

Additional Resources for Developers from Microsoft Press
Published and Forthcoming Titles on Microsoft® Visual Studio®

-+ Visual Basic
Microsoft Visual Basic• 2008
Express Edition:
Build a Program Now!
Patrice Pelland
978-0-7356-2541-9

Microsoft Visual Basic 2008
Step by Step
Michael Halvorson
978-0-7356-2537-2

Microsoft Visual Basic 2005
Step by Step
Michael Halvorson
978-0-7356-2131-2

Programming Windows•
Services with Microsoft
Visual Basic 2008
Michael Gernaey
978-0-7356-2433-7

Programming Microsoft
Visual Basic 2005:
The Language
Francesco Balena
978-0-7356-2183-1

-+Visual C#
Microsoft Visual C#® 2008
Express Edition:
Build a Program Now!
Patrice Pelland
978-0-7356-2542-6

Microsoft XNA™ Game
Studio 2.0 Express: Learn
Programming Now!
Rob S. Miles
978-0-7356-2522-8

Microsoft Visual C# 2008
Step by Step
John Sharp
978-0-7356-2430-6

Microsoft Visual C# 2005
Step by Step
John Sharp
978-0-7356-2129-9

Programming Microsoft
Visual C# 2008:
The Language
Donis Marshall
978-0-7356-2540-2

Programming Microsoft
Visual C# 2005:
The Language
Donis Marsha II
978-0-7356-2181-7

Programming Microsoft
Visual C# 2005:
The Base Class Library
Francesco Balena
978-0-7356-2308-8

CLR via C#,
Second Edition
Jeffrey Richter
978-0-7356-2163-3

-+ Data Access
Microsoft ADO.NET 2.0
Step by Step
Rebecca M. Riordan
978-0-7356-2164-0

Programming Microsoft
ADO.NET 2.0
Core Reference
David Sceppa
978-0-7356-2206-7

Programming the Microsoft
ADO.NET Entity Framework
David Sceppa
978-0-7356-2529-7

Programming Microsoft
ADO.NET 2.0 Applications
Advanced Topics
Glenn Johnson
978-0-7356-2141-1

-+Web Development -+ .NET Framework
Microsoft ASP.NET 3.5
Step by Step
George Shepherd
978-0-7356-2426-9

Microsoft ASP.NET 2.0
Step by Step
George Shepherd
978-0-7356-2201-2

Programming Microsoft
ASP.NET 3.5
Di no Esposito
978-0-7356-2527-3

Programming Microsoft
ASP.NET 2.0
Core Reference
Dino Esposito
978-0-7356-2176-3

Programming Microsoft
ASP.NET 2.0 Applications
Advanced Topics
Dino Esposito
978-0-7356-2177-0

Windows Presentation
Foundation:
A Scenario-Based Approach
Billy Hollis
978-0-7356-2418-4

3D Programming for
Windows
Charles Petzold
978-0-7356-2394-1

Microsoft Windows
Workflow Foundation
Step by Step
Kenn Scribner
978-0-7356-2335-4

Microsoft Windows
Communication Foundation
Step by Step
John Sharp
978-0-7356-2336-1

Applications = Code +
Markup: A Guide to the
Microsoft Windows
Presentation Foundation
Charles Petzold
978-0-7356-1957-9

Inside Microsoft Windows
Communication Foundation
Justin Smith
978-0-7356-2306-4

-+Other
Developer Topics
Debugging Microsoft
.NET 2.0 Applications
John Robbins
978-0-7356-2202-9

I. M. Wright's "Hard Code"
Eric Brechner
978-0-7356-2435-1

The Practical Guide to
Defect Prevention
Marc McDonald, Robert
Musson, Ross Smith
978-0-7356-2253-1

Software Estimation:
Demystifying the Black Art
Steve McConnell
978-0-7356-0535-0

The Security
Development Lifecycle
Michael Howard
Steve Lipner
978-0-7356-2214-2

Code Complete,
Second Edition
Steve McConnell
978-0-7356-1967-8

Software Requirements,
Second Edition
Karl E. Wiegers
978-0-7356-1879-4

More About Software
Requirements: Thorny
Issues and Practical Advice
Karl E. Wiegers
978-0-7356-2267-8

microsoft.com/mspress

Praise for Microsoft Visual Studio Tips ...

"If Visual Studio is the King of IDEs, then Sara Ford is our Queen. She's collected hundreds
of the very best Visual Studio tips and tricks and sprinkled them with just the right about of
insight, historical context and humor. Recommended!"

Scott Hanselman, Microsoft Developer Division Community Liaison

"More good code faster! That's what Visual Studio is meant to help you do, but how do you
become a MASTER PILOT? Sara's book "Microsoft Visual Studio Tips" is just chock full of time
saving nuggets. I especially like the "Sara Aside" insertions through the book. Read it and
increase your development productivity every day."

Joe Stagner, Microsoft Senior Program Manager

"Every VS developer can find time-saving tips in this new book. Adopt them and spend more
time 'in the zone' as a result!"

Scott Wiltamuth, Microsoft Visual Studio Partner Program Manager

"Throughout this book, Sara Ford exposes and demonstrates hundreds of Visual Studio features
and capabilities that can help conserve your most precious resource-your time."

Rob Caron, Microsoft Developer Marketing

"Even those of us who work directly on Visual Studio are rarely familiar with all the capabilities
of the product, and especially the shortcuts that access those capabilities quickly, so a source of
tips like these is highly valuable and most welcome!"

Pat Brenner, Microsoft Senior Software Design Engineer

"Sara Ford's energy, expertise, and enthusiasm have made her everyone's favorite source of in­
formation about the Visual Studio /DE. She has an endless store of knowledge on how to be more
productive when using Visual Studio, and in this book she freely shares that knowledge with us."

Charlie Calvert, Microsoft C# Community Program Manager

"Sara's tips show off every nook and cranny of Visual Studio, some productivity features I didn't
even know existed, and are indispensible for beginner and advanced programmers alike."

Beth Massi, Microsoft Visual Studio Community Program Manager

"This book is a treasure chest of useful gems that has already saved me time when I'm working
with code! Just from the first chapter, I learned a new tip that I'm going to start using today."

Karen Liu, Lead Program Manager, Microsoft Visual C#

"Excellent coverage of the Visual Studio /DE from someone who knows it inside out!"

Lisa Feigenbaum, Program Manager, Microsoft Visual Studio Languages

llllicl'Osoft®

Microsoft®
Visual Studio® Tips

Sara Ford

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008935423

Printed and bound in the United States of America.

123456789 QWT 321098

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DataTips, IntelliSense, MSDN, Visual Basic, Visual C#, Visual C++, Visual InterDev, Visual
J++, Visual Studio, Windows, and Windows Vista are either registered trademarks or trademarks of the Microsoft group
of companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author's views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Melissa von Tschudi-Sutton
Editorial Production: ICC Macmillan, Inc.
Cover: Tom Draper Design

Body Part No. X15-16984

To Beulah "Maw Maw" Rossignol. You would have loved this.

And to my mentor Sam Ramji for teaching me how to take a stand, especially for myself.

All author book royalties will be used to create a scholarship fund for anyone living in the

author's hometown of Waveland, Mississippi, which was destroyed during Hurricane Katrina.

Scholarship preference will be given to math and computer science majors.

The following photo was taken on August 3, 2008, in front of Waveland City Hall, three years
after the hurricane.

"From the people of Waveland: In appreciation and gratitude to all who gave of their time, en­
ergy, and money to help us recover from Hurricane Camille. On August 17, 1969 our city was
devastated, but those who cared came to her rescue."

Throughout her life, the author has always had a quest for knowledge. Now, sales from this

book will be used to help others pursue their own quests.

For more information regarding the Save Waveland Scholarship Fund, please contact the

Mississippi Gulf Coast Community College Foundation, INC, PO Box 99, Perkinston, MS 39573

or visit https://www.mgccc.edu/creditcard.htm for direct donations.

Contents at a Glance

1 Get Back to Basics with Your Editor 1
2 Make Your Editor Work for You 27

3 Find What You Are Searching For 59
4 Manage Your Environment Layout 73
5 Discover More Tools for Your Design Time, Part 1 105

6 Discover More Tools for Your Design Time, Part 2 147

7 Know Your Solutions, and Other Project
and Debugging Tweaks 169

A Visual Studio Factoids 199
B Tips on Blogging Tips 203

C Software Testing Tips 207

D How I Started Programming 211

ix

Table of Contents
Foreword .. xxvii

Introduction .. xxix

How This Book Happened ... xxix

Who This Book Is For .. xxx

How This Book Is Organized ... xxx

System Requirements ... xxxi

Contact the Author ... xxxi

Support for This Book ... xxxi

Tip 0.0: How to Look Up, Change, or Create Visual
Studio Keyboard Shortcuts .. xxxii

What Will This Keyboard Shortcut Do? xxxii

What Is the Keyboard Shortcut for This Command? xxxii

How to Create or Change a Keyboard Shortcut? xxxiii

Where Are the Keyboard Shortcut Reference Posters? xxxiv

Acknowledgements ... xxxv

1 Get Back to Basics with Your Editor 1
Basic Editing ... 1

Text Editing ... 1

Tip 1.1: How to not accidentally copy a blank line 1

Tip 1.2: How to cycle through the Clipboard ring
to paste different things 2

Tip 1.3: You can use Ctrl+Enter to insert a line above
and Ctrl+Shift+Enter to insert a line below 3

Tip 1.4: You can use Ctrl+W to select the current word 3

Tip 1.5: You can use Ctrl+Delete to delete the next word
and Ctrl+Backspace to delete the preceding word 3

Tip 1.6: You can use Ctrl+L to cut the current line
and Ctrl+Shift+L to delete the current line 4

Tip 1.7: How to delete horizontal white space at
the beginning of a line 4

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey
xi

xii Table of Contents

Tip 1.8: You can drag code or text to a new location 5

Tip 1.9: You can right-drag code to Move Here or Copy Here 6

Tip 1.10: How to transpose characters, words, and lines
in the editor ... 6

Tip 1.11: You can use a keyboard shortcut to uppercase

or lowercase a word in the editor 7

Undo/Redo ... , . 7

Tip 1.12: How to use the Undo stack on the standard tool bar ... 8

Scrolling and Navigation ... 8

Scrolling .. 8

Tip 1.13: How to use the mouse wheel for scrolling
in all directions ... 8

Tip 1.14: How to jump to the top or bottom of the current
view in the editor without scrolling 9

Tip 1.15: You can hide the vertical and horizontal scroll

bars in the editor .. 10

Navigating Within and Among Editors 11

Tip 1.16: How to navigate forward and backward in
the editor all because of go-back markers 11

Tip 1.17: How to use Undo to jump the cursor back
to the last insertion point 12

Tip 1.18: How to reach the navigation bar via the keyboard 13

Tip 1.19: How to split a window and create new windows 13

Tip 1.20: You can use F6 to jump between split panes
in the editor .. 14

Tip 1.21: How to enable URL navigation within the editor 15

Tip 1.22: How to use Ctrl+G without the Go To Line

dialog box popping up 15

Word Wrap versus Virtual Space 16

Tip 1.23: How to enable word wrap 16

Tip 1.24: How to enable virtual space 16

Editor Fonts and Colors ... 17

Font Size .. 17

Tip 1.25: How to increase the editor's ToolTip font size 17

Tip 1.26: You can bind macros to keyboard shortcuts

(or, "How to quickly increase or decrease your text
editor font size") .. 18

Fonts and Colors ... 18

Tip 1.27: How to change the editor background to black 18

Table of Contents xiii

Tip 1.28: What's the difference between Automatic and
Default in Tools-Options-Environment-Fonts And Colors? 19

Tip 1.29: How to change a bookmark color 21

Visual Cues .. 22

Tip 1.30: How to track changes in the editor 22

Tip 1.31: How to show line numbers in the editor 22

Tip 1.32: How to view visible white Space 23

Printing ... 23

Printing Options .. 23

Tip 1.33: How to print line numbers 24

Tip 1.34: How to print boldly 24

Tip 1.35: How to print the file path as the page header 25

Status Bar ... 25

Status Bar Options .. 25

Tip 1.36: You can hide the status bar 25

2 Make Your Editor Work for You 27
Advanced Editing .. 27

Selection .. 27

Tip 2.1: How to use box/column selection in the editor 27

Tip 2.2: How to jump to the beginning of some selected
text when hitting escape 28

Tip 2.3: You can use Ctrl+= to select code from the
current cursor location to the last go-back marker. 28

Tip 2.4: How to swap the current anchor position in the editor .. 29

Commenting ... 29

Tip 2.5: How to quickly comment and uncomment code using
keyboard shortcuts .. 29

Formatting .. 30

Tip 2.6: You can display guidelines in the editor to help
format your code .. 30

Tip 2.7: How to format the document, the selected text,
or just the current line 31

Tip 2.8: How to keep tabs or to insert spaces 31

Tip 2.9: How to convert spaces to tabs and tabs to spaces 32

Tip 2.10: You can increase and decrease the line
indent from the text editor tool bar 33

Tip 2.11: What's the difference between smart
indenting and block indenting? 33

xiv Table of Contents

Outlining .. 34

Tip 2.12: How to collapse and expand code 34

Tip 2.13: You can cut and paste a collapsed block of code 36

Tip 2.14: You can hide outlining (selection margin)
without turning off outlining 37

Emulations ... 37

Tip 2.15: How to enable Emacs and Brief editor emulations 38

Binary Editor ... 38

Tip 2.16: How to open something in the binary editor 38

Delimiter Highlighting and Brace Matching 39

Tip 2.17: What does that Automatic Delimiter
Highlighting option do? 39

Tip 2.18: How to change the Brace Matching color 40

Clean up unused code .. 41

Tip 2.19: You can remove unused using statements 41

Auto Recover ... 41

Tip 2.20: What does Visual Studio do to autorecover
files in the case of an unexpected shutdown? 41

File Extensions ... 43

Tip 2.21: How to get syntax highlighting for a given
file extension ... 43

Opening Files ... 44

Opening Files and Editor Windows 44

Tip 2.22: How to reuse the same editor window
when opening files .. 44

Tip 2.23: How to automatically refresh an open
document in the editor 44

Tip 2.24: How to edit a read-only file in Visual Studio 45

Tip 2.25: How to customize what directory the
File-Open-File dialog box opens to 46

Tip 2.26: How to customize the number of items shown

in the Recent Files lists (and where to find those lists) 46

Bookmarks .. 47

Managing Bookmarks ... 47

Tip 2.27: How to set bookmarks and navigate among them 47

Tip 2.28: How to navigate among bookmark folders
in the Bookmark window 48

Tip 2.29: You can bookmark all of your Quick Find results 49

Table of Contents xv

lntelliSense .. 49

Statement Completion, Parameter Info, and Complete Word 49

Tip 2.30: You can use Ctrl+J to invoke statement completion 50

Tip 2.31: How to display parameter info for a function 50

Tip 2.32: How to display quick info for a function 51

Tip 2.33: How to complete a word 51

Tip 2.34: How to increase the statement completion font size ... 51

Tip 2.35: You can resize the statement completion dialog box ... 52

Tip 2.36: You can toggle between the Common
and All Statement Completion tabs via the keyboard 52

Tip 2.37: How to turn off lntelliSense by default 53

Code Snippets ... 53

Using Code Snippets .. 53

Tip 2.38: You can use Ctrl+K, Ctrl+X to insert a code snippet 53

Tip 2.39: You can insert a code snippet via its shortcut
keyword .. 54

Tip 2.40: You can insert a snippet by pressing Tab Tab 55

Tip 2.41: How to browse code snippets and add new ones 56

Tip 2.42: How to change default values and variables
in a code snippet .. 57

Tip 2.43: How to share code snippets with your team 57

Tip 2.44: How to insert a code snippet around a block of code .. 58

3 Find What You Are Searching For 59
Searches from the Keyboard .. 59

Incremental Search ... 59

Tip 3.1: How to behold the power of incremental search 59

Current Word Searches .. 60

Tip 3.2: You can use Ctrl+F3 to search for the currently-selected

word without bringing up the Find And Replace window 60

Tip 3.3: How to not automatically search for the
currently-selected word 60

Repeat Last Search .. 61

Tip 3.4: You can use F3 to search for the last thing

you searched for .. 61

Quick Searches .. 61

Quick Find ... 61

Tip 3.5: You can use Ctrl+F to use Quick Find in the current
document .. 62

xvi Table of Contents

Tip 3.6: How to use the Find combo box to do
a Quick Find in the current document. 62

Tip 3.7: How to customize the Find combo box
(Ctrl+D) search .. 62

Quick Replace .. 63

Tip 3.8: You can use Ctrl+H to bring up the Quick
Replace window ... 63

Tip 3.9: How to hide the Quick Find/Quick Replace
window after the first search hit 64

Quick Symbol .. 64

Tip 3.10: How to search for a symbol 64

Tip 3.11: You can use Shift+Alt+F12 to use Find Symbol 65

Find In Files Searches ... 65

Find In Files .. 65

Tip 3.12: How to find in files 65

Tip 3.13: You can customize what files to find in 66

Tip 3.14: You can stop a Find In Files search 67

Tip 3.15: You can replace all search string occurrences in files ... 68

Find And Replace ... 68

Tip 3.16: How to dock the Find And Replace window 69

Find Results Window .. 69

Tip 3.17: You can use F8 to navigate the Find Results window ... 69

Tip 3.18: How to show and hide find messages 70

Tip 3.19: How to browse Find Symbol results 70

Other Search Options .. 71

Hidden Text ... 71

Tip 3.20: How to search hidden text in the editor 71

Search Scope ... 71

Tip 3.21: How to search within the current project or
entire solution .. 72

Regular Expressions ... 72

Tip 3.22: How to use wildcards and regular expressions while
searching ... 72

4 Manage Your Environment Layout 73
Document Windows ... 73

File Tab Channel .. 74

Tip 4.1: You can use Ctrl+Alt+Down Arrow to drop
down the file tab channel file menu 74

Table of Contents xvii

Tip 4.2: You can use Close All But This on files in the
file tab channel. ... 74

Tip 4.3: You can copy a file's full path from the file
tab channel. .. 75

Tip 4.4: You can open a Windows Explorer browser
directly to the active file 75

Tip 4.5: How to close just the selected files you want 76

Tip 4.6: Under what condition does the file tab channel
drop-down button change its icon? 77

IDE Navigator .. 77

Tip 4.7: You can use Ctrl+Tab to bring up the IDE Navigator
to get a bird's-eye view of and navigate all open files
and tool windows ... 77

Tip 4.8: How to disable the IDE Navigator 78

Keyboard Navigation ... 79

Tip 4.9: You can use Ctrl+F6 and Ctrl+Shift+F6 to
navigate among opened document windows 79

Tip 4.10: You can use Ctrl+F4 to close the current
document opened in the editor 80

MDI Mode ... 80

Tip 4.11: How to enter MDI mode 80

Tip 4.12: How to show the Tile Horizontally and Tile

Vertically buttons in the Window Windows dialog box 81

Tool Windows ... 82

Dockable State ... 82

Tip 4.13: You can choose from nine IDE tool window
docking targets ... 83

Tip 4.14: How to undock only a single tool window
from a group ... 84

Tip 4.15: You can dock a tool window to the top of the IDE 84

Tip 4.16: You can use docking targets to dock tool windows
in new and crazy ways 84

Autohiding State ... 86

Tip 4.17: You can autohide all of your tool windows
with one command .. 86

Tip 4.18: You can customize how pressing a tool window push
pin autohides the tool window or tool window tab group 87

Tip 4.19: You can show autohiding tool windows via the

tool window autohide channel 88

xviii Table of Contents

Tip 4.20: You can double-click the tool window title bar
to redock the tool window 88

Tip 4.21: You can use Shift+ Click to automatically dock an
autohiding tool window 89

Tip 4.22: You can speed up or slow down how fast
a tool window slides out from a docked position 90

Floating State .. 91

Tip 4.23: Why would you want to make a tool window float? 91

Tabbed Document State ... 92

Tip 4.24: How to use Tabbed Document to maximize
a tool window ... 92

Keyboard Navigation ... 92

Tip 4.25: You can use Alt+F7 and Alt+Shift+F7 to

move to the next and previous tool windows 93

Tip 4.26: You can use Alt+F6 and Alt+Shift+F6 to

cycle through opened tool windows 93

Tip 4.27: How to use Ctrl+Page Up and Ctrl+Page
Down to navigate among all the tool windows
in a tool window group 93

Hide State ... 94

Tip 4.28: How to customize what clicking the X button
does to a tool window or tool window tab group 94

Hidden Keyboard Shortcuts 95

Tip 4.29: How to drag a tool window around using
the keyboard ... 95

Tip 4.30: How to resize a tool window from the keyboard 95

Tip 4.31: How to access a tool bar within a tool window 96

Tip 4.32: You can use Shift+Esc to close a tool window 96

Window Layouts ... 97

Four Window Layouts ... 97

Tip 4.33: You can export just your window layouts 97

Tip 4.34: How to quickly access Full Screen mode 98

Tip 4.35: How to access a file window layout mode

that you can customize 98

Tool bars and Context Menus .. 99

Toolbars .. 100

Tip 4.36: You can make a tool bar float 100

Tip 4.37: You can hide or show the default buttons from
any toolbar .. 100

Tip 4.38: How to display any tool bar at any time 101

Table of Contents xix

Tip 4.39: You can switch and swap buttons on the toolbars
while the Tools-Customize dialog box is showing 102

Tip 4.40: You can show shortcut keys in tool bar ToolTips 102

Context Menus .. 102

Tip 4.41: You can customize the commands on the
context menus ... 103

5 Discover More Tools for Your Design Time, Part 1 105
Tool Windows .. 105

Command Window .. 105

Tip 5.1: You can run Visual Studio commands from the
Command Window 105

Tip 5.2: How to search from the Command Window 106

Tip 5.3: How to log your Command Window session 107

Tip 5.4: How to run external executables from the
Command Window 108

Tip 5.5: How to create a command alias 108

Output Window ... 110

Tip 5.6: You can use F8 and Shift+F8 to navigate

among errors in the Output window 110

Tip 5.7: You can double-click messages in the Output
window to jump to that location in the code 110

Tip 5.8: You can use the keyboard to jump to various

panes within the Output window 111

Tip 5.9: How to stop the Output window from showing
itself during a build 111

Tip 5.10: You can enable word wrap in the Output window 112

Tip 5.11: You can customize the color scheme in the
Output window .. 113

Tip 5.12: You can redirect debug messages to the
Output window .. 114

Tip 5.13: You cannot enable Stop Search on the
Output window .. 115

Toolbox .. 115

Tip 5.14: You can drag and drop code onto the
Toolbox's General tab 115

Tip 5.15: Why does each Toolbox group have
a Pointer control? .. 116

Tip 5.16: How to stop the Toolbox from autopopulating
with items found in the solution 117

xx Table of Contents

Tip 5.17: You can use *to expand all and I to collapse
all in the Toolbox ... 118

Tip 5.18: You can use Ctrl+Up Arrow and Ctrl+Down Arrow
to move among the various control groups in the Toolbox 119

Tip 5.19: You can sort items in the Toolbox alphabetically 120

Tip 5.20: You can switch between the Icon view and List

Item view in the Toolbox 120

Tip 5.21: You can use Show All to find your hiding
Toolbox controls ... 121

Tip 5.22: You can use Ctrl+C to copy controls in a Toolbox

tab and then use Ctrl+V to paste the controls into
another Toolbox tab 122

Tip 5.23: You can create new Toolbox tabs 122

Task List .. 123

Tip 5.24: You can use the Task List to create user
tasks that are separate from your code 123

Tip 5.25: You can assign a priority to your Task List's
user tasks .. 124

Tip 5.26: How to create and view TODO comments

in the Task List ... 125

Tip 5.27: You can create shortcuts in your Task List. 126

Tip 5.28: You can show HACK, UNDONE, and custom
tokens in the Task List 127

Tip 5.29: How to disable the prompt for deleting
the Task List's user tasks 129

Tip 5.30: You can show a full file path in the Task List. 129

Tip 5.31: You can create keyboard shortcuts to navigate

among the various Task List categories (by using
View.NextTosk and View.PreviousTosk) 130

Object Browser .. 131

Tip 5.32: You can use Ctrl+Alt+J to open the Object
Browser window .. 131

Tip 5.33: You can specify to show components in your
solution only in the Object Browser 132

Tip 5.34: You can create a custom list of components
for the Object Browser 132

Tip 5.35: You can add references to your solution
directly from the Object Browser 134

Tip 5.36: How to use navigate forward and back in
the Object Browser 135

Table of Contents xxi

Tip 5.37: You can create a keyboard shortcut for adding
references to a solution from the Object Browser 135

Tip 5.38: You can customize both your Object pane
and Members pane in the Object Browser 136

Tip 5.39: You can choose whether to show base types
in the Object Browser 137

Tip 5.40: You can hide or show hidden members

and types in the Object Browser 138

Tip 5.41: You can mark methods and types as Hidden

so that they don't appear in Microsoft lntelliSense or
in the Object Browser 138

Tip 5.42: What does Other mean in Show Other
Members in Object Browser Settings? 139

Tip 5.43: How to stop displaying all inherited members

in the Object Browser Member pane 140

Tip 5.44: You can show extension methods in
the Object Browser 140

Tip 5.45: What are the two primary means of searching
for objects in the Object Browser? 141

Tip 5.46: You can use F12 in the Object Browser to go
to the definition of whatever is selected 141

Tip 5.47: You can use a Find Symbol search (Shift+F12)
in the Object Browser 142

Tip 5.48: How to use type-ahead selection support
in the Object Browser 142

Tip 5.49: You can export all your Object Browser
customizations in a .vssettings file 143

Tip 5.50: Why the Object Browser has so many
commands you can bind to (and how to create a
keyboard shortcut to clear the search results) 144

Tip 5.51: You can use the View.Forward (Alt+ Right Arrow)

and View.Backward (Alt+ Left Arrow) global
commands in the Object Browser 144

6 Discover More Tools for Your Design Time, Part 2 147
Dialog Boxes ... 147

Import And Export Settings 147

Tip 6.1: How to find what development settings
you last reset to .. 148

Tip 6.2: How to reset your environment settings
via Tools-Import And Export Settings 148

xxii Table of Contents

Tip 6.3: What settings are contained in the

New Project Dialog Preferred Language category 151

Tip 6.4: You can add your own files to the Import
And Export Settings-Reset page list 152

Tip 6.5: What's the difference between resetting
settings and importing settings? 153

Tip 6.6: You can save your current settings prior
to doing an Import or Reset 154

Tip 6.7: How Visual Studio automatically saves
all your current settings every time you close it. 155

Tip 6.8: You can copy the full file path from the
final wizard page when exporting settings 156

Tip 6.9: You can use team settings to keep Visual
Studio settings on different machines in sync 157

External Tools ... 157

Tip 6.10: You can run external tools from the IDE 158

Tip 6.11: You can add your own external tools to the list. 159

Tip 6.12: You can rearrange the list of external tools

and create mnemonics 160

Tip 6.13: You can have your external tool's text
displayed in the Output window 161

Tip 6.14: How the external tools tokens work 162

Tip 6.15: You can prompt for arguments when you run
an external tool .. 163

Find Combo Box ... 163

Find Combo Box Runs Commands 164

Tip 6.16: How to have fun with the Find combo box 164

Tip 6.17: You can press Ctrl+/ to run Visual Studio
commands in the Find combo box 165

Tip 6.18: How to open a file in the solution without
using either a tool window or a dialog box 165

Tip 6.19: You can set a breakpoint on a function
from the Find combo box 166

Start Page ... 167

Start Page Window .. 167

Tip 6.20: You can change the RSS feed on the
Visual Studio Start Page 167

Tip 6.21: How to customize what Visual Studio
opens to (or how to make the Start Page not show
up when Visual Studio opens) 167

Table of Contents xxiii

7 Know Your Solutions, and Other Project and
Debugging Tweaks 169

Project and Solution System .. 169

Multitargeting .. 169

Tip 7.1: How Visual Studio 2008 supports
multitargeting of the .NET Framework 169

Projects .. 170

Tip 7.2: How to change the default new-project location 170

Tip 7.3: You can toggle between small icons and
large icons in the New Project dialog box 171

Tip 7.4: You can use solution folders to hide projects 172

Tip 7.5: You can create temp or "throw away" projects 172

Tip 7.6: How to hide or show the Project Location
Is Not Trusted message box 173

Build Configurations ... 174

Tip 7.7: How to use Simplified Build Configurations 174

Solution Explorer ... 175

Tip 7.8: How to show the Miscellaneous Files project
in the Solution Explorer 176

Tip 7.9: There is type-ahead selection support
in the Solution Explorer 176

Tip 7.10: You can add a solution to a solution 177

Tip 7.11: You can automatically perform a rename
within an entire project when you rename a file
in the Solution Explorer 178

Tip 7.12: How to hide or show a solution in the
Solution Explorer ... 178

Tip 7.13: How to have the Solution Explorer always
show (or not show) the file currently opened

in the editor ... 179

Debugging .. 179

Tracepoints ... 179

Tip 7.14: You can use tracepoints to log PrintF() or
Conso/e.Writeline() info without editing your code 179

Breakpoints ... 181

Tip 7.15: You can set a breakpoint by clicking the
indicator margin ... 181

Tip 7.16: You can press F9 to set a breakpoint on
the current line ... 181

xxiv Table of Contents

Tip 7.17: You can use Ctrl+F9 to enable or disable
a breakpoint ... 182

Tip 7.18: You can set conditional breakpoints 182

Tip 7.19: You can use breakpoint filters to break
the right process ... 183

Tip 7.20: You can press Ctrl+B to set a breakpoint
at the desired function 185

Tip 7.21: You can press Ctrl+Alt+B to open the
Breakpoints window 185

Tip 7.22: You can press Ctrl+Shift+F9 to delete
all breakpoints ... 186

Tip 7.23: You can disable the warning message before
you delete all breakpoints 186

DataTips .. 187

Tip 7.24: You can use DataTips to edit a variable's content 187

Multiple Projects .. 187

Tip 7.25: How to select the startup project from
the Solution Explorer 188

Tip 7.26: You can start debugging multiple projects 189

Tip 7.27: How to have all processes break when
one process breaks 190

Compiling and Debugging Windows 190

Error List. ... 190

Tip 7.28: You can use Ctrl+Shift+F12 to view the next
error listed in the Error List 190

Tip 7.29: How to customize your Error List view 191

Tip 7.30: You can view an error's documentation

directly from the Error List 192

Tip 7.31: You can do multicolumn sorting (secondary
sort, and so forth) in both the Error List and the Task List 192

Tip 7.32: You can bind the show Errors, Warnings,
and Messages buttons to keyboard shortcuts 193

Tip 7.33: How to show or prevent the Error List from

appearing after a failed build 194

Watch Window .. 194

Tip 7.34: You can use the Watch window to
quickly change a variable's value 194

Tip 7.35: You can view numeric values in
hexadecimal format in your debug windows 195

Table of Contents xxv

Immediate Window .. 196

Tip 7.36: You can use the Immediate Window as a glorified
calculator or side-debugger within your debugger 196

A Visual Studio Factoids 199
Visual Studio Q&A .. 199

Why is the executable file called devenv.exe instead
of visualstudio.exe? .. 199

Is the Visual Studio logo an infinity symbol or Mobius strip? 200

What do the colors in the Visual Studio logo signify? 200

Solution Explorer: Is it on the left side or right side of the IDE? 200

Why is there a "Solution" concept? 201

Why Are the Tool Window Tabs Shown at the Bottom of
a Tool Window Group and the File Tabs Are at the Top
of the File Tab Channel? .. 201

Why is Common? not Common8 or Common9? 202

B Tips on Blogging Tips 203
Secret "Tip OfThe Day" Formula 203

Tip 1: Focus on one specific action per tip 203

Tip 2: Provide an image with each tip 204

Tip 3: Reference a credible source 204

Tip 4: Share and collect stories whenever possible 204

Tip 5: Queue up your tips far, far in advance 204

Tip 6: Set your tips to go live before dawn 204

Tip 7: Use Windows Live Writer to write and queue your tips 205

C Software Testing Tips 207
Five Tips for Surviving as a Tester 207

Tip 1: Never assume anything 207

Tip 2: Learn from the bugs you missed 209

Tip 3: Help your developer however possible 209

Tip 4: Leave appropriate comments when closing bugs 210

Tip 5: Don't just get it in writing 210

D How I Started Programming 211
Hunt the Wumpus .. 211

Say "YoHo" ... 212

Typing on the Tl-99 4A ... 213

xxvi Table of Contents

Playing Nintendo ... 213

Will Solve Math Problems to Code 215

Studying in College ... 215

Enter Microsoft ... 216

Interviewing at Microsoft .. 216

Tip 252: You Can Make the Statement Completion
Window Transparent .. 218

Index ... 219

o you think of this book? We want to hear from you!

ft is interested in hearing your feedback so we can continually improve our books and
g resources for you. To participate in a brief online survey, please visit:

Foreword
As I write this, the world is converging on Beijing, China for the 2008 Summer Olympic
Games. The athletes have spent years tuning their bodies and movements for optimal

efficiency and effectiveness in preparation for this moment. Those wearing the gold medals
for many events will be determined by mere fractions of a second.

Although medals aren't typically awarded for accomplishing your programming tasks the
fastest, the book you hold in your hands can help you use Visual Studio more efficiently and
effectively. Many of the tips in this book will only save you a few seconds or less; however, as
developers, we all know that a routine performed thousands of times can benefit from even
the smallest optimization.

Throughout this book, Sara brings to light capabilities within Visual Studio you may never
have known existed, or have long since forgotten. Despite spending nearly ten years at

Microsoft in and around Visual Studio, Sara's blog expose holes in my knowledge. Whether
you've been using Visual Studio since the 1990s, or you are installing it for the first time, you

will find value on the pages that follow.

It wasn't until I read the manuscript for this book that I came to realize the role I played in
Sara's Visual Studio Tip of the Day series and this book. I am happy to have had the oppor­
tunity to share some of this experience with her. It was inspiring (but not surprising) to learn
that Sara is taking the proceeds from this book, which is founded on the principle of helping

developers make better use of Visual Studio, to help others in her hometown pursue careers
in software.

"Go, Sara, go!"

Rob Caron

Redmond, Washington

August, 2008

xxvii

Introduction
This book contains the best 251 tips for mastering the ins and outs of the Visual Studio envi­

ronment. Imagine every Tools Options setting that's generic across any language explained

using the simplest examples. Imagine every nook and cranny of the core environment

illustrated for you to explore. The tips in this book explore these aspects of the Integrated

Development Environment (IDE), so you don't have to imagine anymore.

Before you jump straight in to the tips, please note: It is imperative you know which develop­
ment settings you are using, so you know which keyboard shortcuts to use.

I wrote these tips using the Generic Development Settings and the U.S. English keyboard

layout. You can use Tip 6.1 to find out which development settings you are using and Tip 6.2

to reset your settings, in case you want to follow along directly word for word and keyboard

shortcut for keyboard shortcut.

If you want to follow along using your current settings, please read Tip 0.0, found at the end

of this introduction, to know which keyboard shortcuts to use. And yes, I was clearly a math

major in college, since I start counting at 0.

How This Book Happened
In March of 2005, I shared an office with Sean Laberee, the program manager for the Visual

Studio core editor. While I was walking out the office to grab lunch one day, the words "Tip
of the Day" on his monitor caught my eye. I didn't want Sean to think I was intentionally

reading his monitor, but at the same time, I was too intrigued by the idea to just let it go.

When I got back, I asked him about this "Tip of the Day." He explained his idea of having these

"did you know" tips on the Visual Studio start page. I suggested that we use my blog to exper­
iment with an editor tip of the day for a few months. I had recently joined the editor team as a

software tester, and I was surprised how much functionality existed that I didn't knoyv about.

Now enter Rob Caron, a marketing manager for Visual Studio. Rob noticed the experiment

on the MSDN RSS feed and inspired me to go above and beyond by running a weekly tip

series on more aspects of Visual Studio. He gave the tips much love by featuring them on the

Visual Studio home page.

I had to share my excitement seeing the tips on the product's Web site, so I called home on
Saturday, August 27, 2005, to tell my family to check this out. But the excitement was very

short-lived. My mom informed me that "the big one" was out there in the Gulf of Mexico,

heading toward New Orleans. I said, "Oh really? I haven't been following hurricane season

this year. What's the name?" I would never hear the name Katrina quite the same again.

xx ix

xxx Introduction

In Spring of 2007, after having made the career switch from software design engineer in test

to program management, I decided I would try the weekly tip series again for Visual Studio

2008. Again, enter Rob Caron. He says, "You know, a tip of the day would really rock." I am

completely powerless to say no to big challenges.

The idea of writing a book and donating the author royalties was always in the back of my

head during the Visual Studio 2008 "Tip of the Day" series, given how I had just left the

Visual Studio team to join the CodePlex team. Fortunately, thanks to all the requests to write

a book from my blog readers over the next several months, I realized the time had come.

Who This Book Is For
The tips presented in this book are targeted at the core environment functionality of Visual

Studio, so they are generic across any programming language. To create these tips, I broke

down these generic feature areas of the IDE into very small pieces of functionality. Hence,

some of the tips will explore trivial aspects of Visual Studio whereas others will explore the
less-obvious, more-obscure areas. In other words, my goal is to capture all the ins and outs

of Visual Studio so we can all share the same baseline knowledge of how the IDE works.

How This Book Is Organized
The chapters correspond to how we, the Visual Studio Core QA Team, categorized the feature

areas internally for the Visual Studio 2005 product cycle. Some feature areas, like the editor,

were so big that I had to break them out into several chapters. Other chapters seemed to

flow better when based on functionality, like the tool windows versus dialog boxes sections

in Chapter 5 and Chapter 6.

Tips are numbered sequentially within each chapter. For example, Chapter 3 contains 23 tips,

so you'll find the tips ordered as Tip 3.1, Tip 3.2, all the way to Tip 3.23. We figured it is easier
to refer to a tip as Tip 3.23 rather than Tip 103, if we numbered sequentially throughout the

book, or Tip 3.4.3, if we broke them down into subsections.

Additionally, you'll see my "Sara Asides" throughout these tips, where I share something

personal in regard to the tip, whether it is a stroll down memory lane, an FYI about how

the feature was tested, a story about writing the tip for the "Tip of the Day" series, or a rant

about Seattle weather.

Lastly, I decided to give ya'll some good New Orleans-style lagniappe-a little something

extra on the side, free of charge. I've included appendices where I share more tips on things

beyond Visual Studio, like writing a "Tip of the Day" series, surviving as a software tester, and

stories about creating the IDE from those who were there.

Introduction xxxi

System Requirements
This book is optimized for Microsoft Visual Studio 2005 and Microsoft Visual Studio 2008. All

tips will work in Visual Studio 2005 unless otherwise noted within the tip that it is a feature
specific for Visual Studio 2008.

Contact the Author
You can visit the corresponding "Tip of the Day" series located on my blog at

http://blogs.msdn.com/saraford to see additional commentary from readers.

Note If you are looking for support regarding a keyboard shortcut, a missing piece of the user
interface, or a command that doesn't seem available, please refer to Tip 0.0, Tip 6.1, and Tip 6.2.
I wrote these tips using the General Development Settings, so it is possible that the development
settings you are using have modified the UI slightly.

Support for This Book
Every effort has been made to ensure the accuracy of this book and companion content.

Microsoft Press provides corrections for books through the Web at the following address:

http://www.microsoft.com/mspress/support/search.aspx

To connect directly to Microsoft Help and Support to enter a query regarding a question or

issue you may have, go to the following address:

http://support.microsoft.com

If you have comments, questions, or ideas regarding the book or companion content or if

you have questions that are not answered by querying the Knowledge Base, please send

them to Microsoft Press using either of the following methods:

E-mail:

mspinput@microsoft.com

Postal mail:

Microsoft Press

Attn: Microsoft Visual Studio Tips editor

One Microsoft Way

Redmond, WA 98052-6399

xxxii Introduction

Please note that product support is not offered through the preceding mail addresses. For
support information, please visit the Microsoft Product Support Web site at

http://support.microsoft.com

Tip 0.0: How to Look Up, Change, or Create Visual Studio
Keyboard Shortcuts

Sara Aside Seriously, I cannot stress enough how imperative it is that you know
development settings you are using, in order to know the right keyboard shortcuts
these commands. This "tip" is so critical that I call it Tip 0.0. I really want you to have
time with this book, so please read this tip before continuing your adventures in

Land.

What Will This Keyboard Shortcut Do?

To find out what command a keyboard shortcut is bound to:

1. Go to the Tools-Options dialog box and navigate to the Environment-Keyboard page.

2. In the Press Shortcut Keys edit box, press the keyboard shortcut you are inquiring

about.

The Shortcuts For Selected Command combo box displays the associated command(s). If
there are no commands associated with the keybinding, the combo box is empty. Please be
sure to drop down the list if there are multiple commands associated with that command.

What Is the Keyboard Shortcut for This Command?

To view a keyboard shortcut for a given command:

1. Go to the Tools-Options dialog box and navigate to the Environment-Keyboard

page.

2. Type the command name in the Show Commands Containing edit box or select the
command from the list box.

Introduction xxxiii

The Shortcuts For Selected Command combo box will display the keyboard shortcut, if it

exists.

Show commands
~

'T. 'o"
= _;::;;;_ --"-= == _::.: = ~

;<it 0, ""o'" '"""'

Shortcuts for selected command:

I~~~ 'n: •• ,c, x;,;,111 r ,,,

How to Create or Change a Keyboard Shortcut

To change or create a keyboard shortcut for a given command:

1. Go to the Tools-Options dialog box and navigate to the Environment-Keyboard

page.

2. Type the command name in the Show Commands Containing edit box or select the

command from the list box.

3. In the Press Shortcut Keys edit box, press the keyboard shortcut you want to associate

with the currently selected command. The Press Shortcut Keys edit box will display the

keybinding you pressed for your confirmation.

4. Click Assign.

If there's a conflict, the Shortcut Currently Used By combo box will show the conflict. Click

Assign to override the conflict.

Note that there are different scopes. The Use New Shortcut In combo box shows the current

scope for a given keyboard shortcut. For example, keyboard shortcuts assigned in the Text

Editor scope will work only when focus is in the editor, regardless of whether you are editing a

plain text file or a C# file. If there's ever a conflict between a keyboard shortcut in the global

scope and any other scope, the more specific scope wins, and that command executes.

xxxiv Introduction

Where Are the Keyboard Shortcut Reference Posters?

The Visual Studio team provides some keyboard shortcut reference posters, which are

based on the standard U.S. English keyboard layout as shown at http://www.microsoft.com/
globaldev/keyboards/kbdus.htm.

Note this book explores many of the less-commonly known aspects of the IDE. So it is still

a good idea to be familiar with Tip 0.0, in the case that these posters don't cover a specific

command or keyboard shortcut.

Keyboard Shortcut Reference Posters for Visual Studio:

• Visual Basic 2008 keybindings: http.//go.microsoft.com/?linkid=9323901

• Visual C# 2008 keybindings: http.//go.microsoft.com/?/inkid=9323900

• Visual C++ 2008 keybindings: http://go.microsoft.com/?linkid=9323899

Acknowledgements
This Acknowledgement section is an experiment to prove whether my theory is correct that

the sooner I start writing thank you notes, the fewer people I'll forget to thank. I started

writing this section when I formatted my very first chapter. If I have forgotten to name my

first-born child after you (alongside all the others listed below), it is only because of the

insomnia I subjected myself to during the summer of 2008 that has resulted in short-term
memory loss. In other words, I really hope I have included everyone, as this book is my life's

work thus far, and I want everyone who helped to know my heart-felt thanks.

First and foremost, I must thank Rob Caron and Sean Laberee for inspiring me to write tips

about Visual Studio. Sean provided the vision, and Rob kept me going.

Since this is my first book, I never understood why nearly every author in their acknowledge­

ments section profusely thanks their book publishers and editors. Now I completely under­

stand. Thanks to Ben Ryan, Devon Musgrave, and Melissa van Tschudi-Sutton at Microsoft

Press for their excellent guidance in my first publication, their patience with all my newbie

questions, and their ability to set my expectations about how much effort goes into capturing

screen shots. Thanks again for this opportunity to help my hometown. Also, I need to give a

shout out to Jim Newkirk for all the book-writing advice that kept me, the deer in headlights,

from dying of pure fright.

To my peer reviewers, who despite their own demanding work schedules, made the time to

review my chapters and give me detailed feedback on such a short notice, I could not have

put together this book without you. My heart-felt thanks to Dylan Lingelbach, Sean Laberee,

Fiona Fung, Chris McGuire, Josh Stevens, Noah Coad, Habib Heydarian, Monica Boris,

Douglas Hodges, Pat Brenner, Rahul Jajoo, and Rob Caron.

I have to acknowledge those who kept my head above water during the summer of 2008.

Thanks to Charlie Calvert for the support and the confidence boosts as we prepared to

speak at TechEd on the Visual Studio IDE tips and tricks. Thanks to Bryan Kirschner for the

encouragement and the support for my talk at the O'Reilly's Open Source Convention, as I

faced many chapter deadlines during that time. And my heart-felt thanks to everyone on the

CodePlex team for sharing an office with me this entire time.

Lastly, thanks to my parents Jane and Louie Smolensky, for introducing me to computers at

such a young age and an endless supply of Legos.

xxxv

Chapter 1

Get Back to Basics with Your Editor
Performance improvements in Microsoft Visual Studio begin in the editor. There's no other

action you do more than just pure typing, whether you are typing code, editing code, or

deleting code. Think of these tips as a coin jar, where you put your spare change. Even if one

of these tips saves you a few seconds, those few seconds really start to add up throughout

the days, weeks, and months. That's a lot of spare time saved!

Basic Editing
Regardless of whether you're coding in C# or editing a plain text file, there are some basic

tips you can use for any editing experience.

Text Editing
Over time, we developers form "muscle memory" for how to perform certain tasks, and we do

a task in this familiar way even if there's a more efficient way. For example, consider deleting

the current line of text in a file. Your first instinct might be to press Home, then Shift+ End, and

then Delete. Obviously, this sequence works just fine, and thanks to muscle memory, you'll never

even consider looking up the corresponding keyboard shortcut. But imagine the second or two

(or more if you hit the wrong key by accident) you would save if you could press just two keys
to perform the same action. Although the amount of time you'll save might seem small at that

moment, consider how the savings can add up if you are constantly deleting lines of text.

Tip 1.1: How to not accidentally copy a blank line

Sara Aside There's something about me that wants to hit Ctrl+C instead of Ctrl+V whenever
I'm on a blank line. I just don't understand it. So what happens is I copy a blank line, erasing the
text I was trying to paste right there. And to my dismay, I hit Ctrl+V and nothing happens. In fact,
I sometimes realize that I've accidentally hit Ctrl+C, so I hit Ctrl+V as fast as I can, thinking I can
outrun the editor. But I lose every time.

The option that saved my sanity is found in Tools-Options-Text Editor-All Languages-General.

There's a check box called Apply Cut Or Copy Commands To Blank Lines When There Is No

Selection. Unchecking this option allows me to press Ctrl+C all I want on a blank line without

losing the content on my clipboard.

1

2 Microsoft Visual Studio Tips

Tip 1.2: How to cycle through the Clipboard ring to paste different
things

Sara Aside For me, this is yet another one of those moments where I exclaim, "Why can't I
ever remember this tip?! It would save me so much time! Argh!" But then again, every time I'm
reminded about this tip, it's like getting a little gift in the mail.

You can cycle through the past 20 items you've either cut or copied onto the Clipboard via

Ctrl+Shift+V. Pretty cool, huh?

To illustrate, let's suppose you have two Console.WriteLine() calls and you need to swap the

two strings, as shown in the following example:

·class·Pr0gram
. {
· · · · ·static·void·Main(string[] ·args)
.. ""{

· · · · · · · · ·Console. WriteLine ("World") ;
· · · ··· ·· ·Console.WriteLine("Hello");

.)

Start by cutting both strings: "World" first, and "Hello" second. Now go to the first Console.

WriteLine() call. When you press Ctrl+Shift+V once inside the parentheses, you'll get the

following changes to the code:

·class·Program
-{

· · · ·static·void·Main(string[] ·args)
.... {

· · · · · · · · ·Console. WriteLine (11111111111
· · · · · · · · C~onsole. WriteLine j;
.....)
. }

Next, move to the second Console.WriteLine() call, and press Ctrl+Shift+V twice in a row.

You'll get this:

·class·Program
. {

· · · · ·static·void·Main(string[] ·args)
.... -{

· · · · · · · ·C0ns0le.WriteLine ''Hello
· · · · · · · · ·Console. Wri teLine ClillllilllJ

Chapter 1 Get Back to Basics with Your Editor 3

And you store up to 20 items before the Clipboard cycles, meaning that it'll go back to the

first item still recorded on the Clipboard. This is why the feature is called a Clipboard ring.

Tip 1.3: You can use Ctrl+Enter to insert a line above and
Ctrl+Shift+Enter to insert a line below

In the following example, note the location of the cursor in the middle of the current line.

Pressing Ctrl+Enter inserts a blank line above the current line, and Ctrl+Shift+Enter inserts a
blank line below the current line. The cursor moves to the beginning of the new line.

·static·void·Main(string[] ·args)
·{

· · · · ·I I· Press· Ctrl+Enter ·to· insert· blank· line· above

··· ··Console.~riteLine("Hello·World");

· · · · ·I I· Press· Ct rl+Shi ft+Enter ·to· insert· blank· line· below
. }

Tip 1.4: You can use Ctrl+W to select the current word

Press Ctrl+W at any location on a word to select the entire word. You can have the cursor

at the end of word and still have it select the current word (instead of the proceeding white

space).

·Sub ·Main()
· ·· · ·' ·Ctrl+W·selects·current·word

If the cursor is in the middle of some white space, defined as two or more spaces, the white

space will be selected.

Tip 1.5: You can use Ctrl+Delete to delete the next word and
Ctrl+Backspace to delete the preceding word

Sara Aside Many of my "Tip of the Day" ideas come from looking through my old test cases.
The Ctrl+Delete test case caught my eye because I had completely forgotten about this keyboard
shortcut!

Ctrl+Delete deletes the next word the editor finds. The command is Edit.WordDeleteToEnd.

Ctrl+Backspace deletes the previous word. The command is Edit.WordDeleteToStart.

4 Microsoft Visual Studio Tips

· Sub·Main ()
· · · ··' ·Delete·WriteLine·by·pressing•Ctrl+Delete
· · · · ·Console. ~riteLine ("Hello· World")
·End·Sub

Tip 1.6: You can use Ctrl+L to cut the current line and Ctrl+Shift+L to
delete the current line

Ctrl+L cuts the current line, including the end-of-line character (EOL). The command is Edit.

LineCut.

Ctrl+Shift+L deletes the current line, including the EOL. The command is Edit.LineDelete.

Here's an example of Ctrl+L being used. In this example, you'll see the cursor before the
Console.Writeline() call.

·SUI:>· Main()

••••• 1 • Press• Ct.r l+L. to. cut. current. line
· · · · -~onsole. lJriteLine ("Hello·T.Jorld")
·End· SUI:>

And after you hit Ctrl+L, the line disappears.

·SUI:>· Main()

••••• 1 0 Press·Ctrl+L·to 0 cut·current·line
·End· SUI:>

But let's continue on with a bonus tip ... Shift+ Delete cuts the current line, including the

EOL, if nothing is selected on the current line. If text is selected, Shift+ Delete cuts just that

text.

Tip 1.7: How to delete horizontal white space at the beginning of a line

Aside I always thought that "white space" was one word, but according to the Visual
UI, it is apparently two words. For this tip, I'll let the UI win and call it "white space."

On the Edit-Advanced menu, you'll find the Delete Horizontal White Space command bound

to Ctrl+K, Ctrl+\.

To use, put the cursor anywhere in the white space that precedes the line and press Ctrl+K,

Ctrl+\. You can also select multiple lines and delete the white space at the beginning of each

line.

Chapter 1 Get Back to Basics with Your Editor 5

· · · · · · · ·static·void·Main(string[] args)
........ {

Tip 1.8: You can drag code or text to a new location

Sara Aside I tend to be more of a keyboard user, probably because I'm too lazy to reach all
that way for the mouse. When I first saw this functionality, I was surprised because it is just not
something I would intuitively think of, but of course it makes complete sense once the "Oh, I
haven't seen that before" feeling wears off.

Select the code block you want to move by holding down the primary mouse button, and

then drag the mouse pointer to the desired location. To copy code to the new location, hold

down the Ctrl key.

public void HelperMethodl ()
{

click+drag
}

Not impressed? You can also drag code to a different file. Drag the code above the desired

file tab, as shown next.

void Main(string[] args)

.WriteLine("Hello World");

public void HelperMethod2()

6 Microsoft Visual Studio Tips

Although you'll get the mouse "can't drop" pointer, the editor will switch to that file. Then

just move the mouse pointer down into the file, and you'll see the good ol' "drag and drop"
pointer again. Enjoy!

Tip 1.9: You can right-drag code to Move Here or Copy Here

Sara Aside The idea for this tip was submitted by a blog reader. I had no clue that this menu
item existed.

Select a line of code, and then right-drag that line to anywhere within your editor (or into
another editor window). Then you'll get this little menu popup with the options of Move
Here, Copy Here, and Cancel.

class Program

static void Main (string [] args)

public
{

Sara Aside I love it when blog readers give me little tips like these, especially when I never
knew they existed. This tip inspired me to start playing the game "Stump the Sara," where I
asked blog readers to send me their most obscure IDE tricks. Since I only worked on the Visual
Studio Core Team, the tips had to be limited to generic IDE features not tied to any specific
language.

Tip 1.10: How to transpose characters, words, and lines in the editor

You can use three commands for transposing or swapping text in the editor, namely:

• Press Ctrl+ T to transpose a character.

• Press Ctrl+Shift+ T to transpose a word.

• Press Alt+Shift+T to transpose a line.

Chapter 1 Get Back to Basics with Your Editor 7

In the following example (where the cursor is placed before the "is" on the commented line

"now is the time"), I'll apply the three commands to illustrate how text is swapped.

·static·void·Main(string[) ·args)
. {
· · · · ·//·now·~s·the·time
· · · · ·Console.WriteLine("Hello·World");
·····Console.Read();
. }

• Pressing Ctrl+T swaps "i" and the previous space, creating"// nowi s the time".

• Pressing Ctrl+Shift+ T swaps "is" and "the", creating "// now the is time".

• Pressing Alt+Shift+T swaps the current line with the line below it.

Tip 1.11: You can use a keyboard shortcut to uppercase or lowercase a
word in the editor

Once again, this tip illustrates that you can save time by using a keyboard shortcut versus
having to type out your changes manually.

• Press Ctrl+Shift+U to make the current character or selected characters uppercase.

• Press Ctrl+U to make the current character or selected characters lowercase.

Sara Aside I have to be honest here and say I had to ask around the Visual Studio building
to find out under what conditions these commands would be useful. One scenario is where
the Caps Lock key is bound to be a control key. For example, you type a word, then press
Ctrl+Shift+Left Arrow to select, then use Ctrl+Shift+U to uppercase (instead of having to hold the
Shift key down to type the entire word). Or maybe lntelliSense has made me lazy. =D

Undo/Redo

In the text editor toolbar, you'll find the Undo and Redo buttons. But if you look closely,

you'll see a drop-down arrow, meaning that these buttons are actually drop-down controls,

displaying your last undo and redo actions.

8 Microsoft Visual Studio Tips

Tip 1.12: How to use the Undo stack on the standard toolbar

Instead of having to press Ctrl+Z or Ctrl+Y multiple times to undo or redo multiple commands,

you can drop down the Undo or Redo button and, starting from the last action, select how

many consecutive additional actions you want to undo or redo.

Just make sure the cursor is in a text editor to enable these buttons.

Scrolling and Navigation
Being able to view your code and move your cursor to whatever line catches your eye is just

as important as being able to type your code as effortlessly as possible.

Scrolling
We've all used the mouse wheel to scroll code and text within the editor. The following tips

introduce a few new keyboard shortcuts to improve your scrolling experience. Also, you may
want to know how to hide the scrollbars altogether. Hey, you never know when those few

extra pixels will come in handy.

Tip 1.13: How to use the mouse wheel for scrolling in all directions

Did you know that you can press down on the mouse wheel and have it act as a third

button? For many applications that have an editor, pressing the mouse wheel displays an

icon indicating which directions you can scroll in. Some require holding down the mouse

wheel; others don't.

In the editor, press the mouse wheel just once and you'll see an icon indicating which

directions you can scroll in.

i~.
·Sub·Helperi'unctionl()
.... ·Console.WriteLine
·End·Sub

Chapter 1 Get Back to Basics with Your Editor 9

A couple of things to note:

• The farther away the mouse is from the directional icon, the faster the editor will scroll.

• Pressing the primary mouse button stops the scroll, but you have to press the button
again to move the cursor to the desired location.

Tip 1.14: How to jump to the top or bottom of the current view in the
editor without scrolling

Unlike pressing PgUp or PgDn, which causes the editor to move either up or down a page,
the following keyboard shortcuts cause only the cursor to move:

• Ctrl+PgUp jumps the cursor to the top of the current editor view without moving the
current view, unlike a Pg Up.

· · ·····protected

· · · ·· ···//·Nested·type·is·also·ge

• Ctrl+PgDn jumps the cursor to the bottom of the current editor view without moving
the current view, unlike a PgDn.

If you find yourself using the keyboard shortcuts just shown, you may find these additional

shortcuts helpful:

• Ctrl+Shift+PgUp selects all the text between the current cursor location (near the bot­
tom of the screen in the following illustration) and the top of the current editor view.

10 Microsoft Visual Studio Tips

• Ctrl+Shift+PgDn selects all the text between the current cursor location and the bot­

tom of the current editor view.

One thing to note is that all four commands jump the cursor straight up, meaning that it

doesn't go to the beginning of the line on that top line, but rather it goes as close as possible

to the current column position, as you saw in the preceding illustrations.

Tip 1.15: You can hide the vertical and horizontal scroll bars in the
editor

This tip truly embraces the spirit of "Did you know?"

Go to Tools-Options-Text Editor-General, and under Display, you can uncheck the Vertical

Scroll Bar and the Horizontal Scroll Bar options.

Now your scroll bars are hiding from you. And yes, you can still scroll both vertically and

horizontally in this state.

... x

·//·Nested·type·is·also·g~ner

· ·protected·class·
.. {

· ·· public· ·next;
·· · · · //T·as·private·member·da
· · · ··private ·T ·data;
·· · · · ·//T·used in·non-generic·
· · · · · ·public· Node (T · t)
...... {

· · ······next =·null;
·· · · · ·· · ·data·=·t;

... }

· · ·· · ·public·Nodo·Next
..... {

· · · · · · · · ··get· {·return· next;· }
····set·{ ·next·=·value; ·

.. ···}

Chapter 1 Get Back to Basics with Your Editor 11

Navigating Within and Among Editors

Navigating code is another activity you do so frequently that any time you save greatly adds

up in the long run. The next tips get you to where you want to be, or back to where you just

were, as fast as possible.

Tip 1.16: How to navigate forward and backward in the editor all
because of go-back markers

In the standard toolbar, there are Navigate Backward and Navigate Forward icons.

using System;

using System;

In the editor, the Navigate Backward command is bound to Ctrl+Minus, and the Navigate

Forward command is bound to Ctrl+Shift+Minus. I find these commands most helpful when

navigating around multiple files or jumping through call stacks.

This concludes your "Basic Editor Navigation 101" course. Now it is time for the "Advanced

Editor Navigation 201" course.

12 Microsoft Visual Studio Tips

You may have noticed that the Navigate Backward button additionally contains a drop-down
list box. Displaying the items in this list box shows you all the places that have a go-back

marker. In other words, when you hit the Navigate Backward button, you are going to the
most recently visited go-back marker.

If we've done our jobs right, the go-back navigation should feel natural. But if you're like me,
you like to know the little ins and outs of how things work.

A go-back marker is dropped under the following conditions:

• An incremental search (including reverse) leaves a go-back marker at the beginning of
the search and another one at the end.

• A Go To Line action, like Ctrl+G, or a mouse-click that moves the cursor 11 lines or
more from the current position drops a go-back marker at the new location.

• A destructive action (like hitting Backspace) after having moved the cursor to a new
location drops a go-back marker.

• Doing a search, like Ctrl+F, drops a go-back marker at the found location.

• Opening a file drops a go-back marker wherever the cursor was on the old file and
drops another on the opened file.

If you've found a condition where you'd like to see a go-back marker dropped, let me know.

Tip 1.17: How to use Undo to jump the cursor back to the last insertion
point

In Tip 1.16, you learned more than you ever wanted to know about go-back markers. For
this tip, you'll learn how insertion points are slightly different. They are similar to the go-back

markers, but they are applied anywhere you click the mouse or jump the cursor to. The
go-back marker "11 or more lines" rule doesn't apply.

Move caret

Vndo1 Aail>rl

The option, which is shown in the next illustration, can be found at Tools-Options-Text
Editor-General.

l!i!Im:lw:le ittsettfonpoinfmovemenb·i.nUndo.listl

Chapter 1 Get Back to Basics with Your Editor 13

To give it a try, just click somewhere, then click somewhere else (or use Find or a Go To Line if

you're using the keyboard), and then click Undo. You'll move back to that previous location.

Tip 1.18: How to reach the navigation bar via the keyboard

At the very top of the editor and just below the file tab channel, you'll find the navigation

bar. The left combo box lists objects, and the right one lists the selected object's members.

These combo boxes are very useful when you need to jump to various functions throughout

a large solution or you want to see what functions an object has.

T X

To jump to the navigation bar via the keyboard, press Ctrl+F2. This keyboard shortcut is

bound to the Window.MoveToNavigationBar command. To toggle between the Objects list

and the Members list, press Tab or Shift+ Tab.

Additionally, you can hide (or show) the navigation bar by going to Tools-Options-Text

Editor-All Languages-General and setting the Navigation Bar option to the desired setting.

Note that since this option is found in the All Languages pane, you can customize it for any

listed language under the Text Editor node.

j ~Navigation bar j

Tip 1.19: How to split a window and create new windows

There are two ways to split the current window:

• From the Menu Bar, go to Window-Split.

• Using the mouse, grab the splitter control found directly above the document scrollbar,

as shown in the next illustration.

14 Microsoft Visual Studio Tips

But the split command works only horizontally. If you need to split vertically as illustrated

in the following picture, use the Window.NewWindow command found at Window-New
Window. This will create the windows "Program.cs:l" and "Program.cs:2." Then you can
use the Window-New Vertical Tab Group command to separate both files with a vertical
divider.

·· · ·//Type·parameter·T·in·
- · · · ·public· class· MyList<T> ·: ·

.... {

Tip 1.20: You can use F6 to jump between split panes in the editor

Sara Aside When I originally wrote and published this tip, I had to laugh at the fact that
there was a six-month gap between this tip and Tip 1.19, which describes how to split the
panes. The first week I started the "Tip of the Day" series on my blog, I came to the harsh reality
that you actually have to write a tip of the day every single day. I was at a conference during
the first week of writing "Tip of the Day," so the initial tips were those I could write the fastest.
There was no rhyme or reason behind the madness; hence, the six-month gap between Tip 1.19
and Tip 1.20.

Once you have used the splitter to split the editor window, you can use F6 to jump between
the editor views.

Chapter 1 Get Back to Basics with Your Editor 15

El namespace · Generics_CSharp

J '. · · ·//Type·parameter·T·in·angle·brackets.
~····public· class ·MyList<T> ·: · IEnumerable<T>

.... { , - , ..
I --·\~ • r1-------------------------------- using· System. Collections; A

- using· System. Collections. Generic; [)
, using· System. Text;

El namespace ·Generics CSharp I{ -

Tip 1.21: How to enable URL navigation within the editor

Under Tools-Options-Text Editor-All Languages-General, there is the Enable Single-Click

URL Navigation option. This option is enabled by default for most editors. But, just in case

you're not able to click on a URL, here's where to go to verify the option is set.

//·http://msdn.microsoft.com/vstudio
ht!p<//msdn.microscft.com/vstudio
CTRL + click to follow link

Tip 1.22: How to use Ctrl+G without the Go To Line dialog box
popping up

This tip is pretty straightforward: Pressing Ctrl+G will pop up the Go To Line dialog box.

But did you know there's a way to use Ctrl+G without bringing up this dialog box?

1. Press Ctrl+D to go to the Find combo box on the standard toolbar.

2. Type in the line number.

3. Press Ctrl+G. (Note: Do not press Enter; if you do, you'll search for the number!)

Congrats! You've just navigated to the line without the Go To Line window coming up.

You can try to navigate to line 0, but Visual Studio will take you to line 1.

16 Microsoft Visual Studio Tips

Word Wrap versus Virtual Space

The word wrap option wraps a long line of text, displaying on a new line the text that doesn't
fit on the first line. The virtual space option allows you to have an insertion point anywhere
on the file, even beyond the end-of-line character.

Tip 1.23: How to enable word wrap
The next image illustrates wrapping a line of text onto the next line.

static void Main(string[]

Console.WriteLine(
"Hello World");

Console. Read() ;

Go to Tools-Options-Text Editor-All Languages-General, and check the Word Wrap option.

When it is checked, you'll also have the option to Show Visual Glyphs For Word Wrap.

You can customize the foreground color of the visual glyph for a word wrap on the Tools­

Options-Environment-Fonts And Colors by modifying the Visible White Space item.

Plain Text
' Selected Text

Inactive Selected Text
Indicator Margin

.. Line Numbers

Bookmark
Brace Matching (Hi hli ht)

Tip 1.24: How to enable virtual space

Sara Aside This tip is mutually exclusive to the previously mentioned word wrap feature,
1.23. Try as you might, you won't be able to enable both word wrap and virtual space. But if
figure out a way to do it, please don't hesitate to let me know how you did it!

In the following example, the cursor is located in the virtual space. I have enabled the Visible
White Space option to illustrate there are no spaces after the Program class name.

Chapter 1 Get Back to Basics with Your Editor 17

E1namespace·ConsoleApplication21

JI '. ... class·Progr""' I
I····{

········{
· · · · · ·•····•Console. T.JriteLine ("Hello· T.Jor ld"); l. · · · · · · ·static·void·Main(string[] ·args)

· • • • • • • • • • · ·Console. Read() ;

········}
····}
}

Sara Aside I never use word wrap, and I made it through only a few weeks using virtual space
when I was testing it. Neither option was quite for me. When I posted this tip, I asked readers to
describe why they use these options. I knew I would learn something new.

Editor Fonts and Colors
This section focuses on how you can tweak anything in your editor that has some visual
element to it, whether you just want to increase your text editor font sizes or display line
numbers.

Font Size

It is fairly well known that you can go to Tools-Options-Environment-Fonts And Colors and

select Plain Text to increase the overall font size of text in the editor. But there are a couple of
other options for increasing font size that might come in handy.

Tip 1.25: How to increase the editor's ToolTip font size
Go to Tools-Options-Environment-Fonts And Colors and, under Show Settings For, select
Editor Tooltip.

Then you can customize the font and font size.

El using System; L using ~ln_a_m_e-sp_a_c_e_S_y_s_te-m~rs.Generic;
using system.Text;

18 Microsoft Visual Studio Tips

Tip 1.26: You can bind macros to keyboard shortcuts (or, "How to
quickly increase or decrease your text editor font size")

Sara Aside I wrote the accessibility macros, which were my 133-line contribution to the Visual
Studio 2005 product. You'll also find them in Visual Studio 2008.

Go to Tools-Options-Environment-Keyboard and, in the Show Settings For edit box, type

macro. You'll see a list of samples at the top.

There are two accessibility macros worth noting: the increase and decrease text editor font

size macros.

If you are using the General Development Settings and do not want to cause any conflicts

with other keyboard shortcuts, bind the increase macro to Ctrl+Alt+Shift+UpArrow and the

decrease macro to Ctrl+Alt+Shift+DownArrow. Of course, you can bind them to whatever
shortcut you want, but these will not conflict with General Development Settings.

Now open the editor and try out the keyboard shortcuts. Remember that you have to hold

down the Ctrl+Alt+Shift keys and press the up or down arrow repeatedly to really experience

the full effect. Enjoy!

Fonts and Colors

Beyond just changing font sizes, you probably have wanted to change font colors. These next

tips walk you through the various options available.

Tip 1.27: How to change the editor background to black

It's all about the simple things in life.

Go to Tools-Options-Environment-Fonts And Colors and, in Display Items, select Plain Text.

Now set Item Foreground to White and Item Background to Black. And enjoy!

11: 1 r1 _:;; ~:~:,r.;::l 8ln;

11- J JJ r ~~:T.:::::t>?l[l. 1_ ·llectl·:n::::. G"='n~ric;
1L Ll:l; ~3:Tstem. T~zt;

1Lt 1n ~I _t_:: C\ n.= ,·l~iq pl1::::.9.tl~t1.::::l

i

Chapter 1 Get Back to Basics with Your Editor 19

In the preceding screen shot, I set Keywords to Cyan to make the picture look pretty.

(Of course, you can't see this change in this black-and-white book.)

Tip 1.28: What's the difference between Automatic and Default in
Tools-Options-Environment-Fonts And Colors?

Sara Aside Of all the pieces of UI in Visual Studio, I think these two options confuse me the
most. I keep forgetting what the difference is, but at least now I have them written down for the
rest of time.

I'm referring to the two settings, Automatic and Default, that appear in the colors drop-down

list in Fonts And Colors.

Display items:

Selected Text
Inactive Selected Text
Indicator Margin
Line Number:::

Hold on tight, because here we go with my attempt at an explanation

Automatic means that the color is inherited from some other element. For example, consider

the Foreground Color for the Display Item: Visible White Space. Automatic is black, whereas

Default is blue. Automatic in this context is inherited from the operating system's Window

Text.

Db play items: ll:em foreground:

Plain Text A . II Default • Selected Text (] Futomatic
i

Inactive Selected Text
Indicator Margin 111111 Default

LineN~ ·111111 Black
0White

To change the operating system's Window Text on a computer running Windows Vista,

go to Control Panel\Appearance and Personalization\Personalization-Window Color And

Appearance-Open Classic Appearance Properties For More Color Options, and click the

Advanced button. Then select Window to change Window Text Foreground and Background,

Color and Color 1 respectively.

20 Microsoft Visual Studio Tips

To illustrate the point about it being inherited from some other element, I've set Window

Text to use a little green, setting the foreground color to bright green and the background

color to dark green. For example, the text "Window Text" is in bright green and the back­

ground is in dark green.

Let's look at Visible White Space again. Automatic is bright green (coming from the Window

Text setting), and Default is still blue. If you are wondering why everything else is green, I'll

explain that shortly, but first, let's take it one step at a time.

Default is what Visual Studio says the default is, which may depend on your .vssettings file

you selected at first launch (for example, in the General Development Settings) or the last

.vssettings file you reset to via the Tools-Import And Export Settings. You can also use the Use

Default button on the Tools-Options-Environment-Fonts And Colors page to do this quick reset.

For my configuration and probably for all the .vssettings files, Visible White Space has a

default color of blue. It's up to you whether you want to have it come from the operating

system's Window Text or from what Visual Studio says the best default color is.

Okay, cool. But why did so many other elements change colors?

Chapter 1 Get Back to Basics with Your Editor 21

Plain Text is interesting because its Default is set to Automatic. This is why whenever you try

to set it to Automatic, it shows Default the next time you bring up the UI. In other words,

think of Plain Text as always coming from the operating system's Window Text. And since

we set Plain Text to Green, every UI element in the IDE that derives its colors from Plain Text

turned to green.

Sara Aside Finally, this is written down. So I can now forget it again. =D

Tip 1.29: How to change a bookmark color

I call out the bookmark color since it appears at the top of the Fonts And Colors Display
Items list. But this tip applies to all items that appear in the indicator margin, like current

statement, breakpoints, and so on. But let's focus on bookmarks for this tip.

This picture shows a bookmark icon/glyph in the indicator margin:

Sub Main 11
Console. tJriteLine (r~Hello liJor ld")

End Sub

So let's change the color to red! Go to Tools-Options-Environment-Fonts And Colors. Under

Display Items, select Bookmark. Now change the background color to something else, like

red. You'll notice that nothing changes in the editor.

To have a different bookmark color, you need to remove the indicator margin. Go to Tools­

Options-Text Editor-General and uncheck Indicator Margin. Now you'll see the bookmark

appear in red.

ilt••:•::·:·=·-n·I)········
The indicator margin just shows icons (or glyphs, to be more accurate), which are not

customizable. This is why you're only able to change the foreground color and why you

may not see the change. I guess a better title for this tip is "Why didn't the bookmark color

change?" I hope this helps clarify any confusion.

22 Microsoft Visual Studio Tips

Visual Cues

Some of the following tips are enabled by default whereas others you might have a hard
time trying to find, like viewing visible white space.

Tip 1.30: How to track changes in the editor

The tracking changes feature provides the following visual aids to let you know where your
last saved and unsaved edits are:

• Yellow You've edited these lines since your last save. Yellow becomes green upon
saving.

• Green These are the lines you edited before your last save. Save again and green
disappears.

Sub Main()

Console. T.Jr i teL ine (f~Hel lo Wor .ld") I
Console. tJriteLine ("Hello !ifor ld Too't)

End Sub

Not seeing it? Go to the Tools-Options dialog box and, on the Text Editor-General page,
check the Track Changes check box. And now you know how to turn it off.

Still not seeing it? Make sure the Text Editor-General page has the Selection Margin check
box checked.

Tip 1.31: How to show line numbers in the editor

Go to Tools-Options-Text Editor-All Languages-General, and check Line Numbers to show
line numbers for all files.

Sub Main()

Console. tJriteLine ('rHello lJorld")

End Sub

Chapter 1 Get Back to Basics with Your Editor 23

If you just want to see (or not see) the line numbers of a specific file, you can override this

global setting by going to the Text Editor-<specific /anguage>-General page.

Tip 1.32: How to view visible white Space

Sara Aside Here is a simple, but very powerful, little feature, especially when you deal with
white space as much as I did when I tested the editor. The first time I saw one of our developers
using it, I thought, "Yuck!" But now I can't live without it.

There are two ways to enable this feature:

• From the menu bar, go to Edit-Advanced-View White Space.

• From the keyboard, press Ctrl+R, Ctrl+W.

BModule·Modulel

t ····Sub· Main()
>.- ~ ·-1- Fonsole. UJriteLine ("Hello·Td'orld")
. · ····End· Sub

End·Module -·----·--·---·----·-·---·---·--·-·----·----------•

Note that this command is available only when a file is open. Even though this command

is shown only in the menu, the visible white space setting persists for all files and all Visual

Studio launches.

Printing
It was a bittersweet day when I learned that you can print to a file, using the Microsoft XPS

Document Writer that appears in the list of installed printers in the Print dialog box. It was

sweet because it made testing printing so much faster. But it was bitter because all my grand

plans of buying a top-of-the-line color printer for my office became moot.

Printing Options
We all have to print at some point. So, when the time comes for you to print a file, it's good

to know what your options are in customizing how your printed pages look.

24 Microsoft Visual Studio Tips

Tip 1.33: How to print line numbers

Sara Aside Back in the Visual Studio .NET 2003 days, you had to go to File-Page Setup and
check Line Numbers (in the lower left corner) to print line numbers, regardless of whether they
were visible in the editor. For Visual Studio 2005 and beyond, we moved this option to the Print

To print line numbers, go to File-Print, and on the lower left, you'll see two options:

Here's a bonus tip, because I cannot bring myself to write a "Did you know ... how to hide
collapsed regions when printing" tip. It makes me yawn. You can also hide collapsed regions.
I've used this when I wanted to print out just my test case function and I didn't want to print
out any of the helper functions because they all lived in the same test case file.

1 Public Clas" Classl
Z Public SUb Te•t O
3 llelperMethodl !!
4 llelperMethod2 !)
5 End Sub
6
7 Private Sub !lelperMethodl •••

10
11 Private Sub !lelperMethod2 •••
14 End Class
15

The preceding illustration, which I printed to an .xps file (no, I didn't scan in a printed page),

shows how the hidden collapsed regions will print out as ellipses.

Tip 1.34: How to print boldly

I think we all, at one point in time, have tried to customize our editor colors or change
keywords to bold or something else, and then pressed the Print button. Yet, we arrive at the
printer confused that our changes haven't been applied.

To customize your fonts and colors for printing, go to Tools-Options-Environment-Fonts
And Colors and change the selection in the Show Settings For drop-down list to Printer. Now
you can customize your fonts and colors, including bold.

Chapter 1 Get Back to Basics with Your Editor 25

Additionally, let's say that you've already tweaked your colors or just want to use what you

see in the editor. Then press the Use button and select Text Editor Settings. The default

settings are restored to the original text editor defaults.

Tip 1.35: How to print the file path as the page header

Go to File-Page Setup. In the lower left corner, there's a Page Header option:

Microsoft XPS Document Writer

Page header

This option puts the file path across the top of the printed file.

C: \Users\saraf\Desktop\Classl~ vb

Public Class Classl
Public Sub Teot{I

F.elpe:rM-et.hodl O
He:perMethod.2 j J

End Sub

7 Private Sub- HelperMethodl ·~·

Private Sub HelperMet.hod2 ..•
End Class

Status Bar
The status bar gives you updates about what's going on in the IDE, whether you are doing a

build, conducting a search, running a macro, or performing any other such operation.

Small features like the status bar always present a challenge, if not a dare, to a tester. Features

like these nearly mock us with their "You'll never be able to find a new bug against me" attitude.

Or maybe I'm just bitter that I don't recall finding any good bugs against the status bar.

Status Bar Options
As you would expect, there are not many options with the status bar. In fact, I believe this

option might be the only one.

Tip 1.36: You can hide the status bar

I'm not sure why you may want to hide the status bar. Maybe when you are in Full Screen

mode, you want those extra few pixels at the bottom for a true full-screen experience.

26 Microsoft Visual Studio Tips

Whatever the reason, you can go to Tools-Options-Environment-General and uncheck Show

Status Bar. Now Visual Studio does not have a status bar.

And while we're on the subject of the status bar, here's another quick tip to keep in mind if

you choose to leave the status bar showing. You can double-click the section of the status

bar that shows the line, column, and character to pop up the Go To Line dialog box.

Chapter 2

Make Your Editor Work for You
Throughout this book, you'll watch me go back and forth on what was my favorite feature to

test. But I can say without a doubt that there was no other feature I wanted to get my hands

on more badly than the editor. Hey, it is the one feature that everyone uses all the time. How
could I not want to test it and break it?

Chapter 1, "Get Back to Basics with Your Editor," focuses on basic editing tips that can be

applied for any file type-even a plain text file. This chapter focuses on basic coding tips for any

language file. Here, you will find tips for Microsoft lntelliSense, outlining, and code snippets.

Advanced Editing
This section covers tips you should be aware of when coding. These tips present additional ways

to select code, keyboard shortcuts for commenting code, quick mechanisms for formatting

your code, and more!

Selection

There are numerous ways to select code beyond the standard mouse drag.

Tip 2.1: How to use box/column selection in the editor

The editor offers two different selection models: stream and box. There's also line selection,

but that's only in Brief emulations. (See Tip 2.15 for more information on editor emulations.)

Stream selection, using Shift+Arrow key, is what everyone is familiar with. But box selection
allows you to manually select columns and lines at the same time.

El Pub 1 ic ·class· Class 1

I
I::::
I ..

· i ·As· Int.eger
· j ·As· Integer
·k·As·Integer

Just hold down Shift+Alt+Arrow key and you'll quickly get the feel for box selection. You can

also use box selection using the mouse by holding down the Alt key while you select text.

Cut, Copy, Paste still works, but just keep track of where you started to select the text. Ah, the

memories of having to test all this functionality.

27

28 Microsoft Visual Studio Tips

Tip 2.2: How to jump to the beginning of some selected text when
hitting escape

I hope this tip's title makes sense. The idea is that you select some text and then hit Escape.

Now where do you want the cursor to go?

EJModule·Modulel

····Sub· Main()

···End· Sub cursor

If you want it to stay where it is, that's the default behavior. But if you want it to jump to the

beginning of the selection (that is, the selection anchor), go to Tools-Options-Text Editor­
General and check Go To Selection Anchor After Escape.

Tip 2.3: You can use Ctrl+= to select code from the current cursor
location to the last go-back marker

See Tip 1.16 for more information about go-back markers.

The keyboard shortcut used to select code from the current cursor location to the last go­

back marker is Ctrl+=, and the command is Edit.SelectToLastGoBack.

In the previous graphic, I started the cursor at the end of the #Region line and then clicked
the mouse about 17 lines down to drop a go-back marker. Then I pressed Ctrl+= to select all

the text back to the last go-back marker.

Chapter 2 Make Your Editor Work for You 29

Tip 2.4: How to swap the current anchor position in the editor

Ctrl+K, Ctrl+A will swap the current anchor position.

Sara Aside To test Emacs emulations, I decided to write all my test cases in Emacs mode.
(Emacs is a text editor, similar to Visual Studio. For details, see the Wikipedia article
http.//en.wikipedia.org/wiki/Emacs.) What was interesting is that I seemed to swap the anchor
position all the time (using the appropriate shortcuts in Emacs mode); yet whenever I wasn't in
Emacs mode, I never did this. I think it was just the way I was trained in college to think about
the Emacs editing experience that made me want to swap the anchor position.

Cursor position before swap:

BModule·Modulel

- · · · ·Sub·Main()

("llorld")

······End· Sub

Cursor position after swap:

B Module· Module 1

Commenting

Now that you know how to quickly select code, you can quickly comment or uncomment the

selected lines through keyboard shortcuts.

Tip 2.5: How to quickly comment and uncomment code using keyboard
shortcuts

Ah, it really is the simple things in life, isn't it?

Use Ctrl+K, Ctrl+C to comment code and Ctrl+K, Ctrl+U to uncomment code. All the default

development settings have these commands bound to these keyboard shortcuts.

You can find these commands under the Edit-Advanced menu as shown here:

30 Microsoft Visual Studio Tips

Formatting

You can have more control over your cut-and-paste scenarios, whether you are cutting code
from a Web site and pasting it into your editor or pasting code into your favorite blog editor.

This section presents numerous ways to quickly format your code as needed for a particular

language.

Tip 2.6: You can display guidelines in the editor to help format your
code

Sara Aside The most popular tip on my blog is the one about guidelines. I think it is so popular
because it was one of my very first tips about Microsoft Visual Studio many, many years ago. I've
had a lot of people thank me for including that tip in my blog, but when a random developer
stopped me in the hallway to thank me because he wrote the feature, that took hallway con­
versations to a new level. He had moved to another area of Visual Studio many years before my
writing the tip, so he was very excited to see his feature get some public attention. I think one of
the hardest things for any developer is to spend time coding a feature that never gets into the
hands of a customer.

Important To enable guidelines, you need to modify your registry settings. Please be aware
that you use guidelines at your own risk and should do so only if you are comfortable modifying
your registry settings. You will need to restart Visual Studio after modifying the registry for the
changes to take affect.

Go to HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\9.0\Text Editor.

Create a String (RG_SZ) key called Guides.

The value is in the format of RBG(x,y,z) n1' ... ,n13' where x,y,z are the RBG values and n is the

column number. You can have at most 13 guidelines. For example, RBG(255,0,0) 5,20 will put

two red guidelines at column positions 5 and 20, as illustrated here:

a-Vs in~· System; j l us in~· System. Col lectj.ions. Generic;
using\· System. Linq; 1
·usin~·System.Text; i

i :

El names~ace • ConsoleAppllication23
(

~ · · · · cjlass ·Program
.... (

~ · · · · + · ·static·void·~ain(string[] ·args) ; .. .('

· · · · ·i· ······Console .~riteLine ("Hello· tJorld");
..... : ...) '

... »!
·)

Chapter 2 Make Your Editor Work for You 31

Tip 2.7: How to format the document, the selected text, or just the
current line
Ever been typing in the editor and, for whatever reason, the text isn't indented properly on

the line? Instead of manually pressing Backspace or Tab for each line of text, just press Ctrl+K,
Ctrl+D, which performs the Format Document command.

For larger files, you might just want to select the region that isn't justified correctly and use

Ctrl+K, Ctrl+F. This keyboard shortcut formats the current line if you have nothing selected.

These commands are found under the Edit-Advanced menu.

Tip 2.8: How to keep tabs or to insert spaces

Sara Aside This tip and Tip 2.9 were my least favorite features to test. It drove me crazy
to track of when a tab should get inserted, when the cursor should move to the
+nrmo1++~.r1 position, and so on and so forth. Now I use only spaces in my code. =)

Go to Tools-Options-Text Editor-<Language>-Tabs to switch between using tabs and

inserting spaces.

32 Microsoft Visual Studio Tips

Note that you can set this for all languages on the Text Editor-All Languages page, but

usually this is something you want to set for each individual language.

Tip 2.9: How to convert spaces to tabs and tabs to spaces
There are four commands that involve converting spaces to tabs and tabs to spaces. The first

two commands are found on the Edit-Advanced menu:

• Tabify Selected Lines Replaces the leading white space on a line that contains the

selection with tabs.

• Untabify Selected Lines Replaces the leading white space on a line that contains the

selection with spaces.

Note The Edit-Advanced-(Un)Tabify Selected Lines isn't supported for Microsoft Visual Basic.

The last two commands are not found on the Edit menu but are available for you to either
bind to a keyboard shortcut or manually add to the Edit menu or Text Editor toolbar:

• Edit.ConvertTabsToSpaces Converts selected white space to spaces.

• Edit.ConvertSpacesToTabs Converts selected white space to tabs.

Chapter 2 Make Your Editor Work for You 33

Note that you may have to uncheck Tools-Options-Text Editor-Basic-VB Specific-Pretty
Listing (Reformatting) of Code to use Edit.ConvertTabsToSpaces and Edit.ConvertSpacesToTabs.

Tip 2.10: You can increase and decrease the line indent from the text
editor toolbar

Sara Aside Not one of my best "Tip of the Day" titles, but it illustrates the point. =)

Busing· System;

With either a single line or several lines selected, you can use either the Increase Indent or
Decrease Indent command found on either the text editor toolbar or the Edit-Advanced
menu (where it is listed as Increase/Decrease Line Indent).

Tip 2.11: What's the difference between smart indenting and block
indenting?

Smart indenting is the option you want, provided you want the cursor to be properly indented
whenever you press Enter or the up and down arrows in the code. An example is when you
create a new method called Methodl() and then hit Enter. You'll notice the cursor automat­
ically indents itself. If you continue to hit Enter, the cursor will remain indented. Not all
languages support this smart indenting, but if the language you're using does, this should

be the default setting for that language.

Block indenting is similar to a document editor. Using Visual Basic as an example, the differ­
ence here is when you type in Methodl() and hit Enter, only that first new line is automatically
indented. The next new line places the cursor at column 0.

Selecting None will not indent any new lines. You will have to indent everything manually.

34 Microsoft Visual Studio Tips

Outlining

Take control of outlining, whether you want to quickly collapse or expand your code, or
remove it altogether.

Tip 2.12: How to collapse and expand code
There are five commands for outline toggling; they can be found on the Edit-Outlining
menu.

Toggle Outlining Expansion

By pressing Ctrl+M, Ctrl+M anywhere within the code block, you can toggle between
collapsing a given block of code (as shown here)

namespace·ConsoleApplication23
{

····class·

and expanding it (as shown next)

naniespace·ConsoleApplication23
{

····class· Progrart1
... .(

· ,. ··· ·Static·void·Main(string[] ·args)
........ {

.... · .. ····Console. lJriteLine (''Hello· World");
··}

Toggle All Outlining

By pressing Ctrl+M, Ctrl+L anywhere in the editor, you can toggle between collapsing and
expanding the entire file.

Completely collapsed:

nEUt'lespace · ConsoleAppl ication2 3[~]

Completely expanded:

El using· System;

l us~.ng.Systern.Collections.Generic; us1ng.system.Linq;
using· System. Text;

l? naniespac.e • Conso leAppl icat ion2 3
(

$ class. Pr1:.1;;rrarn
.. ·(

$ · · · · · · · ·static •Void· Main (string[] · args)
·(

• · · · · · · · · · Ccnso le. lJr i teL ine (rrHel lo· liJor lct 1r) ;
........)

p · · · · · · · ·static· string· HelperFunction ()
....... ·(

....... ·)

....)
}

lo

Stop Outlining

Chapter 2 Make Your Editor Work for You 35

By pressing Ctrl+M, Ctrl+P anywhere in the editor, you can turn off outlining.

na1nespace · Conso leApplicat ion2 3
(

····class·
... ·(

· · · · · · · •Static·VOid·Main(string[] ·args)
...... ·(

. T.JriteLine (''Hello· World'');
....... ·}

I
········Static·string·HelperFunction{)
........ (

· · · .. return· f'hello. wor lct'';

Start Automatic Outlining

Unfortunately, start outlining and stop outlining are not the same command, so you can't

toggle between one state and the other. Additionally, using the General Development

Settings, start outlining is not bound to a keyboard shortcut. So you need to go to Edit­

Outlining-Start Automatic Outlining to turn on outlining again.

36 Microsoft Visual Studio Tips

Collapse to Definitions

In my opinion, Collapse To Definitions is is the most useful of all the outlining commands
(mostly because it was the only one I used, except for when I had to test the others). This

command allows you to quickly glance at all of your functions.

naniespace • ConsoleApplication23

· ·· ·class·Progrrul::l
.... {
•• 0 ••• • ·static·void·Main(string[] ·args)CI

· ·· ·····static·string·HelperFunctionl

·static·string·HelperFunction2()~
... ·)

Tip 2.13: You can cut and paste a collapsed block of code

Sara Aside You can cut and paste a collapsed block of code, keeping all of the code inside
intact. Of course, this is exactly what you would expect, but I never thought about trying it.

nan'lespace·ConsoleApplication23
{

.... (
········static·void·Main(string[] -args)~

········static·string·HelperFunctionl(
....)
}

With a block of code collapsed, as indicated to the right of the code lines shown in the

preceding illustration, select the block and cut or just cut the line via your favorite mechanism
for cutting a line. Now navigate to the desired location and paste.

EJnaraespace·ConsoleApplication23
{

$ ····class· Prograi:o

····{
p ········static·void·Hain(string[] •args)G::;]

~ ········Static·atring-HelperFunction1()G::;]

? ······· ·static·string·HelperFunction2 ()
········{

f • · · · · · • · · · · • return· ''Helper.Function. 2 rr;
········}
I I ····}

Chapter 2 Make Your Editor Work for You 37

Note the code will be automatically expanded upon pasting.

The idea behind this tip is that you want to quickly cut and paste an entire function, but

the function is quite long. You can use the approach shown in the previous tip (specifically,

Ctrl+M, Ctrl+M to toggle between expanding and collapsing a block of code) to collapse the

function to just the function name. Then press Ctrl+L to cut the current line. Now you can paste

the function wherever you want.

Tip 2.14: You can hide outlining (selection margin) without turning off
outlining
Go to Tools-Options-Text Editor-General, and uncheck Selection Margin. Although the left

margin that indicates a code block is gone, outlining will still work.

na:mespace·ConsoleApplication23
{

··· ·class·Program
... .(
·•· ·····static·void·Main(string[] ·args)G::;]

········static·string·HelperFunctionl()G::;]

··· ·····static 0 string 0 HelperFunction2()G::;]
····)

Emulations

Back in the day, during a summer research program at the University of Massachusetts, I was

fortunate enough to use GNU Emacs every day all summer long. I use the word "fortunate"

because five years later, I would be trying to "page-in" everything I learned about Emacs to

test the Emacs editor emulations in Visual Studio.

The other emulation I tested was Brief. I didn't have any prior experience with Brief, so I was

on my own to take a crash course. Fortunately, there was someone in the Visual Studio

38 Microsoft Visual Studio Tips

building who had used Brief, so I got to bounce a lot of ideas and questions off of him.

However, this meant that I had to learn three different sets of keyboard shortcuts! I decided

to cycle through the editor emulations, where one week I focused on Emacs, the next week

I focused on Brief, and then I had a sanity-check week with the default editor. It was a very

confusing time for my muscle memory.

But don't get me wrong, testing editor emulations was a tester's corner case heaven. Having

been a program manager for a couple of years now, I completely understand what I put the

developer and the program manager through by having them figure out what to do with all

those bugs I found. But, it was still pure joy.

Tip 2.15: How to enable Emacs and Brief editor emulations

In Visual Studio 2005, we introduced Emacs and Brief emulations into the editor.

Go to Tools-Options-Environment-Keyboard, and then drop down the Apply The Following

Additional Keyboard Mapping Scheme list. Then choose either Brief or Emacs.

,, 1
,;:,JVisual Basic 6
: :··,!Visual C# 2005

'. ;JVisual C + + 2
, : -]Visual C++ 6
, jVisual Studio 6

To return to the standard editor, just select (Default).

Binary Editor
You can use the binary editor to edit any resource, provided you want to edit it bit by bit.

Yes, I came up with this bad joke all by myself.

Tip 2.16: How to open something in the binary editor

~ l Sara Aside The first time I saw this test case in the editor test bed, I thought, "Whoa, I've
opened the Open File dialog box a thousand times and have never seen this option before."

Chapter 2 Make Your Editor Work for You 39

· Open With ...

To use the binary editor, follow these steps:

1. Go to File-Open File.

2. Click the drop-down arrow on the Open button or, from the keyboard, just press

the down arrow.

3. Choose Binary Editor and click OK or Open, depending on your Visual Studio

version.

, .· Cbo1ue ij>e progrlitti you w~:ti! ~.~.ti?.o~~i'rtt;lt fllk
I~· ~icrosoftVis~al Basic.Editor(Defaul~)·. . •.
t·. Microsoft Visual Basic Code Page Editor
·. XML Editor

XML Ed~or with Encoding
HTML Editor
HTML Editor with Encodin

Resource Editor

Delimiter Highlighting and Brace Matching

Ever needed a quick visual check to ensure you are lining up your code correctly? You can

use the Automatic Delimiter Highlighting and Brace Matching features to give you that visual

cue.

Tip 2.17: What does that Automatic Delimiter Highlighting option do?

Sara Aside Honestly, I had to ask around to find out what this one did. I simply couldn't
remember.

40 Microsoft Visual Studio Tips

Whenever you have code construct pairs (that's what the documentation calls them), when
you finish typing either the start or end pair, both pairs of words become bold. To turn off
this feature, go to Tools-Options-Text Editor-General and uncheck Automatic Delimiter

Highlighting.

>/····class· Program
,,:_(
':\; .. ·······static ·void· Main (string[] · args)
;';, ... ' {
'-;,"i:tli:f ·DEBUG

i:·';:- • • · ······•·Console. T.JriteLine ("Hello·lJorld");
:•:;,eendi:fl
;>; ··}

You can customize the color for the balding by going to Tools-Options-Environment-Fonts
And Colors and selecting Brace Matching (Highlight).

Brace Matching (Rectangle)
Breakpoint (Disabled)
Breakpoint (Enabled)

, Breakpoint (Error)

And now the #if and #endif appear in bold and in red.

te:· · ·class 0 Program .. .(
, •• • • • • ·static·void·Main(string[] •args)
:;. (

'(1- ••••••• ••• ··Console. WriteLine ("Hello· T.Jor ld'');

-,f:~~~~~~'·.}

Tip 2.18: How to change the Brace Matching color
You can change the Brace Matching color. Go to Tools-Options-Environment-Fonts And
Colors, select Brace Matching (Rectangle), and set this option to the desired color.

And now your curly braces show up with a new highlight color.

Chapter 2 Make Your Editor Work for You 41

• • ··class· Pr.og:r.ar(l
.... (
· ·······static·void·Main(string[] ·args)

········t
........ · ... Console. TJriteLine ("Hello· TJor ld");

....... ·~l

Sara Aside I like the bright green color. It must be Seattle's nine months of gray weather
getting to me.

Clean up unused code

C# provides several interesting features for getting control back over your using statements.

Tip 2.19: You can remove unused using statements

In C#, there's the option to remove any of your unused using statements. This option is

especially helpful if you're reusing some sort of template over and over again. Instead of

having to comment out each line, compile, see whether the compile was successful, and

then either remove or uncomment the line, you can bring up the editor context menu Uust

right-click in the editor) and choose Organize Usings-Remove Unused Usings. This will do

all the hard work for you.

Auto Recover

SortUsirigs

Remove and Sort

Visual Studio provides an AutoRecover feature to keep you going in the case of an unexpected

shutdown, power failure, or some other unfortunate event.

Tip 2.20: What does Visual Studio do to autorecover files in the case of
an unexpected shutdown?

Sara Aside People on the testing team used to tease the tester who owned the AutoRecover
feature that every time there was a power failure in the building (because of a storm or other
such event), he was standing near some big red switch in the off position with a grin on his face
so that everyone in the building could test his features for him.

42 Microsoft Visual Studio Tips

Under Tools-Options-Environment, you'll find the AutoRecover page .

.. Environment

General

Add·in/Macros Security

(~!i~ii~!
Documents

Find and Replace

Note that you can opt out of the AutoRecover feature by unchecking the Save AutoRecover
Information Every check box.

The rest of the page is self-explanatory, but did you know where Visual Studio saves these

autorecovered files? They are saved in \My Documents\Visual Studio <version>\Backup

Files\<projectname>.

In case you (hopefully) have never seen the AutoRecover dialog box, here's what it looks like.

It'll pop up the next time you launch Visual Studio after an unexpected shutdown. You have

the options to either use the backup files or ignore them.

Chapter 2 Make Your Editor Work for You 43

Microsoft Visual Studio encountered a problem and was shut down. We are
sorrv for the inconvenience. Microsoft Visual Studio can try to recover the
followiflfj information for you.

Recovered files:

Recover Project File

Co~solellpplic;rtion23 .. · ... ~rog.r~m~c• ..

-· Program.cs Summary:·

S;ived: Tuesday, July 22, 2008 at !J:z3 PM

Recovered at C:\Users\soraf\Documents\\/isu•I Studio 2008\Bockup Files\ConsoleApptication23\

Recovery action: will be reco.,.;iod to C:\Users\m•f\Documents\Vlsu•l ... \Consolellpplication23\

File Extensions

If you ever find yourself editing source code files that use a different file extension, it's good

to know that you can still get syntax highlighting.

Tip 2.21: How to get syntax highlighting for a given file extension
On the Tools-Options-Text Editor-File Extension page, you can map a file extension to one

of the included editors.

Extenslo~' Editor1 > · · } -.. .. > ·.. . .· • . .•

· ~~~~-. i1'if&'t~f1f ? ~ i·i ~l)i=tniriil --~~~· --~· ·-,_,,.,~,li_,J

And after mapping the .sara extension to a C# editor, we now get syntax highlighting for the file.

, using· System;
using· System. Collections.Generic;
using·System.Linq;
using· System.Text;

44 Microsoft Visual Studio Tips

There is also an option to map files without extensions to a specific editor.

Opening Files
The more time you spend in the IDE, the more you'll want to customize your experience. The

same is true for opening files. Since this is a frequent activity, you'll want shortcuts or some

time-saving customizations to expedite getting your files opened where you want them.

Opening Files and Editor Windows
These next tips offer various customizations for opening a file in the editor.

Tip 2.22: How to reuse the same editor window when opening files

Go to Tools-Options-Environment-Documents, and check the Reuse Current Document

Window, If Saved option to give this tip a try.

If the current document window is dirty (meaning you've made a modification but haven't

saved it yet), the next document opens in its own document window. However, if the current

document is saved, the new document just opens over it.

I tried using this from time to time when I owned testing it, but it wasn't for me.

Tip 2.23: How to automatically refresh an open document in the editor

Under Tools-Options-Environment-Documents, there's the option to Detect When A File Is

Changed Outside The Environment. Under it is the second option, to Autoload Changes, If Saved.

Sara Aside I can't imagine working without having the first check box checked. H,1vow,e!ver.
the second one, I don't think I'm brave enough to enable it.

If only the first check box is checked, you'll get this prompt:

C:\Users\saraf\Documents\Visual Studio
1000\Projects\ConsoleApplkation23\ConsoleApplication23\Program .. cs

This file has been modified outside of the source editor.
Do you want to reload it?

Chapter 2 Make Your Editor Work for You 45

If you do a lot of modifying of files outside Visual Studio, I could see this dialog box getting

annoying. But since the option is global and sticky across Visual Studio sessions, I wouldn't

want to forget that I had it checked. But then again, this is coming from a very paranoid,

risk-averse tester.

Tip 2.24: How to edit a read-only file in Visual Studio

In Tools-Options-Environment-Documents, there's the option Allow Editing Of Read-Only

Files; Warn When Attempt To Save.

If this option is checked (my personal preference) and you attempt to save, you'll get

prompted whether you want to overwrite the document or save it as something else. My

thoughts are-if I'm editing the file, I want to overwrite it eventually.

If this option isn't checked and you attempt to edit the file, you'll get prompted whether to

make the file writeable or perform an in-memory edit.

46 Microsoft Visual Studio Tips

Tip 2.25: How to customize what directory the File-Open-File dialog
box opens to

This tip is pretty straightforward. Under Tools-Options-Environment-Documents, there's

the Open File Using Directory Of Currently Active Document option. When I first read this
option, it took me a few seconds to think, "What's the open file thingy?" It's referring to the

File-Open-File dialog box.

If you have this option checked, you'll open to the directory of the currently active document
in the editor (the doc with the focus), as shown in the next image.

If you do not have this option checked, the File-Open-File dialog directory displays content

as an MRU (most-recently used) list, opening to the last directory used to open a file.

Tip 2.26: How to customize the number of items shown in the Recent
Files lists (and where to find those lists)

This tip explores the Recent Files options, found under Tools-Options-Environment-General.

Chapter 2 Make Your Editor Work for You 47

The Items Shown In Window Menu option controls the number of items to display in the

Window menu. For example, if you set the option to 5, you will get only 5 items in the

Window menu, as shown here:

Windows .. ;

The Items Shown In Recently Used Lists controls the number of items found in the File­

Recent Files and File-Recent Projects lists. When it is set to 3, you'll see only 3 files in these

lists, as shown here:

Bookmarks
Bookmarks are a way for you to mark various locations in your files. When I first started test­

ing bookmarks, I wasn't sure what the difference was between comments in the Task List and

bookmarks. Task List comments and other tokens are found in the file, meaning that these
have the potential of getting checked into your source code repository and being visible to

everyone. On the other hand, bookmarks are for your eyes only. They are stored outside the

file in the Bookmarks window. For more information on Task List features, see Chapter 5.

Managing Bookmarks

These next tips walk you through creating and using bookmarks.

Tip 2.27: How to set bookmarks and navigate among them

Press Ctrl+K, Ctrl+K to toggle a bookmark. The command is Edit.ToggleBookmork.

48 Microsoft Visual Studio Tips

Press Ctrl+K, Ctrl+N to navigate to the next bookmark. The command is Edit.NextBookmark.

Press Ctrl+K, Ctrl+P to navigate to the previous bookmark. The command is Edit.

PreviousBookmark .

.. ·{

•• 0 • • •• ·static·void·Main(string[] ·args)
........ (
.. · · · , . ····.Console. TJriteLine (nHello · Wor ldff);
........)

You can also quickly get rid of all your bookmarks by pressing Ctrl+K, Ctrl+L. The command

is Edit.ClearBookmarks.

All of these commands can be found under the Edit-Bookmarks menu and on the Text Editor

tool bar. Note that on the Text Editor tool bar, the Previous Bookmark In Document and Next

Bookmark In Document items don't have keyboard shortcuts bound to them, but they are

listed on the Text Editor tool bar.

Tip 2.28: How to navigate among bookmark folders in the Bookmark
window

There's a Bookmarks window that allows you to organize and arrange your bookmarks. You

can create folders and store bookmarks within them.

Gill Bookmark2 C,\Users\saraf\DocumentsWisual Studoo 2008\Projects\ConsoleApplicati<>n23\C<>risoloApp

Metimd#2

!.. ... ~ C:\U.ers\saraf\Documents\Visual· Studio 2008\P'rojects\,Consol'eApplicationl3\ConsoleApp

Once you've organized your bookmarks, you can add the Shift key to the bookmark naviga­

tion keyboard shortcuts to navigate within the folder:

• Use Ctrl+Shift+K, Ctrl+Shift+P to move to the previous bookmark in the folder.

• Use Ctrl+Shift+K, Ctrl+Shift+N to move to the next bookmark in the folder.

Chapter 2 Make Your Editor Work for You 49

Tip 2.29: You can bookmark all of your Quick Find results

Sara Aside It's funny-when I was writing this tip, I started looking all around the Find And
Replace window trying to figure out where the option was to bookmark all of the results. Finally,
it jumped right out at me. =)

liiiJ FindJ>Ptions

!IDMat!:htBH

j[]Mlt~h~oleword

!!"IS..,chyp

!!] Search hidden text

If you hit Bookmark All instead of Find Next, bookmarks will be dropped at all the found

locations.

And if you've accidentally bookmarked half of your code by searching for a frequently used

search term (like I did the first time I tried this), simply open the Bookmarks window (View­

Bookmarks Window), press Ctrl+A to select all bookmarks, and then hit Delete.

lntelliSense
The term lntelliSense refers to the editor functionality that offers suggestions to you as you

type code. The major lntelliSense features that you are probably most familiar with are state­

ment completion, parameter info, and complete word.

Statement Completion, Parameter Info, and Complete Word

Statement completion is the UI that displays what objects you can insert into your code that

will be valid for that given location. It is also referred to as list members.

Complete word is very similar to statement completion, but without the UI. If the method or

object you are typing is unique, complete word will fill out the word for you, even if state­
ment completion is not showing. Complete word is the equivalent of clicking or hitting Enter

on a particular method or object in statement completion.

50 Microsoft Visual Studio Tips

I always have to go back and look up the difference between parameter info and quick info.

Quick info displays a ToolTip with information about the given method or object. It is the

ToolTip you see when you hover over a method or object. Parameter info is a little more

self-explanatory. It is the ToolTip you see when you are filling in the parameters to your

method call.

Tip 2.30: You can use Ctrl+J to invoke statement completion

The keyboard shortcut to invoke statement completion is Ctrl+J, which is bound to the

command Edit.ListMembers.

_AppDomain
fji -
41$ AccessV-iolationException a Action a Action<>
41$ ActivationContext
'I\$ Activator
41$ Appllomain

In the Text Editor toolbar, you can invoke statement completion via the Show Member

List icon.

Tip 2.31: How to display parameter info for a function

Press Ctrl+Shift+Space to display the parameter info. The command is Edit.Parameterlnfo.

:~I· · ······static ·void· Main(string[] · args)

i:.: ·······(
i;:•... Console. TJriteLine ("Hello· World");

(o' • •"' • • • l j1Rl of191! voidConsole.Wdtellne 0 l
LWrites the current fine terminstor to the standard output strea~

To iterate through the possible parameter choices, press the down arrow to go to the next

function overload and press the up arrow to go to the previous function overload. For what­

ever reason, I always reverse these arrow keys and end up navigating backward.

Chapter 2 Make Your Editor Work for You 51

Tip 2.32: How to display quick info for a function
Type in a method name-for example, Console.Read-and then press Ctrl+K, Ctrl+I to

invoke Quick Info on a function. The command is Edit.Quicklnfo.

· · · ·.,. ·static·void·Main(string[] ·args)
........ {

• Read();

int (onsole.ReadO
Reads the n-ext: character from the standard input ·stream.

· ·······static· strir
....•••• { Excepbon.s::
......•..... ret.urn· r System-2_0.IOE:xception ______________________ _
........)

Tip 2.33: How to complete a word
Whenever you can invoke statement completion, you can also execute the Edit.

CompleteWord command. This command completes a word that is partially complete and

that has no other possibilities. And if there are other multiple possibilities, the command in­

vokes statement completion.

In the following example, since Console.Writel has no possible matches other than Console.

Writeline, pressing Ctrl+Space or Alt+ Right Arrow will write out Writeline.

· · · · · · · ·static ·void· Main (string[] · args)
........ (

...••.. ·Console. liJr i teLI
.......)

Tip 2.34: How to increase the statement completion font size
Go to Tools-Options-Environment-Fonts And Colors and set the Show Settings For option to

Statement Completion. Now you can modify the font and font size.

This is the statement completion box at font size 12.

52 Microsoft Visual Studio Tips

, ··class· Program
... .(
· · · · · · · ·static·void·Main(string[] ·args)
....... ·{

· · · · · · · · · · · ·Consol•::. Rej)
M/il OpenStandardlnput

· · · · · · ·static· s~ •ilirl OpenStandardOutput
....... ·< . '!!if' Out

· · · .. · · ret m :t:f ,
....... l · OutputEncodrng

·ilirl·-·-. · · · · · · ·static· s~ .~t
....... { · ReadKey
....•...... retm •o(jj Readline

· · l ·t ReferenceEquals
oilir! ResetCol or
·ilir! SetBufferSize

Tip 2.35: You can resize the statement completion dialog box

It's all about the simple things in life.

Yep, you can resize the statement completion dialog box from any direction.

'"'° _AppDomain
~-
~ AccessViolatfonE.xception

A couple of things to note:

• Max height is limited to one-third of the screen size.

• Although width is resizable, only height is persisted.

Tip 2.36: You can toggle between the Common and All Statement
Completion tabs via the keyboard

Once the statement completion dialog box is up, press Alt+. to move to the All tab and Alt+,
to move to the Common tab.

Chapter 2 Make Your Editor Work for You 53

Tip 2.37: How to turn off lntelliSense by default

Just in case you ever need to do this

Go to Tools-Options-Text Editor-All Languages-General and uncheck Auto List Members

and Parameter Information. If you just want to disable lntelliSense by default for a particular

language, go to the Text Editor-</anguage>-General option page and set the behavior

there.

Statement completion ------4
IJl]Auto li1t members

1iJ Hide advanced members

IJl] Parameter information

Note that the lntelliSense commands themselves are not disabled, meaning you can still

invoke lntelliSense via the keyboard shortcut or a toolbar button.

Code Snippets
The only thing I like more than breaking software is leaving a note that I broke the software.

For example, when I first took over testing code snippets, I would attempt to break the UI by

doing all kinds of unexpected things, like trying to type "Sara wuz here" in place of a code
snippet name. Most of my attempts were unsuccessful, as you would expect, but eventually I

did find a series of keyboard shortcuts that led to a crash.

The cool thing about software testing is that once you find one bug, there's usually a collec­

tion of bugs nearby. All you have to do is know how to find the bug pattern. Expanding on

this series of UI interactions, I ended up finding at least three crashes that day, all with "Sara

wuz here" in the reproduction steps and in the screen shots for the developer to enjoy.

Fortunately, it was a Friday afternoon, so I had to avoid the developer for only a few

hours. =D

Using Code Snippets
These next tips walk you through inserting and managing code snippets.

Tip 2.38: You can use Ctrl+K, Ctrl+X to insert a code snippet

The keyboard shortcut to insert a code snippet is Ctrl+K, Ctrl+X. It is bound to the command

Edit.lnsertSnippet, in case your mileage varies, depending on your configuration settings.

54 Microsoft Visual Studio Tips

I'm going to use C# for this tip, but this tip applies to all languages that support code snip­
pets. When I invoke the Edit.lnsertSnippet command, the code snippet insertion UI pops up.
The real tip here is that the snippet picker allows for type-ahead selection. Note how I started
typing "#re" on the line. (Oh, the fun I had testing this ... but I digress.)

· ·Static·string·H , ... ctor
• .{ lj,j] cw

lj,j] do
~ else

······return·
. ·}

Additional keystrokes:

• You can hit Tab to autocomplete the word. If the word happens to be the code snippet
(and not a folder), pressing Tab will insert it.

• You can also hit Shift+ Tab to navigate back to the previous word (my contribution to
the insertion UI).

Tip 2.39: You can insert a code snippet via its shortcut keyword

Code snippets have the support to be given a "shortcut," usually an abbreviated version of

the code snippet name that you can type into the editor and hit Tab to insert.

To insert, simply type in the name of the snippet-for example, for-and then hit Tab. Note
that if statement completion is open, you'll have to hit Tab twice to insert the snippet.

In both Visual Studio 2005 and 2008, you'll be able to see C# Code Snippet shortcuts in the
statement completion window. The following screen shot is the for snippet displayed within
the statement completion window. Note the snippet icon to the left.

··Static·void·Main(string[] ·args)
o< {

······for!

Chapter 2 Make Your Editor Work for You 55

In Visual Studio 2008, you won't see Visual Basic snippets in the statement completion

window, but you will see a note in the ToolTip when you can hit Tab twice to insert the

corresponding snippet.

• · • ·Sub· Main()

· · · · • · • •forl
• .. ·I Iii

For statement 1
End· I Iii For Each Introduces a loop that is iterated a specified number of times.
-0 - "\$ ForeignKeyConstraint Note: Tab twice to insert the 'For' snippet.

'"Format
·•t FormatCurrency
.,. FormatDate Time
,. FormatNumber

'" ForrnatPercent

Common I All

Tip 2.40: You can insert a snippet by pressing Tab Tab

Sara Aside A few months ago, I had dinner with some Microsoft MVPs and other Visual Studio
users who were on campus for the Microsoft certification exams. One of the developers said,
"Hey Sara, you need to blog about Snippet Tab Tab." I was blown away. I had tested this feature
inside and out and never had heard of "Tab Tab." It turns out that he was just referring to the
sequence of keystrokes you use to insert a snippet, but I never even thought to refer to it as the
"Tab Tab" feature.

I'm not a C# developer. I spent the majority of my time writing code in Visual Basic during my

software testing days. Whenever I need to use C#, I heavily rely upon code snippets because
I don't recall the syntax off the top of my head.

When in the appropriate place in the editor, you can type in the keyboard shortcut of a snip­

pet, like for.

forl

!':fixed f"'
"\$ Flag<Attribute f · .
• float i' 1~-----~

~------·Lla for
~ foreach ;.: .: Code snippet for'fo(loo
"\$ ForrnatException [.·!
~ forr ···

~from

"\$ FtpStyleUriParser

In this state, you can simply press Tab twice to insert the snippet.

Why twice? Press it once to autocomplete statement completion. If you just type f for "for",

and for is highlighted, you can just press Tab once to complete the word for. Press it twice to

generate the snippet, since the cursor will be at the end of the word for in the editor.

56 Microsoft Visual Studio Tips

for (int I = O; i < i§MM: i++)

And the moral of the story is "<snippet> Tab Tab."

Tip 2.41: How to browse code snippets and add new ones

All code snippets are found in the Code Snippets Manager. It is found at Tools-Code

Snippets Manager. If you are using the General Development Settings, you can use Ctrl+K,

Ctrl+B to bring up the dialog box.

In my opinion, the most useful aspect of this dialog box is to browse through your current

snippets to learn what the shortcuts are to quickly insert the snippet into the editor.

Additionally, this is where you add (a directory of snippets) and import (a single snippet or

multiple-selected snippets to a specified folder via the Import Code Snippet dialog box).

You should always check to see what type of snippets you are browsing by looking at the

Language combo box found at the top of the dialog box. The Code Snippets Manager
Language combo box is an MRU list, meaning that the last set of snippets you looked at (let's

say XML) will come up the next time you bring up the dialog box.

Chapter 2 Make Your Editor Work for You 57

Sara Aside For me as a tester, it was critical that I always confirmed where I was before using
the dialog box; otherwise, I would end up logging incorrect bugs. Maybe you don't need this
warning, but old habits die hard.

Tip 2.42: How to change default values and variables in a code snippet

When you insert a code snippet, the editor highlights the fields (variables, values, and so on)

you can modify depending on how the code snippet was written. The idea is you modify the

contents of the field and then press Tab to navigate to the next field. When you press Tab,

that particular field is updated throughout the entire snippet. You can also navigate outside

the field via the arrow keys to invoke the update.

static void Main(string[] args)
{

for (int I = o; r~ < [aj++)

If you press Enter, however, you will be committing both the current change (if any) and

the entire snippet, meaning you can't use undo to get back to those highlighted fields. You

would have to use your favorite refactoring method to make any additional updates.

Tip 2.43: How to share code snippets with your team

Sara Aside I like this tip because it isn't really about how to use features but rather how to
combine features to do new things.

To share code snippets among others on your team:

1. Go to Tools-Code Snippets Manager, press the Add button, and type in the UNC

share name.

2. Go to Tools-Import And Export Settings, Export, and choose to export just the

Code Snippets Locations to a file.

58 Microsoft Visual Studio Tips

3. Send out that .vssettings file to those on your team. They can go to Tools-Import

And Export Settings and choose Import to retrieve it.

General Settings

i.i,·.·.·.·.·.··DD Call Browser
Class View Options

l···~
l·····D Command Window Aliases

Tip 2.44: How to insert a code snippet around a block of code

C# and XML support the Edit.SurroundWith command that will insert the desired snippet
around the selected code (whether it is just a selected word, selected line, or entire function).

The keyboard shortcut is Ctrl+K, Ctrl+S.

For example, the following illustration shows how to use the Surround With feature to insert

a for loop around an existing for loop.

static void Main(string[] args}
{

Code snippet for 'for' loop
Shortcut: for

The result is a for loop inside a for loop, as shown here:

static void Main(string[] args)
{

for (int I= O; r~ < -; [~++)
{

for (int i = O; i < length; i++)

I

I

Chapter 3

Find What You Are Searching For
I didn't spend too much time testing the Find features in the editor, as I was more focused

on core editing and Microsoft lntelliSense functionality. However, there were times when I

helped to analyze test-case failures, assisted in the full test pass, or just did what we call a

bug bash, where the test team devotes an entire working day (if not the entire 24 hours) to

try to find as many bugs as possible.

You can categorize searching within the editor into three buckets: keyboard searches, quick

searches, and advanced searches. The keyboard searches tend to be the fastest, involving the

least amount of interaction with the user interface (UI), but they can be limited in scope. The

quick searches are your multipurpose searches. But, depending on what you are searching

for and where you want to look for it, there may be a more efficient job search. And finally,

the advanced searches-namely, Find In Files-are your Swiss army knife of search function­

ality, especially when you need to search anywhere for anything on the hard drive.

Searches from the Keyboard
The tips covered in this section are designed to limit the amount of UI you need to interact

with to conduct a search. Avoiding UI interactions tends to save time, especially when you

are repeating the action frequently throughout the day.

Incremental Search

Incremental search is a powerful search to use when you want to keep both your focus and

your cursor in the editor when searching in the current document. It is powerful because it
allows you to keep typing, meaning the search is driven by keystrokes. And you don't need

to interact with any UI.

Tip 3.1: How to behold the power of incremental search

Sara Aside I didn't know about incremental search until someone showed me. Now I can't live
without it.

To conduct an incremental search, follow these steps:

1. Press Ctrl+I.

2. Start typing the text you are searching for.

59

60 Microsoft Visual Studio Tips

Note You'll see the cursor jump to the first match, highlighting the current search string.

3. Press Ctrl+I again to jump to the next occurrence of the search string.

Additionally, you can press Ctrl+Shift+I to search backward.

To stop searching, press Esc. You'll see confirmation in the status bar that you are out of the

incremental search mode.

Current Word Searches

These next tips illustrate what you can do and what you can customize when searching a

currently-selected word.

Tip 3.2: You can use Ctrl+F3 to search for the currently-selected word
without bringing up the Find And Replace window

Just select some text (or just have the cursor on the word you want to search for) and press

Ctrl+F3. Ctrl+Shift+F3 will do a reverse search.

Note that a Ctrl+F3 search uses the following options:

• Is case sensitive

• Searches hidden text

• Allows for partial matching

• Does not use regular expressions

Tip 3.3: How to not automatically search for the currently-selected word

Go to the Tools-Options-Environment-Find And Replace page, and uncheck the

Automatically Populate Find What With Text From The Editor option.

Ill Display informational messages

iJ Display warning messages
[El Automatically populate Find What with text from the editor

Chapter 3 Find What You Are Searching For 61

l!J Hide Find and Replace window after a match is located for Quick Find or Quick
Replace

Now, when you hit Ctrl+F (Quick Find) or Ctrl+Shift+F (Find In Files) or Ctrl+H (Quick Replace),

the Find What combo box will not automatically display the current word or selected text.

Repeat Last Search

Reducing the number of necessary keystrokes in a commonly repeated action saves time in

the long run. Repeating the last search is definitely one of the ways you can take advantage

of this philosophy. Instead of having to redo the last search, which may take several key­

strokes and even involve using the UI, you can press a single keyboard shortcut to search

what you last searched for.

Tip 3.4: You can use F3 to search for the last thing you searched for

Obviously, you can press the Find Next button in the Find And Replace window. But you can

also press F3 to search for the next instance, and Shift+F3 searches for the previous instance

of the search string.

Uie nM 1 l!ort:Cut in: . Press she rl:ti.rt keys:. . I

!e,;;i· **'!'ii!. :·F3··--~··M····
Short:tlitµitrentlL used b).,

Note that this keyboard shortcut is only for Quick Find and Find In Files, not for an incremental

search.

Quick Searches
Quick Find and Quick Replace can be considered as all-purpose, generic searches. Where

incremental search is the most focused search and Find In Files is the most comprehensive

search, the following "Quick" search-and-replace features are in the middle of the road.

Quick Find
Quick Find is your standard Ctrl+F search, as represented in most of today's software

applications.

62 Microsoft Visual Studio Tips

Tip 3.5: You can use Ctrl+F to use Quick Find in the current document

Pressing Ctrl+F brings up the UI to start a Quick Find search in the current document.

Quick Find prepopulates the Find What text with whatever text is selected in the editor or the

word that the cursor is currently on.

Additionally, this Find And Replace window is actually a tool window, so you can dock it

somewhere and continue to type in the editor while the window is open.

Tip 3.6: How to use the Find combo box to do a Quick Find in the
current document

The Find combo box is another way of doing a Quick Find with the scope limited to the

current document.

Press Ctrl+D to reach the Find Combo box. Now type whatever search string you want, and

press Enter to do a forward search or Shift+Enter to do a reverse search.

F=~'-"4ciass

handlemoUH
aaObject
CnildCount
childcount
basevenfier
Descri ton

Tip 3.7: How to customize the Find combo box (Ctrl+D) search

Press Ctrl+F to bring up the Quick Find window and expand the Find Options section. These

options also control the Find combo box.

Chapter 3 Find What You Are Searching For 63

Quick Replace
The Quick Replace feature uses a Quick Find to find all the occurrences of the search term

and then replace them with the desired text.

Tip 3.8: You can use Ctrl+H to bring up the Quick Replace window

Press Ctrl+H to bring up the Quick Replace window. The command is Edit.Replace. You need

to press either the Replace button or the Replace All button to start the find-and-replace

action.

Additionally, you can customize your find-and-replace experience by expanding the Find

Options section.

64 Microsoft Visual Studio Tips

Tip 3.9: How to hide the Quick Find/Quick Replace window after the
first search hit

Let's say you are searching for some text, and you want the Ctrl+F Quick Find window or the

Ctrl+H Quick Replace window to disappear after the first search.

Go to the Tools-Options-Environment-Find And Replace page, and check the Hide Find And

Replace Window After A Match Is Located For Quick Find Or Quick Replace option.

Quick Symbol
And the final search feature that's labeled as "quick" is for searching for symbols, whether it is

in your solution or in the entire Microsoft .NET Framework.

Tip 3.10: How to search for a symbol

The final search command is Edit.FindSymbol, bound to Alt+Fl2. Using this command, you

can search within your current solution (including or excluding references), or even within the

.NET Framework.

Chapter 3 Find What You Are Searching For 65

Tip 3.11: You can use Shift+Alt+F12 to use Find Symbol

Like in the previous tip about Find Symbol, select a word in the editor you want to use Find

Symbol with and then press Shift+Alt+F12. No Find Symbol window will appear. It is bound

to Edit.QuickFindSymbol.

Use new shortcut in: F.ress shortcut keys:
I Ii~-----~ .. Shitt+Alt~i'ii··········· -·

Shortcut c11rrently used by:

Shift+Alt+F12 uses the same customizations in the Find Symbol window. So, if you need to

change the scope for Find Symbol, make the customization in the Find Symbol window.

Find In Files Searches
Find In Files and Find And Replace represent the most advanced search-and-replace

functionality in the editor. This section covers the ins and outs of using these searches, while

providing tips for associated features, such as the Find Results window.

Find In Files
Find In Files has the most options and will search the broadest scope, including files located

on your computer that live outside the solution.

Tip 3.12: How to find in files

Press Ctrl+Shift+F to bring up the Find In Files window.

l!ll1nctude •U~-fo-ld.:r~
[id Find optior!i ·

[iiilJ R@sult options

66 Microsoft Visual Studio Tips

Additionally, you can type in text in the Find combo box and click the Find In Files icon to the

left of it, as shown here:

Read

There are a lot of options associated with Find In Files, which I'll cover in this chapter.

Tip 3.13: You can customize what files to find in
With the Find In Files window showing, change the Look In combo box to anything except

Current Document or All Open Documents. This enables the Look At These File Types option,

allowing you to select what file types to search for .

. vb;'*.resx;*.xsd;*.wsdl;*.xaml;*.xml;*.htm;*.html;*.css

.cs;"'.resx;*.xsd; wsdl;*.xaml;*.xrnl;*.htm;*.html;*.css

.vb;*.resx;*.xsd;*.wsdl;*.htm;*.html;*.aspx;*.ascx;*,asmx;*,:svc;*.asax;*.config;*.asp;*.asa;*.css;*.xml

.vb;'".resx;*.xsd;*.wsdl;*.xml;*.htm;*.html;*.css

.c;*.cpp;*.c::o::;*.cc;*.tli;*.tlh;*.h;*.hpp;*.h::o::;*.hh;*.inl;*.rc;*.resx;*.idl;*.asm;*.inc

.cs;*.resx;*.xsd;*.wsdl;*.xml;*.htm;*.html;*.c:ss

.srf;*.htm;*.html;*.xml;*.gif;*.jpg;*.png;*.css;*.disco

.bet .
And for a more advanced searching experience, there's a " ... " button next to the Look In

combo box.

Clicking this button pops up the Choose Search Folders window. Here you can create a set of

folders to search in.

Chapter 3 Find What You Are Searching For 67

Choose the search folders from ttle wailoble. folder.. You may obo create • new set of search folders pr modify
an existing sot of snrch fold.en, · · :

My Visual Studio Project

• · ~ailable folder. S.dected folders:

C:\Users\saraf\Documents\Visual S ~: Iii]

And now you can find your custom folder set as a Look In option.

Tip 3.14: You can stop a Find In Files search

Press the keyboard chord Alt+F3, S to stop a background search. The command is Edit.
StopSearch.

68 Microsoft Visual Studio Tips

You can also press the Stops A Background Find tool bar icon on the Find Results window.

Find all "asdfasdf" .. Hatch c:ase,. Sub folders, Find Results 1,. "Rootu,. "*. c:s"
Hatching lines: 0 Hatc:hinq files: 0 Total files searched: 1Z4
Find was stopped in progress.

Tip 3.15: You can replace all search string occurrences in files

Just like Ctrl+H performs a Quick Replace, Ctrl+Shift+H brings up the Replace In Files window.

Note that another option, Keep Modified Files Open After Replace All, appears in the Result

Options section.

Obviously, if you check this option, all modified files will be opened in the editor. The signifi­

cance of this is that you can use the undo command if you change your mind.

Find And Replace
The Find And Replace feature uses Find In Files to find all the occurrences of the search term

and then replace it with the desired text.

Chapter 3 Find What You Are Searching For 69

Tip 3.16: How to dock the Find And Replace window

The Find And Replace window is not a dialog box, but actually a tool window. Thus, you can

dock it to the side if you find it in your way. Since this window begins in a floating state, it

may not be obvious that you can dock it.

Right-dick the tool window title bar and select Dockable. Now the tool window can be

docked using a docking target. Additionally, you can go to the Window menu and select

Dockable.

Find Results Window
Using the Find In Files search returns all search hits in the Find Results tool window.

Tip 3.17: You can use F8 to navigate the Find Results window

You can use F8 (with the focus either in the Find Results window or in the editor) to navigate

to the next result, or you can use Shift+F8 to go to the previous result. The commands are

Edit.GoToNextlocation and Edit.GoToPrevlocation.

C: \Users\ sa.raf\Docum.ents\Visual Studio 2008\Proj acts\ClassLibrary7\ ClassLibrary7\Classl _cs (9):

C: \Users\saraf\Docum.ants\Visual Studio 2008\Projec:ts\ClassLibrary?\ClassLibrary7\Classl_ cs (10):

C: \Users\ saraf\Docum.ents\ Visual Studio 2008\ Projects\ ConsoleApplicationlS\ ConsoleApplicationlS\ Proqra.m.

C: \Users\ sa.raf\Docum.ents\ Visual Studio 2008\ Projects\ ConsoleApplication21 \ ConsoleApplication21 \ Progra.m.

C: \Users\ saraf\Docum.ents\ Visual Studio 2:008\ Projects\ ConsoleApplication23\ ConsoleApplica.tion2:3\ Proqram.

C: \Users\ saraf\Docum.ents\ Visual Studio 2008\ Proj ec:ts\ ConsoleApplica.tion9\ ConsoleApplic:ation9\ Program._ c::

Matching lines: 7 Matching files: 6 Total files searched: 48

And yes, you can use Quick Find, using Ctrl+F, within the Find Results window.

70 Microsoft Visual Studio Tips

Tip 3.18: How to show and hide find messages

Far too often, I uncheck the Always Show This Message check box, not knowing how to get

the message back.

For Find And Replace, you can specify whether to hide or show these message boxes on the

Tools-Options-Environment-Find And Replace page. The options are Display Informational

Messages and Display Warning Messages.

Informational messages are those "FYI-for your information" style messages. Examples

include "No more occurrences found,'' "The specified text was not found,'' "Find reached the

starting point,'' and so forth. They are indicated by a blue "i" in a white circle.

Warning messages are those that ask a question along the lines of "Are you sure?" For

example, "Do you want to cancel?", "Do you want to open files when you perform a find and

replace in closed files to enable undo?", and so forth. They are indicated by a yellow triangle

with an exclamation point in the middle.

Tip 3.19: How to browse Find Symbol results

The results of a Find Symbol or a Quick Find Symbol action appear in the Find Symbol Results

window. Press Ctrl+Alt+F12 to bring up the Find Symbol Results window. The command is

View.FindSymbo/Results.

• Press F8 to navigate to the next result, and press Shift+F8 to navigate to the previous

result. The commands are Edit.GoToNextLocation and Edit.GoToPreviousLocation,
respectively.

• Press F12 within the Find Symbol Results window to jump to the definition for the

symbol in the editor. The command is Edit.GoToDefinition.

Chapter 3 Find What You Are Searching For 71

Additionally, you can right-click the symbol to bring up the context menu and select Browse

Definition to view the symbol in the Object Browser. This command is Edit.BrowseDefinition,
in case you want to bind it to a keyboard shortcut.

Other Search Options
This section provides tips for searching hidden text, expanding or limiting your search scope,

and using regular expressions.

Hidden Text

The Find And Replace window provides a way to enable or disable searching within hidden

text.

Tip 3.20: How to search hidden text in the editor

Press Ctrl+F to bring up the Find And Replace window. You can then expand the Find Options

section and select Search Hidden Text.

This is usually the first option I set (or I verify it is set).

Search Scope

You can select the scope of your search, including the current code block, the current

document, all open documents, the current project, and the entire solution.

72 Microsoft Visual Studio Tips

Tip 3.21: How to search within the current project or entire solution

Press Ctrl+F to open the Quick Find window. Then click the arrow to display the drop-down
list for the Look In combo box to select the search scope.

Regular Expressions

You can search using either wildcards or regular expressions in the Find And Replace window.

Tip 3.22: How to use wildcards and regular expressions while searching

In the Find And Replace window, expand the Find Options node and check the Use check
box. This option enables you to select either wildcards or regular expressions.

Now that little grayed-out arrow, which is called an expression builder and is located next to

the Find What text box, is enabled. In case you're like me and don't use regular expressions

all that often, the expression builder can be a great little cheat sheet.

Note that the editor's regular expressions engine is slightly different from the .NET

Framework regular expressions engine; hence, the cheat sheet may really come in handy.

Chapter 4

Manage Your Environment Layout
The window management feature area for Microsoft Visual Studio represents the basic

functionality for tool windows, document windows, and menu and command bars. As the

feature area tester on the Visual Studio Core team, I covered the breadth of the window
management features, which included generic scenarios such as tool window docking and

autohiding. It was the responsibility of the language teams to focus on depth testing for

their particular scenarios.

Window management was one of my favorite feature areas to test. Because the feature area

was so large and there were so many UI combinations to choose from, I got to be creative in

the ways I found bugs. I loved coming up with new ways to break stuff and then getting to

log the bugs. Testing is the ultimate "Hey developer, you broke it and I'm telling" experience.

And not surprisingly, my favorite bug of all time comes from this area.

We had one particular tool window test case that test performance under stress by attempting

to dock a tool window to the same dock target many, many times in a row. What was cool

was how the tool window client area, the UI within the tool window, would get smaller and

smaller with each dock after approximately 100 times. Then, at some point, the client area

would somehow draw itself with a negative size and paint over the tool window title bar­

quite odd. Obviously, the test began to fail at this point because the automation framework

couldn't find the tool window title bar. I'll never forget looking at the screen shot captured

at that point of the test case failure and seeing this half-eaten title bar. It was such a cool

bug. Of course, it took what felt like forever to get "the repro," which is the term we use to

describe the exact steps needed to reproduce the bug. Having to dock a tool window 100

times gets very old very quickly when doing it by hand, but it was well worth doing it when I

finally did get that repro.

Document Windows
A document window is any window that is opened in the center of the IDE. It has a file tab

and behaves just as any opened file would. Obvious examples include files and designers. Not­

so-obvious examples include the project properties and tool windows in a tabbed document

state. And note that any tool window can act as a document window, but not vice versa.

73

74 Microsoft Visual Studio Tips

File Tab Channel

The file tab channel is the UI strip that contains all the file tabs for the open documents.

It also contains a lot of quick shortcuts and powerful commands for manipulating and
navigating files.

Tip 4.1: You can use Ctrl+Alt+Down Arrow to drop down the file tab
channel file menu

A fellow program manager and I were trying to out "Did you know ... " each other about
Visual Studio the other day in my office. I won with this one:

On the file tab channel, all the way to the right side, there's an inverted triangle (that is, a
drop-down arrow) that, when pressed, invokes the File menu drop-down list.

There are two "Did you know ... " points here:

• You can press Ctrl+Alt+Down Arrow to show the File menu drop-down list This
keyboard shortcut is bound to the global scope, meaning you can press this chord
anywhere in the IDE and get the File menu drop-down list to appear. The command
is Window.ShowEzMD/Filelist. In case you are curious, EzMDI stands for Easy MDI,

representing the default tabbed document view rather than the multiple documents
view, or MDI (multiple document interface).

• The File menu drop-down list supports type-ahead selection If you have a lot
of files listed, you can type the name of the file, and when there's an exact match
(meaning there isn't a conflict), the focus will jump to that file in the list, allowing you
to hit Enter to open it.

Tip 4.2: You can use Close All But This on files in the file tab channel

This is a really, really useful feature, but I'll always remember how difficult it was for me to

find bugs with it. That really frustrates a tester, when you can't break a developer's newly
written code.

Chapter 4 Manage Your Environment Layout 75

Right-click a file tab, and select Close All But This. This command closes all the other files in

the editor, except for the currently active file, obviously.

And yes, you can bind it to a keyboard shortcut. The command is File.CloseAl/ButThis. In the

General Development Settings, this isn't bound to any keyboard shortcut, so have fun!

Tip 4.3: You can copy a file's full path from the file tab channel

Now this is a feature I absolutely cannot live without. This was one of the best features added

in Visual Studio 2005 (in my humble, biased opinion).

On the file tab channel, you can right-click and select Copy Full Path-voila, you have the full

path for that file.

In previous versions of Visual Studio (such as Visual Studio .NET 2003), you had to go to the

Properties window and copy the full path from there. In even earlier versions, well, um, I

don't recall. (I started working at Microsoft in September 2001.)

Tip 4.4: You can open a Windows Explorer browser directly to the
active file

Right-click any file tab, and select Open Containing Folder. I love this feature, although it is
my second favorite tip. The previous Tip 4.3 is my all-time favorite. It's great to be able to

jump from the file to the folder on disk to look for stuff, to change attributes on the file, to

do a rename, or whatever else. It is very, very useful.

76 Microsoft Visual Studio Tips

Tip 4.5: How to close just the selected files you want

Okay, this is not one of my better "Tip of the Day" titles, but it's my way of introducing the

Window Windows dialog box. It is such a simple dialog box, but for some reason I loved
testing it. Maybe it was because it didn't have that many (if any) automated test-case

failures to analyze.

You can bring up the Window Windows dialog box by choosing Windows from the Window
menu.

C:\Users\saraf\Documents\Visual Studio 200 ...

There are several things you can do with this dialog box:

• Select which files you want to close, in case the Close All But This command doesn't
meet your needs. That's my best tip on why and when to use this dialog box.

• Select which file to activate; but there are numerous faster ways to do this.

• Select which files you want to save; but then again, you would most likely use Save All.

Chapter 4 Manage Your Environment Layout 77

When you're working in MDI mode, you get an additional two buttons: Tile Horizontally and

Tile Vertically.

See Tip 4.12 for more information.

I strongly recommend using Window Windows for navigation if you are using any sort

of accessibility options or assistive technologies (for example, screen readers, screen

magnifiers). Window Windows provides an easy and quick way to navigate among files and

to close files.

Tip 4.6: Under what condition does the file tab channel drop-down
button change its icon?

Next you see a picture containing the right portion of the file tab channel. The drop-down

arrow to the right of the tabs drops down the list of open files.

Now, when does a bar appear over the drop-down arrow (as shown next)?

EJ Public, Class· ClassS

l End· Class

When at least one file tab has fallen off the file tab channel, the icon will change, representing

the hidden file or files.

I DE Navigator

In Visual Studio 2005, we introduced the IDE Navigator. It's that window that pops up when

you press Ctrl+Tab. When the window pops up, keep holding down the Ctrl key while you use
either the arrow keys or the mouse to pick a file or tool window to activate.

Tip 4.7: You can use Ctrl+Tab to bring up the IDE Navigator to get a
bird's-eye view of and navigate all open files and tool windows

The IDE Navigator is bound to the Window.NextDocumentWindowNav command,

in case you want to change it. I know some settings have Ctrl+ Tab bound to

Window.NextDocumentWindow (no Nav).

78 Microsoft Visual Studio Tips

In Visual Studio 2008, they (since I technically didn't work on that version of Visual Studio) did

a lot of UI tweaks with the IDE Navigator. You'll notice that there's more real estate (which is

what we call the actual space in a UI dialog box), so you can see more of the file path. And

of course, there's the preview window, which is pretty cool. (I said "Oooh!" when I first saw it,

but I'm a little biased.)

Tip 4.8: How to disable the IDE Navigator
The IDE Navigator isn't for everyone. Some developers prefer that Ctrl+Tab quickly cycle

through all their open documents instead of flashing an additional piece of UI.

General

Add-in/Macros Security
AutoRecover
Documents

Find and Replace
Fonts and Colors
Help
Import and Export Setting'
International Settings

:k~~o~rgJ
Startup
Task List
Web Browser

Projects and Solutions

Source Control
Text Editor

To disable the IDE Navigator, do this:

1. Open Tools-Options-Environment-Keyboard.

Chapter 4 Manage Your Environment Layout 79

2. Under Show Commands Containing, type Window.NextDocumentWindowNav.

3. Click the Remove button to remove the Ctrl+Tab keyboard shortcut binding.

To go back to previous Visual Studio Ctrl+Tab behavior, do the following:

1. Under Show Commands Containing, type Window.NextDocumentWindow.

2. Position the cursor in the Press Shortcut Keys box, and then press Ctrl+ Tab.

3. Click Assign to bind the keyboard shortcut.

4. Click OK to accept the changes and dismiss the Tools-Options dialog box.

And Ctrl+Tab will cycle through all open documents without the IDE Navigator popping up.

You'll want to remove the Ctrl+Shift+ Tab keyboard shortcut from the
Window.PreviousDocumentWindowNav command and bind it to the

Window.PreviousDocumentWindow command instead so that you can have
both forward and backward navigation in the file tab channel.

Keyboard Navigation

There are keyboard shortcuts for navigating among the various documents opened in your
editor. All the keyboard shortcuts are customizable on the Tools-Options-Environment­
Keyboard page.

Tip 4.9: You can use Ctrl+F6 and Ctrl+Shift+F6 to navigate among
opened document windows

Sara Aside This tip was posted on Mardi Gras Day 2008, while I was back home celebrating
carnival. Happy Mardi Gras, y'all, from New Orleans!!

Similar to Ctrl+ Tab functionality, Ctrl+F6 and Ctrl+Shift+F6 allow you to navigate to the next
and previous opened documents, respectively, based on a most-recently used sort order.
One clear difference here is that the IDE Navigator does not appear, unlike when you use
Ctrl+Tab.

80 Microsoft Visual Studio Tips

Tip 4.10: You can use Ctrl+F4 to close the current document opened in
the editor

If you are using the General Development Settings, the command
Window.CloseDocumentWindow is bound to Ctrl+F4. This will close the current document.

MDI Mode

As already mentioned, MDI stands for Multiple Document Interface. Early versions of

Windows were MDI-mode based, with the classic minimize, maximize, and close buttons in

the upper-right corner. In an MDI interface, you can have multiple files opened, where you

can tile horizontally and tile vertically. Visual Studio, by default, uses what we call tabbed

documents. The code name is ezMDI, but this is one of the few places where you'll see the

command referred to as such.

Tip 4.11: How to enter MDI mode

There's a setting to toggle Visual Studio from the default tabbed documents mode to

the MDI mode. Go to the Tools-Options-Environment-General page, and select Multiple

Documents under Window Layout.

Add-in/Macros Security
AutoRecover

Documents
Find and Replace
Fonts and Colors

Help
Import and Export Settings

For you Visual Studio .NET 2003 users, you may remember that you had to restart Visual

Studio to use MDI. We fixed this (well, the developer fixed it and I tested it) in Visual Studio

2005, so restarting Visual Studio is no longer required.

Chapter 4 Manage Your Environment Layout 81

If you're familiar with MDI mode, you might ask, "Can you tile horizontally or vertically? Can

you cascade?" Go to the Window menu, and you'll find new options.

Note that both Auto Hide All and Reset Window Layout apply to tool windows. The Cascade,

Tile Horizontally, Tile Vertically, and Close All Documents commands apply to document

editors, designers, and any tool windows in a tabbed document state.

Tip 4.12: How to show the Tile Horizontally and Tile Vertically buttons
in the Window Windows dialog box

Sara Aside When I initially wrote this tip, I had a nightmare that I broke my consecutive
tip series on my blog by forgetting to post a tip. Anyway, while writing tips on the window
management series, these buttons caught my eye. I recalled how back in the Visual Studio 2005
development stage I had no clue how to activate them. In fact, I nearly opened a bug claiming
that they never become available.

Starting in Visual Studio 2005, the IDE hides the Tile Horizontally and Tile Vertically buttons

on the Window Windows dialog box until you are in MDI mode (discussed in Tip 4.11) with

several files open.

82 Microsoft Visual Studio Tips

:~:;;;~~JM::.:.:: .. ;..: .. ::.:· : ~:~~;::~~:;~.;~;~;;~~;;~.::.~~ih:1~~~·.J. J~~~~!!~••·.•1
. : tf1.o9µ1el.yb..£:\U~.l;t}\1.~r~f\{)9.c;µ~~~ti\)li~).StMtlict ~

Start Page

Tool Windows
You know a tool window when you see one. It's basically a helper window that you want
to keep around while you perform a task in the IDE. You could think of a tool window as
a glorified modeless dialog box (meaning you can click other UI elements outside of the
window) with additional functionality that makes it a tool window, such as the ability to
dock and autohide.

At a high level, a tool window can be in one of five states: dockable, autohiding, tabbed
document, floating, or hidden. These states can be combined and put into special cases to

cause the tool window to be in interesting hybrid states, as illustrated in Tip 4.16. But for
now, we'll explore the most common of these states.

Dockable State

Prior to Visual Studio 2005, it took some trial and error to dock a tool window where you
wanted it. The Visual Studio team would watch usability studies of users trying to complete

a task, where the user would be just mere pixels away from docking his tool window success­
fully but never quite make it. Many of us would nearly fall out of our chairs trying to

mentally push the user's mouse pointer to the correct location.

Fortunately, Visual Studio 2005 introduced docking targets, which not only provide a bird's­
eye view of what dock positions are available, but also provides a preview of where the tool
window will be docked. No more falling out of our chairs.

Chapter 4 Manage Your Environment Layout 83

Tip 4.13: You can choose from nine IDE tool window docking targets

When a tool window is in a dockable state, a set of docking targets appears when you move

a tool window to a specific location, such as hovering it over another tool window.

But did you know that there are nine IDE docking targets? These docking targets allow you

to pin tool windows to the inner and outer parts of the IDE itself.

Docking target 1 puts a tool window into a tabbed document state, docking target 3 docks

a tool window to the inner right edge, and docking target 7 docks a tool window to the
outer right edge.

If there's no tool window docked on the right, targets 7 and 3 seem to be the same. But if

you dock tool window A using target 7 and then dock tool window B using target 3, you get

tool window A on the outside and tool window B docked to the left side of tool window A.

You have no idea how crazy it was to test all of these combinations! But I loved it

nonetheless.

84 Microsoft Visual Studio Tips

Tip 4.14: How to undock only a single tool window from a group

You can always undock a single tool window by dragging its tool window tab.

Drag

Tip 4.15: You can dock a tool window to the top of the IDE

I implied this possibility existed in a previous tip when I introduced all the various IDE
docking targets (see Tip 4.13). But I wanted to call it out specifically since it is rare to see a
tool window in this position.

The Memory tool windows (when you're in debugging mode) are the only ones that come
to mind right now. But there's nothing preventing you from docking your own tool windows
up there, as illustrated with the Solution Explorer in the preceding screen shot.

Tip 4.16: You can use docking targets to dock tool windows in new
and crazy ways

Sara Aside Docking targets are hands-down my all-time favorite feature that I tested. Oh,
the fun I would have opening bugs like "Tool Window client area resizes to a negative size after
redocking to same location 100-plus times." (Yes, the bug was fixed.)

Chapter 4 Manage Your Environment Layout 85

When you drag a tool window over a docking target, you'll get a preview, as you see in the
next screen shot.

But, let's have a little fun ...

I have no idea how the tool window tab group shown next could be useful, but maybe if it
were resized to fit a secondary monitor ...

There are no usable controls in this
group. Drag an item onto this text to add

it tD the toolbox.

Can you tell I enjoyed being a tester?

86 Microsoft Visual Studio Tips

Autohiding State

Sometimes you don't want to completely close a tool window, but you don't want it in your

way. Autohiding is a nice way of tucking the tool window away but keeping it ready to spring
back out whenever the IDE thinks you need it, or whenever you want it to slide back out.

Tip 4.17: You can autohide all of your tool windows with one command
On the Window menu, there's the Auto Hide All command. Your environment can go from
looking like the following screen shot, with lots and lots of tool windows open:

to looking like this screen shot:

Solution 'ConsoleApplicaf

Iii'~~-~~~
!··· ill! My Project
'····· '{i Modulel.vb

B Module· Module 1

t ... ·Sub·Main()

····End· Sub

End· Module

Chapter 4 Manage Your Environment Layout 87

However, there is one caveat: there isn't a command to slide out all of your tool
windows.

Tip 4.18: You can customize how pressing a tool window push pin
autohides the tool window or tool window tab group
On the Tools-Options-Environment-General page, you'll find the Auto Hide Button Affects
Active Tool Window Only option. The next illustration is a snapshot of two tool windows
docked together with the Auto Hide push pin circled.

Solution 'ConsoteAppficatio

ai\1~16

i:;;

88 Microsoft Visual Studio Tips

If you want autohide to apply only to Solution Explorer when you click the push pin, enable
the option. Otherwise, autohide will apply to both tool windows.

Tip 4.19: You can show autohiding tool windows via the tool window
autohide channel
This is one of those features I always forget. The window management developer and I were
discussing another tip, when he showed me the autohide channel context menu.

Right-dick the tool window autohide channel to invoke the context menu, and click one of

the tool windows to slide it out from hiding.

Note in the picture that the Solution Explorer and Class View tabs are side by side, whereas

the Properties tab has some space separating it from the other tabs. This is because Solution
Explorer and Class View are docked together and the Properties browser is docked next to it,

along the edge.

Tip 4.20: You can double-click the tool window title bar to redock the
tool window
After you drag a tool window to an undocked position, you can quickly redock the tool
window to the previous location by double-clicking the title bar.

Chapter 4 Manage Your Environment Layout 89

Solution 'ConsoleAppltcatio

ConsoleAppication16

Also, you may notice some tool windows are in tool window groups (as shown in the

following image), whereas others are docked individually. To separate a tool window from

its group, either drag away or double-click the tool window tab, as shown in the following

screen shot.

Drag

Tip 4.21: You can use Shift+Click to automatically dock an autohiding
tool window

Sara Aside I thought I had discovered a bug where "Shift+clicking a tool window that is
docked at the bottom of the IDE causes the window to disappear instead of docking." But after
repro-ing on someone else's machine (it is so important to get a repro on another machine when
you are not sure), I realized that it occurred anywhere. Then I realized what the "bug" was If the
tool window is still sliding out, it will dock. But if the tool window hasn't started to slide out yet,
Shift+Click will perform a Hide command. So this tip is based on both behaviors.

Let's start with "Tool Window 101" training. When a tool window is docked (as discussed

in Tip 4.13), you have the option to autohide. Just click the autohide push pin as shown in

the following image. Or go to the Window menu and choose Auto Hide to autohide the

currently selected tool window.

Clicking this push pin causes the window to autohide, as shown here:

90 Microsoft Visual Studio Tips

You can mouse over the Solution Explorer and click the push pin again to redock. Or you can
go to the Window menu and choose Auto Hide, which unchecks the Auto Hide setting. But
what's the fun in that?

Now for the actual tip. Did you know that you can press Shift+Click on the autohiding tool
window (the second picture in this tip) to move it into a docked state?

However, if the tool window is already sliding out (as shown in the next screen shot), it is
automatically hidden.

So you are probably wondering, "Okay Sara, so what is Shift+ Click really supposed to do?" It
is supposed to perform a Window.Hide command. But when the tool window starts to slide,
stuff happens in the IDE and it goes into a docked state instead of a hide state.

More than you ever wanted to know about the Visual Studio environment, huh?

Tip 4.22: You can speed up or slow down how fast a tool window slides
out from a docked position

On the Tools-Options-Environment-General page, you'll find the Animate Environment

Tools check box. This option controls the speed at which a tool window slides in and out of
an autohide state.

Chapter 4 Manage Your Environment Layout 91

Animate environment tools
Speed - +

Additionally, you can opt out completely from the animation effect by unchecking the
Animate Environment Tools check box. If you do that, tool windows pop to their new

locations rather than sliding to them.

Floating State

Floating is very similar to the dockable state, with the exception that docking targets never

appear for a tool window that is in a floating state. In the General Development Settings, the

Find And Replace window is in a floating state. I've seen questions about how to dock the

tool window. To do so, the Find And Replace window must first be put in a dockable state.

Tip 4.23: Why would you want to make a tool window float?

Recall from earlier in this chapter how tool windows are available in five different states:

• Floating

• Dockable

• Tabbed document

• Auto Hide

• Hide

I would say that the dockable state actually represents two mutually exclusive positions the

tool window can be in:

• Docked The tool window is locked to a specific location, usually to the side of the IDE.

• Hovering This is my made-up term to describe a tool window that is in the dockable
state but is not docked. Recall that the dockable state is different from a floating state,

because the floating state cannot be docked.

Most of these states are self-explanatory, especially after a little bit of trial and error, but the

floating state may be less obvious. In a floating state, the tool window hovers over the IDE

but cannot be docked to a fixed position in the IDE.

92 Microsoft Visual Studio Tips

How is this useful? Sometimes you just want to position a tool window in a certain area and,

unfortunately, the dock targets appear. If you set it to Floating, you never get docking targets
for the tool window. (See Tip 4.13.)

Tabbed Document State

A tool window in a tabbed document state will appear in the file tab channel. I found this

behavior most useful with the Output window, as it maximizes the tool window, allowing for

the largest amount of text to appear on the screen at one time.

Tip 4.24: How to use Tabbed Document to maximize a tool window

; x

Yet another one of those "Wow, I didn't know you could do that until someone showed

me" moments happened when I found out you can maximize a tool window by setting it

to a tabbed document state. With your desired tool window selected, either right-click the

tool window title bar or tab window to bring up the tool window context menu and then

select Tabbed Document. Alternatively, you can go to the Window menu and select Tabbed

Document.

Keyboard Navigation

There are keyboard shortcuts for navigating among the various tool windows opened in

your IDE. All the keyboard shortcuts are customizable on the Tools-Options-Environment­

Keyboard page.

Chapter 4 Manage Your Environment Layout 93

Tip 4.25: You can use Alt+F7 and Alt+Shift+F7 to move to the next and
previous tool windows

The tool windows you open and visit are saved in an MRU (most-recently used) list. So
you can navigate among all the various opened tool windows, using Alt+F7 for next and

Alt+Shift+F7 for previous.

ll,;' Properties

Solution Explorer - Solution ...

Properties

l!!li Class View

Li Team Explorer

~ ToolOO.

,fl Sewer Explorer

Active Files

~ Clas"4.vb

tiJll Mtnlulel.vb

j'j Classl.vb

Tjl Class.2.vb

mil Cl-3.vb

Tip 4.26: You can use Alt+FG and Alt+Shift+FG to cycle through opened
tool windows

If you don't want the IDE Navigator to appear when you navigate among various opened
tool windows, use Alt+F6 and Alt+Shift+F6 to go to the next and previous tool windows,

respectively, in most-recently used sort order.

Tip 4.27: How to use Ctrl+Page Up and Ctrl+Page Down to navigate
among all the tool windows in a tool window group

Whenever tool window tabs are docked together, they form a little group that you can move
around and such, as you've seen in previous tips.

94 Microsoft Visual Studio Tips

[:II Solution 'ConsoleApplication16' (1

~-· Iii CansoleAppllcatlfi
i· · ill My Project
L .. f!l)~

You can use Ctrl+Page Up and Ctrl+Page Down to navigate among the tool windows in this
group.

Hide State

A tool window can be in a hidden state, also known as a closed state, by either clicking the X
on the tool window title bar, or by selecting Window-Hide.

Tip 4.28: How to customize what clicking the X button does to a tool
window or tool window tab group

On the Tools-Options-Environment-General page, you'll find the Close Button Affects

Active Tool Window Only check box. The following screen shot shows a snapshot of two
tool window tabs docked together, with the close button circled.

Solution 'ConsoleApplicatio

SJ··· Iii CansoleAppllcatlfi
i··· liiiil My Project
L.. fi~~

~Solution Exp •••

If you want only Solution Explorer to close when pressing the X button, enable the
option. Otherwise, both tool windows will close.

Chapter 4 Manage Your Environment Layout 95

Hidden Keyboard Shortcuts
I call these "hidden keyboard shortcuts" because the keyboard shortcuts are not bound to a

command, meaning you will never find them on the Tools-Options-Environment-Keyboard
page. The only way you would find them is if someone told you about them.

I've made an exception for Shift+Esc and included it in this list because I don't think it is very
well known, and I'm always shocked whenever I'm reminded about it. I always think it's one
of these hidden keyboard shortcuts, but then I realize it's bound to a command.

Tip 4.29: How to drag a tool window around using the keyboard

With the desired tool window selected, press Alt+Minus to bring up the tool window menu.
Press the Down Arrow to select the Move command, and press Enter. Now you can control
the tool window with the arrow keys.

ionl6' (l

@ ... iii CamoleApplicalilfi

i··· l\liiii My Project
L .. itlMMI

To dock, simply use the arrow keys to get to the desired dock target and hit Enter to commit
to docking the tool window to the new location.

Tip 4.30: How to resize a tool window from the keyboard

When a tool window is not docked, follow these steps to resize the window using the
keyboard:

1. Press Alt once.

2. Press the Spacebar once. You will get the standard window system menu with Move and
Size.

96 Microsoft Visual Studio Tips

3. Select Size.

4. Press the arrow keys toward the window edge you want to resize, and resize from

there.

5. Press Enter to commit to the resizing, or press Esc to cancel the resize changes.

Note Using the Move command from this menu prevents the docking targets from
This is the same as pressing Ctrl and dragging an item using the mouse. If you want to use
targets via the keyboard, see Tip 4.29.

If you press Alt+Spacebar, you get the main Visual Studio window system menu; this is why

you must release the Alt key before you press the Spacebar.

Tip 4.31: How to access a toolbar within a tool window

You may have noticed that within tool windows such as the Solution Explorer, you cannot

reach the toolbar by hitting Tab or using the arrow keys. The keyboard shortcut to reach a

tool window's toolbar is Shift+Alt. Note that Alt+Shift will not work.

i···· ~ My Project
L .. filMl'I

Tip 4.32: You can use Shift+Esc to close a tool window

As I've said time and time again on my blog, it's really the simple things in life I keep

forgetting about this tip, until I see this keyboard shortcut and have to look up what it does.

Chapter 4 Manage Your Environment Layout 97

Use Shift+Esc to close the currently selected tool window. If the focus is not on a tool window

but in an editor, and you press Shift+Esc, Visual Studio will just look at you.

Use new shortcut in:

Window Layouts
Visual Studio has four window layout states:

• Design view What you see when you launch Visual Studio and start coding.

• Full screen Toggled by Shift+Alt+Enter in the General Development Settings. You can

also go to the View menu and click Full Screen. The command is View.Ful/Screen.

• Debugging view Used when debugging.

• File view Used when you open a file via the command line as follows: devenv.exe
myfile.txt. You'll notice that the environment will have no tool windows showing.

Four Window Layouts

When you shut down Visual Studio in any state, all four states are saved. This includes saving

both your tool window layouts and your command bar customizations across all four states.

Additionally, all four states are saved when you go to the Tools-Import And Export Settings

dialog box and perform an Export of just the Window Layouts category.

Tip 4.33: You can export just your window layouts

You can save all four window layout states at any time by going to the Tools-Import And

Export Settings dialog box and choosing the Export option. On the Export page, check the

General Settings box and then check the Window Layouts category.

98 Microsoft Visual Studio Tips

Properties: Window
Simplified Tools/Options
Start Page Commands
Task List Display Settings
Toolbox ·--Help Filters: and Favorites:

Options
Debugging

Tip 4.34: How to quickly access Full Screen mode

You can quickly toggle into Full Screen mode from any of the other three window layouts by
pressing Shift+Alt+Enter.

Any window customizations you make in Full Screen mode persist across different window

layouts (meaning when you are in design mode and go back to Full Screen mode, you'll see

the tool windows where you last had them in Full Screen mode) and across different Visual

Studio instances (where you close and reopen the IDE).

Tip 4.35: How to access a file window layout mode that you can
customize

You can enter the file window layout mode only by opening a file from a command prompt.

Chapter 4 Manage Your Environment Layout 99

Invoking program.cs from the command prompt opens Visual Studio in this file window

layout. You'll note in the following image that there are no tool windows showing and the

Text Editor toolbar is showing. This is the default view in the General Development Settings.

liEJ
2!lusing·System.Collections.Generic;
3! using-System.Text;
1'

:ilEJ ~es pace· Console App lication12

7)- · · · ·class· Program
el (
9j.- ·······•Static •Void· Main (string[] ·args)

10; ••••••• ·{
11!)
12:)
ui l
14l JJ

You can make any customizations here and they'll persist across window layout states. (This

means that if you open a project, all the tool windows will pop back. This happens because

you're now in design mode.) Your customizations will be persisted across sessions. Whenever

you shut down Visual Studio, these customizations are saved to disk. They are also saved as a

part of your .vssettings file (Tools-Import And Export Settings).

Toolbars and Context Menus
It is common for users to want to tweak every aspect of their IDE, including removing any

unwanted commands from their context menus or reducing the number of toolbars that

appear at the top of the IDE.

100 Microsoft Visual Studio Tips

Tool bars
Toolbars are the little strips of buttons, segmented based on the context or task you are
performing, such as the buttons for editing code or HTML. They are usually found at the top
of the IDE under the File menu, but you can customize these to appear when you want and

where you want.

Tip 4.36: You can make a toolbar float

First, you'll want to hover the mouse over the grip control. You'll notice that the mouse
control changes to a four-directional pointer.

- • • · • Sulo ·Main()

Then hold the primary mouse button down and drag the toolbar out. It'll pop out into a hov­
ering state, as illustrated in the next screen shot. You can also resize its height and width.

------·-----·--·------·----·---
'

Tip 4.37: You can hide or show the default buttons from any toolbar

Click the drop-down button on the menu, and select Add Or Remove Buttons. You'll be
given a choice to either customize the buttons on the given tool window or to bring up the

Tools-Customize dialog box. Select the current tool window to see a list of buttons to enable

or disable.

Chapter 4 Manage Your Environment Layout 101

List Members

Parameter l11fo

Quick Info

Complete Word

Decrease line Indent

Increase Line Indent

Comment Selection

Sometimes, there's no room to see all the available buttons. In that case, you'll see two

right-pointing arrows above the drop-down button, as shown in the following image.

Tip 4.38: How to display any toolbar at any time

Right-click anywhere on the tool bar area, either on a toolbar itself or in the unused portion

of the tool bar space, to bring up the context menu of all available tool bars. Then select

any toolbar from the list to have it appear.

Build

Class Designer

Data Design

Data base !).,.gram

Debug

Debug LocetioR

Device

D\afogEditor

Formatting

Note that all the buttons may be disabled (as shown in the preceding picture) if you are not
in the right environment context, meaning that you don't have the right window, editor, or

designer showing to enable the buttons (which is why they were probably hidden to begin

with).

102 Microsoft Visual Studio Tips

But play, experiment, and see if this helps.

Tip 4.39: You can switch and swap buttons on the toolbars while the
Tools-Customize dialog box is showing

Sara Aside This is one of my classic moments where I shouted, "Whoa, I never knew this!"

Go to the Tools-Customize dialog box. Note that this is a semi-modal dialog box (my made-up

term, although there's probably a real term for it somewhere). A modal dialog box is where

you can click only inside the dialog box. But some dialog boxes are modeless, where you can

click outside the dialog box and focus remains outside. I call the Tools-Customize dialog box
semi-modal because you can interact only with the toolbar.

Work with me here. Take your mouse and try to click and drag a button on any tool bar

around here, there, and everywhere. Trust me, it will work, even if the Customize dialog box

is open. Crazy, huh?

Note that you can even duplicate items by doing a Ctrl+Drag. The duplicate item can even

live on a different toolbar!

Tip 4.40: You can show shortcut keys in toolbar ToolTips

Right-click anywhere on any toolbar or tool bar region to bring up the context menu, and

then select Customize. In the lower left corner, check Show Shortcut Keys In ScreenTips. Now

when you hover over a command, you'll see the keyboard shortcut in the ToolTip.

Context Menus

Although it may be obvious that you can customize your toolbars, it may not be as obvious

how to customize your context menus.

Chapter 4 Manage Your Environment Layout 103

Tip 4.41: You can customize the commands on the context menus

First, open the Tools-Customize menu. Now select the Tool bars tab, and check Context

Menu.

Look up at the tool bar section of Visual Studio. Notice anything different? That's right you

are now looking at your context menus waiting for you to customize them, as shown here:

Dass Desi ner

Data Design
Database Diagram
Debug

Lo.cation

Chapter 5

Discover More Tools for Your Design
Time, Part 1

The IDE provides numerous tools beyond those featured in the editor to assist you in designing

and writing code. In fact, there are so many tools and tips that I needed two parts to describe

them all. Part 1 focuses on tools that are provided as a tool window. Part 2 focuses on tools

that are either dialog boxes or Web pages.

Tool Windows
The majority of the tools offered by the IDE exist as tool windows. Unlike a dialog box, where

you can interact only with the tool when the dialog box is open, a tool window allows you to

quickly toggle between your editor and the tool.

This section covers tips for the Command Window, Toolbox, Task List, Output window, and

Object Browser.

Command Window

The Command Window allows you to run Microsoft Visual Studio commands from what looks

and feels like an operating system command prompt. For example, instead of going through
the Find And Replace window UI to conduct a find, you can use the Command Window to

perform the search.

Tip 5.1: You can run Visual Studio commands from the Command
Window

Press Ctrl+Alt+A to open the Command Window, or go to View-Other Windows-Command

Window. Now you can run various Visual Studio commands without having to go through
the menus.

Examples of such commands include the following:

• >File.Open c:\samples\myFile.txt Opens a file without going through the menu

• >Help vs.commandwindow Opens a Help topic directly

105

106 Microsoft Visual Studio Tips

• >? i Returns the contents of the variable i

• >? i = 10 Sets the contents of the variable i

For more commonly used commands that take arguments for Visual Studio 2008, check out the
following documentation: http://msdn2.microsoft.com/en-us/library/c338aexd(VS.90).aspx.

Autocompletion is also provided for both the commands

and their corresponding arguments.

/ext

/lookin

/names

/options
/rega:

/reset

/stop

/sub

/teid2

/wife!

/word

Tip 5.2: How to search from the Command Window

Almost all Visual Studio commands can be run via the Command Window, scope willing. The
next screen shot shows what the UI looks like when you type in the Edit.Find command via
the Command Window.

/markall

/open

/options:

/proc

!regex

/reset

/;el

/up

/wild

/word

Chapter 5 Discover More Tools for Your Design Time, Part 1 107

Here are the additional Command Window options:

• >Edit.Find /options Shows which options are currently set

• >Edit.Find /reset Clears all options

Examples of such commands include the following:

• >Edit.Find MainForm /case /proc This is a Quick Find command that matches case in
the current procedure.

• >Edit.Find MainForm /o /w /m /u /h This is a Quick Find command that opens
documents, matches a whole word, marks matches, searches up, and searches hidden
regions, respectively.

• >Edit.Replace Classl Class2 /doc /all This is a Quick Replace command that replaces
all occurrences of Classl with Class2 in the current document.

• >Edit.FindlnFiles Program /lookin:"c:\Users\saraf\Documents\Visual Studio 2008\
Projects" /ext:*.cs /text2 This is a Find In Files command that looks in the Projects
folder for files with the .cs extension and shows results in the Find Results 2 window.

Tip 5.3: How to log your Command Window session

You can record your Command Window session via the log command. Type log -on
<filename> to start recording. To finish logging, type log -off.

There is also an option to overwrite the existing file; if you don't choose this option, the log

command appends the text by default.

108 Microsoft Visual Studio Tips

Tip 5.4: How to run external executables from the Command Window

The command Tools.Shell runs an external executable out of process from Visual Studio-for

example, Shell <executable>.

But of course, there are optional arguments. Following are examples of optional arguments

for the Tools.Shel/ command:

Shell [/commandwindow] [/dir:folder] [/outputwindow] <executable> [/args]

• /commandwindow (or /c) Use this command to display the executable's output in the

Command Window.

• /dir:folder Use this command to specify the working directory.

• /outputwindow (or /o) Use this command to display the executable's output in the

Output window.

For example, Shell /o xcopy.exe c:\users\saraf\documents\cmdwinlog. txt

c: \users\saraf\ l ogfi l es displays the xcopy output in the Output window.

Tip 5.5: How to create a command alias

To create an alias, open the Command Window and type alias ha Help.About.

Chapter 5 Discover More Tools for Your Design Time, Part 1 109

Afias 'ha' created

Now typing ha in the Command Window pops open the Help-About menu.

But let's explore a more practical application. Consider creating the alias se for Solution

Explorer, as shown here:

>alias se View.SolutionExplorer

The idea for this example is that while you are coding in the editor, you can press Ctrl+/ to

jump to the Find window and type se.

Actually, you've probably already used one of the predefined aliases before. The command

Debug.Print is alias to ?. To see the full list of aliases, type alias.

>-alias

alias ? Debug_ Print

alias ?? Debug.QuickTJJatch

alias AddProj File.AddNewProject

alias alias Tools.Alias

alias autos Debug. Autos

lias bl Debug.Breakpoints

Finally, to reset your Command Window aliases back to defaults, type alias /reset.

Are you: sure you want to restore the default a!i,ases:-? This wiU remove
any aliases you have created yourself.

Or you can simply use the /delete switch to delete a particular alias-for example, type alias
se /delete to delete that se alias.

110 Microsoft Visual Studio Tips

Output Window

The Output window is commonly used to review the results of your build or to display

debugging data. These tips review how you can customize and navigate the Output window.

Tip 5.6: You can use F8 and Shift+F8 to navigate among errors in the
Output window

F8 and Shift+F8 are bound to the commands Edit.GoToNextlocation and Edit.
GoToPreviouslocation. If you have the Error List open, F8 and Shift+F8 take you directly to the

error in question by highlighting that part of the code. If you have the Output window open,
F8 and Shift+F8 put the cursor on each error listed.

Tip 5.7: You can double-click messages in the Output window to jump
to that location in the code

If you double-click any error or warning in the Output window, you jump directly to that

location in the file or to the closest equivalent location.

There's also a button on the Output window tool bar that allows you to do the same thing,
just in case you ever wondered what this Find Message In Code button did.

Chapter 5 Discover More Tools for Your Design Time, Part 1 111

Tip 5.8: You can use the keyboard to jump to various panes within the
Output window

The Output window has a Show Output From drop-down list, as shown in the following
screen shot, to move between various outputs views (or panes), such as Debug and Build.

There's a command called Window.NextSubPane that navigates to the next output pane.

'ConsoleApplication21. vshost _ exe' (Managed): Loaded 'C: \Users\saraf\

Docum.ents\ Visual Studio 2008\ Projects\ ConsoleApplicationZl \

ConsoleApplication21 \bin\Debug\ ConsoleApplication21. exe' , Symbols loaded

The thread Oxc88 has exited with code 0 (OxO) _

The thread Oxa84 has exited Ql'ith code 0 (OxO) _

The pro qr am. ' [5712] ConsoleApplication21. vshost. exe: Managed' has exited

with code 0 (OxO) _

The command in itself isn't that interesting, but you can bind it to a keyboard shortcut-for

example, Ctrl+Shift+Alt+O, since Ctrl+Alt+O is the keyboard shortcut to use for the Output

window under the General Development Settings.

Now you can toggle easily between Debug and Build views in the Output window by using a

keyboard shortcut.

Tip 5.9: How to stop the Output window from showing itself during a
build

At some point, you'll experience the Output window sliding out from its autohiding

place during a build. If you want to fine-tune this experience so that the Output window

shows only when you tell it to (maybe you just want to check the status bar for the build
status or have the Error List pop up if errors occur), go to Tools-Options-Projects And

Solutions-General. Check the option called Show Output Window When Build Starts.

jJ~]ShowOutputWindow·whenhuild st~rts

112 Microsoft Visual Studio Tips

Now the Output window will be displayed whenever a build is started.

------ Build started: Project: Class1ibrary2,. Configuration:

ClassLibraryZ -> C: \ Users\saraf\Docu.m.ents\Visual Studio

Build started: Project: ClassLibraryl,. Configuration:

Tip 5.10: You can enable word wrap in the Output window

The Output window has an icon on the tool bar that allows you to enable word wrap.

Sara Aside I don't use word wrap, as I prefer one line per error. But I see the potential if you
have customized the Output window for space and need to read the entire line without having
to scroll left or right.

Here is the Output window before pressing the Toggle Word Wrap button.

------ Build started: Project: ConsoleApplicationZl,. Configuration: Debug

ConsoleApplication2:1 -> C: \Users\ saraf\Docum.ents\ Visual Studio 2008\Proj e;

------ Build started: Project: Class:Library3,.. Configuration: Debug Any CP'

Class:Library3 -> C: \Users\ saraf\DocUIIlents\ Visual Studio 2008\Projects\ Cla':,

========== Build: 4 succeeded or up-to-date .. 0 failed,. 0 skipped ========:;:
I

Chapter 5 Discover More Tools for Your Design Time, Part 1 113

Here is the Output window after pressing the Toggle Word Wrap button.

------ Build started: Project: ConsoleApplic:ation21, Configuration: -,,,.

Debug Any CPU ------

ConsoleApplicationZl -> C: \Users\saraf\Doc:um.ents\Visual Studio 2008\
Proj ec:ts\ ConsoleApplie:ationZl \ ConsoleApplicationZl \bin \Debug\
ConsoleApplic:ationZl. exe

------ Build started: Project: ClassLibrary3, Configuration: Debug Any

CPU ------

ClassLibrary3 -> C: \Users\saraf\Doc:um.ents\Visual Studio 2008\Projec:ts\
ClassLibrary3\ ClassLibrary3\bin\Debug\ ClassLibrary3. dll

========== Build: 4 succeeded or up-to-date, 0 failed, 0 skipped =======

~Output

Tip 5.11: You can customize the color scheme in the Output window

On the Tools-Options-Environment-Fonts And Colors page, in the Show Settings For combo
box, there's an Output Window option.

When it's selected, you'll be able to customize the colors for the following types of text Plain

Text, Selected Text, and Inactive Selected Text. Additionally, you can customize the color of
the Current List Location.

General
Add-in/Macros Security
AutoRecover
Documents

Find and Replace

; f9~.~n~ ~J1l~r~
Help
Import and Export Settings
International Settings

Keyboard
Startup
Task List
Web Browser

Projects and Solutions

General
Build and Run
VB Defaults
VC++ Directories

indicates fixed-width fonts): Size:

Courier New

Display items:

Plain Text
Selected Text
Inactive Selected Text Item background:

-------· .-------,
•Default

IE'JBold

S.mple:

If you set the Item Background to Black and the Item Foreground to White, the Output
window displays the visited line in the new color scheme.

114 Microsoft Visual Studio Tips

ClassLibraryZ -> C: \Usars\sa.raf\Docum.ents\Visual Studio 2008\Projec:ts\C
------ Build started: Projec:tl: Clas:sLibraryl,. Confi9Uration: Debug Any
ClassLibraryl -> C: \Users\saraf\Doc:um.ants\Visual Studio 2:008\Projec:ts\C
------ Build started: Project: ConsoleApplic:ation21,. Configuration: Deb
C: \ l1indows\l'lic:roso ft. JllT\ P'ram.ework\v3. 5\ Csc:. exe /noc:onfiq /nowarn: 1701, l

Com.pile complete -- l errors.. 0 warnings
------ Build started: Project: ClassLibrary3,.
ClassLibrary3 -> C: \Users\ saraf\Doc:um.ents\ Visual Studio ZOOS\ Proj ec:ts\ C

Sara Aside For me, the dark blue has always been a bit distracting because it makes me think
that the focus is in the Output window when it really is in the editor. Another good combination
is to change Item Foreground to Cyan and Item Background to White.

Tip 5.12: You can redirect debug messages to the Output window

Depending on your environment settings, such as the Visual Basic Development Settings, you
may have noticed that the Output window's debug content is redirected to the Immediate

Window instead. Or maybe you want the Output window's debug content to go to the
Immediate Window.

Go to the Tools-Options-Debugging-General page. On this page, you'll find the option

Redirect All Output Window Text To The Immediate Window.

~ Highlight entire source line for breakpoints and current statement

I] Require source files to exactly match the o · · al version

ll!llBllB1
~ Show raw structure of objects in variables windows

To illustrate, let's say you have this option enabled and you hit an assert. You'll see the assert
information in the Immediate Window and not in the Output window.

--- DBBUG ASSBRTION FAILBD ----
--- Assert Short Hessaqe ----
OOH!!!

---- Assert Long 11essaqe ---­
OOH!!! .,

at Program..Hain(Strin9[] arqs) C: \Users\saraf\Doc:um.ents\Vis~~
at AppDom.ain. _nBxec:uteAssea:bly(Assembly assembly, String[] i~: 0

Chapter 5 Discover More Tools for Your Design Time, Part 1 115

Tip 5.13: You cannot enable Stop Search on the Output window

Sara Aside You may have noticed the Stop Search command on the Output window context
menu. I spent a good 20 minutes trying to figure out how to enable this command before I broke
down and e-mailed the developer.

ClassLibraryl -> C: \Users\ saraf\Docum.ents\ Visual Studio ZOOS\ Proj ec:ts\ Cla;
------ Rebuild Al
C: \Windows\Hic:ros
C: \Users\ saraf\Do

Com.pile complete
------ ltebuild Al

plic:ationZl, Configuration::
_c_opy _______ ,e /noc:onfiq /nowarn:l"l'Ol,17~
Clear AU ojec:ts\ ConsoleApplic:ationZl~

ary3, Configuration: Debug
e /noc:onfiq /im.ports:Hic:ros

Studio 2008\Projec:ts\Cla

skipped ==========

Apparently, you can't enable it. It's because the Output window and the Find Results window

share a lot of implementation, and it should have been hidden for the Output window case.

Toolbox
The Toolbox is your one-stop shop for everything you can put into a designer or editor.
These tips explore the ins and outs of your Toolbox, including how to use that General tab to

quickly store a block of code.

Tip 5.14: You can drag and drop code onto the Toolbox's General tab

This tip is especially helpful if you are going to write code in a presentation. Instead of having
to type code in front of everyone, you can have it all typed up on the side, ready to go!

You've probably noticed the Toolbox General tab showing this information by default.

There are no usable
contmls in this group. Drag

an item onto this text to
add it to the toolbox.

116 Microsoft Visual Studio Tips

Probably one of the best-kept secrets is that you can actually drag and drop code onto the
Toolbox. Just highlight some text and then Click+Drag and that text into the General tab.
You'll see the following:

But it gets better.

Click+drag to
add to code

····End· Sub

You can actually drag code to any tab on the Toolbox, including user-created tabs. Note that
you may need to select Show All on the Toolbox context menu to display additional tabs so
that you can drag the code onto the tab. But after that, the tab will appear whenever you can
insert code.

\ Pointer

~i
Rl'B.•rcmuwJs:lilii!tM

\ Pointer

~ Text: Console.Writeline. ..

Tip 5.15: Why does each Toolbox group have a Pointer control?
You've probably noticed how the Pointer control appears at the top of each tab group. This
is because whenever a control is selected in the Toolbox, the mouse pointer automatically

becomes a drag pointer for that control, meaning that you just have to put your mouse
pointer onto the form and click, and the control is dropped. You don't have to hold down
any keys to do the actual drag.

But you may not actually want to use the drop function at this time. You can put the focus on
the Pointer control to ensure that you don't accidentally drop the item.

IUJ CheckedListBox

[I ComboBox

]I Date TimePicker

A Label

A LinkLabel

~ ListBox

Chapter 5 Discover More Tools for Your Design Time, Part 1 117

Tip 5.16: How to stop the Toolbox from autopopulating with items
found in the solution

Sara Aside The idea for this tip came from a blog reader. I'll admit that I didn't know how
to keep the Toolbox from autopopulating. Fortunately, I can ask the developer on the feature
directly and share the answer with everyone.

If you have a solution with lots of projects in it, and you notice the Toolbox is taking a long
time scanning the solution for all possible Toolbox items, you can go to Tools-Options­
Windows Forms Designer-General and set AutoToolboxPopulate to False.

I

Source Control
Text Editor

Database Tools

Debugging
Device Tools
HTML Designer
Office Tools

TextTemplating
Window::; Forms Designer

,Gerye.ral
Data Lil Customization

Workflow Designer

Object Bound Sm art Tag Settings

True

8,8

Snaplines

True

True

Automatically Open Smart Tags True

True

118 Microsoft Visual Studio Tips

Tip 5.17: You can use * to expand all and / to collapse all in the Toolbox

Sara Aside These keystrokes are not actually specific to the Toolbox, as they work for any
standard TreeView control. I just call them out in the Toolbox because this is where I first discovered
the* (asterisk) and I (forward slash) in our test-case repository.

Typing * expands everything in the Toolbox. Typing I collapses everything. (Just type the I
key; do not use Shift+/ because that will produce a ?.)

Note that the * really does expand all items, including subnodes. In other words, I must warn
you: do not, and I really mean do not, try to do this at your root c:\ directory. If you do, you'll
get to watch Windows Explorer expand every single folder on your machine, which may take
a while.

You can also consider using + (plus sign) and - (hyphen), which work for all standard

TreeView controls without expanding all or collapsing all. I just tend to use the standard Right
Arrow key to expand and Left Arrow key to collapse so that I don't have to reach as far.

To recap, typing *or + or pressing the Right Arrow key expands the tab.

BindingSource

(ill Button

~ ChedBox

D Checkedlis!Box

LiJ ColorDialog

ljJ ComboBox

~ ContextMenuStrip

Date TimePkker

DirectoryEntry

DirectorySearcher

[]I DomainUpDown

0 ErrorProvider

iJ Eventlog

iJl FileSystemWatcoo

!"!; Howlayou!Pane!

And pressing/ or - or pressing the Left Arrow key collapses the tab.

Chapter 5 Discover More Tools for Your Design Time, Part 1 119

Tip 5.18: You can use Ctrl+Up Arrow and Ctrl+Down Arrow to move
among the various control groups in the Toolbox

You could page up and down throughout the Toolbox to reach the previous or next control
group, or you could just use Ctrl+Up Arrow or Ctrl+Down Arrow.

L'.J GroupBax

1\1 Panel

i!f!I SprrtContainer

Ll TabControl

ij T ablelllyoutl'anel

~ Pointer

Ii] ContextMenuStrip

~ MenuStrip

b StatusStrip

Ctrl+Up Arrow

Ctrl +Down Arrow

120 Microsoft Visual Studio Tips

Tip 5.19: You can sort items in the Toolbox alphabetically
Most of the time, the controls are listed in alphabetical order. But if you ever need to do a

reset, you can bring up the Toolbox context menu and select Sort Items Alphabetically.

Tip 5.20: You can switch between the Icon view and List Item view in the
Toolbox
Here's yet another action I had no idea you could use until someone showed it to me. By

having just the Icon view open, you can save a lot of space within the Toolbox.

For each Toolbox grouping, you can customize whether to show the flat list of controls and

their names or just show their icons. Right-click anywhere in the desired group, and toggle

off List View.

Chapter 5 Discover More Tools for Your Design Time, Part 1 121

Here's the Icon view that appears instead of the List View.

~ @ G2l

1i A A ~ --

r•=.1 :ill ['"' ,,,, Li
EJ i!!;;; ~ lb .~

.. m

Tip 5.21: You can use Show All to find your hiding Toolbox controls

Sara Aside This tip comes directly from the developer who works on the Toolbox. He told
me he sees a lot of questions where people are trying to figure out why a particular control isn't
there, especially when they've just recently added controls.

What happens is that all the controls in the Toolbox are managed by the active designer. A

designer is like an editor because it takes up the same region of space in the IDE, but it allows
you to design UI rather than write code. You can recognize a designer by the [Design] in the

file tab. So, if the currently active designer doesn't support a particular control, you won't see

it when you add it to the Toolbox.

122 Microsoft Visual Studio Tips

By choosing Show All, you can at least verify that your control was added. Now, how to get it

active depends on the control and which designer is needed.

In the next screen shot, notice the scroll bar position on the right, showing just how many

controls are now visible.

Tip 5.22: You can use Ctrl+C to copy controls in a Toolbox tab and then
use Ctrl+V to paste the controls into another Toolbox tab

You can use the mouse to drag and drop controls to a new tab, and you can even use

Ctrl+Drag to copy controls to a new tab. But did you know you can use the keyboard to

achieve the same functionality?

Use the classic Ctrl+C to copy any Toolbox control, and use the classic Ctrl+V to paste into the

desired tab location.

Note how the preceding image illustrates having both code and a button control within the

General tab. Also note that I have the Show All option enabled to show the disabled code

because when I took this screen shot, the Win Forms designer was the active document in

the IDE.

Tip 5.23: You can create new Toolbox tabs

You can create your own Toolbox tabs to store practically whatever you want in them. For

that upcoming presentation, you can create your own tab by choosing the Add tab on

Chapter 5 Discover More Tools for Your Design Time, Part 1 123

the Toolbox context menu and adding content by using either the mouse or keyboard to

populate content into your new tab. (Yes, the keyboard works too for cutting and pasting

code from the editor into the Toolbox.)

,.;;;:

Oelete Tab

Rename Tab

MweUp

.. 1 Move Down

Sara Aside I was going to create another tip called "Did you know you can move tabs?" but
it doesn't really stand on its own as a separate tip. As I'm writing this, I still have three hours of
battery life left for this plane flight, and the plane attendant people (I can't spell what they are
called, and my row-seat neighbors are tired of playing human dictionary for me) just served
brownies.

You can drag and drop Toolbox tabs to new locations in the list, and their location will
persist.

It Pointer

~ Text Console.Writeline("Hello World")

~Text SubMainO Ent!Sub

There are no usable controls in this group. Drag
an item onto this tert to add it to the toolbox.

Task List

The Task List is similar to the Bookmarks window, where you can leave notes about particular
sections of code. However, the Task List generates its content from scanning the source code

files. For example, suppose you have left TODO comments in the code for others on your

team to look at or as reminders the next time you check out that file. These TODO comments

will appear in the Task List. Note that the user tasks and shortcuts created in the Task List are

not inserted into the code, so these will remain for your eyes only.

Tip 5.24: You can use the Task List to create user tasks that are separate
from your code

A user task is saved in the .suo file per user, unlike a TODO, HACK, or UNDONE comment that

you type into your source code. A .suo file stores all of a user's solution customizations, which

you wouldn't want checked into source control.

124 Microsoft Visual Studio Tips

To create a user task, open View-Task List, make sure User Tasks is displayed in the combo
box drop-down list, and then click the Create User Task button on the toolbar. Note that
you can create the first task by directly editing the first row in the task list, but after that you
need to press the button.

Then, as you finish your task, you can check the check box next to it to scratch it off.

And to delete a task, simply right-click it and choose Delete.

Tip 5.25: You can assign a priority to your Task List's user tasks
Now that you've created a user task, you can assign a priority. I call this out as a separate tip,
as it is most likely not intuitive that you can do this.

Chapter 5 Discover More Tools for Your Design Time, Part 1 125

Under the ! (exclamation point) column, you can click any cell to pop open the priority

combo box.

Then you'll be able to view and sort your user tasks based on priority.

Tip 5.26: How to create and view TODO comments in the Task List

Let's focus now on the other aspect of the Task List: the comments left in the code. You need
to drop down the combo box at the top right to show Comments to be able to see your

comment tokens (for example, UNDONE, TODO, and HACKS) in the Task List.

126 Microsoft Visual Studio Tips

So let's say that you have a TODO comment in your code as shown here.

By going to the Comments view in the Task List, you can now see your TODO comment.

TOD(}. Hey Sara, Write a Tip about me!! Modulel.vb 4

Tip 5.27: You can create shortcuts in your Task List

Sara Aide This is yet another feature I didn't know about until someone showed me.

You can store shortcuts in your Task List, and you can even use them as tasks to scratch off, if

you want. And just like user tasks, shortcuts are saved in your solution .suo file, so they won't

get checked into the source control.

To create a Task List shortcut, go to the desired location in your editor (which can be any line
of code or comment) and then go to Edit-Bookmarks-Add Task List Shortcut.

Chapter 5 Discover More Tools for Your Design Time, Part 1 127

Now you'll notice the shortcuts curved-arrow glyph appears in the indicator margin.

Module. Module!

· · • ·Sub·Main()
· · · · · · · ·Fonsole. lJriteLine (rrHello ·Tip· of. the. Day")

· · · · · · • • 1 TODO: • Ho::y· Sai:·a.r • Wrj.te ·a· Tip· f.tl:iout 0n1e ! ~

····End· Sub

•X

And now in the Task List, you'll see a new category called Shortcuts.

As illustrated in the preceding screen shot, you can also rename these shortcuts by double­

clicking the description (or tabbing to the description field, for keyboard users) and then

typing a new name.

Sara Aside You may be wondering what the difference is between bookmarks and Task List
shortcuts. At a high level, you won't see much difference. But, at the feature level, Task List
shortcuts provide a few differences. Task List shortcuts display the entire line of code in the Task
List window. Also, you can set a priority and check off these shortcuts as you complete them.

Tip 5.28: You can show HACK, UNDONE, and custom tokens in the Task
List

TODO comments are not the only thing you can display under Comments in the Task List. If

you go to Tools-Options-Environment-Task List, you'll see a Token List. By default, the Token

List comes with HACK, UNDONE, and TODO, but you can create your own.

128 Microsoft Visual Studio Tips

General
Add-in/Mocros Security
Auto Recover
Documents
Find and Replace
Fonts and Colors
Help
Import and Export Settings
International Settings
Keyboard
Startup

w~
Web Browser

Projects and Solutions
Source Control
Text Editor

! UnresolvedMergeConflict

Using a user-created TipOfTheDay token, I can type a comment in my code using the

'TipOfTheDay token format, as shown here:

········'TipOfTheDay·-·Write•a•tip·abOUt•this
.. •• .. •.Console. T.JriteLine ("Hello· Tip· of. the ·Day")

• • • • End·Sulo

The TipOfTheDay comment now appears in the Task List.

i TipOfTheDay - write a tip about this Modulel.vb 3
...... .

Chapter 5 Discover More Tools for Your Design Time, Part 1 129

Tip 5.29: How to disable the prompt for deleting the Task List's
user tasks

If you've created a few tasks and deleted them over time, you may have found that delete

confirmation prompt to be annoying. Here's how you can disable it.

On each user task, you'll see the Delete command on the context menu, as shown in the

following screen shot.

And when you click it, you'll get this prompt:

The selected lask(s) will be deleted.

To disable this prompt, go to Tools-Options-Environment-Task List, and uncheck the

Confirm Deletion Of Tasks check box.

Task Listoptiom

Confirm deletion of tasks

IE] Hide full file paths

Tip 5.30: You can show a full file path in the Task List

This tip applies only to comments and shortcuts, as user tasks are not saved with a file.

Go to Tools-Options-Environment-Task List, and uncheck the Hide Full File Paths check box.

130 Microsoft Visual Studio Tips

And now the Task List displays the full paths for shortcuts.

Tip 5.31: You can create keyboard shortcuts to navigate among the
various Task List categories (by using View.NextTask and View.
Previous Task)
F8 and Shift+F8 are bound to the commands Edit.GoToNextlocation and Edit.
GoToPreviouslocation. When the Task List is visible, these keyboard shortcuts navigate

throughout all the tasks listed in a given category.

However, if you want to navigate at any time among your various TODO comments or other

tasks, regardless of whether the Task List is open, the Task List comes with two commands for
doing this: View.NextTask and View.PreviousTask.

Because we've already explored more than you ever wanted to know about the Task List, you

now know that the Task List has several categories: User Tasks, Comments, and Shortcuts.
These commands navigate only among items of a given category, so you won't jump from

Shortcuts to User Tasks.

Note that these commands are not bound to a keyboard shortcut by default in the General

Development Settings, so you may need to bind them yourself, depending on your develop­
ment settings.

Chapter 5 Discover More Tools for Your Design Time, Part 1 131

Go to Tools-Options-Environment-Keyboard, and in the Show Commands Containing edit

box, type the command View.NextTask.

Do a sanity check for whether the settings you are using already have the command bound
to a keyboard shortcut. If a command is already bound to a keyboard shortcut, you'll see it

in the Shortcut Currently Used By read-only combo box, which you can see in the preceding

screen shot.

If the command is not bound to a shortcut, in the Press Shortcut Keys edit box, type your
preferred shortcut and click Assign. If you want this command to work only in the editor and

not anywhere else in the IDE, use the Text Editor scope under the Use New Shortcut In drop­

down list.

Rinse and repeat for the View.PreviousTask command. For me, I used Ctrl+Alt+N, only

because it wasn't bound to anything in the General Development Settings. For the previous

action, I highly recommend just adding the Shift key to whatever key combination you come

up with for View.NextTask, since the standard convention for any backward navigation is to

include Shift.

Also, something else to note, because we had to test for it, is that the Visual Studio status bar

will update with the name of the comment when you use View.NextTask or View.PreviousTask.

Object Browser

The Object Browser is your bird's-eye view on every possible object or method the IDE knows

about, whether it lives in your project or in the Microsoft .NET Framework.

Tip 5.32: You can use Ctrl+Alt+J to open the Object Browser window

You can use Ctrl+Alt+J to open the Object Browser window. The command is

View.ObjectBrowser.

132 Microsoft Visual Studio Tips

. CLSCompfiantAttribute

i····i.11 Comparison[Of l)
t$J--~--~
~---~ ConsoleCancelEventArgs
i-···ill ConsoleCancelEventHandler
!--···!illl ConsoleColor
!-····!illl CoMOleKey

!·····• ConsoleKeylnfo
i·····<ill' CoMOfeMDdifiers
!-····iii* ConsoleSpecialKey

<fi···~ ContmBoundObjed
~---~ ConlmMarshalEKception

~---~ ConleictSIBticAttribute
. ~Convert

Converter(Of ilnpul, TOutput)

i·· ill CrossAppDomainDelegate

>!i--~ DataMisa!ignedEKception
1*Hil Date Time

Public Shared Sub WriteLine(ByVal value As ~
Member of !!ystem.Console

Summary:
Writes the specified string value, followed by the
current line terminator, to the standard output stream .

Tip 5.33: You can specify to show components in your solution only in
the Object Browser
By default, the Object Browser shows you all the components in the latest .NET Framework
version. But sometimes you don't need to know about the entire world, and you just want to
focus on the objects in your solution.

In the upper-right corner of the Object Browser, you'll see a Browse combo box. If you drop
down the combo box list, you'll see the option for selecting My Solution.

AH Components
.NET Framework 3.5
.NET Framework 3.D
.NET Framework 2.D

Custom Component Set
Eal! Custom Com nent Set ...

Now you'll see only the objects being used within your solution.

Tip 5.34: You can create a custom list of components for the Object
Browser
You can create a custom components list for the Object Browser.

Chapter 5 Discover More Tools for Your Design Time, Part 1 133

There are two ways to reach the Edit Custom Component Set dialog box. Either click that

little " .. .'' browse button next to the combo box or click the Edit Custom Component Set

option in the Browse combo box.

Alf Components
.NET Framework35
.NET Framework 3.0
.NET Framework 2.0
My Solution
Custom Com nent Set

Now you'll see the Edit Custom Component Set window, where you can add and remove

components. And for old time's sake, I've added an Accessibility assembly.

adodb

adodb

AspNetMMCExt

CppCodeProvider

· $!'.~~~~f~c: ... d-:r~·
:.~!1i!JW..'.'..,'••""'L:•.:•.•'.111fJ.. •.. · ..

7.0.3300.0

7.0.3300.0
2.0.0.0
8.0.0,0

8.0.0.0

2.0.0.0

10.0.4504.0

10.0.4504.0

8.0.0.0

vl.1.4322 C:\f'.

vl.1.4322 C:\f~
v2.0.50727 C:\\i

v2.0.50727 C:\f

v2.0.50727 C:\lj

v2.0.50727 C:\1'.

vl.0.3705 C:\fj
vl.0.3105 C:\fi
vl.0.3705 C:\f',.,

134 Microsoft Visual Studio Tips

Finally, when returning to the Object Browser, you get the following view.

liil··4 Accessibifity

El·· {} Accessibility
EiJ ... llfl AnnoScope
i;l;J ... ~ CAccPropSetvices
i;j;i ... ~ CAccPropServicesC!ass

iii"'°-
! ~-Base Types
! liil ;a Derived Types

00···"'° IAc.cessibk!Handler

~-··"'° IAcddentity
~-··"'° IAccPropServer
!$Jo !AccPropServices
i;j;i .• _MIDl_IWinTypesJl009
ai ..• _Remota1>1eHarn11e

liil--\illl Extension Membeis

i.. ··'· accDoDefaultAction(Optiona! ByVal [Obj«:tD

. ··"· acdoc<rtion(ByRef Integer, B;<M Integer, Byl\ef l
!·····-'t occSelect(By\lal Integer, Optional ByVal [Objectl)
!· ···"t accHitT est(By\lal lnteger, ByVal Integer) As Object
!·····'t ae<Navigate(By\lal lnteger, Optional ByVal [ObjectD

!· ·Jir accChik!(ByVal Obj«:!) As Ohj«:t

l····d' a<cChi!dCount() As Integer

Public Interface IAccessible
Member of Ag;essibility

Summary:
Hhe Accessibility.IAccessible interface and all of its
·1 exposed members are part of a managed wrapper
: for the Component Object Model (COM) !Accessible
· interface.

Attributes:
< System.RuntimelnteropServices.TypelibTypeAttribute

Tip 5.35: You can add references to your solution directly from the
Object Browser
Let's say that you find the component that you want to add to your solution. Typically, you
go to Solution Explorer, right-click the project node and select Add References, bring up the

Add Reference dialog box, and you know how the rest goes.

Within the Object Browser, there's a toolbar button called Add To References located to the
right of the " ... " browse button and the forward/back navigation buttons.

With the Accessibility assembly selected, click the Add To References In Selected Project In
Solution Explorer icon to add the assembly.

Gl··· () Accessibijjty

£i;H118 AnnoScope
~·· 41$ CAccPropServices
~--·~ CAccPrcpS.rvk..CW.5

iii···"'° IAc.cessible

And now you'll see the Accessibility assembly added to the project.

Chapter 5 Discover More Tools for Your Design Time, Part 1 135

~taW@iMHI
"£;! System

~Al System.Deployment

Tip 5.36: How to use navigate forward and back in the Object Browser

Another set of buttons on the Object Browser toolbar belongs to the Navigate Forward and
Navigate Back actions.

The pages you visit within the Object Browser are saved in MRU (most-recently used) order.

This alone is somewhat exciting, but what really makes it exciting is a keyboard shortcut!

The commands are View.ObjectBrowserForward and View.ObjectBrowserBack. If you are using
the Visual Basic Development Settings, you'll see that the keyboard shortcuts are Alt+ Minus
for Back and Shift+Alt+Minus for Forward. If you use the Forward and Back functionality
frequently and are not using the Visual Basic Settings, go to Tools-Options-Environment­

Keyboard, and manually set the keyboard shortcuts there.

Tip 5.37: You can create a keyboard shortcut for adding references to a
solution from the Object Browser

Sara Aside I was kind of surprised to see it in the list of commands. But, then again, one can
never have too many keyboard shortcuts. =)

To write this tip, I bound it to my pseudo random keyboard shortcut Ctrl+Alt+Shift+T. This is my
generic, all-purpose keyboard shortcut that I use for testing purposes.

As far as binding View.ObjectBrowserAddReference to a keyboard shortcut goes, I'll leave it up
to you to decide how useful this is. Maybe the "keyboard shortcut for everything" users will

enjoy it.

136 Microsoft Visual Studio Tips

As long as some object has selection-meaning it doesn't have to have focus (blue highlight)

and has at least inactive selection (light gray highlight)-in the Objects pane (the leftmost

pane), you'll get the following message box when you press the keyboard shortcut.

8 Reference to Accessibility was succezfully added to
ConsofeAppticationl.

And if there's nothing selected (meaning you probably have absolutely nothing in the Object

Browser) and you press the keyboard shortcut, Visual Studio will just stare at you.

Tip 5.38: You can customize both your Object pane and Members pane
in the Object Browser

Over the next several tips, we're going to take apart the Object Browser Settings menu that

lists what appears in the Object Browser.

The first set of options control your view preference in the Object pane, which is either by

namespace or by containers. Think of these two options as a set of radio buttons that are

mutually exclusive. The rest of the options are more like check boxes, since you can have all

the show options enabled.

If you choose View Namespaces (which is the default), all components are shown based

on their namespace, just as you would expect. The idea here is that namespaces stored in

multiple physical containers are merged, as shown here:

$·· {} ConsoleApplic.ationl.My

!ilJ .. {} C<1nsoleApplicationl.My.Resources

iJ;, ... (} ConsoleApplic.ation19

i:iJ ... (} ConsoleApplicationl!l.My

dJ ... (} ConsoleApplic.ation19.My.Resources

$ · {} Microsaft.CSharp

$.. {} MicrosaflSqlServer.Server
$.. {) Microsafl.Visual8asic.

Chapter 5 Discover More Tools for Your Design Time, Part 1 137

Now if you switch to View Containers, you'll see the physical containers, and then a

breakdown of the namespaces that are contained in each.

ConsoleApplic.ationl W·Oll!I••• iiJ ... 0 Conse>leApplicationl.My

ri:J ... {} ConsoleAppricationl.My.Resr>Urces

$· I!! ConsoleAppricationl!I

$.. >Iii! Mic.rosaft.V-tsual8asic.

~ rnscorlib

$·.Qll System
$.. ·.QI System.Data

Sara Aside I always use View Containers so that I don't feel so overwhelmed by seeing
everything! =)

Tip 5.39: You can choose whether to show base types in the Object
Browser

In the Object Browser Settings menu, there's the Show Base Types option.

Vitwtumespactll

Viel¥ bmtameis

In the following example, Classl inherits from ClassBase. When this option is enabled, un­

der Classl you'll see the Base Types folder. If you've been wondering how to get rid of this

(or have been wondering how to enable it), just toggle the setting.

' ii;J .. {} ConsoleAppricationl
1 f · 41t Class!

$ 41$ Dialog!
i Ea .. Ja. Base Types

I @?;;_Types
j @ .. 41$ ContainerControl

L~ Modulel

138 Microsoft Visual Studio Tips

Tip 5.40: You can hide or show hidden members and types in the Object
Browser

Sara Aside I never officially tested the Object Browser but rather played back-up tester in case
someone went on vacation, needed help analyzing failures during a full test pass, and so forth.
When I wrote most of these tips, I had to browse the test cases and the documentation to make
sure I described things consistently and to make sure I was not missing any functionality.

This tip is about the Show Hidden Types And Members option on the Object Browser

Settings menu.

When this option is enabled, any hidden types and members will appear, but they'll appear

in a grayed-out state, as shown next in the Methodl() and Method2() example, where

Method2() is hidden.

ConsoleApplication26
, -· 0 ConsoleApprication26

i$~­
! ~-~ Class2
i L.41 Module!

i Eli··(} ConsoleApp!ication26.My
i ~-· {} ConsoleAppfication26.My.ResoUfces

Gl·•Gill Microsoft.V1Suall!asic

+··4 mscorlib
litl··..Qii System Public Class Classl

Inherits ~.Object
Member of

ConsoleApplication26

Tip 5.41: You can mark methods and types as Hidden so that they don't
appear in Microsoft lntelliSense or in the Object Browser

Continuing from Tip 5.40, this tip is how to actually make something hidden or capable of

being hidden.

In the System.ComponentModel namespace, there's the EditorBrowseableAttribute class.

Chapter 5 Discover More Tools for Your Design Time, Part 1 139

Going back to the previous tip's Methodl() and Method2() methods, you'll see in the

following example how Method2() doesn't appear in lntelliSense, just like it doesn't appear in

the Object Browser.

····<EditorBrowsable(EditorBrowsableState.Never)>·
· . · ·Pub lie· Sub· Hethod2 I I
··· ····Console.WriteLine("hlorldH)

····End· Sub
End-Class

• x

Of course, you can still complete the line just shown with Method2(), and everything will

compile successfully.

Tip 5.42: What does Other mean in Show Other Members in Object
Browser Settings?

The Other in the Show Other Members option represents members that do not have an

access level of public, private, protected, or inherited. For example, access levels of Friend

(in Visual Basic) and Internal (C#) fit into this Other category.

The Object Browser shows the Friend method with a blue diamond.

ConsoJe.App!ication26.My .Resources

140 Microsoft Visual Studio Tips

Tip 5.43: How to stop displaying all inherited members in the Object
Browser Member pane

The next option in Object Browser Settings is Show Inherited Members.

When this option is enabled, you'll see all inherited members, including those inherited from

System.Object.

Equals(Object) As Boolean

Equals(Object, Object) As Boolean

Membe<WiseOaneO As Object

ReferenceEquals(Object; Object) As Boolean
foS!ringO As String

Member

When this option is disabled, you'll see only Methodl(), Method2(), and Method3().

Tip 5.44: You can show extension methods in the Object Browser

This tip is new for Visual Studio 2008. You can learn more about extension methods in the
documentation located at http://msdn.microsoft.com/en-us/library/bb384936.aspx for Visual
Basic and http://msdn.microsoft.com/en-us/library/bb383977.aspx for C#.

In Object Browser Settings, you'll see the Show Extension Methods option.

Now, when you have an extension method in your code (in my example, it's a module
because I'm using Visual Basic), you'll see a downward-pointing arrow.

Consol'<Applirntion22 .. My .Resourc.es

Chapter 5 Discover More Tools for Your Design Time, Part 1 141

Tip 5.45: What are the two primary means of searching for objects in
the Object Browser?
Now we'll move to the second tool bar in the Object Browser, which is all about searching.

Writeline

The search scope depends on what you have selected in the Object Browser Scope. For

example, if you try to search for System.Web in a Console Application, you will not be very

successful.

There's also another way to search-it's using the Find And Replace window's Find Symbol

functionality. You'll notice the Find Symbol search closely resembles the Object Browser

search functionality.

,,NET framework J.O
'.NET framework 2.0

;Custom Component Set (Object Browser)
Custom Com onent Set (find S mbol)

@Substring

IE:!Match ca.e

Tip 5.46: You can use F12 in the Object Browser to go to the definition
of whatever is selected
On the context menu of both the Member pane (right panel) and the Object pane (left

panel), you'll see the Go To Definition command. You can use this command to navigate

directly into the code where whatever you have selected is defined (or you'll get a nice error

message).

142 Microsoft Visual Studio Tips

The Edit.GoToDefinition command is bound to F12. Pressing F12 in the image just shown

takes you to where Methodl() is defined in the code.

Tip 5.47: You can use a Find Symbol search (Shift+Fl2) in the Object
Browser

Just like the previous tip that talked about going to an object's or function's definition, you

can find all the references of what you have selected in the Object Browser.

The command Edit.FindAl/References is bound to Shift+Fl2. When you press Shift+F12, it

brings up the Find All References window.

This is the same as using Find Symbol in the Find In Files window.

Tip 5.48: How to use type-ahead selection support in the Object
Browser

You may have tried this tip on your own, just hoping it would work. But in case you never

thought about it, the Object Browser supports type-ahead selection.

Typing 'c'
will put
focus on
Cookie

Chapter 5 Discover More Tools for Your Design Time, Part 1 143

Sara Aside Back in the Visual Studio .NET 2003 days, I was on a quest for a while to have all
lists in the IDE support type-ahead selection. I did what I could, so if you see a list that should
support it and it doesn't, definitely file a bug with the Visual Studio Team. Maybe one day my
quest will be completed.

Tip 5.49: You can export all your Object Browser customizations in a
.vssettings file

Over these past several tips, we've taken a close look at customizing your Object Browser

experience, from sorting to searching to filtering, among other options.

Your customizations can be saved to a .vssettings file via the Tools-Import And Export

Settings dialog page, under General Settings-Object Browser Options.

i
L<:
I
!·--
t
r

I

Choose Settings to Export

se~~g>WJtli~rn~ia1iiin~J'>'~h~ Oxi:i~•• ~U~itq~·~rty orbther len$~lnf<>rmation; By··
defliq\t; ~°'S::s~ ~i~a~:·~~d.forrnQi'tlrifqtmat\~ri.pres•f1.: •> ·•· . .

Find Symbol Options
Menu and Command Bar Customizatio
New Project Dialog Preferred Language

Output Window Options
Properties Window
Simplified Tools/Options
Start Page Commandi
Task list Display Settings
Toolbox
Window Layouts

>.Deic~ol'I! ' , •.
06j~~t~r~r sort aider.and ifopfay
mode Jettir;9'<. ·, .

The good news is that the XML stored in the created .vssettings file for the Object Browser

Settings is human readable, in case you need to make a quick tweak.

144 Microsoft Visual Studio Tips

Tip 5.50: Why the Object Browser has so many commands you can bind
to (and how to create a keyboard shortcut to clear the search results)

Aside As I've been writing the Object Browser tip series, I have noticed that there are a lot
commands available under Tools-Options-Environment-Keyboard. Just type ObjectBrowser

you'll see what I mean.

Technically, not all these commands need keyboard shortcuts. For example, the ability to sort

objects by access level probably doesn't need a keyboard shortcut. But since they do have

shortcuts, let's have some fun

If you bind any of the Object Browser Settings options to a keyboard shortcut, you'll see that

shortcut in the drop-down menu. I didn't know that until I started playing with this feature.

How can you take advantage of this? If you use the Object Browser a lot to search, you

might find it meaningful to clear the search via the keyboard shortcut. The command View.

ObjectBrowserClearSearch clears the search combo, thus clearing the Object Browser filter.

Tip 5.51: You can use the View.Forward (Alt+Right Arrow) and View.
Backward (Alt+Left Arrow) global commands in the Object Browser

In Tip 5.36, I discussed how you can navigate forward and backward with the Alt+ Minus and

Shift+Alt+Minus keyboard shortcuts, which are scoped specifically to the Object Browser.

But there are two other commands, View.Forward and View.Backward, that also work in the

Object Browser, just like Alt+ Minus and Shift+Alt+Minus.

Chapter 5 Discover More Tools for Your Design Time, Part 1 145

View.Forward and View.Backward are global, meaning that other features within the IDE

can use them. For example, Class View uses them in the same way as the Object Browser.

But you're probably most familiar with these commands as Web Browser Forward and Web

Browser Backward.

If you are accustomed to using these commands elsewhere in the IDE, you'll feel right at
home in the Object Browser.

Show commands containing: ~=i
v;;;s~~;df·-···-··------ -----·····------

Shortcuts for selected command:
,]

Chapter 6

Discover More Tools for Your Design
Time, Part 2

In continuing to explore all the tools provided by the IDE, this chapter focuses on dialog

boxes and smaller, miscellaneous tools in Microsoft Visual Studio. For example, you can have

a lot of fun using the Find combo box to run Visual Studio commands, open files, and much

more. There are all sorts of tips and tricks here that, even if you don't use them in your daily

coding activities, you can definitely use to impress your coworkers with your mad IDE skills.

Dialog Boxes
Unlike tool windows, which are available at any time, dialog boxes are used when a tool
needs to perform some sort of action that can't or shouldn't be interrupted. For example,

resetting your development settings requires a series of actions that should be done at one

time, such as choosing which settings you want to reset to and deciding whether you want

to save your current settings. These actions are best handled through a dialog box that walks

you through each step instead of a tool window, where you may come back and say, "Hmm,

what was I doing again?"

Conversely, having to open a dialog box every time you want to drag and drop a control

onto a Win Form designer would get very old very quickly. Because the Toolbox is a tool
window and not a dialog box, it can live alongside your WinForm designer for easy access.

Import And Export Settings

The Import And Export Settings feature was the first feature I ever tested from start to fin­

ish, from watching the specification get written to shipping the feature in the beta release of

Visual Studio 2005. The Import And Export Settings dialog box will always be near and dear

to my heart.

The code name for the feature was Profiles. Some of the earliest check-ins even referred

to the feature as such in the UI. Something definitely got hard-wired in my head, because

I always slip and call the feature Profiles whenever I talk about it. My efforts to deprogram

myself have not been successful.

147

148 Microsoft Visual Studio Tips

Tip 6.1: How to find what development settings you last reset to

Maybe you don't remember what you picked during your first launch of Visual Studio or

what you last reset to.

Under the HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\9.0\Profile key, you'll see

the LastResetSettingsFile value. As previously mentioned, the code name for this feature was

Profiles, hence the word Profile is used as the key.

In the following example, you'll notice how I'm using the General Development Settings.

If you haven't reset any settings since launching Visual Studio, this value tells you this is what
you picked at first launch.

Tip 6.2: How to reset your environment settings via Tools-Import And
Export Settings

The most popular question I see about Visual Studio IDE is how to reset the environment

settings. Starting in Visual Studio 2005, the IDE prompts you on first launch to pick your

development settings. If you need to reset back to what you picked or want to pick previously

saved settings or predefined settings, go to Tools-Import And Export Settings to launch the

wizard, and choose Reset All Settings.

Chapter 6 Discover More Tools for Your Design Time, Part 2 149

Welcome to the Import and Export Settings Wizard

You can use this wizard to import or export specific r;:ategories of settings, or to reset the environment to
one of the default collections of settings.

What do you want to do?

Export selected environment settings
Setting5 will be saved out to a file so they can later be imported at anytimf! on any machine.

Import selected environment settings

Import settings from a file to apply them to the environment.

~ Reset all settings
Reset all environment settings to one of the default c.ollections of settings.

On the next page you decide whether you want to save your current settings. If this is your

first time using this dialog box or you want to experiment with this feature, or both, definitely

choose to save your settings. The default is to save your settings, so go with the default if

you are unsure.

Save Current Settings

Would you like to save your current ~ettings. before yottreset?

f:I Yes. save my current settings

Settings filename:

CurrentSettingsR 2008 R07 R 31.v:s:settings

C:\Users\saraf\Documents\Visual Studio 2008\Settings

No, just i-eset settings~ oVerwriti~ 0.f curfentsettl~

150 Microsoft Visual Studio Tips

The following page is much more interesting. You may notice this list looks familiar. It

should, because this is the same list from that first launch dialog box that prompts you to

pick your preferred environment settings. These files contain default settings for features

such as keyboard shortcut bindings, tool window layouts, project template layouts, and

many, many more.

Choose a Default Collection of Settings

ti,. Visual C++ Development Settings

fWb Web Development Settings

Choose your IDE settings by clicking Finish. Visual Studio lets you know whether any issues

arose with regard to resetting your settings.

Chapter 6 Discover More Tools for Your Design Time, Part 2 151

Reset Complete

Detoilo:

: tfour settings we~ successfully reset to General Development Settings.

:

:

I

I . .
i

! ______ : :
Tl> finish the ~rd, click Close.

Tip 6.3: What settings are contained in the New Project Dialog
Preferred Language category

If you go to Tools-Import And Export Settings-Export Settings, you'll see the list of catego­

ries that can be contained in a .vssettings file. The first category I want to discuss is the New

Project Dialog Preferred Language category.

!:::~
i:B
i-D

Object Browser Options
Output Window Options

Properties Window

Descripticm:
Sptcifies the organiDtiori df the folder
riodesin the New Project di•log. ·

As noted in the description, it organizes the New Project Dialog folders based on the

preferred language. If C# is preferred, all the C# projects are listed at the top of the list and

all the others are collected toward the bottom.

The General Development Settings use the defaults that have been familiar since the Visual

Studio .NET 2002 days, as shown here:

152 Microsoft Visual Studio Tips

Now let's see the dialog box using the Visual C# Development Settings. Note how Visual

Basic and Visual C++ fall into the newly created Other Languages node.

~Visual C#

.. l~i~~~~!;J
1> Visual Basic
~ Visual C++

~ Other ProjectTypes

Tip 6.4: You can add your own files to the Import And Export
Settings-Reset page list

If you go to the Reset page on the Tools-Import And Export Settings Wizard, you'll see the

list of files you can reset to. These settings files are the ones created by the Visual Studio

team. But, let's say that one of the default files has some small option that just annoys you or

you want to add your own file to the list, as shown here:

Iii Vi•ual Basic Development Settings
Iii Visual C# Development Settings
Iii Visual C + + Development Settings
Iii Web Development Settings

These files live at \Program Files\Microsoft Visual Studio 9.0\Common7\IDE\Profiles. You'll
need administrator rights to access Program Files, so please use this tip at your own risk.

In this folder, you can add your own .vssettings files or modify the existing ones. I use

the General Development Settings, but any time I do a reset, the Tools-Customize-Show

Shortcut Keys In ScreenTips option becomes unchecked. This option shows you the key­

board shortcut for a toolbar button in the ToolTip, a visual cue I absolutely must have.

If you find yourself in a similar situation, where you want to make small tweaks to one of the

default settings files provided, you can do the following:

1. Reset to General Development Settings.

2. Enable the setting or settings you prefer.

Chapter 6 Discover More Tools for Your Design Time, Part 2 153

3. Do a full export (for example, check all options in the Export page), and write over the

General Development Settings.

4. Copy this file over the existing General Development Settings file that lives in \Program

Files.

The next time you reset using these settings, you'll see your preferred settings. And in my

case, I'll see my keyboard shortcuts in my ToolTips!

Tip 6.5: What's the difference between resetting settings and importing
settings?

Whenever I demo Tools-Import And Export Settings, I'm usually asked to explain the differ­

ence between the Import feature and the Reset feature.

From an end-user perspective, importing everything in that particular settings file provides

the same functionally as a reset.

Which settings do you want to import?

But of course, there's more going on under the UI surface. Whenever you do a reset, the IDE

stores the path of the file you picked to reset to in the registry. There are some shortcuts

within the IDE to quickly reset those settings. Following are a couple of the most common of

these quick reset options.

First, on the Tools-Options-Environment-Fonts And Colors page, you'll see the Use Defaults

option. This option resets your fonts and colors using the settings file you last reset to.

Second, on the Window menu, there's the command Reset Window Layout. This command

resets your window layouts (that is, all your tool windows in all four window layout states)

using the settings file you last reset to.

154 Microsoft Visual Studio Tips

But ... What if you attempt to reset using a file you last reset to that didn't contain this partic­
ular category? For example, let's say you last reset to your own settings file and it didn't con­
tain the Window Layouts category. Then I believe Visual Studio uses its factory defaults (the
legacy settings that were built in for Visual Studio .NET 2003, the version before the Import
And Export Settings feature was built) whenever you do Windows-Reset Window Layout. I
recall during one of the many Profiles feature design meetings the term schizophrenia being

used to describe the possible states Visual Studio could end up in. =D

Tip 6.6: You can save your current settings prior to doing an Import or
Reset

Sara Aside Sometimes "Tip of the Day" isn't about stating the obvious; it's about stating the
nonobvious. A lot of times, there's functionality that seems trivial on the surface, but one-off
things occur at a deeper level, as seen in Tip 6.5. Fortunately, this tip is trivial. No hidden
operations going on under the UI that I have to explain.

Whenever you do a destructive operation via Tools-Import And Export Settings, such as
importing or resetting your settings, Visual Studio prompts you to save your current settings

prior to continuing. This operation is the same as doing a full export (that is, going to the
Export page and checking everything to export to a file).

Chapter 6 Discover More Tools for Your Design Time, Part 2 155

Save Current Settings

Would you like to save your current settings before importing new settings?

@ Ye>, save my current settings

Settings filename:

Curre ntSetti ng s-2008-01- 31-1.vs settings

Store my settings file in this directory:
..

C:\Users\saraf\Documents\Visual Studio 2008\Settings

No, just import new settings, overwriting mf current settings

The one thing I'll call out is that the Store My Settings File In This Directory combo box

will remember any location where you've exported a file to, because you may wish to save

your current settings there again in the future.

Tip 6.7: How Visual Studio automatically saves all your current settings
every time you close it

On the Tools-Options-Environment-Import And Export Settings (yes, the Tools-Import And

Export Settings dialog box has its own Tools Options page), you'll find the option that lets

you choose where to store your current settings. Note that you don't get to opt out of this.

Prior to Visual Studio 2005, settings categories were saved in separate files in %appdata%,

such as a file for all your toolbox customizations, your window layouts, your keyboard short­
cut bindings, and your command bar changes. Starting in Visual Studio 2005, those settings

are now stored in a centralized file called the CurrentSettings.vssettings file by default.

Every time Visual Studio shuts down, it writes to this file location to keep your current
settings saved.

If you ever make a change that you need to quickly back out of, you can always go to Tools­

Import And Export Settings-Import and choose the CurrentSettings.vssettings file, located in

the My Settings folder.

156 Microsoft Visual Studio Tips

Default Settings
General Development Settings
MyCu:stomSettings.vssetting:s
Visual Basic Development Settings

l;i Vim al Cll Development Settings
~Visual C++ Development Settings

Web Development Settings

Tip 6.8: You can copy the full file path from the final wizard page when
exporting settings

This tip is more like a "tip" than my usual "micro functionality" daily tips. After you export,

the final page of the wizard shows you the full file path. This page is just a read-only edit box

that can take focus. In other words, you can put your cursor in it and copy the full file path.

After you export your settings, you may want to open the file and see what's there, in case

you want to make any tweaks. Otherwise, you'll have to open the Import And Export Settings

dialog box and go through the wizard to guess where you exported that file to.

Chapter 6 Discover More Tools for Your Design Time, Part 2 157

Tip 6.9: You can use team settings to keep Visual Studio settings
on different machines in sync

Under Tools-Options-Environment-Import And Export Settings, you'll see an option called
Use Team Settings File.

This option enables you to let all the members of your team use the same baseline settings.
You can provide a .vssettings file (by creating these customizations on your machine and
then using Tools-Import And Export Settings-Export to create the file). Then put the
.vssettings file on a Universal Naming Convention (UNC) share. Next, you check the Use
Team Settings File check box, pointing it at this file.

.. Environment

General
Add-in/Macros Security
AutoRecover
Documents

Find and Replace
Fonts and Colors

~ Help

·il'rie"~~~~~<i~setti~9,,
International Settings
Keyboard
Startup

Automatically save my settings to this file:
............ ······-·····- -~-............ -..................... .

C:\Users\saraf\Documents\Visual Studio 2008\Settings\CurrentSett ~~~itJ

~J,!se team settings file:
-\\~y·;·h-~·~~\t~·~·;;·~tti·~g-;\t~-~-~~-~tti-~g·;·~;;~tti~g·;-·-· .. ---··-·-·--.. --., ~

So, what happens now? Whenever Visual Studio launches, it'll check the time stamp of the

.vssettings file, and if there has been an update, Visual Studio will reapply all the settings
from the .vssettings file. But be aware, if you have any custom changes, they will be overwrit­
ten when Visual Studio detects the new team settings file.

I think that this works really well in a scenario where there's a single developer who works on

multiple computers, because any tweaks the developer makes on one machine will be carried
over to the next machine.

External Tools

The External Tools feature allows you to run tools that are not part of Visual Studio, such as
good old notepad.exe, from within the IDE instead of having to launch the tool manually.
For example, you can place a menu item to notepad.exe on the Tools menu and launch it
instead of having to go to the actual location of the Notepad executable on disk.

Additionally, you can customize how these tools are launched, including providing argu­
ments and writing information to the Output window. These tips explore what you can do
with External Tools.

158 Microsoft Visual Studio Tips

Tip 6.10: You can run external tools from the IDE

Sara Aside Okay I have to admit, I'm not the local expert in External Tools. I can talk about the
functionality all day long, but nothing is better than real-world examples. When I blogged about
this tip, I asked blog readers to leave comments about how they use this feature. You can see
their comments at http://blogs.msdn.com/saraford/archive/2008/04/24/did-you-know-you-can­
run-externa/-too/s-within-visual-studio-201.aspx.

Let's start with the basics. Go to Tools-External Tools to bring up the External Tools dialog

box. You'll notice a set of built-in tools ready to go for you.

This list of tools under Menu Contents maps directly to the list presented on the Tools
menu, as shown here:

Aside The first time I made this connection I was totally taken aback. I
list of tools for years, but I never knew it came directly from the External Tools dialog

Chapter 6 Discover More Tools for Your Design Time, Part 2 159

Tip 6.11: You can add your own external tools to the list

For this tip, let's add Notepad as an external tool.

Go to the Tools-External Tools dialog box, and you'll see the Add button. Click Add to create
a [New Tools 1] placeholder. Rename the title by typing Notepad.

For the Command edit box, use the name of the actual executable. You should be able to just
type notepad.exe, depending on your environment variables.

Menu contents1

Create &GUIO
Oot&fuscator Community Edition
Error Loo&kup
ATL/MFC &Trace Tool -

This is the minimum amount of information you need to include to make an external tool
work. But let's go a little further by exploring the optional arguments.

For Arguments, you can type the name of a file, either an existing file if you want Notepad to
open it or the name of a file if you want Notepad to create.

For Initial Directory, you can type the file path, either the path where the filre exists or where
you want Notepad to create it.

And of course, you'll see Notepad now in the Tools menu.

160 Microsoft Visual Studio Tips

We'll explore more of the arguments and other options in the upcoming tips.

Tip 6.12: You can rearrange the list of external tools and create
mnemonics

Continuing with the newly added Notepad tool from the previous tip, you can use the
External Tools dialog box to sort your list of external tools as they will appear on the
Tools menu. To the right of the Menu Contents list, you'll find the Move Up and Move

Down buttons.

': Error Loo&kup
' ATL/MFC &Trace Tool
: Spy&++
:: Notepad

You can specify a mnemonic, also known as a keyboard accelerator, by putting an amper­
sand in front of the letter to be used as the accelerator in the Title field.

Now, on the Tools menu, you can simply press n to launch Notepad.

Chapter 6 Discover More Tools for Your Design Time, Part 2 161

If there's a mnemonic conflict, the focus cycles among the commands that share that

mnemonic. Then you press Enter at the appropriate command to execute the command. It
is ideal to have no conflicts.

Tip 6.13: You can have your external tool's text displayed in the Output
window

At the bottom of the External Tools dialog box, you'll see more options for customizing the
external tool within the IDE. This tip is about the Use Output Window option. The idea here
is you're running a .bat file and you want to track the progress within the IDE.

Using the command prompt as the tool, you can set Arguments to something like /C echo
$(CurText), which signifies the following:

• JC, from cmd.exe, carries out the command specified by the string and then terminates.

• $(CurText) is a token that comes from Visual Studio that represents the currently
selected text, displayed as Current Text in the menu.

Create &GUID
Dot&fuscator Community Edition

, Error Loo&kup
ATL/MFC &Trace Tool
Spy&++
&Note ad

Now, when running this external tool with a line of text selected in the editor, the Output

window displays the text.

162 Microsoft Visual Studio Tips

····class-Program
····{
····· ···static·void·Main(string[] ·args)

········{

"Console. WriteLine (Rffi from. ConsoleApplication36 ..) ; "

I

Tip 6.14: How the external tools tokens work

I've hinted at a few of the external tool tokens, but let's explore a little more. Most of these
are self-explanatory and are explored in depth in the documentation, but here I'll give you a
high-level overview. You can view the documentation at http://msdn2.microsoft.com/en-us/
library/ekbzkSfB.aspx.

All Item and Current tokens that are available for the Arguments edit box operate on the
currently active editor. Note the editor does not need to have focus to be able to work, but
it must at least have inactive selection.

For the Initial Directory edit box, you'll find all the directory tokens, but one in particular
to call out is the Binary Directory. Note the Binary Directory option is new for Visual Studio

2008.

Chapter 6 Discover More Tools for Your Design Time, Part 2 163

The Target Directory token targets the obj directory (\obj\Debug\), but if you need the final
bits that go into the bin directory (\bin\Debug\), use the Binary Directory token.

Tip 6.15: You can prompt for arguments when you run an external tool

To finish the customization of the external tools, you can check Prompt For Arguments if you
need to enter or edit values each time you run the tool.

Outpcut window II Prompt fbr u9uments

So now, if I need to specify which file I want Notepad to open, I'm prompted for the file
name, which is the argument for notepad.exe.

And recall that you can set the Initial Directory, where Notepad is going to look for files.

Find Combo Box
It wasn't until I took over testing the editor that I learned that the Find combo box runs Visual

Studio commands. And it wasn't until I found Tip 6.16 that I learned that the Find combo box
can combine keyboard shortcuts and command arguments.

I feel like this section is really a collection of tricks, as these tips truly embrace the spirit of
"Did you know ... ".

164 Microsoft Visual Studio Tips

Find Combo Box Runs Commands

This section describes all the things you can do with the Find combo box to run commands,
like getting help for a particular keyword, opening a file without any UI, or setting a break­
point on a given function name.

Tip 6.16: How to have fun with the Find combo box

Sara Aside I learned from our test cases that you can run commands via the Find
But, when I found Shawn Farkas's blog (http.//b/ogs.msdn.com/shawnfa), it took what I knew
about the Find combo box to a whole new level.

Following are some examples of commands you can run from the Find combo box, but the
idea is that many Visual Studio commands take parameters that you can enter into the Find
combo box. Hit the keyboard shortcut to a Visual Studio command, and the command will

pull its parameters from the Find combo box.

Press Ctrl+D to go to the Find combo box. Now here are a few ways you can have some fun:

• Go to a line Type the line number, and press Ctrl+G. I like showing this off as how you
can do a "go to line" without popping up the Go To dialog box.

• Go to a file Type the name of the file (either in your project or on the INCLUDE path),
and press Ctrl+Shift+G.

• Get help Type the keyword, and press Fl.

You can also use command aliases, as shown here:

• To get a call stack, type >kb.

• To go to a Web page, type >nav http://www.codeplex.com .

. Wmdow .. Help

> miv http://www.c

You can read Shawn's full blog post at http://blogs.msdn.com/shawnfa/
arch ive/2004/02/27 /81338.aspx.

Chapter 6 Discover More Tools for Your Design Time, Part 2 165

Tip 6.17: You can press Ctrl+/ to run Visual Studio commands in the Find
combo box

Sara Aside I had to do a little research to remember what this feature is called. I remember
calling this feature the "command line" in our test cases. But, after some internal debates, I was
told it is really just the Find combo box running commands. Regardless of what the feature is
called, you can run Visual Studio commands without having to open the Command Window.

Press Ctrl+/ to reach the Find combo box; the ">" will be inserted for you. Of course, you

could press Ctrl+D and then type > if you really wanted to.

It's like Microsoft lntelliSense, but for Visual Studio commands instead.

Help

~~----·----wi

Fife.OpenContainingFolder

File.OpenFile

File.OpenfromSourceControl
File.OpenProject

File.OpenWebSite

Note that you may need to use a different keyboard shortcut, depending on which
environment settings you are using. If Ctrl+/ does not work for you, go to Tools-Options­
Environment-Keyboard to see what keyboard shortcut the Tools.GoToCommandline

command is bound to.

Tip 6.18: How to open a file in the solution without using either a tool
window or a dialog box

Sara Aside A blog reader's question inspired this tip. I receive a lot of e-mail asking me how
to do something in Visual Studio. The majority of the questions I don't have the answers to, as
they are out of my scope of testing or beyond my experience. So I'm always excited an·d relieved
to see a question that is within my scope, like this one in particular. When I saw the words, "key­
board shortcut" and "open a file," I knew I could give a meaningful reply.

The idea here is you just want to press some keyboard shortcut, type the file name that's
in the solution, and go directly to that file. No Solution Explorer. No Open File dialog box.

No UI.

Here we go ...

1. Press Ctrl+/. This brings you the Find combo box with the ">"already included for you.

2. Type File.OpenFile <filename>. You'll notice support for autocompletion.

3. Select a file, and press Enter to open the file.

166 Microsoft Visual Studio Tips

Because the command Fi/e.OpenFile seems to me to be very long to type, you can use the

following steps to create an alias that is shorter:

1. Press Ctrl+/.

2. Type alias fo File.OpenFile to create a command alias.

Now, for the rest of time or until you reset your command aliases, you can:

1. Press Ctrl+/.

2. Type fo <filename>.

And now your file is opened in the editor. Tool windows and dialog boxes are not required.

Tip 6.19: You can set a breakpoint on a function from the Find combo
box

In the standard command bar, you'll see the Find combo box right next to Find In Files.

Obviously, you can type a function name and hit Enter to search, but where's the fun in that?

Main

Type the name of the method, as I have in the preceding screen shot, and hit F9. You'll no­
tice the breakpoint is set at function Main.

····class·Program
... -{

- ········static•void·Main(string[] ·args)

········(
········}
····}

Why did this happen?

F9 is bound to a command called Debug.ToggleBreakpoint. If there's text in the Find combo

box and you run a Visual Studio command from within the Find combo box, the IDE will use

that text as the command parameter. In the case of F9, the IDE toggled a breakpoint at the

specified function, hence setting a breakpoint at Main().

Chapter 6 Discover More Tools for Your Design Time, Part 2 167

Start Page
The Start Page provides a way to quickly open recent projects, links to information about

how to get started, and the RSS feed. Technically, the Start Page is a tool window, so it is

possible to dock it, float it on a secondary monitor, and so forth. But I've always seen it used

in the center of the IDE. This is probably why I've always seen it documented internally as its

own stand-alone feature, so I didn't see a need to change tradition.

Start Page Window

This section covers the tweaks you can make to the Start Page, including how to change the

default RSS feed and how to prevent it from showing whenever you launch Visual Studio.

Tip 6.20: You can change the RSS feed on the Visual Studio Start Page

Go to Tools-Options-Environment-Startup and in the Start Page News Channel text box, you

can change the current RSS feed to the desired RSS feed.

You can also update the time in minutes to pull content from the feed. Note that once you

click OK on the Tools-Options dialog box, the RSS content will be pulled automatically.

At startup:

·"---~~~~~------~--'---~~~-'-·~

; http://blogs.msdn.com/saraford/rss_tag_Visual +Studio +2008 +Tip +of+the +Day.xml ·

If you want to read the "Tip of the Day" series from your Start Page, here's the RSS feed to

use:

http://blogs.msdn.com/saraford/rss_ tag_ Visual+ Studio+2008+ Tip+of +the+Day.xml

Tip 6.21: How to customize what Visual Studio opens to (or how to
make the Start Page not show up when Visual Studio opens)

Aside When I was working on either my test cases or the automation framework, I would
the Last Loaded Solution option. When I was doing ad hoc testing, just randomly testing
bugs, I would have either the Show Empty Environment or Show New Project Dialog Box

option set.

Under Tools-Options-Environment-Startup, you'll find the At Startup combo box.

168 Microsoft Visual Studio Tips

Following is a list of the items you can select to specify what you want Visual Studio to

open to:

• Your Web browser home page. Note that the option to change your Web browser

home page is found in Tools-Options-Environment-Web Browser.

• The last loaded solution.

• The Open Project dialog box.

• The New Project dialog box.

• Show Empty Environment. Choosing this option results in Visual Studio showing an

empty environment without a document.

• The Start Page. This is the default setting.

Chapter 7

Know Your Solutions, and Other
Project and Debugging Tweaks

All good things must come to an end.

Throughout the book, I've talked about having tested nearly every feature area of Microsoft

Visual Studio, moving to a new area every six months or so. Testing the project and solu­

tion feature area completed my tour of the core IDE features. After four and a half years of

testing Visual Studio by using the build of Visual Studio we were testing to write test code

(yes, it is meant to be recursively confusing) and after three product cycles, I decided it was

time to get up and stretch my program management skills. Shortly after Visual Studio 2005

launched, I moved to the Visual Studio Community Team as a program manager.

I definitely miss software testing. It was so much fun to be creative and break stuff. But then

again, getting to spray-paint "Embrace Open Source on CodePlex" on your Microsoft office

window is a pleasure that's right up there with "You broke it, and I'm telling."

Project and Solution System
You will always have a solution to contain your projects, even if you have only one project.

The solution concept started in Visual Studio .NET 2002 as a way to support having one IDE

for all the various languages. Following are some tips for interacting with both your project

(or projects) and your solution.

Multitargeting

Prior to Visual Studio 2008, there was only one version of the Microsoft .NET Framework sup­

ported for any given version of the IDE. Multitargeting allows you to use the latest features in

the Visual Studio 2008 IDE while providing the flexibility to choose which version of the .NET
Framework to target.

Tip 7.1: How Visual Studio 2008 supports multitargeting of the
.NET Framework

Sara Aside This was the tip of the day for the official Visual Studio 2008 launch. I figured I
needed to pick something huge about Visual Studio 2008 to talk about on this day.

169

170 Microsoft Visual Studio Tips

A popular new feature for Visual Studio 2008 is the ability to multitarget the .NET

Framework. This means that you can use the latest version of the IDE but still be able to

target the .NET Framework 2.0 (or .NET Framework 3.0) as needed.

Scott Guthrie has an excellent write-up on multitargeting support on his blog at

http://weblogs.asp.net/scottgu/archive/2007/06/20/vs-2008-multi-targeting-support.aspx.

Because Scott did his write-up in C#, I'll take a picture using Visual Basic. And apparently

Scott knows about Tip 7.3. =)

Wob
Smart Device
Office
O;;itabase

Reporting

WCF
Workflow

Visual C#
Visual C++
Other Project Types

Projects

Visual Studio fflstal!ed templirtes ·· ···

~~
B Comole Application

&Windows Service
~\II/PF User Control Library

~ WPF Custom Control Library

&Windows Forms Control Library
MJIT'"'!'~tes ...•................................... ····•·······

llisearch Online Templates ...

This section contains small tweaks for customizing your projects, ranging from using

solution folders to hide your project to creating "throw away" projects that won't cause the

ConsoleApplication57 phenomenon.

Tip 7.2: How to change the default new-project location
In the New Project dialog box, you can change the default new-project location.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 171

The option to do so lives in Tools-Options-Projects And Solutions-General.

V~s:i_ a_~--~~~~io _p_ ro! e_~t_, ... 1.o __ c_~_!i~~n-:
C:\Users\5araf\Desktop\Hello Readers

Tip 7.3: You can toggle between small icons and large icons in the New
Project dialog box

Sara Aside It is amazing how many times I've pulled up the New Project dialog box in my
lifetime and never noticed the Small/Large icon buttons in the upper-right corner.

Okay, be honest, how long have you been using Visual Studio and are just now noticing

those icons for the first time? =) I had been on the Visual Studio team for an entire year

before someone pointed them out to me. You learn something new every day.

Here's the New Project dialog box using small icons.

Iiiimplat1rn

Visual Studio inrtatted temphites

~~i~~()~~-:F~-~rry_s:_~ppl!cati-qn
~WPF Application

•console Application

Jmwindows Setvice

~WPF User Control Library

My Templates

~Search Online Templates . .,

Ecla:islibraty

~WPF Browm Application

~Empty Project

"'!! WPF Custom Control Libraty

~Windows Form~ Control Library

And here's the New Project dialog box using large icons.

Windows WPF Custom WPF User Windows
Service Control lib... Control .. , Forms ..

My Templates

Search
Online Te ...

172 Microsoft Visual Studio Tips

Tip 7.4: You can use solution folders to hide projects

In the Solution Explorer, you can group projects inside of solution folders to improve the

manageability of solutions that contain a large number of projects.

With the focus on the Solution node in the Solution Explorer, the Add New Solution Folder

button becomes available. Now you can drag projects into this solution folder, as shown

next.

But let's actually hide the project. Right-dick your newly created solution folder and choose

Hide Folder. Now the project is hidden, and a new icon appears to unhide the projects. And

yes, you can still build successfully in this state.

Tip 7.5: You can create temp or "throw away" projects

If you need to create small projects to try things out or you're not sure how you want to set

up things before you save, there's an option for this.

Go to Tools-Options-Projects And Solutions-General, and uncheck the Save New Projects

When Created check box.

IJAlways$hOw. s.olQtion

!ii Save ne\I\(projects when create cl
~l\j'lam userwheh thepr~jecf location is•·.·~ottrustecl

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 173

When this option is unchecked, the Location edit box and several others will be gone from

the New Project dialog box.

Smart Device
p Office

Database
i Reporting

i
i WCF

Workflow

l !> VisualC#

i !; Visual C++
I !> Other Project Types

I

I Visual Studio_ imta:~le.~ templates

I
i!~i~~!?"."J.fo~.s ~P!!c.a~~
~WPF Application

a console Application

1 d;Windows Service

1
1

f?]WPF U:ser Control Library

My Templates

~Search Online Templates ...

~WPF Browser Application

~Empty Proj1!d

~ WPF Custom Control Library

~Windows Forms Control Library

l,~o=•·•"'o=ooc•==•~•=•==-•===•• ... o•••=-~•~==•=•·•=•=•o=======•=••••••="'''"=o=o•••=••
A project for creating an application with a Windows user interface ~NET Fnimework 3.5)

Name: WindowsApplicationl

This tip is helpful to know in case you, like several readers who have contacted me, accidentally

find yourself missing a few edit boxes.

Tip 7.6: How to hide or show the Project Location Is Not Trusted
message box

When you attempt to open a project hosted on a Universal Naming Convention (UNC) share

(for example, \\server\folder), you'll get the following warning message box.

\~sers\;araf\Desktop.\Hello
Real~ri\WindowsApplicationl\Wind()W!Applic•tionl

Running the applicotion may result in securify exception• when it attempts
to ·peifo.rm actions which require full-trust:

Click OK to ignore and continut•

·~Do hot showthij musog.e ag!llh,

If you want to see this message again, but previously you checked the Do Not Show This

Message Again check box, you can go to Tools-Options-Projects And Solutions-General

and check the Warn User When The Project Location Is Not Trusted check box.

174 Microsoft Visual Studio Tips

For more information on why UNC shares are not trusted or what to do about it, here's a
pointer to the documentation: http://msdn.microsoft.com/en-us/library/bs2bkwxc.aspx.

Build Configurations

The Configuration Manager controls what flavors of builds to produce. The simplest of these

are Debug, for testing proposes, and Release, for actual end-user use, but you can also create

your own. There are various ways of tweaking your build configuration throughout the IDE,

but for some projects, a lot of this functionality isn't needed. In these cases, there's a feature

called Simplified Build Configurations, which hides a lot of these options.

Tip 7.7: How to use Simplified Build Configurations

~ Aside The title for this tip as it appears·:~-my blog is "How to ~retend the Configuration -1
nager doesn't exist, besides closing your eyes and saying, 'I don't see you."' In other words, 1

1 Configuration Manager presented an interesting challenge for me as a tester. But Simplified I Build Configurations really took it to a new level.
'""-

If you have never touched the Debug or Release configurations or have never heard of the

Configuration Manager, you might want to try this tip.

Under Tools-Options-Projects And Solutions, you'll see the Show Advanced Build

Configurations option. Unchecking this option does quite a few things behind the scenes, but

first, I'll briefly describe the Show Advanced Build Configurations option.

By default, Visual Studio comes with two build configurations: Debug and Release.

You are free to create your own build configurations via the Configuration Manager.

Check out some of my old blog posts on how the Configuration Manager works, if

you want to create your own custom build configurations: http://blogs.msdn.com/
saraford/archive/2005/08/16/452423.aspx and http://blogs.msdn.com/saraford/
archive/2005/08/18/453346.aspx.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 175

If you are using a custom build configuration and you uncheck the Show Advanced Build

Configuration check box, Visual Studio will pretend you still have it checked, enabling you to

still open the Configuration Manager.

When you are working in Simplified Build Configuration mode, the following happens behind

the scenes:

• FS (Debug.Start) runs under the debugger in the Debug configuration. This means that
the binaries will be produced in a Debug folder in the output file path.

• Ctrl+FS (Debug.StartWithoutDebugging) runs (with no debugger) in Release

configuration. This means the binaries are produced in a Release folder in the output

file path.

If you change the Build output path (for example, bin\myRelease) and use Debug.

StartWithoutDebugging (Ctrl+FS), Visual Studio builds the release in the myRelease folder.

But if you press FS, Visual Studio still puts it in the Debug folder.

From a UI perspective, Visual Studio hides all access points to the Configuration Manager

when in Simplified Build Configuration. For example, the Configuration (Release or Debug)

and Platform (Any CPU, and so forth) options disabled on the standard toolbar.

Additionally, the Configuration Manager command disappears on the Solution Explorer

context menu, and Configuration and Platform disappear from the Project Properties-Debug

page.

And that's more than I ever wanted to type about Simplified Build Configurations, and

probably more than you ever wanted to know, but at least now you understand what that
little option does. =)

Solution Explorer
The Solution Explorer contains all the files associated with your project (or projects), and

obviously, it also contains your solution. Regardless of how much time you spend in the IDE,

you are almost guaranteed to use the Solution Explorer at some point, whether it is to add

176 Microsoft Visual Studio Tips

a reference to the project or simply open a file. This section explores some tips on how to

customize and navigate the Solution Explorer.

Tip 7.8: How to show the Miscellaneous Files project in the
Solution Explorer
On the Tools-Options-Environment-Documents page, you'll find the Show Miscellaneous

Files In Solution Explorer option.

I find this feature very useful when I'm constantly looking at the same files that live outside

my current solution. For example, when writing test cases, I would have the actual test case

code as its own solution and just reference the test library DLLs. When stepping through the

test library, these files get collected under the Miscellaneous Files project. Yes, Miscellaneous

Files is actually a project.

Salufiaa ·~4· (lproject)
.. iii ConsoleAppflCillion1

!···· 1111 My Project
! L... ti Modulel.vb

~--·~·-·· L". Classl..vb
ti Classl.vb I ti Class3.vb

i·· fi Class4.vb
!..... fil ClassS.vb

When you reopen the solution, the various miscellaneous files will tag along, just how you

left them, provided you have the subsequent option X Items Saved In The Miscellaneous Files

Project set to something greater than 0.

Tip 7.9: There is type-ahead selection support in the Solution Explorer

I've been coming up with little songs to keep sane as I post a daily tip for Visual
have people swear that they'll catch me on tape singing these one day. One of them is

sung to the tune of the Dunkin' Donuts jingle of "Gotta make the donuts" which is "Gotta do tip
of the day." Another one I'm trying to perfect is sung to the tune of Phil Collins's "Come Dance
into the Light" with "It's the simple things in life!" Sad, but true.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 177

I think this tip is really cool. I didn't know this one until a coworker showed me, and this was

after five years of working on the Visual Studio team.

The Solution Explorer supports type-ahead selection, so wherever you are in the tree view,
just start typing the full name of your file and the focus will jump to that match, whether a

partial match or a full file name match.

,!~~b''""'''11f;''~il~udi",Wd:;~
:;;;:i Solution 'ConsoleApplication24' (1 project}

El · Iii Ccm;oleAppltcafion1
· c1iiiJ My Project

l'!!ll Modulel.vb

Class3.vb . J Typing m will

Class4.vb JUmp focus to
Cla,.,;S.vb Modulel.vb
Modulel.v

Tip 7.10: You can add a solution to a solution

Today's tip falls into the "You can do what!?" category.

1. Open your primary solution (the solution you want to add another solution to).

2. Go to File-Add-Add Existing Project.

3. Change Files Of Type to Solution Files.

4. Select the solution file you want to add.

These steps add the contents of Classlibrary2.sln to the ConsoleApplicationl solution, as
shown here.

Solution 'Consolellppliation14' (2 projects}

~'"191'@
CTli!I My Project
l'!!ll Clasli.vb
ConsoteApplicationl

c1.i My Project
[jJ Mod ulel.vb

178 Microsoft Visual Studio Tips

Tip 7.11: You can automatically perform a rename within an entire
project when you rename a file in the Solution Explorer

Let's say you create a new class file called Classl. If you try to rename Classl in the Solution

Explorer, Visual Studio prompts you to decide whether you want to rename all references to

this code element in your project.

A You are renaming a file. Would you also !Ike to perform a ren,ame in this
W' project of all refereoces lo the code element 'Modu!el'?

But I'm more of an IDE tips know-it-all, so the real "Did you know" here is this: Did you know

you can disable this prompt and just have Visual Studio automatically do the rename for you?

Go to Tools-Options-Projects And Solutions-General and uncheck the Prompt For Symbolic
Renaming When Renaming Files option.

Show Output window when build starts

".Pro mptfo~ symbolic renaming w~en renaming -file$

Tip 7.12: How to hide or show a solution in the Solution Explorer

Sometimes, you might find yourself in a state where the solution is not shown. For example,
some of the default environment settings, like the Visual Basic Development Settings, have

this behavior enabled.

If you find yourself in this state and want the solution back, go to Tools-Options-Projects

And Solutions-General and check the Always Show Solution check box.

II) Show a~van~~d build. configurations.
II) Always show s.olution

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 179

Having said all this, I'll warn you that Visual Studio overrides this setting and always shows

the solution if the solution has two or more projects in it.

Tip 7.13: How to have the Solution Explorer always show (or not show)
the file currently opened in the editor

Because the default is to have the Track Active Item In Solution Explorer option enabled in

the General Development Settings, a more appropriate tip is one that shows you either how
to turn it back on or how to turn it off.

On the Tools-Options-Projects And Solutions-General page, there's the Track Active Item In

Solution Explorer check box. When enabled, this option will sync your Solution Explorer with

the open document.

Always show Error List if build finishes with errors

Track Active Item in Solution Explorer

Show advanced build configurations

Debugging
This section covers !DE-related tips on debugging, including Tools Options settings and tool

windows found only while debugging. This section also explores how to debug multiple

projects.

Tracepoints

On a given line of code where you want to log the value of a variable, you can use the old­

fashioned way of doing a Conso/e.WriteLine() or a PrintF(). But in Visual Studio 2008, there's a

new feature called Tracepoints that allows you to print out these debug statements without

modifying your code. Hence, there's no having to go back and delete code prior to a check­

in or unwanted debugging info getting released into deployment.

Tip 7.14: You can use tracepoints to log PrintF() or Conso/e.Writeline()
info without editing your code

Right-click in the editor wherever you want to insert a tracepoint, select Breakpoint, and then

select Insert Tracepoint.

180 Microsoft Visual Studio Tips

This brings up the tracepoint dialog box, which gives you some helpful default settings. But
for this example, the really helpful default is in the descriptive text for logging the contents

of a variable.

You'll notice that the editor shows a diamond instead of a circle.

static void Main(string[] args)
{

for (int i = O,j = O; i < 20; i++)
{

WWW

And the tracepoints are logged in the Output window's Debug pane.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 181

"The value

"The value of is 2."

"The value of is 4."

"The value of is 6."

"The value of is 8."

"The value of is 10."

"The value of is 12."

"The value of is 14."

Breakpoints

Where would debugging be without breakpoints? This section covers the basics of break­

points, including the various ways to set breakpoints and how to set conditions on them.

Tip 7.15: You can set a breakpoint by clicking the indicator margin

Sara Aside I'm very big into starting off with the basics, just in case someone reading this
didn't know about this tip.

You can set a breakpoint on any applicable line by clicking the indicator margin, as

illustrated here.

static void Main(string[] args)

. TJriteLine ("I need a break");

J Click here to insert a
breakpoint on this line

Clicking here inserts the breakpoint, as shown next.

class Pr:ogTa:m

static vo i1:i Main (string[] args)

Tip 7.16: You can press F9 to set a breakpoint on the current line

The command Debug. ToggleBreakpoint sets (or deletes) the breakpoint on the current line,

in case you don't want to take your hands off the keyboard.

182 Microsoft Visual Studio Tips

Tip 7.17: You can use Ctrl+F9 to enable or disable a breakpoint

I didn't see this command under the Debug menu. So, in case you want to use the keyboard

to enable or disable a breakpoint, you can press Ctrl+F9, which is bound to the command
Debug.Enab/edBreakpoint. Note that you won't find a Debug.DisableBreakpoint because this
is handled by the enabled command.

static void Main(string[] args)
{

A disabled breakpoint still gets saved in your Breakpoints window, even though it will not get
hit during debugging.

Tip 7.18: You can set conditional breakpoints

When you want to break only under certain conditions, you can right-click a breakpoint red
circle (or go to the Breakpoints window and bring up the context menu on a given break­
point) and select Condition to bring up the dialog box for conditional breakpoints.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 183

When Hit ...

You're given two options: break only when the specified expression is true, or break only

when the specified value has changed. For this example, because I'm in a for loop, I'll break

when the value of i is greater than 5.

You'll notice that the breakpoint circle now has a red plus on it to indicate it is conditional.

Tip 7.19: You can use breakpoint filters to break the right process

Conditional breakpoints are for breaking at the expression level, when a particular condition
is true, like x = 5. But what if you have multiple instances of the same app running? How do

you set to break the instance you want?

The answer is breakpoint filters.

Go to Tools-Options-Debugging-General, and you'll see the option Enable Breakpoint

Filters.

if source is not available

Set a breakpoint and right-click to bring up the context menu.

184 Microsoft Visual Studio Tips

In the Breakpoint Filter dialog box, you can specify when to break. The next image shows

breaking a process by its process ID.

And you can verify the breakpoint filter in the Breakpoints window under the Filter column.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 185

Tip 7.20: You can press Ctrl+B to set a breakpoint at the desired function

In case you want to set a breakpoint at a given function, and not at the current line, you

don't have to search for the function name and then hit F9. Instead, you can press Ctrl+B to

run the Break At Function command.

This command brings up the New Breakpoint window.

Function:

Line:

Character:

Language:

Here you can type the name of the function you want to set a new breakpoint at.

Tip 7.21: You can press Ctrl+Alt+B to open the Breakpoints window

Under Debug-Windows, you'll find the Breakpoints window.

The keyboard shortcut is Ctrl+Alt+B, which is bound to the command Debug.Breakpoints.

186 Microsoft Visual Studio Tips

Tip 7.22: You can press Ctrl+Shift+F9 to delete all breakpoints

You can press Ctrl+Shift+F9, bound to Debug.DeleteAl/Breakpoints, to delete all the break­
points you've created in your solution. The command is found under the Debug menu.

The option is also found on the Breakpoints window in the toolbar.

Tip 7.23: You can disable the warning message before you delete all
breakpoints

The previous tip talked about how to delete all breakpoints. If you are following along at
home, you have encountered the warning message that appears when you attempt to do
this.

Do you want to delete all breakpoints?

If you find it annoying, you can disable it by going to Tools-Options-Debugging-General
and unchecking the Ask Before Deleting All Breakpoints option.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 187

General

Data Tips

Data Tips are very similar to the Watch window. (See the Watch window tips that appear
later in the chapter.) However, unlike the Watch window, where you have to navigate to a

tool window, Data Tips allow you to keep your focus in the editor.

Tip 7.24: You can use DataTips to edit a variable's content

Whenever you are debugging and want to change the contents of a variable, you can drag

the variable into the Watch window. But you can also use DataTips to change the variable
without leaving the editor.

Hover over a variable when you have hit a breakpoint. You'll notice a glorified ToolTip

appear. This is actually a DataTip. You can click the value of the variable to go into an

edit mode. Change the contents of the variable, and press Enter to commit.

:for (int i = 0, j = 0; i < 5; i++)

If you have the Autos window open, you'll notice the color change, implying the commit

was successful.

Name

Multiple Projects

If you are using only one project per solution, this section may not have too much signifi­

cance for you. But if you have multiple projects, you can select which ones you want started

under the debugger.

188 Microsoft Visual Studio Tips

Tip 7.25: How to select the startup project from the Solution Explorer

There are two ways you can select a project as the startup project when you have more than

one project in your solution.

The first way is via the Solution Property pages. Right-click the solution node in the Solution

Explorer, and under Common Properties-Startup Project, you can choose Single Startup

Project. Now you can select which project you want.

The second way is to right-click the project and select the Set As Startup Project command

from the context menu.

The startup project appears in bold in the Solution Explorer.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 189

Tip 7.26: You can start debugging multiple projects

Sara Aside This tip marked the one-year anniversary of doing the "Tip of the Day" series. I
consider July 27, 2007, as the kick-off date of "Tip of the Day." Wow, what a difference a post a
day makes!

Thanks to everyone who has been reading the series. It's been an extremely rewarding experience
to see these tips help people. And I also want to express my thanks for all the motivation you
have given me to continue writing. It takes me on the average 20 to 30 minutes to decide what
tip to write, to capture the screen shots, and to add it to the queue. I refuse to do the math to
see just how many puppies I could have potty-trained by now. I just don't want to know. =D

Right-click the solution in the Solution Explorer, and select Properties. Go to the Common

Properties-Startup Project page. (It's the first page in the dialog box.)

You'll see three option buttons:

• Current Selection This option selects whichever project had the inactive selection

(that is, whichever project was selected previously) when you went to the Solution

Property Pages.

• Single Startup Project Usually this is the first project you had in the solution, or it's

the project that you manually set as the startup project.

• Multiple Startup Projects And there was great joy! When this option is enabled, you

can pick and choose which projects to start (and make sure you choose Start and not

Start Without Debugging).

}tortup.~r<>Jon

Project Dependendes
Debug Source Files

Muluple startup projects:

Startwilhout. debugging

And using the preceding example, when I hit FS, I get the following.

190 Microsoft Visual Studio Tips

Tip 7.27: How to have all processes break when one process breaks

In Tools-Options-Debugging-General, there's the option Break All Processes When One

Process Breaks.

Let's say you are debugging multiple projects, and you want to configure what happens

when one process breaks.

Break when exceptions cross AppDomain or managed/native

For example, let's say I have two console applications running in an infinite loop. On the

second console application, I break the process. If I have checked the Break All Processes

When One Process Breaks check box, the first console application will break also.

And, of course, you can uncheck this option to have the first console application keep going.

Compiling and Debugging Windows

This section explores the various tool windows you can use while compiling and debugging

your code, including the Error List view, Watch window, and Immediate Window.

Error List

The Error List does exactly as its name suggests. It lists all the errors in your solution, along­

side any warnings and messages.

Tip 7.28: You can use Ctrl+Shift+Fl2 to view the next error listed in the
Error List

The keyboard binding is Ctrl+Shift+F12, and the command is View.NextError. I'm a little

surprised that there isn't a default keyboard shortcut for View.PreviousError. But you can

always add one yourself.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 191

Shortcuts for "lected command:

And, of course, the status bar tries to be helpful by showing you the error you have
navigated to. =)

Tip 7.29: How to customize your Error List view

Sara Aside This was one of my least favorite designs in the IDE. When the Error List was split
from the Task List in Visual Studio 2005, a row of buttons was put on the top of the Error List
for users to customize whether they wanted to see just Errors, Warnings, or Messages. But, then
again, it enables me to show you cool tips like Tip 7.32.

For example, here's the default with everything enabled.

And now, here's the Error List with nothing enabled, for dramatic effect.

192 Microsoft Visual Studio Tips

Tip 7.30: You can view an error's documentation directly from the
Error List

If you right-dick an error in the Error List view, you'll see a context menu pop up with the

Show Error Help option.

Clicking this command launches the external documentation viewer, also known as dexplorer

in some social circles, to that specific error.

Error Message

; expected

The compiler detected a missing semicolon.

Tip 7.31: You can do multicolumn sorting (secondary sort, and so forth)
in both the Error List and the Task List

Both the Error List and the Task List have support for multicolumn sorting, such as secondary

sort and tertiary sort.

For example, suppose you want to sort all tasks (or errors) by file first and then by line

number so that you can go through each file in the order in which the tasks (or errors)

appear.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 193

To do a secondary sort, follow these steps:

1. Click the column that you want to have as the primary sort (such as File).

2. Shift+ Click on the column you want to have as a secondary sort (such as Line number).

3. Rinse and repeat for other columns.

For the Error List, you can see how things are sorted first by File and then by Line number.

Fite Line

02 Method must have .a return- type C!.assl.cs. 10

03 Method must have a return type Classl.cs 11

04 ; expected Prag.ram.cs 12

01 ; ecpected Program.cs 13

05 ; expected Program.cs 13

Error list

Tip 7.32: You can bind the show Errors, Warnings, and Messages
buttons to keyboard shortcuts

Sara Aside In the "Tip of the Day" series on my blog, this tip was entry number 200.
Considering how I blogged a new tip about Visual Studio every day, it is amazing to think what a
difference a day makes. At the time of this writing, I'm approaching number 300!

I'm excited about this tip. Not because it is tip number 200-this was purely coincidental­

but because I accidentally found it while browsing the commands, in the Tools-Options­

Environment-Keyboard page that contained the word Error.

Go to Tools-Options-Environment-Keyboard, and search for Errors. You'll notice that this

odd Errors command will stare back at you.

I say this "odd" command because usually Visual Studio commands have the canonical name

format of <word>.<word>. This obviously caught my eye, so I contacted the developer for

confirmation.

These commands toggle the Errors, Warnings, and Messages shown on the Error List, so you

can bind them to keyboard shortcuts.

194 Microsoft Visual Studio Tips

For example, you could bind the following commands to the keyboard shortcuts shown:

• Errors: Ctrl+Alt+Shift+E

• Warnings: Ctrl+Alt+Shift+W

• Messages: Ctrl+Alt+Shift+M

Now, instead of clicking the buttons, you can just use the keyboard shortcut. Pretty cool.

Tip 7.33: How to show or prevent the Error List from appearing after a
failed build

Usually the Error List is shown (whether it is autohiding or just closed) whenever a build fails

with errors. If you like using just the Output window (because you can double-click an error

message in the Output window and jump to that line), here's how to prevent the Error List

from appearing.

Under Tools-Options-Projects And Solutions-General, there's the Always Show Error List

If Build Finishes With Errors check box. Uncheck this option to prevent the Error List from

appearing after a failed build.

~ Always$h.ol.Ol.ErrorList ·if•blliid finishe5 with errors

HmlTrackA.tflveit~m in •. Solutior-1 Exp.lorer
',, ·'" "'

ilShow adyancedbuildcClnfigurations ·

Watch Window

The Watch window (or Watch windows, because you can have up to four of them) not only

provides a way for you to keep track of your variables and their contents, it also allows you

to make changes to the contents of your variables.

Tip 7.34: You can use the Watch window to quickly change a variable's
value

Have you ever been debugging some code and wanted to quickly change a variable's value

without having to stop debugging? Here's what to do.

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 195

Add the value to the Watch window. You can select the variable and drag it into the Watch

window as shown here.

... x

Main

Module Module!
Public Sub Main{)

Then double-click the variable's contents within the Watch window, and you'll be able to edit.

Either click outside this field or press Enter to commit the change, and the variable will

contain the new contents.

If you need to clear the Watch window's variable contents, just hit Delete on that row.

Tip 7.35: You can view numeric values in hexadecimal format in your
debug windows

The debug tool windows (Locals, Autos, and Watch window) have a context menu that

includes the Hexadecimal Display command. Just in case you ever needed to see values in
hexadecimal, you now know how to do it.

196 Microsoft Visual Studio Tips

awatchl -

Immediate Window

When you want to do more than just edit the value of a variable, you can rewrite entire

functions or create new ones in the Immediate Window.

Tip 7.36: You can use the Immediate Window as a glorified calculator or
side-debugger within your debugger

Aside I found the Immediate Window especially useful when I was
automate dragging a tool window from a docked location to a docking target. I basically had to
do the math to calculate a straight line between the two points in order to send the coordinates
to the mouse drag functions. If I did the math incorrectly (and the inside joke here is I have a
math degree), I could pull up the Immediate Window and play with the calculations over and
over again without interfering with the main debugger. This means that the variables and state
of the main debugger would remain the same, unless I purposefully modified a value in the
Immediate Window.

Let's start off with a very simple example. Let's say that you have the basic "Hello World"
console app, but you want to print out the result of some calculation. Notice how the console

app just has "Hello World."

If I put a breakpoint at the very end of this simple console app, I can bring up the Immediate
Window via Debug-Windows-Immediate and do whatever I need. Let's say I needed to use

the Immediate Window as a glorified calculator. I can figure out the value of 1 + 1, as shown
in this Visual Basic console app.

i = l+l
?i
2 (Integer}

Chapter 7 Know Your Solutions and Other Project and Debugging Tweaks 197

Since we're in a console application, we can even have the value of i printed to the console

window via the Immediate Window.

i = l+l
?i
2 (Inteqer}
Console. WriteLine (i. ToStrinq ())

And now the value of 2 appears in the console window.

Appendix A

Visual Studio Factoids
While I was preparing a talk titled "Microsoft Visual Studio 2008 IDE Tips and Tricks" at the

Microsoft Tech Ed Developers Conference 2008, Rob Caron, a marketing manager for Visual

Studio, suggested I put together a list of Visual Studio factoids consisting of little-known

facts about the history of Visual Studio. The first person who came to my mind to interview

was Douglas Hodges, a principal architect on the Visual Studio team. Many of us believe he

knows everything about the inner workings of the IDE architecture. Doug has been with the

team since the Visual C++ 5.0 days and has seen many, many things.

I had asked my blog readers for their questions regarding Visual Studio's history or its imple­

mentation to see what questions were missing from my own personal wish list. I'm really glad

I didn't try to put together the list by myself as a surprise to the readers, because they had a

better list of questions than I could have ever thought of.

While I was interviewing Doug, he called Pat Brenner for help. Pat is not only a long time

Visual Studio developer but a developer at Microsoft for well over 20 years. It was a really

cool experience to interview these two long-time Visual Studio team members.

Both Doug and Pat suggested I contact Donna Wallace Zuest, another 20+ year Microsoft

employee and a senior user-experience designer for Visual Studio, for more background

information regarding design and style decisions.

Visual Studio Q&A
The following sections are my notes from my conversation with Doug Hodges, Pat Brenner,

and Donna Wallace Zuest.

Why is the executable file called devenv.exe instead of
visualstudio.exe?
The original concept for the Visual Studio IDE was that the IDE would be a brand less, empty,

extensible shell that hosted multiple products simultaneously. When the shell was empty, the

title bar would display the generic name "Microsoft Development Environment." However,

when the user was focused on editing assets that belonged to a project, the title bar would

change to show the name of that product (for example, "Microsoft Visual Basic .NET,"

"Microsoft Visual C# .NET," or "<name of VSIP product>." Not only would the title bar name

change but the Help.About command name would change to reflect the currently active

product (for example, Help.About Microsoft Visual Basic .NET).

199

200 Microsoft Visual Studio Tips

The Visual Studio IDE has a strong notion of tracking context and displaying only the appro­

priate commands for the current context. Thus, when the IDE is focused on a form or class

file from a Visual Basic project, all the commands of the product are tailored to be appropri­

ate for a Visual Basic project. The commands for the C++ project disappear. The changing

title bar was part of the feedback the IDE provided to help the user understand what context

is active. The name of the empty IDE was "Microsoft Development Environment" because

the application was focused on being a great tool for developer activities. The application's

executable file became a derivative of the generic IDE name "Microsoft Development
Environment" or "Development Environment," or "devenv" for short.

The concept for the generic environment even precedes the Visual Studio IDE time frame.

The Visual C++ IDE was named msdev.exe for a similar reason as devenv.exe. It was conceived

as a general IDE platform that could host multiple plug-in products, based on Microsoft

Foundation Class (MFC) extension dynamic-link libraries (DLLs). Visual lnterDev also shipped

using this generic environment.

The next-generation IDE shell, known today as the Visual Studio IDE or devenv.exe, was

based on a COM plug-in architecture, which enables independently versioning components

to communicate with one another. This new IDE was created by using the Visual Basic shell

and stripping out all the product-specific functionality. Then Visual Basic .NET had to be

re-created in this new IDE as a package, even though it was their original IDE to begin with.

Starting in Visual Studio 2005, a stronger branding identity was given to the Visual Studio

product. The title bar was updated to display "Microsoft Visual Studio" all the time. The Help.
About command was changed to the static text Help.About Microsoft Visual Studio. Despite

these branding changes, the executable's file name remained the same.

Is the Visual Studio logo an infinity symbol or Mobius strip?
It is an infinity symbol. I had great hopes it would turn out to be a Mobius strip.

What do the colors in the Visual Studio logo signify?
The colors in the logo are the Microsoft corporate colors.

Solution Explorer: Is it on the left side or right side of the IDE?

This was one of the big debates of the day.

Appendix A Visual Studio Factoids 201

In Microsoft Visual Basic, the Solution Explorer was on the right side of the IDE. In Microsoft

Visual C++, it appeared on the left side. Both groups of developers were very used to their

layouts after so many versions and wanted to retain their legacy layouts.

While the Visual Studio team was merging all the shells into the one IDE during the Visual

Studio .NET 2002 product cycle, the decision was made to have the Solution Explorer appear

on the right side of the IDE. I started my career at Microsoft toward the end of the Visual

Studio .NET 2002 product cycle, so I wasn't able to witness any of these debates firsthand.

Why is there a "Solution" concept?

This was the big debate.

Visual Basic had project groups, and Visual C++ had .dsw files or workspaces. In Visual C++, a

workspace always existed, even if it consisted of just one project. Additionally, you could also

open any random file in Visual C++, unlike in Visual Basic.

The big debate when the single IDE was being formed was which behavior to use. It was

agreed to go with the Visual C++ approach on the condition that a new name would be used

to describe this concept. And hence, a "Solution" was created.

A little-known fact that surprised me while chatting with Pat is that we actually put support
into the UI for using a string other than the word "Solution," such as Workspace or Master

Project. It was originally inserted for testing purposes, and we shipped the product with it at

least once. I've been unable to figure out which version included that or to create a screen

shot of the UI, as it has since been removed.

Why Are the Tool Window Tabs Shown at the Bottom of a
Tool Window Group and the File Tabs Are at the Top of the
File Tab Channel?

Recall in Chapter 4, "Manage your Environment layout" how you can put a tool window into

a tabbed document state, so that it appears among the open files in the file tab channel.

But, you can't move or dock an open file outside the file tab channel like you can with a tool
window.

When the notion of tabbed documents was introduced in Visual Studio 6, it was intended

to be a way to easily manage many open files. The original design actually provided a way

for tool windows and document windows to dock to each other in a free-form way. In

other words, you could dock tool windows to specific documents and create all kinds of

configurations.

202 Microsoft Visual Studio Tips

The problem with this design was that tool windows are not multi-instance, meaning you
cannot have the same tool window open multiple times. Users would close documents and
lose any docked tool windows. It was difficult to find these tool windows again to reopen

them.

The user-experience designers created a rule that only files and tool windows in the tabbed

document state could appear in the file tab channel. Tool windows could dock anywhere as
long as they were in the dockable state, but files could not be docked. To help reinforce the
difference, tool window tabs are displayed at the bottom of a tool window group, and file
tabs are displayed at the top of the file tab channel.

Why is Common7 not Common8 or Common9?

This is a known issue. Only the root folder should contain a version number.

Appendix B

Tips on Blogging Tips
When I agreed to write a "Tip of the Day" series on my blog, I didn't quite realize what I was

getting myself into. I had learned a lot from the weekly series I had written in the Visual
Studio 2005 days, so I was somewhat prepared. Rob Caron, a marketing manager for Visual
Studio, and I put together a formula for the daily series, something I didn't have for the

weekly series. But still, nothing can prepare you for what life has in store when you agree to
a daily blog post. Fortunately for me, "Tip of the Day" doesn't work on weekends.

Nothing can quite prepare you for the realization that when you do a "Tip of the Day" blog,
you really have to write a new tip every single day. This includes the days when you get really

busy at work, the days when you go on vacation, and especially the days when you get sick
or injured. You have to be prepared for the unexpected.

I'm obviously a big fan of community, and I love sharing what I've learned during my seven
years at Microsoft. Therefore, I would be remiss not to share tips on how to do a "Tip of
the Day" series, in case you decide to do something similar. And let me know if you go for

it, so I can cheer you on, just like my blog readers did with their "Go Sara Go" comments at
http.//blogs.msdn.com/saraford/archive/2008/03/18/did-you-know-sara-turns-30-today-so-i­
need-another-go-sara-go-and-how-to-use-safemode-174.aspx.

Secret ''Tip Of The Day" Formula
In May 2007, Rob Caron and I brainstormed about what this formula would look like. He
introduced me to the book Made to Stick: Why Some Ideas Survive and Others Die by Chip
and Dan Heath (Random House, 2007). We applied some of the principles from the book to
make the tips more memorable.

Tip 1: Focus on one specific action per tip
The idea is to keep the tips as simple as possible. Instead of focusing on end-to-end func­

tionality, the tips focus on how to do one specific thing. For example, the settings located
in Tools Options fall perfectly into this category. I consider each tip to be an explanation

of how each option works. My reasoning is to provide readers with information on how
the individual pieces work, so they are able to mix and match these pieces to best suit their
needs.

203

204 Microsoft Visual Studio Tips

Tip 2: Provide an image with each tip
It is amazing how a picture brings a blog entry to life. Now imagine what it does for a tip.

It was a requirement (yes, I require myself to do things) that each tip have a picture, regard­
less of what the tip was about. Sometimes I needed several pictures to illustrate the tip,

and sometimes it was a real challenge to come up with a single image. Even a tip about a

keyboard shortcut required an image. Even if I had to draw a tree, which amused me greatly,

every tip has an image.

Tip 3: Reference a credible source
Many times I had to ask the feature developer, "Hey, what does this do, again?" or "Um, I

think I broke it, but I'm not sure.'' Whenever I had to ask for help, I always mentioned it in

the blog entry. I think sharing common struggles goes a long way in building a community

of readers.

Tip 4: Share and collect stories whenever possible
Many times, I felt compelled to share a story about the tip. Initially, I had wanted to include

one story per tip, but I quickly realized that I shouldn't try to force stories if a tip just didn't

have one.

Then, at one point in the latter half of the "Tip of the Day" series, the idea came to me that I

could ask blog readers for their opinions about the tips, how they used the tip, or how they

didn't use the tip. I realized that the tips were not only providing the "how to" information

but also starting a "Let's discuss this feature today" thread. After this light-bulb moment, my

concerns about providing stories definitely decreased, but I still have to write a tip every day.

Tip 5: Queue up your tips far, far in advance
This should be a given, based on what I said earlier about vacations, illness, workload, and

all the other things that happen in life when you make plans. The further out you can queue

your tips, the happier you will be in your "Tip of the Day" life. Also, I highly recommend using

a wall calendar so that you can keep track of where you are in your queue and plan for the

expected interruptions, such as holidays, vacations, and birthdays.

Tip 6: Set your tips to go live before dawn
Another thing that caught me off guard was time zones. I live in Washington State, and I

didn't consider that a tip that goes live at 9 a.m. Pacific standard time (PST) won't arrive in

people's RSS readers until after noon on the East Coast. It's not really a tip of the day for

them, but more like a tip in the afternoon.

Appendix B Tips on Blogging Tips 205

I realized this issue the hard way about the second week into the series, when Rob Caron

shot me an e-mail saying, "What happened to today's tip?" I was just starting to queue tips

in advance and accidentally had one ready to go live in the afternoon, instead of morning.

The East Coast people probably thought the series was already over in just a week's time.

Nonetheless, I corrected the error and decided tips should go out at 3 a.m. PST. Publishing at

this time addressed two concerns:

1. The East Coast people would get a tip in their RSS reader first thing in the morning.

2. If I ever made this mistake again, I could correct it first thing in the morning PST time,

still giving everyone in the United States their "Tip of the Day."

At the time of this writing, all tips have gone out at 3 a.m. on the first try.

Tip 7: Use Windows Live Writer to write and queue your tips

Shameless Microsoft plug? No! I tell it like it is, and I bow to this great and wonderful tool.

Seriously, I can't image doing "Tip of the Day" without it. I can queue my tips into the future.

The calendar control helps me to not tip on weekends. And I can save drafts if I'm waiting for

clarification on a tip. I can even see how my blog entry will appear according to my blog's

CSS while not connected to the Internet.

By far, the best thing about Live Writer is how well it works in offline mode. I have written

many tips while on airplanes and other places where I didn't have Internet connectivity. And

when I return home, I can simply publish the tips and celebrate much happiness in "Tip of the

Day" land, knowing the series lives on.

But check out Live Writer and see for yourself at http://get.live.com/writer/overview.

Appendix C

Software Testing Tips
During my four-and-a-half years as a software design engineer in test on the Visual Studio

team, I picked up a great many things beyond just the ins and outs of Visual Studio. When I

first started blogging about software testing, I was pleasantly surprised at how many people

found it interesting. They let me know by linking to my blog, leaving comments on my

blog posts, and sending their interview questions for me to answer. Well, they sent me their

questions, but I didn't answer them. =D

Five Tips for Surviving as a Tester
Following are some of the lessons I learned from testing the Visual Studio IDE. Whether you

are a professional tester or you just do software testing occasionally, you may find these tips

to be helpful.

Tip 1: Never assume anything
I frequently tell two stories about how I learned this tip the hard way.

Story number one begins during my first six months at Microsoft, during which time I was

assigned my first project where I was the only tester. We had just deployed a Web site inter­

nally within the Microsoft corporate network as an alpha release to collect internal feedback.

Not even 20 minutes went by before the developer sent an e-mail message saying that the

site was throwing errors in the most common scenarios. That was the first time I experienced

that tester "state of shock," where you thought you had tested it all but something obvious

apparently slipped by you.

Based on the call stack, it didn't take the developer long to figure out that one of the check­

box labels was causing the error. This check box was the only one of all the check boxes that

contained a forward slash (/) or any special character. Both the program manager and the

developer looked at me and said, "Did you test this?" Let's just say those are words that no

tester ever wants to hear. I took a deep breath and admitted the truth, which was that I had

assumed that since the first row of check boxes worked, the rest of them would work too. In

other words, I had no idea whether it had been a last-minute regression or whether the bug

had existed all along.

The program manager picked up the phone and called the server administrator, asking if he

would do a favor for us and start the server. If I recall correctly, the developer had an idea

for a quick fix that would require "only" a start rather than a full deployment. The server

207

208 Microsoft Visual Studio Tips

started, the site came back up, and the mainline scenario was still broken. The developer

then thought of another idea, but the program manager said that he couldn't ask for another

favor.

The lesson I learned from story number one is to never assume that any basic functional-

ity will just work. Story number two occurred during the latter half of my software testing

career, while I was on the editor team. We were in the midst of a full test pass for the Visual

Studio 2005 Beta 2 release, where every known test case must be run and every possible

scenario must be tried in order to break the software. I recall some feature areas having so
many test cases that it took three weeks to run them all, and most of them were automated!

A full test pass is usually a tester's last chance to have bugs of medium and even low prior­

ity fixed before the release, but it is specifically designed to find the high-priority bugs first.

Because many of these tests are automated, we had a lot of analysis to do in the lab, such

as figuring out why the test case failed. Was it a product bug? Was it a test-case logic issue?

Was it just a Lil-timing issue, where the UI experiences a delay in showing a window but the

automation framework attempts to run the command a little too soon, hence failing the test?

While analyzing test-case failures for some of the primary scenarios, I couldn't help think
about how many test cases I had to run and analyze. In other words, I wanted to analyze

failures as fast as possible.

I will never forget this one in the lab run, a term we use to describe running specific test

cases against a specific machine configuration or edition of Visual Studio. This run was testing

the Visual Studio Standard edition. All the Emacs and Brief emulation test cases, which verify

alternate editing functionality and keyboard shortcuts, failed.

A quick investigation showed that the required files were not found on the computer that

the run was conducted on. I assumed that the missing files obviously had something to do

with the run itself and not with the actual product. I based this assumption on the fact that

the Professional edition, among others, had passed. Also, it wasn't uncommon to see an issue

arise with a run configuration, although these issues are more closely investigated than what
I was doing.

I analyzed the failures resulting from a machine configuration-that is, failures that hap­

pened because the files were not present on the machine. And my analysis came back to

haunt me.

Several weeks later, as we were about to ship the beta release, the lead developer for the

editor discovered that the editor emulation feature was not available on the Standard edition

for the Visual Studio 2005 Beta 2 release. Once again, I experienced that "tester shock," and

I felt it probably just as bad as I had in the previous story, as in "Wow, I can't believe I let

this one get by me!" I realized that the only words worse to a tester's ears than "Did you test

this?" are "Why did you assume this was not a bug?"

Appendix C Software Testing Tips 209

The lesson I learned from story number two is, When in doubt, get a second opinion whether
something is a bug.

Here are a few other tips related to never assuming anything:

• Never assume that someone else is covering a particular scenario. Test everything that
comes to mind, and then test some more. A little overlap never hurts.

• Never assume the people reading your bug will "just get" the bug. Always be as explicit
as possible with your steps for reproducing the issue, even when the steps are com­
pletely obvious to you. This holds true especially when you attach a picture to your
bug. A picture speaks a thousand words, so make sure that the person reading your
bug report hears the right 20 to 30 words.

• Never assume that a simple scenario could not be broken. Always, always, always test,
even if it is the most trivial example for the most trivial feature you've ever seen. Don't
take the chance of having to hear the words, "Did you test this?"

Tip 2: Learn from the bugs you missed

As I became more confident in my software testing skills, I started actively monitoring the
bugs filed against my feature area by other people. I became intrigued by pursuing the idea
of "What else am I missing?" There were so many days where I stared at my monitor just
wondering what I hadn't tried yet. Looking at these other bug reports helped me identify
where I had holes in my software testing style, what strategies for breaking software I had

yet to learn, what categories of bugs I hadn't seen yet, and so forth. I believe a lot of software
testing skill comes from pure experience.

Ask yourself why someone filed a bug report in your feature area that was later fixed. What
could you learn from this bug? Are you missing other similar tests? This process could be
considered a root-case analysis. But instead of looking at it from a developer's point of view,

asking why this bug was introduced, do it from the tester's point of view, asking what you
didn't do to catch the bug. You may find it to be a rewarding exercise to try at least once.

Tip 3: Help your developer however possible

I joke a lot about my "You broke it, and I'm telling" attitude about software testing, but in all

seriousness, I do not want my developer to feel this way at all. I think communication is the
key to producing high-quality software. And I think the more you can do as a software tester
to help out your developer, the better you'll communicate and the happier your customers
will be with your product.

First, establish trust with your developer. If you say you're going to test something by a
given time, get it done. And if the developer needs something, help him or her out as soon

210 Microsoft Visual Studio Tips

as possible. Also, actively seek feedback from your developer on what features are lacking

testing, how you can do more testing, and so forth. As is the case for Tip 2, you'll be sur­

prised how many new scenarios you'll come up with just by asking your developer for ideas.

It won't take long to see the benefits of going the distance to help your developer.

Tip 4: Leave appropriate comments when closing bugs

One year, six months, or even just three months (or, for me, three days) from now, you won't

remember how you verified that bug fix. If the original steps for reproducing the bug are no

longer the same, make sure you leave a comment explaining exactly what you did to verify

the fix. Sometimes bugs morph into other bugs, thus the outcome of the bug doesn't match
the original description or even the title!

And don't forget to include the build number when you verify the fix. This will help greatly to

identify when regressions are introduced.

Tip 5: Don't just get it in writing

E-mail messages aren't enough. If you're not going to cover a specific scenario, get it in

writing in your test plan. Make sure any discussions about bugs, whether they are hallway
conversations or conversations via e-mail, are also captured in the bug itself. Unlike e-mail

messages that can be quickly discarded and deleted, bug histories tend to stick around

much longer. This is especially important if you leave the project, as the person taking over

may not know about these conversations or decisions.

Appendix D

How I Started Programming
My story with computers begins when my parents got me a Texas Instruments Tl-99 4A
Personal Home Computer when I was five years old. To run software on the Tl, you

purchased cartridges that you would slide into the computer, right alongside the built-in
keyboard. Later, I got a cassette deck for saving code and a speech synthesizer, but the

games that took advantage of speech were boring. The color monitor was a standalone
monitor.

I can remember toying with the Tl for many years, probably until I was 12 or 13. Strategy
games such as flight simulators greatly captured my attention throughout my childhood.

Hunt the Wumpus
One of the earliest Tl computer games I can remember playing is "Hunt the Wumpus." It's a

simple strategy game, sometimes studied in artificial intelligence classes, where you have to
navigate out of a maze without falling into a pit or running into the wumpus. The Tl version
scared me to tears every time I ran into the wumpus. The screen would completely change
to red, displaying an angry wumpus with the classic "you lost"-style music playing in the
background. To a five year old, this was quite traumatic, but somehow I would find the courage

to crawl out from under the bed and play the game again. I was just way too fascinated with
the computer to let that wumpus get the best of me.

I recall having an equal collection of educational software and video games for the Tl. I
especially remember the math educational games. I learned how to multiply in second grade

by playing the math game-in my elementary school at the time, multiplication and division
weren't taught until the third grade. I also remember being scolded by my second-grade
teacher for inappropriately correcting her or something along those lines. Hey, she was
the one who said that you couldn't subtract a bigger number from a smaller number, like 7

minus 20. I remember being really excited when I screamed, "Yes you can! It is a negative
13!" That was the only bad memory I have of that teacher, so I think I just got her on a bad
day. Or more likely, I was just overly excited, which I still get accused of from time to time
even today. I was the kind of kid who would have the customer service desk at the local
K-Mart page my parents saying that I was lost, just because I wanted to hear my name over

the speakers.

211

212 Microsoft Visual Studio Tips

Say 11V0Ho"
Somewhere around that time, when I was in either second or third grade, my parents
got me the game "Return to Pirate's Island,'' written by Scott Adams. This game is the
reason I got addicted to playing on a computer. According to his Web site, located at
http://www.msadams.com, he is the first person to put an "interactive fiction" adventure­

style game on a personal computer. He did this in 1978, which coincidentally is the year I
was born.

"Return to Pirate's Island" is a text-based game that could also be considered a very light­
weight role-playing game, where you play the game from the first-person point of view in
the character's shoes. I absolutely loved the interaction with the computer. I was just head­

over-heels fascinated by the fact that I could type a word into the computer and watch the
story line change based upon what I typed. I was determined to figure out one day how the
computer knew what to do, how it worked, how it could read English, and so forth.

There was one slight problem with me playing the game. I wasn't quite old enough to read
completely on my own. I needed an adult to read at least one word per sentence in the
game. So the adult would read the text-something like, "You are in a kitchen. Obvious items
are matches and broken glass." And I would instruct the adult to instruct the computer to
open the refrigerator. Of course, the adult would have to say, "There is no refrigerator in the

kitchen." But I would be quick to point out the contrary to the adult, saying "Of course there's
a refrigerator in a kitchen.'' Annoyed, the adult would type, "open refrigerator," to which the

computer would reply, "I don't know what a refrigerator is." I was just absolutely fascinated
that in the computer's world a kitchen didn't have a refrigerator. I was determined to figure
out why. And for the poor adult (I use a generic description here, because people would al­
ternate translating for me quite frequently), this game went on and on, night after night after

night. Even at an early age, I was obsessed with problem solving.

The significance of this story is that it introduced me very early on to the ideas of determin­
istic algorithms and finite state machines, fundamental concepts for how computers work.
To me, it wasn't about winning the game, but rather a challenge to figure out the rules of
the computer's world, like why a kitchen didn't have a refrigerator or why I had to wear Scott

Adam's "safety sneakers" when I was perfectly safe walking around barefoot in my front yard.

But don't get me wrong, I'm not trying to say I understood college-level computer concepts
back then. I also clearly remember reading the introduction and asking my mom what an
"armchair pirate" was. Obviously, the author wrote it in the context of stealing software, but

as a second-grader, I was quite perplexed why it was a requirement to know how to sail a
boat and rob people in order to write a computer game.

It wasn't until my junior year in college that I finally decided I would beat this game once and
for all. Thanks to the Internet, I was able to download a version of "Return to Pirate's Island,"

Appendix D How I Started Programming 213

and after nearly 15 years, I finally got past those crocodiles, built the sailboat, and found the
treasure.

"Say Yo Ho, everything spins around, and suddenly, I'm elsewhere ... "

Scott Adams

Thanks, Scott Adams, for the game and for the safety sneakers!

Typing on the Tl-99 4A
Around the third or fourth grade, someone in my family got me a book on video game
programming for the Tl-99 4A. This book probably made the most significant contribution
to my interests in computer science. It contained the source code for the video games, but it
required you to manually type it in, as there wasn't a concept of "installing" software on the Tl.
Either the software came on a cartridge or you had to type it in manually. I would two-finger

type line after line of code for hours on end. I have to thank my older cousins for taking turns
helping me type code on those evenings.

There was this one video game's code in particular that took us many, many hours to type in.
The video game involved flying, where you're navigating a fighter-style spaceship through
explosive mines and other things that are bad for a spaceship to fly into in space. You could
fly at a constant speed in only one direction. All you could do was arrow up or arrow down to
avoid destruction. It so ruled.

Just thinking back on those days makes me look at Visual Studio in a much different light. We
used a cassette tape deck to store the video games, until it caught on fire one night. Also, we
didn't know whether we typed in a letter wrong until the very end of the our typing ordeal,
when we got to finally compile. Think of typing on the Tl as using Notepad to type hours

upon hours of source code from a book, without the ability to save, until the end. Maybe this
is why I "heart" Visual Studio so much.

One of the lessons we learned the hard way was that you lost everything if you turned off
the computer or if there was a power failure (which of course happened one night). How we
were able to ever program that game is beyond me, and we did it on several occasions (as we
didn't realize we had to save to cassette the first time). I definitely learned patience, although
the adults probably beg to differ, and how to pay attention to detail from all that typing.

Playing Nintendo
Around seventh grade, my mom brought home an IBM computer that took five minutes
to start. It originally had MS-DOS 3.0 installed, but over the years I upgraded. There was

some castle adventure game for MS-DOS 4.0 that once again captured my full attention, just

214 Microsoft Visual Studio Tips

like "Return To Pirate's Island" did. Only this time, I could actually move my aviator around

in the room I was in, instead of the game being text-based only. I don't believe I ever beat

that game-probably something else for me to find on the Internet on the next snow day we

have in Seattle.

I'll never forget using my first mouse with this computer. I thought the mouse was the cool­

est thing ever. I also thought printing was cool, but the idea of a paper jam really concerned

me, as I thought a paper jam could physically break the printer. Maybe it could have. It was

around the time of getting the mouse and printer that I recall learning to study by typing my

notes into the computer. Something about the act of typing helped me pay attention to my

notes. And there was the added advantage of saving it to a disk, something I cherished from

those Tl programming days.

Around the same time, I got into Nintendo, just like every other kid on the block. When I

beat my first game-"Metroid," a first-person adventure game-I frantically called up all

my friends to let them know about the ending. I didn't care that I had beat the game or

that Samus, the main character in the game, was a woman. I simply had to share that
"They rolled the closing credits, just like in a movie." My friends already knew that I was easily

amused, so they weren't surprised by my excitement over seeing the list of names of all the

developers who had worked on the game.

The game that really sold me on computer programming-as in, "I want to create video

games when I grow up, and no one is getting in my way"-was "Final Fantasy II," a role­

playing game for Nintendo. "Final Fantasy II" was the first role-playing game (RPG) that ex­

posed me to not only a story line but character development in a video game. It amazed me

to watch these characters think out loud, debate their moral issues, and in some cases even

die in the game, not to be brought back to the story line. In a sense, it was an interactive book,

where the story line was written but you controlled the pace at which you read the story.

It was also my first RPG that introduced me to side quests, these little extra adventures you

could go on that didn't affect the overall outcome of the game. And thanks to the instruc­
tion booklet that came with it, I was determined to max out the strength and defenses of my

characters, and to find that pink item to get the ultimate weapon.

I was so into this game that I logged nearly 99 hours on it. I wanted to see what would hap­

pen to the UI if I played for over 99 hours. Would it give me a special item? Would the UI
just freeze at 99 hours? Unfortunately, a cousin wanted to play the game, and I wasn't super­

vising when he decided which folder to save his newly created game in. Something inside my

head snapped when I saw my beloved status showing less than an hour. I've never been able

to quite get into RPGs again, although in my adult years, I was able to enjoy "Final Fantasy

VII." But that enjoyment was probably because I was recovering from a motorcycle accident

and I couldn't do anything but play video games and watch TV.

Appendix D How I Started Programming 215

Shortly after I beat "Final Fantasy II," around the seventieth hour mark, I got a smooth collie

from the pound. I named him Cecil, after the main character in the game. He was the most

loyal dog in the world to this only child, living up to his namesake in the game. He lived a

very long life, 10+ years. Imagine a story line to a video game so intriguing to a kid that the
creators got free advertisement for the game for 10 years, all in the name of a dog. I still to

this day hear, "You named a dog Cecil?" I probably shouldn't tell people that I'm debating

calling my next smooth collie "Cecil 2."

Will Solve Math Problems to Code
I went to a very small all-girls Catholic high school in Mississippi that had only 250 stu-

dents in the entire school. My sophomore year, I really wanted to take this "Intro to Pascal

Programming" course, the only course on computer programming offered at the school at

the time. But it conflicted with Algebra 2. On a whim, I decided to devote a weekend to do­

ing nothing but answering every question in every chapter of the algebra book. Hey, at least

I find constructive ways to deal with my frustrations. But yes, I have way too much energy.

The one weekend turned into roughly five weekends, but I was determined to take that

programming class before it was too late to catch up. Finally, the day came when I proudly

walked into the Algebra 2 classroom, handed the unsuspecting teacher the notebook, and

said, "I'm finished. I can either take the programming course or stay here and be bored for

the rest of the year. It's your call."

I got an "A" in the programming course that year.

Studying in College
Needless to say, once I got into college at Mississippi State, it was significantly easier for me

to study computer science. My undergraduate advisor, Dr. Donna Reese, was the best, most

excellent advisor anyone could ask for. Or to put it into a better perspective, she was able to

tame me. Not many people are able to direct my energy effectively, and even fewer are able to

get through to me when I'm in one of my "I will drive myself off the cliff" obsessive problem­

solving states of mind. Any previous or current manager of mine reading this right now is

either cracking up laughing or rolling their eyes in agreement. She inspired me to step up

and take a leadership role during my junior year as president of the MSU Student Chapter of

the Association of Computing Machinery (ACM), an organization for computer profession­

als. This leadership role was simply the hands-down best opportunity of my undergrad­
uate career. I consider Dr. Reese to be my first mentor, even though I didn't realize it at the

time.

You could say ACM is where I first got a taste of technical evangelism, the concept of

connecting technology and people. I cannot say how much I thrive on this concept, but then
again, some of you already know this because of my "Embrace Open Source on CodePlex"

216 Microsoft Visual Studio Tips

artwork on my Microsoft office window. I loved organizing the freshman class exam study

halls, explaining how you can have a tic-tac-toe machine built out of K'NEX, and picking up

the foot-long Subway sandwich for the yearly picnic. And there were the practical jokes, like

the day I discovered my key to the ACM bulletin board also opened the other bulletin board

where all the faculty and staff had their pictures and titles listed.

Oh, and thanks, Dr. Reese, for still answering your cell phone when I call to tell you about the

things that amuse me at work. Yes, despite the invention of caller ID, she still answers. =D

Enter Microsoft
During my senior year at Mississippi State, I worked as a research assistant under Dr. John
T. Foley on WebTOP, located at http://www.webtop.org. I used Microsoft Visual J++ every

day for a year to use Virtual Reality Modeling Language (VRML) to simulate physics lab

experiments. For example, I wrote the "Laser" module, which simulates a laser beam project­

ing on a surface, and the "Reflection and Refraction" module, which I explain later.

While writing the "Reflection and Refraction" module, I discovered a bug in Visual J++ where

the yellow-highlighted current statement line would get off by one line every time I jumped

out of a file. Since my project had numerous files, the current statement would move farther

away from the real line being executed the more I tried to debug my program. I would have
to keep track of where I was, with pen and paper. It was an incredibly frustrating experience,

to say the least.

On the morning of my Microsoft interview, when I found out that I would be interviewing

with the Visual Studio team as a Software design engineer in Testing, I was elated. Not just
because I would have the opportunity to meet actual members of the team-I was really
elated because I would be able to tell them about this bug.

Interviewing at Microsoft
In the Building 19 lobby on the Microsoft Redmond Campus, one of the candidates sitting at

the table decided she was going to break the silence by having each of us go around and talk

about ourselves and the school we went to. As the introductions went around, the names of

the schools I heard were MIT, Notre Dame, UCLA, and so forth. I was really nervous hearing

the names of these schools, as I had never met anyone who had ever attended these schools

before. But I was determined to keep my game face and my focus.

My Software Design Engineer in Testing (SDET) interview started with the Microsoft

Exchange team that morning. I had no prior software testing experience, beyond writing the

occasional test plan as required in some of my college courses. But I caught on quickly to

how they wanted a software tester to approach a problem. I felt pretty overwhelmed with

the coding questions, mostly because I was nervous. I don't think I did very well there. I think

Appendix D How I Started Programming 217

I was still feeling so over my head from being in Seattle, at Microsoft, and meeting the other

candidates that morning. Fortunately, I had a really good lunch interviewer who allowed me

to eat (Thank you! Thank you! Thank you!), so I was in really good shape physically when it

was time to interview with the Visual Studio team that afternoon.

I think I did a really good job with the first Visual Studio interviewer. He asked me about

WebTOP, and I explained to him how I had written the "Reflection and Refraction" module. It

is an animated module that demonstrates in VRML how light can be reflected and refracted

between two mediums, like air and water, based on physics equations such as Snell's law.
My real-world example was swimming in a pool. If you're at a certain depth, you can still see

people standing alongside the pool, but the deeper you get, the less you can see of the sur­

face. While I was explaining how I coded the module, the interviewer said, "Yep, that's Snell's

law." I looked at him shocked, with an expression of "How did you know that?" He said, "I was
a physics major." I said, "Oh man, I can't believe I just forced you to listen to all of that." He

said, "Well, you got it right," in a casual, "it's all good" sort of way.

I don't think I did so well in the second interview on the Visual Studio team. I got caught up
analyzing a math problem because I was taking an advanced calculus course at the time,

where it's all proofs and no numbers. I tried to write the mathematical proof that a number

n cannot be divisible by any number greater than n divided by 2, but I wasn't that good at

writing proofs. As soon as I started writing, "For every epsilon in the set of R, there exists ... ," I

knew the interview was over. Advanced Calculus really messed with my head that semester. I

think the interviewer was surprised for a couple of reasons:

1. I attempted to write a mathematical proof.

2. I challenged his assumption about a number n not being divisible by a number greater

than n divided by 2.

Maybe not taking things for granted in a face-to-face interview is a good strategy?

Finally, I had my last interview with the test manager. He asked me the "four jars" testing

question, which I had never heard before.

You have four jars containing pills. Three jars contain good pills, weighing 10 grams, but one

jar contains bad pills, weighing 11 grams. It is a fact that a jar either contains all bad pills or

all good pills. You have one scale. How many times do you need to weigh pills on the scale to

determine which jar has the bad pills?

After a few iterations of breaking down the permutations on the whiteboard, I figured out

the problem. We chatted briefly about how finding the fewest steps possible to determining

a fact related to software testing, since everything you do, every time you weigh a pill, comes

with some cost. As the interview continued, he talked about life on campus and the various

people on his team. And next thing I knew, I got excited and watched myself shoot up in my

chair and start working again on the problem, saying, "You can do it the way I described.

218 Microsoft Visual Studio Tips

Here's how ... " and showed him my solution. Then I went pale, realizing what I had done. I
turned around and frantically apologized for interrupting him. I'll never forget the smirk on
his face when he said, "It's okay." All I could say was, "Sorry, the problem was still running on

the background thread. It happens a lot," scratching the back of my head.

He just laughed, and the rest is history, as illustrated in this book.

Tip 252: You Can Make the Statement Completion
Window Transparent

Sara Aside: Wow! Hey, thank you for reading all the way to the end! About once or twice a
year, whenever I write long conference trip reports or long summary e-mail messages at work,
I usually have a line at the bottom saying, "To show my appreciation to you for reading this far,
I'll buy you a latte. E-mail me to receive your coupon." It's fun to see people's reactions in their
replies. In lieu of espresso, my way of saying thanks is to provide you with one last tip about
Visual Studio 2008.

Hold down the Ctrl key to make the statement completion window transparent. This trans­
parency is especially useful when the statement completion window is blocking text or other
code that you need to read in order to know which object or method to select. And to make
the statement completion window reappear, simply release the Ctrl key.

·class·
·{

• • • • •statiC•VOid·Main(string(] 0 args)
... ·{

· ······,Console. liJriteLine (ffGoocUJye'r);

• • • • • · · • • Cons.::ile .j
· ········Console. W~i,teLine nT.Jor.ldn) p

.... ·)

·)

Index

A
Add New Solution Folder button, 172
Add To References button (Object Browser),

134
aliases for commands, 108
Allow Editing Of Read-Only Files

option, 45
alphabetizing Toolbox items, 120
Always Show Error List If Build Finishes With

Errors option, 194
Always Show Solution option, 178
Always Show This Message option, 70
anchor position, swapping, 29
Animate Environment Tools check box, 90
Apply Cut Or Copy Commands To Blank

Lines option, 1
Arguments option (External Tools), 159
assumptions in software testing,

207-209
At Startup combo box, 167
Auto Hide push pin, 87
autohiding tool windows, 86-91
autoloading changes to open files, 44
Automatic Delimiter Highlighting

option, 39
Automatic setting (editor colors), 19
Automatically Populate Find What With Text

From The Editor option, 60
autopopulation of Toolbox, 117
Auto Recover feature, 41

B
background color, editor, 18
background search, stopping, 67
backups for autorecovery, 42
base types, showing in Object Browser, 137
binary editor, 38
binding macros to keyboard shortcuts, 18

blank lines
copying by mistake, 1
inserting, 3

blocks of code
indenting, 33
inserting code snippets around, 58

blogging tips, 203-205
bold printing, 24
Bookmark window, using, 48
bookmarks

colors for, 21
managing, 47-49

bottom, jumping to, 9
box selection, 27
brace matching, 40
Break All Processes When One Process

Breaks option, 190
Break At Function command, 185
breakpoint filters, 183
breakpoints, 181-186

conditional, 182
deleting all, 186
setting from Find combo box, 166

Breakpoints window, 185
Brief emulation, 37
build configurations, 174-175

c
calculator, Immediate Window as, 196
case, keyboard shortcut for changing

(editor), 7
change tracking in editor, 22
character editing. See text editing

(in editor)
Choose Search Folder window, 66
clearing. See deleting or removing
Clipboard ring, cycling through, 2
Close All But This option, 74

219

220 Close Button Affects Active Tool Windows Only option

Close Button Affects Active Tool Windows
Only option, 94

closing
documents in editor, 80
tool windows, 96

closing bugs, comments for, 210
code

collapsing or expanding, 34
cutting/pasting collapsed code, 36

editing. See editing, advanced; editor tips
formatting. See formatting (advanced

editing)
User Tasks separate from, 123

code blocks
indenting, 33
inserting code snippets around, 58

code lines. See lines of code
Code Snippet Manager, 56
code snippets, 53-58

default values and variables in, 57
Collapse to Definitions

command, 36
collapsing code, 34

cutting/pasting collapsed code, 36
hiding when printing, 24

collapsing Toolbox items, 118
colors

Automatic vs. Default settings
(editor), 19

bookmarks, 21
for brace matching, 40
editor background, 18
in Output window, 113
printing boldly, 24
for tracking changes in editor, 22
in Visual Studio logo, 200

column selection, 27
Command Window, 105-109

logging session, 107
commands

aliases for, 108
running from Command Window, 105
running in Find combo box, 164-166

comments, 29
for closing bugs, 210
displaying in Task List, 125

Common7, numbering of, 202
compiling

Error List, 190-194
Immediate Window, 196
Watch windows, 194

complete word functionality, 49, 51
completion. See lntelliSense technology
components, Object Browser. See Object

Browser
conditional breakpoints, 182
Configuration Manager, 174
context menu management, 102
Copy Here, moving text to, 6
copying. See also dragging

blank lines, by mistake, 1
cycling through Clipboard ring, 2
file path from file tab channel, 74
between Toolbox tabs, 122

Ctrl+G, using, 15
current anchor position, swapping, 29
current development settings, saving, 149
current line (editor)

cutting or deleting, 4
inserting breakpoints at, 181

Current Selection option (startup project),
189

Current tokens for external tools, 162
current word

searching for, 60
selecting, 3

CurrentSettings.vssettings file, 155
cursor position. See also navigation, editor;

selection (advanced editing)
after pressing Escape, 28
swapping anchor position, 29

custom components list, Object
Browser, 132

custom tokens in Task List, 127
cutting collapsed code, 36
cycling through Clipboard ring, 2

D
DataTips, 187
Debug build configuration, 174
debug windows, viewing numeric values

in, 195
debugging, 179-190

breakpoints, 181-186
conditional, 182
deleting all, 186
setting from Find combo box, 166

DataTips, 187
Error List, 190-194
with Immediate Window, 196
learning from bugs you missed, 209
multiple projects, 187, 189
sending messages to Output

window, 114
tracepoints, 179
Watch windows, 194

Debugging view (window layout), 97
default project location, 170
Default setting (editor colors), 19
deleting or removing

bookmarks (all), 48
breakpoints (all), 186
current line (editor), 4
leading white space, 4
next or preceding word (editor), 3
unused using statements, 41
user tasks, 129

delimiter highlighting, 39
Design view (window layout), 97
developers, working with, 209
development settings. See environment

settings
Devenv.exe, name of, 199
dialog boxes, 147-163

External Tools feature, 157-163
Import And Export Settings feature,

147-157
Project Location Is Not Trusted message

box, 173
directories, custom, for opening files, 45

editor tips 221

directory tokens for external tools, 162
disabling. See specific feature by name;

turning off (disabling)
displaying. See hiding and displaying
docking and undocking

Find And Replace window, 69
tool windows, 82-85, 88-90

document formatting, 31
document window management, 73-81.

See also window management
file tab channel, 74-77
IDE Navigator, 77-79
keyboard navigation, 79
MDI mode, 80

dragging in editor, 5

E

in General tab (Toolbox), 115
Toolbox controls, 121

editing, advanced, 27-44
autorecovery, 41
binary editor, 38
brace matching, 40
commenting, 29
delimiter highlighting, 39
drag and drop. See

dragging
emulations, 37-38
file extensions, 43
formatting, 30-33
outlining (code collapse/expand),

34-37
selection, 27-29
unused code, cleaning, 41

editing read-only files, 45
editor emulations, 37
editor tips, 1-26

fonts and colors, 17-23
font colors, 18-23
font size, 17-18
visual cues, 22-23

opening files and, 44-47
printing options, 23

222 Editor ToolTip settings

scrolling and navigation, 8-17
navigating within and among editors,

11-15
scrolling, 8-10
word wrap and virtual space, 16-17

status bar options, 25
text editing, 1-7
undo and redo, 7

Editor ToolTip settings, 17
EditorBrowseableAttribute class, 138
Emacs emulation, 37
emulations, editor, 37-38
Enable Breakpoint Filters option, 183
Enable Single-Click URL Navigation

option, 15
enabling. See specific feature by name;

turning off (disabling)
environment layout. See window

management
environment settings

importing, 153
last reset to, 148
preferred, 150
resetting, 148
saving current, 149, 154
synchronizing across team, 157
where saved, 155

erasing. See deleting or removing
Error List, 190-194
errors in Output window, navigating, 110
escape, cursor jump after, 28
executables, running from Command

Window, 108
expanding code, 34
expanding Toolbox items, 118
exporting development settings, 156
exporting Object Browser customizations

143 '

exporting window layout states, 97
External Tools feature, 157-163

adding own tools, 159
prompting for arguments, 163
tokens for, 162

F
failed build, Error List after, 194
file extensions, 43
file path

copying from file tab channel, 74
copying with exporting settings, 156
printing as page header, 25
in Task List, 129

file tab channel, 74-77, 92
placement of files tabs in, 201

File view (window layout), 97
files

autorecovery, 41
opening

in binary editor, 38
editor windows and, 44-47

read-only, editing, 45
searching in, 65-71

filters for breakpoints, 183
Find And Replace window, 68

searching without bringing up, 60
Find combo box, 62, 163-166
Find In Files searches, 65-71
Find Message In Code button, 110
Find Results window, 69
Find Symbol, 64

browsing results, 70
in Object Browser, 142

FindAllReferences command, 142
finding. See searching
floating

tool windows, 91
toolbars, 100
for statement completion, 51

fonts in editor, 17-23
font colors, 18-23
font size, 17-18
printing boldly, 24
for statement completion, 51
visual cues, 22-23

Format Document command, 31
formatting (advanced editing), 30-33

four window layouts, 97-99
Full Screen mode, 97, 98
functions, setting breakpoint at

desired, 185

G
General tab (Toolbox), dragging code

to, 115
Go To Definition command, 141
Go To Line window, avoiding, 15
go-back navigation, 11

SelectTolastGoBack command, 28
GoToNextlocation command, 110
GoToPreviouslocation command, 110
group views, Toolbox, 120
guidelines for formatting, displaying, 30

H
HACK tokens in Task List, 127
header (printed page), file path as, 25
Help documentation for Error List, 192
hexadecimal format, viewing numeric

variables in, 195
hidden keyboard shortcuts state (tool

windows), 95-97
hidden text, searching within, 71
hide state (tool windows), 94
hiding and displaying

autohiding tool windows, 86-91
avoiding show and hide find messages, 70
brace matching, 40
collapsing code. See outlining code

(advanced editing)
delimiter highlighting, 39
Error List, after failed build, 194
formatting guidelines in editor, 30
keyboard shortcuts for toolbar

buttons, 102
line numbers in editor, 22
making something hideable, 138
in Object Browser, 132

importing environment settings 223

all inherited members, 140
base types, 137
hidden members and types, 138

outlining selection margin, 37
Output window, 111
parameter info, 50
Quick Find and Quick Replace windows, 64
quick info, 51
Recent Files lists, customizing, 46
scroll bars (editor), 10
in Solution Explorer, 178, 179
status bar (editor), 25
syntax highlighting for specific file

extensions, 43
Tile Horizontally and Tile Vertically

buttons, 81
toolbar buttons, 100
toolbars, 101
Toolbox controls, 121
viewing visible white space, 23

highlighting delimiters, 39
highlighting syntax for specific file

extensions, 43
horizontal scroll bar (editor), hiding, 10
horizontal white space, deleting, 4
hovering (tool windows), 91
Hunt the Wumpus, 211
hyperlink navigation, enabling in

editor, 15

Icon view, Toolbox, 120
icons in New Project dialog box, 171
IDE, why named Devenv.exe, 199
IDE Navigator, 77-79

running external tools from, 158
IDE settings. See environment settings
Immediate Window, 196

redirecting debug messages, 114
Import And Export Settings feature, 147-157
importing environment settings, 153

224 Include Insertion Point Movements In Undo List option

Include Insertion Point Movements In Undo
List option, 12

incremental search, 59
indentation (code). See also white space

(editor)
changing from editor tool bar, 33
fixing quickly, 31
smart vs. block indenting, 33
tabs vs. spaces, 31

infinity symbol, logo as, 200
Initial Directory option (External Tools), 159
inserting blank lines (editor), 3
inserting breakpoints. See breakpoints
lntelliSense technology, 49-53
interviewing at Microsoft, 216
Item tokens for external tools, 162

J
justification. See indentation (code)

K
Keep Modified Files Open After Replace All

option, 68
keyboard navigation

document windows, 79
tool windows, 92-94

keyboard shortcuts
binding macros to, 18
for Error List buttons, 193
for external tools, creating, 160
navigating with. See keyboard navigation
Object Browser, 135, 144
to open file directly, 165
between Output window panes, 111
showing in toolbar ToolTips, 102
in Task List, 125, 130
for tool windows, 95-97

keyboard-based searching, 59-61

L
language, preferred, 151

large icons in New Project dialog
box, 171

last search, repeating, 61
leading white space

deleting, 4
using instead of tabs, 31

line numbers in editor
printing, 24
showing, 22

lines of code
cutting or deleting, 4
formatting, 31
leading tabs vs. spaces, 31
selecting, 27

List Item view, Toolbox, 120
list members (completion), 49
location for projects, default, 170
log command, 107
logging Command Window sessions, 107
logo to Visual Studio, 200
Look At These File Types option, 66
lowercase, keyboard shortcut for, 7

M
macros, binding to keyboard shortcuts, 18
matching braces, 39, 40
MDI mode, 80
Members pane (Object Browser), 136
message boxes. See dialog boxes
Messages button (Error List), binding

shortcut to, 193
methods, marking as Hidden, 138
Miscellaneous Files project, 176
mnemonics. See keyboard shortcuts
Mobius strip, logo as, 200
most recent search, repeating, 61
mouse wheel, scrolling with, 8
Move Here, moving text to, 6
multicolumn sorting (Error List,

Task List), 192
Multiple Document Interface.

See MDI mode

multiple projects, debugging, 187
Multiple Startup Projects option, 189
multitargeting, 169

N
Navigate Backward button, 11
navigation

editor, 8-17
among bookmarks, 47
within and among editors, 11-15
scrolling, 8-10
word wrap and virtual space,

16-17
Error List, 190
by keyboard. See keyboard shortcuts
Object Browser, 135, 141, 144
Output window, 110
Task List, 130
Toolbox, 119

navigation bar (editor), reaching with
keyboard, 13

.NET Framework, multitargeting, 170
New Project dialog box, 171
New Project Dialog Preferred Language

setting, 151
new project location, default, 170
NextSubPane command, 111
NextTask command, 130
numbering lines in editor

printing numbers, 24
showing numbers, 22

0
Object Browser, 131-145
Object pane (Object Browser), 136
Open Containing Folder option, 75
Open File Using Directory Of Currently

Active Document option, 46
opening files

in binary editor, 38
editor windows and, 44-47

ordering Toolbox items, 120

Quick Find 225

outlining code (advanced editing), 34-37
hiding collapsed regions when

printing, 24
hiding selection margin, 37

Output window, 110-115

p
page header, file path as, 25
paging within Toolbox, 119
parameter info, 50
pasting collapsed code, 36
path. See file path
planning for future software tests, 210
Pointer control, Toolbox, 116
positioning. See docking and undocking
preferred environment settings, 150
preferred language, 151
PreviousTask command, 130
printing options (editor), 23
priorities for user tasks, 124
Profiles feature. See Import And Export

Settings feature
project location, default, 170
Project Location Is Not Trusted message

box, 173
projects

customizing, 170-173
debugging. See debugging
renaming within Solution Explorer, 178
searching within current, 72
startup, selecting, 188
temporary (throw-away), 172

Prompt For Symbolic Renaming When
Renaming Files option, 178

prompting for arguments with external
tools, 163

Q
queuing up blog entries, 204
Quick Find, 61

bookmarking results of, 49
hiding window after first hit, 64

226 quick info

quick info, 50, 51
Quick Replace, 63
Quick Symbol, 64

R
read-only files, editing, 45
rearranging external tools, 160
Recent Files lists, customizing, 46
redirecting debug messages to Output

window, 114
redo (in editor), 7
references, adding from Object

Browser, 134
refreshing open documents, 44
regular expressions, 72
Release build configuration, 174
removing. See deleting or removing
renaming within entire projects, 178
repeating last search, 61
replacing text with search. See searching
Reset All Settings option (Import And Export

Settings), 148
Reset page, Import And Export Settings, 152
resetting environment settings, 153
resizing. See size
Reuse Current Document Window, If Saved

option, 44
RSS feed (Start Page), changing, 167
running commands. See commands
running executables from Command

Window, 108

s
Save New Projects When Created

option, 172
saving

current development settings, 149,
154, 155

default new project location, 170
window layout states, 97

scope, search, 71
in Object Browser, 141

scroll bars (editor), hiding, 10
scrolling, editor, 8-10

word wrap and virtual space, 16-17
SDET interview, 216
search scope, 71

in Object Browser, 141
searching, 59-72

bookmarking Quick Find results, 49
from Command Window, 106
Find In Files searches, 65-71
within hidden text, 71
from keyboard, 59-61
in Object Browser, 141
Quick Find and Quick Replace,

61-65
with regular expressions, 72
scope of, 71

in Object Browser, 141
type-ahead support

in Object Browser, 142
in Solution Explorer, 177

selection (advanced editing), 27-29
formatting selected text, 31
hiding outline selection margin, 37

Set As Startup Project command, 188
sharing code snippets, 57
Shell command, 108
shortcuts. See keyboard shortcuts
Show Advanced Build Configurations

option, 174
Show All (Toolbox), 121
Show Hidden Types And Members option,

138
Show Inherited Members option, 140
Show Miscellaneous Files In Solution

Explorer option, 176
Show Other Members option, 139
Show Visual Glyphs For Word Wrap

option, 16
showing. See hiding and displaying
shutdown, autorecovery after, 41
Simplified Build Configurations, 174
Single Startup Project option, 189

size
fonts in editor, 17
tool windows, keyboard control for, 95

small icons in New Project dialog box, 171
smart indenting, 33
snippets. See code snippets
software testing, 207-210
Solution Explorer, 175-179

on left or right of IDE, 200
selecting startup project, 188

solution files, searching within entire, 72
solution folders, 172
solution references, adding from Object

Browser, 134
solutions concept, reasons for, 201
solutions management, 169-179

adding solutions to solutions, 177
build configurations, 174-175
multitargeting, 169
projects customization, 170-173
using Solution Explorer, 175-179

sorting external tools, 160
sorting in Error List and Task List, 192
sorting Toolbox items, 120
splitting windows (editor), 13

jumping between split windows, 14
Start Automatic Outlining command, 35
Start Page, 167
startup project, selecting, 188
state, tool windows, 82-97

autohiding state, 86-91
dockable state, 82-85
floating state, 91
hide state, 94
tabbed document state, 92

statement completion, 49
font size for, 51
window size for, 52

statement completion window, making
transparent, 218

status bar options (editor), 25
Stop Outlining command, 35
Stop Search, on Output window, 115

tool windows 227

Store My Settings File In This Directory
combo box, 155

stream selection, 27
.suo files, 123
swapping anchor position, 29
swapping text in editor, 6
symbols, searching for, 64
synchronizing development settings, 157
syntax highlighting for specific file

extensions, 43

T
Tabbed Document option, 92
tabbed document state (tool windows), 92
tabs, Toolbox

copying and pasting between, 122
creating new, 122

tabs vs. spaces in code, 31
Target Directory token, 162
targets for IDE docking, 83, 85
Task List, 123-131

multicolumn sort in, 192
temporary projects, 172
test plan, developing, 210
text editing (in editor), 1-7
throw-away projects, 172
Tile Horizontally and Tile Vertically

buttons, 81
"tip of the day" blogging, 203
TODO comments in Task List, 125
Toggle All Outlining command, 34
Toggle Outlining Expansion command, 34
tokens for external tools, 162
tokens in Task List, 127
tool window tabs, placement of, 201
tool windows, 105-145

Command Window, 105-109
Object Browser, 131-145
Output window, 110-115
Task List, 123-131

multicolumn sort in, 192
Toolbox, 115-123

228 tool windows management

tool windows management, 82-97
autohiding, 86-91
docking and undocking, 82-85
floating, 91
hidden keyboard shortcuts, 95-97
hide state, 94
keyboard navigation, 92-94
tabbed document state, 92

toolbar management, 100-102
toolbars within tool windows, accessing, 96
Toolbox, 115-123
Tools.Shell command, 108
ToolTips

font size for, 17
for tool bars, showing shortcut keys

in, 102
top, jumping to, 9
tracepoints, 179
Track Active Item In Solution Explorer

option, 179
tracking changes in editor, 22
transparency in statement completion

window, 218
transposing text in editor, 6
turning off (disabling)

breakpoints, 182
IDE Navigator, 78
lntelliSense, 53
Stop Search, on Output window, 115
Toolbox autopopulation, 117

type-ahead support
in Object Browser, 142
in Solution Explorer, 177

types, marking as Hidden, 138

u
uncommenting. See comments
Undo button, to move cursor, 12
undo and redo (in editor), 7
undocking. See docking and undocking
UNDONE tokens in Task List, 127
Untabify Selected Lines command, 32

unused code, cleaning, 41
uppercase, keyboard shortcut for, 7
URL navigation, enabling in editor, 15
Use option (Find Options), 72
Use Output Window option, 161
Use Teams Settings File option, 157
User Tasks. See also Task List

deleting without prompt, 129
priorities to, 124
separate from code, 124

using statements, removing unused, 41

v
variables

changing values in Watch windows, 194
DataTips to edit, 187

vertical scroll bar (editor), hiding, 10
virtual space, enabling, 16
visible white space, viewing, 23
visual cues (editor), 22-23

brace matching, 40
collapsing and expanding code, 34
delimiter highlighting, 39

Visual Studio commands
aliases for, 108
running from Command Window, 105
running in Find combo box,

164-166
.vssettings file

categories of settings in, 151
customizing, 152
exporting Object Browser customizations

to, 143
synchronizing across team, 157

w
Warnings button (Error List), binding

shortcut to, 193
warnings in Output window,

double-clicking, 110
Watch windows, 194

white space (editor). See also indentation
(code)

deleting leading, 4
tabs vs. spaces in code, 31
viewing visible white space, 23

wildcards, searching with, 72
window layouts, resetting, 153
window management, 73-103

dialog boxes, 147-163
External Tools feature, 157-163
Import And Export Settings feature,

147-157
Project Location Is Not Trusted message

box, 173
tool windows, 82-97

autohiding, 86-91
docking and undocking, 82-85
floating, 91
hidden keyboard shortcuts, 95-97
hide state, 94
keyboard navigation, 92-94
tabbed document state, 92

toolbars and context menus, 99-103
window layouts, 97-99

Window menu, customizing files shown
in, 46

X button, tool windows 229

Window Windows dialog box, 76
Tile Horizontally and Tile Vertically

buttons, 81
Windows Explorer browser, opening directly

to active file, 75
windows in editor

jumping between split windows, 14
splitting or creating, 13

Windows Live Writer, 205
word completion, 49, 51
word wrap, enabling

in editor, 16
in Output window, 112

words (editor)
changing case of, keyboard shortcut

for, 7
deleting next or preceding, 3
searching for current, 60
selecting current, 3
transposing, 6

x
X button, tool windows, 94

About the Author
Sara Ford is the program manager for CodePlex,

Microsoft's open source project hosting site. Prior to

CodePlex, she worked on the Visual Studio team for six

years, where she started the Visual Studio Tip of the Day

on her blog. She began her career as a software design
engineer in testing, where over the next four years she

tested nearly every aspect of the generic Visual Studio IDE.

Shortly after the Visual Studio 2005 product shipped, Sara

joined the Visual Studio Community Team as the program

manager for Power Toys for Visual Studio. The power toys

are small, lightweight add-ins to Visual Studio that were

built as open-source projects on CodePlex. This is where

her interests and personal education in the open-source

Photo courtesy of Microspotting.com world began, which would lead her to her current role on
CodePlex.

It is a little-known fact that Sara ran a professional clown business named "Squirt, the Clown"

(pronounced "Squirt Comma the Clown") throughout her junior high and high school years,

where she juggled clubs and a diabolo and also twisted balloon animals. It turned out that

the comma in the name was extremely important to clarify any confusion about the nature

of her business. When Sara had been a professional clown for approximately two years, she

arrived at a gig-a 10-year-old boy's birthday party-to find that the large group of boys
(30, at least) were over the top excited to see the clown. She couldn't help but think their level

of excitement was unusual for a group of that age. Then she noticed ... they were all holding

water guns! The boys opened fire, and the oversized clown shoes prevented her from mak­

ing a hasty escape to her car. The parents, bless their hearts, took the original business name

"Squirt the Clown" quite literally. Sara swears to this day that her life is the mathematical

proof of Murphy's Law.

Aside from her clown business, Sara has had other interesting jobs as a soccer referee and a

popcorn vendor at Walt Disney World, in the Magic Kingdom, directly in front of Cinderella's

castle. When not working on a computer or running away from water guns, Sara enjoys

studying Shotokan Karate, hiking mountains twice in a row, and cycling on trails that do not

allow cars.

Sara's life long goal is to become a 97-year-old weightlifter, so she can be featured on the

local news.

What do you think of
this book?
We want to hear from you!

Your feedback will help us continually improve our books and learning resources for you.
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

... and enter this book's ISBN-10 or ISBN-13 number (appears above barcode on back cover).
As a thank-you to survey participants in the U.S. and Canada, each month we'll randomly
select five respondents to win one of five $100 gift certificates from a leading online merchant.
At the conclusion of the survey, you can enter the drawing by providing your e-mail address,
which will be used for prize notification only.*

Thank you in advance for your input!

Example only. Each book has unique ISBN.

Micl'OSOft®
Press

* No purchase necessary. Void where prohibited. Open only to residents of the 50 United States (includes District of Columbia)
and Canada (void in Quebec). For official rules and entry dates see: microsoft.com/learning/booksurvey

More Great Developer Resources
Published and Forthcoming Titles from Microsoft Press

Developer Step by Step
• Hands-on tutorial covering

fundamental techniques and
features

• Practice files on CD

• Prepares and informs new-to-topic
programmers

Developer. Reference
• Expert coverage of core topics

• Extensive, pragmatic coding
examples ·

• Builds professional-level proficiency
wltha Microsoft technology

Focused Topics
• Deep coverage of advanced

techniques and capabilities

• Extensive, adaptable coding
examples

• Promotes full mastery of a
Microsoft t.echnqlQg)I __

See even more titles
on our Web site!

Microsoft-
Visual Basic' 2008
Step by S1:ep
Michael
Halvorson

- 978-0-7356-'2537:2

programming'-·­
Micro.Oft
visual C# 2008:
The.Language
Donis Marshall ·
978-0-7356-2$40-2

• CLR viaC#, -
Second EditiOI>
Jeffrey Richter
978-0-7356-216303

MiCrosoft
ViSllal C#' 2008
Sl:ep by Step
John Sharp
978-0-7356-2430-6

Progrifmming
Microsoft .
ADO.NET2.0
Core Rdfirence
David Sc.eppii
978'0-:.7356-2206-7

Debugging
Micn:isoft .NET 2.0
Applicatipns
John Robbins
978-0-7356-2202-9

Microsoft
ASP.NET 3.5
Sl:ep by Step
George. Shepherd
978-0-7356-2426-9

• · Programming
Microsoft
ASRNET3.S
Dino Esposito
978-0-7356-2527-3

Programming
WindOWS" Services

__ with.Mll;rosoft
Visual Basic 2008
Michael Gemaey
978-0-7356-243;!-7

• Microsoft
ADO.NET2.0
Sl:ep by Step
Rebecca M. Riordan
97g:0-7356-2164-0

Programming
Microsoft
Visual Basic 2005~
The Languagl!
Francesco Salena·
978-0.-7356-2183-1

Programming
Microsoft
ASP.NET2.0
Applica,tions
Advanced Topics
Dino Esposito
978-0-7356-2177-0

Explore our full line of learning resources at: microsoft.com/mspress and microsoft.com/learning

·•1

Microsoft® Visual Studio® Tips
251 Way" , to lmproye Your Productivity

· Maximize your efficiency using hundreds of
little-known, ti aving tips for Visual Studio

Unlock th~ ~~c,~ets ofV1sus,il Studio-learning hundreds of
.tips and ,s[;()rtct1ts for optimizing the editor, search, navigation,
windows lay uts, and other capabilities. As a member of the
Visual Studio Core Team, the author analyzed nearly every feature
in the core environment-unearthing the tips and tweaks that
streamline work and maximize efficiency. Get practical insights
into how IDE features work, and how to quickly adapt them for
any programming language.

Accelerate your productivity with Sara's Top Six Tips­
and hundreds more:

• Avoid accidentally copying blank lines

• Select only vertical columns of code

• Cycle through the clipboard to paste multiple elements

• Use incremental search to find what you are typing

• Increase your overall environment font size

• Use tracepoints to log the contents of a variable

"Sara delivers a ton of great tips and tricks
to help you use Visual Studio to its fullest."

"' 00

"' "' '";'

"' x
d z
t'.

ISBN-13: 978-0-7356-2640-9
ISBN-10: 0-7356-2640-5

~ 9 780735 626409

-Scott Guthrie,
Corporate Vice President, Microsoft Corp.

U.S.A. $29.99
[Recommended]

Programming/Microso~ Visual Studio

Developer Step by Step

• Hands-on tutorial covering
fundamental techniques and features

• Practice files on CD

• Prepares and informs new-to-topic
programmers

Developer Reference

• Expert coverage of core topics

• Ex nsive, pragmatic coding examples

• uilds professiona l- level proficiency
with a Microsoft technology

Focused Topics

• ~ep coverage of advanced
techniques and capabilities

• Extensive, adaptable coding examples

• Promotes full mastery of a
Microsoft technology

See inside cover

