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Preface

Preface

This document describes the MIPS R4000 RISC-based microprocessor.
The chapters and appendices of this Book are grouped in the following
way: :
e Architecture

o Implementation Details

* Electrical and Physical Specifications

+ Instruction Set Summaries
Chapter 1is a general discussion (including a historical context) of the
RISC microprocessor in general and the R4000 in particular.
Chapter 2 provides an overview of the CPU instruction set by
summarizing each instruction category ina table.
Chapter 3 describes the operation of the R4000 instruction execution
pipeline. It describes the basic operation of the pipeline and
interruptions to the pipeline flow caused by interlocks and exceptions.
Chapter 4 is a discussion of the memory management system
including memory mapping, virtual memory, and address
translation.
Chapter 5 is a discussion of the exception processing respurces and
capabilities of the R4000. It presents an overview of the CPU exception
handling process and describes the format and use of each CPU
exception handling register. ‘
Chapter 6 is a discussion of the Floating-Point Unit (FPU). The FPU is
a coprocessor for the Central Processing Unit (CPU) that extends the
CPU instruction set to perform floating-point arithmetic operations.
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Chapter 7 is a discussion of the Floating-Point Unit’s exception -
processing.

Chapter 8 is a discussion of the signals that comprise the interface
between the R4000 and other components in the system. The signals
discussed include the System Interface, the Clock/Control Interface,
the Secondary Cache Interface, the Interrupt Interface, the
Initialization Interface, and the JTAG Interface.

Chapter 9 is a discussion of the system interface. The system interface
allows the processor access to external resources such as memory and
1/0. It also allows an external agent access to certain processor
internal resources.

Chapter 10 is a discussion of the clocks used in the R4000 and the
processor status reporting mechanism. The topics covered include the .
basic System Clocks, interfacing to a Phase-Locked system, interfacing
to a system without Phase Locking, and processor Status Outputs.

Chapter 11 is a discussion of the cache memory hierarchy, the
operation of the primary and secondary caches, and the R4000’s
interface to the secondary cache. It also discusses cache-coherent
operation in a multiprocessor system

Chapter 12 is a discussion of the Initialization interface. The
fundamental, or ‘start-up’, operational modes for the processor are
introduced to the processor through the initialization interface.

Chapter 13 is a discussion of the JTAG interface. The JTAG boundary

scan mechanism provides a capability for testing the interconnection
between the R4000 processor, the printed circuit board to which it is
attached, and the other components on the board.

Chapter 14 is a discussion of the six hardware, two software, and one
non-maskable processor interrupts.

Chapter 15 is a discussion of the Error Checking and Correcting (ECC)
mechanisms of the R4000.

Chapter 16 is a discussion of the electrical and physical characteristics

- of the R4000.

Appendix A is a detailed description of the operation of each R4000
instruction in both 32- and 64-bit modes. The instructions are listed in
alphabetical order.

Appendix B is a detailed description of the operation of each (FPU)

- instruction. The instructions are listed alphabetically.

Appendix C is a discussion of the Single Error Correcting Double
Error Detecting (SECDED) codes. These are the codes chosen for the
processor’s secondary cache data and secondary cache tag.

v
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Appendix D is a discussion of sub-block ordering. Sub-block ordering

is an order for the transmission of data elements that form a block of

data when the first transmitted data element is not the data element at

the beginning of the block.

Appendix E is a discussion of the output buffer the Ai/At control

mechanism which controls the speed of the R4000 output driver,

ensuring drive-off times are only as fast as necessary to meet
 thesystem requirement of single cycle transfers.

AppendixF is a discussion of the passive components which comprise

the Phase-Locked Loop (PLL).

Appendix G is a desciption of Coprocessor 0 hazards.
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Introduction

This introductory chapter provides you with the following

information: :

* An explanation of RISC architecture, with subsections
describing the benefits of using RISC design, the relationship
between RISC architecture and optimizing compilers, and a
description of the MIPS compiler family. '

"o An overview of the R4000 features, including the Memory
Management System, pipeline architecture, memory hierarchy,
and interfaces to external cache memory and the remainder of
the system. '

What Is RISC?

Historically, the evolution of computer architectures has been
dominated by families of increasingly complex central processors.
Under market pressures to preserve existing software, Complex
Instruction Set Computer (CISC) architectures evolved by the
accretion of microcode and increasingly intricate instruction sets. This
intricacy in architecture was itself driven by the need to support high-
level languages (HLLs) and operating systems, as advances in
semiconductor technology made it possible to fabricate integrated
circuits of greater and greater complexity. And at the time it seemed
self-evident to designers that architectures should become more

" complex as technological advances made such VLSI designs possible.

In recent years however, Reduced Instruction Set Computer (RISC)
architectures have implemented a different model for the interaction
between hardware, firmware, and software. RISC concepts emerged
from a statistical analysis of the manner in which software actually
uses processor resources: dynamic measurement of system kernels
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and object modules generated by optimizing compilers showed that
the simplest instructions were used most often—even in the code for
CISC machines! Correspondingly, complex instructions were often
unused because their single way of performing a complex operation
rarely matched the precise needs of the high-level language.

RISC, on the other hand, eliminated microcode routines and turned
low-level control of the machine over to software. The RISC approach
was not new, but its application became more universal in recent
years, due to the increasing prevalence of high-level languages, the
development of compilers able to optimize at the microcode level,
and dramatic advances in semiconductor memory and packaging. It
is now feasible to replace a machine’s relatively-slow microcode ROM
with faster RAM, organized as an instruction cache. Machine control
then resides in this instruction cache that is, in effect, customized on
the fly: the instruction stream generated by system- and compiler-
generated code provides a precise fit between the requirements of
high-level software and the low-level capabilities of the hardware.

Reducing or simplifying the instruction set was not the primary goal
of RISC architecture; it is a pleasant side effect of techniques used to

.gain the highest performance possible from available technology.

Thus, the term Reduced Instruction Set Computers is a bit misleading: it
is the push for performance that really drives and shapes RISC

designs.

- Benefits of RISC Design

Some of the benefits that result from RISC design techniques are not
directly attributable to the drive to increase performance, but area
result of the basic reduction in complexity—a simpler design allows
both chip-area resources and human resources to be applied to
features that enhance performance. Some of these benefits are
described below. .

Shorter Design Cycle

The architectures of RISC processors can be implemented more
quickly than their CISC counterparts: it is easier to fabricate and
debug a streamlined, simplified architecture with no microcode than
a complex, microcoded architecture. CISC processors have sucha
long design cycle that they may not be completely debugged by the
time they have been rendered technologically obsolete. The shorter
time required to design and implement RISC processors allows them
to make use of the best available technologies.
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Effective Utilization of Chip Area

The simplicity of RISC processors also frees scarce chip geography for
performance-critical resources such as larger register files, Translation
Lookaside Buffers (TLBs), coprocessors, and fast multiply and divide
units. Such resources help RISC processors obtain an even greater
performance edge.

User (Programmer) Benefits
Simplicity in architecture also helps the user in the following ways:
¢ A uniform instruction set is easier to use.

« A dloser correlation is made possible between the
instruction count and the cycle count, making it easier te
measure code optimization activities.

Advanced Semiconductor Technologies

Each new VLSI technology (ECL, GaAs) is introduced with tight
limits on the number of transistors that can be fit on each chip. Since
the simplicity of a RISC processor allows it to be implemented in fewer

transistors than its CISC counterpart, the first computers capable of
exploiting these new VLSI technologies have been using and will
continue to use RISC architecture.

Optimizing Compilers

RISC architecture is designed so that compilers, not assembly
languages, have the optimal working environment. RISC philosophy
assumes that high-level language (HLL) programming is used, a
philosophy in contrast to the older CISC philosophy developed when
- assembly language programming was of primary importance.
The trend toward HLL instructions has led to the development of
more efficient compilers to convert HLL instructions to machine code.
Primary measures of a compiler’s efficiency are:

e the compactness of its generated code
e the shortness of its execution time

Optimizing compilers and RISC architectures have a synergistic
relationship; compilers perform their best job of optimizationina
RISC environment. Reciprocally, RISC architectures rely on compilers
to obtain their best performance.
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During the development of more efficient compilers, an analysis of
instruction streams revealed that the greatest amount of time was
spent: ~

» executing simple instructions

o performing load and store operations
while the more complex instructions were used less frequently.

It was also learned that compilers produce code that is often a narrow
subset of the processor’s instruction set architecture (ISA). A compiler
prefers instructions that perform simple, well-defined operations and
generate minimal side-effects. Complex instructions and features are
just not used by compilers; the more complex, powerful instructions
are either too difficult for the compiler to use or those instructions do
not precisely fit HLL requirements. : :

Thus, a natural match exists between RISC architectures and efficient,
optimizing compilers. This match makes it easier for compilers to
generate the most effective sequences of machine instructions to

" accomplish tasks defined by the high-level language.

Family of Compilers

Many compiler products—especially those designed for
microprocessors—are cobbled from various sources and do not
necessarily fit together very well. However, the MIPS language suite
approach shares common elements across the family of compilers
instead of treating each language’s compiler as a separate entity. In
this way the MIPS suite of compilers, RISCompilers™, can offer both
tight integration and broad language coverage.

The MIPS suite of compilers does the following:

 Provides industry-standard front ends for six languages (C,
FORTRAN, Pascal, Ada, PLI, COBOL) '

e Uses a common intermediate language, thus offering an
efficient way to add language front ends over time

o Shares all of the back end optimization and code
generation

o Uses the same object format and calling conventions
 Supports mixed-language programs cleanly

+ Supports debugging of programs written in all languages,
including mixtures

1-4
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This language suite approach yields high-quality compilers for all
languages, since common elements make up the majority of each of
the language products. In addition, the ability to develop and execute
multi-language programs is provided, promoting flexibility in
development, avoiding recode of proven program segments, and
protecting the user’s software investment. The common back-end also
exports optimizing and code-generating improvements immediately
throughout the suite of RISCompilers, thereby reducing maintenance.

64-bit Architecture

The MIPS R4000 family of RISC microprocessors consists of high-
performance 32-bit and 64-bit processors; the natural mode of
operation for the R4000 is as a 64-bit microprocessor. It can, however,
be programmed to operate as a 32-bit processor.
The R4000 provides a 64-bit on-chip floating-point unit (FPU), 64-bit
.integer ALU, 64-bit integer registers, and a 64-bit virtual address
space. 32-bit applications maintain compatibility even when the
processor operates as a 64-bit processor.
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The R4000 Processor

The R4000 has many features that differ from the R2000/R3000
processor family. In addition to a high-performance integer unit, the
R4000 contains: : ‘
¢ a48-entry fully-associative on-chip TLB, with two pages
mapped to each entry
* separate on-chip primary data and instruction caches

o . an optional off-chip secondary cache
e an on-chip FPU
Figure 1-1 shows a block diagram of the R4000.
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Figure 1-1 R4000 Internal Block Diagram

Processor General Features

This section briefly describes the programming model, the MMU, and
the caches in the R4000. A more detailed description is given in

succeeding sections.

¢ Full 32-bit and 64-bit Operation. The R4000 contains
thirty-two general-purpose 64-bit registers. (When
operating as a 32-bit processor, the general-purpose
registers are 32-bits wide.) All instructions are thirty-two

bits wide.
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CPU Registers

e Efficient Pipelining. The superpipeline design of the
processor results in an execution rate approaching one
instruction per cycle. Pipeline stalls and exceptional events
are handled precisely and efficiently.

e MMU. The R4000 processor uses an on-chip TLB that
provides rapid virtual-to-physical address translation of:

- 2-GByte user virtual address space in 32-bit mode
- 512-Gbyte user virtual address space in 64-bit mode.

e Cache Control. The R4000 primary instruction and data
caches reside on-chip, and can each hold from 8 Kbytes to
32 Kbytes. An off-chip secondary cache can hold from 128
Kbytes to 4 MBytes. All R4000 cache control, including the
secondary cache control, logic is on-chip.

e TFloating Point Unit. The FPU is located on-chip and
implements the ANSI/IEEE standard 754-1985.

The CPU provides thirty-two general-purpose registers, a Program
Counter (PC), and two registers that hold the results of integer
multiply and divide operations. These registers are either 32-bits or
64-bits wide, depending on the mode of operation. Two general-
purpose registers have special functions:

e 0 is hardwired to a value of zero. 0 can be used as the
target register for any instruction the results of which can
be discarded. 70 can also be used as a source when a zero
value is needed.

e 131 is the link register for JumpAndLink instructions. It
should not be used explicitly by other instructions.

The MIPS architecture defines three special registers whose use or
modification is implicit with certain instructions. These special
registers are:

e PC Program Counter

e HI Multiply and Divide Register higher result

e LO Multiply and Divide Register lower result
The two Multiply and Divide Registers (HI, LO) store the doubleword,
64-bit result or quadword, 128-bit result of integer multiply operations
and the quotient (in LO) and remainder (in HD) of integer divide
operations.
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Figure 1-2 shows the CPU Registers.

General-Purpose Registers
&3 31 0 Multiply and Divide Registers
Y 63 31 0
r1 [ﬁ HI J
r2 63 31 0
[ ]
, C L0 i
[ ]
* " Program Counter
r29 63 31 ' 0
130 i PC
r31
Register width depends on mode of operation: 32-bit or 64-bit

Figure 1-2 CPU Registers

The R4000 has no Program Status Word (PSW) Register; its functions
are provided by the Status and Cause Registers incorporated within
Coprocessor 0 (CP0). CPO registers are described later in this chapter.

CPU Instruction Set Overview

Each CPU instruction is thirty-two bits long. As shown in Figure 1-3,
there are three instruction formats: immediate (I-type), jump (-type),
and register (R-type). Using only these three instruction formats
simplifies instruction decoding, more complicated (and less
frequently used) operations and addressing modes can be synthesized
by the compiler using sequences of these simple instructions.
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, 31 2625 2120 1615 0
| I-Type (Immediate)] op rs rt ~ immediate
31 26 25 0
J-Type (Jump) op target
31 2625 2120 1615 1110 65 0
R-Type (Register) op rs rt rd sa | funct

Figure 1-3 CPU Instruction Formats

The instruction set can be divided into the following groups:

Load and Store instructions move data between memory
and general registers. They are all I-type instructions, since
the only addressing mode supported is base register plus
16-bit, signed immediate offset. '

Computational instructions perform arithmetic, logical,

shift, multiply, and divide operations on values in registers.

They occur in both R-type (both the operands and the
result are stored in registers) and I-type (one operand is a
16-bit immediate value) formats.

Jump and Branch instructions change the control flow of a
program. Jumps are always to a paged, absolute address
formed by combining a 26-bit target address with the high-
order bits of the Program Counter (J-type format) or
register addresses (R-type format). Branches have 16-bit
offsets relative to the program counter (I-type).
JumpAndLink instructions save a return address in register
31. -

Coprocessor instructions perform operations in the
coprocessors. Coprocessor load and store instructions are I-
type (see the FPU instructions in Chapter 5).

Coprocessor 0 instructions perform operations on CP0
registers to manipulate the memory management and
exception handling facilities of the processor. Table 1-3
shows these instructions.

Special instructions perform system calls and breakpoint
operations. These instructions are always R-type.

1-10
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e Exception instructions cause a branch to the general
exception-handling vector based upon the result ofa
comparison. These instructions occur in both R-Type (both
the operands and the result are registers) and I-type (one
operand is a 16-bit immediate value) formats.

A more detailed summary is provided in Chapter 2 and a complete
description of each instruction is given in Appendix A.

Table 1-1 lists the instruction set (ISA) common to all MIPS R-Series
processors; Table 1-2 lists R4000 instructions that are extensions to the
ISA. These instructions result in code space reductions,
multiprocessor support, and improved performance in operating
system kernel code sequences and in situations where run-time
bounds checking is frequently performed.
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Table 1-1 CPU Instruction Set (ISA)

OP Description OP Description
Load and Store Instructions Multiply and Divide Instructions
LB Load Byte MULT Multiply
LBU | Load Byte Unsigned MULTU | Muttiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword UnSigned DIVU Divide UnSigned
LW Load Word MFHI Move From Hi
LWL Load Word Left MTHI Move To Hi
LWR Load Word Right MFLO Move From LO
:3 gtore avtl:v 5 MTLO Move To LO
tore Haltwor .
sw Store Word , j:xnr‘r;p and Branch Instructions
SWL Store Word Letft .
SWR Store Word Right jgl‘ jﬁ:g QZ:;;:’(
A‘{ "L‘S"l‘;t':’e'd“_:*t'“"“°“s JALR Jump And Link Register
oot | e o | o
QE‘I?I U gg?;:? T;dsl?z;‘n;l‘g;:gme BLEZ Branch on Lessthan or Equal to Zero
SLTIU | Seton Less Than Immediate ngz g::z: on f::?;::;‘;éem
-1 Unsigned
AND!I | AND Immediate BGEZ g:;;';;g Greaterthan o
ORI R di
XORI gxcllg;:: Cl)al;tlelmmediate BLTZAL Branch on Less Than Zero And Link
LUl Load Upper immediate BGEZAL gzg?n%n[-%fater than or Equal to
, &l:ithr:reat:'zlr;astruc;;ons Coprocessor Instructions
ADD A d:p » Rtyp LwcCz Load Word to Coprocessor z
ADDU Add Unsigned SWCz Store Word from Coprocessor z
SUB Subtract MTCz Move To Coprocessor Z
SUBU | Subtract Unsigned MFCz. Move From Coprocessor z
SLT Set on Less Than CTCz | Move Control to Coprocessor z
SLTU Set on Less Than Unsigned gg%zz I\Cng;reocc:::s‘;?‘g;g&?fcessor z
AND AND
OR OR BCzT Branch on Coprocessor z True
XOR Exclusive OR BCzF Branch on Qoprocessor z False
NOR N . .
°© O,R . Special Instructions
Shift Instructions SYSCALL | System Call
SLL Shift Left Logical BREAK Break
SRL Shift Right Logical
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable
SRLV Shift Right Logical Variable
SRAV Shift Right Arithmetic Variable
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Table 1-2 Extensions to the ISA

oP _Description oP Description
Load and Store Instructions Multiply and Divide Instructions
LD Load Doubleword DMULT | Doubleword Multiply
LDL Load Doubleword Left DMULTU | Doubleword Multiply Unsigned
LDR Load Doubleword Right DDIV Doubleword Divide
LL Load Linked DDIVU | Doubleword Divide Unsigned
LLD Load Linked Doubleword Jump and Branch Instructions
Lwu Load Word Unsigned .
sc - BEQL Branch on Equal Likely
scD Store Condft!onal BNEL Branch on Not Equal Likely
Store Conditional Doubleword BLEZL Branch on Less than or Equal
SD Store Doubleword to Zero Likely
SDL Store Doubleword L?ﬂ BGTZL | Branch on Greater Than Zero Likely
SDR Store Doubleword Right BLTZL | Branch on Less Than Zero Likely
SYNC | Sync . BGEZL | Branch on Greater than or
Arithmetic Instructions Equal to Zero Likely
(ALU Immediate) BLTZALL | Branch on Less Than Zero And
DADDI | Doubleword Add Immediate Link Likely
DADDIU| Doubleword Add Immediate BGEZALL| Branch-on Greater than or Equal to
Unsigned Zero And Link Likely
Arithmetic Instructions ggi;t granc: on goprocessor z ";n.;e L&f:g
(3-operand, R-type) ranc c.:n oprocessor z False y
DADD | Doubleword Add e fxcipé"’"t '"Tsh“ “°ﬂ°E"s |
DADDU | Doubleword Add Unsigned rap if Greater Than or fqua’ =
DSUB Doubleword Subtract TGEU |Trap l_f Greater Than or Equal Unsigned
DSUBU | Doubleword Subtract Unsigned || T-T Trap if Less Than
. . . TLTU Trap if Less Than Unsigned
Shift Instructions TEQ Trap if Equal
DSLL Doubleword Shift Left Logical TNE Trap if Not Equal
DSRL | Doubleword Shift Right Logical || TGEI Trap if Greater Than or Equal Immediate
DSRA Doubleword Shift Right Arithmetic|| TGEIU Trap if Greater Than or Equal
DSLLV | Doubleword Shift Left immediate Unsigned
Logical Variable TLTI Trap if Less Than immediate
DSRLV Eg;'gﬁ"{,‘;’ﬁi’a%?;ﬁ Right TLTIU | Trapif Less Than Immediate Unsigned
DSRAV | Doubleword Shift Right TEQ! Trap if Equal Immediate
Arithmetic Variable TNEI Trap if Not Equal Immediate
DSLL32| Doubleword Shift Left
Logical + 32 Coprocessor Instructions
DSRL32 qugﬁWOfd Shift Right DMFCz |Doubleword Move From Coprocessor z
ogical + 32 o DMTCz |Doubleword Move To Coprecessor Z
DSRA32| Doubleword Shift Right LDCz  |Load Double Coprocessor
Arithmetic + 32
SDCz Store Double Coprocessor z
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Table 1-3 CPO Instructions

Op Description

DMFCO Doubleword Move From CPO
DMTCO Doubleword Move To CPO

MTCO Move to CPO

‘MFCO Move from CPO

TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP " Probe TLB for Matching Entry
ERET Exception Return

Data Formats and Addressing

The R4000 uses four data formats: a 64-bit doubleword, a 32-bit word,
a 16-bit halfword and an 8-bit byte. The byte ordering is configurable
as either Big-endian or Little-endian format. Endianness refers to the
location of byte 0 within a multi-byte structure.-

Figure 1-4 and Figure 1-5 show the ordering of bytes within words
and the ordering of words within multiple-word structures for the
Big-endian and Little-endian conventions.

When the R4000 is configured as a Big-endian system, byte 0 is the
most-significant (leftmost) byte, thereby providing compatibility with
MC 68000 and IBM 370° conventions. This configuration is shown in

Figure 1-4.
, 'Big Endian

Higher Word
Address 31 24 23 16 15 8 7 0  Address

8 9 10 11 8

4 5 6 7 4

0 1 2 3 0
k%greerss e Most-significant byte is at lowest address. ,

e Word is addressed by byte address of most-significant byt

Figure 1-4 Addresses of Bytes within Words: Big-endian Byte Alignment
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When configured as a Little-endian system, byte 0 is always the least-
significant (rightmost) byte, which is compatible with iAPX"™ x86 and
DEC VAX® conventions. This configuration is shown in Figure 1-5.

Little Endian
Higher Word
Address 81 24 23 16_15 8 7 0 Address
11 10 9 8 8
7 5 4 4
3 2 1 0 0
Lower ® | east-significant byte is at lowest address.
Address e \Word is addressed by byte address of least-significant byte
Figure 1-5 Addresses of Bytes within Words: Little-endian Byte Alignment
In this book, bit 0 is always the least-significant (rightmost) bit; thus,
bit designations are always Little Endian (although no instructions
explicitly designate bit positions within words). ’
Figure 1-6 and Figure 1-7 show byte alignment in doublewords.
Higher Big Endian
Address : Doubleword
63 , Address
16 | 17 { 18 | 19 | 20 | 21 | 22 | 23 16
Byte # { 8 9 |10 | 11 | 12 | 13 | 14 | 15 8
0 1 2 3 4 5 6 | 7 0

Lower
Address

* Most-significant byte is at lowest address.
¢ Word is addressed by byte address of most-significant byte

Figure I1-6 Addresses of Bytes within Doublewords: Big-endian Byte Alignment

R4000 User’s Manual--Preliminary
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Higher
Address

Lower
Address

Little Endian Doubleword
63 0 Address

15 | 14 |13 |12 |11 [ 10| 9 | 8 8
7 1 6 | 5 | 43210 0

23| 22|21 | 20|19 | 18 | 17 | 16 16
Byte #

® | east-significant byte is at lowest address. A
® Word is addressed by byte address of least-significant byte

" Figure 1-7 Addresses of Bytes within Doublewords: Little-endian Byte Alignment

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

o Halfword accesses must be aligned on an even byte
boundary (0, 2, 4...)

» Word accesses must be aligned on a byte boundary -
divisible by four (0, 4, 8...)

e Doubleword accesses must be aligned on a byte boundary
divisible by eight (0, 8, 16...).

As shown in Figure 1-6 and Figure 1-7, the address of a multiple-byte
data item is the address of the most-significant byte on a Big-endian .
configuration, or the address of the least-significant byte on a Little-
endian configuration.

Special instructions are provided for loading and storing words and
doublewords that are not aligned on 4-byte (word) or 8-word (double
word) boundaries: LWL, LWR, SWL, SWR, LDL, LDR, SDL, SDR.
These instructions are used in pairs to provide addressing of
misaligned words with one additional instruction cycle over that
required for aligned words. For each of the two endianness
conventions, Figure 1-8 shows the bytes that are accessed when
addressing a misaligned word with byte address 3.

1-16
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Higher
Address

Lower
Address

31 24 23 16 15 8 7 0
4 5 6 Big
3 Endian
31 24 28 16 15 8 7 0
6 5 4 Little
3 Endian

Figure 1-8 Example Misaligned Word: Byte Address $3

System Control Coprocessor (CP0) |

The MIPS ISA allows up to four coprocessors (designated CP0
through CP3). Coprocessor 1 (CP1) is reserved for the on-chip,
floating-point coprocessor. Coprocessor 2 (CF2) is reserved for future
- definition by MIPS, and the encoding for Coprocessor 3 (CP3) is used
to provide certain extensions to the MIPS ISA. Coprocessor 0 (CP0) is
also incorporated on the CPU chip and supports the virtual memory
system and exception handling. The virtual memory system is
implemented with an on-chip TLB and a group of programmable
registers, as described in Table 1-4. , '
CPO translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel, supervisor, and user
states. It also controls the cache subsystem and provides diagnostic
control and error recovery facilities. The R4000 also providesa generic
system timer for interval timing, timekeeping, process accounting,
and time-slicing (see the Count and Compare Registers in Chapter 5).
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Count

Compare

SR

Cause

EPC

PRId

[] Exception Processing

Reg. # Register Name
0 Config
1 LLAddr
2 WatchLo
3 WatchHi
4 XContext
; _

"6

7
8
9
10 ECC
11 CacheErr
12 Taglo
13 TagHi
14 , ErrorEPC
15

Legend

Memory Management

Reg. #
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Reserved

Figure 1-9 The R4000 CPO Registers

The CPO registers shown in Figure 1-9 and described in Table 1-4
manipulate the memory management and exception handling

capabilities of the CPU. Refer to Chapter 4 fora detailed description of

the registers associated with the virtual memory system and to
Chapter 5 for descriptions of the exception processing registers.
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Table 14 System Control Coprocessor (CPO) Registers

Description

Number | Register
0 Index
1 Random
2 EntryLo0
3 EntryLo1
4 Context
5 PageMask
6 Wired
7 —
8 BadVAddr
9 Count
10 EntryHi
1 Compare
12 SR
18 . Cause
14 EPC
15 PRId
16 Config

- 17 LLAddr
18 WatchLo
19 WatchHi
20 XContext
21-25 —_
26 ECC
27 CacheErmr
28 Tagl-o
29 TagHi
30 ErrorEPC
31 —_—

Programmable pointer into TLB array
Pseudorandom pointer into TLB array (read only)
Low half of TLB entry for even VPN

Low half of TLB entry for odd VPN

Pointer to kernel virtual PTE table in 32-bit addressing mode
TLB Page Mask

Number of wired TLB entries

Reserved

Bad virtual address

Timer Count

High half of TLB entry

Timer Compare

Status Register

.Cause of last exception
Exception Program Counter

Processor Revision Identifier
Configuration Register

Load Linked Address

Memory reference trap address low bits
Memory reference trap address high bits
Pointer to kernel virtual PTE table in 64-bit addressing mode
Reserved:

Secondary-cache ECC and Primary Parity
Cache Ermror and Status Register

Cache Tag Register

Cache Tag Register

Error Exception Program Counter
Reserved

Floating-Point Unit (FPU)
The MIPS Floating-Point Unit (FPU) operates as a coprocessor for the

CPU and extends the CPU instruction set to perform arithmetic

operations on values in floating-point representations. The FPU, with
associated system software, fully conforms to the requirements of

ANSI/IEEE Standard 754-1985, “IEEE Standard for Binary Floating-
Point Arithmetic.”

The FPU features:
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e Full 64-bit operation. The FPU contains 16 64-bit registers
or, optionally, thirty-two 64-bit registers that hold single-
precision or double-precision values. The 16 additional
floating-point registers are enabled by setting the FR bit in
the Status register. The FPU also includes a 32-bit Status/
Control Register that provides access to all IEEE-Standard
exception handling capabilities. :

e Load and Store Instruction Set. Like the CPU, the FPU
uses a load- and store-oriented instruction set. Floating-
point operations are started in a single cycle and their
execution is overlapped with other fixed-point or floating-
point operations.

¢ Tightly coupled Coprocessor Interface. The FPU is on-
chip and appears to the programmer as an extension of the
CPU (the FPU is accessed as Coprocessor 1). This forms a
tightly coupled unit with a seamless integration of floating-

~ point and fixed-point instruction sets. Since each unit
receives and executes instructions in parallel, some
floating-point instructions can execute at the same rate 2
instructions per cycle) as fixed-point-instructions. The FPU
instructions are summarized in Chapter 6, Floating-Point
Unit.

On-chip Caches

The R4000 incorporates on-chip instruction and data caches to keep
the high-performance pipeline full. Each cache has its own 64-bit data
path that can be accessed in parallel. The caches can be accessed twice
in one cycle. Combining this feature with a pipelined, single-cycle
access of each cache, the cache subsystem provides the integer and
floating-point units with an aggregate bandwidth of 1.6 GBytes per
second at a Master Clock frequency of 50 MHz. The R4000 caches are
described in detail in Chapter 11, Cache Organization, Operation, and
Coherency.

1-20
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Memory Management System

The R4000 has a physical addressing range of 64 Gbytes (36 bits).
However, since most systems implement a physical memory smaller
than 4 Gbytes, the CPU provides a logical expansion of memory space
by translating addresses composed in a large virtual address space
into available physical memory addresses. In 32-bit mode, the virtual
address space is divided into 2 Gbytes per user process and 2 Gbytes
for the kernel. In 64-bit mode, the virtual address is expanded to allow
512 Gbytes of user virtual address space.

The Transla_tioh Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a TLB. This TLB caches virtual
address translations. The fully-associative, on-chip TLB contains 48
entries, and each of these entries maps a pair of variable-sized pages
(page size varies from 4 KBytes to 16 MBytes, increasing by multiples
of 4). An address translation value is tagged with the most-significant
bits of its virtual address (the number of these bits depends upon the
size of the page) and a per-process identifier. If there is no matching
entry in the TLB, an exception is taken and software refills the on-chip
TLB from a Page Table resident in memory. An entry, chosen at
random, is replaced to make way for the new one. This TLB s referred
to as the JTLB.

- The R4000 also has a two-entry instruction TLB (ITLB) to assist in
instruction address translation. The ITLB is completely invisible to
software and is present for performance reasons only.

Operating Modes

The R4000 CPU has three operating modes: User mode, Kernel mode,
and Supervisor mode. The CPU normally operates in User mode until
an exception is detected forcing it into Kernel mode. It remains in
Kernel mode until an Exception Return (ERET) instruction is executed.
The Supervisor mode can be used to design secure operating systems.
The manner in which memory addresses are translated or mapped
depends on the operating mode of the CPU. Chapter 4 describes the
MMU and Operating modes in greater detail.
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R4000 Superpipeline Architecture

The R4000 exploits instruction-level parallelism using a
superpipelined implementation. The R4000 uses an 8-stage
superpipeline which places no restrictions on the instruction issued.
Under normal circumstances, any two instructions are issued each
cycle. '

The internal pipeline of the R4000 operates at twice the frequency of
the master clock. This is shown in Figure 1-10. The 8-stage
superpipeline of the R4000 achieves high throughput by pipelining
cache accesses, shortening register access times, implementing virtual
indexed primary caches, and allowing the latency of functional units
to span multiple pipeline clock cycles (pcycles). In the rest of this
document, the internal pipeline clock and clock cycles are often
referred to as pclock and peycles respectively. The R4000
superpipeline is covered in greater detail in Chapter 3.

The execution of a single R4000 CPU instruction consists of the

following eight primary steps:
- IF Instruction fetch First half. Virtual address is presented to
the I-cache and TLB.

IS © Instruction fetch Second half. The I-cache outputs the
‘ instruction and the TLB generates the physical address.

RF Register File. Three activities occur in parallel:

e instruction is decoded and a check is made for
interlock conditions, '

o instruction tag check is made to determine if there is a
cache hit or not, '

o operands are fetched from the register file.
EX Instruction EXecute. One of three activities can occur:

e if the instruction is a register-to-register operation, an
arithmetic, logical, shift, multiply, or divide operation
is performed;

e if the instruction is a load and store, the data virtual
address is calculated;
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if the instruction is a branch, the branch target virtual

address is calculated and branch conditions are

Data cache First half. A virtual address is presented to the

Data cache Second half. The D-cache outputs the

instruction and the TLB generates the physical address.

© Tag Check. A tag check is performed for loads and stores to

determine if there is a hit or not.

checked.
DF
‘ D-cache and TLB.
DS
TC
WB

register file.

Write Back. The instruction result is written back to the

The R4000 uses an 8-stage pipeline; thus, execution of 8 instructions
at a time are overlapped, as shown in Figure 1-10.

Master | . (8-Deep)
Clock Cycle . : _ m—
[MF] 18 [ RF ] EX| DF | DS] 1C | WB
(TF ] 1S [RF] EX] DF | DS| TC [WB ]
Poveel  F TS TRE] EX] DF | DS|TC | WB]
MF]© [ RF] EX|DF|DS[TC[WB]
(MF] 18 | RE|EX|DF [ DS]TC [WB]
[FI B |RF|EX] DF] DS [TC [WB]
ME |15 | RF] EX [ DF | DS [ TC | WB]
TF | IS TRE | EX] DF | DS | TC | WB]
Current
CPU
Cycle

Figure 1-10 R4000 Pipeline and Instruction Overlapping
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Cache Memory Hierarchy

To achieve its high performance in uniprocessor and multiprocessor
systems, the R4000 supports a cache memory hierarchy that increases
memory access bandwidth and reduces the latency of load and store
instructions. The two-level cache memory hierarchy consists of on- '
chip instruction and data caches, and an optional external secondary
cache that can vary in size from 128 Kbytes to 4 Mbytes.

The secondary cache is assumed to consist of one bank of industry-
standard static RAM (SRAM) with output enables. The secondary
cache consists of a quadword (128 bit) wide data array and a 25-bit
wide tag array. Check fields are added to both the data and tag arrays
to improve data integrity. The secondary cache may be configured as
either a joint cache or split instruction/data cache. The maximum
secondary cache size is 4 MBytes and the minimum secondary cache
size is 128 KBytes for a joint cache and 256 KBytes for split instruction/
data cache. The secondary cache is direct-mapped, and is addressed
with the lower part of the physical address.

A detailed description of the cache hierarchy is given in Chapter 11,
Cache Organization, Operation, and Coherency.

Secondary Cache Interface

The R4000SC and R4000MC versions of the R4000 interface to an
optional secondary cache. The R4000 provides all of the secondary
cache control circuitry, including ECC protection, on chip. The
secondary cache interface consists of a 128-bit data bus, a 25-bit tag
bus, an 18-bit address bus and SRAM control signals. The 128-bit wide
data bus minimizes cache miss penalty, and allows the use of standard
low-cost SRAMs in the secondary cache design.

System Interface

The R4000 supports a 64-bit system interface that can be used to
construct uniprocessor systems with a direct DRAM interface with or
without a secondary cache or cache-coherent multiprocessor systems.
The interface consists of a 64-bit multiplexed address and data bus
with 8 check bits and a 9-bit parity-protected command bus. In
addition, there are 8 handshake signals. The interface has a simple
timing specification and is capable of transferring data between the
processor and memory at a peak rate of 400 Mbytes/second at 50
MHz.

1-24
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R4000 Configurations

The R4000 is packaged in three different configurations. All
processors are implemented in sub-1 micron CMOS technology:

o The R4000SC is designed for use in high-performance
uniprocessor systems. It is packaged in a 447-pin LGA/
PGA and includes integrated control for large secondary
caches built from standard SRAMs.

e The R4000MC is designed for use in large cache-coherent
multiprocessor systems. The R4000MC is also packaged in
447-pin LGA/PGA and includes, in addition, support for a
wide variety of bus designs and cache-coherency
mechanisms.

e The R4000PC is designed for cost-sensitive systems such as
inexpensive desktop systems and high-end embedded
controllers. It is packaged in a 179-pin PGA. The R4000PC
does not support a secondary cache. ‘

Compatibility _
The R4000 provides complete application software compatibility with
the MIPS R2000, R3000, and R6000 processors. Although the
architecture has evolved in response to a compromise between
software and hardware resources in the computer system, this
evolution maintains object-code compatibility for programs that
execute in User mode (see Chapter 4, Memory Management System, for
a description of operating modes). Like its predecessors, the R4000
implements the MIPS Instruction Set Architecture (ISA) for user-mode
programs; this guarantees that user-mode programs conforming to
the ISA will execute on any MIPS hardware implementation.
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CPU Instruction Set Summary

2

This chapter provides an overview of the CPU instruction set by
summarizing each instruction category in a table. Refer to Appendix
A for individual descriptions of each CPU instruction.

The FPU instructions are summarized in Chapter 6, and are described
in detail in Appendix B. : g .

Instruction Formats

Each CPU instruction consists of a single word (32 bits) aligned on a
word boundary. There are three instruction formats, as shown in
_Figure 2-1. The use of these three instruction formats simplifies
instruction decoding since the compiler can synthesize more
complicated (and less frequently used) operations and addressing
modes. In the MIPS architecture, coprocessor instructions are
implementation-dependent; see Appendix A for R4000 Coprocessor 0
instruction details.
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I-Type (Immediate)
31 2625 2120 16 15 0
[Top | rs | t | immediate |
J-Type (Jump) S
31 26 25 _ 0
| op | target I
- R-Type (Register)
31 2625 2120 1615 1110 65 0
[ op | rs [ t | rd [ sa |funct]
| op is a 6-bit operation code
rs _ is a 5-bit source register specifier
rt is a 5-bit target (source/destination)
register or branch condition
immediate | is a 16-bit immediate value, branch dis-
placement or address displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
sa is a 5-bit shift amount
funct | is a 6-bit function field

Figure 2-1 CPU Instruction Formats

Load and Store Instructions

Load and Store instructions move data between memory and the
general registers. They are all immediate (I-type) instructions. The
only addressing mode that load and store instructions directly
support is base register plus 16-bit signed immediate offset.

' The instruction immediately following a load can use the contents of

the loaded register. In such cases, hardware interlocks require
additional real cycles; consequently, scheduling load delay slots isstill
desirable, for both performance and R3000 compatibility. However,
the scheduling of load delay slots is not absolutely required for
functional code.
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The load and store instruction opcode determines the access type
which indicates the size of the data item to be loaded or stored as
shown in Figure 2-2. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte with the smallest
byte address in the addressed field. For a Big-endian configuration, it
is the most-significant byte; for a Little-endian configuration, itis the
least-significant byte.

The bytes that are used within the addressed doubleword can be
determined from the access type and the three low-order bits of the
address, as shown in Figure 2-2. Only the combinations shownin
Figure 2-2 are permissible; other combinations cause address error
exceptions. Table 2-1 lists the load and store instructions defined by
the ISA. Table 2-2 lists the instructions which are extensions to the ISA.

R4000 User's Manual--Preliminary 2-3



Chapter 2

Figure 2-2 Byte Specifications for Load and Store Instructions

Access Type Low Order Bytes Accessed
Mnemonic Address Bits Big-Endian Littie-Endian
63 0] 63 0
(Value) 21110 Byte Byte
Doubleword (7) § 0 | O 00“2345677654371]0
) olojojo|t1]2]{3|4|5]|6 #e6|5|4|3[{2(1]0
Septibyte (6) , ; :
0|0}1 1]2|3|4|5|6l7}7]|6|5]4|3]|2]1
] ojo|lofolt1{2]|3]|4|5E 5(4]3]2]1}0
Sextibyte (5)
ol1|ofEi2(3|a(5]|6]|7]7|6[5[4]8]|2 '
e oloflofo|1{2]3]|4ki: ' 413121110
Quintibyte (4)
o111 3lals|e|7)7|6|5[4|3
ojojojoji1i2|8
Word (3) S
110 | 0 pade 4|1516)7
ojojlojo|t1|2 3 211})0
Triplebyte (2) of(o0}1 1123 312]1
ripie
plebyt 1]0]0 4156 6|5|afs
1|01 Fas > sle|7]7le|58
oj{o}lojo|1 110
0|17]0 213 312
Halfword (1) .
11010 415 514
11110 6171716
0100
o001
of(t]o
Byte () RN
e
1 {010
1 0] 1
11110
111 1
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Table 2-1 Load and Store Instruction Summary (ISA)

S —

Instruction | Format and Description ] “op | base l rt | offset |

| Load Byte | LB nioffset(base) ’
Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed byte and load into register rt.
Load Byte | LBU r,offset(base)
Unsigned | Sign-extend 16-bit offset and add to contents of register base to form address.
' Zero-extend contents of addressed byte and load into register r.

Load LH noffset(base) .

Halfword Sign-extend 16-bit offset and add to contents of register base to form address.
Sign-extend contents of addressed halfword and load into register 1.

Load LHU n offset(base)

Halfword Sign-extend 16-bit offset and add to contents of register base to form address.

Unsigned Zero-extend contents of addressed halfword and load into register r.

Load Word | LW ntoffset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Load contents of addressed word into register rt. (sign extended if 64-bit mode)

Load Word | LWL rtoffset(base) '

Left | Sign-extend 16-bit offset and add to contents of register base to form address.
Shift addressed word left so that addressed byte is leftmost byte of a word.
Merge bytes from memory with contents of register rt and load the result into
register ri. (sign extended if 64-bit mode)

Load Word | LWR noffset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.

! Shift addressed word right so that addressed byte is rightmost byte of a word.
Merge bytes from memory with contents of register rt and load the result into
register 1. (sign extended if 64-bit mode)

Store Byte | SB ri,offset(base)

Sign-extend 16-bit offset and add to contents of register base to form address.
Store the least-significant byte of register rt at addressed location.
Store SH noffset(base) ' _
Halfword Sign-extend 16-bit offset and add to contents of register base to form address.
v Store the least-significant halfword of register rt at addressed location.

Store Word | SW rt,offsel(base) ,
Sign-extend 16-bit offset and add to contents of register base to form address.
Store the contents of the least significant word of register rt at addressed location.

Store Word | SWL rtoffset(base) .

Left Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt left so that the leftmost byte of the low-order word is
in the position of the addressed byte. Store the bytes containing the original data
in the low-order word into corresponding bytes at addressed byte.

Store Word | SWR  rt,offset(base)

Right Sign-extend 16-bit offset and add to contents of register base to form address.
Shift contents of register rt right so that the rightmost byte of the low-order word
is in theposition of the addressed byte. Store the bytes containing the original
data in the low-order word into corresponding bytes at addressed byte.
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Table 2-2 Load and Store Instruction (ISA Extensions)

Instruction Format and Description | op base rt offset
Load t2 n,offseﬂ‘basa). " ) ‘
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address|
Load contents of addressed double word into register rt.
Load LDL rt, offset{base) :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Left Shift addressed doubleword left so that addressed byte is leftmost byte of a
doubleword. Merge bytes from memory with contents of register 1t and load the
result into register rt. :
Load LDR ri, offset(base)
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Right Shift addressed doubleword right so that addressed byte is rightmost byte of a
doubleword. Merge bytes from memory with contents of register rt and load the
result into register .
Load Linked LL ri,offset(base)
Sign-extend 16-bit offset and add to contents of register base to form address.
. . Sign-extend contents of addressed word and load into register . :
Load Linked. LLD n,offset(base) .
Doubleword Sign-extend 16-bit offset and add fo contents of register base to form address.
Load contents of addressed doubleword into register rt.
Load Word LWU nt,offset(base)
Unsigned Sign-extend 16-bit offset and add to contents of register base to form address.
Zero extend contents of addressed word and load into register rt.
Store - S momsenoase) _ . :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address)
Store contents of register rt at addressed location.
Store Su 1,unsenwase)
Conditional Sign-extend 16-bit offset and add to contents of register base to form address.
Conditionally store low-order word of register rt at addressed location.
Store SCDr,offset(base)
Conditional Sign-extend 16-bit offset and add to contents of register base to form address.
Doubleword Conditionally store contents of register rt at addressed location.
Store SDL rt,offset(base) " :
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Left Shift contents of register rt left so that the leftmost byte of the word is in the posi-
tion of the addressed byte. Store the bytes containing the original data in the low-
order doubleword into corresponding bytes at the addressed byte.
Store SDR rt,offset(base)
Doubleword Sign-extend 16-bit offset and add to contents of register base to form address.
Right Shift contents of register rt right so that the rightmost byte of the word is in the
position of the addressed byte. Store the bytes containing the original data in the
low-order doubleword into corresponding bytes at the addressed byte.
Sync SYNC
Complete all outstanding load or store instructions before allowing any new load
and store instruction to start.
2-6
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Computational Instructions

Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They occur in
both register (R-type) format, in which both operands are registers,
and immediate (I-type) format, in which one operand is a 16-bit
immediate. There are four categories of computational instructions:

e ALU Immediate instructions
* Three-Operand Register-Type instructions
e Shift instructions
e Multiply and Divide instructions
When operating in 64-bit mode, 32-bit operands must be correctly sign

extended. The result of operations which use incorrectly sign-extend-
ed, 32-bit values is unpredictable.
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Table 2-3 ALU Immediate Instruction Summary

Instruction

Formatand Description [ op [ rs | 1 |

immediate J

ADD Immediate

ADDI rtrs,immediate

Add 16-bit sign-extended immediate to register rs and place the 32-bit result
(sign-extended in 64-bit mode) in register rt. Trap on 2's-complement overfiow.

ADD Immediate
Unsigned

ADDIU ri,rs,immediate

Add 16-bit sign-extended immediate to register rs and place the 32-bit result
(sign-extended in 64-bit mode) in register 1. Do not trap on overfiow.

Set on Less Than
Immediate

SLTI rt,rs,immediate

Compare 16-bit sign-extended immediate with register rs as signed
integers. Result is set to 1 if rsis less than immediate; otherwise result is set

1o 0. Place result in register 1.

Set on Less Than

SLTIU rtrs,immediate

AND Immediate

Immediate Compare 16-bit sign-extended immediate with register rs as unsigned
Unsigned integers. Result is set to 1 if 5 is less than immediate; otherwise result is set
to 0. Place result in register rt.
-ANDI t,rs,immediate

Zero-extend 16-bit immediate, AND with contents of register rs and place

- the result in register rt.

OR Immediate

ORI ri,rs,immediate

Zero-extend 16-bit immediate, OR with contents of register rs and place
the result in register rt.

Exclusive OR XORI rt,rs,immediate.
immediate - | Zero-extend 16-bit immediate, exclusive OR with contents of register rs and
place the result in register rt. .
Load Upper LUI rt,immediate
Immediate Shift 16-bit immediate left 16 bits. Set least-significant 16 bits of word to
zeros. Store the result in register rt.
2-8
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Table 2-4 ALU Immediate Instruction (ISA Extensions)

Instruction

Format and Description | op | rs | it | immediate |

DADD Iimmediate

DADDI rt,rs,immediate : -
Add 16-bit sign-extended immediate to register rs and place the 64-bit result
in register rt. Trap on 2's-complement overfiow.

DADD immediate
Unsigned

DADDIU ri,rs,immediate
Add 16-bit sign-extended immediate to register rs and place the

64-bit resuit
in register rt. Do not trap on overfiow. ‘
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Table 2-5 Three-Operand Register-Type Instruction Summary

Instruction Format and Description | op rs l nt l rd | sa | functionJ
Add ADD rdrs,t . .
Add contents of registers rs and rtand place the 32-bit result (sign-extended
in 64-bit mode) in register rd. Trap on 2’s-complement overfiow.
Add Unsigned ADDU rdrs,rt
Add contents of registers rs and rt and place the 32-bit resuit (sign-extended
in 64-bit mode) in register rd. Do not trap on overfiow. :
Subtract SUB rd,rs,rt
Subtract contents of registers r from rs and place the 32-bit result
(sign-extended in 64-bit mode) in register rd. Trap on 2's-complement overflow,
Subtract SUBU rd,rs,rt
Unsigned Subtract contents of registers rt from rs and place the 32-bit result

(sign-extended in 64-bit mode) in register rd. Do not trap on overflow.

Set on Less Than

SLT rars,it

_ Compare contents of register 1 to register rs as signed integers. Result is set

16 1 if rs is less than rt; otherwise result is set to 0.Place result in register rd.

Set on Less Than

SLTU rd,rs,rt

Unsigned Compare contents of register rtto register rs as unsigned integers. Result is
set ;g 1 if rs is less than rt, otherwise result is set to 0.Place result in regis-
ter rd.

AND AND rdrs,rt
Bitwise AND the contents of registers rs and rt, and place the result in
register rd.

OR OR rdrs,rt
Bitwise OR the contents of registers rs and r1, and place the result in
register rd.

Exclusive OR XOR rd,rs,rt
Bitwise exclusive OR the contents of registers rs and r, and place the
result in register rd. .

NOR NOR rd,rs,rt ,

Bitwise NOR the contents of registers rs and rt, and place the result in
register rd. :
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Table 2-6 Three-Operand Register-Tpe Instruction (ISA Extensions)

Instruction Format and Description | op rs t | rd | sa | function l

Doubleword DADD rd,rs,rt

Add Add contents of registers rs and rt and place the 64-bit result in reg:ster rd.
Trap on 2's-complement overflow.

Doubleword DADDU rd,rs,rt

" Add Unsigned | Add contents of registers rs and rt and place the 64-bit result in register rd.

Do not trap on overtlow.

Doubleword DSUB ra,rs,rt

Subtract Subtract contents of registers rt from rs and place the 64-bit result in register
rd. Trap on 2's-complement overfiow.

Doubleword DSUBU rd,rs,rt

Subtract Subtract contents of registers rt from rs and place the 64-bit result in reglster

Unsigned rd. Do not trap on overtlow.
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Table 2-7 Shift Instruction Summary

\nstraction | FormatandDescription | op | rs | ft | rd [sa| function |

Shift Left SLL rd,tsa

Logical Shift the contents of register rtleft by sa bits, and insert zeros into the low-
order bits. Place the 32-bit result in register rd. (sign-extended in 64-bit mode)

Shift Right | SRL rdrtsa

Logical Shift the contents of register rt right by sa bits, and insert zeros into the high-
order bits. Place the 32-bit result in register rd. (sign-extended in 64~bit mode)

Shift Right | SRA rdstsa

Arithmetic | Shift the contents of register rtright by sa bits, and sign-extend the high-
order bits. Place the 32-bit result in register rd. (sign-extended in 64-bit mode)
Shift Left SLLV rd,rirs

Logical Shift the contents of register rt left. The low-order 5 bits of register rs specify
Variable the number of bits to shift left; insert zeros into the low-order bits of tand
place the 32-bit result in register rd. (sign-extended in 64-bit mode)

shift Right | SRLV rdrtrs

Logical Shift the contents of register rt right. The low-order 5 bits of register rs specify
Variable the number of bits to shift right; insert zeros into the high-order bits of tand
place the 32-bit result in register rd. (sign-extended in 64-bit mode)

Shift Right SRAV rd,n,rs

Arithmetic | Shift the contents of register rt right. The jow-order 5 bits of register rs specify
Variable the number of bits to shift right; sign-extend the high-order bits of rtand
place the 32-bit result in register rd. (sign-extended in 64-bit mode)
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Table 2-8 Shift Instruction (ISA Extensions)

e —————————— e —

Instruction Format and Description ‘ op rs rt | rd | sa| function

Doubleword | DSLL rdtsa’ T

Shift Left Shift the contents of register rtleft by sa bits, and insert zeros into the low-order

Logical bits. Place the 64-bit result in register rd.

Doubleword DSRL rd,ri,sa

Shift Right Shift the contents of register rtright by sa bits, and insert zeros into the high-order
1 Logical bits. Place the 64-bit result in register rd.

Doubleword DSRA rd,nt,sa

Shift Right Shift the contents of register rtright by sabits, and sign-extend the high-order bits.

Arithmetic Place the 64-bit result in register rd.

Doubleword DSLLV rd,rtrs

Shift Left Shift the contents of register rt left. The low-order 6 bits of register rs specify the

Logical number of bits to shift left; insert zeros into the low-order bits of rt and place the

Variable 64-bit result in register rd.

Doubleword DSRALV rd,rirs - . 4 ,

Shift Right Shift the contents of register rt right. The low-order 6 bits of register rs specify the

Logical - number of bits to shift right; insert zeros into the high-order bits of rt and place the

Variable 64-bit result in register rd. -

Doubleword DSRAV rd,rtrs

Shift Right Shift the contents of register rt right. The low-order 6 bits of register rs specify the

Arithmetic number of bits to shift right; sign-extend the high-order bits of rt and place the 64-

Variable bit result in register rd.

Doubleword DSLL32 rd,n,sa

Shift Left Shift the contents of register rt left by 32+sa bits, and insert zeros into the low-

Logical+32 order bits. Place the 64-bit result in register rd.

Doubleword DSRL32 rd,rt,sa :

Shift Right Shift the contents of register rt right by 32+sa bits, and insert zeros into the hig-

Logical+32 horder bits. Place the 64-bit result in register rd.

Doubleword | DSRA32 rd,r,sa

Sh_'ﬁ Right Shift the contents of register rtright by 32+sa bits, and sign-extend the high-order

Arithmetic+32 | bits. Place the 64-bit result in register rd.
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Table 2-9 Multiply and Divide Instruction Summary

Instruction 'Format and Description | op rs rt rd | sa| function

Multiply MULT rs,rt o
Multiply the contents of registers rs and rt as 2's-complement values.
Place the 64-bit result in special registers Hl and LO. (sign-extended in
64-bit mode) : )

Multiply Unsigned | MULTU rs,rt
Multiply the contents of registers rs and rtas unsigned integers. Place the
64-bit result in special registers H/ and LO. (sign-extended in 64-bit mode)

Divide DIV rs,it
Divide the contents of register rs by r, treating operands as 2's-
complement values. Place the 32-bit quotient in special register LO and
the 32-bit remainder in HI. (sign-extended in 64-bit mode)

Divide Unsigned | DIVU rs,it
Divide the contents of register rs by r, treating operands as unsigned
values. Place the 32-bit quotient in’ special register LO and the 32-bit
remainder in HI, (sign-extended in 64-bit mode)

Move From HI MFHI rd - _
Move the contents of special register H/ to register rd.

Move From LO MFLO rd '

~ Move the contents of special register LO to register rd.

Move To Hi MTHI rd

Move the contents of register rd to special register HI.
- Move To LO MTLOrd .
“Move the contents of register rd to special register LO.
2-14
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Table 2-10 Multiply and Divide Instruction (ISA Extensions)

e —————

Instruction Format and Description| op l rs | rt [ rd [sa| function I

. Doubleword DMULT rs,rt .
Multiply Multiply the contents of registers rs and rtas 2's-complement values.
v Place the 128-bit result in special registers H/and LO.
Doubleword DMULTU rs,rt

Multiply Unsigned | Multiply the contents of registers rs and rtas unsigned integers.
Place the 128-bit result in special registers H/ and LO.

Doubleword DDIV rs,it

Divide Divide the contents of register rs by r, treating operands as
2's-complement values. Place the 64-bit quotient in special register LO
and the 64—bit remainder in HI.

Doubleword DDIVU rs,rt

Divide Unsigned | Divide the contents of register rs by r, treating operands as unsigned
values. Place the 64-bit quotient in special register LO and the 64-bit
remainder in Hl. .

The number of cycles required for multiply and divide operations is
shown in Table 2-11. The MFHI and MFLO instructions are
interlocked so that any attempt to read them before prior operations
have completed will cause execution of these instructions to be
delayed until the operation finishes. Table 2-11 gives the number of
pcycles required between a MULT, MULTU, DIV, DIVU, DMULT,
DMULTU, DDIV or DDIVU operation, and a subsequent MFHI or
MFLO operation, to resolve an interlock or stall.

Table 2-11 MultiplylDivide Instruction Cycle Timing

PCycles Required
' MULT™ MULTU DIV DIVU DMULT DMULTU DDIV DDIVU
10 10 69 69 20 20 133 133
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Jump and Branch Instructions

Jump and branch instructions change the control flow of a program.
All jump and branch instructions occur with an architectural delay of
one instruction: that is, the instruction immediately following the
jump or branch (the instruction in the delay slot) is always executed
while the target instruction is being fetched from storage. (Taken
branches have a 3 cycle penalty in this implementation. Refer to
Chapter 3:The R4000 Pipeline for details.). :

Subroutine calls in high-level languages are usually implemented
with Jump or JumpAndLink instructions. Both are J-type instructions.
In this format, the 26-bit target address is shifted left two bits, and
combined with the high-order four bits of the current program
counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually
implemented with the JumpRegister and JumpAndLinkRegister
instructions. Both are R-type instructions which take a 32-bit or 64-bit
byte address contained in one of the general-purpose registers.
Table 2-12 and Table 2-13 summarize those CPU jump and branch
instructions that are shared by all MIPS R-Series processors;

Table 2-14 summarizes branch instructions that are extensions for the
R4000.

Table 2-12 Jump Instruction Summary

e —————————

Instruction Format and Description |  op target -

Jump J target
Shift the 26-bit target address left two bits, combine with high-order four bits |
of the PC, and jump to the address with a 1-instruction delay.

Jump And Link | JAL target
Shift the 26-bit target address left two bits, combine with high-order four bits
of the PC, and jump to the address with a 1-instruction delay. Place the ad-
dress of the instruction following the delay siot in r37 (Link register).

Instruction Format and Description [ op { rs l rt I rd l sa | function J

Jump Register | JRTs '
Jump to the address contained in register rs, with a 1-instruction delay.

Jump And Link | JALRs, rd

Register Jump to the address contained in register rs, with a 1-instruction delay. Place
the address of the instruction following the delay slot in register rd.
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The following description is common to Table 2-13 and Table 2-14.

Branch target: All branch instruction target addresses are
computed by adding the address of the instruction in the
delay slot and the 16-bit offset (shifted left two bits and
sign-extended to 32 bits). All branches occur with a delay
of one instruction. :

Conditional branch (Table 2-14): If the conditional branch is
not taken, the instruction in the delay slot is nullified.

The following format fields are found in Table 2-13 to Table 2-20:

REGIMM - Opcode

Sub - Sub-operation Code

CO - Sub-operation Specifier

BC - BC Sub-opcode

br - Branch Condition Specifier
cofun - Coprocessor Function Field
op - Operation Code

R4000 User's Manual--Preliminary ' _ 2-17



Chapter 2

Table 2-13 Branch Instruction Summary

e

Format and Description| op |

Equal

instruction rs ‘ rt T offset
Branch on Equal | BEQ s, offset

. Branch to target address if register rsis equal to register rt.

Branch on Not BNE rs,rt,offset

Branch to target address if register rsis not equal to register rt.

Branch on Less
than or Equal Zero

BLEZ rs,offset
Branch to target address if register rs is less than or equal to zero.

Branch on Greater

BGTZ rs,offset

Than Zero And
Link

Than Zero Branch to target address if register rs is greater than zero.
ﬂ———_—_—_—_—_——-———

Instruction Format and Description | REGIMM rs sub offset

Branch on Less BLTZ rs,offset

Than Zero Branch to target address if register rs is less than zero.

Branch on Greater | BGEZ rs,offset

than or Equal Zero | Branch.to target address if register rs is greater than or equal to zero.

Branch on Less . | BLTZAL rs,offset

Place address of instruction following the delay slot in register r31 (Link
register). Branch to target address if registerrs is less than zero.

Branch on Greater
than or Equal Zero
And Link

BGEZAL rs,offset

Place address of instruction following the delay slot in register r31 (Link
register). Branch to target address if register rs is greater than or equal to
zero.. ‘ '

2-18
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Table 2-14 Branch Instruction Summary - (ISA Extensions)

instruction Format and Descriptionl op | rs | rtir oﬁseLJ
Branch on Equal BEQL rs,rt,offset

Likely Branch fo target address if register rs is equal to register rt.

Branch on Not BNEL rs,rt,offset . ,

Equal Likely Branch to target address if register rs is not equal to register rt

Branch on Less Than | BLEZL rs,offset

or Equal to Zero Likely | Branch to target address if register rs is less than or equal to zero.
Branch on Greater BGTZL rs,offset

Than Zero Likely Branch 1o target address if register rs is greater than zero.

Instruction Format and Description [ REGIMM | rs | sub offset |
Branch on Lgés BLTZL rs,offset .

Than Zero Likely Branch to target address if register rs is less than zero.

Branch on Greater BGEZL rs,offset _

Sl‘(ae?yor Equal to Zero | Branch to target address if register rs is greater than or equal to zero.
. Branch on Less BLTZALL rs,offset

Than Zero And Link | Place address of instruction following the delay slot in register r37
Likely (Link register). Branch to target address if register rs is less than

zZero.

Branch on Greater
Than or Equal to Zero
And Link Likely

BGEZALL rs,offset

Place address of instruction following the delay slot in register r31
(Link register). Branch to target address if register rsis greater than
or equal to zero.
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Special Instructions

Special instructions allow the software to initiate traps and are always
R-type. Special instructions that are valid for all MIPS R-Series
processors are shown in Table 2-15.

Table 2-15 Special Instructions

instruction | Format and Description| SPECIAL | rs | rt | rd | sa | functitﬂ]

- System Call | SYSCALL ‘ o
initiates system call trap, immediately transferring control to exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to exception handiler.

Exception Instructions

Exception instructions are extensions to the ISA and are shown in
Table 2-16 and Table 2-17.

" Table 2-16 Exception Instructions (ISA Extensions)

Instruction Format and Description| SPECIAL | rs | rt [ rd | sa | function |

i TGE rs,It :
I‘{\aa‘:\ ireézﬂ:{ Trap exception occurs if register rs is greater than or equal to register rt, consid}.
) ering both quantities as signed integers. i :
Trap if Greater | TGEU rs,rt

Than or Equal | Trap exception occurs if register rs is greater than or equal to register 17, consid}

Unsigned ering both quantities as unsigned integers.
Trap if Less TLIrs,t . . . o
Than | Trap exception occurs if register rs is less than register rt, considering both quan-

tities as signed integers..

Trap if Less ‘itﬁa.gue;ségption oceurs it register rs is less than register rt, considering both quan-
Than Unsigned tities as unsigned integers..

Trap if Equal TEQ rs,rt :

Trap exception occurs if register rs is equal to register .

Trap if Not TNE rs,nt o
Equal Trap exception occurs if register rs is not equal to register 1.
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Table 2-17 Exception Immediate Instructions (ISA Extensions)

Than Immediate

Instruction Format and Description | REGIMM | rs | sub | immediate ]
Trap if Greater TGEI rs,immediate
Than or Equal Trap exception occurs if register rs is greater than or equal to sign-extended
Immediate 16-bit immediate, considering both qugntities as signed integers.
Trap if Greater GEIU rs,immediate .. . . _
Than or Equal rap exception occurs if register rsis greater than or equal toto sign-extend-
Unsigned ed 16-bit immediate, considering both quantities as unsigned integers.
immediate )

i LTI rs,immediate . , . L
Trap if Less '.(rap ext':egt'i%r{aoccurs if register rs is less than to sign-extended 16-bit im-

mediate, considering both quantities as signed integers..

Equal Immediate

Trap if Less TLTIU rs,immediate . . L
Than Unsigned Trap exception occurs if register rs is less than to.slgn-extended 16-bit im-
Immediate mediate, considering both quantities as unsigned integers.

Trap if Equal TEQ! rs,immediate

Immediate Trap exception occurs if register rs is equal to immediate.

Trap if Not TNEI rs,immediate

Trap exception occurs if register rs is not equal to immediate.

- Coprocessor Instructions

Coprocessor instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and
coprocessor computational instructions have coprocessor-dependent
formats. Table 2-18 summarizes the coprocessor instructions valid on
all MIPS R-Series processors; Table 2-19 summarizes those
instructions defined as extensions to the ISA.
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Table 2-18 Coprocessor Instruction Summary

Instruction Formatand Description]| op | base | n [ offset

Load Word to LWCz noffset(base)

Coprocessor 2 Sign-extend 16-bit offset and add to contents of register base to form

' address. Load contents of addressed word into coprocessor register rtof

coprocessor unit z.’

Store Word from SWCz nrioffset(base)

Coprocessor z Sign-extend 16-bit offset and add to contents of register base to form
address. Store contents of coprocessor register rt from coprocessor unit
z at addressed memory word.

Instruction Format and Description| coPz | sub | n | ra| 0 |

Move To MTCz rrd

Coprocessor z Move contents of CPU register rt into coprocessor register rd of

: coprocessor unit z. ' :
Move From MFCz rt,rd
Coprocessor z

Move contents of odprocessor register rd of coprocessor unit z into CPU
register . : ) :

Move Control To
Coprocessor z

CTCz rtrd

Move contents of CPU register rt into coprocessor control register rd of
coprocessor unit z.

‘Move Control From { CFCz rt,rd

Coprocessor z Move contents of control register rd of coprocessor unit z into CPU
register . ’ '

Instruction Format and Description l COPz | CcO | cofun J

Coprocessor z COPz cofun

Operation Coprocessor unit z performs an operation. The state of the CPU is not
modified by a coprocessor operation.

Instruction Format and Description FCOPz I BC I br | offset J

Branch on BCzT offset

Coprocessor z Compute a branch target address by adding the address of the instruction

True in the delay slot and the 16-bit offset (shifted left two bits and sign extend-
edly 32 bits). Branch to the target address (with a delay of one instruction)
if coprocessor unit z’s condition line is true.

Branch on BCzF offset A

Coprocessor z Compute a branch target address by adding the address of the instruction

False in the delay siot and the 16-bit offset (shifted left two bits and sign extend-
ed to 32 bits). Branch to the target address (with a delay of one instruc-
tion) if coprocessor unit z's condition line is false.
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Table 2-19 Coprocessor Instruction Summary (ISA Extensions)

Instruction Format and Description | coPz | swb | 1 | rd [ o |
Doubleword DMFCz rt,rd

Move From Move contents of coprocessor register rd of coprocessor unit z into CPU
Coprocessor z register . '

Doubleword DMTCz rt,rd v

Move To Move contents of CPU register rtinto coprocessor register rd of coproces-
Coprocessor z sor unit z. ‘

Instruction Formatand Description | op | base n offset |

Load Doubleword
to Coprocessor Z

LDCz nt offset(base)

Sign-extend 16-bit offsetand add to contents of register base to form ad-
dress. Load contents of addressed doubleword into coprocessor register.
rt of coprocessor unit Z -

- Store Doubleword
. from Coprocessor Z

SDCz n,offset(base)

Sign-extend 16-bit offsetand add to contents of register base to form ad-
dress. Store contents of coprocessor register rt from coprocessor unit z
at addressed memory word. :

Instruction Format and Description | COPz | BC [br | offset |

Branch on BCzTL offset ' '

Coprocessor z Compute a branch target address by adding the address of the instruction

True Likely in the delay slot and the 16-bit offset (shifted left two bits and sign extend-
ed to 32 bits). Branch to the target address (with a delay of one instruc-
tion) if coprocessor unit z condition line is true. If conditional branch is not
taken, the instruction in the branch delay slot is nullified.

Branch on BCzFL offset

Coprocessor Compute a branch target address by adding the address of the instruction

False Likely in the delay slot and the 16-bit offset (shifted left two bits and sign extend-

ed to 32 bits). Branch to the target address (with a delay of one instruc-
tion) if coprocessor unit z condition line is false. If conditional branch is not -
taken, the instruction in the branch delay siot is nullified.
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System Control Coprocessor (CP0) Instructions

Coprocessor 0 instructions perform operations on the System Control
Coprocessor (CPO) registers to manipulate the memory management
and exception handling facilities of the processor. Table 2-20 -
summarizes the available instructions that work with CPO.

Table 2-20 System Control Coprocessor (CP0) Instruction Summary

TLB Entry

Instruction Format and Description| COP0 | su | t | ™ | 0 |
Move To CPO MTCO rt,rd

Load the contents of CPU register rt into register rd of CPO.
Move From CPO | MFCO n,rd

Load the contents of CPO register rd into CPU register 1.
Instruction Format and Description| COPO coO 0 function J
Read Indexed TLBR

Load EntryHi, EntryLo0, and Entry Lo1 registers with TLB entry pointed
to by the index register. '

Write Indexed

Matching Entry

TLBWI

TLB Entry Load TLB entry pointed to by the /ndex register with the contents of the
EntryHi, EntryLo0, and Entry Lo1 registers.

Write Random TLBWR - . :

TLB Entry Load TLB entry pointed to by the Random register with the contents ofthe
EntryHi, EntryLo0, and Entry Lo1 registers.

Probe TLB for TLBP

Load the Index register with the address of the TLB entry whose contents
match the EntryHi, EntryLo0, and Entry Lo1 registers. If no TLB entry
matches, set the high-order bit of the Index register.

Return from ERET

Exception Return from exception, interrupt, or error trap.

Instruction Format and Descriptionl CACHE base | op | offset J

Cache CACHE op,offset(base)

Operation Virtual address is formed from addition of offset and base, and this virtual
address is translated into a physical address using the TLB. Sub-opcode
op specifies a cache operation for this address.
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The R4000 Pipeline

3

This chapter describes the operation of the R4000 instruction
execution pipeline. It first describes the basic operation of the pipeline.
It then explains how the R4000 handles delay instructions; these are
instructions that follow a branch or load instruction in the pipeline. A
later section explains interruptions to the pipeline flow caused by
interlocks and exceptions. ' :

Basic Pipeline Operation

The R4000 processor has an eight-stage execution pipeline. Each
pipeline stage takes one pcycle (one cycle of pclock, which runs at
twice the frequency of MasterClock). The execution of each instruction
thus takes at least eight pcycles (four MasterClock cycles). An
instruction may take longer; for example, when the required data is
not in the cache and must be retrieved from main memory. Once the
pipeline has been completely filled, eight instructions are always
being executed simultaneously.

The eight stages of the R4000 pipeline are listed below and are shown
in Figure 3-1.

1. Instruction Fetch, Phase 1 (IF)

Instruction Fetch, Phase 2 (IS)

Register Fetch (RF)

Execution (EX)

Data Fetch, Phase 1 (DF)

Data Fetch, Phase 2 (DS)

Tag Check (TC)

Write Back (WB)

© N O » o wDN e
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’ I Master
Clock Cycle

(8-Deep)

F]IS|RF]EX]DF| DS]TC

WB

[IF]IS|RF] EX| DF | DS

TC

WB |

Povel  FTTETRETEX] OF

DS

TC | WB |

[OF [ ISTRF]EX

DF

DS | TC |WB |

[FIIsRF

EX

DF [ DS|TC [WB|

HEES

RF

EX] DF[ DS [TC [WB|

[F

IS

RF] EX| DF | DS | 1C | WB]

IF

IS T RF]EX] DF [ DS | TC | WB|

Current.
CPU
Cycle

Figure 3-1 R4000 Pipeline and Instruction Overlapping

Figure 3-2 shows the activities occurring during each pipeline stage
for ALU, load and store, and branch instructions. The subsections
following Figure 3-2 describe the activities during each stage in more

detail.
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cycle:

|Fetch
and
Decode

ALU
Ld/st

Branch

phase.|1|2|1|2|1'|2|1|2|1|2|1|2|1|2|1|2[

IF_ | IS RF|§X|DF|DSITCIWB‘I
1C1 1G2
ITLB1 | 1TLB2 iTC
IDEC
RF
ALU
DVA DC1 DC2
LSA
JTLB1 | JTie2 | DTC WB
IVA
I1C1 Instruction cache access stage 1
162 Instruction cache access stage 2
ITLB1 | Instruction address translation stage 1
ITLB2 | Instruction address transiation stage 2
ITC Instruction tag check
IDEC Instruction decode
RF Register operand fetch
ALU Operation
DVA Data virtual address calculation
DC1 Data cache access stage 1
DC2 Data cache access stage 2
LSA Data load or store align
JTLB1 | Data/instruction address transiation stage 1
JTLB2 | Data/instruction address translation stage 2
DTC Data tag check
IVA Instruction virtual address calculation
WwB Write-back to register file

Figure 3-2 R4000 Pipeline Activities

IF - Instruction Fetch, First Half

An instruction address is selected by the branch logic and the
instruction cache fetch begins. The Instruction Translation Lookaside
Buffer (ITLB) begins the virtual-to-physical address translation.

IS - Instruction Fetch, Second Half

The instruction cache fetch and the virtual-to-physical address
translation are completed.
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RF - Register Fetch

The instruction decoder (IDEC) decodes the instruction and checks for
interlock conditions. The instruction cache tag is checked against the
page frame number obtained from the ITLB. Any required operands
are fetched from the register file.

EX - Execution

For register-to-register instructions, the ALU performs the arithmetic
or logical operation. For load and store instructions, the ALU
calculates the data virtual address. For branch instructions, the ALU
determines whether the branch condition is true and calculates the
virtual branch target address.

DF - Data Fetch, First Half

For load and store instructions, the data cache fetch and the data
virtual-to-physical translation begin. For branch instructions, the
branch instruction address translation and TLB update begin.
Register-to-register instructions perform no operations during the DF,
DS, and TC stages.

DS - Data Eetch, Second Half

For load and store instructions, the data cache fetch and data virtual-
to-physical translation are completed. The Shifter aligns the data to
the word or doubleword boundary. For branch instructions, the
branch instruction address translation and TLB update are completed.

TC - Tag Check

For load and store instructions, the cache performs the tag check. The
physical address from the TLB is checked against the cache tag to
determine if there is a hit or a miss.

WB - Write Back

For register-to-register instructions, the instruction result is written
back to the register file. Branch instructions perform no operation
during this stage.”.
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Branch and Load Delay

The more finely grained pipeline of the R4000 results ina branch delay
of three cycles and a load delay of two. The branch delay of three is
easily observed by noting that the branch comparison logic operates
during the EX pipestage of the branch, producing an instruction
address which is available for IF stage of the fourth subsequent
instruction. The branch delay is illustrated in the Figure 3-3.

branch [ IF | 1S | RF| EX] DF[ DS] TC| WB |

[F [ 1S [ RF| EX| DF[ DS] TC|{WB] .

| three branch
_ delay
[IF [ 1s | RF| Ex] DF[DS| TC|WB|  instructions
I [F [ 1S [RF| EX] DF | DS[ TC|WB]| -
target | | [WF [ 15 [ RF] EX| DF] DS[ TC|WB |
|

Branch Delayl

Figure 3-3 R4000 Pipeline Branch Delay

Similarly, the load delay of two is evident in that the completion of a
load at the end of the DS pipestage of a load, produces an operand
which is available for the EX pipestage of the third subsequent
instruction. The load delay is illustrated in the Figure 3-4.

load | IF ]IS | RF| EX| DF| DS][ TC| WB|

[F [ 18 [RF] EX| DF[ DS] TC | WB| two load
| delay
[iF [1S [ RF] EX| DF | DS] TC | WB | instructions

f(load) | Loag LIF LS [RF] Ex | DF | DS] TC| W8]
l Delay l

Figure 3-4 R4000 Pipeline Load Delay
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Interlock and Exception Timing

Smooth pipeline flow is interrupted when cache accesses miss, data
dependencies are detected, or when exceptions occur. Interruptions
that are handled by hardware, such as cache misses, are referred to as
interlocks, while those that are handled using software are exceptions.
Collectively, the cases of all interlock and exception conditions are
referred to as faults.

Interlocks come in two varieties. Those interlocks which are resolved
by simply stopping the pipeline are referred to as stalls, while those
which require part of the pipeline to advance while holding up
another part are slips.

At each cycle, exception and interlock conditions are checked for all
active instructions.

Because each exception or interlock condition corresponds to a
particular pipeline stage, the conditions can be referred back to
particular instructions (see Figure 3-5).

stalls*

slips

exceptions

ohase |12 1]z 12| 1l2lt]2lt]z2]1]2]1]z2]

IF IS RF _EX DF DS TC WB
1™ ICM CPBE DCM
SXT WA
ST! CsC
COp
* MP Stalls may occur at any stage; they are not associated with any instruction or any pipe stage
IF 1S RF _EX DF DS TC WB
Ldi
MultB
DivB
MDOne
ShSlip
FCBsy
IF 1S RF EX DF DS TC wB
ITLB __intr OVF DTLB | DBE
IBE FPE | TLBMod | Watch
IVACoh Exirap DVACoh |
11 : DECCET
BP NMI
SO Reset
CUn
IECCErT

Figure 3-5 Correspondence of Pipeline Stage to Interlock Condition
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Figure 3-5 shows the correlation between the interlocks and exceptions shown in Figure 3-

5.
Table 3-1 Correspondence of Pipeline Stage to Interlock Condition
Interlocks Exceptions

TM  [struction TLB Miss [TLB mgz;gzﬂm or

[CM Instruction Cache Miss Intr External Interrupt

CPBE Coprocessor Possible Exception  [[BE [Bus Error

SXT Integer Sign Extend [VACoh _ [[VA Coherent

STI Store Interlock I fllegal Instruction

DCM Data Cache Miss BP Breakpoint

WA Watch Address Exception 5C Gystem Call

DI L oad Interlock CUn Coprocessor Unuseable’

MultB  Multiply Unit Busy [ECCErr [Instruction ECC Error

DivB Divide Unit Busy OVE [nteger Overflow

MDOne Mult/Div One Cycle Slip FPE . [P Interrupt

ShSlip  [Var Shift or Shift > 32 bits ExTrap  [EXStage Traps

FCBsy FP Busy DTLB Data Tmlation or Address

Exception

TLBMod [TLB Modified
DBE Data Bus Error
Watch gl:;n;;yeReference Address
DVACoh [DVA Coherent
DECCErr |Data ECC Error
NMI N on-maskable Interrupt
Reset Reset

When an exception condition occurs, the relevant instruction and all
that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that are referenced to
the same instruction are inhibited; there is no value in servicing stalls
for a cancelled instruction. A new instruction stream is begun, starting
execution at a predefined exception vector. System control
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coprocessor registers are loaded with information that will identify
the type of exception and any necessary auxiliary information, suchas
the virtual address at which translation exceptions occur.

When a stall condition is detected, all eight instructions, eachin a
different stage of the pipeline, are frozen at once. Often, the stall
condition is only detected after parts of the pipeline have advanced
using incorrect data; we refer to this occurrence as pipeline overrun.
When in the stalled state, no pipeline stages advance until the
interlock condition is resolved. After the interlock is removed, the
restart sequence begins two cycles before resuming execution. The
restart sequence reverses the pipeline overrun condition by inserting
the correct information into the pipeline.

When a slip condition is detected, the pipeline stages which must
advance in order to resolve the dependency continue to be retired
while the dependent stages are held until the necessary data is
available. o

Another class of interlocks exists which, since they originate external
to the processor, are not referenced to a particular pipeline stage.
These interlocks are referred to as external stalls and are unaffected by
the occurrence of exceptions.

In order to prevent interlock and exception handling from adversely .
affecting the processor cycle time, the R4000 uses both logic and circuit
pipelining techniques to reduce critical timing paths. Logical
pipelining of interlock and exception handling has the following two
principal effects:

1. the processor pipeline must be backed up in some cases to
recover from interlocks, and

2. in some cases interlocks will be serviced for instructions
which will be aborted due to an exception.

An example of the former happens in the case of data cache misses,
where the late detection of the miss causes a subsequent instruction to
compute an incorrect result. Not only must the cache miss be serviced
but the EX stage of the dependent instruction must be redone before
the pipeline can be restarted. Figure 3-6 below illustrates this
phenomena. A minus (-) following a pipestage descriptor indicates
that the operation performed produced an incorrect result while a
plus (+) indicates the successful re-execution of that operation.

3-8
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cycle [Run [ Aun| Run] Run] Run] Run[Run ] st | st | st | st [t [Run] Run [ Run] Run| Run |
Restart I 7 =1 O O A
load [F[sTrRF]ex]oF| DS |TC | [oF [ps | 7C [ wB |

[w]isTrF]Ex] OF[Ds | [ JoF[ps|Tc|ws] -

l
|

ALY [F s r[ex[or] [ [ [ [oFfosfc]we
|

[F s | RF|EX| { ['rF [ex+] oF [Ds [ 1c | wB|

[FIs[FL_ [ [ [ [ [oo[es[wc]w]

Figure 3-6 Pipeline Overrun

An example of a case in which interlocks are serviced for instructions
which will subsequently be aborted is the interaction between integer
overflow and instruction cache miss. In this case, pipelining the .
overflow exception handling into the DF pipestage will allow an
instruction cache miss to occur on the immediately subsequent
instruction. This is illustrated in Figure 3-7. Aborted instructions are
denoted with an asterisk (*).

Ignoring the fact that the linebroughtinby the instruction cache could
be replaced by a line of the exception handler, it can be argued that no
performance loss occurs since the instruction cache miss would have
otherwise been serviced after returning from the exception handler
anyway. A more legitimate argument for handling the exception in
this fashion however is that the frequency of exceptions is relatively
low by definition. If this were not the case the processor would spend
most of its time in the exception handler and no progress would be -
made.
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cycle [Run [Run] Run[Run] st [ st | st | st | st [Run [Run [Run | Run | Run | Run | Run |
st [ 1 | | mewcechemiss [ [ [ [ [ | | |
pewt L L 1 1 [ 1 [ Teepsi] [ [ [ T 1 1 |
au  [Fls[er[ex] | [ 1 [ TorJos|Tc|we| ‘
OVF
[FTs[rr] | [F | 1s [RF [ EX ] OF [DS | TC |We"]
IcM
[FTs] | | [ [1S [RF [ EX]DF [0S [ TC |WE|
[F_L [ [ [F[®[F[eX]or[os[T[we]

Figure 3-7 Instruction Cache Miss

Circuit pipelining of interlock and exception handling is
accomplished by pipelining the logical resolution of the possible fault
conditions with the buffering and distribution of the pipeline control
signals. In particular, a half clock period is provided for the buffering

" and distribution of the run control signal and during this time the logic
evaluation to produce run for the next cycle is begun. This process is
illustrated in Figure 3-8 for a sequence of loads. '

wok. TN/ \/ / S S

phase|1|2|1|2|1|2|1|'2|1|2,|1|2]

loadi: [ DF I DS I TC | WB ]

[Tagtk] Resolve  [Buffer |

load2: [__DF [ DS [ TC [ WB___ |
[TagCk| Resolve | Buffer |
load3: [ DF i DS ] TC [ WB___|

[TagCk| _Resolve | Buffer|

Figure 3-8 Circuit Pipelining of Interlock and Exception Handling
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In the general case, resolving whether or not the pipeline advances in
any particular cycle is done in the same three step sequence:

1. Individually evaluate all possible fault causing events suchas
cache misses, translation exceptions, load interlocks, etc.

2. . Resolve which fault is to be serviced based on a predefined
priority determined by the pipestage of the asserted faults.

3. Buffer and distribute the pipeline advance control signals.
This process is illustrated in Figure 3-9.

wx TN/ N S
phase|1|,2|1|2|,1|2|1|21
cyce [ Run | Run_ ] Run | Run -
- [Evaluate | Resolve [ Buffer |
[Evaluate | Resolve I Buffer |
[Evaluate | Resolve [ Buffer |

Figure 3-9 Pipeline Advance Resolution

Special Cases

Insome instances, the pipeline control state machine is bypassed. This
bypassing occurs due to either:

o performance considerations, or
e correctness considerations.

An example of the former occurs in the case of cache misses on loads.
By bypassing the pipeline state machine in this instance it is possible
to eliminate up to two cycles from the load miss latency. In this case,
itis relatively straightforward to perform the bypass since sending the
cache miss address to the secondary cache has no negative impact
even if an exception later nullifies the effect of the cache access. The-
bypassing of the potential cache miss address is referred to as address
acceleration. It is noted that an argument could be put forward that
some power is wasted when the miss is inhibited by some fault, but
this will be a minor effect. Another technique used in the R4000 to
reduce miss latency is the automatic increment and driveout of
instruction miss addresses following an instruction cache miss. This
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form of latency reduction is referred to as address prediction as the
subsequent instruction miss address is being predicted to be a simple
increment of the previous miss address. Figure 3-10 illustrates a cache
miss where the cache miss address is shown changing based simply
on detection of the miss.

cycle
address

Restart

load

[Run [ Run [ Run] Run [ Run Run[Run [ st [ st | St | st | st [ st ] st st|Run

_X Cache index X

T T T T [T T T [T Tl ]

||F||s|RFIEx|DF|Ds|Tc| IR [or] ps|Tc|we]|

Figure 3-10 Load Address Bypassing

An example of a case where bypassing is necessary to guarantee
correctness is cache writes. '
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The MIPS R4000 processor provides a full-featured memory
management unit (MMU) that uses an on-chip Translation Lookaside
Buffer (TLB) to translate virtual addresses into physical addresses.
The MMU provides very fast virtual memory translation. This chapter
describes the operation of the TLB and the CPO registers that provide
the software interface to the TLB. The memory mapping scheme,
which translates virtual addresses to physical addresses, is also
described in detail. ' 3

Memory System Architecture

The virtual memory system extends the address space available to
programs by translating addresses composed in a large virtual
address space into physical memory space. ‘

The R4000 physical address space is 64 Gigabytes using a 36-bit
address. The virutal address is either 64 or 32 bits wide depending on
whether the processor is operating is 32- or 64-bit mode. In 32-bit
mode, addresses are 32-bits wide and the maximum user process size
is 2 Gigabytes (2°1). In 64-bit mode, addresses are 64-bits wide and the
maximum user process is 1 Terabyte @9
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20 bits = 1M pages Virtual Address with 4-Kbyte page size

39 3231 29 28 12 1 0
ASID VPN Oftset
8 —— 20 12
AL - J
Y vituaHo-physical  Offset passed [ unchanged
ranslation in TLB to physical | memory
Bits 31,30 and 29 ofthe
virtual address select use, | 36-bf Physical Address |
supervisor, or kernel .
address spaces | virtuak-to-physical Ofiset passed unchanged
translation in TLB to physical memory
( N
29 3257 2928 24 23 ’ 0
ASID VPN , . Offset
8 8 24
8 bits = 256 pages o Virtual Address with16-Mbyte page size

Figure 41 R4000 32-bit Virtual Address Format

The virtual address is extended with an Address Space Identifier
(ASID) to reduce the frequency of TLB flushing when switching
context. The size of the ASID field is 8 bits. The ASID is contained in
the CPO EntryHi register. The CPO EntryHi register is described in this
chapter.

Operating Modes

This section describes the three operating modes of the R4000 for 32-
and 64-bit operation: :

¢ User mode
e Supervisor mode
¢ Kernel mode

Two of these modes are provided by all MIPS R-Series processors:
Kernel mode, which is analogous to the “supervisory” mode provided
by many machines, and User mode, in which NONSupervisory
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programs are executed. The R4000 provides a third, intermediate
mode, called Supervisor mode. This mode can be used to more easily

build secure operating systems.
28 bits = 256M pages Virtual Address with 4-Kbyte page size
71 64 636261 40 39 - 12 11 0
ASID Oor-1 VPN Ofiset
8 —— 24 28 12
rua-to-physi /\
—_ VIUAFo-pNySICal - oyfieet passed Junchanged
Y translationin TLB ™49 phvsical | memory
Bits 62 and 63 of the virtual
address select user, [ 36-bit Physical Address
supervisor, or kemel . . Offset passed unchanged
address spaces virtuakto-physical & 4 hvsical memory
transiation in TLB
N :
_ Y ™~
71 64 B36261 4039 2428 0
ASID Oor-1 VPN Offset
8 24 16 24
8 bits = 256 pages ' Virtual Address with16-Mbyte page size

Figure 4-2 R4000 64-bit Virtual Address Format

The CPU enters Kernel mode whenever an exception is detected and
it remains in Kernel mode until an Exception Return (ERET)
instruction is executed. The ERET instruction restores the processor to
the mode existing prior to taking the exception.

User Mode Virtual Addressing

In User mode, a single, uniform virtual address space (useg) of 2
GBytes (2°1 bytes) in 32-bit mode or 1 Terabyte (2*" bytes) in 64-bit
mode is available, as shown in Figure 4-3. Figure 4-1 and Figure 4-2
show that the virtual address is extended with an 8-bit Address Space
Identifier (ASID) field during virtual to physical address translation to
form unique virtual addresses for up to 256 user processes. By
assigning each process an ASID, the system is able to maintain the TLB
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contents across context switches. All references to useg are mapped
through the TLB, and the cacheability of a reference is determined by
bit settings within the TLB entry for the page.

The User segment starts at address zero, 0x0000 0000. The TLB maps
all references to useg identically from all modes, and controls cache
accessibility. (The C-bits in a TLB entry determine whether the
reference is cached; see Figure 4-1.) The current user process resides in
useg. Figure 4-3 shows User mode address space.

When bits KSU equals 10, bit EXL equals 0, and bit ERL equals 0 in the
Status register (see Chapter 5 for a description of the Status register),
the processor is executing in User mode. The UX bit in the Status
register selects 32- or 64-bit addressing.

 useg. When UX = 0 in the Status Register, user-mode
addressing is compatible with 32-bit addressing shown in
Figure 4-3. All valid User mode virtual addresses have the
most-significant bit cleared to 0; any attempt to reference
an address with the most-significant bit set while in the
User mode causes an Address Error exception. (See
Chapter 5). The TLB refill exception vector-is used for TLB
misses. ,

e xuseg. When UX =1 in the Status Register, user-mode
addressing is exteneded to 64-bit addressing shown in
Figure 4-3. The R4000 provides a single, uniform address
space of 2%0 bytes for user processes. All valid user-mode
virtual addresses have bits 63..40 equal to zero; an attempt
to reference an address with bits 63..40 not equal to zero
causes an Address Error exception (See Chapter 5). The
Extended addressing TLB refill exception vector is used for
TLB misses.

44
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0x FFFF FFFF

Ox 8000 0000
0x 7FFF FFFF

0x 0000 0000

R4000 User Mode
32-bit 64-bit
Ox FFFF FFFF FFFF FFFF
Address Address
Error - Error
0x 0000 0100 0000 0000
] 0x 0000 OOFF FFFF FFFF
2GB useg ' 1TB XUSEq
Mapped Mapped ,
0x 0000 0000 000C 0000

Supervisor Mo

Figure 4-3 MIPS User Mode Virtual Address Space

- In the following discussion, please refer to Figure 4-4. Supervisor

de Virtual Addressing

mode is intended for those layered operating system implementations

where a “true kernel” runs in R4000 Kernel mode, and the rest of the
operating system runs in Supervisor mode. When bits KSU equals 01,
bit EXL equals 0, and bit ERL equals 0 in the Status register (see

~ Chapter 5 for a description of the Status register), the processor is

executing in Supervisor mode. The SX bit in the Status register selects
32- or 64-bit addressing.

e suseg. When SX = 0 in the Status register and the most-
2-bit virtual address is set to 0, the

significant bit of the 3
2%1 bytes

virtual address space, named suseg, covers the full

(2 Gbytes) of the current user address space. The virtual
address is extended with the contents of the ASID field to
form unique virtual addresses. This mapped space starts at
virtual address 0x0000 0000 and runs up through

Ox7FFF FFFE.

sseg. When SX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 110,
the virtual address space selected is the current 2Pbyte
(512-Mbyte) supervisor virtual space labelled sseg. The
virtual address is extended with the contents of the ASID
field to form unique virtual addresses. This mapped space
begins at virtual address 0xC000 0000 and runs up through
OxDFFF FFFE.
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xsuseg. When SX = 1 in the Status register and bits 63..62 of
the virtual address are set to 00, the virtual address space,
named xsuseg, covers the full 220 bytes (1 Terabyte) of the
current user address space. The virtual address is extended
with the contents of the ASID field to form unique virtual
addresses. This mapped space starts at virtual address
0x00600 0000 0000 0000 and runs up through

0x0000 OOFF FFFF FFFE.

xsseg. When SX = 1 in the Status register and bits 63..62 of
the virtual address are set to 01, the virtual address space
selected is the current supervisor virtual space labelled
xsseg. The virtual address is extended with the contents of
the ASID field to form unique virtual addresses. This
mapped space begins at virtual address

0x4000 0000 0000 0000 and runs up through

0x4000 OOFF FFFF FFFF.

csseg. When SX = 1 in the Status register and bits 63..62 of
the virtual address are set to 11, the virtual address space

selected is the current supervisor virtual space labelled

csseg. Addressing of the csseg is compatible with supervisor’
addressing in 32-bit mode. This mapped space begins at
virtual address OXFFFF FFFF C000 0000 and runs up

through OxFFFF FFFF DFFF FFFF.
. R4000 Supervisor Mode
32-bit ~ 64-bit
0x FFFF FFFF [ podress 0x FFFF FFFF FFFF FFFF Address
Ox E000 0000 error ox FFFF FFFF E000 0000 error
0.5 GB 0.5GB
sseg Mapped | CSS€9
ox cooo o000} Mapped O FFFF FFFF Q000 0000| "
Address Address
Ox A000 0000 ermor 0x 4000 0100 0000 0000 error
Address 1TB
Ox 8000 0000 error Mapped xsseg
Ox 7FFF FFFF 0x 4000 0000 0000 0000
Address
2GB suseg O 0000 0100 0000 0000 error
| Mapped 0x 0000 OOFF FFFF FFFF 1TB
0x 0000 0000 0Ox 0000 0000 0000 0000

Figure 44 MIPS R4000 Supervisor Mode Address Space
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Kernel Mode Virtual Addressing

When the processor is operating in Kernel mode (bits KSU equals 00,
or bit EXL equals 1, or bit ERL equals 1, in the Status register) the
virtual address space is divided into regions, differentiated by the
high-order bits of the virtual address. The KX bit in the Status register
selects 32- or 64-bit addressing:

o kuseg. When KX = 0 in the Status register and the most-
 significant bit of the virtual address is cleared, the 32-bit
virtual address space selected covers the full 2°! bytes 2
Gbytes) of the current user address space labelled kuseg.
The virtual address is extended with the contents of the
- ASID field to form unique virtual addresses.

o kseg0. When KX = 0 in the Status register and the most-
significant three bits of the virtual address are 100, the
32.bit virtual address space selected is the current 2°-byte
(512-Mbyte) kernel physical space labelled kseg0.
References to kseg0 are not mapped through the TLB; the
physical address selected is defined by subtracting 0x8000
0000 from the virtual address. Cacheability and coherency
are controlled by the KO field of the Config register
described in Chapter 5 Exception Processing.

e ksegl. When KX = 0 in the Status register and the most-
© significant three bits of the 32-bit virtual address are 101,

the virtual address space selected is the current 2%-byte
(512-Mbyte) kernel physical space labelled ksegl.
References to ksegl are not mapped through the TLB; the
physical address selected is defined by subtracting
0xA000 0000 from the virtual address. Caches are disabled
for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed -
directly.

o ksseg. When KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 110,
the virtual address space selected is the current 2%-byte
(512-Mbyte) supervisor virtual space labelled ksseg. The
virtual address is extended with the contents of the ASID
field to form unique virtual addresses.

e kseg3. When KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 111,
the virtual address space selected is the current 2-byte
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(512-Mbyte) kernel virtual space labelled kseg3. The virtual
address is extended with the contents of the ASID field to
form unique virtual addresses.

xkuseg. When KX = 1 in the Staius register and bits 63..62 of
the 64-bit virtual address are 00, the virtual address space
selected covers the current user address space labelled
xkuseg. The virtual address is extended with the contents of
the ASID field to form unique virtual addresses. As a
special feature for the ECC handler, if the ERL bit of the
Status register is set, the user address region becomes a
231_pyte unmapped, uncached space. The allows the ECC
exception code to operate uncached using R0 as a base
register.

xksseg. When KX = 1 in the Status register and bits 63..62 of
the 64-bit virtual address are 01, the virtual address space
selected is the current supervisor virtual space labelled
xksseg. The virtual address is extended with the contents of
the ASID field to form unique virtual addresses.

xkphys. When KX = 1 in the Status register and bits 63..62 of
the 64-bit virtual address are 10, the virtual address space
selected is a set of eight 2%.pyte kernel physical spaces
labelled xkphys. Addresses with bits 58..36 not equal to zero
cause an address error. References to this space are not
mapped; the physical address selected is taken directly
from bits 35..0 of the virtual address. The cachebility and
coherence algorithm is specified by bits 61..59 of the virtual
address (see EntryLo for the cache algorithm values).

Value | Cache Algorithm Starting Address
0 reserved 0x8000 0000 0000 0000
1 reserved "0x8800 0000 0000 0000
2 uncached ~ 0x9000 0000 0000 0000
3 cacheable, non-coherent 0x9800 0000 0000 0000
4 cacheable, coherent exclusive 0xA000 0000 0000 0000
5 cacheable, coherent exclusive on write | 0xA800 0000 0000 0000
6 " cacheable, coherent update on write 0xB000 0000 0000 0000
7 reserved 1 0xB800 0000 0000 0000

4-8
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o xkseg. When KX = 1 in the Status register and bits 63..62 of
the 64-bit virtual address are 11, the virtual address space
selected is the current supervisor virtual space labelled
xkseg. The virtual address is extended with the contents of
the ASID field to form unique virtual addresses.

o ckseg0. When KX =1 in the Status register and bits 63..62 of
the 64-bit virtual address are 11, the 64-bit virtual address
space selected is an unmapped region compatible with the
32-bit address model kseg0 when bits 61..31 of the virtual
address equal -1. Cacheability and coherency are controlled
by the KO field of the Config register described in Chapter
5 Exception Processing.

e cksegl. When KX =1 in the Status register and bits 63..62 of
the 64-bit virtual address are 11, the 64-bit virtual address
space selected is an unmapped and uncached region
compatible with the 32-bit address model ksegl when bits
61..31 of the virtual address equal -1.

e cksseg. When KX = 1 in the Status register and bits 63..62 of
the 64-bit virtual address are 11, the 64-bit virtual address
space selected is the current supervisor virtual space
compatible with the 32-bit address model ksseg when bits
61..31 of the virtual address equal -1.

o ckseg3. When KX =1 in the Status register and bits 63..62 of
 the 64-bit virtual address are 11, the 64-bit virtual address
space selected is kernel virtual space compatible with the
32-bit address model kseg3 when bits 61..31 of the virtual
address equal -1. ’ ’

Figure 4-5 shows the boundaries of the segments defined in this mode.
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0x FFFF FFFF

0x E000 0000
0x C000 0000

Ox A0O0 0000

0x 8000 0000
0x 7FFF FFFF

0x 0000 0000

32-bit R4000 Kernel Mode 64-bit
0x FFFF FFFF FFFF FFFF[ 05 GB | -
05GB | . OxFFFF FFFF ED00 0000 Mapped °g
Mapped | K5€9 0.5 GB
- Mapped cksseg
0x FFFF FFFF C000-0000 | M@PPSC |
0.5GB ksseg uf?ﬁ?a‘é.?ed ckseg1
Mapped 0x FFFF FFFF AOOD 0000 U';‘?‘é‘;"
0.5GB v Unri\aﬁped ckseg0
Unmapped | ksegl Ox FFFF FFFF 8000 0000] _ Cached
Uncached Address
0.5 GB 0x C000 OFFF FOOO0 0000 error
Unmapped | kseg0 Mapped | xkseg
Cached 0x C00O 0000 0000 0000
' - Unmapped | xkphys
0x 8000 0000 0000 0000 PP kphy
Co Address
0x 4000 0100 0000 0000 error
2GB 1TB
: kuseg Mapped xksseg
Mapped 0x 4000 0000 0000 0000
_ Address
0x 0000 0100 0000 0000| __ ©TOr
| 118 '
, Mapped | Xkuseg
0x 0000 0000 0000 0000

Figure 4-5 MIPS R4000 Kernel Mode Address Space

Virtual Memory and the TLB

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB. The TLB is a fully-associative memory that holds 48

entries that provide mapping to 48 odd/even page pairs.The address
range mapped by a page can range in size from 4 Kbytes to 16 Mbytes
(increasing by multiples of 4: i.e., 4K, 16K, 64K, 256K, 1M, 4M, 16M).

When address mapping is indicated, each TLB entry is simultaneously -
checked for a match with the virtual address extended by the current
ASID stored in the EntryHi register.

410
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If there is a match (a hit), the physical page number is extracted from
the TLB and concatenated with the offset to form the physical address.
If no match occurs (a miss), an exception is taken and software refills
the TLB from a Page Table resident in memory. Software can write
over a selected TLB entry or use a hardware mechanism to write into
arandom entry. : :

If more than one entry in the TLB matches the virtual address being
translated, the operation is undefined and the TLB may be shutdown.
The TLB-Shutdown (TS) bit in the Status register is set to 1 if the TLB is
disabled.

System Control Coprocessor

The system control coprocessor (CP0) is implemented as an integral
part of the CPU. CP0 supports address translation, exception
handling, and other privileged operations. CP0 also contains the
registers shown in Figure 4-6 plus a 48-entry TLB. The sections that

* follow describe how each of the TLB-related registers are used.
NOTE: CPO functions and registers associated with exception handling are
described in Chapter 5, Exception Processing. .
The numeral accompanying each register refers to the register
number, as described in Chapter 2, CPU Instruction Set Summary.
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CPO and the TLB
EntryLo0 Page Mask
. %
EntryHi z S
10" | EntryLot
Index
. 0*
47
Random
TLB
(“Safe” entries)
(See Random Register,
contents of TLB Wired)
o 1127 0

Used with Memory
Management System.

Used with Exception
Processing. See
Chapter5 for details.

* Register number

Figure -6 The R4000 CPO Registers and the TLB

TLB Entry Format

Figure 4-7 shows the TLB entry format for 32- and 64-bit addressing.
Each field of an entry has a corresponding field in the EntryHi,
EntryLoO, EntryLol, or PageMask registers, as shown in Figure 4-8.
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32-bit Addressing
127 121 120 109 108 %
0 MASK 0
i 12 13
95 7776 75 72 71 64
VPN2 G ASID
19 1 4 8
63 62 61 38 37 35 34 33 32
0 PFN C |DjVvj0
2 24 3 111
31 30 29 65 3210
0 PFN C |Djvio
2 24 5 111
64-bit Addressing
255 217 216 205 204 96
0 MASK 0
39 12 13
191 190 189 168 167 141 140 139 136 135 128
R VPN2 G| O 'ASID
) 27 T4 8
127 9 93 70 69 67 66 65 64
PFN D|Vvio
24 3 111
63 30 29 8 5 32 1 0
PFN C |D|Vio
24 38 111

Figure 4-7 Format of an R4000 TLB Entry

The format of the EntryHi, EntryLo0, EntryLol, and PageMask registers
are nearly the same as the 48-bit TLB entry. There is one exception, the
TLB does use the Global field (bit 76) which is reserved in the EntryHi

register.
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PageMask Register
a2-bit 31 - 25 24 13 12 0
Mode 0 MASK 0
7 12 13
MASK  Page comparison mask
EntryHi Register .
it 31 13 12 8 7 0
32
Mode VPN2 0 ASID
19 5 8
63 62 61 40 39 13 12 8 7 0
64-bit :
Mode R FILL VPN2 0 ASID
2 2 27 5 8

VPN2 Virtual Page Number divided by two (maps to two pages).

ASID Address Space ID field. An8-bit field which lets multiple processes share the TLB while each process
has a distinct mapping of otherwise identical virtual page numbers. This is the same ASID described at
the beginning of this chapter. ; '

R Region. (00 — user, 01-— supervisor, 11 — kemel) used to match vAddrgs gp.

Fill Reserved. Must be the same as bit 63 of the register when written.-

EntryLoO and EntryLo1
31 3029 6 5 3210
32-bit .
Mode 0 : PFN C |DjviG
2 , S 24 - 3 111
31 3028 : 6 5 321 0
32-bit
Mode PFN _ C |D|V|G
2 24 3 111
63 30 29 6 5 3210
64-bit
Mode 0 PFN C |DlV|G
24 24 3 111
63 30 29 6 5 3210
64-bit .
Mode 0] : PFN C |Djv|G
34 24 3 111

PFN  Page Frame Number. Upper bits of the physical address.

C Specifies the cache algorithm to be used; see Table 4-1.

D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is actually a

write-protect bit that software can use to prevent alteration of data.

v Valid. If this bit is set, itindicates that the TLB entry is vaiid; otherwise, 2 TLBL or TLBS Miss occurs.

G Global. If this bit is set in both Lo and Lo1, then ignore the ASID during TLB lookup.

0 Reserved. Must be written as zeroes, returns zeroes when read.

Figure 4-8 Fields of an R4000 TLB Entry Registers
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The cache algorithm (C) bits specify whether references to the page
should be cached; if cached, the algorithm selects between several
cache coherency algorithms. Table 4-1 shows the algorithms selected
by decoding the C bits.

Table 41 Cache Algorithmn Bit Values

C Bit Value Algorithm
0 reserved
1 reserved
2 uncached
3 cacheable noncoherent (noncoherent)
4 cacheable coherent exclusive (exclusive)
5 cacheable coherent exclusive on write (sharable)
6 cacheable coherent update on write (update)
7 reserved '

EntryHi, EntryLo0, EntryLo1, and PageMask Registers

These registers provide the data pathway through which the TLBis
read, written, or probed. When address translation exceptions occur,
these registers are loaded with relevant information about the address
that caused the exception.

EntryHi Register (CPU Register 10)

The EntryHi register is a read /write register used to access the TLB.In
addition, the EntryHi register contains the current ASID value for the
processor. This is used to match the virtual address with a TLB entry
when virtual addresses are presented for translation.

The EntryHi register holds the contents of the high-order bits of aTLB
entry when performing TLB read and write operations. When either a
TLB refill, TLB invalid, or TLB modified exception occurs, the EntryHi
register is loaded with the Virtual Page Number (VPN) and the ASID
of the virtual address that failed to have a matching TLB entry. For
more information on TLB exceptions, see Chapter 5, Exception
Processing. ,

EntryHi is accessed by the TLBP, TLBW, TLBWI, and TLBR
instructions. Figure 4-8 shows the format of this register.
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EntryLo0 (2), and EntryLo1 (3) Registers

EntryLo consists of two registers: EntryLo0 for even virtual pages and
EntryLol for odd virtual pages. The EntryLo0 and EntryLol registers
are read/ write registers used to access a TLB. EntryLo0 and EntryLol
hold the Physical Page Frame Number (PFN) of the TLB entry for even
and odd pages respectively when performing TLB read and write
operations. Figure 4-8 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read /write register for reading from or
writing to the TLB; it implements a variable page size by holding a
per-entry comparison mask. TLB read and write operations use this
register as a source or destination; when virtual addresses are
presented for translation, the corresponding bits in the TLB spedify
which of the virtual address bits 24..13 participate in the comparison.
Figure 4-8 shows the format of the PageMask register.

Table 4-2 gives MASK values for the full range of page sizes. When
MASK is not one of these values, the operation of the TLB is
undefined. ’

Table 4-2 MASK Values for Page Sizes

Page size Bit
24 23 22 21 20 19 18 17 16 15 14 13
4Kbytes|]0 0 0 0 O O 0 O O O 0 O
16Kbytesl0 0 0o 0 O O ©O0 0 O O 1 1
G4Kbytes|/0 0 o 0 o0 O O O 1 1 1 1
256Kbytesf0 0 0o 6 o0 o 1t 1 1 1 1 1
iMbyte (O 0 O O 1 11 1 1 1 1 1
4Mbytesi0 0 1 1 1 1 1 1 1 1 1 1
i6Mbytes|{t 1 1 1 1 1 1 1 1 1 1 1
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Index Register (0)

The Index register is a 32-bit, read/ write register containing six bits
that index an entry in the TLB. The high-order bit of the register shows
the success or failure of a TLB Probe (TLBP) instruction (described at
the end of this chapter).

The Index register also specifies the TLB entry that is affected by the
TLB Read (TLBR) and TLB Write Index (TLBWI) instructions. Figure
49 shows the format of the Index register.

Index Register
31 30 65 0
P 0 Index

1 25 6

P Probe failure. Set to 1 when the last TLBProbe (T LBP) instruction was
unsuccessful. ‘

Index  Index to the TLB entry that will be affected by the TLBRead and TLBWrite
instructions.

0 Reserved. Must be written as zeroes, returns zeroes when read.

Figure 4-9 The Index Register

Random Register (1)

The Random register is a read-only register of which six bits are used
to index an entry in the TLB. This register decrements for each
instruction executed. The values range between: ‘

o alower bound set by the number of TLB entries reserved
for exclusive use by the operating system (the contents of
the Wired register), and

o an upper bound set by the total number of TLB entries. 47
maximum.)

The Random register specifies the entry in the TLB affected by the TLB
Write Random instruction, TLBWR. The register does not need to be
read for this purpose; however, the register is readable to verify
proper operation of the processor.
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To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written. The format of the Random register

is shown in Figure 4-10.
Random Register
31 65 0
0 Random
26 6

Random TLB Random Index
0 Reserved. Must be written as zeroes, retums zeroes when read.

Figure 4-10 The Random Register

Wired Register (6)

The Wired register is a read/ write register that specifies the boundary
between the wired (fixed, nonreplaceable entries that cannot be
overwritten by a TLBWR operation) and random entries of the TLB
(see Figure 4-11).

TLB

47

!

Range of Random

y Wired —-i———-

Register

0

Figure 4-11 Wired Register Location
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The Wired register is set to zero upon system reset. Writing this
register also sets the Random register to the value of its upper bound
(see Random Register, above). Figure 4-12 shows the format of the

Wired register.
Wired Register
31 ‘ ' 65 0
0 Wired
26 6

Wired TLB Wired boundary
0

Reserved. Must be written as zeroes, returns zeroes when read.

Figure 4-12 The Wired Register

Virtual Address Translation

During virtual-to-physical address translation, the CPU compares the
ASID and, depending upon the page size, the highest 7-to-19 bits in
32-bit mode (VPN) and the highest 15-to-27 bits in 64-bit mode (VPN)
of the virtual address to the contents of the TLB. Figure 4-13 illustrates
the TLB address translation process. -
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Virtual Address (Input)

: h 4
TLB . TLB . XTLB
Invalid Refill Refill

Exception Exception

Physical Address (Output)

Figure 4-13 R4000 TLB Address Translation
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A virtual address matches a TLB entry when the VPN field of the
virtual address equals the VPN field of the entry, and either the Gbit
of the TLB entry is set or the ASID field of the virtual address (the
current ASID is held in the EntryHi register) matches the ASID field of
the TLB entry. While the V bit of the entry must be set for a valid
translation to take place, it is not involved in the determination of a
matching TLB entry.
If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry. Otherwise, a
TLB miss exception occurs. If the access control bits (D and V) indicate
that the access is not valid, a TLB modification or TLB invalid

_ exception occurs. If the C bits equal binary 010, the physical address
that is retrieved is used to access main memory, bypassing the cache.
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TLB Instructions

The instructions that the CPU provides for working with the TLB are
listed in Table 4-3, and are described briefly below.

Table 4-3 TLB Instructions

Op Code Description

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

Translation Lookaside Buffer Probe (TLBP). The Index register is
loaded with the address of the TLB entry whose contents match the
contents of the EntryHi register. If no TLB entry matches, the high-
order bit of the Index register is set. An instruction occurring
immediately after a TLBP instruction and causing a memory data
reference produces undefined results. Results are also undefined ifa
TLB reference produces more than one hit in the TLB. '

Translation Lookaside Buffer Read (TLBR). This instruction loads
the EntryHi and EntryLo0, EntryLol registers with the contents of the
TLB entry specified by the contents of the Index register.

Translation Lookaside Buffer Write Index (TLBWI). This instruction
loads the specified TLB entry with the contents of the EntryHi and
EntryLo0, EntryLol registers. The contents of the Index register specify
the TLB entry.

Translation Lookaside Buffer Write Random (TLBWR). This
instruction loads a pseudo-randomly-specified TLB entry with the
contents of the EntryHi and EntryLo0, EntryLol registers. The contents
of the Random register specify the TLB entry.
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5

This chapter describes the exception processing capabilities and
hardware of the R4000. It presents an overview of the CPU exception
handling process and describes the format and use of each CPU
exception handling register. This chapter also describes how the
R4000 handles each kind of exception. .
For a description of FPU Exceptions, please refer to Chapter 6,
Floating-Point Exceptions. .

Exception Handling Operation

The R4000 processes exceptions from a number of sources, including-
. TLB misses, arithmetic overflows, I/O interrupts, and system calls.
When the CPU detects an exception, the normal sequence of
instruction execution is suspended; the processor exits the current
mode and enters Kernel mode. The processor then disables interrupts
and forces execution of a software handler located at a fixed address.
The handler saves the context of the processor, including the contents
of the program counter, the current operating mode (User or
Supervisor), and the status or the interrupts (enabled or disabled).
This context must be restored when the exception has been handled.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) with a restart location where execution may resume
after the exception has been serviced. The restart location in the EPC
is the address of the instruction that caused the exception or, if the
instruction was executing in a branch delay slot, the address of the
branch instruction immediately preceding the delay slot.
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The Exception Handling Registers

This section describes the CP0 registers that are used in exception
processing. Software examines the CP) registers during exception
processing to determine the cause of an exception and the state of the
CPU at the time of an exception. Each of these registers is described in
detail in the sections that follow. ’

Table 5-1 CPO Registers

Register Name : ! CP0 No. I
Context 4
BadVAddr (Bad Virtual Address) - 8
Count 9
Compare register 1
Status 12
Cause - L : 13
EPC (Exception Program Counter) 14
PRId (Processor Revision Identifier) 15
Config ' 16
LLAdr (Load Linked Address) 17
WatchLo (Memory Reference Trap Address Low) 18
WatchHi (Memory Reference Trap Address High) 19
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
TagLo (Cache Tag) 28
TagHi (Cache Tag) 29
ErrorEPC (Error Exception Program Counter) 30

Two other CPO registers that are part of the virtual memory
management system and contain important information about
exception handling are the Index Register (CPO register 0) and the
Random Register (CPO register 1). These two registers are described in
Chapter4. -
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Context Register (CPO Register 4)

The Context Register is a read /write register containing a pointer to
an entry in the Page Table Entry (PTE) array. This array is an operating
system data structure which stores virtual to physical address
translations. When there is a TLB miss, operating system software
handles the miss by loading the TLB with the missing translation from
the PTE array. The Context register is intended for use by the TLB
refill handler that loads entries for references to a 32-bit address space.

The Context register duplicates some of the information provided in
the BadV Addr register, but the information is in a form that is more
useful for a software TLB exception handler.

The Context register can be used by the operating system to hold a
pointer into the PTE array. The operating system sets the PTE base
field in the register, as needed. Normally, the operating system uses
the Context register to address the current page map, which resides in
the kernel-mapped segment kseg3. This register is included solely for
use of the operating system. o _

For all addressing exceptions except bus errors, this register holds the
Virtual Page Number/2 (VPN2) from the most recent virtual address
for which the translation was invalid. Figure 5-1 shows the format of
the Context register.

32-bit
Mode

64-bit
Mode

Context Register
31 23 22 4 3 0
PTEBase BadVPN2 Y
9 19 4
63 28 22 4 3 0
PTEBase BadVPN2 Y
41 19 4

Figure 5-1 Context Register Format

Bit-field descriptions of the Context register are:

o The BadVPN?2 field is written by hardware on a miss. It
contains the VPN of the most recently translated virtual
address that did not have a valid translation.

e The PTEBase is a read/write field for use by the operating
system. It is normally written with a value that allow the
operating system to use the Context register as a pointer
into the current PTE array in memory.
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The 19-bit BadVPN2 field contains bits 31..13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry

maps to an even-odd page pair. This format can be used directly as an
address in a table of pairs of 8-byte PTEs, for a 4-Kbyte page size. For
other page and PTE sizes, shifting and masking this value produces an

appropriate address.

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register
that displays the most recently translated virtual address that failed to

_ have a valid translation.

The processor does not write to the BadV Addr register when the EXL
bit in the Status registerissettoa 1.

Figure 5-2 shows the format of the Bad Virtual Address register.

Note: The Bad Virtual Address register does not save any information
for bus errors because they are not addressing errors.

BadVAddr Register
31 .
32-bit .
Mode Bad Virtual Address
63 a2 )
64-bit ; -
Mode Bad Virtual Address
64
Figure 5-2 BadV Addr Register Format
Count Register (9)

The Count register acts as a timer, incrementing at a constant rate
whether or not an instruction is executed, retired, or any forward
progress is made. This register increments at half the maximum
instruction issue rate.

This register can be read or written; it can be written for diagnostic
purposes or system initialization to synchronize two processors
operating in lock-step.

Figure 5-3 shows the format of the Count register.

54
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_ Count Register (R4000)
31 ' 0
' . Count “
32

Figure 5-3 The Count Register

Compare Register (11)

The Compare register implements a timer service (see also the Count
register) which maintains a stable value and does not change on its
own. When the value of the Count register equals the value of the
Compare register, interrupt bit IP; in the Cause register is set. This
causes an interrupt to be taken on the next execution cycle in which
 the interrupt is enabled. Writing a value to the Compare register, asa
side effect, clears the timer interrupt.
For diagnostic purposes, the Compare register is read/ write. In normal
use however, the Compare register is only written. Figure 5-4 shows
the format of the Compare register.

Compare Register
31 ' 0
Compare
32

Figure 5-4 Compare Register Format
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Status Register (12)

The Status register (SR) is a read/write register that contains the
operating mode, interrupt enabling, and the diagnostic states of the
processor. The following list describes Status register fields that are
used in all R-Series processors; the format of the register is shown in
Figure 5-5 and Figure 5-6:

e The Interrupt Mask (IM) field is an 8-bit field that controls

" the enabling of eight interrupt conditions. An interrupt is
taken if interrupts are enabled, and the corresponding bits
are set in both the Interrupt Mask field of the Status
register and the Interrupt Pending field of the Cause
register. For more information, refer to the Interrupt
Pending (IP) field of the Cause register.

« The Coprocessor Usability (CU) field is a 4-bit field that
controls the usability of four possible coprocessors.
Regardless of the CUO bit setting, CP0 is always considered
usable in Kernel mode. .

" ¢ The Diagnostic Status (DS) field is a 9-bit field used for
self-testing and checking the cache and virtual memory
system.

The Reverse Endian (RE) bit, bit 25, is used to reverse the endianness
of the machine in User mode. R-Series processors are configured as
either Little-endian or Big-endian at system reset. This selection is
used in Kernel and Supervisor modes, and in the User mode when the
RE bit is 0; setting this bit to 1 inverts the selection in User mode.

Figure 5-5 shows the formats of the Status register. Additional
information on the Diagnostic Status (DS) field is found in Figure 5-6.

5-6
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The Status Register
31 28 2726 25 24 16 15 87 65 43 2 1 0
cu
(Cu3...0u0) RP}FR|RE DS Zz M KxISX UX|KSU|ERLUEXL]| IE
4 11 1 . 9 8 1 11 2 1 1 1
cuU Controls the usability of each of the four coprocessor unit numbers (1 — usable;
0 — unusable).
CPO is always usable when in Kernel mode, regardless of the setting of the CU, bit.
RP Enables reduced-power operation by reducing the internal clock frequency
(0 — full speed; 1— reduced clock). The clock divisor is programmable at boot time.
FR Enables additional floating-point registers (0 — 16 registers; 1 — 32 registers).
RE Reverse Endian in User mode.
Ds. Diagnostic Status field (see Figure 5-6).
M interrupt Mask: controls the enabling of each of the external, intemal, and
software interrupts (0 — disabled, 1-> enabled). The Interrupt Mask (IM) fieldisan
&-bit field that controls the enabling of eight interrupt conditions. An interrupt is taken if
interrupts are enabled, and the corresponding bits are set in both the Interrupt Mask
. field of the Status register and the Interrupt Pending field of the Cause register.
KX Enables 64-bit addressing in kemnel mode. The Extended addressing TLB refill
exception is used for TLB misses on kernel addresses. (0 — 32-bit, 1 — 84-bit)
SX Enables 64-bit addressing and operations in supervisor mode. The Extended
addressing TLB refill exception is used for TLB misses on supervisor addresses.
(0 - 32-bit, 1 — 64~bit) :
Ux Enables 64-bit addressing and operations in user mode. The Extended addressing
TLB refill exception is used for TLB misses on supervisor addresses.
(0 - 32-bit, 1 — 64-bit)
KSU  Mode (10 — User, 01 — Supervisor, 00 — Kemel)
ERL Error Level (0 — normal, 1 — error)
EXL Exception Level (0 — normal, 1 — exception)
IE Interrupt Enable (0 - disable, 1 — enable)
0 Reserved. Must be written as zeroes, returns zeroes when read.

Figure 5-5 The Status Register

The Status register contains a base mode (KSU), base interrupt enable
(IE), and two modifier bits (EXL and ERL). These bits allow support
for Supervisor mode as well as rapid TLB refill exceptions for the
kernel address space.

Interrupt Enable. Interrupts are enabled when all of the following
field conditions are true:

e IEissettol
e EXL is cleared to 0
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e ERLis cleared to 0
If these conditions are met, interrupts are recognized according to the
setting of the IM bits.
Processor Modes. The following R4000 Status register bit settings are
required for User, Kernel, and Supervisor modes.

e The processor is in User mode when KSU is equal to 10,
and EXL is cleared to 0, and ERL is cleared to 0.

o The processor is in Supervisor mode when KS5U is equal to
01, and EXL is cleared to 0, and ERL is cleared to 0.

o The processor is in Kernel mode when KSU is equal to 00
or EXLissettol,or ERLissettol. .

32- and 64-bit Modes. The following R4000 Status register bit settings
select 32- or 64-bit operation for User, Kernel, and Supervisor modes.
Enabling 64-bit operation permits the execution of 64-bit opcodes and

~ translation of 64-bit addresses. 64-bit operation for User, Kernel and

Supervisor mode may be set independently.
o  64-bit addressing is enabled for kernel mode when KX is
set to 1. 64-bit operations are always valid in kernel mode.

o 64-bit addressing and operations are enabled for
supervisor mode when SX is set to 1.

o 64-bit addressing and operations areenabled for user mode
when UX issettol. ' }

Kernel Address Space Accesses. Access to the Kernel address
space is allowed when the processor is in kernel mode:

e KSU s equal to 00.
e EXLissettol.
e ERLissettol.

Supervisor Address Space Accesses. Access to the Supervisor
address space is allowed when the processor is in kernel or supervisor
mode:

e KSU is not equal to 10 (not in User mode).
e EXLissettol.
e ERLissettol

~ User Address Space Accesses. Access to the User address space is

always allowed.

5-8
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Reset. The contents of the Status register are undefined atreset, except
for the following bits in the Diagnostic Status Field:

o TSiscleared to 0

o ERLand BEV aresetto1

e SR distinguishes between Reset, and Soft Reset
(Nonmaskable Interrupt [NMI]).
Figure 5-6 shows the format of the diagnostic status (DS) field, along

with bit descriptions. All bits in the DS field are read and write, except
TS. .

31

The Diagnostic Status Fields
2524 23 22 21 20 19 18 17 16 15 0

0 |BEV|TS|SR| 0|CH|CE|DE|"

BEV

2 1.1 11 1 1 1 16

Controls the location of TLB refill and general exception vectors. (0— normal; -
1— bootstrap)

78 TLB shutdown has occurred (read-only).
SR A soft reset has occurred. ‘
CH “Hit" (tag match and valid state) or “miss” indication for last CACHE Hit Invalidate, Hit
: Write Back Invalidate, Hit Write Back, Hit Set Virtual, or Create Dirty Exclusive for a sec-
" ondary cache. ’ )
CE Contents of the ECC register are used to set or modify the check bits of the caches
when CE equals 1; see the ECC register description.
DE Specifies that cache parity or ECC errors are not to cause exceptions.
o Reserved. Must be written as zeroes, returns zeroes when read
Figure 5-6 R4000 Status Register DS Field
Cause Register (13)

The Cause register is a 32-bit read/ write register. The Cause Register’s
contents describe the cause of the most recent exception. A 5-bit
exception code (ExcCode) indicates the cause as listed in Table 5-2. The
remaining fields contain detailed information specific to certain
exceptions. All bits in the register, with the exception of the IP(1..0)
bits, are read-only. IP(1..0) bits are used for software interrupts. Table
5-2 shows a decoding of the 5-bit Exception Code field, and

Figure 5-7 shows the format of the Cause Register.

R4000 User's Manual--Preliminary 5-9



Chapter 5

. The Cause Register
31 30 20 28 27 16 15 876 21 0
BD| 0| CE 022 L 0| &% | ©
1 1 2 12 8 1 5 2
BD Indicates whether or not the last excebtion was taken while executing in a brahch
delay slot. (1— delay slot; 0 — normal).
CE Indicates the coprocessor unit number referenced when a Coprocessor
Unusable exception is taken.
P Indicates whether an interrupt is pending.
ExcCode This is the exception code field.
o Reserved. Must be written as zeroes, returns zeroes when read.
Figure 5-7 Cause Register Format
5-10
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Table 5-2 The ExcCode Field of Cause Register

Exception . .
Code Value Mnemoxgc Description
# ————— — e ——e— ———— —
0 Int Interrupt '
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
- 10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 VCEI Virtual Coherency Exception Instruction
15 FPE Floating-Point exception
1622 |- | Reserved
23 WATCH Reference to WatchHi/WatchLo address
24-30 |- Reserved
31 VCED Virtual Coherency Exception Data

The R4000 processor has eight interrupts, IP(7:0), which are used as

follows:

e IP(7..2): Reading the Cause register returns the inclusive ‘OR
of two internal registers for interrupts IP(6..2). One of the
internal registers is latched each cycle from the interrupt
pins on the R4000; the other register is read and written by
commands on the system interface port. On reset, IP(7) is
configured as either a sixth external interrupt, or an

internal interrupt that is set when the Count register is

equal to the Compare register.

e IP(1..0) are software-only interrupts, and can be written to
set or reset software interrupts.

R4000 User's Manual--Preliminary
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Floating-point exceptions use a separate exception code contained in
the Floating-Point Control and Status Registers (see Chapter 6).

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) isa read-write register that
contains the address where processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:
e the virtual address of the instruction that was the direct
cause of the exception, or

e the virtual address of the immediately preceding branch or
jump instruction (when the instruction is in a branch delay
slot, and the Branch Delay bit in the Cause register is set).

The EPC register is read / write.
The processor does not write to the EPC register when the EXL bit in

 the Status registerisset toa 1.

The format of the EPC register is shown in Figuré 5-8.

The EPC Register
31 9 0
- 32-bit

Mode | EPC

63 32 0
64-bit EP
Mode C

64
EPC Address where processing is to resume.
Figure 5-8 EPC Register Format
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Processor Revision Identifier (PRId) Register (15)

The Processor Revision Identifier (PRId) is a 32-bit, read-only register
that contains information identifying the implementation and
revision level of the CPU and CPO. Figure 5-9 shows the format of the

PRId register.
PRId Register
31 16 15 87 0
0 imp Rev
16 8 8
Imp Implementation number.
Rev Revision number. _
0 Reserved. Must be written as zeroes, retumns zeroes when read.

Figure 5-9 Processor Revision Identifier Register Format

The low-order byte (bits 7..0) of the PRId register is interpreted as a
coprocessor unit revision number, and the second byte (bits 15..8) is
interpreted as a coprocessor unit implementation number. The R4000
COprocessor implementation number is 0x04. The contents of thehigh- -
order halfword of the register are reserved.

The revision number is a value of the form y.x, where y is a major
revision number in bits 7..4 and x is a minor revision number in bits
3.0.

The revision number can distinguish some chip revisions. However,
MIPS does not guarantee that changes to its chips will necessarily be '
reflected in the PRId register, or that changes to the revision number
necessarily reflect real chip changes. For this reason these values are
not listed and software should not rely on the revision number in the
PRId register to characterize the chip.
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Config Register (16)

The Config register specifies various configuration options selected on
R4000 processors. Some configuration options, as defined by Config
bits 31..6, are set by the hardware during reset, and are included in this
register as read-only status for software. Other configuration options
are read / write (defined by Config bits 5..0) and controlled by software;
on reset these fields are undefined. -

The Config register should be initialized by software before caches are
used. The caches should be completely written back to memory before
changing block sizes, and reinitialized after any change is made.
Figure 5-10 shows the format of the Config register and Table 5-3 lists
the field and bit definitions for the Config Register.

The Config Register

31 30 28 27 24 2322 212019181716 1514 13 1211 9 8 6 54 3 2- 0
CM| EC EP SB [SS|SW| EW |SC|SM|BE|EM|EB| 0| IC DC [iB|DBICU] KO ‘
1 3 4 2 11 2 111 111 3 3 111 3

Figure 5-10 Config Register Format
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Table 5-3 Config Register Field and Bit Definitions

Field/Bit
Name Description
CM Master-Checker Mode (1 — Master-Checker Mode is enabled) This bit is automat-
ically 0 on a Soft Reset.
EC - System clock ratio:
' 0 — processor clock frequency divided by 2
1 — processor clock frequency divided by 3
2 — processor clock frequency divided by 4
EP Transmit data pattern (pattern for write-back data):
0-D Doubleword every cycles
1 - DDx 2 Doublewords every 3 cycles
2 — DDxx 2 Doublewords every 4 cycles
3 — DxDx 2 Doublewords every 4 cycles
4 — DDxxx 2 Doublewords every 5 cycles
5 — DDxxxx 2 Doublewords every 6 cycles
6 — DxxDxx 2 Doublewords every 6 cycles
7 — DDxxxxx 2 Doublewords every 7 cycles
8 — DxxxDxxx 2 Doublewords every 8 cycles
SB Secondary Cache block size:
0 — 4 words
1 — 8 words
2 — 16 words
3 — 32 words
SSs Split Secondary Cache Mode (0 — instruction and data mixed in secondary cache;
1 = instruction and data separated by SCAddry7)
- SW Secondary Cache port width (0 — 128-bit data path to SCache; 1 — 64-bit)
EW System Port width (0 — 64-bit; 1 — 32-bit) “
SC Secondary Cache present (0 — SCache present; 1 — no SCache present)
SM Dirty Shared coherency state; 1 — then Dirty Shared state is disabled;
0 — enabled
BE BigEndianMem (1 — then kernel and memory are Big Endian, 0 — Little Endian)
EM ECC mode enable (0 — ECC mode enabled;1 — parity mode enabled)
EB Block ordering (0 — then sequential,1 — sub-block)
0 Reserved. Must be written as zeroes, returns zeroes when read.
Ic Primary ICache Size (ICache size = 2'2*'C bytes
DC Primary DCache Size (DCache size = 212*0C bytes)
18 Primary ICache line size (1 — 32 bytes; 0 — 16 bytes)
DB . Primary DCache line size (1. — 32 bytes; 0 — 16 bytes)
Ccu Update on Store Conditional (0 — Store Conditional uses coherency algorithm
specified by TLB; 1 — SC uses cacheable coherent update on write)
KO kseg0 coherency algorithm (see EntryLo0 and EntryLo1 Registers)
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Load Linked Address (LLAddr) Register (17)

The Load Linked Address (LLAddr) register is an R4000 read/write
coprocessor register that contains the physical address read by the
most recent Load Linked instruction. This register is used only for
diagnostic purposes, and serves no function during normal operation.
Figure 5-11 shows the format of the LLAddr register; PAddr represents
bits 35..4 of the physical address.

The LLAdr Register
31 0

PAddr(35..4)
32

Figure 5-11 LLAdr Register Format

WwatchLo (18) and WatchHi (19) Registers

R4000 processors provide a debugging feature to detect references to
a selected physical address; load and store operations to the location
specified by the WatchLo and WatchHi registers cause a Watch
exception (described later in this chapter). Figure 5-12 shows the
format of the WatchLo and WatchHi registers.

XContext Register (CP0 Register 20)

The XContext Register is a read / write register containing a pointer to
an entry in the Page Table Entry (PTE) array. This array is an operating
system data structure which stores virtual to physical address
translations. When there is a TLB miss, operating system software
handles the miss by loading the TLB with the missing translation from
the PTE array. The XContext register is intended for use with the XTLB

_refill handler, which loads TLB entries for references to a 64-bit
address space.

The XContext register duplicates some of the information provided in
the BadV Addr register, but the information is in a form that is more
useful for a software TLB exception handler.
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The WatchLo Register
31 , 3 2 1 0
PAddro O|{R | W
29 11 1
" The WatchHi Register
3 4 3 - 0
o PAddr1
28 4

PAddr1 Bits 35..32 of the physical address.
PAddro . Bits 31..3 of the physical address.

R Trap on load references if set tol.
w Trap on store references if setto1. _ o
0 Reserved. Must be written as zeroes, retums zeroes when read.

Figure 5-12 WatchLo and WatchHi Register Formats

The XContext register can be used by the operating system to hold a
pointer into the PTE array. The operating system sets the PTE base
field in the register, as needed. Normally, the operating System uses.
the Context register to address the current page map, which resides in
the kernel-mapped segment kseg3. This register is included solely for
use of the operating system.

For all addressing exceptions except bus errors, this register holds the
Virtual Page Number/2 (VPN2) from the most recent virtual address
for which the translation was invalid. Figure 5-13 shows the format of
the XContext register.

XContext Register

63 33 3231 30 4 3 0
PTEBase R BadVPN2
31 2 27 4

Figure 5-13 XContext Register Format
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Bit-field descriptions of the XContext register are:

e The BadVPNR2 field is written by hardware on a miss. It
contains the VPN of the most recently translated virtual -
address that did not have a valid translation.

¢ R is the Region: 00—user, 01—supervisor, 11—kernel.
These are bits 63..62 of the virtual address. '

o The PTEBase is a read/write field for use by the operating
system. It is normally written with a value that allows the
operating system to use the Context register as a pointer
into the current PTE array in memory. '

The 27-bit BadVPN2 field contains bits 39..13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry
maps to an even-odd page pair. This format canbe used directly as an
address in a table of pairs of 8-byte PTEs, for a 4-Kbyte pagesize. For
other page and PTE sizes, shifting and masking this value produces an
appropriate address. ‘ ‘

Error Correction Code (ECC) Register (26)

The Error Correction Code (ECC) register is an 8-bit read /write
register; it reads and writes either secondary-cache data ECC bits or
primary-cache data parity bits, for cache initialization, cache
diagnostics, or cache error handling. (Tag ECC and parity are loaded
from and stored to the TagLo register.) : '
The ECC register is loaded by the CACHE operation Index Load Tag.
Itis: ' ‘
e written into the primary data cache on store instructions
(instead of the computed parity) when the CE bit of the
Status register is set,

¢ substituted for the computed instruction parity for the
CACHE operation Fill, or

e XORed into the computed ECC for the secondary cache for
the following primary data cache CACHE operations:
Index Write Back Invalidate, Hit Write Back, and Hit Write
Back Invalidate. : :

Figure 5-14 shows the format of the ECC register.
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The ECC Register
31 8 7 0
0 ' ECC
24 8
ECcC An 8-bit field specifying the ECC bits read from or written to a

secondary cache, or the even byte parity bits to be read from or
written to a primary cache.

Reserved. Must be written as zeroes, retums zeroes when read.

Figure 5-14 ECC Register Format

Cache Error Register (27)

The CacheErr register is a 32-bit read-only register that handles ECC
errors in the secondary cache and parity errors in the primary cache.
Parity errors cannot be corrected. All single- and double-bit ECC
errors in the secondary cache tag and data are detected and single-bit
errors in the tag are automatically corrected. Single-bit ECC errorsin
the secondary cache data are not automatically corrected.

The CacheErr register provides cache index and status bits which
indicate the source and nature of the error; it is loaded when a Cache
Error exception is taken. Figure 5-15 shows the format of the CacheErr
register.
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The CacheErr Register
31 30 20 28 27 26 25 24 23 2 21 2 0
ER|EC|ED|ET|ES|EE|EB|EI| © Sldx : PIDx

11111111 2 19 3

ER Type of reference (0 — instruction, 1 — data).

EC Cache level of the error (0 — primary, 1 — secondary).

ED Indicates whether a data field error occurred (0 — no efror, 1 — error).
ET Indicates whether a tag field error occurred (0 — no error, 1 — error).

ES Indicates that the error occurred while accessing primary or secondary cache
infrespons;e to an external request (0 — internal reference, 1 — external
reference). :

EE  Setif the error occurred on the SysAD bus. ,

EB - Setif a data error occurred in addition to the instruction error (indicated by the.
remainder of the bits), which requires flushing the data cache after fixing the
instruction error. - :

El Set on a secondary data cache ECC error while refilling the primary cache on
a store miss. The ECC handler must first do an Index Store Tag to invalidate
the incorrect data from the primary data cache.

Sldx  Bits pAddr(21..3) of the reference that encountered the error (which is not
necessarily the same as the address of the doubleword in error, but is sufficient
to locate that doubleword in the secondary cache). :

Pidx Bits vAddr(14..12) of the doubleword in error (used with Sidx to constructa
virtual index for the primary caches).

0 Reserved. Must be written as zeroes, returns zeroes when read.

Figure 5-15 CacheErr Register Format
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Cache Tag (TagLo, and TagHi) (28) (29) Registers

The TagLo and TagHi registers are 32-bit read / write registers that hold
either the primary cache tag and parity, or the secondary cache tag
and ECC during cache initialization, cache diagnostics, or cache error
handling. The Tag registers are written by the CACHE and MTCO
instructions.

The P and ECC fields of these registers are ignored on Index Store Tag
operations. Parity and ECC are computed by the store operation.

Figure 5-16 shows the format of these registers for primary cache

operations.
The TagLo and TagHi Registers (P-Cache)
\ 31 8 7 6 5 1 0
- TaglLo o PTagLo ' PState 0 P
‘ ' 24 25
31 ' 0
TagHi 0
‘ 32

Figure 5-16 TagLo and TagHi Register (P-Cache) Formats

Figure 5-17 shows the format of these registers for secondary cache

operations.
The TagLo and TagHi Registers (S-Cache)
31 13 12 10 9 76 0
TagLo STaglLo SState | Vindex | ECC
19 3 8 7

31 _ 0
TagHi 0
32

Figure 5-17 TagLo and TagHi Register (S-Cache) Formats

Bit definitions of the TagLo and TagHi registers are given in Table 5-4.
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Table 54 The Cache Tag Field and Bit Definitions

Bit Name Description

PTaglLo A 24-bit field specifying the physical address bits 35..12.

PState A 2-bit field specifying the primary cache state.

P A 1-bit field specifying the primary tag even parity bit.

STaglLo A 19-bit field specifying the physical address bits 35..17.

SState A 3-bit field specifying the secondary cache state.

Vindex A 3-bit field specifying the virtual index of the associated
primary cache line, vAddr(14..12).

ECC ECC for the STag, SState, and Vindex fields.

0 Reserved. Must be written as zeroes, retumns zeroes when

read.

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register; butis used on ECC
and parity error exceptions. It is also used to store the PC onReset, .
Soft Reset, and NMI exceptions. The read/write ErrorEPC register
contains the virtual address at which instruction processing can
resume after servicing an error. The address may be either:

e the virtual address of the instruction that caused the
exception, or :

e the virtual address of the immediately preceding branch or
jump instruction when that address is in a branch delay
slot.

There is no branch delay slot indication for the ErrorEPC register.
Figure 5-18 shows the format of the ErrorEPC register.

31

The ErrorEPC Register

ErrorEPC

63

32 ) 0

ErrorEPC

ErrorEPC

64
Error Exception Program Counter

Figure 5-18 ErrorEPC Register Format
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Exception Description Details

This section describes each of the R4000 exceptions — its cause,
handling, and servicing. ‘ .

Exception Operétion

To handle an exception, the processor forces execution of a handler, at
a fixed address in Kernel mode, with interrupts disabled. To resume
normal operation, the Program Counter (PC), operating mode, and
interrupt enable must be restored; thus it is this context that must be
saved when an exception is taken.

When an exception occurs, the EPC register is loaded with the restart
location at which execution can resume after servicing the exception.
The EPC register contains the address of the instruction that caused
the exception; or, if the instruction was executingina branch delay
slot, the EPC register contains the address of the branch instruction
immediately preceding. . .

R4000 processors use the following mechanisms for saving and
restoring the operating mode and interrupt status:

e A single interrupt enable bit (IE) located in the Status
Register. - _

e A base operating mode (User, Supervisor, Kernel) located
in KSU of the Status Register.

e An exception level (normal, exception) located in EXL of
the Status Register.

e An error level (normal, error) located in ERL of the Status
Register.

Interrupts are enabled by setting the IE bit to 1 and both levels
(exception and error) to normal.

When the EXL bit in the Status register is zero, the User or Supervisor
operating mode is specified by the KSU bits in the Status register.
When the EXL bit is one, the processor is in Kernal mode and
exceptions set the EXL bit to one. The exception handler typically
resets the EXL bit to zero after saving the appropriate state, and then
sets the EXL bit back to one while restoring the state and restarting.
Returning from an exception (See the ERET instruction in Appendix
A), resets the EXL bit to zero.
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Figure 5-19 shows the R4000 reset exception.

T: undefined
Random « TLBENTRIES-1
Wired « 0
Config <- CM || EC || EP || SB || SS || SW || EW || SC||SM||BE||EM || EB]| 0 || 001
|| 001 || undefined®
EmmorEPC « PC -
SR ¢ SRa1 23| 11101/ 0 ]| SRyg.31l 11| SR
PC « 0xBFCO 0000

Figure 5-19 R4000 Reset Exception

Figure 5-20 shows the R4000 Soft Reset and NMI exception.

T: ErrorEPC « PC

SR < SR3y.23ll 11101 1]ISRig sl 1 ||3R1 0
PC « OxBFCO0 0000 -

Figure 5-20 R4000 Soft Reset and NMI Exception -

Figure 5-21 shows the R4000 exceptions except Reset, Soft Reset, NMI,

and Cache Error.
T- Cause — BD || 0 ]| OE [ 0°2 || Causeys_g || O || ExcCode || 02
- if SRy =0 then

EPC « PC
endit
SR « SR31.2 [ 11/ SRo
if SRyo = 1then

PC « 0xBFCO0 0200 + vector
else

PC « 0x8000 0000 + vector
endif

Figure 5-21 R4000 Exceptions (Except Reset, Soft Reset, NMlI, and Cache Error)
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Figure 5-22 shows the Cache Error exception.

T: EmrorEPC « PC
CacheErr «—ER||EC||ED||ET||ES || EE|| EB|| El il 02 || Sldx || Pldx
SR « SRy 3|l 11ISR1.0
if SRap = 1 then
PC « 0xBFCO 0200 + 0x100
else
PC « 0xA000 0000 + 0x100
endif

Figure 5-22 R4000 Cache Error Exception
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Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to
location 0xBFCO0 0000 in 32-bit mode or OxFFFF FFFF BFC0 0000 in
64-bit mode. Addresses for other exceptions are a combination of a
vector offset and a base address, determined by the BEV bit of the Status
register. Table 5-5 shows the Vector Base addresses, and Table 5-6
shows the Vector Offset to these addresses.

Table 5-5 Exception Vector Base Addresses

BEV R4000
Vector Base
32-bit mode 64-bit mode
0 0x8000 0000 OxFFFF FFFF 8000 0000
1 0x BFCO 0200 OxFFFF FFFF BFCO 0200

The vector base for the Cache Error exception is in kseg1 (0xA000 0000
in 32-bit mode, OXFFFF FFFF A000 0000 in 64-bit mode) instead of
kseg0 (08000 0000 in 32-bit mode, OXFFFF FFFF 8000 0000 in 64-bit
mode) when BEV is 0. This indicates that the caches are initialized and
that the vector may be cached.

When BEV is set to a 1, vector base for the Cache Error exception is
0xBFCO 0200 in 32-bit mode and OxFFFF FFFF BFC0 0200 in 64-bit
mode which is uncached and unmapped. This vector does not rely on
proper cache operation.

Table 5-6 Exception Vector Offset Addresses

Exception R4000

- Vector Offset
TLB refill, EXL =0 0x000
XTLB refill, EXL =0 0x080
Cache Error 0x100
Others : 0x180
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Priority of Exceptions

While more than one exception can occur for a single instruction, only
one exception is reported, with priority given in the order shown in

Table 5-7.
Table 5-7 Exception Priority Order

Reset

Soft Reset

NMI

Address error — Instruction fetch

TLB refill — Instruction fetch

TLB invalid — Instruction fetch

Caéhe error — Instruction fetch

Virtual Coherency — instruction fetch

Bus error — Instruction fetch

!nteger overflow, Trap, System call, Breakpoint,
Reserved Instruction, Coprocessor Unusable,
or Floating-Point Exception

Address error — Data access

TLB refill — Data access

TLB invalid — Data access

TLB modified — Data write

Cache error — Data access

Watch |

Virtual Coherency — Data access

Bus error — Data access

interrupt

R4000 User's Manual--Preliminary

5-27



Chapter 5

Reset Exception

Cause. The Reset exception occurs when the ColdReset” signal is

.asserted and then deasserted. This exception is not maskable.

Handling, The CPU provides a special interrupt vector (0xBFC0 0000)
for this exception. The Reset vector resides in unmapped and
uncached CPU address space; therefore the hardware need not
initialize the TLB or the cache to handle this exception. The processor
can fetch and execute instructions while the caches and virtual
memory are in an undefined state.

The contents of all registers in the CPU are undefined when this
exception occurs except for the following:

o In the Status register, SR and TS are cleared to 0, and ERL
and BEV are set to 1. Other bits are undefined.

e The Random register is initialized to the value of its upper
bound (see the Random register for more information).
o The Wired register is initialized to 0.
Servicing. The Reset exception is serviced by initializing all processor
registers, COprocessor registers, caches, and the memory system; by
performing diagnostic tests; and by bootstrapping the operating
system.
The Reset exception vector is located in the uncached, unmapped

memory space of the machine so that instructions can be fetched and
executed while the cache and virtual memory system are still inan

undefined state.

Soft Reset Exception

Cause. The Soft Reset exception occurs in response to the Reset* input

signal, and execution begins at the Reset vector when Reset* is

deasserted. This exception is not maskable.

Handling. The Reset exception vector (OxBFC0 0000) is used for this
exception, located within unmapped and uncached address space so

' that the cache and TLB need not be initialized to handle this exception.

The SR bit of the Status register is set to distinguish this exception from
a Reset exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error suchas a Master/Checker mismatch.
Unlike an NMI, all cache and bus state machines are reset by this
exception; like Reset, it can be used on the processor in any state. The
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caches, TLB, and normal exception vectors need not be properly
initialized.
The contents of all registers are preserved when this exception occurs,
except for: . '

o The ErrorEPC register, which contains the restart PC.

e The ERL bit of the Status register, which is set to 1.

e The SR bit of the Status register, which is set to 1.

e The BEV bit of the Status register, which is set to 1.
Because the Soft Reset can abort cache and bus operations, cache and
memory state is undefined when this exception occurs.

Servicing. The Soft Reset exception is serviced by saving the current
processor state for diagnostic purposes, and reinitializing for the Reset
exception.

NonMaskable Interrupt (NMI) Exception

Cause. The NonMaskable Interrupt (NMI) exception occurs in
response to the falling edge of the NMI pin, or an external write to the
Int*[6] bit of the Interrupt register. As the name describes, this
exception is not maskable; it occurs regardless of the settings of the
EXL, ERL, and the IE Status register bits.

Handling. The Reset exception vector (0xBFCO 0000) is also used for
this exception. This vector is located within unmapped and uncached
address space so that the cache and TLB need not be initialized to
handle an NMI interrupt. The SR bit of the Status register is set to
differentiate this exception from a Reset exception.

Because an NMI could occur in the midst of another exception, in
general it is not possible to continue program execution after servicing
an NML _

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken
only at instruction boundaries. The state of the caches and memory
system are preserved by this exception. , ;
The contents of all registers are preserved when this exception occurs,
except for:

e The ErrorEPC register, which contains the restart PC.
e The ERL bit of the Status register, which is set to 1.

o The SR bit of the Status register, which is set to 1.

e The BEV bit of the Status register, which is set to 1.
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Servicing. The NMI exception is serviced by saving the current
processor state for diagnostic purposes, and reinitializing the system
for the Reset exception.

Address Error Exception

Cause. The Address Error exception occurs when an attempt is made

to:

Load, fetch, or store a word that is not aligned on a word
boundary.

Load or store a halfword that is not aligned on a halfword
boundary. ‘

Load or store a doubleword that is not aligned on a
doubleword boundary.

Reference the kernel address space from User or
Supervisor mode. :

Reference the Supervisor address space from User mode.

This exception is not maskable.

Handling. The common exception vector is used for this exception.
The AdEL or AdES code in the Cause register is set, indicating whether
the instruction (as shown by the EPC register and BD bit in the Cause
register) caused the exception with an instruction reference, load
operation, or store operation. ‘ :

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or which referenced protected
address space. The contents of the VPN field of the Context and
EntryHi registers are undefined, as are the contents of the EntryLo
register.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a branch delay slot. If in a branch delay
slot, the EPC register points at the preceding branch instruction and
the BD bit of the Cause register is set as indication.

Servicing. The process executing at the time is handed a UNIX
SIGSEGYV (segmentation violation) signal. This error is usually fatal to
the process incurring the exception.
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TLB Exceptions

There are three different types of TLB exceptions than can occur:

 TLB Refill occurs when there is no TLB entry to match a
reference to a mapped address space. '

e TLB Invalid occurs when a virtual address reference
matches a TLB entry that is marked invalid.

e TLB Modified occurs when a store operation virtual
address reference to memory matches a TLB entry which is
marked valid but is not dirty/writable.

TLB Refill Exception

Cause. The TLB refill exception occurs when there is no TLB entry to
match a reference to a mapped address space. This exception is not
maskable. . '
Handling. Two special exception vectors are provided for this
exception; one for references to 32-bit address spaces, and one for
references to 64-bit address spaces. The UX, SX, and KX bits of the
Status register determine whether the user, supervisor or kernel
address spaces are 32-bit or 64-bit spaces. All references use these
vectors when the EXL bit is set to 0 in the Status register.

The TLBL or TLBS code in the Cause register is set. This code indicates
whether the instruction, as shown by the EPC register and the BD bit
in the Cause register, caused the miss by an instruction reference, load
operation, or store operation. . ’

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address
translation. The EntryHi register also contains the ASID from which
the translation fault occurred. The Random register normally contains
a valid location in which to place the replacement TLB entry. The
contents of the EntryLo register are undefined.

The EPC register points at the instruction that caused the exception,
unless this instruction is in a branch delay slot, in which case the EPC
points at the preceding branch instruction and the BD bit of the Cause
register is set. :

Servicing: To service this exception, the contents of the Context or
XContext register are used as a virtual address to fetch memory
Jocations containing the physical page frame and access control bits
for a pair-of TLB entries. The two entries are placed into the EntryLo0/
EntryLol register, and the EntryHi and EntryLo registers are written
into the TLB.
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It is possible that the virtual address used to obtain the physical
address and access control information is on a page that is not resident
in the TLB. This is handled by allowing a TLB refill exception in the
TLB refill handler. This second exception goes instead to the common
exception vector because the EXL bit of the Status register is set.

TLB Invalid Exception

Cause. The TLB invalid exception occurs when a virtual address
reference matches a TLB entry that is marked invalid (TLB valid bit
cleared). This exception is not maskable.

Handling. The common exception vector is used for this exception.
The TLBL or TLBS code in the Cause register is set. This code indicates
whether the instruction, as shown by the EPC register and BD bit in
the Cause register, caused the miss by an instruction reference, load
operation, or store operation. o

When this exception occurs, the BadV Addr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which
the translation fault occurred. The Random register normally contains
a valid location in which to put the replacement TLB entry. The
contents of the EntryLo register are undefined.

The EPC register points at the instruction that caused the exception
unless this instruction is.in a branch delay slot, in which case the EPC |
points at the preceding branch instruction and the BD bit of the Cause
register is set.

Servicing, The valid bit of a TLB entry is typically cleared when:
e A virtual address does not exist.

e The virtual address exists, but is not in main memory (a
page fault).

A trap is desired on any reference to the page (for example,
to maintain a reference bit).

After servicing the cause of this exception, the TLB entry is located
with TLBP (TLB Probe), and replaced by an entry with its valid bit set.
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TLB Modified Exception

Cause. The TLB modified exception occurs when a store operation
virtual address reference to memory matches a TLB entry which is
marked valid but is not dirty/writable. This exception is not
maskable.

Handling. The common exception vector is used for this exception,
and the Mod code in the Cause register is set.

When this exception occurs, the BadV Addr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which
the translation fault occurred. The contents of the EntryLo register are
undefined.

The EPC register points at the instruction that caused the exception
unless this instruction is in a branch delay slot, in which case the EPC
points at the preceding branch instruction and the BD bit of the Cause
register is set. :

Servicing. The kernel uses the failed virtual address or virtual page
number to identify the corresponding access control information. The
page identified may or may not permit write accesses; if writes are not
permitted, a Write Protection Violation has occurred.

If write accesses are permitted, the page frame is marked dirty/
writable by the kemel in its own data structures. The TLBP instruction
is used to place the index (of the TLB entry that must be altered) into
the Index register. The EntryLo register is loaded with a word
containing the physical page frame and access control bits (withthe D
bit set), and the EntryHi and EntryLo registers are written into the TLB.

Cache Error Exception

Cause. The Cache Error exception occurs when either a secondary
cache ECC error or primary cache parity error is detected. This
exception is not maskable (however error detection can be disabled by
the DE bit of the Status register).

Handling. The processor sets the ERL bit in the Status register, saves
the exception restart address in ErrorEPC register, and then transfers
to a special vector in uncached space: 0xA000 0100 in 32-bit mode and
OxFFFF FFFF A000 0100 in 64-bit mode if the BEV bit is 0, otherwise
0xBFCO 0300 in 32-bit mode and OxFFFF FFFF BFC0 0300 in 64-bit
mode.

No other registers are changed.

Servicing. All errors should be logged.
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Single-bit ECC errors in the secondary cache can be corrected, using
the CACHE instruction, and execution resumed through ERET.

Cache parity errors and non-single-bit ECC errors in unmodified
cache blocks can be corrected by using the CACHE instruction to
invalidate the cache block, then overwriting the old data through a
cache miss and resuming execution with ERET. Other errors are not
correctable, and are likely to be fatal to the current process.

Virtual Coherency Exception

Cause. The Virtual Coherency exception occurs when a primary cache
miss hits in the secondary cache, but bits 14..12 of the virtual address
were not equal to the corresponding bits of the Pldx field of the

secondary cache tag, and the cache algorithm for the page (from theC
field in the TLB) specifies that the page is cached. This exception is not

~ maskable.

Handling. The common exception vector is used for this exception.
The VCEI or VCED code in the Cause register is set for instruction and
data cache misses respectively. The BadV Addr register holds the
virtual address that caused the exception. '

Servicing. The CACHE instruction can determine the old virtual
index, remove the data from the primary caches at the old virtual
index, and write the PIdx field of the secondary cache with the new
virtual index. At this point, the program can be continued. -
Software can avoid the cost of this trap by using consistent virtual
primary cache indexes to access the same physical data.

Bus Error Exception

Cause. The Bus Error exception occurs when signaled by board-level
circuitry for events such as bus time-out, backplane bus parity errors,
and invalid physical memory addresses or access types. This
exception is not maskable.

Bus Error occurs only when a cache miss refill, uncached reference, or
unbuffered write occurs synchronously; a Bus Error resulting from a
buffered write transaction must be reported using the general
interrupt mechanism. ,

Handling. The common interrupt vector is used fora Bus Error
exception. The IBE or DBE code in the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bitin
the Cause register) caused the exception by an instruction reference,
load operation, or store operation.
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The EPC register points at the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC points at the
preceding branch instruction and the BD bit of the Cause register is set.

Servicing. The physical address at which the fault occurred can be
computed from information available in the system control
coprocessor registers.

e If the IBE code in the Cause register is set (indicating an
instruction fetch reference), the virtual address is contained
in the EPC register.

e If the DBE code is set (indicating a load or store reference),
the instruction which caused the exception is located at the
virtual address contained in the EPC register (or four plus
the contents of the EPC register if the BD bit of the Cause
register is set).

The virtual address of the load and store reference can then be
obtained by interpreting the instruction. The physical address can be
obtained by using the TLBP instruction and reading the EntryLo
register to compute the physical page number.

The process executing at the time of this exception is handed a UNIX
SIGBUS (bus error) signal, which is usually fatal.

Integer Overflow Exception

- Cause. The Integer Overflow excepﬁoh occurs when an ADD, ADD],
SUB, DADD, DADDI or DSUB instruction results in a2's-complement
overflow. This exception is not maskable. :

Handling. The common exception vector is used for this exception.
The OV code in the Cause register is set.

The EPC register points at the instruction that caused the exception
unless the instruction is in a branch delay slot, in which case the EPC
points at the preceding branch instruction and the BD bit of the Cause
register is set. ' ,
Servicing. The process executing at the time of the exception is
handed a UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal. This error is usually fatal to the
current process. '
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Trap Exception

Cause. The Trap exception occurs when a TGE, TGEU, TLT, TLTU,
TEQ, TNE, TGEl, TGEUI, TLTI, TLTUL TEQI, or TNEI instruction
results in a TRUE condition. This exception is not maskable.
Handling. The common exception vector is used for this exception,
and the Tr code in the Cause register is set.

The EPC register points at the instruction causing the exception unless
the instruction is in a branch delay slot, in which case the EPC points
at the preceding branch instruction and the BD bit of the Cause register
is set. ‘ '

Servicing. The process executing at the time of a Trap exception is
handed a UNIX SIGFPE/FPE_INTOVF_TRAP (floating-point
exception/integer overflow) signal. This error is-usually fatal.

Systerh Call Exception

Cause. The System Call exception occurs on an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Handling. The common exception vector is used for this exception.
The Sys code in the Cause register is set.

The EPC register points at the SYSCALL instruction unless itisina
branch delay slot, in which case the EPC points at the preceding
branch instruction. ' _ _

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

Servicing. When this exception occurs, control is transferred to the
applicablesystem routine. To resume execution, the EPCregister must
be altered so that the SYSCALL instruction is not re-executed; this is
accomplished by adding a value of four to the EPC register before
returning. If a SYSCALL instruction isin a branch delay slot, a more
complicated algorithm is required.

Breakpoint Exception

Cause. The Breakpoint exception occurs when an attempt is made to
execute the BREAK instruction. This exception is not maskable.
Handling. The common exception vector is used for this exception,
and the BP code in the Cause register is set.

The EPC register points at the BREAK instruction unlessitisina
branch delay slot, in which case the EPC points at the preceding
branch instruction.
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If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Servicing. When the Breakpoint exception occurs, control is
transferred to the applicable system routine. Additional distinctions
can be made from the unused bits of the BREAK instruction (bits
25.6), and from loading the contents of the instruction at which the
EPC register points. (A value of four must be added to the contents of
the EPC register to locate the instruction if it resides in a branch delay
slot.) '

To resume execution, the EPC register must be altered so that the
BREAK instruction is not re-executed; this is accomplished by adding
the value of four to the EPC register before returning. If a BREAK
instruction is in a branch delay slot, interpretation of the branch
instruction is required to resume execution.

Reserved Instruction Exception

Cause. The Reserved Instruction exception occurs when an attempt is
made to execute an instruction whose major opcode (bits 31..26) is
undefined, or a SPECIAL instruction whose minor opcode (bits 5..0) is
undefined. This exception also occurs on a REGIMM instruction
whose minor opcode (bits 20..16) isundefined. A Reserved Instruction
exception can also occur if the processor attempts to execute 64-bit
operations in 32-bit mode and operating is user or supervisor modes.
64-bit operations are always valid in kernel mode regardless of the
value of the KX bit in the Status register. This exception is not
maskable.

Handling. The common exception vector is used for this exception,
and the RI code in the Cause register is set.

The EPC register points at the reserved instruction unless itis ina
branch delay slot, in which case the EPC points at the preceding
branch instruction.

Servicing. In current systems, no instructions in the MIPS ISA are
interpreted. The process executing at the time of this exception is
handed a UNIX SIGILL/ILL_RESOP_FAULT (illegal instruction/
reserved operand fault) signal. This error is usually fatal.

R4000 User's Manual--Preliminary 5-37



Chapter 5

COproéessor Unusable Exception

Cause. The Coprocessor Unusable exception occurs when an attempt
is made to execute a coprocessor instruction for either:

e acorresponding coprocessor unit that has not been marked
usable, or

e CPO instructions, when the unit has not been marked
usable and the process is executing in User mode.

This exception is not maskable. :

Handling. The common exception vector is used for this exception,
and the CPU code in the Cause register is set.

The contents of the Coprocessor Usage Error field of the coprocessor
Control register indicate which coprocessor of the four was referenced.

The EPC register points at the unusable coprocessor instruction unless
it is in a branch delay slot, in which case the EPC points at the
preceding branch instruction.

Servicing. The coprocessor unit to which an attempted reference was
made is identified by the Coprocessor Usage Error field. Results are
one of the following:

e If the process is entitled to access, the coprocessor is
marked usable and the corresponding user state is restored
to the coprocessor. D '

o If the process is entitled to access the coprocessor, but the
coprocessor does not exist or has failed, interpretation of
the coprocessor instruction is possible.

o If the BD bit is set in the Cause register, the branch
instruction must be interpreted; then the coprocessor
instruction can be emulated and execution resumed with
the EPC register advanced past the coprocessor instruction.

o  If the process is not entitled to access the coprocessor, the
process executing at the time is handed a UNIX SIGILL/
ILL_PRIVIN_FAULT (illegal instruction/ privileged
instruction fault) signal. This error is usually fatal.
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Floating-Point Exception

Cause. The Floating-Point exception is used by the R4000 floating-
point coprocessor. The Floating-Point exception is not maskable.

Handling. The common exception vector is used for this exception,
- and the FPE code in the Cause register is set.

The contents of the Floating-Point Control Status register indicate the
cause of this exception.

Servicing. This exception is cleared by clearing the appropriate bit in
the Floating-Point Control Status register. For an unimplemented
instruction exception, the kernel should emulate the instruction; for
other exceptions, the kernel should pass the exception to the user
program that caused the exception.

Watch Exception

Cause. The Watch exception occurs when a load or store instruction
references the physical address specified in the WatchLo/ WatchHi
system control coprocessor registers. The WatchLo register specifies
whether a load or store initiated this exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed while the EXL bit is set in the Status
register, and Watch is only maskable by setting EXL in the Status
register. ' ‘
Handling. The common exception vector is used for this exception,

~ and the Watch code in the Cause register is set.
Servicing. The Watch exception is a debugging aid; typically the
exception handler transfers control to a debugger, allowing the userto
examine the situation. To continue, the Watch exception must be
disabled to execute the faulting instruction, and then the Watch
exception must be reenabled. The faulting instruction can be executed
either by interpretation or by setting breakpoints.

Interrupt Exception

Cause. The Interrupt exception occurs when one of the eight interrupt
conditions is asserted. The significance of these interrupts is
dependent upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the
corresponding bit in the Int-Mask field of the Status register, and all of
the eight interrupts can be masked at once by clearing the IEcbit of the
Status register.
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Handling. The common exception vector is used for this exception,
and the Int code in the Cause register is set.

The IP field of the Cause register indicates the current interrupt
requests. It is possible that more than one of the bits will be
simultaneously set (or even 7o bits may be set) if an interrupt is
asserted and then deasserted before this register is read.

Servicing. If the interrupt is caused by one of the two software-
generated exceptions (SW1 or SW0), the interrupt condition is cleared
by setting the corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is

cleared by correcting the condition causing the interrupt pinto be
asserted.
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Functional Overview

The MIPS Floating-Point Unit (FPU) operates as a coprocessor for the
CPU and extends the CPU instruction set to perform arithmetic
operations on values in floating-point representations. The FPU, with
associated system software, fully conforms to the requirements of
ANSI/IEEE Standard 754-1985, “IEEE Standard for Binary Floating-
Point Arithmetic.” In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions. Figure
6-1 illustrates the functional organization of the FPU.
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Figure 6-1 FPU Functional Block Diagram
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'FPU Features

o Full 64-bit operation. When the FR bit in the Status register
equals zero, the FPU contains thirty-two 32-bit registers
that hold single- or, when used in pairs, double-precision
values. When the FR bit in the Status register equals one,
the FPU registers are expanded to 64 bits wide. Each
register can hold single- or double-precision values. The
FPU also includes a 32-bit Status/Control register that
provides access to all IEEE-Standard exception handling
capabilities. ,

e Load and Store Instruction Set. Like the CPU, the FPU
uses a load- and store-oriented instruction set, with single-
cycle load and store operations. Floating-point operations
are started in a single cycle and their execution is
overlapped with other fixed-point or floating-point
operations. o -

_ e Tightly coupled Coprocessor Interface. The FPU resides
on-chip to form a tightly coupled unit with a seamless
integration of floating-point and fixed-point instruction
sets. Since each unit receives and executes instructions in
parallel, some floating-point instructions can execute at the
same single-cycle per instruction rate as fixed-point-
instructions.

FPU Programming Model

This section describes the organization of data in registers and the set
of general registers available. This section also gives a summary
description of the FPU registers.

Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General-Purpose registers (FGRs)
and two control registers: the Control/Status and Implementation/
‘Revision registers. The general registers can be accessed in three
different ways:

e As thirty-two general-purpose registers, each 32 bits wide
(32 FGRs) when the FR bit in the Status register equals zero
or 64-bits wide when FR equals one. The CPU accesses the
general registers as FGRs through move, load, and store
instructions.
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When the FR bit in the Status register equals zero: as
sixteen floating-point registers, each 64-bit-wide FPR holds
floating-point values during floating-point operations. The
FPRs hold values in either single- or double-precision
floating-point format. The FPU accesses the general
registers as FPRs. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 6-2. Only even
numbers are used to address FPRs; odd FPR register
numbers are invalid. During single-precision floating-point
operations, only the even numbered (least, as shown in
Figure 6-2) general registers are used, and during double-
precision operations, the general registers are accessed in
double pairs. o

When the FR bit in the Status register equals one: as thirty-
two floating-point registers, each 64-bit-wide FPR holds
floating-point values during floating-point operations. The
FPRs hold values in either single- or double-precision.
floating-point format. The FPU accesses the general
registers-as FPRs. Each FPR corresponds to an FGR as
shown in Figure 6-2. Both even and odd are valid to
address FPRs. During single-precision floating-point
operations, the low-order words of the general registers are
used; during double-precision operations the general
registers are accessed as 64-bit registers.

64
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Figure 6-2 FPU Registers
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Floating-Point Registers

The FPU provides 16 Floating-Point registers (FPRs) when the FRbitin
the Status register equals zero or 32 Floating-Point registers (FPRs)
when the FR bit in the Status register equals one. These 64-bit registers
hold floating-point values during floating-point operations and are
physically formed from the General-Purpose registers (FGRs).Whenthe
FR bit in the Status register equals one, the FPR references a single
64-bit FGR.

The FPRs hold values in either single- or double-precision floating-
point format. Only even numbers are used to address FPRs; odd FPR
register numbers are invalid unless the FR bitis settoa one. When this
bit is set, all FPR register numbers are valid. During single-precision
floating-point operations when the FR bit is not set, only the even-
numbered (least, as shown in Figure 6-2) general registers are used,
and during double-precision floating-point operations the general
registers are accessed in double pairs. Thus, ina double-precision
operation; selecting Floating-Point Register 0 (FPRO0) addresses adjacent
Floating-Point General-Purpose registers FGRO and FGRI.

Floating-Point Control Régisters

The R4000 FPU has 32 control registers. The following Floating-Point
Control registers (FCRs) can be accessed only by move operations. The
registers are described below: '
o The Control/Status register (FCR31) controls and monitors
exceptions, holds the result of compare operations, and
establishes rounding modes. '

e The Implementation|Revision register (FCR0) holds revision
information about the FPU.

Table 6-1 lists the assignments of the FCRs.
Table 6-1 Floating-Point Control Register Assignments

FCR
Number Use
FCRO Coprocessor implementation and revision register
FCR1-30 | Reserved _ _
FCR31 Rounding mode, cause, trap enables, and flags
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Control/Status Register FCR31 (Read and Write)

The Control/ Status register, FCR31, contains control and status data
and can be accessed by instructions in either Kernel or User mode. It
controls the arithmetic rounding mode and the enabling of User-mode
traps. It also identifies exceptions that occurred in the most recently
executed instruction and any exceptions that may have occurred
without being trapped. Figure 6-3 shows the bit assignments of
FCR31. :

The Control/Status Register (FCR31)
31 25 24 23 22 18 17 12 1 7 6 21 0
Cause Enables Flags RM
0 F§|C| © EVZOUI| vZOUl | VZOUI
11 5. 6 5 5 2
Where: : :
FS When set, denormalized results are flushed to zero instead of
causing an unimplemented operation exception.
C Condition bit. See description below.
Cause Cause bits. See Figure 6-4 and the description of Control/Status
‘ Register Cause, Flag, and Enable Bits.
Enables Enable bits. See Figure 6-4 and the description of Control/Status
Register Cause, Flag, and Enable Bits.
Flags  Flag bits. See Figure 6-4 and the description of Control/Status
Register Cause, Flag, and Enable Bits.
RM Rounding mode bits. See Table 6-2 and the section Control/Status
Register Rounding Mode Control Bits.

Figure 6-3 FP Control/Status Register Bit Assignments

R4000 User's Manual--Preliminary ' 6-7



Chapter 6
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Overflow
Division by Zero’
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Figure 6-4 Control/Status Register Cause[Flag|Enable Bits

When the Control/ Status register is read using a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved
to the main processor. If a floating-point exception occurs as the
pipeline empties, the exception is taken and the CFC1 instruction can
be re-executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing
to the register using a Move Control To Coprocessor 1 (CTC1)
instruction. This register must only be written to when the FPU is not
actively executing floating-point operations. This can be ensured by
first reading the contents of the register to empty the pipeline.

IEEE Standard 754. [EEE Standard 754 specifies that floating-point
operations detect certain exceptional cases, raise flags, and optionally
invoke an exception handler when an exception occurs. These features
are implemented in the MIPS architecture with the Cause, Enable, and
Flag fields of the Control/Status register. These flag bits implement
IEEE 754 exception status flags, and the cause and enable bits
implement exception handling.

Control/Status Register FS Bit. Bit 24 of the Control/Status register is
the FS bit. When this bit is set, denormalized results are flushed to zero
instead of causing an unimplemented operation exception.
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Control/Status Register Condition Bit. Bit 23 of the Control/Status
register is the Condition bit. When a floating-point Compare operation
takes place, the result is stored at bit 23 in order that the state of the
condition line can be saved or restored. The C bit is set tol if the
condition is true; the bit is cleared to 0 if the condition is false. Bit 23 is
affected only by compare and Move Control To FPU instructions.

“Control/Status Register Cause, Flag, and Enable Bits

Figure 6-4 illustrates the Cause, Flag, and Enable bit assignments in
the Control/Status register.

Bits 17..12 in the Control/Status register contain Cause bits, as shown in
. Figure 6-4, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CPO Cause
register; they identify the exceptions raised by the last floating-point
operation and raise an interrupt or exception if the corresponding
enable bit is set.
The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). Unimplemented Operation (E) is set
to 1 if software emulation is required, otherwise it remains 0. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception. '

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are both set. A floating-point operation that

" sets an enabled Cause bit forces an immediate exception, as does
setting both Cause and Enable bits with CTCI.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point
exception. :

When a floating-point exception is taken, no results are stored, and the
only states affected are the Cause and Flag bits. Exceptions caused by
an immediately previous floating-point operation can be determined
by reading the Cause field.

Before returning from a floating-point exception, or doing a C1C]1,
software must first clear the enabled Cause bits to prevent a repeat of
the interrupt. Thus, User-mode programs can never observe enabled
Cause bits set; if this information is required in a User-mode handler,
it must be passed somewhere other than the Status register.

The appropriate Flag bits are set by the operation when a User-mode
exception handler is invoked. This is not implemented in hardware;
floating-point exception software is responsible for setting these bits
before invoking a user handler.
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For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored.
In this case, the exceptions that were caused by the immediately
previous floating-point operation can be determined by reading the
Cause field. .

Figure 6-4 shows the meanings of each bit in the Cause field. If more
than one exception occurs on a single instruction, each appropriate bit
will be set.

The Flag bits are cumulative and indicate thatan exception was raised
on some operation since they were explicitly reset. Flag bits are set to
1if an IEEE 754 exception is raised, and remain unchanged otherwise.
The Flag bits are never cleared as a side effect of floating-point
operations, but can be set or cleared by writing a new value into the
Status register using a Move To Coprocessor Control instruction.

Control/Status Register Rounding Mode Control Bits.

Bits 1 and 0 in the Control/Status register comprise the Rounding Mode
(RM) field. These bits specify the rounding mode that the FPU uses for
all floating-point operations as shown in Table 6-2.

Table 6-2 Rounding Mode Bit Decoding

Rounding| Mnemonic | Description
Mode

0 RN Round result to nearest representable
value; round to value with least-significant
bit zero when the two nearest representable

A values are equally near.

1 RZ Round toward zero: round to value closestto
and not greater in magnitude than the
infinitely precise resultt.

2 RP Round toward +: round to value closest 10
and not less than the infinitely precise result.

3 RM Round toward — «: round to value closest to
and not greater than the infinitely precise
result.

implementation and Revision Register FCRO (Read Only)

The Implementation and Revision register specifies the implementation
and revision numiber of the FPU. This information can be used to
determine the coprocessor revision and performance level, and can
also used by diagnostic software.

Figure 6-5 shows the layout of the register.

6-10

R4000 User's Manual--Preliminary




Floating-Point Unit

Implementation/Revision Register (FCRO0)
31 1615 87 0
0 Imp. Rev
16 8 8
Imp Implementation number (0x05)

Rev Revision number in the form of y.x
0 Reserved. Must be written as zeroes, returns zeroes when read.

Figure 6-5 Implementation/Revision Register

The revision number is a value of the form y.x, where y is a major
revision number held in bits 7..4, and x is a minor revision number
held in bits 3..0. The revision number can distinguish some chip
revisions; however, MIPS does not guarantee that changes to its chips
are necessarily reflected by the revision number, or that changes to the
revision number necessarily reflect real chip changes. For this reason
revision number values are not listed, and software should not rely on
the revision number to characterize the chip.

Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and
an 8-bit exponent (¢), as shown in Figure 6-6.

31 30 23 22 , 0

s e ' { ' '
Sign Exponent Fraction
1 8 23

Figure 6-6 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude
fraction field (f+s) and an 11-bit exponent, as shown in Figure 6-7.
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63

62

52 51 0

s
Sign

e
Exponent

{
Fraction

11

52

Figure 6-7 Double-Precision Floating-Point Format

Numbers in these floating-point formats are composed of three fields:

The range of the unbiased expo.

e 1-bitsign:s

o biased exponent: e = E + bias
e fraction: f = .byby...bpg :
nent E includes every integer between

two values Epin and Epax inclusive, and also two other reserved

- values: Epy, -1 (to encode +0 and denormalized numbers), and
Epnax +1 (to encode +° and NaNs [Not a Numberl). For single- and
double-precision formats, each représentable nonzero numerical
value has just one encoding. '

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6-3.

Table 6-3 Equations for Calculating Values in Single and

Double-Precision Floating-Point Format

M

if E = Eqact1 and 20, then vis NaN, regardless of s.

@

if E=Empaxt1andf=0,thenv= (-1)8 .

@)

if Epin < E < Emax then v= (=1)°25(1.0.

@)

if E = E,y~1 and 0, then v = (-1)2Em"(0.4.

(5)

if E = E =1 and f = 0, then v= (-1)°0

For all floating-point formats,

determines whether the value is a signaling or quiet NaN.visa
signaling NaN if the most-significant bit of f is set; otherwise v is a
quiet NaN. Table 6-4 defines the values for the format parameters.

612
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Table 6-4 Floating-Point Format Parameter Values

Parameter Format

Single Double
f 24 53
Emax +127 +1023
Emin -126 -1022
exponent bias +127 +1023
exponent width in bits 8 11
integer bit hidden hidden
fraction width in bits 24 53
format width in bits 32 64

Minimum and maximum floating-point values are given in Table 6-5.
Table 6-5 Minimum and Maximun Floating-Point Values '

‘Float Minimum 1.40129846e-45

Float Minimum Norm. 1.17549435¢-38
Float Maximum ' 3.40282347e+38
Double Minimum 4.9406564584124654e-324
Double Minimum Norm 2.2250738585072014e-308
Double Maximum 1.7976931348623157e+308
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Binary Fixed-Point Format

Binary fixed-point values are held in 2’s-complementary format.
Unsigned fixed-point values are not directly provided by the floating-
point instruction set. Binary fixed-point format is shown in Figure 6-8.

31 30 ‘ 0

s i
Sign . integer
1 31

S sign bit
i integer value

Figure 6-8 Binary Fixed-Point Format

Instruction Set Overview

All FPU instructions are 32 bits long, aligned ona word boundary, and
can be divided into the following groups:

¢ Load, Store, and Move instructions move data between
- memory, the main processor, and the FPU General-Purpose
registers. ‘

e Conversion instructions perform conversion operations
between the various data formats.

o Computational instructions perform arithmetic operations
on floating-point values in the FPU registers.

o Compare instructions perform comparisons of the contents
of registers and set a condition bit based on the results.

« Branch on FPU Condition instructions perform a branch to
the specified target if the specified coprocessor condition is
met. :

Table 6-6 lists the instruction set of the FPU. A complete description of
each instruction is provided in Appendix B.
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Table 6-6 FPU Instruction Summary

OoP Description
Load/Store/Move Instructions
LWC1 Load Word to FPU
SWCH1 ~ Store Word from FPU
LDC1 Load Doubleword to FPU
SDC1 Store Doubleword From FPU
MTC1 Move word To FPU
MFC1 Move word From FPU
CTC1 Move Control word To FPU_ -
CFC1 Move Control word From FPU
DMTC1 Doubleword Move To FPU
DMFC1 Doubleword Move From FPU
Conversion Instructions
CVT.S.fmt Floating-point Convert to-Single FP
CVT.D.imt . Floating-point Convert to Double FP
.CVT.W.imt Floating-point Convert to Single
Fixed Point
ROUND:.w.fmt. Floating-point Round
TRUNC.w.fmt Floating-point Truncate
CEIL.w.fmt Floating-point Ceiling
FLOOR.w.fmt Floating-point Floor
' Computational Instructions
ADD.fmt Floating-point Add
SUB.fmt Floating-point Subtract
MUL.fmt Floating-point Multiply
DIV.imt Floating-point Divide
ABS.fmt Floating-point Absolute value
MOV.fmt Floating-point Move
NEG.fmt Floating-point Negate
SQRT.fmt Floating-point Square Root
Compare Instructions
C.cond.fmt Floating-point Compare
Branch on FP Condition
BCIT Branch on FPU True
BC1F Branch on FPU False
BC1TL Branch on FPU True Likely
BC1FL Branch on FPU False Likely
Jmt format specifier
.cond condition specifier

'R4000 User's Manual--Preliminary
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Load, Store, and Move Instructions

All movement of data between the FPU and memory is accomplished
by:
¢ Load Word To Coprocessor 1 (LWC1) and Store Word To

Coprocessor 1 (SWC1) instructions, which reference a
* single 32-bit word of the FPU general registers.

¢ Load Doubleword (LDC1) and Store Doubleword (SDC1)
instructions. :
These load and store operations are unformatted; no format

conversions are performed and therefore no floating-point exceptions
occur due to these operations.

Data can also be moved directly between the FPU and the CPU by

Move To Coprocessor 1 (MTC1), Move From Coprocessor 1 (MFC1),
Doubleword Move To Coprocessor 1 (DMTC1), Doubleword Move

‘From Coprocessor 1 (DMFC1)instructions. Like the floating-point

load and store operations, these operations perform no format
conversions and never cause floating-point exceptions.

The instruction immediately following a load can use the contents of
the loaded register. In such cases the hardware interlocks, requiring
additional real cycles; therefore, scheduling load delay slots is
desirable, although it is not required, for functional code.

All coprocessor loads and stores reference the following aligned data
items: :
e For word loads and stores, the access type is always

WORD, and the low-order two bits of the address must
always be zero.

e For doubleword loads and stores, the access type is always
DOUBLEWORD, and the low-order three bits of the
address must always be zero.

Regardless of byte-numbering order (endianness), the address
specifies the byte that has the smallest byte address in the addressed
field. For a Big-endian system, it is the leftmost byte; for a Little-
endian system, it is the rightmost byte.

Table 6-7 summarizes the load, store, and move instructions.

6-16
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Table 6-7 FPU Load, Store and Move Instruction Summary

Instruction Formatand Description| op | base | ft offset

Load Word LWC1 fioffset(base)

to FPA Sign-extend 16-bit offset and add to contents of CPU register base to form
(coprocessor 1) address. Load contents of addressed word into FPU general register ft.
Store Word SWC1 ftoffset(base)

from FPA Sign-extend 16-bit offset and add to contents of CPU register base to form
(coprocessor 1) | address. Store the contents of FPU general register ftat addressed location.
Load Double- LDC1  ftoffset(base) ‘

word to FPA Sign-extend 16-bit offset and add to contents of CPU re ister base to form
(coprocessor 1) | address. Load contents of addressed doubleword into FPU general regis-

ters ftand ft+1 (FR=0), or FPU general register #t (FR=1).

Store Double-
word from FPA
(coprocessor 1)

SDC1 fioffset(base)

Sign-extend 16-bit offset and add to contents of CPU register base to form
address. Store the 64-bit contents of FPU general registers ft and #+1
(FR=0), or FPU general register ft (FR=1) at addressed location.

e

Instruction Format and Description COP1 sub rt fs 0
- Move Word MTC1 nfs ‘

to FPA Move contents of CPU register rtinto FPU general register fs.

(coprocessor 1)

Move Word MFC1 nfs

from FPA Move contents of FPU general register fs into CPU register rt.

(coprocessor 1) _ :

Move Control CTC1 rifs

Word to FPA y i inté | reqi

(coprocessor 1) Move contents of CPU register rtinto FPU control register fs.

Move Control - CFC1 nfs

Word from FPA
(coprocessor 1)

Move contents of FPU control register fsinto CPU register rt.

Doubleword
Move to FPA
(coprocessor 1)

DMTC1 :
Move contents of CPU register rtinto FPU general register fs.

DoubleWord
Move from FPA
(coprocessor 1)

DMFC1 rt fs
Move contents of FPU general register fs into CPU register rt.

R4000 User's Manual--Preliminary
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Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various
data formats such as single- or double-precision fixed- or floating-
point formats. Table 6-8 lists the conversion instructions and their
formats.

Table 6-8 FPU Conversion Instruction Summary

Instruction Format and Description | COP1 | fmt] 0 | fs | fd | function |

Floating-Point CVT.S.fmt - fdfs , _ -

Convert to Single lntgrprgta}t" theﬁcorlwltents of rl:l:U (eg:stgr; f;rl;\ ftll'let_speclfl;at:ti fform:{ (fmi)
and arithmetically convert to single bin oating-point form

FP Format . Place the rounded result in FPUgregister fd. ¢

Floating-Point CVT.D.fmt fd,fs

Convert to Double | Interpret the contents of FPU register s in the specified format (fmf)

FP Format and arithmetically convert to the double binary floating-point format.
Place the rounded result in FPU register fd. A

Floating-Point CVT.W.tmt  fdfs .

Convert to Single | Interpret the contents of FPU register fs in the specified forrﬁat (fm?)
Fixed-Point Format| and arithmetically convert to the single fixed-point format. Place the
result in FPU register fd. .

Floating-point ROUND.W.fmt  fd,fs

Round Interpret the contents of FPU register fs in the specified format (fm?)
» and arithmetically convert to the single fixed-point format. Place the
result in FPU register fd. '

Floating-point TRUNC.W.imt  fd,fs :
Truncate | Interpret the contents of FPU register fs in the specified format (fm)

and arithmetically convert to the single fixed-point format. Place the
result in FPU register fd. .

Floating-point CEIL.W.fmt fd,fs
Ceiling Interpret the contents of FPU register fs in the specified format (fm?

and arithmetically convert to the single fixed-point format. Place the
result in FPU register fd.

Floating-point FLOOR.W.fmt  fd,fs

Floor Interpret the contents of FPU register fs in the specified format (fmf)
and arithmetically convert to the single fixed-point format. Place the
result in FPU register fd.
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Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on
floating-point values in registers. There are two categories of
computational instructions, as shown in Table 6-8 and listed below:

e 3-Operand Register-Type instructions, which perform
floating-point addition, subtraction, multiplication,
division, and square root operations.

e 2-Operand Register-Type instructions, which perform
floating-point absolute value, move, and negate operations.

Table 6-9 FPU Computational Instruction Summary

Instruction

Format and Descrlption‘ COP1 l fmt[ ft I fs | id -

Floating-Point
Add

ADD.fmt  fdfsft ,

interpret the contents of FPU registers fs and ftin the specified
forr_nattt(frf;g) and add arithmetically. Place the rounded resuit in FPU
register fd.

Floating-Point SUB.fmt fd,fs,ft o

Subtract Interpret the contents of FPU registers fs and ftin the specified

. format(fmf) and arithmetically subtract. Place the rounded result in FPU

) “register fd. ’ ' :
Floating-Point MUL.fmt fd,fs,ft
Multiply interpret the contents of FPU registers fs and ftin the specified
* format(fm) and arithmetically muttiply. Place the rounded result in FPU

register fd.

Floating-Point DIV.imt  fdisft .

Divide - interpret the contents of FPU registers fs and ftin the specified format
(fmt) and arithmetically divide fs by ft. Piace the rounded resuit in FPU
register fd.

Floating-Point ABSimt  fdfs

Absolute Value Interpret the contents of FPU register fsin the specified format (fmf) and
take arithmetic absolute value. Place the result in FPU register fd.

Floating-Point MOV.fmt fd,fs

Move interpret the contents of FPU register fsin the specified format (fmf) and

copy into FPU register fd.

Floating-Point .

Negate

NEG.fmt fd,fs
Interpret the contents of FPU register fsin the specified format (fm and
take arithmetic negation. Place the result in FPU register fd.

Floating-Point
Square root

SQRT.fmt fd,fs

Interpret the contents of FPU register fsin the specified format (fm9) and
take the positive arithmetic square root. Result is rounded then placed
in the FPU register fd.

In the instruction formats shown in Table 6-8 and Table 6-9 the fmt
term appended to the instruction opcode is the data format specifier:
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s specifies single-precision binary floating-point, d specifies double-
precision binary floating-point, and w specifies binary fixed-point.
For example, an ADD.D specifies that the operands for the addition
operation are double-precision binary floating-point values.

When fmt is single-precision or binary fixed-point, the odd register of
the destination is undefined.

Floating-Point Compare Operatio'ns

The floating-point Compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction. Table 6-
8 summarizes the floating-point Compare instructions and Table 6-11
lists the conditions that can be specified for the compare operation.

Table 6-10 FPU Compare Instruction Summary )

instruction | Formatand Descrlptlonl COP1[ fmt | ft | fs I 0 [ function ‘
" Floating-Point C.cond.fmt  fs,ft o :
Compare Interpret the contents of FPU registers fs and ftin the specified

format (fmf) and compare arithmetically. The result is determined by the
comparison and the specified condition (conad). After a 1-instruction
delay, the condition is available for testing by the CPU with the Branch
on Floating-Point Coprocessor Condition (BC1T, BC1F) instructions.

6-20
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Table 6-11 Relational Mnemonic Definitions

Mnemonic| Definition Mnemonic| Definition
F False T - True
UN | Unordered OR | Ordered
EQ Equal NEQ | Not Equal
UEQ Unordered or Equal OoLG Ordered or Less than or Greater than
OoLT Ordered Less Than UGE Unordered or Greater than or Equal
ULT Unordered or Less Than OGE | Ordered Greater Than
OLE Ordered Less than or Equal UGT | Unordered or Greater Than
ULE Unordered or Less than or Equal OGT | Ordered Greater Than
SF Signaling False ST Signaling True
NGLE | Not Greater than or GLE | Greater than, or Less than or Equal
Less than or Equal :
SEQ Signaling Equal SNE Signaling Not Equal
NGL | Not Greater than or Less than GL Greater Than or Less Than -
LT | Less Than NLT | NotlLess Than
NGE Not Greater than or Equal GE Greater Than or Equal
LE Less than or Equal NLE Not Less Than or Equal
NGT | Not Greater Than GT | GreaterThan

R4000 User's Manual--Preliminary
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Branch on FPU Condition Instructions

Table 6-12 summarizes the four Branch on FPU (coprocessor unit 1)
Condition instructions that can be used to test the result of the FPU
Compare (C.cond) instructions. In this table, delay slot refers to the
instruction immediately following the branch instruction. Refer to
Chapter 2 for a discussion of the branch delay slot.

Table 6-12 Branch on FPU Condition Instructions

Instruction Format and Description r coPi | BC | br | offset |

Branch on BC1T offset

FPU True Compute a branch target address by adding the address of the instruction in
the delay slot and the 16-bit offset (shifted left two bits and sign extended).
Branch to the target address (with a delay of one instruction) if the FPU -
condition line is true.

Branch on BC1F offset

FPU False Compute a branch target address by adding the address of the instruction in
the delay slot and the 16-bit offset (shifted left two bits and sign extended).
Branch fo the target address (with a delay of one instruction) if the FPU
condition line is false. :

Branch on BC1TL offset

FPU True Compute a branch target address by adding the address of the instruction in

Likely the delay slot and the 16-bit offset (shifted left two bits and si?n extended).
Branch to the target address (with a delay of one instruction) if the FPU
condition line is true. If conditional branch is not taken, theinstruction inthe
branch delay slot is nullified. A - .

Branch on BC1FL offset :

FPU False Compute a branch target address by adding the address of the instruction in

Likely the delay slot and the 16-bit offset (shifted left two bits and-sign extended).
Branch to the target address (with a delay of one instruction) if the FPU
condition line is false. If conditional branch is not taken, the instruction in the
branch delay slot is nullified.
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FPU Instruction Pipeline
The FPU provides an instruction pipeline that parallels the CPU
instruction pipeline. It shares the same 8-stage pipeline architecture
with the CPU, as described in Chapter 2, Instruction Set Summary.
Instruction Execution

Figure 6-9 illustrates how the eight instructions overlap in the FPU
pipeline.

(8-Deep)

[ IF | ISIRFIEXIDF]DS]TC wB

[F [ IS [RF[ EX] DF[ DS| TC [WB ]
[F] IS RFEX|DF| DS|T1C | WE]

F[ B[R EX| DFl oS TeIwe ]

MFT s [RF| EX| DF [ DS TC [WEB]
F TS | RF [EX [ DF DS [1C [ W8]
(Fl S [RFTExTor [ oS [Tc [Wa)

F S TRETEX] OF [ DS [ TC W8]

Current
CPU

Cycle

Figure 6-9 FPU Instruction Pipeline

Figure 6-9 assumes that one instruction is completed every pcycle.
Most FPU instructions, however, require more than one cycle in the
EX stage. Therefore, the FPU must stall the pipeline if an instruction
execution cannot proceed because of register or resource conflicts.
Figure 6-10 illustrates the effect of a three-cycle stall on the FPU

pipeline.
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[F] 1s |RF_|EX | OF |stall [stall [stall | DS [Tc [ws|
[IF[ 1S | RF | EX | stall [ stall [stall | DF | DS [ Tc]ws ]
[IF[ 18 | RF | stall | stall [ stall | EX | DF | ps| Tc | WB |
[ IF[ 1S |stall | stall [stal | RF | EX | DF] Ds| Tc [wB |
[ iF [stal [ sl [stail | 1s [ RF | EX| OF| ps | Tc [ WB|

Figure 6-10 FPU Pipeline Stall

To mitigate the performance impact that would result from stalling
the instruction pipeline, the FPU allows instructions to overlap so that
instruction execution can proceed as long as there are no resource
conflicts, data dependencies, or exception conditions. The following
sections describe the timing and overlapping of FPU instructions.

Instruction Execution Times

Unlike the CPU, which executes almost all instructions in a single
cycle, the time required to execute FPU instructions operates within a
larger range. . :

Table 6-13 gives the minimum latency, in processor pipeline cycles, of
each floating-point operation for the currently implemented
configurations. These latency calculations assume the result of the -
operation is immediately used ina succeeding operation.
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Table 6-13 Floating-Point Operation Latencies

Pipeline cycles
Operation Single Double Word
ADD.fmt 4 4 (b)
SUB.fmt 4 4 (b)
MUL.fmt 7 8 ()
. DIV.fmt 23 36 ()]
SQRT.fmt 54 112 (b)
ABS.fmt 2 2 (b)
MOV.fmt 1 1 (b)
NEG.fmt 2 2 ®)
ROUND.W.fmt 4 4 (b)
TRUNC.W.fmt 4 - 4 (b)
CEIL.W.fmt 4 4 (b)
FLOOR.W.fmt 4 4 (b)
CVT.S.fmt (®) 4 6
CVT.D.fmt 2 (b) 5
- CVT.W.fmt 4 4 (b)
C.fmt.cond 3(a) 3(a) (b)
BC1T (©) 1 ©)
BC1F () 1 ©
BC1TL © 1 ©
BC1FL ©) 1 (c)
LWC1 ¢ 8 ©)
SWC1 - (© 1 ©)
LDC1 © 3 2 (c)
SDC1 © 1 (©)
MTC1 (c) 3(a) (©
MFC1 ©) 3 ©)
CTC1 ©) 3(a) ©)
CFC1 (c) 2 (c)

(@ Software must schedule operations so that an FPU register that is
the target of a floating-point load or move is not read until at least
two instructions later. Software must also schedule a floating-
point branch instruction two or more instructions after a floating-
point compare instruction.

(b) These operations are illegal.
(© These operations are undefined.
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Scheduling FPU Instructions

The floating-point architecture permits the pipelining of operations
and the overlapping of floating-point operations with floating-point
load, store, and move instructions and with other processor
operations. ‘

The FPU coprocessor implements three separate operation (op) units:
multiply, divide, and an adder for remaining operations.

Multiplies and divides can overlap with adder operations; however,
they use the adder on their final cycles, which imposes some
limitations.

The multiply unit can begin a new double-precision multiply every
four cycles, and a new single-precision multiply every three cycles.
The adder generally begins a new operation one cycle before the
previous cycle completes; therefore, a floating-point add or subtract
can start every three cycles. :

- The FPU coprocessor pipeline is fully bypassed and interlocked.

FPU Pipeline Overlapping

The FPU has three operational (op) units: adder, divider, and
multiplier. Each op unit is controlled by an FPU resource scheduler,
which issues instructions under certain constraints, as described in the
following section. o :

Table 6-14 lists the pipe stages used in the op units (although not all
stages are used by each unit).

Table 6-14 FPU Operational Unit Pipe Stages

Stage Description

FPU Adder Mantissa Add stage
FPU Adder Exception Test stage
| CPU EX stage

FPU Multiplier 1st stage

FPU Multiplier 2nd stage

FPU Adder Result Round stage
FPU Adder Operand Shift stage
FPU Unpack stage

C(D:UZZI;(‘IHT)
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Instruction Scheduling Constraints

The FPU resource scheduler is kept from issuing instructions to FPU
operation units (adder, multiplier, and divider) by the limitations in
their micro-architectures listed below. If any of the following
constraints are violated, the operation unit assumes the outstanding
instruction in its pipe is discarded, and then continues operation on
the most recently issued instruction.

FPU Divider Constraints

Handles only one non-overlapped divide instruction in its pipe atany
one time.

FPU Multiplier Constraints

Allows up to two pipelined MUL.[S,D} instructions to be processed as
long as the following constraints are met: :

e Two idle cycles are required after MUL.S (shown in Figure
6-11) ‘

e Three idle cycles are required after MUL.D (shown in
' Figure 6-12). ‘
These figures are not meant to imply that back-to-back multiplies are
allowed. Rather, as shown in Figure 6-11, 12 and I3 are illegal and I5,
16,17, and I8 are successive stages of 14, referenced to I1. Figure 6-12 is
similar, in that I6, 17, and 18 are successive stages of I5."

muLs MfuJMIMIMIN [NA[R | Legal to Issue?
MuLisD] 2[UIMIMIMIM]NINWA[R] —==-—============ No
MUL.[S.D] BUIM]M[M]M]N]INA[R | ==——=——-====== No
MUL[S.D] W[UIMIMIM]IMININA[R ]| =—====—==-== Yes
MUL.[S.D] SlUJMIMIMIMININA|R |-=—-~===== Yes
MUL.[S.D} 6[UIMIMIMIM[NINWA|R |-==—-~ Yes
MUL.[S.0] | 7[UIM[MIMIMINIWA[R | -——Yes
MUL.(S.D] | BUIMI MMM NIVA[R] Yes

Figure 6-11. MUL.S Instruction Scheduling in R4000 FPU Multiplier
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MuLD HfuIMIMIMIMININAIR] Legal to Issue?
MULISD] 12[UJMIMIMIMININA[R | ====——========="~ No
MUL.[S.D] B UTMIMIMIMIN INA[R ] —============= No
MUL.S.D] W[TIMIMIMIMININALR ] —--=-==—=-~- No
MUL.[S.D] 5[UIMIMIMIM]NINA[R |[-----==-~ Yes
MUL.[S.D] U] MIMIMIMININWAIR |-=—--- Yes
MUL.[S.D] 7[UIMIMIMIMININA[R | === Yes
MUL.[S.D] 8[UIMIMIMIMININAI R | Yes

Figure 6-12 MUL.D Instruction Scheduling in R4000 FPU Multiplier

FPU Adder Constraints
The following constraints must be met in the FPU adder op unit:

o The adder op unit allows one clock cycle overlap between
each newly-issued instruction and the instruction being
completed (as shown in Figure 6-13).

NEG.[S,DI U] S |

ADD.SD] |V [s+Ala+R[R+S|

NOP

NOP

C.COND.[S,D] [ufalr]
NOP

SQRT.[S,D] (Ul E [a+R[ .. [A+RI R |

NOP
NOP | B EE

ADD.[S,D] [Uls[A]R]

' Figure 6-13 Instruction Cycle Overlap in R4000 FPU Adder
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e The adder allows the cleanup stages (A, R) of a multiply
instruction to be pipelined with the execution of
ADD.[S,D], SUB.[S,D] or C.COND.[S,D], as long as no two
instructions attempt to simultaneously use the same A and
R pipe stages. For instance, Figure 6-14 shows a resource
conflict between the mantissa add (A, stage 7) of
instructions 1, 5, and 6. This figure also shows the resource
conflict between result round (R) stage 8 of instructions 1,
5, and 6. The multiply cleanup cycles (A, R) can neither
overlap nor pipeline with any other instruction currently
in the adder’s pipe. These constraints are shown in Figure
6-15, Figure 6-16, and Figure 6-17.

Stage#
1 2 3 4 5 6 7

MuLDi[UJMIM[MIM]NINA
ADD.[S,D] 2[ u [s+AlA+R[R+S| --}-
a[ u [s+Ala+R[R+S|| -

4| U =S+A=A+R%R+S
5| U |S+A|A+R|R+
6| U |S+RIA+Rl}n+§| —————————————— No

llndicatesaresource conflict 7[U [s+AA+R[R+S] =-=—=-=----- Yes
8 [ U [S+A[A+R[R+S| -—======- Yes

Figure 6-14 MUL.D and ADD.[S,D] Cycle Conflict in R4000 FPU Adder

Stage# .

1 2 83 4 5 6 7 8 8 10 M Legal to Issue?
muLs U M[MIMIN[NA]l RJ :
ADD.[S,D] 2[ U [s+Ala+R[R+S]| -4t -1-~-——==mm—m - Yes

3[ U [s+Ala+R[R+S]| ~1--=-=---—--—-mm - Yes
a[ U [s+AlA+R[R+g| —=—------ ————— - No
5 U |S+'AiA+a[R+sJ ————————————————— No
8[ U [S+AJA+R[R+S| ---======——=-- Yes
71 U [s+AJA+R|R+8| =-——---==—=- Yes
llndicates a resource conflict
8[ U [s+AJA+R|[R+S| =====——-~- Yes

Figure 6-15 MUL.S and ADD.[S,D] Cycle Conflict in R4000 FPU Adder
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Stage#
1 2 3 4 5 6 7 8 9 10 Legal to Issue?

MULDIfUIMIMIMIM]NINAIR
‘OMPISD] 2[UJ AR | ——-=——-f--mmmmmmm oo Yes
sdfUlA|R] -—-—-f-o-==—===————==——= Yes
a[uJA[R] -F-g-———=————==———- Yes
5Tu A] R] e Yes
6lu] AMRY -==-——————=—=" No
llndicatesaresource conflict fufalR] ——=======-- Yes
sfulAlR]|-—————"—- Yes

Stage# : : o
1 2 3 4 5 8 7 8 9 10 Legal to Issue?
MuLS ifUTMIMIMI]NINVAI R, ‘
oMPisD] 2[UJA[R] —==-T~—=[~—~""""""TTTTTTooT Yes
“s[UTA[R] ~f~—p~=""""""""TTTTTTC Yes
T N ves
s[UlA¥RY --------=-momoo No
efU[Al[R] ~-—===""""""" Yes
llndicates a resource conflict B ﬂ ----------- ves
s[U]AlR] -=""""""" Yes

Figure 6-17 MUL.S and CMP.[S,D] Cleanup Cycle Conflict in R4000 FPU Adder
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e The adder does not allow the preparation (U stage) and
cleanup cycles (N, A, R) of a divide instruction to be
pipelined with any other instruction; however, the adder
does allow the last cycle of preparation or cleanup to be
overlapped one clock by the following instructions’s U
stage (the CPU EX cycle) as shown in Figure 6-18.

ovD[UJ A JR:D[ D] D]..-] D [A+D[R+DIA+D[R+D{ A | R |

or . .
piv.o [U | A [S+R[S+D] D [...] D |A+D|R+D[A+DIR+D| A | R |

NOP

NOP

ADD.[S,D} - [u Is+A|A+R|R+S]

NOP .

NOP . ‘ ' : o
_CMP.[S,D] : (ulAalR]

Figure 6-18 Adder Prep and Cleanup Cycle Overlap

Instruction Latency, Repeat Rate and Pipeline Stage Sequences .

Table 6-15 shows the latency and repeat rate between instructions,
together with the sequence of pipeline stages for each instruction. For
instance, the latency of the ADD.[S,D] is 4, which means it takes four
processor cycles to complete. The Repeat Rate column indicates how
soon an instruction can be repeated; for instance, an ADD.[S,D] canbe
repeated after the conclusion of the third pipeline stage.
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Table 6-15 Latency, Repeat Rate, and Pipe Stages of R4000 FPU Instructions

Instruction Type|Latency| Repeat| Pipeline Stage
Rate | Sequence
MOV.[S,D] 1 1 EX
ADD.[S,D] 4 3 U— S+A— A+R— R+S
SUB.[S,D} 4 3 U— S+A— A+R— R+S
C.COND.[S,D] 3 2 U- A—-R
NEG.[S,D] 2 1 U-S
ABS.[S,D] 2 1 U-S
CVT.S.W 6 5 U—- A- R— S—> A-R
CVT.D.W 5 4 U->S—A-R=S
CVTS.L 7 6 U—- A= R—S-S—>A-R
CVTD.L 4 3 U->A-R-S
CVT.D.S 2 1 U-Ss
CvVT.s.D 4 3 U->S—-A-R
‘CVT.W.[S,D] or 4 3 U-S—A=R
ROUND.W.[S,D] or
TRUNC.W.[S,D] or
CEILW.[S,D] or
FLOOR.W.[S,D]
-MUL.S 7 3 U— E/M— M— M= N— NA— R
MUL.D 8 | 4 U— EM— M— M— M— N-> N/A— R
DIV.S 23 | 22 U—s S+A— S+R— S— D...D— D/A—> D/R—
D/A-> D/IR—A-R

DIV.D 36 35 U— A— R— D...D— D/A— D/R— D/A —D/R—
A—R .

SQRT.S 2-54 | 2-53 U— E- A+R>.....=> A+tR= A R

SQRT.D 2-112 | 2-111 U— E— A+R—>.....— A+tR— A= R
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Resource Scheduling Rules |

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize op unit
executions; if the following rules are not followed the hardware
interlocks to guarantee correct operation.

DIV.[S,D] can start only when all of the following condltlons are met
in the RF stage:

e The divider is idle.

e The adder is either idle, or in its second-to-last execution
cycle.

e The multiplier is either idle, or in its first execution cycle.

Idle means an operation unit, adder, multiplier, or divider, is eithernot
processing any instruction, or is currently at its last execution cycle
completmg an instruction.

MUL.[S,D] can start only when all of the following conditions are met
in the RF stage:

o The multiplier is either idle, or it is:

—  within the third execution cycle (EX+2) if the most
recent instruction in multiplier’s pipe is MUL.S, or

— within the fourth execution cycle (EX+3) if the most
recent instruction in multiplier’s pipe is MUL.D.

e The adder is either idle, or it must not be:

- processing the first execution cycle (EX) of a conversion
from long integer to short floating-point, CVIS.L,

—  within the first three preparation cycles (EX..EX+2) of a
DIVS,

- in the second preparation cycle (EX+1) of a DIV.D, or
- processing a square root instruction.

e« The divider is either idle, or it must not be:
- executing within the last fifteen cycles of a DIV.[S,D],
- inthe second execution cycle (EX+1) of a DIV.D, or
- in the first three execution cycles (EX..EX+2) of a DIVS.
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SOQRT.I[S,D] can start when both of the following conditions are met

in the RF stage:
e The adder is either idle, or it is in its second-to-last
execution cycle.

e The multiplier and divider must be idle.

CVT.fmt instructions can only start when all of the following
conditions are met in the RF stage:

¢ The adder is either idle, or it is in its second-to-last
execution cycle.

e The multiplier is either idle, or in one of the states
described below: ' o

-  If the instruction is an CVT.S.L, CVT.S.W or CVI.D.W,
the multiplier must be idle.

- If the instruction is an CVT.D.L, CVT.S.D, CVIW.[S,D],
CEIL.W.[S,D], FLOOR.W.[S,D}, ROUND.W.IS,D]), .or
TRUNC.W.[S,D], the multiplier must not be executing
beyond the first cycle (EX) of a MUL.S or the second
cycle (EX+1) of a MUL.D. If two multiply instructions
have already been initiated in the multiplier, none of
these convert instructions are allowed to start.

- If the instruction is an CVT.D.S, the multiplier must not
be executing the second-to-last execution cycle of either -
the first or second MUL.[S,D] in the multiplier pipe.

o The divider is idle, or not executing the first three
(EX..EX+2) nor the last fifteen cycles of a DIV.[S,D].

ADD.[S,D] or SUB.[S,D] can start only when all of the following
conditions are met in the RF stage:
e The adder is either idle, or it is in its second-to-last
execution cycle.

e The multiplier is either idle, or, among two possible
MUL.[S,D] instructions, it is not executing within either the
fourth or fifth execution cycle from the last.

o The divider is either idle, or it is not executing within the
first three (EX..EX+2) nor the last fifteen cycles of a
DIV.[S,D]. :
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NEG.[S,D] or ABS.[S,D] can start only when all of the following
conditions are met in the RF stage:

e The adder is either idle, or it is in its second-to-last
execution cycle.
e The multiplier is either idle, or it is not executing the
second-to-last execution cycle.
e The divider is either idle, or it is not executing the first
three (EX..EX+2) nor the last fifteen cycles of a DIV.[S,D].
C.COND.[S,D] can start only when all of the following conditions are
met in the RF stage:
e The adder is either idle, or it is in its second-to-last
execution cycle.
e The multiplier is either idle, or it is not executing the
fourth cycle from the last.
e The divider is either idle, or it is not executing the first
- three (EX.EX+2) nor the last fifteen cycles of a DIV.[S,D].
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" Floating-Point Exceptions

This chapter describes how the FPU handles floating-point
exceptions. A floating-point exception occurs whenever the FPU
cannot handle the operands or results of a floating-point operation in
the normal way. The FPU responds either by generating an exception
to initiate a software trap or by setting a status flag.

The FP Control/Status register described in Chapter 6, Floating-Point
Unit, contains an enable bit for each exception type; these exception
enable bits determine whether an exception will cause the FPU to
initiate a trap or set a status flag. If a trap is taken, the FPU remains in
the state found at the beginning of the operation and a software
exception handling routine is executed. If no trap is taken, an
appropriate value is written into the FPU destination register and
execution continues.

The FPU supports the five [EEE Standard 754 exceptions:
o Inexact ()
e Overflow (O)
e Underflow (U)
e Divide by Zero (Z)
» Invalid Operation (V)
with Cause bits, Enables, and Flag bits (status flags).

The FPU adds a sixth exception type, unimplemented operation (E), to
be used when the FPU cannot implement the standard MIPS floating-
point architecture, including cases where the FPU cannot determine
the correct exception behavior. This exception indicates that a
software implementation must be used. The unimplemented
operation exception has no Enable or Flag bit; whenever this exception
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occurs, an unimplemented exception trap is taken (if the FPU
interrupt input to the CPU is enabled).

Figure 7-1 illustrates the Control/Status register bits used to support
exceptions. ; .

Bit# 17 16 15 14 13 12
eElv]z|lo]u]|! Cause
T T 1 1 Bits
Bit#11 10 9 8 7
v]izlolu | Enable
1 1 | Bits
Bit# 6 5 4 3 2
Flag
\' Z| O U | Bits
l Inexact Operation
Underflow
Overflow
Division by Zero
, Invalid Operation
Unimplemented Operation

 Figure 7-1 Control/Status Register ExceptionFlag[Trap|Enable Bits

Each of the five IEEE standard exceptions (V, Z, O, U, I) is associated
with a trap under user control, which is enabled by setting one of the
five Enable bits. When an exception occurs, both the corresponding
Cause and Flag bits are set. If the corresponding Enable bit is set, the
FPU generates an interrupt to the CPU and the subsequent exception
processing allows a trap to be taken. ,

Exception Trap Processing

When a floating-point exception trap is taken, the Cause register
indicates that the floating-point coprocessor is the cause of the
exception trap. The FPE code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the
floating-point exception. These bits are, in effect, an extension of the
system coprocessor Cause register.
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Flags
For each IEEE exception, a Flag bit is provided. This Flag bit is set on
any occurrence of its corresponding exception condition, with no
corresponding exception trap signaled. The Flag bit is reset by writing
a new value into the Status register; flags can be saved and restored
individually, or as a group, by software. :
When no exception trap is signaled, a default action is taken by the
floating-point coprocessor, which provides a substitute value for the
exception-causing result of the floating-point operation. The
particular default action taken depends upon the type of exception,
and in the case of the Overflow exception, the current rounding mode.
"Table 7-1 lists the default action taken by the FPU for each of the IEEE
exceptions.
Table 7-1 Defawult FPU Exception Actions
Field | Description- Rounding mode| Defauit action
\' Invalid operation ‘ ANY Supply a quiet Not a Number (NaN)
Z Division by zero ANY - Supply a properly signed =
o Overflow exception RN Modify overflow values to o with the
' sign of the intermediate result
Rz Modify overflow values to the format’s
largest finite number with the sign ofthe
intermediate result
RP | Modify negative overflows to the
format’s most negative finite number;
modify positive overflows to + o
RM Modify positive overflows to the
format’s largest finite number; modify
negative overfiows to —
U Underflow exception ANY Supply a rounded result
| Inexact exception ANY | Supply a rounded result

The FPU detects internally the eight conditions that can cause
exceptions. When the FPU encounters one of these unusual situations,
it causes either an IEEE exception or an Unimplemented Operation
exception (E). Table 7-2 lists the exception-causing situations and
contrasts the behavior of the FPU with the requirements of the IEEE
standard.
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Table 7-2 FPU Exception-Causing Conditions

E | Trap | Tra

FPA Internal result | JEEE | 78D | JHAF | Note
inexact result 1 I | | Lossof Accuracy .
Exponent overflow or | ol 0,1 | Normalized exponent> Emax
Divide-by-zero 4 Z V4 Zero is (exponent = Emin-1, mantissa = 0)
Overflow on convert | V \Yj E Source out of integer range
Signaling NaN source| V Vv g | Quiet NaN source produces quiet NaN result
invalid operation \Y \Y E 0/0, etc.
Exponent underflow U E E Normalized exponent < Emin
Denormalized source | none E E Exponent = E-1 and mantissa <0

* Standard specifies inexact exception on overflow only if overflow trap is disabled.

The following sections describe the conditions that cause the FPU to
generate each of its exceptions and details the FPU response to each
exception-causing situation.

Inexact Exception (1)

The FPU generates the Inexact exception if the rounded result of an
operation is not exact or if it overflows.

NOTE: The FPU usually examines the operands of floating-point op-
erations before execution actually begins to determine (based on the
exponent values of the operands) if the operation can possibly cause an
exception. If there is a possibility of an instruction causing an excep-
tion trap, then the FPU uses a coprocessor stall mechanism to execute
the instruction. It is impossible, however, for the FPU to predetermine
if an instruction will produce an inexact result. Therefore, if Inexact
exception traps are enabled, the FPU uses the coprocessor stall mech-
anism to execute all floating-point operations that require more than
one cycle. Since this mode of execution can impact performance, Inex-
act exception traps should be enabled only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the
result register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed resultis delivered
to the destination register if no other software trap occurs. ‘

74
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Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the
operands are invalid for an implemented operation. When the
exception occurs without a trap, the MIPS ISA defines the resultas a
quiet Not a Number (NaN). The invalid operations are:

¢ Addition or subtraction: magnitude subtraction of
infinities, such as:
(+ )+ (-w)or(=o )=(=e)

¢ Multiplication: 0 times «, with any signs.

e Division: 0/0, or =/, with any signs.

e Conversion of a floating-point number to a fixed-point

format when an overflow, or operand value of infinity or
NaN, precludes a faithful representation in that format.

e Comparison of predicates involving < or > without ?, when
the operands are unordered. ' ‘

e Any arithmetic operation on a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic
operation, but absolute value (ABS) and negate (NEG) are
considered to be arithmetic operations and will cause this
exception if one or both operands is a signaling NaN.

e Square root: Vx, where x is less than zero.

Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE 754-specified functions implemented in
software, such as Remainder: x REM y, where y is zero or x is infinite;
conversion of a floating-point number to a decimal format whose
value causes an overflow, or is infinity or NaN; and transcendental
functions, such as In (-5) or cos-1(3). Refer to Appendix B for
examples or for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results: The FPU always signals an Unimplemented

exception because it does not create the NaN that the IEEE standard
specifies should be returned under these circumstances.
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Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled onan implemented divide
operation if the divisor is zero and the dividend is a finite non-zero
number. Software can simulate this exception for other operations that
produce a signed infinity, such as In(0), sec(/2), csc(0), or (1

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (O)

* source registers are preserved.

The Overflow exception is signaled when the magnitude of the
rounded floating-point result, if the exponent range were to be
unbounded, is larger than the destination format’s largest finite
number. (This exception also sets the Inexact exception and Flag bits.)
Trap Enabled Results: The result register is not modified, and the
Trap Disabled Results: The result, when no trap occurs, is

determined by the rouriding mode and the sign of the intermediate
result (as listed in Table 7-1). '

Underflow Exception (U)

Two related events contribute to the Underflow exception:

e The creation of a tiny non-zero result between +2Emin
which can cause some later exception because it is so tiny.

o The extraordinary loss of accuracy during the
approximation of such tiny numbers by denormalized
numbers.

IEEE Standard 754 permits a choice in the manner in which these
events are detected but requires they be detected the same way for all
operations.

The IEEE standard specifies that tininess may be detected either:

e after rounding (when a nonzero result, computed as
though the exponent range were unbounded, would lie
strictly between +2Emin), or

e before rounding (when a nonzero result, computed as
though the exponent range and the precision were
unbounded, would lie strictly between +2Emin).

7-6
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The MIPS architecture requires that tininess be detected after
rounding. ‘
Loss of accuracy can be detected as either:

¢ denormalization loss (when the delivered result differs

from what would have been computed if the exponent
range were unbounded), or

e inexact result (when the delivered result differs from what
would have been computed if the exponent range and
precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as
inexact result.

Trap Enabled Results: When an underflow trap is enabled,
underflow is signaled when tininess is detected regardless of loss of
accuracy. If underflow traps are enabled, the result register is not
modified, and the source registers are preserved.

Trap Disabled Results: When an underfiow trap is not enabled,
underflow is signaled (using the underflow flag) only when both
tininess and loss of accuracy have been detected. The delivered result
might be zero, denormalized, or £2Emin )

Unimplemented Instruction Exception (E) .

Any attempt to execute an instruction with an operation code or
format code that has been reserved for future definition sets the
Unimplemented cause bit and traps. The operand and destination
registers remain undisturbed and the instruction is emulated in
software. Any of the IEEE 754 exceptions can arise from the emulated
operation, and these exceptions in turn are simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the
implemented hardware cannot properly handle. These include:

¢ Denormalized operand
¢ Not a Number operand
¢ Denormalized result

o Underflow

e Reserved opcodes

¢ Unimplemented formats

e Operations which are invalid for their format (for instance,
CVTS.S)
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NOTE: Denormalized and NaN operands are only trapped if the in-
struction is a convert or computational operation. Moves do not trap
if their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely
used in early implementations. Loopholes are provided in the
architecture so that these conditions can be implemented with
assistance provided by software, maintaining full compatibility with
the IEEE standard. 4

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot not be disabled.

Saving and Restoring State

Sixteen doubleword coprocessor load or store operations save or
restore the coprocessor floating-point register state in memory. The
remaining control and status information can be saved or restored

~ through Move To/From Coprocessor Control Register instructions,

and saving and restoring the processor registers. Normally, the -
Control / Status register is saved first and restored last.

When coprocessor Control/Status register (FCR31) is read, and thé

© coprocessor is executing one or more floating-point instruction, the

instruction(s) in progress are either completed or reported as

" exceptions. The architecture requires that no more than one of these.

pending instructions can cause an exception. If one of the pending
instructions cannot be completed, the instruction is placed in the
Exception register, if present, and information indicating the type of
exception is placed in the Control/Status register. State information in
the status word indicates that exceptions are pending when state is
restored.

Writing a zero value to the Cause field of Control register 31 clears all
pending exceptions, permitting normal processing to be restarted
after the floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction; the FPU examines source operands before an
operation is initiated to determine if the instruction can possibly cause
an exception. If an exception is possible, the FPU executes the
instruction in stall mode to ensure that no more than one instruction
(that might cause an exception) is executed at a time.
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v

Trap Handlers for IEEE Standard Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions which

* can compute or specify a substitute result be placed in the destination
register of the operation.
By retrieving an instruction using the processor EPC register, the trap
handler determines:

o The exceptions occurring during the operation

¢ The operation being performed
e The destination format

On Overflow or Underflow exceptions (except for conversions), and

on Inexact exceptions, the trap handler gains access to the correctly

rounded result by examining the source registers and simulating the
~ operation in software. . ‘

_ On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero
exceptions, the trap handler gains access to the operand values by
examining the source registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for
both the Inexact exception and the Overflow or Underflow exception.

R4000 User's Manual--Preliminary ‘ 7-9



Chapter 7

7-10 ’ R4000 User's Manual--Preliminary



Signal Descriptions

8

This chapter describes the signals used by and in conjunction with the
R4000. The signals discussed include:

e  System Interface

+  Clock/Control Interface

e Secondary Cache Interface »
o Interrupt Interface

o Initialization Interface

e JTAG Interface

System Interface

These signals comprise the interface between the R4000 and other
components in the system. Signals IvdAck* and IvdErr* are available
only on the R4000SC and MC. All other signals are available on all
three package configurations.
ExtRgst*: External request Input
An external agent asserts ExtRqst* to request use
of the system interface. The R4000 grants the
request by asserting Release™.

IvdAck*: Invalidate acknowledge Input
An external agent asserts IvdAck* to signal
successful completion of a procéssor invalidate
or update request (R4000MC and SC only).

IvdErr*: Invalidate error Input
An external agent asserts IvdErr* to signal
unsuccessful completion of a processor invalidate
or update request (R4000MC and SC only).
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Figure 8-1 R4000 Logic Symbol Diagram
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Release*:

RdRdy*:

SysAD(63:0):

SysADC(7:0):

SysCmd(8:0):

' S)?sCmdP:

ValidIn*:

ValidOut*:

WrRdy*:

Release interface Output

In response to the assertion of ExtRgst”, the
R4000 asserts Release* to signal the requesting
device that the system interface is available.

Read ready Input

The external agent asserts RdRdy* to indicate
that it can accept processor read, invalidate, or
update requests in both secondary-cache and no-
secondary-cache mode or can accept a read
followed by write request, a read followed by a
potential update request, or a read followed by a
potential update followed by a write request in
secondary cache mode.

System address/data bus Input/Output
A 64-bit address and data bus for communication
between the processor and an external agent.

System address/data check bus Input/Output
An 8-bit bus containing check bits for the SysAD
bus. :

System command/data identifier bus parity

Input/Output
A 9-bit bus for command and data identifier
transmission between the processor and an
external agent. -

System command/data identifier bus paﬁty'

Input/Output
A single, even-parity bit for the SysCmd bus.
Valid input Input

An external agent asserts ValidIn* when it is
driving a valid address or data on the SysAD bus
and a valid command or data identifier on the
SysCmd bus.

Valid output Output

The R4000 asserts ValidOut* when it is driving a
valid address or data on the SysAD bus and a
valid command or data identifier on the SysCmd
bus.: :

Write ready Input
An external agent asserts WrRdy* when it can
accept a processor write request.
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Clock/Control Interface

These signals comprise the interface for clocking and maintenance

functions.

1I00ut: VO output Output
Output slew rate control feedback loop output.
Must be connected to IOIn through a delay loop
that models the IO path from the R4000 to an
external agent.

I0In: - - VOinput : ' Input
Output slew rate control feedback loop input (see

: I00ut).

MasterClock:  Master clock Input
Master clock input establishes the processor
operating frequency.

MasterOut: Master clock out Output
Master clock output aligned with MasterClock.

RClock(1:0): Receive clocks Output

Two identical receive clocks that establish the
system interface frequency.

SyncOut: Synchronization clock out Output
S Synchronization clock output. Must be connected
to SyncIn through an interconnect that models
the interconnect between MasterOut, TClock,

RClock, and the external agent.

Syncln: Synchronization clock in Input
Synchronization clock input.

TClock(1:0): Transmit clocks Output

Two identical transmit clocks that establish the
system interface frequency.

Fault*: Fault Output
The R4000 asserts Fault* to indicate a mismatch
output of boundary comparators.

Status(7:0): Status Output
An 8-bit bus that indicates the current operation
status of the processor.

VecP: Quiet VCC for PLL Input
Quiet Vcc for the internal phase locked loop.
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VccSense: VCC sense Input/Output
This is a special pin used only in component
testing and characterization. It provides a

 separate, direct connection from the on-chip VvCC

node to a package pin without attaching to the
in-package power planes. Test fixtures treat
VccSense as an analog output pin: the voltage at
this pin directly shows the behavior of the on-
chip VCC. Thus, characterization engineers can
easily observe the effects of di/dt noise,
transmission line reflections, etc. VccSense
should be connected to VCC in functional system

designs.
VssP: Quiet VSS for PLL Input

Quiet Vss for the internal phase locked loop.
VssSense: VSS sense Input/Output

VssSense provides a separate, direct connection
from the on-chip VSS node to a package pin
without attaching to the in-package ground
planes. VssSense should be connected to VS5 in
functional system designs.

Secondary Cache Interface

These signals comprise the interface between the R4000 and the
secondary cache. These signals are available only on the R4000MC and

SC.

SCAddr(17:1):  Secondary cache address bus Output
SCAddrOW:  Secondary cache address Isb "Output
SCAddroX: Secondary cache address Isb Output
SCAddr0Y: Secondary cache address Isb Output

SCAddr0Z: Secondary cache address Isb Output
The 18-bit address bus for the secondary cache.
Bit 0 has four output lines to provide additional
drive current.

R4000 User's Manual--Preliminary ' 85



Chapter 8

SCAPar(2:0):

SCData(127:0):

SCDChKk(15:0):

© SCDCS™:

SCOE*:

SCTag(24:0):

SCTChk(6:0):

SCTCS*:

SCWrw+:
SC:W X*:
SCWrY*:

Secondary cache address parity busOutput

A 3-bit bus that carries the parity of the SCAddr
bus and the cache control lines SCWR*, SCDCS*
and SCTCS*. The individual bit definitions are:

SCAPar2 - Even Parity for SCAddr(17:12) and
SCWR*

SCAPar1 - Even Parity for SCAddr(11:6) and

. SCDCSs*

SCAPar0 - Even Parity for SCAddr(5:0) and
SCTCS*

Secondary cache data bus - Input/
OQutput

A 128-bit bus used to read or write cache data
from and to the secondary cache data RAM.

Secondary cache data ECCbus  Input/Output
A 16-bit bus that carries two 8-bit ECC field
covering the 128 bits of SCData from/to

- secondary cache. SCDChk(15:8) corresponds to

SCData(127:64) and SCDChk(7:0) corresponds to
SCData(63:0).

Secondary cache data chip select Output
Chip select enable signal for the secondary cache

- data RAM.

Secondary cache output enable  Output
Output enable for the secondary cache data and
tag RAM.

Secondary cache tag bus Input/Output
A 25-bit bus used to read or write cache tags
from and to the secondary cache.

Secondary cache tag ECC bus Input/Output
A 7-bit bus that carries an Error Checking and
Correcting (ECC) field covering the SCTag from
and to the secondary cache.

Secondary cache tag chip select Output

Chip select enable signal for the secondary cache
tag RAM.

Secondary cache write enable Output

Secondary cache write enable Output
Secondary cache write enable Output

8-6
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SCWrZ*:

Secondary cache write enable Output
Write enable for the secondary cache data and

tag RAM.
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Interrupt Interface

These signals comprise the interface used by external agents to
interrupt the R4000 processor. Int*(5:1) is available only onthe .
R4000PC; Int*(0) and NMI* are available on all three configurations.

Int*(5:1):

Int*(0):

NMI*:

Initialization Interface

Interrupt Input

Five of six general processor interrupts, bit-wise
ORed with bits 5:1 of the interrupt register.
Interrupt Input

One of six general processor interrupts, bit-wise
ORed with bit 0 of the interrupt register.

Non-maskable interrupt Input
Non-maskable interrupt, ORed with bit 6 of the
interrupt register.

These signals comprise the interface by which an external agent
initializes the R4000 operating parameters. All of these signals are
available on all three processor configurations.

ColdReset*:

ModeClock:

Modeln:

Reset*:

Cold reset - Input

This signal must be asserted for a power on reset
or a cold reset. The clocks SClock, TClock, and
RClock begin to cycle and are synchronized with
the de-assertion edge of ColdReset*. ColdReset*
must be de-asserted synchronously with
MasterOut.

Boot mode clock Output
Serial boot-mode data clock output at the system
clock frequency divided by two hundred and
fifty six.

Boot mode data in Input

Serial boot-mode data input.

Reset - Input

This signal must be asserted for any reset
sequence. It may be asserted synchronously or
asynchronously for a cold reset, or
synchronously to initiate a warm reset. Reset*
must be de-asserted synchronously with
MasterOut.

8-8
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VCCOk: VCCis OK Input
When asserted, this signal indicates to the R4000
that the +5 volt power supply has been above
4.75 volts for more than 100 milliseconds and will
remain stable. The assertion of VCCOk initiates
the initialization sequence.

JTAG Interface

These signals comprise the interface by which the JTAG boundary

scan mechanism is provided.

JIDI: JTAG data in Input
Data is serially scanned in through this pin.
JTAG clock input Input

JTCK:

JTDO:

JTMS:

The R4000 outputs a serial clock on JTCK. On the
rising edge of JTCK both JTDI and JTMS are .

sampled.

JTAG data out Output

Data is serially scanned out through this pin. -
JTAG command Input

JTAG command signal, signals that the incoming
serial data is command data.
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Signal Summary
Table 8-1: R4000 SCIMC Processor Signal Summary

Description Name - VO | Asserted | 3-State
) State
Secondary cache data bus SCData(127:0) o High Yes
Secondary cache data ECC bus SCDChk(15:0) 110 High Yes
Secondary cache tag bus SCTag(24:0) 110 High Yes
Secondary cache tag ecc bus SCTChk(6:0) 110 High Yes
Secondary cache address bus SCAddr(17:1) O High No
Secondary cache address Isb SCAddroZ (o] High No
Secondary cache address Isb SCAddroX o High No
Secondary cache address Isb SCAddroX O High No
Secondary cache address Isb SCAddrow o] High No
Secondary cache address parity bus SCAPar(2:0) (o] High No
Secondary cache output enable SCOE" O Low No
Secondary cache write enable SCwrz* o Low No
-Secondary cache write enable SCWrY* o} Low No
Secondary cache write enable SCWrX* o Low No
Secondary cache write enable - SCWrw* (o) Low No
Secondary cache data chip select scDCs* o] Low No
Secondary cache tag chip select SCTCS* (o] Low No
System address/data bus SysAD(63:0) 1o High Yes
" System address/data check bus SysADC(7:0) 1710 High Yes
System command/data identifier bus SysCmd(8:0) 7o High Yes
System command/data identifier bus parity SysCmdP 110 High Yes
Valid input Validin®* | Low No
Valid output ValidOut* O | Low Yes
External request ExtRast* ] Low No
Release interface Release* 0] Low No
Read ready RdRdy* | Low No
Write ready WrRdy* | ‘Low No
Invalidate acknowledge ivdAck® | Low No
Invalidate error IvdErr* | Low No
Interrupt Int*(0) ] Low No
Non-maskable interrupt NMI* 1 Low No
Boot mode data in Modein | High No
Boot mode clock ModeClock o] High No
JTAG data in JTDI I High No
JTAG data out JTDO o High No
JTAG command JTMS | High No
JTAG clock input JTCK | High No
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Description Name VO | Asserted | 3-State
: State
Transmit clocks TClock(1:0) o High No
Receive clocks RClock(1:0) o} High No
Master clock MasterClock | High No
Master clock out MasterOut ) High No
Synchronization clock out SyncOut O High No
Synchronization clock in Synecin | High No
11O output 100ut o High No
1fO input 10In i High No
VCCis OK VCCOk | High No
Cold reset ColdReset* 1 Low No
Reset Reset* 1 Low No
Fault Fault® o Low No
Quiet VCC for PLL VeeP 1 High No
Quiet VSS for PLL VssP 1 High' No
Status S ) Status(7:0) o High No
VCC sense ' VccSense o N/A No
VSS sense . VssSense 1o N/A No
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Table 8-2: R4000 PC Processor Signal Summary

Description Name VO |Asserted| 3-State
. State
System address/data bus SysAD(63:0) 110 High Yes
System address/data check bus SysADC(7:0) 110 High Yes
System command/data identifier bus SysCmd(8:0) 110 High Yes
System command/data identifier bus parity SysCmdP /o] High Yes
Valid input Validin® | Low No
Valid output ValidOut* (o] Low Yes
External request ExtRagst* o Low No
Release interface Release* o] Low No
Read ready RdRdy* ] Low No
Write ready - WrRdy* | Low No
Interrupts Int*(5:1) ] Low No
" Interrupt Int*(0) 1 Low No
Non-maskable interrupt NMI* | Low No
. Boot mode data in Modeln | High No
Boot mode clock ModeClock (o) High No
JTAG data in . JTDI 1 High No
JTAG data out JTDO o High No
JTAG command JTMS | High - No
JTAG clock input JTCK 1 High No
Transmit clocks TClock(1:0) O High No
Receive clocks RClock(1:0) O High No
Master clock MasterClock | High No
Master clock out MasterOut (o] High No
Synchronization clock out SyncOut O High No
Synchronization clock in Syncin | High No
1/O output {00ut o High No
YO input IO0In | High No
VCC is OK VCCOk | High No
Cold reset ColdReset* | Low No
Reset Reset” | Low No
Fault Fault* (o] Low No
Quiet VCC for PLL VecP | High No
Quiet VSS for PLL VssP 1 High No
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9

The system interface allows the processor to access those external
resources required to satisfy cache misses, while also permitting an
external agent access to certain of the processor’s internal resources.

In the R4000MC configuration, the system interface provides those
processor mechanisms necessary to maintain the cache coherency of
shared data, while also providing to an external agent the mechanisms
with which to maintain system-wide multiprocessor cache coherency.
This section describes the system interface from the point of view of
both the processor and the external agent. :

System Events

First, a definition: A system event is an event that occurs within the
processor and requires access to external system resources.
When a system event occurs, the processor issues either a single
request or a series of requests— called processor requests—through the
system interface, in order to access an external resource and service
the event. For this to work, the processor’s system interface must be
connected to an external agent that is compatible with the system
interface protocol, and that can coordinate access to system resources.

System events may be:
e A load that misses in both the primary and secondary
caches.
e A store that misses in both the primary and secondary
caches.

e A store that hits in either the primary or secondary data
cache on a shared line, and an uncached load or store.
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Note that a miss in both caches requires the write back to memory of
the cache line being replaced, if the line is in a dirty cache state.
Under certain conditions, system events are also caused by cache
operation instructions.

Two types of system events are described: processor requests and
external requests.

Processor Requests

~ A processor request is a request ora series of requests, through the
system interface, to access some external resource.

Processor requests include read, write, null write, invalidate and
update. N

e Read is a request for a block, double word, word, or partial
word of data either from main memory or from another
system resource.

e Write provideé ‘ablock, double word, word, or partial word
of data to be written either to main memory or to another
system resource. ‘ .

e Null write indicates that an expected write has been
cancelled as a result of an external request.

e Invalidate is a request to invalidate a specified cache line in
every other cache in the system. ‘

o Update is a request to update every other cache in the
system with the specified double word, word, or partial
word of data.

External Requests

An external agent requesting access to processor caches or to a
processor status register generates an external request. This access
request passes through the system interface. :

External requests include read, write, invalidate, update, snoop,
intervention, and null requests. External invalidate, update, snoop
and intervention requests, as a group, are referred to as external
coherence requests.

o Read is.a request for a word of data from a processor
internal resource.

e  Write provides a word of data to be written to a processor
internal resource. ‘

9-2
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o Invalidate specifies a cache line, in the processor’s primary
and secondary caches, that must be marked invalid.

o Update provides a double word, word, or partial word of
* data to be written to the processor’s primary and
secondary caches. :

e Snoop checks the processor secondary cache to see if a valid
copy of a particular cache line exists; if the valid copy
exists, it then checks to see what cache state the line is in.
The processor returns the state of the cache line at the
specified physical address in the secondary cache, and may
modify the state of the cache line.

o Intervention requires the processor to return an indication
of the state of the cache line at the specified physical
address in the secondary cache. Under certain conditions
related to the state of the cache line and the nature of the
intervention request, the contents of the primary and
secondary cache line may themselves be returned, or the
state of the line may itself be modified. :

e  Null requests require no action by the processor. They
simply provide a mechanism for an external agent to either
return control of the secondary cache to the R4000, or to
return the system interface to the master state without
affecting the processor.

Read Requests

There are two types of read requests: processor and external. When a
processor or an external agent receives a read request, it must access
the specified resource and return the requested data.

e A processor read request may be split from the external
agent’s return of the requested data; the response
(requested) data may be returned at any time after the read
request, provided the system interface bus is not being
used. An external agent may even initiate an unrelated
external request before it returns the response data for a
processor read. A processor read request is complete after
the last word of response data has been received from the
external agent.
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e For external read requests, the data is returned directly in
response to the read request. External read requests may
not be split from the return of response data. An external
read request is complete after the processor returns the
requested word of data.

Pending Read Requests

Processor read requests that have been issued, but for which data has
not yet been returned, are said to be pending. A read remains pending
until the requested read data is returned.

Read Responses

Write Requests

The return of data in response to a processor read request is
accomplished through a read response. While a read response is
technically an external request, read responses has a characteristic that
makes it differ from all other external requests—system interface
arbitration is not performed. For this reason, read responses are

~ handled separately from all other external requests, and are simply

called read responses.

A processor write request is complete after the last word of data has -
been transmitted. An external write request is complete after the word
of data has been transmitted.

Update and invalidate Requests

A processor update request requires a completion acknowledge by the
invalidate acknowledge signal IvdAck* or the invalidate error signal
IvdEr* —unless the update is canceled by the external agent.

Update cancellation is signaled to the processor during external
invalidate, update, snoop, and intervention requests; IvdErr* is used
to signal that a processor update request has failed. When the
processor update request fails, the issuing processor takes a bus error
on the store instruction that generated the failed request.

Since the completion acknowledge for processor invalidate and
update requests is signaled through the system interface on dedicated
pins, the completion acknowledge may occur in parallel with
processor and external requests. A processor update request that has
been submitted, but for which the processor has not yet received an
acknowledge or a cancellation, is said to be unacknowledged.

9-4
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An external update request is complete after the request has been
transmitted.

Snoop Requests

An external snoop request is complete after the processor returns the
state of the specified cache line. _—

Intervention Requests

An external intervention request is complete after the processor
returns the state of the specified cache line, if the processor does not
return the contents of the cache line, or after the processor returns the
last word of data for the specified cache line.

Note that the data identifier associated with the response data may
signal that the returned data is erroneous, causing the processor to
take a bus error.

_Flow Control for Requests

The processor must manage the flow of processor requests and
external requests. The processor controls the flow of external requests
_ by the external request arbitration signals ExtRgst*, and Release*. An.

external agent must acquire mastership of the system interface before
itis allowed to issue an external request. The external agent arbitrates

for mastership of the system interface by asserting ExtRgst* and ’
waiting for the processor to assert Release™ for one cycle. Mastership
of the system interface is always returned to the processor after an
external has been issued. The processor will not accept a subsequent
external request until it has completed the current one.

Processor requests are managed by the processor in two distinct
modes: secondary-cache mode and no-secondary-cache mode. These modes
are programmable through the boot-time mode control interface
described in Chapter 12. The allowed modes of operation are
dependent on the package configuration for the processor. A
processor in the small configuration package must be programmed to
run in no-secondary-cache mode. A processor in the large
configuration package may be programmed to runin secondary-cache
or no-secondary-cache mode. If not programmed appropriately, the
behavior of the processor is undefined.

In no-secondary-cache mode, the processor will issue requestsina
strict sequential fashion; that is, the processor is only allowed to have
one request pending at any time. The processor will issue a read
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request and wait for a read response before issuing any subsequent
requests. The processor will submit a write request only if there are no
reads pending,.

The processor provides the input signals RdRdy* and WrRdy* to
allow an external agent to manage the flow of processor requests. '
RdRdy* controls the flow of processor read, invalidate, and update

requests while WrRdy* controls the flow of processor write requests.

Processor null write requests must always be accepted and cannot be
delayed by either RARdy* or WrRdy*. The processor samples the
signal RARdy* to determine the issue cycle for a processor read,
invalidate, or update request and the processor samples the signal
WiRdy* to determine the issue cycle of a processor write request. The
issue cycle for a processor read, invalidate, or update request is
defined to be the first address cycle for the request for which thesignal
RdRdy* was asserted two cycles previously. The issue cycle fora
processor write request is defined to be the first address cycle for the
write request for which the signal WrRdy* was asserted two cycles
previously. If the processor wishes to issue a request but is unable to
because one of the signals RdRdy* or WrRdy* is deasserted, the
processor will repeat the address cycle for the request until the issue
cycle is accomplished. Once the issue cycle is accomplished, data
transmission will begin for a request that includes data. There will
always be one and only one issue cycle for any processor request.

.. The processor will accept external requests while attempting to issue

a processor request by releasing the system interface to slave state in
response to an assertion of ExtRqst*. Note that the rules governing the
issue cycle of a processor request are strictly applied to determine the
action the processor is taking. The processor will either accomplish the
issue of the processor request, in which case the processor request will
be completed in its entirety before an external request will be
accepted, or the processor will release the system interface to slave
state without accomplishing the issue of the processor request. In the
latter case, the processor will attempt to issue the processor request
again after the external request is completed, and the rules governing
issue cycle will again apply.

In no-secondary-cache mode an external agent must be capable of
accepting a processor read request at any time there are no processor
read requests pending and the signal RdRdy* has been asserted for
two or more cycles. An external agent must be capable of accepting a
processor write request at any time there are no processor read
requests pending and the signal WrRdy* has been asserted for two or
more cycles.
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In secondary-cache mode, the processor issues requests both
individually as in no-secondary-cache mode and in groups that begin
with a processor read request called clusters. A cluster consists of a
processor read request followed by one or two additional processor
requests issued while the read request is pending. All of the requests
that are part of a cluster must be accepted before the response to the
read request that begins a cluster may be returned to the processor.
cluster can include:

e a processor read request, followed by a write request’
e a processor read request, followed by potential update

e aprocessor read request, followed by potential update request,
followed by a write request.

The issue of potential update requests withina cluster can be disabled
via the boot-time mode control interface. A processor potential update
request is defined as any update request that is issued while a
processor read request is pending. In addition, a bit in the command
for processor updates identifies potential updates. Potential updates
are issued in conjunction with a processor read request. That is, once
the processor accomplishes the issue of a read request, a potential
update request follows if one is required regardless of the state of
RdRdy*. Potential update requests do not obey the RdRdy* flow
control rules for issue, but rather issue with a single address cycle
regardless of the state of RdRdy*.

A write request that is part of a cluster does obey the WrRdy* rules for
issue. The processor accepts external requests between the issue of a
processor read request, or a processor read request followed by a
potential update request and the issue of a processor write request
within a cluster. The processor signals that it is issuing a cluster that
contains a processor write request by issuing a read-with-write-
forthcoming request instead of an ordinary read request to start the
cluster. The read-with-write-forthcoming request is identified by a bit
in the command for processor read requests. The external agent must
accept all of the requests that form a cluster before it may returna
response to the read request that began the cluster. The behavior of the
processor is undefined if the external agent returns a response toa
processor read request that begins a cluster before accepting all of the
requests that form the cluster.

Since the processor does accept external requests between the issue of
a read-with-write-forthcoming request that begins a cluster and the
issue of the write request that completes a cluster, it is possible for an
external request to obviate the need for the write request within the
cluster. For instance, if the external agent issued an external invalidate
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request that targeted the cache line the processor was attempting to
write back, the state of the cache line would be changed to invalid, and
the write back for the cache line would no longer be needed. In this
event, the processor issues a processor null write request after
completing the external request to complete the cluster. Processor null
write requests do not obey the WrRdy* flow control rules for issue,
but rather issue with a single address cycle regardless of the state of

'WrRdy*. Any external request that changes the state of a cache line

from dirty exclusive or dirty shared to clean exclusive, shared, or
invalid obviates the need for a write back of that cache line.

A processor potential update request remains potential until the
response to the pending processor read request that began the cluster
is received. If the read response data is returned in one of the shared
states, shared or dirty shared, the potential update is no longer
potential and must receive an acknowledge via either the signal
IvdAck* or IvdErr*. If the read response data is returned in one of the
exclusive states, clean exclusive or dirty exclusive, the potential
update is nullified and the processor neither expects nor requires an
acknowledge. o
In secondary-cache mode, an external agent must be capable of
accepting a processor read request followed by a potential update
request any time there are no processor read requests pending, no
unacknowledged processor update requests, and the signal RdRdy* .
has been asserted for two or more cycles. An external agent must be
capable of accepting a processor write request at any time thereare no
processor read requests pending, or there is a processor read-with-

- write-forthcoming request pending with no unacknowledged

processor update requests that are compulsory, and the signal
WrRdy* has been asserted for two or more cycles.

After issuing a processor read request, the processor does not issuea
subsequent read request until it has received a read response for the
read request, whether the read request began a cluster or not. After
issuing a processor update request, or after a potential update request
is no longer potential, the processor does not issue a subsequent
request until it has received an acknowledge for the update request.
After the processor has issued a write request, the processor does not
issue a subsequent request until at least four cycles after the issue cycle
of the write request. '

The following sections detail the sequence, protocol, and syntax of
processor and external requests. Sequence refers to the Pprecise series
of requests that a processor generates to service a system event.
Protocol refers to the cycle-by-cycle signal transitions that occur on the
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processor's systém interface pins to realize a processor or external
request. Syntax refers to the precise definition of bit patterns on
encoded buses such as the command bus.

Processor Request Sequencing

The processor generates a request or a series of requests through the
system interface to satisfy system events. Processor requests are
managed in two distinct modes, secondary-cache mode and no-
secondary-cache mode. The following sections detail the sequence of
requests generated by the processor for each system event in
secondary-cache and no-secondary-cache mode.

Primary and Secondary Cache Miss on a Load

When the processor misses in both the primary and secondary caches
on a load, it must obtain the cache line that contains the data element
to be loaded from an external agent before it can proceed. If the new
cache line will replace a current cache line that is in the state dirty
exclusive or dirty shared, the current cache line must be written back

 before the new line can be loaded in the primary and secondary
caches.

The processor examines the coherency attribute in the TLB entry for
the page that contains the requested cache line, and, if the coherency
attribute is exclusive, it issues a coherent read request that also
requests exclusivity. If the coherency attribute is sharable or update,
the processor issues a coherent read request, and, if the coherency
attribute is noncoherent, the processor issues a noncoherent read
request.

In no-secondary-cache mode, the processor issues a read request for
the cache line that contains the data element to be loaded. The
processor then waits for an external agent to provide the read data in
response to the read request. Then, if the current cache line must be
written back, the processor issues a write request for the current cache
line.

In secondary-cache mode, if the current cache line does not need to be
written back and the coherency attribute for the page that contains the
requested cache line is anything other than exclusive, the processor
issues a read request for the cache line that contains the data element
to beloaded. If the current cache line needs to be written back and the
coherency attribute for the requested cache line is not exclusive, the
processor will issue a cluster consisting of a read-with-write-
forthcoming request for the cache line that contains the data element
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to be loaded followed by a write request for the current cache line. If
the current cache needs to be written back, and the coherency attribute
for the page containing the requested cache line is exclusive, the

processor issues a cluster consisting of an exclusive read-with-write-
forthcoming request, followed by a write request for-the current cache

_line.

Primary and Secohdary Cache Miss on a Store

When the processor misses in both the primary and secondary caches
on astore, it must obtain the cache line that contains the target location
of the store from an external agent before it can proceed. In secondary
cache mode, if the new cache line replaces a current cache line that is
in the state dirty exclusive or dirty shared, the current cache line must
be written back before the new line can be loaded in the primary and
secondary caches.

The processor examines the coherency attribute in the TLB entry for

_ the page that contains the requested cache line to see if this cache line

is being maintained with a write invalidate or a write update cache
coherency protocol. If the coherency attribute is sharable or exclusive,
a write invalidate protocol is in effect, and a coherent read that also
requests exclusivity is issued. If the coherency attribute is update, a

‘write update protocol is in effect and a coherent read request is issued.

If the coherency attribute is noncoherent, a noncoherent read request
is issued. :

In no-secondary-cache mode, the processor issues a read request for
the cache line that contains the data element to be loaded. The
processor then waits for an external agent to provide the read data in
response to the read request. Then, if the current cache line must be
written back, the processor issues a write request for the current cache
line.

In secondary-cache mode, if the current cache line does not need to be
written back and the coherency attribute for the page that contains the
requested cache line is noncoherent, the processor issues a read
request for the cache line that contains the target location of the store.
If the current cache line does not need to be written back and the
coherency attribute for the page that contains the requested cacheline
is sharable or exclusive, the processor issues a read request. If the
current cache line does not need to be written back andthe coherency
attribute for the page that contains the requested cache line is update,
and potential updates are enabled, the processor issues a cluster
consisting of a read request followed by a potential update request. If
the current cache line needs to be written back, and the coherency
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attribute for the requested cache line is noncoherent, the processor
issues a cluster consisting of a read-with-write-forthcoming request
for the cache line that contains the target location of the store followed
by a write request for the current cache line. If the current cache line

" needs to be written back and the coherency attribute for the page that
contains the requested cache line is sharable or exclusive, the
processor issues a cluster consisting of a read-with-write-forthcoming
request followed by a write request for the current cache line. If the
current cache line needs to be written back and the coherency attribute
for the page that contains the requested cache line is update, and
potential updates are enabled, the processor issues a cluster consisting
of a read-with-write-forthcoming request followed by a potential
update request followed by a write request for the current cache line.

If the processor issues a cluster that contains a potential update, and
the response data for the read request is returned with an indication
that it must be placed in the cache in a shared state, either shared or
dirty shared, the potential update becomes compulsory. Once a
potential update becomes compulsory, the external agent must
forward the update to the system, and signal an acknowledge to the
processor when the update is complete. In this case the processor will,
not complete the store until the update has been acknowledged.

If the processor issues a cluster that contains a potential update, and
the response data for the read request is returned in an exclusive state,
clean exclusive or dirty exclusive, the potential update is nullified.
Once a potential update has been nullified, the external agent must
simply discard the update. The processor will not wait for or expectan
acknowledge to a potential update that has been nullified.

If the processor issues a read request, or a cluster that does not contain
a potential update, and the response data for the read request is
returned with an indication that it must be placed in the cacheina
shared state, either shared or dirty shared, the processor will then
issue an invalidate request or an update request depending on the
coherency attribute for the page that contains the target location of the
store instruction. If the coherency attribute is update, an update
request is issued, otherwise an invalidate request is issued. The
external agent must forward the update to the system and signal an
acknowledge to the processor for the update request. The processor
will not complete the store until it has received an acknowledge for the
update request.

The concept of potential updates is introduced to provide the external
agent a chance to use the system bus more efficiently. In an update
protocol, it is quite likely that a cache line requested by a processor
coherent read request will be returned in a shared state, and that the

R4000 User's Manual--Preliminary . 9-11



Chapter 9

processor will then have to issue an update request before it can
complete a store instruction. The potential update issued with the
read request in a cluster allows the external agent to anticipate the
read response on the system bus, and, if it arrives with an indication
that it is shared, to quickly gain control of the system bus and transmit
the required update to the rest of the system. This provides the
processor with the acknowledge as quickly as possible and also allows
the processor to complete the store instruction as quickly as possible.
Without the potential update request, the response data must be
returned to the processor. The processor then issues an update request
which must then be forwarded to the system bus before an
acknowledge can be returned to the processor.

Note that potential updates behave in all cases as if they have not yet
been issued by the processor. Potential updates are not subject to
cancellation, and do not expect or require an acknowledge. Whena
potential update is nullified, the processor behaves as if no update
request was ever issued. When a potential update is no longer
potential, the processor behaves as if it had issued an update request
at that instant. Once a potential update is no longer potential it is "
subject to cancellation, and the processor requires an acknowledge for -
the update request. ‘

Secondary Cache Hit on a Store to a Shared Line

When the processor hits in the secondary on a cache line that is
marked shared or ditty shared, the processor must issue an update
request and wait to receive an acknowledge before the store can be
completed. The processor checks the coherency attribute in the TLB
for the page that contains the cache line that is the target of the store
to determine if the cache line is being managed using a write
invalidate or write update cache coherency protocol. If the coherency
attribute is sharable or exclusive, a write invalidate protocol is in effect
and the processor issues an invalidate request. If the coherency
attribute is update, a write update protocol is in effect and the
processor issues an update request. The processor will not complete
the store until an external agent signals an acknowledge for the update
request. -

Uncached Load or Store

When the processor performs an uncached load, it issues a
noncoherent read request. When the processor performs an uncached
store, it issues a write request.

9-12 R4000 User's Manual--Preliminary



System Interface

Cache Operations

The processor provides a variety of cache operations for use in
maintaining the state and contents of the primary and secondary
caches. During the execution of the cache operation instructions, the
processor may issue write requests or invalidate requests.

External Request Handling

An external agent must arbitrate with the processor for access to the
system interface before it can issue an external request. The external
agent signals that it wishes to begin an external request and waits for
the processor to signal that it is ready to accept the request before
issuing any new external requests. Based on its internal state and the
current state of the system interface, the processor decides when to
accept a new external request. The processor signals that it is ready to
accept an external request based on the following criteria:

1. If there are no processor requests pending, the processor de-
cides, based on its internal state, whether to accept the exter-
nal request, or to issue anew processor request. The processor
may issue a new processor request while the external agent is
requesting access to the system interface to issue an external
request. »

2. Theprocessor will accept an external request after completing
a processor request OT a processor request cluster that is in

progress.

3. While waiting for the assertion of RdRdy* toissue a processor
read request, the processor will accept an external request
provided that the request is delivered to the processor one or
more cycles before RARdy* is asserted.

4. 'While waiting for the assertion of WrRdy* to issue a processor
write request, the processor will accept an external request
provided that the request is delivered to the processor one or
more cycles before WrRdy* is asserted.

5. While waiting for the response to a read request after the pro-
cessor has made an uncompelled change to a slave state, an
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external agent may issue an external request before providing
the read response data.

Invalidate and Update Cancellation

An external agent may discover that a processor request for an update
cannot be completed based on state changes in the external system
that have not yet been reflected into the processor’s caches. An
example of this in a bus-based system is when a processor issues an
invalidate, but, before the external bus interface can transmit the
invalidate, an invalidate is received from another processor that
targets the same cache line. In this case, the processor’s cache does not
reflect the current state of the system, and the unacknowledged
invalidate cannot be transmitted. When this occurs, the external agent
must cancel the update. The processor, upon receiving a cancellation,
will process any external requests that the external agent wishes to
issue and then re-examine the state of the cache to determine what
action to take. . -

In the previous example, this would cause the processor to process an
external request to invalidate the cache line that was the target of the
store. The processor would then re-examine the state of the cache and
discover that the cache line that was the target of the store is now
invalid. Finally, the processor processes the store as a store miss and
issues a read request instead of an invalidate request.

Potential updates may notbe canceled until they become compulsory.
Potential updates are issued within a cluster under pending reads and
become compulsory after the read request is satisfied. In more general
terms, an external request that indicates processor update cancellation
may not be issued when a processor read is pending and may not be
issued unless a compulsory update is unacknowledged. The behavior
of the processor is undefined if the cancellation indication is signaled
on an external coherence request to the processor while a processor
read is pending or when there is no compulsory update
unacknowledged. '

Load Linked Store Conditional Considerations

Generally, the execution of a Load Linked Store Conditional
instruction sequence is not visible at the system interface; that is, no
special requests are generated due to the execution of this instruction
sequence.
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There is, however, one situation for which the execution of a Load
Linked Store Conditional instruction sequence is visibleas a change in
the nature of a processor read request. Specifically, if the data location
targeted by a Load Linked Store Conditional instruction sequence
maps to the same cache line that the instruction area containing the
Load Linked Store Conditional code sequence is mapped to, then
immediately after executing the Load Linked instruction the cache
line that contains the link location will be replaced by the instruction
line containing the code. The link address is kept in a register separate
from the cache and remains active as long as the link bit remains set.
The link bit is set by the Load Linked instruction, and is cleared by any
change of cache state for the cache line containing the link address, or
a return from exception.

In order for the Load Linked Store Conditional instruction sequence
to work correctly, all coherency traffic targeting the link address must
be visible to the processor, and the cache line containing the link
location must remain in a shared state in every cache in the system.
This guarantees that a Store Conditional executed by some other
processor is visible to the processor as a coherence request which
changes the state of the cache line that contains the link location. To
accomplish this, a read request issued by the processor which causes
* the replacement of a cache line that contains the link location while the
link bit is set will indicate that the link address is being retained. The
link address retained bit in the command for the read request will be
asserted to provide this indication. This informs the external agent
that even though the processor has replaced this cache line and no
longer has it present in its cache, it still must see any coherence traffic
that targets this cache line.
In addition, any snoop or intervention request that targets a cache line
which is not present in the cache, but for which the snoop or
intervention address matches the current link address while the link
bit is set, will return an indication that the cache line is present in the
cache in a shared state. A shared indication is returned even though
the processor does not actually have the data content of the cache line.
This is consistent since the processor never returns data in response to
an intervention request for a cache line that is in the shared state. The
shared response guarantees that the cache line that contains the link
location will remain in a shared state in all other processor’s caches,
and therefore that any other processor attempting a store conditional
to this link location must issue a coherence request in order to
complete the store conditional.
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System Interface Protocol

introduction

The system interface protocol describes the cycle-by-cycle signal
transitions that occur on the pins of the system interface to realize
requests between the processor and an external agent.

The system interface is register to register. That is, processor outputs
come directly from output registers and begin to change with the
rising edge of SClock (SClock is an internal clock used by the
processor to sample data at the system interface and to clock data into
the processor’s system interface output registers; see Chapter 10,
“Clock/Control Interface” for more details), and processor inputs are fed
directly to input registers that latch the inputs with the rising edge of
SClock. Therefore, if an input to the processor is changed during a
particular cycle in such a way that the new value is sampled at the end
of the cycle, the earliest the processor can change one of its outputs in
response to the input change is two cycles later. This methodology -
wias chosen to allow the system interface to run at the highest possible
clock frequency. ‘ ' :

The primary communication paths for the system interface are a sixty-
four bit address and data bus, SysAD(63:0) and a nine bit command’
bus, SysCmd(8:0). The SysAD bus and the SysCmd bus are bi-

~ directional; that is, they are driven by the processor to issue a

processor request, and by an external agent to issue an external .
request. When the processor is driving the SysAD bus and the
SysCmd bus, the system interface is in master state. When an external
agent is driving the SysAD bus and the SysCmd bus, the system
interface is in slave state.

A request through the system interface consists of an address, a
system interface command that specifies the precise nature of the
request, and a series of data elements if the request is for a write, read
response, or update. Addresses and data elements are transmitted on
the SysAD bus. System interface commands are transmitted on the

SysCmd bus.

Cycles in which the SysAD bus contains a valid address are called
address cycles. Cycles in which the SysAD bus contains a valid data
element are called data cycles. In master state the processor will assert
the signal ValidOut* whenever the SysAD bus and the SysCmd bus
are valid. In slave state an external agent will assert the signal
ValidIn* whenever the SysAD bus and the SysCmd bus are valid.
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The SysCmd bus is used to identify the contents of the SysAD bus
during any cycle in which it is valid. The most significant bit of the
SysCmd bus is always used to indicate whether the current cycleisan
address cycle or a data cycle. During address cycles, the remainder of
the SysCmd bus, SysCmd(7:0), contains a sustem interface command.
The encoding of system interface commands is detailed in the section
on system interface syntax. During data cycles, the remainder of the
SysCmd bus, SysCmd(7:0), contains an indication of whether this is
the last data element to be transmitted and other information about.
the data element. The content of the SysCmd bus during data cycles is
called a data identifier. The encoding of data identifiers is detailed in
the section on system interface syntax.

A request through the system interface consists of one or more
identical address cycles, followed by a series of data cycles for
requests that include data. The most efficient request through the
system interface consists of a single address cycle followed by asingle
data cycle or a number of data cycles sufficient to transmit a block of
data. :

System Interface Arbitration

When an external agent needs to issue an external request through the
system interface, it must first get the system interface into slave state.
The transition from master state to slave state is arbitrated by the
processor using the system interface handshake signals ExtRqst* and
Release*. An external agent signals that it wishes to issue an external
request by asserting ExtRqst*. Then, when the processor is ready to
acceptan external request, it releases the system interface from master
state to slave state by asserting Release* for one cycle. The system
interface returns to master state as soon as the issue of the external
request is completed. Having asserted ExtRgst*, an external agent
may not de-assert ExtRqgst* until the processor asserts Release™. After
the processor asserts Release* for one cycle, the external agent must
deassert ExtRqst* two cycles after the assertion of Release®. An
external agent may continue to assert ExtRqst* if another external
request follows the current request. After the first external request
completes, the processor must assert Release* again before the second
external request is issued to the processor.

The system interface will remain in master state until the external
agent requests and is granted the system interface or until the
processor issues a read request, or completes the issue of a cluster.
Whenever a processor read request is pending, after the issue ofaread
request or after the issue of all of the requests ina cluster, the processor
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will switch the system interface to slave state even though the external
agent is not arbitrating to issue an external request. This transition to
slave state is specifically to allow the external agent to return read
response data. The external agent must not assert the signal ExtRgst*
for the purposes of returning read response data. ExtRqst* should
only be asserted when the external agent needs to get the system
interface into slave state to issue an external request.

The signal ExtRqst* is only used to arbitrate for the system interface,
that is to request the transition of the system interface from master

state to slave state. ExtRqst* must always de-assert two cycles aftera
cycle in which Release® is asserted unless the external agent wishes to

_perform a subsequent external request. ExtRqst* must not be asserted

while the system interface is in slave state unless the external agent
wishes to perform a subsequent external request. '

The transition of the system interface from master state to slave state
initiated by the processor when a processor read request is pending
will be referred to as an uncompelled change to slave state. An
uncompelled change to slave state will occur during or some number
of cycles after the issue cycle of a read request or the last cycle of the
last request in a cluster. The number of cycles depends on the state of

_ the cache, the presence of a secondary cache and the secondary cache

parameters. After an uncompelled change to slave state, the system
interface remains in slave state until the external agent issues an
external request. After the external request, the system interface will
return to master state. An external agent must note that the processor
has performed an uncompelled change to slave state and begin
driving the address and data busand the command bus. As long as the
system interface is in slave state, the external agent can begin an
external request without arbitrating for the system interface; that is,
without asserting ExtRqst*. :

System Interface Request Descriptions

The following sections iilustrate, through the use of text and detailed
timing diagrams, the protocol of each processor and external request.
The timing diagrams use abbreviations to show the contents of
encoded busses during cycles in which they are defined. Following is
a list of abbreviations and definitions used for each bus.

Global: _

Unsd —- Unused.

SysAD bus:

Addr - Physical address. ,

Data<n> — Data element number n of a block of data.

9-18

R4000 User's Manual--Preliminary



System Interface

SysCmd bus:

Cmd - An unspecified system interface command.

Read — A read request command.

RwWF - A read-with-write-forthcoming request command.

Write — A write request command.

Null - A null request command.

SINull - A system interface release null request command.

SCNull - A secondary cache release null request command.

Ivd - An invalidate request command.

Upd - An update request command.

Ivin - An intervention request command.

Snoop — A snoop request command.

NData —- A noncoherent data identifier for a data element other
than the last data element.

NEOD - A noncoherent data identifier for the last data
element.

CData— A coherent data identifier for a data element other

. than the last data element.
CEOD - A coherent data identifier for the last data element.

Two closely spaced wavy vertical lines in a timing diagram indicate a

repetition of the current cycle. That is, the cycle broken by the wavy

lines may represent one or more identical cycles. This is referred to as

abreak in the timing diagram and is used to keep the timing diagrams
. concise and readable. S

Invalidate and Update Acknowledge Protocol

Processor invalidate and update requests are acknowledged using the
signals IvdAck® and IvdErr*. An external agent drives either Ivd Ack*
or IvdErr* for one cycle to signal the completion status of the current
processor update request. update request acknowledge occurs in
parallel with requests on the SysAD and SysCmd buses. IvdAck* or
IvdErr* may be driven at any time after a processor update request is
issued provided that the update request is compulsory.

Arbitration Protocol

System interface arbitration is implemented using the signals
ExtRqst* and Release*. When an external agent wishes to submit an
external request, it asserts ExtRqst*. The processor waits until it is
ready to handle an external request and then assert Release* for one
cycle before it tri-states the SysAD bus and SysCmd bus. The external
agent begins driving the SysAD bus and the SysCmd bus two cycles
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after a cycle in which Release* is asserted. The external agent always
deasserts ExtRgst* two cycles after a cycle in which Release* is
asserted unless the external agent wishes to perform a subsequent
external request. The external agent always releases the SysAD bus
and the SysCmd bus at the completion of an external request. '

The processor will assert Release* for one cycle as a processor read
request is issued or sometime after a processor read request is issued
to perform an uncompelled change to slave state. An external agent
must begin driving the SysAD bus and the SysCmd bus two cycles
after the cycle in which Release® is asserted. After an uncompelled
change to slave state, the processor will return to master state at the
end of the next external request, which may be the read response, or
may be some other external request.

The processor tosystem handshake for external requests is illustrated
in Figure 9-1.

SCycle

SCIock l —\_/_> »

SysAD Bus | jj\ﬁ ' }—(Adar { Data0)}—
sysomdBus |\ }——{0maNEo—
vaiidin® | ((— \ /
ExtRést‘ | ‘—\_22 F |
Release*

l1lzlslalslelzlalolo]n]n]

()

Figure 9-1 Arbitration Protocol for External Requests

Processor Read Request Protocol

A processor read request is issued, with the system interface in master
state, by driving a read command on the SysCmd bus and a read
address on the SysAD bus and asserting ValidOut* for one cycle.
Only one processor read request may be pending at a time. The
processor must wait for and retire an external read response betore
initiating a subsequent read.
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The processor makes an uncompelled change to slave state either at
the issue cycle of the read request or sometime after the issue cycle of
the read request by asserting the Release* signal for one cycle. Oncein
slave state, an external agent may return the requested data via a read
response. An external agent must not assert the signal ExtRgst* for the
purposes of returning a read response, but rather must wait for the

_ uncompelled change to slave state. The signal ExtRgst* may be
asserted before or during a read response for the purposes of
performing an external request other than a read response.

When aread is pending, ExtRqst* is asserted, and Release* is asserted
for one cycle, it may be unclear if this assertion of Release® is in
response to ExtRqst*, or represents an uncompelled change to slave
state. The only situation in which this assertion of Release* may not
be considered an uncompelled change to slave state is if the system
interface is operating in secondary-cache mode, the read request was
a read-with-write-forthcoming request, and the expected write

* request has not yet been issued by the processor. In this case, the write
request must be accepted by the external agent before the read
response can be issued. Inall other cases, the assertion of Release*
may be considered to be an uncompelled change to slave state or to be
in response to the assertion of ExtRgst*. In this situation, the processor
will accept either a read response, or any other external request. If an
external request other than a response requestis issued, the processor
will perform another uncompelled change to slave state after
processing of the external request is complete.

The response request may either return the requested data, or, if the
requested data could not be successfully retrieved, an indication that
the returned data is erroneous. If the returned data was erroneous, it
will cause the processor to take a bus error.

A processor read request and an uncompelled change to slave state
occurring as the read request is issued is illustrated in Figure 92 A
processor read request and the subsequent uncompelled change to
slave state occurring sometime after the read request is issued is
illustrated in Figure 9-3.
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SCycle ||1|2|3|4|5|6|7|8|9|1o|11|12|
SClock |
SysADBus | ~Yaddr —{_

SysCmd Bus l XReag)———(
vaidout* | O

Validin® |
RdRdy* |
wiRdy: |
helease’ I \ /
Figure 9-2 Processar Read Request Protocol
SCycle -H1_|v2Is|4|'§|e|7|s|9|1o|11|i2|

sysaDBus | JAddr{ ) —{

SysCmd Bus | ~ ) Read] 3/( —
validout | \__/ SC

vaiidin® |

RdRdy* | Jg (C

WrRdy* l 2\7

Release” | \ /

Figure 9-3 Processor Read Request Protocol, Change to Slave State Delayed
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Processor Write Request Protocol

Processor write requests are issued with one of two protocols. Double
word, word, and partial word writes use a single word write request
protocol. Write requests for a block of data use a block write request
protocol. Processor write requests are issued with the system interface
in master state.

A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus
and asserting ValidOut* for one cycle. This is followed by driving a
data identifier on the SysCmd bus and data on the SysAD bus and
asserting ValidOut* for one cycle. The data identifier associated with
the data cycle must contain a last data cycle indication.

A processor coherent or noncoherent block write request is issued by
driving a write command on the SysCmd bus and a write address on
the SysAD bus and asserting ValidOut* for one cycle. This is followed
by driving a data identifier on the SysCmd bus and data on the
SysAD bus and asserting ValidOut* for a number of cycles sufficient
to transmit the block of data. The data identifier associated with the
last data cycle must contain a coherent or noncoherent last data cycle
indication. The first data cycle may not immediately follow the
address cycle. A processor noncoherent single word write request is
illustrated in Figure 9-4. A processor coherent block request for eight
~ words of data is illustrated in Figure 9-5 and Figure 9-6.

SCycle H1|2|3|4|5|s|7'|a‘|9|1o|11|12|
SClock |

SysADBus | Y adar {Data0 ¥

SysCmd Bus | Y\ Write NEODX

vaigiowr |~ [

validin® |

RdRdy*

|
WrRdy* I
I

Release”

Figure 94 Processor Noncoherent Single Word Wirite Request Protocol
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SCycle ||1|2_|3|4ls|_6|7|s|9|1o|11|12|
SClock |

SysAD Bus | l Addrjaatao XDatai XDataZ XDatasf

SysGmd Bus | YWite JCData | CData) CData \CEODX__

vaidoutt |~ \ [

vaidn® |

RaRdy* |

wiRdy: |

Release" l

Figure 9-5 Processor Coherent Block Write Request Protocol
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SysAD Bus; | )} Addr Data0)| Datat {Data2 }[Data3 §__

SysCmd Bus | Y wiite CData){CData }(CData JCEOD)
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RdRdy* | ~{{(

WrRdy* | ) >

Release® ‘ VB

Figure ®-6 Processor Coherent Block Write Request Protocol
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Processor Invalidate and Update Request Protocol

A processor invalidate request or update request will use the same
protocol as a coherent word write request except that the command
associated with the address cycle will indicate that this is an update
request. The single data cycle will be unused for an invalidate.

Processor Null Write Request Protocol

A processor null write request is issued with the system interface in
master state by driving a null command on the SysCmd bus and
asserting ValidOut* for one cycle. The SysAD bus is unused during
the address cycle associated with a null write request. Processor null
write requests cannot be flow controlled with either RdRdy* or
WrRdy*, but rather always issue with a single address cycle. A
processor null write request is illustrated in Figure 9-7.

SCycle “ 1 l 2 I 3 | 4_| S |6 I .7 I 8 I 9 ‘ 10 l 1 ‘ 12 l
sClock | A
SysAD Bus | ~{unsd)_

SysCmd Bus | (N”m

validout | _/

Validin*

RdRdy*

Release”

|
|
wrRdy* |
|

Figure 9-7 Processor Null Write Request Protocol

Processor Cluster Protocol

In secondary-cache mode, the processor issues requests both
individually, as in no-secondary-cache mode, and in groups that
begin with a processor read request called clusters. A cluster consists
of a processor read request followed by one or two additional
processor requests issued while the read request is pending. All of the
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requests that are part of a cluster must be accepted before the response
to the read request that begins the cluster may be returned to the
processor. A cluster includes a processor read request followed by a
write request, or a processor read request followed by a potential
update request, or a processor read request followed by a potential
update request, followed by a write request.

The protocol of each of the requests that form a cluster is as described
above. The number of unused cycles between the requests that form a
cluster may be zero or greater. The processor makes an uncompelled
change to slave state either during or following the last cycle of the last
request in the cluster. A cluster consisting of a read request, followed
by an update request, followed by a coherent block write request for
eight words of data with minimum spacing between the requests that
form the cluster, and an uncompelled change to slave state at the
earliest opportunity is illustrated in Figure 9-8.

SysCmd Bus ‘

ValidIn* I
RdRdy* |
WrRdy* |

I

Release*

SCycle- ”1|2‘3.|4.|5|6.|74l§~|9|'1°|11|12|
sClock | \
SysAD Bus | \ Acar \ Ader )\ Datao ) Addr }Data0 { Datat { Data2 } Datad ——

vaidout "~ |~ L '

Y Read J{ Upd \CEOD Wiite Xcom)(cmecomﬁson)———(
_ T

Figure 9-8 Processor Cluster Protocol

External Request Protocol

External requests may only be issued with the system interface in
slave state. An external agent must assert ExtRqgst* to arbitrate for the
system interface, and wait for the processor to release the system
interface to slave state before issuing an external request. If the system
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interface is already in slave state; i.e., the processor has previously
performed an uncompelled change to slave state, an external agent
may begin an external request immediately.

After issuing an external request, an external agent must return the
system interface to master state. If the external agent does not have
any additional external requests to perform, ExtRqst* must be
deasserted two cycles after the cycle in which Release* is asserted. An
external agent may hold ExtRqst* asserted if it needs to issue a string
of external requests, but it must wait for the processor to assert
Release* and return the system interface to slave state before it
proceeds with the next external request. For a string of external :
requests, the external agent must de-assert ExtRgst* two cycles after
the cycle in which Release® is asserted for the last external request in
the string. The processor will continue to handle external requests as
long as ExtRqst* is held asserted; however, the processor will not
release the system interface to slave state for a subsequent external
request until it has completed the current request. A string of external
requests will not be interrupted by a processor request as long as
ExtRgst* is held asserted throughout the issue of the string of external
requests. ' ' ‘

External Read Request Protocol

External reads are requests for a word of data from some processor
internal resource. External read requests use a non-split protocol that
does not allow any other request to occur at the system interface
between the external read request and the read response. The protocol
of an external read request encompasses the request from an external
agent and the response from the processor.

An external read request consists of driving a read request command
on the SysCmd bus and a read request address on the SysAD bus and
asserting ValidIn* for one cycle. After the address and command are
sent, the external agent releases the SysCmd and SysAD buses and
allows the processor to begin driving them. The processor accesses the
data that is the target of the read and returns the data to the external
agent. The processor accomplishes this by driving a data identifier on
the SysCmd bus, the response data on the SysAD bus, and asserting
ValidOut* for one cycle. The data identifier indicates that this is
response data and that it contains a last data cycle indication. To
transition the system interface back to master state, the processor
continues driving the SysCmd and SysAD buses after the read
response is returned.
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External read requests are only allowed to read a word of data from
the processor. The processor response to external read requests for
any data element other than a word is undefined.

An external read request with the system interface initially in master

state is illustrated in Figure 9-9.
SCycle '“1‘2|3|4‘5|6|7|_8|9|10|11|12|
sciock |
SysAD Bus |
SysCmdBus|

e B S
EdRost |\ » | | )

Folease’ |————Z(\__r — (('

Figure 9-9 External Read Request, System Interface in Master State.

NOTE: The R4000 does not contain any resources that are readable
with an external read request. The R4000 returns a bus error response
to any external read request.

External Null Request Protocol

The processor supports two kinds of external null requests. A system
interface release external null request is used to return the system
interface to master state after it has been released toslave state without
affecting the processor. An scache release external null request is used to
return ownership of the secondary cache to the processor while the
system interface remains in slave state for some period of time. This is
important since any time the processor releases the system interface to
slave state to accept an external request, it also acquires ownership of
the secondary cache for use by the external request in anticipation of
handling a coherence request. When an external agent requests
ownership of the system interface for the purposes of using the
SysAD bus for a transfer unrelated to the processor (such as DMA),
this ownership of the secondary cache prevents the processor from
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satisfying subsequent primary cache misses. The scache release
external request can be issued by the external agent to return
ownership of the secondary cache to the processor. External null
requests require no action from the processor other than to return the
system interface to master state or to regain ownership of the
secondary cache.

An external null request consists of driving a null request command
on the SysCmd bus and asserting ValidIn* for one cycle. The SysAD
bus is unused (does not contain valid data) during the address cycle
associated with an external null request. After the address cycle is
issued the null request is complete. For a system interface release
external null request, the external agent releases the SysCmd and
SysAD buses and allows the system interface to return to master state.
For an scache release external null request, the system interface
remains in slave state. An scache release external null request with the
system interface initially in master state is illustrated in Figure 9-10. A
system interface release external null request with the system interface
initially in slave state is illustrated in Figure 5-11. '

SCycle ||1|2|3|4|5|s|7{s|9|10|11|12|
sclock |\ | | |

SysAD Bus l e HUnsd X ‘

SysCmd Bus | —{sonal_

validout |
vaigne | \_ [
ExdRgst |\ |
Release” l ' \__/

Figure 9-10 Secondary Cache Release External Null Request
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SCycle
SClock

Validin*

H‘|_2|3|4|5!5|7l8|9|1°|"‘12|

SysAD Bus |

Yumse—__

SysCmd Bus |

_ Ysu—

ValidOut*

]

ExtRagst*

Release*

Figure 9-11 System Interface Release External Nudl Request

External Write Request Protocol

External write requests use a protocol identical to the processor single
word write protocol except that the signal ValidIn* is asserted instead
of the signal ValidOut*. An external write request consists of driving
a write command on the SysCmd bus and a write address on the
SysAD bus and asserting ValidIn® for one cycle. This is followed by
driving a data identifier on the SysCmd bus and data on the SysAD
bus and asserting ValidIn* for one cycle. The data identifier
associated with the data cycle must contain a coherent or noncoherent
last data cycle indication. After the data cycle is issued, the write
request is complete and the external agent releases the SysCmd and
SysAD buses and allows the system interface to return to master state.

External write requests are only allowed to writea word of datato the
processor. The behavior of the processor in response to an external
write request for any data element other thana word is undefined.

An external write request with the system interface initially in master
state is illustrated in Figure 9-12.
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SCycle ||1|2|3|4|5|s|7|8|9|1o|11|12|
SClock ‘

SysAD Bus I : —}——{ Adar JData0 }——__

SysCmd Bus | _ ~}——{Wite  NEOD——__

validout' | |

validin® | \ [

ExRast |\ |

Release” | \__/

" Figure 9-12 External Write Request

NOTE: The only writable resources in the R4000 are the processor in-

terrupts. ‘

External Invalidate and Update Request Protocol

External invalidate and update requests use a protocol identical to
that for external write requests. The data element provided with'an
update request may be a double word, word, or partial word. The
single data cycle will be unused (does not contain valid data) for an
invalidate request. An external invalidate request following an
uncompelled change to slave state is illustrated in Figure 9-13.

R4000 User's Manual--Preliminary

9-31



) Chapter 9

SCycle ||1|2|3|4|5|e|7|8|9|1o|11|12|
sclock | )_/_\_/—\_/—\_
SysAD Bus |
_SysCmdBusI

vaidout | \C jv

Validin®

I
ExtRgst* | ((
|

Release*

Figure 9-13 External Invalidate Request foang an Uncompelled
o Change to Slave State

Read Response Protocol

An external agent must return data to the processor in response to a
processor read request. It does this by first waiting for the processor to
perform an uncompelled change to slave state and then returning the
data via a single data cycle or a series of data cycles sufficient to
transmit the requested data. After the last data cycleis issued, the read
~ response is complete and the external agent will release the SysCmd
and SysAD busses and allow the system interface to return to master
state. Note that the processor will always perform an uncompelled
change to slave state at some time after issuing a read request.

The data identifier for the data cycles must indicate that this is
response data, and the data identifier associated with the last data
cycle must contain a last data cycle indication. For read responses to
coherent block read requests, each data identifier must include an
indication of the cache state in which to load the response data. The
cache state provided with each data identifier must be the same and
must be either clean exclusive, dirty exclusive, shared, or dirty shared.
The behavior of the processor if the cache state provided with the data
identifiers is changed during the transfer of the block of data, or if the
cache state provided is invalid is undefined.
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The data identifier associated with a data cycle may indicate that the
data transmitted during that cycle is erroneous; however, an external
agent must return a block of data of the correct size regardless of
erroneous data cycles. If a read response includes one or more
erroneous data cycles, the processor takes a bus error.

Read response data must only be delivered to the processor whena
processor read request is pending; that is, in response to a processor
read request. The behavior of the processor is undefined when a read
response is presented to it and there is no processor read pending.
Further, if the processor issues a read-with-write-forthcoming
request, a processor write request or a processor null write request
must be accepted before the read response may be returned. The
behavior of the processor is undefined if the read response is returned
before a processor write request is accepted.

A processor word read request followed by a word read response is

illustrated in Figure 9-14. A read response for.a processor block read

with the system interface already in slave state is illustrated in Figure
. 915, ’

soe |1 ]2]slalslel7]s]o|rw0]n]|2]
coosc | NaUataty Yatgtavpvy
SysADBus | ___ JAddr IT —{ J\> ) e
SysCmd Bus | ___ ) Read /T — \\ YNeoo—{(

validout' | S Sg
Validin® g« ]/

| A
= ——

Figure 9-14 Processor Word Read Request followed by a Word Read Response
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SCycle ||1|2|3|4|5|e|7|a|9|1o|11|12|
sClock | "

SysAD Bus | "Y(Data0 Y Datat ) Data2 ) Datad }——
SysCmd Bus | AXCDataEDataanataXCfEOD)——(

ValidOut* |
vaiaine | -\ [
ExtRast® |
Releasg' l

Figure 9-15 Block Read Response, System Interface already in Slave State

- External lntervention Request Protocol

External intervention requests use a protocol similar to that for
external read requests except that a cache line size block of data may
be returned along with an indication of the cache state for the cache
line. The cache state indication depends upon the state of the cache
line and the value of the data return bit in the intervention request
command. ' :

The data return bit in the intervention request command may indicate
return on dirty or return on exclusive. If the data return bit indicates
return on dirty, and the cache line that is the target of the intervention
request is in the state dirty exclusive or dirty shared, the contents of
the cache line will be returned in response to the intervention request.
If the data return bit indicates return on exclusive, and the cache line
that is the target of the intervention request is in the state clean
exclusive or dirty exclusive, the contents of the cache iine wiii be
returned in response to the intervention request. Otherwise, the
response to the intervention request will not include the contents of
the cache line, but will simply indicate the state of the cache line that
is the target of the intervention request. Note that if the cache line that
is the target of the intervention request is not present in the cache at
all; that is, a tag comparison tor the cache line at the target cache
address fails, the cache line that is the target of the intervention
request will be considered to be in the invalid state.
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The processor will return an indication of the cache state in which a
cache line was found but not its contents by driving a coherent data
identifier that indicates the state of the cache line on the SysCmd bus
and asserting ValidOut* for one cycle. The SysAD bus is unused
during this data cycle. The data identifier will indicate that thisis a
response data cycle and will containa last data cycle indication.

'The processor will return the contents of a cache line along with an
indication of the cache state in which it was found by issuing a
sequence of data cycles sufficient to transmit the contents of the cache
line. The data identifier transmitted with each data cycle indicates the
cache state in which the cache line was found and that this is response
data. The data identifier associated with the last data cycle will contain
a last data cycle indication. ’

If the contents of a cache line are returned in response to an
intervention request, it will be returned in sub-block order starting
with the double word at the address supplied with the intervention
 request. For further details on sub-block ordering see Appendix D.
Note, however, that if the intervention address targets the double
word at the beginning of the block, sub-block ordering is equivalent to
sequential ordering. ‘ = '
An external intervention request to a cache line found in the shared
state with the system interface initially in master state is illustrated in
Figure 9-16. An external intervention request to a cache line found in
the dirty exclusive state with the system interface initially in slave
state is illustrated in Figure 9-17. '
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SCycle ||1|2|3|_4|5|6|7|8|9|1o|11|12‘|
sClock |

SysAD Bus |

SysCmd Bus l

ol S
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ExtRgst*

Release* | 22 \ / (

Figure 9-16 External intervention Request, Shared Line, System Interface
in Master State ’

SCycle ||1'|2|3|4|5|§|7|é|9|1o|11|12|
sclock | | 4' >_j—\_/—\__/_\_
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vaidout® | \F
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Figure 9-17 External Intervention Request, Dirty Exclusive Line,
System Interface in Slave State
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External Snoop Request Protocol

External snoop requests use a protocol identical to that for external
read requests, except that, instead of returning data, the processor will
respond to a snoop request with an indication of the current cache
state for the cache line that is the target of the snoop request. The
processor accomplishes this by driving a coherent data identifier on
the SysCmd bus, and asserting ValidOut* for one cycle. The SysAD
. busis unused during the snoop response. The processor will continue
driving the SysCmd and SysAD busses after the snoop response is -
returned to transition the system interface back to master state.

Note that if the cache line that is the target of the snoop request is not
present in the cache at all; that is, a tag comparison for the cache line
at the target cache address fails, the cache line that is the target of the
snoop request will be considered to be in the invalid state.

An external snoop request submitted with the system interface in
master state is illustrated in Figure 9-18. An external snoop request
submitted with the system interface inslave state is illustrated in

Figure 9-19.
SCycle ”1‘2|.3|4|5|6|7'|.8|9|10|11l12|
sCiock | A
SysAD Bﬁs l
SysCmd Busl
vaiidout* |

g S S——
ExtRgst* l_—\ §>

Release* ‘ 22 \ / «

Figure 9-18 External Snoop Request, System Interface in Master State
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Figure 9-19 External Snoop Request, System Interface in Slave State

Processor Request and Cluster Flow Control -

The signal RdARdy* may be used by an external agent to control the
flow of a processor read, invalidate, or update request or a processor
read request followed by a potential update request within a cluster.
The processor samples the signal RARdy* to determine if the external
agent is currently capable of accepting a read, invalidate, or update
request, or a read request followed by a potential update request. The
signal WrRdy* controls the flow of a processor write request. The
processor will not complete the issue of a read, invalidate, or update
request or a read request followed by a potential update request until
it issues an address cycle for the request for which the signal RdRdy*
was asserted two cycles previously. The processor will not complete
the issue of a write request until it issues an address cycle for the write
request for which the signal WrRdy* was asserted two cycies
previously.

Two processor write requests in which the issue of the second is
delayed for the assertion of WrRdy* are illustrated in Figure 9-20. A
processor cluster in which the issue of the read and a potential update
request are delayed for the assertion of RdRdy* is illustrated in Figure
9-21. A processor cluster in which the issue of the write request is
delayed for the assertion of WrRdy* is illustrated in Figure 9-22. The
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issue of a processor write request delayed for the assertion of WrRdy*
and the completion of an external invalidate request is illustrated in

Figure 9-23.
sope || 1|28 lalslel7]e]oln]n]e]
SClock | '
SysADBus | Y Addr \Data0 ) Y A YData0 )
SysCmd Bus | Y Write \NEODY ) Wite  JNEODX
vaiior |~/  \ [
validin® |
RdRdy* | . '
wiRdy | [ \ '
Release® " | ' -

" Figure 9-20 Tuo Processor Write Requests, Second Write Delayed for

the Assertion of WrRdy*

soe || 1]2]slelslelz]a]ero]n]]
sClock | ' '
SysADBus | [ Addr "\ Adar )Datao | Addr Y{Data0 Y Datat { Date2 ) Datas
‘syscmdBus | ____X Read Y Upa ){CEOD | Wiite {CData J(CData) CData CEOD
vaidout |\
Validin® |
RoRey |\ e
WrRdy* I
Release” I

Figure 9-21 Processor Read Request Withina Cluster Delayed for the
Assertion of RARdy*
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SCycle ||1|2|a|4|5|6|7|s|9|1o|11|12|
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Figure 9-22 Processor Write Request Within a Cluster Delayed for the

‘ Assertion of WrRdy*
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Figure 9-23 Processor Write Request Delayed for the Assertion of
 WrRdy* and the Completion of an External Invalidate Request
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Data Rate Control

The system interface supports a maximum data rate of one double
word per cycle. The maximum data rate the processor can support is
directly related to the secondary cache access time, if the access timeis

* too long, the processor will not be able to transmit and accept data at
the maximum rate. :

The rate at which data is delivered to the processor may be chosen by
an external agent by driving data and asserting ValidIn* every n cycles
instead of every cycle. The processor will only interpret cycles as valid
data cycles during which ValidIn* is asserted and the SysCmd bus
contains a data identifier. The processor will continue to accept data
until the data word tagged as the last data word is received. An
external agent may deliver data at any rate it chooses but must not
deliver data to the processor faster than it is capable of accepting it.

Because the secondary cache is organized as a 128-bit RAM array, the
_ processor will operate most efficiently if data is delivered to it in' pairs
~ of double words. It is most efficient to reduce the data rate by
delivering a pair of double words to the processor, followed by some
number of unused cycles, followed by another pair of double words.
The pattern should be chosen to repeat at a rate determined by the
secondary cache write cycle time. However, the processor will accept
data in any pattern as long as the time between the transfer of any pair
of odd-numbered double words is greater than or equal to the write
cycle time of the secondary cache. Double words in the transfer
pattern are numbered beginning at zero such that the odd numbered
words are the second, fourth, sixth, and so on words transferred.

The maximum processor data rate for each of the possible secondary
cache write cycle times and the most efficient data pattern for each
data rate is illustrated in Table 9-1. In this and subsequent tables data
patterns are specified using the letters "D" and "x","D" indicates a data
cycle and "x" indicates an unused cycle. A data pattern is specified as
a sequence of letters, indicating a sequence of data and unused cycles
that will be repeated to provide the appropriate data rate. For
example, a data pattern specified by the sequence of letters "DDxx", to
achieve a data rate of two words every four cycles, is a data pattern in
which two data cycles are followed by two unused cycles followed by
two data cycles and two unused cycles, and so on. A read response in
which data is provided to the processor at a rate of two words every
three cycles using the data pattern "DDx" is shown in Figure 9-24.

If data is delivered to the processor at a rate that exceeds the maximum
the processor can support, based on the secondary cache write cycle
time, the behavior of the processor is undefined. The secondary cache
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write cycle time is the sum of the parameters TwripDlyr Twisups and’
Tw:rc described in the section on secondary cache write cycles. The
rate at which the processor transmits data is programmable at boot
time via the boot-time mode control interface. The transmit data rate
may be programmed to any of the data rates and data patterns listed
in Table 9-2, as long as the programmied data rate does not exceed the
maximurm the processor can support, based on the secondary cache
access time. If a transmit data rate is programmed that exceeds the
maximum the processor can support, the behavior of the processor is
undefined. A processor write request for which the processor transmit
data rate has been programmed to one double word every two cycles
using the data pattern "DDxx" is shown in Figure 9-25. '
Table 9-1 and Table 9-2 show the maximum processor and transmit
data rates that can be achieved for a given set of SCache parameters,
based on a PClock-to-SClock divisor of 2. To find the maximum
allowable SCache write cycle time and SCache access time, multiply
the maximum SCache numbers for each pattern by:

(PClock to SClock _Divisor)/ 2

The minimum number for these parameters will always be the
minimum access time supported by R4000. .

Table 9-1 Maximum Processor Data Rates

SCache Write Cycle Time Max Data Rate . Best Data Pattern
1-4 PCycles 1 Double/1 SClock Cycle D
5-6 PCycles 2 Doubles/3 SClock Cycles DDx
7-8 PCycles 1 Double/2 SClock Cycles DDxx
9-10 PCycles 2 Doubles/5 SClock Cycles DDxxx
11-12 PCycles 1 Double/3 SClock Cycles DDxxxx
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Figure 9-24 Read Response, Reduced Data Rate, System Interface in Slave State
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Table 9-2 Transmit Data Rates

Data Rate Data Pattern Max SCache Access
1 Double/1 SClock Cycle D 4 PCycles

2 Doubles/3 SClock Cycles DDx 6 PCycles

1 Double/2 SClock Cycles DDxx 8 PCycles

1 Double/2 SClock Cycles DxDx : 8 PCycles

2 Doubles/5 SClock Cycles DDxxx 10 PCycles

1 Double/3 SClock Cycles DDxxxx 12 PCycles

1 Double/3 SClock Cycles DxxDxx 12 PCycles

1 Double/4 SClock Cycles DDXXXXX 16 PCycles

1 Double/4 SClock Cycles DxxxDxxx 16 PCycles

SCycle l1]2]s]elslel7|s|e]w|n]|i]

e Y AYAYAVAVAVAVAWAWAWAW AW
SysADBus | ) Addr {Datao) Datat} Y Dataz){ Data3)_

SysCmd Bus | __ ) Wite J(OData }CData) YCoata JCEOD)
vaidout |\ | [ __/
vaidin® |
ExtRast” |
Release” l

Figure 9-25 Processor Write Request, Transmit Data Rate Reduced
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Multiple Drivers on the SysAD Bus

Inmost applications the SysAD bus will be a point to point connection
from the processor to a bidirectional, registered, transceiver in an
external agent. For those applications, the SysAD bus has only two
possible drivers, the processor and the external agent. However,
certain applications may wish to add additional drivers and receivers
to the SysAD bus, and allow transmissions to take place over the
SysAD bus that the processor is not involved in. To accomplish this,
the external agent must coordinate the usage of the SysAD bus using
the arbitration handshake signals and the external null requests.

To implement an independent transmission on the SysAD bus that
does not involve the processor, the external agent must request the
SysAD bus to issue an external request. If the processor is being used
with a secondary cache, and after the processor releases the system
interface to slave state, the external agent should issue a scache release
external null request to return ownership of the secondary cache to the
processor. The external agent can then allow the independent
transmission to take place on the SysAD bus making sure that
ValidIn* is not asserted while the transmission is occurring. When the
transmission is complete, the external agent can issue a system _
interface release external null request to return the system interface to
master state.

System Interface Endianness .

The endianness of the system interface is programmed at boot time
through the boot time mode control interface, and remains fixed until
the next time the processor mode bits are read. The endianness of the
system interface and the external system cannot be changed by
software; the reverse endian bit can be set by software to reverse the
interpretation of endianess inside the processor, but the endianess of
the system interface remains unchanged.

Cycle Counts for System Interface Interactions

To facilitate system design, the processor specifies minimum and
maximum cycle counts for various processor transactions and for the
processor’s response time to external requests. Processor requests
themselves are constrained by the system interface request protocol,
and the cycle counts for such requests can be determined by
examining the protocol. The spacing between requests within a
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cluster, the waiting period for the processor to release the system
interface to slave state in response to an external request, and the
response time for an external request that requires a response is
variable and subject to minimum and maximum cycle counts. The
remainder of this section will describe and tabulate the minimum and
maximum cycle counts for these system interface interactions.

The minimum and maximum number of unused cycles between the
requests within a cluster is a function of processor internal activity.
The minimum number of unused cycles separating requests within a
cluster is zero: the requests may be adjacent. The maximum number of
unused cycles separating requests within a cluster varies depending
on the requests that form the cluster. The minimum and maximum
number of unused cycles separating requests within a cluster is
summarized in Table 9-3.

Table 9-3 Unused Cycles Separating Requests Within a Cluster

From Processor
Request
Read

Read

.Invalidate or
Update

Maximum Unused
SClock Cycles
2

Minimum Unused
SClock Cycles
0

To Processor
- Request

Invalidate or

Update

Write

Write

2
2

The number of cycles the processor may wait to release the system
interface to slave state for an external request is referred to as the
release latency. The release latency is a function of processor internal
activity and processor request activity. The processor will release the
system interface to accept an external request under the conditions
described above. When no processor requests are in progress, internal
activity, such as refilling the primary cache from the secondary cache,
may cause the processor to wait some number of cycles before
releasing the system interface. Release latency is defined as the
number of cycles ExtRqst* is asserted for before the signal Release*® is
asserted. Release latency is considered in three categories:

1. Release latency when the external request signal is asserted
during the cycle two cycles before the last cycle of a processor
request or two cycles before the last cycle of the last request in
a cluster.
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2. Release latency when the external request signal is not assert-
ed during a processor request or cluster, or asserts during the
last cycle of a processor request or cluster.

3. Release latency when the processor does an uncompelled
change to slave state.

The minimum and maximum release latencies for requests that fall
into categories (1), (2), and (3) above are summarized in Table 9-4.

Table 94 Release Latency (in Pcycles) for Category (1), (2),and (3)

External Requests
Cate Mini N Maxi .
1) 4 6
2 4 24
@) 0 TBD
*These cycle counts are preliminary and are
subject to change. :

The number of cycles the processor may take to respond to an external
request that requires a response, that is, an external intervention
request, read request, or snoop request, will be referred to as the
intervention response latency, external read response latency, or snoop
response latency respectively. The number of cycles of latency is the
number of unused cycles between the address cycle of the request and
the first data cycle of the response. Intervention response latency and
snoop response latency are a function of processor internal activity
and secondary cache access time. The minimum and maximum
intervention response latency and snoop response latency, as a
function of secondary cache access time, is summarized in Table 9-5.
External read response latency is purely a function of processor
internal activity. The minimum and maximum external read response
latency is summarized in Table 9-6.
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‘Table 9-5 Intervention Response Latency and Snoop Response Latency (in Peycles)

Max SCache Intervention response Snoop response
1-4 PCycles 6 26 6 26
5-6 PCycles 8 28 8 28
7-8 PCycles 10 30 10 30
9-10 PCycles 12 32 : 12 32
11-12 PCycles 14 34 14 34
*These cycle counts are preliminary, and are subject to change.

Table 9-6 External Read Response Latency (in Pcycles)

External Read Response Latency 4 4
*These cycle counts are preliminary, and are subject to change.

Min* = Max®

System Interface Syntax

System interface commands specify the precise nature and attributes
of any system interface request during the address cycle for the ‘
request. System interface data identifiers specify the attributes of a
data element transmitted during a system interface data cycle. The
followings sections describe the syntax, that is, the bitwise encoding,
of system interface commands and data identifiers.

For system interface commands and data identifiers associated with
external requests, reserved bits and reserved fields in the command or
data identifier should be deasserted—that is set to one (1) or all ones
respectively. For system interface commands and data identifiers
associated with processor requests, reserved bits and reserved fields in
the command and data identifier are undefined.

System Interface Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in nine
bits, and are transmitted from the processor to an external agent or
from an external agent to the processor on the SysCmd bus during
address and data cycles. Bit eight (most-significant bit) of the SysCmd
bus determines whether the current content of the SysCmd busisa
command or a data identifier and, therefore, whether the current cycle
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is an address cycle or a data éycle. For system interface commands
SysCmd(8) must be set to 0. For system interface data identifiers
SysCmd(8) must be set to 1.

System Interfabe Command Syntax

This section defines the encoding of the SysCmd bus for system
interface commands. A common encoding is used for all system
interface commands. SysCmd(8) must be set to 0 for all system
interface commands.

For all system interface commands SysCmd(7:5) specify the system
interface request type which may be read, write, null, invalidate,
update, intervention, or snoop. The encoding of SysCmd(7:5) for
system interface commands is illustrated in Table 9-7.

Table 9-7 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(7:5) Command
0 Read Request

Read-With-Write-Forthcoming Request
Write Request |

Null Request

Invalidate Request
.Update Request

Intervention Request

Snoop Request

N oo b WD -

For read requests, the remainder of the SysCmd bus specifies the
attributes of the read. SysCmd(4:3) encode block, coherency, and
exclusivity attributes for the read. A read request with a write request
forthcoming cannot be a double word, word, or partial word read. For
coherent and noncoherent block reads SysCmd(2) specifies whether
the address of the cache line being replaced by this read request is
being retained in the link address register and SysCmd(1:0) encodes
the block size for the read. For double word, word, or partial word
reads, SysCmd(2:0) encodes the size of the read data in bytes. The
encodings of SysCmd(4:3) for read commands are shown below in
Table 9-8. The encodings of SysCmd(2:0) for coherent and
noncoherent block reads and double word, word, or partial word
reads is shown in Table 9-9 and Table 9-10, respectively.
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Table 9-8 Encoding of SysCmd(4:3) for Read Requests

SysCmd{4:3) Bead attributes
0 Coherent block read
1 Coherent block read, exclusivity requested
2 Noncoherent block read
3 Double word, single word, or partial word read

Table 9-9 Encoding of SysCmd(2:0) for Coherent and Noncoherent Block Read Re-

quests
SysCmd(2) Link address retained indication
0 Link address not retained
1 Link address retained
SysCmd(1:0) Read block size
0 _ Four words
1 | Eight words
2 Sixteen words
3 Thirty-two words

9-50

R4000 User's Manual--Preliminary




System Interface

Table 9-10 Encoding of SysCmd(2:0) for Double Word, Word, or
Partial Word Read Requests

SysCmd(2:0) Read data size

One byte valid (Byte)

Two bytes valid (Halfword)

Three bytes valid (Tribyte)

Four bytes valid (Word)

Five bytes valid (Quintibyte)

Six bytes valid (Sextibyte)

Seven bytes valid (Septibyte)

Eight bytes valid (Double Word)

N oo hs O 2 O

For write requests, the remainder of the SysCmd bus specifies the
attributes of the write. SysCmd(4:3) encode block attributes for the
write. For block writes SysCmd(2) specifies whether the cache line
associated with the write request will be replaced or retained after the
write is completed and SysCmd(1:0) encode the block size for the
write. For double word, word, or partial word writes SysCmd(2:0)
encode the size of the write data in bytes. The encodings of
SysCmd(4:3) for write commands are shown below in Table 9-11. The
encodings of SysCmd(2:0) for block writes or double word, word, or
partial word writes are shown in Table 9-12 and Table 9-13,

respectively.
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Table 9-11 Encoding of SysCmd(4:3) for Write Requests
SysCmd(4:3) Write attributes

0 Reserved

1 Reserved

2 Block write

3 Doubleword, word, or partial word write.

Table 9-12 Encoding of SysCmd(2:0) for Block Write Requests
SysCmd(2)  Cache line replacement attributes

0 Cache line replaced

1 Cache line retained
SysCmd(1:0) rit iz

0 Four words

1 Eight words

2. Sixteen words

3 Thirty-two words

Table 9-13 Encoding of SysCmd(2:0) for Doubleword, Word, or
Partial Word Write Requests

SysCmd(2:0) Write data size

One byte valid (Byte)

Two bytes valid (Halfword)

Three bytes valid (T fibyte)

Four bytes valid (Word)

Five bytes valid (Quintibyte)

Six bytes valid (Sextibytie)

Seven bytes valid (Septibyte)

Eight bytes valid (Doubleword)

N b WON 2O

Processor null write requests, system interface release external null
requests, and scache release external null requests all use the null
request command. For processor null requests, SysCmd(4:3) specifies
that this is a null write request. For external null requests,
SysCmd(4:3) specifies whether this is a system interface release null
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request orascache release null request.The encodings of SysCmd(4:3)
for processor null requests are shown in Table 9-14. The encodings of
SysCmd(4:3) for external null requests are shown in Table 9-15.

Table 9-14 Encoding of SysCmd(4:3) for Processor Null Requests

SysCmd(4:3) Null attributes
0 Null write
1 Reserved
2 Reserved
3 Reserved

Table 9-15 Encoding of SysCmd(4:3) for Exter_ml Null Requests

SysCmd(4:3) Null attributes
0 System interface release
1 Scache release
2 Reserved
3 Reserved

For invalidate and update requests SysCmd(4) is used by external
requests to indicate that the external request is in conflict with an
unacknowledged processor update request, canceling the update.

- SysCmd(4) is reserved for processor update requests. SysCmd(3) is
used by processor requests to specify whether the update is potential
or compulsory. SysCmd(3) is reserved for processor invalidate
requests. SysCmd(3) is used by external update requests to indicate
whether the update request will change the state of the updated cache
line to shared, or leave the state of the updated cache line unchanged.
SysCmd(2:0) specifies the size of the data element in bytes for update -
requests. The encodings of SysCmd(4:0) for processor invalidate and
update requests is shownin Table 9-16. The encodings of SysCmd(4:0)
for external invalidate and update requests are shown in Table 9-17.
SysCmd(4:0) is reserved for processor invalidate requests.

R4000 User's Manual--Preliminary 9-53



Chapter 9

Table 9-16 Encoding of SysCmd(40) for Processor Update Requests

SysCmd(4)  Reserved
SysCmd(3)  Update type
0 Compulsory
1 Potential
SysCmd(2:0) t iz
o One byte valid (Byte)
1 Two bytes valid (Halfword)
2 Three bytes valid (Tribyte)
3 Four bytes valid (Word)
4 Five bytes valid (Quintibyte)
5 Six bytes valid (Sextibyte)
6 Seven bytes valid (Septibyte)
7 Eight bytes valid (Doubleword)

Table 9-17 Encoding of SysCmd(4:0) for External Update Requests

SysCmd{4) Pr r n te cancellati
0 Update cancelled
1 No cancellaion |
SysCmd(3)  Update cache state change atiributes
0 Cache state changed to Shared
1 No change to cache state
SysCmd(2:0) Update data size
0 One byte valid. (Byte)
1 Two bytes valid (Halfword)
2 Three bytes valid (Tribyte)
3 Four bytes valid (Word)
4 Five bytes valid (Quintibyte)
5 Six bytes valid (Sextibyte)
6 Seven bytes valid (Septibyte)
7 Eight bytes valid (Doubleword)

NOTE: SysCmd(3:0) is reserved for External Invalidate Requests
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For intervention and snoop requests SysCmd(4) is used to indicate
that this external request is in conflict with an unacknowledged
processor update request, canceling the update. The processor never
issues an intervention or snoop request. SysCmd(3) is the data
response on dirty bit for intervention requests and is reserved for
snoop requests. If the data response on dirty bit is asserted, the
processor returns the contents of the cache line in response to an
intervention request if the line is found in state dirty exclusive or dirty
shared. If the data response on dirty bit is deasserted, the processor -
returns the contents of the cache line in response to an intervention -
request if the line is found in state clean exclusive or dirty exclusive.
For both snoop and intervention requests, SysCmd(2:0) specify a
cache state change function that is applied to the cache line atomically
with respect to the intervention or snoop response.

The encodings ofSysCmd(4:0) for intervention requests are shown in
Table 9-19; the encodings SysCmd(4:0) for snoop requests are shown

in Table 9-19. :
Table 9-18 Encodings of SysCmd(4:0) for Intervention Requests

SysCmd(4)
0'.
1
SysCmd(3)
0
SysCmd(2:0)
0
1

2

Processor unacknowledged update cancellation-
Update cancellied

No cancellation

Data response on dirty bit )

Return cache line data if in state dirty exclusi\)e or dirty shared
Return cache line data if in state clean exclusive or dirty exclusive
Cache state change function. ’ ‘
No change to cache state

If cache state is clean exclusive, change to shared, otherwise no
change to cache state

If cache state is clean exclusive or shared, change to invalid,
otherwise no change to cache state

If cache state is clean exclusive, change to shared or if cache state is
dirty exclusive, change to dirty shared, otherwise no change to cache
state

If cache state is clean exclusive, dirty exclusive, or dirty shaied,
change to shared, otherwise no change to cache state

Change to invalid regardiess of current cache state
Reserved
Reserved
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Table 9-19 Encodings of SysCmd(4:0) for Snoop Requests

SvsCmdlﬂ Processor unacknowledged update cancellation
Update cancelled
1 No cancellation
SysCmd(3) Beserved
SysCmd(2:0) h t n i

0 No change to cache state
B If cache state is clean exclusive, change to shared, otherwnse no

change to cache state

2 If cache state is clean exclusive or shared, change to invalid,
otherwise no change to cache state

3 If cache state is clean exclusive, change to shared or if cache state is
dirty exclusive, change to dlrty shared, otherwise no change to cache
state

4 If cache state is clean excluswe, dirty excluswe, or dlrty shared,
change to shared, otherwise no change to cache state

5 Change to invalid regardless of current cache state

6 Reserved

7 Reserved

System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for system
interface data identifiers. A common encoding is used for all system
interface data identifiers. SysCmd(8) must be set to 1 for all system
interface data identifiers. System interface data identifiers have two
formats, one for coherent data and another for noncoherent data:

e Data associated with processor block write requests and
processor double word, word, or partial word write
requests is noncoherent.

e Data associated with processor update requests is
noncoherent.

e Data returned in response to a processor coherent block
read request is coherent.
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o Data returned in response to a processor noncoherent block
read request or a processor double word, word, or partial
word read request is noncoherent.

e Data associated with external update requests is -
noncoherent.

e Data associated with external write requests is
. noncoherent.

e Data returned in response to an external read request is
noncoherent.

e Data returned in response to an external intervention
request is coherent.

For coherent and noncoherent data identifiers, both processor and
external, SysCmd(7) marks the last data element and SysCmd(6)
indicates whether or not the data is response data. Response data is
data returned in response to a read request or an intervention request.
SysCmd(5) is the good data bit and indicates whether or not the data
element is error free. Erroneous data contains an uncorrectable error.
Erroneous data returned to the processor will cause a processor bus
error. The processor will deliver data with the good data bit
deasserted when a primary parity error is detected for a transmitted
data item. A secondary cache data ECC error can be detected by
comparing the values transmitted on the SysAD and SysADC. For
external data identifiers, both coherent and noncoherent, SysCmd(4)
indicates to the processor whether to check the data and check bits for
this data element, and SysCmd(3) is reserved. For processor data
identifiers, both coherent and noncoherent, SysCmd(4:3) are reserved.

For coherent data identifiers SysCmd(2:0) indicate a cache state for the
data. This indication provides the cache state with which to load the
cache line for responses to processor coherent read requests. It also
indicates the cache state in which the line was found for data
associated with the response to an external intervention request or for
the data cycle issued in response to an external snoop request. For
noncoherent data identifiers SysCmd(2:0) is reserved.

The encodings of SysCmd(7:3) for processor data identifiers are
illustrated in Table 9-20. The encodings of SysCmd(7:3) for external
data identifiers are illustrated in Table 9-21. The encodings of
SysCmd(2:0) for coherent data identifiers are illustrated in Table 9-22.
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Table 9-20 Encoding of SysCmd(7:3) for Processor Data Identifiers

SysCmd(z)  Last data element indication
0 Last data element
1 Not the last data element
SysCmd{6) Besponse data indication
0 Data is response data
1 Data is not response data
SysCmd(5)  Good data indication
"0 Data is error free
1 Data is erroneous
SysCmd(4;3) Beserved

Table 9-21 Encoding of SysCmd(7:3) for External Data Identifiers

SysCmd(7)  Last data element indication
0 Last data element
o1 Not the last data element
SysCmd(6) Response indication
0 Data is response data
1 _ Data is not response data
Syscmd(s) ~ Good data indication
0. Data is error free
1 Data is erroneous
SysCmd(4) Data checking enable
0 Check the data and check bits
1 Don't check the data and check bits
SysCmd(3) Reserved
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Table 9-22 Encoding of SysCmd(2:0) for Coherent Data ldentifiers
SysCmd(2:0)  Cache state
0 Invalid
Reserved
Reserved
Reserved
Clean Exclusive
Dirty Exclusive
Shared
Dirty Shared

N o o h O~

System Interface Addresses

System interface addresses are full 36-bit physical addresses .
presented on the least-significant 36 bits (bits 35 through 0) of the
SysAD bus during address cycles. The remaining bits of the SysAD
bus are unused during address cycles. Addresses associated with
double word, word, or partial word transactions, i.e. double word,
word, or partial word read and write requests and update requests,
are aligned for the size of the data element. Specifically; for double
word requests, the low-order three bits of the address are zero; for
word requests, the low-order two bits of the address are zero; and for
" half-word requests, the low-order bit of the address is zero. For byte,
tri-byte, quinti-byte, sexti-byte and septi-byte requests the address
provided is a byte address.
Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order three bits of the address are zero.
The order in which data is returned in response to a processor block
read request can be programmed via the boot-time mode control
interface to sequential ordering or sub-block ordering. If sequential
ordering is enabled, the processor always delivers the address of the
double word at the beginning of the block on a block read request. An
external agent must return the block of data sequentially starting at
the beginning of the block. If sub-block ordering is enabled, the
processor delivers the address of the double word within the block
that it wants returned first. An external agent must return the block of
data using sub-block ordering starting with the addressed double
word. For further details on sub-block ordering see Appendix D. Only
an R4000 in the R4000SC and R4000MC configuration with a
secondary cache may be programmed to use sequential ordering.

R4000 User's Manual--Preliminary 9-59



Chapter 9

For block write requests, the processor always delivers the double
word address of the double word at the beginning of the block, and
delivers data beginning with the double word at the beginning of the
block and progressing sequentially through the double words that
form the block.

During data cycles, the driven byte lines depend upon the position of
the data with respect to the aligned double word containing the data
(this may be a byte, halfword, tri-byte, word, quinti-byte, sexti-byte;
septi-byte, or a double word.). For example, on a byte request whose
address modulo 8 is 0, SysAD 7...0 get driven during the data cycles.
Please refer to Figure 2.2. :

Processor Internal Address Map

External reads and writes to the processor are provided to access
processor internal resources that may be of interest to an external
agent. However, the R4000 does not contain any resources that are
readable with an external read request. The R4000 will return a bus
error response to any external read request. The only writable
resource in this version of the R4000 are the processor interrupts.

The processor decodes bits 6:4 of the address associated with an
external read or write request to determine which processor internal
resource is the target of the request. The only processor internal
resource available for access by an external request is the interrupt
resource, and it is only accessible via an external write request. The
interrupt resource is accessed via an external write request with an
address of 000 on bits 6:4 of the SysAD bus. See the section on
interrupts for further details on external writes to the interrupt
resource.
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This chapter describes the clocks used in the R4000 and the processor
status reporting mechanism. The topics covered here include:

¢ Basic System Clocks

e Interfacing to a Phase-Locked System .

o Interfacing to a System without Phase Locking
e Processor Status Outputs

Basic System Clocks }
Each clock in the R4000 is explained below.

MasterClock

The processor bases all internal and external clocking on the single
clock input MasterClock. The processor generates the clock output
MasterOut at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if SyncIn is shorted to SyncOut.
MasterOut is provided for use in clocking external logic that must
cycle at MasterClock frequency, such as the reset logic, and the
processor aligns MasterOut with SyncOut.

Syncin/SyncOut

The processor generates the clock output SyncOut at the same
frequency as MasterClock and aligns SyncIn with MasterClock.
SyncOut must be connected to the clock input Syncln so that the
processor can compensate for output driver delays and input buffer
delays in aligning SyncIn with MasterClock.
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PClock

. SClock

TClock

RClock

The processor generates the internal clock PClock at twice the
frequency of MasterClock and precisely aligns every otherrising edge
of PClock with the rising edge of MasterClock. PClock is used by all
internal registers and latches.

The processor divides PClock by 2, 3, or 4 (programmed via the
initialization control interface) to generate the internal clock SClock. .
SClock is used by the processor to sample data at the system interface
and to clock data into the processor’s system interface output
registers. The rising and falling edges of SClock are aligned with the
rising edges of PClock.

The processor generates TClock at the same frequency as SClock.
TClock is a transmit clock that can be used by an external agent to
clock its output registers and as the global system clock for the logic
that makes up the external agent. TClock is identical to SClock, and
the edges of TClock are precisely aligned with the edges of SClock.
TClock is used by external agent circuitry. TClock is aligned with

* MasterClock if Synin is shorted to SyncOut.

Figure 10-1 shows the clocks for a PClock-to-SClock division of two.
Figure 10-2 shows the clocks for a PClock-to-SClock division of four.

The processor génerat&s RClock at the same frequency as SClock.

" RClock is a receive clock that can be used by an external agent to clock

its input registers. RClock is skewed with respect to TClock and
SClock so that it leads TClock by 25% of the SClock cycle time. RClock
is used by external agent circuitry.

10-2
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System Timing Parameters

Data provided to the processor must be stable a minimum of tps ,
nanoseconds (ns) before the rising edge of SClock and held valid fora
minimum of tpy ns after the rising edge of SClock. This setup and
hoid time is required for data to propagate through the processor's
input buffers and meet the setup and hold time requirements of the
processor’s input latches.

Data provided by the processor becomes stable a minimum of tpy NS
after the rising edge of SClock and a maximum of tpo ns after the
rising edge of SClock. This drive-off time is the sum of the maximum
delay through the processor’s output drivers and the maximum clock
to Q delay of the processor’s output registers.

Certain processor inputs (specifically VCCOk, ColdReset*, and
Reset*) are sampled based on MasterClock, while certain processor
outputs (specifically Status(7:0)) are driven out based on MasterClock.
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The same setup, hold, and drive-off parameters, tps, tpH, tDmr and
tpo, apply to these inputs and outputs, but they are with respect to
MasterClock instead of SClock.

The values of tpg, tpp, tpm, and tpo for the R4000 processor are
tabulated in AC Characteristics.

The alignment of SyncOut, PClock, SClock, TClock, and RClock is
accomplished by the processor with internal Phase Locked Loop
(PLL) circuits that generate aligned clocks based on SyncOut/SyncIn.
PLL circuits by their nature are only capable of generating aligned
clocks for MasterClock frequencies within a limited range. Minimum
and maximum frequencies for MasterClock for various speed ratings
of the R4000 processor are tabulated in AC Characteristics.

Clocks generated using PLL circuits contain some inherent
inaccuracy, or jitter, in their alignment with respect to the
MasterClock. That is, a clock aligned with MasterClock by the
processor’s PLL circuits may lead or trail MasterClock by an amount
as large as the related maximum jitter. Maximum jitter for the clocks -
generated by various speed ratings of the R4000 processor is tabulated
in AC Characteristics. ' S

Clock Interfacing to a Phase-Locked System

When the processor is used in a phase-locked system, the components
of the external agent must phase lock their operation to a common
MasterClock. In such a system, the delivery of data and the sampling
of data has common characteristics for all components, even if the
components have different delay values. The transmission time (the
amount of time a signal has to propagate along the trace from one
component to another) between any two components AandBofa
phase locked system can be calculated from the following equation:
Transmission Time = (SClock period) - (tpo for A) - (t ps for B)

- (Clock Jitter for A Max) - (Clock Jitter for B Max)
A block-level diagram of a phase-locked system employing the R4000
processor is shown in Figure 10-3.
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MasterClock

Figure 10-3 Phase-Locked System Employing the R4000 Processor

Clock Interfacing to a System Without Phase-Lock

When the processor is used in a system in which the external agent
cannot phase lock to a common MasterClock, the output clocks
RClock and TClock may be used to clock the remainder of the system.
Two clocking methodologies are shown below: one for interfacing to
oate-arrav devices, and one for interfacing to discrete CMOS logic

poTRR ARy STVELTS; S55S

devices.

Interface to Gate-Array System |

When interfacing to a gate-array system, both RClock and TClock are
used for clocking within the gate-arrays. The gate array buffers
RClock internally and uses the buffered version to clock registers that
sample processor outputs. These sample registers should be
immediately followed by staging registers clocked by an internally

10-6
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buffered version of TClock. The buffered version of TClock should be
used as the global system clock for the logic inside the gate array and
as the clock for all registers that drive processor inputs.

The use of staging registers places a constraint on the sum of the clock-
to-Q delay of the sample registers and the setup time of the
synchronizing registers inside the gate arrays:

Clock-QDelay +
Setup of Synch Register 025 (RClock period)
- (Maximum Clock Jitter for RClock)
- (Maximum Delay Mismatch for Internal Clock Buffers
on RClock and TClock)

The transmission time for a sxgnal from the processor to an external
agent composed of gate arrays in a system without phase lock can be
calculated from the following equation:
Transmission Time = (75% of TClock period) - (tpo for R4000)

+ (Minimum External Clock Buffer Delay)

- (External Sample Register Setup Time)

- Maximum Clock Jitter for R4000 Internal Clocks)

- (Maximum Clock Jitter for RClock) ~

The transmission time fora 51gnal from an external agent composed of
gate arrays to the processor in a system without phase lock can be
calculated from the following equation:
Transmission Time = (TClock period) - (tps for R4000)
(Maximum External Clock Buffer Delay)
(Maximum External Output Register Clock to Q Delay)
(Maximum Clock Jitter for TClock)
(Maximum Clock Jitter for R4000 Internal Clocks)
A block-level diagram of a system without phase-lock, employing the
R4000 processor and an external agentimplemented as a gate—array, is
shown in Figure 10-4.
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Sampling Staging
Gate Register Register
Array B o

MasteyClock
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—
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Figure 10-4 System Without Phase Lock Employing the R4000 Processor
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Interface to CMOS Logic System

When interfacing to CMOS logic system, matched delay clock buffers
are used to allow the processor to generate aligned clocks for the
external logic. One of the matched delay clock buffersisinserted in the
processor’s SyncOut Syncln clock alignment path, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the delay of
the matched delay clock buffer while leaving PClock aligned with
MasterClock. The remaining matched delay clock buffers can be used
to generate a buffered version of TClock aligned with MasterClock.
The alignment error of the buffered version of TClock is the sum of the
maximum delay mismatch of the matched delay clock buffers and the
maximum clock jitter of TClock. The buffered version of TClock is
used to clock registers that sample processor outputs, as the global
system clock for the discrete logic that forms the external agent, and to
clock registers that drive processor inputs.

The transmission time for a signal from the processor to an external
agent composed of discrete CMOS logic devices can be calculated
from the following equation:
Transmission Time = (TClock period) - (tpo for R4000)
- (External Sample Register Setup Time)
- Maximum External Clock Buffer Delay Mismatch)
- Maximum Clock Jitter for R4000 Internal Clocks)
- (Maximum Clock Jitter for TClock)
The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following
equation:
Transmission Time = (TClock period) - (tps for R4000)
- (Maximum External Output Register Clock to Q
Delay)
- (Maximum External Clock Buffer Delay Mismatch)
- Maximum Clock Jitter for R4000 Internal Clocks)
- Maximum Clock Jitter for TClock)

Note that, using this clocking methodology, the hold time of data
driven from the processor to an external sampling register is a critical
parameter. In order to guarantee hold time, the minimum output
delay of the processor, tpy, must be greater than the sum of the
minimum hold time for the external sampling register, the maximum
clock jitter for R4000 internal clocks, the maximum clock jitter for
TClock, and the maximum delay mismatch of the external clock
buffers.
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A block-level diagram of a system without phase lock employing the
R4000 processor and an external agent composed of both a gate array
and discrete CMOS logic devices is shown in Figure 10-5.
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MasterClock

Sample

Registers

Figure 10-5 System Without Phase Lock Employing the R4000 Processor
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Processor Status Outputs

The R4000 processor provides eight status outputs, Status(7:0), that
change with each rising edge of MasterClock to indicate the
processor’s internal state during each of the two most recent PCycles.
Status(7:0) is treated as two fields: Status(3:0) indicates the processor’s
internal state during the most recent PCycle, and Status(7:4) indicates
the processor’s internal state during the PCycle preceding the most
recent PCycle. The encoding of processor internal state for Status(7:4)
or Status(3:0) is shown in Table 10-1. The four-bit decode describes the
instruction occupying the WB stage during a given PCycle.

Table 10-1 Encoding of Processor Internal State for Status(7:4) or Status(3:0).

Status(7:4) or Processor
Status(3:0) internal state
0 Run cycle: Other integer instruction
1 Run cycle: integer Load _
2 . Run cycle: Integer Untaken Branch
'3 Run cycle: - Integer Taken Branch
4 Runcycle: integer Store
5 Reserved
6 Reserved .
7 Run cycle: ~ Killed by integer slip
8 Stall cycle: Other stall type
9 Stall cycle: Primary Instruction Cache
a Stall cycle: Primary Data Cache
b Stall cycle: Secondary Cache
c Run cycle: Floating-Point
d Run cycle: Killed by branch
e Run cycle: " Killed by exception
f Run cycle: Killed by floating point slip

10-12
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11

“This chapter contains a description of the cache memory hierarchy,
the operation of the primary and secondary caches and the R4000’s
interface to the secondary cache, and cache-coherent operation ina
multiprocessor system.

Cache OrganiZétion :

This section describes the organization of the on-chip primary caches
and the optional off-chip secondary cache. '

Primary Caches : _ .
' The R4000 maintains the folllowing four primary cache states:
e Invalid
e Shared

o  (Clean Exclusive
o Dirty Exclusive

The cache state of a line in the processor’s primary cache indicates the
validity, shared, dirty, and ownership attributes of the cache line.

o A cache line that does not contain valid information must
be marked invalid.

e A cache line in any state other than invalid contains valid
information.

e A cache line that is present in more than one cache in the
system is said to be shared and must be in one of the shared
states.
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e A cache line that is present in exactly one cache in the
system is said to be exclusive and may be in one of the
exclusive states.

e A cache line that contains data that is consistent with
memory is said to be clean and may be in one of the clean
‘states. ’

e A cache line that contains data that is not consistent with
memory is said to be dirty and must be in one of the dirty
or shared states. ‘

A cache line can have only one owner at a time. The owner of a cache
line is responsible for providing the current contents in the cache line
on any read request. A cache line is owned by the processor if the state
of the secondary cache line is dirty exclusive, dirty shared, or if the
state of the primary cache line is dirty exclusive when no secondary
cache is present. Clean cache lines are always owned by memory.

_Inaddition, if the owner of a cache line is a processor, that processor is

responsible for writing the cache line back to memory wheniitis
replaced in the course of either satisfying a cache miss or during the
execution of a Writeback or Writeback Invalidate cache instruction.

Primary Instruction Cache

The R4000 primary instruction cache is:
e Direct-mapped. . '
o Indexed with a virtual address.
¢ Checked with a physical tag.
e Organized with either a 4-word (16-byte) or 8-word (32-
byte) cache line.

The primary instruction cache states are determined by the following
cache line attribute:
Invalid The cache line does not contain valid

' information.
Each line of instruction cache data has an associated 26-bit tag. The tag
contains a 24-bit physical address, a single valid bit, and a parity bit.
Byte parity is used on the instruction data. The format of an 8-word (32
byte) primary instruction cache line is shown in Figure 11-1.

11-2
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25 24 23 0
P|V PTag
1 1 24
71 64 63 ) 0
DataP S Data
DataP Data
DataP Data
DataP Data
8 64
PTag physical tag (bits 35..12 of the physical address)
v valid bit
Data cache data“ :
P even parity for the PTag and V fields
DataP -even parity-1 parity bit per byte of data
Figure 11-1 Format of R4000 8-Word Primary Instruction Cache Line
The 4-word primary instruction cache line is accessed using 2 PCLK
cycles; the 8-word primary instruction cache line is accessed using 4
PCLK cycles. : » ' ~
Primary Data Cache
The R4000 primary data cache is:
¢ Write-back.
e Direct-mapped.
¢ Indexed with a virtual address.
¢ Checked with a physical tag.

Organized with either a 4word (16-byte) or 8-word (32-byte)
cache line.
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The primary cache states indicate the following cache line attributes:

Invalid

Shared

Clean Exclusive

Dirty Exclusive

The cache line does not contain valid
information.

The cache line contains valid information
and may be present in another cache. The
cache line may or may not be consistent
with memory, and may or may not be
owned.

The cache line contains valid information
and is not present in any other cache. The
cache line is consistent with memory and is
not owned. ' '

The cache line contains valid information
and is not present in any other cache. The
cache line is inconsistent with memory and
is owned by a processor. :

Each line of primary cache data has an associated 29-bit tag. The ta

contains a 24-bit physical address, 2-bit cache line state, and a write- ’
back bit. The write-back bit has its own parity bit, and the tag and

cache line state share a

parity bit.

Figure 11-2 shows the format of a 8-word (32 byte) primary data cache

line.

114
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28 27 26 25 24 23 0
wWiw|P]| CS PTag
1 1 1 2 ‘ 24
71 64 63 0
DataP Data
DataP Data
DataP Data
DataP Data
8 64
w even parity for the write-back bit
w write-back bit (set if data is modified and different from
secondary cache and memory)
P even parity for the PTag and CS fields
CS  primary cache state
0 Invalid—all R4000 configurations
1 Shared (either Clean or Dirty)—R4000MC configurations only
2 Clean Exclusive—R4000SC and MC configurations
3 Dirty Exclusive—all R4000 configurations
PTag physical tag (bits 35..12 of the physical address) '
DataP even parity for the data :
Data cachedata

Figure 11-2 Format of R4000 8-Word Primary Data Cache Line

In all R4000 processors, the W (write-back) bit, not the cache state,
indicates when the primary cache contains modified data that must be
written back to memory or the secondary cache.

In the R4000PC, the states Invalid and Dirty Exclusive are used to
describe the cache line. In the R4000SC, the states Invalid, Clean
Exclusive, and Dirty Exclusive are used to describe the cache line. In the
R4000MC, all four states are used to describe the cache line and to
control whether load and store operations need to access the
secondary cache for coherency purposes. The effects of load and store
operations for the four primary cache states are described in Table 11-
2.
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Table 11-1 R4000MC Data Cache Coherency States

Primary Secondary |Actionon Action on
Cache States | Cache States Load ___ Store
Invalid All Miss Miss
Shared None Read secondary tag. If the coheren
cy algorithm is Update on Write
then send update and set the sec]
ondary cache state to Dirty Shared
Dirty Shared None If the coherency algorithm is Invali{
Shared date on Write, then send invalidate
and set the primary and secondaryr
cache states to Dirty Exclusive.
Di . If Dirty Exclusive, set the primary
Exclusive | None cache state to Dirty Exclusive.
1 Set the primary and secondary
Clean Exclusive | None : .
che states to Dirty Excl .
CleanExclsiv St e pemary dats coche e
. . e ata cache state
Dirty Exclusive | None Dirty Exclusive. :
Dirty Exclusive | Dirty Exclusive | None None
When the primary cache is filled from the secondary cache, the
secondary cache state is mapped into the primary cache state by
mapping the Shared and Dirty Shared secondary states into the Shared
primary state. The Dirty Exclusive primary state allows the primary
cache to be written without a secondary access.
The 4word primary data cache line is accessed using two PCLK
cycles; the 8-word primary data cache line is accessed using four
PCLK cycles.
Secondary Cache

The R4000 is designed to operate with an external secondary cache.
The secondary cache is accessible to the processor and to the system
interface. The cache contains data, cache tags and cache line state bits.

R4000 processors support an optional external secondary cache which
can be configured at chip reset as either a one joint cache, or a separate
I-cache and D-cache. This secondary cache is:

o Write-back.

11-6
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Direct-mapped.
Indexed with a physical address.
Checked with a physical tag.

Organized with either a 4-word (16-byte), 8-word (32-byte),
16-word (64-byte), or 32-word (128-byte) cache line.

The secondary cache states indicate the following cache line attributes:

Invalid The cache line does not contain valid
information.
Shared The cache line contains valid information

and may be present in another cache. The
cache line may or may not be consistent
with memory, and is not owned.

Dirty Shared The cache line contains valid information
and may be present in another cache. The
cache line is inconsistent with memory and
is owned. :

Clean Exclusive - The cache line contains.valid information
and is not present in any other cache. The
cache line is consistent with memory and is
not owned. ‘

Dirty Exclusive ~ The cache line contains valid information
and is not present in any other cache. The
cache line is inconsistent with memory and
is owned. '

The primary cache state shared corresponds to the secondary cache
states shared and dirty shared.

The secondary-cache line has an associated 19-bit tag that contains
bits 35..17 of the physical address, a 3-bit primary cache index, and a
3-bit cache line state. These 25 bits are protected by a 7-bit error
correction code (ECC).

Figure 11-3 shows the format of the R4000 secondary-cache line.
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A

- ECC

25 24 2221 19 18 0
CS | Pldx : STag

7

3 3 19

ECC ECC for secondary tag

CS  secondary-cache state

Invalid

reserved

reserved

reserved

Clean Exclusive

Dirty Exclusive

Shared

Dirty Shared o

Pidx  primary cache index (bits 14..12 of the virtual address)
STag physical tag (bits 35..17 of the physical address)

NOUMAWNO

Figure 11-3 Format of R4000 Secondary Cache Line

The secondary-cache state (CS bits) indicates whether
e The cache line data and tag are valid.

e The data is at least potentially present in the caches of
other processors (Shared versus Exclusive).

e The processor is responsible for updating main memory
(Clean versus Dirty).

The primary caches are a subset of the secondary cache. The processor
maintains this subset property by checking and invalidating the
primary caches, if necessary, whena secondary cache line is replaced.
The Pldx field provides the processor with an index to the virtual (not
physical) address of primary cache lines that may contain data from
the secondary cache line.

A second function of the PIdx field is to detect a cache alias. If the
physical address tag matches during a data reference to the secondary
cache (S-cache), but the PIdx field does not match the appropriate bits
in the virtual address, the reference wac made from a different virtual
address than the one that created the secondary-cache line. Since this
could create a cache alias, the processor signals this condition by
taking a Virtual Coherency exception (see Chapter 5, Exception
Processing).

11-8
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Primary and Secondary Cache Interaction

The primary caches are proper subsets of the secondary cache. In the
R4000PC, the Invalid and Dirty Exclusive states are used to describe
the cache line. In the R4000SC, the Invalid, Clean Exclusive, and Dirty
Exclusive states are used to describe the cache line. In the R4000MC,
all four states are used to describe the cache line and to control
whether load and store operations need to access the secondary cache
for coherency purposes. The effects of the load and store operations
for the four primary cache states are described in Table 11-2.. This table
can be better understood by realizing that there may be many primary
cache lines for each secondary cache line.

Table 11-2 R4000MC Data Cache Coherency States.

PCa‘ che) Secondary Action on Action on
States ' Cache States Load Store
Tnvaid | AT Miss Miss ,
’ Shared None Read secondary tag. If the coheren;
cy algorithm is Update on Write
then send update and set the sec:
ondary cache state to Dirty Shared
. Dirty Shared None If the coherency algorithm is Invalij
Shared date on Write, then send invalidate
and set the primary and secondary
cache states to Dirty Exclusive. :
. . If Dirty Exclusive, set the primary
ty Exclusive | None cache state to Dirty Exclusive.
. Set the primary and secondary]
Clean Ex- Clean Exclusive | None cache states to Dirty Exclusive.
clusive . . Set the primary data cache state td
Dirty Exclusive | None Dirtv Exclusive. :
guu:i):re Bxq Dirty Exclusive | None None

Upon a cache miss in both the primary and the secondary cache, the
. missing secondary cache line is loaded from memory into the
secondary cache first. The the appropriate subset is loaded into the
primary cache. When the primary cache is filled from the secondary
cache, the secondary cache state is mapped into the primary cache
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state by mapping the Shared and Dirty Shared secondary states into the
Shared primary cache state. The Dirty Exclusive primary cache state
allows the primary cache to be written without a secondary cache
access.
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Cache Line Ownership

The R4000 requires that cache lines have a single owner at all times.
The owner of a cache line is responsible for providing the current
contents in the cache line to any read requestor. The ownership of a
cache line is set and maintained as follows:

e A processor assumes ownership of the cache line if the state
of the secondary cache line is dirty shared, dirty exclusive, or if
the state of the primary cache line is dirty exclusive when no
secondary cache is present. For responses to processor
coherent read requests in which the data is returned with
an indication that it must be loaded in the dirty shared or
dirty exclusive state, the cache state is set when the last
word of read response data is returned. Therefore, the
processor assumes ownership of the cache line when the
last word of read response data is returned.

e The processor gives up ownership of a cache line when the
state of the cache line changes to invalid, shared, or clean
exclusive. For processor coherent write requests the state of -
the cache line changes to invalid if the cache line is
replaced, or.to clean exclusive or shared if the cache line is
retained. In either case, the cache state transition occurs
when the last word of write data is transmitted to the
external agent. Therefore, the processor gives up :
ownership of the cache line when the last word of write
data is transmitted to the external agent.

e For external requests, other than read responses, any cache
state change associated with the external request, including
a change of ownership, occurs at the completion of the
external request. '

¢ Clean cache lines are always owned by memory.

Cache Operation
This section describes the operation of the R4000 caches.

Cache Coherency

The R4000 processor manages its primary and secondary caches using
a write-back methodology; that is, it stores write data into the caches.
A modified cache line is not written back to memory until the cache

line is replaced either in the course of satisfying a cache miss or during
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the execution of a Writeback or Writeback Invalidate cacheinstruction.
When the contents of a cache line is not consistent with memory, it is
said to be dirty. Many systems, in particular multi-processor systems,
or systems that employ input/output (10) devices that are capable of
direct memory access (DMA), may require the system to behave as if
the caches are always consistent with memory and each other.
Schemes for maintaining consistency between multiple write-back
caches or between write-back caches and memory are referred to as
cache coherency protocols.

The R4000MC processor, in its secondary cache mode, provides a set
of cache states and mechanisms for manipulating the contents and
state of the cache that are sufficient to implement a variety of cache
coherency protocols, both snoopy and directory-based. In particular,
the processor supports both the write-invalidate and

write-update protocols simultaneously.

The coherency protocol for lines in the cache is controlled by bits in the
translation look-aside buffer (TLB) on a per-page basis. Specifically,
the TLB contains three bits per entry that control the coherency
attributes of a page. The three bits are encoded to provide five possible
coherency attributes per page:

e uncached,
e sharable,
o update,

o exclusive, and
e noncoherent.

. A processor in the no-secondary cache mode supports only the

uncached and noncoherent coherency attributes.

If a page has the uncached coherency attribute, the processor issues a
word or partial word read or write directly to main memory for any
load or store to a location within that page. Lines withinan uncached .
page are assumed never to be cache-resident.

If the coherency attribute is sharable, the processor issues a coherent
block read for a load miss to a location within the page, and a coherent
block read that requests exclusivity fora store miss toa location within
the page. In most systems, coherent reads require snoops or directory
checks to occur; noncoherent reads do not. A coherent read that
requests exclusivity implies that the processor functions most
efficiently if the requested cache line is returned to it in an exclusive
state, but the processor still performs correctly if the cache line is
returned in a shared state. Cache lines within the page are managed
with a write invalidate protocol; that is, the processor issues an
invalidate on a store hit to a shared cache line.

11-12
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If the coherency attribute is update, the processor issues a coherent
block read for a load or store miss to a location within the page. Cache
lines within the page are managed with a write update protocol; that is,
the processor issues an update on a store hit to a shared cache line.

If the coherency attribute is exclusive, the processor issues a coherent
block read that requests exclusivity for a load or store miss to a
location within the page. Cache lines within the
with a write invalidate protocol. Load Linked Store Conditional
instruction sequences must ensure that the link location is notina
page managed with the exclusive coherency attribute.

If the coherency attribute is noncoherent, the processor issues a
noncoherent block read for a load or store miss to a location within the

page.

page are managed

The behavior of the processor on load misses, store misses, and store
hits to shared cache lines for each of the coherency attributes is
summarized in Table 11-3.

Table 11-3 Coherency Attributes and Processor Behavior -

Load Miss ' Store Miss ' Store Hit Shared |
Main memory read Main memory write NA

Attribute
Uncached |
Noncoherent | Noncoherent read Noncoherent read Invalidate *
Exclusive Coherent read exclusive | Coherent read exclusive | Invalidate *
Sharable Coherent read Coherent read exclusive | Invalidate’
Update Coherent read Coherent read Update

NOTE: *This should not occur under normal circumstances.

The following sections describe:

e The cache state transitions performed by the processor
during execution.

e The mechanisms provided for an external agent to
manipulate the state and contents of the primary and
secondary cache.

R4000 User's Maymal--Preliminary
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Cache State Changes

The initial state of a cache line is specified by the external agent when
it supplies the cache line. During the course of processor execution,
the processor may change the state of a cache line. The following
events cause changes to the state of the cache:

o A store to a clean exclusive cache line causes the state to be
changed to dirty exclusive in both the primary and
secondary caches.

e A store to a shared cache line, that is a line marked shared in
the primary cache and either shared or dirty.shared in the
secondary cache, will cause the processor to issue either an
invalidate request or an update request depending on the
coherency attribute in the TLB entry for the page
containing the cache line. Upon successful completion of
an invalidate, the processor completes the store and
changes the state of the cache line to dirty exclusive in both
the primary and secondary caches. Upon successful
completion of an update, the processor completes the store
and changes the state of the cache line to shared in the
primary cache and dirty shared in the secondary cache if
dirty shared mode is enabled. Dirty shared mode is

grammable via the boot-time mode control interface
described in Chapter 12. If dirty shared mode is not enabled,
the state of the primary and secondary caches will be left
unchanged after successful completion of an update.

Figure 11-4 and Figure 11-5 are state diagrams of the Primary and
Secondary Caches respectively.
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read miss [exclusive]

I/0 invalidate received

170 invalidate received

invalidate
received
write hit

write hit [update],
read hit,

xbus read [ir_\tervention/

write miss [unshared or i:\;atel

Figure 114 Primary Data Cache State Diagram

Write Miss [shared and update]
Read Miss [shared]
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invalidate
received
read miss [shared]
- invalidatef
Tt received
: bus
read hit, fead
update received
write hit
{update] " pqatg
receive » i
. - wrte bt e
bus read fintervention}, i [invalidate]
writg lt:[rtt {update], ) :
readht write hit [invalidate] read i,
write hit
L S bus read [intervention]
write miss ‘
{(shared & update)] .
write miss [unshared or invalidate]
Figure 11-5 Secondary Cache State Diagram
Cache Line Write-Back

If the cache line is in the dirty exclusive or dirty shared state in the
secondary cache, the processor writes a cache line back to memory
when it is replaced, eitherin the course of satisfying a cache miss or
during the execution of a Writeback or Writeback Invalidate cache
instruction. When the processor writes a cache line back to memory, it
does not ordinarily retain a copy of the cache line, and the state of the
cache line is changed to invalid. However, under certain conditions
related to load linked and store conditional, or if a cache line is written
back by the Hit Writeback cache instruction, the processor retains a
copy of the cache line. If the cache line is retained, the processor
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changes the cache line state to clean exclusive if the secondary cache
state was dirty exclusive before the write, or shared if the secondary
cache state was dirty shared before the write.

Whether or not the processor is retaining the line is signaled by the
processor during a write. ’

Manipulation of the Caches by an External Agent

The R4000 provides the following mechanisms for an external agentto
examine and manipulate the state and contents of the primary and
secondary caches:

e An external agent must specify the state in which data, supplied
in response to a processor read request, loads into the
processor’s caches. Data may be loaded in any of the four valid
secondary cache states. Data returned by the external agent must
not be marked invalid. The secondary cache state will be mapped
by the processor to a primary cache state as previously described.

 An external agent may issue a snoop request to the processor
causing the processor to return the secondary cache state of the
specified cache line. At the same time and according to a '
function supplied by the external agent, it atomically changes
the state of the specified cache line in both the primary and
secondary caches. :

. e An external agent may issue an invalidate request or an update
" request to the processor. An invalidate request causes the

processor to change the state of the specified cache line to
invalid in both the primary and secondary caches. An update
request causes the processor to write the specified data element
into the specified cache line, and either change the state of the
cache line to shared in both the primary and secondary caches, or
leave the state of the cache line unchanged, depending on the
nature of the update request. An external agent may issue
updates—without changing the state of the cache line—to cache
lines that are in either exclusive or shared states

* An external agent may issue an intervention request causing the
processor to return the secondary cache state of the specified
cache line, and, under certain conditions related to the state of
the cache line and the nature of the intervention request, the
contents of the specified secondary cache line. At the same time
and according to a state change function specified by the
external agent, the processor atomically changes the state of the
specified cache line in both the primary and secondary caches.
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Ordering Considerations

Many cache coherent multiprocessor systems must obey ordering
constraints on stores to shared data; therefore, they exhibit the same
behavior as a uniprocessor system in a multiprogramming
environment. A multiprocessor system that exhibits such behavior is
said to be strongly ordered. '

A typical algorithm for testing strong ordering follows:

Given - Locations X and Y have no particular relationship; i.e., they
are not in the same cache line. ‘

Processor A performs a store to location X at the same time processor
B performs a store to location Y. Next, processor A does aload from
location Y at the same time that processor B does a load from location
X. In order for the system to be considered strongly ordered, either
processor A must load the new value of Y, or processor B must load
the new value of B, or both processors A and B must load the new
values of Y and X, respectively, underall conditions. If both processors
A and B load the old values of Y and X, respectively, under any
conditions, the system does not meet the requirements for strong
ordering. ’
The algorithm to test for strong ordering is summarized below.

Processor A Processor B

Store to locationX ~ Store.to location Y

Load from locationY  Load from location X

In order for this strong ordering test algorithm to succeed, stores must
have a global ordering in time; that is, every processor in the system
must agree that either the store to location X preceded the store to
location Y, or the store to location Y preceded the store to location X.
If this global ordering is enforced, this test algorithm for strong
ordering will succeed.

The requirements to achieve strong ordering translate into a need for
precise control of when the processor restarts in reiationship to a
change in cache state initiated by an external coherence request.
Specifically, before allowing the processor to restart after completion
of a processor coherence request, system designers must ensure
completion of any cache state changes resulting from an external
coherence request that occurs before a processor coherence request.

The R4000 processor obeys the following paradigms for restart after
issuing a coherence request. ‘
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For coherent read requests, the processor will restart after either of the
following conditions, unless a processor invalidate or update request
is unacknowledged:

¢ The requested double word is transmitted to the processor :
if sub-block ordering is enabled, or

e The last word in the block is transmitted to the processor if
sequential ordering is enabled.

Any external requests that must be completed before the read is
complete must be issued to the processor before the read response is
issued.

For coherent write requests, the processor restarts after the write
request is complete; that is, after the last double word of data
associated with the write request has been transmitted to the external
agent, unless a processor read request is pending or a processor
invalidate or update request is unacknowledged. -
For invalidate and update requests, the processor restarts after the
assertion of Ivd Ack* or IvdErr*, unless a processor read request is
pending or it is processing an external request when IvdAck* or
IvdErr* are asserted.
If IvdAck* or IvdErr* are asserted during or after the first cycle that
the external agent asserts ExtRqst*, the processor will accept the
external request and complete any cache state changs associated with
the external request before restarting..
If IvdAck® or IvdErr* are not asserted during or after the first cycle
that the external agent asserts ExtRgst*, the processor will restart
before beginning the external request.
In summary, external requests that must be completed before a
processor invalidate or update completes can be completed providing
- the processor receives an asserted ExtRgst* by the external agent
before or during the same cycle either IvdAck* or IvdErr* are
asserted.

Coherence Conflicts

This section explains how the R4000 handles coherence conflicts
caused by competing coherence requests from the processor and an
external source. The topics in this section are:

e How Coherence Conflicts Arise
e System Implications of Coherence Conflicts
¢ Handling Coherence Contlicts
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This material applies only to the R4000MC which can issue processor
coherence requests and accept external coherence requests.

How Coherency Conflicts Arise

The R4000MC processor issues processor coherence requests and
accepts external coherence requests.

Processor coherence requests are:
 Processor coherent read requests
¢ Invalidate requests
e Update requests

External coherence requests are
e External invalidate
e Update
e Snoop

¢ Intervention requests

Because of the overlapped nature of the system interface it is possible
for processor coherence requests and external coherence requests to
conflict. That is, it is possible for an external coherence request to
reference an address that targets the same cache line as a pending
processor read request oran unacknowledged processor invalidate or '
update request. The processor does not contain comparators to detect
such conflicts. The processor uses the secondary cache as the single
point of reference to determine the coherency actions it takes, and only
checks the state of the secondary cache at specific times.

For pending processor coherent read requests, conflicting external
requests cannot affect the behavior of the processor. The processor
only issues a read request for a particular cache line if it does not have
a copy of that cache line. Therefore, any external coherence request
that targets a cache line that is also the target of a pending processor
coherent read request will not find the line present in the cache.
External coherence requests do not change thestate of the cache unless
the cache line they target is present. Since no change can be made to
the state of the cache for the line that is the target of the pending
processor read request, no external coherence requests can effect the
read request. Therefore, external coherence requests that conflict with
a pending processor coherent read request may be issued to the
processor and will effectively be discarded by the processor.
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For processor invalidate and update requests the cancellation
mechanism is provided to signal conflicts to the processor. If a
conflicting external coherence request is submitted while a processor
invalidate or update request has been issued but not yet
acknowledged, an external agent may cancel the processor invalidate
or update. This applies to compulsory updates and invalidates only.
This is accomplished by setting the cancellation bit in the command
for the coherence request. The processor, upon receiving an external

" coherence request with the cancellation bit set, will consider its
invalidate or update request to be acknowledged and canceled, and
will re-access the secondary cache and re-evaluate the cache state to
determine the correct action. This may result in the invalidate or

_ update request being re-issued, or it may result in the issue of a read

request instead.

An external agent is only allowed to assert the cancellation bit withan
external coherence request when a processor invalidate or compulsory
update request is currently unacknowledged. If an external coherence
request is issued with the cancellation bit set when there is no
unacknowledged processor invalidate or update request, the behavior
of the processor is undefined.

Processor potential update requests may not be cancelled. Potential
updates are always issued under processor read requests and become
compulsory only after the response to the processor read request is

returned to the processor in one of the shared states. If an external
coherence request is issued with the cancellation bit set whena
processor invalidate or update request is still potential, in other
words, while a processor read request is currently pending, the
behavior of the processor is undefined. '

An external agent may issue an external coherence request that is in
conflict with an unacknowledged processor invalidate or update
request without setting the cancellation bit. In this case, the processor
will be unaware of the conflict and will not re-evaluate the cache state
to determine the correct action. It will simply wait for an acknowledge
to its invalidate or update request just as it would for any invalidate
or update request. A system employing the R4000 may not behave
correctly under these circumstances.
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Note that it is not possible for external coherence requests to conflict
with processor write requests since external requests are not accepted
while a processor write request is in progress. The interactions
between processor coherence requests and conflicting external
coherence requests, tabulated by processor state, is summarized in
Table 11-4 and Table 11-5.
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The processor can be in one of the following states:

Idle
No processor transactions currently pending,.
Read Pending

A processor coherent read request has been issued, but the
read response has not yet been received.

Potential Update Unacknowledged

A processor update request has been issued while a processor
coherent read request is pending but has not yet been ac-
knowledged, and, by definition, the response to the coherent
read request has not yet been received.

Invalidate or Update Unacknowledged

_ A processor invalidate or update request has been issued but

has not yet been acknowledged and, by definition, there is not
a processor coherent read request pending. '

Table 11-4 Coherence Conflicts Summary

Conflicting Extérnal Coherence Request
Processor
State Invalidate | Invalidate w/Cancel | Update | Update w/Cancel
| Idle NA Undefined NA Undefined

Read Pending - OK Undefined OK Undefined
Potential OK Undefined OK Undefined
Update
_Unacknowledged
Invalidate OoK* OK OK* OK
or Update
Unacknowledged

* This may cause incorrect system operation and should not normally
be allowed to occur.
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Table 11-5 Coherence Conflicts Summary

Conflicting External Coherence Request

Processor :

State Intervention | Intervention w/Cancel | Snoop Snoop w/Cancel.
idie NA Undefined NA Undefined
Read Pending OK Undefined OK Undefined
Potential - OK Undefined OK Undefined
Update
Unacknowledged
Invalidate OoK* OK OK* | OK
or Update
Unacknowledged

* This may cause incorrect system operation and should not normally
be allowed to occur. ' '

System Implications of Coherence Conflicts

The constraints that the processor places onthe handling of conflicting
coherency transactions have certain implications for the design ofa
multiprocessor system employing the R4000. This section will
consider, as an example, a particular snoopy, split-read, bus-based
system and the requirements for that system to correctly handle
coherence conflicts.

System Model

The system model consists of the following cdmponents:

1. Four processor subsystems, each consisting of an R4000 pro-
cessor, a secondary cache, and an external agent. The agent
communicates with the R4000, accepting processor requests
and issuing external requests, and with the system bus like-
wise issuing and receiving bus requests.

A memory subsystem that communicates with main memory
and the system bus.
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3. A system bus with the following characteristics:

- Itis a multiple master, request based, arbitrated bus in
which an agent that wishes to perform a transaction on
the bus must request the bus and wait for global
arbitration logic to supply a grant signal before
assuming mastership of the bus. Once mastership has
been granted, the agent may begin a transaction.

- It supports a read transaction, read exclusive
transaction, write transaction, and invalidate
transaction.

- Itis a split-read bus in that independent transactions
may occur on the bus between a read request from a
particular agent and the return of data by the target of
the read request. The return of data by the target of the
read request will be referred to as the read response.

- Itis a snoopy bus in that all agents connected to the
' bus must monitor all of the traffic on the bus to
correctly maintain cache coherency.

1/0 is not considered in this system model.

Coherency Model

The goal, for purposes of this example, is to implement a simple write
invalidate cache coherency protocol for this system model that
maintains consistency between all of the caches in the system and
main memory. Attention is focused on the interactions between the
system bus and the R4000, and the handling of coherence conflicts that
arise in this system.

The coherency model for the system is as follows:

o All pages in the system are maintained either with the
noncoherent coherency attribute or with the sharable coherency
attribute. '

e The handling of noncoherent data will not be considered.

o Using the sharable coherency attribute allows data to be shared '
between the four caches in the system with a-write invalidate
cache coherency protocol. :

- The secondary cache states used are invalid, shared, clean
exclusive, and dirty exclusive.

e The secondary cache state dirty shared is not used in this
coherency model.
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When a processor misses in both caches ona load it issues a read
request. The external agent translates this to a read request on the bus.
The returned data may be loaded in either the state clean exclusive or
shared based on a shared indication returned on the bus with the read
response. The shared indication is based on the result of an
intervention request to the processor for the cache line of interest, and
is supplied by the external agents that area part of the other three
processor subsystems. When a processor misses in both caches ona
store, it issues a read request desiring exclusivity; this is translated to
a read exclusive on the bus and the data is loaded in the state dirty
exclusive. When a processor hits in the cache on astore to shared data,
it issues an invalidate request which must be forwarded to the system
bus before the store can be completed and the state changed to dirty
exclusive.

When an external agent observes a coherent read request on the

system bus itdoes not take any immediate action. Instead, the external

agent issues an intervention request to the processor for the read
request during the read response associated with the read request.
This is referred to as a response complete read model; that is, the readis
treated as complete only after the read response has occurred. This

‘model requires that cache interrogation fora read must not occur until

the read response occurs, as described, in order to maintain
consistency.

At the end of the read response, each external agent supplies an
indication on the bus of whether it was able to obtain the state of the
cache line that is the target of the read via an intervention request, and
if so, the external agent supplies an indication of sharing or takeover.
Takeover occurs when an external agent discovers that its processor
has a copy of the cache line that is the target of the read in the state

- dirty exclusive. If any external agent is unable to obtain the state of the

cache line that is the target of the read because it is unable to initiate
an intervention request, the read response is extended until all
external agents have obtained the state of the cache line from their
Processors. ‘

The response from an external agent at the end of a read response
depends on whether the read request was an ordinary read request or
a read exclusive request.

For an ordinary read request, an external agent indicates shared at the
end the read response if it finds that its processor has a copy of the
requested cache line in the state clean exclusive or shared. If the current
state of the cache line is clean exclusive, the external agent causes the
processor to change the state of the cache line to shared. An external
agent will indicate both shared and takeover at the end of a read
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response to an ordinary read request if it finds that its processor has a
copy of the requested cache line in the state dirty exclusive. Having
indicated takeover, the external agent supplies the contents of the
cache line (returned by the processor in response to its intervention
request) over the bus to the read requester, and causes the processor
to change the state of the cache line to shared. At the same time the
cache line is supplied to the read requester, it is also written back to
memory. . '

For a read exclusive request, an external agent never indicates shared
at the end of the read response, regardless of the state its processor has
the cache line in. If the current state of the cache line is clean exclusive
or shared, the external agent causes the state of the cache line to be -
changed to invalid. If the current state of the cache line is dirty
exclusive, the external agent indicates takeover but not shared. Having
indicated takeover, the external agent supplies the contents of the cache
line over the bus to the read requester, and causes the processor to
change the state of the cache line to invalid. At the same time the cache
line is supplied to the read requester, it is also written back to memory.
Aninvalidate request is considered complete as soon as it appears on
the system bus. When an external agent observes an invalidate request
on the system bus, it must react as if the invalidate has changed the
state of all caches at that instant.

An external agent takes no action in response to the appearance of a
write request on the bus. : :

Handling Coherence Conflicts

Coherence conflicts can be examined based on the current state of the
processor. In particular, the processor may have a coherent read
request pending, or it may have an invalidate request
unacknowledged, or it may not have any requests pending or
unacknowledged. Note that the read exclusive transaction on the
system bus guarantees that the requested cache line is returned inan
exclusive state. Therefore, the issue of potential updates is disabled
through the boot-time mode control.

Coherent Read Conflicts

External coherence requests that conflict with pending processor
coherent read requests may be issued to the processor without
effecting the processor’s behavior. Therefore, in this simple system
model no conflict detection is performed by the external agent for
processor coherent read requests. If an external intervention request
or invalidate request is forwarded to the processor that is in conflict
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invalidate Conflicts

with a pending processor coherent read request, it will not effect the
processor’s cache since the target cache line is guaranteed to be absent
from the cache. The processor effectively discards the conflicting
external intervention request, responding with an invalid indication
for the target cache line. Similarly, the processor will discard a
conflicting external invalidate request since the target cache line is not
present and therefore already invalid. ' '

In a system model similar to the one described, conflict detection
could be provided for pending processor coherent read requests. In
this case, when the external agent sees a read response on the bus that
conflicts with a pending processor coherent read request, it does not
issue an intervention request to the processor. Rather, it simply reacts
as if an intervention request has been completed and the cache line is
not present in the processor’s cache. Similarly, when the external
agent sees an invalidate request on the bus that conflicts with a
pending processor coherent read request, it does not forward the
invalidate request to the processor since the target cache lineis known

" to be absent from the processor’s cache. Using this scheme for conflict

detection on processor coherent read requests might slightly reduce
the number of external intervention and invalidate requests issued to
the processor. However, since the intervention and invalidate
requests that would otherwise be issued to the processor would not
result in any state modification within the processor, conflict detection
for processor coherent read requests is not necessary.

From the time the processor has issued an invalidate request until the
request has been acknowledged, any external coherence request
issued to the processor that is in conflict with the unacknowledged
invalidate mustinclude a cancellation. In this system, an acknowledge
for the invalidate will be generated to the processor as soon as the
invalidate is forwarded to the system bus. Therefore, while the
external agent is waiting to acquire mastership of the system bus to
forward an invalidate request, the external agent must detect, via
comparators, any external coherence request that conflicts with the
unacknowledged invalidate. Ifa conflictis detected, the external agent
must not forward the invalidate request to the system bus. Instead, it
must throw the invalidate request away and submit the conflicting
external request to the processor with a cancellation.

If the response to a coherent read request conflicts with a waiting
unacknowledged processor invalidate request appears onthe bus, the
external agent will detect the conflict and will not forward the
processor invalidate request to the bus. Instead, it throws the

11-28

R4000 User's Manual--Preliminary



Cache Organization, Operation, and Coherency

processor invalidate request away and issues an intervention request
to the processor that includes a cancellation. The processor then re-
evaluates its cache state and reissues the invalidate request or issues a
coherent read request instead. ,

If an invalidate request appears on the bus while the external agent
has a processor invalidate request waiting and the external agent
detects a conflict, the external agent will not forward the processor
invalidate request to the bus. Instead, it throws the processor
invalidate request away and issues an external invalidate request to
the processor that includes a cancellation. The processor then re-
evaluates its cache state and reissues the invalidate request orissues a
coherent read request instead.

It is not possible for a write request to appear on the system bus that
conflicts with a waiting processor invalidate request since, for an
invalidate request to be issued, the state of the cache line must be
shared in every cache in the system in which the line is present.

Coherent Write Conflicts

As soon as a write request has been issued to the external agent the
external agent becomes responsible for the cache line. No conflicts are
possible with a processor write request; however, the external agent
must manage ownership of the cache line while it is waiting to acquire
mastership of the system bus so that it may forward the write request.
The external agent is responsible for the cache line from the time the
issue cycle of the write request is accomplished until the write request
is forwarded to the system bus.

If the response to a coherent read request conflicts with a waiting
processor write request or with a processor write request that has
issued and is transmitting data appears on the bus, the external agent
will detect the conflictand will not issue an intervention request to the
processor. Instead, it reacts as if an intervention request has been
completed and the line s in the dirty exclusive state. The external agent
indicates takeover and supplies the read data to the read requester itself
without disturbing the processor. After providing the read data to the
read requester, the external agent must throw the write request away
if the read request was a read exclusive. In fact, the external agent may
throw the write request away for either type of read since processor
supplied read data is also written back to memory. -

It is not possible for an invalidate request or a write request that
conflicts with a waiting processor write request to appear on the
system bus, since, for a processor write request to be issued, the state
of the cache line must be dirty exclusive in that processor’s cache.
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'Secondary Cache Interface

The R4000SC and R4000MC versions of the R4000 interface to an
.optional secondary cache. The secondary cache interface consists of a
128-bit data bus, a 25-bit tag bus, an 18-bit address bus and SRAM '
control signals. The 128-bit wide data bus minimizes cache miss ’
penalty, and allows the use of standard low-cost SRAMs in the
secondary cache design.
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Secondary Cache Interface Signals

Following is a secondary cache interface signal summary.

SCData(127:0):

SCDChk(15:0):

SCTag(24:0):

SCTChk(6:0):

SCAddr(17:1):

SCAddr0Z:
SCAddr0Y:
SCAddr0X:
SCAddroW:
SCAPar(2:0):

SCOE*:
SCWrZ*:
SCWrY*:

SCWrX*:

(i/0) A 128-bit bus used to read or write
cache data from/to the secondary cache.

(i/0) A 16-bit bus that carries two 8-bit ECC
fields covering the 128 bits of the SCData
from/to secondary cache. SCDChk(15:8)
corresponds to SCData(127:64) and
SCDChk(7:0) corresponds to SCData(63:0).

(i/0) A 25-bit bus used to read or write
cache tags from/to the secondary cache.

(i/0) A 7-bit bus that carries an ECC field
covering the SCTag from/to the secondary
cache, :

(0) A 17-bit address bus for the secondary
cache. ‘

(o) Bit 0 of the secondary cache address.
(o) Bit 0 of the secondary cache address.
(0) Bit 0 of the secondary cache address.

(o) Bit 0 of the secondary cache address.

(0) A 3-bit bus that carries the parity of the

SCAddr bus and the cache control lines

SCWR?*, SCDCS* and SCTCS*. The

individual bit definitions are:

SCAPar2 - Even Parity for SCAddr(17:12)
and SCWR* ‘ ‘

SCAParl - Even Parity for SCAddr(11:6)
and SCDCS*

SCAPar0 - Even Parity for SCAddr(5:0)
and SCTCS*

(0) Output enable for the setondary cache

(0) Write enable for the secondary cache
RAM. '

(0) Write enable for the secondary cache
RAM.

(o) Write enable for the secondary cache
RAM.
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SCWIW*: (0) Write enable for the secondary cache
RAM.

SCDCS*: (0) Chip select enable signal for the
secondary cache RAM associated with
SCData and SCDChk.

. SCTCS*: (0) Chip select enable signal for the
secondary cache RAM associated with
SCTag and SCTChk.

The interface to the secondary cache is designed to maximize the
efficiency of servicing primary cache misses. The width of the data
portion of the secondary cache interface is 128 bits to support a data
rate into the primary cache that is near the processor to primary cache
bandwidth during normal operation. To assure that this bandwidth is
maintained, each data, tag and check pin must be connected to only
one static RAM device. The SCAddr bus and the SCOE*, SCDCS*,
and SCTCS* signals drive a large number of static RAM devices;
therefore, one level of external buffering between the R4000 and the
cache array is necessary. :

The speed of the secondary cache interface is limited by buffered
control signals. Critical control signals are duplicated to minimize this
effect. The SCWR* signal and SCAddr(0) are duplicated four times so
that external buffering will not be required. Whenan 8-word (256-bit)
primary cache line is used, these signals can be controlled more
quickly; this reduces the time of the two back-to-back transfers. These
duplicated control signals are specified to drive 11 parts each;
therefore, a total of 4 RAM packages can be used in the cache array.
This permits a cache design using 16 KByte by 64 bit, 64 KByte by 4 bit,
or 256 KByte by 4 bit standard static RAMs. Other cache designs are
also acceptable. For example, a smaller cache design using twenty-two
8 KByte by 8 bit static RAMs; this design presents less load on the
address pins and control signals, and reduces the overall parts count.
Note that duplicated signals like SCWRW", SCWRX*, SCWRY* and
SCWRZ* will be described in this document as though they were a
single signal. This signal is called SCWR™.

The benefit of duplicating SCAddr(0) is greater in systems using fast
sequential static cache RAMs and a primary cache line size of 8 words.
If SCAddr(0) is attached to the static RAM address bit that affects
column decode only, the read cycle time with respect to that pin
should approximate the output enable time of the RAM. For fast static
RAM it should be half that of the nominal read cycle time.
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When the split instruction/data cache mode is enabled, assertion of
the top SCAddr bit, SCAddr(17), enables the instruction half of the
cache instead of the data half.

It is possible to design a cache that supports both joint and split
instruction/ data configurations with less than the maximum cache
size. SCAddr(12:0) must be used to address the cache in all
configurations. SCAddr(17) must be used to support the split
instruction/data configuration. Any of SCAddr(16:14) may be
omitted because of the fixed width of the physical tag array.

The SCDChk bus is divided into two fields to cover the upper and
lower 64 bits of SCData. This form is required to keep the width of
internal data paths to 64 bits.

The SCTag bus is divided into three fields, as shown in Figure 11-6.

24 22 21

19 18 ' : 0

Cache_State

PIDx Physical_Tag

3

3 . : 19

Figure 11-6 SCTag Fields

The SCDCS* and SCTCS* are needed to disable reads or writes of the
data array or tag array when the other array is being accessed. These
signals are useful for saving power on snoop and invalidate requests
because accesses to the data array are not necessary. These signals are
also useful for writing data from the data primary cache to the
secondary cache because the secondary cache state is not always
known by the primary cache.
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Operation of the Secondary Cache interface

The control of the secondary cache is configurable for various clock
rates and static RAM speeds. All configurable parameters are
specified in multiples of PClock, which runs at twice the frequency of
the external system clock, MasterClock. Boot time mode control
registers hold the various configuration parameters so they canbe
specified by software when initializing the processor. ‘

Table 11-6 Secondary Cache Timing Parameter

tRd1Cyc: | 4-15 PCycles
tRd2Cyc: | 3-15 PCycles
tDis: 2-7 PCycles
tWrlDly: | 1-3 PCycles
tW2Dly: | 1-3 PCycles
tWIRC: | 0-1 PCycles
tWiSUp: | 3-15 PCycles

Read Cycles

Each secondary cache read sequence begins with the driving of the
address pins. The output enable signal SCOE* is asserted at the same
time.

There are two basic read cycles: a four-word read, and an eight-word
read.

For the four-word read, there are two parameters of interest. The first
parameter is read sequence cycle time, Traicye Which specifies the
time from the driving of the SCAddr bus to tge sampling of the
SCData bus. The second parameter is the cache output disable time
Tpisr Which specifies the time from the end of a read cycle to the start
of the next write cycle. Figure 11-7 illustrates the four word read
sequence.
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PCycle I+ | 2 s | a4 | 5 | s
SCAddr Bus  _J_ Address B
L tRd1Cyc |

SCData/SCTag/ ~ .

1SCDChi/SCTChKY \ Data | -
SCOE* A | i L

' L tpis J

scpes: X Y
sctes: —

Figure 11-7 Four-Word Read Cycle

For the eight-word read, there is one additional parameter of interest:
the time from the first sample point to the second sample point,
TRazcye- The lower-order address bit, SCAddr(0) is changed at the
same time as the first read sample point. Figure 11-8 illustrates the
eight word read sequence. :
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PCycle | 1]21s]4lslel7]e | o |
SCAddr(17:1) J_ Address — {
L . tRdiCyc J
SCAddr(0) First_Address \ ™ Second_Address _J___
. | tRezope |
SCData/SCT: -
sco%nwsc%gng( YData)_ YData)_ -
SCOE* A R L
| tois l
scocs” - X B
sctest | | Y

Figure 11-8 Eight-Word Read Cycle

All read cycles can be aborted by changing the address. A new cycle
starts with the edge on which the address is changed. Additionally,
the period tp;, after a read cycle canbe interrupted any time by the
start of a new read cydle. If a read cycle is aborted by a write cycle,
SCOE* must be deasserted for the tp;, period, before the write cycle -
can commence. Read cycles can also be extended indefinitely. There is
no requirement to change the address at the end of a read cycle.

Write Cycles

Like the read sequence, the secondary cache write sequence begins
with the driving of the address pins.

There are two basic write cycles: a four-word write cycle and an eight-
word write cycle.
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For the four-word write, there are several parameters of interest.
delay from the driving of the address to the

Twriply
TWxSUp

-TwiRe

assertion of SCWR*.

delay from driving the second data double-

word to the deassertion of SCWR®*.

delay from the deassertion of SCWR* to the

beginning of the next cycle.

TwaRe Will be zero for most cache designs. Note that the upper data
double word and the lower data double word will normally be driven
one cycle apart. This reduces the peak current consumption in the
output drivers. Figure 11-9 illustrates the four word write sequence.
The order of driving the upper versus the lower half on SCData is not

fixed; either the upper or lower half may be driven first.

PCycle | I 1

2 | s

SCAddrBus  _J|

SCDa‘ta(63:0;/

Address

SCDChk(7:0) or
| SERAMLPR

Data

SCDChk(15:8)

SCTChK(E:0)  _—

SCTag(24:0)

SCData(127:64)/

Data

ggBChkgS?S or

Data

scoactgf(a:g; ’

SCWR*

twrsup

twriDly

L/ - /T |

SCOE*

SCDCS* X

Andn =T T T

scTcs* X

Figure 11-9 Four-Word Write Cycle
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The eight word write has one additional parameter: Twy2piy- This is
the time from changing the low-order address bit SCAddr(0) to the
assertion of SCWR* for the second time. The lower half of SC

Data will be driven out on the same edge as the change in SCAddr(0).
Figure 11-10 illustrates the eight word write sequence.

PCycle N+l 21slalslelzls]
SCAddr(17:1) X Address S O
SCAddr(0) T First_Address X Second_Address 1
%%%%?fgig))/ | First_Data B Second Data ____|—
23%%%%))/ —( First_Data X Second_Data )——
) First_Data_MS/DTag_Chk Second_Data_MS/DTag_Chk
SCDChk(15:8) ———{
SCData(127:64)———— ___ First_Data \~ Second_Data__}—
SCWR* | \ / \ [
twriDly |, t | twreowy |, t 4
i WrSUp o " WrSUp -
, S _'J‘_‘\_Nrnc ' __’tvlcac
| scoer | __

scocs* X X
X

SCTCS™

Figure 11-10 Eight-Word Write Cycle

When receiving data from the system interface, it is possible that the
first data double word will arrive several cycles before the second data
double word. In this case, the cache state machine simply waits ina
state that extends the SCWR®* until Twsyp after the driving of the
second data item.
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Functional Overview

The operation of the R4000 requires a multilevel reset sequence using
the VCCOK, ColdReset*, and Reset* inputs. A power-on or cold reset
accomplish the same thing: they both completely reset the internal
state machine of the R4000. A warm reset also resets the internal state
machine; however, the processor internal state is preserved.

Fundamental operational modes for the processor are initialized by
the initialization interface. The initialization interface is a serial
interface operating at a frequency of MasterClock divided by 256. The
low-frequency operation allows the initialization information to be
stored in a low-cost EPROM. :

Immediately after the VCCOk signal is asserted, the processor reads
a serial bit stream of 256 bits on Modeln to initialize all fundamental
operational modes. After initialization is complete, the processor
continues to drive the serial clock output, but no further initialization
bits are read.

Initialization Interface Operation

1. While VCCOK is de-asserted, the ModeClock output is
~ held asserted.

2. The processor synchronizes the ModeClock output at the
' time VCCOXk is asserted, and the first rising edge of the
ModeClock will occur 256 MasterClock clock cycles after
VCCOk is asserted.
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3. After each rising edge of the ModeClock, the next bit of
the initialization bit stream must be presented at the
Modeln input. The processor will sample exactly 256
initialization bits from the Modeln input.

Modeln: (i) Serial boot mode data in.

ModeClock: (o) Serial boot mode data clock out at the
MasterClock frequency divided by 256.

Refer to Figure 12-1 and Figure 12-2 for timing relationships.

Boot-Time Modes

The correspondence between bits of the initialization bit stream and
processor mode settings is illustrated in Table 12-1. Bit O of the bit
stream is the bit presented to the processor when VCCOK is asserted.
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Table 12-1 Boot Time Modes

Serial Bit | Value | _ ___Mode Setting - ]
BlkOrder: Secondary Cache Mode block read response ordering. |
0 0 Sequential ordering.
1 Sub-block ordering,.
EIBParMode: Specifies nature of system interface check bus.
1 0 SECDED error checking and correcting mode.
1 Byte parity.
EndBlIt: Specifies byte ordering.
2 0 Little Endian ordering,.
1 Big Endian ordering.
DShMdDis: Dirty shared mode, enables transition to dirty shared state on
processor update successful.
3 0 Dirty shared mode enabled.
1 Dirty shared mode disabled.
NoSCMode: Specifies presence of secondary cache.
4 0 Secondary cache present.
1 No secondary cache present. '
SysPort: System Interface port width, bit 6 most significant.
5:6 0 64 bits.
1-3 Reserved.
SC64BitMd: Secondary cache interface port width.
7 0 128 bits. '
1 Reserved. _
EISpltMd: Specifies secondary cache organization
8 0 Secondary cache unified.
1 Reserved.
SCBIkSz: Secondary cache line size, bit 10 most significant.
0 4 words.
%10 1 8 words.
2 1 16 words.
3 32 words.
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Table 12-2 Boot Time Modes

Serial Bit | Value Mode Settin
o =%Xml='m=a=—l':_ﬂ>at: System interface Iata tatc. bit 14 most significant, |

0 D
1 DDx
2 DDxx
3 DxDx

11:14 4 DDxxx
5 - DDxoxoxx
6 DxxDxx
7 DDnxoooxx
8 DrooxDxxx
9-15 Reserved.
SysCkRatio: PClock to SClock divisor, frequency relationship between SClock,
RClock, and TClock and PClock, bit 17 most significant.
0 Divide by 2. 5

1517 3 Divide by 3.
2 Divide by 4.

137 Reserved.
18 0 Reserved. ;
' TimIntDis: Timer Interrupt enable allows timer interrupts, otherwise the interrupt

used by the timer becomes a general-purpose interrupt.

9 10 Timer Interrupt enabled.
1 Timer Interrupt disabled. ‘
PotUpdDis: Potential update enable allows potential updates to be issued.

20 Otherwise only compulsory updates are issued.
0 Potential updates enabled.
1 Potential updates disabled. :
TWrSUp: Secondary cache write deassertion delay, TWrSup in PCycles, bit 24
most significant. » ,

S [ Undefined.
315 Number of PCLK cycles; Min 3; Max 15.

2526 TWr2Dly: Secondary cache write assertion delay 2, TWr2Dly in PCycles, bit 26
most significant.
0 Undefined.
1-3 Number of PCLK cycles; Min 1, Max 3
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Table 12-3 Boot Time Modes

Serial Bit | Value | Mode Setting
— | TWriDIy: Secondary cache writc assertion delay 1, TWr1Dly in PCycles, bit 28
most significant.
Z%8 15 Undefined.
1-3 Number of PCLK cycles; Min 1, Max 3
TWrRe: Secondary cache write recovery time, TWrRc in PCycles, either 0 or 1
cycles.
» 0 Ocyde
1 1 cycle
TDis: Secondary cache disable time, TDis in PCycles, bit 32 most significant.
30:32 0-1 Undefined.
2-7 Number of PCLK cycles; Min 2, Max 7
TRdA2Cyc: Secondary cache read cycle time 2, TRdCyc2 in PCycles, bit 36 most
significant.
336 o2 Undefined.
315 Number of PCLK cycles; Min 3; Max 15.
TRd1Cyc: Secondary cache read cycle time 1 TRdCycl in PCycles, bit 40 most
significant.
740 153 Undefined,
415 Number of PCLK cycles; Min 4; Max 15.
41:45 0 . | Reserved.
Pkg179: R4000 Package type.
46 0 Large (447 pin).
11 Small (179 pin).
CycDivisor: This mode determines the clock divisor for the reduced power mode.
When the RP bit in the Status Register is set to one, the pipeline clock is
divided by one of the following values. Bit 49 is most significant.
0 | Divide by 2
47:49 1 Divide by 4
2 Divide by 8
3 Divide by 16
47 Reserved.
Drv0_50, Drv0_75, Drvl_00: Drive the outputs out in NxMasterClock period.
Bit 52 most significant. Those combinations not defined below are reserved.
50:52 1 Drive at 0.50 x MasterClock period.
2 Drive at 0.75 x MasterClock period.
4 Drive at 1.00 x MasterClock period.
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Table 124 Boot Time Modes

Serial Bit

Value |

Mode Setting

53:56

e e st Dils that determine (e pull-down AVAE and
switching speed of the output buffers. Bit 53 is the most significant.

0

Fastest pull-down rate

1-14

Intermediate pull-down rates.

15

Slowest pull-down rate.

57:60

T InitN: Initial values for the state bits that detéxmine the pull-up Ai/At and
switching speed of the output buffers. Bit 57 is the most significant.

0

Slowest pull-up rate

1-14

Intermediate pull-up rates.

15

Fastest pull-up rate.

61

EnbIDPLLR: Enables the negative feedback loop that determines the Ai/At and

0

switching speed of the output buffers only during ColdReset.

Disable Ai/ At mechanism.

1

Enable Ai/At mechanism. .

62

operation.

EnbIDPLL: Enables the negative feedback loop that determines the Ai/At and
switching speed of the output buffers during ColdReset and during normal

0

Disable Ai/ At control mechanism.‘

1

“Enable Ai/At control mechanism.

DebIPLL: Enables PLLs that match Masterln and produce RClock, TClock SClock
and the internal clocks.

0

Enable PLLs.

1

Disable PLLs.

SRTristate: Controls when output-only pins are tristated

0

Only when ColdReset* is asserted.

1

When Reset* or ColdReset* are asserted

65:255-

Reserved. Scan in zeros.

« Selecting a reserved value results in undefined processor
behavior. '

o Bits 65 to 255 are reserved bits.
o Zeros must be scanned in for all reserved bits.

12-6
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Reset Operation

The R4000 supports three types of resets:
e Power-on Reset: Starts from power supply turning on.

e Cold Reset: Restarts all clocks, but power supply remains
stable. Processor operating parameters do not change.

o Warm Reset: Restarts processor, but does not affect clocks.
The operation of each type of reset is described in a subsection below.

Reset Signal Summary

VCCOk: When asserted, VCCOk indicates to the
R4000 that the +5 volt power supply has
been above 4.75 volts for more than 100
milliseconds and will remain stable. The
assertion of VCCOXK initiates the reading of
" the boot-time mode control serial stream. -

ColdReset*: ColdReset* must be asserted for a power
on reset or a cold reset. The clocks SClock,
TClock, and RClock begin to cycle and are
synchronized with the de-assertion edge of
ColdReset*. ColdReset* must be deasserted
synchronously with MasterClock.

Reset*: Reset* must be asserted for any reset
sequence. It may be asserted '
synchronously or asynchronously for a
cold reset, or synchronously to initiate a
warm reset. Reset* must be deasserted
synchronously with MasterClock.

Power-on Reset

The sequence for a power-on reset is:

1. Stable VCC ofatleast 4.75 volts from the +5 volt power supply
is applied to the processor. A stable continuous system clock
at the processor’s desired operational frequency is also sup-
plied.

2. After at least 100 milliseconds of stable VCC and Master-
Clock, the VCCOk input to the processor may be asserted.
The assertion of VCCOk causes the processor to initialize the
operating parameters. After the mode bits have been read in,
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Cold Reset

Warm Reset

the processor allows its internal phase locked loops to lock,
stabilizing the processor internal clock, PClock, the SyncOut-
Syncln clock path and the master clock output, MasterOut.

3. Once the boot-time mode control serial data stream had been
read by the processor, the ColdReset* input may be de-assert-
ed. ColdReset* must remain asserted for at least 64 Master-
Clock cycles after the assertion of VCCOk. ColdReset* must
be de-asserted synchronously with MasterClock. '

4. The de-assertion edge of ColdReset" is used to synchronize
the edges of SClock, TClock, and RClock, potentially across
multiple processors in a multiprocessor system.

5. After ColdReset* is de-asserted and SClock, TClock and
RClock have stabilized, Reset* is de-asserted to allow the pro-
cessor to begin to run. Reset* must be held asserted for atleast
64 MasterClock cycles after the de-assertion of
ColdReset*. Reset* must be de-asserted synchronously with-
MasterClock. ' '

ColdReset* must be asserted when VCCOK asserts. The behavior of

the processor is undefined if VCCOk asserts while ColdReset* is de-
asserted.

A cold reset can begin once the processor has read the initialization
data stream, causing the processor to start with the Reset Exception. A
cold reset requires the same sequence as power-on reset except that
the power is presumed to have been stable before the assertion of the
reset inputs and the deassertion of VCCOk. VCCOk must be
deasserted for a minimum of 100 msec before reassertion, to begin the
reset sequence. :

To affect a warm reset, the Reset* input may be asserted
synchronously with MasterClock and held asserted for at least 64
MasterClock cycles before being de-asserted synchronously with
MasterClock. The processor internal clocks, PClock and SClock, and
the system interface clocks, TClock and RClock ,are not be affected by

12-8
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awarm reset, and the boot-time mode control serial data stream is not
read by the processor on a warm reset. A Warm Reset causes processor
to start with the Soft Reset Exception

The master clock output, MasterOut, is provided for usein generating
the reset related signals for the processor that must be synchronous
with MasterClock.

Aftera power on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the
reset vector. All processor internal states are preserved during awarm
reset, although the precise state of the caches will depend on whether
a cache miss sequence has been interrupted by resetting the processor
state machines.
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The following timing diagrams illustrate a power-on reset, cold reset,
and warm reset.
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Figure 12-1 Power-On Reset
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Figure 12-2 Cold Reset
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13

The R4000 processor provides a boundary scan interface using the
industry standard JTAG protocol.

JTAG Interface Signal Summary

JTDIL: (i) JTAG serial data in.

JTDO: (o) JTAG serial data out.

JTMS: (i) JTAG command signal.

JTCK: (i) JTAG serial clock input.
JTAG Functionality

The JTAG boundary scan mechanism provides a capability for testing
the interconnect between the R4000 processor, the printed circuit
board to which it is attached, and the other components on the board.
In addition the JTAG boundary scan mechanism provides a
rudimentary capability for low-speed logical testing of the secondary
cache RAMs. The JTAG boundary scan mechanism does not provide
any capability for testing the R4000 processor itself.

The JTAG boundary scan mechanism is compatible with JTAG
specifications. The R4000 processor contains the JTAG registers—TAP
controller, JTAG Instruction Register, JTAG Boundary Scan Register
and a JTAG Bypass Register—and executes the standard JTAG
EXTEST operation associated with external test functionality testing.
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JTAG Test Access Port (TAP)

The JTAG Test Access Port (TAP) consists of the 4 pins described
above. Data is serially scanned into one of the three registers
(Instruction Register, Bypass Register, Boundary San Register) from
the JTDI pin, and is scanned out from the selected one of these
registers onto the JTDO pin. The JTDI input feeds the LSB of the )
selected register, and the MSB of the selected register appears on the
JTDO output. The JTMS input controls the state transitions of the
main TAP controller state machine. »

Data on the JTDI and JTMS pins is sampled on the rising edge of the
JTCK input clock signal. Data on the JTDO pin changes on the falling
edge of the JTCK clock signal.

JTAG TAP Controller

The R4000 implements the 16-state JTAG TAP controller as defined in
the IEEE JTAG specification. ' : o

' The TAP controller state machine can be putinits Reset state in one of

two ways. Deassertion of the VCCOk input will reset the TAP
controller. Keeping the JTMS input signal asserted through five
consecutive rising edges of the JTCK clock input will also send the
TAP controller state machine into its Reset state. In either case,

’keeping JTMS asserted will maintain the Reset state.

Instruction Register

The R4000's JTAG Instruction Register is three bits wide and is
encoded as follows:

MSB...LSB Selected Data Register

000 .Boundary Scan Register
(external test only)

x x 1 Bypass Register

x 1 x Bypass Register

1 x X Bypass Register

The instruction register comprises two stages; the shift register stage
and the parallel output latch. When the TAP controller is in the Reset
state, the value 7 (111) is loaded into the parallel output latch, thus

selecting the Bypass Register as the default. When the TAP controller

13-2
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is in the Capture-IR state, the value 4 (100) is loaded into the shift
register stage. When the TAP controller is in the Shift-IR state, data is
serially shifted into the shift register stage of the Instruction Register
from the JTDI input pin, and the MSB of the Instruction Register’s
shift register state is shifted out onto the JTDO pin. When the TAP
controlleris in the Update-IR state, the current data in the shift register
stage is loaded into the parallel output latch.

Bypass Register

The Bypass Register is one bit wide. When the TAP controller is in the
Shift-DR (Bypass) state, the data on the JTDI pin is shifted into the
Bypass Register, and the Bypass Register’s output is shifted out onto
the JTDO output pin.

Boundary Scan Register

The Boundary Scan Register is 319 bits wide. The three most-
significant bits control the output enables on the various bidirectional
buses. The most-significant bit is the JTAG output enable bit for the
SysAD, SysADC, SysCmd, and SysCmdP buses. The next most
significant bit is the JTAG output enable for the SCData and SCDChk
buses. The third most-significant bit is the JTAG output enable for the
SCTag and SCTChk buses. The remaining 316 bits correspond to 316
signal pads of the R4000.
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The scan order of these 316 scan bits is listed below starting from JTDI

and ending with JTDO.

1. SCDChk([13] 39. SCTag[19] 79. SCData{89] 119. SCData[85] 156. SysAD[48]
2. SysADC[1] 40, SCData[61 80. SCData[56] 120. SCData[52] 157. SCData[16]
3. SCDChk(1] 41. SysAD[61] 81. SysADI[56]} 121. SysAD[52] 158. SysAD[16]
4.  SysADC[5] 42, SCDataf29] 82. SCData{24] 122. SCData[20] 159. SCData[112]
5.  SCDChk][5] 43, SysAD[29] 83. SysADI[24) 123. SysADI[20] 160. SCAddr{4]IntB[2]
6.  Status[0] 44, SCData[125] 84. SCData[120] 124. SCData[116] 161. SCAddr{5)
7.  Status[1] 45. ResetB 85. GrpStallB 125. ValidOutB 162. SCData[80]
8.  Staws[2] 46. SCTag[20] 86. SCTChk[0] 126. SCTChk{4] 163. SCAddr[6)
9.  Status(3] 47. SCData[93] 87. SCData[88] 127. SCData[84] 164. SCAddr(7]
10. IvdErB 48. SCData[60] 88. SCDChk[6] 128. SCData[51] 165. SCAddr(8]
11. Status[4] 49. SysADI[60) 89. SysADC[6] 129. SysADI[51] 166. SCAddr[9}
12. IvdAckB 50. SCData[28] 90. SCDChk[2] 130. SCData[19] 167. SCAddr{10]
13. Staws|5} 51. SysAD[28] 91. SysADCI[2] 131. SysAD[19] 168. SCAddr[11]
14. Status[6] 52. SCData[124] 92. SCDChk[14] 132.. SCData[115] 169. SC64Addr
15. Staws{7] 53. ColdReseiB 93. NMIB 133. ValidlnB 170. SCAddr{12]
16. SCDChk(7] 54, SCTag[21) 94. SCTChk[1] 134. SCTChk(S] 171. SCAddr[13)
17. SysADCI[7] 55. SCData[92] 95. SCDChk[10] 135. SCData[83) 172. SCAddr{14]
18. SCDChk[3] 56. SCData{59] 96. SCData[55] 136. SCAddrOW,X (share 173. SCAddr{15]
19. SysADCJ[3] 57. SysADI[59] 97. SysAD[55] the same JTAG bit) 174. SCAddr[16]
20. SCDChk[15] 58. SCData[27] 98. SCData[23] 137. SCAddrOY,Z (share 175. SCAddr{17)
21. VCCOk 59. SysAD[27] 99. SysAD[23] the same JTAG bit) 176. SCData[64]
22. SCTag[16] 60. SCData[123]} 100. SCData[119] 138. SCAddr{1] 177. SCAPar[0]
23. SCDChk{11] 61. IOIn 101. ReleaseB 139. SCData{50] 178. SCAPar{1}/IntB[3]
24. SCData[63] 62. SCTag[22] 102. SCTChk(2] 140. SysAD{50] 179. SCData[96]
25. SysAD{63] 63. SCData[91] 103. SCData[87] 141. SCData[18] 180. SysAD{0]
26. SCData[31) 64. SCData[58] 104. SCData[54] 142. SysAD[18] 181. SCData[0]
27.  SysADI31] 65. SysAD[S8] 105. SysAD[54} 143. SCData[114] 182. SysAD[32]
28. SCData[127] 66. SCData[26] 106. SysAD[22] 144. IntB[0] 183. SCData[32)
29. SCTag[17] 67. SysAD[26] 107. Modeln 145. SCTChk[6] 184. SCData[65]
30. SCData[95] 68. SCData{122] 108. SCData[22] 146. SCData[82] 185. SCAPar{2]
31. SCData[62] 69. 100ut 109. RdRdyB 147. SCData(49] 186. SCOEB/IntB[4]
32. SysAD[62] 70. SCTag[23] 110. SCData[118] 148. SysAD[49] 187. SCData[97]
33, SCData{30] 71.  SCData[90] 111. SCData[86] 149. SCData[17) 188. SysAD[1}
34. SysADI[30] 72. SCData[57] 112. SCData[53] 150. SysAD{17] 189, SCData[l1]
35. SCData[126} 73. SysAD[57] 113. SysADI[53] 151. SCData[113] 190. SysAD[33]
36. SCTag[18] 74. SCData[25] 114. SCData[21] 152. SCAddr{2]IntB[1] 191. SCData[33]
37. SCData[94] 75. SysAD[25]) 115. SysAD[21] 153. SCAddr[3] 192. SCData[66]
38, RCiock{i..0] 76. SCDaia[i21] 116. SCData{117] 154. SCData{8!)
(share the same 77. GrpRunB 117. ExtRqstB 155. SCData[48)
JTAG bit) 78. SCTag{24] 118. SCTChk[3]
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193. SCDCSB
194. SCTCSB/IntB{5]
195. SCData[98]
196. SysAD[2]
197. SCData[2]
198. SysAD([34]
199. SCData(34]
200. SCTagl0]
201. SCWrBW.X
(share the same
JTAG bit)

202. SCWrIBY,Z
(share the same JTAG
bit)

203. SCData[67]
204. SCTag[1]
205. SysCmd[0}
206. SCData[99]
207. SysAD[3]
208. SCData(3]
209. SysAD([35]
210. SCData[35]
211. SCData[68]
212. SCTag[2]
213. SysCmd[1]
214. SCData[100]
215. SysADI[4]
216. SCData[4]
217. SysAD{36]
218. SCData[36]
219. SCData[69]
220. SCTag|[3]
221. SysCmd[2]
222. SCData[101]
223. SysAD|s]
224. SCData[5]
225. SysAD[37]

317. SCTag_OE (JTAG output enable control for SCTag and SCTChk buses)
318. SCData_OE (JTAG output enable control for SCData and SCDChk buses)

226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243,
244,
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.

SCData[37]
SCData[70)
WrRdyB
ModeClock
SCData{102]
SysAD[6]
SCData[6]
SysAD{38]
SCData(38]
SCData[71]
SCTag[4]
SysCmd|[3]
SCData{103]
SysAD[7]
SCData[7])
SysAD([39]
SCData[39]
SCDChk({8]
SCTagl(5]
SysCmd[4]
SCDChk[12]
SysADCI[0]
SCDChk(0]
SysADC[4]
SCDChk[4]
SCData{72])
SCTagi6]
SysCmd[5]
SCData[104)
SysADI[8]
SCData[8]
SysAD[40}
SCData[40)
SCData[73]
SCTag[7]
SysCmd[6]
SCData{105}

263.
264.
265.
266..
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
28s.
286.
287.
288.
289.
290.
291.
292.
293.
294.
29s.
296.
297.
298,
299.

SysADI[9]
SCData[9]
SysAD[41]
SCDataf{41]
SCData[74]
SCTag[8]
SysCmd{7]}
SCData[106]
SysAD[10]
SCData[10]
SysAD{42]
SCData[42]
SCData[75]
SCTagl9}
SysCmd(8]
SCData[107]
SysAD[11]
SCDataf11]
SysAD[43]
SCData[43]
SCData[76]
SCTag(10]
SysCmdP
SCData[108)
SysAD{12]
SCData[12}
SysAD[44]
SCData[44]
SCData[77]
SCTag[11]
FaultB
SCData[109]
SysAD{13]
SCData(13]
SysAD[45]}
SCData[45]
SCTag(12])

300.

TClock[1..0]

(share the same JTAG

bit)

301.
302.
303.
304.
30s.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.

SCData[78])
SCTag[13]
SCDataf110}
SysAD[14]
SCData(14]
SysAD[46]
SCData[46]
SCData{79]
SCTag[14]
SCData[111}
SysAD[15]
SCData[15]
SysADI[47)
SCData[47]
SCDChk([9]
SCTag(15]

319. SysAD_OE (JTAG output enable control for SysAD, SysADC, SysCmd and SysCmdP buses)

When the TAP controller is in the Reset state, the three most
significant bits of the Boundary Scan Register are set to “0” (the
default JTAG output enable control on all the bidirectional pins is to
disable the outputs). When the TAP controller is in the Capture-DK
{Boundary Scan) state, the data currently present on all the R4000’s
input and 1/O pins are latched into the Boundary Scan Register. The
Boundary Scan Register bits corresponding to output pins are
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arbitrary in this state and must not be checked during the scan out
process. When the TAP controller is in the Shift-DR (Boundary Scan)
state, data is serially shifted into the Boundary Scan Register from the
JTDI pin, and the contents of the Boundary Scan Register are shifted
out onto the JTDO pin. When the TAP controller is in the Update-DR
(Boundary Scan) state, the current data in the Boundary Scan Register
is latched into its parallel output latch, and the bits corresponding to
output pins and those 1/O pins whose outputs are enabled (by the
three MSBs of the Boundary Scan Register) are enabled onto the
R4000’s pins.

Implementation Specific Details

o The MasterClock, MasterOut, SyncIn, and SyncOut pads do
not have JTAG.

* Some pairs of output pads share a single JTAG bit. These are:

SCAddrOW and SCAddr0X
SCAddr0Y and SCAddr0Z
SCWrBW and SCWrBX
SCWrBY and SCWrBZ
TClcokl[0] and TClock(1]
RClock[0] and RClock{1]

+ All input pads data are first latched into a Processor Clock-
based register in the pad cell before they are captured into the
Boundary Scan Register in the Capture-DR (Boundary Scan)
state. When the phase-locked loop is disabled, the processor
clock is half the frequency of MasterClock. Therefore, the data
setup required at the input pads is greater than two
MasterClock periods before the rising edge of the JTCK when
the TAP controller is in the Capture-DR (Boundary Scan) sate.

* The output enable controls generated from the three most
significant bits of the Boundary Scan Register are latched into a
Processor Clock-based register before they actually enable the
data onto the pads. Therefore, the delay from the rising edge of
JTCK in the Update-DR (Boundary Scan) state to data valid at
the output pins of the chip is greater than two MasterClock
periods. :

136
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Processor Interrupts

14

The R4000 processor supports six hardware interrupts, two software
interrupts, and a non-maskable interrupt. The processor’s six
hardware interrupts are accessible via external write requests in the
R4000SC, R4000MC and R4000PC configurations, and by dedicated
pins as well in the R4000PC configuration. The non-maskable
interrupt is accessible via external write requests and a dedicated pin
in the R4000SC, R4000MC and R4000PC configurations.

External writes to the processor are directed, based on a processor
internal address map, to various processor internal resources. An
external write to any address with SysADI6..4] = 0 writes to an
architecturally transparent register called the Interrupt Register.
During the data cycle, SysAD[22..16] are the write enables for the 6
individual Interrupt register bits and SysADI[6..0] are the values to be
written into these bits.This allows any subset of the Interrupt register
to set and clear with a single write request.

 In the R4000SC and R4000MC, bit 5 of the Interrupt register is
multiplexed with the TimerInterrupt signal and the result is
directly readable as bit 15 of the Cause register. Bits 4:1 of the
Interrupt register are directly readable as bits 14:11 of the Cause
register. Bit 0 of the Interrupt register is ORed with the Int*[0]
pins, and the result is directly readable as bit 10 of the Cause
register.

« In the R4000PC, bit 5 of the Interrupt register is ORed with the
Int*[5] pin and then multiplexed with the TimerInterrupt signal
and the result is directly readable as bit 15 of the Cause register.
Bits 4:0 of the Interrupt register are bit-wise ORed with the
current value of the interrupt pins Int*[4:0] and the result is
directly readable as bits 14:10 of the Cause register.
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« In both configurations, bit 6 of the Interrupt Register is ORed
with the inverted value of the non-maskable interrupt pin NMI*
to form the non-maskable interrupt input to the processor.
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Error Checking and Correcting

15

The processor provides sixteen check bits for the secondary cache data
bus SCDChk(15:0), seven check bits for the secondary cache tag bus
SCTChk(6:0), and eight check bits for the system interface address
and data bus SysADC(7:0). The sixteen check bits for the secondary
cache data bus are organized as eight check bits for the upper sixty-
four bits of the data bus, and eight check bits for the lower sixty-four
bits of the data bus. In addition, a single check bit is provided for the
system interface command bus SysCmdP.

The eight check bits for the system interface address and data bus
provide either even-byte parity or are generated in accordance with a
single error correcting double error detecting (SECDED) code that also
detects any three or four bit error in a nibble. (See Appendix C for
details.) The eight check bits for each half of the secondary cache data
bus are always generated in accordance with the SECDED code.

The processor checks data using parity or the SECDED code as it
passes from the system interface to the secondary cache and as it is
moved from the secondary cache to the primary cache or to the system
interface. The processor passes the check bits for data accessed from
the secondary cache directly to the system interface without change as
it checks it. The processor does not check data received from the
system interface for external updates and external writes. It is possible
to force the processor to not check data from the system interface for
read responses using a bit in the data identifier. The processor does
generate correct check bits for double word, word, or partial word
data transmitted to the system interface. The processor does not check
addresses received from the system interface, but does generate
correct check bits for addresses transmitted to the system interface.
The processor does not contain a data corrector, instead, the processor
takes a cache error exception when an error is detected based on the
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data check bits. Software, in conjunction with an off-processor data
corrector, is responsible for correcting the data when the SECDED
code is employed.

The seven check bits for the secondary cache tag bus are generated in
accordance with a single error correcting double error detecting
(SECDED) code that also detects any three or four bit error in a nibble.
The processor generates check bits for the tag when it is written into
the secondary cache and checks the tag whenever the secondary cache
is accessed. The processor contains a corrector for the secondary cache
tag. The tag corrector is not in-line for processor accesses due to
primary cache misses. When a tag error is detected on a processor
access due to a primary cache miss, the processor will trap. Software,
using the processor cache management primitives, corrects the tag.
When executing the cache management primitives, the processor uses
the corrected tag to generate write back addresses and cache state. For
external accesses, the tag corrector is in-line; that is, the response to
external accesses is based on the corrected tag. The processor still traps
on tag errors detected during external accesses to allow software to
repair the contents of the cache if possible.

The check bit for the system interface command bus provides even
parity over the nine bits of the system interface command bus. This
parity bit is generated correctly when the system interface is in master
state, but is not checked when the system interface is in slave state.

The busses that are covered by check bits, their contents, and whether
or not they are checked for various processor internal and external
transactions are summarized in Table 15-1, Table 15-2, Table 15-3, and
Table 15-4.

15-2
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Error Checking and Correcting

Table 15-1 Error Checking and Correcting Summary for Internal Transactions

Secondary Primary
Bus Cache to Cache to Uncached | Uncached
Primary Secondary Load Store
Cache Cache
Processor or Checked, Trap | Primary Cache From
Secondary Cache Data| on Error ' parity System Not Checked
Interface
Secondary Cache Data| Checked, Trap
Check Bits on Error Generated NA NA
Checked, not
Secondary Cache Tag ’
and Check Bits corrected Trap | Generated NA NA
on error
System Internal Addr/|
Cmd and Check Bits: | NA NA Generated | Generated
Transmit
System Internal Addr/
Cmd and Check Bits: | NA NA Not Checked| NA
Receive
From
System Internal Data | NA NA Not Checked Processor
System Internal Data Not
Check Bits NA NA Checked Generated
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Table 15-2 Error Checking and Correcting Summary for Internal Transactions

Store to Secondary Secondary
Bus Shared Cache Cache Load Cache Write
Cache Line Instruction from to
_ System Int System Int
Processor or Checked on From
Secondary read part of Not System Int Checked,
Cache Data REIr\f::l, Trap on | Checked unchanged Trap on Error
Checked on
Secondary read part of Not From Checked,
Cache Data RMW, Trap on | Checked System Int Trap on Error
Check Bits Error ! unchanged
Checked on

g?&:d‘la'z & :&waﬁ :f on Srt\\sccl:)iiecte d Generated ngzlc:xe'ri’cted,
Check Bits Error » 11ap Trap on Error
System Internal
Addr/Cmd and Generated Generated Generated Generated
Check Bits: Transmit
System Internal Not
Addr/Cmd and NA NA Checked NA
Check Bits: Receive €
System Internal From From Checked, Trap | From
Data Processor Secondary on Error Secondary
System Internal From From
Data Generated Secondary S:%‘:_g‘:’ Trap Secondary
Check Bits Cache Cache
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Table 15-3 Errror Checking and Correcting Summary for External Transactions

Bus Read Write Invalidate Update
Request Request Request Request
Procesor R s
or Secondary NA NA Checked | RMW, Trap on
Cache Data E
I'I'OI'U]
Checked on
read part of
RMW, Trap on
Secondary ’
Cache Data NA NA Not Errory),
. Checked Generation
Check Bits .
on write part of
RMW
if written
Checked on
read part of Ch?ked OI;
RMW, Trap on| 1634 part 0
Secondary Error ! RMW, Trap on
Cache Tag & NA NA Gene;ation on Error,
Check Bits . Generation on
write part of it ¢
RMW if write part o
. RMW if written
written :
System Internal Addr/
Cmd and Check Bits: | Generated NA NA NA
Transmit
Recei * | Checked Checked Checked Checked
eceive
System Internal From Not Not Not
Data Processor Checked Checked Checked
System Internal Generated Not Not Not _
Data Check Bits Checked Checked Checked .
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Table 15-4 Error Checking and Correcting Summary for External Transactions

Intervention | Intervention Snoo
Bus Request Data | Request State Re uéI;t
Returned Returned q
Processor Checked, Not
or Secondary Trap on Not Checked
Cache Data Error Checked
Secondary Checked
! Not Not
Cache Data Trap on
Check Bits Error Checked Checked
Checked and | Checked and | Checked and
corrected on corrected on
corrected on
read part of read part of read part of
Secondary Cache Tag RMW, Trap on | RMW, Trap on RMW, Trap on
. Error, Error,
& Check Bits G . . Error,
eneration on | Generation on G .
. . eneration on
write part of | write part of write part of
RMW if RMW if RMW if written.
written. written.
System Internal
Addr/Cmd and Generated Generated Generated
Check Bits: Transmit
System Internal
Addr/Cmd and Not Checked | NotChecked | Not Checked
Check Bits: Receive
System Internal From
Data Secondary | A NA
System Internal From
Data Secondary NA NA
Check Bits Cache

15-6
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Specifications

16

Electrical Characteristics

NOTE: The designer is advised to consult the vendor-specific data
sheets for the exact information on electrical characteristics. The
information in this chapter is provided as a reference only.

Maximum Ratings

Operation beyond the limits set forth in Table 16-1 may impair the
useful life of the device.

Table 16-1 Maximum Ratings

Parameter Symbol Min Max Units
Supply Voltage vCC -0.5 +7.0 Volts
Input Voltage VIN 0.5 +7.0 Volts
Storage Temperature TST -65.0 +150.0 | Degrees C
Operating Temperature | TC 0 +85.0 Degrees C

(1) VIN Min. = -3.0V for pulse width less than 15 ns.

NOTE: No more than one output should be shorted at a time. Dura-
tion of the short should not exceed 30 seconds.
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Operating Range
Table 16-2 Operating Range
Range Case (TO) vCC
Commercial 0C to 85C 5V+5%
Operating Parameters
Table 16-3 Operating Parameters
50MHz ]
Parameter Symbol Conditions - Units
Min Max

Output HIGH Voltage VOH VCC =Min. 3.5 A
S,ﬁgg%“tp“t HIGH | yopc | vec =Min. 40 v
Output LOW Voltage VOL VCC = Min. 4 \
Input HIGH Voltage® VIH 2 VCC+5 | V
Input LOW Voltage!? VIL -5 8 \
MasterClock Input
HIGH Voltage VIHC 0.8VCC | VCC+5 | V
MasterClock Input
LOW Voltage VILC -50 02vCC | V
Input Capacitance CIn 10 pF
Output Capacitance COut 10 pF
Operating Current ICC VCC =5V,TC=0C 3 A
Input Leakage ILeak 10 HA
Input/Output Leakage IOLeak 20 HA

Notes:

(1) VIL Min. =-3.0V for pulse width less than 15 ns.
(2) Except for MasterClock and Syncln input

(3) Applies to TClock, RClock, MasterOut, ModeClock and SyncOut outputs

16-2
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MasterClock and Clock Parameters
Table 16-4 MasterClock and Clock Parameters

Parameter Symbol | Test Conditions - 50 MHz ]
Min Max Units
MasterClock High tMCHigh Transition < 5ns | 4 ns
MasterClock Low tMCLow Transition< 5ns | 4 ns
MasterClock Freq! 25 50 MHz
MasterClock Period tmep 20 40 ns
Clock Jitter tMCJitter 500 Ps
MasterClock Rise Time | tycrise 5 ns
MasterClock Fall Time tMCFan , ‘ 5 ns
ModeClock Period tModeCKP 256*tmcp | NS

Notes:
(1) Operation of the R4000 is only guaranteed with the Phase Lock Loop enabled.
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System Interface Parameters

Table 16-5 System Interface Parameters

- 50MHz
Parameter Symbol Test Conditions i Mo | Units
Data Output'™®® | tpo Maximum Slew Rate | 2 | 10 ns
Modebits[53:56]}=0
Modebits[57:60]=15
Minimum Slew Rate 6 16 ns
Modebits{53:56}=15
Modebits[57:60}=0
MC*0.5 Drive Time TBD | TBD ns
Modebit[50:52]=100
MC*0.75 Drive Time TBD | TBD ns
Modebit[50:52]=010
MC*1.0 Drive Time TBD TBD ns
Modebit[50:52]=001
Data Setup tps 5 ns
Data Hold tpn 2 ns

Notes:

(1) When the dynamic output slew rate control Mode bits [61] or [62] are enabled, the initial values
for the pull-up and pull-down rates shounld be set to the slowest value, Modebits[53:56]=15,

Modebits[57:60]=0.

(2) Timings are measured from 1.5V of the clock to 1.5V of signal.
(3) Capacitive load for all output timings is 50 pf.

(A Data Outnnt Data Setnn and Data Hold a

\TT) 1raia VuLlp ULy arGla DShiep S8 LSS 2AVEN 4

poly to all logic signals driven out of or driven into the

R4000 on the system interface. Secondary cache signals are specified separately.

NOTE: All output timing specifications given assume 50 pf of capac-
itive load. Output timing specifications should be derated where ap-
propriate as shown in Table 16-6 below.

164
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Secondary Cache Interface Parameters
Table 16-6 Secondary Cache Interface Parameters

50MHz
Parameter Symbol Test Conditions - Units
Min Max
Maximum Slew Rate 2 10 ns
Modebits[53:56]1=0
Modebits[57:60}=15
MinimumSlewRate | 6 | 16 | ns
Modebits[53:56}=15
Modebits[57:60}=0
MasterClockto Output™ | tsc0 oS rive Time | TBD | T8D | s
Modebit{50:52}=100
MC*0.75 Drive Time | TBD | TBD | ns
Modebit[50:52]=010 _
MC*1.0DriveTime | TBD | TBD | ns
Modebit[50:52]=001
Data Setup tscps 5 ns
Data Hold tscou 2 ns
Cycle length of 4wordread | traicyc 4 15 cycles
Cycles between read and write tp;* 2 7 cycles
Cycle length of 8-word read | traocye” 3 15 cycles
(S:é,\c/lvis* between Address and terDly4 1 3 cycles
Cycles between deassertion of
SCWr* twere 0 1 cycles
to the start of the next cycle
oubieword to SCWs- twsup’ 3 |15 | odes
Cycles between first and
second data word in8-word | twypyy* 1 3 cycles
write

Notes:

(1) When the dynamic output slew rate control Mode bits [61] or [62] are enabled, the initial values
for the pull-up and pull-down rates should be set to the slowest value, Modebits[53:56]=15,

Modebits[57:60)=0.
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(2) Timings are measured from 1.5V of the clock to 1.5V of signal.
(3) Capacitive load for all output timings is 50pf.

(4) Number of cycles is configured through the boot time mode control. Section 9.0 specifies the
boot time mode interface.

Capacitive Load Deration

l Table 16-7 Capacitive Load Deration
50 MHz )
Parameter Symbol - Units
Min | Max
Load Derate | CLD 2 ns/25pF
16-6
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Physical Specifications

Signal to Pin Correlation of R4000PC

Table 16-8 lists the PC package signal layout; signals are listed alpha-
betically left to right and run from the top row on down.

Table 16-8 R4000 PC Package Layout

R4000 PC Pkg |R4000 PC Pkg | R4000 PC Pkg

Function Pin Function Pin Function Pin
ColdResetB T14 | ExtRgstB U2 | FaultB B16
I0In T13 | IOOut Ul2 | IntBO N2
IntB1 L3 IntB2 K3 IntB3 I3
IntB4 H3 | IntB5 F2 JTCK H17
JIDI G16 | JTDO F16 | JTMS E16
MasterClock J17 | MasterOut P17 | ModeClock B4
Modeln U4 | NMIB U7 | NoConnect U10
PLLCap0 w | PLLCapl wet | RClock0 T17
RClockl R16 | RdRdyB T5 ReleaseB V5

" ResetB Ul6 | Syncln J16 | SyncOut P16
SysADQ ]2 SysAD1 G2 | SysAD2 El
SysAD3 E3 SysAD4 c2 SysAD5 C4
SysAD6 B5 SysAD7 B6 SysAD8 B9
SysAD9 B11 | SysAD10 C12 | SysAD11 B14
SysAD12 B15 | SysAD13 C16 | SysAD14 D17
SysAD15 E18 | SysAD16 K2 | SysAD17 M2
SysAD18 P1 SysAD19 P3 SysAD20 T2
SysAD21 T4 SysAD22 us SysAD23 ué
SysAD24 U9 SysAD25 Ull | SysAD26 T12
SysAD27 Ul4 | SysAD28 Ul5 | SysAD29 T16
SysAD30 R17 | SysAD31 Mi6 | SysAD32 H2
SysAD33 G3 | SysAD34 F3 SysAD35 D2
SysAD36 C3 SysAD37 B3 SysAD38 C