows the link between stock properties in the control and the
functions a container calls to read the properties. For each Get method
listed in the table's third column, a corresponding Set method exists with
a matching name. A Set method has no return value and takes a single
parameter that is the same type as the Get method's return value. The
prototypes for GetAppearance and SetAppearance illustrate the pattern
for all Get/Set functions:

short GetAppearance(
void SetAppearance(short n)

II Returns a property of type short
II Passes a property of type short

Dispatch map Get function
Property entry in control called by container

Appearance DISP _STOCKPROP - short GetAppearance()
APPEARANCE

BackColor DISP _STOCKPROP - OLE_COLOR GetBackColor()
BACKCOLOR

BorderStyle DISP _STOCKPROP - short GetBorderStyle()
BORDERSTYLE

Caption DISP _STOCKPROP - BSTR GetText()
CAPTION

Enabled DISP _STOCKPROP - BOOL GetEnabled()
ENABLED

Font DISP _STOCKPROP _FONT LPFONTDISP GetFont()

ForeColor DISP _STOCKPROP - OLE_COLOR GetForeColor()
FORECOLOR

hWnd DISP _STOCKPROP _HWND OLE_HANDLE GetHwnd()

Text DISP _STOCKPROP _TEXT BSTR GetText()

ReadyState DISP _STOCKPROP - long GetReadyState()
READYSTATE

Stock control properties defined by OLE/ActiveX.

355

Activex controls

Ambient and extended properties
Ambient and extended properties belong to the client site and cannot be
altered by the control. Extended properties are data that pertain to the
embedded control but are implemented and managed by the container.
Ambient properties describe the container itself, such as its current
background color or font. By reading its container's ambient properties,
a control can tailor its appearance and behavior to match the container.
A control queries for an ambient property by calling the COleControl::
GetAmbientProperty function with a dispatch identifier for the desired
property, like this:

LPFONTDISP fontdisp:
GetAmbientProperty(DISPID_AMBIENT_FONT, VT_FONT, &fontdisp);

For standard ambient properties predefined by the OLE/ ActiveX speci­
fications, a control can more conveniently call related helper functions
provided by COleControl such as AmbientFont:

LPFONTDISP fontdisp = AmbientFont ();

Table 8-5 lists the standard ambient properties a container can support.
An ActiveX control determines the value of an ambient property either by
calling GetAmbientProperty using one of the dispatch identifiers listed in
the table's second column, or by calling the equivalent helper function in
the third column. If you use App Wizard to create your container applica­
tion, support for standard ambient properties is built in and requires no
special action. Calling SetFont or SetTextColor to set a font or foreground
color in a container dialog automatically sets the Font and ForeColor
ambient properties for sites in the dialog. When an ActiveX control calls
the AmbientFont or AmbientForeColor functions, it receives the ambient
data that are current for the dialog.

Writing a Container Application

356

So how do you, the container developer, know in advance what events,
methods, and properties an ActiveX control provides and what event han­
dler functions your container application should include? The Gallery and
Class Wizard take care of that for you. Using an existing control in your

Table 8-5.

o: usmg ArnveA Lomro1s

Function called
Property Dispatch identifier by control

BackColor DISPID_AMBIENT_ OLE_COLOR AmbientBackColor()
BACKCOLOR

DisplayName DISPID_AMBIENT - CString AmbientDisplayName()
DISPLA YNAME

Font DISPID_AMBIENT - LPFONTDISP AmbientFont()
FONT

ForeColor DISPID_AMBIENT - OLE_COLOR AmbientForeColor()
FORECOLOR

LocaleID DISPID_AMBIENT - LCID AmbientlocalelD()
LOCALE ID

Scale Units DISPID_AMBIENT - CString AmbientScaleUnits()
SCALEUNITS

ShowGrab- DISPID_AMBIENT_ BOOL AmbientShowGrabHandles()
Handles SHOWGRABHANDLES

ShowHatching DISPID_AMBIENT - BOOL AmbientShowHatching()
SHOWHATCHING

TextAlign DISPID_AMBIENT - short AmbientTextAlign()
TEXT ALIGN

UIDead DISPID_AMBIENT _ BOOL Ambi entU IDead ()
UIDEAD

UserMode DISPID_AMBIENT - BOOL AmbientUserMode()
USERMODE

Standard container ambient properties.

container program depends on individual license arrangements-a subject
covered in the next chapter-but once over that hurdle you select an
ActiveX control from the Gallery and add it to your project as you would
any other component. Visual C++ automatically scans the Registry to
locate all controls registered with the system, so adding an ActiveX control
to the Gallery is simply a matter of registering it.

When the Gallery places an ActiveX control in your container project, it
examines the type library contained in the control's executable image for a
list of the events, methods, and properties exported by the control. From

357

Activex Controls

358

this information, the Gallery creates a complete wrapper class that con­
tains the Get/Set property functions and method calls through which the
container gains access to the control's data. To get or set a property in the
control-the background color, for instance-the container calls a func­
tion in the wrapper class:

OLE_COLOR CDemoCtrl ::GetBackColor()
{

}

OLE_COLOR result:
GetProperty(DISPID_BACKCOLOR, VT_I4, (void*)&result);
return result:

void CDemoCtrl ::SetBackColor(OLE_COLOR propVal)
{

SetProperty(DISPID_BACKCOLOR, VT_I4, propVal);
}

Since event handlers belong to the container's class, which is usually
derived from a dialog"'.based class such as CDialog, the Gallery does not
add source code for event handler functions. That job is left to Class­
Wizard after the control is added to a dialog.

The procedure is best explained using an example. This section builds a
simple container application called Hour that uses one of the license-free
ActiveX controls included on the companion CD. The control is the same
IETimer.ocx timer control used earlier in the Tumble.htm document. You
can find the IETimer control listed under the name Timer Object in the
Gallery's Registered ActiveX Controls folder. The list of controls in the
folder may include another timer ActiveX control, created from an MFC
sample project named Time Control. (The source files for Time Control are
in the folder MSDN\Samples\ VC98\MFC\Controls\ Time.) Both timer
controls export the same methods and perform the same function, so it
does not matter which one you use for the Hour project.

Unlike other ActiveX controls such as Anibutton and Calendar, Timer
Object is not a visible control. It does not display itself as a window
within the container, but merely fires an event at a specified interval, serv­
ing as a timer mechanism for the containing program. The Hour program
uses the timer events to manage the three progress indicators shown in

Figure 8-9.

8: Using ActiveX Controls

Figure 8-9. The progress controls display elapsed time in minutes, sec­
onds, and tenths of a second. The Hour program takes its name from the
fact that all three displays start over when the Minutes progress control
fills up after the lapse of 60 minutes.

Minutes:

Seconds:

Tenths: :'.'~ .. , ... ,,,,.,.,,t:~;l •
lr::~:::::::9K::::::::::ll

The Hour program.

5

22

8

Building the Hour project takes only five steps from start to finish.

Step 1: Create the Hour Project with AppWizard
Choose New from the environment's File menu, select the MFC
App Wizard (exe) icon in the Projects tab, and type Hour as the project
name. Hour is a dialog-based application, so click the Dialog Based radio
button in AppWizard's Step 1 and make sure the ActiveX Controls check
box is turned on in Step 2:

AppWizard's Step 1 AppWizard's Step 2

Wh.;t type of .;ppfica.tion would you like to create?

r ,\?.ingle document

: .. r· Multiple documents ·

. r. ~!~i§gJ~iii~.~~

Click the Finish button to create the project.

359

ActiveX Controls

r;t;~
.-I S-tat-ic -T e--.xtl

I Timer Objectl

360

Step 2: Insert the Timer Object Control into the Project
This step should seem familiar by now. Use the Add To Project command
on the Project menu to open the Gallery and display the list of ActiveX
controls shown in Figure 8-1 on page 333. Scroll horizontally and select
either the Timer Object or Time Control icon, then click the Insert button.
This adds source files for either the CieTimer or CTimeCtrl class to the
Hour project, depending on the selected control. Click OK when the Con­
firm Classes dialog appears, and then close the Gallery dialog.

If Timer Object is not listed in the dialog's display, the control has not
been registered yet. To register the Timer Object control, copy the
IETimer.ocx file from the companion CD to the Windows\OCCache folder
and run the RegSvr32 utility as described on page 336. When the control
successfully registers itself, it appears in the Gallery list the next time you
open the dialog.

Step 3: Place the Timer Object Control in the Hour Dialog
In earlier versions of Visual C++, you must double-click the IDD_HOUR_
DIALOG identifier in the Resource View pane to start the dialog editor and
load the main dialog. Delete the "to do" static text control and the Cancel
button in the dialog work area by selecting them and pressing the Del key .
Drag the Progress, Static Text, and Timer Object tools from the Controls
toolbar onto the work area and arrange the controls to look something
like this:

Table 8-6.

8: Using ActiveX Controls

Because the Timer Object ActiveX control does not create its own window
when the program runs, it doesn't matter where you place it in the dialog.
Expose the Properties box for each control and type in the captions shown
in the screen image above along with the identifiers listed in the second
column of Table 8-6.

Control Identifier Variable Name

Minutes progress indicator IDC_PROGRESS_MIN progMin

Seconds progress indicator IDC_PROGRESS_SEC progSec

Tenths progress indicator IDC_PROGRESS_TEN progTen

Top "x" static control IDC_MINUTES strMin

Middle "x" static control IDC_SECONDS strSec

Bottom "x" static control IDC_TENTHS strTen

Time control IDC_TIMER1 time

Control identifiers in the Hour program.

The application class CHourDlg requires a member variable for each of
the dialog's controls, which you can add through ClassWizard. With the
dialog editor still active, click the ClassWizard command on the View
menu to invoke the MFC ClassWizard dialog described in Chapter 6. In
the Member Variables tab, select each new control in the Control IDs box
and click the Add Variable button to display the Add Member Variable
dialog. In the text box labeled Member Variable Name, type the control
variable listed in the third column of Table 8-6. Figure 8-10 on the next
page shows the final result.

We also need a function to handle the event fired by the Timer Object
control. In ClassWizard's Message Maps tab, select IDC_TIMER1 from
the Object IDs box and Timer from the Messages box, then click the Add
Function button. ClassWizard adds stub code for an event handler func­
tion named OnTimerTimer1, shown on the next page.

361

ActiveX Controls

Figure 8-10.

362

ON_ WM_QUERYDRAGICON
ON_ WM_SYSCOMMAND

The "E" prefix designates OnTimerTimer1 as an event handler function.
Click OK to close the Class Wizard dialog.

Adding member variables to the CHourDlg class.

Step 4: Add Code to the Hour .cpp and Hour .h Files
To review the variable and function declarations that Class Wizard has
added to the HourDlg.h header file, click the arrow button at the far right
of the WizardBar:

and select Go To Class Definition from the drop-down menu. Visual C++
automatically opens HourDlg.h in the text editor and positions the caret at
the start of the CHourDlg declaration, in which the new control variables
have been added:

8: Using ActiveX Controls

II Dialog Data
ll{{AFX_DATA(CHourDlg)
enum { IDD = IDD_HOUR._DIALOG };
CProgressCtrl
CProgressCtrl
CProgressCtrl
CString
CString
CString
CieTimer
I/} }AFLDATA

progTen;
progSec;
progMin;
strMin;
strSec;
strTen;
time;

ClassWizard has also added a prototype for the OnTimerTimer1 event
handler function:

afx_msg void OnTimerTimerl();
DECLARE_EVENTSINK...._MAP()

We need add only two lines to the CHourDlg class declaration:

class CHourDlg : public CDialog
{

private:
int iMin, iSec;

As before, the shading indicates additions to the code that you must type
yourself in the text editor.

The variables iMin and iSec keep tallies of elapsed minutes and seconds,
which are written to the static controls adjacent to the progress indicators
in the dialog. A similar tally isn't required for elapsed tenths of seconds,
because the position of the IDC_PROGRESS_TEN progress indicator
advances with every event fired by the Timer Object control. This will
become clear in a moment when we add code to the event handler.

The final modifications to the source code are made in the CHourDlg::
OnlnitDialog function. Click anywhere in the WizardBar's Members box
to display a drop-down list of member functions and select OnlnitDialog
from the list shown on the next page.

363

ActiveX Controls

364

Visual C++ opens the HourDlg.cpp source file in the text editor and auto­
matically places the caret at the beginning of the OnlnitDialog definition.
Add the shaded text after the function's "to do" line, as shown below:

II TODD: Add extra initialization here

time.Setinterval(100);
progMin.SetRange(0, 59);
progSec.SetRange(0, 59):
progTen.SetRange(0, 9);

progMin.SetStep(1):
progSec.SetStep(1);
progTen.SetStep(1);

iMin = iSec = 0;

II Set timer interval to 1110 second
II Set ranges for progress indicators
II Seconds: 1-60
II Tenths: 1-10

II Set step intervals for prog indicators

II Initialize tallies

These instructions initialize the progress indicator controls. The
instruction

time.Setlnterval(100); II Set timer interval to 1110 second

calls a method in Timer Object to tell the control to start firing events
every 100 milliseconds.

Use the WizardBar to navigate down to the CHourDlg::OnTimerTimer1
function and add the following shaded lines:

void CHourDlg::OnTimerTimerl()
{

II TODD: Add your control notification handler code here

int i = progTen.Steplt ();

if (++i == 10)
{

if (++iSec 60)
{

8: Using ActiveX Controls

}

}

else

if (++iMin == 60)
{

}

else

iMin = 0:
progMin.SetPos(0):

progMin.Stepit ();

iSec = 0:
progSec.SetPos(0);
strMin.Format("%d", iMin):
SetDlgitemText(IDC_MINUTES, strMin);

progSec.Stepit ():

i 0:
progTen.SetPos(0);
strSec.Format("%d", iSec):
SetDlgitemText(IDC_SECONDS, strSec);

strTen.Format("%d", i):
SetDlgitemTextC IDC_TENTHS. strTen);

Every tenth of a second, the OnTimerTimer1 implementation function
receives the control's fired event and advances the IDC_PROGRESS_TEN
progress indicator by one step. When the Tenths progress indicator
reaches its maximum value, the indicator is reset to zero and the Seconds
indicator increments by one. In the same way, the Seconds indicator is
reset after 60 seconds have elapsed and the Minutes indicator increments.
The entire procedure starts over when the program measures the lapse of
one hour.

Step 5: Build and Test the Project
Select the Win32 Release configuration on the Build toolbar, and then
build a release version of the Hour.exe program. Click the Execute com­
mand on the Build menu to run the finished program. Note that Hour runs
a bit slow, which is typical for a Win32 program that relies on a system
timer resource. While you may be able to use it as an egg timer, the Timer
Object control is not suitable for applications that require accurate timing.

365

ActiveX Controls

The next chapter describes another container project called Game, which
is similar to Hour. The difference is that Game uses a custom ActiveX con­
trol you write yourself, and not one that Microsoft provides.

Working Without the Dialog Editor

366

The Visual C++ dialog editor makes it easy to add an ActiveX control to a
dialog box, but there may be times when you want to place a control in a
window other than a dialog. No technical obstacles bar your way-just as
a normal control can appear in, say, a framed window, so can an ActiveX
control-but you must forego the services of the dialog editor. This sec­
tion explains how to add an ActiveX control to a non-dialog window,
demonstrating by placing the Button Menu control into an application's
client area.

The Button project introduced here requires only a little typing; otherwise
you can find all source files on the companion CD. Notice that the project
makes no use of the dialog editor, so the Button Menu control is never
instantiated during development. The techniques described in this section
can therefore overcome the creation error that some controls incorrectly
exhibit at design time, as noted on page 345. Any ActiveX control can be
placed in a window by following these steps, and the application will cor­
rectly compile. But true license protection is not circumvented because an
unlicensed application cannot instantiate a protected control at run time.
This will become clear in the next chapter, which discusses the ramifica­
tions of licensing.

Step 1: Create the Button Project
Run AppWizard to begin the project, selecting the Single Document
option at App Wizard's first screen. When AppWizard finishes, open the
Registered ActiveX Controls folder in the Gallery and double-click the
icon labeled BtnMenu Object. Accept the proposed class name Cpmenu
for the new control and close the Gallery.

Step 2: Add the Control to the CButtonView Class
Our intention is to place the Button Menu control inside the application's
main window view, so coding begins in the Button View source files. First,

8: Using ActiveX Controls

add a Cpmenu object to the CButtonView class declaration located in the
Button View.h header file:

#include "pmenu.h"
#define IDC_BTNMENU 1001

class CButtonView : public CView
{

private:
Cpmenu btnmenu;

}

The next step involves writing code that initializes the btnmenu object.
This is best done in the CButton View::OnlnitialUpdate function, ensuring
that the application creates the control only once when the view first
appears. Class Wizard can generate starter code for the function; just select
CButton View in the Class Name box of Class Wizard's Message Maps tab,
then double-click OnlnitialUpdate in the Messages box. Exit ClassWizard
through the Edit Code button, which automatically opens the
ButtonView.cpp source document in the text editor with the caret posi­
tioned at the new OnlnitialUpdate function. Add to the function the
initialization code shown here:

void CButtonView::OninitialUpdate()
{

}

CView::OninitialUpdate();

II TODD: Add your specialized code here and/or call the base class

COleVariant v(lL);
CRect rect(30, 30, 250, 120);
btnmenu.Create(NULL, WS_VISIBLE, rect, this, IDC_BTNMENU);
btnmenu.SetCaption< "Click Here");
btnmenu.Invalidate();
btnmenu.Additem("Menu item Ill", v);
v = 2L;
btnmenu. Add Item("Menu i tern 1/2", v) :
v = 3L;
btnmenu.Additem("Menu item //3", v);
v = 4L;
btnmenu.Additem("Menu item 1/4", v) ;

367

ActiveX Controls

368

Cpmenu is derived from CWnd, providing two versions of a Create func­
tion prototyped in the Pmenu.h file. For the sake of simplicity, the frag­
ment shown here uses a CRect object to hard-code the control's size and
position in the main window. The Cpmenu::Addltem function adds com­
mand strings to the button's pop-up menu, ordering the commands in the
menu according to the VARIANT value given as the function's second
parameter. The OninitialUpdate function in this example merely creates a
CO le Variant object to hold the VARIANT values and calls Addltem four
times to insert a representative list of menu commands.

If you compile and run the Button application at this point, it correctly
displays the Button Menu control in the main window. Although click­
ing the control invokes its pop-up menu, the application itself does not
respond when commands in the menu are selected and clicked. This
is because we haven't yet added functions to handle the events that the
Button Menu control fires during user interaction. That's next.

Step 3: Handle Events
We still do not know what events the Button Menu control fires. That
information is stored in the control's OCX file as part of its type library
resource, but ClassWizard cannot read the data because it knows nothing
about the control or the Cpmenu class. Visual C++ provides a utility that
lets you explore a control's type library to learn what events the control
fires and the required parameter list for handler functions. The program is
named OleView.exe, and is invoked by clicking OLE/COM Object Viewer
on the Tools menu. The View TypeLib command on the Object Viewer's
File menu lets you open the BtnMenu.ocx file and display its type library.
It turns out that the Button Menu control fires only two events, called
Click and Select. The library script shows how a container application
must declare handler functions to properly receive the event firings:

8: Using ActiveX Controls

dispinterf ace DpmenuEvents {
properties:

} ;

;Ready

methods:
[id(Ox00000097)]
void Click();
[id(Ox00000096)]
void Select(int item);

This is all the information we need to write handler functions for the
events. But especially for a control that provides many different events,
an easier alternative to poring through a type library is to simply inform
Class Wizard about the control's existence. ClassWizard can then take on
all the work of reading the type information from the control, generating
code for stub handler functions, and adding their entries to the event sink
map. All that's required is a little massaging of the project's class database
and a small addition to the CButton View class declaration. Here's how
it's done.

First, open the Button.clw file in the text editor and add a new resource
entry for a dialog box:

ResourceCount=3
Resourcel=IDR__MAINFRAME
Resource2=IDD_ABOUTBOX
Resource3=IDD_FAKEDLG

Be sure to increase the resource count to 3 in the first line. At the bottom
of the file add a description of the new dialog resource:

[DLG:IDD~FAKEDLG]

Type=l
Class=CButtonView
ControlCount=l
Controll=IDC_BTNMENU,{52dfae60-cebf-llcf-a3a9-00a0c9034920},1342177280

There is no such dialog in the project-hence the identifier name-but
Class Wizard does not need to know that. The entry tells Class Wizard that
a dialog resource identified as IDD_F AKEDLG belongs to the CButton View
class and contains the Button Menu control, which is identified by its
CLSID number.

369

ActiveX Controls

370

Next, return to the ButtonView.h file and emend the code we added ear­
lier, adding a #define statement for the IDD_FAKEDLG identifier and
declaring the value in the CButton View class declaration. The new entry is
marked by special AFX_DATA comment lines, making the dialog identi­
fier recognizable to ClassWizard as explained in Chapter 6. The result
looks like this:

#include "pmenu.h"
#define IDC_BTNMENU 1001
#define IDD_FAKEDLG 1002

class CButtonView : public CView
{

private:
Cpmenu btnmenu;
ll{{AFX_DATACCButtonView)
enum { IDD = IDD_FAKEDLG };
11} }AFX_DATA

Save the file. Now when you invoke ClassWizard, the IDC_BTNMENU
identifier shows up at the bottom of the objects list in the Message Maps
tab when the CButton View class is selected in the Class Name box. Select
the IDC_BTNMENU entry to display the two events in the Messages box,
then double-click the Select event to add a new handler function named
OnSelectBtnmenu. The handler gains control whenever the user clicks a
command in the control's pop-up menu.

With the new handler function selected in the Member Functions box,
click the Edit Code button to reopen the ButtonView.cpp file. Add code to
the OnSelectBtnmenu function that responds whenever the control fires
its Select event:

void CButtonView::OnSelectBtnmenu(long item)
{

II TODO: Add your control notification handler code here

CString str;

str.Format("You selected item #%1i\t", item);
MessageBox(str, "Button application", MB_ICONINFORMATION) ;

}

Figure 8-11.

8: Using ActiveX Controls

Build the Button application and run it. You should see a message box
each time you click an item in the control's menu, as illustrated in
Figure 8-11.

Ready

Menu item Ill
Menuitem#2
Menuitem#3

© You telected item 114

An ActiveX control placed in a framed window.

371

\

Writing ActiveX
Controls Using MFC

Lnapter

Chapter 8 demonstrated that an understanding of the underlying structure
of OLE and COM is not a requirement for creating an ActiveX container
application, if you use MFC. Remarkably, the same is true when writing
ActiveX controls. MFC handles so many of the details that you can write a
control with little concern for its intricate underpinnings. If you decide to
write your ActiveX control without MFC-and there can be good reasons
for considering the idea-the project becomes more ambitious. Depending
on your approach and the control's complexity, you may need a thorough
grounding in the principles of ActiveX and Component Object Model.

This chapter picks up where the preceding chapter left off. It examines
ActiveX controls from the perspective of the server rather than the client,
describing the ways in which Visual C++ helps the developer who wants
to write, not just use, an ActiveX control. Visual C++ makes available
three different tools that help set up an ActiveX control project:

l!!'I MFC support for ActiveX controls

• The BaseCtl framework

• The Active Template Library

373

ActiveX Controls

Visual C++ Tools for Creating ActiveX Controls

374

MFC offers the easiest route to a working and stable ActiveX control. The
Control Development Kit, formerly available on Microsoft Developer Net­
work, has been incorporated into Visual C++ as a set of tools that includes
the Test Container and ControlWizard, renamed MFC ActiveX Control­
Wizard. As demonstrated with an example project later in the chapter,

I

ControlWizard generates source files containing starter code that uses
MFC to take care of nearly all the COM details. The generated source code
handles serialization, displays a property sheet for the control, and pro­
vides many other conveniences for both the programmer and the user.
You need only add any code required to draw the control, react to user
input, and fire events.

Writing an ActiveX control using MFC can result in an OCX file of sur­
prisingly small size, but the size is misleading because the control forever
depends on the existence of two large files. Herein lies the disadvantage of
MFC. Small executable size is especially important for controls intended
for a Web page, since a user's browser program must first download a con­
trol to display it if the control's OCX file is not already available on the
user's computer. An ActiveX control cannot statically link with MFC,
which means that if the correct version of the MFC library DLL file does
not exist on the user's hard disk, the file must also be transmitted along
with the control. To make matters worse, MFC requires the C run-time
library, so the Msvcrt.dll file may also need to be downloaded. Transmit­
tal of the library files occurs automatically when the user first encounters
a Web page that displays an ActiveX control dependent on MFC. While
this may be a reasonable scenario for an internal Web site to which a user
connects through a fast network, it is not realistic for the Internet. Since
the MFC library is approximately a megabyte in size, downloading the file
takes several minutes even over a fast modem.

The BaseCtl framework, also known as the ActiveX Controls framework, is
a lightweight alternative to MFC. Though BaseCtl offers much less support
for the developer, it also allows greater flexibility. An ActiveX control
built from BaseCtl requires neither MFC nor the C run-time library. And
because the framework provides only minimal code, the control has a

~= wntmg Act1vex Lontrols us mg M t-L

smaller memory footprint than its MFC counterpart. But the advantages of
BaseCtl carry a price-using BaseCtl takes more work on your part and a
greater understanding of the principles of COM and ActiveX. For example,
you must be reasonably comfortable with persistence interfaces such as
!Stream, IPersistPropertyBag, and IPersistStream. The framework provides
core functionality through three main classes, named CAutomationObject,
COleControl, and CPropertyPage.

BaseCtl used to require Visual Basic 4.0 to begin a project, but no longer.
You now start a project by running the NMake utility provided with
Visual C++, once to generate the library files and again to generate stub
source files for the new control. The procedure is explained in a
ReadMe. txt file provided with BaseCtl. If you requested the inclusion of
sample code when you installed Visual C++, the ReadMe.txt file and
source files for several sample BaseCtl projects are located in the folder
MSDN\Samples\ VC98\SDK\COM\ActiveXC\BaseCtl. For the most
recent updates of BaseCtl, download the ActiveX development kit from
this Internet address:

http://www.microsoft.com/intdev/sdk

BaseCtl is not often used today because the Active Template Library (ATL)
provides a superior tool for the creation of small ActiveX controls.
Although the resulting OCX file is apt to be larger than a similar control
that relies on MFC, a control created through A TL usually occupies much
less memory because it does not require the presence of other auxiliary
files. Besides a library of intelligent template code that implements many
standard interfaces for you, ATL provides a wizard that generates initial
source files, greatly simplifying the early stages of an ActiveX control pro­
ject. Creating an ActiveX control using ATL requires more work compared
to building the same control with ControlWizard and MFC, but ATL is a
good choice for creating lean ActiveX controls intended for use on the
Internet. You may have heard that ATL is not suitable for writing ActiveX
controls, but that's no longer true since the library's 2.0 release. ATL is not
a simple subject, however, and a more detailed discussion is deferred
until the next chapter.

375

ActiveX Controls

This chapter covers the MFC approach to ActiveX controls. MFC offers the
best way to try the waters of ActiveX programming, and by itself provides
more than enough material for discussion. Besides saving you a great deal
of coding, using MFC to write an ActiveX control makes available helpful
Visual C++ features such as ClassWizard and ControlWizard. As we'll see
next, ControlWizard provides an excellent starting point for an ActiveX
control project.

ControlWizard

Figure 9-1.

376

In the same way that App Wizard creates a project for an MFC application,
ControlWizard creates a project for an ActiveX control. A control created
with the help of ControlWizard uses MFC, giving it the advantages and
disadvantages described in the preceding section. ControlWizard is a cus­
tomized form of AppWizard, and a ControlWizard project begins the same
way as a normal AppWizard project. Choose the New command from the
File menu to call up the New dialog, and in the Projects tab click the icon
for the MFC ActiveX ControlWizard. Figure 9-1 illustrates the steps.

' Makefile

mGic!TY'Eg~<?@~~~ ""
~ MFC AppWizard [dll] ~

MFC AppWizard [exe)
Utility Project

111 Win32 Application

Beginning an ActiveX control project with ControlWizard.

ControlWizard walks you through two steps before creating the project.
This section examines options that the wizard offers and discusses when
and why an option might be appropriate for your ActiveX control.

Figure 9-2.

~= Writing Act1vex controls Using MFC

Figure 9-2 shows ControlWizard's opening screen, which first asks for the
number of controls in the project. Like a VBX custom control, an OCX file
can contain more than one ActiveX control component. Specify the num­
ber of controls you want in the text box at the top of the dialog. You can
also add controls later during project development. The next option on the
ControlWizard screen lets you restrict the control's use through a license.
Although the license support option is turned off by default, many con­
trols intended for general use should have the protection of a license,
which is described shortly.

&J
.

.
.

.

.

·.

Hojj many controls would you like your
project to have?

~
Would .YOU like the contiols in this project to
h<lve a runtime license?

r)'.es, please
lo NQ runtime riceme

Would you like source file comments to be
generated?

r. Y ~s. plea~e
(' No £Omments

Would you like help mes to be generated?

r Ye£, please
lo No he)p files

<ll.ack. I fl.e)(l> Einlth u.neei · I

ControlWizard's Step1.

The last option in Step 1 directs ControlWizard to generate help files for
the control. A request for project help files adds the same sort of help sup­
port you receive from App Wizard. For a description of the generated help
files, refer to the discussion in Chapter 2 beginning on page 47.

ControlWizard's second screen (Figure 9-3) presents you with options that
determine how the control should interact with a container. The options
in Step 2 require a little explanation, so the following list examines them
in more detail.

• Activates When Visible-Determines whether the container should
automatically activate the control when it becomes visible. Immedi­
ate activation is often desirable for an ActiveX control, though

377

ActiveX Controls

Figure 9-3.

378

~1:·1iltW3W@M@?ii¥t*rttiM@jjjl~?1.~i
I Select the ,gontrol whot.e opfo:ins ycu wish to .
I browse or edit Yoi.i may ed!'t its dass and file '.

j, .;n:a1:e;~;~.~
1

~~~ey •• ~ ••• JQ/:Ftd~;~~e~:.(1'.:. 
11 • ~~~iffeaturesw~ldyouli~ethi~~rolto '.· 

.

11

1·;·· . . P:: ActiVate~ when visible :; . 
: Q'.!nvisible~tru~~e •,' . ·; •:. 

C Available in '1nsert Qbiect" dialcig 

I
, p: Has'ati''A~u!"box . 

' rj/Acts as a sinip~ f,!~m~ ~tr~! .. 
I : \l.i'hichittlndowclass.ilal\Y,~thls i I control subclass ( 

I Hn?~e] Et . 
i· !~!ii~i~~l~!~~~.: · · 1 L~~~E:JI 
:-. ----..,.--__,.-..._,._......_ ___ ~~-~,...._ 
11 • ·\'i~f'I ··11~.i.:. I ;<.'tiii~ .: ..• , :c;,rie:~r · I 

ControlWizard's Step 2. 

selecting the Activates When Visible option should be considered 
only a hint to the container application, which may ignore the 
request. A discussion below has more to say about this option. 

• Invisible At Run-Time-If this option is checked, Control Wizard 
does not add an OnDraw function to the control class. Use this 
option for controls that do not require visual interaction with the 
user, such as the Timer Object control introduced in Chapter 8. 

• Available In Insert Object Dialog-Pertains to the Insert Object dia­
log (or equivalent) offered by many container applications, from the 
Test Container tool to Microsoft Office applications. Leaving the box 
unchecked signals a container that it should not include the new 
control in the container's Insert Object dialog. 

• Has An About Box-ControlWizard generates source code for an 
About method and resources for a generic About box. 

• Acts As A Simple Frame Control-Adds support for the ISimple­
FrameSite interface. This option sets up the control to act as a frame 
that encloses other ActiveX controls in the container window, 
grouping the controls visually and allowing them to be moved 
together. Not all containers support simple frames. 



9: Writing ActiveX Controls Using MFC 

• Window Subclassing-Sets up the control project by subclassing a 
normal Windows control such as an edit box or a progress indicator. 

By default, Control Wizard turns on only two of the options listed above: 
Activates When Visible and Has An About Box. Deselecting the Activates 
When Visible check box clears the control's OLEMISC_ACTIVATEWHEN­
VISIBLE status flag, which the control places in its Registry data through 
MFC's AfxOleRegisterControlClass global function. The container that 
embeds the control can determine the state of the flag by calling the con­
trol's IOleObject::GetMiscStatus method. A clear flag signals the container 
that the control should remain inactive when it becomes visible, thus 
postponing the creation of the control's window until the user requires it. 
For ActiveX controls that the user may never call into service, this can 
save the expensive operation of creating a window unnecessarily. Chap­
ter 10 looks more closely at ActiveX control status flags such as 
OLEMISC_ACTIV ATEWHENVISIBLE. 

You may also want to consider turning off the About Box option because 
the added support for the About box increases the size of the finished 
ActiveX control. The standard About box that ControlWizard generates, 
for example, adds approximately 2 KB of extra code and resource data to 
the finished OCX file. Refer to the final section of Chapter 4 for a discus­
sion on other means of minimizing resource data, which is especially 
important for ActiveX controls. 

If the Available In Insert Object Dialog check box is selected, the control's 
self-registration procedure adds a Registry key named Insertable to the 
control's CLSID Registry hierarchy. The Insertable key informs a container 
that the ActiveX control can act as a passive embedded object. The con­
tainer can thus create an object of the ActiveX control through the OLE 
Documents interfaces. These interfaces, identified by the !Ole prefix, 
include IOleCache, IOleClientSite, IOleContainer, IOleinPlaceObject, and 
IOlelnPlaceSite. Applications that can embed an object in a container doc­
ument scan the Registry for objects that have the Insertable keyword and 
display a list of the objects in a standard Insert Object dialog. To see the 
list in Microsoft Word, for example, click the Object command on Word's 
Insert menu. An ActiveX control created using ControlWizard appears in 

379 



ActiveX Controls 

380 

the list only if the Available In Insert Object Dialog check box is turned 
on. Applications that do not support container documents ignore the 
Insertable keyword. For example, the New Control tool in the Test Con­
tainer utility we encountered in Chapter 8 displays a list of all registered 
controls whether they are marked insertable or not. 

If you want your ActiveX control to subclass a standard or common 
Windows control, click the box shown at the bottom of the screen in Fig­
ure 9-3. The drop-down window displays a list of 16 Windows controls 
ranging from buttons to tree views. Selecting an entry from the list causes 
ControlWizard to generate source code for the ActiveX control that sub­
classes the selected Windows control. Use this option to produce an 
ActiveX control that has the characteristics of a particular Windows con­
trol, but that you want to modify to add desired effects. 

Click the Advanced button in ControlWizard's Step 2 to open the 
Advanced ActiveX Features dialog shown in Figure 9-4. The dialog pro­
vides options that set or clear bit flags defined by the COleControl::Con­
trolFlags enumeration set, which describes characteristics of the control's 
behavior when activated. Setting any of the check boxes causes Control­
Wizard to add code that overrides the COleControl::GetControlFlags 
method, which informs the container of the ControlFlags settings. To add 
the override yourself to an existing control project, set a specific bit flag 
such as windowlessActivate like this: 

DWORD CDemoCtrl ::GetControlFlags() 
{ 

return COleControl::GetControlFlags() I windowlessActivate; 
} 

The check box labels in the Advanced ActiveX Features dialog may seem 
a bit terse, but the options are easy to understand with a little explanation. 
The following list describes what the flags mean. For more information 
about the ControlFlags settings and how they affect a control's activation, 
consult the online help article entitled "ActiveX Controls: Optimization," 
located through the index entry Optimizing ActiveX Controls. 



Figure 9-4. 

9: Writing ActiveX Controls Using MFC 

o .·@'f6~-9~0.!·!i~.?~·~.91E·~~.9..a 
l"J .Unclipped device conte:·:t 

[J .Elicker-free activation 

n hl ouse pointer notifications when inactive 

[j · Q.ptimized drawing code 

C · 1,,oads properties asynchronously 

OK Cancel 

Advanced ActiveX Features dialog, invoked by clicking ControlWizard's 
Advanced button. 

II Windowless Activation-Informs the container that the control does 
not create its own window when activated. A discussion below has 
more to say about windowless activation. 

Cl Unclipped Device Context-Requests no clipping of the control's 
display, resulting in faster rendering. However, the control must 
make sure it does not display outside the site boundaries. 

• Flicker-Free Activation-Requests the container not to invalidate 
the control window when the control switches states. This prevents 
the control from redrawing itself when it becomes active or inactive, 
thus eliminating the slight flicker that might otherwise occur. The 
option is suitable only for a control that draws itself the same way 
regardless of its state. 

• Mouse Pointer Notifications-Requests the container to send mouse 
messages to the ActiveX control when the control is not in its active 
state. If the container complies with the request, the inactive control 
continues to receive WM_SETCURSOR and WM_MOUSEMOVE 
messages that pertain to mouse activity over the control window. 
Selecting this option enables the IPointerlnactive interface, to which 
the container delegates those mouse messages that belong to the 
control. The IPointerlnactive interface adjusts each message's mouse 
coordinates for the control window and dispatches the message 
through the control's message map. Through this capability, a 

381 



ActiveX Controls 

382 

control can function appropriately as a drag-and-drop target even 
when inactive. 

• Optimized Drawing-Improves drawing speed by allowing the con­
trol's OnDraw method to return without restoring the original GDI 
objects for the device context. This option has effect only if the con­
tainer supports optimized drawing, which the control determines by 
calling the COleControl::IsOptimizedDraw function. A return value 
of TRUE means that the control does not have to select the original 
GDI objects such as pens and brushes back into the device context 
when finished drawing. 

• Loads Properties Asynchronously-This option can increase the 
responsiveness of an ActiveX control that requires a substantial 
amount of property data. Asynchronous loading enables the control 
to become active on a Web page as quickly as possible, even while 
the browser continues to download the control's data through the 
modem in the background. The control can thus immediately begin 
playing audio or video clips, for example, without waiting for the 
complete data set. However, the control must take no action that 
requires data that have not yet arrived. Asynchronous loading adds 
overhead to the control, so use the option only for controls that can 
benefit from it. 

The Windowless Activation option is not the same thing as the Invisible 
At Run-Time flag described earlier. Windowless activation means only 
that the control does not provide its own window. By not creating a win­
dow, the control optimizes the speed at which it is created while slightly 
decreasing its executable size. The control is free to use the container's 
windowing services provided the container supports windowless objects. 
Support requires the IOlelnPlaceObjectWindowless interface to reflect 
user input messages to the windowless control. By overwriting the con­
tainer's window, a windowless control can appear with a true transparent 
background, an effect not possible for a normal ActiveX control that dis­
plays its own rectangular window. However, using the same idea of back­
ground transparency described in Chapter 4, a windowed control can 
often simulate a transparent background by matching the color of its own 



9: Writing ActiveX Controls Using MFC 

window with the container's ambient background color. As mentioned in 
the preceding chapter, a control can determine the container's current 
ambient color by calling COleControl::AmbientBackColor: 

OLE_COLOR ContainerBkGrnd = AmbientBackColor (); 

Incidentally, not all containers support the Ambient functions of 
COleControl. An ActiveX control should check for a valid return value 
after calling a function such as AmbientBackColor. 

Licensing 
An ActiveX control placed on a popular Web page can soon end up on 
computers all over the world, viewed on thousands of browsers. This abil­
ity to easily reuse an ActiveX control is perhaps the technology's most 
compelling feature and greatest advantage. However, the wide distribution 
of a programmer's intellectual property also poses the potential problem 
of unauthorized use. To see the problem clearly, consider how an ActiveX 
control passes through three different parties identified as the Author, the 
Webmaster, and the User. 

For a fee, the Author permits the Webmaster to install the ActiveX control 
on a Web page. The User visits the Webmaster's site through the Internet, 
and as a result the ActiveX control is copied from the Webmaster's com­
puter to the User's computer where it appears in the User's browser pro­
gram. So far, everything is as it should be and the control is being used as 
the Author intended. But without some sort of safeguard, nothing prevents 
other programmers who come into possession of the ActiveX control from 
using it in their own applications. Many developers might prefer that their 
creations are not reused in this way without authorization, especially in 
marketed applications that earn profit from a control without compensa­
tion for the control's author. 

The most common safeguard against the unauthorized use of an ActiveX 
control involves a license. A license not only identifies the Author in our 
example as the owner of the control's copyright, but can also prevent sub­
sequent reuse of the control by developers who have not received a 
license from the Author. The OLE/ActiveX control standard is designed 

383 



ActiveX Controls 

384 

with licensing in mind. The standard defines the IClassFactory2 interface 
through which a container creates an instance of the control object and at 
the same time proves itself licensed to use the control. The creation of the 
control object is completed only if the container satisfies the control that a 
valid license exists. 

Licensing is becoming a common practice for ActiveX controls, so it is 
worthwhile to examine the ControlWizard's licensing scheme in some 
detail. Another reason for spending time with the subject is that descrip­
tions of licensing in the Visual C++ online documentation can be a little 
confusing, primarily because the documentation speaks of "the container" 
when there might be several containers involved. It's important to remem­
ber that any program is a container that can create an instance of an 
ActiveX control and provide a site for it. Chapter 8 demonstrated several 
different containers that can embed an ActiveX control under different 
circumstances: 

• Internet Explorer or another ActiveX-aware browser, which locates a 
control through the class identifier specified by the OBJECT tag in 
an HTML document. 

• The Visual C++ dialog editor, which creates an instance of a control 
when it is dropped into a dialog under development. 

• A container application such as the Hour program that embeds an 
ActiveX control at run time. 

A licensing scheme helps prevent a container application from making 
unauthorized use of a control, but which container? When the User in our 
scenario downloads the Author's control along with the HTML instruc­
tions that display it, the User's browser must be able to freely run the 
control without a license. Access should be restricted only for containers 
of the other two types in the list-that is, development programs (like 
Visual C++) and the container applications they create (like Hour). 

Consider the chain of events when the Webmaster decides to develop an 
application that uses the Author's ActiveX control. To create the applica­
tion, the Webmaster runs a Windows development program such as Vis­
ual C++ or Visual Basic. The program design calls for the application to 



9: Writing ActiveX Controls Using MFC 

display the control in a dialog box, so the Webmaster uses the dialog edi­
tor-itself a container-to create an instance of the control and display 
it in the dialog. At this point, called the design-time stage, licensing 
becomes an issue. In creating an instance of the control, the development 
program calls the control's IClassFactory2 ::CreatelnstanceLic method with 
a NULL parameter, to which the control responds by returning a pointer to 
an interface only after confirming that the license exists. (We'll see how in 
a moment.) 

Since the Webmaster is authorized to use the control in an application, 
the license verification succeeds and the dialog editor is able to create an 
instance of the control. The Webmaster completes development of the 
application and sells a copy of the executable to the User. As part of the 
package, the Webmaster supplies an installation program that places a 
copy of the Author's ActiveX control on the User's hard disk and registers 
it. Although the User has never entered into a licensing agreement with 
the Author, the new container application succeeds in creating an 
instance of the control object when it runs. (Again, the process is 
explained in a moment.) This is called the run-time stage of license 
verification. 

Now consider what happens when the User (who also happens to be a 
programmer) tries to create another container application that embeds the 
Author's control. The User's development program calls the control's 
IClassFactory2::CreatelnstanceLic method as before, but this time the con­
trol detects that the User does not possess a license and so disallows the 
creation attempt. The determined User can develop the application with­
out the aid of the dialog editor, but the finished application is no more 
able to create an instance of the control than the development program. 
The licensing verification code in the control blocks unauthorized use 
both at design time and at run time. 

The code that ControlWizard adds to a control project implements a 
licensing scheme like the one just described. The next section explains 
how the scheme works. 

385 



ActiveX Controls 

386 

ControlWizard Licensing Support 
As shown in Figure 9-2 on page 377, ControlWizard's opening screen 
offers to add support for a simple licensing arrangement. If you request a 
run-time license for the new control, ControlWizard generates extra source 
code and a text file that together provide some assurance your control will 
be used only by authorized persons. The text file is a document with a LIC 
extension, containing the following text: 

Copyright (c) 1998 author 

Warning: This product is licensed to you pursuant to the terms of the 
license agreement included with the original software, and is 
protected by copyright law and international treaties. Unauthorized 
reproduction or distribution may result in severe civil and criminal 
penalties, and will be prosecuted to the maximum extent possible under 
the law. 

The word author in the first line of the license represents your user or 
company name. A file-based licensing scheme such as the one that Con­
trolWizard implements requires that the LIC document exists in the same 
directory as the control OCX file when the container application adds the 
control at design time. For this reason, the Author must distribute the LIC 
text file to the Webmaster so that the Webmaster can create a container 
application that uses the control. But the terms of the license bar the 
Webmaster from redistributing the document to others. The User does 
not require the LIC file to run the Webmaster's application or to view the 
control in a browser. 

Control Wizard places a master copy of the LIC file in the main project 
folder. When Visual C++ builds the OCX file, it copies the LIC file from 
the main folder to the Release or Debug folder where the OCX file resides, 
so a project may end up with two or three copies of the license file. Bear 
this in mind if you change the wordi:D:g of the license. Make any alter­
ations to the master copy of the LIC file before building the OCX file so 
that all copies remain up to date. 

The source code that Control Wizard adds to the project consists of two 
functions, one named GetLicenseKey, which retrieves a unique password 
or key from the control's OCX file, and another named VerifyUserLicense, 



~: Writing ActiveX Controls Using MFC 

which checks a specified location of the user's disk for the existence of the 
license text file. A do-nothing project named License demonstrates how 
ControlWizard adds these two functions to the control's class source code. 
There is no need to create the License project yourself, because the control 
will not be developed here. It serves only to make the following discus­
sions easier to follow and to illustrate ControlWizard's license scheme. 

Here is the source listing for the two functions, taken from the project's 
LicenseCtl.cpp implementation file. (The _szLicString text on the third 
line will differ for your system.) 

static canst TCHAR BASED_CODE _szLicFileName[J = _T("License.lic"); 
static canst WCHAR BASED_CODE _szLicString[] = 

L"Copyright (c) 1998 Witzend Software"; 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CLicenseCtrl ::CLicenseCtrlFactory::VerifyUserLicense -
II Checks for existence of a user license 

BOOL CLicenseCtrl ::CLicenseCtrlFactory::VerifyUserLicense() 
{ 

} 

return AfxVerifyLicFile(AfxGetinstanceHandle(), _szLicFileName, 
_szLicString); 

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll 
II CLicenseCtrl ::CLicenseCtrlFactory::GetLicenseKey -
II Returns a runtime licensing key 

BOOL CLicenseCtrl ::CLicenseCtrlFactory::GetLicenseKey(DWORD dwReserved, 
BSTR FAR* pbstrKey) 

{ 

} 

if (pbstrKey == NULL) 
return FALSE; 

*pbstrKey = SysAllocString(_szLicString); 
return (*pbstrKey !=NULL); 

Both the VerifyUserLicense and GetLicenseKey functions are called when 
a development program attempts to insert an ActiveX control into a con­
tainer project at design time, as when the dialog editor adds the control to 
a dialog under development. When development is complete and the new 
container application is built and executed, its attempt at run time to 

387 



ActiveX Controls 

388 

create an instance of the control results in another call to the control's 
GetLicenseKey function. Let's examine both of these scenarios one at a 
time, looking first at how the control verifies at design time the existence 
of a license for the development program. 

Design-time license verification 
By calling the control's IClassFactory2::CreatelnstanceLic method, the 
development program says in effect, "If a valid license exists, create a new 
instance of the control and return a pointer to an interface on that 
instance." It's the control's job to verify the existence of a license. When 
CreatelnstanceLic is called, the framework routes the call to the control's 
VerifyUserLicense function, which confirms that the LIC license file exists 
in the same directory as the control OCX file and that the first line of the 
file matches the contents of the _szLicString parameter. The _szLicString 
string is known as the license key. 

If the LIC file exists and contains the correct license key, VerifyUser­
License returns a value of TRUE, allowing the development program to 
create an instance of the ActiveX control for the container application 
under development. The development program next calls the control's 
IClassFactory2::RequestLicKeymethod. This call ends up in GetLicense­
Key, the second of the two functions that ControlWizard added to the con­
trol source code. GetLicenseKey returns a copy of the control's _szLic­
String license key, which the development program embeds in the 
container application executable file. We'll see why the container needs 
its own copy of the key when we talk about run-time license verification. 

If the control does not find the LIC file in the same directory as the OCX 
file or if the first line of the license file has been altered, VerifyUser­
License returns FALSE, in which case the development program displays 
an error message that explains the problem. For example, here's how 
Visual C++ handles the situation when the License.lie file has been 
altered or renamed. (If you try this experiment yourself, be sure to alter 
the License.lie file in the subfolder that contains the OCX file, because 
altering the master copy in the project folder has no effect after the control 
is built.) Assume that you are developing a container application called 
DemoContainer and wish to add the License ActiveX control to 



Figure 9-5. 

~= Wntmg Activex controls Using MFC 

DemoContainer's About box. Load the About box resource in the dialog 
editor and right-click in the work area to display the editor's context 
menu. Choose the Insert ActiveX Control command from the context 
menu, then select License Control from the list shown in Figure 9-5. 

Activee control: 

I magelist Control, version 5. 0 

(ll1n~st1a111Enlgminemc~u1ob1ie1ct ........ n,,.··.·.':• 

Ke.Y State Control 
Label Ob'ect 

ListView Control, version 5.0 l · 
LM Runtime Control ~,::·..,..· ·~f MAPI Messages Control, version 5.0 . , 
MAPI Session Control, version 5.0 
M arqueeCtl 0 bject .. 

Path: 

F:\LICENSE\RELEASE\LICENSE.OD< 

OK 

Cancel 

Inserting the License control into a container project. 

The dialog editor attempts to create an instance of the License control, 
leading to a series of nested function calls. The editor calls the control's 
IClassFactory2::CreatelnstanceLic method, which in turn calls the con­
trol's VerifyUserLicense function, which calls the framework's AfxVerify­
LicFile function. This MFC function reads the file identified by the _szLic­
FileName string-License.lie, in this case-and, if the file exists, compares 
the first line of the file with the license key contained in _szLicString. If 
the file does not exist or if its first line does not match the license key, 
AfxVerifyLicFile returns a value of FALSE to disallow the object creation. 
The result is an error message from Visual C++ that explains why the 
attempt failed: 

, . . , 

·· T heActiveX control "License C~ntror' could not be instanti~ted 
be.cause it requires a design·time ficense. · 

389 



ActiveX Controls 

Run-time license verification 
If the license file is in order and the VerifyUserLicense function returns a 
value of TRUE, the development program succeeds in creating a control 
instance and inserts source files for the control's class into the container 
project. The next test for a valid license does not occur until after the con­
tainer application is built and becomes an executable program. 

When the container application runs and attempts to create an instance 
of the ActiveX control, it also calls the control's IClassFactory2::Create­
InstanceLic method. But instead of passing a NULL value for the func­
tion's fourth parameter as the development program did at design time, 
the application provides a pointer to its copy of the license key. This is 
the same string that the development program obtained from the control's 
GetLicenseKey function and placed in the application's data. The call to 
CreatelnstanceLic now says, "Create a new instance of the control and 
here is my proof that I am an authorized container." The control compares 
its own copy of the license key in _szLicString with the copy submitted by 
the container, verifies the match, and allows the create operation. The 
framework does not call the VerifyUserLicense function in this case, 
which is why the LIC file is not required when the application runs on 
the User's machine. Only the development program on the Webmaster's 
machine, not the finished container application, needs the license. 

For more protection, alter the first line of the license LIC file to make the 
wording less generic. But make the same changes to the _szLicString char­
acter array in the source code, or VerifyUserLicense will fail to recognize 
the text file. You might also consider modifying the file-based licensing 
scheme described here to rely on a key in the system Registry rather than 
on a LIC text file. This would require a simple rewrite of the VerifyUser­
License function to search the Registry, and would also presume an instal­
lation program of some sort that registers the key for authorized licensees. 

Example 1: A Do-Nothing ActiveX Control 

390 

Before launching into the development of an ActiveX control, we should 
have a clear idea of the extent of ControlWizard's contribution to a project. 
The best way is simply to run ControlWizard and build a do-nothing 



Figure 9-6. 

~= vvrmng Act1vex Lontrols usmg Ml-l 

control from the generated source files. As we will see in the next section, 
creating a useful ActiveX control requires a little work and a fair amount 
of discussion, all of which may obscure the fact that before we even start 
coding, ControlWizard has already generated source files for a working 
control with all the essentials. The remaining task for the developer is 
usually not so much to build an ActiveX control as to embellish one that 
already exists. Right from the start, a ControlWizard creation can run in a 
container, display its own window, react appropriately when its window 
is moved or resized, display an About box, and show a mock-up of its 
property sheet. The control performs no useful work, however, because it 
does not fire events, export custom methods, or contain properties. 

Creating the ActiveX control pictured in Figure 9-6 requires no program­
ming. If you would like to experiment, create a dummy project by running 

:.5.e.l··· .. ·· . Demo CuntroLVenion 1:0 · · .. j ~=Q:~:]I 
.. co?Yri9ntlCJ1988,~~endSott0~e 1 • : ·: •• 

.. . . 

ActiveX control in 
the Test Container 

Property sheet 

About box 

The default ActiveX control created by ControlWizard. 

391 



ActiveX Controls 

392 

the MFC ActiveX ControlWizard as explained earlier, change the project 
configuration to Win32 Release, and build the control from the generated 
source files. Like any ActiveX control, the result can be loaded only by an 
executing container such as the Test Container utility described in Chap­
ter 8. Start the Test Container from the Tools menu, invoke its New Con­
trol tool, and search the list for the new do-nothing ActiveX control. The 
control has the same name as the project, appearing in the list as Demo 
Control or something similar. Insert the control into the Test Container, 
then call up the default property sheet shown in Figure 9-6 by double­
clicking the control's window border or by clicking the Test Container's 
Properties button. To display the control's About box, select the Invoke 
Methods tool and click the Invoke button. When finished experimenting, 
exit Test Container and close the project. The control entry in the Registry 
can remain indefinitely without harm, but it's best to clean up the Registry 
before deleting an ActiveX control from your system. Run the RegSvr32 
utility described in Chapter 8 and include the /u switch to unregister the 
control: 

regsvr32 /u \demo\release\demo.ocx 

The utility indicates success by displaying a message box: 

When the control is successfully unregistered, you can delete the proj­
ect files. 

An overridden member function named COleControl::OnDrawpaints the 
control window shown in Figure 9-6. As generated by ControlWizard, the 
OnDraw function displays an ellipse inside a white rectangle: 

void CDemoCtrl ::OnDraw( 
CDC* pdc, const CRect& rcBounds, const CRect& rc!nvalid) 

{ 

pdc->FillRect(rcBounds, 



~= Writing ActiveX Controls Using MFC 

} 

CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH))); 
pdc->Ellipse(rcBounds); 

This function is one of the first places you will start when developing 
an ActiveX control created using ControlWizard. An example project dem­
onstrates how to rewrite OnDraw to display a more meaningful control 
window. 

Example 2: The Tower Active}{ Control 

Figure 9-7. 

This section expands on the preceding section, presenting a simple project 
that illustrates how to develop a useful ActiveX control that begins with 
ControlWizard. I've named the project Tower because it's a variation of a 
puzzle called Tower of Hanoi, credited to the nineteenth-century French 
mathematician Edouard Lucas. Figure 9-7 shows the Tower control as it 
appears in a dialog, displayed as a rectangular window divided into three 
panels. The object of the game is to drag the seven colored blocks one by 
one from the first panel and reassemble the stack in the third panel. You 
can move a single colored block from any panel to another, but you cannot 
place a block on top of a smaller block. 

Although only a game, the Tower control demonstrates all the trappings of 
a typical ActiveX control. Tower contains stock and custom properties, 
exports methods, and fires events to let the container application know 
about the current status of the game. Later in the chapter we'll use the Test 
Container utility to monitor the control's events as they occur. 

The Tower ActiveX control embedded in a typical dialog. 

393 



ActiveX Controls 

394 

If you would like to build the Tower ActiveX control yourself, the follow­
ing eight steps explain how. The discussions are not specific to the Tower 
project, however, and explore some of the alternative paths you might 
want to consider when setting up your own ActiveX control project. The 
first step runs ControlWizard to create the project, and the next four steps 
use ClassWizard to add properties, methods, events, and message handler 
functions to the Tower project. The sixth step creates a simple property 
page for the control. With ClassWizard's stub code in place, the seventh 
step shows how to flesh out the program with additional code to run the 
control, which is built and tested in the eighth step. 

The Game program pictured in Figure 9-7 is a simple container written 
expressly to demonstrate Tower. It is a dialog-based application created 
with AppWizard's help, similar to the Hour program described in the pre­
vious chapter. Because we've already studied this type of program, Game 
is mentioned only briefly in the sections that follow. You will find source 
code for both Tower and the Game container program in the Code \Chap­
ter.09 folder on the companion CD. 

Step 1: Create the Tower Project 
The Tower project begins life through the ActiveX ControlWizard. Acti­
vate ControlWizard by clicking the New command on the File menu, then 
click the Projects tab and select the MFC ActiveX ControlWizard icon 
shown in Figure 9-1 on page 3 76. Type Tower as the project name and 
accept the defaults in ControlWizard's two steps. 

Step 2: Add Properties 
The Tower control has five properties, named Caption, Font, ForeColor, 
BackColor, and CurrentBlock. The first four are stock properties that 
determine the content and appearance of the title text displayed at the 
top of Tower's window. At startup, the control initializes the title text to 
"Tower," but a container can specify new text in the Caption property if 
desired. CurrentBlock is a custom property containing an integer that rep­
resents the block being dragged. The integer value in CurrentBlock ranges 
from O for the smallest block to 6 for the largest block. Because the con­
tainer has no reason to change this value, Tower keeps CurrentBlock a 
read-only property, as explained shortly. 



Figure 9-8. 

9: Writing ActiveX Controls Using MFC 

Specifying properties in an MFC ActiveX control project like Tower 
requires precise placement and wording of various macros, so the job is 
best left to ClassWizard. In ClassWizard's Automation tab, click the Add 
Property button to call up the Add Property dialog (Figure 9-8), then 
click the arrow in the External Name box to display a list of stock proper­
ties. Add a stock property to the project by selecting it from the list. To 
specify a custom property, type any external name that is not in the list of 
stock names. 

f.xternal name: OK 

jBsrn Cancel 

Class Wizard's Add Property dialog, invoked from the Automation tab. 

The Stock radio button in the Implementation group box lets you specify 
unambiguously whether a property is stock or custom, but the button is 
set by default when you select a stock property. The radio buttons labeled 
Member Variable and Get/Set Methods are commonly used only for cus­
tom properties, giving you two choices in how your control exposes a cus­
tom property to a container application. If you want to grant the client 
unrestricted access to the property, leave the setting at the Member Vari­
able radio button. Class Wizard creates a variable for the property that the 
client can change through a property page and also generates a simple 
notification routine that lets the control know when the container has 

395 



ActiveX Controls 

396 

changed the property. If your control does not require the notification, 
clear the text box to prevent the function from being generated, thus sav­
ing a small amount of overhead. 

For maximum control over how (or when) the container can read or write 
a custom property, click the Get/Set Methods radio button instead. This 
instructs Class Wizard to generate source code for a pair of methods that 
the container can call to read or write the property, as described in Chap­
ter 8. To retrieve the property's current value, the container calls the cor­
responding Get method; to set a new value, the container calls the Set 
method. You can make a property read-only by omitting the Set method or 
write-only by omitting the Get method. However, turning on the Get/Set 
Methods radio button requires that at least one method is defined to make 
the property visible to the container. 

We can accept ClassWizard's defaults for Tower's stock properties. As Fig­
ure 9-8 shows, selecting the Caption stock property automatically turns on 
the Stock radio button and exports the functions GetText and SetText to 
allow the container to read and write Tower's current caption. Here's one 
of the many ways that MFC helps make programming painless for ActiveX 
controls-the GetText and SetText methods are members of the frame­
work's COleControl object, so we need only click and forget. The frame­
work takes on all the work of maintaining the Caption property and 
exposing it to the container through the GetText and SetText functions. 
(The two functions take their names from the Text stock property, of 
which Caption is only an alias.) Click the OK button to add the Caption 
property to the Tower control, then repeat the same steps to add the Font, 
ForeColor, and BackColor stock properties. 

To add Tower's only custom property, enter the Add Property dialog a 
fifth time and type CurrentBlock as the external name, giving it a type of 
short. Instead of accepting the proposed notification function OnCurrent­
BlockChanged, click the Get/Set Methods radio button. ClassWizard auto­
matically assigns functions named GetCurrentBlock and SetCurrentBlock, 
but since the CurrentBlock custom property should appear read-only to 
the container, clear the Set Function box so that SetCurrentBlock is not 
added to the control's class. A container application that embeds Tower 



Figure 9-9. 

9: Writing ActiveX Controls Using MFC 

now has no means of altering CurrentBlock, though it can call GetCurrent­
Block at any time to query the control for the property's current value. 

Clicking the OK button in the Add Property dialog causes ClassWizard to 
write stub code for the GetCurrentBlock function in the TowerCtl.cpp file. 
Figure 9-9 shows what the ClassWizard dialog looks like after the five 
properties have been specified. The "S" and "C" codes adjacent to the 
external names indicate whether a property is stock or custom. 

~1es~age Map; 1 ·• M~~1be1 Variable;. Aulor~ation . , . Activ~ Event* · 1. Cl~~$ trJo I 
Class name: Add C)ass .. .,... . , 

::1 I 8dd Method ... 
i'J · l CT owerCtrl 

D:\ T owet\ T owerCtl.h, D:\ Tower\ T owerCll.cpp, D:\ Tower\ T ~w~r.odt 

Implementation: 

rhort~etC~rr~B~.ck[J; • 

r. Dejault property 

Select a class that supports Automation 
and click Add Property or Add Method lo 
add flJl'lCtional~y lo your interface. 

Both Add Method and Add Property allow · 
you to add stock and custom interfaces. 

I r~a~·:~io~ii~::::::;I 
Qelete I 

fditCode I 
Data ,ll.inding... I 

Adding properties to the Tower ActiveX control. 

Step 3: Add Methods 
Technically, we have already added a method to the Tower project. The 
GetCurrentBlock function generated in the previous section is a method­
that is, an exported function that the container can call through an inter­
face. Here we'll add another method named Reset. The Reset function pro­
vides a way for the container to instruct the control to start the game over. 
The Game program pictured in Figure 9-7 on page 393 demonstrates how 
an application can use this feature, calling Tower's Reset method when 
the user clicks the dialog's Reset button. 

While still in ClassWizard's Automation tab, click the Add Method button 
and type Reset as the external name. Select a return type of void, since 
Reset does not return a value. Reset has no parameters either, but if it did, 

397 



ActiveX Controls 

398 

they could be specified by double-clicking in the Name column of the box 
labeled Parameter List and typing the function parameters, one per line. 
We will do something similar when adding Tower's events in the next 
section. 

Click OK to return to the ClassWizard dialog, which now lists the Reset 
method in the list of external names. An "M" prefix identifies Reset as a 
method. 

Step 4: Add Events 
Move to the ActiveX Events tab of the Class Wizard dialog and click the 
Add Event button to call up the Add Event dialog shown in Figure 9-10. 

We'll add one stock event to the Tower control and four custom events, 
which collectively keep the container application informed about what is 
happening in the Tower control. The stock event is Click, selected from 
the drop-down list in the External Name box of the Add Event dialog. The 
Click event informs the container when and where a mouse click occurs 
in Tower's window. Click the OK button, then bring up the Add Event 
dialog a second time and type the external name FromPanel for the con­
trol's first custom event. Whenever the user selects a block in a panel, the 
Tower control fires the FromPanel event by calling the FireFromPanel 
function. FireFromPanel calls the event handler function in the client, 
passing it a single parameter 0 through 2 that identifies the panel from 
which the block is being dragged. Specify the function's parameter by 
double-clicking the blue area in the list box labeled Parameter List to ex­
pose the new-entry box. In the new-entry box, type nPanel for the parame­
ter name and accept the default type of short, as shown in Figure 9-10. 

The next custom event is called ToPanel which, like FromPanel, has a sin­
gle parameter named nPanel of type short. Tower fires the ToPanel event 
when the user drops a block, indicating through the nPanel parameter 
which of the three panels has received the drop. The third custom event is 
named Error, which Tower fires to notify the container of an invalid move 
when the user attempts to drop a block on top of a smaller block. Error has 
no parameter list, so simply type it in the External Name box and click OK 
to return to the main Class Wizard dialog. 



Figure 9-10. 

9: Writing ActiveX Controls Using MFC 

,External name: 

IFr?m~anel 
Internal name: 

j~ir~yrorriP~n,el .. 

.Eararneter list: 

long 
float 
double 
CURRENCY 

~~~~~~~~--DATE 

LPCTSTR
LPDISPATCH
SCODE

OK

Cancel

Specifying a custom event and its parameter for the Tower ActiveX control.

Error is also the name of a stock event included in the drop-down list of
external names. Typing it in the External Name box rather than selecting it
from the list indicates that Class Wizard should treat the event as custom.
This demonstrates how it is possible to use a stock name and its dispatch
identifier for a custom event. Because the Error stock event requires no
less than seven parameters, code for both the control and its container is
simplified in this case by using a custom event instead of a stock event.

The fourth and last custom event is Winner, which informs the container
that the user has successfully moved the last block into the control's third
panel, winning the game. Like the custom Error event, Winner has no
parameter list. Figure 9-11 on the next page shows what the ActiveX
Events tab of the dialog looks like after adding Tower's five events.

As mentioned in the preceding chapter, a container need not provide han­
dler functions for all events that an ActiveX control fires. For example, the
Game container program ignores Tower's Click stock event and processes
only the custom events to update a status window when the events occur.
The control designer must anticipate the type of information a container

399

ActiveX Controls

Figure 9-11

400

Adding events to the Tower ActiveX control

might need and provide events to convey that information while allowing
for the likelihood that some containers will ignore certain events.

Step 5: Add Message Handler Functions
Tower employs a sort of poor man's version of drag-and-drop to allow the
user to move blocks between panels. When the user presses the left mouse
button, the cursor changes to a crosshairs shape, providing visual feed­
back that indicates the drag operation is in effect. When the mouse button
is released, the system restores the cursor to its former arrow shape. We'll
examine the details of the process when writing code in Step 6 of this
exercise, but for now we need only use ClassWizard to create stub handler
functions for the mouse messages.

In ClassWizard's Message Maps tab, select the WM_LBUTTONDOWN
message from the Messages box and click the Add Function button to
create the OnLButtonDown handler function. Do the same for the
WM_LBUTTONUP message, accepting the default function name of
OnLButton Up. For the third message handler function, select PreCreate­
Window from the Messages box and click the Add Function button. This
generates a stub override of a CWnd virtual function, providing a conve­
nient place for Tower to do some last-minute initialization.

Figure 9-12.

9: Writing ActiveX Controls Using MFC

Figure 9-12 shows the appearance of Class Wizard's Message Maps tab
after adding the three required functions. (Other member functions of the
CTowerCtrl class, such as OnDraw and OnResetState, were previously
generated by ControlWizard.) When you are finished, click the OK button
to exit ClassWizard. We have yet to write code to fill in all the stub func­
tions that ControlWizard and ClassWizard have added to the project, but
one more task remains that requires the services of the Visual C++ dialog
editor.

Message Maps 1.·~1emberVariables. I. Aut:omalion 1.·. ActiveXEv,erit{ 1·.c1~s:1nto, 1.· ..• :<::.:::.:,:;. .•.•. ,. .. , 1

froject: · Class name:
. jToV>Jer :::J ,C-T?-we-rCt-rl _______ ___;:....._...;..;......i

D:\ T owei\ T owerCtl.h, D:\ Tower\ TowerCtlcpp

ObjectJDs: · Mem1ges: [iH dp\W#Q ,.,,~o...,,~~-~~..,,.,to:-~~-r~=...,..~e-ss-ag-e ----

Member .funclions:

W; OnLButtonDown
'YI. OnLButtonUp

· :v1 DnResetState

ON_ WM_LBUTTONDOWN
ON_WM_LBUTTONUP l .

Adding message handlers to the Tower ActiveX control.

Step 6: Create a Property Sheet
We saw earlier that ControlWizard adds a generic property page resource
to a project (see Figure 9-6 on page 391). This section explains how to
revise the resource, which will eventually expand into a usable property
sheet that allows the user to view and change Tower's properties at design
time. The first step is to modify the generic property page in the dialog
editor. Load the resource by double-clicking the IDD_PROPPAGE_TOWER
identifier in the Resource View pane of the Workspace window. Select the
"to do" static text control in the dialog work area and delete it, replacing it
with a static label and edit box, as shown on the next page.

401

ActiveX Controls

402

Select the edit box in the dialog work area, click Properties on the View
menu, and give the box an identifier value of IDC_EDIT_CAPTION. The
size of the property page itself does not matter. As we will see in a
moment, MFC supplies property pages for the color and font stock proper­
ties that govern the finished size of the property sheet dialog.

Text entered in the edit box becomes the new value of the Caption prop­
erty, which is stored in a string variable. Create the string variable by
entering Class Wizard one last time and clicking ClassWizard's Member
Variables tab. In the Class Name box, make sure that CTowerPropPage is
the current class and that IDC_EDIT _CAPTION is selected in the Control
IDs box. Click the Add Variable button and name the new member vari­
able strCaption. The category should be "Value" and the variable type is
"CString." Click the OK button to exit the Add Member Variable dialog.
It's a good idea to limit the length of a text-based property such as
strCaption through dialog data validation (described in Chapter 6, Class­
Wizard). Set the string limit by typing a value in the text box at the bottom
of the Member Variables tab:

Click the OK button to exit ClassWizard. The user now has a way to
change Tower's caption by invoking the property page at design time
and typing a new string. We'll see how that's done in the next section.

~= Writing ActiveX Controls Using MFC

Step 7: Add Source Code
Between them, ControlWizard and ClassWizard have generated more than
500 lines of source code from some mouse clicks and a little typing. But if
we built the Tower control at this point, it would still look and behave
like the do-nothing Demo control described earlier. This seventh step of
the exercise adds source code to the TowerCtl.cpp and TowerCtl.h files,
filling out the stub functions added in the previous steps. The section ends
with small revisions to the TowerPpg.cpp file and Tower.re script file.

TowerCtl.h
The TowerCtl.h header file requires only a few changes. Load the file in
the text editor and revise it as shown here, adding the shaded lines:

II TowerCtl .h : Declaration of the CTowerCtrl ActiveX Control class.

#define
If define
#define
#define
#define
#define
If define
If define
#define

NUM_BLOCKS
EMPTY
BLACK
BLUE
CYAN
GREEN
MAGENTA
RED
YELLOW

7
NUM_BLOCKS
RGB(0, 0, 0
RGB(0, 0, 255
RGB(0, 255, 255
RGB(0, 255, 0
RGB(255, 0, 255
RGB(255, 0, 0
RGB(255, 255, 0

ll/11111111111111
II CTowerCtrl : See TowerCtl .cpp for implementation.

cl ass CTowerCtrl : public COl eControl
{

DECLARE_DYNCREATE(CTowerCtrl)

private:
short
short
BOOL
COLORREF
HCURSOR

public:
short

nPanel[3J[NUM_BLOCKS];
nBlockNdx, nFromPanel;
bMoving;
color[NUM_BLOCKS];
hCrossHairs;

GetPanel(int);

II Panel contents
II nPanel index of moved block
II Flag is set when dragging
II Block colors
II Dragging cursor

403

ActiveX Controls

Table 9-1.

404

II Constructor
public:

CTowerCtrl();

We will encounter the six member variables of the CTowerCtrl class later
when discussing the implementation code. Table 9-1 provides a brief
description of the variables.

Variable

nPanel

nBlockNdx

nFromPanel

bMoving

color

hCrossHairs

Description

A 3-by-7 array that reflects the contents of the three panels
at any moment. A value of 0 through 6 in an array element
means that the position is occupied by one of the colored
blocks, which are numbered from 0 for the smallest block
to 6 for the largest. An element value of 7 means that the
position is vacant. For example, when the blocks are neatly
stacked in the first panel, the nPanel array looks like this:

nPane1[0][] {0, l, 2, 3, 4, 5, 6}; // Panel 1

nPanel[l][] {7, 7, 7, 7, 7, 7, 7}; II Panel

nPanel[2][] {7, 7, 7, 7, 7, 7, 7}; II Panel

The minor array index of the block being dragged.

The major array index of the block being dragged.

A Boolean value set to TRUE when the user drags a block.

An array of COLORREF values that contains the blocks'
colors. Colors are arranged in order of increasing block
size, placing the color of the smallest block in the first
value of the array.

A handle to the system crosshairs cursor. The cursor
changes to a crosshairs shape when the user drags a block.

2

3

Member variables of the CTowerCtrl class.

TowerCtl.cpp
The TowerCtl.cpp class implementation file is next. Open the file by
clicking the wand icon on the WizardBar and scroll to the property page
map shown here. Make the changes indicated by the shaded lines to add

~= Writing ActiveX Controls Using MFC

property pages supplied by the MFC framework for the color and font
properties:

lll
II Property pages

BEGIN_PROPPAGEIDS(CTowerCtrl, 3)
PROPPAGEID(CTowerPropPage::guid)
PROPPAGEID(CLSID_CColorPropPage
PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CTowerCtrl)

It's important to set the correct page count to 3 in the BEGIN_PROPP AGE­
IDS macro of the map's first line. If you later add or delete pages in the
property sheet, adjust the page count to reflect the change. It's possible to
add more customized pages to a control's property sheet by creating addi­
tional resources using the dialog editor and inserting a new entry for each
page into the property page map. The procedure is a little involved, so a
discussion of additional property pages is deferred until the final section
of this chapter.

Figure 9-13 on page 417 shows what Tower's finished property sheet
looks like. The order of the sheet's first three pages-labeled Caption,
Colors, and Fonts-corresponds to the order of the three entries in the
property page map. The remaining modifications affect the last half of the
TowerCtl.cpp implementation file, listed here beginning with the class
constructor. The listing is divided into sections, each of which is followed
by paragraphs of commentary that explain the purpose of the added code
shown in shaded lines.

llllllllllllllllllllllll/ll
11 CTowerCtrl: :CTowerCtrl - Constructor

CTowerCtrl ::CTowerCtrl()
{

InitializeIIDs(&IID_DTower, &IID_DTowerEvents);

color[0] = BLACK;
col or[lJ = BLUE;
color[2J = CYAN;
color[3] = GREEN;
color[4] =MAGENTA;
color[5J = RED;

II Initialize block colors

405

ActiveX Controls

406

color[6] = YELLOW;

Reset();
SetlnitialSize(200. 75):

}

II Initialize panels
II Control window size

ll
II CTowerCtrl ::-CTowerCtrl - Destructor

CTowerCtrl ::-CTowerCtrl()
{
}

The class constructor initializes the color array with the block colors
and calls the Reset method to initialize the nPanel array. A call to the
COleControl::SetlnitialSize function gives the Tower control a default
window size of 200-by-75 pixels. Many container programs override a
control's initial size when creating a site, so calling SetlnitialSize is often
wasted effort for an ActiveX control. The function's purpose becomes evi­
dent when you open the control in the Test Container utility, which
accepts whatever initial size a control establishes for itself. As we saw in
Chapter 8, some ActiveX controls such as the Button Menu control appear
in the Test Container as a small square block that the user must resize to
expose the control window. That does not happen to Tower because it sets
default window dimensions for itself through SetlnitialSize.

ll/1111111111111111111111
II CTowerCtrl ::OnDraw - Drawing function

void CTowerCtrl ::OnDraw(

{
CDC* pdc. const CRect& rcBounds. const CRect& rclnvalid)

RECT rect;
TEXTMETRIC tm;
CPen pen;
CPen* pOldPen:
CBrush brush;
CB rush* pOldBrush;
COLORREF colorBack = TranslateColor(GetBackColor());
int i, j, k, yCaption, iPanelWidth. iPanelHeight;

II Paint control background
brush.CreateSolidBrush(colorBack);
pdc->FillRect(rcBounds, &brush);

~= wntmg Activex Controls Using MFC

pdc->SetBkMode(TRANSPARENT):
pdc->SetTextColor(TranslateColor(GetForeColor())):
SelectStockFont(pdc):

II Display caption
::CopyRect(&rect, rcBounds):
pdc->DrawText(InternalGetText(), -1, &rect, DT_CENTER I DT_TOP):

pdc->GetTextMetrics(&tm):
yCaption = tm.tmHeight + tm.tmExternalleading:
iPanelWidth = rcBounds.Width()/3;
iPanelHeight = rcBounds.Height() - yCaption:

II Draw column dividers
pen.CreatePen(PS_SOLID, 1, TranslateColor(GetForeColor()));
pOldPen = pdc->SelectObject(&pen):
pdc->MoveTo(rcBounds.left+iPanelWidth,
pdc->LineTo(rcBounds.left+iPanelWidth,
pdc->MoveTo(rcBounds.left+iPanelWidth*2,
pdc->LineTo(rcBounds.left+iPanelWidth*2,

rcBounds.top+yCaption):
rcBounds.bottom):
rcBounds.top+yCaption):
rcBounds.bottom):

II Save current brush
pOldBrush = (CBrush*) pdc->SelectStockObject(NULL_BRUSH):

I I Outer 1 oop: for each panel ...
for (i=0: i < 3: i++)
{

rect.top rcBounds.top + yCaption:
rect.bottom = rect.top + iPanelHeightlNUM_BLOCKS:

II Inner loop: for each colored block in panel ...
for (j=0: j < NUM_BLOCKS: j++)
{

if CnPanel[i][j] !=EMPTY)
{

}

II Determine left and right edges of colored block
k = NUM_BLOCKS - 1 - nPanel[i][j]:
rect.left = rcBounds.left + iPanelWidth*i +

(iPanelWidth*k)/(2*NUM_BLOCKS) + 1;
rect.right = rect.left +

iPanelWidth*(nPanel[i][j]+l)INUM_BLOCKS - 1:

II Fill rectangle with block's color
brush.CreateSolidBrush(color[nPanel[i][j]]):
pdc->SelectObject(&brush):
pdc->FillRect(&rect, &brush):

407

ActiveX Controls

408

}

rect.top rect.bottom;
rect.bottom += iPanelHeight/NUM_BLOCKS;

}

}

pdc->SelectObject(pOldPen);
pdc->SelectObject(pOldBrush);

The next major revision to the source code occurs in the class's OnDraw
function, which executes whenever Tower's window is invalidated. We
saw earlier that ControlWizard writes a simple version of OnDraw that
displays a generic ellipse in a white rectangle. Here we revise the function
to paint the current arrangement of colored blocks in Tower's three pan­
els. Whenever the user moves a block, the window redraws itself to reflect
the change.

OnDraw first paints the window background with the current value of the
control's BackColor property. The function retrieves the property from the
COleControl::GetBackColor function, converts it to a COLORREF value
through COleControl::TranslateColor, and creates a brush with which it
fills the window rectangle. (The rcBounds argument provides the coordi­
nates of Tower's window relative to the origin of the container window.)
Similarly, the function uses the current value of the Fore Color property to
set the device context's text color and uses the Font property to set the
current font. OnDraw then writes the string contained in the Caption
property, centering the text at the top of Tower's window:

pdc->DrawText(InternalGetText(), -1, &rect, DT_CENTER I DT_TOP):

Subtracting the height of the caption text from the height of Tower's win­
dow leaves the height of the panels, which is stored in iPanelHeight. The
height (thickness) of each colored block is one-seventh of the panel height,
so a stack of seven blocks reaches from the bottom to the top of a panel.
The width of each panel is a third of the window width. With these
dimensions, OnDraw is ready to display the colored blocks in the panels.

The current location of each block is stored in the 3-by-7 nPanel array
described in Table 9-1 on page 404. With an outer loop that iterates for
each panel and an inner loop that iterates for each block, the function

~= Writing ActiveX Controls Using MFC

steps through each of the 21 slots in which a block can appear, progres­
sively reading an element of the nPanel array at each step. An element
value of EMPTY means that the slot does not contain a block. If an ele­
ment has a value of 0 through 6, OnDraw paints a block in the slot using
the corresponding color in the color array. A RECT structure named rect
holds the coordinates of the current block.

llllllllllllll/lllllllllllllllllllllllllllllllllll/lllllllll/llllll/111
II CTowerCtrl ::DoPropExchange - Persistence support

void CTowerCtrl ::DoPropExchange(CPropExchange* pPX)
{

}

ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
COleControl ::DoPropExchange(pPX):

lllllllllll/ll/llllllllllllll//lllllllll/lllllll/l//lllllllllllllllllll
II CTowerCtrl ::OnResetState - Reset control to default state

void CTowerCtrl ::OnResetState()
{

COleControl ::OnResetState(); II Resets defaults in DoPropExchange
}

llllllllll/lllllllllllll/lllllllllllllllllllllll/ll/llllllllllllllll/11
II CTowerCtrl ::AboutBox - Display an "About" box to the user

void CTowerCtrl ::AboutBox()
{

}

CDialog dlgAbout(IDD_ABOUTBOX_TOWER);
dlgAbout.DoModal();

Although Tower does not alter the class's DoPropExchange function, it's
worthwhile to examine the function briefly. Property exchange allows an
ActiveX control to save custom properties between embeddings. For
example, each time it starts, the Tower control initializes the game and
assembles the stack of colored blocks in the first panel. Through property
exchange, Tower could be enhanced to save an interrupted game at shut­
down and recreate the same block positions the next time a container
embeds the control. Saving and restoring properties between runs is called
persistence.

409

ActiveX Controls

410

Stock properties managed by the framework are automatically persistent.
To make a custom property persistent, add an appropriate property
exchange function to the DoPropExchange function, which executes when
the control is loaded and again when it terminates. Property exchange
functions are identified by a PX_ prefix followed by the data type that the
function serializes. For example, the PX_Bool, PX_Font, and PX_String
functions make Boolean, font, and CString properties persistent. For a
description of these and other property exchange functions, refer to
online help.

//////////II///

II CTowerCtrl message handlers

short CTowerCtrl ::GetCurrentBlock()
{

return nPanel[nFromPanel][nBlockNdxJ;
}

The GetCurrentBlock function is a method established in Step 2 that the
container calls to learn which block is being moved. (GetCurrentBlock
isn't a message handler, despite the banner that ClassWizard adds to the
code.) The function can be called at any time, but if the container is inter­
ested in the information that GetCurrentBlock provides, it will probably
call the function in response to a FromPanel event, which announces that
a block is being moved. A return value of EMPTY from GetCurrentBlock
means that the user is not currently dragging a block. As you probably
recall from Step 2 of this exercise, Tower does not export a corresponding
Set method for the CurrentBlock property because a container has no rea­
son to change the property.

void CTowerCtrl ::Reset()
{

int i;

for (i=0; i < NUM_BLOCKS; i++)
{

}

nPanel[0J[iJ = i;
nPanel[l][i] =EMPTY;
nPanel[2J[i] =EMPTY;

nBlockNdx = 0;

II Initialize panel array

II Panel 0 = 0,l,2,3,4,5,6
II Panel 1 = 7,7,7,7,7,7,7
II Panel 2 = 7,7,7,7,7,7,7

II Ndx of block being moved

9: Writing ActiveX Controls Using MFC

}

nFromPanel = 0;
InvalidateControl();

The Reset method allows the container application to start a game over.
The Game program, for instance, calls Reset when the user clicks the Reset
button, pictured in Figure 9-7 on page 393. The TowerCtrl class construc­
tor also calls Reset to initialize the nPanel array at startup, stacking the
seven blocks in the first panel and marking as empty all positions in the
other two panels. Reset calls the COleControl::InvalidateControl function
to trigger a call to OnDraw, refreshing the control window. To invalidate
itself, an ActiveX control based on COleControl should call Invalidate­
Control, not the Invalidate API function.

BOOL CTowerCtrl ::PreCreateWindow(CREATESTRUCT& cs)
{

SetText("Tower"):
hCrossHairs = ::LoadCursor(NULL, IDC_CROSS);
return COleControl: :PreCreateWindow(cs);

II Default caption
II Dragging cursor

}

Tower simulates drag and drop by monitoring the left mouse button.
When the user presses the mouse button inside Tower's window, the con­
trol changes the cursor to the system crosshairs shape, providing simple
visual feedback to the user that the drag operation is in effect. The
Pre Create Window function, called when the container first embeds the
Tower control, loads the crosshairs cursor and stores the handle in
hCrossHairs. The function also calls COleControl::SetText to initialize the
Caption property.

void CTowerCtrl ::OnLButtonDown(UINT nFlags, CPoint point)
{

short i=0;

nFromPanel = GetPanel(point.x);II Panel from which block is taken

while CnPanel[nFromPanelJ[iJ EMPTY && i < NUM_BLOCKS)
i++; II i=ndx of panel's smallest block

if (i < NUM_BLOCKS) II Does panel have a block in it?
{

bMoving = TRUE; II If so. block is now moving
nBlockNdx = i; II Save ndx of the block

411

ActiveX Controls

412

}

}

::SetCursor(hCrossHairs); II Change cursor to indicate drag
FireFromPanel(nFromPanel); II Tell container the panel number

COleControl ::OnLButtonDown(nFlags, point);

short CTowerCtrl::GetPanel(int x)
{

short i =0;
RECT rect;

GetClientRect(&rect); II Control window

if (x > rect.rightl3) II Hit test:
i = 1; II 0 for first panel

if (x > rect.right*213) II 1 for second panel
i = 2; II 2 for third pane 1

return i; II Return panel number
}

When the user presses the left mouse button somewhere in Tower's win­
dow, the OnLButtonDown function handles the resulting WM_LBUTTON­
DOWN message. The function first examines the click coordinates in the
point argument and determines in which panel the click occurs. If the
panel is empty, the click is ignored. Otherwise, OnLButtonDown changes
the cursor to a crosshairs shape and fires the FromPanel event to inform
the container that a block is being dragged.

Because only the smallest block in a panel can be moved, OnLButton­

Down need only determine in which panel the click occurs, not on which
block. Though this greatly simplifies hit testing in the helper GetPanel
function, it has the effect of starting a drag operation for a block even if
the click does not land accurately on a block.

void CTowerCtrl ::OnLButtonUp(UINT nFlags, CPoint point)
{

short i=0, nToPanel;

nToPanel = GetPanel(point.x); II Panel in which block is dropped

if (bMovi ng && nToPanel != nFromPanel)
{

while (nPanel[nToPanel][i] ==EMPTY && < NUM_BLOCKS-1)

9: Writing ActiveX Controls Using MFC

}

}

i++; 11 i=ndx of panel's small est block

II Is dragged block smaller than smallest block in panel?
if (nPanel[nFromPanel][nBlockNdxJ < nPanel[nToPanel][i])
{

else

if (nPanel[nToPanelJ[iJ !=EMPTY)
- - i ;

nPanel[nToPanel][i] = nPanel[nFromPanelJ[nBlockNdxJ;
nPanel[nFromPanelJ[nBlockNdxJ =EMPTY;
FireToPanel(nToPanel); II Tell container

if (i == 0 && nToPanel
{

FireWinner ();

Reset ();

}

InvalidateControl();

FireError ();

2) II If we've filled
II the third panel,
II fire Winner event
II and reset game

II If invalid drop,
II tell container

bMoving = FALSE; II Not moving now

COleControl ::OnLButtonUp(nFlags, point);

The OnLButtonUp function receives control when the user releases the
left mouse button to drop a block in a panel. This function has more work
to do than its companion OnLButtonDown. Besides determining in which
panel the drop occurs, OnLButton Up must also confirm that the panel
does not already contain a block smaller than the one being dropped. If so,
OnLButton Up fires the Error event to signal the container that the user has
attempted an illegal drop. If the drop is legal, OnLButton Up fires the
ToPanel event to announce the end of the drag operation. If the block is
being dropped into the top slot of the third panel, the game is over and
OnLButton Up fires the Winner event.

A convenient side effect of releasing the mouse button is that the cursor
returns to its original arrow shape without OnLButtonUp taking any
action. Because Tower does not process the WM_SETCURSOR message,
the system automatically restores the original window cursor when the
user releases the mouse button.

413

ActiveX Controls

414

TowerPpg.cpp
In Step 6 on page 401, we modified Tower's generic property page by add­
ing a text box that allows the user to rewrite the Caption property. Tower
stores the contents of the text box in the strCaption variable, which is a
CString object created in ClassWizard. A link is needed between the
strCaption string and the Caption stock property so that when the user
changes strCaption in Tower's property sheet, the control forwards the
change to the stock property buried in the framework.

This is the purpose of MFC's property data transfer functions, recogniz­
able by the DDP _ prefix. The function we need for Tower is the DDP _Text

function, which copies text from a string variable (strCaption) to a string
property (Caption). To add the DDP_Text call, open the TowerPpg.cpp im­
plementation file in the text editor and insert the shaded line shown here:

void CTowerPropPage::DoDataExchange(CDataExchange* pDX)
{

}

//{{AFX_DATA_MAPCCTowerPropPage)
DDP_Text(pDX, IDC_EDILCAPTION, strCaption, _T("Caption"));
DDX_Text(pDX, IDC_EDIT_CAPTION, strCaption);
DDV_MaxChars(pDX, strCaption, 25);
//}}AFX_DATA_MAP
DDP_PostProcessing(pDX);

Tower.re
By default, ControlWizard labels the generic property page General, stor­
ing the label as a string resource in the Tower.re script file. To change the
tab label, open the Tower.re file in the text editor and change "General" to
"Caption" in the shaded line shown here:

STRINGTABLE DISCARDABLE
BEGIN

END

IDS_ TOWER
IDS_TOWER_PPG
IDS_TOWER_PPG_CAPTION

"Tower Control"
"Tower Property Page"
"Caption"

You can also make the same modification using the Visual C++ string edi­
tor, described in Chapter 4. Figure 9-13 on page 417 shows the result.

9: Writing ActiveX Controls Using MFC

Step 8: Build and Test the Tower ActiveX Control
If you are building the Tower control from the source code, first copy the
files Tower.ico and TowerCtl.bmp from the Code\Chapter.09\ Tower
folder to the project folder. The first file provides a unique icon resource
that appears in the control's About box. The second file contains a bitmap
from which a container can create a personalized tool button when
embedding the control. Visual C++ itself makes use of a control's bitmap,
as we saw in the preceding chapter. When an ActiveX control is added to
a project through the Gallery, the dialog editor extracts the bitmap from
the control's resources and uses the image to paint a new tool button on
the Controls toolbar, like this:

An icon is generally too large for this purpose, so ActiveX standards sug­
gest the inclusion of a 16-by-16 bitmap image in a control's resource data.
Controls that provide such a resource advertise it through the Toolbox­
Bitmap32 key in the class's Registry data. We'll encounter this key again
in the next chapter.

Set the project configuration to Win32 Release and choose the Build com­
mand from the Build menu. When the source code is successfully com­
piled and linked, Visual C++ automatically registers the control. If you
want to experiment with Tower without building it as a project, you must
register the control yourself before using it. To register Tower, first copy
the Tower.ocx file to your hard disk if necessary, and then run the
RegSvr32 utility:

regsvr32 path\tower.ocx

where path represents the location of the Tower.ocx file on your hard disk.

The Game program found on the companion CD provides the most conve­
nient way to try out the new Tower control. Game has buttons to display

415

ActiveX Controls

416

Tower's About box, reset a game, and list the game rules. The program
also continually displays game status, which it learns by monitoring
Tower's FromPanel, ToPanel, Error, and Winner events. The Test Container
utility offers another way to experiment with the Tower control and is able
to expose more of the control's inner workings than the Game program.
With the control properly registered, run the Test Container, click the New
Control button, and select the Tower control from the list shown here:

.F:\TOWER\RELEASE\TOWER.Od<•

··· !~•;}~ple~~rit~dCate:g~ii~i.:'." I
H;:•t:1i~q~i;~iYc~t;~~~i~{/ ····1 ·.

Q; Ignore reqllired 6ategories

The Insert Control dialog responds to keyboard entries, letting you quickly
scroll through the list by pressing the letter of a control name's first letter.
Pressing T, for example, immediately sets the selection bar in the vicinity
of the Tower control entry.

Try out Tower's property sheet by double-clicking the control's border.
The MFC framework has added property pages in which you can modify
both the control's colors and the font used to display the caption in
Tower's window. Figure 9-13 shows the Fonts page exposed in the con­
trol's property sheet. Of the dialog's other three tabs, the one labeled
Caption displays the property page modified back in Step 6. When you
type new text for the caption, the change is reflected immediately in the
control's window.

The Test Container displays a real-time record of Tower's events, an inval­
uable aid when you are debugging an ActiveX control. Move the splitter
bar upward to expose additional space for the event log, then drag a block

9: Writing ActiveX Controls Using MFC

Figure 9-13.

Property Name: J.t·r:int . ;J
Font St~le: ~ize:

I Times New Roman 1~~ldlt~_li~. g1 ,...~2-__ -___ -3-
System

'.1J.' Tahoma
Terminal

'.11' Verdana
'.11' Vivaldi

C !J.nderline

AaBhYyZz

The Tower Control Properties property sheet.

from Tower's first panel and drop it into another panel. In responding
to the drag-and-drop operation, Tower fires the Click, FromPanel, and
ToPanel events, which are recorded in the event log as they occur. As
shown in Figure 9-14, each entry in the log begins with a label that
indicates from which control the event originates. Since the Test Con­
tainer can embed more than one control, the labels help keep the log
entries straight when events arrive in clusters from controls that may
not have focus.

~Bmw~nmiimi'fEiil: · ·.·. :~::::::::.r:>.~
• Ei!e f.dit ,Cont.:iinei · Control Y:iew · .Qptions lools !:ielp

Control: ToPanel {nPanel=l}
Control: Click
Control: FromPanel {nPanel=2}
Control: ToPanel {nPanel=l}
Control: Click

Figure 9-14. Monitoring events in the Test Container.

417

ActiveX Controls

Adding Property Pages to an ActiveX Control Project

418

As we saw when developing the Tower control, ControlWizard generates a
single property page for an ActiveX control to supplement the stock pages
that MFC provides. For the Tower project, one page is sufficient because
Caption is the only modifiable property that needs a customized property
page. An ActiveX control with more property data, however, may need
additional pages to present the data to the user. Each additional page
requires its own dialog resource, class, and entry in the property page
map. This final section lists the steps necessary to add a new property
page to an ActiveX control project, using the Tower control as an example.

1. With the project open, click the Resource command on the Insert
menu and double-click Dialog in the list to launch the dialog editor.
You can also expand the list of dialog resources and select IDD _
OLE_PROPP AGE_LARGE. As before, the size of the new property
page does not matter. Design the new property page as you wish,
then select the dialog window in the work area and click the Prop­
erties command on the View menu to expose the Dialog Properties
box. In the Styles tab, turn off the Titlebar check box, set the dialog
style to Child, and disable borders. If you selected IDD_OLE_
PROPPAGE_LARGE to start the dialog editor, these settings have al­
ready been made for you. The Styles tab should look like this:

2. Press Ctrl+S to save the new dialog resource, then click the Class­
Wizard command in the View menu. When asked if you would like
to create a new class for the dialog resource, click the OK button to

~= Writing ActiveX Controls Using MFC

accept. Type a name for the new class and select COlePropertyPage
as the base class:

OK
lcTowerPropPage2

Cancel

,Change... I

The base class does not support automation.

3. Add any member variables required for the new page, then exit
ClassWizard. In the TowerCtl.cpp implementation file, add an
#include statement for the property page class header file that Class­
Wizard just created, as shown here:

#include "TowerPPG2.h"

The correct filename appears in the File Name box of the New Class
dialog. Also add an entry for the new page to the property page map
in the TowerCtl.cpp file. For the Tower control, the addition looks
like this:
BEGIN_PROPPAGEIDSCCTowerCtrl, 4)

PROPPAGEIDCCTowerPropPage::guid)
PROPPAGEID(CTowerPropPage2::guid)
PROPPAGEIDC CLSID_CColorPropPage)
PROPPAGEID(CLSID_CFontPropPage)

END_PROPPAGEIDS(CTowerCtrl)

Remember to increment the page count in the BEGIN_PROPP AGE­
IDS macro in the first line of the map. The new page count is now 4.

4. Open the project's RC file in either the text editor or the string editor
and add two string resources. The first string identifies the registered

419

ActiveX Controls

420

property page in the system Registry, and the second string holds
the tab label that appears in the property sheet dialog:

STRINGTABLE DISCARDABLE
BEGIN

END

IDS_ TOWER
IDS_TOWER....PPG
IDS_ TOWER....PPG2
IDS_TOWER....PPG_CAPTION
IDS_TOWER_PPG_NEWPAGE

"Tower Control"
"Tower Property Page"
"Tower Property Page 2"
"Caption"
"New Page"

5. If you used the text editor in the preceding step to create the new
string resources, add definitions to the Resource.h file for the IDS_
TOWER_PPGZ and IDS_TOWER_PPG_NEWP AGE manifest constants:

#define IDS_TOWER....PPG2 300
#define IDS_TOWER....PPG_NEWPAGE 301

Adding these lines is not necessary if you used the string editor in
the preceding step, because Visual C++ writes the definitions auto­
matically when you save the string resource.

6. In the text editor, open the implementation CPP file that ClassWizard
created for the new property page class. Search for the source code
shown here, and in each of the shaded lines replace the 0 parameter
with a string identifier:

BOOL CTowerPropPage2::CTowerPropPage2Factory
::UpdateRegistry(BOOL bRegister)

{

}

if (bRegister)

else

return AfxOleRegisterPropertyPageClass(
AfxGetinstanceHandle(),
m_clsid, IDS_TOWER....PPG2);

return AfxOleUnregisterClass(m_clsid, NULL);

CTowerPropPage2::CTowerPropPage2()
COlePropertyPage(IDD, IDS_TOWER....PPG_NEWPAGE)

{

~= Writing ActiveX Controls Using MFC

Rebuilding the Tower ActiveX control after having made these changes
adds the new property page to the control's resources. Here's an example
of what the new property page might look like, depending on the design
you created in Step 1 of this exercise:

The New Propert.v Page

r Radio1

C Radio2

r· Radio3

OK Cancel

D·l~Fi£@
rJ; Check2

l"J·Check3

2,pply · 1 · H".!p

421

Writing ActiveX
Controls Using ATL

Lhapter

Chapter 9 demonstrated the ease with which you can write ActiveX con­
trols using MFC, but also pointed out that the convenience comes at the
cost of an unwieldy executable size. A small file image is a desirable qual­
ity for an ActiveX control, but is particularly important for those controls
intended for service on the World Wide Web. Fortunately, Visual C++
offers other tools besides MFC for the development of component soft­
ware. This chapter examines a popular alternative to MFC called the
Active Template Library.

The Active Template Library, better known as ATL, provides an extensive
set of C++ class templates1 designed for the development of server objects
that can be embedded· in an application through the services of COM. Cur­
rently in its third release, ATL assists in programming various types of
COM objects, and can even contribute to the creation of container pro­
grams; this chapter, however, focuses on how to use ATL to develop

1. AC++ class template, also known as a parameterized type, is a sophisticated form of macro
that the compiler expands into a normal class definition based on parameters passed to the
template. Unlike macros created with the #define statement, templates expand into normal
types, making them type-safe. The compiler can oversee the program's use of a templatized
class as it does a normal class and correctly recognize any type disparities.

423

ActiveX Controls

ActiveX controls. The intent here is to give balance to the discussions of
Chapter 9, demonstrating another avenue besides MFC open to the devel­
oper who wants to create ActiveX controls.

MFC simplifies the development of ActiveX controls, but the results are
inseparably tied to the large MFC library DLL, generally disqualifying
such controls for use on a Web page. In response to this problem,
Microsoft has enhanced ATL by adding special support for ActiveX con­
trols. Today, prevailing wisdom suggests these guidelines when choosing
a development tool for ActiveX control projects:

• Consider MFC only to create controls intended for normal container
applications like the Game program of Chapter 9. MFC takes on
added appeal as a development tool when the container itself links
dynamically to MFC, since the control is then not responsible for
loading the library. The. penalty has already been paid, so to speak.

• For ActiveX controls that might see service on the Internet, use A TL
instead.

You will find that this chapter discusses COM matters in more detail than
the two preceding chapters, but it also demonstrates how ATL lets you
write sophisticated ActiveX controls without immersing yourself in COM.
More so than MFC, ATL places the developer nearer to the surface of
COM, but not necessarily under it.

ATL and Container Applications

424

Though not the central theme of this chapter, ATL's support for container
programming warrants a few words before we leave the subject entirely.
ATL cuts a wide swath across COM programming, but leans heavily
toward the development of servers, not clients. However, the library pro­
vides two class templates named CComPtr and CComQIPtr that often
prove helpful when writing client-side code. These templates create smart
interface pointers, designed to ensure that a client properly releases a con­
trol's interfaces even when an exception error interrupts the normal flow
of execution.

10: Writing ActiveX Controls Using A TL

Let's look first at the problem, then the solution. A container calls a con­
trol's Querylnterface method to request pointers to interfaces that the
control provides. The only constraint is that when finished using an inter­
face, the container must call the interface's Release method to inform the
control that the interface is no longer needed. Failure to follow this funda­
mental rule of COM can leave the control object marooned in the system's
memory pool even after the container terminates. A fragment demonstrates
how a container requests a pointer to one of the control's interfaces, using
IOleObject as an example:

void Function!(!Unknown* pUnk)
{

IOleObject *pOleObj;
pUnk->Oueryinterface(IID_OleObject, (PVOID*) &pOleObj);

II Use the IOleObject interface

pOleObj->Release(); II When finished, release it
}

This code runs into trouble if the application terminates through an
exception error before the final line can call IOleObject::Release to retire
the interface. Casting pOleObj as a smart pointer solves the potential
problem because the pointer's destructor, which calls the interface's
Release method, executes even if the program abruptly terminates while
IOleObject is in use:

void Function!(!Unknown* pUnk)
{

CComPtr<IOleObject> pOleObj;
pUnk->Oueryinterface(&pOleObj);

II Use the IOleObject interface

} II Release called automatically

A noticeable difference between the two fragments is that the revised
version does not explicitly call IOleObject::Release when finished using
IOleObject. When pOleObj goes out of scope, either because Function1
returns normally or because an error occurs, the pointer's destructor takes
care of releasing the interface.

The function gains another advantage in casting pOleObj as a smart
pointer. Retrieving the interface pointer pUnk is simpler now because

425

ActiveX Controls

426

CComPtr provides its own Querylnterface function that infers the inter­
face identifier from pOleObj itself. Besides the additional coding conve­
nience, this also assures type safety by guaranteeing that both identifier
(IID_OleObject) and object pointer (pOleObJ1 refer to the same interface
(IOleObject). You are thus prevented from committing gaffes like this:

pUnk->Oueryinterface(IID_ThisObject, (PVOID*) &pThatObject):

CComPtr::Querylnterface is able to cull the interface identifier from the
pointer by applying the _uuidof operator. (The abbreviation UUID stands
for universally unique identifier, another term for the GUID identifiers we
encountered in Chapter 8.) In determining the identifier at compile time,
_uuidof obviates the need to link additional code to the application that
defines the identifier. The net effect is a reduction in executable size. We
could have used _uuidof, for example, in the first version of Function1
on the preceding page, replacing the call to Querylnterface with either of
these lines:

pUnk->Oueryinterface(_uuidof{ IOleObject), (PVOID*) &pOleObj):
pUnk->Oueryinterface(_uuidof(pOleObj), (PVOID*) &pOleObj):

/Unknown is rarely the interface that a client ultimately needs, but is the
only interface the client can be sure an ActiveX control supports. Obtain­
ing an interface is usually a two-step process in which the caller first
obtains an /Unknown pointer-pUnk in the fragment code-then calls
IUnknown::Querylnterfaceto retrieve the interface pointer actually
needed. ATL provides another smart pointer that combines these two
steps into one. The CComQIPtr template incorporates a call to /Unknown::
Querylnterface in one of its constructors. Here's a condensed listing of
ATL's CComQIPtr template showing how the constructor obtains the
desired interface pointer and how the destructor later retires it:

template <class T, canst IID* piid = &~uuidof(T)>
class CComQIPtr
{

public:
T* p:

CComQIPtr(!Unknown* lp)

10: Writing ActiveX Controls Using A TL

}

{

p = NULL:
if (lp != NULL)

lp->Querylnterface(*Piid, (void **) &p);
}

,..,CComQIPtr()
{

}

if (p)
p->Release():

The CComQIPtr template gives the caller a cleaner method of obtaining an
interface pointer from the control. If the control does not support the
requested interface, the pointer class's p member has a value of NULL:

CComQIPtr <IOleObject> pOleObj;
pOleObj = pUnk:
if (pOleObj.p)
{

II Use the IOleObject interface

}

A caller can use CComQIPtr to create a pointer for any interface except
!Unknown. To create a smart pointer for !Unknown, use CComPtr instead.

The CComPtr and CComQIPtr templates of ATL are inspired by the auto_
ptr smart pointer class of the Standard Template Library, which ensures
an object allocated through new is properly returned to the application's
free store. Although the templates mainly benefit client applications that
use ActiveX controls, they can just as easily serve controls themselves,
and are particularly useful when a control aggregates or contains another
control. An example project later in this chapter demonstrates how an
ActiveX control can make use of smart pointers.

ATL's support for client programming is strictly passive, consisting only
of source code files for inclusion in a project. The files, recognizable by
their Atl prefix, reside in the VC98\ATL \Include folder. For an example
container project that makes use of CComPtr and CComQIPtr, refer to the
AtlCon project in the Samples\ VC98\ATL folder of MSDN. ATL has

427

ActiveX Controls

much more to contribute to the development of COM servers like ActiveX
controls, and for the rest of the chapter we will concentrate on this aspect
of ATL.

ATL and ActiveX Controls

428

Technically, the ActiveX standards make few demands on a control's abil­
ities. To operate as an ActiveX control, a component needs only to imple­
ment !Unknown, be embeddable, and be able to self-register. Features
such as properties, methods, and events are optional. But so minimal (and
dormant) a COM object has little use outside of academic discussions.
Realistically, an ActiveX control maintains a set of data, fires events, and
supports enough interfaces that a client application can successfully inter­
act with it. The ActiveX Test Container utility serves as a sort of litmus
test for ActiveX controls. The two control projects developed in this chap­
ter can successfully execute in the Test Container because they implement
the interfaces described in Table 10-1. The listed interfaces represent the
minimum support an ActiveX control must offer to comply with pub­
lished Microsoft guidelines. Compare Table 10-1 with Table 8-2 on page
350, which lists the corresponding interfaces a container should support
to embed an ActiveX control.

If you are expecting ATL to easily create minuscule ActiveX controls a
few kilobytes in size, be prepared for a disappointment. The library incor­
porates a number of techniques that help reduce executable size, but
implementing the interfaces listed in Table 10-1 brings a lot of code into
play. The only way to produce smaller code is by using straight COM pro­
gramming without the benefit of ATL or any other support library. (The
Samples\ VC98 \A TL folder of Visual C++ contains a demonstration ATL
project named Minimal that c_reates a small COM server only 5,600 bytes
in size. The Minimal server, however, lacks several essential characteris­
tics and does not purport to be a true ActiveX control.) As with MFC, the
convenience of ATL comes inevitably at the cost of some extraneous code
that finds its way into your finished product, never to be expunged.
Expect a simple windowless ActiveX control, for example, to be about 40

KB in size-somewhat less if you are willing to do some extra work. A

Table 10-1.

Interface

IOleObject

IOlelnPlace­
Object

IOlelnPlace­
ActiveObject

IDataObject

IViewObject2

!Dispatch

IConnection­
PointContainer

IConnection­
Point

IProvideClass­
Info

IPersistStorage

IClassFactory

IClassFactory2

10: Writing ActiveX Controls Using ATL

Description

Required for communication with a control's client site,
except through events. Events are handled through the
IConnectionPointContainer interface, described below.

Implemented by controls that can be activated in place
and that provide their own user interface. Requires sup­
port for IOleObject.

Required only by controls that provide a user interface and
that support IOlelnPlaceObject.

Required by controls that transfer data to a container in
some way, as through shared memory or a file.
IDataObject provides the means for COM's Uniform Data
Transfer, a protocol that sets the rules for the exchange of
data of any type.

Implemented by visible controls that display a window.

Required by controls with custom methods or properties
that a client can access through IDispatch::Invoke.

Required by controls that fire events. This interface enumer­
ates for a client the events that a control object can fire.

Required by controls that support IConnectionPoint­
Container.

Implemented by controls that contain type library infor­
mation, which means most ActiveX controls. Through its
GetClasslnfo method, the interface provides a pointer to
an ITypelnfo implementation from which a client can
extract the control's type information. The similar
IProvideClasslnfo2 interface is an extension that adds the
GetGUID method, through which a client retrieves a
pointer to an identifier for the control's default event.

Required by controls that can save to and load from an
!Storage instance provided by the container.

Instantiates a requested class object and returns a pointer
to it. The object is identified by a class identifier registered
in the system Registry.

Same as IClassFactory, but also adds support for licensing.
(See "Licensing" in Chapter 9.)

Interfaces that an ActiveX control must support to comply with guidelines.

429

ActiveX Controls

430

sample project later in the chapter demonstrates a few methods that help
reduce the size of an ActiveX control created using A TL.

On the other hand, an ActiveX control written with ATL is much smaller
than an equivalent control that uses MFC when you consider the weighty
mass of the MFC library DLL that the control drags around with it. An
ActiveX control built with the ATL library can use MFC, but this almost
defeats the point of ATL. If you plan to write your control using MFC, you
may prefer to stay with the MFC ControlWizard and draw on ATL only for
its smart pointer classes CComPtr and CComQIPtr. The main benefit of
ATL is that it can produce components that require neither MFC nor the C
run-time library. Such components can be distributed over the Internet as
stand-alone entities that do not rely on the availability of other support
files on the user's machine.

Like MFC, ATL produces a single representative class for each object that
the control contains. The class derives from all the interfaces that the
object supports, a trick that MFC pulls off by nesting classes. ATL accom­
plishes the same result with more flexibility by using multiple inheritance
in which the class derives from several base classes, inheriting member
data and functions from each. The list of base classes, called an inheri­
tance list, looks like this in the class declaration:

class CMyClass :

{

public CClassl,
public CClass2,
public Ilnterfacel,
public Ilnterface2,

The most important service that ATL provides for the development of
ActiveX controls is the library's implementation code for many COM
interfaces that controls generally support. Taking the form of class tem­
plates, the library code saves you from having to write your own code to
support common interfaces. ATL provides templatized implementation
code for every interface listed in Table 10-1 (and a few others), giving each
template the name of its interface followed by an Impl suffix. The !Quick­
Activatelmpl template, for example, provides code for IQuickActivate

10: Writing ActiveX Controls Using ATL

methods such as SetExtent and GetExtent. As. required by COM, all the
methods of a supported interface are present, but not necessarily serviced.
Many methods merely call the ATLTRACENOTIMPL macro, which writes
a terse trace message to the Debug tab of Visual C++'s Output window and
returns E_NOTIMPL to the caller. If you want your ActiveX control to ser­
vice such methods, you must add the code yourself.

Along with its library of code, ATL also provides an App Wizard that gets
you started on a server project, and another wizard that generates class
code required by your ActiveX control. Once you get the feel of ATL you
will find it no more difficult to use than MFC, but ATL expects you to
watch over more project details than MFC and to deal with more COM
issues. Before pressing on to build a demonstration project with ATL, let's
pause here and acquire some background on three aspects of A TL that we
will encounter later: interface maps, object maps, and threading models.

Interface Maps
Interface maps arise from the common pattern typical to most implemen­
tations of the Querylnterface function. All interfaces of a COM object sup­
port this function, allowing a container application to call Querylnterface
on any interface and receive a pointer to any other supported interface. If
the control does not support the requested interface, it returns a value of
E_NOINTERFACE. The fragment that follows illustrates what a typical
Querylnterface function might look like when not using ATL. The param­
eter riid is a reference to the identifier of the interface that the caller is
requesting, and the parameter ppvObject receives the interface pointer:

STDMETHODIMP CMyClass::Queryinterface(REFIID riid, PVOID *ppvObject
{

switch(riid)
{

case IID_UNKNOWN:
case IID_Ilnterfacel:

ppvObject = (!Interfacel) this;
break;

case IID_Ilnterface2:
ppvObject = (llnterface2) this;
break;

431

ActiveX Controls

432

case IID_Ilnterface3:
ppvObject = (llnterface3) this;
break;

}

}

default:
*PPVObject = 0;
return E_NOINTERFACE;

(!Unknown*) *ppvObject->AddRef();
return S_OK;

This sort of repetitious pattern readily lends itself to macros, a discussion
of which will shortly make clear the physical layout of an interface map.
When a client calls the class object's Querylnterface method, the interface
map routes the call through the ATL function CComObjectRootBase::
InternalQuerylnterface, prototyped in the AtlCom.h file like this:

static HRESULT WINAPI InternalQuerylnterface(PVOID pThis,
const _ATL_INTMAP_ENTRY *PEntries, REFIID riid, PVOID *ppvObject

As before, riid identifies the interface and ppvObject receives its pointer.
The function's second parameter pEntries points to the beginning of the
interface map, which consists of an array of _ATL_INTMAP _ENTRY
structures. Each structure in the array contains an interface identifier, a
DWORD variable, and a function pointer:

struct _ATL_INTMAP_ENTRY
{

const IID* piid;
DWORD dw;
_ATL_CREATORARGFUNC* pFunc;

} ;

II Interface identifier
I I Offset
II Function pointer

The value of pFunc determines how InternalQuerylnterface interprets the
value of dw. If pFunc is ATL_SIMPLEMAPENTRY (defined as 1), dw con­
tains an offset into the class object, allowing InternalQuerylnterface to ful­
fill the call like this:

*ppvObject = pThis + pEntries->dw;
*ppvObject->AddRef();

10: Writing ActiveX Controls Using ATL

where pEntries has been incremented to point to the interface's _ATL_
INTMAP _ENTRY structure in the array. If pFunc has a value greater than
1, InternalQuerylnterface assumes that it points to a function. Internal­
Querylnterface calls the function, passing dw as a parameter:

pEntries->pFunc(pThis, riid, ppvObject, pEntries->dw);

The called function is responsible for writing the desired interface pointer
into *ppvObject.

The pFunc member can also have a value of NULL. This special value is
reserved for the last _A TL_INTMAP _ENTRY structure of the array, serving
as a marker for the end of the interface map. You do not have to worry
about this, because ATL ensures the final structure is correct through a
special macro. Otherwise, there are no restraints on how you order the
_ATL_INTMAP _ENTRY structures in the map array. Here's what the inter­
face map might look like for the fictitious CMyClass cited earlier. Notice
how an empty _ATL_INTMAP _ENTRY structure ends the array:

{ &IID_Interfacel, 0, 1 },
{ &IID_Interface2, 4, 1 },
{ &IID_Interface3, 8, 1 },
{ 0, 0, 0 }

In code that uses A TL, an interface map is formed by a series of COM_
INTERFACE macros, each of which expands into an ATL_INTMAP _
ENTRY structure. ATL provides 17 different COM_INTERF ACE macros
identified by suffixes such as _ENTRY and _TEAR_OFF that indicate the
type of interface the macro handles. The macro name is formed by joining
the suffix string to COM_INTERFACE, as in COM_INTERF ACE_ENTRY.
Table 10-2 on the next page describes the COM_INTERF ACE macros and
explains when to use them; to help keep the table uncluttered, the first
column lists only the macro suffix. For more information about the mac­
ros, see the article "COM_INTERFACE_ENTRY Macros" in online help.

ATL refers to the series of macros in the source code as a COM map, a
term often used interchangeably with the interface map that the macros
create. A COM map in ATL begins by invoking the BEGIN_COM_MAP

433

ActiveX Controls

Table 10-2.

434

A TL's COM_INTERFACE macros.

COM_INTERF ACE
macro

_ENTRY

_ENTRY_IID

_ENTRY2

_ENTRY2_IID

_ENTRY _IMPL

_ENTRY _IMPL_
IID

_ENTRY_FUNC

_ENTRY _FUNC_
BLIND

ENTRY TEAR_
OFF

Description

Exposes an interface from which the class derives.

Same as COM_INTERF ACE_ENTRY, but also specifies
the interface's identifier.

For a class derived from two or more dual interfaces,
resolves the ambiguity of which interface should pro­
vide the pointer to the !Dispatch interface. Dual inter­
faces are described later in this chapter.

Same as COM_INTERFACE_ENTRY2, but also specifies
the interface's identifier.

Alternative to COM_INTERFACE_ENTRY.

Same as COM_INTERF ACE_ENTRY _IMPL, but also
specifies the interface's identifier. This macro and
COM_INTERF ACE_ENTRY _IMPL are obsolete in ATL
version 3; use COM_INTERFACE_ENTRY instead.

Specifies a hook function that gains control when A TL
processes Querylnterface. The hook function can abort
the process by returning E_NOINTERFACE, thus hiding
the interface that A TL would otherwise return.

Same as COM_INTERF ACE_ENTRY _FUNC, except that
querying for any interface results in a call to the hook
function.

Declares a COM map entry for a tear-off interface,
which is instantiated only when the client requests the
interface through Querylnterface. The tear-off occupies
no memory until needed, making it suitable for an
interface such as ISupportErrorlnfo that stands a good
chance of not being used during the life of the control.
A disadvantage of a tear-off interface is that it takes
slightly more overhead to create than a normal
interface.

The class implementing the tear-off must derive from
CComTearOffObjectBase and have its own COM map.

COM_INTERFACE
macro

ENTRY
CACHED_
TEAR_ OFF

ENTRY
AGGREGATE

ENTRY
AGGREGATE_
BLIND

_ENTRY _AUTO­
AGGREGATE

_ENTRY _AUTO­
AGGREGATE_
BLIND

_ENTRY_CHAIN

_ENTRY _BREAK

ENTRY
NOINTERFACE

1 O: Writing ActiveX Controls Using A TL

Description

Same as the COM_INTERF ACE_ ENTRY_ TEAR_ OFF
macro, except that the interface data are saved (cached)
after the first instance. If the tear-off interface is
instantiated, caching effectively turns it into a normal
interface.

Declares a COM map entry for an interface provided by
an aggregated object. This macro queries for the inter­
face identifier forwarded to the !Unknown interface of
the aggregated object. Aggregation is discussed later in
the chapter.

Same as COM_INTERF ACE_ENTRY _AGGREGATE,
except that all queries are forwarded to the specified
!Unknown interface.

Same as COM_INTERF ACE_ENTRY _AGGREGATE if
the !Unknown pointer is provided. Otherwise the
macro automatically creates the aggregate indicated by
a given class identifier.

Same as COM_INTERF ACE_ENTRY _AUTO­
AGGREGATE unless the !Unknown pointer is pro­
vided, in which case all queries are forwarded to the
!Unknown interface. If the !Unknown pointer is not
provided, the macro creates the aggregate indicated by
a given class identifier.

Allows processing to continue in the COM map of a
specified base class. The base class must appear in the
current class's inheritance list-that is, it must be a
base of the current class. The COM_INTERF ACE_
ENTRY_CHAIN cannot be the first entry in a COM
map.

Calls DebugBreak when a specified interface is
requested. Use this macro to trigger a debugger break­
point (described in Chapter 11, The Debugger).

Returns E_NOINTERF ACE and ends COM map process­
ing when a specified interface is queried. The macro
thus disables the interface, preventing it from being
processed by any COM_INTERFACE macros that follow
in the COM map.

435

ActiveX Controls

macro and ends with the END_COM_MAP macro. Between them lies
a series of COM_INTERFACE macros, one for each interface that the
class supports:

BEGIN_COM_MAPCCMyClass)
COM_INTERFACE_ENTRYCIMyClass)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY2(1Persist, IPersistStreamlnit)

END_COM_MAP()

The form of the map borrows heavily from the standard message map of
MFC. (MFC provides its own macros for creating an interface map, though
we did not encounter them in Chapter 9. An interface map in MFC begins
and ends with the BEGIN_INTERFACE_MAP and END_INTERFACE_MAP
macros.) The order of COM map structures is not important, but the first
interface in the list must use a simple map entry-that is, COM_INTER-
F ACE_ENTRY or any other COM_INTERF ACE macro that expands to an
_ATL_INTMAP _ENTRY structure with a pFunc value of ATL_SIMPLE­
MAPENTRY. This requirement stems from ATL's use of the first interface
in the map to respond to requests for the object's !Unknown interface.

Object Maps
An ActiveX control may contain several objects, each represented by a
class and each providing its own interface map. Figure 10-1 shows the

Figure 10-1. Elements of an ActiveX control.

436

1 O: Writing ActiveX Controls Using ATL

hierarchical relationship between a control, the objects it contains, and
the interfaces implemented by the objects. Similar in concept to an inter­
face map, an object map tracks a control's objects, associating each object
with its class identifier (CLSID). ATL arranges an object map as an array of
_ATL_OBJMAP _ENTRY structures, each of which defines a series of
helper functions. Here's an abbreviated form of the _ATL_OBJMAP _
ENTRY structure showing the function prototypes:

struct _ATL_OBJMAP_ENTRY
{

} ;

HRESULT UpdateRegistry(BOOL bRegister);
HRESULT GetClassObject(void* pv, REFIID riid, PVOID* ppv);
HRESULT Create!nstance(void* pv, REFIID riid, PVOID* ppv);
LPCTSTR GetObjectDescription();
HRESULT RevokeClassObject();
HRESULT RegisterClassObject(DWORD dwClsContext, DWORD dwFlags);

When a client first requests a class object, the GetClassObject function is
called to create an instance of the object and provide the caller a pointer to
the requested IClassFactory or IClassFactory2 interface. The function
stores the class factory pointer within the object map structure, making
subsequent requests for a new instance of the object quicker to fulfill.
Because the class object is instantiated on the stack or in the heap instead
of in the control's static data, ActiveX controls constructed with ATL do
not require linkage to the C run-time library. Avoiding C run-time func­
tions and static constructors ensures that the finished control's executable
size remains small, free of the extra initialization code that the C library
otherwise links in.

Threading Models
ATL supports four threading models named single, apartment, free, and
both. A threading model describes the type and degree of thread safety a
control implements, though any client application, regardless of its own
threading arrangement, can safely access a control built from any thread­
ing model. If the client's threading is not compatible with that of the
server, COM interposes itself between the two to assure thread-safe com­
munication. Given this assurance, selecting a threading model for your
control needn't be an agonizing decision. There are pros and cons for each

437

ActiveX Controls

438

choice, of course, generally pitting performance against code size, and effi­
ciency against simplicity. The code that ATL adds to a project supports
whatever threading model you select, so you need only make sure that
the code you write yourself also complies with the requirements of the
selected model. This section explains the differences between the four
possible models, helping you decide which is best for your project.

It's easier to envision threading from the perspective of the client. Let's
begin with a look at threading models as they apply to a container appli­
cation, and then examine how each threading model affects the ActiveX
control that the application embeds. Threading models are not difficult to
understand, but the rules are sometimes a little convoluted. An example
project later in this chapter applies some of the theory discussed here to
illustrate how a control behaves under different threading models.

Single threading
The single threading model is the simplest of the four because it does not
require a control to guard against simultaneous use of its data, even its
static data. The model allows a client to create any number of instances of
a control's object, but confines to a single thread all client access to those
instances. Single threading does not restrict the number of threads a client
can run, and indeed an ActiveX control should assume that many of its
clients are multithreaded. The model only dictates that all calls to an
object's interfaces are made from the client's thread that first calls
CoinitializeEx to initialize the COM framework. Because the ActiveX
control does not need to expend additional effort in ensuring thread-safe
access to its interfaces or other data, single threading leads to the smallest
object size among the four threading models. Communication between
client and server is direct and fast, as long as the client adheres to the
model's restrictions.

But consider what happens when two threads in the client use the same
ActiveX control. Thread A, which is not necessarily the client's main
thread, initializes COM through CoinitializeEx, then calls CoCreate­
Instance to create an instance of the control object. Thread B subsequently
requires the control's services and, like Thread A, creates a new instance
of the control. But this time COM does not return an interface pointer that

1 O: Writing ActiveX Controls Using ATL

points directly into the control's code as it did when Thread A called
CoCreatelnstance. Instead, the returned pointer references an invisible
proxy object running on Thread B. When the client uses the pointer to call
a method from Thread B, the proxy sends a message to a stub object that
runs on Thread A. The stub in turn calls directly into the ActiveX control
on the same thread, then passes the return value back to the proxy
via another message. This exchange of messages switches threads, and
ensures that the ActiveX control always executes within the context of
Thread A, the thread that first initialized COM.

Rerouting a call from one thread and completing it on another is known as
interthreaded marshaling, which is conceptually similar to the interpro­
cess marshalling discussed in Chapter 8. The main difference is that the
proxy and stub objects that carry out interthreaded marshaling are hidden
windows set up by COM, not dynamic link libraries installed in separate
processes. Messaging between the windows is analogous to the remote
procedure calls that pass back and forth between a client's in-process
proxy and its out-of-process stub. Marshaling between threads is usually
faster than marshaling between processes, but exchanging messages and
switching thread contexts still slows access to an object instance several
hundredfold compared to directly calling the object. Each time the client
calls one of the control's methods from Thread B, the same tortuous pro­
cess repeats itself to marshal the call to Thread A. Worse yet, Thread A
may be busy away from its message loop, in which case messages posted
by the proxy must wait in the queue until extracted and routed to the stub.
All method calls the client makes from Thread A go directly to the control
and are not marshaled, giving Thread A special privileges not granted to
other threads that use the control. The single threading model exacts a
performance penalty only when the client calls the control from threads
other than the first thread that registers itself with COM through
ColnitializeEx.

Apartment threading
The apartment threading model goes a long way towards eliminating the
need for interthreaded marshaling. Under this arrangement all client
threads enjoy equal privileges and are able to interact directly with an
instance of an ActiveX control without first going through proxy and stub

439

ActiveX Controls

440

services. In other words, every apartment thread is like Thread A of the
previous discussion, and none are like Thread B. Each thread that requires
the control's services first calls ColnitializeEx as before, then calls Co­
Createlnstance to create a control instance. Under apartment threading,
the returned interface pointer points directly into the interface's v-table in
the instantiated object and not into a proxy. Each thread has its own object
instance, and no marshaling takes place as long as a thread accesses only
the instance it created.

Confusion sometimes arises because there exist two types of apartment
threading. The model that ATL calls "apartment" is more correctly termed
the single-threaded apartment model, often abbreviated ST A. This is the
model described in the preceding paragraph-one object instance per
thread, each thread calling only its own instance. The multithreaded
apartment model, or MT A, is what ATL calls the free model, described in
a moment. An apartment is an abstract concept that has little correlation
with the physical world the way processes and threads do, so don't waste
a lot of time trying to visualize it. The idea arises from the analogy that a
process is like a building in which threads represent separate rooms. An
apartment comprises a single instance of an object along with the thread
or threads that can safely call directly into that instance.

Although we often speak of STA or MTA client applications, the model
designation more correctly applies to the threads within an application,
because a process can contain both ST A and MT A threads. When a client
thread calls ColnitializeEx, it passes a value that specifies which apart­
ment model the thread is designed for. A value of COINIT_AP ARTMENT­
THREADED registers the thread under the ST A model, sole occupant of a
single-threaded apartment. A value of COINIT _MUL TITHREADED regis­
ters the thread as part of a multithreaded apartment. A process can contain
any number of single-threaded apartments but only one multithreaded
apartment, to which any number of threads can belong. Interface pointers
retrieved from the object are not marshaled when called on threads inside
an apartment, but are always marshaled when used by threads in other
apartments. When speaking of the single-threaded apartment model, the
words apartment and thread are often used interchangeably without

10: Writing ActiveX Controls Using ATL

causing confusion, but the practice is wholly incorrect when applied to
the multithreaded apartment model, described next.

Free threading
Free threading is just another name for the multithreaded apartment
model. Threads within a multithreaded apartment can safely share inter­
face pointers supplied by a single instance of an object regardless of which
thread created the instance. COM stays out of the way and does not mar­
shal calls that occur within the confines of the apartment. As in the single­
threaded apartment model, however, marshalling is required when a
thread calls into an object instantiated in another apartment.

This sounds simple enough, but free threading places a heavier responsi­
bility on you, the developer. Choosing to support the free threading model
means writing code that can be safely accessed at any time by any number
of threads. The next section looks at some of the requirements each
threading model imposes on an ActiveX control.

Choosing a threading model for your ActiveX control
Understanding threading models on the client side of COM enables you to
choose the threading model best for your ActiveX control. Fortunately,
threading in servers involves more coding and less theory. You need only
select a threading model for your control and write the code accordingly,
assured that COM will solve any mismatches through marshaling. A client
thread conforms to either the ST A or MT A model, but an ActiveX control
adopts one of the four models listed earlier: single (nonthreaded), apart­
ment (STA), free (MTA), or both. The both threading model means both
ST A and MT A-that is, the control must be written to accommodate
either of the two possible models of a client thread without the need for
COM to marshal the interactions.

We have seen how a client thread identifies its model to COM when call­
ing CoinitializeEx, but the main thread of an ActiveX control, which is the
thread that receives the client's calls, does not register itself. This makes
sense because, after all, we are speaking of only one thread along which
program logic flows from the client into the ActiveX control and back
again, without passing through a marshaler. A control identifies its thread­
ing model through an entry in the system registry, either apartment, free,

441

ActiveX Controls

Table 10-3.

442

or both. If the entry is not present, COM assumes the control conforms to
the single threading model. Projects later in the chapter demonstrate how
an ActiveX control designates its threading model in the registry.

Having waded this far into the morass of threading models, we can at last
tackle a very important question: how does an ActiveX control know in
advance which threading model a client uses? The answer is beautifully
simple: it does not know, nor does it need to know. The threading model
you select for your control tells COM the kind of client thread your con­
trol is designed to handle without the need for marshalling. COM recog­
nizes when any mismatches occur and transparently sets up marshaling
only when required to resolve the differences. For example, an STA client
thread that instantiates a control marked apartment interacts directly with
the control instance. When an MT A thread instantiates the control, how­
ever, COM must marshal all calls to ensure both client and control run on
the same thread. In registering the apartment threading model, the control
has informed COM that each instance can accommodate only calls on a
single thread; marshalling makes sure that's what happens. Table 10-3

summarizes under what conditions COM marshals calls between a client
and its embedded control.

When a dient thread ~ .. accesses an ActiveX ... is marshaling
this model ... control of this model ... required?

STA single No for the first thread
to initialize COM; yes
for all other threads

MTA single Yes

STA apartment No

MTA apartment Yes

STA free Yes

MTA free No

STA both No

MTA both No

Conditions under which COM marshals calls between client and control.

10: Writing ActiveX Controls Using ATL

Which threading model is best for your control depends on the sort of cli­
ent application you anticipate will use your control and on how much
extra work you are willing to undertake to assure thread-safe access. The
single nonthreaded model requires no extra coding at all to achieve thread
safety, since only one client thread can directly access all instances of the
control. Free threading, on the other hand, serves best only if you know in
advance your control will be used exclusively by MTA applications. You
rarely have this assurance, however, unless you write the clients yourself.
Because the great majority of client applications today conform to ST A
threading, the apartment model generally represents the best choice for an
ActiveX control designed to serve many different clients. Internet Explorer
and Netscape Navigator are STA applications, as are container programs
using MFC and those written in Visual Basic versions 5 and later.
Microsoft Transaction Server also conforms to the rules of ST A, so a
control should use the apartment model if it supports MTS.

Thread safety is easily programmed under the apartment model, which
requires only safeguarding against simultaneously writing static data,
usually through critical sections or some similar mechanism. If you want
to ensure fast access to your control regardless of the client's threading
model, choose the both model. Accommodating ST A and MT A access
without marshaling requires extra work, especially for controls that run
more than one thread. For a look into the intricacies of MT A threading,
peruse the article by David Platt in Microsoft Systems Journal, volume 12,

number 8. You can locate the article in MSDN online help under the Peri­
odicals entry in the Contents tab.

Example 1: The Pulse ActiveX Control
The Pulse control presented in this section illustrates how to use ATL to
produce a simple ActiveX control. Pulse is selective in what it takes from
the library. The goal here is not only to demonstrate ATL, but to show
some of the ways you can reduce the size of a control short of modifying
the A TL source code or resorting to straight COM instructions. The result
should give you an idea of how small you can reasonably expect an
ActiveX control to be when created using A TL.

443

ActiveX Controls

444

Pulse is merely a timer control that fires an event at a programmable inter­
val, thus behaving much like the IETimer control we used in Chapter 8

when building the Hour program. Like IETimer, Pulse is completely self­
sufficient, using neither MFC nor the C run-time library. But at 37 KB,
Pulse is less than half the size of IETimer.ocx, yet provides the same ser­
vice. The main reason Pulse is so small is that it operates invisibly with­
out displaying a window.

The Pulse control contains a single object governed by a class named
CPulseCtl. Besides implementing the interfaces listed in Table 10-1 on
page 429, the object provides these control elements:

• A property variable that contains the pulse interval in milliseconds

• Methods that allow the container to start and end event firing

• An event that notifies the container each time a pulse interval
elapses

The ten steps described here illustrate how the Pulse project takes form.
The discussions take a general approach to the subject of creating an
ActiveX control project using ATL, and are not specific to invisible con­
trols like Pulse. Don't let the digressions persuade you that what we are
doing here is difficult. Creating a simple ActiveX control using ATL is
amazingly easy.

Step 1: Run ATL COM AppWizard
An ActiveX control project created with ATL always begins with the first
of ATL's wizards, ATL COM App Wizard. Click the New command on
the File menu, select ATL COM App Wizard as pictured in Figure 10-2,

and type Pulse for the project name.

When the single dialog appears listing control options (Figure 10-3), click
the Finish button to accept the default settings. These settings specify that
the new control runs as a dynamic link library that does not use MFC.
Leave clear the option labeled Allow Merging Of Proxy/Stub Code, which
is available only for DLL server types. Selecting the option tells COM
App Wizard to set up the project to link marshaling code into the control's
executable image, producing a single DLL file that contains both the

Figure 10-2.

Figure 10-3.

10: Writing ActiveX Controls Using ATL

Files Projects I Wo_rkspaces I . Other Documents I
-Ei~TLJ~9t.JApp\l./J;ard "-

Cluster Resource Type Wizard ~

Custom AppWizard
· :ffiii Database Project

DevStudio Add·in Wizard
P Extended Stored Procedure App\.l/izard

S ISAPI Extension Wizard
· Makefile

Launching A TL COM App Wizard.

Project name:

jPulse

jF:\Pulse :.J

lo' C1eate new workspace
("

flatforms:

1~Win32

control and its proxy/stub instructions. Clearing the option tells COM
App Wizard to instead write marshaling code to a separate file named
DllData.c, thus reducing the overall size of the finished executable. We'll
talk more about a control's proxy/stub code in Step 5 of this exercise.

COM and ATL consistently refer to an in-process ActiveX control as a
dynamic link library. As we saw in Chapter 9, an ActiveX control is
indeed a dynamic link library, but of a specialized form. As you read

.!:fide · '.
, __ . __ .,.,.,..,,,,,,_<·•--·~·oj

~. Pr.Qp~rtie~,

sA.·, -L9___5d

Selecting a project type in COM App Wizard.

445

ActiveX Controls

446

through the source code in the steps that follow, keep in mind that "DLL"
refers to the Pulse ActiveX control we are creating.

In setting up an ActiveX control project, COM AppWizard generates sev­
eral source files containing necessary code. The Pulse.cpp file implements
the DllMain function that the operating system calls when it first loads the
library, along with four additional functions that serve COM. Since COM
does not provide the functions, an in-process ActiveX control like Pulse
must export them itself:

• DllGetClassObject-Called from CoGetClassObject when the client
first requests COM to instantiate a control object in memory. The
function services the call by creating an instance of the class factory
and returning a pointer to the IClassFactory or IClassFactory2
interface.

• DllCanUnloadNow-Called from CoFreeUnusedLibraries when the
client is finished using the control server. The function informs the
caller whether any objects managed by the ActiveX control are still
in service, indicated by the control's internal reference count of out­
standing objects. If the count is zero for all interfaces, the DllCan­
UnloadNow function returns S_OK to permit COM to unload the
control from memory.

• DllRegisterServer-Inserts information about the ActiveX control
into the system Registry. The most important of a control's Registry
data is an entry under HKEY_CLASSES_ROOT\CLSID that specifies
the location of the control's executable file. Given only the control's
class identifier supplied by the container application, COM scans
the CLSID folder to locate the control so it can load it into memory.
This arrangement allows an ActiveX control to reside anywhere on
a hard disk or network, in contrast to a normal DLL file that must
usually be restricted to specific locations recognized by the operat­
ing system.

• DllUnregisterServer-Removes Registry data inserted by
DllRegisterServer for each of the control's objects.

10: Writing ActiveX Controls Using ATL

These four functions are short wrappers, only a single line each. They all
call into an object named _Module, which is an instance of ATL's
CComModule class. It is the _Module object that provides the main imple­
mentations for the functions.

COM App Wizard gives the finished control an extension of DLL instead of
OCX, without offering an option for choosing the file extension. You may
feel that the world is crowded enough with DLL files and that an ActiveX
control should have an OCX extension to allow users to infer the file's
purpose. If so, some editing is required at this point to change the file
extension. Close the project workspace temporarily, open the Pulse.dsp
file in the text editor, and use the Replace command to rename all occur­
rences of" .dll" to ".ocx." Then reopen the project and change the file
extension in the Link tab of the Project Settings dialog. Don't try this,
though, if your control runs in the Microsoft Transaction Server
environment.

COM AppWizard creates a skeleton project, but does not add source code
for the ActiveX class object itself. The next step after running COM
App Wizard is to insert code for an object's class using the second of ATL's
wizards, named ATL Object Wizard.

Step 2: Run ATL Object Wizard
ATL's Object Wizard generates a class declaration and stub implementa­
tion functions for an object class, making it somewhat akin to MFC's
Class Wizard. Run Object Wizard as shown in Figure 10-4 on the next
page, either by choosing the New ATL Object command from the Insert
menu, or by right-clicking the project name in the ClassView pane and
choosing the command from the context menu. The WizardBar menu also
provides access to the same command.

Object Wizard automatically adds A TL code to the project for any of 17

different object types, some of which are listed in Table 10-4 on the next
page. The Full Control option is commonly selected when developing an
ActiveX control project, but the option presumes the control will display
a window and support such luxuries as a property sheet and a representa­
tive icon. For a small invisible control like Pulse, it is usually preferable
to choose one of the simpler component types and build up from there,

447

ActiveX Controls

Figure 10-4.

Table 10-4.

448

Two methods for invoking A TL Object Wizard.

Common object types that ATL Object Wizard supports.

Object type

Simple Object

Add-in Object

Internet Explorer
Object

ActiveX Server
Component

Remarks

Creates a bare COM object. Interface support must be added
manually.

Creates a simple add-in object that connects to Developer
Studio's !Application interface. Chapter 13, Customizing
Visual C++, explains Developer Studio add-ins in more
detail.

Creates a COM object that supports the interfaces expected
by Internet Explorer, but without additional support for a
user interface.

Adds support for OnStartPage and OnEndPage, with point­
ers to ASP interfaces such as !Request, !Response, and
!Server.

10: Writing ActiveX Controls Using ATL

Object type

Microsoft Trans­
action Server

Component
Registrar

Lite Control

Full Control

Composite
Control

Property Page

Dialog

Provider

Remarks

Creates a skeleton implementation file that includes the
Mtx.h header file required by a transaction server.

Provides access to the system Registry through A TL' s Reg­
istrar, implemented by the !Registrar interface.

Creates a control with a user interface that can be embed­
ded in Internet Explorer, but which does not support inter­
faces required by many other containers. Provides pointers
to client's IOlelnPlaceSite Windowless, IOleClientSite, and
IAdviseSink interfaces.

Creates a control that can be embedded in all containers
that comply with ActiveX guidelines. Provides the same
pointers to site interfaces as Lite Control.

Creates a control similar to a dialog box that can contain
other ActiveX controls and normal controls.

Adds a property page object to the control project. Select
this option once for each page of a property sheet.

Adds a generic dialog resource to the project.

Creates an object that performs the data translating services
of an OLE DB provider.

rather than having to later remove unwanted code. The Pulse project does
not require a lot of starter code, so select Objects in the lefthand pane of
the wizard's dialog and double-click the icon labeled Simple Object, as
shown in Figure 10-5 on the next page.

Object Wizard next displays the Properties dialog (Figure 10-6 on page
451), which queries for characteristics of the control. In the Names tab,
type PulseCtl for the short name, from which Object Wizard fills in the
other edit boxes with appropriate entries. The Class edit box contains the
name of the CPulseCtl class that implements the control's only object.
This class is important because it inherits from all the interfaces that the
Pulse control supports.

Object Wizard writes the CPulseCtl class source code to the indicated H
and CPP files. The CoClass edit box holds the name of the control's com­
ponent class, which serves as the type library equivalent of the object

449

ActiveX Controls

Figure 10-5.

450

MS . Component ;;ij. ·
Component Tr ansach... R eg1str ar . . . ~l

• ··~···· ·~·-···-··-·-··········-· ·---·:· • =·:·:-:······.·:::·::;:·~··:·,,:·:.·,,,,·: • ..,."·:;7:···.····:·-:·:":·:c: "':"""""·•·· .l::::J.
I ·Ne:J.t > · 1 \ · · Cancel I

The A TL Object Wizard dialog.

class. The CPulseCtl class and the PulseCtl component class refer to the
same object but distinguish between the two places where the object is
defined. CPulseCtl refers to the C++ source code that implements the
object, whereas the PulseCtl component class refers to the object's defini­
tion in the control's type library. The Interface box shows the name of the
interface on which the control exposes to the world its custom methods
and properties. The edit boxes labeled Type and ProgID hold strings that
describe the CPulseCtl object and its programmatic identifier.

Some of the names shown in Figure 10-6 end up as entries in the system
Registry, placed there by Pulse's DllRegisterServer function. The program­
matic identifiers PulseCtl.PulseCtl and PulseCtl.PulseCtl.1, for instance,

Figure 10-6.

1 O: Writing ActiveX Controls Using ATL

rC++--------_, -COM------~

2hort Name: IPul~eC_tl __ . :I CQClass: l~ul~e~t~

£lass: j CPu!s~CU . _

. .ti File: jr.ui:~~tl:~ ..
. C.EP File: jPulseCtl.cpp

Interface: j.-IP-ul_s_e-Ct-1 ---

}ype: IP~ls~CUEl~ss

Prog !D: l~ulse.P~lseCtl

0 K I · Cancel . j

Specifying names for an object in the A TL Object Wizard Properties dialog.

become strings under Registry keys named VersionindependentProgID
and ProgID, respectively. The only difference between the two identifiers
is that the latter contains the control's version number-1, in this case.
Both strings act as human-readable alternatives to the control's class iden­
tifier, providing a means for a container application to request a control
object without using the CLSID string. MFC's CWnd::CreateControl func­
tion, for example, accepts a programmatic identifier string like this:

CreateControl("PulseCtl.PulseCtl.1", NULL. 0, &rect,
pParentWnd, IDC_PULSECTL);

Similarly, a Visual Basic or VBA container passes the identifier to the
CreateObject function:

Dim PulseCtl As Object
PulseCtl = CreateObject ("PulseCtl.PulseCtl.l")

A client possessing only a programmatic identifier for a control can deter­
mine the corresponding class identifier by calling the OLE function
CLSIDFromProgID. The function ProgIDFromCLSID performs the opposite
translation.

In the Attributes tab, select the check box labeled Support Connection
Points, as shown on the next page in Figure 10-7. Connection points are
necessary for ActiveX controls like Pulse that fire events. The same tab

451

ActiveX Controls

Figure 10-7.

452

Object attributes in the A TL Object Wizard Properties dialog.

displays radio buttons that determine the control's threading model, inter­
face type, and whether it supports aggregation. We have already looked at
the threading models that ATL supports, but dual interfaces and aggrega­
tion deserve more discussion.

• Dual interface-We saw in Chapter 8 that Microsoft extended the
design of OLE to support custom controls, intending such compo­
nents to act as 32-bit replacements for VBX components. Because of
the way it passed function parameters, however, Visual Basic before
version 4 could not call a control method directly. To solve this
problem, Microsoft incorporated into OLE the !Dispatch interface to
provide the necessary link. The !Dispatch interface today serves
most often as a communication conduit for scripting clients such as
VBScript and JavaScript, allowing them to call a control's methods
through the services of the IDispatch::Invoke function, which con­
verts parameters and return values to and from the client's native
data type. Although a workable solution, the extra conversions and
indirectness of calling Invoke slow the container's interactions with
a control.

For Web page scripts and older Visual Basic clients, !Dispatch is a
necessary compromise. Container applications written in languages
such as C++, however, can directly access a control's methods by

10: Writing ActiveX Controls Using ATL

calling through pointers. IDispatch::Invoke and its time-consuming
conversions are not required. To accommodate clients that support
data types other than Variant, OLE supports the idea of dual inter­
faces. A method function of a dual interface can be accessed either
indirectly through IDispatch::Invoke or directly by calling a pointer
to the method, thus serving all container applications regardless of
what language they are written in.

11 Aggregation-Through aggregation, another object can appear to its
callers to have all of the abilities of the Pulse control plus whatever
new services the second object provides. The aggregating object,
often referred to as the containing or outer object, embeds the Pulse
control the same way a container application would. The outer con­
trol then selectively filters Querylnterface requests from its client,
passing on to Pulse any requests for the IPulseCtl interface. The
outer object's client receives the desired pointer and calls into
Pulse, unaware that now Pulse, not the object that has aggregated it,
is providing the service.

The aggregation selection in the Object Wizard Properties dialog
does not determine whether your control can aggregate another
object, only whether your control can itself be aggregated.

If you do not intend your own control to serve older Visual Basic applica­
tions or to be scripted on a Web page or Active Server Page, select the
Custom radio button in the dialog. This has the benefit of slightly reduc­
ing the size of the finished control because each implemented interface
does not incorporate the four methods of !Dispatch. Although a control
with custom interfaces can appear in an HTML document, it cannot be
programmed through a script. The script interpreter must find the
!Dispatch interface on the control object or it cannot access the control.

For the Pulse control, accept the default settings to enable apartment
model threading and add support for dual interfaces, but not aggregation.
After mulling it over a moment, let's make Pulse non-aggregatable by
selecting the No radio button in the Aggregation group. This adds a single
line to the CPulseCtl class definition, as shown on the next page.

453

ActiveX Controls

454

DECLARE_NOT_AGGREGATABLE(CPulseCtl)

Although aggregation is usually a desirable characteristic for an ActiveX
control, supporting aggregation adds about 2 kilobytes to the control's
executable size. Since one of the goals of this project is to show how to
minimize the size of a control created with A TL, forgoing aggregation
seems a reasonable compromise.

The compromise is not as serious as it might first appear, because aggrega­
tion is not the only technique by which one ActiveX control can make use
of another. Nothing prevents a control from acting as a client itself and
embedding the Pulse control. In this technique, known as containment,
the containing control provides its own method functions for running
Pulse and advertises the methods through its type library. When a client
application requests one of Pulse's services, the containing control-let's
call it Outer-passes the call on to Pulse. When Pulse fires its event, con­
trol travels back to Outer's handler function, which in turn propagates the
event by firing into its client application. As with aggregation, the client
application is unaware that another control is providing the service. But
unlike aggregation, containment slows communication between Pulse and
the client application because the Outer control must serve as a middle­
man between the two.

Leave blank the check box labeled Free Threaded Marshaler. This option
adds to the project an object known as the free-threaded marshaler,
described in the sidebar.

The Free-Threaded Marshaler

Selecting the Free Threaded Marshaler check box in ATL Object
Wizard generates a call to COM's GoGreateFreeThreadedMarshaler
function:

HRESULT FinalConstruct()
{

}

return CoCreateFreeThreadedMarshaler(
GetControllingUnknown(), &m_pUnkMarshaler.p);

10: Writing ActiveX Controls Using A TL

The function creates an object called the free-threaded marshaler that
aggregates to the control and oversees marshaling operations. Its pri­
mary purpose is to improve performance when a container applica­
tion using the single-threaded apartment model embeds an ActiveX
control using the both threading model. To see how the free-threaded
marshaler can benefit such a control, it's necessary to peer into a typ­
ical client that runs two ST A threads, where Thread B must call the
object instance owned by Thread A. Thread A first calls CoMarshal­
InterThreadlnterfacelnStream, receiving a pointer to a stream in
return. (A stream is just a collection of data.) Thread A hands the
stream pointer to Thread B, which uses it to call CoGetlnterfaceAnd­
ReleaseStream, receiving a pointer to a proxy that represents the
desired instance. Thread B can now safely call the proxy to access
methods on the object's interfaces, even though the instance was
created in a different apartment.

If an ActiveX control complying with the both threading model can
safely handle direct calls from any apartment, even different ST A
apartments, routing calls from the client's Thread B through a
marshaler is an unnecessary expenditure of time, because the client
could just as correctly (and more efficiently) call the object's instance
directly from Thread B. The client cannot safely assume this option
exists, and so must request a proxy through CoGetlnterfaceAnd­
ReleaseStream. But because the control is written to safely accommo­
date simultaneous access on different ST A threads, it calls CoCreate­
FreeThreadedMarshaler to implement its own custom marshaling
through the free-threaded marshaler. This object acts as a stub that
copies to the stream a direct pointer to the interface that the client
has requested through CoGetlnterfaceAndReleaseStream. The result
is that Thread B gets its interface pointer without having to switch
threads or traverse the winding paths of the COM marshaler. The
client cannot tell the difference, except that calls to the instance are
much faster because they access methods directly and are not mar­
shaled through proxy code. A control that adopts this technique,
however, must ensure that the object can handle simultaneous usage.

455

ActiveX Controls

456

Click the OK button to dismiss the ATL Object Wizard dialog, at which
point the wizard generates three files:

• PulseCtl.h and PulseCtl.cpp-Definition and implementation code
for the new CPulseCtl class.

• PulseCtl.rgs-Text file containing a script of the control's registra­
tion information. The registry script in the RGS file becomes part of
the resource data contained in the control's executable file, which
the DllRegisterServer function reads and installs in the Registry.
Object Wizard adds a line to the project's RC file to reference the
registry script:

IDILPULSECTL REGISTRY DISCARDABLE "Pul seCtl. rgs"

and inserts a #define statement in Resource.h for the IDR_PULSECTL
constant.

Object Wizard also adds several #include statements to the StdAfx.cpp
and StdAfx.h files. The statements bring into the project necessary ATL
source files such Atllmpl.cpp, AtlCtl.cpp, and AtlWin.cpp. Although the
names of the StdAfx files seem reminiscent of MFC projects, they refer­
ence MFC headers only if you select the MFC option in Step 1.

For each object that you add to a control, Object Wizard places an entry in
the control's object map. Pulse contains only the CPulseCtl object, so its
object map in the Pulse.cpp file looks like this when the wizard finishes:

BEGIN_OBJECT_MAP(ObjectMap)
OBJECT_ENTRY(CLSID_PulseCtl, CPulseCtl)

END_OBJECT_MAP()

Finally, ATL Object Wizard makes necessary changes to the project's IDL
file, from which the control's type library is generated. IDL stands for
interface description language, and the IDL file serves as input for the
Microsoft IDL compiler tool, MIDL. We will look at the project's IDL file
in more detail when we add Pulse's event function.

Figure 10-8.

1 O: Writing ActiveX Controls Using ATL

Step 3: Add the nlnterval Property
Pulse exposes a single custom property named nlnterval that contains
the rate in milliseconds at which the control fires its event. To add the
property to the interface, expand the list of Pulse classes in the Class View
window, right-click the entry for IPulseCtl, and choose the Add Property
command:

This invokes the Add Property To Interface dialog shown in Figure 10-8,

which queries for the same information as ClassWizard's Add Property

OK

Cancel

· ~ttributes ... ·1
Property I:!arne:

jnlnterval

Adding the nlnterval custom property to the Pulse ActiveX control.

457

ActiveX Controls

458

dialog encountered in Chapter 9. Type nlnterval for Pulse's property
name, giving it a long property type. (The property could just as easily be
short, but that would restrict the maximum tick interval to a little over a
minute.) The default IDL prototypes for the property's get/put methods
appear at the bottom of the dialog:

[propget, ...]
HRESULT nlnterval([out, retval] long *PVal);

[propput, ...]
HRESULT nlnterval([in] long newVal);

The get/put methods of COM are the low-level equivalent of MFC's Get/
Set functions, providing the means for a container to read and write a
control's property data. When the MIDL compiler compiles the project's
IDL file, it defines the two methods in the interface by prepending get_
and put_ to the property name. The get function's pVal parameter points
to the property's current value; the new Val parameter of the put function
contains a new property value that replaces the old one. If your control's
get/put methods require a more extensive parameter list, add the variables
in the dialog's Parameters box. The dialog inserts any additions in front of
the pVal and newVal parameters, and makes them common to both the get
and put methods. If you do not want the same list for both functions, you
must make the changes later by manually editing the IDL file using the
text editor. Feel free to change the parameter order or names in the IDL
file, but leave the pVal and newVal parameters last in the parameter list
together with their [out, retval] and [in] attributes.

The Put Function check box is accompanied by two radio buttons labeled
PropPut and PropPutRef. PropPutRef is similar to the default PropPut
option, except that it tells the container that the property's put function
accepts the newVal parameter by reference instead of by value. In this
case, the container sets the property by calling !Dispatch::lnvoke with the
DISP ATCH_PROPERTYPUTREF flag instead of DISP A TCH_PROPERTY­
PUT. Visual Basic clients, for example, use the Set keyword to indicate a
property assignment is by reference, not value:

Set PulseCtl.nlnterval = x

Figure 10-9.

10: Writing ActiveX Controls Using A TL

Clear the Put Function check box as shown in Figure 10-8 to prevent the
MIDL compiler from generating a put method entry for the nlnterval prop­
erty. A container should not be allowed to change nlnterval, and clearing
the Put Function check box in the dialog keeps the variable read-only.
One of the control's other methods provides the client a more logical
means of setting the nlnterval property.

The dialog's Attributes button opens a dialog that allows selection of
property characteristics such as its dispatch identifier, an optional
description, and special flags. Selected attributes wind up in the IDL file
and ultimately in the type library where they describe the property to pro­
spective containers. Click the combo box shown in Figure 10-9 to display
a list of available attribute settings described in Table 10-5 on the folowing
page. Keep in mind that the attributes refer to the property's get/put func­
tions rather than to the property variable itself. In COM, the word property
is often used as a shorthand term for the get/put methods that provide a
client access to the property.

source
varar

Selecting property attributes in the Edit Attributes dialog.

459

ActiveX Controls

Table 10-5.

460

Property attributes.

Attribute

id

helpstring

bindable

call_as

Description

Specifies a dispatch identifier (DISPID) for the property's get
or put method.

Specifies a short text string that describes the property. The
container can retrieve the string through the control's
ITypelnfo::GetDocumentation method. Although the help
text is stored inside the control as part of its type informa­
tion, deleting a helpstring entry in the Edit Attributes dialog
does not reduce the size of the control's executable image.

Uses data binding to tie the property to a specific field in a
database. This means that whenever the property changes in
value, the control notifies the database and requests that the
bound record field be updated to reflect the new value. For
more information about this powerful concept, refer to the
MSDN article titled "ActiveX Controls: Using Data Binding
in an ActiveX Control." You can locate the article by search­
ing for its title in MSDN's Search tab with the Search Titles
Only check box set.

Enables a client to access the property's get/put functions
via a different name. This is helpful for functions that have
numerous "nonremotable" parameter types, such as int or
void. A nonremotable variable does not appear exactly the
same to operating systems on dissimilar machines. An int
value, for example, is nonremotable because COM has no
guarantee that each machine (or even each client) ascribes
the same size to the variable. In contrast, short and long
variables are remotable because every machine recognizes
them as occupying two and four bytes. For this reason, lists
of variable types in Object Wizard include short and long
types but never int, which is too ambiguous for COM.

Individual nonremotable parameters can also be specified
through the represent_as and transmit_as attributes. But
for get/put functions that take several parameters of non­
remotable types, call_as is more convenient and efficient
than represent_as and transmit_as. Giving a property func­
tion a call_as attribute means that your control can make all
necessary conversions in a single step, rather than several
steps, one for each parameter.

1 O: Writing ActiveX Controls Using ATL

Attribute

defaultbind

Description

Using nonremotable function parameters is particularly inef­
ficient for in-process servers like ActiveX controls, because
it forces calls to call_as functions to be marshaled through
proxy/stub code. You must provide a conversion routine to
the container's proxy DLL that handles the nonremotable
parameters and another conversion routine in the control's
stub to receive the call. Using remotable types for all func­
tion parameters in an ActiveX control ensures that calls
from the container directly access the control without
marshaling.

Identifies the bindable property that best represents the
control object. Only one of the control's properties can have
the defaultbind attribute, and it must also have the bindable
attribute. The defaultbind attribute allows a container to
bind to the entire control object instead of to individual
properties.

defaultcollelem Allows clients written in Visual Basic for Applications to
directly access the property's get/put functions.

displaybind Indicates to the container that the property should be dis­
played to the user as bindable. The property must also have
the bindable attribute.

helpcontext Specifies a 32-bit number that identifies information in the
control's help file pertaining to the property.

hidden Requests that the container should not display the property
to the user.

immediatebind Requests that the database is notified immediately of any
change to the property rather than waiting until the control
loses input focus. The property must also have the bindable
attribute.

local Specifies that the MIDL compiler should generate only the
interface header files, not the stub code. The local attribute is
not relevant to in-process ActiveX controls like Pulse.

nonbrowsable Requests the container not to include the property in the
container's properties browser.

(continued)

461

ActiveX Controls

462

Table 10-5. continued

Attribute

requestedit

restricted

source

vararg

Description

Indicates that the control will query the container for
permission before changing the value of the property. Per­
mission is requested through the IPropertyNotifySink::On­
RequestEdit function, which notifies the container that the
property is about to change and that the object is asking for
permission to proceed. A return value of S_F ALSE from
OnRequestEdit denies the request; a return value of S_OK
grants permission to change the property's value. Upon
receiving S_OK, the control must then call IPropertyNotify­
Sink::OnChanged if the property also has the bindable
attribute.

Specifies that the property's get/put methods must not be
called from a macro.

Indicates that the get/put functions return an object or
Variant that is a source of events. The source attribute is
rarely used for properties, but we will apply it shortly to
Pulse's list of interfaces.

Indicates that the property's get/put methods can accept a
variable number of arguments. The method's last argu­
ment must be a safe array of Variant type that contains
default values for each unspecified argument.

Step 4: Add Methods
Closing the Add Property To Interface dialog writes the property informa­
tion to the IDL file. The next step is to add three method functions named
StartPulse, EndPulse, and _OnTimer. By calling the StartPulse method,
the container tells Pulse to begin its metronomic event firing. The func­
tion's parameter specifies in milliseconds the timing interval at which the
container wants to receive the event notifications. The container calls
EndPulse to stop the event firing, after which the control becomes inac­
tive, drawing no CPU time. The _On Timer function is used by the CTimer
class, described in Step 6. For each method, right-click the IPulseCtl inter­
face in the Class View pane as we did before, but this time choose the Add
Method command:

10: Writing ActiveX Controls Using A TL

El·· ~~~ Pulse classes
1o-0 _I PulseCtlE vents

fil .. ·"T: CPulseCtl

ciJ <>-011'.i!m §.o to Definition
ffi[J Globals

• W•qFHffiljiffi fW
, Add fropert}'... l-T
• ci; Nell' Folder...

'· EtJ ·Docking View

Hide

~ Prgperties

ClassView ~ ResourceView ·@] FileView

The nRate parameter of StartPulse becomes the new value for the
nlnterval property. This explains why in the previous step we decided a
client does not need access to a put_nlnterval function, because calling
StartPulse serves the same purpose. Enter the function and parameter
name in the Add Method To Interface dialog shown in Figure 10-10, then
click OK to dismiss the dialog. Repeat the process to add the EndPulse
and _On Timer methods. Neither EndPulse nor _On Timer takes a parame­
ter, so leave the Parameters box blank. Close the Add Method To Interface
dialog, at which point Visual C++ adds appropriate code for all three
methods to the Pulse.idl file. It also writes stub functions for the methods
to the Pulse.cpp file, which we will edit after adding an event function to
the control.

B.eturn Type: OK

Cancel

. t?~t~~~~~Js~ 8ttributes .. : ·

f arameters:

Figure 10-10. The Add Method to Interface dialog.

463

ActiveX Controls

464

Step 5: Add the Pulse Event I

The final addition to the project before we start coding is the Pulse event,
which fires at every lapse of nlnterval milliseconds. In previous versions
of ATL, adding an event to a control required a little manual labor, involv­
ing the generation of a GUID identifier for the event interface, editing the
IDL file, and running a tool called the ATL Proxy Generator. But with the
library's third release, the procedure has become much smoother and
more user friendly. Events are now almost as easy to add to a control pro­
ject as methods and properties, requiring only a short detour to compile
the project's IDL file.

Here's a list of the steps required to generate code for the new event, after
which we will discuss what is happening behind the scenes. Figure 10-11

illustrates the four steps.

1. Right-click the _IPulseCtlEvents entry in the ClassView pane and
choose the Add Method command from the context menu. In the
Add Method To Interface dialog, select a return type of void, name
the event function Pulse, and click OK to close the dialog.

2. Expose the FileView pane in the Workspace window, right-click the
entry for Pulse.id!, and choose the Compile Pulse.id! command.
This launches the MIDL compiler, which produces the type library
file Pulse.tlb and adds it to the project.

3. When the MIDL compiler finishes, switch back to the ClassView
pane and right-click the CPulseCtl entry. Choose the Implement
Connection Point command from the menu to expose a dialog of the
same name.

4. Set the check box labeled _IPulseCtlEvents and click OK to close
the dialog.

The bottom half of the project's IDL file lists a library block titled
PULSELib, which describes the new Pulse event to the MIDL compiler.
Some container applications read only the library block when searching a
type library for a control's methods and properties, so it's usually prudent
to edit the IDL file to move the first two indented blocks of code into the
library block. The first block, formed by square brackets [], contains

10: Writing ActiveX Controls Using A TL

L.J \~/
,~,

1. Specify the event name. 2. Create a type library.

4. Generate the event proxy. 3. Set up a connection point.

Figure 10-11. Adding an event to an ATL ActiveX control project.

attributes of the IPulseCtl interface; the second block encloses in curly
braces{} a list of the interface's methods. Listing 10-1 on the next page
shows what the result should look like after rearranging the code. If you
are developing the Pulse project yourself by following these steps, the
GUID numbers for your own IDL file will not match the ones shown in
the Listing.

The importlib directive brings in precompiled type information from
the OLE type libraries Std0le32.tlb and Std0le2.tlb, which are usually
located in the Windows System or System32 directory. Although not
required, the interface name _IPulseCtlEvents begins with an underscore.
This convention serves as a notification to interface browsers that the
_IPulseCtlEvents interface is private to the control, and that browsers

465

ActiveX Controls

Listing 10·1.

466

The revised Pulse.id] file.

import "oaidl.idl":
import "oci dl . i dl ":

II ***
II First two blocks have been moved from here ...
II ***

[

]

uuid(38365F9D-C3AE-11Dl-BEC9-E0F4E352507A).
version(l.0).
helpstring("Pulse 1.0 Type Library")

library PULSELib
{

importlib("stdole32.tlb"):
importlib("stdole2.tlb"):

II **
II ... to here:

[
object.
uuid(3B365FA9-C3AE-11Dl-BEC9-E0F4E352507A).
dual.
hel pstring("IPul seCtl Interface").
pointer_default(unique)

interface IPulseCtl : !Dispatch
{

} ;

[propget. id(l)J HRESULT nlnterval(
[out. retval] long *pVal):

[id(2)] HRESULT StartPulse(long nRate):
[id(3)] HRESULT EndPulse();
[id(4)] HRESULT _OnTimer();

II **

[

J

uuid(7C7E168F-C2Fl-11Dl-BEC9-E4F4ACA02373),
helpstring("_IPulseCtlEvents Interface")

dispinterface _IPulseCtlEvents
{

properties:
methods:

10: Writing ActiveX Controls Using ATL

} :

} :
[

[id(l), helpstring("method Pulse")] void Pulse():

uuid(8C9BABDD-BCE5-11Dl-BEC9-D43CA8CB2F51),
helpstring("PulseCtl Class")

coclass PulseCtl
{

[default] interface IPulseCtl;
[default, source] dispinterface _IPulseCtlEvents:

} :

should not display the interface to the user. Not all browsers comply with
the convention, however. The lines

[default] interface I Pul seCtl;
[default, source] dispinterface _IPulseCtlEvents;

identify IPulseCtl as the control's default dispatch interface and _IPulse­
CtlEvents as the control's default source interface, through which the con­
tainer receives the control's event notification. The source attribute tells
the MIDL compiler that the container, not the control, is expected to pro­
vide an !Dispatch implementation for _IPulseCtlEvents. The control is the
source of calls into the _IPulseCtlEvents interface, and the container's
event !Dispatch is the event sink.

A single line identifies the control's event by its internal name, and asso­
ciates the event with a unique dispatch identifier value specified by the id
keyword:

[id(l), helpstring("method Pulse")] void Pulse();

The control does not call the Pulse function directly to fire events, but
instead calls a wrapper function named Fire_Pulse that A TL adds to the
project. The wrapper function, called a proxy, in turn calls the container's
IDispatch::Invoke method, supplying the dispatch identifier number to
identify the event being fired. That's how a proxy function gets its name.
The Fire_Pulse function acts as a stand-in or proxy for the container's
event handler function, serving as a place for the control to call when fir­
ing an event without having to worry about the details of how the call

467

ActiveX Controls

468

ultimately gets to the client. Proxy functions are members of a single
proxy class that serves as one of the base classes from which CPulseCtl
derives, allowing the control to fire its event anywhere within its
CPulseCtl implementation. The role of the proxy class is different than
that of a proxy object that COM sets up to marshal interthreaded calls.
Both class and marshaling object are often called "proxy" for short, so it's
sometimes easy to confuse them. But they are not the same thing.

In executing the Implement Connection Point command, we added to the
project an implementation of the IConnectionPoint interface, through
which the container determines which connection points the ActiveX
control supports. The command examines the control's type library file
from which it extracts the interface names _IPulseCtlEvents and IPulseCtl
to create the proxy class. An ActiveX control usually includes its type
library as resource data contained in the control's executable file, allowing
type browsers such as ClassWizard to access the data. During the control's
development stage, however, the type library exists as a separate file with
a TLB extension.

ATL's IConnectionPointimpl template defines a base for the new CProxy _
IPulseCtlEvents proxy class. The code for this class, which resides in the
file PulseCP.h, contains Pulse's single event proxy as a member function:

template <class T>
class CProxy_IPulseCtlEvents : public IConnectionPointimpl<T.

&DIID~IPulseCtlEvents,

CComDynamicUnkArray>
{

public:
VOID Fire_Pulse()
{

T* pT = static_cast<T*>(this);
int nConnectionindex;
int nConnections = m_vec.GetSize():

for (nConnectionindex = 0; nConnectionindex < nConnections;
nConnectionindex++)

{

pT->Lock():
CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionindex);
pT->Unlock();
!Dispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);

1 O: Writing ActiveX Controls Using ATL

}
}

} ;

if (pDispatch != NULL)
{

}

DISPPARAMS disp = { NULL, NULL, 0, 0 };
pDispatch->Invoke(0xl, IID_NULL, LOCALE_USER_DEFAULT,

DISPATCH_METHOD, &disp, NULL, NULL, NULL);

Notice that the Fire_Pulse proxy function is of type void. Events, unlike
methods, never return a value.

I

Through its base class, CProxy _IPulseCtlEvents implements the connec­
tion point for the interface identified by the second template parameter. In
our case, the interface is _IPulseCtlEvents and its dispatch interface identi­
fier is DIID_IPulseCtlEvents, defined in the Pulse_i.c file. The third tem­
plate parameter specifies an ATL class that handles the connections. The
default CComDynamicUnkArray class allows an unlimited number of con­
nections; the alternative CComUnk.Array class allows only a fixed number
of connections.

Step 6: Add the CTimer Class
Pulse could simply capture WM_TIMER messages to activate its event fir­
ing, but that would require creating a window to receive the messages. A
window takes a toll in system resources, requiring a lot of time to set up
and take down, and a streamlined ActiveX control like Pulse should avoid
creating windows when possible. Fortunately, the AtlButton sample pro­
ject included with Visual C++ contains a simple thread-safe CTimer class
that does just what we need. Because the code is not generated by an ATL
wizard, it appears on the next page in its entirety as Li~ting 10-2.

A glance through the listing shows CTimer taking several steps for which
the reasons may not be immediately apparent. The class arms the timer
through its TimerOn function, which creates a new thread that calls the
Sleep function to sleep for the requested duration. When the thread wakes
up, it calls the _On Timer method we added in Step 4 to announce that the
interval has elapsed. The thread then goes back to sleep again, a process
that continually repeats in a loop until the TimerOff function is called.
The class is interesting because it performs its own custom marshaling

469

ActiveX Controls

Listing 10-2. The Timer.h file.

470

II Timer.h : Declaration of the CTimer class (borrowed from
II Samples\VC98\ATL\At1Butto\At1Butto.h file)

template <class Derived, class T, canst IID* piid>
cl ass CTimer
{

public:
CTimer() { m_bTimerOn = FALSE; } I I Ti mer is OFF

HRESULT TimerOn(DWORD dwTimerinterval
{

II Arm the timer

}

Derived* pDerived = ((Derived*) this):
m_dwTimerinterval = dwTimerinterval:
if (m_bTimerOn) II If already on, just change interval

return S_OK;

m_bTimerOn
m_dwTimerinterval
m_pStream

= TRUE:
dwTimerinterval;

= NULL;

HRESULT hRes CoMarshalinterThreadinterfaceinStream(
Piid, (T)pDerived, &m_pStream);

II Create thread and pass the thread proc the this ptr
m_hThread = CreateThread(NULL, 0, &_Apartment,

CPVOID) this, 0, &m_dwThreadID);
return $_OK:

void TimerOff()
{

II Disable the timer

}

if (m_bTimerOn)
{

}

m_bTimerOn = FALSE;
AtlWaitWithMessageloop(m_hThread);

II Implementation
private:

static DWORD WINAPI _Apartment(PVOID pv
{

CTimer<Derived, T, piid>* pThis =

pThis->Apartment();
return 0;

(CTimer<Derived, T, piid>*) pv;

1 O: Writing ActiveX Controls Using A TL

}

DWORD Apartment()
{

}

Colnitialize(NULL);
HRESULT hRes;
m_spT.Release();

if (m_pSt ream)
hRes = CoGetlnterfaceAndReleaseStream(

m_pStream, *Piid, (PVOID*) &m_spT);

II Main timer loop that periodically calls _OnTimer
while(m_bTimerOn)
{

Sleep(m_dwTimerlnterval);
if (!m_bTimerOn)

}

break;
m_spT->_OnTimer();

m_spT.Release();
CoUninitialize();
return 0;

II When TimerOff function sets
II m_bTimerOn = FALSE, unregister
II and quit

public:
DWORD
BOOL

m_dwTimerlnterval;
m_bTi merOn;

private:

} ;

HANDLE m_hThread;
DWORD m_dwThreadID;
LPSTREAM m_pStream;
CComPtr<T> m_spT;

across threads, ensuring that the _On Timer function receives the call not
on the new thread, but on the original thread that started the timer. In our
case this is the main thread of the Pulse control, from where _On Timer
can safely fire the Pulse event. Marshaling back to the main thread is a
necessary step for an apartment-threaded control like Pulse, because the
rules of COM dictate that an object must fire its events within the client's

471

ActiveX Controls

472

apartment-that is, on the same client ST A thread that instantiated
the object.

If you are creating Pulse as a new project, simply copy the file Timer.h
from the companion CD to your own project folder. The file is a header,
so there is no need to add it to the project using the Add To Project
command.

Step 7: Edit the PulseCtl.h File
The project began back in Step 2 with the selection of the simplest object
type available from ATL Object Wizard, which set up the CPulseCtl class
to inherit only three base classes and two interfaces. A real ActiveX con­
trol must implement more interfaces than these, so in this step we will
expand the class's inheritance list to include additional interfaces that
typical containers expect a control to implement.

Open the PulseCtl.h file in the text editor and add the two #include state­
ments shown here in gray, one for the CTimer class we created in the pre­
ceding step, and the other to bring in additional interface implementations
the project requires:

#include "resource.h"
#include "PulseCP.h"
#include "timer.h"
#include <atlctl.h>

II main symbols

Next, add the following lines to the CPulseCtl inheritance list. The actual
order of the lines does not matter, but note that all entries in the list
except the last end with a comma:

class ATL_NO_VTABLE CPulseCtl :
public CComObjectRootEx<CComSingleThreadModel>.
public CComCoClass<CPulseCtl, &CLSID_PulseCtl>.
public IConnectionPointContainerimpl<CPulseCtl>.
public IDispatchlmpl<IPulseCtl, &IID_IPulseCtl, &LIBID_PULSELib>,
public CTimer<CPulseCtl, IPulseCtl, &IID_IPulseCtl>,
public IObjectWithSitelmpl<CPulseCtl>,
public CComControl<CPulseCtl>.
public IPersistStreamlnitimpl<CPulseCtl>,
public IOleControllmpl<CPulseCtl>,
public IOleObjectlmpl<CPulseCtl>.
public IViewObjectEximpl<CPulseCtl>,

1 O: Writing ActiveX Controls Using ATL

{

public IOlelnPlaceObjectWindowlessimpl<CPulseCtl>,
public IPersistStorageimpl<CPulseCtl>,
public IProvideClasslnfo2Impl<&CLSID_PulseCtl,

&DIID~IPulseCtlEvents, &LIBID_PULSELib>,
public CProxy_IPulseCtlEvents< CPulseCtl >

Although the Pulse control is invisible rather than windowless, the
CPulseCtl class must nevertheless derive from IOlelnPlaceObject­
Windowlesslmpl. (Recall from Chapter 9 that windowless controls rely
on the client for display services.) This is an example of how ATL is not
optimized for invisible controls like Pulse. Instead of offering a separate
implementation of the IOlelnPlaceObject interface that our control needs,
ATL provides only IOlelnPlaceObjectWindowless, which is an extension
of IOlelnPlaceObject that adds support for window messages and drag­
and-drop operations. Pulse does not require these extra methods, but
must include them nonetheless to obtain the implementation for IOle­
InPlaceObject.

Following the class inheritance list, add a prototype for the FinalRelease
member function, which ATL's CComObject calls when unloading the
Pulse control:

public:
HRESULT FinalRelease();
CPulseCtl()
{
}

Notice that CPulseCtl does not declare a class destructor. This is because
destructors are not virtual in the ATL base classes from which CPulseCtl
derives, so the class cannot safely assume its destructor will ever be
called. Instead, an ActiveX control class using ATL should perform any
necessary clean-up duties in the FinalRelease function, which is called
just before the object instance is destroyed. Its corollary is the Final­
Construct function, to which a control should confine its initialization
tasks. A second project later in this chapter demonstrates FinalConstruct.

473

ActiveX Controls

474

To match the interface templates placed in the CPulseCtl inheritance list,
we must add corresponding entries to the class's COM map as shown here:

BEGIN_COM_MAP(CPulseCtl)
COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)
COM_INTERFACE_ENTRY(IPulseCtl)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRY(IConnectionPointContainer)
COM_INTERFACE_ENTRY(IObjectWithSite)
COM_INTERFACE_ENTRY(IViewObjectEx)
COM_INTERFACE_ENTRY(IViewObject2)
COM_INTERFACE_ENTRYCIViewObject)
COM_INTERFACE_ENTRY(IOleinPlaceObjectWindowless)
COM_INTERFACE_ENTRY(IOleinPlaceObject)
COM_INTERFACE_ENTRY2(IOleWindow, IOleinPlaceObjectWindowless)
COM_INTERFACE_ENTRYCIOleControl)
COM_INTERFACE_ENTRYCIOleObject)
COM_INTERFACE_ENTRY(IPersistStreaminit)
COM_INTERFACE_ENTRY2(IPersist, IPersistStreaminit)
COM_INTERFACE_ENTRY(IPersistStorage)
COM_INTERFACE_ENTRYCIProvideClassinfo)
COM_INTERFACE_ENTRY(IProvideClassinfo2)

END_COM_MAP()

IProvideClasslnfo2 is new among OLE interfaces, replacing the older
IProvideClasslnfo. Some containers do not recognize IProvideClasslnfo2,
so the map includes an entry for IProvideClasslnfo. Because 1Provide­
Classlnfo2 delegates to the older interface, the addition does not increase
Pulse's code size. IProvideClasslnfo and IProvideClasslnfo2 support Pulse's
event firing. Both interfaces provide the GetClasslnfo method, which sup­
plies type information pertaining to the PulseCtl component class object.
The type information, which comes from the control's type library, tells
the client how to set up its handler function for the Pulse event.

Besides forming the core of Uniform Data Transfer, the IDataObject
interface provides the means for data change notifications to the client.
A client that implements the IAdviseSink interface calls the control's
IDataObject::Advise method to begin receiving notifications when the
control's data is altered. This does not apply to Pulse, and the control can
operate normally without supporting IDataObject. However, some clients
such as the Test Container utility require the interface to set up the advise
connection.

10: Writing ActiveX Controls Using A TL

Make sure the COM map includes an entry for IConnectionPointContainer:

COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

If you did not select the Support Connection Points option in Object
Wizard back in Step 2, type the entry into the COM map and add
IConnectionPointContainerlmpl to the class inheritance list. A container
queries the object through its IConnectionPointContainer interface to learn
what outgoing interfaces the object supports, which in our case is the
event interface _IPulseCtlEvents. Connecting and disconnecting the con­
tainer's event sink to and from the object takes place through the object's
IConnectionPoint interface. The COM map does not require a separate
entry for IConnectionPoint because IConnectionPointContainer provides
the FindConnectionPoint method, which returns a pointer to ATL's imple­
mentation of IConnectionPoint representing _IPulseCtlEvents. Figure
10-12 illustrates the steps in which a container hooks up its event sink to
Pulse's event function.

FindConnectionPoint and its sister method EnumConnectionPoints read
an array known as the connection point map, which contains a list of
interface identifiers for every connection point the control offers. Pulse

1. Container queries for
pointer to connection point.

3. Object fires events by calling
into container's event sink.

Figure 10-12. How a container establishes connections to receive event firings.

475

ActiveX Controls

476

supports only one connection point for _IPulseCtlEvents, specified in the
connection point map that follows the COM map:

BEGIN_CONNECTION_POINT_MAP(CPulseCtl)
CONNECTION_POINT_ENTRY(DIID~IPulseCtlEvents

END_CONNECTION_POINT_MAP()

Below the connection point map, add the property map shown here. The
map is empty because Pulse does not support a property sheet, but some
interface implementations we added to the CPulseCtl class expect the map
to exist:

BEGIN_PROPERTY_MAPCCPulseCtl)
END_PROPERTY_MAP()

Step 8: Edit the PulseCtl.cpp File
Add the instructions shown here in gray to complete the stub functions in
the PulseCtl.cpp file:

lll
II CPulseCtl

#define MIN_RATE 10 II Minimum firing rate

STDMETHODIMP CPulseCtl ::get_nlnterval(long *pVal
{

}

*pVal = m_dwTimerinterval;
return S_OK;

STDMETHODIMP CPulseCtl ::StartPulse(long nRate)
{

}

if (!m_bTimerOn)
{

}

if (nRate < MIN_RATE)
nRate = MIN_RATE;

TimerOn(nRate);
m_dwTimerlnterval = nRate;
return S_OK;

return S_FALSE;

STDMETHODIMP CPulseCtl ::EndPulse()

II Ensure firing rate
II is not too low

II Start the timer

1 O: Writing ActiveX Controls Using ATL

{

Ti merOff ():
m_dwTimerinterval 0:
return S_OK:

}

STDMETHODIMP CPulseCtl ::_OnTimer()
{

}

Fire_Pulse();
return S_OK;

HRESULT CPulseCtl::FinalRelease()
{

return EndPulse():
}

The get_nlnterval method informs the caller of the current timer interval,
which is stored in the CTimer::m_dwTimerlnterval member variable.
There is no matching put function because we specified the nlnterval
property as read-only back in Step 2. StartPulse and EndPulse implement
the control's two methods, setting and stopping the timer. In case the
container does not call EndPulse when finished with the control, the
FinalRelease function calls EndPulse to ensure that the timer's worker
thread exits properly before the control terminates.

Step 9: Edit the Pulse.rgs File
We saw earlier that the project's RGS file contains scripted information
that the control's DllRegisterServer function writes into the system Regis­
try. Selecting the Simple Object option in Step 2 caused ATL Object Wiz­
ard to leave out some Registry information required by a normal ActiveX
control, such as a list of OLEMISC flags. The sidebar on page 4 79 dis­
cusses the flags in detail, but for now we need only add a value to Pulse's
registration data that specifies the required flags in the MiscStatus Regis­
try key. Open the Pulse.rgs file in the text editor and add these lines:

ForceRemove {8C9BABDD-BCE5-11Dl-BEC9-D43CA8CB2F51} = s 'PulseCtl Class'
{

Prag ID = s 'Pulse. Pul seCtl .1'
VersionlndependentProgID = s 'Pulse.PulseCtl'
ForceRemove 'Programmable'
InprocServer32 = s '%MODULE%'

477

ActiveX Controls

478

}

{

}
val ThreadingModel = s 'Apartment'

ForceRemove 'Control'
'MiscStatus' = s '0'
{

'1' = s '148624'
}

'Typelib' = s '{7C7El682-C2Fl-11Dl-BEC9-E4F4ACA02373}'

The Control entry advertises Pulse as an embeddable ActiveX control. The
MiscStatus value 148,624 represents the combined value of five flags:
OLEMISC_SETCLIENTSITEFIRST, OLEMISC_INSIDEOUT, OLEMISC_
CANTLINKINSIDE, OLEMISC_INVISIBLEATRUNTIME, and OLEMISC_
NOUIACTIV A TE, all described in the sidebar.

Ordinarily, ATL Object Wizard adds a default bitmap to a control project,
but not for simple object types like Pulse. If you would like to enhance the
Pulse control by adding a small bitmap, here's how to do it. We've seen
how some containers-the Visual C++ dialog editor, for instance-can dis­
play a bitmap on a tool button to represent a control to the user. The con­
tainer extracts the bitmap image from the ActiveX control's own resource
data, in which the image is identified by the control's ToolboxBitmap32
key in the system Registry. To insert the ToolboxBitmap32 key, include
this line along with the others we added to the PulseCtl.rgs file:

ForceRemove 'ToolboxBitmap32' = s '%MODULE%, l'

A control's bitmap is entirely optional, but adds a professional touch for
those controls intended for the marketplace. The size of the bitmap is
16-by-15 pixels, so a 16-color image takes up 512 bytes of the control's
resource data section. Choose the Resource command from the Insert
menu, choose Bitmap, and press Alt+Enter to expose the Bitmap Prop­
erties dialog. Change the dimensions of the work area to 16-by-15 and
assign the resource identifier the same value given in the ForceRemove
statement for the ToolboxBitmap32 key. In our case, the value is 1:

1 U: Writing ActiveX Controls Using ATL

• !D: 1 1 ~~::~ 1 !~~~~~, , mm• El
.: .!::!eight: 115.. ! ,C;olors: j1s_,. EJ

IP~l:e,~tt~f!l? ... P .$.ave compressed

OLEMISC Flags

An ActiveX control registers a set of OLEMISC bit flags stored as a
32-bit value in the system Registry. The flags publish information
about a control, informing a container of the control's characteristics,
operating preferences, and abilities. Making this information public
in the Registry means that a prospective container need not first
embed the control to determine its requirements and abilities. If a
control needs services that the container cannot offer, the container
determines the match is not suitable without having wasted time and
resources in loading the control.

To determine a control's OLEMISC flag settings, a container can call
the IOleObject::GetMiscStatus function. The call does not cause the
control to be loaded because OLE provides a default implementation
for the function that reads the control's OLEMISC flags from the Reg­
istry. As an alternative to involving the OLE run-time library, the
container itself can read the control's flags directly from the Registry,
accessing the \MiscStatus\1 folder under the control's CLSID entry.

ATL Object Wizard generates a MiscStatus value in the RGS file only
for ActiveX controls, not for simple objects like Pulse. A normal visi­
ble ActiveX control, for example, receives a MiscStatus value of
131,473, representing these five OLEMISC bit flags:

• OLEMISC_RECOMPOSEONRESIZE-Indicates that when being
resized, the control wants to recompose its display beyond merely

(continued)

479

ActiveX Controls

480

OLEMISC Flags continued

scaling it. Therefore, the container should activate the object when
resizing it and call the control's IOleObject::SetExtent method with
its new window size.

• OLEMISC_CANTLINKINSIDE-Indicates that if the object is cop­
ied to the Clipboard, the container must not allow the user to acti­
vate the object linked to the Clipboard.

• OLEMISC_INSIDEOUT-Required for ActiveX controls. The flag
tells the container that the control object can be activated in place
inside the container's window, without the container having to
display any special user interface elements such as menus and
toolbars to enable the user to interact with the control. In-place
activation, also known as visual editing, requires the container to
support the IOlelnPlaceSite interface.

• OLEMISC_ACTIVATEWHENVISIBLE-Indicates that the object
wants to be activated when it becomes visible.

• OLEMISC_SETCLIENTSITEFIRST-Used only with ActiveX
controls, this flag indicates that the control prefers to use
IOleObject::SetClientSite as its initialization function, even before
a call to IPersistStreamlnit::InitNew or IPersistStorage::InitNew to
retrieve the control's property data from disk. This allows the
control to access a container's ambient properties before loading
information from persistent storage. Note that the current imple­
mentations of OleCreate, OleCreateFromData, OleCreateFromFile,
OleLoad, and the default handler do not understand this value.
Control containers that wish to honor the flag must currently
implement their own versions of these functions in order to estab­
lish the correct initialization sequence for the control.

An invisible control like Pulse normally substitutes these two flags
for OLEMISC_ACTIVA TEWHENVISIBLE:

10: Writing ActiveX Controls Using A TL

• OLEMISC_INVISIBLEATRUNTIME-Informs the container that
the control has no user interface and does not display to the
screen.

• OLEMISC_NOUIACTIVATE-Indicates that the control does not
require shared user interface elements such as menus, and does
not need input focus to operate.

If your control has other run-time requirements not identified by the
flags that Object Wizard sets, make the appropriate change to the
MiscStatus value in the RGS file before building the project. For a
complete list of the flags and their bit values, refer to the article
"OLEMISC" in Visual C++ online help.

Step 10: Build and Test the Pulse Active){ Control
This final step oversees the completion of the Pulse project and presents a
few ideas on how to exercise the new control. First we must select a build
target. The ATL COM App Wizard sets up an A TL project with four release
configurations:

Configuration Preprocessor definitions

Release MinSize _ATL_DLL

Release MinDependency _ATL_STA TIC_REGISTRY

Unicode Release MinSize _UNICODE, _ATL_DLL

Unicode Release MinDependency _UNICODE, _ATL_STATIC_REGISTRY

For both ANSI and Unicode control projects, the MinSize and
MinDependency targets offer a choice of whether the control relies on an
auxiliary run-time file for ATL services, or incorporates all the code it
requires within its own executable file. The choice is between reduced file
size and reduced run-time dependency-very similar to an MFC project
for which you must choose whether to link statically or dynamically to
the MFC library.

The MinSize configuration reduces the size of a control by linking it
dynamically to Atl.dll, a 54 KB library file that Visual C++ installs in the

481

ActiveX Controls

482

Windows \System folder. When the control executes, it calls into Atl.dll
for the service functions that the control requires. This arrangement
results in the most efficient use of memory when several ActiveX controls
linked to Atl.dll execute together. In this case, the MinSize target can also
lead to faster download times when transferring the controls over a net­
work or the Internet, because the combined file size of the controls is
reduced-even taking into consideration the addition of Atl.dll, which
might also have to be transferred along with the controls.

The MinDependency configuration sets up the control project so that the
compiler expands the class templates into full classes instead of stub func­
tions that call into Atl.dll. In this configuration, the control itself contains
the interface implementation code it needs, as though the ATL services
were statically linked in. (This is only an analogy, because there is no
static library LIB file for ATL as there is for MFC.) The resulting ActiveX
control does not rely on the Atl.dll file, an independence it purchases at
the cost of a larger executable image. The MinDependency target is best
for single controls that are not expected to operate together with other
ATL controls. Because this description applies to Pulse, select the Release
MinDependency configuration in the Build toolbar:

Project files installed from the companion CD-ROM shorten target names
to MinSize and MinDep, keeping folder names to less than eight charac­
ters. You might prefer short target names for your own A TL projects, if for
no other reason than they take up less space in the system Registry. To
revise the target names that COM AppWizard sets up, temporarily close
the workspace and open the project's DSP file in the text editor. Using
the Replace command, replace all occurrences of Release MinDependency
and ReleaseMinDependency with "MinDep." Shorten the MinSize target
name through similar steps. Save the DSP file and reopen the project. You
should see the new target names listed in the Build toolbar.

1 O: Writing ActiveX Controls Using A TL

We haven't yet talked about compiler optimizations-that's the subject of
Chapter 12-but the Visual C++ optimizer can either increase execution
speed or reduce code size. The latter is almost always the best choice for
ActiveX controls, so the COM AppWizard preselects the small code size
optimization setting for you. If this isn't what you want, change the selec­
tion in the C++ tab of the Project Settings dialog. Once you have selected
the target configuration, click the Build Pulse.dll command on the Build
menu to compile and link the Pulse control. If the various compile and
link steps complete successfully, Visual C++ helpfully runs RegSvr32.exe
to register the control and displays the results in the Output window:

Registering ActiveX Control ...
RegSvr32: DllRegisterServer in .\MinDep\Pulse.ocx succeeded.

4~11 OTE If your ActiveX control requires the C run-time services, first remove
01"t the preprocessor definition that prevents linkage to the run-time library. In

the C++ tab of the Project Settings dialog, delete the constant _ATL_MIN_
CRT in the box labeled Preprocessor Definitions.

The Tumble2.htm document shown on the next page in Listing 10-3
showcases the new control. If you have created the Pulse control yourself
by following the steps outlined here, it has a class identifier different than
the one used by the Pulse.ocx control on the companion CD. In this case,
you must update the classid statement for the Pulse object in the
Tumble2.htm document:

<OBJECT
classid="clsid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
id=pulsel

>

The project's IDL file provides the new class identifier you need. Simply
copy into the Clipboard the identifier from the last uuid statement in the
Pulse.id! file, then paste it into the Tumble2.htm document to update the
classid value. Although Tumble2 uses a different timer, its animated dis­
play duplicates the original Tumble document shown on page 338.

The Test Container utility can also successfully embed our new control, as
proved in Figure 10-13 on page 485. Start Test Container, then load the

483

ActiveX Controls

Listing 10-3. The Tumble2.htm document.

484

<HTML>
<HEAD>
<TITLE>Tumbling Text Example 2 (Chapter 10)</TITLE>
<!HEAD>
<BODY>

<OBJECT
classid="clsid:8C9BABDD-BCE5-1101-BEC9-D43CA8CB2F51"
id=pulsel
>
<!OBJECT>

<OBJECT
classid="clsid:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"
id=label
width=150
height=150
>
<PARAM NAME="Angle" value="0">
<PARAM NAME="Alignment" value="7">
<PARAM NAME="BackStyle" value="l">
<PARAM NAME="BackColor" value="255">
<PARAM NAME="FontBold" value="-1">
<PARAM NAME="Caption" value="Click Here">
<PARAM NAME="FontName" value="Times New Roman">
<PARAM NAME="FontSize" value="l8">
<!OBJECT>

<SCRIPT LANGUAGE="VBSCRIPT">
sub labeLClick

label.Caption "Tumbling text!"
label .FontBold "0"
label .Fontunderline = "-1"
label.Fontitalic "-1"
pulsel.StartPulse(100)

end sub

sub pulsel_Pulse
label.Angle= (label .Angle +,5) mod 360

end sub
<!SCRIPT>
<!BODY>
</HTML>

10: Writing ActiveX Controls Using A TL

PulseCtl Class: Pulse
PulseCtl Class: Pulse
PulseCtl Class: Pulse
PulseCtl Class: Pulse

• ---~-===-.=::-.=--:-'~"]
For Help, pre:-s Fl

Parameter :[alue: Parameter bpe:

12000 jvT_l4 3 lietValue

Return Value:

Exception Description

, Exception Source:

Figure 10-13. Testing the Pulse ActiveX control in the Test Container.

Pulse control by selecting the New Control tool and double-clicking the
PulseCtl Class entry in the list. (The list is sorted alphabetically; pressing
Pon the keyboard scrolls automatically to the first control that begins
with P.) Once the control is loaded in the Test Container, click the Invoke
Methods tool, select the StartPulse method in the Method Name box as
shown in Figure 10-13, set the nRate parameter to 2000, and click the
Invoke button. This causes the control to fire its Pulse event every 2 sec­
onds, which the Test Container notes by adding a new entry to the event
log. Invoking the EndPulse method ends the firing.

If you would like to see how Pulse.ocx can be embedded in a normal con­
tainer application, run the Hour2 program provided on the companion CD
in the folder Code\Chapter.10\Hour2. Hour2 is a duplicate of the Hour
program of Chapter 8, except that it uses the Pulse control for its timing
instead of the IETimer control.

Example 2: The TowerATL ActiveX Control
The Pulse project demonstrates that ATL can help you create ActiveX con­
trols that are smaller than those produced by MFC, but the only accurate
means of comparing ATL and MFC is to write the same control using both
tools. That's what we'll do in this section. As its name suggests, the
TowerATL control duplicates the Tower project of Chapter 9, exporting

485

ActiveX Controls

486

the same properties, methods, and events. But TowerATL is created
entirely through the services of ATL and makes no use of MFC.

TowerATL is a more sophisticated ActiveX control than Pulse, incorporat­
ing stock properties, a property sheet, and an About box. The project
seems easier to put together, though, because discussions are more com­
pact and less occupied with the range of considerations given our atten­
tion in the Pulse project. Now that most of the generalities are out of the
way, this project more accurately reflects the time and effort required to
create a typical ActiveX control using ATL.

Step 1: Create the TowerATL Project
Run the ATL COM App Wizard again, this time naming the project
TowerATL. Click the Finish button to accept the default settings, making
the Tower A TL control a dynamic link library that does not use MFC.
When COM App Wizard finishes, choose New ATL Object from the Insert
menu to launch ATL Object Wizard. Select Controls in the dialog's first
list and double-click the icon labeled Full Control. TowerATL supports
more interfaces than does the Pulse control, and we will need interfaces
like IQuickActivate and ISpecifyPropertyPages that the Full Control
option adds to the source code.

Notice in the dialog that ATL treats a control's property page as a separate
object. We will return to Object Wizard again to add a property page object
before finishing the project. Type TowerCtl for the short name in the
Names tab of the Properties dialog, accepting the default names in the
other boxes. In the Attributes tab, select the Support Connection Points
check box as we did for the Pulse project. Accept other default settings in
the tab to enable apartment threading, dual interfaces, and aggregation.

The Miscellaneous tab contains switches that set various OLEMISC flags.
Selecting the Acts Like Button check box, for example, sets the OLEMISC_
ACTSLIKEBUTTON flag, which tells the container that the control
responds to mouse clicks and generally behaves as a button. The Acts Like
Label check box sets the OLEMISC_ACTSLIKELABEL flag, informing the
container that the control serves as a label for the control that follows it in
tabbing order-that is, the next control listed in the container's RC script.
The Invisible At Runtime check box turns on the OLEMISC_INVISIBLE- 1

l u: Writing ActiveX Controls Using ATL

A TRUNTIME flag, appropriate for controls like Pulse that remain invisible
even when activated.

Skip the Miscellaneous tab to accept its default settings, and continue to
the Stock Properties tab. Like the MFC version of Tower, the TowerATL
control contains four stock properties named BackColor, ForeColor, Cap­
tion, and Font. Add these properties to the Supported box by selecting
each in the list and clicking the> button, as shown in Figure 10-14. (The
BackColor and ForeColor properties are labeled Background Color and
Foreground Color in the list.) Click the OK button to close the ATL Object
Wizard dialog.

Supported:
... .· . . > " . 1 · Background
~ Caption
:~Font

Figure 10-14. Choosing stock properties in ATL Object Wizard.

Step 2: Add the nCurrentBlock Custom Property
Along with its four stock properties, TowerATL exposes a custom prop­
erty named nCurrentBlock that holds a number identifying the block being
dragged. Technically, it's the ITowerCtl interface inherited by the object
that exposes the property through its get_nCurrentBlock method. To add
the custom property to the ITowerCtl interface, expand the list of Tower­
ATL classes in the ClassView window, right-click the ITowerCtl entry,
and choose the Add Property command to invoke the Add Property To
Interface dialog. Select short as the property type and type nCurrentBlock

487

ActiveX Controls

488

for the property's name. As we did in Chapter 9, make the nCurrentBlock
property read-only to prevent a container application from changing its
value. Clear the radio button labeled Put Function to tell Object Wizard
not to generate a put method for the property, and then close the dialog.

Step 3: Add the Reset Method
TowerATL exports a method function named Reset, by which a container
application tells the control to start the game over, re stacking all the
blocks in the left panel. Right-click the ITowerCtl interface in ClassView
again, choose the Add Method command, then type Reset as the function
name in the Add Method To Interface dialog. The method takes no param­
eters, so leave the Parameters box blank.

Click OK to dismiss the Add Method dialog, at which point Visual C++
adds appropriate code for the method to the project's IDL file and also
writes a stub Reset function in the TowerCtl.cpp file. We will edit the
code after adding message handler functions and events to the control.

Step 4: Add Handler Functions
As you recall from Chapter 9, the control window responds to a WM_
LBUTTONDOWN message by initiating a drag operation in which the user
moves a colored block from one panel to another. A WM_LBUTTONUP
message signals that the block has been dropped into place. This fourth
step of the project is very easy, simply adding stub functions to handle the
two messages.

In the ClassView pane, right-click the CTowerCtl entry and choose Add
Window Message Handler from the menu. Double-click WM_MOUSE­
MOVE, WM_LBUTTONDOWN, and WM_LBUTTONUP in the list to add
them to the righthand box, and then close the dialog:

1 u: Writing Activex Controls Using A TL

Step 5: Add Events
Like the original Tower control, TowerA TL fires five events named Click,
FromPanel, ToPanel, Error, and Winner, which collectively keep the con­
tainer informed about what is happening in the control. Adding the events
to the project involves the same steps we followed for the Pulse control:

1. Right-click the _ITowerCtlEvents entry in the Class View pane and
choose the Add Methods command from the context menu, then
select the void return type and enter a function name in the dialog.
Repeat for all five event functions. Only FromPanel and ToPanel
take parameters, named nFromPanel and nToPanel respectively,
both of type short:

B eturn Type:

1v~i~
Method ti ame:

I ~10f11~a~~I
farameters:

ls~~rt,nYr,on1P.,a,n~I,

Implementation:

[id(2}, helpstring[''method FromPanel'')J .
void FromPanel(short nFromP anel);

OK

Cancel

2. Expose the FileView pane in the Workspace window, right-click the
entry for TowerATL.idl, and choose the Compile command to create
the project's type library file. Ignore the warning messages from the
MIDL compiler stating that the "interface does not conform to
[oleautomation] attribute." The warnings stem from the compiler's
belief that the pFont parameter-a pointer to an IFontDisp inter­
face-is not a compatible Automation type. But because IFontDisp
derives from !Dispatch, a valid Automation interface, the warnings
are not correct.

489

ActiveX Controls

490

3. In the ClassView pane, right-click CTowerCtl and choose the Imple­
ment Connection Point command from the menu.

4. Set the check box labeled _ITowerCtlEvents and click OK to close
the dialog.

It may not seem like it, but the steps we are taking here in adding events
to the project are very similar to those we took in the preceding chapter
when using MFC to develop the Tower control. Behind the scenes, the
ControlWizard of Chapter 9 created an ODL file (similar to IDL) containing
these instructions:

//{{AFX_ODL_EVENT(CTowerCtrl)
[id(DISPID_CLICK)] void Click();
[id(l)J void FromPanel(short nPanel);
[id(2)J void ToPanel(short nPanel):
[id(DISPID_ERROREVENT)] void Error();
[id(3)] void Winner():
//}}AFX_ODL_EVENT

From this information, Class Wizard generated proxy functions such as
FireClick and Fire Winner, which call into MFC's COleControl::FireEvent
function. FireEvent, in turn, calls the container's IDispatch::Invoke
method, exactly the same as the proxy functions that A TL generates.

Step 6: Add a Property Sheet
The Tower control of Chapter 9 provides a property sheet to allow the
user to change the control's caption, font, and colors. Figure 9-13 on page
417 shows what the property sheet looks like. In this section, we'll create
a similar property sheet for Tower A TL.

ATL sets up each page of a control's property sheet as a separate object,
implemented by a class derived from IPropertyPage. The system's
Msstkprp.dll library provides default class implementations for two prop­
erty pages labeled Font and Colors, which allow the user to change the
Font, BackColor, and ForeColor stock properties. These stock properties
in turn determine the font and color of the title displayed at the top of
TowerATL's window. To provide access to the Caption stock property,
which contains the text of the control's title, we must add one more prop­
erty page, labeling it Caption as we did for the original Tower control.

10: Writing ActiveX Controls Using ATL

Adding property pages to a control requires the services of ATL's Object
Wizard again, running it once for each page that you want to add. To add
TowerATL's new Caption page, select Controls in Object Wizard's left box
and double-click the Property Page icon:

Composite HTML Control Lite Composite
Control Control

tlext > Cancel

When the ATL Object Wizard Properties dialog appears, type TowerPPG
for the object's short name:

£lass: I cr._a.~·er~P~
.!:! Flle: l!.o~:r~~~-·-h_ .. . i

.CEP File: l!o~;r~P~.cpP.,

COM-.- I

CQClass: l!°.~:~~~-~~-······j .

Interface:

J_ype: jro~er~PG~l~~s

Prog!D: E°.wer~PG .. !°.~:r~~:

I . OK r Cancel I

As before, the wizard helpfully fills the other boxes with suggested names.
The Interface box is grayed because a property page object has no need
for a custom interface. Accept the default settings in the Attributes tab
and expose the Strings tab. Type &Caption for the page title and Caption

491

ActiveX Controls

492

property in the box labeled Doc String. Tower A TL does not provide a help
file, so delete the text in the third edit box to leave it blank.

Object Wizard writes the title and document string into the project's RC
file where they become part of the control's string resource data. The title
specifies the label that appears on the tab of the new property page. The
document string is intended to serve as the tab's tooltip text, describing
the page's purpose when the mouse cursor pauses over the tab, but the
string almost always goes unused and does not appear as a tooltip or any­
thing else. This is because the OLE run-time OleCreatePropertyFrame
function responsible for creating the property sheet window-known as a
property frame in OLE parlance-does not support tooltips.

Click the OK button to dismiss the dialog, at which point Object Wizard
makes these additions to the project:

• Adds the TowerPPG.cpp and TowerPPG.h files to implement the
new CTowerPPG class.

• Writes string resources for the title and tooltip text in TowerATL.rc:

IDS_TITLETowerPPG "&Caption"
IDS_DOCSTRINGTowerPPG "Caption property"

and inserts identifier definitions in the Resource.h file.

• Appends an identifier and coclass entry in the TowerATL.idl file for
the new property page object:

uuid(05D2BAA4-C471-11Dl-BEC9-FB1AF66FCC79),
helpstring("TowerPPG Class")

coclass TowerPPG
{

interface !Unknown;
} ;

• Adds the TowerPPG.rgs file, providing a registry script for the new
object.

• Inserts an entry for the page in the control's object map in
TowerATL.cpp:

10: Writing ActiveX Controls Using ATL

BEGIN_OBJECT_MAP(ObjectMap)

OBJECT_ENTRY(CLSID_TowerPPG. CTowerPPG)
END_OBJECT_MAP()

The dialog editor automatically appears when Object Wizard finishes,
ready for you to design the new property page. Using the static and edit
control tools, edit the dialog so that it appears something like this:

The precise layout of your own property page is not important, but assign
the edit box an identifier of IDC_CAPTION as shown in the image. (To
invoke the Properties dialog, select the edit box and click Properties on
the Edit menu.) Save your work and close the dialog editor.

The TowerATL control is nearly finished at this point. The only signifi­
cant work remaining involves adding code to the skeleton source files that
A TL has generated. That's next.

Step 7: Edit the TowerPPG.h File
The TowerPPG.h file contains code for the CTowerPPG class that handles
the control's Caption property page object. We need only add instructions
to the class that monitor the page's edit box and call the put_Caption
method whenever the user enters a new Caption string. Right-click the
CTowerPPG class in the ClassView pane and choose the Add Windows
Message Handler command. When the New Windows Message dialog
appears, select IDC_CAPTION in the small box labeled Class Or Object To

493

ActiveX Controls

494

Handle and double-click EN_CHANGE in the list. Accept the suggested
function name of OnChangeCaption and close the New Windows Message
dialog.

The OnChangeCaption function executes whenever the user types in the
edit box of the property page we added in the preceding step, thus signal­
ing an intent to revise the Caption property. The function merely enables
the dialog's Apply button by passing a value of TRUE to the SetDirty
member function. Clicking either the OK or Apply button in the property
sheet dialog executes the Apply function, which requires additional code.
Open the TowerPPG.h file in the text editor and add these lines:

#include "resource.h"
#include "TowerAtl. h"

STDMETHOD(Apply)(void)
{

USES_CONVERSION:
char szCaption[256]:

II main symbols

CComQIPtr<ITowerCtl> pTower(m_ppUnk[0]);

}

if (GetDlgitemText(IDC_CAPTION, szCaption, 256))
pTower->put_Caption(A2BSTR(szCaption));

m_bDirty = FALSE;
return S_OK:

LRESULT OnChangeCaption(WORD wNotify, WORD wID,
HWND hWnd, BOOL& bHandled

{

}

SetDirty(TRUE);
return 0:

II Enable Apply button

The Apply function calls GetDlgltemText to copy the new caption string
from the edit box to the szCaption buffer, and then calls the control's
put_Caption method to update the Caption property with the new string.
The put_Caption method expects a BSTR parameter, so the code uses the
ATL macro AZBSTR to recast the ANSI string in szCaption to a BSTR
type. As the Apply function demonstrates, it's necessary to include the
USES_CONVERSION macro before invoking a conversion macro like

10: Writing ActiveX Controls Using ATL

A2BSTR. Doing so suppresses a compiler error that otherwise results
from the conversion.

The code also demonstrates how an ActiveX control can make use of the
CComQIPtr smart pointer template class. Because put_ Caption is a mem­
ber function of CTowerCtl, not CTowerPPG, the function must first obtain
a pointer to ITowerCtl through Querylnterface. Casting pTower as a smart
pointer ensures that ITowerCtl::Release is called in the unlikely event that
either GetDlgltemText or put_Caption throws an error.

Step 8: Edit the TowerCtl.h File
Finishing the TowerATL project involves a little more editing work using
the text editor, adding much the same source code as we did for the Tower
project of Chapter 9. Open the TowerCtl.h file and begin with #define
statements for the various colors that TowerATL displays:

I/include "resource.h" II main symbols
#include <atlctl.h>
#include "TowerCP.h"

l/defi ne NUM_BLOCKS 7
l/defi ne EMPTY NUM_BLOCKS
#define BLACK RGB(0' 0' 0
I/define BLUE RGB(0, 0. 255
#define CYAN RGB(0, 255, 255
l/defi ne GREEN RGB(0' 255, 0
#define MAGENTA RGB(255, 0, 255
l/defi ne RED RGB(255, 0. 0
#define YELLOW RGB(255, 255, 0
#define WHITE RGB(255, 255, 255
l/defi ne GRAY RGB(128, 128, 128

Next, add declarations to the CTowerCtl class for the same member vari­
ables we used in the original Tower project:

class ATL_NO_VTABLE CTowerCtl :

{

private:
short
short
BOOL
COLORREF

nPanel[3][NUM_BLOCKS];
nBlockNdx, nFromPanel;
bMoving;
color[NUM_BLOCKS];

II Panel contents
II nPanel index of moved block
II Flag is set when dragging
II Block colors

495

ActiveX Controls

496

HCURSOR
int
short

public:

hArrow, hCrossHairs: // Cursor handles
iLeft, iWidth, iHeight: //Window dimensions
GetPanel (int i) :

HRESULT FinalConstruct();
CTowerCtl()
{
}

An object like CTowerCtl that initializes data should override the CCom­
ObjectRootEx::FinalConstruct member function as shown here. Roughly
analogous to MFC's useful OnlnitDialog function, FinalConstruct is called
after ATL has finished setting up the object but before the object first
becomes active. It's here, rather than in the class constructor, that the
control should perform most of its initialization work. The matching
FinalRelease function demonstrated earlier in the Pulse control allows the
control to carry out any necessary clean-up.

Revise the property map to establish the order in which the Caption,
Color, and Font pages appear in the control's property sheet:

BEGIN_PROP_MAP(CTowerCtl)
PROP_PAGE(CLSID_TowerPPG)
PROP_PAGE(CLSID_StockColorPage
PROP_ENTRY("Font", DISPID_FONT, CLSID_StockFontPage

END_PROP_MAP()

The message map contains entries for the control's three message handlers
added in Step 4:

BEGIN_MSG_MAP(CTowerCtl)
MESSAGE_HANDLER(WM_MOUSEMOVE, OnMouseMove)
MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)
MESSAGE_HANDLER(WM_LBUTTONUP, OnLButtonUp)

END_MSG_MAP()

The OnLButtonDown and OnLButtonUp functions receive control when­
ever the user presses and releases the left mouse button to drag a colored
block between panels. OnMouseMove gains control when the mouse
moves, and serves only to ensure that the cursor retains its crosshairs
shape while the user drags a block.

10: Writing ActiveX Controls Using ATL

All functions listed in a message map with a MESSAGE_HANDLER macro
must have the same parameter list:

LRESULT MessageHandler(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL &bHandled);

The first three parameters are standard for messages. The OnLButtonDown
handler, for instance, receives the value WM_LBUTTONDOWN in the
uMsg parameter, current key status in wParam, and coordinates of the
mouse cursor in lParam. The MESSAGE_HANDLER macro gives the
bHandled flag a value of TRUE before calling the handler function. A han­
dler that does not fully service the message should clear the flag before
returning:

*bHandled = FALSE;

Otherwise, code generated by the MESSAGE_HANDLER macro returns
immediately, indicating to the operating system that the message has been
completely serviced.

An ATL message map has the same form as in MFC. ATL further matches
MFC by providing the COMMAND_HANDLER and NOTIFY_HANDLER
macros for WM_COMMAND and WM_NOTIFY messages. To handle a
group of different messages with a single function, use one of the RANGE
macros instead: MESSAGE_RANGE_HANDLER, COMMAND_RANGE_
HANDLER, or NOTIFY_RANGE_HANDLER. Similar to MFC's ON_COM­
MAND_RANGE and ON_NOTIFY _RANGE, these macros route to a single
handler function all messages that fall within a specified range of values.

Visual C++ defines the functions OnDraw, OnMouseMove, OnLButton­
Down, and OnLButtonUp as inline functions inside the CTowerCtl class
declaration. To keep implementation code in one place and to facilitate
comparisons with the original Tower source files, I have moved these four
functions to the TowerCtl.cpp file, which is discussed next. The cutting
and pasting is entirely optional, of course; if you are creating this project
by following the text and prefer to leave the functions in the header file,
simply edit their code as described in the next section.

497

ActiveX Controls

Before leaving the TowerCtl.h file, a final correction may be necessary.
At the end of the class declaration, some versions of Visual C++ write a
member variable named m_spFont. The name must be changed to
m_pFont to prevent the ATL implementation of the stock Font page from
causing an error:

CComPtr<IFontDisp> m_pFont;

Step 9: Edit the TowerCtl.cpp File
The source code for TowerCtl.cpp is very similar to the code we added to
the same file for the original Tower project-so similar, in fact, that the
code description beginning on page 404 of Chapter 9 still applies to this
new version of the control. Because the file requires extensive additions,
Listing 10-4 shows the entire edited version.

An important difference between the MFC and ATL versions of the con­
trol lies in how initializations are handled in TowerCtl.cpp. Where the
Tower control used the class constructor and the Pre Create Window virtual
function to initialize its data, TowerATL now uses ATL's FinalConstruct
function. The initialization work remains the same; only the location has
changed.

Listing 10-4. The TowerCtl.cpp file.

498

II TowerCtl .cpp. : Implementation of CTowerCtl

#include "stdafx.h"
#include "TowerATL.h ..
#include "TowerCtl. h"
#include "TowerBox.h" II About box dialog

lll
II CTowerCtl

HRESULT CTowerCtl::FinalConstruct()
{

color[0]
col or[l]
color[2]
color[3]
color[4]
color[5]
color[6]

= BLACK;
= BLUE;
= CYAN;
= GREEN;
= MAGENTA;
= RED;
= YELLOW;

II Initialize block colors

l u: Writing ActiveX Controls Using ATL

}

m_clrBackColor =GRAY;
m_clrForeColor =WHITE;
m_bstrCaption = "TowerATL";
m_bAutoSize = FALSE;
m_sizeExtent.cx = 7000;
m_sizeExtent.cy = 2500;
Reset();

II Default background color,
JI foreground color,
II and caption
II Control can be resized
II !nit HIMETRIC size for
II 4 x 1.5 width/height ratio
II Initialize panels

II Cursors for normal (arrow) and dragging (crosshairs)
hArrow LoadCursor(NULL, IDC_ARROW);
hCrossHairs = LoadCursor(NULL, IDC_CROSS);
return S_OK;

HRESULT CTowerCtl ::OnDraw(ATL_DRAWINFO& di
{

RECT& re= *(RECT*)di.prcBounds;
RECT rect;
TEXTMETRIC tm;
HPEN hPen, hPenOld;
HBRUSH hBrush, hBrushOld;
HFONT hFont, hFontOld;
int i, j, k, yCaption;
USES_CONVERSION;

II Paint control background
hBrush = CreateSolidBrush(m_clrBackColor);
hBrushOld = (HBRUSH) SelectObject(di .hdcDraw, hBrush);
FillRect(di .hdcDraw, &re, hBrush);

II Set caption color and font
SetBkMode(di.hdcDraw, TRANSPARENT);
SetTextColor(di .hdcDraw, m_clrForeColor);
i f (m_p Font)
{

CComQIPtr<IFont> pFont(m_pFont);
pFont->get_hFont(&hFont);
hFontOld = (HFONT) SelectObject(di.hdcDraw, hFont);

}

else
{

}

hFont (HFONT) GetStockObject(SYSTEM_FONT);
hFontOld NULL;

II Display caption

(continued)

499

Active){ Controls

500

Listing 10-4. continued

CopyRect(&rect, &re);
DrawText(di.hdcDraw, OLE2AC rn_bstrCaption), -1.

&rect, DT_CENTER I DT_TOP);

II Compute height of Caption area
GetTextMetrics(di.hdcDraw, &tm);
yCaption = tm.tmHeight + tm.tmExternalleading;

II Compute width and height of a panel
ileft re.left;
iWidth (re.right - rc.left)l3:
iHeight re.bottom - re.top - yCaption;

II Draw column dividers
hPen = CreatePen(PS_SOLID, 1, m_clrForeColor);
hPenOld = (HPEN) SelectObject(di.hdcDraw, &hPen);
MoveToEx(di.hdcDraw. rc.left+iWidth. rc.top+yCaption,
LineTo(di.hdcDraw, rc.left+iWidth, re.bottom);
Move To Ex(di.hdcDraw, rc.left+iWidth*2, rc.top+yCaption.
LineTo(di .hdcDraw. rc.left+iWidth*2, re.bottom);

II Outer loop: for each panel ...
for (i=0; i < 3; i++)
{

rect.top re.top+ yCaption;
rect.bottom = rect.top + iHeightlNUM_BLOCKS;

II Inner loop: for each colored block in panel ...
for (j=0; j < NUM_BLOCKS: j++)
{

if (nPanel[i][j] !=EMPTY)
{

II Determine left and right edges of block
k = NUM_BLOCKS - 1 - nPanel [i J[j];
rect.left =re.left+ iWidth*i +

0) ;

0) :

(iWidth*k)l(2*NUM_BLOCKS) + 1:
rect.right = rect.left +

iWidth*(nPanel[i][j]+l)INUM_BLOCKS - 1;

}

II Fill rectangle with block's color
hBrush = CreateSolidBrush(color[nPanel[iJ[jJ]);
SelectObject(di~hdcDraw, &hBrush);
FillRect(di~hdcDraw, &rect, hBrush);

rect.top rect.bottom:

l u: Writing Activex Controls Using ATL

}

rect.bottom += iHeightlNUM_BLOCKS;
}

}

SelectObject(di.hdcDraw, &hPenOld);
SelectObject(di.hdcDraw, &hBrushOld);
if (hFontOld)

SelectObject(di.hdcDraw, &hFontOld);

DeleteObject(hPen);
DeleteObject(hBrush);
return S_OK;

STDMETHODIMP CTowerCtl::get_nCurrentBlock(short *PVal)
{

}

*pVal = nPanel[nFromPanel][nBlockNdxJ;
return S_OK;

STDMETHODIMP CTowerCtl::Reset()
{

}

int i :

for (i=0; i < NUM_BLOCKS; i++) II Initialize panel array
{

}

nPanel[0J[i]
nPanel [l][i]
nPanel[2J[i]

nBlockNdx = 0;
nFromPanel = 0;
FireViewChange();

return S_OK;

i ;
EMPTY;
EMPTY;

II Panel 0 = 0,1,2,3,4,5,6
II Panel 1 = 7,7,7,7,7,7,7
II Panel 2 = 7,7,7,7,7,7,7

II Ndx of block being moved

ll/1111111111111111
II CTowerCtrl message handlers

LRESULT CTowerCtl::OnLButtonDown(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled

{

short i = 0;
int x = LOWORD(lParam);

(continued}

501

ActiveX Controls

502

Listing 10-4. continued

}

nFromPanel = GetPanel(x);

while CnPanel[nFromPanelJ[iJ
i++;

if (i < NUM_BLOCKS)
{

EMPTY && i < NUM_BLOCKS)
II i=ndx of smallest block

II Does panel have a block?

bMoving =TRUE; // If so, block is moving

}

nBlockNdx = i; II Save ndx of the block
Fire_FromPanel(nFromPanel); II Tell container panel #

II Change cursor to crosshairs while dragging
SetCursor(hCrossHairs);

return 0;

LRESULT CTowerCtl::OnLButtonUp(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled

{

short i
int x

0, nToPanel;
LOWORDC lParam);

nToPanel = GetPanel(x); II Panel where block is dropped

if (bMoving && nToPanel != nFromPanel)
{

while (nPanel[nToPanel][i] ==EMPTY && i < NUM_BLOCKS-1)
i++: II i = ndx of panel's smallest block

II Is dragged block smaller than smallest block in panel?
if (nPanel[nFromPanel][nBlockNdx] < nPanel[nToPanel][i])
{

if (nPanel[nToPanelJ[i] !=EMPTY)
- - i ;

nPanel[nToPanelJ[iJ = nPanel[nFromPanel][nBlockNdxJ:
nPanel[nFromPanel][nBlockNdx] EMPTY:
Fire_ToPanel(nToPanel); II Tell container

if (i == 0 && nToPanel
{

}

Fire_Winner ();
Reset ();

FireViewChange();

2) II If we've filled
II the third panel,
II fire Winner event
II and reset game

l u: Writing ActiveX Controls Using ATL

}

}

}

else
Fire_Error ();

II Restore original arrow cursor
SetCursor(hArrow);

bMoving = FALSE;
return 0;

short CTowerCtl ::GetPanel(int x)
{

}

short i = 0;

x -= i Left;
if (X) iWidth)

i = 1;
if (x > iWidth*2)

i = 2;

return i;

II
II
II
II
II

II If invalid drop,
II tell container

II Not moving now

Convert x to window coords
Hit test:

0 for first pane 1
1 for second panel
2 for third panel

II Return panel number

LRESULT CTowerCtl ::OnMouseMove(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled

{

if (bMoving) II While dragging, keep
SetCursor(hCrossHairs); II crosshairs cursor

return 0;
}

Step 10: Add an About Box
Besides property pages, A TL Object Wizard can also add to a control proj­
ect a dialog resource as an individual object. This section explains how to
incorporate a dialog object in an ActiveX control, demonstrating by creat­
ing an About box for the TowerA TL project. Many developers are under­
standably uncomfortable with the idea of About boxes in ActiveX controls,

because even a simple dialog adds at least 2 KB of resource data to the
OCX file. But an About box serves as a good illustration for any type of

dialog your own controls may need. Moreover, project design compels us

503

ActiveX Controls

to duplicate as closely as possible the original Tower control, which con­
tains its own About box supplied by the MFC ControlWizard.

This section is purposely self-contained, remaining independent of the
other parts of the exercise. It illustrates in one place all the steps necessary
to include a dialog resource, so you can ignore the section if you wish
without affecting the rest of the project. To add TowerATL's About box,
run ATL Object Wizard again, this time selecting Miscellaneous in the left
box and double-clicking the Dialog icon. Name the object TowerBox as
shown in Figure 10-15 and click OK to dismiss the dialog.

Figure 10-15. Adding a dialog resource to an ATL ActiveX control project.

504

·1 u: wntmg ActiveX Controls Using ATL

Object Wizard generates source code for the class CTowerBox, contained
in the files TowerBox.cpp and TowerBox.h. If you already have an About
box resource in another project that you want to use, just incorporate the
dialog script into TowerATL.rc, adding any necessary #define statements
to the Resource.h file. Otherwise, design the About box in the dialog edi­
tor, which starts automatically when you close Object Wizard. Here's an
idea of how the dialog might look:

T owerA TL ActiveX control

"Visual C++ Programmer's Guide"

Current thread: JEdit

OK

The dialog borrows the project's bitmap, so the decoration does not repre­
sent an extravagant waste of resource space. First copy to your project the
TowerCtl.bmp file from the Code\Chapter.10\ TowerATL folder, overwrit­
ing the generic BMP file of the same name supplied by ATL Object Wiz­
ard. Use the Picture tool to place the image in the dialog editor, then bring
up the Properties dialog and select Bitmap in the Type box and the identi­
fier in the Image box. The edit box on the last line is optional, merely serv­
ing as a convenient place to display the identifier of the thread on which
the control is running. This will allow us to later confirm the behavior of
an apartment-threaded control like TowerATL when running in separate
apartments. Assign the edit box an identifier of IDC_THREAD_ID and set
the Read Only check box in its Properties dialog.

Save the dialog resource when finished designing the About box, then
right-click ITowerCtl in the ClassView pane and choose the Add Method
command. Enter AboutBox for the name of the new method as shown on
the next page. Like the Reset method, AboutBox takes no parameters.

505

ActiveX Controls

506

Open the TowerBox.h file in the text editor and add the instruction shown
here in gray to the OnlnitDialog function. Before the About dialog appears,
the code retrieves the thread identifier from the system and writes it into
the IDC_THREAD_ID edit box:

LRESULT OninitDialog(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL& bHandled

{

}

SetDlgitemint(IDC_THREAD_ID,
(UINT) ::GetCurrentThreadid(), FALSE);

return 1; // Let the system set the focus

Next, reopen the TowerCtl.cpp file and add these lines to the new
AboutBox function:

STDMETHODIMP CTowerCtl::AboutBox()
{

}

CTowerBox dlgAbout;
dlgAbout.DoModal();
return S_OK;

When a container application calls the control's AboutBox method, the
function creates a CTowerBox object and invokes the dialog. The Gamez
program described in the next section demonstrates how an application
signals TowerA TL to display its About box.

10: Writing ActiveX Controls Using ATL

Step 11: Build and Test the TowerATL ActiveX Control
Select the Release MinDependency (or MinDep) configuration and build
the TowerATL control. After Visual C++ successfully compiles, links, and
registers the control, you can test the finished product in any ActiveX­
aware container application. Figure 10-16 shows what TowerATL looks
like in the Test Container utility with its property sheet displayed. After
adding Tower A TL to the Test Container window, click the Properties tool
to expose the control's property sheet.

wption I Color I Font • 1 Extended I

Caption: I Tower Control--ATL Style

Figure 10-16. TowerATL's property sheet displayed in the Test Container.

It's illustrative to load another instance of the TowerATL control in the
Test Container and invoke the About box for each instance using the
Invoke Methods tool. You will find that the thread identifiers displayed in
the About boxes are the same for both instances, demonstrating that the
Test Container creates all control instances on a single thread. Internet
Explorer, on the other hand, executes each window on a separate thread,
which we can prove using the simple TowerCtl.htm document shown in
Listing 10-5. Locate the document in the Code \Chapter.10\ TowerAtl
folder on the companion CD. If you created your own version of
TowerATL, first revise the document's classid entry with your control's
class identifier, copying the string from the project's IDL file as we did

507

ActiveX Controls

Listing 10-5. The TowerCtl.htm file.

508

<HTML>
<HEAD>
<TITLE>ATL 3.0 test page for object TowerCtl</TITLE>
<!HEAD>
<BODY>
<OBJECT

classid="clsid:38365FBA-C3AE-11Dl-BEC9-E0F4E352507A"
id=tower

>
<!OBJECT>

<SCRIPT LANGUAGE="VBSCRIPT">
sub tower_Error

tower.AboutBox()
end sub
<!SCRIPT>
<!BODY>
<!HTML>

earlier for the Tumble2.htm document. Then follow these steps to perform
the experiment:

• Run Internet Explorer, choose the Open command from the File
menu, then browse for TowerCtl.htm. Opening the document dis­
plays the TowerATL window if the control is properly registered on
your system.

• Choose New from the same menu to open a duplicate window dis­
playing the control.

• In each of the two windows, drag a colored block onto a smaller
block to fire the control's Error event. The document script is writ­
ten to invoke the control's About box whenever the event fires.

Comparing the thread identifiers displayed in each About box (Fig-
ure 10-17) shows that Internet Explorer runs each control instance in
separate STA apartments. Interthreaded marshaling is not required for
either instance because TowerATL adopts the apartment threading model,
which is perfect for STA clients like Internet Explorer. But had we instead
selected the single nonthreaded model for TowerATL, the second instance

10: Writing ActiveX Controls Using ATL

. ifilJ::tt~J
Towerl>.TLActiveX control ·fl file ;

"Viw.!!I C++ Programmer'~ Guide " rr~~~r:~; . T owerATL ActiveX control

•---Cur-re-nt-thr-ead-: _j:,_:•_21-24-31--

1

G "Visual C++ Programmer's Guide"

Current thread: j4294230587

Figure 10-17. Running the Tower A TL control in separate STA apartments.

of the control would run more slowly than the first because COM would
be forced to marshal all interactions with it.

The companion CD provides a program named Gamez designed specifi­
cally to showcase the new TowerATL control. The Gamez.re file, located
in the folder Code \Chapter.10\GameZ, references the class identifier
value of the TowerATL.ocx control supplied on the CD. If you prefer to
run Gamez using a version of TowerA TL that you have created yourself,
again copy the correct class identifier from your TowerCtl.idl file to
replace the identifier string in Gamez.re. Paste the new class identifier
string in the dialog script's IDC_TOWERATL statement before rebuilding
the Gamez program:

IDD_GAME2_DIALOG DIALOGEX 0, 0, 295, 125

CONTROL

END

"",IDC_TOWERATL,"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}",
WS_TABSTOP,5,20,225,100

Compared to the Tower project of Chapter 9, TowerATL has involved a lit­
tle more effort and attention to details that MFC shields from us. So it's
worthwhile at this point to sum up our losses and gains in writing the
control using ATL instead of MFC. The losses are easy to identify: more
work. In compensation, however, we gain a much smaller executable
image, though you might not think so at first glance. At 70 KB the new
TowerATL.ocx is three times the size of the Tower.ocx file we created in

509

ActiveX Controls

Chapter 9. But when you take into consideration the run-time libraries
that Tower.ocx requires, the effective memory footprint of the control's
A TL version is more than a megabyte smaller than the original MFC ver­
sion. TowerATL.ocx can travel over the World Wide Web and execute in a
user's browser without having to drag other files along with it.

Even over a fast modem, though, we can expect a download time for
TowerATL.ocx of more than 20 seconds. That's a significant investment of
time for the user, whose patience may have already been eroded by other
large components and images dotting the page. ActiveX controls for the
Internet face a unique obstacle in that the user generally has no idea of
what to expect beforehand, and so may be less inclined to invest much
time in finding out. Understandably, impatience often 'wins out over curi­
osity. The trick to writing a successful ActiveX control for the Internet is
to make it small enough that it appears on the Web page, ready to execute,
before curiosity loses the battle.

Today ATL offers the best approach to writing small ActiveX controls,
short of straight COM programming. The library represents a compromise
between size and labor, between what is possible and what is practical.
But the compromise succeeds because ATL rewards a reasonable develop­
ment effort with excellent results.

Comparing Component Models

510

In closing this part of the book that deals with ActiveX controls, let's
stand back a moment and consider the subject from a safe distance. When
embarking on a component project, a developer must not only weigh the
pros and cons of a support technology like ATL, but should first consider
whether to use ActiveX at all. Like any other software technology, ActiveX
controls are appropriate in some situations but not in others. If the compo­
nent is intended solely as an extension of an embedding application and
will never see service on a Web page, then ActiveX exacts a high cost. By
dragging in the COM and ActiveX service libraries, even a simple control
like Pulse installs many kilobytes of code in memory and may signifi­
cantly degrade the loading process of the calling application.

10: Writing ActiveX Controls Using ATL

There is another solution. Casting Pulse as a normal dynamic link library
instead of an ActiveX control keeps the software in the form of a thread­
safe, reusable component without incurring the expense of ActiveX and
COM. Instead of setting up a handler function to receive events, the client
application passes a pointer to a callback function that the library calls at
each lapse of the requested interval. Since an event handler is only a call­
back in new clothes, the effect is the same. If you are interested in seeing
what a DLL version of Pulse might look like, you can find source files for
such a project in the Chapter.10\PulseDLL folder on the companion CD.
The most interesting characteristic of the dynamic link library version of
Pulse is its size: 3 KB, compared to 37 KB for the ActiveX control version.
And PulseDLL has no need of COM.

This brief comparison is intended only to shed light on all sides of the
issue, serving as a reminder that at least in some cases the lowly dynamic
link library still has a place in the world of component software. This is
not to suggest that all non-Internet components should be cast as dynamic
link libraries. Far from it. ActiveX offers distinct advantages over dynamic
link libraries, particularly in coping with the well-known problem of
"versioning." The attractiveness of a dynamic link library often tends to
fade with its second release, a problem that does not affect ActiveX con­
trols nearly as much. For example, suppose we decided that Pulse would
be a more accurate timer if it called the timeSetEvent and timeKillEvent
API functions instead of relying on the vagaries of the system's Sleep
timer. The revised version might offer new objects and capabilities to new
clients, while old client applications like Hour2 would embed the new
Pulse as before, none the wiser that anything had changed. Even over­
writing the old Pulse.ocx file with the new version does not affect client
applications, whether or not they are written to make use of the extended
features. This sort of stability is difficult to achieve with progressive
versions of a dynamic link library.

511

('·-.,., , / . .,. . ..,,,_"'.-...: / ···-· .. , ,'

_,··,,, / , : '"'·~~,., :' ,'
;"h'.-.,., ,

, ' ' , '

Chapt~(>L·
, '·-··..,,/ /

, ·,, /, f

: '·--,,, ;;:.,'.,·,, /
•-., .. ,'

Lnap1er

The Debugger
After designing and coding comes debugging, the third step of software
development. Your 3,000-line program may compile without so much as a
warning, yet crash regularly or-and this is much worse-crash only occa­
sionally. When your program does not work correctly and you aren't sure
why, it's time to turn to the debugger to get an inside view of the program
as it runs.

The Visual C++ debugger is one of the best features of the entire product.
Intelligent and easy to use, the debugger can help you find nearly any bug
you are likely to encounter in Windows software development. But debug­
ging is often as much art as science, requiring clarity of mind and flashes
of insight. The debugger is like a microscope in that it can expand your
view, but only if you know where to look.

Dynamic link libraries, including ActiveX controls, are not special cases
for the Visual C++ debugger. The debugger effortlessly crosses the bound­
ary between projects, which means you can begin debugging a program in
one project, and then continue debugging when the program calls into an
exported function of a dynamic link library, even if the library and its
source files exist as another project or subproject. The reverse also holds.
You can start a debugging session in the dynamic link library's project, in
which case the debugger automatically executes the calling application

515

Advanced Topics

and returns control to you when the execution stream reaches one of the
library's functions.

The debugger handles multithreaded and ActiveX applications and has
the ability to run on one computer while the program you are debugging
runs on a separate computer. We'll look at these special cases later in the
chapter. First, let's get acquainted with the debugger.

Debug vs. Release

516

A project in Visual C++ can produce two types of executable code, called
the debug and release versions, or "targets." The debug version is what
you work on during development and testing to make the program error­
free; the release version is the final result, distributed to your customers.
The debug version is larger and usually slower than the release version,
filled with symbol information that the compiler places in the object file.
The symbol information is a record of everything the compiler knows
about the names of functions and variables in the program and the mem­
ory addresses they identify. By reading both the original source files and
the symbol information contained in the executable file, the debugger can
associate each line of the source code with the corresponding binary
instructions in the executable image. The debugger runs the executable
but uses the source code to show the program's progress.

The release version contains only executable instructions optimized by
the compiler, without the symbol information. You can execute a release
version inside the debugger but if you do, the debugger informs you that
the file has no symbol data. Likewise, you can execute the debug version
of a program without the debugger. This has practical consequences
because of a Visual C++ feature known as Just-in-time debugging, which is
demonstrated later in the chapter. When you run a program's debug ver­
sion without the debugger, the Windows loader ignores the extra symbol
information in the file, allowing the program to run normally. If the pro­
gram commits an error, however, the system's exception handling causes
control to wind its way back to Visual C++, which then executes the
debugger. The debugger shows the instruction that caused the fault and
displays data values as they existed when the program stopped. This

11 : The Debugger

superb feature is especially useful for tracking bugs during program test­
ing and for finding those seemingly random errors that are difficult to
reproduce, always the bane of programming.

By the way, if preserving your intellectual property is important to you,
you should treat the debug version of your program as you do source code.
A program file with symbol information is much easier to reverse engi­
neer, since the file contains the names of all the program variables and
functions. Instead of anonymous disassembled statements like these:

004017ae push
004017af mov

ebp
ebp, esp

the debugger helpfully includes function names taken from the sym­
bol data:

MyClass::Initinstance:
004017ae push ebp
004017af mov ebp, esp

Although the source code remains unavailable, anyone can now recognize
the prologue code of a function named Initlnstance.

Using the Debugger
When you debug an ailing program, sometimes called the debuggee, the
debugger begins running first, and then executes (or spawns, in UNIX­
speak) the program you want to debug. The debugger allows you to regain
control when the running program reaches a selected instruction or alters
a particular variable. This gives you the opportunity to check current data
values while the program is suspended and to ensure that the flow of con­
trol proceeds along an expected path.

The debugger can throw a lot of information at you, making it seem more
complicated than it is. If you are new to programming, don't be intimi­
dated by the debugger. You will soon find out what every programmer
learns, that the debugger is a friend indeed. A typical debug operation
consists of several steps. You identify a section of your failing program
where you suspect the problem arises, then mark the first instruction of
the section. Start the debugger, which executes the program until control

517

Advanced Topics

reaches the mark you set at the start of the questionable section. When the
debugger stops the program's execution, you can then single-step through
each instruction, checking the effect of each step.

So how does the debugger know when to interrupt the program? Well, it
doesn't exactly. The program interrupts itself when it hits that marker you
set. The marker is called a breakpoint.

Breakpoints

518

The relationship between the debugger and the program it runs is unique
in Windows-no other two programs operate so intimately linked
together. The debugger and the program do not run simultaneously in the
same sense that other normal applications run simultaneously in a
multitasking environment. While the program runs, the debugger sleeps,
having nothing to do. It regains control when the executing program trig­
gers a breakpoint.

The debugger lets you set two different types of breakpoints, one based on
location in the code and the other based on program data. A location
breakpoint is a marker attached to a particular instruction in your source
code, similar to a bookmark in the text editor. You set a location break­
point at the start of any section of suspect code that you want to investi­
gate in detail to see how the error arises. When the executing program
tries to execute the marked instruction, it stops or "breaks." (We'll see
how in the next section.)

A data breakpoint depends on data rather than code. Use a data break­
point when you suspect a variable is being incorrectly altered somewhere
in your program but you aren't sure where. The data breakpoint tells the
debugger to break execution when the variable changes or becomes a
certain value as, for example, when a pointer is reassigned or when the
variable x exceeds a value of 500.

When a location or data breakpoint is triggered, control returns to the
debugger. The debugger updates its windows showing the current values
of variables and the section of the source code where the break occurred.
You can now walk your way through the code, one instruction at a time,
to see how variables change and how the program behaves.

11 : The Debugger

How a Breakpoint Returns Control to the Debugger
To give you an idea of how breakpoints work, this section examines the
steps in which the debugger sets a breakpoint to interrupt a program and
regains control when the breakpoint is triggered. The discussion concen­
trates on Intel and compatible processors, but the procedure outlined here
is similar on other processors. In the following discussion, the word "pro­
gram" refers only to your application, never to the debugger itself. This
avoids the phrase "the program being debugged," which is unwieldy, and
the word "debuggee," which sounds too much like debugger.

When you set a location breakpoint or single-step from one CIC++ instruc­
tion to the next, the debugger overwrites a single byte in the executing
program's code segment at the break location. It saves the original v~lue of
the byte, and then writes the value OxCC in its place. The processor inter­
prets OxCC as an INT 3 instruction, which tells the processor to execute
the system handler routine that corresponds to interrupt 3. It's no coinci­
dence that Intel calls interrupt 3 the breakpoint interrupt.

After writing the INT 3 instruction, the debugger goes to sleep by calling
the WaitForDebugEvent API function. The system turns control over to the
program, which executes normally until it reaches the INT 3 instruction.
In executing the instruction, the processor writes the current values of the
CS and EIP registers on the stack and calls the system's interrupt 3 han­
dler routine. This is how control reverts back to the debugger. The kernel
returns from WaitForDebugEvent, waking up the debugger, which then
updates its windows and waits for your instructions. (See the sidebar on
the following page for a description of the CS and EIP registers.)

At this point, your program is frozen. It receives no CPU time and so can­
not continue executing past the breakpoint while you interact with the
debugger. Normally, the debugger directly controls only one thread in
your program, so other threads may continue to receive CPU time. We'll
see later in the chapter how to suspend threads other than the one being
debugged.

When you resume executing the program, the debugger replaces the byte
overwritten by the OxCC value to restore the original instruction at which

519

Advanced Topics

520

The CS and EIP Registers

A processor contains a small number of on-chip storage areas called
registers that temporarily hold all the information required to process
an instruction. An Intel processor has two registers named CS and
EIP that continually point to the next instruction in line for process­
ing. Here's a brief account of how the pointers in these registers guide
the processor back to a program after an interrupt has occurred.

CS stands for code segment-or, in 32-bit processing, code selector­
because the register holds a value called a selector assigned by the
operating system that references the base address of the program's
code. The EIP (extended instruction pointer) register holds a 32-bit
offset that points into the code area at the next instruction that the
processor plans to execute. When it responds to an interrupt (such as
an INT 3 instruction), an Intel processor first writes the contents of
the CS and EIP registers to the stack before jumping to the handler
function that services the interrupt. When the handler routine fin­
ishes, the original CS and EIP values are popped from the stack,
informing the processor where to go next-that is, back to the pro­
gram instruction it was about to execute when pulled away to service
the interrupt. Along with CS and EIP, another register containing
current processor flags is also restored from the stack, so that the
original program resumes executing unaware of (and unaffected by)
the interruption.

Interrupts occur continuously at a furious rate, originating both from
INT instructions in an executing program and from hardware events.
Pressing a key on the keyboard, for example, triggers an interrupt;
another interrupt occurs when you release the key. The system timer
regularly interrupts the processor 18 times a second, handing control
back to the operating system so that it can redirect the processor to
the next thread in line for a time slice. Interrupts are usually serviced
quickly, but the breakpoint interrupt is an exception. The operating
system and the debugger retain control until you resume debugging,
at which time the system exits its interrupt 3 handler and allows the
processor to continue running the program being debugged.

11 : The Debugger

you set the breakpoint. Because the EIP value on the stack now points to
the byte after the temporary INT 3 instruction, the debugger decrements
the value so that it again points to the original instruction. The debugger
then goes back to sleep by calling the ContinueDebugEvent API function.
The operating system restores registers to their original values and exe­
cutes an IRET (interrupt return) instruction from its interrupt 3 handler to
return control to the program. The processor pops the CS and altered EIP
values from the stack and resumes executing the program at the inter­
rupted instruction as though nothing had happened.

There's a complication that arises from the fact that all instances of a run­
ning Windows program normally share the same section of memory that
contains the program code. Since the debugger writes an INT 3 instruction
into the program's code, you might expect an instance of the program
running outside the debugger to also trigger the interrupt and land in the
debugger. But that doesn't happen. Windows provides a mechanism
known as copy-on-write that neatly handles these situations. When the
debugger calls the system's WriteProcessMemory function to write the
INT 3 instruction into a page of the program's code, Windows allocates a
block of writeable memory, copies the code page to the new block, remaps
the page's virtual memory address, and completes the debugger's write
operation using the copied page. Any other instances of the program run­
ning outside the debugger continue to run from the original code and so
do not encounter the INT 3 instruction.

The debugger employs a different method for catching a data breakpoint
attached to a variable in your program's data. It isn't practical to set an
INT code at every instruction that may alter the variable, so the debugger
must step through each instruction in the program, checking the variable
each time. If the variable does not change, the debugger executes the next
instruction, continuing until an instruction changes the variable. As you
can imagine, this continual cycle of interrupting and checking can dramat­
ically slow execution of the program being debugged. Your program may
even appear to hang when you debug with data breakpoints because of the
many thousands of interruptions that can occur.

521

Advanced Topics

522

Some processors provide special debug registers right on the chip to help
the debugger out with this tedious chore. An Intel processor has eight
debug registers, though it can monitor a maximum of four data break­
points because only the first four debug registers, DRO through DR3, hold
memory addresses. When you set a data breakpoint for a variable, the
debugger writes the address of the variable into one of the processor's
debug registers. It then programs the debug control register DR7 with a bit
flag that instructs the processor to monitor memory write instructions. As
the processor executes your program, it continually checks each instruc­
tion to see whether it writes to the memory that the debug register points
to. If so, the processor generates an interrupt 1, called the trace or debug­
ger interrupt, handing control back to the operating system through its
interrupt handler routine. When the system returns from WaitForDebug­
Event, the debugger reads the DR6 status register to determine which of
the four breakpoints has triggered the interrupt. The debugger then
updates its windows and informs you that the variable has been altered.

It's interesting to note that an Intel processor can also be programmed to
break whenever the program accesses a variable-that is, either writes to
or reads from the variable. However, the Visual C++ debugger does not
take advantage of this option because program instructions that read a
variable are usually of much less interest when you are debugging than
instructions that write the variable. It's also possible to program the pro­
cessor's debug registers to monitor location breakpoints as well as data
breakpoints, saving the extra work of overwriting code with an INT 3

instruction. But debug registers are a scarce resource, so the Visual C++
debugger compromises by using interrupt 3 to monitor location break­
points and reserves the debug registers for data breakpoints.

By using debug registers, the debugger places the burden of checking data
breakpoints on the processor, effectively eliminating the performance drag
that would otherwise result from stepping through each instruction to
monitor data changes. However, a data breakpoint can affect program
speed despite the use of debug registers when the breakpoint includes a
condition, such as whether the variable x exceeds a certain value. A vari­
able assigned a breakpoint may change many thousands of times in the
course of a single loop. Each time the variable changes, the processor

11: The Debugger

interrupts and control winds its way back to the debugger, which must
then evaluate the condition. A conditional expression that never (or
rarely) becomes true can thus degrade program speed by siphoning pro­
cessor time away from the program. And as we'll see later in the chapter,
in some circumstances the debugger does not use debug registers to moni­
tor data breakpoints, relying instead on the much slower method of single­
stepping through the program.

Bui~ding a Debug Version
To create a debug executable version of a program, first ensure the active
configuration is Win32 Debug. By default, Visual C++ sets the configura­
tion as Win32 Debug when you create a new project, displaying the cur­
rent configuration in the Build toolbar:

You can also click the Set Active Configuration command on the Build
menu to see the current configuration and if necessary change it to the
debug version. The Win32 Debug configuration automatically alters pro­
gram settings, displayed in the Project Settings dialog. Open the Project
Settings dialog by clicking the Settings command on the Project menu and
exposing the CIC++ and Link tabs. Settings in the dialog should appear
similar to those shown in Figure 11-1 on the next page, in which:

• The Optimizations combo box in the CIC++ tab displays the Disable
(Debug) option.

• A checkmark appears in the Generate Debug Info check box in the
Link tab.

With these settings in place, you can build the project normally. The
result is a debug version of your program that contains symbol informa­
tion for the debugger.

523

Advanced Topics

Settings in the CIC++ tab.

Settings in the Link tab.

Figure 11-1. Setting up a debug build in the Project Settings dialog.

The Debugger lnterf ace

524

Like the Visual C++ editors, the debugger is available only from inside the
Developer Studio environment. Debugging a program requires that the
project is open and that you have created a debug executable version of

the program.

Figure 11-2.

11 : The Debugger

The text editor provides a good place to begin debugging. Open one or
more of the program's source files and find the line where you want to
interrupt execution when the program runs. Click anywhere on a line to
place the caret there, then press F9 to set a location breakpoint. The editor
marks the line by placing a small red octagon suggesting a traffic stop sign

in the selection margin to the left of the line. If you have the selection
margin disabled as described in Chapter 3, the editor instead highlights
the entire line in red. To remove a location breakpoint, set the caret any­

where on the line and press F9 again to toggle the breakpoint off.

If you prefer the mouse to the keyboard, you can set or remove a location
breakpoint by clicking the right mouse button on the line. A context menu

appears as shown in Figure 11-2, from which you can choose the Insert/
Remove Breakpoint command to clear or set a breakpoint. The menu also
provides a Disable Breakpoint command that allows you to turn a break­

point off without removing it.

Though less convenient, you can also set a location breakpoint through

the Breakpoints dialog. This dialog provides the only means for setting
data breakpoints and two other variations, called conditional breakpoints

and message breakpoints.

',jf,
!~~opj!

.@ List M~mbers.
b T.'(pelnfo

i~ Parameter Info
:A."t. Complete W.Qrd

!.till Go To D~finition Of CFrameWnd

:''Jf:. i:l~#tliiard,.>; ': .

! ~ frbperties

Choosing the Insert/Remove Breakpoint command from the context menu.

525

Advanced Topics

Figure 11-3.

526

The Breakpoints Dialog
To display the Breakpoints dialog shown in Figure 11-3, press Ctrl+B or
click the Breakpoints command on the Edit menu. The three tabs in the
dialog let you set location, data, conditional, and message breakpoints.
The following paragraphs describe these four breakpoint types.

The Breakpoints dialog.

Location breakpoints
Setting a location breakpoint in the Breakpoints dialog is less convenient
than pressing the F9 key or choosing a command from the editor's context
menu, but the dialog provides several enhancements for location break­
points that often prove useful. For instance, you can type the name of a
function in the Break At control to set a location breakpoint at the first
line of the function; typing the name of a label sets a breakpoint at the
labeled line. (There is little difference between the two since a function
name is, after all, merely a label.) Letter case in the Break At control
must match the function name or label, and a C++ function name must
include the class name and scope resolution operator. Thus, the entry
OnCreate does not specify a valid breakpoint location, but CMainFrame::
OnCreate does.

11 : The Debugger

Typing a function name or label in the Breakpoints dialog sets a valid
breakpoint in the source, but does not provide the text editor with a line
number. Because the text editor requires a line number to display the
breakpoint symbol, it does not mark the line in the document window or
give any other visual indication that the labeled line now has a location
breakpoint. A list of current breakpoints at the bottom of the Breakpoints
dialog provides your only means of confirming the existence of the new
breakpoint. The stop sign breakpoint symbol appears in the source listing
only when the debugger is active.

To set a location breakpoint at a particular line, type a period followed by
the line number in the Break At control. For the current line-that is, the
line in the text editor that contains the caret-click the small arrow button
to the right of the control and select the given line number. This button
also leads to the Advanced Breakpoint dialog in which you can specify
a function or label in a source file other than the one displayed in the
text editor.

Location breakpoints have characteristics similar to text editor bookmarks,
and Visual C++ implements breakpoints and bookmarks using the same
logic. Besides marking a specific line, a location breakpoint like a named
bookmark remains a permanent fixture of your document until you
remove it. If you edit a document outside the Developer Studio environ­
ment, both breakpoints and bookmarks can be displaced to another line.
Editing a document within the environment while the debugger is active
can also jar a location breakpoint out of position, because the breakpoint
attaches to a line number. As the document grows or shrinks in size with
editing, a new source statement can slip into the line number assigned to
a breakpoint. If the new line does not contain a valid program instruction,
Visual C++ warns you of what has happened when you next start the
debugger:

One or more breakpoints are not positioned on valid lines. These
b~eakpoints have been moved to the next valid line.

527

Advanced Topics

528

At the appearance of this message you should scan the source code using
the text editor, remove the dislocated breakpoints, and reset new ones at
their original locations. If you regularly edit your source code outside the
Visual C++ environment or make changes while the debugger is active,
expect to see the message frequently. It's difficult to see a practical solu­
tion to the problem of displaced breakpoints, particularly when you make
changes in another editor. Like bookmarks, breakpoints are pointers rather
than characters embedded in the source code document (which would
only trip up the compiler), so altering text outside the environment inevi­
tably runs the risk of repositioning the pointer targets.

However, the problem of displacement does not affect location break­
points attached to labels or function names using the Breakpoints dialog.
These location breakpoints remain anchored to their labels no matter how
the document content changes, because each time it runs, the debugger
first scans the source code for the labels, tagging each labeled line with a
breakpoint. This is often a compelling reason to set location breakpoints
using the Breakpoints dialog rather than the more convenient method of
pressing the F9 key. We'll use the dialog method later in the chapter to set
location breakpoints in a sample debugging problem.

Data breakpoints
The Breakpoints dialog provides the only means for setting a data break­
point. A data breakpoint is triggered either when a specified variable
changes in value or when a conditional expression becomes true. If you
have used Microsoft's old CodeView debugger, you probably recognize a
data breakpoint as a new name for what Code View called a tracepoint.
Click the Data tab in the Breakpoints dialog and type the name of the vari­
able or the expression you want the debugger to monitor (see Figure 11-4).

Enter an expression in the form of a standard CIC++ conditional expres­
sion, such as i==100 or nCount > 25.

While the debugger is active, you can set a data breakpoint for a variable
not in scope by first typing the expression in the Breakpoints dialog, then
clicking the arrow button to the right of the text box labeled Enter The
Expression To Be Evaluated. Click the Advanced command that pops up

Figure 11-4.

11 : The Debugger

Enter the expression to be evaluated:

1~~.~tJ~t.~ 2?
Break when expression is true.

.!2.reakpoints:

~when 'i== 100'
~

c:::J

In

Cancel

· . .8.emove I
RemoveAjl I

Entering a data breakpoint in the Breakpoints dialog.

and enter the requested context information to enable the debugger to
track the variable when it comes into scope.

The debugger can monitor a range of variables identified by a pointer,
such as an array or structure name, provided you dereference the pointer
in the expression. For instance, typing an array name such as iArray in the
Enter The Expression text box does not set a data breakpoint for the first
element of the array as you might expect. You must dereference the array
pointer by typing iArray[O]. To monitor more than just the first element of
the array, set the number of elements in the smaller control labeled Enter
The Number Of Elements To Watch. Notice that this is the number of ele­
ments, not the number of bytes. If iArray contains integers, for example,
typing iArray[O] in the first control and the number 10 in the second con­
trol causes the program to break if any change occurs in the first 40 bytes
of the array (integers iArray[O] through iArray[9]).

Similarly, to monitor a string of character bytes that the variable pString
points to, type *pString in the Enter The Expression control. In the smaller
control, type the number of bytes that you want the debugger to monitor.
Typing pString without the asterisk dereference operator means that the
breakpoint is triggered only if pString is changed to point somewhere else.

529

Advanced Topics

530

In this case the debugger monitors pString itself, not the contents of the
string it points to.

As mentioned earlier, your program's execution speed can slow signifi­
cantly when you are debugging with data breakpoints. Program speed
degrades when you set more breakpoints than the processor can accom­
modate in its debug registers, or if you set a data breakpoint for a variable
with automatic storage class. Automatic data include function arguments
and variables defined in a function without the static keyword. Such data
live on the stack, blinking in and out of existence as the program executes.
Although you can set a data breakpoint for an automatic variable, the
debugger does not use the processor's debug registers to monitor the
breakpoint, so execution may slow while the variable is in scope. The
debugger uses debug registers only to monitor data breakpoints for static
variables that exist in the program's data section, not for automatic local
data on the stack.

The drag on execution speed imposed by data breakpoints can be so dra­
matic you may think your program has hung. Be patient when using data
breakpoints. If you believe your program has truly stopped responding for
some reason, click the Break command on Visual C++'s Debug menu. This
interrupts the program and returns control to the debugger.

Conditional breakpoints
A conditional breakpoint is an extended version of a location breakpoint.
Set the breakpoint at a source code instruction the same way as a location
breakpoint, but the debugger responds to a conditional breakpoint only if
a specified condition is true when control reaches the marked instruction.
Conditional breakpoints are invaluable in loops where the same instruc­
tion may execute many hundreds of times. A location breakpoint placed
in the loop halts execution at each iteration, which may not be what
you want. A conditional breakpoint lets you break at the instruction only
when some condition occurs-say, when the loop counter reaches a
value of 100.

Set a conditional breakpoint in the Location tab of the Breakpoints dialog.
After specifying the source code instruction you want to mark with the

11 : The Debugger

breakpoint, click the Condition button shown in Figure 11-3 on page 526

to display the Breakpoint Condition dialog box:

fnter the expression to be evaluated:

I iCount :::: 1 00

Break when expression is true.

Enter the number of times lo ~kip before
stopping:

L, :

OK

Cancel

In the top control of the dialog, type the breakpoint condition in the form
of a CIC++ conditional expression. Each time the marked instruction exe­
cutes, the debugger evaluates the expression and breaks program flow
only if the expression is TRUE or non-zero. The text box at the bottom of
the Breakpoint Condition dialog lets you specify the number of times the
condition must become true before the debugger interrupts the program.

Message breakpoints
A message breakpoint attaches to a window procedure. Execution breaks
when the window procedure receives a specified message, such as WM_
SIZE or WM_ COMMAND. Message breakpoints aren't of much use in C++
programs that use MFC, because window procedures usually lie buried
inside the MFC framework rather than in the program source code. To
interrupt a specific message in an MFC program, set a location breakpoint
for the function that handles the message, which is identified in the
class's message map.

Figure 11-5 on the next page illustrates how to set a message break-
point for a hypothetical window procedure named ButtonProc, prototyped
like this:

int CALLBACK ButtonProc(HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam);

531

Advanced Topics

Figure 11-5.

532

r __ .. _____________ ______ .. _____________ .. _______ .. _______ .. __ --.. -----~-------

JLli~c~I~{ . . [~o.K J
l
·;jf BreakEtWndProc: ' ·-?~~~~' ... il
·:;. l~~~t~2~~~,;,,,,,,,,;: :::g,a1it6de :I'

I.'! 5 el one breakpoint for e\.ci. Jne"age lo V<Otch:

j(j; ,.~,:J%·i~,t
1;::; WM COPY
I'. ii WM-COPYDATA

I
l WM C;L~OLORBTN

'. ft WM-CTLCOLORDLG
I'. WM-CTLCOLOREDIT
. WM-CTLCOLORLISTBOX

Setting a message breakpoint in the Breakpoints dialog.

When the operating system calls the ButtonProc procedure, it passes a
message value such as WM_COMMAND or WM_CREATE in the msg

parameter that informs the procedure why it is being called. To break exe­
cution when ButtonProc receives a specific message, click the Messages
tab in the Breakpoints dialog and type ButtonProc in the Break At
WndProc control. Click the arrow on the second combo box to expose a
drop-down list of message identifiers and select a message, such as the
WM_ CREA TE message shown in Figure 11-5. When you run the program
in the debugger, execution breaks at the first line of ButtonProc when
Windows calls the procedure with the WM_CREATE message.

As you see, a message breakpoint is a specialized form of conditional
breakpoint. You can get the same results in the Location tab by setting a
location breakpoint at the ButtonProc label along with this condition:

msg == WM_CREATE

Running the Debugger
Once you have established where and under what conditions you want
your program to stop, you are ready to execute it. At this point the text
editor, not the debugger, is active. Executing the debug version of your

Figure 11-6.

11 : The Debugger

program is a matter of starting the debugger, which in turn runs the
program.

Choose the Start Debug command from the Build menu, which presents
you with four choices named Go, Step Into, Run To Cursor, and Attach To
Process, shown in Figure 11-6. Use the Go command when you have set at
least one breakpoint in the source code. The debugger runs the program
normally, halting when (and if) the flow of execution in your program
reaches a location breakpoint or triggers a data breakpoint. The Step Into
command does just what its name suggests: it steps into the program and
stops at the first command. The first instruction of a Windows program is
the start of the WinMain function or, for an MFC program, the _tWinMain
function. In either case, the debugger opens the source module-which for
_tWinMain is the Appmodul.cpp file located in the MFC folder-and dis­
plays it in the source window.

Starting the debugger from the Build menu.

The Run To Cursor command halts execution at the source line on which
the caret rests. If no source file is open in the text editor, the Run To Cur­
sor command is disabled. Otherwise, it gives you a convenient means of
quickly jumping into a program without setting a breakpoint. If the pro­
gram flow triggers a breakpoint before reaching the caret, execution stops
at the breakpoint, not at the line with the caret. To continue execution,
reset the caret to the target line and click Run To Cursor again. The Attach

533

Advanced Topics

Figure 11-7.

534

To Process command allows you to launch the debugger and attach it to a
program that is currently executing. The debugger accomplishes this feat
through the services of the DebugActiveProcess API function, described in
online help.

The debugger provides shortcut keys for the first three subcommands of
Start Debug, so you don't have to pull down the Build menu to begin
debugging. The shortcut keys are F5 for Go, Fll for Step Into, and
Ctrl+FlO for Run To Cursor.

The Debugger Windows
When the program you are debugging stops at a breakpoint, the debugger
updates its windows with information about the program's current state.
Perhaps the most important of the debugger windows is the source win­
dow, which shows the source code where the program stopped. A small
yellow arrow called the instruction pointer appears in the selection mar­
gin to the left of the interrupted instruction. (If the selection margin is dis­
abled, the entire line appears highlighted in yellow.) The mark identifies
the instruction that has not yet executed but is next in line to do so when
the program resumes running.

The Debug toolbar, shown in Figure 11-7, appears on the screen when the
debugger regains control. The six buttons in the figure labeled Debugger
Windows act as toggles that expose or hide dockable windows containing
information about the current state of the program. Table 11-1 describes
the type of information displayed in each window. The Debug toolbar
does not contain a similar button for the source window, because the
debugger only borrows the window from the text editor. Open or close the
source window as you would any normal document view.

QuickWatch tool Debugger Windows

Tool buttons that toggle debugger windows on and off.

Table 11-1.

11 : The Debugger

Window

Watch

Variables

Registers

Memory

Call Stack

Disassembly

Button

r-.'~~~ L!:J

~
~

Displays

Current values of variables and expressions
tracked by the debugger. Specify in the Watch
window those variables you always want to
know the current value of whenever the program
is suspended.

Current values of variables accessed at or near
the break location. The Variables window has
three tabs:

0 Auto-Displays variables and function return
values.

0 Locals-Shows variables local to the current
function.

0 this-In a C++ program, identifies the object
that the this pointer currently points to.

Current contents of the CPU registers.

Memory dump of a specified address.

List of called functions that have not yet
returned. The call stack shows the path of execu­
tion leading down through nested function calls
to the breakpoint location.

Assembly language translation of the compiled
code that supplements the source window on the
screen. "Disassembly" means converting the
machine code in the program to equivalent
assembly instructions.

Information contained in the six debugger windows activated by buttons on the
Debug toolbar.

The Watch window provides a view of specified variables, showing cur­
rent values as they exist while the program remains suspended. Variables
in the Watch window have nothing to do with interrupting program flow,
so don't confuse a watch variable with a variable on which you have set
a data breakpoint. To add a variable to the Watch window, double-click
the dotted new-entry box in the window and type the variable name. The

535

Advanced Topics

536

QuickWatch tool, shown in Figure 11-7 on page 534, provides a way to
query for a current value without adding the variable to the Watch win­
dow. For the ultimate in convenience, you can query the debugger for a
current value simply by pausing the mouse cursor over the variable name
in the source window. This displays a pop-up tooltip window containing
the current value:

if (bCreat lag && iID > 1)
{ b eateFlag = 1

For some variables such as structure elements and class members, the
name alone may not provide enough resolution for the debugger to unam­
biguously identify the variable. In these cases, you must first select both
object and variable names along with the connecting dot operator (as in
MyClass.Member), then pause the mouse cursor over the selection in the
source window.

Whereas the Watch window provides a view of in-scope variables no mat­
ter where they are accessed in the program, the Variables window focuses
on the frozen point of execution. Any variables referenced by the instruc­
tion that last executed before the program was suspended, and perhaps
one or two previous instructions, appear in the Variables window. You
can change the value of a variable by double-clicking it in the Variables
window and typing a new value.

The Registers window, generally used only when the Disassembly
window is active, shows the state of processor registers as they existed
when the program was suspended. The Intel processor flags described
in Table 11-2 are bit flags, the values of which you can toggle by double­
clicking the flag in the Registers window. The Symbol column in the
table shows the flag symbols as they appear in the Registers window.

The debugger windows can pack a lot of information, but usually you do
not need to see them all at the same time. The windows compete for
screen space with the source code displayed in the source window, which
should always be visible so that you know where you are in the program.

Table 11-2.

11 : The Debugger

Flag name

Overflow

Direction

Enable
interrupt

Sign

Zero

Auxiliary
carry

Parity

Carry

Symbol

ov

UP

EI

PL

ZR

AC

PE

CY

Intel processor flags.

Description

Set when an integer instruction produces a result
that is too small or too large to fit in the destina­
tion register or memory address.

Determines the direction of repeated string and
compare instructions, such as MOVS (Move
String) and CMPS (Compare String).

When clear, the processor ignores hardware
interrupts such as keyboard activity.

Contains the high-order bit value of an arithmetic
instruction. (It's unclear why the Visual C++
designers chose the letters PL to represent the
sign flag. Don't confuse it with the processor's
1/0 Privilege Level flag.)

Set when the result of an arithmetic instruction
is zero.

Contains the carry out of the AL register's four
low-order bits (known as a nibble) after an arith­
metic instruction.

Set when the binary value of an arithmetic
instruction result has an even number of 1-bits.

Similar to the Overflow flag, but indicates an
unsigned overflow. Can be explicitly manipu­
lated with the STC (Set Carry) and CLC (Clear
Carry) instructions.

As mentioned in Chapter 1, the debugger uses the environment's Output
window to display data from the OutputDebugString function or the
afxDump class. The Output window also shows thread termination codes,
first-chance exception notifications, and loading information. There is no
button on the Debug toolbar to control display of the Output window
because the window belongs to the Developer Studio environment, not the
debugger. Toggle the visibility of the Output window by clicking the Out­
put button on the Standard tool bar.

537

Advanced Topics

Figure 11-8.

538

It's a little difficult to get a feel for the debugger windows until you actu­
ally use them. An example program later in the chapter demonstrates how
the debugger windows assist in the debugging process.

Stepping Through a Program
When tracking down a program error with the debugger, identify the
section of code where you believe the problem arises and set a location
breakpoint at or just before that section. When the debugger suspends the
program at the breakpoint, you can then single-step through the problem
area one instruction at a time, checking variables as they change.

The Debug toolbar has a group of four buttons shown in Figure 11-8 that
let you step through ~suspended program. You can recognize the Step
tools by the arrows and curly braces on them; as we'll see, the images
convey very well what the buttons do. In the order shown, the buttons
activate the Step Into, Step Over, Step Out, and Run To Cursor commands.
We've already discussed the Run To Cursor command. The other three
need a little more explanation.

Step Into
Step Over

Run To Cursor
Step Out

The four Step tools on the Debug toolbar.

The Step Into and Step Over commands (or their equivalent shortcut keys
F11 and F10) let you single-step through the program. When you choose
Step Into or Step Over, the debugger allows the program to resume execu­
tion, but only for one instruction. After the instruction finishes, the
debugger again suspends execution. You might wonder what constitutes
an instruction because a single command in a high-level language like
C++ may translate into a dozen machine instructions at the processor
level. It depends on whether the Disassembly view is enabled. If it is, the
single-step commands execute only the current machine instruction, mov­
ing the arrow pointer to the next instruction in the disassembled listing. If
the Disassembly view is disabled, Step Into or Step Over executes the

11 : The Debugger

current CIC++ instruction in the source window, processing as a group
whatever machine code makes up the instruction.

The names of Step Into and Step Over make more sense when the com­
mands are used on an instruction that calls a function. Consider what hap­
pens when the debugger halts execution at the if statement shown here:

if (Function!(hdc, Function2(msg)))
x = 3;

else
y = 100;

The Step Over command does as its name implies, processing the entire if
statement including the calls to Function1 and Function2. The program
halts again at either the x=3 or y=100 statement, depending on the out­
come of the if expression. The Step Into command handles the situation
differently. When you click the Step Into button at the if statement, the
debugger steps into Function2 and stops at the first instruction. If you
check the Call Stack window at this point, you will see Function2 at the
top of the list and below that the name of the function you just left.

Here's where the Step Out command becomes useful. This command exe­
cutes the rest of the current function, and then stops at the next statement
after the function call. In other words, when applied to a function call the
Step Into and Step Out commands together have the same effect as Step
Over. However, if the instruction contains more than one function call as
in our example, things get more complicated. When you click the Step
Into button at the if statement to pause at the first instruction of Function2

and then click Step Out, the instruction pointer arrow remains pointing to
the if statement. This is because Function2 has finished executing, but
Function1 has not yet been called. Activating Step Into again advances to
the first instruction of Function1. If you click Step Out to return from
Function1, the instruction arrow still points to the if statement because
the if test itself has not yet been processed.

A disassembled view of the code shows more clearly what is happening.
The shaded lines indicate the C source statements, which are followed by
the equivalent disassembled instructions. (The disassembled lines serve
only to illustrate the internal chain of events within the if statement, and

539

Advanced Topics

540

are not meant to suggest that the Disassembly window is visible.) At the
beginning of the code sequence, the yellow instruction pointer arrow
points to the if statement.

if (Function!(hdc, Function2(msg))) -1111(-----illnstructionpointerarrowishere.I
mov eax, dword ptr [msg]
push eax

ecx. dword ptr [this] mov
call
push
mov
push

@ILT+30(CMyCl ass:: Functi on2) (0040101e) ..----------~
eax ... <-1--------------~ First Step-Into-Step-Out processes
eax, dword ptr [hdc] Function2andendshere.Arrow
ea x still _goints to the if statement.

mov ecx, dword ptr [this]

call @ILT+85(CMyClass::Functionl) (00401055) ...-----------~
test ea x, ea x ... ~1-------------1 Next Step-Into-Step-Out processes
je CMyCl ass: : Ca 11 er+00000071 Function 1 and ends here. Arrow

still~oints to the if statement.

x = 3 : .. ,..1------------------11 Next Step-Into ends here ... I

mov dword ptr [x], 00000003
else
jmp CMyClass::Caller+00000078
y = 100: -------------------1 ... orhere,dependingon

Function 1 's return value.
mov dword ptr [y], 00000064

Windows 95 does not allow stepping into system API functions such as
those shown here:

::SelectObject(hdc, ::GetStockObject(BLACK_PEN));

If you select Step Into at this instruction, both GetStockObject and
SelectObject execute before the debugger stops execution at the next state­
ment. In this case, Step Into and Step Over have the same effect.

Stopping and Restarting the Debugger
The Restart button shown in Figure 11-9 lets you abort execution and
restart the program from the beginning, throwing away any current allo­
cations such as system resources or memory. The result is a clean slate
without your having to exit and restart the debugger. Click the Stop
Debugging button to exit the debugger immediately, killing both debugger
and program in one step. The Break Execution button has the same effect
as the Break command on the Debug menu, halting the program's

11 : The Debugger

Show Next Statement
Break Execution

Stop Debugging
Restart

Figure 11-9. Debugger tools that control the point of execution.

execution and returning control to the debugger. Use the Break Execution
button to stop a program caught in an infinite loop.

The small yellow arrow tool labeled Show Next Statement neatly solves
an old problem. Tracking down a bug while the program is suspended
often requires investigating other parts of the document and may even
lead you into other source files. Clicking the Show Next Statement arrow
on the Debug toolbar brings you immediately back to the halted instruc­
tion in the source window. The tool icon suggests the instruction pointer
arrow that appears in the selection margin adjacent to the halted
instruction.

Corrections on the Fly
When you find an error while debugging your program, Visual C++ in
many cases allows you to incorporate corrections without stopping the
debugger. The discovery that a variable contains a wrong value, for
instance, is often easily solved by typing the correct value in the Variables
window before continuing the program's execution. If you prefer to
resume running the program from a new instruction, right-click the
desired line in the source window and choose the Set Next Statement
command from the context menu:

541

Advanced Topics

542

This resets the instruction pointer to the clicked line, allowing you to redo
or skip over instructions in the program. The burden is on you, however,
to ensure that moving the instruction pointer results in no adverse conse­
quences. Assignment instructions are usually safe to repeat, as are many
calls to API functions, but be cautious about re-executing a new instruc­
tion or other code that allocates a resource.

Typing a new value during a debugging session is at best a temporary
solution. It presumes that eventually you will exit the debugger, fix the
faulty source code using the text editor, and recompile to permanently
establish the correction. But Visual C++ now offers a more convenient
alternative to these well-worn steps, letting you permanently fix many
problems right in the debugger's source window. When you resume run­
ning the program after editing the source, Visual C++ first compiles the
revised code and replaces the affected machine instructions with the cor­
rected version. The fix is permanent, exactly as though you had closed the
debugger, recompiled the corrected source code, and restarted the
debugger again.

Known as Edit and Continue, this feature is always available during
debugging, though you have the option of applying it either automatically
or manually. By default, the feature is activated automatically when you
choose Go or one of the Step commands to resume executing an inter­
rupted program after revising its source. If you prefer more control over
whether altered code is recompiled during a debugging session, expose
the Debug tab of the Options dialog and clear the check box labeled Debug
Commands Invoke Edit And Continue. This does not disable the Edit and
Continue feature, but only ensures that the debugger does not invoke it
without your permission. You can recompile revised code in the debugger
whenever you want by clicking the Apply Code Changes button on the
Debug toolbar (Figure 11-10) or by choosing the corresponding command
from the Debug menu or the source window's context menu. The Apply
Code Changes command is enabled only when you have made changes to

11 : The Debugger

Figure 11-10. Invoking the debugger's Edit and Continue feature.

the code, either in the debugger's source window or in another text editor
outside the Visual C++ environment.

The point of execution sometimes changes after you've recompiled edited
code, in which case the debugger notifies you with a message. If the
instruction pointer is not where it should be, reset it using the Set Next
Statement command.

There are certain limitations to Edit and Continue that you should bear in
mind. The feature does not recognize source changes that are impossible,
impractical, or unsafe to compile while debugging, such as:

• Alterations to exception handler blocks

• Wholesale deletions of functions

II Changes to class and function definitions

• Changes to static functions

• Changes to resource data in the project's RC file

Attempting to resume execution through Edit and Continue after making
any of these changes causes the debugger to display an error message in
the status bar that explains the problem. You have the option of continu­
ing to debug using the original code or closing the debugger and recompil­
ing the revised code normally. For safety's sake, Edit and Continue defers
applying changes to a function until the call stack completely "unwinds."
If you edit the function in which execution is currently frozen, and if (as
is usually the case) that function has been called by yet another function,
the debugger displays the message shown on the next page when you
attempt to resume execution.

543

Advanced Topics

544

The dialog is not an error message. It serves only to remind you that the
function will finish executing using its original code, and your revisions
will not take effect until the next time the function executes through the
same chain of calls. Click the Yes button to continue execution; click No
to cancel Edit and Continue and return to the debugger.

Programming Breakpoints
Sometimes it's more convenient to sprinkle small confirmation tests
throughout your program instead of trying to plant breakpoints at many
different locations. The ASSERT macro is commonly used for this pur­
pose, arresting execution only if an error occurs. It's instructive to pro­
gram our own breakpoints by creating a simple test macro named CHECK
that displays a message and halts if a test fails. The breakpoint is easy to
program in the macro, simply encoded as an INT 3 instruction using
inline assembly. As we saw earlier in the chapter, this instruction turns
control over to the debugger when the processor executes it.

The CHECK macro triggers the INT 3 breakpoint only if a condition fails.
The macro takes two parameters-an expression that tests the condition,
and a pointer to a string that explains the error:

11 : The Debugger

#i fdef _DEBUG
#define CHECK(b, s) \

if (b) \
{ \

}

#else

: :MessageBox(NULL, s, "CHECK Error", MB_ICONINFORMATION) ; \
_asm int 3 \

#define CHECK(b, s)
#end if

With the macro in place, you can test the logic of your program like this:

iRet = Functionl();
CHECK(i Ret != 1, "Bad return value from Functi onl") ;

If the test fails, the macro displays the error message and halts execution
at the breakpoint. You can then correct the problem in the debugger, reset
the instruction pointer, and try the instruction again through Edit and
Continue.

!Example: Developing and
Debugging the ShockWave Program

The ShockWave program introduced in this section provides an opportu­
nity to apply some of this knowledge. ShockWave does no more than dis­
play concentric rings in a wave pattern of random colors-at least, that's
what it's supposed to do. Though it compiles cleanly, ShockWave does
not run correctly. The program has two bugs, one obvious, the other a lit­
tle less so. Some detective work with the debugger is all that's needed to
get the program working.

ShockWave shows how to achieve a three-dimensional look through color
gradations. You will need a video adapter capable of 24-bit color and at
least 1 MB of video memory to see the 3-D look, but because the purpose
of the program is to demonstrate the debugger, don't worry about how it
appears on your screen. Figure 11-11 on the following page shows what
the program looks like when running correctly after having been success­
fully debugged.

545

Advanced Topics

;;:untitled - ShockWave ' , · l!!lraf3

Figure 11-11. The ShockWave example program.

546

Developing ShockWave
ShockWave is an MFC application created with the help of AppWizard.
You can set up the project from the build files in the Code \Chapter.11 \
ShockWav subfolder copied from the companion CD. The files in this
subfolder contain the flawed source code; the corrected version of the pro­
gram is in the Shock_OK folder. You can also develop ShockWave your­
self by following these six steps. The program is simple enough that only
its view class requires editing, so developing the project from the ground
up is an interesting exercise that does not require an unreasonable amount
of typing.

Step 1: Run App Wizard to create the ShockWave project
Click New on Visual C++'s File menu, select the MFC App Wizard (exe)
icon in the Projects tab, and type ShockWave as the project name. Click
OK to run AppWizard and create the new ShockWave project. When
specifying the project options, select the Single Document radio button in

11 : The Debugger

AppWizard's Step 1 and disable the docking toolbar, initial status bar, and
print support in Step 4.

The names of the source files that App Wizard creates differ slightly from
those on the CD, which are restricted to eight letters or fewer to accommo­
date older text editors that do not recognize long filenames. Although the
filenames differ, the source code in the files matches exactly the code
described in these six steps.

Step 2: Revise ShockWave's menus
ShockWave requires only a menu command to exit the program and so
does not need the other commands that App Wizard adds to the menu
resource. Using the Visual C++ menu editor, revise ShockWave's menus
so that it has only a File menu and a Help menu that look like this:

Eile .tfelp.

i , .. __ .,.#.?..~~.~ .. ~.~~=~~~.~-~::.:::
1 L '".h '" J

Step 3: Add message-handler functions using ClassWizard
ShockWave sizes the wave pattern to fill the client window, accommodat­
ing changes in the window size. It also centers new wave patterns on
mouse clicks within the client area. To respond to these events, Shock­
Wave traps WM_SIZE and WM_LBUTTONDOWN messages with handler
functions named OnSize and OnLButtonDown.

Add these handler functions to the CShockWaveView class by clicking the
ClassWizard command on the View menu. In the Message Maps tab, set
CShockWave View as the class name and select WM_SIZE in the Messages
box. Click the Add Function button to automatically create the OnSize
function, which handles the WM_SIZE message. Do the same for the WM_
LBUTTONDOWN message to add the OnLButtonDown function, as shown
in Figure 11-12 on the next page. We'll add code to the handler functions
shortly. Close the ClassWizard dialog before proceeding to the next step.

547

Advanced Topics

Figure 11-12. Creating the OnSize and OnLButtonDown handler functions in Class Wizard.

548

Step 4: Edit the ShockWaveView.h file
Open the ShockWaveView.h file in the text editor and locate the CShock­
Wave View class declaration. (On the companion CD, the file is named
ShockVw.h.) Add the shaded lines of code shown here:

II ShockWaveView.h : interface of the CShockWaveView class
II
lll

#define
#define
#define
#define
#define
#define
#define

NUM_COLORS 6
RED 0
GREEN 1
BLUE 2
CYAN 3
MAGENTA 4
GRAY 5

class CShockWaveView public CView
{

private:
CPoint
CRect
COLORREF
int

protected:

center;
rectClient;
rgb[NUM_COLORS];
iColor;

II create from serialization only
CShockWaveView();

11 : The Debugger

DECLARE_DYNCREATE(CShockWaveView)

Step 5: Edit the ShockWaveView.cpp file
The ShockWaveView.cpp file (or ShockVw.cpp on the CD) contains all
the implementation details for the CShockWave View class. It requires
some additions as well, shown here in shaded lines. The WizardBar pro­
vides a convenient way to open the file in the text editor. Because the text
editor currently displays the class's header file, clicking the wand icon on
the WizardBar opens the implementation CPP file. You can immediately
return to the header file by clicking the same tool.

The following listing shows source code for the entire ShockWaveView.cpp
file. I've interspersed commentary after each important function to explain
what is happening.

II ShockWaveView.cpp implementation of the CShockWaveView class
II

fl i n cl u de 11 std a f x . h 11

Iii nc l ude 11 ShockWa ve. h11

#include 11 ShockWaveDoc.h 11

#include 11 ShockWaveView.h 11

#include <math.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = ~FILE~;
//end if

lll
II CShockWaveView

IMPLEMENT_DYNCREATE(CShockWaveView, CView)

BEGIN_MESSAGE_MAPCCShockWaveView, CView)
l/{{AFX_MSG_MAP(CShockWaveView)
ON_WM_SIZE()
ON_WM_LBUTTONDOWN()
I/} }AFX_MSG_MAP

END_MESSAGE_MAP()

549

Advanced Topics

550

///////////l/////////////ll//
II CShockWaveView construction/destruction

CShockWaveView::CShockWaveView()
{

SYSTEMTIME st:
::GetSystemTime(&st);
srand((int) st.wMilliseconds); II Seed the random number

rgb[0J RGB(128, 0, 0) ; II Red
rgb[l] RGB(0, 128, 0) ; II Green
rgb[2J RGB(0, 0, 128) ; II Blue
rgb[3] RGB(0, 128, 128) : II Cyan
rgb[4J RGB(128, 0. 128) : II Magenta
rgb[5J RGB(128. 128. 128) : II Gray

iColor = 1: II Start with Green
}

CShockWaveView::-CShockWaveView()
{

}

The CShockWave View constructor initializes the rgb array with COLOR­
REF values for six colors. Shock Wave randomly selects one of these colors
when displaying a shock wave pattern. The variable iColor holds an index
value for rgb that determines which of the colors the program uses to paint
the shock waves.

The constructor calls the Windows API function GetSystemTime to retrieve
the millisecond component of the current system time. This value, which
ranges from O through 999, provides a convenient seed value for the srand
function, the C run-time random number generator.

BOOL CShockWaveView::PreCreateWindow(CREATESTRUCT& cs)
{

}

HCURSOR hCur = ::LoadCursor(NULL. IDC_CROSS);

cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW I CS_VREDRAW,
hCur, NULL) :

::DeleteObject(hCur);

return TRUE:

11: The Debugger

ShockWave displays the mouse cursor as crosshairs rather than the nor­
mal arrow shape. This slight refinement conveys more clearly to the user
the idea of targeting some point in the client area with the mouse cursor
and then clicking it. ShockWave uses the click coordinates as the center
for the next wave pattern. To change the window cursor shape, CShock­
WaveView overrides the virtual function PreCreateWindow. The MFC
framework calls PreCreateWindow just before it creates the program's
main window, passing the function a pointer to a CREATESTRUCT struc­
ture. The structure contains the settings that MFC plans to use for the win­
dow. Overriding PreCreate Window gives a program the opportunity to
modify any of the window's characteristics, such as its cursor shape,
before MFC creates the window.

In CShockWave View's implementation, PreCreate Window first loads the
standard Windows crosshairs cursor shape, which has an identification
value of IDC_CROSS. The function then registers a new window class,
assigning it the crosshairs cursor and a background brush with a value of
NULL. A NULL background color signals the operating system that it
should not repaint the window background when it resizes the window.
Because the window's color changes randomly with each new shock
wave, Shock Wave itself takes on the responsibility of painting the
background.

You might recall that the Color example program presented in Chapter 5

also paints its own background. The Color program does not adjust the
window creation flags as does ShockWave, but instead traps the WM_
ERASEBKGND message to prevent the operating system from painting the
window. The two programs demonstrate different techniques that achieve
the same result.

lll
II CShockWaveView drawing

#define PI 3.1415926
#define NUM_RINGS 5

void CShockWaveView::OnDraw(CDC* pDC)
{

CPen pen;
CRect rect;

551

Advanced Topics

552

COLORREF color;
int i, j, iPeriod;
double Angle;

II Set up coordinate system for largest wave

i =min(rectClient.right, rectClient.bottom); II diameter
pDC->SetMapMode(MM_ISOTROPIC);
pDC- >SetWi ndowExt (i , i) ;
pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
pDC->SetViewportOrg(center.x, center.y);

i =max(rectClient.right, rectClient.bottom)12; II
rect.SetRect(-i, -i, i, i) ;
iPeriod = il(2*NUM_RINGS);

II Two loops: loop 1 displays one wave per iteration

radius

II loop 2 draws one color gradation per iteration

for (j=0; j < NUM_RINGS; j++)
{

for (Angle=0.0, i=l; i < iPeriod: i++)
{

Angle += PiliPeriod;
color = 128 + (DWORD)(128.0 * sin(Angle));
if (color > 255)

color = 255;

switch (iColor)
{

case GREEN:
color «= 8;
break;

case BLUE:
color «= 16;
break;

case CYAN:
color= RGB(0, (int) color, (int) color);
break;

case MAGENTA:
color= RGB((int) color, 0, (int) color);
break;

case GRAY:
color = RGB((int) color, (int) color,

11 : The Debugger

}

}

}

(int) color):
break:

rect. Infl ateRect(-1, -1) :
pen.CreatePen(PS_SOLID, 1, color);
pDC->SelectObject(&pen):
pDC->Ellipse(rect);
pDC->SelectStockObject(BLACK_PEN);
pen.DeleteObject();

rect.InflateRect(-iPeriod, -iPeriod);

The OnDraw function takes on the entire task of displaying a wave pat­
tern. It draws each wave in a series of thin concentric circles, each circle
one pixel wide, beginning at the outer edge of a wave and working toward
the center. (For this reason, the wave pattern seems to implode rather than
explode as it appears on the screen.) For each pixel-wide circle, the code
slightly increases or decreases the intensity (brightness) of the current
color. The resulting gradations of intensity give the waves their distinctive
three-dimensional appearance.

The function draws the wave pattern in two loops, one nested inside the
other. The outer loop repeats five times, drawing a complete wave at each
iteration. The inner loop draws a pixel-wide circle at each iteration, con­
tinuing until it has drawn enough circles to form an entire wave. For each
circle, the inner loop creates a new device context pen that adopts the cur­
rent color indexed by iColor, slightly adjusting the color's intensity. A sin­
gle line of code varies the intensity at each iteration from a medium
brightness value of 128 through a maximum value of 255:

color= 128 + (DWORD)(128.0 * sin(Angle)):

Since the window background color has an intensity value of 128, each
wave seems to rise up out of the background as a sinusoidal curve.

llllllllllll/lllllll//lllllllllllll/llll/lllllllllll/llllllllllllllll
II CShockWaveView message handlers

void CShockWaveView::OnSize(UINT nType, int ex, int cy)

553

Advanced Topics

554

{

}

CView::OnSize(nType, ex, cy);

rectClient.SetRect(0, 0, ex, cy);
center.x = cx/2;
center.y = cy/2;

II Center of shock wave

void CShockWaveView::OnLButtonDownCUINT nFlags, CPoint point)
{

}

CView::OnLButtonDown(nFlags, point);

center = point;
iColor =rand();
Invalidate(FALSE);

Step 3 of this exercise used Class Wizard to add handler functions for the
WM_SIZE and WM_LBUTTONDOWN messages. Here we add code to the
stub functions that ClassWizard created.

When the window size changes, the OnSize handler centers the wave pat­
tern in the client window and records the new window dimensions in
rectClient. The OnDraw function later uses these dimensions to ensure the
wave pattern fills the window. The OnLButtonDown function records the
coordinates of a mouse click within the client area, which determines the
center of the next wave pattern. The function also randomly selects a new
color from the six available in the rgb array and calls Invalidate so that the
window repaints itself with the new wave pattern.

Step 6: Build and run the ShockWave.exe program
Make sure that the Build toolbar shows Win32 Debug as the current pro­
gram configuration:

Click the Build button on the toolbar (or choose the command from the
Build menu) to create a debug version of ShockWave, and then click the
Execute command to run the program.

11 : The Debugger

Debugging ShockWave
The first bug is obvious (though not fatal) when you first run ShockWave.
The client window seems to be transparent, allowing toolbars and text in
Visual C++ to appear inside ShockWave's window. You probably already
see what's wrong, but let's step through the program with the debugger
anyway to clearly identify the cause of the problem. Close the ailing
ShockWave program using its Exit command.

To begin debugging, use the text editor to look at the ShockWaveView.cpp
(or ShockVw.cpp) document. The bug most likely arises somewhere in
the view class because it contains the only part of the source code that
required extensive alterations. Since something is wrong with ShockWave's
window, we should suspect at the outset both the PreCreateWindow and
OnDraw functions, the two functions revised earlier in Step 5 of this exer­
cise. The first function sets the window characteristics; the second func­
tion draws the window contents.

Click the Breakpoints command on the Edit menu and type CShockWave­
View::PreCreate Window in the Location tab of the Breakpoints dialog.
Press Enter and type CShockWave View::OnDraw in the same place. This
sets a location breakpoint at the start of each suspect function. Click the
OK button to return to the editor.

Now press F5 to start the debugger. Disk activity indicates that Visual C++
is launching the debugger, which in turn runs ShockWave.exe. The
debugger source window then appears with the instruction arrow pointing
at the first line of the CShockWave View::PreCreate Window function. The
Shock Wave program has halted at the first of the two location breakpoints
we set. The Visual C++ window now looks something like Figure 11-13 on
the next page.

Inside the PreCreateWindow function
Click the Variables tool on the Debug toolbar shown in Figure 11-13 to
expose the Variables window. The Variables window lists the variables
referenced by the last executed line, which in this case means the single
argument cs accessed by the function prologue. The cs argument points to
the CREATESTRUCT structure that MFC will use to create the ShockWave
window. Clicking the small plus(+) button adjacent to the cs name in the

555

Advanced Topics

BOOL CShockWaveView: :PreCreateWindow(CREATESTRUCT& cs)
{

HCURSOR hCur = : : LoadCursor (NULL. !DC_ CROSS) ;

cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW I CS_VREDRAW. hCur.
: : DeleteObject (hCur) ;

return TRUE;

Figure 11-13. The ShockWave program stopped at a breakpoint in the Visual C++ debugger.

556

Variables window expands the list to show member variables of the
structure.

You can make the Name column wider in the Variables window if some of
the names are too long to fit in the column. Place the mouse cursor on the
divider between the two column labels, just to the left of the Value label,
and drag the divider right or left to resize the columns. Double-clicking
the divider adjusts the column width automatically to accommodate the

longest name in the column:

Press the F10 key or click the Step Over tool button to execute the func­

tion prolog code. The pointer stops at the next line in the PreCreate­

Window function:

HCURSOR hCur = ::LoadCursor(NULL, IDC_CROSS);

11 : The Debugger

The Variables window now includes the current value of hCur, but
because the instruction has not yet executed, the value shown in the win­
dow is meaningless. Execute the instruction by stepping over it, giving
hCur the value returned by the LoadCursor API function. The new value
appears in red to indicate the last instruction has changed the value of
hCur. The color coding is a nice feature of some debugger windows,
letting you quickly see which of the listed variable values the instruction
has changed.

Press F10 again to execute the call to AfxRegisterWndClass:

cs.lpszClass = AfxRegisterWndClass(CS_HREDRAW I CS_VREDRAW, hCur, NULL);

The Variables window shows that cs.lpszClass now points to a valid class
name-something like Afx:400000:3:13ce:O:O-assigned by the MFC
framework. The new value for cs.lpszClass affirms that AfxRegisterWnd­
Class has executed correctly. This is no surprise; because the operating
system creates ShockWave's window correctly, the class must be properly
registered. Window drawing, not window creation, is the problem, so the
error must occur in the OnDraw function. Let's move on to the next break­
point by pressing the F5 key or by choosing Go from the Debug menu. As
you do so, watch the screen carefully.

Inside the OnDraw function
Execution continues briefly until the program flow reaches the next break­
point, which we set earlier at the OnDraw function. In getting to this point
of the program, you probably saw ShockWave's window flicker into exis­
tence and then disappear. The ShockWave window still exists, but in
regaining control the debugger windows have overwritten it. You can
expose ShockWave's window by minimizing Visual C++. Notice that
ShockWave is completely inactive; it doesn't even have a menu bar yet.
Control at this point belongs to the debugger.

Return to the debugger and press F10 repeatedly to single-step over the
data declarations down to this section of code:

pDC->SetMapMode(MM_ISOTROPIC);
pDC->SetWindowExt(i, i);
pDC->SetViewportExt(rectClient.right, -rectClient.bottom);
pDC->SetViewportOrg(center.x, center.y);

557

Advanced Topics

558

The first line sets the mapping mode to MM_ISOTROPIC, ensuring the
waves appear on the screen as circles, not as ellipses. The next two lines
of the fragment set the window extent and viewport extent to cover Shock­
Wave's entire client area. The last line sets the viewport origin at the
center of the window. Like many MFC functions, these CDC member func­
tions return a positive value when successful, or return NULL to indicate
a problem. It would be amazing if these functions failed, so they do not
warrant cluttering up the program with additional code to check return
values. Even though ShockWave does not store the function return values,
you can view the values in the Variables window to make sure the func­
tions execute correctly. As you step over each function, the window dis­
plays a return value like this:

If a function returns an error code when you step over it, the debugger can
translate the return value for you into a meaningful message. In the Watch
window, double-click the dotted entry box in the Name column and type
err,hr. In determining the value for this entry, the debugger calls the Get­

LastError API function and converts the results into helpful text such as
"The handle is invalid."

The Registers window provides yet another way to check function return
values. On Intel-based processors, a Win32 function that returns a value
places it in the EAX register just before exiting. (64-bit return values
occupy the EDX:EAX register pair.) To check a function's return value,
just glance at EAX in the Registers window immediately after stepping
over the function call. Like the Variables window, the Registers window
displays new values in red, indicating which registers the last instruction
has changed. Since none of the above functions returns a zero value, we
know that this section of the code executes correctly. At this point, Shock­
Wave is poised at the start of the two loops that draw the wave pattern.

11 : The Debugger

But something is missing. The program should not draw the circular
waves yet because the background of ShockWave's client area still
remains unpainted.

Recall that the Pre Create Window function revised in Step 5 on page 549
instructs Windows not to repaint ShockWave's background. That was the
purpose of the NULL brush value given to AfxRegisterWndClass when
registering the window class. So as requested, Windows correctly creates
the window without filling in the client area. The trouble is, ShockWave
does not keep its side of the bargain. Someone has to repaint the window
background-if not the system, then ShockWave itself must do it. There's
the solution for the first bug: ShockWave needs to paint the window back­
ground before drawing the wave pattern.

We have the choice here of correcting the source code and resuming exe­
cution through Edit and Continue, but exposing the Call Stack window
shows that the OnDraw function is the last in line of several nested func­
tion calls that wind through both the kernel and the MFC framework. This
means that any corrections won't take effect immediately but only when
the function next executes. For our purposes, it's just as easy to stop the
debugger and return to the editor.

This brings to light an interesting situation. You might assume that contin­
uing with ShockWave's execution would be a prudent way to stop debug­
ging. We could exit ShockWave normally using its Exit command and the
debugger would stop, returning us to the text editor. Well, try it. Press F5
to continue running ShockWave.

You can never reach ShockWave's menu this way because each time you
press the F5 key, ShockWave's window appears only briefly before you
are dropped right back at the breakpoint in the CShockWave View::On­
Draw function. It's not difficult to see what is happening. When Shock­
Wave regains focus, it must appear on top of Visual C++ and any other
windows on the screen. Windows sends ShockWave a WM_PAINT mes­
sage telling it to repaint itself. But in repainting, the framework calls
ShockWave's OnDraw function, triggering the breakpoint. The debugger
then gets the focus and Visual C++ displays itself right over ShockWave's
window. Every time you press F5 to continue executing ShockWave, the

559

Advanced Topics

560

process repeats in a never-ending cycle. You can break the cycle by
removing or disabling the breakpoint before pressing the F5 key, but the
Stop Debugging button on the Debug toolbar (or its equivalent command
on the Debug menu) provides a better way to terminate the debugger:

The command returns you to the editor, leaving all breakpoints in place.

Revising and rebuilding ShockWave
Painting the window background does not require much code. In the text
editor, add the lines shown in gray so that the OnDraw function looks
like this:

void CShockWaveView::OnDraw(CDC* pDC)
{

CPen pen;
CRect rect;
COLORREF color;
int i, j, iPeriod;
double Angle;
CBrush brush;

II Paint client area with current color

brush.CreateSolidBrush(rgb[iColor]);
pDC->FillRect(rectClient, &brush);
pDC->SelectStockObject(NULL_BRUSH);
brush.DeleteObject();

The grayed lines allocate a brush with the current color indexed by iColor,
paint the client area with it, and then destroy the brush. With the new
code in place, build a debug version of ShockWave again and run it using
the Execute command on the Build menu. It should appear correctly this
time, its background painted with a medium intensity of green.

11 : The Debugger

The second bug
ShockWave still has another bug in it. This bug is more interesting than
the first one because it demonstrates how Visual C++ lets you find pro­
gram errors even when the debugger is not active. To see the second bug,
click the mouse anywhere in the ShockWave window. According to the
program design, this action should clear the window, repaint it with one
of the six available colors, and redraw the wave pattern centered on the
coordinates of the mouse click. You may have to click several times, but
eventually Windows displays this message:

This program has performed an illegal operation
and will be shut down. I r::::::::Q9.:~~::~:::::il

If the problem persists, contact the program
vendor.

". De.l:lug I
Qetails>> I

Somewhere ShockWave has tried to access memory that doesn't belong to
it. When this happens to a release version of a program, you have no
choice but to click the Close button to terminate the program, build an
equivalent debug version, launch the debugger again, and hope you can
recreate the error. But the above message gives you another option. If you
click the Debug button, Windows automatically starts the debugger for
you, even if Visual C++ is not currently running. Better yet, you find your­
self looking at the ShockWave program as it exists immediately after the
error. No need to guess which line caused the protection fault-the yellow
instruction pointer arrow is pointing to it. Microsoft calls this feature Just­
in-time debugging.

According to the source window, the program crashed at the first instruc­
tion of the CShock Wave View: :OnDraw function:

brush.CreateSolidBrush(rgb[iColorJ);

This is one of the lines we just added; it creates a brush that OnDraw uses
to paint the background of ShockWave's client window. The variable
iColor holds an index for the rgb array, which is declared in ShockWave­
View.h as shown on the next page.

561

Advanced Topics

562

#define NUM_COLORS 6

COLORREF rgb[NUM_COLORS];

The current value of iColor thus determines the color used for the back­
ground brush. Take a look at iColor in the Variables window. It should
have a value of 6 or more, which means the current color for the brush is
the iColorth element of the rgb array, which is

There's the problem. Giving iColor a value greater than 5 means that the
program attempts to access an element of the rgb array that does not exist,
a sure recipe for a protection fault. We've found the error, but what's the
cause? The iColor variable receives a value only in the CShockWave View::
OnLButtonDown function, which executes when the system detects a
mouse click in the client area:

void CShockWaveView::OnLButtonDown(UINT nFlags, CPoint point)
{

}

CView::OnLButtonDown(nFlags, point);

center = point;
iColor =rand();
Invalidate(FALSE);

The line

iColor =rand();

assigns iColor a random number retrieved from the rand function. This C
run-time function returns a value from 0 through RAND_MAX, which the
Stdlib.h header file defines as Ox7FFF, or 32,767. Whoops. No wonder
iColor ends up with so high a value. We need to ensure that the value of
iColor never exceeds the number of elements in the rgb array so that the
OnDraw function accesses only valid color elements. You can limit the
iColor value by replacing the faulty line with this one:

iColor = rand() % NUM_COLORS;

11 : The Debugger

This cures the second bug by restricting iColor to a value from O through
5. If you rebuild ShockWave and execute it again through the Execute
command, you will see the program run the way it was intended.

Special Debugging Cases
Win32 programs cover a wide spectrum of tasks, and the simple examples
described in this chapter almost certainly do not apply directly to your
own programs. That's why I've tried to concentrate on technique rather
than specifics. Have confidence that no matter how unusual or sophisti­
cated your own Win32 application may be, the Visual C++ debugger can
help you peer inside it.

Here are some tips on how to debug a program that employs advanced
Win32 features. The Visual C++ debugger can intercept exceptions, han­
dle applications with multiple threads, and debug ActiveX client and
server applications, all before breakfast. The debugger can also run on one
computer while controlling the program being debugged as it runs on a
second computer.

Debugging Exceptions
The C++ exception-handling facility allows programs to retain control
when unexpected errors occur. When a function detects an error, it noti­
fies the exception handler by invoking the throw keyword. The exception
handler receives the notification using catch. If no catch handler exists for
an exception, the debugger notifies you that the exception was not caught.
C programs can also perform structured exception handling with the _try

and _except statements rather than throw and catch.

The Exceptions dialog box shown in Figure 11-14 on the following page
lets you specify how the debugger should handle each type of exception.
Invoke the dialog by clicking the Exceptions command on the Debug
menu. You can set one of two options, Stop Always or Stop If Not Han­
dled, for each exception type that can occur in your program.

If you specify Stop If Not Handled for an exception, the debugger writes a
message to the Output window when the exception occurs but does not
halt the program or notify you with a dialog box unless the exception

563

Advanced Topics

Figure 11-14. The Exceptions dialog.

564

handler fails to solve the exception. At that point, it is too late to fix the
problem or examine the source code to see where the exception occurred,
because the program has already thrown the exception and is executing
the exception handler.

Specifying Stop Always for an exception gives you more control over the
exception process. When the exception occurs, the debugger immediately
stops the program, updates the source window to show the faulty instruc­
tion, and notifies you before the exception handler function gains control.
In some cases, you can handle the exception yourself by modifying any
erroneous variables in the Variables window. If you then press F5 to con­
tinue running the program, a dialog box appears asking if you want to pass
the exception back to the program's exception handler function. If you
fixed the problem, click the No button. Otherwise, click the Yes button to
pass control to the exception handler. If the exception handler cannot fix
the problem, the debugger halts the program and notifies you again as
though you had selected Stop If Not Handled. Because the Stop Always
option uses the processor's debug registers, the option is not available for
debugging a program on processors that do not have debug registers.

The Exceptions list box shown in Figure 11-14 contains a default list of
system exceptions. You can add or remove exceptions from the list, in
which case Visual C++ saves the new list in the project's OPT file. The
debugger treats any exception not in the list as a Stop If Not Handled
exception. Each exception has a unique number. System exceptions are

11 : The Debugger

defined in the Winbase.h header file with the EXCEPTION prefix, such as
EXCEPTION_ACCESS_ VIOLATION.

To add a new exception to the Exceptions list box, invoke the Exceptions
dialog and type the exception number in the Number control and the
exception name in the Name control. Click either the Stop Always or Stop
If Not Handled radio button and then click the Add button. To remove an
exception, select it from the Exceptions list and click the Remove button.
If you change your mind and want to restore all the deleted system excep­
tions, click Reset. If you change an option for an exception, such as its
name, click the Change button to make the change permanent.

Debugging Threads
A thread is a path of execution within a running application. Every appli­
cation runs at least one thread, known as the main or root thread, which
may in turn spawn other secondary threads. When debugging a program
with multiple threads, you simply select which thread you want to debug
and follow its flow of execution.

You can select a thread to debug only after the debugger has begun execu­
tion. First set a breakpoint at the desired location. When execution stops
at the breakpoint, all threads that pass through the point are suspended.
Click Threads on the Debug menu to invoke the Threads dialog, select the
thread you want to follow from the list of threads, and click the Set Focus
button. As you continue to single-step through the program, the debugger
follows the thread that has focus. To prevent other threads from executing
the same code, suspend them in the Threads dialog. You can later resume
a suspended thread by selecting it in the same dialog and clicking the
Resume button.

Debugging Dynamic Link Libraries
Debugging a dynamic link library in Visual C++ is no different than
debugging a normal application, except that the debugger launches the
library's calling program and does not load the DLL file itself. The operat­
ing system takes care of loading the library when the calling application
requires it; when control reaches a breakpoint in the library's code, execu­
tion of both caller and DLL is suspended. The only extra step in debugging

565

Advanced Topics

566

a dynamic link library is identifying the calling application so that the
debugger can execute it. Expose the Debug tab of the Project Settings dia­
log, invoked through the Settings command on the Project menu, and then
type or browse for the path and filename of the calling application:

If you leave the Executable For Debug Session box clear, the debugger
prompts for the filename when you begin debugging the dynamic link
library. Online help recommends that you also select Additional DLLs in
the Category box, double-click the blue entry box in the Local Name col­
umn, and browse for the DLL file you intend to debug. However, depend­
ing on path settings, the operating system may nevertheless fail to locate
the DLL file when you begin debugging. You can avoid such problems
simply by ignoring the Additional DLLs setting and placing a copy of the
calling program's executable file in your project's Debug folder. Placing
both caller and DLL in the same folder ensures that Windows can always
load the DLL.

After setting breakpoints in the library source code, choose the Go com­
mand or press F5 to start the debugger. It makes no difference if the call­
ing program is in debug or release form, but in the latter case Visual C++
displays a message informing you that the program has no symbol infor­
mation. Because the DLL file is being debugged, not the calling program,
this message is only a formality, reminding you that you will not be able

11 : The Debugger

to follow the flow of execution back into the calling program. Click the OK
button to begin the debugging process.

Debugging OLE/ActiveX Applications
Except for in-process servers such as ActiveX controls, COM works as a
mechanism of remote procedure calls (RPCs) from one application to
another. In general terms, the calling application is the client and the
called application is the server. If you develop only a server or a client­
one without the other-you usually care about only what happens on your
side of the remote procedure call. In this case, there is nothing special
about debugging an OLE/ ActiveX application. For a client, just set a break­
point at the call that accesses the server, run the debugger, and when the
breakpoint activates, ensure that parameters are properly initialized. Then
step over the call and check any return values. When debugging a server,
set a breakpoint at the handler function that receives the remote procedure
call and run the debugger to launch the server. Then switch to the calling
application and initiate the call to the server. When you switch back to the
debugger, the program should be interrupted at the breakpoint.

If you are developing both a client and server that work together, the
Visual C++ debugger lets you debug on both sides of the remote procedure
calls. Even if you develop the applications as separate projects, the debug­
ger requires only one extra step. In both projects, choose Options from the
Tools menu, then click the Debug tab and enable the OLE RPC Debugging
check box. That's all there is to it, except that in Windows NT you must
have administrator privileges to enable the check box.

As described in Part 4 of this book, an ActiveX control acts as a server
dynamic link library that executes within the same address space as the
container process using the control. Debugging an ActiveX control is no
different than debugging a normal dynamic link library. An OLE/ ActiveX
server that executes as an application rather than as a DLL, however, runs
in a different address space than the client, communicating across process
boundaries through RPC. Visual C++ handles this situation by running
two instances of the debugger, one for the client and the other for the
server. There are two requirements when debugging on both sides of a
remote procedure call, neither of them restrictive. First, you must enable

567

Advanced Topics

568

the OLE RPC Debugging check box as explained above. And second, the
server application must be local-that is, it must run on the same machine
as the client. The Visual C++ debugger cannot launch a remote server that
runs on a different machine, interfacing with the client through a network.

To debug the client application, follow its path of execution to the point
where it calls the server. If you then step into the call, Visual C++ starts a
second instance of the debugger, which loads the server source code if it's
available. You can then step through the server as it responds to the
remote call. When the server returns from the RPC, control is restored to
the first debugger instance and you find yourself back in the client at the
next instruction after the call. The second instance of the debugger does
not terminate until you stop the server, so stepping again from the client
into the server crosses the RPC bridge immediately, without your having
to wait for a new debugger instance to launch.

You can also begin debugging from the server side, though you must man­
ually start the client application yourself. Set a breakpoint at the location
where you want to interrupt the server, then press F5 to start the debugger
and launch the server. Switch to the client application and invoke the
call, then switch back to the debugger to continue debugging the server. If
you step out of the RPC handler function to enter the client application,
Visual C++ launches a second instance of the debugger and attaches it to
the executing client. Again, the new debugger instance does not terminate
until you exit the client application, allowing you to continue debugging
both client and server on opposite sides of a remote procedure call,
regardless of which application you started debugging in.

Debugging with Two Computers
A problem with debugging has always been that the debugger must com­
pete for screen space with the program being debugged. As the program
being debugged executes, it displays its output normally on the screen.
But the debugger must also use the screen to interact with the user. DOS­
based debuggers like Code View had an effective solution to this problem.
Because the debugger ran only in text mode, the programmer could attach
to the system a separate monochrome monitor to display the debugger's
source window, registers, and watch variables. Meanwhile, the program

11 : The Debugger

being debugged displayed normally on the EGA or VGA main system
monitor. Two monitors often made the desktop a little crowded, but
debugging was much simpler and more efficient.

This solution isn't possible under Windows because the debugger no lon­
ger runs in text mode. Both the debugger and the program it runs use the
same video memory and, like any other Windows program, both must
show their output in one or more windows. This means that when the
running program is interrupted and the debugger gets control, the
debugger's windows are apt to overlay any windows belonging to the pro­
gram being debugged. We saw this happen when we were debugging the
ShockWave program earlier in the chapter.

Like its Code View ancestor, the Visual C++ debugger offers a solution that
separates the competing displays, directing each to its own monitor. But
instead of just a spare monochrome monitor, you need an entire extra
computer capable of running your program and its host environment,
either Windows 95 or Windows NT. (Power Macintosh is no longer sup­
ported.) The two computers must be linked through a network, because
Visual C++ no longer supports debugging over a serial null modem con­
nection. One computer serves as a host that displays the debugger's win­
dows while the other computer, designated the remote or target computer,
displays output from the program being debugged. Visual C++ calls this
arrangement remote debugging.

Remote debugging is a three-step process:

1. Copy files to the remote computer.

2. Configure the host computer.

3. Configure the remote computer.

Step 1: Copy files to the remote computer
Copy the files Msvcmon.exe, Msvcrt.dll, TlnOt.dll, Dm.dll, Msvcp60.dll,
and Msdisl 10.dll to the Windows folder on the remote computer. If the
program being debugged runs under Windows NT, also copy the PsAPI.dll
file. These files operate the debugger's remote monitor program. The files

569

Advanced Topics

570

are in the Common \MSDev98 \Bin and VC98 \Re dist subfolders of your
Visual C++ folder.

Step 2: Configure the host computer
Configuring the host computer is a matter of telling Visual C++ where to
find the program you wish to debug, the kind of remote machine it runs
on, and the type of connection between the two machines. First, click Set­
tings on the Project menu. In the Debug tab of the Project Settings dialog
box, specify the full path to the program in the text box labeled Remote
Executable Path And File Name. This is the path as viewed from the host
computer on which the debugger is running. In the box labeled Remote
Executable Path And File Name, enter the path to the program as the
Msvcmon.exe program sees it from its position on the remote computer.

Next, choose Debugger Remote Connection from the Build menu to display
the Remote Connection dialog. Select TCP/IP as the remote computer's
connection type, then click the Settings button in the Remote Connection
dialog. This displays another dialog that queries for communication set­
tings, including the password of the remote computer.

Step 3: Configure the remote computer
Run the Msvcmon.exe debugging monitor program on the remote com­
puter. When the Visual C++ Debug Monitor dialog appears, click the Set­
tings button and enter the same password as in the preceding step. Click
OK to exit the dialog, then begin the debugger normally on the host
machine.

\

Compiler Optimization
The Microsoft Visual C++ compiler translates C and C++ source code into
machine code. For a debug version of a program the translation is literal,
producing a series of low-level machine instructions in the finished exe­
cutable program that exactly represent the high-level instructions of the
source. A release build gives the compiler much more latitude in which to
work, because a literal translation of the source is not necessary nor even
always desirable. The compiler has a different mission when creating a
release build: to generate the smallest or the fastest object code it can
without introducing new and unintended behavior into the program.

This chapter has two goals. The first is to acquaint you with the ways that
Visual C++ optimizes code and handles various situations that can affect
optimizations. Knowing some of the internal details about the process can
help you work with rather than against the optimizer as you program,
avoiding source code that is difficult or impossible for the compiler to
improve through optimization. The second goal is to explain the many
switches and options in Visual C++ that govern the optimization process
so that you understand precisely how the compiler will behave when you
turn a switch on or off.

To achieve these two goals, the chapter divides roughly into two parts.
The first half presents an overview of compiler optimizations, explaining
techniques and discussing their advantages and disadvantages. The

571

Advanced Topics

second half connects the generalities of the first section with specific com­
piler switches in the Project Settings dialog. A final section puts optimiza­
tion under the microscope, examining a sample of optimized code at the
assembly level.

An Optimization Primer

572

Discussions throughout this chapter are careful to distinguish between the
qualities of speed and size, and some readers may wonder why there is a
distinction at all. Isn't smaller code inherently faster? Intuition says so. So
do advertisements, which promise products that are "lean and fast!" or
"small and agile!" But in fact no strict correspondence exists between the
size and speed of executable code, and an optimization that improves one
quality may adversely affect the other.

There exist three levels of code optimization over which programmer and
compiler share jurisdiction. The highest level, known as the algorithmic
level, belongs to the programmer. A quick-sort algorithm, for example,
easily outperforms a simple insertion-sort, and using a binary tree method
to search a lookup table is much faster than simply scanning the table
from top to bottom. Unfortunately, faster algorithms almost always require
more code than simpler, more straightforward methods.

The lowest optimization level, called peephole optimization, belongs to
the compiler. At this level the compiler takes advantage of machine­
specific tricks to save a byte or clock cycle here and there, savings that
become more significant when accumulated over an entire program.
Peephole optimizations usually result in code that is both smaller and
faster, though not always. For example, the Intel instruction

and dword ptr [iVarJ, 0

is 3 bytes smaller but 3 times slower than

mov dword ptr [iVarJ, 0

Yet both instructions write zero to the integer iVar equally well. On 80486

and Pentium processors, the instructions

l L: Lomp11er Upt1m1zat1on

push 1
pop eax

take 3 bytes and 2 clock cycles-nearly half the size but only half the
speed of the equivalent instruction

mov eax, 1

The middle level of optimization lies between the algorithmic and peep­
hole levels. It covers traditional optimization techniques that have names
like subexpression elimination, copy propagation, and loop hoisting, all of
which are described in the next section. This middle level is often left to
the compiler, though the programmer is free to put a hand in. For exam­
ple, the programmer may notice that two separate loops can function as a
single loop (a technique known as loop jamming) and rewrite the code
accordingly. Consider typical loops like these:

for (i=0: i < 10: i++)
nArrayl[i J = i:

for (j=0: j < 10: j++)
nArray2[j] = j;

Jamming combines the loops into a single loop that does the same work,
saving the overhead of the second loop:

for (i=0: i < 10: i++)
{

nArrayl[i J i :
nArray2[iJ i:

}

Visual C++ does not recognize a chance to jam loops like this, so without
human intervention the opportunity to optimize would be passed over.

When deciding whether to optimize for speed or size, you should bear in
mind that while savings in speed are almost always measurable, they are
not always discernible. A wide gulf exists between what the computer
clock can measure and what the human mind can discern. Increased pro­
gram speed that the end user cannot detect represents wasted effort.

Generally, only algorithmic optimizations result in noticeable improve­
ments in execution speed. Lower levels of optimization usually don't save

573

Advanced Topics

574

the millions of clock cycles required for human detection unless applied
to specific loops or functions that execute many hundreds of times. For
this reason, a school of programming practice has evolved that dictates
writing efficient algorithms at the source level and setting the compiler to
optimize for size rather than for speed. Multitasking operating systems
such as Windows especially encourage this practice. A program with a
smaller memory image runs less risk of incurring page faults in conditions
of crowded memory. Page faults, in which the operating system must
reload memory from disk, are expensive operations. Put enough of them
together and a program, no matter how highly optimized for speed, seems
unresponsive and slow.

Optimization Techniques
Visual C++ draws from a collection of optimization techniques, many of
which have been used by compilers for decades. Table 12-1 lists the most
important optimization techniques that Visual C++ employs and indicates
whether the purpose of each is to reduce code size, increase code speed,
or both. Because there are so many variables involved, it's sometimes dif­
ficult to accurately predict in advance the overall effect of an optimization
technique. The table therefore reflects only the compiler's intentions, not
necessarily the result. The best optimization settings for a particular pro­
gram can often be determined only by trial and error.

Here we begin a series of short subsections that examine the 14 optimi­
zation methods listed in Table 12-1. Each subsection describes how an
optimization works, when it is used, and what its advantages and disad­
vantages are.

Use of processor registers
In the old days of C programming, good practice dictated using the regis­
ter keyword to "enregister" one or two of a function's local variables. The
register storage class represented a request from the programmer to the
compiler to keep a local variable in a processor register, if one were avail­
able, rather than in memory allocated on the stack frame. Besides saving a
small amount of stack space, keeping a variable in a register assures the
fastest possible access to it because the processor reads and writes its
own registers much faster than it reads and writes memory. Managing a

Table 12-1.

l L: Lompller opt1m1zat1on

Optimization Reduce size Increase speed

Use of processor registers .I .I

Constant propagation and copy propagation .I .I

Elimination of dead code and dead store .I .I

Common subexpression elimination .I .I

Loop optimizations .I .I

Instruction scheduling .I

Strength reduction .I .I

Inline expansion .I .I

String pooling .I

Frame pointer omission .I .I

Disable stack checking .I .I

Stack overlays .I .I

Assume no aliasing .I .I

Function-level linking .I

Optimization techniques of the Visual C++ compiler.

variable in a register instead of memory can also result in a slight decrease
in code size.

Today one rarely sees register used anymore because an optimizing com­
piler like Visual C++ handles the task automatically. (In fact, Visual C++
ignores the register keyword.) Nearly any data object is a candidate for
enregistering, such as global and local variables, constant values, structure
elements, and function arguments, including pointers to arguments passed
by reference. The compiler scans a function to determine how it uses its
data, assigning each variable a score that represents the benefit derived
from storing the variable in a register. When writing the function's object
code, the compiler places the highest-scoring variables in registers when­
ever it can. The result is increased execution speed that under the right
circumstances can be significant.

Registers are a very scarce commodity, and the compiler must make intel­
ligent decisions in determining when to use a register to store a variable.

575

Advanced Topics

576

Optimized code spends part of its time juggling data between registers and
memory. The code can free a register by writing its contents to the vari­
able's home memory address, but the optimizing compiler must first
decide whether the memory access is worthwhile. Freeing a register only
to later reload it again with the same value might not pay for itself if it
makes the register available only for a short section of code.

Constant propagation and copy propagation
A guiding principle in code optimization is that registers are faster than
constants and constants are faster than memory. If not enough registers are
available to contain all the variables in a section of code, replacing an
expression with a constant serves as the next best alternative. The com­
piler has an opportunity to use constants when it encounters constant
propagation, in which an assigned constant value is forwarded or propa­
gated through the code. The compiler can optimize the code by replacing
expressions that evaluate to a constant value with the value itself. For
example, the lines

x = 255;
y = x:

are better expressed as

x = 255;
y = 255;

By rewriting the second line with a constant value, the compiler saves an
unnecessary memory access. Though the optimization technique itself is
often referred to as "propagation," the term more correctly describes the
condition that the optimization is meant to fix.

Copy propagation is similar to constant propagation. Copy propagation
occurs when a single value is forwarded from one variable to another in a
series of assignments in which the intermediate assignees do not use the
value except to pass it on to the next variable. It's more efficient to simply
assign the value directly to the last variable in the series and skip the oth­
ers. Here's an example in which removing the copy propagation renders a
statement unnecessary. The compiler makes a simple substitution, turning
this code sequence:

1 z: Compiler Optimization

i = nParam:
Function();
i = j:

into this:

i = nParam:
Function(nParam):
i = j:

In this fragment, the value nParam propagates through i to become the
parameter of Function. But since i never uses the value nParam, the copy
propagation is not necessary. The compiler can safely substitute nParam

as the function parameter. Because of this optimization, the first assignment
statement now becomes useless "dead store," which is discussed next.

Elimination of dead store and dead code
As we saw in the preceding example, copy propagation often leaves an
intermediate assignment statement as dead store, a condition in which a
program writes data to a variable without ever reading from it. When it
recognizes a dead store assignment, the optimizing compiler simply skips
over the instruction so that it does not become part of the object image.
The original three instructions in the fragment, for example, are reduced
to two instructions after the compiler eliminates the dead store:

Function(nParam);
i = j:

Opportunities to remove copy propagation and dead store often show up
after the compiler has expanded a complicated macro.

Related to dead store is a condition known as dead code. Dead code is an
instruction or a block of instructions that the processor cannot possibly
reach when the program executes. Such inaccessible code is usually the
by-product of a previous optimization. Since the compiler generates no
object instructions for dead code or dead store, eliminating these condi­
tions represents the perfect optimization.

Common subexpression elimination
When the compiler recognizes that a series of subexpressions all reflect
the same value, it computes the subexpression once and substitutes the

577

Advanced Topics

578

result for all subexpressions in the series. For example, consider a frag­
ment in which the subexpression y * z occurs twice:

x = y * z;
w = y * z;

By adding an assignment and replacing the two subexpressions with a
variable, the compiler eliminates one of the two multiplication operations:

temp = y * z:
x = temp;
w = temp;

Depending on circumstances and whether the subexpression occurs often
enough, the substitution may reduce the code size of the fragment; how­
ever, elimination of a common subexpression almost always results in
greater speed.

Loop optimizations
Optimizing inside a loop is particularly advantageous because any gain in
speed is multiplied by the number of loop iterations. The optimizations
described in the preceding paragraphs only get better when applied to
code inside a loop, but there are other optimization techniques available
to the compiler that are specific to loops. Perhaps the most common loop
optimization technique is known as invariant code motion or hoisting­
"hoisting" meaning to move code from inside a loop to the outside, and
"invariant" referring to an expression that remains constant through all
iterations of the loop. Here's a typical example of an invariant expression
inside a loop:

for (i=0; i < 10; i++)
nArray[iJ = x + y;

By moving the invariant expression out of the loop, the compiler produces
code that computes the expression only once instead of 10 times with no
significant (if any) increase in code size:

temp = x + y;
for (i=0; i < 10; i++)

nArray[iJ =temp;

12: Compiler Optimization

Instruction scheduling
Superscalar processors like the Pentium series can execute two instruc­
tions simultaneously in twin pipelines, provided one instruction does
not depend on the outcome of the other. A dependency leads to a condi­
tion called pipeline stall. By using instruction scheduling, also known
as instruction ordering, the compiler prevents such dependencies by
rearranging the order of machine instructions where possible. For exam­
ple, consider three instructions labeled A, B, and C:

add ax, iShort
movsx ebx, ax
xor ecx, ecx

;Instruction A
:Instruction B
;Instruction C

Instructions A and B cannot execute simultaneously because B depends
on the result of A-that is, before it can execute instruction B, the proces­
sor must know the value in register AX and the state of its sign bit. How­
ever, instruction C depends on neither A nor B. By reversing the order of
instructions B and C, the compiler avoids the potential stall, allowing
instructions A and C to execute simultaneously:

add ax, iShort
xor ecx, ecx
movsx ebx, ax

;Instruction A
;Instruction C
;Instruction B

Instruction scheduling has no effect on code size and benefits only pro­
grams that run on a superscalar processor. A discussion in the final sec­
tion of the chapter has more to say about instruction scheduling.

Strength reduction
Processors are fast at adding and subtracting but relatively slow at multi­
plication and division. The Pentium processor, for instance, can add two
32-bit registers in a single clock cycle, yet it needs 10 cycles to multiply
and over 40 cycles to divide. When optimizing, the Visual C++ compiler
looks for opportunities to reduce the arithmetic complexity or "strength"
of an instruction without affecting the outcome of the calculation.

For example, the strength of an instruction that multiplies or divides by a
power of 2 can be reduced by substituting an equivalent shift operation.

579

Advanced Topics

580

Assuming that y is an unsigned integer, the compiler can better express
the instruction

y = y/16;

like this:

y = y » 4;

The replacement produces the same result as the original instruction
because dividing a variable by 16 (2 4) has the same effect as shifting its
bits four positions to the right. Shifting works in the other direction as
well, so that multiplying an integer variable by zn is equivalent to shifting
its bits left by n positions.

The optimization is more impressive when viewed at the assembly level.
Here's what the original instruction might look like when disassembled,
with timings for each machine instruction listed as comments:

II Instructions for y = yll6;
mov ecx, 16 1 cycle on a Pentium
mov eax, dword ptr [y] 1 cycle
cdq 3 cycles
idiv ecx ;46 cycles
mov dword ptr [y], eax ; 1 cycle

;52 cycles total

Strength reduction replaces the lines with a single instruction:

II Instruction for y = y >> 4;
sar dword ptr [y], 4 ; 3 cycles total

This example is purely academic in the case of the Visual C++ compiler.
Replacing a multiply or a divide operation with an equivalent shift
instruction is so obvious an improvement that Visual C++ makes the sub­
stitution even when optimizations are turned off.

lnline expansion
There are several reasons why the act of calling a function slows the prog­
ress of a program's execution flow. Because the processor jumps to a new
location in code, the list of upcoming instructions stored in the proces­
sor's instruction queue may no longer be valid. If the processor does not

12: Compiler Optimization

perform branch prediction (as does the Pentium), it must stall while the
queue is flushed and the function's first instruction is retrieved from
memory. Worse, the call may generate a series of memory writes as the
function's parameters are pushed on the stack along with the processor's
EIP register. (For a description of the EIP register, see the sidebar on page
520 in Chapter 11, The Debugger.) After the function finishes, the proces­
sor again stalls while the return address is popped from the stack back
into the EIP register, the prefetch queue is flushed if necessary, and the
next instruction that EIP points to is read from memory. In short, func­
tions are expensive to get to and expensive to leave.

Inline expansion solves these problems but sometimes at a cost of
increased code size. In this optimization technique, the compiler inserts
the function code into the body of the program, replacing the function call
with a copy of the function itself. A CALL machine instruction is never
generated, allowing the processor to follow a sequential path of instruc­
tions without being deflected elsewhere. By following a sequential logic
path, the processor can more accurately prefetch instructions, a savings
that is more significant when the expansion occurs inside a loop.

It may seem surprising, but inline expansion often reduces a program's
size. Inline expansion (also known as inlining) is most effective when
applied to small functions, especially those with parameters that are con­
stants or passed by reference rather than value. In such cases the compiler
can dispense with whole sections of code that write parameter values to
the stack. Inlining a function saves the expense of a prologue and epilogue
section and the creation of a separate stack frame. Inlining also exposes a
function's side effects-changes to a global variable, for instance-that
otherwise would be invisible to the compiler. This permits more aggres­
sive optimization than might be possible without inlining.

String pooling
The compiler can determine when a program creates the same string more
than once. String pooling is an optimization technique in which the com­
piler allocates data space only for the first string, and then repaints refer­
ences to any duplicate strings to the first one.

581

Advanced Topics

582

Frame pointer omission
Frame pointer omission is an optimization for Intel systems that saves the
expense of prologue and epilogue code-a considerable savings for pro­
grams that have many functions. Without frame pointer omission, the
compiler generates prologue code for each function that requires a stack
frame, pointing the processor's EBP register to the top of the frame like this:

push
mov
sub

ebp
ebp, esp
esp, local_space

;Save EBP register
;Point to top of frame
;Allocate stack frame

When the function finishes, epilogue code destroys the frame:

mov
pop

esp, ebp
ebp

;Restore stack pointer
;Restore EBP register

Used this way, the EBP register is called the frame pointer. Variables with
automatic storage class are referenced in the stack frame through offsets
relative to EBP. Using EBP as the frame pointer is an unnecessary legacy
of older versions of Windows designed to run on the Intel 80286 proces­
sor. When frame pointer omission is in effect, the compiler references
stack data relative to the ESP register instead of the EBP register. A func­
tion's prologue becomes a single instruction that adjusts the ESP stack
pointer to create the stack frame:

sub esp, local_space ;Allocate stack frame

The epilogue dismantles the frame merely by adding local_space back to
ESP. Better yet, frame pointer omission frees the EBP register for use in
other optimizations. The disadvantage of frame pointer omission is that
encoding a memory reference relative to ESP takes one byte more than the
same reference relative to EBP.

Disable stack checking
Stack checking in Win32 is not the same as in 16-bit environments. In
16-bit Windows, stack checking involves a call to a C run-time function
known as a stack probe. Called at the beginning of every function in a pro­
gram, the stack probe confirms that the stack has enough room to accom­
modate the function's automatic storage requirements. If sufficient stack
space exists, the probe returns and the function continues. Otherwise, the

1 z: Compiler Optimization

probe alerts the developer that the function cannot execute because it
would overrun the stack.

Win32 applications do not require this sort of stack testing because of a
system service that prevents stack overflow. When a program (or thread)
accesses memory near the bottom of its stack, the operating system
assumes that stack space has become inadequate and responds by increas­
ing the stack size. This puts more distance between the program's deepest
access and the bottom of the stack. Although automatic stack resizing
makes the old-style 16-bit stack probes obsolete, stack checking still serves
a purpose in Win32 applications. To understand that purpose, it's neces­
sary to examine how the system adds memory to the stack.

Stack space for an application or individual thread is committed in pages.
The size of a page depends on the target system; for Intel, MIPS, and
Power PC systems, a page spans 4 KB. The operating system recognizes
stack overruns only when an access "falls off the end" of the stack into an
area called the guard page. The guard page is the last committed page of
the stack. (Windows NT sets up a guard page slightly differently than
Windows 95, but the effect is the same.) When the program accesses stack
memory in the guard page, the system commits another page to increase
the size of the stack, a process referred to as "growing" the stack. Figure
12-1 on the next page shows how the stack grows through pages commit­
ted by the operating system.

As Figure 12-1 illustrates, it's possible for an application to overreach
the stack's guard page and attempt to dip into reserved memory. This can
happen when a function allocates more than a page of stack for its local
variables:

void Biglocal ()
{

}

char chArray[3*4096];
chArray[l2000] = -1;

II Allocate 3 pages (12 Kb) of stack
II This assignment may fail

In this simple illustration, chArray consumes three pages (12 KB) of stack.
The function allocates space for the automatic data by decrementing the

583

Advanced Topics

Figure 12-1.

584

Committed page

Guard page

Reserved memory

Growing an application's stack.

The application accesses the stack normally in all
committed pages.

Other committed pages of the stack.

An access in the guard page is successful, but triggers a
system response that commits another page to the stack.
The new page then becomes the stack's guard page.

An access here reaches over the guard page and falls into
uncommitted reserved memory. The system terminates the
application because of the violation.

processor's stack pointer ESP by the requested 12 KB, but this alone does
not commit more stack. If the space allocated for chArray begins near the
bottom of the stack, accessing a high element of chArray may reach over
the stack's guard page into reserved memory. This triggers an access viola­
tion that the system solves by terminating the application.

Stack checking in Win32 prevents this type of scenario. When stack
checking is enabled, the compiler computes the total size of each func­
tion's local data. Functions with local variables that consume less than a
page of stack cannot overreach the guard page and so do not require stack
checking. Each function with more than a page of automatic data, how­
ever, is preceded by a call to the stack check routine in the C run-time
library. The stack check routine simply touches sequential pages of the
stack-that is, it enters a loop that reads a byte on the stack at 4,096-byte
increments. The cycle begins at the top of the stack and continues down­
ward until the stack check routine has touched enough pages to fulfill the
function's stack requirements.

A glance at Figure 12-1 shows how stack checking solves the problem of
the BigLocal function. Before BigLocal gets control, the stack check rou­
tine touches the stack at pages 1, 2, and 3 below the top of the stack. ·

12: Compiler Optimization

Assuming the allocation for chArray begins in the last committed page of
the stack, the first touch accesses the guard page. The system responds by
committing another page, making it the new guard page. The second itera­
tion of the loop in the stack check routine touches the new guard page,
causing the system to commit another page. The process repeats a third
time, adding three pages to the stack before the stack check routine returns
and BigLocal gets control. Now when BigLocal accesses an element near
the end of chArray, the access falls into a committed page of the stack and
does not trigger a fault.

So could BigLocal solve its own problem without the stack check?
Absolutely. Simply by accessing elements such as chArray[4000} and
chArray[BOOO} before chArray[12000}, the function takes care of commit­
ting the required memory and ensures that the stack is not overrun. Stack
checking adds overhead to a program, and disabling it saves code and
enhances speed for applications with large automatic storage demands.
Such applications do not require stack checking as long as they access
stack data in sequential pages working from the top of the stack toward
the bottom.

Stack overlays
The stack overlay optimization may or may not have a benefit. It depends
on the extent of stack usage. By using stack overlays, the compiler reuses
stack space to store local variables whose lives do not overlap. This means
that if the last access of x occurs in a function before the first access of y,

both x and y can safely occupy the same position of the stack frame.

By minimizing the depth of occupied stack, the compiler reduces the
chance of a stack overrun when the program executes. Although the sys­
tem response of growing the stack remains transparent to the user, the
operation can take a lot of time. Stack overlays can also reduce a func­
tion's executable size by minimizing the distance between a local variable
on the stack and the top of the stack frame. Recall that the function's
frame pointer points to the top of the frame. If a local variable occupies a
position on the stack less than 128 bytes from the frame pointer, encoding
each reference to the variable uses three fewer bytes than if the offset is
greater than 128 bytes.

585

Advanced Topics

586

mov eax, [EBP + 4]
mov eax, [EBP + 256]

;This instruction is 3 bytes smaller
;than this instruction

Any benefits derived from overlaying variables on the stack depend on
circumstances-but then, stack overlays have no cost, either.

Assume no aliasing
Aliasing means using more than one name to refer to a single memory
object. Pointers and unions offer the programmer endless opportunities to
alias, as shown in this typical example in which c and *cptr refer to the
same byte in memory:

char c;
char *Cptr = &c;

Aliasing inhibits the compiler's ability to perform certain optimizations,
such as enregistering variables. In this code fragment, for example, the
compiler cannot safely store the variable c in a register if the possibility
exists that the program will later write a new value to memory using cptr
instead of c. If that happened, the value in the register would no longer be
valid. The compiler can often successfully track the usage of c and cptr,
however, and it may still enregister c when safe to do so despite the
aliasing. (The cptr variable can be enregistered in any case.)

Aliasing can assume subtle forms that a compiler cannot identify. The fol­
lowing code illustrates a case in which two variables, ptr1 and ptr2, both
point to the same array. Yet the compiler does not recognize the alias
because ptr2 gets its value from another function outside the scope of main.

char chArray[5];

main ()
{

}

char *ptrl
char *ptr2

chArray;
GetPointer();

char * GetPointer (void)
{

return chArray;
}

II Global scope

II ptrl points to chArray
II So does ptr2

12: Compiler Optimization

When conservatively optimized, the above example works correctly.
Because the compiler cannot know the value of ptr2 in advance, it allows
for the possibility that both ptr1 and ptr2 might alias the same memory
object, and so it performs no optimizations that involve either pointer.
This assumption is certainly safe but may cause the compiler to pass up
opportunities for legitimate optimization.

The Visual C++ compiler offers an Assume No Aliasing optimization
switch that deals with situations like this. By using this switch, the pro­
grammer promises the compiler that variables have no hidden aliases, as
in the case of chArray in the example. The switch gives the compiler per­
mission to aggressively optimize code that involves pointers, unfettered
by concerns of unseen aliasing.

Visual C++ also offers a less aggressive form of the Assume No Aliasing
option, named Assume Aliasing Across Function Calls. This optimization
switch tells the compiler to assume aliasing does not exist in the code
except across a function call. The switch gives the compiler only qualified
permission to optimize code involving pointers, but is better than no per­
mission at all. A section later in the chapter discusses how the two opti­
mization switches are often applied on a trial-and-error basis.

Function-level linking
It's possible for a function to be optimized out of existence, either through
inlining or because the compiler has figured out how to compile the pro­
gram in such a way that the function is never called. The function must
still be compiled and included in the object image, however, because the
compiler has no way of determining whether other source modules access
the function. Only the linker can recognize when a function remains
unreferenced in a program. If the compiler writes an unreferenced func­
tion in "packaged" form, the linker omits it from the finished executable.

Function-level linking ensures that all functions in a source module are
packaged-that is, identified in the object code by a COMDAT record.
COMDAT records are in Common Object File Format (COFF) and contain
information that allows the linker to recognize unreferenced functions and
remove them from the executable image, a procedure called transitive

587

Advanced Topics

COMDA T elimination. Without a COMDA T record, an unreferenced func­
tion remains in the image after linking, taking up space.

Optimization Switches

588

Now let's turn from generalities to specifics. This section connects what
we've learned so far about compiler optimizations with the switches in
Visual C++ that control the optimization process. The switches are con­
tained in the Project Settings dialog shown in Figure 12-2, which is
invoked using the Settings command on the Project menu. The Project
Settings dialog is a rabbit warren of switches and options that affect the
build process and the efficiency of the finished executable. This section
concentrates on the dialog's CIC++ tab, which contains all of the switches
that govern how (or if) the compiler optimizes a project's source files.

Default optimization settings depend on the build target. Visual C++
switches off optimizations when building a debug version, ensuring that
the executable program is a literal translation of the source. For a release
version, the compiler by default optimizes for speed, even at the expense
of increasing code size. For many projects the default optimization set­
tings are acceptable, and as example programs have demonstrated
throughout this book, you can easily create and develop a project without
ever entering the Project Settings dialog. But as we will see, there are good
reasons why you may want to manually fine-tune a project's optimization
settings.

Figure 12-2 shows that the left half of the Project Settings dialog contains
a list of the project's source files, similar to the File View pane of the
Workspace window. Before setting an optimization switch, select either
the project name at the top of the list or an individual file. To select a
group of files, click the desired filenames while pressing the Ctrl key. The
selection in the file list indicates to which file or group of files you want
an optimization switch to apply. Selecting the project name makes an
optimization setting universal for all source files; selecting individual
modules allows you to optimize some for maximum speed, some for mini­
mum size, and others with a mix of optimization criteria of your choice.
The initial build target shown in the upper-left corner of the dialog

Figure 12-2.

12: Compiler Optimization

1. Select the entire project or individual source files.

B ,~~ I •

81~ Source Files
r Gt] Demo. cpp
; · Lt'.J Demo.re
'.···· [t:) DemoDoc.cpp

2. Make sure the target is Win32 Release.

General I Debug CIC++ I link I ResOJJrc\ ~ •

Category. l Gener al ::J Bes et I
Optimi.?;ations:

i t::: ~ ~~E:~pp ~====w-3. Choose the
S· Cl Header Files
GJ D Resource Files

None

Preprogessor definitions:

IWIN32,NDEBUG,.,.WINDOWS,_AFXDLL,_MBCS

Project .Qptions:

/nologo /MD /W3/GX102 ID '\v'IN32" ID
"NDEBUG" ID " WINDOWS" ID" AFXDLL" ID
"_MBCS" /Fp"R~lease/Demo.pch"lYu"stdafx.h" ::'..)

optimization.

The quick way to choose an optimization goal in the Project Settings dialog.

depends on the current active configuration for the project. The target
should be Win32 Release when setting compiler optimizations. Selecting
the target in the Project Settings dialog does not change the project's active
configuration.

For even finer control over optimizations, insert the optimize pragma at
key locations in your source code. This pragma sets compiler optimization
switches for individual functions, overriding the current project settings.
You can optimize the speed of a specific function, for example, while
optimizing the rest of the source module for size. Refer to online help for
more information about the optimize pragma.

The appearance of the CIC++ tab in the Project Settings dialog depends
on the current selection in the Category box at the top of the dialog. Of
the eight categories of compiler settings listed in the box, four categories
contain all the switches that pertain to compiler optimizations:

liil General category-Convenient selections for a general optimization
goal, but without fine control over individual optimization methods

589

Advanced Topics

590

• Code Generation category-Processor-specific optimizations and
the project's default calling convention

• Customize category-String pooling and function-level linking

• Optimizations category-Fine-tuning for a project's optimizations

The Reset button appears in the CIC++ tab for all categories, and provides
a convenient way to return to the compiler's default settings. When all
switches are set to their defaults, the Reset button is disabled, becoming
active only when you make a change in any category. Clicking the Reset
button restores the defaults of all categories, not just the category that is
visible.

General Category
The General category lets you quickly choose from among several coarse­
grained optimization settings named Default, Disable, Maximize Speed,
Minimize Size, and Customize (Figure 12-2). Because the Disable setting
represents the only way to completely suppress all compiler optimiza­
tions, it is used for debug builds. The Default setting clears all opti­
mization switches including the Disable switch, which means that the
compiler still performs some optimizations that favor faster code. (In a
moment we'll see what favoring faster code entails.) The Default setting
is therefore not very useful. Select the Customize setting only if you want
manual control over switches for the string pooling and function-level
linking optimizations. These switches appear in the Customize category,
which is described shortly.

The most important optimization settings in the General category are Min­
imum Size and Maximize Speed. These switches serve as shortcuts that
turn on most (but not all) of the available optimization techniques, letting
you select an optimization goal without getting involved in details. Table
12-2 shows the specific optimizations enabled by the Maximize Speed and
Minimize Size settings.

The Maximize Speed and Minimize Size settings are convenient but
somewhat conservative. As Table 12-2 indicates, neither setting enables
aliasing optimizations. (The Assume No Aliasing optimization is part of
the Optimizations category.) Although the Maximize Speed setting

Table 12-2.

Table 12-3.

12: Compiler Optimization

Optimization Minimize Size Maldmize Speed

Global optimizations .I .I

Generate intrinsic functions .I
inline

Favor small code .I

Favor fast code .I

Frame pointer omission .I .I

Disable stack checking .I .I

String pooling .I .I

Function-level linking .I .I

Optimizations enabled by the Maximize Speed and Minimize Size settings.

includes optimizations for string pooling and function-level linking, these
optimization techniques generally improve only code size, not speed.

We haven't yet encountered the first four entries in Table 12-2, so they
may require a little explanation. "Global optimizations" is a catch-all
term for certain compiler optimizations described in the first half of the
chapter, such as peephole optimizations, use of processor registers, loop
optimizations, strength reduction, and elimination of unneeded elements
like dead store and dead code. The first eight compiler optimizations
listed in Table 12-1 on page 575 fall under the umbrella of global
optimizations.

Normally provided by the run-time libraries, the functions listed in Table
12-3 have special forms dubbed intrinsics. The compiler writes intrinsic

- disable - lrotr - strset exp memcp strcat

- enable _outp abs Jabs memcpy strlen

_inp _outpw atan labs memset strcmp

_inpw - rot] atan2 log sin strcpy

_lrotl _rotr cos log10 sqrt tan

Intrinsic run-time functions in Visual C++.

591

Advanced Topics

592

functions inline-that is, without a function call-when you select the
Maximize Speed option. Placing intrinsic functions inline can help
increase program speed but can also result in a larger program size,
depending on how heavily the program uses intrinsic functions. For
example, the intrinsic form of the strcpy function occupies 41 bytes of
code in an application running on an Intel processor. Calling the normal
run-time version of the function takes at most 18 bytes, including the
instructions to pass the two string pointers on the stack and the subse­
quent stack cleanup, which is handled by the caller. Using the run-time
version of strcpy instead of its intrinsic form can result in a substantial
reduction of code size for an application that makes heavy use of the func­
tion. The savings may seem less important when applied to only one or
two calls.

In addition to inlining calls to the functions listed in Table 12-3, turning
on the intrinsics optimization also speeds up calls to the acos, asin, cosh,
fmod, pow, sinh, and tanh math library functions. Although these func­
tions are not true intrinsics, the compiler optimizes their performance by
writing code that places the function arguments directly in the floating­
point chip instead of pushing them onto the stack. The result is less time
spent inside the function but at the cost of slightly more code.

The Favor Small Code and Favor Fast Code optimizations influence the
compiler's decision when it encounters certain code sequences that can
be optimized to improve either speed or size, but not both. For example,
consider an instruction that multiplies the variable x by 71. Because the
compiler cannot accomplish the multiplication through simple shifting,
it has two valid choices when deciding how to translate the operation into
machine code. Shown here with timings for a Pentium processor, the first
choice is slower but requires less code:

II Instructions for x *= 71;
mov eax, dword ptr [x] 1 cycle 4 bytes
i mul eax, eax, 71 10 cycles 3 bytes
mov dword ptr [x], eax 1 cycle 4 bytes

;Total: 12 cycles 11 bytes

The second choice uses an Intel-specific trick to avoid the expensive
IMUL instruction, resulting in a faster but longer code sequence:

12: Compiler Optimization

II Instructions for x *= 71:
mov ecx, dword ptr [x] 1 cycle 4 bytes
lea eax, dword ptr [ecx+ecx*B] 1 cycle 3 bytes
s hl eax, 3 1 cycle 3 bytes
sub eax, ecx 1 cycle 2 bytes
mov dword ptr [x], eax 1 cycle 4 bytes

;Total: 5 cycles 16 bytes

Comparing the true speeds of two code fragments is often difficult because
clock cycles rarely tell the whole story. Cycles measure only the time the
processor spends executing an instruction, not the time required to read
the instruction and any necessary data from memory into the processor.
Although the second code sequence is clearly much faster than the first in
terms of processing time, the net increase in speed may be less than that
indicated strictly by the numbers. Because the second sequence is longer,
the processor must spend more time accessing and decoding the extra
bytes of code. This is less of an issue, however, if the sequence appears
inside a loop, because after the loop's first iteration the processor there­
after pulls the code from its instruction cache instead of from memory.

When trying to decide which of the two sequences represents the faster
code, consider another factor that further clouds the issue. The second
sequence uses one more register than the first-a register that might other­
wise be available to help optimize another part of the code. Trying to
guess the overall effects of alternative optimizations is often a prickly
path. Generally you're on safer ground when making assumptions about
size rather than speed.

Code Generation Category
Select Code Generation in the Category box to choose the options shown
on the following page in Figure 12-3, which include:

li1 The type of processor to optimize for

II The default calling convention that the compiler should assume

• The type of run-time library the application uses

II The alignment of structure members

593

Advanced Topics

Figure 12-3.

594

B·•:~I

B·d Source Files

t:: I ~:~~i::.cpp
i r: I ~t:r~:~pp
S· CJ Header Files
ffi. CJ Resource Files

.·~~~~~~!: 11~?~~~?· ';·•· ~,e;i~; ·I.· u~~.lf :~~~H~
~e~o;~: hi!~:j@'h@hi~!i w .J:?l: . ·.__,_, _ ___.

!: froc~$sor. · · .. Use ~rn'.ne JibrarY:

·.·l~lf)~~;~"'" u·•·:~•J2t · 1~,~~\~.;7~,e~R~~ .. J ;.•.
·• talling eonventiori:

:: l,....,,c.~e.i;!.'.,, .. ,.,."""'""'"·•·•:

: /nologo /MD /W3 /GX /02 /D 'WIN32" ID
. "NDEBUG" /D " WINDOWS" /D" AFXDLL"

/Fp"Release/Demo.pch" Nu"stdafX.h" /Fo"Release/" :~

~·.;:::::::;:.· .. ·.·.·.!
~<Cancel

Options in the Code Generation category.

Processor
The Processor box lets you select the level of Intel processor to optimize
for. The default setting, named Blend, represents a compromise that is
something of a moving target these days. In Visual C++ version 4, the
Blend setting caused the compiler to optimize mainly for the Intel 80486,

adding optimizations for the 80386 and Pentium processors that do not
impede performance on the 80486. In versions 5 and 6 the Blend setting
targets the Pentium, adding selected optimizations for the lower-level
80486 processor.

Regardless of the processor setting, the compiler generates only machine
instructions recognizable to the 80386. This ensures that an optimized
program can run on a lower-level processor even if compiled with the
Pentium or Pentium Pro setting. In fact, the Pentium and Blend settings
have the same effect.

Calling convention
The selection in the Calling Convention box determines the default calling
convention for the project or selected source files. The setting specifies
only the default calling convention; any convention explicitly included in
a function prototype overrides the default setting. The calling convention
lays out the rules for both the caller and the function being called, specify­
ing in what order parameters are pushed onto the stack, how external

12: Compiler Optimization

names are decorated, and who cleans up the stack when the function
returns.

Visual C++ recognizes the _cdecl, _fastcall, and _stdcall calling conven­
tions, which are named for the C keywords that specify a convention in a
function declaration. The conventions are summarized here:

Calling
convention Parameter order Stack cleanup Name decoration

- cdecl Right to left Caller _function

- fastcall Right to left Called function @function@nnn

_std call Right to left Called function _function@nnn

The rightmost column of the table describes how the function name
appears in the object listing, where function represents the function name
as it appears in the source and nnn represents the size of the parameter
list in bytes. The name decoration schemes summarized in the table apply
only to C programs and C++ functions declared with the extern "C"
keywords. Without the keywords, C++ uses a different system of decora­
tion (also known as name mangling).

The _cdecl setting specifies the C calling convention. This convention
allows variable parameter lists because the caller takes on the responsibil­
ity of cleaning the stack after the function returns. Cleaning the stack after
a function call requires only a single machine instruction to reset the stack
pointer. This isn't much code, especially if the function takes a single
parameter, in which case a 1-byte POP instruction serves to reset the
pointer. But when multiplied by many function calls, instructions that
clean the stack can nevertheless add a slight amount of overhead to a
program.

The _fastcall convention improves the speed of calls to C functions that
take at least one parameter. In this convention, the first two suitable val­
ues of a function's parameters are passed in processor registers. All other
parameters are passed to the function by pushing them onto the stack in
right to left order. Visual C++ uses the ECX and EDX registers to pass
parameters for _fastcall functions on Intel systems. Although the ECX and
EDX registers have been used for _fastcall since the days of C 7, Microsoft

595

Advanced Topics

596

does not guarantee that future releases of Visual C++ will continue to use
the same registers. (This caveat concerns only _fastcall functions that
contain inline assembly code.) Besides enhancing execution speed, the
_fastcall convention typically results in a small decrease in code size.
The convention's only disadvantage is that it does not allow variable
parameter lists.

The _stdcall convention is the calling convention used by the Windows
APL When applied to functions that have a fixed parameter list, _stdcall is
similar to _fastcall except that it does not pass parameters in registers. The
convention helps reduce a program's code size because the responsibility
of stack cleanup belongs to the called function instead of to the caller.
Functions under both _stdcall and _fastcall efficiently clean the stack
through a RET (return) instruction without having to explicitly adjust the
ESP stack pointer register. The _stdcall convention also allows variable
parameter lists for functions, in which case the call is implemented in the
same way as _cdecl, forcing the caller to clean the stack.

Run-time library
Selecting a proper run-time library can help reduce an application's code
size, though usually there is no need to adjust the default setting. Don't
misunderstand the meaning of the Multithreaded DLL and Debug Multi­
threaded DLL settings. The "DLL" in the setting refers to the run-time
library, not the project, and does not mean that the run time applies only
to projects that create a dynamic link library. The Multithreaded DLL
setting links the project to an import library for Msvcrt.dll, which is a
redistributable dynamic link library that contains a thread-aware version
of the C run-time library. Linking statically or dynamically with a run­
time library involves the same considerations as linking statically or
dynamically to the MFC library. Static linking makes the size of the exe­
cutable file larger; dynamic linking makes code smaller but may require
distribution of Msvcrt.dll with the finished application.

Table 12-4 summarizes the settings in the Use Run-Time Library box of
the Code Generation category that specify a project's run-time library.

Table 12-4.

12: Compiler Optimization

Setting Run-time library Description

Single-Threaded Libc.lib Static link to library, single
thread

Mul tithreaded Libcmt.lib Static link to library, multi-
ple threads

Multithreaded DLL Msvcrt.lib Import library for Msvcrt.dll

Debug Single-Threaded Libcd.lib Static link, single thread
(debug version)

Debug Multithreaded Libcmtd.lib Static link, multiple threads
(debug version)

Debug Multithreaded Msvcrtd.lib Import library for
DLL Msvcrtd. dll

Settings in the Use Run-Time Library box that determine how a program attaches
to the C run-time library.

Structure alignment
The final setting in the Code Generation category specifies the boundary
on which structure and union members are aligned. After the first member
of a structure, each following member falls on a memory boundary deter­
mined either by the size of the member or by the alignment setting, which­
ever is smallest. Setting a structure alignment value of 1 ensures that no
memory is wasted in gaps between structure members, a technique known
as packing the structure.

Packing can reduce stack usage for structures with automatic storage class,
or reduce program size when applied to structures with static storage
class. For packing to have any effect, however, a structure must contain at
least one element that spans only 1 or 2 bytes placed before a larger
multibyte element such as an integer. For example, consider the effect of
packing on this simple structure:

struct s
{

} ;

char ch:
int i :

II One-byte element
II Four-byte element

597

Advanced Topics

598

An alignment value of 4 or more wastes 3 bytes of memory between
the two elements because the compiler places the element i on a double­
word boundary. An alignment value of 1, however, packs i adjacent in
memory to ch:

Alignment= 4

s.ch

s. i (byte 1)

(byte 2)

(byte 3)

(byte 4)

Alignment = 2

s.ch

s.i (byte 1)

(byte 2)

(byte 3)

(byte 4)

Alignment= 1

s.ch

s. i (byte 1 J

(byte 2)

(byte 3)

(byte 4)

While packing can reduce the size of a structure, the savings may not
translate to an overall reduction in the size of a program's data area. It
depends on the mix of elements in the structure and the data object that
follows the structure in memory. If an integer appears in memory after
the structures, for example, the compiler aligns the integer on the next
double-word boundary after s.i, thus wasting the bytes saved by packing
the structure.

Structure packing can exact a cost in execution speed because the
processor stalls when reading misaligned data from memory. Both the
Intel 80486 and Pentium processors can fetch a 4-byte integer in a single
memory reference cycle, provided the integer is aligned on a double-word
boundary. If the integer lies offset from its optimum boundary, the pro­
cessor must wait three additional cycles for the fetch. As shown in the
preceding illustration, alignment settings of 1 or 2 may save space when
storing the integer s.i, but the cost is a fourfold increase in access time
when reading or writing the integer.

Structure packing can also lead to subtle problems for dynamic link librar­
ies and component software such as ActiveX controls. If the library

12: Compiler Optimization

exports a function that either takes a structure as an argument or returns a
pointer to a structure, both the calling application and the exported func­
tion must agree on the structure's alignment. A glance at the preceding
diagram will convince you of the problems that can result when a calling
application compiled with an alignment setting of 4 or higher attempts to
pass structure s to a dynamic link library that has been compiled with an
alignment setting of 1 or 2. When this happens, the caller and the library
do not look to the same memory position for the integer s.i.

If your library passes a structure or a pointer to a structure, give some
thought to the ramifications of packing. Visual Basic assumes structures
align on WORD boundaries, so an alignment setting of 2 is necessary for a
library and its Visual Basic callers to successfully share a structure. You
should also consider using the pack pragma when declaring the structure
in a header file, and then make the header file available to developers
writing CIC++ applications that call your library. Compiling both library
and calling application with the same header file ensures agreement on
the structure's alignment, regardless of the selection in the Project Settings
dialog:

#pragma pack(push, PACK_S)
#pragma pack(2)
struct s
{

} ;

char ch:
int i:

#pragma pack(pop, PACK_S

Customize Category

II Save current alignment setting
II Word-align the structure

II Restore original alignment

The Customize category (Figure 12-4 on the next page) controls optimi­
zations that enable function-level linking and the elimination of duplicate
strings (string pooling). Both optimizations are an integral part of the Max­
imize Speed option. If you set Maximize Speed in the General category,
the check boxes labeled Enable Function-Level Linking and Eliminate
Duplicate Strings are disabled in the Customize category. This might seem
to indicate that the optimizations are disabled as well, but that's not the
case-selecting Maximize Speed turns on both optimizations. To enable

599

Advanced Topics

Figure 12-4.

600

Options in the Customize category.

the check boxes, first select Minimize Size or Customize in the General
category, as described earlier.

Function-level linking applies only to packaged functions-that is, func­
tions identified to the linker through a COMDA T record in the object list­
ing. Inline member functions defined inside a C++ class declaration are
automatically packaged, though other member functions are not. To com­
pile all functions in packaged form, the Enable Function-Level Linking
check box must be turned on (or left disabled if the Maximize Speed set­
ting is selected).

Optimizations Category
The Optimizations category offers finer control over the types of optimi­
zations applied to a project, and also lets you specify whether the com­
piler should expand functions inline. The category displays the same
optimization setting selected in the General category. The setting must be
Customize to enable the check boxes shown in Figure 12-5, which allow
you to choose from among a list of compiler optimizations. The Custom­
ize setting provides the only way to turn on the Assume No Aliasing
optimization.

Figure 12-5.

12: Compiler Optimization

,$,ettings Fo;: lwin32 Release :::J . General I Debug CIC++ I Link I
...---------~~~~~-=

B ~ S s'ource Files Categor~: l!!ffittid! ,\,£ :::J
~ ... [f] Demo.cpp

. i· [t] Demo.re
1 r"· [f] D emoD oc. cpp

~ .. [iJ DemoView.cpp
[.. [£] M ainF rm. cpp
' [£] Std6.fx.cpp

SD Header Files
ffi CJ Resource Files

Optimi;ations:

I customize

:\i'.JAssume No Aliasing
CJAssumeAliasingAcross Function Calls
~Global Optimizations
~Generate Intrinsic Functions

jnline function e':pandon

I Only _inline :::J
Project .Qptions:

/nologo /MD /W3 /GX /Oa /Og /Di /Ob1 /GI /Gy ID •
'WIN32" ID "NDEBUG" /D " WINDOWS" /D
"_AFXDLL" /Fp"Release/Demo.pch" l'l'u"stdafx.h" .,.

Options in the Optimizations category.

The last check box switch in the list, labeled Full Optimization, turns on a
series of optimizations including inline expansion, intrinsic functions,
favor fast code, no stack checking, and global optimizations. The list's
only other check box that might need some explanation is labeled Improve
Float Consistency. This switch is actually an optimization when turned
off. At a cost of more code and slower floating-point operations, turning
the switch on causes the compiler to take the following steps to reduce the
chance of floating-point round-off errors:

m Add instructions that copy data from memory to the floating-point
registers before each floating-point operation. Although this slows
the operation considerably, the result of the calculation is guaran­
teed to have no more precision than the data type can accommodate.

II Disable the inline intrinsic form of run-time functions that perform
floating-point calculations, which are listed in Table 12-3 on page
591. The program uses the standard run-time functions instead.

II Disable other optimizations that may allow a calculation result to
persist in the 80-bit precision of the floating-point processor.

These steps maintain the results of floating-point calculations in 32-bit or
64-bit precision and help ensure that two floating-point numbers can be
tested for exact equality. However, even if you turn on the Improve Float

601

Advanced Topics

602

Consistency switch, it's still a good idea to allow a small tolerance when
comparing numbers of float or double type, like this:

#define TOLERANCE 0.00001

double x = 2.0, y =sqrt(4.0);
if (x + TOLERANCE > y && x - TOLERANCE < y)
{

II x and y are equal
}

A combo box in the Optimizations category gives you a certain amount of
control over how the compiler replaces function calls with equivalent
inline code. The three choices are:

• Only _inline-Replaces only calls that target functions marked
with the _inline, inline, or _forceinline keyword or, for class
member functions, defined within the class declaration. When opti­
mizing for speed, the compiler replaces all such function calls with
inline code. The same is not necessarily true when Visual C++ is
optimizing for size. If the Favor Small Code option is in effect, the
compiler does not expand functions marked _inline or inline that
are too large. This assures proper optimization results even when
inlining is used excessively. The new _forceinline keyword over­
rides the compiler's discretionary powers, though not in every case.
It is not possible, for instance, to force inlining for functions that
take a variable argument list or for recursive functions not identified
by the inline recursion pragma.

• Any Suitable-Besides functions covered by the Only _inline set­
ting, this selection also replaces calls to functions that the compiler
deems small enough to warrant inlining. Microsoft does not docu­
ment the compiler's criteria for choosing such functions.

• Disable-No inlining is done, even for calls to functions marked
_inline or _forceinline.

12: Compiler Optimization

From Debug to Release
Building a release version of an application usually occurs relatively infre­
quently during the product cycle. The first release build may come only
after weeks or months spent developing the debug version. Normally, cre­
ating the release target involves no more than a new build, but occasion­
ally there can be problems. This section discusses some of the potential
pitfalls that can occur when moving from debug to release targets and
explains how to avoid them.

To build a release version of a program, either click the Set Active Config­
uration command on the Build menu and select Win32 Release, or select
the target on the Build toolbar:

Set the desired optimization switches in the Project Settings dialog, then
click the Build command. You may notice that compiling a release ver­
sion of the program takes longer than compiling a debug version. This is
because the compiler performs more work when optimizing.

It's not unusual for an application that works correctly in its debug form
to break when recompiled as a release target, casting immediate suspicion
on the optimizer. Rarely is the suspicion warranted, and then only in the
case of aliasing. Hidden aliasing may exist in the code unbeknownst to the
programmer. If a debugged application fails when the Assume No Aliasing
option is turned on, the problem may stem from the presence of hidden
aliasing. The condition is easily tested by rebuilding the release version
with Assume No Aliasing turned off. If the application still fails, you
should give up blaming the optimizer. There exist other far more likely
reasons why an application might break when moving from debug to
release versions.

ASSERTs, for example. In release mode, the compiler ignores code
in ASSERT macros. This leads to problems if the asserted code calls a

603

Advanced Topics

604

function or performs some other task required by code outside the
ASSERT. Consider the following example:

ASSERT ((ptr = GetPointer()) != NULL);
x = *ptr;

In debug form, this code works correctly. In release form, the code may
cause a fault because ptr is never initialized. The solution is to either call
the GetPointer function before the ASSERT or to use the VERIFY macro
instead of ASSERT. A similar problem can occur with conditional code
prefixed by #ifdef _DEBUG. Because the compiler does not predefine
_DEBUG in release mode, code in the conditional block must not perform
any actions that affect code outside the block. Although it seems an obvi­
ous point, many a programmer has made this simple mistake.

Disabling stack checking can also cause problems for a function that
requires more than a page of stack space for its local variables. Although
the function may run successfully in the program's debug version by first
calling a stack check routine, the function may fail when stack checking is
disabled as an optimization. The solution is either to rewrite the function
to touch stack memory in sequential pages, or to insert a check_stack
pragma to selectively enable the stack check for the function.

Compiler behavior can change in other more subtle ways between debug
and release modes. For example, in a debug version, the new operator
adds extra guard bytes to memory allocations. A program that inadver­
tently relies on the presence of these extra bytes may fail in its release
version.

Function parameters can be evaluated in any order, and you have no
guarantee that the order will be the same in a program's debug and release
versions. Thus the following example may work correctly in one version
but not in the other:

Functionl(ptr = GetPointer(), *ptr);

Hidden thread problems sometimes surface only in a program's release
build. Consider the common mistake of two threads simultaneously
accessing a function that writes a static variable. In a debug version the
variable always remains in memory, so the potential conflict between

12: Compiler Optimization

Table 12-5.

threads may never arise due to slight differences in timing. In a release
build, however, the window of opportunity for error is wider, because the
variable may well be enregistered for the duration of the function's execu­
tion. This makes it more likely that one thread will overwrite the results of
the other.

An optimized program can fail because of many other types of source code
problems, some of which are listed in Table 12-5. To track down a prob­
lem, try turning on these optimizations individually to determine under
what circumstances the error arises. The table's second column offers
suggestions of what to look for when examining your code.

Optimization Possible cause

Inline expansion Uninitialized local variable

Global optimizations Uninitialized local variable

Generate intrinsic functions inline Uninitialized local variable

Improve floating-point consistency Relying on exact precision in comparisons

Frame pointer omission Stack corruption due to incorrect function
prototype

Typical source code problems that can arise from code optimization.

It's perhaps human nature to suspect the optimizer when the release
version breaks. After all, the compiler is rewriting our code in unknown
ways. But the art of code optimization has attained a very high degree of
reliability in the Visual C++ compiler. Microsoft places enough trust in its
own product that Microsoft developers optimize release versions of major
products written in CIC++ such as Windows 95, Windows NT, and
Microsoft Office. This fact alone should allay any lingering concerns that
optimization is somehow unsafe.

Benchmarking Visual C++
When Visual C++ version 4.0 was in beta testing, Microsoft asked me to
conduct a benchmark test of the new product and produce a white paper
discoursing on methods and results of the benchmark. The test compared

605

Advanced Topics

606

Visual C++ against three competing products to see which compiler, given
the same source code, produced the fastest or smallest executable. The dif­
ferences would be a reliable measure of each compiler's ability to discover
how to best optimize the source code.

Visual C++ did very well in the benchmark test-extremely well, in fact,
though that's not the point of this section. It is illuminating, however, to
review a single function of the benchmark code that involved the calcula­
tion of complex numbers. This particular function, which represented the
widest divergence of results found during the benchmark test, vividly
demonstrates some of the potential gains of clever compiler optimizations.
Although all four compilers were set to optimize the function for maxi­
mum speed, the executable that Visual C++ produced for this part of the
test ran more than three times faster than the code that took second place.
The disassembled code shows the reasons why:

Microsoft Visual C++ 4.

?Fnx9@@YAXXZ PROC NEAR

xor edx
push ebx
push esi
push edi
$L1220:
mov ebx, DWORD PTR ?X@@3PAVTest@@A[edx]
mov edi, DWORD PTR ?X@@3PAVTest@@A[edx+4]

!cl.ea esf:··o\:i'OR:D.'i'j'R ?Y@.@3f>/\vr·~·st€©A'[e'Cf~f·····:··i

ladd edx, 8 .. ~ . . :
~;1 ea < .. · ~.i3><· .P.~Q~.tj.:.~J8 .• (~.R><t~·~:?<*.4J .. L ... :'.•···
lea ecx, DWORD PTR [edi*8]
sub eax, ecx
mov ecx, DWORD PTR ?Y@@3PAVTest@@A[edx-4]
add eax, DWORD PTR [esi]
F~o·/ ···TiWio.Rorrw~·Jr~.4·s;~t~5?+.20·.r.7.~·~x· ·········· ·····:·· :··~·'.~···;
),lea eax. DWQRo::e:IR:[.ec~f~~x~sJ;>· '•: .···. ' ·' : ·•
!:lea ebx, DWo~g· .. nR/[~dite9i*4Jj:,i.<·· ··>t:·,~·(!
:mov edi. P~.QRQ'RTR.''..~.t~I?.$J.~.~Rt~0t,;::i~: ········'*·······H·
add eax, ebx
mov DWORD PTR [esi], edi

Nearest competitor

?Fnx9@@YAXXZ:
rpu.sh EBP'
:mov. tBP.

L~~~: ESP,
push EBX
push ESI
mov dword ptr -038h[EBPJ, 5
mov dword ptr -034h[EBPJ, 8

0

mov ESI,offset FLAT:?Y@@3QAVTest@@A
mov EBX,offset FLAT:?X@@3QAVTest@@A
mov EDX, -034h[EBP]
mov EAX, -038h[EBP]
mov -020h[EBP], EAX
mov -01Ch[EBP], EDX
L352:
mov
mov
mov
mov
mov
mov
mov

EDX, 4[ESI]
EAX, [ESI]
-010h[EBP], EAX
-0Ch[EBP], EDX
EDX, 4[EBX]
EAX, [EBX]
-018h [EBP], EAX

12: Compiler Optimization

Microsoft Visual C++ 4. Nearest competitor

mov DWORD PTR [esiJ. edi mov -018h[EBP], EAX

mov DWORD PTR [esi+4], eax mov -014h[EBPJ, EDX

cmp edx, 8000 mov ECX, -020h [EBP]

jl SHORT $Ll220 i mul ECX, -018h [EBP]

pop edi mov EDX, -01Ch[EBP]

pop esi i mul EDX, -014h [EBP]

pop ebx sub ECX. EDX

add e_sp, 8 6 mov -030h[EBP], ECX

ret 0 mov ECX, -020h [EBP]

i mul ECX, -014h [EBPJ
mov EDX, -01Ch [EBP]
i mul EDX, -018h[EBP]

add ECX, EDX
mov -02Ch[EBP], ECX

0
mov ED~. -02Ch[E~n
mov EAX, -030h[EBPJ
mov -8[EBP]. EAX

mov -4[EBP], EDX

mov ECX, -010h [EBP]
add ECX, -8[EBP]

mov -028h[EBP], ECX

mov ECX, -0Ch [EBP]

add ECX, -4[EBP]

mov -024h[EBP], ECX
mov EDX. -024h[EBP]
mov EAX, -028h[EBPJ
mov [ESI]. EAX

mov 4[ESI],EDX
mov ECX, 8
add ESI, ECX
add EBX, ECX
cmp EBX. offset FLAT:?Y@@3QAVTest@@A
jb L352
pop ESI
pop EBX

mov ESP,

,.P2P EBP
ret

607

Advanced Topics

608

Besides the obvious disparity in size, an immediate difference between
the two listings appears in their prologue and epilogue sections, marked 0
and 8. Optimized through frame pointer omission, the code produced by
Visual C++ merely allocates 8 bytes of stack and accesses the function's
stack frame by using an offset from the ESP register. The other compiler,
which did not offer frame pointer omission as an optimization, must push
and pop the EBP register to make it available as the frame pointer. Closer
inspection, however, reveals that a stack frame is not even necessary for
the function, and Visual C++ misses an opportunity to further optimize
the code marked 8 in the listing. Although the EBP register is now free
because of the frame pointer omission, the code still uses the stack totem­
porarily hold an intermediate calculation. This wastes what is often the
main benefit of frame pointer omission: freeing the EBP register for use in
other optimizations. The sequence at marker 8 would be slightly faster
and smaller if written like this:

mov ebp, eax
lea eax, DWORD PTR [ecx+ebx*8]
lea ebx, DWORD PTR [edi+edi*4]
mov edi, ebp

;Store intermediate calculation
;With value temporarily saved,

we can use EAX
;Recover calculation in EDI

Using EBP to store the intermediate calculation would save two memory
accesses at each loop iteration.

The Visual C++ version saves code space and gains speed by combining
address modes where possible into a single instruction. This allows it to
use the LEA (load effective address) instruction for simple arithmetic, a
well-known feature of Intel processors. By using left-shifting and addition,
the LEA instruction can manipulate base and index registers to perform
certain multiplication operations faster than the processor's multiply
instructions MUL and IMUL. For instance, here's how a single LEA
instruction can multiply the value stored in the EAX register:

Instruction Description

lea eax, [eax*2] Multiply EAX by 2

1 ea eax, [eax + eax*2] Multiply EAX by 3

lea eax, [eax*4] Multiply EAX by 4

12: Compiler Optimization

Instruction Description

lea eax, [eax + eax*4] Multiply EAX by 5

lea eax, [eax*8] Multiply EAX by 8

lea eax, [eax + eax*8] Multiply EAX by 9

Although using LEA in this manner is well documented by Intel, the other
compiler resorted to four IMUL instructions which, since they occur in a
loop that iterates a thousand times, are particularly expensive. The length
of the loop produced by the other compiler is also telling, spanning 39

machine instructions. The Visual C++ version of the loop requires only 18

instructions and has no IMUL instructions at all.

The other compiler was surprisingly careless in its use of registers. Con­
sider this sequence taken from the code at marker 0, in which a value is
written to the stack and then immediately accessed again:

mov -02Ch[EBP], ECX
mov EDX, -02Ch[EBP]

Because the ECX register is already charged, reading the value again from
memory is not necessary. The sequence would be smaller if compiled
like this:

mov -02Ch[EBP], ECX
mov EDX, ECX

;Store the ECX value
;Also copy it to EDX

Both compilers seemed to make reasonable attempts to avoid pipeline
stalls through proper instruction ordering. One should not expect perfect
ordering from a compiler because it would require too many passes
through the code, resulting in unacceptably long build times. In searching
for the optimum instruction ordering, the Visual C++ compiler slipped
only once, producing this sequence of three instructions at marker 0:

lea esi, DWORD PTR ?Y@@3PAVTest@@A[edx]
add edx, 8
lea eax, DWORD PTR [ebx+ebx*4]

The second instruction cannot alter the EDX register until the first instruc­
tion has finished reading it. Changing the order of the second and third

609

Advanced Topics

610

instructions avoids the potential stall, assuring that adjacent instructions
in the sequence can execute simultaneously:

lea esi, DWORD PTR ?Y@@3PAVTest@@A[edx]
lea eax, DWORD PTR [ebx+ebx*4]
add edx, 8

So much for version 4. Version 5 incorporated significant advances to the
optimizer, firmly establishing Visual C++ as a state of the art optimizing
compiler for personal computers. The current release introduces even fur­
ther improvements, but concentrates less on new technology and more on
tuning the compiler's ability to find opportunities for making code smaller
and faster. Microsoft estimates that Visual C++ 6 reduces executable size
by more than 10 percent over version 4, and recompiling the code dis­
cussed in this section shows that there is indeed a significant improve­
ment. The size of the code shrinks by 16 percent and the compiler now
figures out how to do away with the stack frame entirely, dispensing with
prologue and epilogue code:

?Fnx9@@YAXXZ PROC NEAR
push esi
push edi
xor eax, eax

$ L1621:
mov edx, DWORD PTR ?X@@3PAVTest@@A[eax+4]
mov ecx, DWORD PTR ?X@@3PAVTest@@A[eax]
add eax, 8
lea edi, DWORD PTR [edx*8]
lea edx, DWORD PTR [edx+edx*4]
lea esi, DWORD PTR [ecx+ecx*4]
lea ecx, DWORD PTR [edx+ecx*8]
mov edx, DWORD PTR ?Y@@3PAVTest@@A[eax-8]
sub esi, edi
mov edi, DWORD PTR ?Y@@3PAVTest@@A[eax-4]
add edx, esi 0
add ecx, edi
mov DWORD PTR ?Y@@3PAVTest@@A[eax-8], edx
mov DWORD PTR ?Y@@3PAVTest@@A[eax-4], ecx
cmp eax, 8000
jl SHORT $ Ll621
pop edi
pop esi
ret 0

12: Compiler Optimization

The section of code marked 0 offers further insight into the workings of
the optimizing compiler. The optimizer writes this section as three steps,
in which the code reads two integers from memory, adds them to values
in registers, and then writes the sums back to memory. An alternative is to
simply add the registers directly to the integers in memory, replacing all
the code at marker 0 with these three lines:

sub esi, edi
add DWORD PTR ?Y@@3PAVTest@@A[eax-8], esi
add DWORD PTR ?Y@@3PAVTest@@A[eax-4], ecx

The revision renders the read operations unnecessary and further reduces
the size of the function by 21 percent, though it does not improve execu­
tion speed. Adding a register value to memory is slower than copying the
value, but the reduced number of instructions compensates because the
processor has less code to read. The revised function, though smaller,
would thus execute at the same speed as the original produced by the
Visual C++ compiler.

If you are interested in studying the effects of compiler optimizations in
your own programs, Visual C++ can produce assembly-language listings
like the ones shown in this section. In the CIC++ tab of the Project Set­
tings dialog, select the Listing Files category, then choose the type of
assembly listing you desire in the Listing File Type box.

611

Lhapter

Customizing Visual C++
As you become more familiar with Visual C++, you may find yourself
wanting to change some of its characteristics to better mesh with your
working style. Many aspects of the environment can be altered to conform
to your preferences, from details of the text editor window to the appear­
ance of a custom toolbar. And by using its sophisticated macro language
and add-in libraries, you can expand the environment's large repertoire
of commands, programming new capabilities into Visual C++ that the
designers never thought of. This chapter explains some of the many ways
you can customize Visual C++ to make it a more efficient environment in
which to work.

Most behavioral aspects of the environment have "memory," meaning that
you need only adjust a setting once. The adjustment thereafter becomes
the default behavior the next time Visual C++ starts. So, for example, if
document windows are full-size in the text editor when you quit Vis-
ual C++, they automatically appear full-size again the next time you start
the program. Some customization settings are less obvious, and a few can
even be difficult to find if you don't know where to look.

The Options and Customize commands, both of which are located on the
Tools menu, offer direct access to the switches and options that govern the
behavior of the Developer Studio environment. Although these commands

613

Advanced Topics

do not provide access to all customization settings, they are a good place
to start.

The Options Dialog

Table 13-1.

614

The Options command displays the tabbed dialog shown in Table 13-1.

The Options dialog contains a wide-ranging collection of settings that
cover the behavior and appearance of Visual C++ editors and the debug­
ger, tab spacing and indentations in the text editor, directory locations of
include files and libraries used during compiling and linking, and fonts
and text colors for various windows. Table 13-1 lists only some of the
dialog's options.

Settings in the Options dialog, invoked by clicking Options on the Tools menu.

Description

Text editor-Enable scroll bars
and selection margin in the text
editor. Select settings that affect
how the editor saves a document
and whether the statement com­
pletion feature appears automati­
cally in a document window.

Tab spacing in text documents­
Set tab width in text documents
and automatic indentation for
source code. Determine whether
the editor should accept tabs as
ASCII #9 characters or convert
them to an equivalent number of
spaces as you type.

Tab in Options dialog

Editor I Tabs Debug I Compatibility I Build I Directories I ~ • ~
j Memor~· wind0\.~--.---------1
I 8ddress: ;;;..Eo_rm_a_t: ----.....

! .. :. ~. Re·evaluat}::;~e. ssion . . . ::J.J) r Show gata b)'tes

LC.!~~~11idth: p ----

li:;:;·_.I
P" Return ;talue

r Ditplay ynicode :trings

P" View floating 11oint registers

P" 4•Jst·in·lime deb•Jgging

P" .Q.LE R PC debvgging

r l,o.:id COFF & Exports P" Debug commz.nds invoke Edit z.nd b;ontinue

Edi tor j Tabs I Debug Compatibility 1 · B l1ild I
!,';urrent source editor emulation:

CJ Disable backspace at start of line
~Enable copy without selection
[]Enable line·mode pastes
CJ Enable virtual space
':JI nclude caret positioning in undo buffer
[]Indent separate paragraphs
LJProtect read·onl)' files from editing
OUse BRIEF's regular expression syntax
~Double·click in dialog editor edits code (MFC only]

.$.how directories for:

D:\VStudio\Common\ T ools\Win95
~P.:j;ID

D :\VStudio\Common\M SD ev98\B in
D:\VStudio\Common\ Tools

I Executable files ::J
\':J x 1-~

:.. --

1.:S: Customizing Visual C++

Description

Debugger settings-Select hexa­
decimal or decimal display and
appearance of various windows
in the debugger. Specify the
default address displayed in the
Memory window. Enable Just­
in-time debugging and choose
between automatic or manual
application of the Edit and
Continue feature.

Text editor options-Select text
editor emulation (Developer
Studio, BRIEF, Epsilon). Enable
other options, such as virtual
space and behavior of double­
clicking in the dialog editor.

Directories for locating files­
Select either Executable files,
Include files, Library files, or
Source files, then add or delete
paths to files. Visual C++
searches for files by scanning
each path in the order listed.

(continued)

615

Advanced Topics

616

Table 13-1. continued

Tab in Options dialog Description

Workspace options-Enable or
disable docking for windows. Set
up automatic loading of most
recent project when Visual C++
starts. Determine whether the
Window menu sorts its list of
documents in alphabetical order.
Set the extent of the lists dis­
played by the Recent Files and
Recent Workspaces commands
on the File menu.

Fonts and colors in text win­
dows-Set the font type and size
for a selected window. Set colors
of various text elements such as
comments, keywords, and HTML
tags.

The Editor, Tabs, and Compatibility tabs of the Options dialog apply only
to the text editor. Most settings in these tabs simultaneously affect the edi­
tor's normal and full-screen views, as well the debugger's source text win­
dow. Other settings depend on the current viewing mode and whether the
debugger is active. This makes it possible to create three different screen
layouts in the environment: one for editing in normal view, another for
full-screen view, and a third layout for debugging.

1 $: Customizing Visual C++

The Customize Dialog

Table 13-2.

The Customize command displays the dialog shown in Table 13-2, which
provides the means to:

• Add or delete menu commands

• Add icons to menu commands

II Turn toolbars on or off

l!I Add or delete toolbar buttons

B Create named keystroke commands

Settings in the Customize dialog, invoked by clicking Customize
on the Tools menu.

Tab in Customize dialog

Commands I Toolbars I Tool~ I Keyboard I Add-ins and Macro Fil~s I
£alegory:

I@- •:::J D ~ -~ ·iTu '~ ·@ '1 " CQ ~ ~
Description:

5how Menus for:

I Current E dilor i'J

f:!ew .. :

['dc'w

Beset

Reset811

I
I
I
I

Description

Adding commands to menus­
Modify a menu command or
restore default menus.

Toolbars-Make toolbars visible
or invisible, enable tooltip mes­
sages for toolbar buttons, display
accelerator keystrokes in tooltip
messages, and select normal or
large toolbar buttons.

(continued)

617

Advanced Topics

618

Table 13-2. continued

Tools menu commands-Add or
delete commands for utility pro­
grams, specifying the path, file­
name, and command-line argu­
ments for each program. Specify
the initial directory that the util­
ity uses.

Unbound keyboard com­
mands-Assign new keystrokes
to Visual C++ commands.

Macro files-Enable or disable a
macro file or add-in utility.

We have already briefly encountered some of these commands in other
chapters. For example, Chapter 3, The Text Editor, demonstrated how to
assign keystrokes for two unbound commands named WordUpperCase

and WordLowerCase.

Figure 13-1.

13: Customizing Visual C++

The Commands tab of the Customize dialog gives you control over the
contents of the environment's menus. While the Customize dialog is visi­
ble on the screen, you can display the menus, but individual commands
in the menus are not active. Instead, the environment acts as a menu edi­

tor in which you can add or delete menu commands, change the order of
commands, and add icons to existing commands.

For example, here's how to add an icon image to the Page Setup command

on the File menu, which normally has no icon. The first step is to borrow
a suitable image and store it on the Clipboard. A screen capture program
serves well for this purpose, or you can design your own 16-by-16 image

in the Visual C++ graphics editor. You can also capture an icon image to
the Clipboard from any of the environment's toolbars. With the Com­
mands tab visible in the Customize dialog, right-click a toolbar button to
display the context menu shown in Figure 13-1. The menu's Copy Button
Image command copies the button's icon image to the Clipboard.

The Customize dialog itself serves as a convenient source of button

images. All the icon images in the Visual C++ toolbars can be displayed
within (and borrowed from) the Customize dialog. First click the Category

combo box in the Commands tab to display a drop-down list of menus.
Selecting a menu in the list displays a collection of small icons for com­
mands on the menu. For our example, select File from the Category drop­

down list and right-click one of the icon images in the list that roughly
conveys the idea of "page setup." This displays the same context menu

Qelete

.,Copy Button Image

faste Button Image

Res;et Bwtlon lmage

8 utton 8ppear ance ...

When the Customize dialog is visible, right-clicking a menu
command or toolbar button exposes this context menu.

619

Advanced Topics

620

shown in Figure 13-1, from which you can choose the Copy Button Image
command to copy the image to the Clipboard.

Once you have a 16-by-16 image stored on the Clipboard, transfer the
image to the Page Setup command on the File menu. With the Commands
tab still visible, click File on the menu bar to expose the menu, then right­
click the Page Setup command to display the context menu shown in
Figure 13-1. Choose the Paste Button Image command to place the new
icon image to the left of the Page Setup command on the File menu:

Before After

If you change your mind about the result, you can undo your work in two
ways. The first is to click the Reset All Menus button in the Customize
dialog, which restores all menu commands to their original state. If you
want only to remove an icon image from a particular menu command,
right-click the command and choose Text Only from the context menu.
Again, the Customize dialog must be visible on the screen for this to work.

You can also add icon images to the menu bar itself. Right-click a menu
caption to display its context menu, then choose Paste Button Image as
before. Here's a possibility for a customized menu bar, created with icon
images borrowed from various locations in the Visual C++ environment:

Adding a new command to one of the environment's menus takes only
two steps:

1. Pull down the menu while the Commands tab of the Customize dia­
log appears on the screen.

Figure 13-2.

Tool bars

13: Customizing Visual C++

2. Select the desired group of tools from the Category drop-down list
and drag the tool icon or command name from the dialog onto the
menu. A horizontal placement bar indicates the menu position.

To delete the new command from the menu, right-click the command
and choose Delete from the pop-up menu. You can add menu entries for
macros and unbound commands as well. Choose All Commands from the
Category drop-down list, locate the command name in the list, then drag
the command name from the list to the desired position on the menu.
Figure 13-2 shows the procedure for adding the WordUpperCase com­
mand to the Edit menu.

~ew Insert .Eroject !luild loo!J Y{indow !:!elp
--~~~~~~~~~~~~~-

~::: :w 1&tiiitt..: u .~u.:-".4~~;L~~.~;.~~;,;.; • ..;,,~ •. ;,,j;;., •• ..:L;.:.: .•. > ·~.Q
---~·-Ct-rl+·-: · Commands I foolbars J Toob I Ke;boa'.d J Add-ins and Macro Files .I

Ctrl+l ,Categ•ory: CQ~m<1nds: . !

Ctrt+I jAll commands iJ WordLowerCase
Dt Des~ripti~~: ~~;~~:~~:Extend

Ctrl+1 Makestheword WordTrans ose
f'J~~2B~~~ llppercase IWllll· m!· m .. m-~-:m-ii·~m-mm:i:l
I:.:_ WorkspaceClose

~find.. Ctr!+ ~~:~:~=~=~~~~
-~ fi'.19.i11£i~~;•;,, "H••n •·, , • •••• ,,,, M•-••••> .. <o•w••• • ' '·"' ·;, '""''·''••• •·-"""'""""''"".

Placing a new command on a menu.

The appearance of toolbars on the screen depends on the active editor and
on whether the editor is in full-screen mode. By default, toolbars remain
invisible in full-screen viewing; to make a toolbar visible, turn on full­
screen viewing and press Alt+ T to pull down the Tools menu. Click the
Customize command and the Toolbars tab, then turn on the check box
adjacent to the desired toolbar in the list. You can also make the menu bar
visible in full-screen mode this way. Because the change occurs in full­
screen mode, the appearance of the toolbar and its position on the screen
apply only to full-screen viewing. When you press Esc to return to normal
viewing, the toolbar returns to its original position and may not even be
visible.

621

Advanced Topics

622

If you prefer a toolbar to float rather than dock against another window or
the edge of the screen, double-click any blank area on the toolbar. To
return a floating toolbar to its previous docked position, double-click the
toolbar's title bar. As mentioned in Chapter 1, The Environment, holding
down the Ctrl key while dragging a floating toolbar prevents it from dock­
ing to another window. Pressing the Shift key while dragging the toolbar
into a docked position switches the toolbar window between horizontal
and vertical orientations.

Visual C++ lets you easily alter the appearance and contents of toolbars,
so you can copy buttons from one tool bar to another, storing in a single
toolbar the tools you use most often. First, display the Customize dialog
either by using the Tools menu or by right-clicking the toolbar and choos­
ing Customize from its context menu. If the toolbar that you want to mod­
ify does not appear on the screen, click the Toolbars tab and expose the
toolbar. In the dialog's Commands tab, select a menu name from the Cate­
gory box to display tool buttons belonging to commands on the selected
menu. Clicking a tool button in the dialog displays a brief description of
the tool, so you can always identify the purpose of a button. Make sure the
target toolbar and the Customize dialog do not overlap on the screen, and
then drag the tools you want from the dialog onto the toolbar. You can
even place tool buttons on the environment's menu bar if you prefer.

Like menu commands, toolbar buttons are not active when the Customize
dialog appears on the screen. This allows you to drag a toolbar button and
place it in a different position on the same toolbar, or to drag the button to
a different toolbar. You can insert a space between buttons by moving a
button left or right about half the width of a button. Click the dialog's
Close button when you're finished. Actually, you don't even need the Cus­
tomize dialog to move tools from one toolbar to another. Expose the
toolbars and drag the tool button you want from one toolbar to the other
while pressing the Alt key. Pressing the Alt and Ctrl keys simultaneously
lets you copy a button instead of moving it.

13: Customizing Visual C++

Custom Toolbars
If some of the large toolbars occupy too much of the screen for your taste,
you might wish Visual C++ offered one or two small toolbars that you
could discreetly tuck away in the corner, providing access to only a few
tools you really need. The answer is a custom toolbar, which takes only a
few steps to create. Chapter 3 introduced the subject of custom toolbars,
demonstrating with the WordUpperCase and WordLowerCase commands.
Here's an expanded review of the procedure.

First, set the screen mode to normal or full-screen, depending on where
you want to use the new toolbar, then click the Customize command on
the Tools menu and expose the dialog's Commands tab. For an unbound
command like WordUpperCase, choose All Commands from the Category
box to display a list of command names. Locate the desired command in
the list, then drag the entry from the list and drop it onto a toolbar. To
copy one of the environment's predefined buttons, select a menu from the
Category list and drag a button from the Customize dialog onto a toolbar.

You don't have to use a predefined toolbar to receive the new tool button,
because the environment offers two methods for creating a custom toolbar.
The first method is to click the New button on the Toolbars tab of the Cus­
tomize dialog, and then give the new toolbar a name:

loolbar name: OK

Cancel

When you click OK, Visual C++ creates a blank toolbar on which you can
place buttons as just described.

The second method for creating a new toolbar is even easier-just drag a
command out of the Customize dialog and drop it onto any area of the
screen not covered by a toolbar. For a new command like WordUpper­
Case, select All Commands from the Category list and drag the desired
entry out of the Commands list. The procedure is similar to the way we

623

Advanced Topics

Figure 13-3.

624

placed WordUpperCase on a menu earlier. Select a button icon in the But­
ton Appearance dialog, add appropriate text to label the button, and click
OK. Visual C++ automatically creates a new toolbar to hold the button:

F

I'. . .···
i,1 @WORD.· @word.
It · · ·· ·. ··•

To copy one of the environment's predefined commands, select a menu
name from the Category list and drag an icon out of the Customize dialog
onto a blank area of the screen as shown in Figure 13-3. This method has
the advantage of copying both an icon image and button text in one step.
To display both image and text in the new toolbar button, right-click the
button on the toolbar and choose Image And Text from the context menu.

Creating a new custom toolbar.

It's easy to remove a button from any toolbar, whether custom or prede­
fined. While the Customize dialog is visible, drag a button off the toolbar
and release it in a blank area of the screen. At the same time, you can
rename a toolbar or any of the button captions. To revise a button caption,
right-click the button on its toolbar, choose the Button Appearance
command from the pop-up menu, then retype the button caption in the

13: Customizing Visual C++

edit box at the bottom of the Button Appearance dialog. You can change a
button icon at any time by cutting and pasting from the Clipboard.

Changing the name of a custom toolbar requires a visit to the Toolbars tab
of the Customize dialog. (You can rename only custom toolbars that you
have created, not the predefined Developer Studio toolbars.) Select the
custom toolbar from the list and type a new title in the Toolbar Name box.
The new name appears in the toolbar's title area and in the Toolbars list in
the Customize dialog, so you can turn the new toolbar on and off the same
way as any other toolbar. If the new toolbar has only a few buttons, keep
the name brief or there might not be room for it in the title bar. Figure 13-4

shows how to change the name of the toolbar created in Chapter 3 from
Toolbarl to Word Case.

Commands . Toolbars l Tools~ r Keyboard l .6.dd-ins and Macro Files I

· R" S.how T oolT ips
R" With shortcut h.eys
r !,arge buttons

. Figure 13-4. Renaming a toolbar in the Customize dialog.

tlew... I
.Q.elete I
f:ic3et. j

Reset.Sii .. ,

· Close

Selecting a custom toolbar from the list enables the Delete button. This
button provides the only means of permanently removing a custom toolbar.

Adding a Command to the Tools Menu
The last section of Chapter 3 showed how to add a command to the Tools
menu for launching a third-party text editor while you are in the Devel­
oper Studio environment. You can do the same for any program, not just a
text editor. This section takes a closer look at the process of adding a

625

Advanced Topics

command, describing available options that let you integrate another
application into the environment.

First let's review the process by adding a simple utility to the Tools menu
that requires no arguments or special handling. The MfcTree3 application
lists a hierarchy of MFC classes and is a more complete version of the
dialog-based MfcTree2 program developed in Chapter 5, Dialog Boxes and
Controls. Source code for MfcTree3 hasn't changed much from its previ­
ous incarnations, except that the program now stores class names as string
resources instead of hard-coding them in a long list of calls to CTree­
Ctrl::Insertitem in the dialog's OninitDialog function. You can find all
source files in the Chapter.13\ MfcTree3 folder on the companion CD,
but for the following demonstration you need only the MfcTree3.exe pro­
gram file copied from the CD to any location on your hard disk.

Add the MfcTree3 tool to the environment by invoking the Customize dia­
log. In the Tools tab, double-click the new-item box, which appears as a
dotted rectangle after the last tool in the list (Figure 13-5). Type the menu
item text &MFG Tree List to specify the menu entry with the letter "M"
serving as the command mnemonic.

Press the Enter key and in the Command box type the full path and file­
name for MfcTree3 including the EXE extension. When you close the Cus­
tomize dialog, Visual C++ adds the command to the bottom of the Tools
menu. Clicking the new MFC Tree List command launches the MfcTree3
application, which displays the list of MFC classes shown in Figure 13-6.

Figure 13-5. Adding the new MFG Tree List command to the Tools menu.

626

Figure 13-6.

1 .:J: Customizing Visual C++

J,luild Y:[indow !:!elp

Source Bro~ser... Alt+Fl 2

/\ Re>iister Control

)1 Error Loo!'.,up

A ActivfX Control T e•t Cont.:iiner

A OLE/COM Object~iewer
A Sw++
/1 MFCiracer

~H~-·~~,:~~tj~!:~:~J
.Cu~tomi:e ...

Qptions ...

H~cro ...

.8.ecord Quick Macro Ctrl+Shift+R

Pja9 Quick Macro Ctrl+Shift+P

l±J·Arrays
~l· Control bars
[±I · Control Support
l±J· Controls
Bl DAO Database Support
l~l· Dialog boxes

B·CDialog
ttl· CCommonDialog
' COlePropertyPage
'··· CPropertyPage

r.;." n.-: .. : .. _,r 1.; •• 1

OK

The new MFG Tree List command on the Tools menu and the MfcTree3 application.

MfcTree3 is easy to add to the Tools menu because the program takes no
command-line arguments and displays its output in a single window.
Other utility programs are not so simple, as we'll see in the next section.

Command-Line Arguments
Some applications, especially console-based programs, use command-line
arguments specified by the user when running the program. There are two
methods for supplying command-line arguments to a program launched
from the Tools menu. The first method configures Visual C++ to query for
arguments every time you run the utility. Set the configuration in the Cus­
tomize dialog by selecting the Prompt For Arguments check box shown in
Figure 13-5. When turned on, the check box causes Visual C++ to prompt
for arguments when you run the utility from the Tools menu, and then
pass the arguments to the program via the command line.

As an illustration, let's look at what happens when the Windows Notepad
utility is added to the environment's Tools menu with the Prompt For
Arguments check box turned on. Running Notepad from the Tools menu
first displays a prompt in which you can type a filename, as shown in Fig­
ure 13-7 on the following page. When you click OK, Notepad starts up and
automatically loads the specified file.

If you want a utility program to receive the same command-line arguments
every time it runs, the second method for supplying arguments proves
much more convenient. Clear the Prompt For Arguments check box and

627

Advanced Topics

Figure 13-7.

628

Prompting for command-line arguments when
running a program from the Tools menu.

type the command-line arguments in the Arguments box shown in Figure
13-5~ Thereafter, Visual C++ passes the arguments to the program without
prompting.

Argument Macros
Visual C++ provides a nice feature known as argument macros, which can
greatly facilitate argument specifications for Tools programs. As described
in Table 13-3, each macro expands into a string that describes a character­
istic of the current project or file.

A simple example illustrates the flexibility of argument macros. Say you
want the Notepad tool to always open the document that is currently
active in the text editor. Instead of prompting each time for the filename,
it's much easier to use the $(FilePath) macro. This macro expands into
the full file specification of the document that currently has input focus.
If no document has focus, the macro generates an empty string. To use
the macro with the Notepad tool, clear the Prompt For Arguments check
box in the Customize dialog and type $(FilePath) in the Arguments box
like this:

1 ::s: Customizing Visual C++

Macro Name Description

$(CurCol) Current Column Column number of the caret posi-
tion in the text window

$(CurDir) Current Directory Current working directory,
expressed as d:path \

$(Cur Line) Current Line Row number of the caret position in
the text window

$(CurText) Current Text Current text, which is either the
word on which the caret rests, or a
single line of selected text

$(FileDir) File Directory Directory of the source file in the
active window, expressed as
d:path\

$(FileExt) File Extension Filename extension of the source
file in the active window

$(FileName) File Name Filename of the source file in the
active window

$(FilePath) File Path Complete specification of the source
file in the active window, expressed
as d:\path \filename

$(TargetArgs) Target Arguments Command-line arguments passed to
the project application

$(TargetDir) Target Directory Path to the project executable con-
tained in the Debug or Release sub-
directory, expressed as d: \path\

$(TargetExt) Target Extension Filename extension of the project
executable, such as EXE or DLL

$(TargetName) Target Name Filename of the project executable
(usually the project name)

$ (TargetPath) Target Path Complete specification of the project
executable, expressed as d:\path\
filename

$(WkspDir) Workspace Directory Directory containing the project
files, expressed as d:\path \

$(WkspName) Workspace Name Project name

Table 13-3. Argument macros available in the Tools tab.

629

Advanced Topics

630

When you launch the tool while editing a document in the text editor,
Notepad automatically opens the same document. Table 13-3 provides
a complete list of the 15 different argument macros available in the
Tools tab.

You can use argument macros when Visual C++ queries for command-line
arguments as shown in Figure 13-7, but the macros are most useful in the
Arguments and Initial Directory text boxes pictured on page 628. You
don't need to memorize the macros, because clicking the arrow buttons
adjacent to the text boxes displays a menu with a complete list of the
macro names. Click a macro name in the list and it appears in the adjacent
text box. The macro names are not case sensitive so, for instance,
$(FileDir) and $(filedir) expand to the same string. Path strings produced
by macros such as $(FileDir) and $(TargetDir) end in a backslash.

Example: The Struct Utility Tool
Argument macros provide a way to more closely integrate a utility pro­
gram into the Developer Studio environment. By automating command­
line arguments that are appropriate for the current project or document,
argument macros let you create add-on utilities for the Tools menu specif­
ically designed for use in Visual C++.

Here's an example of how a tool program can respond to the current
caret position in the text editor and even display output inside the Devel­
oper Studio environment. The Struct utility described here receives a
command-line argument that contains a word taken from the current text
document. If the argument holds the name of one of the Win3 2 API struc­
tures represented in the program's small database, Struct displays the
structure's declaration in Developer Studio's Output window. The com­
mand-line argument, which is generated by the $(CurText) macro, can be
either selected text in the document or, if no text is selected, the word on
which the caret rests. If Struct does not recognize the supplied structure
name, it displays a message saying the structure is unknown.

Figure 13-8 shows how to set up the Struct program in the Customize dia­
log as a tool on the Tools menu. Struct has access to the Output window
because the Use Output Window check box is turned on. This check box
is enabled only for console-based programs. Setting the check box causes

Figure 13-8.

l .:S: Customizing Visual C++

Developer Studio to intercept all standard output from the utility and
display it in a separate tab of the Output window. The name of the tool
appears on the tab to identify the source of the output.

Struct is a very simple program that recognizes only a few Win32 API
structures such as RECT and POINT. Written in Casa console-based
program, Struct is hardly more than a program shell, but it can easily be
expanded to include additional structures and other information such as
function prototypes and message parameters. In spite of its limitations, the
program clearly demonstrates some of the possibilities for integrating tools
into Visual C++. You can install and test the Struct utility by following
these steps:

1. If you did not run the Setup program to copy projects from the com­
panion CD, copy the Struct.exe program file to a convenient location
on your hard disk. The program file is located in the Code\Chap­
ter.13\Struct\Release subfolder on the CD.

2. In the Tools tab of the Customize dialog, add a command for Struct
to the Tools menu, as illustrated in Figure 13-8. In the Command
box, type the path and filename of Struct.exe, including the EXE
extension, specifying the folder on your hard disk to which you
copied the program. Type $(CurText) in the Arguments box or click
the adjacent arrow button and select Current Text from the list. Be
sure to turn on the Use Output Window check box at the lower-left
corner of the dialog.

; '!niti~directory:

Setting up a menu command for the Struct utility program.

631

Advanced Topics

632

3. Either open the Struct.c source file (Listing 13-1) in the text editor or
use the New command on the File menu to create a new text docu­
ment. Type a single line in the new document that contains some of
the names of API structures that Struct recognizes, like this:

RECT RECTL POINT POINTL SIZE POINTS FILETIME SYSTEMTIME

4. Position the caret anywhere on one of the function names in the
document and click the Win32 Structure command on the Tools
menu. Figure 13-9 shows what the utility's message looks like in the
Win32 Structure tab of the Output window.

struct FILETIME
{

DWORD dwLowDateTime;
DWORD dwHighDateTime;

Tool returned code: 0

Figure 13-9. Output from the Struct utility appears in its own tab in the Output window.

Listing 13-1. The Struct.c source file.

II Struct.c
II

Displays Win32 structure in Output window
Copyright (c) 1998, Beck Zaratian

#include <stdio.h>
#include <string.h>

char *pszStruct[J =
{

"FI LETIME\n {\n DWORD dwLowDateTi me; \n DWORD " \
"dwHighDateTime;\n}",

"OVERLAPPED\n{\n DWORD Internal ;\n DWORD " \
"InternalHigh;\n DWORD Offset;\n DWORD " \
"OffsetHigh;\n HANDLE hEvent;\n};",

"POINT\n{\n LONG x;\n LONG y;\n};",

"POINTL\n{\n LONG x;\n LONG y;\n};",

"POINTS\n{\n SHORT x;\n SHORT y;\n};",

"PROCESS_INFORMATION\n{\n HANDLE hProcess;\n HANDLE " \

1 j: Customizing Visual C++

} :

"hThread:\n DWORD dwProcessid:\n DWORD dwThreadid;\n};",

"RECT\n{\n LONG left:\n LONG top;\n LONG right;" \
"\n LONG bottom:\n};",

"RECTL\n{\n LONG left;\n LONG top;\n LONG right;" \
"\n LONG bottom:\n};",

"SECURITLATTRIBUTES\n {\n DWORD
"lpSecurityDescriptor;\n BOOL

n Length: \n LPVO ID " \
binheritHandle;\n}",

"SIZE\n{\n LONG cx;\n LONG cy;\n};",

"SYSTEMTIME\n{\n WORD wYear:\n WORD wMonth:\n WORD " \
"wDayOfWeek:\n WORD wDay;\n WORD wHour;\n WORD " \
"wMi nute; \n WORD wSecond; \n WORD wMi 11 i seconds; \n};"

main(int argc, char *argv[J, char *envp[J)
{

}

char *SZ;

size_t iLen;
int i, iCount sizeof(pszStruct)lsizeof(char*);

if (argc > 1)
{

}

for (i=0; i < iCount; i++)
{

}

II Determine length of structure name
sz pszStruct[iJ;
iLen = (size_t) (strchr(sz, '\n') - sz);

II If structure is in database, display declaration
if (strlen(argv[l]) == iLen &&

{

}

!strncmp(sz, argv[l], iLen))

printf("Structure declaration:\n\n");
printf("struct %s\n\n", pszStruct[iJ);
break;

if (i == iCount)
printf("Structure not recognized\n\n");

return 0;

633

Advanced Topics

Macros

634

Visual C++ incorporates an excellent macro language in the form of Visual
Basic Scripting Edition, better known as VBScript. By storing macro
scripts in files, the environment enables you to make a permanent collec­
tion of useful macros that can be shared with others. You can create a
macro by recording a sequence of tasks or by writing a programmed script.
And as we'll see in this section, VBScript provides a library of functions
that allow a running macro to query for user input, display message boxes,
perform mathematical calculations, manipulate strings, and carry out
many other tasks that are beyond the abilities of the user interface.

VB Script is a scaled-down subset of Microsoft Visual Basic for Applica­
tions (VBA), the programming language for Microsoft programs such as
Access. Designed as a scripting language for Web documents written in
Hypertext Markup Language (HTML), VBScript provides a way for HTML
pages to embed ActiveX controls and other objects. But VBScript also
functions as a general scripting language that can interpret a list of com­
mands specific to an application and execute the commands through
Automation. In other words, VBScript can serve as a macro language. It's
in this context that Visual C++ uses VBScript.

A macro represents a set of instructions bundled into a single command.
Macros written in VBScript are in a real sense simple programs for which
the macro script serves as the source code. Executing a macro executes all
of the instructions contained in the script. We saw in Chapter 3 how to
create a VBScript macro by recording keystrokes and mouse clicks.
Recording gives you a macro that plays back a sequence of recorded com­
mands. You need only manually go through the commands once to record
a macro. Thereafter, Developer Studio duplicates the same steps automati­
cally whenever you run the recorded macro.

The untabify macro of Chapter 3 was created using the Record Quick
Macro command. Although convenient, the Record Quick Macro com­
mand creates only a temporary macro that is lost forever the next time you
invoke the command and record another macro. In contrast, the Macro
command on the Tools menu lets you record permanent macros, storing
several related macros in a single file. To demonstrate, here's how to

13: Customizing Visual C++

create a permanent version of the untabify macro and enhance it with a
corresponding tabify macro. The macros extend the TabifySelection and
UntabifySelection cornrnands to tabify and untabify an entire document,
not just selected text. The first step is to create a macro file, then add
scripts for the new tabify and untabify macros. With a document open in
the text editor, choose the Macro cornrnand frorn the Tools rnenu to open
the Macro dialog, click the Options button, and then click the New File
button. Enter a filename and description for the macro file, as shown here:

OK

C.:incel

Macros that tabify or untabify an entire document , •

Click OK, and then type UntabifyAll for the narne of the first macro. Click
the Record button and type an optional description in the Add Macro dia­
log such as Expands tabs into spaces. When you click the OK button, the
rnain Macro dialog closes and returns you to the document in the text edi­
tor. The Record toolbar is now visible and the mouse cursor includes the
image of a cassette tape, indicating that Visual C++ is now recording every
keystroke and mouse click. Follow the sarne three steps as in Chapter 3 to
create the macro:

1. On the Edit rnenu, click the Select All cornrnand to select the entire
document.

2. Choose Advanced frorn the Edit rnenu and click the Untabify Selec­
tion cornrnand.

3. Press Ctrl +Horne to return the caret to the top of the document.

Click the Stop Recording button on the Record toolbar to end the record­
ing, at which point the text editor automatically opens the new VBScript
macro file, named Tabs.dsrn, in case you want to edit the macro. (The file
extension stands for Developer Studio macro.) To return to the original
text document, click the filename on the Window rnenu.

635

Advanced Topics

636

When you display the Macro dialog again, the Tabs filename appears in
the Macro File combo box. To add a new tabify macro follow the same
steps as before, except this time do not click the Options and New File
buttons because you are adding to the macro file, not creating a new one.
Just type TabifyAll to name the second macro, click the Record button,
and enter a description for the new macro such as Converts spaces into
tabs. Then follow the steps above to create the second macro, this time
using the Tabify Selection command. The Tabs macro file now contains
two macros, listed in the Macro dialog as UntabifyAll and TabifyAll. To
run a macro, select it from the list in the dialog and click the Run button.
The effect is the same as retyping the recorded keystrokes manually.

During recording, Visual C++ compiles a list of every command you
execute and writes them in VBScript code to the DSM file. You can work
in any editor while recording, and even switch back and forth between
editors. Clicking the second button on the Record toolbar pauses the
recording, allowing you to carry out operations that are not included in
the finished macro. To resume recording, click the same button again.
Normally, before running a macro, you should first move the caret to the
document location where you want the recorded keystrokes to play back,
though this step is not required for the Tabify All and Untabify All macros.

Most of your macro needs can be fulfilled by recording a sequence of
commands this way. But there may be times when you want a macro to
perform tasks that cannot be recorded. To create such a macro, you must
write a script and save it as a DSM file. The next section shows how.

Example: A Macro for Columnar Search and Replace
VBScript comprises both a compiler and a run-time library. The VBScript
compiler interprets commands listed in a macro, and the library provides
functions that the macro can call. Appendix C contains a brief tutorial on
VBScript, describing language elements and the VBScript library func­
tions. VBScript is simple enough to learn very quickly, and fortunately
many of its programming characteristics are similar to the C language.

A simple example demonstrates some of the capabilities of a VBScript
macro. Chapter 3 mentioned that although it is possible to select a colum­
nar block of text in a document, the text editor provides no means of

13: Customizing Visual C++

restricting a search-and-replace operation to the selected column. If you
mark a column of text and choose Replace from the Edit menu, the
Replace dialog disables the Selection radio button. Replacing text only
inside a marked column is a very desirable feature for an editor. With a
macro, we can program the Developer Studio text editor to do just that.

It's often convenient to begin a macro by recording as much as possible,
then use the text editor to add to the macro script file other commands
that cannot be recorded. For this example, we won't record anything
because the macro file Replace.dsm has been coded from scratch. To try
out the macro, copy Replace.dsm from the Chapter.13 folder on the com­
panion CD to the Visual C++ Macros folder on your hard disk. The default
path to the folder is Common \MsDev98 \Macros.

Choose the Macro command from the Tools menu, click the Options
button, and then click the Loaded Files button. This exposes the familiar
Customize dialog in which the new Replace.dsm file appears in a list of
macro files stored in the Macros folder. Turn on the Replace check box in
the list, close the dialog, and again invoke the Macro command. The
Replace macro file now appears in the drop-down list of the Macro dialog.
Selecting the file as shown in Figure 13-10 adds the single macro
ColumnarReplace to the list.

If you prefer to type the macro yourself, begin with the New command
and double-click the Macro File icon in the Files tab. Type the script as

.Edit I
Aecorg I
.c;rose I

Macr~B~lp I
i=-'--~-~~'""""""" - Qptionm 1

Figure 13-10. Invoking the ColumnarReplace macro.

637

Advanced Topics

shown in Listing 13-2 on page 640, then save the file as Replace.dsm in
the Common \MsDev98\Macros folder. Developer Studio still does not
recognize the new macro file, so you must turn on its check box in the
Customize dialog as explained in the preceding paragraph.

The Chapter.13 folder on the companion CD contains a text file named
Column.txt that provides a simple testing ground for demonstrating the
ColumnarReplace macro. (You can use any text document you wish for
experimentation.) To change a column of words in the text, select a
columnar block by dragging the mouse cursor as shown in Figure 13-11
while pressing the Alt key. Normally, you can mark a block by dragging in
the opposite direction from the lower-right corner toward the upper-left
corner, but the ColumnarReplace macro assumes that the mouse cursor
moves from upper left to lower right.

With the Alt key
pressed, drag the
mouse from here ...

owordwordwordwordwordwordwordword
• • •Wardwordwordwordwordwordwordword

• wordwordwordwordwordwordwordword ,
111

.
1
. wordwordwordwordwordwordwordword

HI •wordwordwordwordwordwordwordword

iflilHlii: Iii::~~~:~~~:~~~:~~~:~~~:~~~:~~~:~~~
• • •Wardwordwordwordwordwordwordword
• • wordwordwordwordwordwordwordword

•Wordwordwordwordwordwordwordword
• • •wordwordwordwordwordwordwordword

•wordwordwordwordwordwordwordword

... and release here.

Figure 13-11. Marking a columnar block of text.

638

Next, click the Macro command on the Tools menu, select Replace from
the Macro File drop-down list if necessary, and double-click Columnar­
Replace in the box shown in Figure 13-10. As the macro runs, it queries
for both the search string and the replacement string. Type word at the
first query:

13: Customizing Visual C++

Enter word to search for OK

Cancel

word

Type replacement text such as NEW at the second query:

Replace with what word? OK

Cancel

When you press the Enter key or click OK at the second query, the macro
replaces every occurrence of "word" in the selected block, leaving the
other "word" strings intact:

wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword

. . " word word word wordNEWNEWNEW word word wordwordword word word word
, :· wordwordwordwordNEWNEWHEWwordwordwordwordwordwordwordword
' ' .. jwordword word wordHEWNEWNEW word word word word word word word word

iwordwordwordwordNEWNEWHEWwordwordwordwordwordwordwordword

J
wordwordwordwordNEWNEWNEWwordwordwordwordwordwordwordword

· ,.: word word word wordNEWNEWNEWwordwordwordwordwordword word word

•

Assigning a keystroke combination to the macro gives you instant access
to it. In the Keyboard tab of the Customize dialog, select Macros from the
Category box and ColumnarReplace from the Commands list. Click the
box labeled Press New Shortcut Key and type a keystroke combination
such as Alt+R (for "replace") that best reminds you of the macro's pur­
pose. You can also add a macro command to a toolbar or menu the same
way you add any other Visual C++ command. In the Commands tab of the
Customize dialog, select Macros from the Category list, and then drag the

639

Advanced Topics

macro name from the displayed list onto a toolbar or menu as described
earlier in this chapter.

Listing 13-2 shows the ColumnarReplace macro script. For an explanation
of VBScript elements used in the script, refer to the tutorial in Appendix
C. A brief discussion follows the listing that walks through the important
sections and describes how the macro works.

Listing 13-2. The ColumnarReplace macro script.

640

'Macro: Columnar search-and-replace

Sub ColReplace ()

'If no text selected, exit
If ActiveDocument.Selection = "" Then Exit Sub

strTitle ="Columnar Search-and-Replace"
'Get column coordinates: (xl,yl) = upper-left corner

(x2,y2) = lower-right corner
y2 ActiveDocument.Selection.CurrentLine
x2 = ActiveDocument.Selection.CurrentColumn
yl ActiveDocument.Selection.Topline
xl = Int(x2 - InStrB(ActiveDocument.Selection, vbCR)/2 + .5)

'Prompt for search/replace strings
strFind InputBox("Enter word to search for", strTitle)
If strFind "" Then Exit Sub
strReplace InputBox("Replace with what word?", strTitle

'Temporarily add a copy of the search string to the end of
'the line. This prevents ReplaceText from cycling to the
'top of the document after the final replacement.
ActiveDocument.Selection.EndOfLine
ActiveDocument.Selection = ActiveDocument.Selection + strFind

'Start from top line of selection and work down
Do While yl <= y2

ActiveDocument.Selection.GoToline yl
ActiveDocument.Selection.StartOfline

Do While ActiveDocument.Selection.CurrentColumn < xl
ActiveDocument.Selection.CharRight dsMove, 1

Loop

13: Customizing Visual C++

Do While ActiveDocument.Selection.CurrentColumn < x2
ActiveDocument.Selection.CharRight dsExtend. 1

Loop

ActiveDocument.Selection.ReplaceText strFind, strReplace
yl = yl + 1

Loop

'Remove temporary string at end of line
ActiveDocument.Selection.EndOfLine
For i = 1 To Len(strFind)

ActiveDocument.Selection.BackSpace
Next

End Sub

ActiveDocument.Selection is a VBScript property that contains all text
selected in the current document. (The word "property" is a Visual Basic
term that refers to a value of an object, used here in the same sense as in
Chapter 8, Using ActiveX Controls. This makes sense when you remember
that ActiveX controls trace their lineage to Visual Basic custom controls.)
If no text is selected in the document, ActiveDocument.Selection contains
an empty string. The ColumnarReplace macro first ensures that text has
been selected in the document by checking the contents of ActiveDocu­
ment.Selection. If the string is empty, the macro terminates without taking
any action.

The macro next determines the coordinates of the selected columnar
block. Coordinates are the row and column positions of the upper-left and
lower-right corners of the block. The properties ActiveDocument.Selec­
tion.CurrentLine and ActiveDocument.Selection.CurrentColumn give the
row and column of the caret position at coordinates (x2, y2) at the lower­
right corner of the block. This explains why the macro requires you to
drag the mouse cursor downward instead of upward to select the colum­
nar block-the caret must rest at the lower-right corner of the block when
the macro begins. ActiveDocument.Selection. TopLine provides the top
row of the block, stored in coordinate y1. No corresponding property
exists for the column at which the block starts, so the macro relies on the
fact that Developer Studio inserts a return character to mark the end of

641

Advanced Topics

642

each line of a columnar selection contained in ActiveDocument.Selection.
By locating the string's first return character (represented by the vbCR
constant), the macro determines the width of the block in screen columns.
It then computes the block's first column x1 by subtracting the width of
the block from the x2 coordinate.

Separate calls to the InputBox library function query the user for the
search string and its replacement string. If the user presses the Cancel but­
ton or does not specify a search string, the macro terminates. There is no
similar test for the replacement string because the macro allows an empty
replacement string as a valid entry. If the replacement string is empty, the
macro merely replaces the search string with nothing-that is, it deletes
the string from the text. The InputBox function provides no means of dis­
tinguishing between clicking OK with an empty replacement string and
clicking Cancel, so the macro treats both actions the same way.

Developer Studio provides its own means for canceling a running macro.
When a macro is active, the Developer Studio macro icon appears in the
tray at the right side of the Windows taskbar:

Double-clicking the icon displays a confirmation message for terminating
the macro. Since the macro continues to run while the confirmation mes­
sage is displayed, you must respond to the message quickly.

Each iteration of the main loop in ColumnarReplace replaces text in one
line of the selected block. The loop begins at the top line (y1) of the block,
and then works down through the document one line at a time until it
reaches the bottom line (y2) of the block:

Do While yl <= y2

Loop

ActiveDocument.Selection.ReplaceText strFind, strReplace
yl = yl + 1

13: Customizing Visual C++

The first nested loop moves the caret from the start of the line to the first
column of the block:

'Find left edge of selected column
Do While ActiveDocument.Selection.CurrentColumn < xl

ActiveDocument.Selection.CharRight dsMove, 1
Loop

The second nested loop then moves the caret across the block one charac­
ter at a time, selecting text as it goes:

'Select text across width of column
Do While ActiveDocument.Selection.CurrentColumn < x2

ActiveDocument.Selection.CharRight dsExtend, 1
Loop

The result is a band of selected text that spans the original block, as
shown here:

Outline of original
columnar block. NEWNEWNEW

NEWNEWNEW
I I I I I I

word word word
word word word
word word word
word word word
word word word

Band of selected text across block.

Each iteration of the
macro's main loop
selects a new band of text.

Once it has selected a band on a line, the macro calls ReplaceText. This
Developer Studio method replaces every occurrence of the search string
strFind with the replacement string strReplace. The search is not sensitive
to differences in letter case, although ColumnarReplace could easily be
revised to accommodate case-sensitive searches. The key to the entire
macro is that Replace Text acts only on the selected band of text, not on
the entire line. When the main loop iterates, the process repeats for the
next line down through the last row of the columnar block.

Developer Studio Add-Ins
You can further enhance the Developer Studio environment by creating
add-ins, which are ActiveX dynamic link libraries that Visual C++ loads at

643

Advanced Topics

644

startup and interacts with in response to user commands. Add-ins can
provide integrated features for the environment in ways not possible with
macros. Because they have access to the entire Windows API, add-ins
can perform tasks such as file input/output, communications, printing,
Internet support-anything you want to program. While a macro can inter­
face with the user only through dialogs displayed by the InputBox and
MsgBox functions, add-ins contain their own resource data and can thus
display dialogs and property sheets of your own design. The disadvantage
of add-ins is that they take more work to create than macros.

This section takes only a general look at Developer Studio add-ins. It
describes how add-ins work and how to get started writing one, but the
subject of add-ins runs fairly deep because of the many objects, properties,
methods, and events that must be documented. A full discussion of the
topic is beyond the scope of this introductory review. For more detailed
information, consult Visual C++ online help or study the source code for
the Api2Help sample project provided with Visual C++. To copy the
Api2Help project to your hard disk, follow the steps outlined in the online
article titled "Copying the Sample Add-ins," located under the index
entry sample add-ins.

Begin an add-in project by choosing the New command from the File
menu and clicking the Projects tab. Enter a project name and double-click
the DevStudio Add-in Wizard icon to launch a single-step wizard that cre­
ates the project:

Database Project
'oi?V'st;:g~"Ma;;w~ar~

P Extended Stored Procedu~AppW1zard
ISAPI Extension Wizard

The Add-in Wizard automatically sets up the project and generates source
code that relies on both MFC and A TL for most of the mundane work of
writing an add-in. For an add-in project that does not require MFC, begin

13: Customizing Visual C++

the project using ATL COM App Wizard instead of DevStudio Add-in
Wizard, choose the New ATL Object command from the Insert menu, and
double-click the Add-in Object icon in the ATL Object Wizard dialog.
You can also write an add-in using C or Visual Basic, but you must conse­
quently forego the advantages and convenience of the wizards.

After coding and building your add-in dynamic link library, the next step
is to inform Developer Studio about the DLL file so that it loads the library
and calls into it. Invoke the Customize dialog and click the tab labeled
Add-Ins And Macro Files, then browse for the DLL file and double-click
the file in the list. You can also copy the file to the Common \MsDev98 \
Addins folder, which makes browsing unnecessary. To load the add-in
library in the current Developer Studio session, turn on the check box for
the add-in file in the Customize dialog. Leaving the check box on causes
Visual C++ to automatically load the dynamic link library file at startup.

The diagram in Figure 13-12 illustrates how an add-in and Developer Stu­
dio interact. An add-in exposes two objects to Developer Studio, named
Commands and DSAddln, for which the Add-in Wizard creates class
source code in the Commands.cpp and DSAddin.cpp files. The Com­
mands object contains all the methods that implement whatever com­
mands the add-in provides. The DSAddin object contains two methods
named OnConnection and OnDisconnection. Developer Studio calls the

Add-in Developer Studio

DSAddln object

OnConnection method .,; .
COM or /Dispatch

....

OnDisconnection method

Commands object

MyCommandl
MyCommand2

""'-
/Dispatch

[,,,

: P""

MyCommandN

Figure 13-12. How Developer Studio interacts with an add-in dynamic link library.

645

Advanced Topics

646

first method when it loads (or "connects") the add-in, and calls the second
method when the add-in is unloaded. When the add-in begins executing,
the OnConnection method gains control and calls Developer Studio's
AddCommand function. The call to AddCommand adds a new command
to the environment and provides all the information about the command
that Developer Studio needs to present it to the user. The new command
is serviced by the add-in dynamic link library, but to the user it looks like
any other command in Developer Studio's set of internal commands.
Parameters for AddCommand specify information such as the name of the
command, text that appears in Developer Studio's status bar when the
command is selected in a menu, text for tooltips and the command's
toolbar button, and the name of the method exported by the add-in
dynamic link library that Developer Studio should call when the user
invokes the command.

Developer Studio exports two other methods that allow the add-in to make
the command more immediately accessible to the user. AddCommand­
BarButton instructs Developer Studio to create a toolbar button for a com­
mand exported by the add-in. AddKeyBinding assigns a keystroke combi­
nation to a command. While hard-wiring a keystroke saves the user the
trouble of assigning a key, calling AddKeyBinding is not recommended
because it runs the risk of overriding an existing keystroke, potentially
causing confusion for the user. It's generally better to leave an add-in
command unbound and let the user assign a keystroke in the Customize
dialog after the add-in first begins. An add-in has no way to query Devel­
oper Studio for a list of current keystroke combinations.

Developer Studio provides a set of objects that represent aspects of the
environment, such as build and configuration information, open docu­
ments, the debugger, windows, and much more. (Appendix C explains
how Visual C++ macros can use these same objects.) Through an object's
properties and methods, an add-in can get or set detailed information
pertaining to the environment. For example, the main Developer Studio
object (named Application) contains the extensive collection of properties
and methods listed in Table 13-4 on the facing page and Table 13-5 on
page 649. You can gain familiarity with property strings and other values

Table 13-4.

13: Customizing Visual C++

by displaying them in a simple macro script. For instance, executing this
line in a macro:

MsgBox(Application.Name+" version "+Application.Version)

produces this message:

Microsoft Developer Studio version 6.0

Application and Debugger are the only Developer Studio objects that fire
events. Debugger fires only the BreakPointHit event, which notifies the
add-in that a breakpoint has been triggered in the debugger. (See the sec­
tion titled "Breakpoints" on page 518 of Chapter 11 for a description of
debugger breakpoints.) The Application object fires the 12 events listed in
Table 13-6 on page 650. The CCommands class generated by Add-in Wiz­
ard contains shell handler functions for all fired events. If you want your
add-in to be notified of Developer Studio's current status, add implemen­
tation code to selected event handler functions in the Commands.cpp file.

Properties of the Application object.

Property

Active

ActiveConfiguration

ActiveDocument

ActiveProject

Active Window

CurrentDirectory

Debugger

Documents

Description

Boolean value that indicates whether Developer Stu­
dio is active.

String containing the current project configuration, usu­
ally either Win32 Release or Win32 Debug.

Name of the active document window.

Name of the current project.

Title of the currently active Developer Studio window.

Current directory used by the Open command.

Object that represents the Visual C++ debugger.

Object that represents the collection of open documents.

continued

647

Advanced Topics

648

Table 13-4. continued

Property

FullName

Height

Left

Name

Parent

Path

Projects

TextEditor

Top

Version

Visible

Width

Windows

WindowState

Description

Path and filename of the Developer Studio executable.
Usually this is C: \Program Files \Microsoft Visual Stu­
dio \Common \MsDev98 \Bin \MsDev.exe.

Value of type long containing the height in pixels of the
main Developer Studio window.

Value of type long containing the x-coordinate of the
main window's left side.

String that contains the text Microsoft Developer Studio.

Parent object of Application.

Path to the Developer Studio executable. Usually this is
C: \Program Files \Microsoft Visual Studio \Common\
MsDev98 \Bin.

Collection object representing all projects in the current
workspace.

Object representing the Visual C++ text editor.

Value of type long containing they-coordinate of the
main window's top border.

String containing the current Developer Studio version,
such as 6.0.

Boolean value that determines whether the Developer
Studio main window is visible.

Value of type long containing the width in pixels of the
Developer Studio main window.

Collection object representing all open windows.

A long value that represents the state of the main wndow.
Possible values include the constants dsWindowState­
Maximized and dsWindowStateMinimized, which indi­
cate whether Developer Studio is maximized or
minimized.

Table 13-5.

13: Customizing Visual C++

Methods of the Application object.

Method

AddCommand

AddCommand­
BarButton

Description

Adds to Visual C++ a command defined by an add-in.

Creates a toolbar for an add-in.

AddKeybinding Assigns a key combination to an add-in command.

Build Builds a project by processing only the files that have
changed.

EnableModeless Enables or disables modeless windows in Developer
Studio.

ExecuteCommand Executes a specified command or VBScript macro.

ExecuteConfiguration Runs the program created by the project.

GetPackageExtension Provides access to other objects outside of Devel­
oper Studio.

PrintToOutputWindow Writes a string to the Macro tab of the Output win­
dow. (For an example, see page 679 in Appendix C.)

Quit Prompts the user to save documents if necessary,
closes any document windows, and shuts down
Developer Studio.

RebuildAJJ Executes the Developer Studio Rebuild All command.

SetAddinlnfo Provides information about an add-in.

649

Advanced Topics

Table 13-6.

650

Events of the Application object.

Application event

BeforeApplicationShutDown

BeforeBuildStart

BeforeDocumentClose

BuildFinish

DocumentOpen

DocumentSave

NewDocument

NewWorkspace

Wind ow Activate

WindowDeactivate

WorkspaceClose

WorkspaceOpen

When fired

Just before Developer Studio shuts down.

Just after the user selects the Developer Studio
Build command but before compilation
begins.

Just before a document is closed. The docu­
ment is still open when the event fires.

When a build successfully or unsuccessfully
completes.

Just after a document is opened.

Just after a document is saved. The old docu­
ment file is already overwritten when the
event fires.

When a new document is created. The docu­
ment is open when the event fires.

When a new workspace is created.

When a window becomes active. This event
applies to both document windows in the edi­
tors and Developer Studio application win­
dows, such as the debugger windows.

Just after a window is deactivated or closed.

Just after the workspace is closed.

Just after the workspace is opened.

Appendix

ASCII and ANSI File Formats
The Visual C++ text editor saves files in ANSI format, which is the pre­
ferred format of Windows-based text editors such as the Notepad utility
that comes with Windows 95. DOS text editors generally use the similar
ASCII format. Both the ANSI and ASCII formats assign a number from O

through 255 to each of 256 characters.

Text editors almost always save files in either ASCII or ANSI format rather
than in a proprietary format like a word processor. Originally, the acro­
nym ASCII referred to a convention that assigned a number 32-127 to
each of 96 characters, including numerals, punctuation marks, and lower­
case and uppercase letters. This number fit comfortably into the range of
values possible with seven bits (because 27 equals 128). The ASCII con­
vention sets aside values 0-31 as printer control codes and reserves the
eighth bit of each byte for parity checking. Because memory today does
not require parity checking, the eighth bit of every byte is free for data,
doubling to 256 the number of characters that a single byte can represent.
Today, what we think of as the ASCII character set combines characters
for values 0-31, the original 96 ASCII characters, plus an additional 128
characters added by the original PC designers at IBM to utilize the extra
eighth bit. These 128 extra characters, referred to as upper ASCII or the
IBM character set, are shown in Table A-1 on page 655.

653

Appendixes

654

Some of the characters in the upper ASCII set, particularly the box­
drawing characters, do not serve well in a graphical environment like
Windows, which prefers the ANSI standard. ASCII and ANSI agree on
most of the first 128 characters, but assign different characters to the
higher numbers. That's why if you use a DOS-based text editor to create
a document that contains upper ASCII characters, the characters appear
as something else in the Visual C++ text editor.

Technically, any file consists of ASCII (or ANSI) characters. But in ASCII
and ANSI formats, each character is taken at face value. Z, e, and% mean
"Z," "e," and"%." Characters represent only themselves, not codes,
instructions, or anything else. The only exceptions to this rule are the
tab and return characters. A tab is a single character (ASCII value 9) that
represents a variable number of spaces. The form of the return character,
which marks the end of a line of text, depends on the editor and the oper­
ating system. In the world of DOS and Windows, a return consists of a
pair of characters with ASCII values 13 and 10. ASCII 13, called a carriage
return, signals a cursor move to the beginning of the line, whereas ASCII
10, called a linefeed, indicates a move down to the next row. The order of
the characters is important; ASCII 13 must precede ASCII 10 or the return
is usually not recognized. In the UNIX operating system, the linefeed
alone serves as the end-of-line marker, implying a new line as well as a
carriage return. The Visual C++ text editor recognizes both styles of
returns, either ASCII 13-10 pairs or a single ASCII 10.

A: ASCII and ANSI File Formats

Dec He}{ Char Dec He;c Char Dec Hex Char Dec Hex Char

128 80 ~ 160 AO a 192 co L 224 EO a:

129 81 ii 161 A1 i 193 C1 .L 22S E1 R

130 82 e 162 A2 6 194 C2 T 226 E2 r
131 83 a. 163 A3 u 19S C3 ~ 227 E3 n

132 84 a 164 A4 ii 196 C4 - 228 E4 L

133 8S a 16S AS R 197 cs t 229 ES u

134 86 a 166 A6 !!: 198 C6 ~ 230 E6 JJ

13S 87 ~ 167 A7 2 199 C7 n 231 E7 T

136 88 e 168 A8 l 200 C8 LI: 232 E8 !:i

137 89 e 169 A9 r 201 C9 rr 233 E9 e

138 8A e 170 AA , 202 CA JL 234 EA n

139 8B 1 171 AB ~ 203 CB ii 23S EB 6

140 8C i 172 AC ~ 204 cc I} 236 EC 00

141 8D i 173 AD i 20S CD = 237 ED ~

142 8E A 174 AE « 206 CE JL 238 EE E u

143 8F A 17S AF » 207 CF :!: 239 EF n

144 90 f 176 BO m1 208 DO Jl 240 FO -
14S 91 ifl 177 B1 ~ 209 D1 f 241 F1 ::!:

146 92 ff 178 B2 I 210 D2 lJ 242 F2 ~

147 93 0 179 B3 I 211 D3 ll 243 F3 ~

148 94 i::i 180 B4 1 212 D4 b 244 F4 r
149 9S 0 181 BS i 213 DS r 24S FS J

1SO 96 n 182 B6 11 214 D6 IT 246 F6
1 S1 97 u 183 B7 11 21S D7 fl 247 F7 =

1S2 98 y 184 B8 1 216 D8 =f= 248 F8 0

1S3 99 ti 18S B9 ~I 217 D9 J 249 F9
1S4 9A Li 186 BA II 218 DA r 250 FA
1SS 9B ¢ 187 BB i1 219 DB I 2S1 FB .J

1S6 9C £ 188 BC !J 220 DC • 2S2 FC n

1S7 9D ¥ 189 BD JI 221 DD I 253 FD 2

1S8 9E ft 190 BE J 222 DE I 254 FE I

1S9 9F f 191 BF 1 223 DF • 25S FF

Table A-1. Upper ASCII character set, values 128-255.

655

Appendixes

Table A-2.

Dec Octal

0 000

1 001

2 002

3 003

4 004

5 005

6 006

7 007

8 010

9 011 .

10 012

11 013

12 014

13 015

14 016

15 017

16 020

17 021

18 022

19 023

656

Table A-2 lists all 256 characters of the US ANSI set, some of which Win­
dows does not display. These undisplayable ANSI characters, normally
rendered on the screen as a box or blank space, appear in Table A-2 as a
generic box like this o. The table lists octal rather than hexadecimal values
for each character. Knowing a character's value in octal base allows you to
include the character in a resource string or a static text box by typing a
backslash followed by the character's octal value. To include the ANSI
character 1/z in a string, for example, type \275. Notice that Windows
can render some characters, such as the trademark symbol™, only in
TrueType fonts.

ANSI character set, values 0-255.

Dec Oda I Char Dec Oda I Char Dec Octal Char

D 20 024 D 40 050 (60 074 <
D 21 025 D 41 051) 61 075 =
D 22 026 D 42 052 * 62 076 >
D 23 027 D 43 053 + 63 077 ?

D 24 030 D 44 054 I 64 100 @

D 25 031 D 45 055 - 65 101 A

D 26 032 D 46 056 66 102 B

D 27 033 D 47 057 I 67 103 c
D 28 034 D 48 060 0 68 104 D

D 29 035 D 49 061 1 69 105 E

D 30 036 D 50 062 2 70 106 F

D 31 037 D 51 063 3 71 107 G

D 32 040 D 52 064 4 72 110 H

D 33 041 ! 53 065 5 73 111 I

D 34 042 II 54 066 6 74 112 J

D 35 043 # 55 067 7 75 113 K

D 36 044 $ 56 070 8 76 114 L

D 37 045 % 57 071 9 77 115 M

D 38 046 & 58 072 78 116 N

D 39 047 I 59 073 79 117 0 I

A: ASCII and ANSI File Formats

Dec Octal Char Dec Octal Char Dec Octal Char Dec Octal Char

80 120 p 110 156 n 14on 214 CE 170 252 a

81 121 Q 111 157 0 141 215 D 171 253 ((

82 122 R 112 160 p 142 216 D 172 254 -,

83 123 s 113 161 q 143 217 D 173 255 -
84 124 T 114 162 r 144 220 D 174 256 ®

85 125 u 115 163 s 145 221 I 175 257 -

86 126 v 116 164 t 146 222 I 176 260 0

87 127 w 117 165 u 147n 223 " 177 261 ±

88 130 x 118 166 v 148n 224 " 178 262 2

89 131 y 119 167 w 149n 225 D 179 263 3

90 132 z 120 170 x 15on 226 - 180 264

91 133 [121 171 y 151n 227 - 181 265 µ

92 134 \ 122 172 z 152n 230 - 182 266 11
93 135] 123 173 { 153n 231 TM 183 267

94 136 /\ 124 174 I 154n 232 s 184 270 .
95 137 125 175 } 155n 233 > 185 271 1

-
96 140 126 176 - 156n 234 re 186 272 0

97 141 a 127 177 D 157 235 D 187 273 »

98 142 b 128 200 D 158 236 D 188 274 v.i

99 143 c 129 201 D 159n 237 y 189 275 Y2

100 144 d 13on 202
'

160 240 D 190 276 %

101 145 e 131n 203 f 161 241 i 191 277 l

102 146 f 132n 204
"

162 242 </. 192 300 A
103 147 g 133n 205 ... 163 243 £ 193 301 A
104 150 h 134n 206 t 164 244 c 194 302 A
105 151 i 135n 207 :t: 165 245 ¥ 195 303 A.

106 152 j 136n 210 /\ 166 246 I 196 304 A I

107 153 k 137n 211 %0 167 247 § 197 305 A
108 154 I 138n 212 s 168 250 .. 198 306 A:

109 155 m 139n 213 < 169 251 © 199 307 <;

(continued)

657

Appendixes

658

Table A-2. continued

Dec Octal Char Dec Octal Char

200 310 E 214 326 b
201 311 E 215 327 x

202 312 E 216 330 0

203 313 E 217 331 0
204 314 l 218 332 (J

205 315 r 219 333 0
206 316 i 220 334 0
207 317 "j 221 335 y

208 330 f) 222 336 I:>

209 321 N 223 337 B

210 322 6 224 340 a
211 323 6 225 341 a
212 324 6 226 342 a
213 325 6 227 343 a
o Indicates Windows does not display this character
TT Indicates TrueType font only

Dec Oda I Char Dec Oda I Char

228 344 a 242 362 0

229 345 a 243 363 6

230 346 re 244 364 6

231 347 c; 245 365 5

232 350 e 246 366 6

233 351 e 247 367 _,_

234 352 e 248 370 0

235 353 e 249 371 u
236 354 1 250 372 u
237 355 r 251 373 Ci

238 356 i 252 374 u
239 357 'i 253 375 y
240 360 0 254 376 p
241 361 n 255 377 y

\ Appendix

MFC Classes
Supported by ClassWizard

As described in Chapter 6, ClassWizard is a tool designed to help you
create classes derived from MFC. This appendix lists and briefly describes
the MFC classes from which Class Wizard can generate starter code for
derived classes. The list includes five classes new for this release of MFC:
CComboBoxEx, CDateTimeCtrl, CHtmlView, CIPAddressCtr, and
CMonthCalCtrl.

ClassWizard displays the New Class dialog to prompt for the name and
base of a new class, as illustrated in Figure 6-4 on page 278. The radio
buttons in the dialog's Automation group box determine whether the new
class should support Automation or provide a type identifier:

659

Appendixes

Table B-1.

660

The identifier is a name, more correctly known as a programmatic identi­
fier or ProgID, by which client applications can create an object of the
class using Automation. The MFC macro IMPLEMENT_ OLECREATE
records the programmatic identifier in the system Registry as an alias of
the class's unique class identifier number.

Not all MFC classes support Automation options, in which case the radio
buttons are disabled in the New Class dialog. The Support column in
Table B-1 includes an A or I code to indicate which classes support Auto­
mation or type identification. The D code in the Support column flags
dialog-based classes, such as CDialog, which require a dialog resource.

MFG classes recognized by Class Wizard.

MFC dass

CAnimateCtrl

CAsyncMonikerFile

CAsyncSocket

CButton

CCachedData­
PathProperty

CCmdTarget

CColorDialog

CComboBox

CComboBoxEx

CDaoRecordset

Support* Description

A, I Animation common control.

A, I

A,I

A,I

A, I

Provides support for asynchronous
monikers in an ActiveX control.

Encapsulates the Windows Sockets APL
See also CSocket.

Button control object.

Allows an ActiveX control to asynchro­
nously transfer property data and cache
the data in memory. See also
CDataPathProperty.

Base class for objects that can receive and
respond to messages.

Common dialog for color selection, provid­
ing a list of colors that are defined for the
display system.

Combo box object.

Derivation of CComboBox class that sup­
ports image lists in the combo box control.

Represents a set of records. selected from a
data source. CDaoRecordset objects are
available in three forms: table-type
recordsets, dynaset-type recordsets, and
snapshot-type recordsets.

ts: MFC Classes Supported by ClassWizard

MFC class Support* Description

CDaoRecordView D,A Provides a form view to display database
records in a control. The form view is part
of a CDaoRecordset object. See also
CForm View and CRecordView.

CDataPathProperty Implements an ActiveX control property
capable of loading its data asynchro-
nously. This class allows an ActiveX con-
trol to become active while downloading
property data in the background.

CDateTimeCtrl A, I Encapsulates the new date/time picker
control (demonstrated in the DirList2
example program of Chapter 7, The
Gallery).

CDialog D,A Dialog box object for containment of
control windows.

CDocument A Class for managing program data.

CDragListBox A, I Windows list box that allows the user to
drag items into different positions.

CEdit A, I Child window control for text entry.

CEditView A Provides the functionality of a Windows
edit control. Because CEditView is derived
from CView, objects can be used with doc-
u~ents and document templates.

CFileDialog Common file dialog, providing implemen-
tation for Open and Save As dialogs.

CFontDialog Common font dialog, which displays a list
of fonts currently installed on the system.

CFormView D,A Window that can contain dialog box
controls.

CFrameWnd A Single document interface (SDI) frame
window.

CHeaderCtrl A, I Header common control.

CHotKeyCtrl A, I Hot key common control.

(continued)

661

Appendixes

662

Table 8-1. continued

MFC dass

CHtmlView

CHttpFilter

CHttpServer

GIP Ad dress Ctr I

CListBox

CListCtrl

CListView

CMDIChildWnd

CMiniFrame Wnd

CMonthCalCtrl

COleDocument

Support* Description

A A view class that implements the Web
Browser control, able to access HTML doc­
uments locally or over the Web. See also
Microsoft Web Browser ActiveX control in
the Gallery.

A,I

A,I

A,I

A

A

A, I

A

Creates and handles a Hypertext Transfer
Protocol filter object, which filters server
notifications for HTTP requests.

Wrapper class for the Internet Server API
(ISAPI).

IP Address control. Similar to an edit box,
the control accepts an address in Internet
Protocol format.

List box object.

List view common control. For an exam­
ple, see the MfcTree project in Chapter 5,
Dialog Boxes and Controls.

Simplifies use of CListCtrl, adding support
for documents and view.

Multiple document interface (MDI) child
frame window.

A half-height frame window, typically
used for floating toolbars. A miniframe
window does not have minimize and max­
imize buttons but otherwise is similar to a
normal frame window.

Month calendar control, which displays a
calendar from which the user can select a
date.

Treats a document as a collection of
CDocltem objects. Both containers and
servers require this architecture because
their documents must be able to contain
OLE items.

D: 1v1tL uasses ::,upported by ClassWizard

MFC class Support* Description

COleLinkingDoc A Base class for OLE container documents
that support linking to the embedded
items they contain.

COleServerDoc A Base class for OLE server documents.

COleServerltem A Provides a server interface to OLE items.

CPrintDialog Common dialog box for printing, provid-
ing implementation for the Print and Print
Setup dialog boxes.

CProgressCtrl A,I Common progress indicator control.

CPropertyPage D,A Represents an individual page of a prop-
erty sheet. See the DirList1 example
project in Chapter 5.

CPropertySheet A Property sheet, otherwise known as a
tabbed dialog box. A property sheet con-
sists of a CPropertySheet object and one
or more CPropertyPage objects.

CRecordset Class for accessing a database table or
query.

CRecordView D,A Window containing dialog box controls
mapped to recordset fields.

CRichEditCtrl A, I Window in which the user can enter
and edit text, providing character and
paragraph formatting and support for
embedded OLE objects.

CScrollBar A, I Scroll bar object.

CScrollView A Scrolling window, derived from CView.

CSliderCtrl A, I Provides a window containing a slider and
optional tick marks. For an example show-
ing how to use CSliderCtrl, see the Color
project in Chapter 5.

CSocket Wrapper class for the Windows Socket APL

CS pinButton Ctr] A, I Provides arrow buttons that the user can
click to increment or decrement a value in
a control. See the DirList2 example project
in Chapter 7.

{continued)

663

Appendixes

664

Table B-1. continued

MFC dass

CStatic

CStatusBarCtrl

CT ab Ctr I

CToolBarCtrl

CToolTipCtrl

CTreeCtrl

CTreeView

CView

CWinThread

generic CWnd

splitter

Support* Description

A, I A simple text box that labels another con­
trol or provides other information to the
user.

A, I

A, I

A, I

A, I

A,I

A

A,I

A

Provides a horizontal window, usually
placed at the bottom of a parent window,
for displaying status information about an
application.

Allows an application to display multiple
pages in the same area of a window or dia­
log box.

Toolbar common control.

Provides the functionality of a tooltip con­
trol, which appears as a small pop-up win­
dow containing a single line of text
describing the purpose of a tool.

Displays a hierarchical list of items.

Simplifies use of CTreeCtrl.

Class for displaying program data.

Represents a thread of execution within an
application.

Custom window.

An MDI child window that contains a
CSplitterWnd class. The user can split the
resulting window into multiple panes.

*Support codes: D = Dialog A = Automation I = Programmatic identifier

\ Aµµer1u1x

A VBScript Primer
Visual Basic Scripting Edition, better known as VBScript, is a subset of
Visual Basic for Applications (VBA), which in turn is a dialect of Visual
Basic. Incorporated in Visual C++ as its macro language, VBScript has at
last brought serious macro capabilities to Visual C++. VBScript comes
packaged as a compiler (more accurately an interpreter) and a run-time
library. A macro script written in the VBScript language can recreate a
series of Developer Studio commands, automating nearly any task that
you can do by hand. And by drawing on the VBScript run-time library, a
macro can perform many other tasks not otherwise possible in Visual C++,
such as displaying information in a standard Windows message box and
querying for user input.

Visual C++ provides two techniques for creating a macro: recording and
programming. Most macros can be created simply by recording a sequence
of actions, a technique that does not require an understanding of VB Script.
Behind the scenes, the environment automatically creates a VBScript
macro file that replicates the recorded commands. But as demonstrated in
Chapter 13, Customizing Visual C++, recording a macro has limitations. A
recorded macro is "hard-wired," well suited for duplicating a specific set
of actions but not general enough to react to different circumstances when
the macro runs. Flexibility in a macro requires programming, and that
requires knowledge of VBScript. Fortunately, VBScript is very easy to

665

Appendixes

learn, and CIC++ programmers will immediately recognize many of its
characteristics. You already know much of VBScript, even if you've never
seen the language before. This appendix fills in some of the gaps, pro­
viding an introductory tutorial on macro programming geared toward the
CIC++ programmer. To learn more about VBScript-particularly its use
in documents-consult one of the many books available or visit
Microsoft's Web site at

http://www.microsoft.com/vbscript

The first half of this appendix describes various language elements of
VBScript, such as variables, program flow statements, and procedures.
Each discussion illustrates by using commented code fragments. Com­
ments in VBScript begin with a single quote character and continue to the
end of the line. VB Script also recognizes the old-style Rem statement of
the BASIC language, but Rem is seldom used anymore:

This is a comment
Rem So is this

The second half of the appendix concentrates on functions in the
VBScript library, offering a brief description of each function and often
demonstrating with example code.

Variables

666

VBScript recognizes one data type, named Variant, which contains either
numeric or text information, depending on context. If you assign numeric
data to a variable in VBScript, the variable takes on a numeric data type
suitable for the data. Assigning text data to a Variant variable turns it into
a string. VBScript provides several functions to convert one internal data
type into another. Table C-1 lists some of the data types that Variant can
mimic.

A variable's name should give an indication of its internal subtype. Use
Hungarian notation or a similar convention when naming a variable to
indicate the type of data the variable contains. Names like bFlag, iNumber,
and strString are self-documenting, making it easy to recognize variables
that contain BOOL, int, and text data.

Table C-1.

C: A VBScript Primer

Data type

BOOL

BYTE

int

long

float

double

Date

String

Description

Either TRUE (non-zero) or FALSE (zero).

8-bit unsigned integer value from 0 through 255.

16-bit signed integer value from -32,768 through 32,767.

32-bit signed integer value from -2,147,483,648 through
2,147,483,647.

Single-precision floating-point value with negative values
ranging from -3.402823E38 through -1.401298E-45 and pos­
itive values from 1.401298E-45 through 3.402823E38.

Double-precision floating-point value with negative
values ranging from -1.79769313486232E308 through
-4.94065645841247E-324 and positive values from
4.94065645841247E-324 through 1.79769313486232E308.

Represents date and time from January 1, 100 through
December 31, 9999.

String of BSTR type, up to approximately 2 billion charac­
ters in length.

Data types that Variant simulates.

A variable name must comply with these rules:

• Begin with an alphabetic character

II Cannot contain an embedded period

m Have a maximum length of 255 characters

• Be unique in the scope in which it is declared

Except for arrays, it isn't necessary to declare a variable before using it. If
you prefer to declare variables at the beginning of a procedure, use the
Dim statement (short for "dimension") like this:

Dim x

x 3
y = x 'This statement is legal, even though y was not declared

667

Appendixes

668

To help catch typographical errors, you can force mandatory variable dec­
larations in a macro by including the Option Explicit statement. With this
statement in effect, using a variable is legal only if the script has previ­
ously declared the variable with a Dim statement. Place the Option
Explicit statement at the top of the macro file as shown here:

Option Explicit

Dim x

'Legal x = 3
y = x 'Not legal, because y has not been previously declared

The Const keyword has the same effect in VBScript as in the C language.
For a variable intended to contain only unchanging data, use Const at the
variable's initial assignment. Thereafter, the VBScript interpreter allows
no other assignment for the variable:

Const x = 3
x = 5

Arrays

'This statement causes an error

A macro must specifically declare an array by using the Dim statement:

Dim iArray(10) 'A one-dimensional array

As in the C language, arrays in VBScript are zero-based. But unlike decla­
rations in C, the array subscript of a Dim statement specifies the highest
element index, not the number of elements. The above declaration there­
fore actually allocates 11 elements, accessed as iArray(O) through
iArray(10}. An array can have up to 60 dimensions, indicated in the Dim
statement using a list of subscripts separated by commas:

Dim iArray(5, 10)
Dim iArray(5, 10, 15)

'A two-dimensional array
'A three-dimensional array

An array allocated without a subscript list is dynamic, meaning that the
macro can resize the array at run time. Use the ReDim statement to resize
a dynamic array, like this:

C: A VBScript Primer

Dim iArray() 'Define but don't allocate an array

ReDim iArray(100) 'Allocate space for 101 elements

ReDim Preserve iArray(50) 'Resize the array for 51 elements

ReDim can resize an array to make it either smaller or larger. The array
iArray in the fragment initially holds 101 integer elements, but is subse­
quently reduced in size to hold only 51 elements. The Preserve keyword
ensures that reducing the array maintains the values of the first 51 ele­
ments, though elements iArray(51) through iArray(100) are lost when the
array is resized. Without the Preserve keyword, resizing an array to make
it larger or smaller erases its original contents. VBScript does not impose
a limit to the number of times a macro can resize an array. However, if
the code declares an array with a subscript in the Dim statement, the array
cannot be resized with a ReDim statement. Attempting to do so causes
an error.

Strings
Assign values to string variables as you would in C by enclosing the text
in double quotes:

strName = "John Q. Public"

Use pound signs to enclose strings containing dates:

dateBirth = #07-04-76#

Operators
All VBScript operators except one fall neatly into three categories named
arithmetic, comparison, and logical. When operators of different catego­
ries appear in the same expression, arithmetic operators have the highest
precedence-that is, VBScript evaluates arithmetic operators such as addi­
tion and multiplication before operators of other categories. Comparison
operators come next, followed by logical operators. As in the C language,
operators inside parentheses are evaluated before operators outside
parentheses, regardless of category. These two lines demonstrate how

669

Appendixes

670

parentheses can change the order in which VBScript evaluates the opera­
tors of an expression:

x + y And z
x + (y And z)

'AND the variable z with the sum of x + y
'Add to the variable x the result of y AND z

Precedence order also exists withiri the arithmetic and logical categories.
Comparison operators all have equal precedence and are evaluated left to
right in the order they appear in an expression. Table C-2 lists the
VBScript operators, arranging arithmetic and logical operators in descend­
ing order of precedence. The general order of precedence in the table thus
decreases in the right and downward directions.

Arithmetic operators Comparison operators Logical operators

Description Symbol Description Symbol Description Symbol

Exponentiation /\ Equality Negation Not

Unary negation Inequality <> Logical AND And

Multiplication * Less than < Logical OR Or

Division I Greater than > Exclusive OR Xor

Integer division \ Less than or equal to <= Equivalence Eqv

Modulo arithmetic Mod Greater than or equal to >=

Addition

Subtraction

Table C-2.

+

VBScript operators listed in descending order of precedence.

As in the C programming language, multiplication and division operators
have equal precedence. So do addition and subtraction operators.
VBScript provides a string concatenation operator(&) that does not fall
into any of the three categories listed in Table C-2. In its order of prece­
dence, the concatenation operator lies between arithmetic and compari­
son operators.

C: A VBScript Primer

Controlling Program Flow
A macro controls program flow by using conditional branching and loops,
and by calling procedures. VBScript does not recognize labels and does
not have the equivalent of a goto statement, which means a macro cannot
jump unconditionally from one location in the script to another. A
method named GoToLine exists, but GoToLine serves only to move the
caret in a document and has nothing to do with controlling program flow
in an executing macro.

Conditional Branching
The If ... Then ... Else group of statements is functionally equivalent to C's
if ... else statements, except that VBScript does not use brackets {}to
enclose blocks of code:

If ActiveDocument.Selection = "" Then str "No selection"
Else str = ActiveDocument.Selection

A condition that spans two or more lines must end with an End If
statement:

If x < y Then
iline = ActiveDocument.Selection.Currentline
iCol = ActiveDocument.Selection.CurrentColumn

End If

When a condition becomes too complex for the simple yes-or-no test of
If ... Then ... Else, VBScript's Select Case command offers a better alterna­
tive. The command provides a clean method of conditional branching
based on the value of a variable, very much like the switch statement of C.
As in C, branch targets are each marked by a Case statement and a unique
value. Control reaches a Case statement when its value matches that given
to the Select Case command:

Select Case i
Case 1
'Come here when 1

Case 2
'Come here when 2

671

Appendixes

672

'And so forth
End Select

VBScript does not provide a break keyword, so each Case statement
implies the end of the preceding Case block. After a block finishes, pro­
gram flow continues to the next statement following the End Select state­
ment that terminates the Select Case section. The Case Else statement
performs the same function as C's default keyword, marking a block of
code that executes if control does not branch to any other Case statement:

Select Case strColor
Case "red" strHi Lite "magenta"
Case "blue" strHiLite = "cyan"
Case "brown" strHiLite = "yell ow"
Case Else strHiLite = "undefined"

End Select

Loops
VBScript recognizes several loop constructions that offer no surprises to a
CIC++ programmer:

• Do While ... Loop or Do ... Loop While-Iterates while a condition is
true

• Do Until...Loop or Do ... Loop Until-Iterates until a condition is true

• For ... Next-Iterates as governed by a loop counter variable

The Do keyword begins a repeating block of code that ends with a Loop
statement. The While and Until keywords can appear either on the Do
line at the top of the block or on the Loop line at the bottom of the block,
depending on whether you want the VBScript interpreter to examine the
condition before or after executing the loop. A few code fragments illus­
trate the proper formats for loops in VBScript:

Do While x < y
'Loop is not entered unless xis less than y

Loop

Do
'Loop executes at least once and repeats only if is less than j

Loop While i < j
Do Until x = 10

C: A VBScript Primer

'Loop is not entered if xis equal to 10
'When x attains a value of 10, the loop exits

Loop

Do
'Loop executes at least once and repeats only
'until i is not equal to j

Loop Until i <> j

By default the loop counter in a For ... Next loop increments by 1:

For i = 1 To 10
'This loop iterates 10 times, incrementing i from 1 to 10

Next

Use the Step keyword in a For ... Next loop to specify a different increment
value for the loop counter:

For i = 1 To 10 Step 2
'This loop iterates 5 times

Next

For i = 10 To 2 Step -2
'This loop also iterates 5 times

Next

The first For ... Next loop in the fragment iterates five times. It initializes
the loop counter i with a value of 1, then increments it at successive itera­
tions to values of 3, 5, 7, and 9. During the final pass of the loop, i has a
value of 9; the loop exits when i attains a value of 11. The second
For ... Next loop also iterates five times, but i decreases rather than
increases as the loop repeats because the Step value is negative. Initialized
with a value of 10, i decrements at each loop iteration to values of 8, 6, 4,

and 2. When the loop exits, i has a value of 0.

Procedures
Besides its own library of built-in functions, VBScript recognizes two
types of procedures in a macro script, labeled Sub and Function. Both
types accept arguments, but only Function can return a value. Otherwise
there is little difference between the two types.

Every macro script has a main Sub procedure, the name of which deter­
mines the name of the macro that appears in Visual C++'s Macro dialog.

673

Appendixes

674

The main Sub procedure appears first in the macro script and does not
take arguments. The script's callable subprocedures follow the main pro­
cedure in arbitrary order. As shown here, every Sub procedure (including
the first) ends with an End Sub statement:

Sub MacroName () 'Main procedure

End Sub

Sub Subroutinel(argl, arg2)
'Code for first callable procedure goes here

End Sub

Sub Subroutine2(argl, arg2)
'Code for second callable procedure goes here

End Sub

A callable Sub procedure-that is, any Sub procedure but the first-can be
invoked either through a Call statement or through the procedure name as
a stand-alone program statement. This mimics the way functions are
invoked in CIC++. The format differs slightly for the two methods. The
Call statement requires that the Sub procedure's arguments are enclosed
in parentheses after the procedure name. Without the Call statement, argu­
ments follow the procedure name separated by commas without parenthe­
ses. These two lines thus have the same effect:

Call AnySub(paraml, param2)
AnySub paraml, param2

Because a Function procedure returns data, it can serve as a righthand
value the same way as a C function. To return a value, a Function proce­
dure must contain a variable that has the same name as the procedure
itself. The interpreter returns the value of this variable to the caller when
the procedure exits. Because all values are of Variant type, the interpreter
performs no type-checking for return values. Unlike Sub procedures, the
argument list of a Function procedure always appears enclosed in paren­
theses. If a Function procedure has no arguments, it must include an
empty set of parentheses. Here's a simple example that computes the area
of a circle from its radius:

~= A VBScript Primer

Sub Main ()
iRadius = InputBox("Enter radius of circle:")
MsgBox("Area is" & Area(iRadius) & "square units")

End Sub

Function Area(iRadius)
Area = iRadius * iRadius * 3.1415926

End Function

The VB Script interpreter determines the precision of the Area variable by
the maximum precision of the values from which Area is computed. If
iRadius has a value of 2, for example, the value of pi carried out to seven
decimal places in the above example implies the same precision for Area:

Area is 12.5663704 square units

1 c:::::::::J~K::::::::::n

Arguments are passed by value in VBScript, not by reference. Neither a
Sub nor a Function procedure can alter external data except for variables
with global scope. VBScript refers to scope as level, so that local variables
are said to be "procedure level." A procedure-level variable lives only
from the time it is declared until the procedure exits. Since a procedure­
level variable has local scope, it does not retain its value the next time the
procedure is entered. Variables with global scope are "script level" and
exist throughout the life of the executing macro. VB Script follows the
same rules as C for establishing scope: declaring a variable inside a proce­
dure gives it procedure-level scope. Any variables declared outside a pro­
cedure have script-level scope, as illustrated here:

Dim iGlobal
Sub Main ()

Dim i Local

End Sub

'This variable has script-level scope

'This variable has procedure-level scope

675

Appendixes

Objects

676

A procedure cannot hold more than 12 7 variables; an array counts as a
single variable.

Various aspects of Developer Studio can appear to a running macro as a
collection of 17 different objects. For example, the debugger can be repre­
sented as an object, as can the Visual C++ editors, windows, and so forth.
Each object supports properties and methods through which a macro
learns about or adjusts the object's current status. The main Developer
Studio object is named Application, whose properties, methods, and
events are listed in Tables 12-4, 12-5, and 12-6 beginning on page 597.
Application is the default object in a macro script, so you can use ele­
ments of Application without specifically naming the object. For example,
this command displays the active configuration of the current project­
either Win32 Release or Win32 Debug-without referring to the Applica­
tion object:

MsgBox("The configuration is " & ActiveConfiguration)

To give you a feel for objects, this section discusses the TextSelection
object, which represents text selected in a document window opened in
the text editor. A macro determines the selected text in the active docu­
ment by using the ActiveDocument.Selection property. We met this prop­
erty in the ColumnarReplace macro of Chapter 13 (see Listing 13-2 on
page 640). Tables C-3 and C-4 list TextSelection properties and methods,
which a macro can use to manipulate selected text, move the caret, scroll,
and perform many other tasks. Each property and method must appear in
the macro script attached to the ActiveDocument.Selection property with
a period operator. For example, this line uses the Copy method to copy
the selected text to the Clipboard:

ActiveDocument.Selection.Copy

Table C-3.

Table C-4.

l.: A VBScript Primer

TextSelection properties.

Property

BottomLine

CurrentColumn

CurrentLine

Text

TopLine

Description

The line number of the bottom line of the selection.

The column number at which the caret is currently
positioned.

The line number at which the caret is currently
positioned.

A string containing the selected text. If the selection
spans two or more lines, the string includes a newline
character at the end of each selected line except the last.
Because the Text property is the default, specifying the
property is not required. Thus these two lines have the
same result:

str = ActiveDocument.Selection
str = ActiveDocument.Selection.Text

The line number of the top line of the selection.

TextSelection methods.

Method

Backspace

Cancel

ChangeCase

Char Left

CharRight

ClearBookmark

ClearBookmarks

Copy

Cut

Delete

Description

Same effect as pressing the Backspace key.

Same effect as pressing the Esc key.

Changes the case of the selected text to either lower­
case, uppercase, or capitalization of the first letter of
each word.

Moves the caret left a specified number of positions.

Moves the caret right a specified number of positions.

Removes an unnamed bookmark from the current line.

Removes all unnamed bookmarks from the document.

Copies the selected text to the Clipboard.

Copies the selected text to the Clipboard, and then
deletes the selected text from the document.

Deletes the selected text from the document.

(continued)

677

Appendixes

678

Table C-4. continued

Method

Delete Whitespace

Destructivelnsert

EndOfLine

EndOfDocument

Find Text

GoToLine

Indent

LineDown

Line Up

Move To

New Line

NextBookmark

PageDown

Page Up

Paste

PreviousBookmark

Replace Text

SelectAll

Description

Deletes all spaces and tabs (white space) adjacent to
the caret. Text need not be selected.

Replaces the selected text with new text.

Moves the caret to the end of the current line. See also
StartOfLine.

Moves the caret to the end of the document. See also
StartOfDocument.

Searches for a specified string in the document and, if
found, positions the caret at the beginning of the
located string.

Moves the caret to the beginning of a specified line.

Adds one indentation level to the current line. This
has the same effect as placing the caret at the begin­
ning of the line and pressing the Tab key. Be careful
when using Indent because the function deletes
selected text.

Moves the caret down a specified number of lines.

Moves the caret up a specified number of lines.

Moves the caret to a specified line and column.

Same effect as pressing the Enter key.

Moves the caret forward to the next named or
unnamed bookmark. See also PreviousBookmark.

Same effect as pressing the PgDn key.

Same effect as pressing the PgUp key.

Pastes the current contents of the Clipboard into the
document at the caret position.

Moves the caret backward to the preceding named
or unnamed bookmark. See also NextBookmark.

Finds and replaces text within the selection. For an
example of how Replace Text is used, see the
ColumnarReplace macro described in Chapter 13.

Selects the entire document.

l.: A VBScript Primer

Method

SelectLine

SetBookmark

SmartFormat

StartOfDocument

StartOfLine

Tabify

Unindent

Untabify

WordLeft

WordRight

Description

Selects the line that contains the caret.

Sets an unnamed bookmark for the line that contains
the caret.

Formats the selected text according to the current
smart formatting settings.

Moves the caret to the start of the document. See also
EndOfDocument.

Moves the caret to the start of the current line. See
also EndOfLine.

Tabifies the selection. For more information on
Developer Studio's Tabify command, see page 94 in
Chapter 3, The Text Editor.

Removes one indentation level from all lines in a
selection. This has the same effect as pressing
Shift+ Tab.

Untabifies the selection.

Moves the caret left a specified number of words.

Moves the caret right a specified number of words.

Debugging a VBScript Macro
Usually you can effectively debug a macro by displaying current values
of variables at key points as the macro runs. Display debug strings using
either the MsgBox function or the PrintToOutputWindow method, which
writes a message in the Macro tab of Visual C++'s Output window,
described in Chapter 1, The Environment. While the MsgBox function
halts the running macro and demands user input, the PrintToOutput­
Window method does not interrupt the macro.

This code fragment produces the debug strings shown in Figure C-1 on the
next page:

x = 3
MsgBox("x = " & x) 'Displays a message box
Pri ntToOutputWi ndow("x = " & x) 'Writes to Output window

679

Appendixes

Figure C-1. Displaying a debug string with MsgBox and PrintToOutputWindow.

When you need more debugging firepower, you can sometimes recreate
parts of a macro in Visual Basic, which allows you to single-step through a
macro, set breakpoints, inspect variables, and so forth. These same advan­
tages are also available from the Microsoft Script Debugger. Although
designed for VBScript code embedded in HTML pages open in Microsoft
Internet Explorer, the Script Debugger can handle some VBScript code
found in Visual C++ macros.

For more information about the Script Debugger, refer to the online help
article indexed under script debugging. You can also download a copy
from Microsoft's VBScript Web page cited at the beginning of this appen­
dix. The Script Debugger package includes documentation.

Library Functions

680

The rest of this appendix is devoted to descriptions of the VB Script library
functions available to a Visual C++ macro script. Table C-5 categorizes the
library functions into several groups, allowing you to determine which
functions pertain to a particular programming need. Table C-6 on page 682

lists the functions in alphabetical order and provides brief descriptions and
example code fragments. Find the function you need in Table C-5, and then
consult Table C-6 or Visual C++ online help for a description of the func­
tion. The library functions are contained in the VBScript.dll file, which is
usually located in the Windows System or System32 folder.

By convention, function names appear in a macro script as a combination
of uppercase and lowercase letters. The VBScript interpreter does not
consider case, however, and properly recognizes function names regard­
less of case. A "C" prefix identifies conversion functions, such as the
CByte and CDate functions. These functions coerce values from one data
type to another, providing a mechanism similar to typecasting in CIC++.

l:: A VBScript Primer

Array, arithmetic, and trigonometric

Abs Cos Hex Log Round Sqr

Array Exp Int Oct Sgn Tan

Atn Fix LBound Rnd Sin UBound

Conversion and variable type

CBool CD ate Clnt CS tr IsEmpty TypeName

CByte CD bl CLng IsArray Is Null VarType

CCur Chr CSng IsDate IsNumeric

Date and time

Date Date Value MonthName Time Value

DateAdd Day Now WeekDay

DateDiff Hour Second WeekDayName

DatePart Minute Time Year

DateSerial Month TimeSerial

Formatting

FormatCurrency FormatNumber FormatPercent FormatDateTime

Strings and te:i{t

Ase Join Mid ScriptEngine StrComp

Filter LCase MsgBox ScriptEngine- String
Buil dVersion

InputBox Left Replace ScriptEngine- StrReverse
Major Version

InStr Len Right Space Trim

Instr Rev LTrim RTrim Split UCase

Table C-5. VBScript library functions arranged by category.

681

Appendixes

Table C-6.

682

VBScript library functions.

Function

Abs

Array

Ase

Atn

CBool

CByte

CCur

CD ate

CD bl

Description

Returns the absolute value (unsigned magnitude) of a
number. For example, Abs(-2) and Abs(2) both return the
value 2.

Returns a Variant containing an array. In the following
example, the first statement creates a variable named x. The
second statement assigns an array to variable x and
initializes the array elements. The remaining statements
demonstrate how the given values are arranged in the new
x array:

Dim x
x = Array (10, 20. 30)
a x(0) 'a 10
b x(l) 'b 20
c = x(2) 'c 30

Returns the ANSI character code of the first letter in a
string. A similar function named AscB returns the first byte
of a string. The related Ase W function returns the byte and
Unicode (wide) character code of a string's first character,
thereby avoiding the conversion from Unicode to ANSI.

Returns the arctangent (in radians) of a value. The range of
the result is -pi/2 to pi/2 radians. To convert degrees to
radians, multiply the number of degrees by pi/180. Atn is
the inverse trigonometric function of Tan, which takes an
angle as its argument and returns the ratio of two sides of a
right triangle.

Returns the Boolean value of an expression.

Returns the byte value of an expression.

Converts an expression to the Currency subtype. The CCur
function provides correct conversions based on interna­
tional settings current for the host system. Use this function
to ensure that your macro correctly displays currency val­
ues for any locale.

Converts an expression to the Date subtype:

str = mm & "-" & dd & "-" & yy
date = CDate(str)

Returns the double-precision value of an expression.

Function

Chr

Clnt

CLng

Cos

CSng

CS tr

Date

C: A VBScript Primer

Description

Returns the ANSI character corresponding to a character
code. Character codes O through 127 are the same as stan­
dard ASCII codes. For example, Chr(10) returns a linefeed
character. For a discussion of ASCII and ANSI character
codes, refer to Appendix A.

A similar function named ChrB should be used with byte
data contained in a string. Instead of returning a character,
which may be one or two bytes, ChrB always returns a sin­
gle byte. The ChrW function is provided for 32-bit plat­
forms that use Unicode characters.

Converts an expression to the Integer subtype. Clnt differs
from the Fix and Int functions, which truncate rather than
round the fractional part of a number. When the fractional
part is exactly 0.5, the Clnt function always rounds the
result to the nearest even number. For example, 0.5 rounds
to 0, and 1.5 rounds to 2.

Converts an expression to the Long subtype. CLng rounds
the fractional part of a number. When the fractional part is
exactly 0.5, the CLng function always rounds the result to
the nearest even number.

Returns the cosine of an angle:

cosx = Cos(x) 'Where x is in radians

See also descriptions for the Sin and Tan functions.

Converts an expression to the Single (single-precision)
subtype.

Converts an expression to the String subtype:

x = 111
str = "The numeric value is " + CStr(x)
MsgBox(str)

str ="The Boolean value is"+ CStr(CBool(x))
MsgBox(str)

Returns the current system date:

MsgBox("The current date is " & Date)

(continued)

683

Appendixes

Table C-6. (continued)

Function

DateAdd

DateDiff

684

Description

Returns a date to which a specified time interval has been
added. The DateAdd function does not return an invalid
date, such as February 31. It accounts for leap years and
recognizes the number of days in each month. It does not
allow dates before January 1, 100 or after December 31,
9999. Specify the interval using one of the special strings
listed here:

String Meaning String Meaning

"d" day "q" quarter

"ww" week of the year "yyyy" year

"m" month "h" hour

"w" day of the week "m" minute

"y" day of the year "s" second

Here are a few examples of the DateAdd function:

str = DateAdd("d", -1, Date)
MsgBox("Yesterday was " & str)

st r = D a t e Add ("ww" , - 1 , D a t e)
MsgBox("Last week was " & str)

str = DateAdd("m", 1, Date
MsgBox("Next month wi 11 be " & str)

str = DateAdd("q", 1, Date
MsgBox("Three months from now wi 11 be " & str)

Returns the number of intervals between two dates. See the
description of the DateAdd function for a list of special
strings used to indicate the interval:

st r = D a t e Di ff ("d " , Date , fl 12 - 2 511)
MsgBox("Only " & str & "days ti 11 Christmas"

Function

DatePart

DateSerial

Date Value

C: A VBScript Primer

Description

Returns a specified part of a given date:

str = DatePart("ww", Date)
MsgBox("This week is number " & str & " of the year")
dayl = DatePart("d", Date)
day2 = dayl
Do While day2 > 9

day2 = day2 - 10
Loop
suffix = "th"
If (dayl 1) Then suffix = "st"
If (dayl = 2) Then suffix = "nd"
If (dayl = 3) Then suffix = "rd"
MsgBox("Today is the " & dayl & suffix)

Returns a string containing a specified year, month, and
day. DateSerial allows a macro to compute an absolute date
from a serial span of time. For example, the following call
to DateSerial returns the date 100 days from the present
date:

iYear DatePart("yyyy", Date
i Month Date Pa rt ("m", Date)
iDay DatePart("d", Date)
str DateSerial(iYear, iMonth, iDay + 100)
MsgBox("100 days from now will be " & str)

When the year parameter contains a value from 0 through
99, DateSerial assumes the value represents a year 1900
through 1999. For all other year arguments, use a complete
four-digit year such as 2010.

Returns a string containing a formatted date. The
Date Value function is adept at recognizing dates in various
formats, depending on regional settings. Under United
States settings, for example, these lines all return the string
"12/31/99":

DateValue("December 31, 1999"
DateValue("Dec 31, 1999")
DateValue("12-31-99")
DateValue("12 31 1999")

(continued)

685

Appendixes

686

Table C-6. (continued}

function

Day

Exp

Filter

Description

Reads a date string and extracts the day of the month as a
whole number from 1 through 31.

Returns e (the base of natural logarithms) raised to a power.
The constant e is approximately 2.718282.

Extracts from an array of strings either the strings that con­
tain a specified substring or the strings that do not contain
the substring. The array that Filter returns contains only the
strings that meet the match criteria. In this example, the x
array contains the string "string2" because that is the only
string in the str array that contains the substring "2":

Dim str(3)

str(0) "string0"
str(l) "stringl"
str(2) "string2"
str(3) "string3"
x = Filter(str, "2"
MsgBox(x(0))

In this case, attempting to access another element such as
x(1) results in an error.

Fix Returns the integer portion of a floating-point number. Both
the Int and Fix functions truncate the fractional portion of a
number and return the integer portion. Consider the vari­
able x as an example. If xis positive, both functions have
the same effect. If xis negative, Int returns the first negative
integer less than or equal to x, whereas Fix returns the first
negative integer greater than or equal to x. If xis -5.6, for
example, Int returns -6 and Fix returns -5.

FormatCurrency Returns an expression with proper currency formatting
using regional settings established in the system Control
Panel.

FormatDateTime Returns an expression formatted as a date or time that
conforms to current regional settings.

FormatNumber Returns a number expressed as a string. The string is for­
matted according to system regional settings so that, for
example, values over 1,000 are formatted with commas
in the United States and periods in Europe.

Function

FormatPercent

Hex

Hour

InputBox

InStr

InstrRev

Int

IsArray

IsDate

IsEmpty

C: A VBScript Primer

Description

Returns an expression formatted as a percentage (multi­
plied by 100) with a trailing% character.

Returns a string representing a number in hexadecimal
form. A macro can express a hexadecimal number by
prefixing the number with &H. See also the description
for Oct.

Returns a whole number from 0 through 23 representing
the hour of the given time. Between 6:00 and 7:00 in the
evening, for example, the following fragment returns the
number 18:

hr = Hour(Time)
MsgBox("The current hour is " & hr)

See also descriptions for the Minute and Second functions.

Displays a dialog with a specified prompt message and
returns the string typed in the dialog by the user. For an
example of the InputBox function, see the
ColumnarReplace macro described in Chapter 13.

Returns the position of the first occurrence of one string
within another.

Similar to the InStr function, InstrRev returns the position
of one string within another, working in reverse from the
end of the string.

See the description of the Fix function.

Returns a Boolean value indicating whether a given vari­
able is an array.

Returns a Boolean value indicating whether a given expres­
sion can be converted to a date.

Returns a Boolean value indicating whether a given vari­
able has been initialized. IsEmpty returns True when the
variable is uninitialized or explicitly set to Empty; other­
wise, the function returns False. See the description for
IsNull.

(continued)

687

Appendixes

688

Table C-6. (continued)

Function

Is Null

IsNumeric

Join

LBound

LCase

Left

Len

Log

LTrim

Mid

Minute

Description

Returns a Boolean value indicating whether a given vari­
able contains valid data. IsNull returns True when the
variable is Null (contains no valid data); otherwise, the
function returns False. VBScript recognizes a difference
between Null and Empty variables. Empty means that a
variable has not yet been initialized. A zero-length string,
sometimes referred to as a null string, is not a Null variable.

Returns a Boolean value indicating whether a given
expression is a number.

Forms a new string by concatenating strings in an array.

Returns the smallest available subscript for an array dimen­
sion. The default lower bound for an array dimension is 0.

Converts all letters in a string to lowercase. See also the
description for the UCase function.

Returns a string formed by the leftmost characters of a
string. A macro can determine the length of a string by call­
ing the Len function. See also the description for the Right
function.

Returns the number of characters in a string.

Returns the natural (base e) logarithm of a number. The
base n logarithms for a number xis the ratio of the natural
logarithm of x and the natural logarithm of n:

lognx = Log(x) I Log(n)

Trims leading spaces from a string. See descriptions for
RTrim and Trim.

Extracts a substring from a given string.

Returns a whole number from 0 through 59 for the minute
of the given time. At 6:47:53, for example, the following
fragment returns the number 47:

min = Minute(Time)
MsgBox("The current minute is " & min
See also descriptions for the Hour and Second functions.

Function

Month

MonthName

MsgBox

C: A VBScript Primer

Description

Returns a whole number from 1 through 12 for the
month of the given year:

Dim mnth(ll)
mnth(0) "January"
mnth (1) = "February"

mnth (11) = "December"
m = Month(Date)
MsgBox("The current month is" & mnth(m-1))

Returns a string containing the month specified by a
number 1through12. By using the MonthName func­
tion, the preceding example fragment can be rewritten
like this:

m = Month(Date)
MsgBox("The current month is " & MonthName(m)

Displays a standard Windows message box with optional
OK, Cancel, Abort, Retry, Ignore, Yes, and No buttons.
MsgBox returns one of the following values to indicate
which button the user clicked to close the message box:

Constant Value Button

vb OK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbignore 5 Ignore

vb Yes 6 Yes

vbNo 7 No

MsgBox can display an optional Help button in the message
box which, when clicked, shows context-sensitive help
drawn from a specified help file. The user can also press
the Fl key to view the Help topic corresponding to the
context.

(continued)

689

Appendixes

690

Table C-6. {continued)

Function

Now

Oct

Replace

Right

Rnd

Round

RTrim

ScriptEngine

ScriptEngine­
BuildVersion

ScriptEngine­
MajorVersion

Description

Returns a string containing the current date and time in a
format appropriate for the current regional settings. For
United States settings, for example, the returned string has
the format "12/31/99 3:33:57 PM." See also descriptions for
the Time and Date functions.

Returns a string representing a number in octal (base 8) form.
An octal number can be expressed in a macro by prefixing
the number with &O. See also the description for Hex.

Takes a string as input, and then returns a new version of
the string in which a specified substring has been replaced
with another. See also the ReplaceText function listed in
Table C-4 on page 677.

Returns a string formed by the rightmost characters of a
string. A macro can determine the length of a string by call­
ing the Len function. See also the description for the Left
function.

Returns a random number that is less than 1 but greater
than or equal to 0. To generate a random integer between a
lower and upper bound, use this formula:

iRange = iUpperBound - ilowerBound + 1
Int(iRange * Rnd + ilowerBound)
Use the Randomize statement to seed the VBScript random
number generator with a value from the system timer

Randomize
i Random = Rnd

Rounds a floating-point number to a specified precision.

Trims trailing spaces from a string. See also descriptions
for LTrim and Trim.

Returns a string identifying the scripting language in use.
For Visual Basic Scripting Edition, the function returns
"VBScript."

Returns the build version number of the script engine
in use.

Returns the major version number of the script engine
in use.

Function

Second

Sgn

Sin

Space

Split

Sqr

c:: A VBScript Primer

Description

Returns a whole number from 0 through 59 representing
the seconds component of the given time. At 6:47:53, for
example, the following fragment returns the number 53:

sec = Second(Time)
MsgBox("The current second is " & sec)

See also descriptions for the Hour and Minute functions.

Determines the sign of a given number. Sgn returns an inte­
ger containing a value of -1, 0, or 1, indicating that the
given number is less than zero, equal to zero, or greater
than zero:

Dim str(2)
str(0) "less than zero"
str(l) "equal to zero"
str(2) "greater than zero"
i InputBox("Enter a number"
MsgBox("The number is " & str(Sgn()+l))

Returns the sine of an angle.

sinx = Sin(x) 'Where x is in radians

See also descriptions for the Cos and Tan functions.

Returns a string consisting of a specified number of spaces.

Creates an array of strings from a single string in which
substrings are delimited by any specified character. The
following example splits a string into three separate strings
separated by the plus sign(+):

x =Split("stringl+string2+string3", "+"
MsgBox(x(0)) 'Display "string!"
MsgBox(x(l)) 'Display "string2"
MsgBox(x(2)) 'Display "string3"

Returns the square root of a number.

(continued)

691

Appendixes

692

Table C-6. (continued)

Function

StrComp

StrReverse

String

Tan

Time

TimeSerial

Description

Compares two strings and returns a value indicating whether
the strings differ. The usage and syntax of StrComp are sim­
ilar to the strcmp function of the C run-time library:

If StrComp(stringl, string2) = 0 Then
MsgBox("Strings are equal")

End If
StrComp returns one of the following values:

Return Value

-1

0

1

Meaning

string1 is less than string2

string1 and string2 are the same

string1 is greater than string2

Reverses the order of characters in a given string.

Creates a string of a given length composed of a single
repeating character.

str = String(10, "a") 'str = "aaaaaaaaaa"

Returns the tangent of an angle.

tanx = Tan(x) 'Where x is in radians
See also descriptions for the Sin and Cos functions.

Returns a string containing the current system time, format­
ted appropriately for the current regional settings. In the
United States, for example, the returned string has the for­
mat "3:33:57 PM." With European settings in effect, the
same time is represented as "15:33:57." See also the
description for the Now function.

Returns a string containing the time for a given hour, min­
ute, and second, formatted appropriately for the current
regional settings. For United States settings, the following
line assigns the string "6:47:53 PM" to the variable x:

x = TimeSerial(18, 47, 53)

Function

Time Value

Trim

TypeName

l.: A VBScript Primer

Description

Returns a string containing a formatted time. Like the Date­
Value function, Time Value recognizes various formats,
depending on regional settings. For United States settings,
for example, these lines all return the string "6:47:53 PM":

TimeValue("6:47:53PM")

TimeValue("18:47:53")

TimeValue("6:47:53 pm"

Trims leading and trailing spaces from a string. See also
RTrim and LTrim.

Takes a variable as a parameter and returns one of the fol­
lowing strings indicating the variable's subtype:

Return string

"Byte"

"Integer"

"Long"

"Single"

"Double"

"Currency"

"Decimal"

"Date"

"String"

"Boolean"

"Empty"

"Null"

Variable subtype

Byte value

Integer value

Long integer

Single-precision floating-point

Double-precision floating-point

Currency string

Decimal value

Date or time string

Character string

Boolean value

Uninitialized

No valid data

This fragment demonstrates the TypeName function:

x = 3
MsgBox(TypeName(x 'Displays "Integer"
y = "string"
MsgBox(TypeName(y
z = 4f12-31-99#
MsgBox(TypeName(z
MsgBox(TypeName(w

'Displays "String"

'Displays "Date"
'Displays "Empty"

(continued)

693

Appendixes

Table C-6. (continued)

Function

UBound

UCase

VarType

694

Description

Returns the largest available subscript for the indicated
dimension of an array. For example:

Dim AC100,3,4)
x UBound(A, 1)

y = UBound(A, 2)
z = UBoundCA, 3)

'x
'y
'z

99
2
3

Converts all letters in a string to uppercase. See also the
description for the LCase function.

Takes a variable as a parameter and returns one of the fol­
lowing integer values indicating the variable's subtype.
Notice this function's similarity to the TypeName function.

Constant Value Variable subtype

vbEmpty 0 Uninitialized

vb Null 1 No valid data

vblnteger 2 Integer

vb Long 3 Long integer

vbSingle 4 Single-precision floating-point

vbDouble 5 Double-precision floating-point

vbCurrency 6 Currency string

vbDate 7 Date or time string

vb String 8 Character string

vbBoolean 11 Boolean value

vb Variant 12 An array of Variant type

vb Byte 17 Byte value

vbArray 8192 Array. The VarType function
returns the sum of the array
value (8192) plus the value for
the variable subtype that popu-
lates the array.

Function

Weekday

WeekDayName

Year

c: A VBScript Primer

Description

Returns an integer 1 through 7 representing the day of the
week, beginning with 1 for Sunday. See the example frag­
ment for the WeekDayName function.

Returns a string indicating the specified day of the week:

d = Weekday(Date)
MsgBox("Today is " & WeekdayName(d))

Extracts the year from a given date and returns it as an
integer value:

MsgBox("The year is " & Year(Date))

695

A
About box

Control Wizard option, 3 78
in TowerATL project, 503-506

AboutBox, 354
About dialogs, 112

aligning controls, 220-221
logos for, 218, 219
as modal dialogs, 204
OK button, 204
phone numbers, adding, 220
revising, 218-221

Abs, 682
accelerator keys, 121-122

for DiskPiel, 132-135
removing, 133
saving accelerator table, 134

Accel Properties dialog, 133
acos function, 592
Active, 647
ActiveConfiguration, 647
ActiveDocument, 647
ActiveDocument.Selection.CurrentColumn, 641
ActiveDocument.Selection.CurrentLine, 641
ActiveDocument.Selection. TopLine, 641-642
ActiveProject, 64 7
Active Server Page, 64
Active Template Library (ATL), 375. See also

A TL, ActiveX controls with
ActiveWindow, 647
ActiveX controls. See also ATL, ActiveX controls

with; ClassWizard; debugger; The Gallery;
MFC, ActiveX controls with

Addltem, 341
ambient properties, 356, 357
AppWizard support, 42-44
Button Menu, 340-341
Button project, 366-3 71
CLSIDs, 337
color properties, 341
Colors tab, Anibutton Control Properties

dialog, 346
communication between container and, 347-357

ActiveX controls, continued
comparing component models, 510-511
Component Object Model (COM) framework,

348-349
connecting control to container, 348
containers, 333-337

ambient properties, 356, 357
ATL support, 424-428
communication between control and, 347-357
connecting control to, 348
dialog containers, 342-347
events, 350-353
license control in, 389
methods, 354
Test Container utility, 339-342, 428
writing application, 356-366

Control tab, Anibutton Control Properties
dialog, 346

Control Wizard, 3 76-383
Createable By Type ID radio button, 2 79
defined,329
Developer Studio add-ins, 643-650
dialog box, adding control to, 342-347
downloading controls, 335
events, 350-353
extended properties, 356
firing events, 350-353
Fonts tab, Anibutton Control Properties

dialog, 346
Frame Settings tab, Anibutton Control Prop­

erties dialog, 346
General 2 tab, Anibutton Control Properties

dialog, 346
Hour program, 358-366

building/testing, 365-366
control identifiers in, 361

HTML document, using control in, 337
integer type property, method for, 341
license-free ActiveX controls, 333-335
licensing, 383-390
marshaling, 349
Method Name combo list, 340-341
methods, 354
non-dialog window, adding control to, 366-371

697

Microsoft Visual C++ 6.0 Programmer's Guide

698

ActiveX controls, continued
OLEMISC flags, 479-481

operating, 428

parameter Type box, 341

properties
ambient properties, 356, 357

custom properties, 354-355

extended properties, 356

stock properties, 354-355

property sheets for, 346

registering control files, 336

remote procedure call (RPC), 349

SetlnitialSize for, 406

stock events, 351-353

structure packing, 598-599

stub libraries, 349

Test Container utility, 339-342, 428

Tumble.htm document, 338-339

VBX controls, 331-332

v-table array, 348

Web page, adding control to, 337-339

ActiveX development kit, 375

ActiveX Events tab, ClassWizard dialog, 268

ActiveX Server Component, 448

ActiveX Text Container utility, 339-342, 428

AddCommand, 646, 649

AddCommandBarButton, 646, 649
add-ins, 643-650

object, 448

Add-in Wizard, 644-645

Addltem, 341
addition, 670

AddKeyBinding, 646, 649

Add Method command, 397-398, 462-463, 489

AddPage, 260, 261

Add To Project command, 109, 130

Advanced command, 139

text editor, 93-95

Advanced Options dialog, 139-140

AFX_ prefix, 143-144

AFX_DATA, 286

AFX_DATA_INIT, 286

AFX_DATA_MAP, 286

AFX_DISP, 286

AFX_EVENT, 286

AFX_EVENT _MAP, 286

AFX_FIELD, 286

AFX_FIELD_INIT, 286

AFX_FIELD_MAP, 286

AFX_IDI_STD_FRAME, 162

AFX_IDS_IDLEMESSAGE, 143

AFX_MANAGE_STATE, 59-60
AFX_MSG, 286, 287

AFX_MSG_MAP, 286

AFX_ VIRTUAL, 286

afxDump, 537

AfxOleRegisterControlClass, 3 79

AfxRegisterWndClass, 166, 559

afxres.h file, 114, 125

aggregation, 453-454

Airbrush tool, 150, 186

algorithmic optimization, 5 72-5 73

aliasing, 586-587

hidden aliasing, 603

aligning
accelerator key combinations, 121

controls in dialog, 212, 220-221

Alt key, 69

ampersand(&), 122, 670

AND operator, 25-27

Animated button, 334, 342-347

animation, viewing, 337

ANSI, 63

file formats, 653-658

release configurations, 481

apartment threadtng model, 439-441

Appearance, 355

Applcon.ico, 162

Application, 646-647, 676

events of, 650

properties of, 647-650

applications. See also dialog-based applications
container application, writing, 356-366

server EXE application, 348-349

Apply function, 494

AppWizard. See also The Gallery; resources
ActiveX support, 42-44

Advanced button options, 50-52

AppWizard, continued
advantages of, 31-34

ATL COM AppWizard for Pulse project,
444-447

classes, itemizing, 56-57

container program, 42-44

Database Options dialog box, 39

database support, 38-42

data source, defining, 39-41

dialog, adding, 234-242

dialog-based applications, 243-245

Document Template Strings, 50-51
dynamic link libraries (DLLs) with, 57-60

filenames, 56-57

help, 47-50

Help Topics dialog box, 48-49

HLP subfolder, 47

Hour program, creating, 359

icons, 161-162

Internet Explorer ReBars button, 46

MFC library, 52-56

dynamic link libraries (DLLs) links, 58-59
linking to, 54-56

project style, 52-54

source file comments, 54

MFC Standard button, 52

national language for interface, 3 7

Normal button, 46

OLE support, 42-44

printing support, 46-47

program interface step, 36-38
RC files, 110-111

recordsettype, 42

running, 35-57

server program, 42-44

ShockWave program, creating, 546-547

source files
comments, 54

generation of, 34

Split command, 51-52

toolbars, creating, 153

user interface features, 45-52

Windows Explorer button, 52-53

Window Styles, 51

argument macros, 628-630

arithmetic functions, 681

arithmetic operators, 669-670

Array, 682

array functions, 681

array pointer, 529

Ase, 682

ASCII
character set, 63

file formats, 653-658

asin function, 592

ASSERT macro, 544

Assume No Aliasing optimization, 586-587, 603

asynchronous loading, 382

ATL, ActiveX controls with
advantages of, 430

aggregation, 453-454
apartment threading model, 439-441

ATL COM AppWizard
for Pulse project, 444-447

release configurations, 481

ATL Object Wizard Properties dialog, 491-492
classes in, 430

comparing component models, 510-511

compiler optimizations, 483

container programming support, 424-428

containment technique, 454

dual interfaces, 452-453

Free Threaded Marshaler, 454-455

free threading, 441

IETIMER control, 444

implementation code development, 430-431

inheritance list, 430

interface maps, 431-436

Minimal project, 428

multithreaded apartment model (MTA), 440

nlnterval, adding, 457-462

object maps, 436-437

Object Wizard, 447-456

bitmap to control project, 478
Free Threaded Marshaler, 454-455

Support Connection Points option, 475

supported object types, 448-449

proxy functions, 467-468

Index

699

Microsoft Visual C++ 6.0 Programmer's Guide

700

ATL, ActiveX controls with, continued
Pulse control example, 443-485

ATL COM AppWizard, running, 444-447
building/testing, 481-485
CTimer class, adding, 469-472
editing files in, 472-481
event,adding,464-469
methods, adding, 462-463
nlnterval, adding, 457-462
Object Wizard, running, 447-456
Tumble2.htm document, 483, 484

single-threaded apartment model (STA), 440
single threading model, 438-439
threading models, 437-443
TowerATL project, 485-510

Aboutbox,adding,503-506
building/testing, 507-510
creating, 486-487
editing files, 493-503
events,adding,489-490
handler functions, adding, 488
nCurrentBlock, adding, 487-488
property sheet, adding, 490-493
Reset method, adding, 488
source code, 495-503

ATL COM App Wizard, 41. See also ATL, ActiveX
controls with

AtlCon, 330
_ATL_INTMAP _ENTRY, 432, 433
ATL Object Wizard Properties dialog, 491-492
_ATL_OBJMAP _ENTRY, 437
ATL_SIMPLEMAPENTRY, 432-433
ATLTRACENOTIMPL macro, 431
Atn, 682
attributes, 458-462
Automatic Reload of Externally Modified Files set-

ting, 105
Automation tab, 268, 279
auto_ptr, 427
Auxiliary carry flag, 537

B
BackColor, 341, 355, 357, 396, 487
BaseCtl framework, 374-375

BeforeApplicationShutDown, 650
BeforeBuildStart, 650
BeforeDocumentClose, 650
BEGIN, 121
BEGIN_COM_MAP, 433, 436
BEGIN_PROPPAGEIDs, 405
benchmarking Visual C++, 605-611
bHandled flag, 497
BigLocal, 584-585
bindable attribute, 460
bitmaps, 151-153. See also icons; toolbars

ATL Object Wizard adding, 478
background color, 148
DiskPie2, 190
Image3dRectangleTool command, 187
reducing space requirements, 189
splash screen, adding, 298-299
toolbar bitmaps, 153-156
transparency, 152

BITMAP statement, 154
bMoving, 404
BN_DOUBLECLICKED, 351
bookmarks. See also text editor

margins holding icon, 102
Boolean associations

Active property, 647
in MSDN search, 22, 25-27
Value category settings, 271
variables containing, 666

BorderStyle, 355
bound commands, 96. See also macros

list of, 186
break keyword, 6 72
BreakPointHit event, 647
breakpoint interrupt, 519
breakpoints. See debugger
Breakpoints dialog. See debugger
BRIEF editor, 102-103
Brockschmidt, Kraig, 17
Brush tool, 150
BSTR parameter, 494
BtnMenu Object, 366
Build, 649
build, defined, xxv

BuildFinish, 650

Build tab, Output window, 14

Build toolbar, 6, 297

BUTTON statements, 154

c
calendar file, 335

call_as attribute, 460-461

CALL machine instruction, 5 81

Call statement
Sub procedure invoked through, 674

CAPTION, 204

Caption, 355, 411-412

property page, 418

rewriting, 414

in TowerATL project, 487, 490-491

caret. See text editor
Carry flag, 537

cascading pop-up menus, 128

Case Else statement, 672

case-sensitivity, 88

Case statement, 671-672

Catch keyword, 563

Category combo box, 186-187

CAutomationObject, 3 75

CBN_DROPDOWN, 351

CBool, 682

CBRS_FLYBY, 137

CBRS_TOOLTIPS, 137

CByte, 682

CIC++ Header File, 64

CColorDlg, 232

CColorDlg::OnHScroll, 233

CCommands class, 647

CComObjectRootBase, 432

CComObjectRootEx::FinalConstruct, 496

CComPtr, 424-42 7

CComQIPtr, 424-427

uses of, 495

CCur, 682

CDaoRecordView
Gallery custom component with, 300

Member Variables tab class, 270

non-MFC class, adding, 280

CDataSource, 41

CDate, 682

CDbl, 682

CDC::SetMapMode, 89

_cdecl calling convention, 595

CDemoApp::OnAppAbout, 286-287

CDialog, 91, 287

Gallery custom component with, 300
Member Variables tab class, 270

non-MFC class, adding, 280

CDialog::Create, 222-223

CDialog::DoModal, 223

CDirListCtrl. See The Gallery
CDiskView::OnDraw, 185

centering controls, 213

CFileDialog, 201

CFormView
Gallery custom component with, 300

Member Variables tab class, 270

non-MFC class, adding, 280

CFrame. Wnd, 162

CFrameWnd::Create, 138

character sets, 653-658

charts, 184-185, 335

CheckDateSize, 317

CHECK macro, 544-545

CHM files, MSDN Library, 17-18

Chr, 683

CHttpServer, 265

Clnt, 683

classid statement
for TowerATL project, 507-508

updating, 483

Class Info tab, ClassWizard dialog, 268

class templates. See ATL, ActiveX controls with
Class View pane, Workspace window, 13

ClassWizard, 33
accessing, 266-267

Add Class button, 277

adding class to project, 277-281

automatic generation of source code, 272-273

Automation tab, 279

base classes, MFC, 265-266

class definition, 284

Index

701

Microsoft Visual C++ 6.0 Programmer's Guide

702

ClassWizard, continued
comment keywords, 285-286
controls

list of settings, 271-272
properties, setting, 276-277
WizardBar controls, 282

Createable By Type ID radio button, 279
DDX/DDV, 272-275
Delete Function button, 290-291
deleting function, 284
dialog, 267-281
dialog class, 270

creating, 287-291
dialog data exchange, 272-274
dialog data validation, 272-273, 274-275
Dialog ID control, 278-279
DoDataExchange, 275-277
function declaration, 283
function definition, 283
Generic Class setting, 280-281
help, WizardBar, 285
Hour program, creating, 361-363
#include, scanning for, 284
member function, adding, 283-284, 290
message handlers

adding,269-270,283
recognizing, 285-286
in Tower ActiveX control example, 400-401

Messages box, 269
MFC classes supported by, 659-664
naming class source files, 278
New Class dialog, 280, 284

creating new class, 288-289
New Form dialog, 284
New option for class, 278
next/previous function, 284
non-MFC class, adding, 279-281
Object IDs box, 269
OLE type library for class, 277-278
property page to ActiveX control project with,

418-419
recognizing classes, 285-287
Select An Existing Class radio button, 288
tabs of dialog, 268

ClassWizard, continued
type library, adding class from, 277-278
Value settings, 271
virtual function, adding, 283
WizardBar, 281-285

controls on, 282
menu, 283

ClassWizard command, 266
Click,398,489
Click event, 351-352
Clipboard, 620

as accelerator editor, 133
CListSheet, 260
CListView, 53
CLng,683
clock, adding, 298-299
Close command, 10
CLSIDFromProgID,451
CL W file extension, 266
CMainFrame, 232

WizardBar, initializing, 281
CMainFrame::OnCreate, 526
CMainFrame: :OnDisk, 184
CMainFrame::OnEraseBkGnd, 233
CMainFrame::OnMemory, 184
CMainFrame::OnSetFocus, 183
CMainFrame::OnTooltip, 197
CMainFrame::PreCreateWindow, 143
CMfcDlg dialog class, 236-238
CMfcDlg: :OnlnitDialog, 244
CMultiDocTemplate, 129
CoCreateFreeThreadedMarshaler, 454-455
CoCreatelnstance, 348, 438-439, 440
Code Generation category, Project Settings dialog,

593-599
Blend setting, 594
Calling Convention box, 594-596
Processor box, 594
run-time library, setting, 596-597
structure alignment, 597-599

CodeView, 568-569
CoGetlnterfaceAndReleaseStream, 455
COINIT_APARTMENT_THREADED, 440
ColnitializeEx, 438, 440

COINIT_MUL TITHREADED, 440

COleControl, 375, 411

COleControl: :FireEvent, 490

COleControl::GetAmbientProperty, 356

COleControl::OnDraw, 392-393

colors. See also graphics editor
ActiveX controls for, 341

font styles/colors, 103

in modeless dialog, 223-233

Options command settings, 616

reducing space requirements, 189

ShockWave colors, 550-553, 561-563

Colors toolbar, 6

COLOR_ WINDOW, 152

ColumnarReplace macro, 638

columnar search and replace, macro for, 636-643

columnar text block, marking, 638
COMDAT records, 587-588

COM_INTERF ACE macros, 433

list of, 434-435

COMMAND_HANDLER, 497

command-line arguments, 627-628

Struct utility receiving, 630

COMMAND_RANGE_HANDLER, 497

commands. See also specific commands
accessing, 96

deleting new command, 621

enabling commands, 96-98

grep command, 85

menus, adding to, 617

new commands, adding, 620-621
toolbar buttons for, 98-99

unbound commands, 95-99

Commands, 645

common dialogs, 201

Common Object File Format (COFF), 587-588

communications control file, 335

companion CD, xxii-xxiv
comparison operators, 669-670

Compatibility tab, Options dialog, 69

compiler optimizations, 483, 572-574, 600

aliasing, 586-587

Assume No Aliasing option, 586-587, 603

compiler optimizations, continued
Blend setting, 594

calling conventions, 594-596

Code Generation category, Project Settings dia-
log, 593-599

constant propagation, 576-577

copy propagation, 573, 576-577

Customize category, Project Settings dialog,
599-600

dead store/dead code elimination, 577

failure of optimized program, 603-605

Favor Fast Code optimization, 592-593

Favor Small Code optimization, 592-593

floating-point operations, 601-602

frame pointer omission, 582

Full Optimization check box, 601

function-level linking, 587-588, 600

General category, Project Settings dialog,
590-593

inline expansion, 579-580

instruction scheduling, 5 79

Maximize Speed setting, 590-593

Minimize Size setting, 590-593

Optimizations category, Project Settings dialog,
600-602

packing the structure, 597-599
processor registers, 574-576

Project Settings dialog, choosing goal in,
588-590

replacing functions with inline code, 602

run-time library and, 596-597

source code problems from, 605

stack checking, disabling, 582-585, 604

stack overlay optimization, 585-586

strength reduction, 579-580

string pooling, 581
structure alignment, 597-599

subexpression elimination, 573, 577-578

switches, 588-602

techniques, 574-588
Complete Word command, 91

Component Builder's Kit, 301

Component Gallery. See The Gallery

Index

703

Microsoft Visual C++ 6.0 Programmer's Guide

704

Component Object Model (COM), 348-349. See
also ATL, ActiveX controls with

comparing component models, 510-511
OLE DB with, 40

Component Registrar, 449
Components And Controls Gallery dialog,

294-295
Composite Control, 449
concatenation operator, 670
conditional branching, 671-672
conditional breakpoints, 531
constant propagation, 576-577
Const keyword, 779
containers. See ActiveX controls
containment technique, 454
Contents command, 20
context menus, 8
ContinueDebugEvent, 521
controls. See also ActiveX controls; ClassWizard;

dialog editor; dialogs
in color dialog, 225
Controls toolbar, 207-208
defined,201
definition statements, 204
dialog editor, 216-218
double-clicking, 215
fonts, 203
mnemonic keys for labels, 215-216
Properties dialog for, 214-216
size adjustments, 214
slider controls, 216
text entry controls, 216

Controls toolbar, 207-208
ControlWizard. See MFG, ActiveX controls with
conversion functions, 681
conversion macros, 494-495
copy propagation, 573, 576-577
Cos, 683
cosh function, 592
Cpage1 ::OnlnitDialog, 261
CPage1 ::OnSelChange, 261
CPP implementation file, 286
CPropertyPage, 260-261, 375

Gallery custom component with, 300

Member Variables tab class, 270
CPropertySheet, 246
Create, 302, 303
Createable By Type ID radio button, 2 79
CreateDialog, 222
CreateDialoglndirect, 222
CreatelnstanceLic, 388
CreateMultiProfileTransform, 91
CreateMutext, 91
CreateObject, 451
Create Shortcut command, 313
CreateStruct, 555-556
CreatMul, 91
CRecordSet, 265
CRecordView

Gallery custom component with, 300
Member Variables tab class, 270
non-MFC class, adding, 280

C run-time function, 582-583
C run-time library, 437
CSession, 41
CSingleDocTemplate, 129, 130
CSng,683
C++ Source File, 64
CSplitterWnd class, 71
CS register, 519, 520
CStatusBar, 199
CStr, 683
CString, 91
CTimer in Pulse ActiveX control example, 469-472
CToolBar::Create, 154-155
CToolBar::LoadToolBar, 154
CToolbar::SetButtonlnfo, 197
CToolBar::SetButtonText, 197
CToolBar::SetSizes, 197
CTree View, 5 3
CurrentBlock, 410

Current Directory, 647
cursors

IDC_CURSOR, 145
mouse cursors, 164-167

Curve tool, 150
Customize category, Project Settings dialog,

599-600

Customize dialog, 613-614, 617-621
commands, adding, 617
Commands tab, 619
for macro files, 618
Reset All Menus button, 620
Struct program, setting up, 630-633
toolbars, 617

customizing, 621-625
turning off/on, 6-7

Tools menu command, 618
unbound keyboard commands, 618

CView, 90
CWinApp::Loadlcon, 162-163
CWnd::CreateControl, 451

D
Data Access Objects (DAO), 39, 41
data breakpoint. See debugger
Data View pane, Workspace window, 13-14
Date, 683
DateAdd, 684
DateDiff, 684
DatePart, 685
DateSerial, 685
Date tab, 246
Date-Time Picker control, 246
DateValue, 685
date VBScript functions, 681
Day,686
DDL_ALL, 246
DDL_DIRECTORY, 246
DDL_DRIVES, 246
DDL_HIDDEN, 246
DDX_Control, 273
DDX_Radio, 273-274
dead store/dead code elimination, 577
DebugActiveProcess, 533-534
debugger, 8,515-516,567-568

Advanced Breakpoint dialog, 527
Apply Code Changes button, 542-543
array pointer, 529
Attach To Process command, 533-534
Break Execution button, 540-541
breakpoints, 518

debugger, continued
debug registers and, 522-523
dynamic link libraries (DLLs) source code,

566-567
programming, 544-545
pString, 529-530
returning controls, 519-523
setting or clearing, 525

Breakpoints dialog, 525-532
conditional breakpoints, 530-531
data breakpoints set with, 528-530
location breakpoint, setting, 526-528
message breakpoints, 531-532
running debugger, 532-534

building debug version, 523-524
Call Stack window, 535
conditional breakpoints, 530-531
data breakpoint, 518

drag on execution speed, 530
setting in Breakpoints dialog, 528-530

debug registers, 522-523
Disassembly window, 535
dynamic link libraries (DLLs), 565-567
Edit and Continue feature, 542-544
exceptions,563-565
Exceptions dialog, 563-564
incorporating corrections, 541-544
interface, 524-545
location breakpoint, 519

section of code, setting near, 538
setting in Breakpoints dialog, 526-528

loop optimizations, 578
for macros, 679-680
Memory window, 535
message breakpoints, 531-532
new instruction, 542
OLE applications, 567-568
Options dialog tab, 615
processor flags, 536-537
QuickWatch window, 534, 536
Registers window, 535
release vs., 516-517
remote debugging, 568-570
Restart button, 540-541

Index

705

Microsoft Visual C++ 6.0 Programmer's Guide

706

debugger, continued
running debugger, 532-534
Run To Cursor command, 533-534
script debugging, 680
Set Next Statement command, 541-542, 543
ShockWave program, 563
Show Next Statement tool, 541
single-step breakpoint, 519
Start Debug command, 533
Step Into command, 538-540
Step Out command, 538-540
Step Over command, 538-540
stopping, 540-541
threads,debugging,565
toolbar, 6, 534-535, 538
two computers, debugging with, 568-570
using, 517-518
Variables window, 535
for VBScript, 679-680
Watch window, 535
windows, 534-538

Debugger, 64 7
Debugger Remote Connection, 570
Debug tab, 14, 431
defaultbind attribute, 461
defaultcollelem attribute, 461
default keyword, 6 72
#define statement, 113, 124

Object Wizard adding, 456
removing, 114-115
in TowerATL project, 495
for TowerATL project About box, 505

deleting
ClassWizard function, 284
commands, 621
DoDataExchange, 290-291
toolbar buttons, 624-625

delimiters, matching, 78-80
Developer Studio, 3. See also text editor

add-ins, 643-650
debugger availability, 524
macros, 642-643
outside environment, working in, 29

Device combo box, 164

device context, 108
DevStudio Add-in Wizard, 644-645
dialog-based applications, 242-262

AppWizard for, 36, 37
MfcTree example, 243-245
property sheets, 246
from scratch, 245-262

DialogBoxlndirect, 201
dialog editor, 204-218

ActiveX controls, testing, 342-347
alignment tool, 212
arranging controls, 208-211
centering tool, 213
colors in modeless dialog, 223-233
Controls toolbar, 207-208
copying controls, 210-211
deselecting controls, 209-210
Dialog toolbar, 211-214
for existing dialog, 206-207
Guide Settings dialog, 209
launching, 205
Properties dialog for controls, 214-216
property sheets with, 246
selecting controls, 208-211
several controls, selecting, 209
simple modeless dialog example, 221-233
size-adjustment tools, 214
sizing controls, 210
spacing tool, 213-214
tabbing order, setting, 216-218
for TowerATL project property page, 493

dialogs. See also About dialogs; dialog-based
applications; dialog editor

ActiveX controls, adding, 342-34 7
appearance of, 203-204
AppWizard, adding dialog to, 234-242
base units, 203
ClassWizard dialog, 267-281
colors in modeless dialog, 223-233
defined,201
fonts, 203
identifier, 206
modal/modeless, 204
Object Wizard object, 449

dialogs, continued
script, 202-204
simple modeless dialog example, 221-233

Dim statement, 667-668
arrays using, 668-669

Direction flag, 537
DirListl program, 245-262

property sheets, 245-246
source files for, 248-259

DirList2 program, 302-311
CheckDateSize for, 317
ICO files, bundling, 316
source files, 303-310, 318-320
Use MFC In A Shared DLL option, 315-316

DISCARDABLE, 120-121, 202-203
DiskPiel, 116-119

accelerator keys, creating, 132-135
code, adding, 167-186
configuring project, 118-119
document string, 143
duplicate definitions, preventing, 126
File menu, 125
icons, creating, 163-164
menu resource, creating, 123-131
saving resources, 130
source files, 168-183
specifications, 115-116
string resources for, 141-144
toolbar, creating, 156-159

DiskPie2, 190-200
prompt strings, 197-200
source files, 191-197
status bar prompts, 198-199
tooltips, 197-200

disk usage, 184-185
DiskView.cpp file, 185
DISPID_CLIC, 352
displaybind attribute, 461
DisplayName, 357
division, 670
DlgDirList, 246, 261, 314
DlgProc, 242-243
DllCan UnloadNow, 446

DllData.c file, 445
DLL file extension, 447
DllGetClassObject, 446
DllRegisterServer, 446, 450-451, 477
DllUnregisterServer, 446
<lockable windows, 8

disabling docking feature, 10
gripper bars, 10-11
moving, 9-10

DoClick, 354
DocumentOpen, 650
documents. See also text editor

Full Screen view, 69-70
most recently used (MRU) files list, 67-68
Open dialog, 68-69
opening, 66-69
viewing, 69-72

Documents, 647
DocumentSave, 650
document string, 139-140

DiskPiel document string, 143
DoDataExchange, 275-277

deleting, 2 90
Do ... Loop Until, 672
Do ... Loop While, 672
DoPropExchange,409-410
double, 602
Do Until...Loop, 672
Do While ... Loop, 672
dragging <lockable windows, 9
drawing speed optimization, 382
DSAddln, 645
DS_MODALFRAME, 203
dual interfaces, 452-453
dwFree, 184-185
DWORD

size, 113
variable, 432

dwTotal, 184-185
dynamic link libraries (DLLs). See also ActiveX

controls; debugger
add-in DLL, 645
with App Wizard, 57-60

Index

707

Microsoft Visual C++ 6.0 Programmer's Guide

708

dynamic link libraries (DLLs), continued
debugging, 565-567
MFG links, 58-59
structure packing, 598-599

dynaset recordset, 42

E
EBP register, 582
ECX register, 609
Edit Attributes dialog, 459
edit control tool, 493
Edit menu commands, 65
Editor combo box, 186-187
editors. See dialog editor; graphics editor; text

editor
Edit toolbar, 6
EDX register, 609-610
EIP register, 519-521, 581
#elif, 79
#else, 79
Enabled, 355
Enable interrupt flag, 537
EnableModeless, 649
END, 121
END_COM_MAP macro, 436
#endif, 79
End Select statement, 672
E_NOINTERF ACE, 431
E_NOTIMPL, 431
EnumConnectionPoints, 475-476
environment windows, 8-14
Epsilon programmer's editors, 102-103
equality, 670
equivalence, 670
Erase tool, 149
Error, 399, 489
escape sequences, 142
ES_Number, 276
ESP stack pointer register, 596
events

ActiveX controls, 350-353
of Application object, 650
Pulse ActiveX control example, adding, 464-469
Tower ActiveX example, adding, 398-400

events, continued
TowerATL project, adding, 489-490

EVENT_STOCK_CLICK, 351
EXCEPTION prefix, 565
_except statement, 563
exclusive OR, 670
ExecuteCommand, 649
ExecuteConfiguration, 649
existing project, opening, 118
Exp,686
exponentiation,670
extern "C," 595

F
_fastcall calling convention, 595-596
Favor Fast Code optimization, 592-593
Favor Small Code optimization, 592-593
File menu

for DiskPie1, 125
Open command, 67

filenames, AppWizard, 56-57
Files Of Type combo box, 69
FileView pane, Workspace window, 13, 14
Fill tool, 149
Filter, 686
FinalConstruct, 473
FinalRelease, 473
Find command, 65

as modeless dialog, 204
text editor search, 83-84

FindConnectionPoint, 475-476
Find In Files command, 14, 86
FireClick, 490
FireEvent, 490
Fire Winner, 490
Fix, 686
flicker-free activation, 381
float, 602
floating-point operations, 601-602
floating toolbars, 9
flybys,137-139
fmod function, 592
FONT, 203
Fon~355,357,396,487

fonts
Animation button caption, 346
dialog fonts, 203
Options command settings, 616
styles/colors, 103

ForceRemove statement, 478-479
ForeColor, 346, 355, 357, 396, 487
foreign languages. See overseas markets
FormatCurrency, 686
FormatDateTime, 686
FormatNumber, 686
FormatPercent, 687
Format Selection command, 94
formatting VBScript functions, 681
For ... Next, 672, 673
frame pointer omission, 582
freehand drawing tool, 150
Free Threaded Marshaler, 454-455
free threading, 441
FromPanel, 410, 489
Full Control, 449, 486
FulJName, 648
Full Screen toolbar, 69
Full Screen view, 69-70
function-level linking, 587-588
Function procedure, 647-675, 673

G
The Gallery, 246

Add To Gallery command, 300
Build toolbar, 297
CDirListCtrl

class, creating, 311-312
component, creating, 312-314
DirList 2 program and, 315
open project, adding to, 314

clock, adding, 298-299
Components And Controls Gallery dialog,

294-295
Create, 302, 303
Create Shortcut command, 313
custom components, creating, 300-326
defined,293-295

The Gallery, continued
DirCtrl folder, 312-313
Directory List component, 314-318
DirList2 program, 302-311, 314-326
documenting custom components, 317
JistDummy, 310
Microsoft Component Builder's Kit, 301
OGX file extension, 300
OnProperties, 296-297
Property Sheet component, 295-298
RC files, 311
SetCallBack, 310
shortcut icons to DirCtrl folder, 313
ShowList, 302
splash screen, adding, 298-299
Status Bar component, 298-299
temporary projects, creating, 311-313
Use System Default radio button, 298-299

General category, Project Settings dialog, 590-593
GetClasslnfo, 474
GetClassObject, 43 7
GetCurrentBlock, 410
GetCurrentDirectory, 2 61
GetDialogBaseUnits, 203
GetDiskFreeSpace, 184-185
GetDlgCtrlID, 232
GetDlgltemText, 494
GetExtent, 431
GetLastError, 5 5 8

GetLicenseKey, 386-390
GetOpenFileName, 201
GetPanel, 412-413
GetSystemTime, 550
GetText, 396
GlobalMemoryStatus, 184-185
GlobalTemporary macro, 101
Go To command, 80
graphics editor, 144-150. See also bitmaps; icons

launching, 145-146
left/right mouse buttons, 148-149
mouse cursor, creating, 164-167
toolbars, creating, 153-156
tools, using, 147
transparency selector box, 147-148

Index

709

Microsoft Visual C++ 6.0 Programmer's Guide

710

graphics editor, continued
unbound commands with, 186-187
work area of, 146-147

Graphics toolbar, 6, 147
buttons on, 149-150

greater than, 670
greater than/equal to, 670
grep feature, 85
Grid control, 334
gripper bars, 10-11
Guide Settings dialog, 209
GUID identifiers, 426

H
handler function, 199
Hardcore Visual Basic (McKinney), 17
hCrossHairs, 404, 411
headers and footers, 75-76
Height, 648
help. See also MSDN Library

AppWizard, 47-50
online help, 15-16

helpcontext attribute, 461
helpstring attribute, 460
Hex, 687
hidden attribute, 461
Hide command, 12
hiding, 11-12
hinst, 222
history of Visual C++, xv-xviii
HKEY_CLASSES_ROOT, 446
Hour, 687
HPP file extension, 73
hrd.idFrom, 198
HTML (Hypertext Markup Language), 337
HTML Page, 64
Hungarian notation, 666
h Wnd, 222, 355
hyperlinks in MSDN Library, 18-20

I
IAdviseSink, 350, 474
IClassFactory, 429, 437

IClassFactory2, 384, 429, 437
IConnectionPoint, 468
IConnectionPointContainer, 429, 475
Icon Properties dialog, 164
icons, 145, 159-163

AppWizard, 161-162
for DirList2 program, 316
for DiskPie1, 163-164
The Gallery shortcut icons, 313-314
MFC program, 162-163
reducing space requirements, 189

ID_ prefix, 122-123
ID_APP _ABOUT, 125, 287
ID_APP _EXIT, 127
IDataObject, 429, 474
id attribute, 460
id keyword, 467
ID_EDIT_COPY, 125
ID_FILE_EXIT, 125
ID_FILE_NEW, 156
ID_FILE_OPEN, 125
ID_FILE_PRINT, 156
ID_ VIEW_STATUS_BAR, 127
ID_VIEW_TOOLBAR, 127
IDB_BITMAP, 145
IDC_CAPTION, 394
IDC_CTRL, 352
IDC_CURSOR, 145, 166
IDC_DIRP ATH, 246
IDC_EDIT_CAPTION, 402
IDC_LIST, 246
IDC_NODROP, 165
IDC_POINTER, 165
IDC_POINTER_COPY, 165
IDC_STATIC, 271
IDC_THREAD_ID, 505-506
IDD_ABOUTBOX, 112, 202, 206, 344
IDD_DIALOG, 242-243
IDD_DIALOGBAR, 205
IDD_MFC_DIALOG, 235, 288, 289
IDD_OLE_PROPPAGE_LARGE, 418
identifiers

for accelerator table, 134
adding or deleting symbols, 113

identifiers, continued
dialog identifier, 206
menu command identifiers, 122-123
names for, 129
prefixes, 112
prom pt strings, 13 8
Property Sheet command, 297

IDI_APPLICA TION, 160
IDI_ICON, 145
IDI_WINLOGO, 160
!Dispatch, 350, 429, 452-453
IDispatch::Invoke, 353, 490
IDL file, 456
IDM_DISK, 133, 135, 159
IDM_FILE_EXIT, 126
IDM_MEMORY, 133, 198
IDM_OPTIONS_MFC, 238
IDM_ prefix, 126
IDM_PROPSHEET, 297
IDR_ACCELERATOR1, 134
IDR_DEOMTYPE, 112
IDR_MAINFRAME, 112, 120, 130, 154, 157
IDR_TOOLBAR, 145
IE filename prefix, 335
IErrorinfo, 350
#if, 79
#ifdef, 79
IFontDisp, 489
if statement, 79, 539-540
If ... Then ... Else statements, 671-672
Image3dRectangleTool command, 187
Image commands, 186
immediatebind attribute, 461
IM_MEMORY, 159
Implement Connection Point command, 468
IIllplsuffix,430-431
importlib directive, 465, 467
IMUL instruction, 608-609
#include statement, 73

ClassWizard, scanning in, 284
Object Wizard adding, 456
in RC file, 110
removing, 126

Incremental Search command, 84, 94

Index program, xxiii-xxiv
inequality, 670
Info Viewer help system, 27
inheritance list, ATL, 430
Initlnstance, 269

DirList1 program, 260
inlining, 5 81
InputBox function, 642, 644, 687
Insert Control dialog, 416
Insertitelll, 239
Insert/Remove Breakpoint command, 525
Inside Ole, 2e (Brockschmidt), 17
InStr, 687
InstrRev, 68 7
instruction scheduling, 579
Int, 687
Int 3 instruction, 519, 521
integer division, 670
integrated development environment (IDE), xvi
interface maps

in ATL, 431-436
in MFC, 436

interfaces. See also ActiveX controls; ATL,
ActiveX controls with

debugger interface, 524-545
international markets. See overseas markets
Internet Explorer

controls included in, 335
object, 448
ReBars button, 46
for TowerATL project, 508, 509
Tumble.htm document, 338-339

interrupts, 520
breakpoint interrupt, 519

interthreaded marshaling, 439
Invalidate, 185, 232-233
InvalidateControl, 411
Invisible At Runtime check box, 486-487
Invisible At Run-Time flag, 382
Invoke, 452
IOleCache, 379
IOleClientSite, 350, 379
IOleContainer, 350, 379
IOleControlSite, 350

Index

711

Microsoft Visual C++ 6.0 Programmen Gu1ae

712

IOlelnPlaceActiveObject, 429

IOlelnPlaceFrame, 350

IOlelnPlaceObject, 379, 429, 473

IOlelnPlaceObjectWindowless, 382

IOlelnPlaceSite, 350, 379

IOleObject, 425, 429

IOleObject::GetMiscStatus, 379, 479

IPersistPropertyBag, 3 75
IPersistStorage, 429

IPersistStream, 375

IPropertyPage,490
IProvideClasslnfo, 429

IProvideClasslnfo2, 474

IQuickActivate, 486

IQuickActivatelmpl template, 430-431

Irregular Selection tool, 149

IsArray, 687

IsDate, 687

IsEmpty, 687

IsNull, 688

IsNumeric, 688

ISpecifyPropertyPage,486
!Stream, 375

!Unknown, 426, 428

Wiew0bject2, 429

J
jam loops, 573

join, 688

Just-in-time debugging, 516-517, 561-563

K
Keys command, 96

key state control, 334

Knowledge Base articles, 17

L
Label control, 334

Largo Icons command, 160

Layout menu, 217

LBound, 688

LCase, 688

LEA (load effective address) instruction, 608-609

Left,648,688

Len,688

less than, 670

less than/equal to, 670

library block, 464-465

LicenseCtl.cpp file, 387

LIC files, 386
line-drawing tool, 150

listDummy, 310

List Members feature, 89-91

Lite Control, 449

LoadBitman, 151

LoadCursor, 166

Load/con, 161

Loadlmage, 260

LoadLibrary, 348

LoadString, 136

local attribute, 461

LocalID, 357

location breakpoint. See debugger
Location tab, 246, 247

Log,688

logical AND, 670

logical operators, 669-670

logical OR, 6 70

logos for About dialog, 218, 219

long property type, 458

loop constructions, 672-673

loop hoisting, 573

loop optimizations, 578

lpszText, 198

LR_LOADTRANSPARENT, 153

LTrim, 688

Lucas, Edouard, 393

M
McKinney, Bruce, 17

Macro File, 64

macros, 99-101, 634-643. See also ATL, ActiveX
controls with; VBScript

argument macros, 628-630

arrays, 668-669

ASSERT macro, 544

macros, continued
CHECK macro, 544-545
columnar search and replace, macro for,

636-643
conditional branching, 671-672
conversion macros, 494-495
creating, 100-101
Customize command for files, 618
debugging,679-680
EVENT_STOCK_CLICK, 351
executing, 99-100
keystroke combination, assigning, 639-640
library functions, VBScript, 680-696
loop constructions, 672-673
MESSAGE_HANDLER macro, 497
objects, 676-679
ON_EVENT macro, 352
procedures, 673-676
RANGE macros, 497
recording,635-636
release version, 603-604
storing macros, 101
text editor for, 637
TextSelection properties and methods, 676-679
untabify macro, 94, 634-636
VERIFY macro, 604

Magnify tool, 150
MainFrml.cpp module, 183
main window, 5
Make Selection Lowercase command, 95
Make Selection Uppercase command, 95
margins, 102
marking columnar text block, 638
marquee control, 334
marshaling, 349

interthreaded marshaling, 439
masked edit file, 335
Maximize Speed setting, 590-593
md CodeView debugger, 528
Media Control Interface (MCI) devices, 334
member function, 468-469
Member Variables tab, ClassWizard dialog, 268,

270-277

memory, 613
determining usage, 184-185

Memory command, 132
menu commands, 121

mnemonic keys, 12 2
removing, 188

Menu control, 334
MENUITEM, 121
Menu Item Properties dialog, 125, 127-128, 128

Caption control, 125
identifier name, specifying, 126
Pop-up check box, 128

menus, 7-8
accelerator keys, 121-122
context menus, 8
DiskPiel, creating for, 123-131
naming, 129
RC file, menu script in, 119-123
separator bar on, 128

MessageBox, 201
message boxes, 201
message breakpoints, 531-532
MESSAGE_HANDLER macro, 497
message handlers. See also ClassWizard

macro, 497
for ShockWave program, 547-548
in TowerATL project, 488

Message Maps tab, ClassWizard dialog, 268-270
MESSAGE_RANGE_HANDLER, 497
methods

ActiveX controls methods, 354
Pulse ActiveX control example, adding, 462-463
TextSelection methods, 677-679
in Tower ActiveX control example, 397-398

MFC. See also App Wizard; ClassWizard; MFC,
ActiveX controls with

AFX_MANAGE_STATE, 59-60
ClassWizard, classes supported by, 659-664
dynamic link libraries (DLLs) links, 58-59
icons with, 162-163
identifier prefixes, 112
interface map in, 436
List Members feature, 89-91

Index

713

Microsoft Visual C++ 6.0 Programmer·s Guide

714

MFC, continued
MFcnn.dll library file, 54-55
mouse cursor, creating, 166
toolbars, creating, 154-155

MFC, ActiveX controls with
Activates When Visible option, 377-378
asynchronous loading of properties, 382
Available In Insert Object Dialog, 378
BaseCtl framework, 374-375
About box option, 378
comparing component models, 510-511
ControlWizard, 376-383

Advanced button features, 380-383
licensing scheme, 384-390
options, explanation of, 377-379

design-time license verification, 388-389
disadvantages, 374
do-nothing ActiveX control example, 390-393
drawing speed optimization, 382
flicker-free activation, 381
frame control, setting up, 378
Insert Object dialog, 378, 379
Invisible At Run-Time option, 378
licensing, 383-390

design-time license verification, 388-389
run-time license verification, 390
support for, 386-388

mouse pointer notifications, 381-382
property pages, adding, 418-421
Tower ActiveX control example, 393-417

building/testing, 415-417
events,adding,398-400
message handlers, adding, 400-401
methods, adding, 397-398
properties, adding, 394-397
property sheet, creating, 401-402
source code for, 403-414

unclipped device context, 381
Visual C++ tools, 374-376
windowless activation option, 381, 382
Window Subclassing option, 379, 380

MFcnn.dll library file, 54-55
Mfcnnu.dll file, 55
Mfcnnxxx.dll file, 55

MfcTree program, 234-242
dialog-based version, 243-245

Microsoft Component Builder's Kit, 301
Microsoft Foundation Class library, 31
Microsoft Internet Explorer. See Internet Explorer
Microsoft Plus!, 160
Microsoft Systems Journal (Platt), 17, 443
Microsoft Transaction Server, 449
Microsoft Web site, 666
Mid, 688
MinDependency configuration, 481-482
Minimal project, 428
Minimize Size setting, 590-593
minimizing resource data, 188-200
MinSize configuration, 481-482
Minute, 688
MiscStatus value, 479
MM_ISOTROPIC, 558
mnemonic keys, 122

for control labels, 215-216
_Module, 447
modulo arithmetic, 670
Month, 689
MonthName, 689
mouse

ActiveX control, mouse messages to, 381-382
cursors, 164-167

moving
dockable windows, 9-10
toolbars, 6

MSDN Library, 16, 17-29
CHM files, 17-18
Contents tab, 20-21
Define Subset command, 21
Favorites tab, 27-28
Index tab, 21-22
keyword references, 18
Search tab, 22-27

operators in search, 22, 25-27
refining searches, 23-25
rules for searching, 24-25
strategies for search, 2 7
wildcards, 22, 25-2 7

TEMP setting, 18

MSDN Library, continued
Topics Found dialog, 22
World Wide Web, accessing, 28-29

MsgBox, 689
msg parameter, 532
m_spFont, 498
Msstkprp.dll library, 490
Msvcrt.dll file, 55
MUL instruction, 608-609
multimedia control, 334
multiple-document interface (MDI), 36, 37
multiplication, 670
multithreaded apartment model (MTA), 440

N
Name, 648
names

AppWizard project name, 35-36
menu name, xvi-xvii
of project, 35
of tool bars, 5

nBlockNdx, 404
nCurrentBlock, 487-488
NEAR operator, 22, 25-27
negation, 670
New Class dialog, 419, 659-660
New command, 64, 118
New Device Image option, 163
NewDocument, 650
New Icon Image dialog, 163-164
new instruction, 542
New Windows Message dialog, 494
NewWorkspace, 650
ninterval property, 457-462
NMake utility, 375
NMHDR, 197
nonbrowsable attribute, 461
Normal button, 46
Notepad tool, 628
NOTIFY _HANDLER, 497
NOTIFY _RANGE_HANDLER, 497
NOT operator, 25-27
Now, 690
nPanel, 404, 408-409

nRate, 463
NULL value, 433, 558

0
OBDC (open database connectivity), 39-40
object maps, 436-437
objects, 676-679
Object Wizard, ATL. See ATL, ActiveX controls

with
OCCache folder, 335
Oct, 690
OCX controls, 332
OGX file extension, 300
OLE. See also ActiveX controls; ClassWizard

App Wizard support, 42-44
debugging applications, 567-568

OLE/ ActiveX control standard, 383-384
OleCreatePropertyFrame, 492
OLE database (OLE DB)

advantages of, 41
AppWizard for, 39, 40-41

OLEIVERB_PROPERTIES, 341-342
OLEMISC_ACTIV ATEWHENVISIBLE, 3 79
OLEMISC flags, 479-481

for TowerATL project, 486-48 7
OLE RPC Debugging check box, 568
OnAppAbout, 269
OnChangeCaption,494
ON_COMMAND_RANGE, 135, 184, 497
OnConnection, 645-646
OnCreateClient, 51
OnDisconnection, 645-646
OnDisk, 184
OnDraw, 152, 185, 382, 392-393

defined,497
for ShockWave, 553-554, 557-560

OnEraseBkGnd, 233
ON_EVENT macro, 352
OninitDialog, 232, 238-239, 291

DirListl program, 260
for Tower ATL project About box, 506

OnLButtonDown, 400, 412-413, 496
defined,497

Index

715

Microsoft Visual C++ 6.0 Programmer's Guide

716

OnLButtonUp, 413, 496
defined,497

OnMouseMove, 496
defined,497

ON_NOTIFY _RANGE, 497
OnProperties, 296-297
OnSelChange, 261
OnSetText, 199
_OnTimer, 462-463
OnTooltip, 198
ON_ WM_INITDIALOG, 290
Open As Read-Only check box, 69
Open button, 67
open database connectivity (ODBC), 39-40
Open dialog, 68-69
opening

documents, 66-69
existing project, 118

Open Workspace command, 118
operators, VBScript, 669-670
optimizations. See compiler optimizations
Optimizations category, Project Settings dialog,

600-602
optimize pragma, 589
Options dialog, 101-102, 613-616

Compatibility tab, 69
debugger settings, 615
directories for files, 615
fonts/colors, 616
tab spacing, 614
text editor settings, 614, 615
workspace options, 616

OR operator, 25-27
out attribute, 458
OutputDebugString, 537
Output window, 8, 11-15

debugger using, 537
hiding, 11-12
tabs in, 14

Overflow flag, 537
overseas markets

MFC library file data, 55
string resources, 136
trimming resource strings and, 188-189

OxCC value, 519

p
packing the structure, 597-599
Parameter Info feature, 91-92
Parent, 648
parentheses, 79
Parity flag, 537
passwords, 386-387
Path, 648
PATH statement, 336
pDir, 246
peephole optimizations, 572-573
Pencil tool, 150
pEngries, 432
Petzold Charles, 204
pFunc, 432-433
picture clip file, 335
Picture tool, 505
pie charts, 185
pixelation effects, 161
Platt, David, 443
plus character(+), 88
point argument, 412
POPUP, 121
pop-up menus, 128

control, 334
pop-up window control, 334
pow function, 592
ppvObject, 431-432, 433
PreCreateWindow, 400, 411, 498

ShockWave implementation, 551, 555-557
PRELOAD, 120
preloader, 334
Preserve keyword, 669
PrevDlgCtrl, 91
print codes, 75-76
printing

AppWizard support, 46-47
text editor documents, 74-76

PrintToOutputWindow, 649
processor registers, 574-576
ProgID, 451
ProgIDFromCLSID, 451
Programming Windows 95 (Petzold), 204

Programming Windows 95 with MFG (Prosise),
46-47, 148

projectDoc.ico, 162
project.ico file, 162
Projects, 648
Project Settings dialog

Code Generation category, 593-599
compiler optimization goal in, 588-590
Customize category, 599-600
debug build, 523-524
General category, 590-593
Optimizations category, 600-602
switches in, 588

Projects tab, New dialog box, 35
Prompt For Arguments check box, 626, 627
prompt strings, 137-139

in DiskPie2, 197-200
properties. See also ActiveX controls

asynchronous loading of, 382
TextSelection properties, 677-679
in Tower ActiveX control example, 394-397

Properties dialog, 449-450
property pages

to ActiveX control project, 418-421
ATL, treatment with, 486
object, 449

PropertySheet, 246
property sheets, 246

for ActiveX controls, 346
in The Gallery, 295-298
in Tower ActiveX control example, 401-402
in TowerATL project, 490-493

Prosise, Jeff, 46-47, 148
Provider object, 449
proxy functions, 467-468, 490
pString, 529-530
Pulse ActiveX control example. See ATL, ActiveX

controls with
put_Caption method, 494
Put Function check box, 458-459
pVal, 458

QueryJnterface,425,431-436,453
QuickC, xvi-xvii

quick-sort algorithm, 5 72
Quit, 649

R
RAM disk, 167-168
RANGE macros, 497
RC files, 109-111

c2 requiring, 266
dialog script, 202-204
menu script, 119-123
stub RC files, 311

read-ahead buffers, 141
ReadMe.txt file, 375
Read Only check box, 505
Ready message, 190
ReadyState, 355
RebuildAll, 649
Recent Files command, 67
Record Quick Macro command, 101
Rectangle Selection tool, 149, 158
ReDim statement, 668-669
Redo command, 65
Refresh, 354
RegisterClassEx, 161
register keyword, 5 7 4-5 7 5
registers, 519, 520. See also specific registers

compiler optimizations and, 5 7 4-5 76
Registry, 3 3 6

OLEMISC flags in, 479-481
regular expressions

list of characters, 87
searching with, 87-88

Release, 425
Release MinDependency configuration, 507
release version, 516-517, 603-605

ASSERT macro, 603-604
configurations, 481

Reload Last Workspace At Startup check box, 118
remote procedure calls (RPCs), 349, 567
Replace, 690
Replace dialog, 85, 637
ReplaceText, 642
replacing text, 84-85, 642
represent_as attribute, 460
requestedit attribute, 462

Index

717

Microsoft Visual C++ 6.0 Programmer's Guide

718

Reset method, 406, 411
in TowerATL project, 488

Resource.h file, 112
identifiers, definitions, 135

resources. See also The Gallery
example of, 115
identifier prefixes, 112-113
Resource.h file, 112
saving, 130
string resources, 135, 136-137
system resources, 108-109
trimming resource data, 188-200

resource script files, 109-111
resource strings, 188
Resource Symbols browser, 113-114
ResourceView pane, 13, 110, 111, 206
restricted attribute, 462
RET (return) instruction, 596
retval attribute, 458
rgbBackGnd, 233
Right, 690
right-justifying menu text, 121
Riid, 432
Rnd, 690
Round, 690
RT_GROUP _ICON, 162-163
RTrim, 690
run-time library, 596-597

s
sample add-ins, 644
Save As command, 69, 73
saving

accelerator table, 134
resources, 130
text editor document, 72-74

ScaleUnits, 357
script

debugging, 680
dialog script, 202-204

ScriptEngine, 690
ScriptEngineBuildVersion, 690
ScriptEngineMajorVersion, 690

search engines, 22
searching. See also MSDN Library; text editor

macro for search and replace, 636-643
Second, 691
Select Case command, 671-672
Select Color tool, 149
separator bar on menu, 128
SEP ARA TOR statement, 154
server EXE application, 348-349
Set Active Configuration command, 523
SetAddlnlnfo, 649
SetCaretPos, 76
SetDirty member function, 494
SetExtent, 431
Set Hotspot button, 165-166
SetlnitialSize, 406
Set keyword, 458
SetMapMode, 90
SetSysColors, 153
SetText, 396
Sgn,691
Shock Wave

building/running program, 554
colors, 550-553, 561-563
debugging, 563
developing,545-554
editing files, 548-554
Just-in-time debugging, 561-563
OnDraw, 553-554, 557-560
PreCreateWindow, 551, 555-557
revising/rebuilding, 560

short property type, 458, 487-488
short wrappers, 447
ShowCaret, 76
ShowGrabHandles, 357
ShowHatching, 357
showing/hiding

Output window, 11-12
Workspace window, 11-12

ShowList, 302
Show Read-Only Symbols check box, 114
Sign flag, 537
Simple Object, 448
Sin, 691

single-document interface (SDI), 36-37
single-threaded apartment model (STA), 440
single threading model, 438-439
sinh function, 592
Sleep timer, 511
slider controls, 216
Small Icons command, 160
SM_CXICON, 260
SM_CYICON, 260
snapshotrecordset,42
snap-to-grid feature, 208-209
source attribute, 462, 467
source code. See also debugger; The Gallery

ClassWizard, automatic generation with, 272-273
optimization, problems from, 605
in Tower ActiveX control example, 403-414
for TowerATL project, 495-503

source files. See App Wizard
Space, 691
spacing controls in dialog, 213-214
spawning program, 517
special characters, 653-658

to string, 142
splash screen, adding, 298-299
Split, 691
Split command, 71
splitter panes, 70-71
SQL (Structured Query Language)

AppWizard using, 39-40
Script File, 64

Sqr, 691
stack checking, disabling, 582-585, 604
stack overlay optimization, 585-586
stack probe, 582-583
Standard Template Library, 427
Standard toolbar, 67
Start Debug command, 533
Statement Completion, 88
static control tool, 493
static keyword, 530
status bar, 128

creating, 139
DiskPie2 status bar prompts, 198-199

status bar, continued
prompt strings, 137-139

_stdcall calling convention, 595, 596
Step keyword, 673
stock ticker, 334
strCaption, 414
StrComp, 692
strcpy function, 592
strength reduction, 5 79-580
strFind, 643
string

concatenation operator(&), 670
pooling, 581
variables, 669
VBScript functions, 681

String, 692
String Properties dialog, 142
string resources, 135, 136-137

for DiskPie1, 141-144
document string, 139-140
escape sequences, 142
modifying, 136-137
special characters to string, 142

STRINGTABLE keyword, 136
strReplace, 643
StrReverse, 692
structure packing, 597-599
Struct utility tool, 630-633
stub libraries, 349
STYLE, 203
subexpression elimination, 573, 577-578
Sub procedure, 673-674
subtraction, 670
Support Connection Points option, 475
switchcase statements, 123
switches, 588-602
switch statement, 671-672
system resources, 108-109
szCaption buffer, 494
szDiskTip, 198
_szLicString, 388, 389-390
szMemTip, 198

Index

719

Microsoft Visual C++ 6.0 Programmer's Guide

720

T
tabbing order for controls, 216-218
Tab Control, 208, 246

Tabify Selection command, 94

table recordset, 42

Tab Order option, 217

tab spacing, Options command, 614

Tan,692

tanh function, 592

templates. See ATL, ActiveX controls with
Test Container utility, 339-342, 428

text
entry controls, 216

VBScript functions, 681

Text, 355

TextAlign, 357

text editor. See also macros; resources
Advanced command, 93-95

advantage of, 109

bookmarks, 80-82

named bookmarks, 80-81

unnamed bookmarks, 81-82

caret
delimiters, matching, 79

indicator, 76

movement of, 77-78

named bookmark, moving to, 81

system caret, 108

command, 65

customizing, 101-103

debugging, 525

delimiters, matching, 78-80

disk files, searching for text in, 85-86

Editor tab, Options dialog, 103

file search, 86

Find dialog, search with, 83-84

folders, searching for text in, 85-86

Format tab, Options dialog, 103

formatting options, 75

Full Screen view, 69-70

launching, 64-65

List Members feature, 89-91

for macros, 637

text editor, continued
named bookmarks, 80-81

navigating in document, 76-82

Options command, 101-102

Options dialog tab, 614, 615

other editors, using, 103-105

Parameter Info feature, 91-92

parentheses, 79

printing documents, 74-76

programming aids, 88-93

property page to ActiveX control project,
419-420

Replace dialog, 85

replacing text, 84-85

saving document, 72-74

searching, 82-88

disk files, text in, 85-86

open document, text in, 83-84

with regular expressions, 87-88

replacing text, 84-85

splitter panes, 70-71

Type Info feature, 92-93
unbound commands for, 95-99

unnamed bookmarks, 81-82

View menu, 70

Window menu, 70

TextEditor, 648

Text File, 64

Text Selection
methods, 677-679

properties, 677

Text tool, 150

threading models, 437-443

threads
debugging, 565

hidden thread problems, 604-605

Threads dialog, 565

throw keyword, 563

Tile Vertically command, 72

Time, 692

time, VBScript functions, 681

Time Control, 358

timeKillEvent, 511

timer, 334

Timer Object, 358, 360-362
TimeSerial, 692
timeSetEvent, 511
Time Value, 693
Toolbar.bmp, 153
Toolbar Editor, 158-159
toolbars, 6-8, 153-156. See also Customize dialog

appearance, changing, 622
commands, creating buttons for, 98-99
customizing, 621-625
Debug toolbar, 6, 534-535, 538
DiskPiel, creating for, 156-159
floating toolbars, 9
new toolbar, creating, 623-624
removing buttons from, 624-625
renaming toolbars, 625
WizardBar, ClassWizard, 281-285

TOOLBAR statement, 154
Tools menu

adding command to, 625-633
argument macros, 628-630
command-line arguments, 627-628
commands, adding/deleting, 618
Struct utility tool, 630-633

tooltips, 137
in DiskPie2, 197-200

TOOLTIPTEXT, 197
Top,648
ToPanel, 413, 489
top-level menu, 124
Tower ActiveX control examples. See ATL,

ActiveX controls with; MFC, ActiveX con­
trols with

Tower of Hanoi, 393
transitive COMDAT elimination, 587-588
transmit_as attribute, 460
transparency, 152
transparency selector box, 147-148
trigonometric functions, 681
Trim, 693
trimming resource data, 188-200
_try statement, 563
TTN_NEEDTEXT, 197
Tumble.htm document, 338-339

Turbo C, xvi
Turbo Pascal, xvi
TVI_SORT, 239
Type Info feature, 92-93
TypeName, 693

u
UBound, 694
UCase, 694
UIDead,357
unary negation, 6 70
unbound commands, 618

discussion of, 186-187
list of, 186
for text editor, 95-99

Undo command, 65
Unicode projects, 55

release configurations, 481
strings, 188

Uniform Data Transfer, 474
UnMapAndLoad, 91
Unmap ViewOfF'ile, 91
untabify macro, 94, 634-636
Untabify Selection command, 94
UserMode, 357
USES_CONVERSION macro, 494-495
_uuidof, 425
uuid statement, 483

v
vararg attribute, 462
variables, VBScript, 666-669, 681
Variant, 453, 462, 666-667, 674
VARIANT value, 368
VarType,694
VBScript, 634. See also macros

compiler, 636
conditional branching, 671-672
debugging macro, 679-680
library functions, 680-696
loop constructions, 672-673
Microsoft Web site information, 666
objects, 676-679

Index

721

Microsoft Visual C++ 6.0 Programmer's Guide

722

VBScript, continued
operators, 669-670
procedures,673-676
program flow, controlling, 671-676
variables, 666-669, 681

VBX controls, 331-332
VC98folder, 427-428
VERIFY macro, 604
VerifyUserLicense,386-390
Version, 648
VersionlndependentProgID, 451
Video for Windows (AVI) files, 334
viewing documents, 69-72
View menu, 11, 12

ClassWizard command, 266
text editor, 70

View Whitespace toggle switch, 94-95
Visible, 648
Visual Basic containers, 451
Visual Basic Extension (VBX), 331
void function, 469, 489
v-table array, 348
VT_UNKNOWN, 341

w
WaitForDebugEvent, 519, 522
Web

ActiveX controls on, 337-339, 383-390
MSDN Library, accessing with, 28-29

Webmaster licensing ActiveX controls, 383-390
Weekday, 695
WeekDayName, 695
wildcards, 22, 25-27
WindowActivate, 650
WindowDeactivate, 650
windowless controls, 473

activation option, 381, 382
Window menu, 8

documents list, 70
text editor, 70

windows. See dockable windows; workspace
window

Windows, 648
WindowState, 648

WinHlp32, 48-49
Winner, 489
Win32 Application Wizard, 32
Win32 resource strings, 188
Winuser.h file, 160
WizardBar, ClassWizard, 281-285
wizards, 31. See also App Wizard; ClassWizard

ControlWizard, 376-383
DevStudio Add-in Wizard, 644-645
in Projects tab, New dialog box, 35

WM_BUTTONDOWN, 412
WM_COMMAND, 113, 123
WM_ERASEBKGND, 233
WM_INITDIALOG, 290
WM_LBUTTONDOWN, 164-165, 400, 488
WM_MOUSEMOVE, 164, 488
WM_SETCURSOR, 413
WM_SETFOCUS, 183
WM_SETTEXT, 199
WM_TIMER, 469
WNDCLASS, 161
WNDCLASSEX, 161
WORD

boundaries, 599
size, 113

WordLowerCase command, 96-98
WordUpperCase command, 96-98
WorkspaceClose, 650
WorkspaceOpen, 650
Workspace window, 8, 11-15

hiding, 11-12
information panes in, 13-14

wParam message, 113, 123
WriteProcessMemory, 521
WS_CAPTION, 203
WS_SYSMENU, 204
ws_ VISIBLE, 222

y
Year, 695

z
Zero flag, 537

About the Author

Beck Zaratian has been programming computers for 25 years. A
degree in civil engineering led him to different parts of the country,
where he applied languages as diverse as FORTRAN, PL/1, APL,
and C to problems such as arch dam design and earthquake analy­
sis. Along the way, he was a ski instructor in Colorado and worked
construction in Alaska before settling permanently in Seattle,
where his expertise in assembly language caught the attention of
Microsoft. Since then he has contributed to several Microsoft books,
including Macro Assembler Programmer's Guide, C for Yourself,
Programmer's Guide for Pen Windows, and Charles Petzold's
Programming Windows 95.

Beck is the owner of Witzend Software, a provider of custom
programming services in the Seattle area. He can be reached at
beckz@witzendsoft.com.

The manuscript for this book was
prepared and submitted to Micro­

soft Press in electronic form. Text files
were prepared using Microsoft Word
97 for Windows. Pages were composed
by Labrecque Publishing using Corel
Ventura 8, with text in Melior and
display type in Frutiger Condensed.
Composed pages were delivered to the
printer as electronic prepress files.

Cover Designer
Tim Girvin

Interior Graphic Designer
Kim Eggleston

Production Manager
Lisa Labrecque

Copy Editor
Chrisa Hotchkiss

Interior Graphic Artist
Lisa Bravo

Page Compositor
Curtis Philips

Proofreader
Andrea Fox

Indexer
Katherine Stimson

V.Sl1a1C++6.0
Programmer's Guide

The shop manual for Windows®
power programmers!
See how to build small, fast applications and components,
including those for Internet, intra net, and Web site
production, with the MICROSOFT VISUAL C++ 6.0
PROGRAMMER'S GUIDE-an update of the Microsoft Visual
C++ Owner's Manual. If you're a new user, an upgrader,
or a developer coming from another language or
implementation, you'll discover in detail how to use this
rich development environment and you'll learn tips and
tricks for setting up projects, especially in multiple­
developer environments. And you can take advantage
of sample files and projects that illustrate the
explanations. Created in close cooperation with the
Visual C++ product development group, the MICROSOFT
VISUAL C++ 6.0 PROGRAMMER'S GUIDE will get you up
to speed fast on this large and complex industry-standard
software development tool.

The MICROSOFT VISUAL C++ 6.0 PROGRAMMER'S GUIDE covers:

• Using and customizing the development interface
•Application and Class Wizards

•Resources
• Dialog boxes and controls

• The Gallery
• Writing and using ActiveX® Controls with MFC and ATL
• Optimizing and debugging

• Building macros with VBScript

When fast isn't fast enough for your application or component
development, turn to Visual C++ 6.~and the MICROSOFT
VISUAL C++ 6.0 PROGRAMMER'S GUIDE.

mspress.microsoft.com

art No. 097-0001981

Valuable tools on the enclosed
CD-ROM

•Sample code
•Sample projects
•A fully searchable index

About the Author:

Beck Zaratian is a longtime user of
C and C++ and a frequent contract
employee for developer groups at
Microsoft. His work with Microsoft
Press includes the Microsoft
Visual C++ Owner's Manual and
assistance in the update of several
chapters of Charles Petzold's
Programming Windows 95.

The key to building small, fast
applications and components.
The Microsoft Visual C++ 6.0
Reference Library is your
comprehensive resource from the
Microsoft product development team
for programming with this power.ful ,
highly productive, object-oriented
development environment.

Windows Programming/Visual C++

Microsoft Press

