7)) Mips

MIPS Assembly Language
Programmer’s Guide
Order Number 3201DOC

L

The power of RISC is in the system.

I

~ MIPS Assembly Language
" Programmer’s Guide
Order Number 3201DOC

May 1989

Your comments on our products and publications are wel-
come. A postage—paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00005-002/02-00036-002

© 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

IBM is aregistered trademark of International Business Machines Corporation.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg, Part Number 84-00005-002/02-00036-002

Summary of Changes

The following summarizes the changes made to the former (September 1988)
edition of this manual.

New Assembler Functions. Added truncate and round, and
conditional trap assembler functions to table on pp. 6-3 and 6-4.

New Pseudo-Ops. The .aent name, .alias, and .noalias have
been added to the description of pseudo—ops on pp. 8-1 and 8-5.

New Constant. A description of the constant scInit was added
to the table on p. 10-17.

Reorganization Constraints and Rules. Added a cross—
reference to the sections of the MIPS Architecutre book that de-
scribe the constraints and rules for using load, jump, and branch
instructions.

General. Numerous minor technical and editorial corrections
have been made through the manual.

Assembly Language Programmer’s Guide jii

Chapter 1

Assembly Language Programmer’s Guide

About This Book

This book describes the assembly language supported by the RISCompiler sys-
tem, its syntax rules, and how to write some assembly programs. For information
about assembling and linking a program written in assembly language, see the
Languages Programmer’s Guide.

The assembler converts assembly language statements into machine code. In
most assembly languages, each instruction corresponds to a single machine in-
struction; however, some assembly language instructions can generate several
machine instructions. This feature results in assembly programs that can run
without modification on future machines, which might have different machine
instructions. See Appendix B for more information about assembler instructions
that generate multiple machine instructions.

Who Should Read This Book?

This book assumes that you are an experienced assembly language programmer.

The assembler exists primarily to produce object modules from the assembly in-
structions that the C, Fortran 77, and Pascal compilers generate. It therefore
lacks many functions normally present in assemblers. Therefore, we recommend
that you use the assembler only when you need to:

e Maximize the efficiency of a routine, which might not be possi-
ble in C, Fortran 77, Pascal, or another high-level language—for
example, to write low-level I/O drivers.

e Access machine functions unavailable from high-level lan-
guages or satisfy special constraints such as restricted register
usage.

o Change the operating system.
o Change the compiler system.

What Does This Book Cover?

This book has these chapters:

Chapter 1 —Registers describes the format for the general registers, the
special registers, and the floating point registers.

Chapter 2—Addressing describes how addressing works.

Chapter 3—Exceptions describes exceptions you might encounter with as-
sembly programs.

Chapter 4—Lexical Conventions describes the lexical conventions that the
assembler follows.

Assembly Language Programmer's Guide \

About This Book

Chapter S—Instruction Set describes the main processor’s instruction set,
including notation, load and store instructions, computational instructions,
and jump and branch instructions.

Chapter 6—Coprocessor Instruction Set describes the coprocessor instruc-
tion sets.

Chapter 7—Linkage Conventions describes linkage conventions for all
supported high-level languages. It also discusses memory allocation and
register use.

Chapter 8—Pseudo-Op-Codes describes the assembler’s pseudo—opera-
tions (directives).

Chapter 9—Object File Format provides an overview of the components
comprising the object file and describes the headers and sections of the ob-
ject file.

Chapter 10—Symbol Table describes the purpose of the Symbol Table and
the format of entries in the table. This chapter also lists the symbol table rou-
tines that are supplied.

Appendix A—Instruction Summaries summarizes all assembler instruc-
tions.

Appendix B—Basic Machine Definition describes instructions that gener- (
ate more than one machine instruction.

For More Information

As you use this manual, consult the following book:

o Languages Programmer’s Guide (Order number 3200D0OC)
* MIPS RISC Architecture (Order number 31111DOC)

vi Assembly Language Programmer’s Guide

Contents

About This Book
Who Should Read This BOOK? . .o iivii it e ittt ettt enennanns iii
What Does This BOOK COVEI? .. vvvtiti ittt it ieig et neennennnans iii
For More INfOrmationcotiittinnnenenneennersnnsnesanasennns iv

1

Registers
Register FOrmatouiuiiininerii it iiiiieninaaaaes 1-1
Big-Endian Machinescooiiiiiiiiiiiiii i, 1-1
Little-Endian Machinesottt it ieerneei it neennesnn 1-2
General REZISIEIS ..\ v vttt ettt 1-3
Special REZISIEIS . ..o vviit ittt 1-5
Floating POInt REZISters ... 1-5

2

Addressing
AdAress FOIMAtS ... ov ittt iitett i ttee e enateeaersennennnnnns 2-2
Address DesCIPHONSovvtinniiet e 2-2

3

Exceptions
Main Processor EXCEPLONSovvviiiiiruni it 3-1
Floating Point EXCEptions ..., 3-1

4

Lexical Conventions
B 0 5 0 V< 4-1
(0071100 7<) 111N O RSO 4-1
06 10150 4 <) oSO U RO 4-2
@8] 1151 701 1T OO PP 4-2

SCaAlar CONSIANIS . .ottt e ettt ettt e enet e enneenaneesnnnns 4-2

Floating Point CONSLANLSoovtttiuiiiiinaee et 4-2
String CONSLANES v vttt it ittt e i 4-3
Multiple Lines Per PhysicalLinet 44
Sections and Location COUNLEIS v vt in e e et inneina e 44
R 71753 44 1<y 0 1SS AU P 4-6
Label Definitions ... covvii i ittt et e e enanns e 4-6
NUIL SEALEIMEIES & v v vttt e et e e et et ettt e neeneaesaeeenenaeanaeensn 4-6
Keyword Statementsuuuinieeeerrrrneneneiineeeeeannns . 4-6
EXPIESSIONS o\ttt ettt it i 4-6
107516 (<) 8 1< P 4-7

Assembly Language Programmer’s Guide vii

EXpression OPEratorsuuuueeeeentnirii i, 4-7
Data TYPES . oo vttt ettt 4-7

Type Propagation in EXpressionsvviiiinireinnnnnnennnnn. 4-9

5

Instruction Set
Instruction CIassesvvvtinnnnie i 5-1
Reorganization Constraintsand Rulescoiirnnnn.... 5-1
Instruction NOtation i, 5-2
Load and Store InStructionscouiiiniinennnenennn. 5-2
Load and Store FOrmatsouuiiiiniiiiiiiiiiiineeennnn. 5-3
Load Instruction DesCriptionsvviuiiiiinnninneeennnnn. 5-3
Store Instruction DesCriptionsc..ovuuiiiiii i, 5-6
Computational INStruCtionsc..vuiiiiinenieeeee e, 5-7
Computational FOrmatsc..eeiiiinnini ... 5-7
Computational Instruction Descriptionsc.ovvivunnen... 5-9
Jump and Branch Formatscooiiiiiiiiiin ..., 5-15
Jump and Branch Instruction Descriptionsc.cvvuue.... 5-16
Special InStruCtionst 5-18
Special FOrmats 5-18
Special Instruction Descriptionsoiiiiiiinnnnnnn... 5-19
Coprocessor Interface INSLIUCHONSttt t ettt et e e e e eeeeanns 5-19
Coprocessor Interface FOImMatsovuvrineennneeneeennannnns 5-19
Coprocessor Interface Instruction Descriptionsveeevnnnnn... 5-20

6

Coprocessor Instruction Set
Instruction NOtationuiiitiiiii e 6-1
Floating Point InStructions, 6-2
Floating PoInt FOrMatso.uuinit it e 62
Floating Point Load and Store Formatscoovvvevvnnnn... 6-3
Floating Point Load and Store Descriptionsccoouun... 6-3
Floating Point Computational Formatscccvveeeeeennnn.. 64
Floating Point Computational Instruction Descriptions 6-5
Floating Point Relational Operationscoviuuivnn.... 6-7
Floating Point Relational Formatsccoovuuueeeuneennn.. 6-9
Floating Point Relational Instruction Descriptions 6-10
Floating Point Move FOrmatsoiiinee e, 6-12
Floating Point Move Instruction Descriptionsovverueeeennnn. 6-12
System Control Coprocessor Instructionsouvieuneenn... 6-13
System Control Coprocessor Formatsoovtuueennnnnnn... 6-13
System Control Coprocessor Instruction Descriptions 6-13
Control and Status REGISterutiirttiie e, 6-13
Floating PointRounding i, 6-18

viii

Assembly Language Programmer’s Guide

7
Linkage Conventions

Introduction
Program Design
Register Use and Linkage
The Stack Frame
The ShapeofData ,............
Examplescovvvne.
Leaming by Doing

© 9 6t 0 e .8 s s e s e e e e s e e e e s e s s s 00 s

....................................

....................................

....................................

....................................

....................................

® 6 o 6 e s 6 e 8 s e s B s e s s s s e e e s e et e

Calling a High-Level Language Routineo,
Calling an Assembly Language Routine coiiinn,

Memory Allocation

8
Pseudo Op—-Codes

9
Object File Format

Overviewccvvvvnvnnn.
TheFileHeader

File Header Magic Field (f_magic)

Flags (f_flags)
Optional Header

....................................

....................................

............................ P e e s e e e

....................................

....................................

4 o 6 s e s p s e s e e e s s s s e e s e s s e e s e e e s e e e

Optional Header Magic Field (magic)cciviiiiiiinnnt,

SectionHeaders
Section Name (s_name)
Flags (s_flags)
Global Pointer Tables
Shared Library Information
SectionData
Section Relocation Information . . .
Relocation Table Entry

....................................

....................................

....................................

....................................

....................................

...................................
[}

....................................

....................................

Assembler and Link Editor Processingo

ObjectFiles
Impure Format (OMAGIC) Files . .
Shared Text NMAGIC) Files
Demand Paged (ZMAGIC) Files . .

....................................

....................................

....................................

....................................

Target Shared Library (LIBMAGIC) Filescoiiiiiiiiiaiit,

Objects Using Shared Libraries . . .
Ucode objects
Loading Object Files Ceee e
Archivefiles
Link Editor Defined Symbols

Runtime Procedure Table Symbols

Assembly Language Programmer’s Guide

....................................

....................................

....................................

....................................

....................................

....................................

7-1
7-1

7-2
-7

7-11
7-11
7-12
7-15

9-1
9-3
9-3
94
9-5
9-6
9-7

97

9-8

9-8

9-9

9-10
9-11
9-11
9-12
9-17
9-17
9-18
9-19
9-21
9-21
9-22
9-22
9-23
9-23
9-24

10

Symbol Table
OV IVIBW . 10-2
Format of Symbol Table Entriesccciiiiiinnnnnnnn.. 10-7

Symbolic Headerouiiiiiie e, 10-7
Line Numberscooiuiuiiiiiii e 10-8

Procedure Descriptor Tablecciiiiiii i, 10-12
Local Symbolsoiiiii i 10-12
Optimization Symbolsooiuiiiiii i 10-16
Auxiliary Symbolso 10-17
File Descriptor Tableouuuieiiii i, 10-20
External Symbolsoiiiiiii 10-20

A

Instruction Summaries

B

Basic Machine Definition
Load and Store InStructionst .. B-1
Computational INSIIUCHONS\ttt e e e e e B-1
Branch InStructionsot B-2
Coprocessor INSTIUCHONS\ttt ettt e e e e e e e B-2
Special INStruCtionSvuutte i i B-2

X ‘ Assembly Language Programmer’s Guide

1
Registers

This chapter discusses the registers and describes how memory organization af-
fects them. Refer to Chapter 6 for information regarding register use and link-
age.

The machine has these registers:
e General registers, which are always one word wide
e Coprocessor registers (for example, floating point registers)

o Two special registers that hold the results of multiplication and
division instructions

You must use general registers where the assembly instructions expect general
registers and floating point registers where the assembly instructions expect
floating point registers. If you confuse the two, the assembler issues an error
message.

Register Format

A machine’s byte ordering scheme (or endian issues) affects memory organiza-
tion and defines the relationship between address and byte position of data in
memory. R2000 machines can be big-endian or little—endian. Big-endian ma-
chines store the sign bit in the lowest address byte. Little—endian machines store
the sign bit in the highest address byte. Before you use the assembler, determine
whether you have a big—endian or a little—endian machine. (There are no assem-
bler instructions that depend on bit numbering; it is a software convention.)

Big—Endian Machines

Big—endian machines number the bytes of a word from 0 to 3. Byte 0 holds the
sign and most significant bits.

For halfwords, big-endian machines number the bytes from 0 to 1. Byte 0 holds
the sign and most significant bits.

Big—endian machines number the bits of each byte from 0 to 7, using this format:

¢ Bit 0 holds the least significant bit.

e Bit 7 holds the most significant bit.

Assembly Language Programmer’s Guide 1-1

Chapter 1

sign & most Word
significant bits

Bit: 15 .. 8

sign & most
significant bits

Halfword

most significant
bit

T

least significant
bit

Byte

Figure 1.1 Big—endian byte ordering.

Little-Endian Machines

Little-endian machines number the bytes of a word from 3 to 0. Byte 3 holds the
sign and most significant bits.

For halfwords, little—endian machines number the bytes from 1 to 0. Byte 1
holds the sign and most significant bits.

Little-endian machines number the bits of each byte from 7 to 0, using this for-
mat:

¢ Bit 0 holds the least significant bit.

e Bit 7 holds the most significant bit.

Assembly Language Programmer’s Guide

Registers

sign & ‘ll;lost Word
significant bits

T
sign & most Halfword
significant bits

Bit: 7 6 5 4 3 2 1 0

least significant

Byte bit

most significant
bit

Figure 1.2 Little-endian byte ordering.

General Registers

Each general register has 32 bits. The assembler reserves all register names, and
you must use lowercase for the names. All register names start with a dollar sign

.

The general registers have the names $0..$31. By including the file regdef.h (use
#include /usr/include/regdef.h) in your program, you can use software names for
some general registers. The operating system and the assembler use the general
registers $1, $26, $27, $28, and $29 for specific purposes. (NOTE: Attempts to
use these general registers in other ways can produce unexpected results.) If a
program uses the names $1, $26, $27, $28, $29 rather than the names $at, $kt0,
$kt1, $gp, $sp respectively, the assembler issues warning messages.

General register $0 always contains the value 0. All other general registers are
equivalent, except that general register $31 also serves as the implicit link regis-
ter for jump and link instructions. See Chapter 6 for a description of register
assignments.

Assembly Language Programmer’s Guide 1-3

Chapter 1

Table 1.1 General Registers

Software Name

Register Name (from regdef.h) Use and Linkage

$0 always has the value 0

$at reserved for the assembler

$2..$3 vO-v1 used for expression evaluations and to hold
the integer type function results. Also used
to pass the static link when calling nested
procedures.

$4..$7 a0-a3 used to pass the first 4 words of integer
type actual arguments, their values are
not preserved across procedure calls

$8..$15 t0-t7 temporary registers used for expression evalu—
ations; their values aren’t preserved across
procedure calls.

$16..$23 s0-s7 saved registers. Their values must be pre—
served across procedure calls.

$24..$25 t8—19 temporary registers used for expression evalu—
ations; their values aren’t preserved across
procedure calls.

$kt0..$kt1 kO-k1 reserved for the operating system kernel

$28 or $gp gp contains the global pointer

$29 or $sp sp contains the stack pointer

$30 or $fp fp contains the frame pointer (if needed);
otherwise a saved register (like sO-s7)

$31 ra contains the return address and used

for expression evaluation

Assembly Language Programmer’s Guide

Registers

Special Registers

The machine has two 32 bit special registers. The hi and lo special registers hold
the results of the multiplication (mult and multu) and division (div and divu)
instructions.

You usually do not need to refer explicitly to these special registers. Instructions
that use the special registers refer to them automatically.

Table 1.2 Special Registers

Name Description
hi Multiply/Divide special register holds the most significant
32 bits of multiply, remainder of divide
lo Multiply/Divide special register holds the least significant
32 bits of multiply, quotient of divide

Floating Point Registers

Floating point registers provide for single-precision and double precision float-
ing point operations as described below. Chapter 6 describes floating point reg-
ister use.

Single Precision Floating Point Registers

Single precision floating point values (32-bits) require one floating point regis-
ter. Single precision floating point instructions must refer to the even-numbered
floating point registers.

Double Precision Floating Point Registers
Double precision floating point values (64 bits) require two floating point regis-

ters. Double precision floating point instructions must refer to the even—num-
bered floating point registers.

Assembly Language Programmer’s Guide 15

Chapter 1

[— Double Precision »
|-— Single Precision —*]
$£0: $10 $f1
$f2: $£2 - $£3
$f4: $f4 $f5
$f6: -6 $£7
$f8: | $f8 $9
$10: $£10 $f11
$g12: ‘ $g12 $f13
$f14: $f14 ‘ $f15
$f16: ‘ $f16 ‘ $f17
$f18: - $f18 - ' $£19
$£20: $20 $21
$22: $22 ‘ ‘ $23
$f24: [4 ‘ $£25
$£26: - $f26 ‘ $27
$£28: ' $28 $29
$£30: ‘ $£30 $31
| «——32 bits ———»
| 64 bits >

Figure 1.3 Floating Point Register Set

1-6 Assembly Language Programmer’s Guide

2
Addressing

This chapter describes the formats that you can use to specify addresses. The
machine uses a byte addressing scheme. Access to halfwords requires alignment
on even byte boundaries, and access to words requires alignment on byte bounda-
ries that are divisible by four. Any attempt to address a data item that does not
have the proper alignment causes an alignment exception.

The unaligned assembler load and store instructions may generate multiple ma-
chine language instructions. They do not raise alignment exceptions.

These instructions load and store unaligned data:
e load word left (Iwl)
¢ load word right (Iwr)
e store word left (swl)
e store word right (swr)
¢ unaligned load word (ulw)
e unaligned load halfword (ulh)
¢ unaligned load halfword unsigned (ulhu)
e unaligned store word (usw)
e unaligned store halfword (ush)
These instructions load and store aligned data:
e load word (Iw)
e load halfword (1h)
¢ load halfword unsigned (lhu)
e load byte (Ib)
¢ load byte unsigned (Ibu)
o store word (sw)
e store halfword (sh)
e store byte (sb)

Assembly Language Programmer’s Guide 2-1

Chapter 2

Address Formats

The assembler accepts these formats for addresses:

Table 2.1 Address Formats
Format Address
(base register) base address (zero
offset assumed)
expression absolute address
expression (base register) based address
relocatable-symbol relocatable
address
relocatable-symbol + expression relocatable address
relocatable-symbol * expression (index register) indexed relocatable

address

Address Descriptions

The assembler accepts any combination of the constants and operations described
in Chapter 2 for expressions in address descriptions.

Table 2.2 Assembler Addresses

Expression

Address Description

(base-register)

expression

expression (base-register)

relocatable~symbol

Specifies an indexed address, which assumes a zero off-

- set. The base-register’s contents specify the address.

Specifies an absolute address. The assembler generates
the most locally efficient code for referencing a value at
the specified address.

Specifies a based address. To get the address, the machine
adds the value of the expression to the contents of the
base—register.

Specifies a relocatable address. The assembler generates
the necessary instruction(s) to address the item and gener-
ates relocatable information for the link editor.

2-2

Assembly Language Programmer’s Guide

Compiling, Linking, and Running Programs

Table 2.2 Assembler Addresses (continued)

Expression

Address Description

relocatable-symbol expression

relocatable-symbol (base-register)

(base-register)

Specifies a relocatable address. To get the address, the as-
sembler adds or subtracts the value of the expression,
which has an absolute value, from the relocatable symbol.
The assembler generates the necessary instruction(s) to ad-
dress the item and generates relocatable information for the
link editor. If the symbol name does not appear as a label
anywhere in the assembly, the assembler assumes that the
symbol is external.

Specifies an indexed relocatable address. To get the
address, the machine adds the index-register to the
relocatable symbol’s address. The assembler generates
the necessary instruction(s) to address the item and gen-
erates relocatable information for the link editor. If the
symbol name does not appear as a label anywhere in the
assembly, the assembler assumes that the symbol is ex-
ternal.

Specifies an indexed relocatable address. To get the address, the
assembler adds or subtracts the relocatable symbol, the expres-
sion, and the contents of the index-register. The assembler gener-
ates the necessary instruction(s) to address the item and generates
relocation information for the link editor. If the symbol does not
appear as a label anywhere in the assembly, the assembler as-
sumes that the symbol is external.

Assembly Language Programmer’s Guide

2-3

Chapter 2

2-4

Assembly Language Programmer’s Guide

3
Exceptions

This chapter describes the exceptions that you can encounter while running as-
sembly programs. The machine detects some exceptions directly, and the assem-
bler inserts specific tests that signal other exceptions. This chapter lists only
those exceptions that occur most frequently.

Main Processor Exceptions

For the assembly language programmer, these are the most common main proc-
€ssor exceptions:

e Address error exceptions, which occur when the machine refer-
ences a data item that is not on its proper memory alignment or
when an address is invalid for the executing process

e Overflow exceptions, which occur when arithmetic operations
compute signed values and the destination lacks the precision to
store the result

e Bus exceptions, which occur when an address is invalid for the
executing process

¢ Divide-by-zero exceptions, which occur when a divisor is zero
Floating Point Exceptions

These are the floating point exceptions:

¢ Invalid operation exceptions

o magnitude subtraction of infinities, for example:
+--1

o multiplication of 0 by 1 with any signs
o division of 0/0 or 1/1 with any signs

o conversion of a binary floating—point number to
an integer format when an overflow or the oper-
and value for the infinity or NaN precludes a
faithful representation in the format (see Chap-
ter 4)

o comparison of predicates that have unordered
operands, and that involve Greater Than or Less
Than without Unordered.

Assembly Language Programmer’s Guide 3-1

Chapter 3

o any operation on a signaling NaN
¢ Divide-by-zero exceptions

e Overflow exceptions—these occur when a rounded floating
point result exceeds the destination format’s largest finite num-
ber

¢ Underflow exceptions—these occur when a result has lost accu-
racy and also when a nonzero result is between 2Emin (plus or mi-
nus 2 to the minimum expressible exponent).

¢ Inexact exceptions

3-2

Assembly Language Programmer’s Guide

Tokens

Comments

| 4
Lexical Conventions

This chapter discusses lexical conventions for these topics:

e tokens

e comments

e identifiers

e constants

e multiple lines per physical line
e sections and location counters
e statements

e expressions

This chapter uses the following notation to describe syntax:

e | (vertical bar) means “or”
e [] (square brackets) enclose options

e +indicates both addition and subtraction operations

The assembler has these tokens:

e identifiers
e constants
e operators

The assembler lets you put blank characters and tab characters anywhere between
tokens; however, it does not allow these characters within tokens (except for
character constants). A blank or tab must separate adjacent identifiers or con-
stants that are not otherwise separated.

The pound sign character (#) introduces a comment. Comments that start with a
extend through the end of the line on which they appear. You can also use C-
language notation /*...*/ to delimit comments.

The assembler uses cpp (the C language preprocessor) to preprocess assembler
code. Because cpp interprets #s in the first column as pragmas (compiler direc-
tives), do not start a # comment in the first column.

Assembly Language Programmer’s Guide 4-1

Chapter 4

Identifiers (
An identifier consists of a case—sensitive sequence of alphanumeric characters, §
including these:

e . (period)
e _ (underscore)
e $ (dollar sign)

Identifiers can be up to 31 characters long, and the first character cannot be nu-
meric.

If an identifier is not defined to the assembler (only referenced), the assembler
assumes that the identifier is an external symbol. The assembler treats the identi-
fier like a .globl pseudo—operation (see Chapter 8). If the identifier is defined to
the assembler and the identifier has not been specified as global, the assembler
assumes that the identifier is a local symbol.

Constants
The assembler has these constants:

¢ scalar constants
¢ floating point constants
¢ string constants (’

Scalar Constants
The assembler interprets all scalar constants as twos complement numbers. Sca-
lar constants can be any of the digits 0123456789abcdefABCDEF.

Scalar constants can be one of these constants:

¢ decimal constants, which consist of a sequence of decimal digits
without a leading zero

¢ hexadecimal constants, which consist of the characters 0x (or 0X
) followed by a sequence of digits

e octal constants, which consist of a leading zero followed by a
sequence of digits in the range 0..7

Floating Point Constants

Floating point constants can appear only in .float and .double pseudo—operations
(directives)—see Chapter 8—and in the floating point Load Immediate instruc-
tions—see Chapter 6. Floating point constants have this format:

+d1[.d2][elE+d3]
Where:
e dl is written as a decimal integer and denotes the integral part of (
the floating point value

4-2 Assembly Language Programmer’s Guide

Lexical Conventions

String Constants

e d2is written as a decimal integer and denotes the fractional part
of the floating point value

e d3is written as a decimal integer and denotes a power of 10
e the "+” symbol is optional

For example:

21.73E-3

represents the number .02173.

float and .double directives may optionally use hexadecimal floating point con-
stants instead of decimal ones. A hexadecimal floating point constant consists
of:

<+ or—> 0x <1 or 0 or nothing> . <hex digits> H Ox <hex digits>

The assembler places the first set of hex digits (excluding the O or 1 preceding
the decimal point) in the mantissa field of the floating point format without at-
tempting to normalize it. It stores the second set of hex digits into the exponent
field without biasing them. It checks that the exponent is appropriate if the man-
tissa appears to be denormalized. Hexadecimal floating point constants are use-
ful for generating IEEE special symbols, and for writing hardware diagnostics.

For example, either of the following generates a single—precision ’1.0”:

.float 1.0e+0
.float 0x1.0hO0x7f

String constants begin and end with double quotation marks ().

The assembler observes C language backslash conventions. For octal notation,
the backslash conventions require three characters when the next character could
be confused with the octal number. For hexadecimal notation, the backslash con-
ventions require two characters when the next character could be confused with
the hexadecimal number (i.e., use a O for the first character of a single character
hex number).

The assembler follows the backslash conventions shown in Table 4.1 :

Assembly Language Programmer’s Guide 4-3

Chapter 4

Table 4.1 Backslash Conventions

Conventidn Meaning
\a aert 0x07)
\b backspace (0x08)
\f form feed (0xOc)
\n newline (0x0a)
\r carriage return (0x0d)
L horizontal tab (0x09)
W vertical feed (0xOb)
\ backslash (0x5¢)
v quotation mark (0x22)
v single quote (0x27)
\000 character whose octal value is 000
\Xnn

character whose hexadecimal value is nn

Multiple Lines Per Physical Line
You can include multiple statements on the same line by separating the state-

ments with semicolons. The assembler does not recognize semicolons as separa-
tors when they follow comment symbols (# or /*).

Sections and Location Counters

Assembled code and data fall in one of six sections:

4-4 Assembly Language Programmer’s Guide

(

Lexical Conventions

A

text section

A

read—only data section

A

data section

«¢ Small data section, addressed
through register $gp

< small bss section, addressed
through register $gp

< Dss (block started by storage)
section, which holds zero—
initialized data

Figure 4.1 Section and location counters

(For more information on section data, see Chapter 9 of this manual.)

The assembler always generates the text section before other sections. Additions
to the text section happen in four-byte units. Each section has an implicit loca-

tion counter, which begins at zero and increments by one for each byte assembled
in the section.

The bss section holds zero—initialized data. If a .lcomm pseudo—op defines a
variable (see Chapter 8), the assembler assigns that variable to the bss (block
started by storage) section or to the sbss (short block started by storage) section
depending on the variable’s size. The default variable size for sbss is 8 or fewer
bytes.

The command line option —G for each compiler (C, Pascal, Fortran 77, or the
assembler), can increase the size of sbss to cover all but extremely large data
items. The link editor issues an error message when the —G value gets too large.
If a —G value is not specified to the compiler, 8 is the default. Items smaller than,

or equal to, the specified size go in sbss. Items greater than the specified size go
in bss. '

Because you can address items much more quickly through $gp than through a
more general method, put as many items as possible in sdata or sbss. The size of
sdata and sbss combined must not exceed 64K bytes.

Assembly Language Programmer’s Guide 4-5

Chapter 4

Statements

Label Definitions

Null Statements

Each statement consists of an optional label, an operation code, and the oper-
and(s). The machine allows these statements:

e null statements

e keyword statements

A label definition consists of an identifier followed by a colon. Label definitions
assign the current value and type of the location counter to the name. An error
results when the name is already defined, the assigned value changes the label
definition, or both conditions exists.

Label definitions always end with a colon, You can put a label definition on a
line by itself.

A generated label is a single numeric value (1...255). To reference a generated
label, put an f (forward) or a b (backward) immediately after the digit. The refer-
ence tells the assembler to look for the nearest generated label that corresponds to
the number in the lexically forward or backward direction.

A null statement is an empty statement that the assembler ignores. Null state-
ments can have label definitions. For example, this line has three null statements
init:

label: ; ;

Keyword Statements

Expressions

4-6

A keyword statement begins with a predefined keyword. The syntax for the rest
of the statement depends on the keyword. All instruction opcodes are keywords.
All other keywords are assembler pseudo—operations (directives).

An expression is a sequence of symbols that represent a value. Each expression
and its result have data types. The assembler does arithmetic in twos comple-
ment integers with 32 bits of precision. Expressions follow precedence rules and
consist of:

e operators
e identifiers
e constants

Also, you may use a single character string in place of an integer within an ex-
pression. Thus: :

.byte ”a” ; .word “a”+0x19

is equivalent to:

Assembly Language Programmer’s Guide

~

Lexical Conventions

Precedence

.byte 0x61 ;

.word 0x7a

Unless parentheses enforce precedence, the assembler evaluates all operators of
the same precedence strictly from left to right. Because parentheses also desig-
nate index—registers, ambiguity can arise from parentheses in expressions. To

resolve this ambiguity, put a unary + in front of parentheses in expressions.

The assembler has three precedence levels, which are listed here from lowest to

highest precedence:
least binding,
lowest precedence: binary +. -
; bi * [, %,<<,>>,MN &, |
most binding mary % &
highest precedence: unary -, +,~

NOTE: The assembler’s precedence scheme differs from that of the C language.

Expression Operators

Data Types

For expressions, you can rely on the precedence rules, or you can group expres-
sions with parentheses. The assembler has these operators:

Table 4.2 Expression Operators

Operator Meaning
+ addition
- subtraction
* multiplication
/ division
% remainder
<< shift left
>> shift right (sign NOT extended)
A bitwise EXCLUSIVE OR
& bitwise AND
| bitwise OR
- minus (unary)
+ identity (unary)
~ complement

The assembler manipulates several types of expressions. Each symbol you refer-
ence or define belongs to one of these categories:

Assembly Language Programmer’s Guide

4-7

Chapter 4

Table 4.3 Data Types

Type

Description

undefined

sundefined

absolute

text

data

sdata

rdata

bss and sbss

Any symbol that is referenced but not defined becomes global undefined, and this
module will attempt to import it. The assembler uses 32-bit addressing to access
these symbols. (Declaring such a symbol in a .globl pseudo—op merely makes its
status clearer).

A symbol defined by a .extern pseudo—op becomes global small undefined if its
size is greater than zero but less than the number of bytes specified by the -G op-
tion on the command line (which defaults to 8). The linker places these symbols
within a 64k byte region pointed to by the $gp register, so that the assembler can
use economical 16-bit addressing to access them,

A constant defined in an ”=" expression.

The text section contains the program’s instructions, which are not modifiable
during execution. Any symbol defined while the .text pseudo—op is in effect be-
longs to the text section.

The data section contains memory which the linker can initialize to nonzero values
before your program begins to execute. Any symbol defined while the .data
pseudo—op is in effect belongs to the data section. The assembler uses 32-bit ad-
dressing to access these symbols.

This category is similar to data, except that defining a symbol while the .sdata
(”small data”) pseudo—op is in effect causes the linker to place it within a 64k byte
region pointed to by the $gp register, so that the assembler can use economical
16-bit addressing to access it.

Any symbol defined while the .rdata pseudo-op is in effect belongs to this cate-
gory, which is similar to data, but may not be modified during execution.

The bss and sbss sections consist of memory which the kernel loader initializes
to zero before your program begins to execute. Any symbol defined in a .comm
or .Jcomm pseudo-op belongs to these sections (except that a .data, .sdata, or
-rdata pseudo-op can override a .comm directive). If its size is less than the
number of bytes specified by the -G option on the command line (which defaults
to 8), it belongs to sbss (“small bss™), and the linker places it within a 64k byte
region pointed to by the $gp register so that the assembler can use economical
16-bit addressing to access it. Otherwise, it belongs to bss and the assembler
uses 32-bit addressing.

Local symbols in bss or sbss defined by Jlcomm are allocated memory by
the assembler; global symbols are allocated memory by the link editor; and
symbols defined by .comm are overlaid upon like-named symbols (in the
fashion of Fortran "COMMON” blocks) by the link editor.

Assembly Language Programmer’s Guide

Lexical Conventions

Symbols in the undefined and small undefined categories are always global (that
is, they are visible to the link editor and can be shared with other modules of your
program). Symbols in the absolute, text, data, sdata, rdata, bss, and sbss catego-
ries are local unless declared in a .globl pseudo—op.

Type Propagation in Expressions

When expression operators combine expression operands, the result’s type de-
pends on the types of the operands and on the operator. Expressions follow these
type propagation rules:

If an operand is undefined, the result is undefined.
If both operands are absolute, the result is absolute.

If the operator is + and the first operand refers to a relocatable
text—section, data—section, bss—section, or an undefined external,
the result has the postulated type and the other operand must be
absolute.

If the operator is — and the first operand refers to a relocatable
text—section, data—section, or bss—section symbol, the second
operand can be absolute (if it previously defined) and the result
has the first operand’s type; or the second operand can have the
same type as the first operand and the result is absolute. If the
first operand is external undefined, the second operand must be
absolute.

The operators *,/, % ,<<,>>,~, *,&,and | apply only to
absolute symbols.

Assembly Language Programmer’s Guide 4-9

Chapter 4

4-10

Assembly Language Programmer’s Guide

5
Instruction Set

This chapter describes instruction notation and discusses assembler instructions
for the main processor. Chapter 6 describes coprocessor notation and instruc-
tions.

Instruction Classes

The assembler has these classes of instructions for the main processor:

Load and Store Instructions These instructions load immedi-
ate values and move data between memory and general registers.

Computational Instructions These instructions do arithmetic
and logical operations for values in registers.

Jump and Branch Instructions These instructions change pro-
gram control flow.

Coprocessor Interface These instructions provide standard
interfaces to the coprocessors.

Special Instructions These instructions do miscellaneous tasks.

Reorganization Constraints and Rules

To maximize, performance the goal of RISC designs is to achieve an execution
rate of one machine cycle per instruction. In writing assembly language instruc-
tions, you must be aware of the rules and contrains to achieve this goal. This in-
formation is given in the MIPS RISC Architecture book (order number
3111DOC—one is shipped with each RISC/os system). You should refer to the
following sections in this book for more information:

Chapter Section Title

1 Cycles/Instruction

1 Instruction Pipelines

1 Instruction Operation Time

1 Instruction Access Time

3 The Delayed Instruction Slot
3 Delayed Loads

3 Delayed Jumps and Branches
C Filling the Branch Delay Slot

Refer also to Figlure 7.4 FPA Instruction Execution Times in Chapter 7 of the
same book.

Assembly Language Programmer’s Guide 5-1

Chapter 5

Instruction Notation (

The tables in this chapter list the assembler format for each load, store, computa-
tional, jump, branch, coprocessor, and special instruction. The format consists of
an op—code and a list of operand formats. The tables list groups of closely re-
lated instructions; for those instructions, you can use any op—code with any
specified operand. Operands can take any of these formats:

¢ memory references—for example a relocatable symbol +/~ an
expression(register)

e expressions (for immediate values)

¢ two or three operands—for example, add $3,$4 is the same as
add $3,%3,%4

Load and Store Instructions

The machine has general-purpose load and store instructions.

5-2

Assembly Language Programmer’s Guide

Instruction Set

Load and Store Formats

The operands in Table 5.1 have the following meanings:

Operand Description

destination the destination register

address a symbolic expression (see Chapter 2)
source the source register

expression an absolute value

Table 5.1 Load and Store Formats

Description Op-code Operands
Load Address la destination, address
Load Byte Ib
Load Byte Unsigned Ibu
Load Halfword 1h
Load Halfword Unsigned 1hu
Load Word 1w
Load Word Left 1wl
Load Word Right Iwr
Load Double 1d
Unaligned Load Halfword ulh
Unaligned Load Halfword Unsigned ulhu
Unaligned Load Word ulw
Load Immediate li destination, expression
Load Upper Immediate lui
Store Byte sb source, address
Store Double sd
Store Halfword sh
Store Word Left swl
Store Word Right SWr
Store Word swW
Unaligned Store Halfword ush
Unaligned Store Word usw

Load Instruction Descriptions

For all machine load instructions, the effective address is the 32-bit twos—com-
plement sum of the contents of the index-register and the (sign—extended) 16-bit
offset. Instructions that have symbolic labels imply an index—register, which the
assembler determines. The assembler supports additional load instructions,
which can produce multiple machine instructions.

NOTE: Load instructions can generate many code sequences for which the link
editor must fix the address by resolving external data items.

Assembly Language Programmer’s Guide 5-3

Chapter 5

Table 5.2 Load Instruction Descriptions

Load Byte Unsigned (Ibu)

Load Double (1d)

Load Halfword (lh)

Load Halfword Unsigned (1hu)

Load Immediate (1i)

Load Upper Immediate (lui)

Instruction Name Description
Load Address (1a) Loads the destination register with the effective address of the
specified data item.
“Load Byte (Ib) Loads the least significant byte of the destination register with the

contents of the byte that is at the memory location specified by the
effective address. The machine treats the loaded byte as a signed
value: bit seven is extended to fill the three most significant
bytes.

Loads the least significant byte of the destination register with the
contents of the byte that is at the memory location specified by the
effective address. Because the machine treats the loaded byte as
an unsigned value, it fills the three most significant bytes of the
destination register with zeros.

Loads the register pair (destination and destination + 1) with the
two successive words specified by the address. The destination
register must be the even register of the pair. When the address is
not on a word boundary, the machine signals an address error ex-
ception. NOTE: For compatibility with future machines, we rec-
ommend the use of double word alignment for all double word
operands.

Loads the two least significant bytes of the destination register
with the contents of the halfword that is at the memory location
specified by the effective address. The machine treats the loaded
halfword as a signed value. If the effective address is not even,
the machine signals an address error exception.

Loads the least significant bits of the destination register with the
contents of the halfword that is at the memory location specified
by the effective address. Because the machine treats the loaded
halfword as an unsigned value, it fills the two most significant
bytes of the destination register with zeros. If the effective ad-
dress is not even, the machine signals an address error exception.

Loads the destination register with the value of an expression that
can be computed at assembly time.

NOTE: Load Immediate can generate any efficient code se-
quence to put a desired value in the register.

Loads the most significant half of a register with the expression’s
value, The machine fills the least significant half of the register
with zeros. The expression’s value must be in the range
-32768...65535.

5-4

Assembly Language Programmer’s Guide

Instruction Set

Table 5.2 Load Instruction Descriptions (continued)

Instruction Name

Description

Load Word (Iw)

Load Word Left (Iwl)

Load Word Right (1wr)

Unaligned Load Halfword (ulh)

Unaligned Load Halfword
Unsigned (ulhu)

Unaligned Load Word (ulw)

Loads the destination register with the contents of the word that is
at the memory location. The machine replaces all bytes of the reg-
ister with the contents of the loaded word.

The machine signals an address error exception when the effec-
tive address is not divisible by four.

Loads the sign—that is, Load Word Left loads the destination
register with the most significant bytes of the word specified by
the effective address. The effective address must specify the
byte containing the sign. In a big-endian machine, the effective
address specifies the lowest numbered byte, and in a little-en-
dian machine the effective address specifies the highest num-
bered byte.

Only the bytes which share the same aligned word in memory are
merged into the destination register,

Loads the lowest precision bytes—that is, Load Word Right
loads the destination register with the least significant bytes of the
word specified by the effective address. The effective address
must specify the byte containing the least significant bits. In a
big—endian machine, the effective address specifies the highest
numbered byte, and in a little—endian machine the effective ad-
dress specifies the lowest numbered byte.

Only the bytes which share the same aligned word in memory are
merged into the destination register.

Loads a halfword into the destination register from the specified
address and extends the sign of the halfword. Unaligned Load
Halfword loads a halfword regardless of the halfword’s align-
ment in memory.

Loads a halfword into the destination register from the specified
address and zero extends the halfword. Unaligned Load
Halfword Unsigned loads a halfword regardless of the
halfword’s alignment in memory.

Loads a word into the destination register from the specified ad-
dress. Unaligned Load Word loads a word regardless of the
word’s alignment in memory.

Assembly Language Programmer’s Guide 5-5

Chapter 5

Store Instruction Descriptions

For all machine store instructions, the effective address is the 32-bit twos—com-
plement sum of the contents of the index—register and the (sign—extended) 16-bit
offset. The assembler supports additional store instructions, which can produce
multiple machine instructions. Instructions that have symbolic labels imply an
index—register, which the assembler determines.

Table 5.3 Store Instruction Descriptions

Instruction Name

Description

Store Byte (sb)

Store Halfword (sh)

Store Word (sw)

Store Double (sd)

Store Word Left (swl)

Stores the contents of the source register’s least significant
byte in the byte specified by the effective address.

Stores the two least significant bytes of the source register in
the halfword that is at the memory location specified by the
effective address. The effective address must be divisible by
two, otherwise the machine signals an address error exception.

Stores the contents of a word from the source register in the
memory location specified by the effective address. The effec-
tive address must be divisible by four, otherwise the machine
signals an address error exception.

Stores the contents of the register pair in successive words,
which the address specifies. The source register must be the
even register of the pair, and the storage address must be word
aligned.

NOTE: For compatibility with future machines, we recom-
mend that you use double word alignment.

Stores the most significant bytes of a word in the memory lo-
cation specified by the effective address. The contents of the
word at the memory location, specified by the effective ad-
dress, are shifted right so that the leftmost byte of the un-
aligned word is in the addressed byte position. The stored
bytes replace the corresponding bytes of the effective address.
The effective address’s last two bits determine how many
bytes are involved.

5-6

Assembly Language Programmer’s Guide

Instruction Set

Table 5.3 Store Instruction Description (continued)

Instruction Name

Description

Store Word Right (swr)

Unaligned Store Halfwdrd (ush)

Unaligned Store Word (usw)

Stores the least significant bytes of a word in the memory
location specified by the effective address. The contents of
the word at the memory location, specified by the effective
address, are shifted left so that the right byte of the unaligned
word is in the addressed byte position. The stored bytes re-
place the corresponding bytes of the effective address. The
effective address’s last two bits determine how many bytes
are involved.

Stores the contents of the two least significant bytes of the
source register in a halfword that the address specifies. The
machine does not require alignment for the storage address.

Stores the contents of the source register in a word specified
by the address. The machine does not require alignment for
the storage address.

Computationai instructions

The machine has general-purpose and coprocessor—specific computational in-
structions (for example, the floating point coprocessor). This part of the book
describes general-purpose computational instructions.

Computational Formats

In the Table 5.4 , operands have the following meanings:

Operand Description
destination/srcl the destination register is
also source register 1
destination the destination register
immediate the immediate value
srcl,src2 the source registers

Assembly Language Programmer’s Guide

Chapter 5

5-8

Table 5.4 Computational Instruction Formats

Description Op-code Operand
Add (with overflow) add | destination,src1,src2
Add (without overflow) addu | destination/srcl,src2
AND and | destination,srcl,
Divide (signed div imquiatc
Divide Eung;: gnz:d) divu de§tinatlop/srcl.
EXCLUSIVE OR }v(orl immediate
Multiply u
Multiply with Overflow mulo
Multiply with Overflow Unsigned| mulou
NOT OR nor
OR or
Set Equal seq
Set Greater sgt
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
Set Greater Unsigned sgtu
Set Less slt
Set Less/Equal sle
Set Less/Equal Unsigned sleu
Set Less Unsigned sltu
Set Not Equal sne
Subtract (with overflow) sub
Subtract (without overflow) subu
Remainder (signed) rem destinatibn,srél; src2
Remainder (unsigned) remu | destination/srcl,src2
gg:a:e Ilic_af;l t rol destination,srcl,

tate Right _ ror immediate
Shift Right Arithmetic sra destination/srcl,
Shift Left Logical sl immediate
Shift Right Logical srl
eaat (o avrton) T | S

ne estination/srcl
Negate (without overflow) negu ’
NOT not
Move move | destination,srcl
Mult@ply _ mult | srcl,src2
Multiply (unsigned) multu

Assembly Language Programmer’s Guide

Instruction Set

Computational Instruction Descriptions

Table 5.5 Computational Instruction Descriptions

Instruction Name

Description

Absolute Value (abs)

Add (with overflow) (add)

Add (without overflow) (addu)

Divide (signed) (div)

Computes the absolute value of the contents of src1 and puts the
result in the destination register. If the value in srcl is
-2147483648, the machine signals an overflow exception.

Computes the twos complement sum of two signed values. This
instruction adds the contents of srcl to the contents of src2, or it
can add the contents of src1 to the immediate value. Add (with
overflow) puts the result in the destination register. When the
result cannot be extended as a 32-bit number, the machine sig-
nals an overflow exception.

Computes the twos complement sum of two 32-bit values. This
instruction adds the contents of srcl to the contents of src2, or it
can add the contents of src1 to the immediate value. Add (with-
out overflow) puts the result in the destination register. Over-
flow exceptions never occur.

AND (and) Computes the Logical AND of two values. This
instruction ANDs (bit—wise) the contents of srcl with the con-
tents of src2, or it can AND the contents of src1 with the imme-
diate value. The immediate value is not sign extended. AND
puts the result in the destination register.

Computes the quotient of two values. Divide (with overflow)
treats srcl as the dividend. The divisor can be src2 or the imme-
diate value. The instruction divides the contents of srcl by the
contents of src2, or it can divide src1 by the immediate value. It
puts the quotient in the destination register. If the divisor is zero,
the machine signals an error and may issue a break instruction.
The div instruction rounds toward zero. Overflow is signaled
when dividing —2147483648 by —1. The machine may issue a
break instruction for divide-by-zero or for overflow.

NOTE: The special case
div $0,srcl,src2

generates the real machine divide instruction and leaves the
result in the hi/lo register. The hi register contains the remain-
der and the lo register contains the quotient. No checking for
divide by zero is performed.

Assembly Language Programmer’s Guide 5-9

Chapter 5

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name

Description

Divide (unsigned) (divu)

EXCLUSIVE OR (xor)

Move (move)

Multiply (mul)

Multiply (mult)

Multiply Unsigned (multu)

Computes the quotient of two unsigned 32-bit values. Divide
(without overflow) treats src1 as the dividend. The divisor can
be src2 or the immediate value. This instruction divides the
contents of srcl by the contents of src2, or it can divide the con-
tents of src1 by the immediate value. Divide (without over-
flow) puts the quotient in the destination register. If the divisor
is zero, the machine signals an exception and may issue a break
instruction.

See the note for div concerning $0 as a destination.

Overflow exceptions never occur.

Computes the XOR of two values. This instruction XORs (bit—
wise) the contents of src1 with the contents of src2, or it can XOR
the contents of srcl with the immediate value. The immediate
value is not sign extended. EXCLUSIVE OR puts the result in
the destination register.

Moves the contents of src1 to the destination register.

Computes the product of two values. This instruction puts the
32-bit product of srcl and src2, or the 32-bit product of src1 and
the immediate value, in the destination register. The machine
does not report overflow.

NOTE: Use mul when you do not need overflow protection:
it’s often faster than mulo and mulou. For multiplication by a
constant, the mul instruction produces faster machine instruction
sequences than mult or multu instructions can produce.

Computes the 64-bit product of two 32-bit signed values. This
instruction multiplies the contents of src1 by the contents of src2
and puts the result in the hi and lo registers (see Chapter 1). No
overflow is possible.

NOTE: The mult instruction is a real machine-language in-
struction

Computes the product of two unsigned 32-bit values. It mul-
tiplies the contents of src1 and the contents of src2 and puts
the result in the hi and lo registers (see Chapter 1). No over-
flow is possible.

NOTE: The multu instruction is a real machine language
instruction.

5-10

Assembly Language Programmer’s Guide

Instruction Set

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name

Description

Multiply with Overflow (mulo)

Multiply with Overflow Unsigned
(mulou)

Negate (with overflow) (neg)

Negate (without overflow)
(negu)

NOT (not)

NOT OR (nor)

OR (or)

Computes the product of two 32-bit signed values. Multiply with
Overflow puts the 32-bit product of srcl and src2, or the 32-bit
product of src1 and the immediate value, in the destination regis-
ter. When a overflow occurs, the machine signals an overflow
exception and may execute a break instruction.

NOTE: For multiplication by a constant, mulo produces faster
machine instruction sequences than mult or multu can produce;
however, if you do not need overflow detection, use the mul in-
struction. It’s often faster than mulo.

Computes the product of two 32-bit unsigned values. Multiply
with Overflow Unsigned puts the 32-bit product of src1 and
src2, or the product of srcl and the immediate value, in the des-
tination register. This instruction treats the multiplier and mul-
tiplicand as 32-bit unsigned values. When an overflow occurs,
the machine signals an overflow exception and may issue an
break instruction.

NOTE: For multiplication by a constant, mulou produces
faster machine instruction sequences than mult or multu can
produce; however, if you do not need overflow detection, use
the mul instruction. It’s often faster than mulou.

Computes the negative of a value. This instruction negates the
contents of src1 and puts the result in the destination register. If
the value in src1 is —2147483648, the machine signals an over-
flow exception.

Negates the integer contents of srcl and puts the result in the des-
tination register. The machine does not report overflows.

Computes the Logical NOT of a value. This instruction comple-
ments (bit-wise) the contents of src1 and puts the result in the
destination register.

Computes the NOT OR of two values. This instruction combines
the the contents of src1 with the contents of src2 (or the immedi-
ate value). NOT OR complements the result and puts it in the
destination register.

Computes the Logical OR of two values. This instruction ORs
(bit—wise) the contents of src1 with the contents of src2, or it can
OR the contents of srcl with the immediate value. The immediate
value is not sign extended. Or puts the result in the destination
register.

Assembly Language Programmer’s Guide 5-11

Chapter 5

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name

Description

Remainder (signed) (rem)

Remainder (unsigned) (remu)

Rotate Left (rol)

Rotate Right (ror)

Set Equal (seq)

Computes the remainder of the division of two unsigned 32-bit
values. The machine defines the remainder rem(i,j) as
i-(j*div(i,j)) where j - 0. Remainder (with overflow) treats srcl
as the dividend. The divisor can be src2 or the immediate value.
This instruction divides the contents of src1 by the contents of
src2, or it can divide the contents of srcl by the immediate value.
It puts the remainder in the destination register. The rem instruc-
tion rounds toward zero, rather than toward negative infinity. For
example, div(5,-3)=-1, and rem(5,-3)=2. For divide-by-zero,
the machine signals an error and may issue a break instruction.

Computes the remainder of the division of two unsigned 32-bit
values. The machine defines the remainder rem(i,j) as
i~(j*div(i,j)) where j - 0. Remainder Unsigned treats src1 as
the dividend. The divisor can be src2 or the immediate value.
This instruction divides the contents of src1 by the contents of
src2, or it can divide the contents of src1 by the immediate
value. Remainder Unsigned puts the remainder in the destina-
tion register. For divide by zero, the machine signals an error
and may issue a break instruction.

Rotates the contents of a register left (toward the sign bit). This
instruction inserts in the least significant bit any bits that were
shifted out of the sign bit. The contents of src1 specify the
value to shift, and the contents of src2 (or the immediate value)
specify the amount to shift. Rotate Left puts the result in the
destination register. If src2 (or the immediate value) is greater
than 31, srcl shifts by (src2 MOD 32).

Rotates the contents of a register right (toward the least signifi-
cant bit). This instruction inserts in the sign bit any bits that
were shifted out of the least significant bit. The contents of
srcl specify the value to shift, and the the contents of src2 (or
the immediate value) specify the amount to shift. Rotate
Right puts the result in the destination register. If src2 (or the
immediate value) is greater than 32, src1 shifts by src2 MOD
32. ‘

Compares two 32-bit values. If the contents of src1 equal the
contents of src2 (or srcl equals the immediate value) this in-
struction sets the destination register to one; otherwise, it sets
the destination register to zero.

5-12

Assembly Language Programmer’s Guide

Instruction Set

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name Description

Set Greater (sgt) Compares two signed 32-bit values. If the contents of src1 are
greater than the contents of src2 (or srcl is greater than the im-
mediate value), this instruction sets the destination register to
one; otherwise, it sets the destination register to zero.

Set Greater/Equal (sge) Compares two signed 32-bit values. If the contents of src1 are
greater than or equal to the contents of src2 (or srcl is greater
than or equal to the immediate value), this instruction sets the
destination register to one; otherwise, it sets the destination reg-
ister to zero.

Set Greater/Equal Unsigned

(sgeu) Compares two unsigned 32-bit values. If the contents of srcl

are greater than or equal to the contents of src2 (or srcl is greater
than or equal to the immediate value), this instruction sets the
destination register to one; otherwise, it sets the destination reg-
ister to zero.

Set Greater Unsigned (sgtu) Compares two unsigned 32-bit values. If the contents of srcl
are greater than the contents of src2 (or srcl is greater than the
immediate value), this instruction sets the destination register to
one; otherwise, it sets the destination register to zero.

Set Less (slt) Compares two signed 32-bit values. If the contents of src1 are
less than the contents of src2 (or srcl is less than the immediate
value), this instruction sets the destination register to one; other-
wise, it sets the destination register to zero.

Set Less/Equal (sle) Compares two signed 32-bit values. If the contents of src1 are
less than or equal to the contents of src2 (or srcl is less than or
equal to the immediate value), this instruction sets the destina-
tion register to one; otherwise, it sets the destination register to
Zer0.

Set Less/Equal Unsigned (sleu) | Compares two unsigned 32-bit values. If the contents of src1
are less than or equal to the contents of src2 (or srcl is less than
or equal to the immediate value) this instruction sets the desti-
nation register to one; otherwise, it sets the destination register
to zero.

Set Less Unsigned (sltu) Compares two unsigned 32-bit values. If the contents of srcl
are less than the contents of src2 (or srcl is less than the im-
mediate value), this instruction sets the destination register to
one; otherwise, it sets the destination register to zero.

Assembly Language Programmer’s Guide 5-13

Chapter 5

Table 5.5 Computational Instruction Descriptions (continued)

Instruction Name

Description

Set Not Equal (sne)

Shift Left Logical (sll)

Shift Right Arithmetic (sra)

Shift Right Logical (srl)

Subtract (with overflow) (sub)

Subtract (without overflow)
(subu)

Compares two 32-bit values. If the contents of scrl do not
equal the contents of src2 (or src1 does not equal the immedi-
ate value), this instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

Shifts the contents of a register left (toward the sign bit) and in-
serts zeros at the least significant bit. The contents of srcl specif)
the value to shift, and the contents of src2 or the immediate value
specify the amount to shift. If src2 (or the immediate value) is
greater than 31 or less than 0, srcl shifts by sre2 MOD 32.

Shifts the contents of a register right (toward the least signifi-
cant bit) and inserts the sign bit at the most significant bit. The
contents of src1 specify the value to shift, and the contents of
src2 (or the immediate value) specify the amount to shift. If
src2 (or the immediate value) is greater than 31 or less than 0,
srcl shifts by the result of src2 MOD 32.

Shifts the contents of a register right (toward the least signifi-
cant bit) and inserts zeros at the most significant bit. The con-
tents of src1 specify the value to shift, and the contents of src2
(or the immediate value) specify the amount to shift. If src2 (or
the immediate value) is greater than 31 or less than 0, src1 shifts
by the result of src2 MOD 32.

Computes the twos complement difference for two signed val-
ues. This instruction subtracts the contents of src2 from the
contents of srcl, or it can subtract the contents of the immediate
from the srcl value. Subtract puts the result in the destination
register. When the true result’s sign differs from the destination
register’s sign, the machine signals an overflow exception.

Computes the twos complement difference for two 32-bit val-
ues. This instruction subtracts the contents of src2 from the
contents of srcl, or it can subtract the contents of the immediate
from the srcl value. Subtract Unsigned puts the result in the
destination register. Overflow exceptions never happen.

The jump and branch instructions let you change an assembly program’s control

flow.

5-14

Assembly Language Programmer’s Guide

Instruction Set

Jump and Branch Formats

In Table 5.6 below, the operands have the following meanings:

Operand Description

address an expression

srcl,src2 the source registers

target register containing the target

label a symbol label

return register containing the return address
immediate an expression with an absolute value

Table 5.6 Jump and Branch Instruction Formats

Branch on Greater/Equal Unsigned bgeu
Branch on Greater Unsigned

Description Op—-code | Operand
Jump i address
Jump and Link jal address
target
return,target
Branch on Equal beq srcl,src2,label
Branch on Greater bgt srcl, immediate,label
Branch on Greater/Equal bge

Branch on Greater or Equal to Zero bgezal

Branch on Less blt

Branch on Less/Equal ble

Branch on Less/Equal Unsigned bleu

Branch on Less Unsigned bltu

Branch on Not Equal bne

Branch on Equal to Zero beqz srcl,label
Branch on Greater/Equal Zero bgez

Branch on Greater Than Zero bgtz

and Link
Branch on Less Than Zero and Link bltzal
Branch on Less/Equal Zero blez
Branch on Less Than Zero bltz
Branch on Not Equal to Zero bnez
Branch b label
Branch and Link bal

Assembly Language Programmer’s Guide

5-15

Chapter 5

Jump and Branch Instruction Descriptions

In the following branch instructions, branch destinations must be defined in the
source being assembled.

Table 5.7 Jump and Branch Instruction Descriptions

Instruction Name

Description

Branch (b)
Branch and Link (bal)

Branch on Equal (beq)

Branch on Equal to Zero (beqz)

Branch on Greater (bgt)

Branch on Greater
/Equal Unsigned (bgeu)

Branch on Greater
/Equal Zero (bgez)

Branch on Greater
/Equal Zero and Link (bgezal)

Branch on Greater or Equal
(bge)

Branch on Greater

Branches unconditionally to the specified label.

Branches unconditionally to the specified label and puts the re-
turn address in general register $31.

Branches to the specified label when the contents of srcl equal
the contents of src2, or it can branch when the contents of srcl
equal the immediate value.

Branches to the specified label when the contents of srcl equal
zero.

Branches to the specified label when the contents of srcl are
greater than the contents of src2, or it can branch when the con-
tents of src1 are greater than the immediate value. The compari-
son treats the comparands as signed 32-bit values.

Branches to the specified label when the contents of srcl are
greater than or equal to the contents of src2, or it can branch
when the contents of srcl are greater than or equal to the imme-
diate value. The comparison treats the comparands as unsigned
32-bit values.

Branches to the specified label when the contents of srcl are
greater than or equal to zero.

Branches to the specified label when the contents of srcl are
greater than or equal to zero and puts the return address in gen-
eral register $31. ‘When this write is done, it destroys the con-
tents of the register. See the RISC Architecture book for more
information.

Branches to the specified label when the contents of srcl are
greater than or equal to the contents of src2, or it can branch
when the contents of srcl are greater than or equal to the imme-
diate value. The comparison treats the comparands as signed
32-bit values.

Branches to the specified label when the contents of src1 are

Than Unsigned greater than the contents of src2, or it can branch when the
(bgtu) contents of src1 are greater than the immediate value. The
comparison treats the comparands as unsigned 32-bit values.
5-16

Assembly Language Programmer’s Guide

Instruction Set

Table 5.7 Jump and Branch Instruction Descriptions (continued)

Instruction Name Description

Branch on Greater Than Zero | Branches to the specified label when the contents of srcl are
(bgtz) greater than zero.

Branch on Less (blt) Branches to the specified 1label when the contents of srcl are less
than the contents of src2, or it can branch when the contents of
srcl are less than the immediate value. The comparison treats the
comparands as signed 32-bit values.

Branch on Less/Equal Unsigned| Branches to the specified label when the contents of srcl are less
(bleu) than or equal to the contents of src2, or it can branch when the
contents of src1 are less than or equal to the immediate value.
The comparison treats the comparands as unsigned 32-bit values.

Branch on Less/Equal Zero Branches to the specified label when the contents of srcl are
(blez) less than or equal to zero. The program must define the destina-
tion.

Branch on Less or Equal (ble) Branches to the specified label when the contents of srcl are
less than or equal to the contents of src2, or it can branch when
the contents of src1 are less than or equal to the immediate
value. The comparison treats the comparands as signed 32-bit
values.

Branch on Less Than Unsigned | Branches to the specified label when the contents of srcl are
(bltu) less than the contents of src2, or it can branch when the con-
tents of srcl are less than the immediate value. The compari-
son treats the comparands as unsigned 32-bit values.

Branch on Less Than Zero Branches to the specified label when the contents of srcl are less
(bltz) than zero. The program must define the destination.

Branch on Less Than Branches to the specified label when the contents of srcl are less
Zero and Link (bltzal) than zero and puts the return address in general register $31.

Because the value is always stored in register 31, there is a
chance of a stored value being overwritten before it is used. See
the RISC Architecture book for more information.

Branch on Not Equal (bne) Branches to the specified label when the contents of src1 do not
equal the contents of src2, or it can branch when the contents of
srcl do not equal the immediate value.

Branch on Not Equal to Zero Branches to the specified label when the contents of src1 do not
(bnez) equal zero.

Assembly Language Programmer’s Guide 5-17

Chapter 5

Table 5.7 Jump and Branch Instruction Descriptions (continued)

Instruction Name Description
Jump (j) Unconditionally jumps to a specified location. A symbolic ad-
dress or a general register specifies the destination. The instruc-
tion j $31 returns from the a jal call instruction.
Jump And Link (jal) Unconditionally jumps to a specified location and puts the return

address in a general register. A symbolic address or a general
register specifies the target location. By default, the return ad-
dress is placed in register $31. If you specify a pair of registers,
the first receives the return address and the second specifies the
target. The instruction jal procname transfers to procname and
saves the return address.

For the two-register form of the instruction, the target register
may not be the same as the return—address register. For the one—
register form, the target may not be $31.

Special Instructions

The main processor’s special instructions do miscellaneous tasks.

Special Formats

In Table 5.8 , operands have the following meanings:

5-18

Operand | Description

register destination or source register

breakcode | value that determines the break type

Table 5.9 Special Instruction Formats

Description Op—code Operand
Break break breakcode
Restore From Exception| rfe

Syscall syscall

Move From HI Register | mtfhi register
Move To HI Register mthi

Move From LO Register] mflo
Move To LO Register mtlo

Assembly Language Programmer’s Guide

Instruction Set

Special Instruction Descriptions

Table 5.10 Special Instruction Descriptions

Instruction Name Description

Break (break) Unconditionally transfers control to the exception handler. The
breakcode operand is interpreted by software conventions.

Move From HI Register (mfhi) | Moves the contents of the hi register to a general purpose register.

Move From LO Register (mflo) | Moves the contents of the lo register to a general purpose register.

Move To HI Register (mthi) Moves the contents of a general purpose register to the hi register.

Move To LO Register (mtlo) Moves the contents of a general purpose register to the lo register.

Restore From Exception (rfe) Restores the previous interrupt callee and user/kemel state. This
instruction can execute only in kernel state and is unavailable in
user mode.

Syscall (syscall) Causes a system call trap. The operating system interprets the

information set in registers to determine what system call to do.

Coprocessor Interface Instructions

The coprocessor interface instructions provide standard ways to access the ma-
chine’s coprocessors.*

Coprocessor Interface Formats

In Table 5.11 , the operands have the following meanings:

Operand | Description

z a coprocessor number in the range 0...3
destination | the destination coprocessor register
dest—gpr the destination general register

address a symbolic expression

source a coprocessor register from which values are assigned
Src—gpr a general register from which values are assigned
operation the coprocessor specific operation

label a symbolic label

Assembly Language Programmer’s Guide 5-19

Chapter 5

Table 5.11 coprocessor Interface Instruction Formats

Description Op-—code Operand

Load Word Coprocessor z Iwcz destination,address
Store Word Coprocessor z SWCZ source, address
Move From Coprocessor z mfcz dest—gpr, source
Move To Coprocessor z mtcz src—gpr, destination
Branch Coprocessor z False bezf label

Branch Coprocessor z True bezt

Coprocessor z Operation cz expression

Control From Coprocessor z cfez dest—gpr, source
Control To Coprocessor z ctez src—gpr, destination

* You cannot use coprocessor load and store instructions with the system control coproce-

ssor (cp0).

Coprocessor Interface Instruction Descriptions

Table 5.12 Coprocessor Interface Instruction Descriptions

Instruction Name

Description

Branch Coprocessor z True

(bezt)

Branch Coprocessor z False

(bezf)

Control From Coprocessor z
(cfcz)

Control To Coprocessor z
(ctcz)

Coprocessor z Operation

(c2)

Branches to the specified label when the specified coprocessor
asserts a true condition. The z selects one of the coprocessors. A
previous coprocessor operation sets the condition.

Branches to the specified label when the specified coprocessor
asserts a false condition. The z selects one of the coprocessors. A
previous coprocessor operation sets the condition.

Stores the contents of the coprocessor control register specified
by the source in the general register specified by dest—gpr.

Stores the contents of the general register specified by src—gpr in
the coprocessor control register specified by the destination.

Executes a coprocessor—specific operation on the specified cop-
rocessor. The z selects one of four distinct coprocessors.

5-20

Assembly Language Programmer's Guide

Instruction Set

Table 5.12 Coprocessor Interface Instruction Descriptions (continued)

Instruction Name

Description

Load Word Coprocessor z

(Iwcz)

Move From Coprocessor z
(mfcz)

Move To Coprocessor z
(mtcz)

Store Word Coprocessor z
(swcz)

Loads the destination with the contents of a word that is at the
memory location specified by the effective address. The z selects
one of four distinct coprocessors. Load Word Coprocessor re-
places all register bytes with the contents of the loaded word. If
bits 0 and 1 of the effective address are not zero, the machine sig-
nals an address exception.

Stores the contents of the coprocessor register specified by the
source in the general register specified by dest-gpr.

Stores the contents of the general register specified by src-gpr
in the coprocessor register specified by the destination.

Stores the contents of the coprocessor register in the memory lo-
cation specified by the effective address. The z selects one of four
distinct coprocessors. If bits 0 and 1 of the effective address are
not zero, the machine signals an address error exception.

Assembly Language Programmer’s Guide

5-21

Chapter 5

5-22

Assembly Language Programmer’s Guide

6
Coprocessor Instruction Set

This chapter describes the coprocessor instructions for these coprocessors:

e system control coprocessor (cp0) instructions
o floating point coprocessor instructions

See Chapter NO TAG for a description of the main processor’s instructions and
the coprocessor interface instructions.

Instruction Notation

The tables in this chapter list the assembler format for each coprocessor’s load,
store, computational, jump, branch, and special instructions. The format consists
of an op—code and a list of operand formats. The tables list groups of closely re-
lated instructions; for those instructions, you can use any op—code with any
specified operand.

NOTE: The system control coprocessor instructions do not have operands. Op-
erands can have any of these formats:

¢ memory references—for example a relocatable symbol +/- an
expression(register)

e expressions (for immediate values)

e two or three operands—for example, add $3,$4 is the same as
add $3,$3,54

The following terms are used to discuss floating point operations:

e infinite—A value of +1 or —1.

¢ infinity—A symbolic entity that represents values with magni-
tudes greater than the largest value in that format.

¢ ordered—The usual result from a comparison, namely: <,=, or >

o NaN—Symbolic entities that represent values not otherwise
available in floating point formats. There are two kinds of NaNs.
Quiet NaNs represent unknown or uninitialized values. Signal-
ing NaNs represent symbolic values and values that are t0o big
or too precise for the format. Signaling NaNs raise an invalid
operation exception whenever an operation is attempted on them.

Assembly Language Programmer’s Guide 6—1

Chapter 6

unordered—The condition that results from a floating—point
comparison when one or both operands are NaNs.

Floating Point Instructions

The floating point coprocessor has these classes of instructions:

Load and Store Instructions. Load values and move data be-
tween memory and coprocessor registers.

Move Instructions. Move data between registers.

Computational Instructions. Do arithmetic and logical opera-
tions on values in coprocessor registers.

Relational Instructions. Compare two floating point values.

A particular floating point instruction may be implemented in hardware, soft-
ware, or a combination of hardware and software.

Floating Point Formats

The formats for the single and double precision floating point constants are

shown below.
01 89 31 (big—endian)
1] 8 bits 23 bits
3130 23 22 0 (little—endian)
Single Precision
(big—endian)
01 1112 63
1] 11 bits 52 bits
63 62 52 51 0
(little—endian)

6-2

Double Precision

Figure 6.1 Floating Point Formats

Assembly Language Programmer’s Guide

Coprocessor Instruction Set

Floating Point Load and Store Formats

Floating point load and store instructions must use even registers. The operands
inTable 6.1 have the following meanings:

Operand Meaning

destination the destination register
address offset (base)

source the source register

Table 6.1 Floating Point Load and Store Formats

Description Op—code Operand
Load Fp
Double l.d destination, address
Single Ls
Load Immediate Fp
Double li.d destination, floating point constant
Single li.s
Store Fp
Double s.d source, address
Single s.S

Floating Point Load and Store Descriptions

This part of Chapter 6 groups the instructions by function. Please consult
Table 6.1 for the op—codes.

Table 6.2 Floating Point Load and Store Descriptions

Instruction

Description

Load Fp Instructions | Load eight bytes for double precision and four bytes for single
precision from the specified effective address into the destination
register, which must be an even register. The bytes must be
word aligned. NOTE: To ensure compatibility with future ma-
chines, we recommend that you use double word alignment for
double precision operands.

Store Fp Instructions Stores eight bytes for double precision and four bytes for single
precision from the source floating point register in the destina-
tion register, which must be an even register. NOTE: To en-
sure compatibility with future machines, we recommend that
you use double word alignment for double precision operands.

Assembly Language Programmer’s Guide

6-3

Chapter 6

Floating Point Computational Formats

This part of Chapter 6 describes floating point computational instructions. The (
operands in Table 6.3 below have the following meaning:

Operand Meaning

destination the destination register

source the source register

gpr general purpose register

Table 6.3 Floating Point Computational Instruction Formats

Description Op-code Operand
Absolute Value Fp
Double abs.d destination, srcl
Single : abs.s
Negate Fp
Double neg.d
Single neg.s
Add Fp dd.d
Double add. o
Single add.s destination, src1, src2 (
Divide Fp .
Double dgv.d
Single div.s
Multiply Fp
Double mul.d
Single mul.s
Subtract Fp
Double sub.d
Single sub.s
Conditional Trap destination, src
Trap if Equal teq
Trap if not Equal tne
Trap if Less Than tit
Trap if Less than, Unsigned Itu
Trap if Greater Than or Equal tge
Trap if Greater than or Equal, Unsigned tgeu
Convert Source to
Specified Fp Precision
Double to Single Fp cvt.s.d destination, src1
Fixed Point to Single Fp cvi.s.w
Single to Double Fp cvt.d.s
Fixed Point to Double Fp cvt.d.w
Single to Fixed Point Fp cvt.w.s
Double to Fixed Point Fp cvt.w.d (
64

Assembly Language Programmer’s Guide

Coprocessor Instruction Set

Table 6.3 Floating Point Computational Instruction Formats (continued)

Description Op—code Operand

Truncate and Round
Operations

Truncate to Single F trunc.w.s

Truncate to Double Fp trunc.w.d

Round to Single Fp round.w.s

Round to Double Fp round.w.d

Ceiling to Double Fp ceil.w.d

Ceiling to Single Fp ceil.w.s

Ceiling to Double Fp, Unsigned | ceilu.w.d destination, src, gpr

Ceiling to Single Fp, Unsigned | ceilu.w.s

Floor to Double Fp floor.w.d

Floor to Single Fp floor.w.s

Floor to Double Fp, Unsigned flooru.w.d

Floor to Single Fp, Unsigned flooru.w.s

Round to Double Fp, Unsigned | roundu.w.d

Round to Single Fp, Unsigned roundu.w.s

Truncate to Double Fp, Unsigned| truncu.w.d

Truncate to Single Fp, Unsigned | truncu.w.s

Floating Point Computational Instruction Descriptions

This part of Chapter 6 groups the instructions by function. Refer to Table 6.3

for the op—code names.

Assembly Language Programmer’s Guide

6-5

Chapter 6

Table 6.4 Floating Point Computational Instruction Descriptions

Instruction Description
Absolute Value Fp Instructions Compute the absolute value of the contents of srcl and
put the specified precision floating point result in the
destination register.
Add Fp Single Instructions Add the contents of src1 (or the destination) to the con-

tents of src2 and put the result in the destination register.
When the sum of two operands with opposite signs is
exactly zero, the sum has a positive sign for all rounding|
modes except round toward —1. For that rounding
mode, the sum has a negative sign.

Convert Source to Another Convert the contents of srcl to the specified precision,
Precision Fp Instructions round according to the rounding mode, and put the re-
sult in the destination register.

Truncate and Round Instructions The trunc instructions truncate the value in the source
' floating—point register and put the resulting integer in
the destination floating—point register, using the third
(general—-purpose) register to hold a temporary value.
(This is a macro-instruction.) The round instructions
work like trunc, but round the floating—point value to
an integer instead of truncating it.

Divide Fp Instructions Compute the quotient of two values. These instruc-
tions treat srcl as the dividend and src2 as the divisor.
Divide Fp instructions divide the contents of src1 by
the contents of src2 and put the result in the destination
register. If the divisor is a zero, the machine signals a
error if the divide-by-zero exception is enabled.

Multiply Fp Instructions Multiplies the contents of src1 (or the destination) with
the contents of src2 and puts the result in the destina-
tion register.

6-6 Assembly Language Programmer’s Guide

Coprocessor Instruction Set

Table 6.4 Floating Point Computational Instruction Descriptions (continued)

Instruction Description
Negate FP Instructions Compute the negative value of the contents of srcl and
put the specified precision floating point result in the
destination register.

Subtract Fp Instructions
" P ueh Subtract the contents of src2 from the contents of srcl

(or the destination). These instructions put the result in
the destination register. When the difference of two
operands with the same signs is exactly zero, the dif-
ference has a positive sign for all rounding modes ex-
cept round toward —1. For that rounding mode, the
sum has a negative sign.

Floating Point Relational Operations

Table 6.5 summarizes the floating point relational instructions. The first column
under Condition gives a mnemonic for the condition tested. As the “branch on
true/false” condition can be used to logically negate any condition, the second
column supplies a mnemonic for the logical negation of the condition in the first
column. This provides a total of 32 possible conditions. The four columns under
Relations give the result of the comparison based on each condition. The final
column states if an invalid operation is signaled for each condition.

For example, with an equal condition (EQ mnemonic in the True column), the
logical negation of the condition is not equal (NEQ), and a comparison that is
equal is True for equal and False for greater than, less than, and unordered, and
no Invalid Operation Exception is given if the relation is unordered.

Assembly Language Programmer’s Guide 6-7

Chapter 6

Table 6.5 Floating Point Relational Operators (
Condition Relations Invalid -
Mnemonic Operation

Greater | Less Exception if
True False Than Than Equal Unordered | Unordered
F T F F F F no
UN OR F F F T no
EQ NEQ F F T F no
UEQ | OLG F F T T no
OLT UGE F T F F no
ULT OGE F T F T no
OLE UGT F T T F no
ULE OGT F T T T no
SF ST F F F F yes
NGLE | GLE F F F T yes
SEQ SNE F F T F yes
NGL GL F F T T yes
LT NLT F T F F yes
NGE GE F T F T yes
LE NLE F T T F yes
NGT GT F T T T yes

The mnemonics in Table 6.5 have the following meanings:

F
UN
EQ
UEQ

OLT

SF
NGLE

SEQ
NGL

LT
NGE

LE
NGT

False

Unordered

Equal

Unordered or Equal

Ordered Less Than

Unordered or Less
Than

Ordered Less Than
or Equal

Unorderd or Less
Than or Equal

Signaling False

Not Greater Than or
Less Than or Equal
Signaling Equal
Not Greater than or
Less Than

Less Than

Not Greater Than

or Equal

Less Than or Equal

Not Greater Than

T
OR
NEQ
OLG

UGE

OGE
UGT

OGT

ST
GLE

SNE
GL

True (

Ordered
Not Equal

Ordered or Less Than
or Greater Than

Unordered or Greater
Than or Equal

Ordered Greater Than

Unordered or Greater
Than
Ordered Greater Than

Signaling True
Greater Than, or
Less Than or Equal
Signaling Not Equal

Greater Than or Less Than

Not Less Than
Greater Than or Equal

Not Less Than or Equal (:
Greater Than ‘

Assembly Language Programmer’s Guide

Coprocessor Instruction Set

To branch on the result of a relational:
/* branching on a compare result */
c.eq.s $f1,$f2 /* compare the single precision values */
bclt true /* if $f1 equals $£f2, branch to true */

bclf false /* if $fl1 does not equal $f2, branch to */
/* false */

Floating Point Relational Formats
In the table below, srcl and src2 refer to the source registers.

NOTE: These are the most common Compare instructions. The machine pro-
vides other Compare instructions for IEEE compatibility.

Table 6.6 Floating Point Relational Instruction Formats

Description Op—code Operand
Compare F

Double cfd srcl,src2

Single cfs
Compare UN

Double caun.d

Single c.un.s
*Compare EQ

Double c.eq.d

Single c.eq.s
Compare UEQ

Double c.ueq.d

Single c.ueq.s
Compare OLT

Double c.olt.d

Single c.olt.s
Compare ULT

Double cult.d

Single c.ult.s
Compare OLE

Double c.ole.d

Single c.ole.s
Compare ULE

Double c.ule.d

Single c.ule.s
Compare SF

Double c.sf.d

Single c.sf.s

Assembly Language Programmer’s Guide 6-9

Chapter 6

Table 6.6 Floating Point Relational Instruction Formats (continued)

Description Op—code Operand
Compare NGLE

Double c.ngle.d srcl, src2

Single c.ngle.s
Compare SEQ

Double c.seq.d

Single c.seq.s
Compare NGL

Dou%le cngl.d

Single c.ngls
*Compare LT

Double clt.d

Single clt.s
Compare NGE

Double C.nge.d

Single c.nge.s
*Compare LE

Double cled

Single cles
Compare NGT

Dou%le c.ngt.d .

Single c.ngt.s

Floating Point Relational Instruction Descriptions

6-10

This part of Chapter 6 describes the relational instruction descriptions by func-
tion. Refer to Chapter 1 for information regarding registers. Please consult
Table 6.6 for the op—code names.

Table 6.7 Floating Point Relational Instruction Descriptions

Instruction

Description

Compare EQ Instructions

Compare F Instructions

Compare LE Instructions

Compare the contents of srcl with the contents of src2. If
srcl equals src2 a true condition results; otherwise, a false
condition results. The machine does not signal an excep-
tion for unordered values.

Compare the contents of srcl with the contents of src2.
These instructions always produce a false condition. The
machine does not signal an exception for unordered val-
ues.

Compare the contents of srcl with the contents of src2. If
srcl is less than or equal to src2, a true condition results;
otherwise, a false condition results. The machine signals
an exception for unordered values. ’

Assembly Language Programmer's Guide

Coprocessor Instruction Set

Table 6.7 Floating Point Relational Instruction Descriptions (continued)

Instruction

Description

Compare LT Instructions

Compare NGE Instructions

Compare NGL Instructions

]

Compare NGLE Instructions

Compare NGT Instructions

Compare OLE Instructions

Compare OLT Instructions

Compare SEQ Instructions

Compare SF Instructions

Compare the contents of srcl with the contents of src2. If
srcl is less than src2, a true condition results; otherwise, a
false condition results. The machine signals an exception
for unordered values.

Compare the contents of src1 with the contents of src2. If
srcl is less than src2 (or the contents are unordered), a true
condition results; otherwise, a false condition results. The
machine signals an exception for unordered values.

Compare the contents of src1 with the contents of src2. If
src1 equals src2 or the contents are unordered, a true condi-
tion results; otherwise, a false condition results. The ma-
chine signals an exception for unordered values.

Compare the contents of src1 with the contents of src2. If
srcl is unordered, a true condition results; otherwise, a
false condition results. The machine signals an exception
for unordered values.

Compare the contents of srcl with the contents of src2. If
srcl is less than or equal to src2 or the contents are unor-
dered, a true condition results; otherwise, a false condition
results. The machine signals an exception for unordered
values.

Compare the contents of srcl with the contents of src2. If
srcl is less than or equal to src2, a true condition results;
otherwise, a false condition results. The machine does not
signal an exception for unordered values.

Compare the contents of srcl with the contents of src2. If
srcl is less than src2, a true condition results; otherwise, a
false condition results. The machine does not signal an
exception for unordered values.

Compare the contents of src1 with the contents of src2. If
src1 equals src2, a true condition results; otherwise, a
false condition results. The machine signals an exception
for unordered values.

Compare the contents of srcl with the contents of src2.
This always produces a false condition. The machine sig-
nals an exception for unordered values.

Assembly Language Programmer’s Guide

6—11

Chapter 6

Table 6.7 Floating Point Relational Instruction Descriptions (continued)

Instruction

Description

Compare ULE Instructions

Compare UEQ Instructions

Compare ULT Instructions

Compare UN Instructions

Compare the contents of srcl with the contents of src2. If
srcl is less than or equal to src2 (or srcl is unordered), a
true condition results; otherwise, a false condition results.
The machine does not signal an exception for unordered
values.

Compare the contents of src1 with the contents of src2. If
srcl equals src2 (or srcl and src2 are unordered), a true
condition results; otherwise, a false condition results. The
machine does not signal an exception for unordered values.

Compare the contents of srcl with the contents of src2. If
srcl is less than src2 (or the contents are unordered), a true
condition results; otherwise, a false condition results. The
machine does not signal an exception for unordered val-
ues.

Compare the contents of srcl with the contents of src2. If
either src1 or src2 is unordered, a true condition results;
otherwise, a false condition results. The machine does not
signal an exception for unordered values.

Floating Point Move Formats

The floating point coprocessor’s move instructions move data from source to
destination registers (only floating point registers are allowed).

Table 6.8 Floating Point Move Instruction Formats

Description

Op—code Operand

Move Fp
Double
Single

mov.d
mov.s

destination, srcl

Floating Point Move Instruction Descriptions

This part of Chapter 6 describes the floating point move instructions. Please
consult Table 6.8 for the op—code names.

Table 6.9 Floating Point Move Instruction Descriptions

Instruction

Description

Move Fp Instructions Move the double or single precision contents of srcl to the
destination register, maintaining the specified precision.

6-12

Assembly Language Programmer’s Guide

Coprocessor Instruction Set

System Control Coprocessor Instructions

The system control coprocessor (cp0) handles all functions and special and privi-
leged registers for the virtual memory and exception handling subsystems. The
system control coprocessor translates addresses from a large virtual address
space into the machine’s physical memory space. The coprocessor uses a trans-
lation lookaside buffer (TLB) to translate virtual addresses to physical addresses.

System Control Coprocessor Formats

These coprocessor system control instructions do not have operands:

Table 6.10 System Control Instruction Formats.

Description Op—code
Translation Lookaside Buffer Probe tlbp
Translation Lookaside Buffer Read tlbr
Translation Lookaside Buffer Write Random | tlbwr
Translation Lookaside Write Index tlbwi

System Control Coprocessor Instruction Descriptions

This part of Chapter 6 describes the system control coprocessor instructions.

Table 6.11 System Control Coprocessor Instruction Descriptions

Instruction

Description

Translation Lookaside Buffer Probe
(tlbp)

Translation Lookaside Buffer Read
(tlbr)

Translation Lookaside Buffer
Write Random
(tlbwr)

Translation Lookaside Buffer
Write Index
(tlbwi)

Probes the translation lookaside buffer (TLB) to see if the TLB has
an entry that matches the contents of the EntryHi register. If a
match occurs, the machine loads the Index register with the num-
ber of the entry that matches the EntryHi register. If no TLB entry
matches, the machine sets the high—order bit of the Index register.

Loads the EntryHi and EntryLo registers with the contents of the
translation lookaside buffer (TLB) entry specified in the TLB Index
register.

Loads the specified translation lookaside buffer (TLB) entry with
the contents of the EntryHi and EntryLo registers. The contents
of the TLB Random register specify the TLB entry to be loaded.

Loads the specified translation lookaside buffer (TLB) entry with
the contents of the EntryHi and EntryLo registers. The contents
of the TLB Index register specify the TLB entry to be loaded.

Control and Status Register

Floating—point coprocessor control register 31 contains status and control infor-
mation. It controls the arithmetic rounding mode and the enabling of user-level

Assembly Language Programmer’s Guide

6-13

Chapter 6

traps, and indicates exceptions that occurred in the most recently executed in-
struction, and any exceptions that may have occurred without being trapped.

31 2423 22 18 17 12 11 76 210
0 c 0 exceptions | enables Sgﬁlscy‘ RM
BITS: 8 1 5 6 5 5 2

Control and Status Register
(c = compare bit)

1110 9 8 7 17161514 13 12 65432
vl z| o ul1 E|v|z| ol ul1 v| z| o ul1
Enable Bits Exception Bits Sticky Bits

Figure 6.2 Floating Control and Status Register 31

The exception bits are set for instructions that cause an IEEE standard exception
or an optional exception used to emulate some of the more hardware—intensive
features of the IEEE standard.

The exception field is loaded as a side—effect of each floating—point operation
(excluding loads, stores, and unformatted moves). The exceptions which were
caused by the immediately previous floating—point operation can be determined
by reading the exception field.

The meaning of each bit in the exception field is given below. If two exceptions
occur together on one instruction, the field will contain the inclusive OR of the
bits for each exception.

Exception o
Field Bit | Description

Unimplemented Operation
Invalid Operation
Division by Zero

Inexact Exception

Overflow Exception

c O = N < W™

Underflow Exception

The unimplemented operation exception is normally invisible to user—level code.
It is provided to maintain IEEE compatibility for non—standard implementations.

The five IEEE standard exceptions are listed below:

6-14 Assembly Language Programmer's Guide

Coprocessor Instruction Set

Field Description
\% Invalid Operation
Z Division by Zero
I Inexact Exception
0 Overflow Exception
U Underflow Exception

Each of the five exceptions is associated with a trap under user control, which is
enabled by setting one of the five bits of the enable field, shown above.

When an exception occurs, both the corresponding exception and status bits are
set. If the corresponding enable flag bit is set, a trap is taken. In some cases the
result of an operation is different if a trap is enabled.

The status flags are never cleared as a side effect of floating—point operations, but
may be set or cleared by writing a new value into the status register, using a
move to coprocessor control” instruction.

The floating—point compare instruction places the condition which was detected
into the c” bit of the control and status register, so that the state of the condition
line may be saved and restored. The c” bit is set if the condition is true, and
cleared if the condition is false, and is affected only by compare and move to
control register instructions.

Exception Trap Processing

For each IEEE standard exception, a status flag is provided that is set on any oc-
currence of the corresponding exception condition with no corresponding excep-
tion trap signaled. It may be reset by writing a new value into the status register.
The flags may be saved and restored individually, or as a group, by software.
When no exception trap is signaled, a default action is taken by the floating—point
coprocessor, which provides a substitute value for the original, exceptional, result
of the floating—point operation. The default action taken depends on the type of
exception, and in the case of the Overflow exception, the current rounding mode.

Invalid operation exception

The invalid operation exception is signaled if one or both of the operands are in-
valid for an implemented operation. The result, when the exception occurs with-
out a trap, is a quiet NaN when the destination has a floating—point format, and is
indeterminate if the result has a fixed—point format. The invalid operations are:

1) Addition or subtraction: magnitude subtraction of infinities, such
as(+1)—-(-1)

Assembly Language Programmer’s Guide 6-15

Chapter 6

6-16

2) Multiplication: 0 times 1, with any signs
3) Division: 0 over 0 or 1 over 1, with any signs
4) Square root: ¥ x, where x is less than zero

5) Conversion of a floating—point number to a fixed—point format
when an overflow, or operand value of infinity or NaN, pre-
cludes a faithful representation in that format

6) Comparison of predicates involving < or > without ?, when the
operands are “unordered”

7) Any operation on a signaling NaN.

Software may simulate this exception for other operations that are invalid for the
given source operands. Examples of these operations include IEEE-specified
functions implemented in software, such as Remainder: x REM y, where y is
zero or X is infinite; conversion of a floating—point number to a decimal format
whose value causes and overflow or is infinity of NaN; and trancendental func-
tions, such as In (-5) or cos _1(3).

Division-by—zero exception

The division by zero exception is signaled on an implemented divide operation if
the divisor is zero and the dividend is a finite nonzero number. The result, when
no trap occurs, is a correctly signed infinity.

If division by zero traps are enabled, the result register is not modified, and the
source registers are preserved.

Software may simulate this exception for other operations that produce a signed
infinity, such as In(0), sec(p/2), csc(0) or0 ~-.

Overflow exception

The overflow exception is signaled when what would have been the magnitude of
the rounded floating—point result, were the exponent range unbounded, is larger
than the destination format’s largest finite number. The result, when no trap oc-
curs, is determined by the rounding mode and the sign of the intermediate result.

If overflow traps are enabled, the result register is not modified, and the source
registers are preserved.

Underflow exception

Two related events contribute to underflow. One is the creation of a tiny non—

zero result between + or—2 E min (minimum expressable exponent) which, be-
cause it is tiny, may cause some other exception later. The other is extraordinary
loss of accuracy during the approximation of such tiny numbers by denormalized
numbers.

The IEEE standard permits a choice in how these events are detected, but re-
quires that they must be detected the same way for all operations.

Assembly Language Programmer'’s Guide

Coprocessor Instruction Set

The IEEE standard specifies that “tininess” may be detected either: "after round-
ing” (when a nonzero result computed as though the exponent range were un-
bounded would lie strictly between + or —2 E min, or "before rounding” (when a
nonzero result computed as though the exponent range and the precision were
unbounded would lie strictly between + or— 2 E min_ The architecture requires
that tininess be detected after rounding.

Loss of accuracy may be detected as either “denormalization loss” (when the de-
livered result differs from what would have been computed if the exponent range
were unbounded), or “inexact result” (when the delivered result differs from what
would have been computed if the exponent range and precision were both un-
bounded). The architecture requires that loss of accuracy be detected as inexact
result.

When an underflow trap is not enabled, underflow is signaled (via the underflow
flag) only when both tininess and loss of accuracy have been detected. The de-
livered result might be zero, denormalized, or + or —2 E min. When an under-
flow trap is enabled, underflow is signaled when tininess is detected regardless of
loss of accuracy.

If underflow traps are enabled, the result register is not modified, and the source
registers are preserved.

Inexact exception

If the rounded result of an operation is not exact or if it overflows without an
overflow trap, then the inexact exception is signaled. The rounded or overflowed
result is delivered to the destination register, when no inexact trap occurs. If in-
exact exception traps are enabled, the result register is not modified, and the
source registers are preserved.

Unimplemented operation exception

If an operation is specified that the hardware may not perform, due to an imple-
mentation restriction on the supported operations or supported formats, an
unimplemented operation exception may be signaled, which always causes a trap,
for which there are no corresponding enable or flag bits. The trap cannot be dis-
abled.

This exception is raised at the execution of the unimplemented instruction. The
instruction may be emulated in software, possibly using implemented floating—
point unit instructions to accomplish the emulation. Normal instruction execu-

tion may then be restarted.

This exception is also raised when an attempt is made to execute an instruction
with an operation code or format code which has been reserved for future archi-
tectural definition. The unimplemented instruction trap is not optional, since the
current definition contains codes of this kind.

This exception may be signaled when unusual operands or result conditions are
detected, for which the implemented hardware cannot properly handle the condi-
tion. These may include (but are not limited to), denormalized operands or re-
sults, NaN operands, trapped overflow or underflow conditions. The use of this
exception for such conditions is optional.

Assembly Language Programmer’s Guide 6-17

Chapter 6

Floating Point Rounding

Bits 0 and 1 of the coprocessor control register 31 sets the rounding mode for
floating point. The machine allows four rounding modes:

Round to nearest rounds the result to the nearest representable
value. When the two nearest representable values are equally
near, this mode rounds to the value with the least significant bit
zero. To select this mode, set bits 1..0 of control register 31 to 0.

Round toward zero rounds toward zero. It rounds to the value
that is closest to and not greater in magnitude than the infinitely
precise result. To select this mode, set bits 1..0 of control regis-
ter31to1.

Round toward positive infinity rounds to the value that is clos-
est to and not less than the infinitely precise result. To select this
mode, set bits 1..0 of control register 31 to 2.

Round toward negative infinity rounds toward negative infin-
ity. It rounds to the value that is closest to and not greater than
the infinitely precise result. To select this mode, set bits 1..0 of
control register 31 to 3.

To set the rounding mode:

/* setting the rounding mode */
RoundNearest = 0x0

RoundZero = Oxl

RoundPosInf = 0x2

RoundNegInf = 0x3

6-18

cfecl rt2, $31

and rt, Oxfffffffc
or rt, RoundZero
ctcl rt, $£31

move from coprocessor 1
zero the round mode bits
set mask as round to zero
move to coprocessor 1

S ok 3k %

Assembly Language Programmer’s Guide

Introduction

7
Linkage Conventions

This chapter gives rules and examples to follow when designing an assembly lan-
guage program. The chapter concludes with a “learn by doing” technique that
you can use if you still have any doubts about how a particular calling sequence
should work. This involves writing a skeleton version of your prospective as-
sembly routine using a high level language, and then compiling it with the —S
option to generate a human-readable assembly language file. The assembly lan-
guage file can then be used as the starting point for coding your routine.

When you write assembly language routines, you should follow the same calling
conventions that the compilers observe, for two reasons:

o Often your code must interact with compiler-generated code,
accepting and returning arguments or accessing shared global
data.

o The symbolic debugger gives better assistance in debugging pro-
grams using standard calling conventions.

The conventions for the compiler system are a bit more complicated than some,
mostly to enhance the speed of each procedure call. Specifically:

o The compilers use the full, general calling sequence only when
necessary; where possible, they omit unneeded portions of it.
For example, the compilers don’t use a register as a frame
pointer whenever possible.

e The compilers and debugger observe certain implicit rules rather
than communicating via instructions or data at execution time.
For example, the debugger looks at information placed in the
symbol table by a ”.frame” directive at compilation time, so that
it can tolerate the lack of a register containing a frame pointer at
execution time.

Program Design

This section describes three general areas of concemn to the assembly language
programmer:

¢ usable and restricted registers
e stack frame requirements on entering and exiting a routine

e the “’shape” of data (scalars, arrays, records, sets) laid out by the
various high level languages.

Assembly Language Programmer’s Guide 7-1

Chapter 7

Register Use and Linkage (‘

The main processor has 32 32-bit integer registers. The uses and restrictions of
these registers are described in Table 1.1 in Chapter 1.

The floating point coprocessor has 16 floating point registers. Each register can
hold either a single precision (32 bit) or a double precision (64 bit) value. All
references to these registers uses an even register number (e.g., $f4). Refer to
Table 7.1 for details.

Table 7.1 Floating Point Registers

Floating Point Registers

register name use and linkage

$0..13 used to hold floating point type function
results ($f0) and complex type function
results ($£0 has the real part, $f2 has

the imaginary part)
$£4..£10 temporary registers, used for expression

evaluation, whose values are not pre—

served across procedure calls. (
$£12..8f14 used to pass the first 2 single or double

precision actual arguments, whose values
are not preserved across procedure calls.

$£16..$£18 temporary registers, used for expression
evaluations, whose values are not pre—
served across procedure calls.

$£20..$£30 saved registers, whose values must be
preserved across procedure calls.

The Stack Frame

The compilers classify each routine into one of of the following categories:

¢ non-leaf routines, that is, routines that call other procedures

e leaf routines, that is, routines that do not themselves execute any
procedure calls. Leaf routines are of two types:

o leaf routines that require stack storage for local variables

o leaf routines that do not require stack storage for local vari- ()
ables.

7-2 Assembly Language Programmer’s Guide

Linking Conventions

You must decide the routine category before determining the calling sequence.

To write a program with proper stack frame usage and debugging capabilities,
use the following procedure:

1.. Regardless of the type of routine, you should include a .ent pseudo—op and
an entry label for the procedure. The .ent pseudo—op is for use by the debug-
ger, and the entry label is the procedure name. The syntax is:

ent procedure name
procedure_name:

2. If you are writing a leaf procedure that does not use the stack, skip to step 3.
For leaf procedure that uses the stack or non-leaf procedures, you must allo-
cate all the stack space that the routine requires. The syntax to adjust the
stack size is:

subu $sp, framesize

where framesize is the size of frame required. Space must be allocated for:

e local variables

« saved general registers. Space should be allocated only for those
registers saved. For non-leaf procedures, you must save $31,
which is used in the calls to other procedures from this routine.
If you use registers $16-$23, you must also save them.

 saved floating point registers. Space should be allocated only for
those registers saved. If you use registers $f20-$30 you must
also save them.

o Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call
from this routine.

NOTE: Once you have modified $sp, you should not modify it again for the rest
of the routine.

3. Now include a .frame pseudo—op:
.frame framereg, framesize, returnreg

The virtual frame pointer is a frame pointer as used in other compiler systems but
has no register allocated for it. It consists of the framereg ($sp, in most cases)
added to the framesize (see step 2 above). Figure 7.1 illustrates the stack compo-
nents.

Assembly Language Programmer’s Guide 7-3

Chapter 7

7-4

high memory argument n

virtual frame aréument 1
pointer ($fp) >

frame local & temporaries
offset

saved registers

. . framesize
(including returnreg)

argument build

stack
pointer ($sp) >
(framereg)

low memory

Figure 7.1 Stack Organization

The returnreg specifies the register the return address is in (usually $31). These
usual values may change if you use a varying stack pointer or are specifying a
kernel trap routine.

4. 1If the procedure is a leaf procedure that does not use the stack, skip to step 7.
Otherwise you must save the registers you allocated space for in step 2.

To save the general registers, use the following operations:

.mask bitmask, frameoffset
SW reg,framesize+frameoffset-N($sp)

The .mask directive specifies the registers to be stored and where they are stored.
A bit should be on in bitmask for each register saved (for example, if register $31
is saved, bit 31 should be ’1’ in bitmask. Bits are set in bitmask in little—endian
order, even if the machine configuration is big-endian). The frameoffset is the
offset from the virtual frame pointer (this number is usually negative). N should
be 0 for the highest numbered register saved and then incremented by four for
each subsequently lower numbered register saved. For example:

SW $31,framesize+frameoffset (Ssp)
SW $17,framesize+frameoffset-4 (Ssp)
SW $16,framesize+frameoffset—8 ($sp)

Figure 7.2 illustrates this example.

Assembly Language Programmer’s Guide

Linking Conventions

high memory

virtual frame

pointer ($fp) —b{

frame

offset saved $31
saved S17 .
saved $16 framesize

stack
pointer ($sp) >

low memory

Figure 7.2 Stack Example

Now save any floating point registers that you allocated space for in step 2 as

follows:
. fmask bitmask; frameoffset
s. [sd] reg,framesize+frameof-

fset-N($sp)

Notice that saving floating point registers is identical to saving general regis-
ters except we use the .fmask pseudo—op instead of .mask, and the stores are
of floating point singles or doubles. The discussion regarding saving general
registers applies here as well, but remember that N should be incremented by
8 for doubles.

5. This step describes parameter passing: how to access arguments passed into
your routine and passing arguments correctly to other procedures. For infor-
mation on high-level language specific constructs (call-by—name, call-by—
value, string or structure passing), refer to Chapter 3 of the Language Pro-
grammer’s Guide.

As specified in step 2, space must be allocated on the stack for all arguments
even though they may be passed in registers. This provides a saving area if
their registers are needed for other variables.

General registers $4-$7 and float registers $f12, $f14 must be used for pass-
ing the first four arguments (if possible). You must allocate a pair of regis-
ters (even if it’s a single precision argument) that start with an even register
for floating point arguments appearing in registers.

Assembly Language Programmer’s Guide ’ 7-5

Chapter 7

In the table below, the *fN’ arguments are considered single and double pre-
cision floating point arguments, and 'nN’ arguments are everything else. The
ellipses (...) mean that the rest of the arguments do not go in registers regard-
less of their type. The ’stack’ assignment means that you do not put this ar-
gument in a register. The register assignments occur in the order shown in
order to satisfy optimizing compiler protocols.

Arguments Register Assignments
(1, 2, ..) f1 —> $£12, £2 -> $f14
(f1,n1,£2,..) f1 — $f12, n1 — $6, £2 —> stack
(f1,n1,n2,..) f1 — $f12,n1 — $6,n2 —> $7
(n1,n2,n3,n4, ...) nl —> $4,n2 — $5,n3 —> $6, n4 —> $7
(n1, n2,n3, f1, ...) nl —> $4,n2 —> $5, n3 —> $6, f1 — stack
(o1, n2, f1, ...) nl —> $4, 02 —> $5, f1 —> ($6, $6)
(nl,f1,..) nl —> $4, f1—> (86, $7)

6. Next, you must restore registers that were saved in step 4. To restore general
purpose registers:

1w reg,framesize+frameoffset-N($sp)
To restore the floating point registers:
1l.[sd] reg,framesize+frameoffset-N($sp)
(Refer to step 4 for a discussion of the value of N.)
7. Get the return address:
lw $31,framesize+frameoffset ($sp)
8. Clean up the stack:
addu $sp, framesize
9. Retumn:
j $31
10. To end the procedure:

.end procedurename

7-6

Assembly Language Programmer’s Guide

Linking Conventions

The Shape of Data

Examples

In most cases, high-level language routine and assembly routines communicate
via simple variables: pointers, integers, booleans, and single— and double—preci-
sion real numbers. Describing the details of the various high-level data struc-
tures (arrays, records, sets, and so on) is beyond our scope here. If you need to
access such a structure as an argument or as a shared global variable, refer to
Chapter 3 of the Language Programmer’s Guide, and the “Leam by Doing”
technique described at the end of this section.

This section contains the examples that illustrate program design rules; each ex-
ample shows a procedure written and C and its equivalent written in assembly
language.

Figure 7.3 shows a non-leaf procedure. Notice that it creates a stackframe, and
also saves its return address since it must put a new return address into register
$31 when it invokes its callee:

Assembly Language Programmer’s Guide 7-7

Chapter 7

float

nonleaf (i, j)
int i, *j;
{
double atof ();
.int temp;

temp = i - *j;
if (i < *j) temp = -temp;
return atof (temp);

}

.globl nonleaf
1 float
2 nonleaf (i, 3j)
3 int i, *j;
4 {
.ent nonleaf 2
nonleaf:
subu $sp, 24 ## Create stackframe
sw $31, 20($sp) ## Save the return address
.mask 0x80000000, -4
.frame $sp, 24, $31
5 double atof ():
6 int temp;
7
8 temp = i - *7j;
1w $2, 0($5) ## Arguments are in $4 and $5
subu $3, $4, $2
9 if (i < *j) temp = -temp;
bge $4, $2, 832 ## Note: $32 is a label, not a register
negu $3, $3
$32:
10 return atof (temp);
move $4, $3
jal atof
cvt.s.d $£f0, S$f0 ## Return value goes in S$£f0
1w $31, 20($sp) ## Restore return address
addu $sp, 24 ## Delete stackframe
J $31 ## Return to caller
.end nonleaf
Figure 7.3. Non-Leaf Procedure
Figure 7.4 shows a leaf procedure that does not require stack space for local vari-
ables. Notice that it creates no stackframe, and saves no return address:
7-8

Assembly Language Programmer’s Guide

Linking Conventions

int
leaf (pl, p2)
int pl, p2;
{
return (pl > p2) ? pl : p2;
}
.globl leaf
1 int
2 leaf(pl, p2)
3 int pl, p2;
4 {
.ent leaf 2
leaf:
.frame $sp, 0, $31
5 return (pl > p2) ? pl : p2;
ble $4, $5, $32 ## Arguments in $4 and $5
move $3, $4
b $33
$32:
move $3, §5
$33:
move $2, $3 ## Return value goes in $2
3 #31 ## Return to caller
6 }
.end leaf

Figure 7.4. Leaf Procedure Without Stack Space for Local Variables

Figure 7.5 shows a leaf procedure that requires stack space for local variables.
Notice that it creates a stack frame, but does not save a return address.

Assembly Language Programmer’s Guide 7-9

Chapter 7

char
leaf storage (i)
int i;
{
char a[l6];
int j;
for (j = 0; j < 10; j++)
aljl = 0" + j;
for (j = 10; j < 16; j++)
aljl = 'a’ + 3;
return afi];
}
.globl leaf storage
1 char
2 leaf_storage (i)
3 int i;
4 {
.ent leaf storage 2
leaf storage:
subu $sp, 24
. frame $sp, 24, $31
5 char a[l6];
6 int j;
7
8 for (j = 0; j < 10; j++)
sw $0, 4 ($sp)
addu $3, S$sp, 24
$32:
9 aljl ='0" + j;
1w $14, 4(S$sp)
addu $15, $14, 48
addu $24, $3, $14
sb $15, -16($24)
1w $25, 4($sp)
addu $8, $25, 1
sw $8, 4($sp)
blt $8, 10, $32
10 for (j = 10; j < 16; j++)
1i $9, 10
sw $9, 4($sp)
$33:
11 alj] = 'a’ + 3;
1w $10, 4(Ssp)
addu $11, $10, 97
addu $12, $3, $10
sb $11, -16(%12)
1w $13, 4($sp)
addu $14, $13, 1
sw $14, 4($sp)
blt $14, 16, $33
12 return af[i];
addu $15, $3, $4
lbu $2, -16(515)
addu $sp, 24
J $31
.end leaf storage

”2” is the lexical level of the
procedure. You may omit it.

Create stackframe

Argument is in $4
Return value goes in $2
Delete stackframe
Return to caller

Figure 7.5. Leaf Procedure With Stack Space for Local Variables

7-10

Assembly Language Programmer’s Guide

Linking Conventions

Learning by Doing

The rules and parameter requirements required between assembly language and
other languages are varied and complex. The simplest approach to coding an
interface between an assembly routine and a routine written in a high-level lan-
guage is to do the following:

e Use the high-level language to write a skeletal version of the
routine that you plan to code in assembly language.

e Compile the program using the —S option, which creates an as-
sembly language (.s) version of the compiled source file.

o Study the assembly-language listing and then, imitating the rules
and conventions used by the compiler, write your assembly lan-
guage code.

The next two sections illustrate techniques to use in creating an interface between
assembly language and high-level language routines. The examples shown are
merely to illustrate what to look for in creating your interface. Details such as
register numbers will vary according to the number, order, and data types of the
arguments. You should write and compile realistic examples of your own code
in writing your particular interface.

Calling a High—Level Language Routine

The following steps show a technique to follow in writing an assembly language
routine that calls atof, a routine written in C that converts ASCII characters to
numbers; for more information, see the atof(3) in the UNIX Programmer’s Man-
ual.

1. Write a C program that calls atof. Pass global rather than local variables; this
makes them to recognize in the assembly language version of the C program.
(and ensures that optimization doesn’t remove any of the code on the
grounds that it has no effect.)

Below is an example of a C program that calls atof.

char c[] = ”3.1415";
double d, atof():

cis declared as a
float f; €
caller () global variable.

{

d = atof(c);

f = (float) atof(c);
}

2. Compile the program using the using the compiler options shown below:
cc —S —O caller.c

The —S option causes the compiler to produce the assembly-language list-
ing; the —O option, though not required, reduces the amount of code gener-
ated, making the listing easier to read.

Assembly Language Programmer’s Guide 7-11

Chapter 7

3. After compilation, look at the file caller.s (shown below). The highlighted (
section of the listing shows how the parameters are passed, the execution of
the call, and how the returned values are retrieved.

load address of c
call atof
store result in d

load address of c¢ (i
call atof
convert double result to floa

Calling an Assembly Language Routine
This section shows a technique to follow in writing an assembly language routine
that calls a routine written in a high-level language (Pascal is used in this exam-
ple).
1. Write a facsimile of the assembly language routine you wish to call. In the
body of the routine, write statements that use the same arguments you intend

to use in the final assembly language routine. Copy the arguments to global
variables rather than local variables to make it easy for you to read the result-

ing assembly language listing.

Below is the Pascal facsimile of the assembly language program.

7-12 Assembly Language Programmer’s Guide

Linking Conventions

type
str = packed array [l .. 10] of char;
subr = 2 .. 5;

var

global r: real;
global c: subr;
global s: str;
global _b: boolean;

function callee(var r: real; c: subr; s: str): boolean;
begin
global r
global ¢
global_s
callee :=
end;

r;
c;
S;

Q n

2. Compile the program using the using the compiler options shown below:
cc —S -0 caller.c

The —S option causes the compiler to produce the assembly-language list-
ing; the —O option, though not required, reduces the amount of code gener-
ated, making the listing easier to read.

3. After compilation, look at the file caller.s (shown below). The highlighted
section of the listing shows how the parameters are passed, the execution of
the call, and how the returned values are retrieved.

Assembly Language Programmer’s Guide 7-13

Chapter 7

7-14

$14, global_s

§15,

$sp,

noat

524,

51,
$151
$lr
$1I
514,

$15,

0($15)
$15,
0($14)

8

10

2

-1($15)

$14,

2

Get subrange c

it to 8 bits

For array ”s”, the caller gives you a
pointer at 8($sp). If you want to use
it as a call-by-value argument just as
Pascal does (that is, if you want to
be able to modify a local copy without
affecting the global copy) then you
must copy it into your stack frame as
shown here (the code enclosed in ”.set
noat” is a tight byte-copying loop).
Otherwise, you may simply use the

i ided

Return the boolean by leaving it in $2

Assembly Language Programmer’s Guide

8
Pseudo Op—Codes

This chapter describes pseudo op—codes (directives). These pseudo op—codes
influence the assembler’s later behavior. In the text, boldface type specifies a
keyword and italics represents an operand that you define.

The assembler has these pseudo op—codes:

Pseudo-Op Description

.aent name, symno Sets an alternate entry point for the current procedure.
Use this information when you want to generate infor-
mation for the debugger. It must appear inside an
.ent/.end pair.

.alias regl, reg2 Register] and register2, when used as indexed registers
to memory may point to same part of memory.

.alias gpreg.gpre Indicates that memory reference through the two regis-
&p preg ry g g
: ters will never overlap. The compiler uses this form to
improve instruction scheduling.

.align expression Advance the location counter to make the expression
low order bits of the counter zero.

Normally, the .half, .word, .float, and .double directives
automatically align their data appropriately. For exam-
ple, .word does an implicit .align 2 (.double does a
.align 3). You disable the automatic alignment feature
with .align 0. The assembler reinstates automatic align-
ment at the next .text, .data, .rdata, or .sdata directive.

Labels immediately preceding an automatic or explicit
alignment are also realigned. For example, foo: .align
3; .word 0 is the same as .align 3; foo: .word0 .

.ascii string [, string]... Assembles each string from the list into successive loca-
tions. The .ascii directive does not null pad the string.
You MUST put quotation marks () around each string.
You can use the backslash escape characters. For a list
of the backslash characters, see Chapter 4.

asciiz string [, string]... Assembles each string in the list into successive loca-
tions and adds a null. You can use the backslash escape
characters. For a list of the backslash characters, see
Chapter 4.

.asm(Tells the assembler’s second pass that this assembly
came from the first pass. (For use by compilers.)

Assembly Language Programmer’s Guide 8-1

Chapter 8

Pseudo—Op

Description

.bgnb symno

(For use by compilers.) Sets the beginning of a language
block. The .bgnb and .endb directives delimit the scope
of a variable set. The scope can be an entire procedure,
or it can be a nested scope (for example a ”’{}” block in
the C language). The symbol number symno refers to a
dense number in a.T file. For an explanation of .T files,
see the Languages Programmer’s Guide. To set the end
of a language block, see .endb.

.byte expressionl [, expression2]...

[, expressionN]

.comm name, expression

.data

Truncates the expressions from the comma-separated
list to 8-bit values, and assembles the values in succes-
sive locations. The expressions must be absolute. The
operands can optionally have the form: expressionl | :
expression2]. The expression2 replicates expressionl’s
value expression2 times.

Unless defined elsewhere, name becomes a global com-
mon symbol at the head of a block of expression bytes of
storage. The linker overlays like-named common
blocks, using the maximum of the expressions.

Tells the assembler to add all subsequent data to the
data section.

.double expression [, expression2] ...

[, expressionN

«end [proc_name]

.endb symno

8-2

Initializes memory to 64-bit floating point numbers.
The operands can optionally have the form: expressionl
[: expression2]. The expressionl is the floating point
value. The optional expression2 is a non—-negative ex-
pression that specifies a repetition count. The expres-
sion2 replicates expressionl’s value expression2 times.
This directive automatically aligns its data and any pre-
ceding labels to a double-word boundary. You can dis-
able this feature by using .align 0.

Sets the end of a procedure. Use this directive when you
want to generate information for the debugger. To set
the beginning of a procedure, see .ent.

Sets the end of a language block. To set the beginning
of a language block, see .bgnb.

Assembly Language Programmer’s Guide

Pseudo Op-codes

Pseudo-Op Description

.endr Signals the end of a repeat block. To start a repeat
block, see .repeat.

.ent proc_name Sets the beginning of the procedure proc_name. Use
this directive when you want to generate information for
the debugger. To set the end of a procedure, see .end.

.extern name expression name is a global undefined symbol whose size is as-
sumed to be expression bytes. The advantage of using
this directive, instead of permitting an undefined symbol
to become global by default, is that the assembler can
decide whether to use the economical $gp-relative ad-
dressing mode, depending on the value of the —G option.
As a special case, if expression is zero, the assembler
refrains from using $gp to address this symbol regard-
less of the size specified by —G.

err Signals an error. Any compiler front—end that detects an
error condition puts this directive in the input stream.
When the assembler encounters a .err, it quietly ceases
to assemble the source file. This prevents the assembler
from continuing to process a program that is incorrect.
(For use by compilers.)

file file_number

file_name_string Specifies the source file corresponding to the assembly
instructions that follow. For use only by compilers, not
by programmers; when the assembler sees this, it re-
frains from generating line numbers for dbx to use un-
less it also sees .loc directives.

float expressionl [, expression2]... [, expressionN]

Initializes memory to single precision 32-bit floating
point numbers. The operands can optionally have the
form: expressionl [: expression2]. The optional ex-
pression2 is a non-negative expression that specifies a
repetition count. This optional form replicates expres-
sionl’s value expression2 times. This directive auto-
matically aligns its data and preceding labels to a word
boundary. You can disable this feature by using .align
0.

Assembly Language Programmer’s Guide 83

Chapter 8

Pseudo-Op

Description

fmask mask offset

frame frame-register offset
return_pc_register

.globl name

Sets a mask with a bit turned on for each floating point
register that the current routine saved. The least—signifi-
cant bit corresponds to register $f0. The offset is the
distance in bytes from the virtual frame pointer at which
the floating point registers are saved. The assembler
saves higher register numbers closer to the virtual frame
pointer. You must use .ent before .fmask and only one
.fmask may be used per .ent. Space should be allocated
for those registers specified in the .fmask.

Describes a stack frame. The first register is the frame—
register, the offset is the distance from the frame register
to the virtual frame pointer, and the second register is the
return program counter (or, if the first register is $0, this
directive shows that the return program counter is saved
four bytes from the virtual frame pointer). You must use
.ent before .frame and only one .frame may be used per
.ent. No stack traces can be done in the debugger with-
out .frame,

Makes the name external. If the name is otherwise de-
fined (by its appearance as a label), the assembler will
export the symbol; otherwise it will import the symbol.
In general, the assembler imports undefined symbols
(that is, it gives them the UNIX storage class "global
undefined” and requires the linker to resolve them).

Jhalf expressionl [, expression2 | ... [, expressionN]

Jab label_name

Truncates the expressions in the comma—separated list to
16-bit values and assembles the values in successive
locations. The expressions must be absolute. This di-
rective can optionally have the form: expressionl [: ex-
pression2). The expression2 replicates expressionl’s
value expression2 times. This directive automatically
aligns its data appropriately. You can disable this fea-
ture by using .align 0.

Associates a named label with the current location in the
program text. (For use by compilers).

Assembly Language Programmer'’s Guide

Pseudo Op—codes

Pseudo-Op

Description

Jcomm name, expression

Joc file_number

line_number

.mask mask, offset

Assembly Language Programmer’s Guide

Makes the name’s data type bss. The assembler allo-
cates the named symbol to the bss area, and the expres-
sion defines the named symbol’s length. If a .globl di-
rective also specifies the name, the assembler allocates
the named symbol to external bss. The assembler puts
bss symbols in one of two bss areas. If the defined size
is smaller than the size specified by the assembler or
compiler’s -G command line option, the assembler puts
the symbols in the sbss area and uses $gp to address the
data.

Specifies the source file and the line within that file that
corresponds to the assembly instructions that follow.
The assembler ignores the file number when this direc-
tive appears in the assembly source file. Then, the as-
sembler assumes that the directive refers to the most re-
cent .file directive. When a .loc directive appears in the
binary assembly language .G file, the file number is a
dense number pointing at a file symbol in the symbol
table .T file. For more information about .G and .T
files, see the Languages Programmer’s Guide. (For use
by compilers).

Sets a mask with a bit turned on for each general pur-
pose register that the current routine saved. Bit one cor-
responds to register $1. The offset is the distance in
bytes from the virtual frame pointer where the registers
are saved. The assembler saves higher register numbers
closer to the the virtual frame pointer. Space should be
allocated for those registers appearing in the mask. If bit
zero is set it is assumed that space is allocated for all 31
registers regardless of whether they appear in the mask.
(For use by compilers).

8-5

Chapter 8

8-6

Pseudo-Op

Description

noalias regl, reg2

nop

.option options

repeat expression

Jrdata

.sdata

.set option

Register] and register2, when used as indexed registers
to memory will never point to the same memory. The
assembler will use this as a hint to make more liberal
assumptions about resource dependency in the program.

Tells the assembler to put in an instruction that has no
effect on the machine state. While several instructions
cause no—operation, the assembler only considers the
ones generated by the nop directive to be wait instruc-
tions. This directive puts an explicit delay in the instruc-
tion stream.

NOTE: Unless you use ”.set noreorder”, the reorganizer
may eliminate unnecessary “nop” instructions.

Tells the assembler that certain options were in effect
during compilation. (These options can, for example,
limit the assembler’s freedom to perform branch optim-
izations.) This option is intended for compiler-generated
8 files rather than for hand—coded ones.

Repeats all instructions or data between the .repeat di-
rective and the .endr directive. The expression defines
how many times the data repeats. With the .repeat di-
rective, you CANNOT use labels, branch instructions, or
values that require relocation in the block. To end a .re-
peat, sce .endr.

Tells the assembler to add subsequent data into the
rdata section.

Tells the assembler to add subsequent data to the sdata
section.

Instructs the assembler to enable or to disable certain
options. Use set options only for hand—crafted assembly
routines. The assembler has these default options: reor-
der, macro, and at. You can specify only one option for
each .set directive. You can specify these .set options:

The reorder option lets the assembler reorder machine
language instructions to improve performance.

The noreorder option prevents the assembler from reor-
dering machine language instructions. If a machine lan-
guage instruction violates the hardware pipeline con-
straints, the assembler issues a warning message.

Assembly Language Programmer’s Guide

Pseudo Op—codes

Pseudo-Op

Description

.space expression

struct expression

Assembly Language Programmer’s Guide

The bopt/nobopt option lets the assembler perform
branch optimization. This involves moving an instruc-
tion that is the target of a branch or jump instruction into
the delay slot; this is perofrmed only if no unpredictable
side effects can occur.

The macro option lets the assembler generate multiple
machine instructions from a single assembler instruction.

The nomacro option causes the assembler to print a
warning whenever an assembler operation generates
more than one machine language instruction. You must
select the noreorder option before using the nomacro
option; otherwise, an error results.

The at option lets the assembler use the $at register for
macros, but generates warnings if the source program
uses $at.

When you use the noat option and an assembler opera-
tion requires the $at register, the assembler issues a
warning message; however, the noat option does let
source programs use $at without issuing warnings.

The nomove options tells the assembler to mark each
subsequent instruction so that it cannot be moved during
reorganization. Because the assembler can still insert
nop instructions where necessary for pipeline con-
straints, this option is less stringent than noreorder.
The assembler can still move instructions from below
the nomove region to fill delay slots above the region or
vice versa. The nomove option has part of the effect of
the “volatile” C declaration; it prevents otherwise inde-
pendent loads or stores from occurring in a different or-
der than intended.

The move option cancels the effect of nomove.

Advances the location counter by the value of the speci-
fied expression bytes. The assembler fills the space with
Zeros.

This permits you to lay out a structure using labels plus
directives like .word, .byte, and so forth. It ends at the
next segment directive (.data, .text, etc.). It does not
emit any code or data, but defines the labels within it to
have values which are the sum of expression plus their
offsets from the .struct itself.

Chapter 8

Pseudo-Op

Description

(symbolic equate)

Jtext

-verstamp major minor

.vreg register offset symno

Takes one of these forms: name = expression or name =
register. You must define the name only once in the as-
sembly, and you CANNOT redefine the name. The ex-
pression must be computable when you assemble the
program, and the expression must involve operators,
constants, and equated symbols. You can use the name
as a constant in any later statement.

Tells the assembler to add subsequent code to the text
section. (This is the default.)

Specifies the major and minor version numbers (for ex-
ample, version 0.15 would be .verstamp 0 15).

(For use by compilers). Describes a register variable by
giving the offset from the virtual frame pointer and the
symbol number symno (the dense number) of the sur-
rounding procedure.

-word expressionl [, expression2] ... [, expressionN]

Truncates the expressions in the comma-separated list to
32-bits and assembles the values in successive locations.
The expressions must be absolute. The operands can
optionally have the form: expressionl [: expression2].
The expression2 replicates expressionl’s value expres-
sion2 times. This directive automatically aligns its data
and preceding labels to a word boundary. You can dis-
able this feature by using .align 0.

Assembly Language Programmer’s Guide

Overview

9
Object File Format

This chapter provides information on the object file format and has the following
major topics:

e An overview of the components that make up the object file, and
the differences between the object—file format and the UNIX
System V common object file format (COFF).

e A description of the headers and sections of the object file. De-
tailed information is given on the logic followed by the assem-
bler and link editor in handling relocation entries.

e The format of object files (OMAGIC, NMAGIC, ZMAGIC, and
LIBMAGIC), and information used by the system loader in load-
ing object files at run—time.

e Archive files and link editor defined symbols.

The assembler and the link editor generate object files in the order shown in the
figure on the next page. Any areas empty of data are omitted, except that the File
Header, Optional Header, and Section Header are always present.

The fields of the Symbol table portion (indicated in figure on the next page) that
appear in the final object file format vary, as follows:

e The Line Numbers, Optimization Symbols, and Auxiliary Sym-
bols tables appear only when debugging is on (when the user
specifies one of the compiler —g1, —g2 or —g3 options).

o When the user specifies the —x option (strip non—globals) for
the link edit phase, the link editor strips the Line Number, Local
Symbols, Optimization Symbols, Auxiliary Symbols, Local
Strings, and Relative File Descriptor tables from the object file,
and updates the Procedure Descriptor table.

e The link editor strips the entire Symbol table from the object file
when the user specifies the —s option (strip) for the link edit
phase.

Any new assembler or link editor designed to work with the compiler system
should lay out the object file in the order shown in the figure on the next page.
The link editor can process object files that are ordered differently, but perform-
ance may be degraded.

Assembly Language Programmer’s Guide 9-1

Chapter 9

* Created only if debugging is ON.
Missing if stripped of non—globals.

9-2

File Header

Optional Headers

Section Headers

Section Data

text small data
initialization text small bss (0 size)
read—only data large bss (0 size)
large data shared library info.
8-byte literal pool ucode (ucode ob—
4-byte literal pool Jects only)

Section Relocation Information

text large data
read—only data small data

Symbolic Header

External Strings

File Descriptor

External Symbols

Figure 9.1. Object File Format

Assembly Language Programmer’s Guide

Symbol Table. Missing
if fully stripped.

Object File Format

Readers already familiar with standard UNIX System V COFF (common objéct
file format) may be interested in the difference between it and the compiler sys-
tem format, as described next.

The compiler system File Header definition is based on UNIX System V header
file filehdr.h with the following modifications.

e The symbol table file pointer and the number of symbol table
entries now specify the file pointer and the size of the Symbolic
Header respectively (described in Chapter 10).

e All tables that specify symbolic information have their file point-
ers and number of entries in this Symbolic Header.

The Optional Header definition has the same format as the UNIX System V
header file aouthdr.h (the standard UNIX system a.out header) except the follow-

ing fields have been added: bss_start, gprmask, cprmask, and gp_value. See Ta-
ble 9.4.

The Section Header definition has the same format as the UNIX System V’s
header file scnhdr.h. except the line number fields are used for global pointers.
See Table 9.6.

The relocation information definition is similar to Berkeley UNIX 4.3 BSD,
which has ‘‘local’’ relocation types; however, you should read the topic Section
Relocation Information in this chapter to be aware of differences that do exist.

For further information on UNIX System V COFF format, refer to the UNIX Sys-
tem V Support Tools Guide.

The File Header

Table 9.1 shows the format of the File Header; the header file filehdr.h contains
its definition.

Table 9.1 File Header Format

Declaration Field Description
unsigned short f _magic; magic number
unsigned short f nscns; number of sections
long f_timdat; time and date stamp
long f_symptr; file pointer to symbolic header
long f nsyms; size of symbolic header
unsigned short f_opthdr; size of optional header
unsigned short f_flags; flags

The f symptr points to the Symbolic Header of the Symbol table, and the f_nsyms
gives the size of the header. For a description of the Symbolic Header, see

Chapter 9. Other fields in the File Header are described in the sections that fol-
low.

Assembly Language Programmer’s Guide 9-3

Chapter 9

File Header Magic Field (f_magic)

Flags (f_flags)

9-4

The magic number in the f_magic entry in the File Header specifies the target
machine on which an object file can execute. Table 9.2 shows the values and
mnemonics for the magic numbers; the header file filehdr.h contain the preproc-
essor macro definitions.

Table 9.2 File Header Magic Numbers

Symbol Value Description

MIPSEBMAGIC 0x0160 big—endian target (headers and tables have same
byte sex as host machine.)
MIPSELMAGIC 0x0162 little-endian target (headers and
tables have same byte sex as host machine.)
SMIPSEBMAGIC 0x6001 big—endian target (headers and tables
have opposite byte sex as host machine.)
SMIPSELMAGIC 0x6201 little—endian target (headers and
tables have opposite byte sex as host
machine)
MIPSEBUMAGIC 0x0180 MIPS big-endian ucode object file
MIPSELUMAGIC 0x0182 MIPS little—endian ucode object file

The f flags field describes the object file characteristics. Table 9.3 describes the
flags and gives their hexadecimal bit patterns. The table notes those flags that
don’t apply to compiler system object files.

Assembly Language Programmer's Guide

Object File Format

Table 9.3 File Header Flags

Symbol

Value Description

F_RELFLG
F_EXEC

F_LNNO
F_LSYMS
F_MINMAL
F_UPDATE
F_SWAB
F_AR16WR

F_AR32WR

F_AR32W

F_PATCH
F_NODF

0x0001 relocation information stripped from file

0x0002 file is executable (i.e. no unresolved

external references)

0x0004 line numbers stripped from file

0x0008 local symbols stripped from file

0x0010 !minimal object file (”.m”) output of fextract
0x0020 !fully bound update file, output of ogen

0x0040 Ifile whose bytes were swabbed (in names)
0x0080 Ifile has the byte ordering of an AR1I6WR
(e.g.11/70) machine (it was created there, or was

produced by conv)

0x0100 Ifile has the byte ordering of an AR32WR machine
(e.g. vax)

0x0200 Ifile has the byte ordering of an AR32W machine
(e.g. 3b,maxi,MC68000)

0x0400 !file contains "patch” list in Optional Header
0x0400 !(minimal file only) no decision functions for
replaced functions.

INot used by compiler system object modules.

Optional Header

The link editor and the assembler fill in the Optional Header, and the system
(kernel) loader (or other program that loads the object module at run-time) uses
the information it contains, as described in the section Loading Object Files in

this chapter.

Table 9.4 shows the format of the Optional Header; the header file aouthdr.h
contains its definition.

Assembly Language Programmer’s Guide 9-5

Chapter 9

Table 9.4 Optional Header Definition

Declaration Field Description

short magic; See Table 9.5.

short vstamp; version stamp

long tsize; text size in bytes, padded to 16-byte
boundary

long dsize; initialized data in bytes, padded to
16-byte boundary

long bsize; uninitialized data in bytes, padded to
16-byte boundary

long entry; entry point

long text_start; base of text used for this file

long data_start; base of data used for this file

long bss_start; base of bss used for this file

long gprmask; general purpose register mask

long cprmask[4]; co-processor register masks

long gp_value; the gp value used for this object

The next section describes the magic field in the Optional Header.

Optional Header Magic Field (magic)

Table 9.5 shows the values of the magic field for the Optional Header; the header
file aouthdr.h contains the preprocessor macro definitions.

Table 9.5 . UNIX Magic Numbers

Symbol Value

Description

OMAGIC 0407

Impure Format. The text is not write—protected or sharable; the

data segment is contiguous with the text segment.

NMAGIC 0410

Shared Text. The data segment starts at the next page following

the text segment and the text segment is write—protected.

ZMAGIC 0413

The object file is to be demand loaded and has a special format; the

text and data segments are separated. Text segment is also write
protected. (The MIPS default).

LIBMAGIC 0443

The object file is a target shared library to be demand loaded and

file has a special format like that of a ZMAGIC file.

9-6

Assembly Language Programmer’s Guide

Object File Format

See the Object Files section in this chapter for information on the format of
OMAGIC, NMAGIC, ZMAGIC, and LIBMAGIC files.

Section Headers

Table 9.6 shows the format of the Section Header, the header file scnhdr.h. con-
tains the definition.

Table 9.6 Section Header Format

Declaration Field Description
char s_name[8]; section name
long s_paddr; physical address
long s_vaddr; virtual address
long S_size; section size
long S_scnptr; file pointer to raw data for section
long s_relptr; file pointer to relocation
long s_Innoptr; file pointer to gp (global pointer) tables
unsigned short s_nreloc; number of relocation entries
unsigned short s_nlnno; number of gp tables
long s_flags; flags

The sections that follow describe in detail some of the entries in the Section

Header.

Section Name (s_name)

Table 9.7 shows the constants for section names that can appear in the s_name
field of the Section Header; the header file scnhdr.h contains the preprocessor

macro definitions.

Table 9.7 Section Header Constants for Section Names

Declaration Field Description
_TEXT ”.text” text section
_INIT ”.init” the initialization text section for shared libraries
_RDATA ” rdata” read only data section
_DATA ”.data” large data section
_LIT8 ” lit8” the 8 byte literal pool section
_LIT4 ” litd” the 4 byte literal pool section
_SDATA ”.sdata” small data section
_BSS ”.bss” large bss section
_SBSS ”.sbss” small bss section
_LIB ” lib” the shared library information section
_UCODE ”.ucode” the ucode section

Assembly Language Programmer’s Guide

9-7

Chapter 9

Flags (s_flags)

9-8

Table 9.8 shows the flags that appear in s_flags; the header file schdr.h contains
their definition (those flags that are not used by compiler system object files are
noted).

Table 9.8 Format of s_flags Section Header Entry

Symbol Value Description
STYP_REG 0x00 regular section; allocated, relocated, loaded
STYP_DSECT 0x01 !dummy; not allocated, relocated, not loaded
STYP_NOLOA 0x02 Inoload; allocated, relocated, not loaded
STYP_GROUP 0x04 !grouped; formed of input sections
STYP_PA 0x08 !padding; not allocated, not relocated, loaded
STYP_COPY 0x10 Icopy; for decision function used by field

update; not allocated, not relocated, loaded;
relocated, and line number entries processed nor-

mally

STYP_TEXT 0x20 text only

STYP_INIT 0x80000000 section initialization text only

STYP_RDATA 0x100 read only data only

STYP_DATA 0x40 data only

STYP_LITS 0x08000000 section 8 byte literals only

STYP_LIT4 0x10000000 section 4 byte literals only

STYP_SDATA 0x200 small data only

STYP_SBSS 0x80 contains small bss only

STYP_BSS 0x400 bss only

STYP_LIB 0x40000000 section contains shared library information only
STYP_UCODE 0x800 section contains ucode only
S_NRELOC_OVFL 0x20000000 s_nreloc overflowed, the value is in r_vaddr of

the first entry

INot used by compiler system object modules.

The last flag in the above table, S_NRELOC_OVFL, is used when the number of
relocation entries in a section overflows the s_nreloc field of the section header.
Then, the s_nreloc field contains the value Oxffff and the s_flags field has the
S_NRELOC_OVFL flag set; the true value is in the r_vaddr field of the first re-
location entry for that section. That relocation entry has a type of R_ABS and all
other fields are zero, causing it to be ignored under normal circumstances.

NOTE: For performance reasons, the link editor uses the s_flags entry instead
of s_name to determine the type of section. However, the link editor does cor-
rectly fill in the s_name entry.

Assembly Language Programmer’s Guide

(

Object File Format

Global Pointer Tables

The gp (global pointer) tables are part of the object file that is produced by the
assembler. These are used by the link editor in calculating the best -G num to
compile the objects are specified as recompilable by the —count option. There is
a gp table for the small data and .bss sections only.

The gp table gives the section size corresponding to each applicable value speci-
fied by the -G num option (always including 0), sorted by smallest size first.

The s_Innoptr field in the section header points to this value and the s_nlnno field
contains the number of entries (including the header). The gp table exists only
for the .sdata and .sbss sections sections. If there is no ‘‘small’’ section, the re-
lated gp table is attached to the corresponding *‘large’’ section to provide the link
editor with this information.

A design flaw exist because of literal pools. When an object does not contain a
data and bss section, the -G num option specified for the object at compilation is
unknown. Because the size of the literal pools cannot be known, this complicates
the calculation of a best -G num. However, a reliable calculation can be made
when there is an 8-byte literal pool, which ensures that the object was compiled
with a =G of at least eight.

The following code shows the global pointer table definition:

union gp_table {
struct {
long current_g value; /* actual value */
long unused;
} header;
struct {
long g_value; /* hypothetical value */
long bytes; /* section size of hypothetical value */
} entry;
b;

Shared Library Information

The .lib section contains the shared libraries used by executable objects. The ab-
sence of a .Iib section header indicates that no shared libraries are used. Shared
libraries are a feature of System V; thus, only objects that execute on System V
should contain ./ib sections. The field s_nlib in the section header is defined to
be the same as s_paddr and contains the number of shared library entries in the
1ib section. The shared library information definition shown below defines a
compiler system .l/ib section entry. Note the size and offset are in sizeof(long)’s
not bytes. The size (in bytes) of each entry must be a multiple of SCNROUND.
The name the offset field refers to is a standard 'C’ null-terminated string.

Assembly Language Programmer’s Guide 9-9

Chapter 9

Section Data

9-10

struct libscn {

long size; /* size of this entry (including target
name) */

long offset; /* offset from start of entry to target
name*/

long tsize; /* text size in bytes*/

long dsize; /* initialized data size in bytes*/

long bsize; /* uninitialized data size in bytes*/

long text_start; /* base of text used for this 1li-
brary*/ .

long data_start; /* base of data used for this library*/
long bss_start; /* base of bss used for this library*/
/* pathname of target shared library */

bi

RISCompilert system files are represented in the following sections: .text, .init,
(shared library initialization text).rdata (read—only data), .data (data) .lit§
(8-byte literal pool), .lit4 (4-byte literal pool), .sdata (small data), .sbss (small
block started by storage), .bss (block started by storage) .lib (shared library infor-
mation), and .ucode (intermediate code). The .text section contains the machine
instructions that are to be executed; the .rdata, .data, .1it8, .lit4, and .sdata con-
tain initialized data; and the .sbss, and .bss sections reserve space for uninitial-
ized data that is created by the kernel loader for the program before execution
and filled with zeros.

Figure 9.2. shows the layout of the sections.

ext

text segment
Anit

Jdata

.data

Jit8 data segment
lit4
.Sdata

.Sbss
.bss

bss segment

Figure 9.2. Organization of Section Data

Assembly Language Programmer’s Guide

Object File Format

As noted in Figure 9.2., the sections are grouped into the text segment (contain-
ing the .text and .init sections), the data segment (.rdata, .data, .1it8, .lit4, and
.Sdata) and the bss segment (.sbss and .bss). A section is described in and refer-
enced through the Section Header, and segments through the Optional Header.

The link editor references the data shown in Figure 9.2. both as sections and seg-
ments, through the Section Header and Optional Header respectively. However,
the system (kernel) loader, when loading the object file at run—time, references
the same data only by segment, through the Optional Header.

Section Relocation Information

This portion of the chapter is divided into the following parts:

e The format of a relocation table entry and an explanation of its
fields.

e The logic followed by the assembler and the link editor is creat-
ing and updating an entry.

Relocation Table Entry

Table 9.9 shows the format of an entry in the Relocation Table; the header file
reloc.h contains the definition.

Table 9.9 Format of a Relocation Table Entry

Declaration Field Description
long r_vaddr; (virtual) address of an item to be relocated.
unsigned r_symndx:24, index into external symbols or section
number; see r_extern below.
r_reserved:3,
r_type:4, relocation type
r_extern:1; = 1 for an external relocation entry;

r_symndx is an index into External Symbols.
= (for a local, relocation entry; r_symndx

is the number of the section containing the
symbol.

The sections that follow describe some of the fields shown in Table 9.9
Symbol Index (r_symndx) and Extern Field (r_extern)

For external relocation entries, r_extern is set to 1 and r_symnndx is the index
into External Symbols for this entry. In this case, the value of the symbol is used
as the value for relocation.

For local relocation entries, r_extern is set to 0, and r_symndx contains a con-
stant that refers to a section. In this case, the starting address of the section to
which the constant refers is used as the value for relocation.

Assembly Language Programmer’s Guide 9-11

Chapter 9

Table 9.10 gives the section numbers for r_symndx; the reloc.h file contains their
preprocessor macro definitions.

Table 9.10 Section Numbers for Local Relocation Entries

Symbol Value Description
R_SN_TEXT 1 ext section
R_SN_INIT 7 .init section
R_SN_RDATA 2 rdata section
R_SN_DATA 3 .data section
R_SN_SDATA 4 .sdata section
R_SN_SBSS 5 .sbss section
R_SN_BSS 6 .bss section
R_SN_LITS8 1it8 section
R_SN_LIT4 9 lit4 section

Relocation Type (r_type)

Table 9.11 shows valid symbolic entries for the relocation type (r_type) field;
the header file reloc.h contains their preprocessor macro definitions.

Table 9.11 Relocation Types

Symbol Value Description

R_ABS 0x0 relocation already performed.

R_REFHALF 0x1 16-bit reference to the symbol’s virtual address
R_REFWOR 0x2 32-bit reference to the symbol’s virtual address
R_JMPADDR 0x3 26-bit jump reference to the symbol’s virtual address

R_REFHI 0x4 reference to the high 16-bits of symbol’s
virtual address
R_REFLO 0x5 reference to the low 16-bits of symbol’s
virtual address
R_GPREL 0x6 reference to the offset from the global pointer to the

symbol’s virtual address
R_LITERAL 0x7 reference to a literal in a literal pool as an offset from
the global pointer

Assembler and Link Editor Processing

9-12

Compiler system executable object modules with all external references defined,
have the same format as relocatable modules and are executable without re-link
editing.

Local relocation entries must be used for symbols that are defined. Therefore,
external relocations are used only for undefined symbols. Figure 9.3. gives an
overview of the Relocation Table entry for an undefined external symbol.

Assembly Language Programmer’s Guide

Object File Format

Relocation Table Entry
T vaddr External Symbols
1_symndx : i
r_extern=1
Section Data Sign—extended to 32 bits.

Figure 9.3. Relocation Table Entry for Undefined External Symbols
The assembler creates this entry as follows:

Sets r_vaddr to point to the item to be relocated.

Places a constant to be added to the value for relocation at the
address for the item to be relocated (r_vaddr).

Sets r_symndx to the index of the External Symbols entry that
contains the symbol value.

Sets r_type to the constant for the type of relocation types. Table
9.11 shows the valid constants for the relocation type.

Sets r_externto 1.

NOTE: The assembler always sets the value of the undefined entry in External
Symbols to 0. It may assign a constant value to be added to the relocated value at
the address where the location is to be done. If the width of the constant is less
than a full word, and an overflow occurs after relocation, the link editor flags this
as an error.

When the link editor determines that an external symbol is defined, it changes the
Relocation Table entry for the symbol to a local relocation entry. Figure 9.4.
gives an overview of the new entry.

Assembly Language Programmer’s Guide 9-13

Chapter 9

Relocation Table Entry

1_vaddr
r_symndx

Section n Optional

r_type
[1 extern=0

Section Data

nstant

Sign—extended to 32 bits.

Figure 9.4. Relocation Table Entry for a Local Relocation Entry

To change this entry from an external relocation entry to a local relocation entry,
the link editor:

e Picks up the constant from the address to be relocated (r_vaddr).

e If the width of the constant is less than 32 bits, sign—extends the
constant to 32 bits.

e Adds the value for relocation (the value of the symbol) to the
constant and places it back in the address to be relocated.

e Sets r_symndx to the section number that contains the external
symbol.

e Setsr_externtoO.
Examples

The examples that follow use external relocation entries.

Example 1: 32-Bit Reference—R_REFWORD. This example shows assem-
bly statements that set the value at location b to the global data value y.

b:

.globl y
.data
.word y #R REFWORD relocation type at address b for symbol y

9-14

Assembly Language Programmer’s Guide

Object File Format

In processing this statement, the assembler generates a relocation entry of type
R_REFWORD for the address b and the symbol y. After determining the address
for the symbol y, the loader adds the 32-bit address of y to the 32-bit value at
location b, and places the sum in location b. The loader handles 16-bit addresses
(R_REFHALF) in the same manner, except it checks for overflow after determin-
ing the relocation value.

Example 2: 26-Bit Jump—R_JMPADDR. This example shows assembly
statements that call routine x from location c.

.text
X: #routine x

c: Jal x #R_JMPADDR relocation type at address c for symbol x

In processing these statements, the assembler generates a relocation entry of type
R_JMPADDR for the address and the symbol x. After determining the address
for the routine, the loader shifts the address right two bits, adds the low 26 bits of
the result to the low 26 bits of the instruction at address c¢ (after sign—extending
it), and places the results back into the low 26 bits at address c.

R_JMPADDR relocation entries are produced for the assembler’s j (Jump) and
Jjal (Jump and Link) instructions. These instructions take the high four bits of the
target address from the address of the delay slot of their instruction. The link
editor makes sure that the same four bits are in the target address after relocation;
if not, it generates an error message.

If the entry is a local relocation type, the target of the Jump instruction is assem-
bled in the instruction at the address to be relocated. The high four bits of the
jump target are taken from the high 4 bits of the address of the delay slot of the
instruction to be relocated.

Example 3: High/Low Reference-R_REFHI/R_REFLO. This example
shows an assembler macro that loads the absolute address y, plus a constant, into
Register 6:

In processing this statement, the assembler generates a 0 as the value y, and the
following machine language statements:

f: lui $at,constant>>16 #R_REFHI relocation type
at address f for symbol y
g: addiu $r6,constant&Oxffff ($Sat) #R REFLO relocation type at

at’address g for symbol y

In this example, the assembler produces two relocation entries.

NOTE: When a R_REFHI relocation entry appears, the next relocation entry
must always be the corresponding R_REFLO entry. This is required in order to
reconstruct the constant that is to be added to the value for relocation.

In determining the final constant values for the two instructions, the link editor
must take into account that the addiu instruction of the R_REFLO relocation en-
try, sign—extends the immediate value of the constant.

Assembly Language Programmer’s Guide 9-15

Chapter 9

9-16

In determining the sum of the address for the symbol y and the constant, the link
editor does the following:

e It uses the low 16 bits of this sum for the immediate value of the
R_REFLO relocation address.

e Because all instructions that are marked with a R_REFLO per-
form a signed operation, the assembler adjusts the high portion
of the sum if Bit 15 is set. Then it uses the high 16 bits of the
sum for the immediate value of the R_REFHI instruction at the
relocation address. For example:

1w $r6,0x1000800%

lui $at,0x1001 at = 0x10010000

lw $r6,0%8000 ($at) T OXFFFFB000
0x10008000

Example 4: Offset Reference—R_GPREL. This example shows an assembly
macro that loads a global pointer relative value y into Register 6:

1w $r6,y

In processing this statement, the assembler generates a 0 as the value y and the
following machine language statement:

h: 1w $r6,0(Sgp) #R _GPREL relocation type at ad-
dress h for symbol y

and aR_GPREL relocation entry would be produced. The assembler then uses
the difference between the address for the symbol y and the address of the global
pointer, as the immediate value for the instruction. The link editor gets the value
of the global pointer used by the assembler from gp_value in the Optional Header
(Table 9.4).

Example 4: Example of the R_LITERAL. This example shows of an R_LIT-
ERAL uses a floating—point literal. The assembler macro:

li.s $£0,1.234

is translated into the following machine instruction:

h: lwcl $£0,-32752 (gp) # R_LITERAL relocation type at
address h for the literal 1.234

and aR_LITERAL relocation entry is produced; the value of the literal is put into
the .lit4 section. The link editor places only one of all like literal constants in the
literal pool. The difference between the virtual address of the literal and the ad-

dress of the global pointer is used as the immediate value for the instruction. The

Assembly Language Programmer’s Guide

Object File Format

Object Files

link editor handles 8-byte literal constants similarly, except it places each unique
constant in the ./it8 section. The value of the -G num option used when compil-
ing determines if the literal pools are used.

This section describes the object-file formats created by the link editor, namely
the Impure (OMAGIC), Shared Text (NMAGIC), Demand Paged (ZMAGIC),
and target—shared libraries (LIBMAGIC) formats. Before reading this section,
you should be familiar in the format and contents of the text, data, and bss seg-
ments as described in the Section Data section of this chapter.

The following rules dictate certain constraints on the address at which an object
can be loaded and the boundaries of its segments; the operating system can dic-
tate additional constraints.

1. OMAGIC, NMAGIC or ZMAGIC object files can execute on UMIPS-BSD
or UMIPS-V systems.

2. Segments must not overlap and all addresses must be less than 0x80000000.

3. Space should be reserved for the stack, which starts below 0x80000000 and
grows through lower addresses, that is, the value of each subsequent address
is less than that of the previous address.

4. The default text segment address for ZMAGIC and NMAGIC files is
0x00400000 and the default data segment address is 0x10000000.

5. The default text segment address for OMAGIC files is 0x10000000 with the
data segment following the text segment.

6. Don’t specify the =B num option (specifying a bss segment origin) for
OMAGIC files; the default, which specifies that the bss segment follow the
data segment, must be used.

7. UMIPS-BSD requires a 4-megabyte boundary for segments. Objects linked
at addresses other than the default will run under the Release 2.0 and later
UMIPS-BSD releases.

8. UMIPS-V requires a 2-megabyte boundary for segments. OMAGIC object
files execute under UMIPS-V Release 1.2 and later release.

Assembly Language Programmer’s Guide 9-17

Chapter 9

Impure Format (OMAGIC) Files
An OMAGIC file has the format shown in Figure 9.5.

9-18

.Jbss
bss segment
.sbss

.sdata
Jit4

lit8 data segment
data
rdata

JAnit
text segment
Jtext

YYYYVY Yy

aligned on a 16-byte boundary

Figure 9.5. Layout of OMAGIC Files in Virtual Memory

The OMAGIC format has the following characteristics:

Each section follows the other in virtual address space aligned on
an 16-byte boundary.

No blocking of sections.

Text, data and bss segments can be placed anywhere in the vir-
tual address space using the link editor’s —T, —D and —B op-
tions.

The addresses specified for the segments must be rounded to
16-byte boundaries.

The text segment contains only the .zext and .init sections.

The sections in the data segment are ordered as follows: .rdata,
data, .lit8, .lit4, and .sdata

The sections in the bss segment are ordered as follows: .sbss and
bss.

Assembly Language Programmer’s Guide

Object File Format

Shared Text (NMAGIC) Files

An NMAGIC file has the format shown in Figure 9.6.

.bss

.Sbss

.sdata

lit4

lit8

.data

Jrdata

nit

TIRTTR

Jext

} bss segment

data segment

} text segment

= aligned on a 16-byte boundary

| aligned on a page—size boundary

Figure 9.6. Layout of NMAGIC Files in Virtual Memory

An NMAGIC file has the following characteristics:

e The virtual address of the data segment is on a pagesize bound-

ary.

¢ No blocking of sections.

o Each section follows the other in virtual address space aligned on

an 16-byte boundary.

e Only the start of the text and data segments, using the link edi-
tor’'s —T and —D options, can be specified for a shared text for-
mat file; the start of the text and data segments must be a multi-

ple of the pagesize.

Assembly Language Programmer’s Guide

9-19

Chapter 9

Demand Paged (ZMAGIC) Files (\
A ZMAGIC file is a demand, paged file in the format shown in Figure 9.7.
A ZMAGIC file has the following characteristics:

¢ The text segment and the data segment are blocked, with
pagesize as the blocking factor. Blocking reduces the complex-

ity of paging in the files.
2G } 32K (not accessible
2G-32K | %r by user).
] StaCk Area '
bottom of stack
sbrk arena increases automatically
as required.
.bss IT
b bss segment
0 fill area .sbss

data segment ']
(blocked by pagesize) (

256M
empty

) text segment
(blocked by pagesize)
4 Mbyte +header

4M /
byte empty
0

Figure 9.7. Layout of ZMAGIC Files in Virtual Memory

9-20 Assembly Language Programmer’s Guide

Object File Format

e The size of the sum of the of the File, Optional, and Sections
Headers (Tables 9.1, 9.4, and 9.6) rounded to 16 bytes is in-
cluded in blocking of the text segment.

¢ The text segment starts by default at 0x400000 (4 Mbyte) , plus
the size of the sum of the headers again rounded to 16 bytes.
With the standard software, the text segment starts at 0x400000
+ header size.

NOTE: This is required because the first 32K bytes of memory
are reserved for future use by the compiler system to allow data
access relative to the constant register 0.

e Only the start of the text and data segments, using the link edi-
tor’s —T and —D options can be specified for a demand paged
format file and must be a multiple of the pagesize.

Figure 9.8. shows a ZMAGIC file as it appears in a disk file.

Symbol Table

0 Fill Area
.sdata

lit4 data segment
lit8 (blocked by pagesize)

.data

.rdata

fill area

text

text segment

Jinit (blocked by pagesize)

headers

Figure 9.8. Layout of a ZMAGIC File on Disk.

Assembly Language Programmer’s Guide 9-21

Chapter 9

Target Shared Library (LIBMAGIC) Files

Typically, mkshlib(1) creates target shared libraries; however, the link editor cre-
ates such libraries when its —c option is specified (each shared library file name is
displayed during the link if the —v option is supplied).

LIBMAGIC files are demand paged and have the same format as ZMAGIC file
except as follows:

¢ headers are put on their own page

o the xz section starts on the next page from the value of the -T
num option. This prevents the number and size of headers from
affecting the start of the first real text. The first real text is the
branch table and must stay at the same address.

Both the -T and -D options should be specified, because the defaults would
cause the target shared library to overlay the ZMAGIC files and cause an execu-
tion failure. The link editor —¢ option requires that the files to be linked are com-
piled with the =G 0 option (which sets the link editor -G O option).

Objects Using Shared Libraries

Ucode objects

9-22

Object files that use shared libraries contain a ./ib section following the data seg-
ment (including the zero fill area created by blocking it to a pagesize). All object
files on System V systems contain an .init section used by shared library initiali-
zation code. Shared library initialization instructions are generated by mkshlib(1)
from the #init directive in the library specification file. This following code from
the shared library specification

#init bar.o
_libfoo_ext ext

generates these instructions generated in the .init section:.

la $2,ext
sw $2, libfoo_ext

Initialization instructions are not bounded by any procedure; the initialization
instructions from each .init section are concatenated and the runtime startup
(crtl.o) branches to its label in its .init section. Then the execution falls through
all the concatenated .init sections until reaching crtn.o (the last object with a .init
section) which contains the RETURN instruction.

Object files without shared libraries contain a small .init section that executes,
producing no significant results.

Ucode objects contain only a file header, the ucode section header, the ucode sec-
tion and all of the symbolic information. A ucode section never appears in a ma-
chine code object file.

Assembly Language Programmer’s Guide

(

Object File Format

Loading Object Files

Archive files

The link editor produces object files with their sections in a fixed order similar to
UNIX system object files that existed before COFF. See Figure 9.1 for the a de-
scription of the sections and how they are formatted.

The sections are grouped into segments, which are described in the Optional
Header. In loading the object module at run-time, the system (kernel) loader
needs only the magic number in the File Header and the Optional Header to load
an object file for execution.

The starting addresses and sizes of the segments for all types of object files are
specified similarly, and they are loaded in the same manner.

After reading in the File Header and the Optional Header, the system (kemnel)
loader must examine the file magic number to determine if the program can be
loaded. Then, the system (kernel) loader loads the text and data segments.

The starting offset in the file for the text segment is given by the macro
N TXTOFF(f,a)

in the header file a.out.h, where fis the File Header structure and a is the option
header structure for the object file to be loaded. The tsize field in the Optional
Header (Table 9.4) contains the size of the text segment and fext_start contains
the address at which it is to be loaded.

The starting offset of the data segment follows the text segment. The dsize field
in the Section Header (Table 9.6) contains the size of the data segment;
data_start contains the address at which it is to be loaded.

The system (kemel) loader must fill the bss segment with zeros. The bss_start
field in the Optional Header specifies the starting address; bsize specifies the
number of bytes to be filled with zeros. In ZMAGIC files, the link editor adjusts
bsize to account for the zero filled area it created in the data segment that is part
of of the .sbss or .bss sections.

If the object file itself does not load the global pointer register it must be set to
the gp_value field in the Optional Header (Table 9.4).

The other fields in the Optional Header are gprmask and cprmask[4], whose bits
show the registers used in the .text and .init sections. They can be used by the
operating system, if desired, to avoid save register relocations on context—switch.

The link editor can link object files in archives created by the archiver. The ar-
chiver and the format of the archives are based on the UNIX System V portable
archive format. To improve performance, the format of the archives symbol ta-
ble was changed so that it is a hash table, not a linear list.

The archive hash table is accessed through the ranhashinit() and ranlookup() li-
brary routines in libmid.a, which are documented in the manual page ras-
hash(3x). The archive format definition is in the header file ar.h.

Assembly Language Programmer’s Guide 9-23

Chapter 9

Link Editor Defined Symbols (\

Certain symbols are reserved and their values are defined by the link editor. A
user program can reference these symbols, but not define one, or else an error is
generated. Table 9.12 lists the names and values of these symbols; the header
file sym.h contains their preprocessor macro definitions.

Table 9.12 Link Editor Defined Symbols

Symbol Value Description
_ETEXT Yetext” 1st location after .text
_EDATA “edata” 1st location after .sdata

(all initialized data)
_EN “end” 1st location after .bss (all data)
_FTEXT ”_ftext” !1st location of .text
_FDATA ”_fdata” !1st location of .data
_FBSS ”_fbss” !1st location of the .bss
_PROCEDURE_TABLE ”_procedure_table” runtime procedure table
_PROCEDURE_TABLE_SIZE ”_procedure_table_size” runtime procedure table size
_PROCEDURE_STRING_TABLE ”_procedure_string_table” string table for runtime proc.
_COBOL_MAIN ”_cobol_main” 1st cobol main symbol
_GP ”_gp” Ithe value of the global
pointer

Icompiler system only.

The first three symbols come from the standard UNIX system link editors and the (
rest are compiler system specific. The last symbol is used by the start up routine -
to set the value of the global pointer, as shown in the following assembly lan-

guage statements:

globl _GP
la Sgp,_GP

The assembler generates the following machine instructions for these statements:

a: lui gp,0 # R REFHI relocation type at address a for symbol _GP
b: add gp,0 # R REFLO relocation type at address b for symbol _GP

which would cause the correct value of the global pointer to be loaded.

The link editor symbol _COBOL_MAIN is set to the symbol value of the first
external symbol with the cobol_main bit set. COBOL objects uses this symbol to
determine the the main routine.

9-24 Assembly Language Programmer’s Guide

Object File Format

Runtime Procedure Table Symbols

The three link editor defined symbols, _PROCEDURE_TABLE, _PROCE-
DURE_TABLE_SIZE and _PROCEDURE_STRING_TABLE, relate to the run-
time procedure table. The Runtime Procedure Table is used by the exception
systems in ADA, PL/I and COBOL. Its description is found in the header file
<sym.h>. The table is a subset of the Procedure Descriptor Table portion of the
Symbol Table with one additional field, exception_info.

When the procedure table entry is for an external procedure, and an External
Symbol Table exists, the link editor fills in exception_info with the address of the
external table. Otherwise, its fill in exception_info with zeros.

The name of the External Symbol Table is the procedure name concatenated with
the string _exception_info (actually, the preprocessor macro EXCEPTION_SUF-
FIX as defined in the header file <exception.h>).

The Runtime Procedure Table provides enough information to allow a program
to unwind its stack. It is typically used by the routines in libexc.a. The comments
in the header file <exception.h> describes the routines in that library.

The Runtime Procedure Table is sorted by procedure address and always has a
dummy entry with a zero address and a Oxffffffff address. When required, the
table is padded with an extra zero entry to ensure that the total number of entries
is an uneven (odd) number.

The Runtime Procedure Table and String Table for the runtime procedure table
are placed at then end of the .data section in the object file.

Assembly Language Programmer’s Guide 9-25

Chapter 9

9-26

Assembly Language Programmer’s Guide

10
Symbol Table

This chapter describes the symbol table and symbol table routines used to create
and make entries in the table. The chapter contains the following major sections:

e Overview, which gives the purpose of the Symbol table, a sum-
mary of its components, and their relationship to each other.

e Format of Symbol Table Entries, which shows the structures of
Symbol table entries and the values you assign them through the
Symbol Table routines.

¢ Symbol Table Routine Reference, which lists the symbol table
routines supplied with the compiler and summarizes the function
of each.

NOTE: Third Eye Software, Inc. owns the copyright (dated 1984) to the format
and nomenclature of the Symbol Table used by the compiler system as docu-
mented in this chapter.

Third Eye Software, Inc. grants reproduction and use rights to all parties, PRO-
VIDED that this comment is maintained in the copy.

Third Eye makes no claims about the applicability of this symbol table to a par-
ticular use.

Assembly Language Programmer’s Guide 10-1

Chapter 10

Overview

The symbol table in created by the compiler front-end as a stand—alone file. The
purpose of the table is to provide information to the link editor and the debugger
in performing their respective functions. At the option of the user, the link editor
includes information from the Symbol table in the final object file for use by the

debugger. See Figure 9.1 in Chapter 9 for details.

Created only if debugging
is ON.

1 table per compilation.

K e L L g e oy
A T g
B g Sy T o & o
g A o o o N o
W o 2 o &
S e i gt gt e S I I
SV T T T b b b T Y
B A
Line Numb
ne ers

DO I DI U\ A, M S MO T K I
T o T
R YR B M L gt gt
RO R e o COE i
S 2

A

o A
S e i o

Procedure Descriptor Table

Local Symbols

Optimization Symbols

Auxiliary Symbols

Local Strings

[[] 1 table per source file and
per include file.

10-2

Figure 10.1 The Symbol Table - Overview

The elements that make up the Symbol table are shown in Figure 10.1. The
front—end creates one group of tables (the shaded areas in Figure 10.1) that con-
tain global information relative to the entire compilation. It also creates a unique
group of tables (the unshaded areas in the figure) for the source file and each of

its include files.

Assembly Language Programmer’s Guide

Symbol Table

Compiler front-ends, the assembler, and the link editor interact with the symbol
table as summarized below:

e The front-end, using calls to routines supplied with the compiler
system, enters symbols and their descriptions in the table.

e The assembler fills in line numbers, optimization symbols, up-
dates Local Symbols and External Symbols, and updates the Pro-
cedure Descriptor table.

e The link editor eliminates duplicate information in the External
Symbols and the External Strings tables, removes tables with
duplicate information, updates Local Symbols with relocation
information, and creates the Relative File Descriptor table.

The major elements of the table are summarized in the paragraphs that follow.
Some of these elements are explored in more detail later in the chapter.

Symbolic Header. The Symbolic Header (HDRR for HeadDeR Record) con-
tains the sizes and locations (as an offset from the beginning of the file) of the
subtables that make up the Symbol Table. Figure 10.2 shows the symbolic rela-
tionship of the header to the other tables.

Symbolic Header

Line Numbers

Dense Numbers

Procedure
Descriptor Table

Local Symbels

Optimization Symbols

Auxliary Symbols

Local Strings

External Strings

File Descriptor Table

Figure 10.2 Functional Overview of the Symbolic Header

Line Numbers. The assembler creates the Line Number table. It creates an en-
try for every instruction. Internally, the information is stored in an encoded form.
The debugger uses the entries to map instruction to the source lines and vice
versa.

Dense Numbers. The Dense Number table is an array of pairs. An index into
this table is called a dense number. Each pair consists of a file table index (ifd)
and an index (isym) into Local Symbols. The table facilitates symbol look—up for
the assembler, optimizer, and code generator by allowing direct table access
rather than hashing.

Assembly Language Programmer’s Guide 10-3

Chapter 10

“Procedure Descriptor Table. The Procedure Descriptor table contains register

and frame information, and offsets into other tables that provide detailed infor-
mation on the procedure. The front—end creates the table and links it to the Local
Symbols table. The assembler enters information on registers and frames. The
debugger uses the entries in determining the line numbers for procedures and
frame information for stack traces.

Local Symbols. The Local Symbols table contains descriptions of program vari-
ables, types, and structures, which the debugger uses to locate and interpret run-
time values. The table gives the symbol type, storage class, and offsets into other
tables that further define the symbol.

A unique Local Symbols table exists for every source and include file; the com-
piler locates the table through an offset from the file descriptor entry that exists
for every file. The entries in Local Symbols can reference related information in
the Local Strings and Auxiliary Symbols subtables. This relationship is shown in
Figure 10.3 .

I File Descriptor Table I

Entry forFile 0 |

Entry for File 1 Local Symbols

Entry for File 2

Entry for File n

Auxiliaries

Local Strings
Auxiliaries

Local String
Auxiliaries

Figure 10.3 Logical Relationship between the File Descriptor Table and Local Symbols

10-4

Optimization Symbols. To be defined at a future date.

Auxiliary Symbols. The Auxiliary Symbols tables contain data type information
specific to one language. Each entry is linked to an entry in Local Symbols. The
entry in Local Symbols can have multiple, contiguous entries. The format of an
auxiliary entry depends on the symbol type and storage class. Table entries are
required only when the compiler debugging option is ON.

Local Strings. The Local Strings subtables contain the names of local symbols.

Assembly Language Programmer’s Guide

(|

Symbol Table

External Strings. The External Strings table contains the names of external -
symbols.

File Descriptor. The File Descriptor table contains one entry each for each
source file and each of its include files. (The structure of an entry is given in Ta-
ble 10.12 later in this chapter.) The entry is composed of pointers to a group of
subtables related to the file. The physical layout of the subtables is shown in
Figure 104 .

File Descriptor Table
le Descriptor Entry

—— Line Numbers
Procedure
> Local Symbols

> Optimization Symbols

> Auxliary Symbols
> Local Strings
e Relative File Descriptor

Figure 104 Physical Relationship of a File Descriptor Entry to Other Tables

The file descriptor entry allows the compiler to access a group of subtables
unique to one file. The logical relationship between entries in this table and in its
subtables is shown in 10.5.

Assembly Language Programmer's Guide 10-5

Chapter 10

| File Descriptor Table

Entry for File 0

Entry for File 1

Entry for File 2

s
.I Line Numbers

Procedure
it lescriptor Table
Local Symbols

Optimization Symbols

Auxliary Symbols

Local Strings

Relative File Descriptor

Line Numbers

ﬁ—-—wmm————

Procedure

Local Symbols

Optimization Symbols

Auxliary Symbols

Local Strings

Relative File Descriptor

10-6

Figure 10.5 Logical Relationship between the File Descriptor Table and Other Tables

Relative File Descriptor. See the section Link Editor Processing later in this

chapter.

External Symbols. The External Symbols contains global symbols entered by

the front-end. The symbols are defined in one module and referenced in one or

more other modules. The assembler updates the entries, and the link editor
merges the symbols and resolves their addresses.

Assembly Language Programmer's Guide

Symbol Table

Format of Symbol Table Entries

Symbolic Header
The structure of the Symbolic Header is shown below in Table 10.1 ; the sym.h
header file contains the header declaration.
Table 10.1 Format of the Symbolic Header
Declaration Name Description
short magic to verify validity of the table
short vstamp version stamp
long ilineMax number of line number entries
long cbLine number of bytes for line number entries
long cbLineOffset index to start of line numbers
long idnMax max index into dense numbers
long cbDnOffset index to start dense numbers
long ipdMax number of procedures
long cbPdOffset index to procedure descriptors
long isymMax number of local symbols
long cbSymOffset index to start of local symbols
long ioptMax maximum index into optimization entries
long cbOptOffset index to start of optimization entries
long iauxMax number of auxiliary symbols
long cbAuxOffset index to the start of auxiliary symbols
long issMax max index into local strings
long cbSsOffset index to start of local strings
long issExtMax max index into external strings
long cbSsExtOffset index to the start of external strings
long ifdMax number of file descriptors
long cbFdOffset index to file descriptor
long crfd number of relative file descriptors
long cbRfdOffset index to relative file descriptors
long iextMax maximum index into external symbols
long cbExtOffset index to the start of external symbols

The lower byte of the vstamp field contains LS_STAMP and the upper byte
MS_STAMP (see the stamp.h header file). These values are defined in the
stamp.h file. The iMax fields and the cbOffset field must be set to 0 if one of the
tables shown in Table 10.1 isn’t present. The magic field must contain the con-
stant magicSym, also defined in longsymconst.h.

Assembly Language Programmer’s Guide

10-7

Chapter 10

Line Numbers ' (

Table 10.2 shows the format of an entry in the Line Numbers table; the sym.h
header file contains its declaration.

Table 10.2 Format of a Line Number Entry

Declaration Name

typedef long LINER, *pLINER

The line number section in the Symbol table is rounded to the nearest four-byte
boundary.

Line numbers map executable instructions to source lines; one line number is
stored for each instruction associated with a source line. It is stored as a long in-
teger in memory and in packed format on disk.

The layout on disk is as follows:

Bit 8 4 0

Delia Count (

The compiler assigns a line number to only those lines of source code that gener-
ate one or more executable instructions.

Delta is a four-bit value in the range —7...7, defining the number of source lines
between the current source line, and the previous line generating executable in-
structions. The Delta of the first line number entry is the displacement from the
InLow field in the Procedure Descriptor Table.

Count is a four-bit field with a value in the range 0...15 indicating the number
(1...16) of executable instructions associated with a source line. If more than 16
instructions (15+1) are associated with a source line, new line number entries are
generated with Delta = 0.

An extended format of the line number entry is used when Delta is outside the
range of —7...7.

10-8 Assembly Language Programmer’s Guide

Symbol Table

The layout of the extended field on disk is as follows:

Bit l
1 0100
Bit § 4 0
Upper eight bits of Delta
Bit § D
Lower eight bits of Delta

NOTE: The compiler allows a maximum of 32,767 comment lines, blank lines,
continuation lines and other lines not producing executable instructions, between
two source lines that do.

Line number example. This section gives an example of how the compiler
assigns line numbers. For the source listing shown below, the compiler generates
line numbers only for the highlighted lines (6, 7, 17, 18, and 19); the other lines
are either blank or contain comments.

printf ("this program just prin its input\n™);
while ((c = getc(stdin)) != EOF) {

0000005

printf("%c”, c);

} /* end while */
} /* end main */

Figure 10.6 Source Listing for Line Number Example

Assembly Language Programmer’s Guide 10-9

Chapter 10

10-10

Figure 10.8 (on the next page) shows the instructions generated for lines 3, 7, 17,
18, and 19. Figure 10.7 (below) shows the compiler—generated liner entries for

each source line.

Source Liner

Line Contents Meaning
3 02 delta 0, count 2
6 31 delta 3, count 1
7 1f delta 1, count 15
7 . 03 dellta 0, count 3
17 82000a -8, count 2, delta 10
18 1f delta 1, count 15
182 03 delta 0, ount 3
19 15 delta 1, count §

! Extended format (count is greater than

seven lines).
2 Continuation.

Figure 10.7 Source Listing for Line Number Example

Assembly Language Programmer’s Guide

(

Symbol Table

[main:3, 0x4001a0] addiu sp,sp,—32
[main:3, 0x4001a4] SW r31,20(sp)
[main:3, 0x4001a8] SW r16,16(sp)
[main:6, 0x4001ac] jal printf

[main:6, 0x4001b0] addiu r4,8p,—32752
[main:7, 0x4001b4] Iw r14,-32552(gp)
[main:7, 0x4001b8] nop

[main:7, 0x4001bc] addiu r15r14-1
[main:7, 0x4001c0] bltz r15,0x4001e4
[main:7, 0x4001c4] SW r15,-32552(gp)
[main:7, 0x4001c8] Iw 124,-32548(gp)
[main:7, 0x4001cc] nop

[main:7, 0x4001d0] Ibu 125,0(r24)
[main:7, 0x4001d4] addiu 18.124,1
[main:7, 0x4001d8] sb 125,31(sp)
[main:7, 0x4001dc] b 0x4001£4
[main:7, 0x4001e0] swW 18,-32548(gp)
[main:7, 0x4001e4] jal _filbuf
[main:7, 0x4001e8] addiu rd,gp,~32552
[main:7, 0x4001ec] move rl6,r2

[main:7, 0x4001£0] sb r16,31(sp)
[main:7, 0x4001£4] Ibu 19,31(sp)
[main:7, 0x4001f8] i rl-1

[main:7, 0x4001fc] beq 19,r1,0x400260
[main:7, 0x4002001 nop

[main:17, 0x400204] 1bu 15,31(sp)
[main:17, 0x400208] jal printf
[main:17, 0x40020c] addiu r4,2p.~32716
[main:18, 0x400210] Iw r10,-32552(gp)
[main:18, 0x400214] nop

[main:18, 0x400218] addiu r11,r10,-1
[main: 18, 0x40021c] bltz r11,0x400240
[main:18, 0x400220] sw r11,-32552(gp)
[main:18, 0x400224] Iw r12,-32548(gp)
[main: 18, 0x400228] nop

[main:18, 0x40022c] Ibu r13,0(r12)
[main: 18, 0x400230] addiu r14,r12,1
[main: 18, 0x400234] sb r13,31(sp)
[main:18, 0x400238] b 0x400250
[main:18, 0x40023c] swW r14,-32548(gp)
[main:18, 0x400240] jal _filbuf
[main:18, 0x400244] addiu r4,gp,-32552
[main:18, 0x400248] move r16,r2
[main:18, 0x40024c] sb r16,31(sp)
[main:18, 0x400250] Ibu r15,31(sp)
[main: 18, 0x400254] li r1-1

[main:18, 0x400258] bne r15,r1,0x400204
[main:18, 0x40025¢] nop

[main:19, 0x400260] b 0x400268
[main:19, 0x400264] nop

[main:19, 0x400268] Iw r31,20(sp)
[main: 19, 0x40026¢] 1w r16,16(sp)
[main:19, 0x400270] jr r3l '
[main:19, 0x400274] addiu Sp,sp,32

Figure 10.8 Source Listing for Line Number Example

Assembly Language Programmer’s Guide

10-11

Chapter 10

Procedure Descriptor Table

Local Symbols

10-12

Table 10.3 shows the format of an entry in the Procedure Descriptor table; the
sym.h header file contains its declaration.

Table 10.3 Format of a Procedure Descriptor Table Entry

Declaration

Name

Description

unsigned, long adr

long
long
long
long
long
long
long
long
long
long

long
long
long

isym
iline
‘regmask
regoffset
iopt
fregmask
fregoffset
frameoffset
framereg

pcreg

InLow
InHigh
cbLineOffset

memory address of start of procedure
start of local symbols

procedure’s line numbers

saved register mask

saved register offset

procedure’s optimization symbol entries
save floating point register mask
save floating point register offset
frame size

frame pointer register

index or reg of return program
counter

lowest line in the procedure

highest line in the procedure

byte offset for this procedure from
the base of the file descriptor entry.

Table 10.4 shows the format of an entry in the Local Symbols table; the sym.h
header file contains its declaration.

Table 104 Format of a Local Symbols Entry.

Declaration Name Description
long iss index into local strings of symbol name
long value value of symbol. See Table 10.5.
unsigned st:6 symbol type. See Table 10.6.
unsigned sc:5 storage class. See Table 10.7.
unsigned reserved : 1
unsigned index : 20 index into local or auxiliary symbols

See Table 3,5,

The meanings of the fields in a local symbol entry are explained in the following

paragraphs.

Assembly Language Programmer's Guide

(

Symbol Table

iss. The iss (for index into string space) is an offset from the issBase field of an
entry in the file descriptor table, to the name of the symbol.

value. An integer representing an address, size, offset from a frame pointer. The
value is determined by the symbol type, as illustrated in Table 10.5.

st and sc. The symbol type (st) defines the symbol; the storage class (sc), where
applicable explains how to access the symbol type in memory. The valid st and
sc constants are given in Tables 10.6 and 10.7. These constants are defined in
symconst.h.

index. The index is an offset into either Local Symbols or Auxiliary Symbols,
depending of the storage type (st) as shown in Table 10.5 The compiler uses
isymBase in the file descriptor entry as the base for a Local Symbol entry and
iauxBase for an Auxiliary Symbols entry.

Table 10.5 Index and Value as a Function of Symbol Type and Storage Class

Symbol Type Storage Class Index Value
stFile scText isymMac address
stLabel scText indexNil address
stGlobal scD/B1 iaux address
stStatic scD/B! iaux address
stParam scAbs iaux frame offset 2
scRegister iaux register number
scVar iaux frame offset 2
scVarRegister iaux register number
stLocal scAbs jaux frame offset 2
scRegister iaux register number
stProc scText iaux address
scNil iaux address
scUndefined iaux address
stStaticProc scText iaux address
stMember
enumeration scInfo indexNil ordinal
structure scInfo iaux bit offset
union scInfo iaux bit offset
1scD/B is the storage class determined by the assembler, either
large/small or data/bss.
2frame offset is the offset from the virtual frame pointer.
3bit offset is computed from the beginning of the procedure.

Assembly Language Programmer’s Guide

10-13

Chapter 10

Table 10.5 Index and Value as a Function of Symbol Type and Storage Class (continued)

Symbol Type Storage Class Index Value

stBlock 1
enumeration scInfo isymMac max enumeration
structure scInfo isymMac size
text bock scText isymMac relative address 2
common block scCommon isymMac size
variant scVariant isymMac isymTag 3
variant arm scInfo isymMac iauxRanges
union scInfo isymMac size

stEnd
enumeration scInfo isymStart 0 9
file scText isymStart relative address
procedure scText isymStart relative address®
structure scInfo isymStart 0
text block scText isymStart relative address 2
union scInfo isymStart 0
common block scCommon isymStart 0
variant scVariant isymStart 0
variant arm scInfo isymStart 0

stTypedef scInfo iaux 0

1isymMac is the isym of the corresponding stEnd symbol plus 1.

2relative address is the relative displacement from the beginning of the
procedure.

3isymTab is the isym to the symbol that is the tag for the variant.

4iauxRanges is the iaux to ranges for the variant arm.

5isymStart is the isym of the correspodning begin block (stBlock, stFile,
stProc, etc.)

The link editor ignores all symbols except the types stProc, st Static, stLabel,
stStaticProc, which it will relocate. Other symbols are used only by the debug-
ger, and need be entered in the table only when the compiler debugger option is
ON.

Symbol Type (st). Table 10.6 gives the allowable constants that can be speci-
fied in the st field of Local Symbols entries; the symconst.h header file contains
the declaration for the constants.

10-14 Assembly Language Programmer’s Guide

Symbol Table

Table 10.6 Symbol Type (st) Constants Supported by the Compiler

Constant Value Description

stNil 0 Dummy entry

stGlobal 1 external symbol

stStatic 2 static

stParam 3 procedure argument

stLocal 4 local variable

stLabel 5 label

stProc 6 Procedure

stBlock 7 start of block

stEnd 8 end block, file, or procedures
stMember 9 member of structure, union, or enumeration.
stTypedef 10 type definition

stFile 11 file name

stStaticProc 14 load time only static procs
stConstant 15 const

Storage Class (st) Constants. Table 10.7 gives the allowable constants that
can be specified in the sc field of Local Symbols entries; the symconst.h header
file contains the declaration for the constants.

Assembly Language Programmer’s Guide : 10-15

Chapter 10

Table 10.7 Storage Class Constants Supported by the Compiler

Optimization Symbols

10-16

Constant Value Description

scNil 0 dummy entry.

scText 1 text symbol

scData 2 initialized data symbol

scBss 3 un—initialized data symbol

scRegister 4 value of symbol is register number
scAbs 5 symbol value is absolute; not to be relocated.
scUndefined 6 Used but undefined in the current module.
reserved 7

scBits 8 this is a bit field

scDbx 9 dbx internal use

scRegImage 10 register value saved on stack

scInfo 11 symbol contains debugger information
scUserStruct 12 address in struct user for current process
scSData 13 (load time only) small data

scSBss 14 (load time only) small common
scRData 15 (load time only) read only data

scVar 16 Var parameter (Fortran or Pascal)
scCommon 17 common variable

scSCommon 18 small common

scVarRegister 19 var parameter in a register

scVariant 20 variant records

scUndefined 21 small undefined

scInit 22 init section symbol

Reserved for future use.

Assembly Language Programmer’s Guide

Symbol Table

Auxiliary Symbols

Table 10.8 shows the format of an entry, which is a union, in Auxiliary Sym-
bols; the sym.h file contains its declaration.

Table 10.8 Storage Class Constants Supported by the Compiler

Declaration Name Description

TIR ti type information record

RNDXR mdx relative index into local symbols

long dnLow low dimension

long dnHigh high dimension

long isym index into local symbols for stEnd

long iss index into local strings (not used)

long width width of a structure field not declared
with the default value for size.

long count count of ranges for variant arm

All of the fields except the 4 field are explained in the order they appear in the
above layout. The ¢ field is explained last.

rndx. Relative File Index. The front-end fills this field in describing structures,
enumerations, and other complex types. The relative file index is a pair of in-
dexes. One index is an offset from the start of the File Descriptor table to one of
its entries. The second is an offset from the file descriptor entry to an entry in the
Local Symbols or Auxiliary Symbols table.

dnLow. Low Dimension of Array.
dnHigh. High Dimension of Array.

isym. Index into Local Symbols. This index is always an offset to an stEnd en-
try denoting the end of a procedure.

width. Width of Structured Fields.

count. Range Count. Used in describing case variants. Gives how many ele-
ments are separated by commas in a case variant.

ti. Type Information Record. Table 10.9 shows the format of a # entry; the
sym.h file contains its declaration.

Assembly Language Programmer's Guide 10-17

Chapter 10

10-18

Table 10.9 Format of an Type Information Record Entry

Declaration Name Description

unsigned fBitfield : 1 setif bit width is specified
unsigned continued : 1 next auxiliary entry has tq info
unsigned bt :6 basic type

unsigned td : 4 Type qualifier.

unsigned tq5 : 4

unsigned tq0 : 4

unsigned tql :4

unsigned tq2 : 4

unsigned tq3 : 4

All groups of auxiliary entries have a type information record with the following
entries:

o fbitfield. Set if the basic type (bt) is of non—strandard width.

o bt (for basic type) specifies if the symbol is integer, real com-
plex, numbers , a structure, etc. The valid entries for this field are
shown in Table 10.10; the sym.h file contains its declaration.

e 1q (for type qualifier) defines whether the basic type (bt) has an
array of, function returning, or pointer to qualifier. The valid
entries for this field are shown in Table 10.11 ; the sym.h file
contains its declaration.

Assembly Language Programmer’s Guide

Symbol Table

Table 10.10 Basic Type (bt) Constants

Default
Constant Value Size* Description
btNil 0 0 undefined, void
btAdr 1 32 address — same size as pointer
btChar 2 8 symbol character
btUChar 3 8 unsigned character
btShort 4 16 short (16 bits)
btUShort 5 16 unsigned short
btInt 6 32 integer
btUInt 7 32 unsigned integer
btLong 8 32 long (32 bits)
btULong 9 32 unsigned long
btFloat 10 32 - floating point (real)
btDouble 11 64 double—precision floating point real
btStruct 12 n/a structure (Record)
btUnion 13 n/a union (variant)
btEnum 14 32 enumerated
btTypedef 15 n/a defined via a typedef; rndx points at
a stTypedef symbol.
btRange 16 32 subrange of integer
btSet 17 32 pascal sets
biComplex 18 64 fortran complex
btDComplex 19 128 fortran double complex
btIndirect 20 Indirect definition;rndx points to TIR aux
btMax 64 :
*Size in bits.

Table 10.11 Type Qualifier (tq) Constants

Constant Value Description

tgNil 0 Place holder. No qualifier.
tqPtr 1 pointer to

tqProc 2 function returning

tqArray 3 array of

tqVol 5 volatile

tgMax 8

Assembly Language Programmer’s Guide 10-19

Chapter 10

File Descriptor Table

Table 10.12 shows the format of an entry in the File Descriptor table; the sym.h
file contains its declaration.

Table 10.12 Format of File Descriptor Entry

Declaration Name Description
unsigned,long adr memory address of start of file
long 1SS source file name
long issBase start of local strings
long cbSs number of bytes in local strings
long isymBase start of local symbol entries
long ~ csym count of local symbol entries
long ilineBase start of line number entries
long cline count of line number entries
long ioptBase start of optimization symbol entries
long copt count of optimization symbol entries
short ipdFirst start of procedure descriptor table
short cpd count of procedures descriptors
long iauxBase start of auxiliary symbol entries
long caux count of auxiliary symbol entries
long rfdBase “index into relative file descriptors
long crfd relative file descriptor count
unsigned lang: § language for this file
unsigned fMerge : 1 whether this file can be merged
unsigned fReadin : 1 true if it was read in (not just
created)
unsigned fBigendian : 1 if set, was compiled on big endian
‘ machine aux’s is in compile host’s sex
unsigned reserved : 22 reserved for future use
long cbLineOffset byte offset from header or file In’s
long cbLine

External Symbols

The External Symbols table has the same format as Local Symbols, except an
offset (ifd) field into the File Descriptor table has been added. This field is used
to locate information associated with the symbol in an Auxiliary Symbols table.
Table 10.13 shows the format of an entry in External Symbols; the sym.h file
contains its declaration.

10-20 Assembly Language Programmer’s Guide

Symbol Table

Table 10.13 Format an Entry in External Symbols

Declaration Name Description

short reserved reserved for future use

short ifd pointer to file descriptor entry
SYMR asym Same as Local Symbols

Assembly Language Programmer’s Guide 10-21

Chapter 10

10-22 Assembly Language Programmer's Guide

A
Instruction Summaries

The tables in this chapter summarize the assembly language instruction set. Most
of the assembly language instructions have direct machine equivalents. Refer to
Appendix A and Appendix B of the RISC Architecture book for detailed instruc-
tion descriptions. In the tables in this appendix, the operand terms have the fol-
lowing meanings:

Operand Description
destination destination register
address expression
source source register
expression aboslute value
immediate immediate value
label symbol label
breakcode value that determines the break

Table A.1 Main Processor Instruction Summary

Description Op—code | Operand
Load Address la destination,address
Load Byte Ib

Load Byte Unsigned Ibu

Load Halfword 1h

Load Halfword Unsigned lhu

Load Word Iw

Load Coprocessor z lwez

Load Word Left Iwl

Load Word Right Iwr

Store Byte sb source,address
Store Halfword sh

Store Word SW

Store Word Coprocessor z SWCZ

Store Word Left | swl

Store Word Right sWr

Unaligned Load Halfword ulh

Unaligned Load Halfword Unsigned | ulhu

Unaligned Load Word ulw

Unaligned Store Halfword ush

Unaligned Store Word usw

Assembly Language Programmer’s Guide A-1

Appendix A

A-2

Table A.1 Main Processor Instruction Summary (continued)

Description Op—code | Operand
Load Immediate li destination,expression
Load Upper Immediate Tui
Restore From Exception rfe
Syscall syscall
Absolute Value abs destination,src1
Negate (with overflow) neg destination/srcl
Negate (without overflow) negu
NOT not
Add (with overflow) add destination,src1,src2
Add (without overflow) addu destination/src1,src2
AND and destination,src1,immediate
Divide (with overflow) div destination/srcl,immediate
Divide (without overflow) divu
EXCLUSIVE OR xor
Multiply mul
Multiply (with overflow) mulo
Multiply (with overflow) mulou
Unsigned
NOT OR nor
OR or
Remainder rem
Remainder Unsigned remu
Rotate Left rol
Rotate Right ror
Set Equal seq
SEt Less Than slt
Set Less Than Unsigned sltu
Set Less/Equal sle
Set Less/Equal Unsigned sleu
Set Greater Than sgt
Set Greater Than Unsigned sgut
Set Greater/Equal sge
Set Greater/Equal Unsigned sgeu
Set Not Equal sne
Shift Left Logical sl
Shift Right Arithmetic sra
Shift Right Logical srl
Subtract (with overflow) sub
Subtract (without overflow) subu
Multiply mult
Multiply Unsigned multu srel,src2

Assembly Language Programmer’s Guide

Instruction Summaries

Table A.1. Main Processor Instruction Summary (continued)

Description Op—code Operand
Branch b label
Branch Coprocessor z True bezt
Branch Coprocessor z False bezf
Branch on Equal beq srcl,src2,label
Branch on Greater bgt srcl,immediate,label
Branch on Greater/Equal bge
Branch on Greater/Equal Unsigned bgeu
Branch on Greater Than Unsigned bgtu
Branch on Less blt
Branch on Less/Equal ble
Branch on Less/Equal Unsigned bleu
Branch on Less Than Unsigned bltu
Branch on Not Equal bne
Branch and Link bal label
Branch on Equal Zero beqz srcl,label
Branch on Greater/Equal Zero bgez
Branch on Greater or Equal to zero bgezal
and Link
Branch on Greater Than Zero bgtz
Branch on Less/Equal Zero blez
Branch on Less Than Zero bltz
Branch on Less Than Zero and Link bltzal
Branch on Not Equal Zero bnqz
Jump J address
Jump and Link jal srcl
Break break breakcode
Coprocessor z Operation cz expression
Move move destination,srcl
Move From HI Register mfhi register
Move To HI Register mthi
Move From LO Register mflo
Move To LO Register mtlo
Move From Coprocessor z mfcz dest—gpr, source
Move To Coprocessor z mtcz src—gpr, destination
Control From Coprocessor z cfez sro-gpr, destination
Control to Coprocessor z ctez dest—gpr, source

Assembly Language Programmer’s Guide A3

Appendix A

Table A.2 System Coprocessor Instruction Summary

Description Op—code Operand
Translation Lookaside Buffer Probe tlbp

Translation Lookaside Buffer Read tlbr

Translation Lookaside Buffer Write Random | tlbwr

Translation Lookaside Write Index tIbwi

Table A.3 Floating Point Instruction Summary

Description Op—code Operand
Load Fp
Double Ld destination,offset(base)
Single Ls
Store FP
Double s.d source,offset(base)
Single S.8
Absolute Value Fp
Double abs.d destination,src1
Single abs.s
Add Fp
Double add.d destination,src1,src2
Single add.s
Divide Fp
Double div.d
Single div.s
Multiply .
Double mul.d
Single mul.s
Subtract Fp
Double sub.d
Single sub.s

A-4

Assembly Language Programmer’s Guide

Instruction Summaries

Table A.3 Floating Point Instruction Summary (continued)

Description Op—code | Operand
Convert Source to
Specified Precision Fp L
Double to Single cvt.s.d destination,src2
Fixed Point to Single cvt.s.w
Fixed Point to Double cvt.d.w
Single to Double cvt.d.s
Double to Fixed Point cvt.w.d
Single to Fixed Point cvt.w.s
Negate Floating Point
Double neg.d
Single neg.s

Assembly Language Programmer’s Guide A-5

Appendix A

Table A.3 Floating Point Instruction Summary (continued)

Description Op-code | Operand
Compare F
F Silr)lgle P c.f.s srcl,src2
F Double c.fd
UN Single c.un.s
UN Double c.un.d
*EQ Single c.eq.s
*EQ Double c.eq.d

UEQ Single c.ueq.s
UEQ Double c.ueq.d

OLT Single c.olt.s
OLT Double c.olt.d
ULT Single c.ult.s
ULT Double c.ult.d
OLE Single c.ole.s
OLE Double c.ole.d
ULE Single c.ule.s
ULE Double c.ule.d
SF Single c.sf.s
SF Double c.sf.d

NGLE Single c.ngle.s
NGLE Double | ¢ngled

SEQ Single c.deq.s
SEQ Double c.seq.d

NGL Single c.ngls
NGL Double c.ngld

NOTE: Starred items (*) are the most common Compare instructions. The ma-
chine has the other Compare instructions for IEEE compatibility.

A-6

Assembly Language Programmer’s Guide

Instruction Summaries

Table A.3 Floating Point Instruction Summary (continued)

Description Op—code Operand
Compare Fp
*LT Single clt.s srcl,src2
*LT Double c.lt.d
NGE Single c.nge.s
NGE Double c.nge.d
*LE Single cles
*LE Double cled
NGT Single 7 c.ngt.s
NGT Double c.ngt.d
Move Fp
Single mov.s destination,src1
Double mov.d

NOTE: Starred items (*) are the most common Compare instructions. The ma-
chine has the other Compare instructions for IEEE compatibility.

Assembly Language Programmer’s Guide A-7

Appendix A

A-8

Assembly Language Programmer’s Guide

B
Basic Machine Definition

The assembly language instructions described in this book are a superset of the
actual machine instructions. Generally, the assembly language instructions
match the machine instructions; however, in some cases the assembly language
instruction are macros that generate more than one machine instruction (the as-
sembly language multiplication instructions are examples).

You can, in most instances, consider the assembly instructions as machine in-
structions; however, for routines that require tight coding for performance rea-
sons, you must be aware of the assembly instructions that generate more than one
machine language instruction, as described in this appendix.

Load and Store Instructions

If you use an address as an operand in an assembler Load or Store instruction
and the address references a data item that is not addressable through register $gp
or the data item does not have an absolute address in the range —32768...32767,
the assembler instruction generates a lui (load upper immediate) machine instruc-
tion and generates the appropriate offset to $at. The assembler then uses $at as
the index address for the reference. This condition occurs when the address has a
relocatable external name offset (or index) from where the offset began.

The assembler’s la (load address) instruction generates an addiu (add unsigned
immediate) machine instruction. If the address requires it, the la instruction also
generates a lui (load upper immediate) machine instruction. The machine re-
quires the la instruction because la couples relocatable information with the in-
struction for symbolic addresses.

Depending on the expression’s value, the assembler’s li (load immediate) instruc-
tion can generate one or two machine instructions. For values in the
-32768...65535 range or for values that have zeros as the 16 least significant bits,
the li instruction generates a single machine instruction;, otherwise it generates
two machine instructions..

Computational Instructions

If a computational instruction immediate value falls outside the 0...65535 range
for Logical ANDs, Logical ORs, or Logical XORs (exclusive or), the immediate
field causes the machine to explicitly load a constant to a temporary register.
Other instructions generate a single machine instruction when a value falls in the
-32768...32767 range.

The assembler’s seq (set equal) and sne (set not equal) instructions generate
three machine instructions each.

Assembly Language Programmer’s Guide B-1

Appendix B

If one operand is a literal outside the range —-32768...32767, the assembler’s sge ()
(set greater than or equal to) and sle (set less/equal) instructions generate two ma-
chine instructions each.

The assembler’s mulo and mulou (multiply) instructions generate machine in-
structions to test for overflow and to move the result to a general register; if the
destination register is $0, the check and move are not generated.

The assembler’s mul (multiply unsigned) instruction generates a machine in-
struction to move the result to a general register; if the destination register is $0,
the move and divide-by—zero checking is not generated. The assembler’s divide
instructions, div (divide with overflow) and divu (divide without overflow), gen-
erate machine instructions to check for division by zero and to move the quotient
into a general register; if the destination register is $0, the move is not generated.

The assembler’s rem (signed) and remu (unsigned) instructions also generate -
multiple instructions.

The rotate instructions ror (rotate right) and rol (rotate left) generate three ma-
chine instructions each.

The abs (absolute value) instruction generates three machine instructions.

Branch Instructions

If the immediate value is not zero, the branch instructions beq (branch on equal))
and bne (branch on not equal), each generate a load literal machine instruction. (
The relational instructions generate a slt (set less than) machine instruction to

determine whether one register is less than or greater than another. Relational

instructions can reorder the operands and branch on either zero or not zero as re-

quired to do an operation.

Coprocessor Instructions

For symbolic addresses, the coprocessor interface Load and Store instructions,
Icz (load coprocessor z) and scz (store coprocessor z) can generate a lui (load up-
per immediate) machine instruction.

Special Instructions

The assembler’s break instruction packs the breakcode operand in unused regis-
ter fields. An operating system convention determines the position.

B-2

Assembly Language Programmer’s Guide

A

absolute instructions
abs (absolute value), 5-9
abs.d (add fp double), 6-6
abs.s (add Fp single), 6-6

add instructions
add (with overflow), 5-9
addu (without overflow), 5-9

addressing
descriptions, 2-2
formats, 2-2

archive files, 9-23
auxilary symbols, 10-17
auxiliary symbols, 104

B

branch and jump instructions, jal (jump and link), 5-18

branch instructions, B-2
b (branch), 5-16
bal (branch and link), 5-16
bezf (branch when coprocessor false), 5-20
bezt (branch when z true), 5-20
beq (begin on equal), 5-16
beqz (equal to zero), 5-16
bge (greater or equal), 5-16
bgeu (greater/equal unsigned), 5-16
bgez (greater/equal zero), 5-16
bgezal (greater/equal zero and link), 5-16
bgt (on greater), 5-16
bgtu (greater than unsigned), 5-16
bgtz (greater than zero), 5-17
ble (less or equal), 5-17
bleu (less/equal unsigned), 5-17
blez (less/equal zero), 5-17
blt (branch on less), 5-17
bltu (less than unsigned), 5-17
bltz (less than zero), 5-17
bltzal (less than zero and link), 5-17
bne (not equal), 5-17
bnez (not equal to zero), 5-17
filling delay slot, 5-1

break, 5-19

C

C programs, calling, 7-1

Assembly Language Programmer’ s Guide

Index

Computational Instructions, description of, 5-7
calling programs in other languages, 7-1

cfcz (control from processor z), 5-20
comments, 4-1

compare filing point instructions, c.sf.d (SF double),
6-9,6-11

compare floating point instructions
c.eq.d (EQ double), 6-9,6-10
c.eq.s (EQ single), 6-9, 6-10
c.f.d (f double), 6-9, 6-10
c.f.s (f single), 6-9, 6-10
c.le.d (LE double), 6-10
c.le.s (LE single), 6-10
c.lt.d (LT double), 6-10,6-11
c.lt.s (LT single), 6-10, 6-11
c.nge.s (NGE single), 6-10, 6-11
c.ngl.d (NGL double), 6-10, 6-11
c.ngl.s (NGL single), 6-10, 6-11
c.ngle.d (NGLE double), 6-10, 6-11
c.ngle.s (NGLE single), 6-10, 6-11
c.ngt.d (NGT double), 6-10, 6-11
c.ngt.s (NGT single), 6-10, 6-11
c.ole.d(OLE double), 6-9, 6-11
c.ole.s (OLE single), 6-9, 6-11
c.olt.d (OLT double), 6-9, 6-11
c.olt.s (OLT single), 6-9,6-11
c.seq.d (SEQ double), 6-10, 6-11
c.seq.s (SEQ single), 6-10, 6-11
c.sf.s (SF single), 6-9, 6-11
c.ueq.d (UEQ double), 6-9, 6-12
c.ueq.s (UEQ single), 6-9, 6-12
c.ule.s (ULE single), 6-9, 6-12
c.ult.d (ULT double), 6-9, 6-12
c.ult.s (ULT single), 6-9, 6-12
c.um.s (UN single), 6-9, 6-12
c.un.d (UN double), 6-9, 6-12

comparing floating point instructions, c.ule.d (ULE
double), 6-9, 6-12

computational instructions, B—1
formats, 5-7

constants
floating point, 4-2
scalar, 4-2
string, 4-3

convert instructions
cvt.d.s (source single to double), 6-4
cvt.d.w (source fixed point to double), 64
cvt.s.d (source single to double), 6-4
cvt.w.d (source double to fixed point), 6-4
cvt.w.s (souce single to fixed), 6-4

coprocessor instruction set, 6-1

X-1

Index

coprocessor instructions, B—2

coprocessor interface instructions
description of, 5-20
formats, 5-19

counters, 44

ctcz (control to coprocessor z), 5-20
cycles per instruction, 5-1

cz (coprocessor z operation), 5-20

D

data types, 4-7

dense numbers, 10-3

divide instructions
div (signed), 5-9
div.d (divide Fp double), 6-4, 6-6
div.s (divide Fp single), 64, 6-6
divu (unsigned), 5-10

E

exceptions
data types, 4-7
floating point, 3—1
main processor, 3-1
operators, 4-7
precedence, 4-7
type propagation, 4-9

external strings, 10-5
external symbols, 10-6, 10-20

F

file descriptor table, 10-6, 10-20
file header

file header magic field (f_magic), 9-6

flags (s_flags), 9-8

floating point
constants, 4-2
formats, 64
instructional descriptions, 6-5

floating point relational operations
formats, 6-9
instruction descriptions, 6-10
move formats, 6-12
move instruction descriptions, 6-12

X-2

format of symbol table entries, 10~7

G

gp (global pointer) tables, 9-9

identifiers, 4-2

instruction notation, 6-1

instruction pipelines, 5-1

instruction summaries, A-1
instructions, constraints and rules, 5-1

J

jump and branch formats, formats, 5-15
jump and branch instructions, j (jump), 5-18
jump instructions, delayed, 5-1

K

keyword statements, 4-6

L

Load Instructions, descriptions of, 5-3
label definitions, 4—6
language interfaces, 7-1
li (floating point immediate), 6-3
line numbers, in symbol table, 10-3, 10-9
link editor defined symbols, 9-24
linkage conventions
examples, 7-7
general, 7-2

language interfaces, 7-11
memory allocation, 7-15

load and store instructions, B—1
descriptions, 6-3
formats, 6-3

load instructions
delayed, 5-1
formats, 5-3
la (load address), 54

Assembly Language Programmer’s Guide

Ib (load byte), 54

Ibu (load byte unasigned), 5-4

1d (load double), 5-4

1h (load halfword), 5-4

lhu (load halfword unsigned), 54
li (load immediate), 54

lui (load upper immediate), 54
Iw (word), 5-5

Iwcz (word coprocessor z), 5-21
Iwl (load word left), 5-5

Iwr (load word right), 5-5

ulh (unaligned load halfword), 5-5
ulha (load unsigned halfword), 5-5
ulw (unaligned load word), 5-5

local strings, 104
local symbols, 104

M

move instructions
mfcz (from coprocessor), 5-21
mfhi (from HI register), 5-19
mflo (from LO register), 5-19
mov.d (Fp double), 6-12
mov.s (Fp single), 6-12
move (MOVE), 5-10
mtcz (to coprocessor), 521
mthi (to HI register), 5-19
mtlo (to LO register), 5-19

multiply instructions
mul (Multiply 32-bit product), 5-10
mul.d (multiply double), 6-6
mul.s (multiply single), 6-6
mulo (multiply with overflow), 5-11
mulou (multiply with overflow unsigned), 5-11
mult (Multiply 64-bit product), 5-10
multu (multiply unsigned), 5-10

N

NMAGIC files, 9-6

negate instructions
neg (with overflow), 5-11
neg.d (floating point double), 6-7
neg.s (floating point single), 6-7
negu (without overflow), 5-11

nor (NOTOR), 5-11
not (NOT), 5-11
null statements, 4—-6

Assembly Language Programmer’ s Guide

Index

o)

OMAGIC files, 9-18
object file format, 9-1, 9-2

object file types
demand paged (ZMAGIC) files, 9-20
impure format (OMAGIC) files, 9-18
shared text (NMAGIC) files, 9-19

object files types, target shared library (LIBMAGIC)
files, 9-22

object files, loading
boundary constraints, 9-17
description, 9-23

operators, 4—7

optimization symbols, 104

optional header, 9-5

optional header magic field (magic), 9-6
or (OR), 5-11

P

‘Pascal progams, calling, 7-1

performance, maximizing, 5-1
pipelines, instruction, 5-1

precedence, 47

procedure descriptor table, 10-4, 10~12
program design, 7-1

R

register and control status, exception trap processing,
6-15 :

register control status, floating point rounding, 6-18
register use and linkage, 7-2

registers
floating point, 1-5
format, on big endian, 1-1
format, on little endian, 1-2
general, 1-3, 1-5

relative file descriptor, 10-6

rem (remainder signed), 5-12
remu (remainder unsigned), 5-12
rfe (restore from exception), 5-19
rol (rotate left), 5-12

X-3

Index

ror (rotate right), 5-12
round.w.s (round), 6-6
roundd.w.d (round), 6-6

S

s.s (store Fp single), 6-3
scalar constants, 42
section data, 9-7, 9-10

section headers
flags(s_flags), 9-8
section name (s_name), 9-7

section relocation information
assembler and link editor processing, 9-12
relocation entry, 9-11
relocation table entry, 9-13

set instructions
seq (set equal), 5-12
sge (greater/equal), 513
sgeu (greater/equal unsigned), 5-13
sgt (set greater), 5-13
sgtu (greater unsigned), 5-13
sle (less/equal), 5-13
sleu (less/equal unsigned), 5-13
slt (less), 5-13
sltu (less unsigned), 5-13
sne (set not equal), 5-14

shared libraries, in objects, 9-9, 9-22

shift instructions
all (shift left logical), 5-14
sta (shift right arithmetic), 5-14
stl (shift right logical), 5-14

special instructions, B-2
descriptions of, 5-19
formats, 5-18

stack frame, 7-4
statements, 4-6
status register, 613

X-4

store instructions
description of, 5-6
formats, 5-3
s.d (store Fp double), 6-3
sb (store byte), 5-6
sd (store double), 5-6
sh (store halfword), 5-6
sw (store word), 5-6
swcz (store word coprocessor z), 5-21
swl (store word left), 5-6
swr (store word right), 5-7
ush (unaligned store halfword), 5-7
usw (unaligned store word), 5-7

string constants, 4—3

subtract instructions
sub (with overflow), 5-14
sub.d (Fp double), 64, 6-7
sub.s (Fp single), 6-4, 6-7
subu (without overflow), 5-14

symbol table, 10-1
symbolic header, 10-3, 10-7
syscall, 5-19

system control coprocessor instructions
descriptions, 6-13
formats, 6-13

T

tokens, 4-1
type propagation, 4-9

X

xor (EXCLUSIVE OR), 5-10

Z

ZMAGIC files, 9-20

Assembly Language Programmer’s Guide

Customer Response Card

Your comments, which can assist us in improving our products and our
publications, are welcome.

If you wish to reply, be sure to include your name and address, and the name
and part number that appears on the first page of this manual.

Thank you for your cooperation.

No postage necessary if mailed in the U. S. A.
After writing comments, detach this page and then fold, seal, and mail.

Comments

Name of manual:

Part number:

MIPS may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 1659 SUNNYVALE, CA

POSTAGE WILL BE PAID BY ADDRESSEE:

MIPS Computer Systems
928 Arques Avenue
Sunnyvale, CA 94086-9756

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED
STATES

