7)) Mips

RISC/os (UMIPS)
User’s Reference Manual

Volume Il (BSD)
Order Number 3204DOC
[N A T T I % o i O O O |

The power of RISC is in the system.

I

RISC/os (UMIPS)
User’s Reference Manual
Volume Il (BSD)

Order Number 3204DOC

March 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 02-00130-002/84-00133-002

© 1988, 1989 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave,
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California; (800) 992-MIPS
All other states: (800) 443-MIPS
International; 415) 330-7966

Mfg. Part Number 02-00130-002/84-00133-002

TABLE OF CONTENTS

1. Commands and Application Programs

a.cleanlib(1) e e e e e e e e e reinitialize library directory
adb(l) .+ ... 0o e . source level debugger
adu(l) ...l L. b e e e e e s e e summarize library disk usage
aerror(l) .« o v e e e e e e e e e e e e e analyze and disperse error messages
ahelpl) e e e e et e e e e interactive help utility
cadnfo(l) oo s e e e e . + « . list or change VADS library options
T8 1 .. prelinker
alist(l) ¢+« o« « .+« produce program listing with line numbers
als(l) + vt e e e e e e e e e e e e e e e list compiled programs
amake(l) o e ee e recompile source files in dependency order
amklib(1l) s 4 s e .o b s e s u s e « « « . . make library directory
apath(l) P e e e e . . report or change VADS library search list
apr(l) . .0 e e e C e e ee e e e e e format source code
arm(l) 0. « + « .+« ... removesource unit and library information
armlib(l)000.0.. e e e e e e e remove compilation library
arun(l) download and execute a program on the target board cross compilers
I T create a tags file
avadsre(1) dlsplay available VADS versions and create a default library
aview(l) establish command abbreviations and history mechanism for C shell
awhich(1l):, determine which project library contains a unit
addbib(l) ~ e e e e e e e e create or extend bibliographic database
apply(1) . v s e e e e e e e e e e e e e . apply a command to a set of arguments
apropos(l) + v v vttt e e e e e e . locate commands by keyword lookup
. e e e e e e e o« e+« o . archive (library) file format
ar(l) . e . archive and library maintainer
as(l) ... e .. v oo s e e s.e e e e et s e o e s o s e MIPS assembler
at(1) Gt e s e e e e e e e « .. « « . execute commands at a later time
atq(l) .o v e e e e e e . e e e e e print the queue of jobs waiting to be run
10 1 1) remove jobs spooled by at
Aawk(l) e e e e e e e e e e e e e e pattern scanning and processing language
o 1 (1 catenate and print
T 1) MIPS C compiler
checknr(1) et e e e e e « « « « check nroff troff files
chgrpl) ¢ o o 4 00 e 0w c e e s e e s o 0 s e s s change group
chmod(1) T T change mode
cobol ..i.e .. e e e e e e e e e e e . MIPS COBOL compiler
0] () s s e o o s s s e e e filter reverse line feeds
colert(l) .+ . ¢ v v v v v oo . ¢ e e s e s s filter nroff output for CRT previewing
colmm(1l) “ o s s e e © s e e e e s e s e remove columns from a file
compress(1) v v v it et e e e e e e e e e e e e e e compress and expand data
cord(l) + « - » » rearranges procedures in an executable file to facilitate better
cord2(1) oo rearranges basic blocks in an executable file to facilitate
p(l) o e e e e e e e e e e S e e e e e e e e e e e e e e s e e copy
cpp() ..o e e e e e e e et e e e e e the C language preprocessor
crypt(l) © o 6 o e s e e e s e s s e e st s e e e encode decode
date1) ® e s e e e et e e e s e s e s e s e e print and set the date
dbx(1) . ..o it e . * o v o o o s e s e e s source level debugger
dd(I) . . e . convert and copy a file
deroff(1) 6 v s s e e e e e e e e e e remove nroff, troff, tbl and eqn constructs
diction(1) .« . ¢ v v v v v it oo print wordy sentences; thesaurus for diction
1 disassemble an object file
du(l) & v s e e e e e e e e e e e e e e e e summarize disk usage
eqn(l) . . e typeset mathematics

MIPS Computer Systems, Inc. February 1989 Page iii

Table of Contents RISC/os Programmer’'s Reference Table of Contents

error(l) . o v oo e e e e e e e . analyze and disperse compiler error messages
expand(1) e e e e e e e e e e e e e e e e e expand tabs to spaces, and vice versa
1 « « « « « « MIPS Fortran 77 compiler
find(1)« 0o Gt i e s e e e v e e e e e find files
fmt(1) e e e e e e e e e e e e e e e e e e simple text formatter
from(1) e who is my mail from?
fsplit(1) . ¢ ¢ v v v v v e .. split a multi-routine Fortran file into individual files
ftoc(l) .. .00 e r e e e e e e s interface between prof and cord
403 (o) 1 1 display call graph profile data
~graph(lg) e e e s e e e e e e e e e e e e e e e draw a graph
groups(l) . < e + « « o+« ... showgroup memberships
head(1) ¢ v v v i e give first few lines
indent(l) e e e e e e e indent and format C program source
kill) .. 0000 e e e e e e e terminate a process with extreme prejudice
last(1) T S indicate last logins of users and teletypes
lastcomm(1) 000 e o0 show last commands executed in reverse order
Id@) - v v v e e e e e e e e O + « « . MIPS link editor
leave(l) v v v v v v v e e e e e e e e e e e e e remind you when you have to leave
lint(1) e a C program checker
1 make links
look(1) v e v e e B T . « « « o find lines in a sorted list
lookbib(1) « . . v v v e oo build inverted index for a bibliography, find re!
Ipg1) . . . 0. . « + « « . spool queue examination program
Ipr(1) R O off line print
Iprm(1) N remove jobs from the line printer spooling queue
Is() « v v v v v v v e e e e e e e e e e e e list contents of directory
make(1l) + . v ¢ v 0o v v e . . Inaintain, update and regenerate groups of programs
man(1) e« e o s« find manual information by keywords; print out the manual
mesg(l) ¢ v v v e e e e e e e e e e e P v e e e e s e s permit or deny messages
mkshlib(1) . ¢ ¢ v v v v v v v v i v v et e e e e e e create a shared library
mm(l) .. e e e e e e e e e e e e e e e name list dump of MIPS object files
nroff(1) & v ¢ v vt e text formatting
0d(1) ¢ vt e e e e e e e e e e e e e e e e e e . octal, decimal, hex, ascii dump
odump(l) .+ . .« ¢ oo .. e s e e s e ee s e dumps selected parts of an object file
pagesize(1)+ S print system page size
PC(l) o e e e e e e e e e e e e e e e r e s s s s ece . MIPS Pascal compiler
024 1= (1 add profiling code to a program
pixstats(1) . . . v o oo 0 ... b o o s s s 6 s s e . analyze program execution
1) (0 MIPS PL I compiler
3¢ 1) Y o ¥ o s t e e o e s e s e print file
153 (o) { (1) analyze profile data
PIX() o e e e e e e e e e e e e e I permuted index
refer(l) . . ¢ o v v v v v v oo find and insert literature references in documents
o (1 1 reverse lines of a file
ml) P 4 s n s e s e e s s . . remove (unlink)
roffbib(1) B run off bibliographic database
sces(1) o0 v e e e e e e e e c e e e e « « . . front end for the SCCS subsystem
size(1) C et e e e e e e e e e e e e e prints the section size of an object file
soelim(1) e e e e e e e e e e s + « o « o « « o eliminate .so’s from nroff input
sort(1) . . . v o e 0o . e e e e e e e e e e e e e e e e e e sort or merge files
sortbib(1) * s s o s 4 s e e e e e sort bibliographic database
spell1) . .« o0 o v oo e e e e e e e s e e e e e . « . . find spelling errors
spline(1g) b e s e s e e i e s e e s e e interpolate smooth curve
stty(1) . o0 0 .. « e se r s a s e s 4 e ee s « » « « « . . setterminal options
strip(1) S T S remove symbols and relocation bits
SU(L) . e e e e e e e e e S substitute user id temporarily

Page iv

February 1989 MIPS Computer Systems, Inc.

Table of Contents RISC/os Programmer’s Reference Table of Contents

talk(l) s e e e e, S, "« .« . . talk to another user

140) (1) format tables for nroff or troff
tE(1) h e photoypesetter simulator
tCOPY(L) v v o o e et e et e e e e e e e e e e e e e e e e e e e copy a mag tape
tip(le) e e e e e e e e e e e e e e e connect to a remote system
13 e e e e e e e paginator for the Tektronix 4014
touch(l) . . ¢ v v v v it it e e e e e e e e e update date last modified of a file
15 0 translate characters
troff(1) v ¢ v v o e e e e e e e e e e e e e e e e e text formatting and typesetting
1170} ¢ 1 . . topological sort
tty(l) ... e e e e e e e e e e e e e e e e e e . get terminal name
1015 5 report repeated lines in a file
units(1) . . . 0 0000 . G e e s e e e e e e e . « . . conversion program
W) e who is on and what they are doing
wall(l)00 0. T e e e e e e e e e e s o 0 s s o s write to all users
whatis(1) « &« v 0 v vt i e e e e e e e e e e e e e describe what a command is
whereis(1I) « « ¢ ¢« v v 0 v o v v o o locate source, binary, and or manual for program
window(l)o S window environment
write(1) ¢ o v v e v e e e e e e e e e CeTeTe o e s e e e write to another user
x5€NA(1) & v i e e e e e e e e e e e e e e e e e b e e e e e e e e secret mail
VES(1) v o o e e e e e e e e e e e e e e e e e e « « « . Dbe repetitively affirmative
6. Games
adventure(6) . . .« .t 4t i it b e e e e e e e e e e . . . an exploration game
arithmetic(6) e e e e e + « « « « .« provide drill in number facts
backgammon(6)t .t e the game
banner(6)t e et e e e e e e e e e e e e e print large banner on printer
battlestar(6) . « + ¢ ¢ ¢ . i v e e e e e e e e e e e . . atropical adventure game
bed(6) & v bt e e e e e e e e e e e e e e e e e e e convert to antique media
boggle(6) + v v et e e e e e e e e e e e e e e e e e e e play the game of boggle
canfield(6) . ¢ « & ¢t e e e e e e e e e e e e e the solitaire card game canfield
cribbage(6) o 0000 o0 e e e e e e e the card game cribbage
fish(6) « v v v et et e e e e e e e e e e e e e s e e e e e e play “Go fish”
fortune(6) e e e e s e e e s e e e e print a random, hopefully interesting, adage
hangman(6)o Computer version of the game hangman
hunt(6) . . v ¢ v v e e e e e e e e e e e e e a multi-player multi-terminal game
mille(6) « v v v v i et e e e e e e e e e e e e e e e e e . play mille Bournes
monop(6) S e e e e e s e e et s e e e e monopoly game
number(6) .« .« .t ot vt e e e e e e e e e e e e convert Arabic numerals to English
QUEZE) « ¢ f e e e e e e e e e e e e e e e e ¢ oo s e 0 s s test your knowledge
rain(6) e animated raindrops display
TODOIS(6) & v v vt et e e e e e e e e e e e e e e e e fight off villainous robots
sail6) e e e e e e e e e e e multi-user wooden ships and iron men
snake(6) et e e e e e e e s e e e e e et e e e display chase game
18 03 € () trekkie game
WOIM(6) '+ ¢ v o ¢ v 4 b o e e e e e e e e « « « . Play the growing worm game
worms(6) .+ v e v vt e e e e e e e e e e e e animate worms on a display terminal
wump(6) 0 ... “ 4 6 5 s a8 s e e s the game of hunt-the-wumpus
703 4 < () L, the game of dungeon

MIPS Computer Systems, Inc. February 1989 Page v

PERMUTED INDEX

terminal worms
hangman hangman
worm

game hunt
battlestar

adventure

€rror messages error
messages a.error
rain

arguments apply

yes

bibliography, indxbib, lookbib
cat

chgrp

chmod

information chfn, chsh, passwd
checknr

compress, uncompress, zcat
tip, cu

units

English number

- dd

bed

°p

tcopy

a.tags

database addbib

whatis

contains a unit a.which

and create a default a.vadsrc
snake, snscore

on the target board cross a.run
graph

input soelim

crypt

and history mechanism for a.view
time at

versa expand, unexpand
robots

previewing colcrt

col

references in documents refer
find

look

keywords; print out the man
spell, spellin, spellout

a.pr

troff tbl

subsystem sccs

tty

head

source indent

and teletypes last

a.help

spline

als

Is

options a.info

lookup apropos-

manual for program whereis
regenerate groups make,makerules
a.mklib

In

monop

iron men sail

od

4014 tk

language awk

mesg

ptx

tc

MIPS Computer Systems, Inc.

: animate worms on a display
: Computer version of the game . .
: Play the growing worm game . .
: a multi-player multi-terminal . ,
: a tropical adventure game
: an exploration game

: analyze and disperse compiler
: analyze and disperse error .
: animated raindrops display

: apply a command to a set of

: be repetitively affirmative . . .
: build inverted index for a .
: catenate and print

: change group
: change mode
: change password file .

: check nroff troff files .

: compress and expand data
: connect to a remote system
: conversion program
: convert Arabic numerals to
: convert and copy a file

: convert to antique media

: copy
: copy a mag tape
: create a tags file

e o s e »

s o s s e o s s @

: create or extend bibliographic .
: describe what a command is . .
: determine which project library

: display available VADS versions

: display chase game

: download and execute a program

: draw a graph
: eliminate .so’s from nroff
: encode decode

: establish command abbreviations
: execute commands at a later . .
: expand tabs to spaces, and vice

: fight off villainous robots . . .
: filter nroff output for CRT . .

: filter reverse line feeds e
: find and insert literature . . .
: find files . -
: find lines in a sorted list . . .
: find manual information by
: find spelling errors

: format source code
: format tables for nroff or .
: front end for the SCCS . .
: get terminal name
: give first few lines

: indent and format C program

: interactive help utility

: indicate last logins of users . .
: interpolate smooth curve . . .

: list contents of directory .

e o e a e e

e s s s @

list compiled programs

: list or change VADS library
: locate commands by keyword .
: locate source, binary, and or

: maintain, update, and
: make library directory
: make links
: monopoly game

: multi-user wooden ships and

: octal, decimal, hex, ascii dump

: paginator for the Tektronix . .
: pattern scanning and processing

: permit or deny messages

: permuted index
: photoypesetter simulator

February 1989

e e s o ®» 85 8 s s s s e =

« o e & o ® .2 ° e s s o e =

“ e e e e
e s s e e s
[
[P .
e s 0 s s e s
“ e e s s e
c e e e v e e
s e e s s e s
« s e s e e
e o o o 8 ®
e s 4 s 0 s e
v o e e e e e
lll."'.
e s e s e e
o e e s s e
e e s e 0 s
e o s s 0 s e
e s s e s s
o s e s e e
...... .
e s o e s e e
e s e e o u e
s e s e s e
“ e e s e e
v e e ..
S
c o e e 5 s e
« s e 0 e s e
.'.lll‘
[
o« o e
o o e PR
“ e e e .
o« s e s e s
o« s e s s e e
o s s e s e
e s s e s e
e s e s s 0 s
e s s e e e
c s s e 0 s e
[
e s o s s s
e v e s s e e
« e e e s e
e e s e oe s
l'..‘.’..l
« e s e
e e o s s s e
..
« s e
“ s e s s s e
s s e e e e
[
o s e e s e
e 4 e s s e e
s e e e e e .
e s s s e s e
e e s e e
“ s e e s e
e s e o e s s
[
...... .
e s e e e s s
e s e b e
.......
e s e s s e
c e e s s e
o s e e e e
“ e e e 0 e
[
“ e s e e

worms(6)
hangman(6)
worm(6)
hunt(6)
battlestar(6)
adventure(6)
error(1)
a.error(1)
rain(6)

- apply(1)

yes(1)
lookbib(1)
cat(1)
chgrp(1)
chmod(1)
passwd(1)
checknr(1)
compress(1)
tip(1c)
units(1)
number(6)
dd(1)
bcd(6)
cp(1)
tcopy(1)
a.tags(1)
raddbib(1)
whatis(1)
a.which(1)
a.vadsrc(1)
snake(6)
a.run(1)
graph(1g)
soelim(1)
crypt(1)
a.view(1)
at(1)
expand(1)
robots(6)
colert(1)
col(1)
refer(1)
find(1)
look(1)
man(1)
spell(1)
a.pr(1)
tbl(1)
sces(1)
tty(1)
head(1)
indent(1)
last(1)
a.help(1)
spline(1g)
a.ls(1)
1s(1)
a.info(1)
apropos(1)
whereis(1)
make(1)
a.mklib (1)
In(1)
monop(6)
sail(6)
od(1)

tk(1)
awk(1)
mesg(1)
ptx(1)
te(1)

Page vii

Permuted Index

fish

mille

boggle

a.ld

interesting, adage fortune
date

pr

banner

pagesize

to be run atq

thesaurus for diction, explain
line numbers a.list
arithmetic

" ratfor

dependency order a.make
a.cleanlib

leave leave

colrm

a.rmlib

printer spooling queue lprm
atrm

eqn constructs deroff
information a.rm
directories rm, rmdir
search list a.pathxs

uniq

rev

roffbib

xsend, xget, enroll

. stty
groups

reverse order lastcomm
fmt

sortbib

sort

a.db

file into individual fsplit

- Ipq
su, ssu

du

a.du

talk

extreme prejudice kill
quiz

nroff

troff, nroff

cribbage

backgammon

zork

: wump
canfield canfield, cfscores

tsort

tr

trek

eqn, neqn, checkeq

file touch

from

doing w

window

wall

write

tk : paginator for the Tektronix
number : convert

mille : play mille

indent : indent and format

and history mechanism for
colert : filter nroff output for
hangman hangman :

: convert Arabic numerals to
ratfor : rational
split a multi-routine
fish : play

worm :

sccs : front end for the
tk : paginator for the
a.info : list or change

fsplit :

Page viii

RISC/os Programmer’s Reference

February 1989

iplay “Gofish” o o v v v o i v i e e e e e
: play mille Bournes e n e e e e s
: play the game of boggle o oo
sprelinker . . 0 . 0 0 0 e e e e . ..

: print a random, hopefully
:print and set thedate. e e e e e
tprintfile 000000 Cr e e e s e
print large banner on printer G e e e e e e
: print system page sizeé o fe e e e e
: print the queue of jobs waiting0
: print wordy Sentences; .« .« 4 v 4 e b4 e wa e e s
: produce program listing with v r s s s s e
: provide drill in number facts e e e e
: rational Fortran dialect P
: recompile source files in e s s s e e e e
: reinitialize library directory v e

: remind you when you haveto " . . « « ¢« . o . .
:remove columns from afile © . + v . . . 0. .

: remove compilation library . . 4 . o 40004
: remove jobs from the line e se e e
: remove jobs spooled byat e e e e e e
: remove nroff, troff, tbland 4 o0 o0 ..
: remove source unit and library0 0.0 ..

: remove (unlink) filesor re e e
: report or change VADS library
i report repeated linesinafile
treverse linesofafile . . ¢ v v v v 0000 .

: run off bibliographic database
: secret mail -

: set terminal options
: show group memberships « .. ., ..

: show last commands executed In + v ¢ s o o o o o
: simple text formatter ‘o . .
; sort bibliographic database
: sort or merge files .
:source level debugger L o0 .0 ..
: split a multi-routine Fortran e e e
: spool queue examination program

: substitute user id temporarily . .
: summarize disk usage
: summarize library disk usage . . oi. v o 0 b o0 o4
:talk to anotheruser . . ¢« v . o v 04 o4 . .o
: terminate a process with . .« o'. o . o, .
: test your knowledge
: text formatting
: text formatting and typesettmg

: the card game cribbage
: the game O T
: the game of dungeon
: the game of hunt-the-wumpus, . .
: the solitaire card game
: topological sort st e e s e e s

: translate characters 0. 0

: trekkie game e e
: typeset mathematics . v ae e
: update date last modified of S .
:whois mymail from? 00000 ..
:who is on and what theyare
; window environment .« . . o . . .
twriteto allusers + o 4 0 o 0 0 .

: write to anotheruser .« . .+

4014 L e e e e e e e e
Arabic numerals to English

Bournes .

C program source ’

C shell command abbreviations .« « o + « o o ¢ o « &
CRT previewing . « » « o « + 4+ & o« b v ae e e
Computer version of the game o v
English number .
Fortran dialect . . . « v v v v v v v o u

« n e o e o 0 o o o &

Fortran file into individual
“Go fish” . .
Play the growing worm game .
SCCSsubsystem .« + o o ¢ o o o o o 4 s « &

@ © » 2 o 5 s 0o o o a o &

Tektronix 4014 . . .« v v o v 4 0.
VADS library options « « « o v v o « o &

s s o s e s o =

° o s o
.

Permuted Index

fish(6)
mille(6)
boggle(6)
a.ld(1)
fortune(6)
date(1)
pr(1)
banner(6)
pagesize(1)
atq(1)
diction(1)
a.Jlist(1)
arjithmetic(6)
ratfor(1)
a.make(1)
a.cleanlib(1)
leave(1)
colrm(1)
a.rmlib(1)
lprm (1)
atrm(1)
deroff(1)
a.rm(1)
rm(1)
a.path(1)
uniq(1)
rev(1)
roffbib (1)
send(1)
stty(1)
groups(1)
lastcomm(1)
fmt(1)
sortbib(1)
sort(1)
a.db(1)
fsplit(1)
Ipq(D)
su(1)

du(1)
a.du(l)
talk(1)
kill(1)
quiz(6)
nroff(1)
troff(1)
cribbage(6)

backgammon(6)

zork(6)
wump(6)
canfield(6)
tsort(1)
tr(1)
trek(6)
eqn(1)
touch(1)

indent(1)
a.view(1)
colert(1)
hangman(6)
number(6)
ratfor(1)
fsplit(1)
fish(6)
worm(6)
sces(1)
tk(1)
a.info(1)

MIPS Computer Systems, Inc.

Permuted Index

a.pathxs : report or change
a.vadsrc : display available
a.view : establish command
directory

a random, hopefully interesting,

bibliographic database
usage

battlestar : a tropical
error messages
yes : be repetitively

library options
with line numbers
in dependency order

€ITOr messages error :
messages a.error :
terminal worms :
rain :

bed : convert to
library search list

of arguments
arguments apply :

keyword lookup

: apply a command to a set of
number facts

library information

library

program on the target board
od : octal, decimal, hex,

waiting to be run

versions and create a default
create a a.vadsrc : display
abbreviations and history
library contains a unit
processing language

printer
banner : print large
game

addbib : create or extend
roffbib : run off

sortbib : sort

find references in a

a : build inverted index for a
whereis : locate source,
execute a program on the target
boggle : play the game of

bibliography, indxbib, lookbib :
: the solitaire card game

solitaire card game canfield
cfscores : the solitaire

cribbage : the

. cat:

game canfield canfield,
a.info : list or

a.pathxs : report or
chgrp :

chmod :

chfn, chsh, passwd :

tr : translate

snake, snscore : display
checknr :

eqn, neqn,

password file information

MIPS Computer Systems, Inc.

RISClos Programmer’s Reference

VADS library search list

VADS versions and create a
abbreviations and history
a.cleanlib : reinitialize library . . .
adage fortune : print
a.db : source level debugger .
addbib : create or extend
a.du : summarize library disk . . .
adventure : an exploration game ..
adventure game . . . PN
a.error : analyze and dlsperse

affirmative
a.help : interactive help utility .
a.info : list or change VADS .
a.ld : prelinker C e e e e e e e

a.list : produce program hstmg .
a.ls : list compiled programs . .
a.make : recompile source files . .
a.mklib : make library directory .
analyze and disperse compiler . . .
analyze and disperse error . . .
animate worms on a display . . .
animated raindrops display . . .
antique media
a.pathxs : report or change VADS
apply : apply a command to a set
apply a command to a set of

a.pr : format source code
apropos : locate commands by
arguments apply
arithmetic : provide drill in
a.rm : remove source unit and
a.rmlib : remove compilation
a.run : download and execute a
ascii dump
a.tags : create a tags file
atq : print the queue of jobs . .
atrm : remove jobs spooled by at
a.vadsrc : display available VADS .
available VADS versions and
a.view : establish command . , . .
a.which : determine which project .
awk : pattern scanning and
backgammon : the game
banner : print large banner on
banner on printer
battlestar : a tropical adventure
bed @ convert to antique media
bibliographic database
bibliographic database
bibliographic database . .
bibliography for a bibliography,
bibliography, find references in .
binary, and or manual for program
board cross compilers and
boggle
boggle : play the game of boggle
build inverted index fora . . ,
canfield canfield, cfscores . .
canfield, cfscores the ., ..
card game canfield canfield, .
card game cribbage

cat : catenate and print
catenate and print
cfscores : the solitaire card . .
change VADS library options
change VADS library search list
change group . .
changemode,
change password file information
characters
chase game
check nroff troff files «+ . .
checkeq : typeset mathematics . .
checknr : check nroff troff files . .
chfn, chsh, passwd : change . . .

s o

e e o * e o & s e & o o @

« & 8 s s o+ »
.

® 5 ¢ o o s o e 5 s e s »

* & s o o

February 1989

Permuted Index

e o o o e s e @
« o o o

* o s o e s 3 @

a.path(1)
a.vadsrc(1)
a.view(1)
a.cleanlib(1)
fortune(6)
a.db(1)
raddbib(1)
a.du(l)
adventure(6)
battlestar(6)
a.error(1)
yes(1)
ahelp(1)
a.info(1)
ald(1)
alist(1)
a.ls(1)
a.make(1)
a.mklib(1)
error(1)
a.error(1)
worms(6)
rain(6)
bed(6)
a.path(1)
apply(1)
apply(1)
a.pr(1)
apropos(1)
apply(1)
arithmetic(6)
arm(1)
a.rmlib(1)
a.run(1)
od(1)
a.tags(1)
atq(1)

" atrm(1)

a.vadsrc(1)
a.vadsrc(1)
a.view(1)
a.which(1)
awk(1)
backgammon(6)
banner(6)
banner(6)
battlestar(6)
bed(6)
raddbib(1)
roffbib(1)
sortbib(1)
lookbib(1)
lookbib(1)
whereis(1)
a.run(l)
boggle(6)
boggle(6)
lookbib(1)
canfield(6)
canfield(6)
canfield(6)
cribbage(6)
cat(1)

cat(1)
canfield(6)
a.info(1)
a,path(1)
chgrp(1)
chmod(1)
passwd(1)
tr(1)
snake(6)
checknr(1)
eqn(1)
checknr(1)
passwd(1)

Page ix

Permuted Index

file information chfn,
a.pr : format source

CRT previewing

file

colrm : remove

mechanism for a.view : establish
whatis : describe what a

apply : apply a

at : execute

apropos : locate

order lastcomm ; show last
a.rmlib : remove

a.ls : list

" error : analyze and disperse
program on the target board cross
compress, uncompress, zcat :
compress and expand data

tip, cu :

remove nroff, troff, tbl and eqn
: determine which project library
Is : list

units :

English number :

dd:

bed :

cp:

dd : convert and

tcopy :

available VADS versions and
a.tags :

database addbib :

cribbage : the card game

a program on the target board

tip,

spline : interpolate smooth
zcat : compress and expand

: create or extend bibliographic
roffbib : run off bibliographic
sortbib : sort bibliographic
date : print and set the

touch : update

a.db : source level

od : octal,
crypt : encode

VADS versions and create a
mesg : permit or

: recompile source files in

and eqn constructs

whatis :

contains a unit a.which :

ratfor : rational Fortran

wordy sentences; thesaurus for
sentences; thesaurus for diction
rmdir : remove (unlink) files or
a.cleanlib : reinitialize library.
a.mklib : make library

Is : list contents of
: summarize library
du : summarize
error : analyze and
a.error : analyze and

rain : animated raindrops

and create a default a.vadsrc :
snake, snscore :

worms : animate worms on a
insert literature references in

w : who is on and what they are
the target board cross a.run :

a.du

Page x

RISC/os Programmer’s Reference

chgrp : change group

chmod : change mode . . ,
chsh, passwd : change password
code e e e e e .

col : filter reverse line feeds

colert : filter nroff output for

colrm : remove columns from a . .
columns from a file e e e
command abbreviations and history
command is
command to a set of arguments .
commands at a later time
commands by keyword lookup

5 o e s o o s & & o

commands executed in reverse . . .

compilation library . .
compiled programs ce s e e e

compﬂer €rror messages « o o s e e

compilers download and execute a
compress and expand data
compress, uncompress, zcat : .
connect to a remote system
constructs deroff:
contains a unit a.which
contents of directory
conversion program . . .
convert Arabic numerals to
convert and copy a file - . .
convert to antique media
copy
copy a file
copy a mag tape
Cp : copy

s & 8 o 5 s ® e ° =
e s e o

e e o e
e ®* o s o »

« s ® o & o o ° s o

© o 5 @ a o 85 s & ° 8 o e

® o o & o 0 o 8 e ® a s @

create a default library dxsplay ...

create a tags file . . .

a e o s o 8 o

create or extend bibliographic

cribbage ‘
cribbage : the card game cribbage .
cross compilers and execute . . .
crypt : encode decode
cu : connect to a remote system . .
curve

© o 4 s o o

= e o 9 8 © o 3 8 s s e o

data compress, uncompress,

database addbib e
database
database
date .
date : print and set the dat
date last modified of a file
dd : convert and copy a file
debugger
decimal, hex, ascii dump
decode . .
default library available
deny messages
dependency order a.make .
deroff : remove nroff, troff, tbl
describe what a command is .
determine which project library
dialect . . .
diction diction, explain : prmt

diction, explain : print wordy

directories rm, « o s ¢ » o
directory
directory
directory . « o o
disk usage .« . . .
disk usage
disperse compiler error messages

® o ©o o o o o o o

e e & e o o

e o o e © s o

disperse error messages . o « o o o

display « ¢ v 0 0 0 0 b0 0 0o
display available VADS versions

display chase game o

display terminal
documents refer : findand
doing
download and execute a program on

February 1989

® e 2 e 2 5 e o 8 8 e s o 0 e

© e e 8 8 o o @

e« © o 8 ®» e o e

e & o o & 2 e =

® e © s e © © o 8 e s © 8 s e © ®» v e o o

e s e e s &

s & & o e u e 8

« ® e s o s e ° © ® © ® 8 © ® ® © ® e s © s © © e e v o o s s ®

s ° ® ® ® e 8 ©® © ® o © e e ° ° 5 3

® o e o o © ® s s © ® 8 ® s 8

°

« s 5 o o « o e e =

e & © 3 s 8 e

® ® © © s e © » e ® ° © & o

e s s e s o s

s 3 e o e

e o o o » o W e

Permuted Index

chgrp(1)
chmod(1)
passwd(1)
a.pr(1)
col(1)
colert(1)
colrm(1)
colrm(1)
a.view(1)
whatis(1)
apply(1)
at(1)
apropos(1)
lastcomm(1)
a.rmlib(1)
a.ls(1)
error(1)
a.run(1)
compress(1)
compress(1)
tip(1c)
deroff(1)
a.which(1)
1s(1)
units(1)
number(6)
dd(1)
bed(6)
cp(1)

raddbib(1)
cribbage(6)
cribbage(6)
a.run(1)
crypt(1)
tip(1c)

'spline(1g)

compress(1)
raddbib(1)
roffbib (1)
sortbib(1)
date(1)
date(1)
touch(1)
dd(1)
a.db(1)
od(1)
crypt(1)
a.vadsrc(1)
mesg(1)
a.make(1)
deroff(1)

. - whatis(1)

a.which(1)
ratfor(1)
diction(1)
diction(1)
rm(1)
a.cleanlib(1)
a.mklib(1)
1s(1)
a.du(1)
du(1)
error(1)
a.error(1)
rain(6)
a.vadsrc(1)
snake(6)
worms(6)
refer(1)
w(1)
a.run(1)

MIPS Computer Systems, Inc.

Permuted Index

graph :
arithmetic : provide

od : octal, decimal, hex, ascii
zork : the game of

input soelim :

crypt :

sccs : front

xsend, xget,

window : window

: remove nroff, troff, tbl and
mathematics

compiler error messages

a.error : analyze and disperse

: analyze and disperse compiler
spellin, spellout : find spelling
and history mechanism a.view :
Ipq : spool queue

board cross a.run : download and
at :

lastcomm : show last commands
uncompress, zcat : compress and
versa expand, unexpand :
spaces, and vice versa

thesaurus for diction diction,
adventure : an

addbib : create or
terminate a process with
: provide drill in number
col : filter reverse line
head : give first

robots :

a.tags : create a tags
remove columns from a
dd : convert and copy a
pr : print

rev : reverse lines of a

: update date last modified of a
uniq : report repeated lines in a
chsh, passwd : change password
: split a multi-routine Fortran
checknr : check nroff troff

find : find

Fortran file into individual

sort : sort or merge

a.make : recompile source

rm, rmdir : remove (unlink)
previewing colcrt :

col :

kill :

colrm :

references in documents refer :
find :

look :

keywords; print out the man :
index for a bibliography,

spell, spellin, spellout :

fish : play “Go

indent : indent and
a.pr:

tbl :
simple text
nroff : text
troff, nroff : text

hopefully interesting, adage
from : who is my mail

sccs :

Fortran file into individual
adventure : an exploration
backgammon : the

battlestar : a tropical adventure
: a multi-player multi-terminal
monop.: monopoly

snake, snscore : display chase
trek : trekkie

fmt :

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

draw a graph
drill in number facts
du : summarize disk usage
dump
dungeon
eliminate .so’s from nroff
encode decode ..
end for the SCCS subsystem
enroll : secret mail . .
environment
eqn constructs deroff . . .
eqn, neqn, checkeq : typeset
error : analyze and disperse .
error messages
error messages error
errors spell,
establish command abbrev:at:ons o e
examination program
execute a program on the target
execute commands at a later time .
executed in reverse order
expand data compress,
expand tabs to spaces, and vice . . .
expand, unexpand : expand tabs to
explain : print wordy sentences; .
exploration game
extend bibliographic database
extreme prejudice
facts arithmetic
feeds
few lines
fight off villainous robots
file
file

..... s e s v e

e o s @

s s & o & o 8 o

" 3 o s e o o o s e o e =
.

@ e o e @
e s e 8 s e ° s s e * @»

file o oo oo
file «..... .
file P

file touch
file + o0 oo oo
file information chfn, .
file into individual files . . .
files
files o« e 0 e
files spht a mult:—routme
files s e e
files in dependency order . . .
files or directories
filter nroff output for CRT
filter reverse line feeds . .
find:findfiles
find and insert literature .

find files . . .
find lines in a sorted list
find manual information by
find references in a bibliography . .
find spelling errors
fish”
fish : play “Go fish”
fmt : simple text formatter
format C program source . . .
format source code
format tables for nroff or troff .
formatter

e ¢« © © e ® & 3 s »

e o o s o 0 o o
e s w .

formatting

formatting and typesetting . . .
fortune : print a random, . . ,

from?
front end for the SCCS subsystem
fsplit : split a multi-routine
game
game
game .
game
game
game
game

s .

February 1989

e ®© © o @ o o © e © © & e ° e s o ® s e » s ® ° s & a o

s e e e

s e o e o s 8 © @ ® ® 8 ° e ®» ©® 8 e e e ® e s © 8 8 © © s e e e & @ e e

2 e e s e s o ©° 8 s s s =

e o s s & o ® s s

e o o © ©ise ® ® ® ® ® e ® s @ ® ® s e e e & @ ° ® o e ® e ® °© e ® & & ®© e © o o & s s ° ® e s-8 ® s ®© o e =

e ® 8 e e e 5 9 & s e © s e & 8 ° e

Permuted Index

graph(1g)
arithmetic(6)
du(1)

od(1)
zork(6)
soelim(1)
crypt(1)
sces(1)
send(1)
window(1)
deroff(1)
eqn(1)
error(1)
a.error(1)
error(1)
spell(1)
a.view(1)
Ipq(1)
a.run(1)
at(1)
lastcomm(1)
compress(1)
expand(1)
expand(1)
diction(1)
adventure(6)
raddbib(1)
kill(1)
arithmetic(6)
col(1)
head(1)
robots(6)
a.tags(1)
colrm(1)
dd(1)

pr(1)

rev(1)
touch(1)
uniq(1)
passwd(1)
fsplit(1)
checknr(1)
find(1)
fsplit(1)
sort(1)
a.make(1)
rm(1)
colert(1)
col(1)
find(1)
refer(1)
find(1)
look(1)
man(1)
lookbib(1)
spell(1)
fish(6)
fish(6)
fmt(1)
indent(1)
a.pr(1)
tbl(1)

fmt(1)
nroff(1)
troff(1)
fortune(6)
from(1)
sces(1)
fsplit(1)
adventure(6)
backgammon(6)
battlestar(6)
hunt(6)
monop(6)
snake(6)
trek(6)

Page xi

Permuted Index

worm : Play the growing worm
cfscores : the solitaire card
cribbage : the card

hangman : Computer version of the
boggle : play the

zork : the
wump : the
head :

graph : draw a

chgrp : change
groups : show

maintain, update, and regenerate
worm : Play the

: Computer version of the game
game hangman

a.help : interactive

od : octal, decimal,

command abbreviations and
fortune : print a random,
multi-terminal game

wump : the game of

su, ssu : substitute user

program source

source indent :

ptx : permuted

indxbib, lookbib : build inverted
teletypes last :

a multi-routine Fortran file into
index for a bibliography, find

: remove source unit and library
passwd : change password file

out the manual man : find manual
: eliminate .s0’s from nroff
documents refer : find and
a.help :

: print a random, hopefully

spline :

“indxbib, lookbib : build

: multi-user wooden ships and
spoohng queue lprm : remove
atrm : remove

atq : print the queue of

apropos : locate commands by
man : find manual information by
extreme prejudice

quiz : test your

: pattern scanning and processing
banner : print

executed in reverse order

at : execute commands at a

: remind you when you have to

to leave

a.db : source

a.rmlib : remove compilation
versions and create a default
a.which : determine which project
a.cleanlib : reinitialize
a,mklib : make

a.du:

: remove source unit and
list or change VADS
report or change VADS
col : filter reverse

: produce program listing with
Iprm : remove jobs from the
head : give first few

uniq : report repeated

look : find

rev : reverse

" In: make

or change VADS library search
look : find lines in a sorted
als:

a.rm
a.info :
a.pathxs :

Page xii

RISC/os Programmer’s Reference

summarize

February 1989

game
game canfield canfield,
game cribbage
game hangman
game of boggle
game of dungeon
game of hunt-the-wumpus e s e et e s e ..
give first few lines
graph
graph : drawagraph C e e e s e e e e e e e e
group
group memberships v & ¢« v e v 0 e v v b . e .. .
groups : show group membershxps e e e e e e e s
groups of programs @ . 4 . e v 4 e e e e .0 0. s
growing worm game
hangman hangman
hangman : Computer version ofthe« .« . . .
head : give first few lines
helputility . o ¢« ¢ v o 0 0 ¢ 0 0 o

hex, ascii dump
history mechanism for C shell .
hopefully interesting, adage . .
hunt : a multi-player .
hunt-the-wumpus . . . , . &

id temporarily
indent : indent and format C
indent and format C program
index
index for a bibliography, find
indicate last logins of users and . . . ¢ . . . 0 ..
individual files fsplit : split
indxbib, lookbib : build inverted
information arm
information chfn, chsh,
information by keywords; print . .
input soelim
insert literature references in
interactive help utility
interesting, adage fortune
interpolate smooth curve .
inverted index fora . . .
iron men sail
jobs from theline printer « + v v ¢ 4 o ¢ o 4 4 & . &
jobs spooled by at
jobs waitingtoberun . . . 4 0 v 0 s e v e s e
keyword lookup
keywords; print out the manual o oo

s e o e o e
.
.
.
.

» o ¢ o o © » o e 8 8 s e o o @

kill : terminate a process with ¢ « « « & « o o & 4 &
knowledge + . ¢« v v ¢t i 0t 0 e iie o0 e 0.
language awk .+ ¢ ¢ o ¢ v 0 4 e e e 0 e 0 e s e e
large banner on printer « o+ v & 4 v 4 . 0 o 0.0 . .
lastcomm : show last commands C e e e e e e e
later time .« . 4 o 0 . . c e e s s e 5 e e s
leave leave
leave : remind you whenyouhave o . . .
level debugger S e e s e e e e e s
library . . . e e e e s e e e s e e e e e
library : display avallable VADS e aee
library contains aunit « ¢ ¢« o 4 0 e b e e e 0.
library directory + « o & 4 4 ¢ 0 b 0 a0 060 0w
library dir€ctory «'v ¢ o ¢ o o s 4 0 e s 0 0 0 0.
library diskusage o ¢ o ¢ ¢ ¢ o 0 o 0 0 0 s 0 0.
library information « s 4 ¢ ¢ . e 0 e o v 0 0w 0ie e
library options e e e e aen e
library search list . . .« o e e s e e n e
linefeeds .« o v o v o o v v o o 0 o o o s s a0
line numbers alist et e e s e e e .
line printer spooling'quene . « « o s v 0 0 . 0 s s
lines et e e e e e e e e e
linesinafile e e e s e e e
lines in a sorted list C e e e e e e e s e
linesofafile . ¢+ ¢ o0 v v v v v ue
Hnks o 0 o v e e e s i e e e e e e s s e e s
list a.pathxs :report . . « v v v v v 0 v o 0 0 00
BSt o e o v e o o i e e e e e e e s e e e s
list compiled programs .« + ¢ ¢ 4 ¢ ¢ 0 s e 0 8 4.

Permuted Index

worm(6)
canfield(6)
cribbage(6)
hangman(6)
boggle(6)
zork(6)
wump(6)
head(1)
graph(lg)
graph(lg)
chgrp(1)
groups(1)
groups(1)
make(1)
worm(6)
hangman(6)
hangman(6)
head(1)
a.help(1)
od(1)
a.view(1)
fortune(6)
hunt(6)
wump(6)
su(1)
indent(1)
indent(1)
ptx(1)
lookbib(1)
last(1)
fsplit(1)
lookbib(1)
a.rm(1)
passwd(1)
man(1)
soelim(1)
refer(1)
a.help(1)
fortune(6)
spline(1g)
lookbib(1)
sail(6)
Iprm(1)
atrm(1)
atq(1)
apropos(1)
man(1)
kill(1)
uiz(6)
gwk(l)
banner(6)
lastcomm(1)
at(1)
leave(1)
leave(1)
a.db(1)
a.rmlib(1)
a.vadsrc(1)
a.which(1)
a.cleanlib(1)
a.mklib(1)
a.du(1)
arm(1)
a.info(1)
a.path(1)
col(1)
alist(1)
Iprm(1)
head(1)
uniq(1)
look(1)
rev(1)
In(1)
a.path(1)
look(1)
als(1)

MIPS Computer Systems, Inc.

(

Permuted Index

Is :

options a.info :

a.list : produce program
refer : find and insert

apropos :
manual for program whereis :
last ; indicate last

list

for a bibliography, indxbib,

: locate commands by keyword
program

printer spooling queue

tcopy : copy a

xsend, xget, enroll ; secret

from : who is my

groups of make,makerules :
update, and regenerate groups of
by keywords; print out the

: locate source, binary, and or
print out the manual man : find
eqn, neqn, checkeq : typeset
command abbreviations and history
bed : convert to antique

groups : show group

" sort : sort or

: analyze and disperse error
and disperse compiler error
mesg : permit or deny

mille : play
chmod : change
touch : update date last

monop :
hunt: a

individual fsplit : split a
hunt : a multi-player
men sail :

tty : get terminal
mathematics eqn,

typesetting troff,

soelim : eliminate .so’s from

tbl : format tables for

colcrt : filter

checknr : check

constructs deroff : remove

to English

arithmetic : provide drill in
produce program listing with line
number : convert Arabic

od:

dump

: list or change VADS library
stty : set terminal

source files in dependency

last commands executed in reverse
colert : filter nroff

pagesize : print system

tk :

information chfn, chsh,
chfn, chsh, passwd : change
language awk :

mesg :

ptx :

tc:

fish :

mille :

boggle :

terminate a process with extreme
ald:

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

Permuted Index

list contents of directory .« « « & v v 4 0 440 4. . 1s(1)

list or change VADS library . .« « « v o « + » « « ainfo(l)
listing with line numbers « « v o+ 4 4 v o .0 .. . alist(l)
literature referencesin =« « ¢ ¢ o 4 0 b 0 00 . s . . refer(1)
In:makelinks + ¢ ¢ v 0 0 o ... s e e e s In(1)
locate commands by keyword lookup e+ o s+« .« apropos(l)
locate source, binary, andor e+ a s o« .« whereis(1)
logins of users and teletypes « « « ¢« ¢ o 0+ o+ o . last(l)
look : find linesin asorted « + « « v o o « o« « . o look(1)
lookbib : build inverted index . . « . « « . lookbib(1)
lookup apropos e e e e e e apropos(1)
lpq : spool queue examination . .+ Ipg(1)
lprm : remove jobs from the line . « .+ .« . . Iprm(1)
Is : list contents of directory v e ees . 1s(D)

mag tape e e e e e s e e e e s e teopy(D)
mal c s e e e o e e e e . send()
mail from? e e e e s e e e e e e .. from(l)
maintain, update, and regenerate e s e e e . make(1)
make,makerules : maintain, .+ . « « + ¢ o « « s « « . make(l)
manual : find manual information + +» « « « « « . « . man(l)
manual for program whereis .+ . « + o « s « « « + . whereis(1)
manual information by keywords; .+ « « « + « man(l)
mathematics . . et e s e e e e e e e e eqn(l)
mechanism forCshell estabhsh e e e s e e s aview(l)
media O .« bcd(6)
memberships§ « « + o o o ¢ o o o s ¢ o o oo o oo groups(l)
merge files « v v o o 4 e s et e e e e . . sort(l)
mesg : permit or deny messages . « « « « » o » « o . mesg(l)
IMESSAZES A.€TTOT o o o o o o o o o o = o o o » o » aerror(l)
messages €rror : analyze + o+ o o s s o o o s o o o . error(1)
messages © e e e s s s e e s s e e e s .. mesg(l)
mille : play mille Bournes « « « « v 4 « « « » o+ o .« o mille(6)
mille BOUurnes « « v « ¢ ¢ o s 0 4 0 0 0 s e 050 mille(6)
MOdE & v v v v s s o v s s o e s e s e e e e chmod(1)
modified of afile « « v o 0 0000w 0 touch(1)
monop : monopoly game .+ 00 0.4 e monop(6)
monopoly game « v « ¢« o o 0 0 s e 00 s monop(6)
multi-player multi-terminal game e e e e e e e e hunt(6)
multi-routine Fortran fileinto e r e e e e o fplit(1)
multi-terminal game e e e n s + s s o s« o« hunt(6)
multi-user wooden ships andiron sail(6)
name . . o o s o c s e e e s e e e e e e tty(1)
neqn, checkeq : typeset + « « s ¢ 4 o o 0 . o+ .. eqn(l)
nroff : text formatting . .« + 4 ¢ ¢ 4 o o« o o o . nroff(l)
nroff : text formattingand 0 @ .. . o . troff(l)
nroff iNPut + 4 v 4 e s e s a e e e e 0 0 o s .. soelim(1)
nroff or troff e s e s s s e e e . tbl(1)
nroff output for CRT prevnewmg v e e e e e e e colert(l)
nroff troff files « + « « « o 4 4 s o s o o o+ s o o . checknr(l)
nroff, troff, tblandeqn . . .« .« ..o o o deroff(1)
number : convert Arabic numerals . . . « « number(6)
number facts . ¢ v 4 4 s e 0 e 000 . o + « + . arithmetic(6)
numbers alist: . ¢ o o 00 00 . o o0 e e . alist(l)
numerals to English « e v e e e number(6)
octal, decimal, hex, asciidump + ¢« + « ¢« + « « « » » 0d(D)

od : octal, decimal, hex, ascil « o « & ¢« ¢ o 0 4 . . od(1)
options a.info e s s e e e e s oo ainfo(l)
OptiONS ¢ » ¢ ¢ o o o 0 o 4 . s e e s e e e e . stty()
order a.make :recompile ¢+« « . . amake(l)
order lastcomm :show « o s s o+ s lastcomm(1)
output for CRT previewing + « « o-e « v o « « o o » colcrt(1)
PAZESIZE o 4 v 4 e b o e e e e e s e e . pagesize(1)
pagesize : print system page size pagesize(l)
paginator for the Tektronix 4014 tk(1)
passwd : change password file passwd(l)
password file information « « + « « + + s+« + o« » . passwd(l)
pattern scanning and processing .+ + + + « « + + o o . awk(1)
permit or deny messages .+ « « + o o o e o oo oo« mesg(l)
permutedindeX .« + ¢ v v 4 e v v 4w oo oo ptx(1)
photoypesetter simulator + « « « « ¢« 4 o o o 0 o0 o tc(l)

play “Gofish” + « o ¢ v v v o ¢ o o . v oo s o« fish(6)
playmille Bournes » + « 4 o s o ¢ s o+ o s o+ » o mile(6)
play the game of boggle e e s s s s« . boggle(6)
pr:oprintfile e e e e s e oo pr(D)
prejudice kill: . o v v v v v e e e e e e e Kil(1)
prelinker . . v . 0 v h e e e e e e e e e .. ald(D)

February 1989

Permuted Index

: filter nroff output for CRT

cat : catenate and

interesting, adage fortune :

date :

pr:

banner :

manual information by keywords;
pagesize :

toberun atq:

for diction diction, explain :
banner : print large banner on
Iprm : remove jobs from the line
kill : terminate a

awk : pattern scanning and
numbers a.list :

Ipq : spool queue examination
units : conversion

source, binary, and or manual for
a.list : produce

a.run : download and execute a
indent : indent and format C

a.ls : list compiled

update, and regenerate groups of
a.which : determine which
arithmetic :

from the line printer spooling
Ipq : spool

atq : print the -

rain : animated
adage fortune : print a

ratfor :

dependency order a.make :
literature references in
index for a bibliography, find
: find and insert literature

: maintain, update, and
a.cleanlib :

leave :

tip, cu : connect to a

colrm :

a.rmlib :

spooling queue lprm :

atrm :

constructs. deroff :
information a.rm :
directories rm, rmdir :
uniq : report

yes : be

search list a.pathxs :

uniq ¢

col : filter
rev :
: show last commands executed in
files or directories
directories rm,
: fight off villainous
robots
database
the queue of jobs waiting to be
roffbib :
and iron men
awk : pattern
subsystem
: report or change VADS library
xsend, xget, enroll :
diction, explain : print wordy
apply : apply a command to a
stty :
date : print and
and history mechanism for C
sail : multi-user wooden

robots

Page xiv

RISC/os Programmer’s Reference

previewing colert . . ¢

print
print a random, hopefully
print and set the date

print file
print large banner on printer .
print out the manual man : find
print system page size

e e 2 o s o

print the queue of jobs waiting . . .

print wordy sentences; thesaurus
printer
printer spooling queue

process with extreme prejudice . .

processing language
produce program listing with lme
program . . .
program
program whereis : locate
program listing with line numbers

program on the target board cross
program source .
programs
programs : maintain, I

L

project llbrary contains a umt
provide drill in number facts
ptx : permuted index . .
queue lprm
queue examination program . . .
queue of jobs waiting to be run

e ® ° e ® ® e

® o e s o e o

e s ® s e

:remove jobs

quiz : test your knowledge:

rain : animated raindrops display
raindrops display .
random, hopefully interesting,

ratfor : rational Fortran dialect
rational Fortran dialect

recompile source files in
refer : find and insert

© e s s 9

references in a bibliography

references in documents refer
regenerate groups of programs . .
reinitialize library directory
remind you when you have to leave
remote system . « ¢ s 0 0 0 .
remove columns from afile . . .
remove compilation library . . .
remove jobs from the line printer
remove jobs spooled'by at . .
remove nroff, troff, tbl and eqn
remove source unit and library
remove (unlink) files or
repeated lines in a file
repetitively affirmative
report or change VADS library
report repeated lines in a file
rev ; reverse lines of a file
reverse line feeds
reverse linesof afile.
reverse order lastcomm
rm, rmdir : remove (unlink)
rmdir : remove (unlink) files or
TODOLS & s o o ¢ o s 0 o o
robots : fight off villainous .
roffbib : run off bibliographic
run atq:print .. . 4, .
run off bibliographic database
sail : multi-user wooden ships
scanning and processing language

o a o

* o o o

e e s & e o
© ®» @ o o o s 8 8 ®© © e ° 8 ® e

e e 8 o ® @

sces @ front end for the SCCS . .
search list a.pathxs
secretmail . . . 0 4 000 .
sentences; thesaurus for diction .
setof arguments 0 . . .
set terminal options
setthedate .« ¢« o o o o o s o &
shell command abbreviations . .
ships and ironmen

February 1989

® e © ® o & s« © s s e » = ® @ s ° ° e

e s e s o ® e = s o

s & e e o ° ® e B

e s o e B e

® o o & 8 o o o

e s s o e = * s o s e s

» o e & ®

e o e e e ° & s s o

Permuted Index

0
.

« e o o & * 3 8 e 35 8 ®
.
s o s
.
" e s e o ®» e ® » & e ° o ®

e« © © » o e s s ° o
® © © © ® 2 ° ® © ® @8 ® e

» o 2 & ¢ o o ° e ® e

.
.
e s o e
e o s o e e s e o o @

e e e o o
.

colert(1)
cat(1)
fortune(6)
date(1)
pr(1)
banner(6)
man(1)
pagesize(1)
atq(1)
diction(1)
banner(6)
lprm(1)
kill(1)
awk(1)
a.list(1)
Ipq(1)
units(1)
whereis(1)
a.list(1)
a.run(1)
indent(1)
als(1)
make(1)
a.which(1)
arithmetic(6)
ptx(1)
Iprm(1)
Ipq(1)
atq(1)
quiz(6)
rain(6)
rain(6)
fortune(6)
ratfor(1)
ratfor(1)
a.make(1)
refer(1)
lookbib(1)
refer(1)
make(1)
a.cleanlib(1)
leave(1)
tip(1c)
colrm(1)
a,rmlib(1)
lprm(1)
atrm(1)
deroff(1)
a.rm(1)
rm(1)
unig(1)
yes(1)
a.path(1)
unig(1)
rev(1)
col(1)
rev(1)
lastcomm(1)
rm(1)
rm(1)
robots(6)
robots(6)
roffbib (1)
atq(1)
roffbib(1)
sail(6)
awk(1)
sces(1)
a.path(1)
send(1)
diction(1)
apply(1)
stty(1)
date(1)
a.view(1)
sail(6)

MIPS Computer Systems, Inc.

Permuted Index

groups :
reverse order lastcomm :
fmt :

tc : photoypesetter
pagesize : print system page
spline : interpolate

game

snake,

nroff input

canfield, cfscores : the
tsort : topological

sortbib :

sort :

database

look : find lines in a

soelim : eliminate

: indent and format C program
program- whereis : locate

a.pr : format

a.make : recompile

a.db :

information a.rm : remove
expand, unexpand : expand tabs to
spelling errors

errors spell,

spell, spellin, spellout : find
spell, spellin,

file into individual fsplit :

Ipq :

atrm : remove jobs

remove jobs from the line printer

temporarily su,"

temporarily

su, ssu :

front end for the SCCS
du:

a.du:

tip, cu : connect to a remote
pagesize : print

tbl : format

expand, unexpand : expand
a.tags : create a

SCCS :

talk :

tcopy : copy a mag

and execute a program on the
troff

deroff : remove nroff, troff,

indicate last logins of users and
su, ssu : substitute user id

: animate worms on a display
tty :get

stty : set

prejudice kill :

quiz :
simple
nroff :
troff, nroff :

explain : print wordy sentences;
system

4014

tsort :

of a file

fmt :

tr:

trek :

tbl : format tables for nroff or
checknr : check nroff

and typesetting

deroff : remove nroff,

MIPS Computer Systems, Inc.

RISC/os Programmer’s Reference

show group memberships
show last commands executed in
simple text formatter
simulator
size
smooth curve
snake, snscore : display chase
snscore : display chase game .
soelim : eliminate .so’s from .
solitaire card game canfield

sort
sort : sort or merge files . . .
sort bibliographic database

sort or merge files
sortbib : sort bibliographic . .
sorted list . . .
.s0’s from nroff input .
source indent
source, binary, and or manual for
source code ..
source files in dependency order
source level debugger
source unit and library
spaces, and-vice versa
spell, spellin, spellout : find . .

spellin, spellout : find spelling
spelling errors
spellout : find spelling errors
spline : interpolate smooth curve
split a multi-routine Fortran
spool queue examination program
spooledbyat,
spooling queue lprm: . .
ssu : substitute userid . .
stty : set terminal options .
su, ssu : substitute user id
substitute user id temporarily
subsystem ¢ ¢ o o 0 0 . e oo
summarize disk usage .o
summarize library disk usage .
system

system page sizé . . . o . o0 .
tables for nroff or troff
tabs to spaces, and vice versa .
tagsfile . . .o 000 0 v o
talk : talk to another user . . .
talk to another user
tape D S
target board cross compilers .
tbl : format tables for nroff or .
tbl and eqn constructs
tc : photoypesetter simulator .
tcopy : copy a mag tape .« o
teletypes last : . e e
temporarily

terminal worms
terminal name
terminal options
terminate a process with extreme
test your knowledge
text formatter
text formatting o
text formatting and typesetting
thesaurus for diction diction, .
tip, cu : connect to a remote
tk : paginator for the Tektronix
topological sort
touch : update date last modlﬁed
tr : translate characters

e e o o o o s o

translate characters
trek : trekkie game o .
trekkie game
troff .. 000000 e e e
troff files « o ¢ ¢ o 0 o0 ..
troff, nroff : text formatting .

troff, tbl and eqn constructs

February 1989

® © © o s o e o & s o e @

Permuted Index

« s e e

groups(1)
lastcomm(1)
fmt(1)
te(1)
pagesize(1)
spline(1g)
snake(6)
snake(6)
soelim(1)
canfield(6)
tsort(1)
sort(1)
sortbib(1)
sort(1)
sortbib(1)
look(1)
soelim(1)
indent(1)
whereis(1)
a.pr(1)
a.make(1)
a.db(1)
a.rm(1)
expand(1)
spell(1)
spell(1)
spell(1)
spell(1)
spline(1g)
fsplit(1)
Ipq(1)
atrm(1)
Iprm(1)
su(1)
stty(1)
su(1)
su(1)
sces(1)
du(1)
a.du(1)
tip(1c)
pagesize(1)
tbl(1)
expand(1)
a.tags(1)
talk(1)
talk(1)
tcopy(1)
a.run(1)
tbl(1)
deroff(1)
tc(1)
tcopy(1)
last(1)
su(1)
worms(6)
tty(1)
stty(1)
kill(1)
quiz(6)
fmt(1)
nroff(1)
troff(1)
diction(1)
tip(1c)
tk(1)
tsort(1)
touch(1)
tr(1)

tr(1)
trek(6)
trek(6)
tbl(1)
checknr(1)
troff(1)
deroff(1)

Page xv

Permuted Index

battlestar : a

eqn, neqn, checkeq.:

nroff : text formatting and
expand data compress,

and vice versa expand,

file

which project library contains a
a.rm : remove source

rm, rmdir : remove
make,makerules : maintain,
file touch :
summarize library disk
du : summarize disk
talk : talk to another
write : write to another
su, ssu : substitute
wall : write to all

last : indicate last logins of

a.help : interactive help

: expand tabs to spaces, and vice
hangman : Computer

a.vadsrc : display available VADS
: expand tabs to spaces, and
robots : fight off

doing

atq : print the queue of jobs

a.du :

is
and or manual for program
window :

sail : multi-user
diction diction, explain : print

worm : Play the growing
display terminal

worms : animate
wall :

write :
hunt-the-wumpus
xsend,

compress, uncompress,

Page xvi

RISC/os Programmer’s Reference

Permuted Index

tropical adventure game e v e s e e e e battlestar(6)

tsort : topological sort Ce e e e e . tsort(1)

tty : get terminal name . . ., . . e e e e e e tty(1) o
typeset mathematics S e e e e e eqn(1) ()
typesetting troff,0 v e e e .. troff(1) ‘
uncompress, zcat : compress and compress(1)

unexpand : expand tabs to spaces, expand(1)

uniq : report repeated linesina uniq(1)

unit a.which : determine a.which(1)

unit and library information . . . 4 « . ¢ arm(1)
units : conversion program . . .« . . . e units(1)

(unlink) files or directories « « v v 4 v v 4 00 0 .. rm(1)

update, and regenerate groups of « « « .. make(1)

update date last modifiedofa e touch(1)

USAEE o o o o o o 2 o o o s o & .o e o v o adu(l)

USAZE o o s v o v s s e e s 7. du(l)

USEE o s o o s w6 s 0 .. e . . eeow talk(l)

USET o @ o o 4 0 e s e e e e e e o« o o write(1)

user id temporarily e e e e e 0. su(l)

USEIS o o o v o o s s o o o o s & v e e 0w . wall(l)
users and teletypes « v v v 0 v v o v e e 0w a0 . last(D)

151515 e e h e e e a.help(1)

versa expand, unexpand v s o o o« o expand(l)

version of the game hangman . . ¢+ e o« .. hangman(6)

versions and create a default a.vadsre(1)

vice versa expand, unexpand . . e e e expand(1)

villainous robots + . v 4 4 4 e e 0 e e e ... s robots(6)

w : who is on and what theyare « o o w(1)

waitingtoberun . . . 0 ¢ 0 4. . . e e . atq(1)

wall : write to all users ca s e se e o oo wall(l)

whatis : describe what a command e« o o+ » whatis(1)

whereis : locate source, binary, .+ 4 ¢+ 4 o . . « + » ‘whereis(1)

window ; window enviropment . . « « « « window(1)

window environment e « « « » window(1)

wooden ships and ironmen « « o o « o &+ s« sail(6)

wordy sentences; thesaurus for « » .+ . diction(1)

worm : Play the growing worm game « o . . worm(6) ‘
WOIM GAMME + o o o s o o o s o s o o o o o o & worm(6) (_*
worms : animate worms on a e e e s o s+ . worms(6) -
worms on a display terminal worms(6)

write : write to anotheruser ., « o « o write(1)

writetoall users -« « o o ¢ 0 . . o e e s 0 e e o . wall(l)

write to anotheruser + » o+« v . ¢ 0 0 v o write(l)
wump : thegameof ., . ., , . . . v o o o+« wump(6)

xget, enroll : secret mail e rse e s o+« o+ send(1)

xsend, xget, enroll : secret mail i« 4 o send(1)

yes : be repetitively affirmative yes(l)

zcat : compress and expand data .o « » « « compress(1)

zork : the game of dungeon zork(6)

February 1989

MIPS Computer Systems, Inc,

A.CLEANLIB (1) RISC/os Programmer’s Reference A.CLEANLIB (1)

NAME
a.cleanlib - reinitialize library directory

SYNOPSIS
a.cleanlib [options] [VADS_library]

DESCRIPTION
a.cleanlib preserves all non-compilation information contained in ada.lib, including any addi-
tional libraries contained in the library search list and any other directives found in ada.lib.

The command will empty the files GVAS_table, ada.lib, and gnrx.lib of all separate compila-
tion information and remove the contents of the directories .lines, .imports, .nets, and
.objects from the named library, or, if no library is spemﬁed from the current library direc-
tory. It will also remove the file name_lib if present.

If a.cleanlib cannot find every hbrary component, it will abort without removing any informa-
tion unless the —f (force) option is given.

The -F option is provided to allow a.cleanlib to clean a library having a reserved name (stan-
dard, verdixlib, publiclib).

OPTIONS
-F (force name) allow the cleaning of a VADS library having a reserved name

-f (force) clean the VADS library structure even if components are missing or if
lock files are found.

FILES

GVAS_table address assignment file

gnrx.lib generic instantiation reference file
ada.lib library reference file

dines line number reference files directory
.Imports imported Ada units directory

.nets Ada network control files directory
.objects Ada object files directory

DIAGNOSTICS
An error is reported if any VADS component is missing, and no action is taken unless the -f
option is used.

SEE ALSO
[VADS Reference], a.mklib, a.rmlib.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.DB(1) RISC/os Programmer’s Reference ADB(1)

NAME
a.db - source level debugger

SYNOPSIS
a.db [options] [executable_file]

DESCRIPTION ,
a.db is a symbolic debugger for Ada programs and for C programs compiled with the -go
option for those using 4.2 BSD UNIX-or the -g option on System V UNIX. Detailed
descriptions of interactive a.db commands and runtime configuration file options are provided
in the VADS Debugger Reference, which is also available on-line using a.help or the debugger’s
internal help command.

VADS_location/bin/a.db is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the
same host, The -sh option prints the name of the actual executable file.

OPTIONS
—i file_name (input) read input from the specified file

—-p VADS _library
(program) read program compilation information from the specified VADS
library directory (rather than the current directory)

-sh (show) display the name of the tool executable but do not execute it.
-v (visual) invoke the screen-mode debugger directly.

See also

VADS Debugger‘Reference for a list of all debugger commands.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.DU (1) RISC/os Programmer’s Reference ADU(1)

NAME
a.du - summarize library disk usage

SYNOPSIS
a.du [options] [VADS_library]

DESCRIPTION
a.du lists size in bytes for all compiler-generated files in the specified VADS library. If no
library is specified, the current directory is assumed.

VADS_location/bin/a.du is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the
same host. The -sh option prints the name of the actual executable file.

OPTIONS

-a (address) sort the output by the GVAS address of each unit.

-e (erroneous) include information for units with damaged or out-of-date net

files.

-f (file) sort output by the name of the file containing the unit.

-g .~ (GVAS) provide the base address of each unit in the GVAS.
- i © (imports) include information for imported units.

— sh (show) display the name of the tool executable but do not execute it.

FILES

GVAS_table address assignment file

.imports imported Ada units directory

Jdines line number reference files directory

.nets Ada network control files directory

.objects Ada object files directory

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.ERROR (1) RISC/os Programmer’s Reference | A.ERROR (1)

NAME
a.error — analyze and disperse error messages
SYNOPSIS

a.error [options] [error_file]

DESCRIPTION _

a.error is generally called from the ada command, but it can also be used separately. a.error

analyzes and optionally disperses diagnostic error messages produced by the VADS compiler.

It looks at the specified error file or the standard input, determines the source file and line

number to which the error refers, determines whether the error is to be ignored or not, and

outputs the associated source line followed by the error line(s).

a.error will also insert the error lines into the source file and invoke the vi(1) editor if the —v

option is given. Error lines placed into files this way are of two types. The first gives the

position of the error and the second identifies it. Multiple errors on a single line -are
referenced by sequential alphabetic characters,
subtype T is range 1..1f;
——————— —A ###
B #H##

—### A: syntax error: "identifier" inserted

—### B: lexical error: deleted

Because all error lines are flagged with ###, the vi editor command :g/###/d can be used to

delete them. However, any source lines containing ### will also be deleted; consequently,

do not use ### in any source with which a.error -y may be used.

In the case of source files with multiple links, a.error creates a new copy of the file with only

one link to it.

OPTIONS

— e editor (editor) Insert the error messages in
the source file and invoke the specified editor.

- 1 (listing) Produce a listing on the standard output.

- N (no) do not display line numbers.

—t number (tabs) Change tab default setting (8).

(No space between -t and the following digit.)

-v (vi) Embed error messages in the source file and call the environment editor
ERROR_EDITOR. (If ERROR_EDITOR is defined, the environment
variable ERROR_PATTERN should also be defined. ERROR_PATTERN is
an editor search command that locates the first occurrence of ‘###’ in the
error file.) If no editor is specified, call vi.

- W (warnings) Ignore warnings.

DIAGNOSTICS

a.error produces diagnostics indicating ‘no errors’ if -v is used and no errors were detected
and ‘no such file or directory’ if invoked with an invalid file name.

SEE ALSO
[VADS Reference] ada.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

(

A.HELP(1) ' RISC/os Programmer’s Reference A.HELP (1)

NAME

a.help — interactive help utility
SYNOPSIS

a.help [-options] [subject]
DESCRIPTION

On-line help is available for each of the VADS utilities and for debugger commands and

concepts. Without a specified subject, a.help provides information on use of the help utility

and prompts for additional subject names. Use q to exit from a.help.

Without the -p option, a.help will use the paging program defined by the environment variable

HELPER, requiring the full pathname with surrounding quotes for additional options. If

HELPER is not defined, more is used.

Reference manual entries for the compiler and tools only are available on-line by using the

man command if the local system administrator has elected to install them. A list of topics

can be obtained with
man ada
and typing
man VADS_command)

will show the entry for a specific command.

VADS_location\bin\a.help is a wrapper program that executes the correct executable based

upon directives visible in the ada.lib. This permits multiple VADS compilers to exist on the

same host. The -sh option prints the name of the actual executable file.
OPTION : :

- p pager (pager) Use pager as the paging program. The complete pathname must be
given with surrounding quotes if additional options to the paging program are
desired.

- sh (show) display the name of the tool executable but do not execute it.

ON-LINE HELP FROM THE DEBUGGER

FILES

Access on-line help for the debugger as well as the compiler and tools during a debugging
session by typing
"~ help [subject)]
or
‘help[subject] while in screen mode.

If the subject is omitted, a list of debugger commands is displayed. This overview can also
be obtained by typing intro after a help prompt. Help with the help command can be
obtained by typing help at a help prompt. ‘

BVADS _location/sup/help_files/*

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.INFO (1) RISC/os Programmer’s Reference A.INFO (1)

NAME
a.info - list or change VADS library options

SYNOPSIS
a.info [options]

DESCRIPTION)
a.info is used to examine the INFO and LINK directives of the ada.lib. It can also be used to
add or delete those directives from the ada.lib or to display or change the library search list.

All directives have the format
name:type:value:

where name is the name of the directive, type can be the word LINK or INFO, and value is
usually a file name. (More information on directives can be found in discussions of a.ld.)

Without options, a.info displays all directives in the current library.

The -i option executes a.info in interactive mode. In this mode, all command line actions
may be performed interactively. a.info prompts for and checks that the desired directive
names and values are supported.

For a complete list of directive names, BSee also
Implementation Reference, Supported INFO and LINK Directive. Names.

For a discussion of WITHr directives used with the prelinker, See also Users Guide, Program
Generation Tools, a.ld and [VADS Reference], a.ld.

Regular expressions, shown in the options below, are formed by following the operating
system documentation.

SEE ALSO
Operating system documentation, ed (1).

OPTIONS
-a (all) Display all directives in each library on the library search list.

-F (suffix) Display LINK directives with the suffix (L) and INFO directives with
the suffix (I).

-1i (interactive) Operate in interactive mode.

-p (path) Print the library search list.

~8 (short) Show just the INFO and LINK names.
-v (verbose) Display maximum information.

[+-]info name value
Add, delete an INFO directive.

[+-link name value
Add, delete an LINK directive.

[+-Jlink WITHn value
Add, delete an LINK directive.

+link WITH value
Add a LINK directive having the next number: WITHn

[+-lnumber VADS_library
add, delete VADS_library in the number position to the library search list.

—-number removes VADS library in position number from the library search list

"regular_expression"
Print directives whose first name field matches regular_expression.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.INFO (1) RISC/os Programmer’s Reference A.INFO(1)

—value "regular_expression"
Print directives whose last value field matches regular_expression.

FILES »
VADS _location\sup\LEGAL.INFO A list of legal directives for this implementation.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

ALD(1) RISC/os Programmer’s Reference A.LD(1)
g .

NAME

a.ld - prelinker

SYNOPSIS

a.ld [options] unit_name [ld_options]

DESCRIPTION

a.ld collects the object files needed to make unit_name a main program and calls the UNIX
linker 1d(1) to link together all Ada and other language objects required to produce an
executable image in a.out. unit name is the main program and must be a non-generic
subprogram. If unit_name is a function, it must return a value of the type
STANDARD.INTEGER. This integer result will be passed back to the UNIX shell as the
status code of the execution. The utility uses the net files produced by the Ada compiler to
check dependency information. a.d produces an exception mapping table and a unit
elaboration table and passes this information to the linker.

a.ld reads instructions for generating executables from the ada.lib file in the VADS libraries
on the search list. Besides information generated by the compiler, these directives also include
WITH» directives that allow the automatic linking of object modules compiled from other
languages or Ada object modules not named in context clauses in the Ada source. Any

‘number of WITH directives may be placed into a library, but they must be numbered

contiguously beginning at WITH1. The directives are recorded in the library’s ada.lib file and
have the following form.

WITH1:LINK :object_file:
WITH2:LINK :archive_file:

WITH directives may placed in the local Ada libraries or in any VADS library on the search
list.

A WITH directive in a local VADS library or earlier on the library search list will hide the
same numbered WITH directive in a library later in the library search list.

Use the tool a.info to change or report library directives in the current library.

All arguments after unit_name are passed on to the linker. These may be options for it,
archive libraries, library abbreviations, or object files.

VADS _location/bin/a.ld is a wrapper program that executes the correct executable based upon
directives visible in the ada.lib file. This permits multiple VADS compilers to exist on the
same host. The -sh option prints the name of the actual executable file.

OPTIONS

FILES

—E unit_name (elaborate) Elaborate unit_name as early in the elaboration order as possible.
~-F (files) Print a list of dependent files in order and suppress linking.

—o executable_file
(output) Use the specified file name the name of the output rather than the
default, a.out.

-sh (show) Display the name of the tool executable but do not execute it. —U
(units) Print a list of dependent units in order and suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker command but suppress execution.

VADS _location/standard/x
startup and standard library routines

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ALD(1) RISC/os Programmer’s Reference ALD(1)

.objects/x Ada object files

a.out default output file
SEE ALSO

Operating system documentation, 1d(1)
DIAGNOSTICS

Self-explanatory diagnostics are produced for missing files, etc. Occasional ‘additional
messages are produced by the linker. '

Page 2 ‘ February 16, 1989 - 'MIPS Computer Systems; Inc.

- A.LIST (1) RISC/os Programmer’s Reference A.LIST (1)

NAME
a.list - produce program listing with line numbers

SYNOPSIS
alist [-N] ada_source.a

DESCRIPTION
a.list provides a convenient way of producing a listing for programs containing no errors that
closely resembles the output of a.error. The listing is written to the standard output and may
be piped or redirected to a file.

OPTION .
-N (no) Suppress line numbers.

'SEE ALSO
[VADS Reference], a.error, a.pr.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ALS(1) RISC/os Programmer’s Reference ALS(1)

NAME
a.ls — list compiled programs

SYNOPSIS
aJls [options] [unit_name] ... [-f ada_source.a ...]

DESCRIPTION
" a.s provides a list of the units compiled in the current VADS directory. Options are pro-
vided to give more or less extensive information, to change the format of the list, or to pro-
‘vide a list of compiled units occurring in specified source files. Additionally, unit_name can
be specified as a regular expression to match groups of units, (If the regular expression con-
tains any of the shell’s meta-characters, the expression must be quoted.) '

Without the -1 or —v options, a.ls prints output in multiple columns. This can be overridden
with the —1 (single) option.

The options —F, -1, and —v (in increasing order of listing detail) are mutually exclusive. If
more than one of these three is given, the listing will be that with the most detail.

OPTIONS
-a (all) List all units visible in libraries in the library search list.
-b (body) Limit output to unit bodies.
—f filenanie (file) List only units found in filename.
-F * (suffix) List unit bodies with a trailing #.
-1 (long) List source file date, net file date, unit, and unit type.
- (specification) Limit output to unit specifications.
-v (verbose) List source file name, source file date, net file date, and unit.
-1 (single) Print output in a single column.
SEE ALSO

Operating system documentation for regular expressions in ed(1).

MIPS Computer Systems, Inc. February 17, 1989 Page 1

A.MAKE (1) RISC/os Programmei’s Reference A.MAKE (1)

NAME
a.make — recompile source files in dependency order

SYNOPSIS
a.make [options] [unit_name]... [ld_options] [-f ada_source.a ...]
a.make [options] [path/unit_name]... [Id_options] [-f ada_source.a ...]

DESCRIPTION ‘
This utility determines which files must be recompiled in order to produce a current
executable file with unit_name as the main unit. It also calls a.ld to create the appropriate
executable, if and only if unit_name is a procedure or an integer function; otherwise, it just
ensures that the named unit is up-to-date, recompiling any dependencies if necessary.
The utility uses DIANA net files to determine the correct order of compilation and:
elaboration.
a.make will have no knowledge of any source file (foo.a) until that file has been compiled in a
way that changes the program library. Unless the —f option is used, this requires that foo.a be
compiled ‘by hand’ at least once. Unless the —U or —D option is given, the file must compile
successfully or else the program library will remain unchanged. A single compilation is
sufficient (unless syntax errors are present) if the —U option is used to force changes to the
program library. In any case, syntax errors must be corrected before the file will be ‘seen’ by .
a.make.
VADS_location/bin/a.make is a wrapper program that executes the correct executable based
upon directives visible in the ada.lib file. This permits multiple VADS compilers to exist on
the same host. The —sh option prints the name of the actual executable file.
Supplied names and unknown options are passed to a.ld.

OPTIONS

—-A VADS_library [-A VADS _library] ..
(add) Bring the listed 11branes up to date if necessary

~All (all) Bring all libraries on the library search path up to date.

-C "compiler" (compller) Use the string compiler in recompiling the required units. ThlS
option is normally used to provide specific options to the compiler. For
example, to call the compiler with the optimizing option and invoke the vi(1)
editor on compilation errors, use a command of the following type.
a.make -C "ada -ev" [other commands]

-D (dependencies) List the file-to-file dependencies.

~f ada_source.a ...
(files) Treat remaining non-option arguments as file names in the current
VADS library to compile. All units in these files will be brought up to date; -f
may be used with one of the other options to print actions or dependencies
without executing them, but must be the last option given.

~I ada_source.a
(if) List actions that would be taken if ada_source.a were changed.

-L "linker" (linker) Use the string linker in linking the required units. This option can be
used to provide unusual options to a.ld when using a.make.

-0[0-9] (optimize) Invoke the code optimizer (no space before the digit). An
optional digit limits the number of optimization passes; without the -O
option, one pass is made; -O0 prevents optimization; O with no digit
optimizes as far as possible.

-gl Have the compiler produce additional symbol tabel informatin for accurate

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.MAKE (1)

Page 2

__g norn __gz

_g3

RISC/os Programmer’s Reference A.MAKE‘(1)

but limited symbolic debugging of partially optimixes code.

Have the compiler produce additional symbol table information for full
symbolic debugging and not do optimizations that limit full symbolic
debugging. —g2 is the defult.

Have the compiler produce additional symbol table information for full
symbolic debugging for fully optimized code. This option makes the debugger
inaccurate.

(suppress) Apply pragma SUPPRESS to the entire compilation.
(show) Display the name of the tool executable but do not execute it.
(units) List the list of dependent units in order, but do not link.
(verbose) List the recompilation commands as they are executed.

(verify) List the recompilation commands that would be executed, but do not
execute them.

February 16, 1989 -~ MIPS Computer Systems, Inc.

AMKLIB (1) RISC/os Programmer’s Reference AMKLIB (1)

NAME

a.mklib — make library directory
SYNTAX '

a.mklib [-F -f -i -v] [-t target] [new_VADS_library [parent_VADS_library]]
- DESCRIPTION

a.mklib creates and initializes a new VADS library directory, creating three files (GVAS_table,
ada.lib, and gnrx.lib) and four directories (.lines, .imports, .nets, and

.objects). It constructs library pointers in ada.lib to all libraries available from the parent
library and to the parent library itself. As a result, Ada units in the new library can reference
all Ada units defined by the parent library and all units that were accessible from the parent
library.

If parent_VADS library is unspeciﬁéd, the default libraries are verdixlib and standard.

The tool a.vadsrc may also be used to create a local configuration file called .vadsrc either in
the current directory, or in the user’s SHOME directory, so that future libraries created in a
directory below the current directory . or SHOME directory will reference a particular VADS
version.

If new_VADS_library is unspecified, the current working directory is initialized,

The -f option will force initialization of the VADS library structure, overwriting any existing
components and deleting any existing lock files.

Without the —F option, a.mklib cannot create libraries named standard, verdixlib, or publiclib.
A list of available targets can be obtained with the —i option or with the tool a.vadsre.
OPTIONS

~f (force) Create VADS library structure even if some components are
already present.

-F (force name) Allow creation of VADS library with a restricted name.

-i (interactive) Display all versions of VADS installed on the system and
prompt for selection of VADS version unless modified with the -t
option.

—t target : (target) Create a library for a specific target machine.

-y (verbose) Display the library search list and target directives.

EXAMPLE '

If the user is positioned at the directory /usr/babbage/code and the VADS library olddir exists
below it in the UNIX hierarchy, the command
a.mklib newdir olddir

creates the library directory /usr/babbage/code/newdir and provides access to the Ada
compilation units previously compiled in the olddir library directory. Any units available to
olddir from other libraries are now available from newdir as well.

FILES
vadsrc local default configuration file
lusr/lib/VADS VADS version reference file
DIAGNOSTICS

An error is reported and no action is taken (without the -f option) if new_VADS_library
contains any VADS components or lock files or if the name specified exists but is not a
directory.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.MKLIB (1) RISC/os Programmer’s Reference AMKLIB(1)

SEE ALSO
[VADS Reference], a.cleanlib, a.rmlib, a.vadsrc.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

A.PATH (1) RISC/os Programmef’s Reference A.PATH(1)

NAME

a.pathxs — report or change VADS library search list
SYNTAX

a.path [options] [VADS _libraryl [VADS_library?2]]
DESCRIPTION

A list of libraries to be searched during compilation is maintained in the current VADS library
directory in the file ada.lib. a.path changes or reports the list of library names contained
there. During compilation, any program units not found in the current library will be searched
for in the VADS libraries listed on the search list, If the unit is not found in the first VADS
library, it is searched for in the second, and so on in listed order. When a.path is used with
no options, it reports the contents of the current library search list, one library to a line.

OPTIONS

-a VADS_libraryl [VADS_library2]
(append) Append VADS _libraryl after VADS_library2. With a single
argument, append VADS_libraryl to the end of the library search list,

~i VADS_library [VADS_library2]
(insert) Insert VADS_libraryl before VADS _library2. With a single argument,
insert VADS_libraryl at the beginning of the list.

-r VADS libraryl
(remove) Remove VADS_libraryl from the library search list.

-y (verbose) Display path as it is changed.
-t (target) Display library search list and target information.

-x VADS libraryl
(except) Remove all except VADS_libraryl from the list.

BUGS
Removing a library name from the library search list does not remove compilation information
from the referenced libraries.

Maximum length of the library search list is 2048 characters.

MIPS Computer Systems, Inc. February 16, 1989 Page 1 -

A.PR(1) RISC/os Programmer’s Reference APR(1)

NAME
a.pr — format source code

SYNTAX
a.pr [options] [ada_source.a]

DESCRIPTION
a.pr reformats Ada source code according to the options specified in a runtime configuration
file with the name .prre. This allows users to tailor a.pr for individual Ada coding standards.
The configuration file may be located either in the user’s current working directory or the
home directory.

Additionally, options can be specified on the command line that override those in the
configuration file. The options are listed below.

Invoked without a filename, a.pr reads its input from standard input.
Error and warning messages are written to standard error.

.prrc CONFIGURATION FILE OPTIONS
(Defaults shown in brackets.)

align_cmts where align comments to the right of the longest line (line) or the longest line

containing a comment (comment) [comment]

chars number Specify maximum number of characters of code per line including
comment and indentation; any line extending over this limit will be

continued on the next line; valid range is from 20 .. 500 [132].

comment case
ident case
indent number
lines number

margin number

no_page
no_warning

page number
page_lu
record where

reserved case

tabs number

print all comments in the specified case: upper, lower, same [same]
print all identifiers in the specified case: upper, lower, same [upper]
Specify amount of indentation between levels; valid range is 1 .. 8 [8].

Specify maximum number of lines allowed on a page; valid range is
from 1 .. 1000 [55].

Specify starting margin for top-most level; valid range is from 0 .. 15
[0].
Paginate only when pragma PAGE is encountered.[page]

suppress warning messages regarding line length greater than desired
[provide warnings] Lo

Set page size; perform pagination with blank lines; vaiid range is from 1
.. 1000 [paginate using form feeds].

Start each library unit (indicated by a WITH clause) on a new page [do
not start on new page].

print record on either the same line (same) or on the next one (next)
[same]

print all reserved words in the specified case: upper, lower, same [lower]

Print tabs for indentation whenever the number of spaces needed for
indentation is greater than or equal to the specified number; valid range
is from 0 .. 8; if tabs 0 is specified, indentation will be performed with
blanks [8].

a.pr COMMAND LINE OPTIONS

(Defaults shown in brackets.) ‘

—ac

MIPS Computer Systems, Inc.

(align comment) Align comments to the right of the longest line that contains

February 16, 1989 ’ Page 1

APR(1)

—-al
—c number

—-cl

—cs

-cu

~i number
~il

—is

—-iu

-1 number
~m number

-nl

~np

—nw

—p number
“Pg

....pl

-l

-t number

-W

RISC/os Programmer’s Reference A.PR(1)

a comment [default].

(align line) Align comments to the right of the longest line, regardless of
whether it contains a comment [-ac].

(characters) Specify maximum number of characters of source code allowed
on a line, Valid range is from 20 .. 500 [132].

(comments lower) Print comments in lower case [-cs].

. (comments same) Print comments as in source code [default].

(comments upper) Print comments in upper case [-cs].

(indent) Specify indentation between levels. Valid range is from 1 .. 8 [8].
(identifiers lower) Print identifiers in lower case [-iu]. '
(identifiers same) Print identifiers as in source code [-iu].-

(identifiers upper) Print identifiers in upper case [default].

(lines) Specify maximum number of lines allowed on a page. Valid range is
from 1 .. 1000 [55].

(margin) Specify starting margin for top-most level. Valid range is from 0 ..
15.[0].

(no page library unit) Do not start a new page for each library unit [default].

(no pagination) Specify no pagination. Pagination will occur only when
pragma PAGE is encountered [-pg].

(no warnings) Suppress warning messages regarding line length [-w].

(page) Specify page size. Valid range is from 1 .. 1000 [-pg]. »

(pagination) Paginate using form feeds [default].

(page library) Start a new page whenever a library unit is encountered [-nl].
(reserved lower) Print reserved words in lower case [default].

(record next) Print RECORD on the line following type or for [-RS].

(reserved same) Print reserved words as in source code [-r].

(record same) Print RECORD on the same line as fype or for [default].
(reserved upper) Print reserved words in upper case [-r1].

(tabs) Specify tabs for indentation whenever the number of spaces needed is

greater than or equal to the specified number. If -¢ 0 is specified, indentation -

will be performed with spaces. Valid range is from 0'.. 8 [8].

" (warning) Provide warning messages regarding line lengths greater than desired

[default].

February 16, 1989 MIPS Computer Systems, Inc,

(

ARM(1)

NAME

RISC/os Programmer’s Reference ARM(1)

a.rm — remove source unit and library information

SYNTAX

a.rm [options] unit_name
a.rm [options] [ada_source.a]

" DESCRIPTION

The a.rm command is executed while positioned in a VADS directory. It removes all
information associated with the named unit(s) or file(s). When unit_name is specified, the
corresponding files in .nets, .objects, and .lines are removed and the ada.lib entries are

deleted.

When a file name ada_source.a is given, all net, object, and line number files are removed for
each unit defined in the file, and the appropriate entries are deleted from ada.lib. A name
-ending in .a is taken to be an Ada source file name unless the —u option is given.

Unit names with dotted notation such as aaa.bbb or aaa.bbb.ccc are taken to 4be the names of

Ada subunits.

OPTIONS
| ~b
-f
-i

-S

-u

-y

(body) Delete the bodies of the specified units named files.

(file) Remove the Ada source file in addition to the compiler-generated files
whenever all units in a file are deleted.

(interactive) Prompt for confirmation before deleting information for any
units. :

(specification) Remove the compilation information for the specifications of
the specified units.

(unit) Force the next name to be treated as a unit even though it ends in .a.
(verbose) List the units as they are removed.

(verify) List the units that would be removed, but do not remove them.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.RMLIB (1) RISC/os Programmer’s Reference ' A.RMLIB (1)

NAME

a.rmlib — remove compilation library
SYNTAX ‘

a.rmlib [-f -F] [VADS_library]
DESCRIPTION

a.rmlib removes all VADS library components from VADS_Jibrary or from the current library
if no argument is given. It removes three files (GVAS_table, ada.lib, and gnrx.lib), four
directories (.lines, .imports, .nets, and .objects), and lock files, if the ~f option is used. The
directory itself, any other files it contains, and any other subordinate directories are
untouched.

If VADS_library is unspecified, the current VADS library is used.

If a.rmlib cannot find every library component or lock files exist, it will abort without
removing any files unless the —f (force) option is given.

Without the -F option a.rmlib cannot operate in a library bearmg the name standard,
verdixlib, or publiclib.

OPTION
-f (force) Clean VADS 11brary structure even if some components are missing or
lock files exist.
~F (force name) Allow the cleaning of the VADS library structure of a library
: having a restricted name.
DIAGNOSTICS

An error is reported and no action is taken (without the ~f option) if VADS_Jibrary contains
an incomplete set of components or a lock file.

An error message will be issued if any files or directories are not accessible for deletion.

SEE ALSO
~ [VADS Reference], a.mklib, a.cleanlib
BUGS
The directory name for the removed library is left in dependent library paths. This blocks
compilation in any dependent libraries until a.path is used to remove the path entry that
specifies this directory. Compilation could also proceed if a VADS library is re-created in the
named dlrectory from which the library information was removed.

MIPS Computer Systems, Inc. February 16, 1989 ' "Page 1

A.RUN(1) RISC/ osv'Programmer’s Reference - A.RUN(1)

NAME
a.run - download and execute a program on the target board [cross compilers only)

SYNTAX
a.run [options) [executable_file]

DESCRIPTION
a.run downloads and runs a VOX format file on a target board. The interface (TDM or

emulator) must be set up as described, and the target board correctly connected as required by
a.db. ‘

If the Ada program fails with a runtime error on the board, a.run reports the error and the PC
at the time of the failure.

If executable_file is not given, the name a.vox is used.

VADS_location/bin/a.run is a wrapper program that executes the correct executable based
upon the names in the ada.lib file or indicated by the -t option. This permits multiple VADS
compilers to exist on the same host. The -sh option prints the name of the actual executable

file.
OPTIONS
-b a (benchmark) print the elapsed time for running the program.
-c ' (checksum) do not checksum the executable load sections.
-1 (load) load executable_file only, do not execute,
-s address (start) set the starting program counter to address (must be a hexadecimal
number without delimiting characters)
-sh (show) display the name of the tool executable, but do not execute it.

—t target_name (target) specifies which target to use. Can be used to run in a directory in
which no ada library present or to override the target named by the ada.lib
file. The -t option requires the -1 or —s option, as it does not get the start
address from the ada.lib file. o

-T number (timeout) stop if the program doesn’t return after number seconds. (0 means
no timeout). Default is 240.
-V (verbose) show downloading progress

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.TAGS(1) | RISC/os Programmer’s Reference A.TAGS(1)

NAME
a.tags — create a tags file

SYNTAX
a.tags [options] ada_source.a ...

~ DESCRIPTION
a.tags makes a fags file from the specified Ada source(s). . The operation is similar to the
- UNIX ctags(1) command with modifications for Ada-specific features. ‘
Each line of the tags file lists the object name, the file in which it is defined, and search
patterns for locating each object’s definition.. UNIX editors such as vi(1) or ex(1) can use the
tags file to locate units and, if the —t option was used to create the tags file, to locate types as
well. Create the tags file with the command :
a.tags x.a
For example, to edit unit END_PROG without specifying the file that contains it, tyﬁe the following
command. '
' vi -t END_PROG

Ada allows unit name overloading, and a.tags requires special conventions to access different
units having the same name. Ada specifications are named by prefacing the Ada simple me
with s#. Bodies are named with the unmodified Ada name. Stubs for separates are named
by prefacing the Ada simple name with stub#. . .
Nested packages, subprograms, types, generics, and task definitions are always listed with
their full name (Ada expanded name) with any tag prefaces added to the simple name.
Simple names for nested units are listed only if the simple name is unique across all other
tags. Thus the user may use the simple name if it is unique and may always use the full name.
Fully qualified overloaded names within a file are not differentiated. However, the tag
identifies the correct file, and repeated application of the search pattern will find the desired
subprogram. The search pattern is generalized to match all versions of the overloaded
subprogram; this generalization may cause the pattern to recognize things other than the
desired unit. Identical fully qualified names across files are not handled.
The -x and -v options provide listings on the standard output; all other options refer to the file
tags generated for use by ex or vi,

OPTIONS
-a (append) Append to the rags file.
-B (backward) Record backward searching patterns (?).
-F (forward) Record forward searching patterns (/). Default.
-t (types) Create tags for types also.
-V (vgrind) Generate an index with line numbers for vgrmd(l) on the standard

output.

-w (warnings) Suppress warning messages.
-X (cross) Generate an indexed list of all tags on the standard output.

SEE ALSO
Operating system documentation, ctags(1).

BUGS

When using ex or vi with the -t option, the command line must contain the desired unit or
type in the same case (upper or lower) as its occurrence in the source file.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A VADSRC(1) RISC/os Programmer’s Reference A.VADSRC (1)

NAME
a.vadsrc — display available VADS versions and create a default library configuration file

SYNTAX
a.vadsre [-i]

_ DESCRIPTION
When multiple VADS targets or versions are present on the same system, a.vadsrc is useful to
control the default version or target processor for which libraries are created.

With no option, a.vadsrc simply reports the installed VADS version.

If the —i (interactive) option is used, the tool prompts for selection of a VADS version and
creates a .vadsrc file in the current directory.

OPTIONS
-i (interactive) Show all versions of VADS installed on the system and prompt
for a selection. ' ’
Files _
lusr/lib/VADS VADS version reference file
SEE ALSO

[VADS Reference], a.mklib.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.VIEW (1) RISC/os Programmer’s Reference A.VIEW (1)

NAME

a.view — establish command abbreviations and history mechanism for C shell
SYNTAX

source a.view
DESCRIPTION

a.view defines a number of aliases that simplify and enhance the use of the basic VADS
commands for users of the C shell. The alias definitions allow a file name to be set once and
thereafter alias commands use it until it is changed, Similarly, a main unit name need be
entered only once. (It need not be entered at all if it is the same as the last specified file
name prefix.) Compilation and linking aliases enter history and timing information into the
ada.history file. :

For a full description, see the VADS Users Guide , Additional Tools, a.view.

To use the aliases without any alteration, put the following single line in the .login file.
source VADS_location/bin/a.view

This defines the aliases for interactive use. This line must appear at the beginning of scripts
using these aliases.

Aliases defined in a.view are summarized below. The term ‘tracking’ is used to indicate-
whether or not the main unit name is set to the same as the file name prefix.

ALIASES .
a Compile established file name, put errors in ada.errors/file_name, and history
entry in ada.history.

ad Compile and run the debugger.

ah List last entry in ada.history.

al List established file name using more.

ald Link the established main unit.

am Execute a.make using file name specified in sm and put errors in
ada.errors/unit_name.m.

ao compile and optimize code.

av Edit the established file name with vi.

ax _ Execute the established main unit.

axtime Execute a main unit and put timing entry into ada.history .

e List erroneous lines and diagnostics from last compilation of established file
name.

el List established file name with diagnostics from last compilation interspersed.

ev Edit the established file name with vi with diagnostics from last compilation

» interspersed.

s name Set file name prefix. If new working directory, then set tracking on. If
tracking is on, then set main unit.

sb name Set file name prefix and main unit; set tracking on.

sm name Set main unit and set tracking off, so that the main unit name does not
change with s command,

sp Print settings of file name prefix and main unit.

vs List status for the last executed VADS command.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

A.VIEW (1) ; RISC/os Programmer’s Reference A.VIEW (1)

In the commands that take name, additional arguments are ignored, and any trailing .a is
stripped. (The prefix.is desired for the file name.) In addition, only the tail component of
name (the part following the last /) is used to set the main unit. (Main unit is an Ada unit
name, which does not allow ‘/’). The intention of this convention is to allow the use of file
name substitution for easy specification of a full file name and main unit.

For example, if the current directory contains the files tasking_limit_test.a (Ada source) and
tasking_limit_test.out (executable object) and if there were no other files beginning with tas,
the command s tass+ would set the file name prefix to tasking_limit_test and the main unit to -
the same string. When the main unit name differs from the file name, the sm command may
be used.

In all other commands, additional arguments are passed to the underlying VADS command.
Thus ’

ald -ltermcap

will cause the linker to search the rermcap library in addition to standard libraries.

FILES s
ada.history history of compilations and results
ada.errors directory containing error files from compilations

DIAGNOSTICS |
Warnings are produced if any set command is used in a non-VADS library directory or if the
specified source file does not exist in the library.

Page 2 February 16, 1989 MIPS Computer Systems, Inc.

A WHICH (1) RISC/os Programmer’s Reference | A .WHICH (1)

NAME ‘
a.which — determine which project library contains a unit

SYNTAX
a.which [options] [unit_name]
a.which [options] [path/unit_name]

DESCRIPTION
a.which lists the name of the source file that defines the version of umt_name visible in the
current VADS library. The program library search sequence may also be printed. The -b
(body) option lists the source file location of the unit body. Without this option, the unit’s
specification is located.

OPTIONS -
-b (body) Give the location of the body.
-sh (show) Display the name of the tool executable but do not execute it.
-v - (verbose) Give the library search list.

BUGS |

An option is needed so that hidden umts can be printed as well to allow programmers to
identify unit naming conflicts.

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ADA (1) RISC/os Programmer’s Reference ADA (1)

NAME

ada — Ada compiler

SYNTAX

ada [options] [ada_source.a]... [linker_options] [object_file.o]...

DESCRIPTION

The command ada executes the Ada compiler and compiles the named Ada source file,
ending with the Ia suffix. The file must reside in a VADS library directory. The ada.lib file in
this directory is modified after each Ada unit is compiled.

The object for each compiled Ada unit is left in a file with with the same name as that of the
source with .01, .02, etc. substituted for .a. The -o option can be used to produce an
executable with a name other than a.out, the default. For cross compilers, the default name
is a.vox.

By default, ada produces only object and net files. If the -M option is used, the compiler
automatlcally invokes a.ld and bullds a complete program wih the named library unit as the
main program. :

Non-Ada object files (.o files produced by a compiler for another language) may be given as
arguments to ada. These files will be passed on to the linker and will be linked with the
specified Ada object files.

Command line options may be specified in any order, but the order of compilation-and the-
order of the files to be passed to the linker can be significant.

Several VADS compilers may be simultaneously available on a single system. Because the
ada command in any VADS_location/bin on a system will execute the correct compiler
components based upon visible library directives, the option -sh is provided to print the name
of the components actually executed.

Program listings with a disassembly of machine instructions are generated by a.db or a.das.

OPTIONS

—a file_name (archive) treat file_name as an ar file. Since archive files end with .a, -a
is used to distinguish archive files from Ada source files.

-d (dependencies) analyze for dependencies only. Do not do semantic
analysis or code generation. Update the library, marking any defined
units as uncompiled. The -d option is used by a.make to establish
dependencies among new files. ‘

-e (error) process compilation error messages using a.error and direct it to
stdout.- only the source lines containing errors are listed. Only one -e
or -E option should be used.

-E

-E file

—E directory (error output) without a file or directory argument, ada processes error
messages using a.error and directs the output to stdout; the raw error
messages are left in ada_source.err. If a file pathname is given, the raw
error messages are placed in that file. If a directory argument is
supplied, the raw error output is placed in dir/source.err. Only one -e
or -E option should be used.

—el (error listing) intersperse error messages among source lines and direct
to stdout.

—~El

MIPS Computer Systems, Inc. February 16, 1989 Page 1

ADA (1)

~El file
~El directory

—ng

"'_"g Nor" __gz

- g3

-1 file_abbreviation

-M unit_name

-M ada_source.a

~o executable_file

~R VADS_library
-S

-T

-V

-W

Page 2

RISC/os Programmer’s Reference ADA (1)

(error listing) same as the -E option, except that source listing with
errors is produced.

(error vi) process syntax error messages using a.error, embed them in
the source file, and call the environment editor ERROR_EDITOR. (If
ERROR_EDITOR is defined, the environment variable
ERROR_PATTERN should also be defined. ERROR_PATTERN is an
editor search command that locates the first occurrence of ‘###’ in the
error file.) If no editor is specifed, call vi.

Have the compiler produce additional symbol table information for
accurate but limited symbolic debugging of partially optimixed code.

Have the compiler produce additinal symbol table information for full
symbolic debugging and not do optimizations that limit full symbolic
debugging. ~g2 is the default.

Have the compiler produce additional sybol table information for full
symbolic debugging for fully optimized code. This option makes the
debugger inaccurate.

(link) Link this library file. (Do not space between the -land the file
abbreviation.) See also

Operating system documentation, 1d(1).

(main) produce an executable program using the named unit as the main
program. The unit must be either a parameterless procedure or a
parameterless function returning an integer. The executable program
will be left in the file a.our unless overridden with the -o option.

(main) like -M unit_name, except that the unit name is assumed to be
the root name of the .a file (for foo.a the unit is foo) Only one .a file
may be preceded by -M.

(output) this option is to be used in conjunction with the -M option.
executable_file is the name of the executable rather than the default
a.out.

Turn off all optimizations.

Turn on all MIPS optimizations that can be done Quickly and do one
pass using the Verdix optimizer. This is the default.

Invoke the MIPS global ucode optimizer and optimize as far as possible
using the Verdix optimizer. (MIPS global ucode optimizer not
supported in this release.) —O is the same as —O2.

(recompile instantiation) force analysis of all generic instantiations,
causing reinstantijation of any that are out of date.

(suppress) apply pragma SUPPRESS to the entire compilation for all
suppressible checks.

(timing) print timing information for the compilation.

(verbose) print compiler version number, date and time of compilation,
name of file compiled, command input line, total compxlatlon time, and
error summary line.

(warnings) suppress warning diagnostics.

February 16, 1989 ~ MIPS Computer Systems, Inc.

ADA (1) : RISC/os Programmer’s Reference ADA (1)

-W c argl,[arg2...] Pass the argument[s] argi to a compiler pass, where ¢ is one of the
characters in the next table that designates the pass.
Pass Character
include h
backend D
driver
“ucgen G
ujoin j
uld u
usplit]
umesrge m
uopt o
ugen c
asl b
SEE ALSO
[VADS Reference] a.db, a.error, a.ld, a.mklib, a.das and Operating system documentation,
1d(1)
DIAGNOSTICS
The diagnostics produced by the VADS compiler are intended to be self-explanatory. Most

refer to the RM. Each RM reference includes a section number and optionally, a paragraph
number enclosed in parentheses.

MIPS Computer Systems, Inc. February 16, 1989 Page 3

ADDBIB (1-BSD) RISC/os Programmer’s Reference ADDBIB (1-BSD)

NAME »
addbib - create or extend bibliographic database
SYNOPSIS
addbib [—p promptfile] [=a] database
DESCRIPTION

When this program starts up, answering “y”’ to the initial “Instructions?”’ prompt yields direc-

tions; typing “n” or RETURN skips them. addbib then prompts for various bibliographic fields,

reads responses from the terminal, and sends output records to a database. A null response

(just RETURN) means to leave out that field. A minus sign (-) means to go back to the previ-

ous field. A trailing backslash allows a field to be continued on the next line. The repeating

“Continue?” prompt allows the user either to resume by typing ‘“y”’ or RETURN, to quit the
€6 N2

current session by typing “n” or “q”, or to edit the database with any system editor (vi, ex,
edit, ed).

The —a option suppresses prompting for an abstract; asking for an abstract is the default.
Abstracts are ended with a CTRL-d. The =—p option causes addbib to use a new prompting
skeleton, defined in promptfile. This file should contain prompt strings, a tab, and the key-
letters to be written to the database.

The most common key-letters and their meanings are given below. addbib insulates you from
these key-letters, since it gives you prompts in English, but if you edit the bibliography file
later on, you will need to know this information.

%A Author’s name

%B Book containing article referenced

%C City (place of publication)

%D . Date of publication

%E Editor of book containing article referenced
%F Footnote number or label (supplied by refer)
%G Government order number ‘
%H Header commentary, printed before reference
%1 Issuer (publisher)

%J Journal containing article

%K Keywords to use in locating reference

%L Label field used by =k option of refer

%M Bell Labs Memorandum (undefined)

%N Number within volume

%O Other commentary, printed at end of reference
%P Page number(s)

%Q Corporate or Foreign Author (unreversed)
%R Report, paper, or thesis (unpublished)

%S Series title

%T Title of article or book

%V Volume number

%X Abstract - used by roffbib, not by refer
%Y,Z ignored by refer

Except for ‘A’, each field should be given just once. Only relevant fields should be supplied.
An example is:

%A Bill Tuthill

%T Refer — A Bibliography System
%1 Computing Services

MIPS Computer Systems, Inc. February 6, 1989 Page 1

ADDBIB (1-BSD)

RISC/os Programmer’s Reference -

Berkeley
1982
UNX 4.3.5.

optional file to define prompting

refer(1), sortbib(1), roffbib(1), indxbib(1), lookbib(1)

Al Stangenberger, Bill Tuthill

%C
%D
%O
FILES
promptfile
SEE ALSO
AUTHORS
Page 2

February 6, 1989

ADDBIB (1-BSD)

MIPS Computer Systems, Inc.

APPLY (1-BSD) RISC/os Programmer’s Reference APPLY (1-BSD)

NAME
" apply - apply a command to a set of arguments

SYNOPSIS
apply [—ac | [=n] command args ...

DESCRIPTION

apply runs the named command on each argument grg in turn. Normally arguments are
chosen singly; the optional number n specifies the number of arguments to be passed to com-
mand. If n is zero, command is run without arguments once for each arg. Character sequences
of the form %d in command, where d is a digit from 1 to 9, are replaced by the d’th following
unused arg. If any such sequences occur, »n is ignored, and the number of arguments passed to
command is the maximum value of d in command. The character ‘%’ may be changed by the
=a option. -

Examples:
apply echo %
is similar to 1s(1);
apply -2 cmp al bl a2 b2 ...
compares the ‘a’ files to the ‘b’ files;
apply -Owho 12345
runs who(1) 5 times; and
apply In %1 /usr/joe” x
links all files in the current directory to the directory /usr/joe.
SEE ALSO
sh(1)
AUTHOR
Rob Pike

BUGS
Shell metacharacters in command may have bizarre effects; it is best to enclose complicated
commands in single quotes *".

There is no way to pass a literal ‘%2’ if ‘%’ is the argument expansion character.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

APROPOS (1-BSD) RISC/os Programmer’s Reference APROPOS (1-BSD)

NAME

apropos — locate commands by keyword lookup
SYNOPSIS

apropos keyword ...
DESCRIPTION

apropos shows which manual sections contain instances of any of the given keywords in their
title. Each word is considered separately and case of letters is ignored. Words which are part
of other words are considered; thus, when looking for compile, apropos will find all instances
of ‘compiler’ also. Try

apropos password
and
apropos editor

If the line starts ‘name(section) ...” you can do ‘man section name’ to get the documentation
for it. Try ‘apropos format’ and then ‘man 3s printf’ to get the manual on the subroutine
printf.

apropos is actually just the =k option to the man(1) command.

FILES v
/usr/man/whatis data base

SEE ALSO
man(1), whatis(1), catman(8)

AUTHOR
William Joy

MIPS Computer Systems, Inc. February 6, 1989 Page 1

AR (1) RISC/os Programmer’s Reference AR(1)

NAME

ar — archive and library maintainer
SYNOPSIS

ar option [posname | filel ... fileN
DESCRIPTION

The archiver (ar) maintains groups of files as a single archive file. Generally, you use this util-
ity to create and update library files that the link editor uses; however, you can use the
archiver for any similar purpose. NOTE: This version uses a portable ASCII-format archive
that you can use on various machines that run UNIX. ‘

In the text, option refers to a character (from the set drqtpmx) that you can concatenate with
one or more of svuaibclo. A suboption refers to options (from the set abiou) that you can
only use with other options.

The options do these things:
d Deletes the specified files from the archive file.

r Replaces the specified files in the archive file. If you use the suboption u with r, the
archiver only replaces those files that have ‘last-modified’ dates later than the archive
files. If you use a positioning character (from the set abi) you must specify the
posname argument to tell the archiver to put the new files after (a) or before (b or i).
Otherwise, the archiver puts new files at the end of the archive,

q Appends the specified files to the end of the archive file. The archiver does not
accept suboption positioning characters with the q option. It also does not check
whether the files you want to add already exist in the archive. Use the q option only
to avoid quadratic behavior when you create a large archive piece by piece.

t Prints a table of contents for the files in the archive file. If you don’t specify any file
names, the archiver builds a table of contents for all files. If you specify file names,
the archiver builds a table of contents only for those files.

p Prints the specified files from the archive.

m Moves the specified files to the end of the archive. If you specify a positioning charac-
ter, you must also specify the posname (as in option r) to tell the archiver where to
move the files.

X Extracts the specified files from the archive. If you don’t specify any file names, the
archiver extracts all files. When it extracts files, the archiver does not change any file.
Normally, the ‘last-modified’ date for each extracted file shows the date when some-
one extracted it; however, when you use o, the archiver resets the ‘last-modified’ date
to the date recorded in the archive.

s Makes a symbol definition (symdef file) as the first file of an archive. This file con-
tains a hash table of ranlib structures and a corresponding string table. The symdef
file’s name is based on the byte ordering of the hash table and the byte ordering of the
file’s target machine. Files must be consistent in their target byte ordering before the
archiver can create a symdef file. If you change the archive contents, the symdef file
becomes obsolete because the archive file’s name changes. If you specify ‘s’, the
archiver creates the symdef file as its last action before finishing execution. You must
specify at least one other archive option (m, p, q, r, or t) when you use the s option.
For UMIPS-V, archives include member objects based on the definition of a common
object only. For UMIPS-BSD, they define the common object, but do not include the
object.

v Gives a verbose file-by-file description as the archiver makes a new archive file from
an old archive and its constituent files. When you use this option with t, the archiver

MIPS Computer Systems, Inc. February 13, 1989 Page 1

AR (1)

RISC/os Programmer’s Reference AR (1)

lists all information about the files in the archive. When you use this option with p,
the archiver precedes each file with a name.

Suppresses the normal message that the archiver prints when it creates the specified
archive file. Normally, the archiver creates the specified archiver file when it needs to.

Puts temporary files in the local directory. Normally, the archiver puts its temporary
files in the directory /tmp.

The suboptions do these things:

a Specifies that the file goes after the existing file (posname). Use this suboption with
the m or r options.

b Specifies that the file goes before the existing file (posname). Use this suboption with
the m or r options.

i Specifies that the file goes before the existing file (posname). Use this suboption with
the m or r options. ‘

o Forces a newly created file to have the ‘last modified’ data that it had before it was
extracted from the archive. Use this suboption with the x option.

u Prevents the archiver from replacing an existing file unless the replacement is newer
than the existing file. This option uses the UNIX system ‘last modified’ data for this
comparison. Use this suboption with the r option.

FILES

/tmp/v«temporaries
SEE ALSO

lorder(1), 1d(1), odump(1), ar(4), ranhash(3x).
BUGS

If you specify the same file twice in an argument list, it can appear twice in the archive file.

The o option does not change the ‘last-modified’ date of a file unless you own the extracted

file or you are the super-user.

Page 2 February 13, 1989 MIPS Computer Systems, Inc.

AS(1)

RISC/os Programmer’s Reference AS(1)

NAME

as — MIPS assembler
SYNOPSIS

as [option] ... file
DESCRIPTION

As, the MIPS assembler, produces files in the following formats: MIPS object code in MIPS
extended coff format (the normal result) and binary assembly language. As never runs the
loader. As accepts one type of argument:

The argument file is assumed to be symbolic assembly language source program. It is assem-
bled, producing an object file.

Mas always defines the C preprocessor macros mips, host_mips, unix and
LANGUAGE_ASSEMBLY to the C macro preprocessor. It also defines SYSTYPE_SYSV by
default but this changes if the —systype name option is specified (see the description below).

The following options are interpreted by as and have the same meaning in cc(1).

—g0 Have the assembler produce no symbol table information for symbolic debugging.
This is the default.

—gl Have the assembler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code.

-g or —g2 _ . ’ -

Have the assembler produce additional symbol table information for full symbolic

debugging and not do optimizations that limit full symbolic debugging.

—g3 Have the assembler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

—wW Suppress warning messages.

-P Run only the C macro preprocessor and put the result in a file with the suffix of the
source file changed to “.i’ or if the file has no suffix then a ‘.i’ is added to the source
file name. The “.i’ file has no ‘#’ lines in it. This sets the ~cpp option.

-E Run only the C macro preprocessor on the file and send the result to the standard out-
put. This sets the —cpp option.

=0 output .
Name the final output file output. If this option is used, the file ‘a.out’ is undisturbed.
—Dname=def
~Dname
Define the name to the C macro preprocessor, as if by ‘#define’. If no definition is
given, the name is defined as "1".

~Uname
Remove any initial definition of name.

~Idir ‘#include’ files whose names do not begin with °/> are always sought first in the direc-
tory of the file argument, then in directories specified in =I options, and finally in the
standard directory (/usr/include).

-1 This option will cause ‘#include’ files never to be searched for in the standard direc-
tory (/usr/include).

=G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the glo-

bal pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

MIPS Computer Systems, Inc, February 13, 1989 Page 1

AS(1)

Page 2

RISC/os Programmer’s Reference AS(1)

-y Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what(1) command.

—cpp Run the C macro preprocessor on assembly source files before compiling. This is the
default for as(1). :

—nocpp _
Do not run the C macro preprocessor on assembly source files before compiling.

Either object file target byte ordering can be produced by as. The default target byte ordering
matches the machine where the assembler is running. The options =EB and =EL specify the
target byte ordering (big-endian and little-endian, respectively). The assembler also defines a
C preprocessor macro for the target byte ordering. These C preprocessor macros are MIP-
SEB and MIPSEL for big-endian and little-endian byte ordering respectively.

—EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the assembler.

—~EL Produce object files targeted for little-endian byte ordering. The C preprocessor
macro MIPSEL is defined by the assembler.

The following option is specific for as:
—m Apply the M4 preprocessor to the source file before assembling it.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

—systype name
Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files. The new items are located in their usual
paths but with /name prepended to their paths. Also a preprocessor macro of the
form SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [a]. It selects the assembler pass in the same way
as the —t option. If this option is used, the symbol table file produced and used by
the passes, is the last component of the source file with the suffix changed to ‘. T’, or a
* T’ is added if the source file has no suffix. This file is not removed.

=K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
‘.G’ file for binary assembly language). If the source file has no suffix the conventional
suffix is added to the source file name. These intermediate files are never removed
even when a pass encounters a fatal error.

-Wc/c...],argl[,arg2...] :
Pass the argument[s] argi to the compiler pass[es] c/c..]. The c¢’s are one of [pab].
The ¢’s selects the compiler pass in the same way as the —t option.

The options —t(hpab], —hpath, and —Bstring select a name to use for a particular pass. These
arguments are processed from left to right so their order is significant. When the —B option is
encountered, the selection of names takes place using the last —=h and =t options. Therefore,
the —B option is always required when using —h or —t. Sets of these options can be used to
select any combination of names.

February 13, 1989 - MIPS Computer Systems, Inc.

AS(1)

FILES

RISC/os Programmer’s Reference AS(1)

~t[hpab)]
Select the names. The names selected are those designated by the characters follow-
ing the —t option according to the following table:
Name Character
include h (see note below)

cpp p
as0 a
asl b

If the character ‘h’ is in the —t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files. This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain the include files
for the siring release of the compiler. The standard directory is still searched.

—hpath
Use path rather than the directory where the name is normally found.

=Bstring ,
Append string to all names specified by the —t option. If no —t option has been pro-
cessed before the —B, the —t option is assumed to be “hpab”. This list designates all
names.

Invoking the assembler with a name of the form assiring has the same effect as using a
~Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for the includes rather
than the default /. '

If the environment variable ROOTDIR is set, the value is used as the root directory for all
names rather than the default /usr/. This also affects the standard directory for ‘#include’
files, /usr/include .

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

Other arguments are ignored.

file.o object file

a.out assembler output

/tmp/ctm? temporary

/usr/lib/cpp C macro preprocessor

/usr/lib/asO symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer
/usr/include standard directory for ‘#include’ files

SEE ALSO

Assembly Language Programmer’s Guide
cc(1), as0(1), what(1)

DIAGNOSTICS

The diagnostics produced by the assembler are intended to be self-explanatory.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

AT (1-BSD) RISC/os Programmer’s Reference AT (1-BSD)

NAME
at — execute commands at a later time
SYNOPSIS
at [-c] [-s][-m] time [day][file]
DESCRIPTION
ar spools away a copy of the named file to be used as input to sk (1) or csh(1). If the —c flag
(for (csh(1))) or the —s flag (for (sh(1))) is specified, then that shell will be used to execute
the job; if no shell is specified, the current environment shell is used. If no file name is
specified, at prompts for commands from standard input until a "D is typed.
If the —m flag is specified, mail will be sent to the user after the job has been run. If errors
occur during execution of the job, then a copy of the error diagnostics will be sent to the user.
If no errors occur, then a short message is sent informing the user that no errors occurred.
The format of the spool file is as follows: A four line header that includes the owner of the
job, the name of the job, the shell used to run the job, and whether mail will be set after the
job is executed. The header is followed by a c¢d command to the current directory and a
umask command to set the modes on any files created by the job. Then ar copies all relevant
environment variables to the spool file. When the script is run, it uses the user and group ID
of the creator of the spool file. .
The time is 1 to 4 digits, with an optional following ‘A’, ‘P’, ‘N’ or ‘M’ for AM, PM, noon or
midnight. 'One and two digit numbers are taken to be hours, three and four digits to be hours
and minutes. If no letters follow the digits, a 24 hour clock time is understood.
The optional day is either (1) a month name followed by a day number, or (2) a day of the
week; if the word ‘week’ follows, invocation is moved seven days further off. Names of
months and days may be recognizably truncated. Examples of legitimate commands are
at 8am jan 24 '
at -c -m 1530 fr week
at -s -m 1200n week
at programs are executed by periodic execution of the command /usr/lib/atrun from cron(8).
The granularity of at depends upon the how often atrun is executed.,
Error output is lost unless redirected or the —m flag is requested, in which case a copy of the
errors is sent to the user via mail(1).
FILES
/usr/spool/at spooling area
/usr/spool/at/yy.ddd.hhhh.+ job file
/usr/spool/at/past directory where jobs are executed from
/usr/spool/at/lasttimedone last time atrun was run
/usr/lib/atrun executor (run by cron(8))
SEE ALSO
atl(1), atq(1), atrm(1), calendar(1), sleep(1), cron(8).
DIAGNOSTICS
Complains about various syntax errors and times out of range.
BUGS

Due to the granularity of the execution of /usr/lib/atrun, there may be bugs in scheduling
things almost exactly 24 hours into the future.

If the system crashes, mail is not sent to the user informing them that the job was not com-
pleted.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

AT (1-BSD) RISC/os Programmer’s Reference AT (1-BSD)

Sometimes old spool files are not removed from the directory /usr/spool/at/past. This is usu-
ally due to a system crash, and requires that they be removed by hand.

Page 2 February 6, 1989 MIPS Computer Systems, Inc.

ATL (1-BSD) RISC/os Programmer’s Reference ATL (1-BSD)

NAME
at] - list a job waiting to be run
SYNOPSIS
atl job#...
DESCRIPTION
atl lists on stdout the contents of the job# which is waiting to be run at a later date. These .
jobs were created with the at(1) command. To obtain the needed job#, the user should use
the atq(1) command. '
Only the job’s owner (or root) may list the contents of the job.
FILES
/usr/spool/at spool area
AUTHOR
Roger Southwick (rogers@dadla. TEK.COM)
SEE ALSO S

at(1), atq(1), atrm(1), cron(8).

MIPS Computer Systems, Inc. February 6, 1989 Page 1

ATQ(1-BSD) RISC/os Programmer’s Reference _ ATQ(1-BSD)

NAME
atq — print the queue of jobs waiting to be run

SYNOPSIS
atq [-c][-n][name ...]

DESCRIPTION ' :
atq prints the queue of jobs that are waiting to be run at a later date. These jobs were created
with the at(1) command. With no flags, the queue is sorted in the order that the jobs will be
executed. _

If the =—c flag is used, the queue is sorted by the time that the at command was given.
The —n flag prints only the total number of files that are currently in the queue.
If a name(s) is provided, only those files belonging to that user(s) are displayed. ’

FILES
/usr/spool/at spool area

SEE ALSO

at(1), atl(1), atrm(1), cron(8).

MIPS Computer Systems, Inc. February 6, 1989 Page 1

ATRM (1-BSD) RISC/os Programmer’s Reference ATRM (1-BSD)

NAME
atrm — remove jobs spooled by at

SYNOPSIS
atrm [f][-1][] [[job #] [name]...]

DESCRIPTION :
atrm removes jobs that were created with the ar(1) command. With the — flag, all jobs
belonging to the person invoking atrm are removed. If a job number(s) is specified, atrm
attempts to remove only that job number(s).
If the —f flag is used, all information regarding the removal of the specified jobs is suppressed.
If the ~i flag is used, atrm asks if a job should be removed; a response of ’y’ causes the job to
be removed.
If a user(s) name is specified, all jobs belonging to that user(s) are removed. This form of
invoking atrm is useful only to the super-user.

FILES
/usr/spool/at spool area

SEE ALSO

at(1), atl(1), atq(1), cron(8).

MIPS Computer Systems, Inc. February 6, 1989 Page 1

AWK (1-BSD) - RISC/os Programmer’s Reference AWK (1-BSD)

NAME
awk — pattern scanning and processing language

SYNOPSIS
awk [=Fc][prog][file]...

DESCRIPTION :
awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a

file matches the pattern. The set of patterns may appear literally as prog, or in a file specified
as —f file. :

Files are read in order; if there are no files, the standard input is read. The file name ‘-’
means the standard input. Each line is matched against the pattern portion of every pattern-
action statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, vide infra.) The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form
pattern { action }
A missing { action } means print the line; a missing pattern always matches.
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]

while (conditional) statement

for (expression ; conditional ; expression) statement
break

continue

{ [statement] ... }

variable = expression

print [expression-list] [>expression]

printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

- Statements are terminated by semicolons, newlines or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and
are built using the operators +, —, %, /, %, and concatenation (indicated by a blank). The C
operators ++, ——, +=, —=, =, /=, and %= are also available in expressions. Variables may be
scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null string.
Array subscripts may be any string, not necessarily numeric; this allows for a form of associa-
tive memory. String constants are quoted "...".

The print statement prints its arguments on the standard output (or on a file if >file is
present), separated by the current output field separator, and terminated by the output record
separator. The prinif statement formats its expression list according to the format (see
printf(3S)). :

The built-in function length returns the length of its argument taken as a string, or of the
whole line if no argument. There are also built-in functions exp, log, sqrt, and inr. The last
truncates its argument to an integer. substr(s, m, n) returns the n-character substring of s that
begins at position m. The function sprintf(fmt, expr, expr, ...) formats the expressions accord-
ing to the printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, ||, &&, and parentheses) of regular expres-
sions and relational expressions. Regular expressions must be surrounded by slashes and are
as in egrep. Isolated regular expressions in a pattern apply to the entire line. Regular

MIPS Computer Systems, Inc. February 6, 1989 Page 1

AWK (1-BSD) RISC/os Programmer’s Reference AWK (1-BSD)

expressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action is per-
formed for all lines between an occurrence of the first pattern and the next occurrence of the
second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

~where a relop is any of the six relational operators in C, and a matchop is either ~ (for con-

tains) or !” (for does not contain). A conditional is an arithmetic expression, a relational
expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input
line is read and after the last. BEGIN must be the first pattern, END the last.

A single character ¢ may be used to separate the fields by starting the program with
BEGIN { FS ="¢c" }
or by using the =Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NR, the ordinal number of the current record; FILENAME, the name of the current
input file; OFS, the output field separator (default blank); ORS, the output record separator
(default newline); and OFMT, the output format for numbers (default "%.6g").

EXAMPLES

Print lines longer than 72 characters:
length > 72
Print first two fields in opposite order:
{ print $2, $1 } .
Add up first column, print sum and average:

{s+=$1}
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:
{ for (i = NF; i > 0; —-i) print $i }
Print all lines between start/stop pairs:
/start/, /stop/
Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO

BUGS

Page 2

lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, awk — a pattern scanning and processing
language

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add O to it; to force it to be treated as a string concatenate " to it.

February 6, 1989 MIPS Computer Systems, Inc.

CAT(1-BSD) RISC/os Programmer’s Reference CAT (1-BSD)

NAME

cat — catenate and print

SYNOPSIS

cat[=u][~n][=b][~s][=v][=e][—t][file..]

DESCRIPTION

cat reads each file in sequence and displays it on the standard output. Thus
cat file

displays the file on the standard output, and
cat filel file2 >file3

concatenates the first two files and places the result on the third.

b

If no input file is given, or if the argument ‘-’ is encountered, cat reads from the standard
input file. Output is buffered in the block size recommended by stat(2) unless the standard
output is a terminal, when it is line buffered. The =u option makes the output completely
unbuffered.

The =n option displays the output lines preceded by lines numbers, numbered sequentially
from 1. The =b option numbers lines like =n, but omits the line numbers from blank lines.

The =s option crushes out multiple adjacent empty lines so that the output is displayed single
spaced.

The =v option displays non-printing characters so that they are visible. Control characters
print like "X for control-x; the delete character (octal 0177) prints as “?. Non-ascii characters
(with the high bit set) are printed as M- (for meta) followed by the character of the low 7 bits.
The =—e is the same as the =v option, but in addition displays a ‘¢’ character at the end of
each line. The —t is the same as the =v option, but in addition displays tab characters as 'I.

SEE ALSO

BUGS

cp(1), ex(1), more(1), pr(1), tail(1)

Beware of ‘cat a b >a’ and ‘cat a b >b’, which destroy the input files before reading them.

MIPS Com‘puter'Systems, Inc. February 6, 1989 Page 1

CC(1) RISC/os Programmer’s Reference CC(1)
g

NAME

cc — MIPS C compiler
SYNOPSIS

cc [option] ... file ...
DESCRIPTION

Cc, the MIPS ucode C compiler, produces files in the following formats: MIPS object code in
MIPS extended coff format (the normal result), binary or symbolic ucode, ucode object files -
and binary or symbolic assembly language. Cc accepts several types of arguments:

Arguments whose names end with ‘.c’ are assumed to be C source programs. They are com-
piled, and each object program is left in the file whose name consists of the last component of
the source with ‘.0’ substituted for ‘.c’. The ‘.0’ file is only deleted when a single source pro-
gram is compiled and loaded all at once.

Arguments whose names end with ‘.s’ are assumed to be symbolic assembly language source
programs. They are assembled, producing a ‘.0’ file. Arguments whose names end with ‘.’
are assumed to be C source after being processed by the C preprocessor. They are compiled
without being processed by the C preprocessor.

If the highest level of optimization is specified (with the —O3 flag) or only ucode object files
are to be produced (with the =—j flag) each C source file is compiled into a ucode object file.
The ucode object file is left in a file whose name consists of the last component of the source
with ‘.u’ substituted for ‘.c’.

The suffixes described below primarily aid compiler development and are not generally used.
Arguments whose names end with *.B’, <.O’, *.§’, and ‘M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with ‘.G’ are assumed to be binary assembly language, which is produced by the
code generator and the symbolic to binary assembler. :

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a T’ suffix.

Cc always defines the C preprocessor macros mips, host_mips and unix to the C macro
preprocessor and defines the C preprocessor macro LANGUAGE_C when a ‘.c’ file is being
compiled. Cc will define the C preprocessor macro LANGUAGE_ASSEMBLY when a ‘.s’ file
is being compiled. It also defines SYSTYPE_SYSV by default but this changes if the —~systype
name option is specified (see the description below).

The following options are interpreted by cc(1). See ld(1) for load-time options.

—-c Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

—g0 Have the compiler produce no symbol table information for symbolic debugging.
This is the default.

s | Have the compiler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code.

—g or —g2
Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

—g3 Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CC(1) RISC/os Programmer’s Reference CC(1)

—-W Suppress warning messages.

—p0 Do not permit any profiling. This is the default. If loading happens, the standard .
runtime startup routine (ertl.o) is used, no profiling library is searched.

=~pl or =p
Set up for profiling by periodically sampling the value of the program counter. This
option only affects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprofl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.out that contains execution-
profiling data for use with the postprocessor prof(l).

=00 Turn off all optimizations.

=01 Tumn on all optimizations that can be done quickly. This is the default.
=0 or =02 '
Invoke the global ucode optimizer.

- =03 Do all optimizations, including global register allocation. This option must precede
all source file arguments, With this option, a ucode object file is created for each C
source file and left in a “.u’ file. The newly created ucode object files, the ucode
object files specified on the command line and the runtime startup routine and all the
runtime libraries are ucode linked. Optimization is done on the resulting ucode
linked file and then it is linked as normal producing an “a.out” file. No resulting ‘.0’
file is left from the ucode linked result as in previous releases. In fact =—c can no
longer be specified with =03,

~feedback file
Used with the —cord option to specify file to be used as a feedback file. This file is
produced by prof(1) with its —feedback option from an execution of the program
produced by pixie(1).

—cord Run the procedure-rearranger, cord(1), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program’s text. The output of
cord(1) is left in the file specified by the =o output option or ‘a.out’ by default. At
least one ~feedback file must be specified.

-j Compile the specified source programs, and leave the ucode object file output in
corresponding files suffixed with ‘.v’,
—ko output :

Name the output file created by the ucode loader as oufput. This file is not removed.
If this file is compiled, the object file is left in a file whose name consists of output
with the suffix changed to a ‘.0’. If output has no suffix, a ‘.0’ suffix is appended to
output.

-k Pass options that start with a —k to the ucode loader. This option is used to specify
ucode libraries (with —klx) and other ucode loader options.

-S Compile the specified source programs and leave the symbolic assembly language out-
put in corresponding files suffixed with .s’,

-P Run only the C macro preprocessor and put the result for each source file (by suffix
convention, i.e. ‘.c’ and ‘.s’) in a corresponding ‘.i’ file. The ‘.i’ file has no ‘4’ lines
in it. This sets the =cpp option.

-E Run only the C macro preprocessor on the files (regardless of any suffix or not), and
- send the result to the standard output. This sets the =cpp option.

=0 output ‘

Page 2 February 13, 1989 MIPS Computer Systems, Inc.

CC(1) _ RISC/os Programmer’s Reference CC(1)

Name the final output file outpur. If this option is used, the file ‘a.out’ is undis-
turbed.

~Dname=def

=Dname
Define the name to the C macro preprocessor, as if by ‘#define’. If no definition is
given, the name is defined as "1".

=Uname -
Remove any initial definition of name.

—Idir ‘#include’ files whose names do not begin with /’ are always sought first in the direc-
tory of the file argument, then in directories specified in =I options, and finally in the
standard directory (/usr/include).

o | This option will cause ‘#include’ files never to be searched for in the standard direc-
tory (/usr/include).

=G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-y Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and.the versions of all passes. This is done with the
what (1) command.

—std Have the compiler produce warnings for things that are not standard in the language.

—cpp Run the C macro preprocessor on C and assembly source files before compiling.
This is the default for cc(l).

=nocpp
Do not run the C macro preprocessor on C and assembly source files before compil-
ing.

=Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, —02, or —03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

Either object file target byte ordering can be produced by cc. The default target byte ordering
matches the machine where the compiler is running. The options —EB and —EL specify the
target byte ordering (big-endian and little-endian, respectively). The compiler also defines a C
preprocessor macro for the target byte ordering. These C preprocessor macros are MIPSEB
and MIPSEL for big-endian and little-endian byte ordering respectively.

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine.

—EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the compiler.

—EL Produce object files targeted for little-endian byte ordering. The C preprocessor
macro MIPSEL is defined by the compiler.

The following options are specific to cc:

~signed

MIPS Computer Systems, Inc. February 13, 1989 Page 3

CC(1)

RISC/os Programmer’s Reference CC(1)

Cause all char declarations to be szgned char declarations, the default is to treat them
as unsigned char declarations.

—volatile -
Causes all variables to be treated as volatile.

—varargs
Prints warnings for lines that may require the varargs.kh macros.

—float Cause the compiler to never promote expressions of type ﬂoat to type double.

The option described below is primarily used to prov1de UNIX compilation environments
other than the native compilation environment.

’ —systype name

Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are-searched for. The new items are located in their usual paths but with
/name prepended to their, paths. Also a preprocessor macro of the form
SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

- The options described below primarily aid compiler development and are not generally used:

Page 4

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fjusmoca]. It selects the compiler pass in the
same way as the =t option If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
¢ T’ and is not removed.

-K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
B’ file for binary ucode, produced by the front end). These intermediate files are
never removed even when a pass encounters a fatal error. When ucode linking is per-
formed and the —K option is specified the base name of the files created after the
ucode link is ‘u.out’ by default. If —ko output is specified, the base name of the
object file is output without the suffix if it exists or suffixes are appended to output if it
has no suffix.

—# Converts binary ucode files (‘. B’) or optimized binary ucode files (‘.0’) to symbolic
ucode (a “. U’ file) using btou(1). If a symbolic ucode file is to be produced by con-
verting the binary ucode from the C compiler front end then the front end option
~Xu is used instead of brou (1).

—~Wc/c...],argl[,arg2...]
Pass the argument[s] argi to the compiler passfes] c/c..]. The ¢’s are one of [pfjusmo-
cablyz]. The c’s selects the compiler pass in the same way as the —t option.

The options —t[hpfjusmocablyzit], —hpath, and —Bstring select a name to use for a particu-
lar pass, startup routine, or standard library. These arguments are processed from left to right
so their order is significant. When the —B option is encountered, the selection of names
takes place using the last —h and —t options. Therefore, the —B option is always required
when using —h or —t. Sets of these options can be used to select any combination of names.

The —EB or —EL options, the —p[01] options and the —systype option must precede all —B
options because they can affect the location of runtimes and what runtimes are used.
—t[hpfjusmocablyzrnt]
Select the names. The names selected are those designated by the characters follow-
ing the —t option according to the following table:

February 13, 1989 MIPS Computer Systems, Inc.

CC(1)

RISC/os Programmer’s Reference CC(1)

Name Character

include h (see note below)
CpPpP p

ccom f

ujoin j

uld u

usplit s

umerge m

uopt o

ugen c

as0 a

asl b

1d 1

ftoc y

cord z

[m]crt[1n].o r

libprofl.a n
btou, utob t

If the character ‘h’ is in the —t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files. This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain the include files
for the string release of the compiler. The standard directory is still searched.

=hpath
Use path rather than the directory where the name is normally found.

~Bstring
Append string to all names specified by the =t option. If no =t option has been pro-
cessed before the —B, the —t option is assumed to be “hpfjusmocablyzrnt”. This list
designates all names. If no —t argument has been processed before the —B then a
=~Bstring is passed to the loader to use with its —Lr arguments.

Invoking the compiler with a name of the form cestring has the same effect as using a =Bstring
option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for all include and library
names rather than the default /. This affects the standard directory for ‘#include’ files,
/usr/include, and the standard library, /usr/lib/libc.a. If this is set, the first directory that is
searched for libraries, using the =lx option, is COMP_TARGET_ROOT/usr/lib/cmplrs/cc. The
standard directories for libraries are then searched, see ld(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBIECT is set, the value is used as the name of an object
to link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See rls_id(1) for the tools to
create this information.

Other arguments are assumed to be either loader options or C-compatible object files, typi-
cally produced by an earlier cc run, or perhaps libraries of C-compatible routines. These files,
together with the results of any compilations specified, are loaded in the order given, produc-
ing an executable program with the default name a.out.

MIPS Computer Systems, Inc. February 13, 1989 Page 5

CC(1) RISC/os Programmer’s Reference CC(1)

FILES
file.c input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/usr/lib/cpp C macro preprocessor
/usr/lib/ccom C front end
/usr/lib/ujoin binary ucode and symbol table joiner
/usr/bin/uld ucode loader

/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure intergrator

/usr/lib/uopt optional global ucode optimizer

/usr/lib/ugen code generator

/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/as1 binary assembly language assembler and reorganizer
/usr/lib/crtl.o runtime startup

/usr/lib/crtn.o runtime startup

/usr/lib/mertl.o startup for profiling
/usr/lib/libc.a standard library, see intro(3)
/usr/lib/libprofl.a level 1 profiling library

/usr/include standard directory for ‘#include’ files
/usr/bin/1d MIPS loader

/usr/lib/ftoc interface between prof(1) and cord(1)
/usr/lib/cord procedure-rearranger

‘/usr/bin/btou binary to symbolic ucode translator
/usr/bin/utob symbolic to binary ucode translator
mon.out . file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is running on
have the same names but are located in different directories. For big-endian runtimes on a
little-endian machine the directory is /usr/libeb and for little-endian runtimes on a big-endian
machine the directory is /usr/libel.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978
B. W. Kernighan, Programming in C-a tutorial
D. M. Ritchie, C Reference Manual
Languages Programmer’s Guide
monstartup(3), prof(1), 1d(1), dbx(1), what(1), cord(1), pixie(1), ftoc(1)
DIAGNOSTICS ’
The diagnostics produced by cc are intended to be self-explanatory. Occasional messages may
be produced by the assembler or loader.
NOTES '
The standard library, /usr/lib/libc.a, is loaded by using the -Ic loader option and not a full
path name. The wrong one could be loaded if there are files with the name libc.astring in the

directories specified with the ~L loader option or in the default directories searched by the
loader.

The handling of include directories and libc.a is confusing.

Page 6 February 13, 1989 MIPS Computer Systems, Inc.

CHECKNR (1-BSD) RISC/os Programmer’s Reference CHECKNR (1-BSD)

NAME

checknr — check nroff/troff files

SYNOPSIS

checknr [=s] [=f] [—a.x1.yl.x2.y2.xn.yn | [=—e.x1.x2.x3 ... xn] [file ...]

DESCRIPTION

checknr checks a list of nroff(1) or troff(1) input files for certain kinds of errors involving
mismatched opening and closing delimiters and unknown commands. If no files are specified,
checknr checks the standard input. Delimeters checked are:

(¢)) Font changes using \fx ... \fP.
() Size changes using \sx ... \s0.

3) Macros that come in open ... close forms, for example, the .TS and .TE macros
which must always come in pairs.

checknr knows about the ms(7) and me(7) macro packages.

Additional pairs of macros can be added to the list using the —a option. This must be fol-
lowed by groups of six characters, each group defining a pair of macros. The six characters
are a period, the first macro name, another period, and the second macro name. For exam-
ple, to define a pair .BS and .ES, use —a.BS.ES

The —c option defines commands which would otherwise Be,complained about as undefined.
The ~f option requests checknr to ignore \f font changes.
The =—s option requests checknr to ignore \s size changes.

checknr is intended to be used on documents that are prepared with checknr in mind, much
the same as lint. It expects a certain document writing style for \f and \s commands, in that
each \fx must be terminated with \fP and each \sx must be terminated with \s0. While it will
work to directly go into the next font or explicitly specify the original font or point size, and
many existing documents actually do this, such a practice will produce complaints from
checknr. Since it is probably better to use the \fP and \sO forms anyway, you should think of
this as a contribution to your document preparation style.

SEE ALSO

nroff(1), troff(1), checkeq(1), ms(7), me(7)

DIAGNOSTICS

BUGS

Complaints about unmatched delimiters.
Complaints about unrecognized commands.
Various complaints about the syntax of commands.

There is no way to define a 1 character macro name using —a.
Does not correctly recognize certain reasonable constructs, such as conditionals.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CHGRP (1-BSD) RISC/os Programmer’s Reference CHGRP (1-BSD)

NAME

chgrp — change group
SYNOPSIS

chgrp [-f -R] group file ...
DESCRIPTION

.changes the group-ID of the files to group. The group may be either a decimal GID or a
group name found in the group-ID file.

The user invoking chgrp must belong to the specified group and be the owner of the file, or be
the super-user.

No errors are reported when the —f (force) option is given.

When the =R option is given, chgrp recursively descends its directory arguments setting the
specified group-ID. When symbolic links are encountered, their group is changed, but they
are not traversed.

FILES
Jetc/group

SEE ALSO
chown(2), passwd(5), group(5)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CHMOD (1-BSD) - RISC/os Programmer’s Reference CHMOD (1-BSD)

NAME

chmod - change mode

SYNOPSIS

chmod [—=Rf] mode file ...

DESCRIPTION

The mode of each named file is changed according to mode, which may be absolute or sym-
bolic. An absolute mode is an octal number constructed from the OR of the following
modes:

4000 set user ID on execution

2000 set group ID on execution

1000 sticky bit, see chmod (2)

0400 read by owner

0200 write by owner

0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission [op permission] ...

The who part is a combination of the letters u (for user’s permissions), g (group) and o
(other). The letter a stands for all, or ugo. If who is omitted, the default is a but the setting
of the file creation mask (see umask(2)) is taken into account.

Op can be + to add permission to the file’s mode; = to take away permission and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), X (set execute
only if file is a directory or some other execute bit is set), s (set owner or group id) and t (save
text — sticky). Letters u, g, or o indicate that permission is to be taken from the current
mode. Omitting permission is only useful with = to take away all permissions.

When the —R option is given, chmod recursively descends its directory arguments setting the
mode for each file as described above. When symbolic links are encountered, their mode is
not changed and they are not traversed.

If the ~f option is given, chmod will not complain if it fails to change the mode on a file.

EXAMPLES

The first example denies write permission to others, the second makes a file executable by all
if it is executable by anyone:

chmod o-w file
chmod +X file

Multiple symbolic modes separated by commas may be given. Operations are performed in
the order specified. The letter s is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode.

SEE ALSO

Is(1), chmod(2), stat(2), umask(2), chown(8)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

COBOL (1) "~ RISC/os Programmer’s Reference COBOL(1)

NAME

cobol — MIPS COBOL compiler
SYNOPSIS

cobol [option] ... file ..
DESCRIPTION

Cobol, the MIPS ucode cobol compiler, produces files in the following formats: MIPS object
-code in MIPS extended coff format (the normal result), binary or symbolic ucode, ucode
object files and binary or symbolic assembly language Cobol accepts several types of argu-
ments:

Arguments whose names end with ‘.cob’ are assumed to be Cobol source programs. They are
compiled, and each object program is left in the file whose name consists of the last com-
ponent of the source with ‘.0’ substituted for ‘.cob’. The ‘.0’ file is only deleted when a single
source program is compiled and loaded all at once.

When this command results in a call to the linker the first object the linker encounters on the
command line will be where execution begins when the final load module is executed.

Arguments whose names end with ‘.s> are assumed to be symbolic assembly language source
programs. They are assembled, producing a ‘.0’ file.

The suffixes described below primarily aid compiler development and are not generally used.
Arguments that end with “.il’ are assumed to be a file containing LPI intermediate code opera-
tors and its corresponding file containing the LPI intermediate code symbols is assumed to be
in a file with a ‘.st’ suffix.

Arguments whose names end with *.B’, .00, *.§’, and ‘M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with ‘.G’ are assumed to be binary assembly language, which is produced by the
code generator and.the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a “.T’ suffix.

The following options are interpreted by cobol(1). See ld(1) for load-time options.

-c Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

This is the default.

—gl Have the compiler produce additional symbol table information for accurate but lim-
ited symbolic debugging of partially optimized code.

—g0 Have the compiler produce no symbol table information for symbolic debugging.

—g or —g2
Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

-g3 Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

-—W Suppress warning messages (level 1 INFORMATIONAL) error messages).

=p0 Do not permit any profiling. This is the default. If loading happens, the standard
runtime startup routine (crtl.o) is used, no profiling library is searched.

I

MIPS Computer Systems, Inc, February 13, 1989 Page 1

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

Page 2

—pl or ~p
Set up for profiling by periodically sampling the value of the program counter. This
option only affects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprofl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.out that contains execution-
profiling data for use with the postprocessor prof(l).

=00 Turn off all optimizations. ,
=01 Turn on all optimizations that can be done quickly. This is the default.

=0 or =-02
Invoke the global ucode optimizer.

—feedback file
Used with the =—cord option to specify file to be used as a feedback file. This file is
produced by prof(1) with its —feedback option from an execution of the program
produced by pixie(1).

—cord Run the procedure-rearranger, cord(1l), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program s text. The output of
cord(1) is left in the file specified by the —o output. optlon or ‘a.out’ by default. At
least one —feedback file must be spemﬁed

-j Compile the specified source programs and leave the ucode object file output in
corresponding files suffixed with ‘.u’.
=ko output

Name the output file created by the ucode loader as output. This file is not removed
If this file is compiled, the object file is left in a file whose name consists of outpur
with the suffix changed to a ‘.0’. If outpur has no suffix, a ‘.0’ suffix is appended to

output.

-k Pass options that start with a —k to the ucode loader. This option is used to specify
ucode libraries (with —klx) and other ucode loader options.

-S Compile the specified source programs and leave the symbolic assembly language out-
put in corresponding files suffixed with ‘.s’.

—o output _
Name the final output file output. If this option is used, the file ‘a.out’ is undis-
turbed.

~G num

Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-v Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what (1) command.

~Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, =02, or —03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

February 13, 1989 MIPS Computer Systems, Inc.

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

Either object file target byte ordering can be produced by cobol. The default target byte ord- , (
ering matches the machine where the compiler is running. The options —EB and —EL specify
the target byte ordering (big-endian and little-endian, respectively).

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine. -

—EB Produce object files targeted for big-endian byte ordering.
~EL Produce object files targeted for little-endian byte ordering.

The following options are specific to cobol:

-defext

Allows the use of external data. This is required in programs where external data are
defined.

—dline Compiles all source lines having a ‘D’ in the indicator area (column 7). If this option
is not specified, all source lines with a ‘D’ in the indicator area are treated as comment
lines.

—~fn Flags all items in the source program that exceed the Federal Information Processing
Standard (FIPS) Level specified by n, where n stands for one of the following:

1 FIPS Low Level

2 FIPS Low-Intermediate Level

3 FIPS High-Intermediate Level (
4 FIPS High Level ’

—fsc74 Turns off the default ANSI-85 status codes and generates ANSI-74 status codes.

=1 [listing]
Produces a compiler listing file with a suffix *.I’. If listing is specified, the listing file is
named by it. This option is only recognized by the cobol front-end; it must be used in
conjunction with the -Wf option.

—supp_cob85
Removes the additional ANSI-85 reserved words from the compxler s reserved word
table, freeing them for use as user names.

=~supp_cod

Removes the supplemental CODASYL reserved words from the compiler’s reserved
word table, freeing them for use as user names.

=¢omp_trunc
Truncates values in COMPUTATIONAL data items.

—ansi Turns off the extensions to the ACCEPT and DISPLAY statements.
~Ipilock
Specifies LPI record locking.

—nolock
Suppresses record locking.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment. (

MIPS Computer Systems, Inc. February 13, 1989 Page 3

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

Page 4

—systype name
Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are searched for. The new items are located in their usual paths but with
/name prepended to their paths.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fkjusmoca]. It selects the compiler pass in the
same way as the —t option. If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
T’ and is not removed.

-K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
‘B’ file for binary ucode, produced by the front end). These intermediate files are
never removed, even when a pass encounters a fatal error. When ucode linking is per-
formed and the —K option is specified the base name of the files created after the
ucode link is ‘uv.out’ by default. If —ko output is specified, the base name of the
-object file is output without the suffix if it exists or suffixes are appended to output if it

- has no-suffix.

—# Converts binary ucode files (‘.B’) or optimized binary ucode files (‘.O’) to symbolic
ucode (a ‘.U’ file) using brou(1).

-Wc/c...],argl[,arg2...]
Pass the argument[s] argi to the compiler pass[es] c/c..]. The ¢’s are one of [fkjusmo-
cablyz]. The c’s selects the compiler pass in the same way as the =t option.

The options —t[fkjusmocablyzrCSO1EMnt], —hpath, and =—Bstring select a name to use for a
particular pass, startup routine, or standard library. These arguments are processed from left
to right so their order is significant. When the —B option is encountered, the selection of
names takes place using the last —h and —t options. Therefore, the =B option is always
required when using —h or —t. Sets of these options can be used to select any combination of
names.

The —EB or —EL options, the —p[01] options and the —systype option must precede all =B
options because they can affect the location of runtimes and what runtimes are used.

—t[fkjusmocablyzrCSO1EMnt]
Select the names. The names selected are those designated by the characters follow-
ing the —t option according to the following table:
Name Character
cobfe f
ulpi k
ujoin j
uld u
usplit s
umerge m
uopt o
ugen c
as0 a
asl b
Id 1
ftoc y

February 13, 1989 MIPS Computer Sy&erns, Inc.

COBOL (1) RISC/os Programmer’s Reference COBOL (1)

 FILES

cord zZ
[m]ert[1n].o r
libcob.a C
libisam.a S
libsort.a O
libpll.a 1
libexc.a E
libm.a M
libprofl.a n
btou, utob t

~hpath
Use path rather than the directory where the name is normally found.

=Bstrin
%Append string to all names specified by the —t option. If no —t option has been pro-
cessed before the —B, the —t option is assumed to be “fkjusmocablyzrCSO1EMnt”.
This list demgnates all names. If no —t argument has been processed before the —B
then a —Bstring is passed to the loader to use with its —Lx arguments.

Invoking the compiler with a name of the form cobolsrrmg has the same effect as using a
~Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /., If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for library names rather
than the default /. This affects the standard library, /usr/lib/libc.a. If this is set, the first
directory that s searched for libraries, using the =Ix option, is
COMP_TARGET_ROOT/usr/lib/cmplrs/cc. The standard directories for libraries are then
searched, see /d(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBJECT is set, the value is used as the name of an object
to link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See ris_id(1) for the tools to
create this information. :

Other arguments are assumed to be either loader options or cobol-compatible object files, typ-
ically produced by an earlier cobol run, or perhaps libraries of cobol- compatxble routines.
These files, together with the results of any compilations specified, are loaded in the order
given, producing an executable program with the default name a.out.

file.cob input file

file.o object file

a.out loaded output

/tmp/ctm? - temporary

/usr/lib/cobfe Cobol front end

/usr/lib/ulpi LPI intermediate code to ucode translator
/usr/lib/ujoin binary ucode and symbol table joiner
/usr/bin/uld ucode loader

/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure integrator

/usr/lib/uopt optional global ucode optimizer
/usr/lib/ugen code generator

MIPS Computer Systems, Inc. February 13, 1989 Page 5

COBOL (1)

NOTES

Page 6

/usr/lib/as0
/usr/lib/asl
/usr/lib/crtl.o
/usr/lib/crtn.o
/usr/lib/mertl.0
/usr/lib/libc.a
/usr/lib/libtermcap.a
/usr/lib/libprofl.a
/usr/lib/libcob.a
/usr/lib/libsort.a
/usr/lib/libisam.a
/usr/lib/libpll.a
/usr/lib/libexc.a
/usr/lib/libm.a
/usr/bin/1d
/usr/lib/ftoc
/usr/lib/cord
/usr/bin/btou
/usr/bin/utob
mon.out

RISC/os Programmer’s Reference

symbolic to binary assembly language translator
binary assembly language assembler and reorganizer
runtime startup

runtime startup

startup for profiling

standard library, see intro(3)

terminal capabilities library, see rermcap (3X)
level 1 profiling library

Cobol library

Sort library

Indexed sequential access method library

PL/I library

exception library

math library

MIPS loader

interface between prof(1) and cord (1)
procedure-rearranger

binary to symbolic ucode translator

symbolic to binary ucode translator

file produced for -analysis by prof(1)

COBOL (1)

Runtime startups and libraries for the oppos1te byte sex of machine the compiler is running on

have the same names but are located in different directories.

For big-endian runtimes on -a

little-endian machine the directory is /usr/libeb and for little-endian runtimes on a big-endian
machine the directory is /usr/libel.
SEE ALSO
monstartup(3), prof(1), ld(1), dbx(1), what(1), cord(1), pixie(1), ftoc(1)
DIAGNOSTICS

The diagnostics produced by cobol are intended to be self-explanatory. Occasional messages
may be produced by the assembler or loader.

The standard library, /usr/lib/libc.a, and the terminal capabilities library,
/usr/lib/libtermcap.a, are loaded by using the -lc and -ltermcap loader options and not full
path names. The wrong ones could be loaded if there are files with the name libc.astring or
libtermcap.astring in the directories specified with the =L loader optlon or in the default
directories searched by the loader.

The handling of libc.a is confusing.

February 13, 1989 " MIPS Computer Systems, Inc.

COL (1-BSD) ' RISC/os Programmer’s Reference COL (1-BSD)

NAME
col — filter reverse line feeds

SYNOPSIS
col [—bfh]

DESCRIPTION :
col reads the standard input and writes the standard output. It performs the line overlays
implied by reverse line feeds (ESC-7 in ASCIH) and by forward and reverse half line feeds
(ESC-9 and ESC-8). col is particularly useful for filtering multicolumn output made with the
‘rt’ command of nroff and output resulting from use of the tbl(1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full line boundary.
This treatment can be suppressed by the —f (fine) option; in this case the output from col may
contain forward half line feeds (ESC-9), but will still never contain either kind of reverse line
motion. ‘

If the —b option is given, col assumes that the output device in use is not capable of back-
spacing. In this case, if several characters are to appear in the same place, only the last one
read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start and end text
in an alternate character set. The character set (primary or alternate) associated with each
printing character read is remembered; on output, SO and SI characters are generated where
necessary to maintain the correct treatment of each character.

If the =h option is given, col converts white space to tabs to shorten printing time.

All control characters are removed from the input except space, backspace, tab, return, new-
line, ESC (033) followed by one of 7, 8, 9, SI, 8O, and VT (013). This last character is an
alternate form of full reverse line feed, for compatibility with some other hardware conven-
tions. All other non-printing characters are ignored.

SEE ALSO
troff(1), tbl(1)

BUGS
Can’t back up more than 128 lines.
No more than 800 characters, including backspaces, on a line,

MIPS Computer Systems, Inc. February 6, 1989 Page 1

COLCRT (1-BSD) RISC/os Programmer’s Reference COLCRT (1-BSD)

NAME
colert - filter nroff output for CRT previewing

SYNOPSIS
colert [= [=2][=b][file...]

DESCRIPTION

. colcrt provides virtual half-line and reverse line feed sequences for terminals without such
capability, and on which .overstriking is destructive. Half-line characters.and underlining
(changed to dashing ‘-’) are placed on new lines in between the normal output lines.
The optional — suppresses all underlining. It is especially useful for previewing allboxed tables
from 1bi(1).
The option =2 causes all half-lines to be printed, effectively double spacing the output. Nor-
mally, a minimal space output format is used which will suppress empty lines. The program
never suppresses two consecutive empty lines, however. The =2 option is useful for sending
output to the line printer when the output contains superscripts and subscripts which would
otherwise be invisible.
The option —r prevents underscores under blanks from being split across lines. As an exam-
ple, take the text “hello_there_folks”. Without —r, the text is printed as
hello there folks
The —r option causes this to be printed as it was originally given. Note that this may not be
the correct thing to do when multiple words are underlined.
A typical use of colcrt would be
tbl exum2.n | nroff —ms | colcrt — | more

SEE ALSO
nroff/troff(1), col(1), more(1), ul(1)

BUGS

Can’t back up more than 102 lines.
General overstriking is lost; as a special case ‘[overstruck with ‘-’ or underline becomes ‘+’.
Lines are trimmed to 132 characters.

Some provision should be made for processing superscripts and subscripts in documents
which are already double-spaced.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

COLRM (1-BSD) ' RISC/os Programmer’s Reference COLRM (1-BSD)

NAME
colrm — remove columns from a file

SYNOPSIS
colrm | startcol [endcol]]

DESCRIPTION
colrm removes selected columns from a file. Input is taken from standard input. Output is
sent to standard output,

If called with one parameter the columns of each line will be removed starting with the
specified column. If called with two parameters the columns from the first column to the last
column will be removed.

Column numbering starts with column 1.

SEE ALSO
expand(1)

MIPS Computer Systems, Inc. February 6, 1989 ’ Page 1

COMPRESS (1-BSD) RISC/os Programmer’s Reference COMPRESS (1-BSD)

NAME

compress, uncompress, zcat — compress and expand data

SYNOPSIS

compress [=f | [=v][=—c] [=b bits | [name ...]
uncompress [=f | [=v][=c] [name ...]
zcat [name ... |

DESCRIPTION

compress reduces the size of the named files using adaptive Lempel-Ziv coding. Whenever
possible, each file is replaced by one with the extension .Z, while keeping the same ownership
modes, access and modification times. If no files are specified, the standard input is
compressed to the standard output. compressed files can be restored to their original form
using uncompress or zcat.

The —f option will force compression of name, even if it does not-actually shrink or the
corresponding name.Z file already exists. Except when run in the background under /bin/sh,
if =f is not given the user is prompted as to whether an existing name.Z file should be
overwritten.

The =c (“cat’”) option makes compress/uncompress write to the standard output; no files are
changed. The nondestructive behavior of zcat is identical to that of uncompress —c.

compress uses the modified Lempel-Ziv algorithm, popularized in "A Technique for High Per-
formance Data compression”, Terry A.. Welch, IEEE Computer, vol. 17, no. 6 (June 1984),
pp. 8-19. Common substrings in the file are first replaced by 9-bit codes 257 and up. When
code 512 is reached, the algorithm switches to 10-bit codes and continues to use more bits
until the limit specified by the =b flag is reached (default 16). Birs must be between 9 and 16.
The default can be changed in the source to allow compress to be run on a smaller machine.

After the bits limit is attained, compress periodically checks the compression ratio. If it is
increasing, compress continues to use the existing code dictionary. However, if the compres-
sion ratio decreases, compress discards the table of substrings and rebuilds it from scratch.
This allows the algorithm to adapt to the next "block” of the file.

Note that the —b flag is omitted for uncompress, since the bits parameter specified during
compression is encoded within the output, along with a magic number to ensure that neither
decompression of random data nor recompression of compressed data is attempted.

The amount of compression obtained depends on the size of the input, the number of bits per
code, and the distribution of common substrings. Typically, text such as source code or
English is reduced by 50-60%. compression is generally much better than that achieved by
Huffman coding (as used in pack), or adaptive Huffman coding (compact), and takes less time
to compute.

The =v option causes the printing of the percentage reduction of each file.

If an error occurs, exit status is 1, else if the last file was not compressed because it became
larger, the status is 2; else the status is 0.

DIAGNOSTICS

Usage: compress [—fvc] [-b maxbits] [file ...]
Invalid options were specified on the command line.
Missing maxbits
Maxbits must follow =b.
file: not in compressed format
The file specified to uncompress has not been compressed.
file: compressed with xx bits, can only handle yy bits ‘
File was compressed by a program that could deal with more bits than the

MIPS Computer Systems, Inc. February 6, 1989 Page 1

COMPRESS (1-BSD) RISC/os Programmer’s Reference COMPRESS (1-BSD)

BUGS

Page 2

compress code on this machine. Recompress the file with smaller bits.
file: already has .Z suffix — no change
The file is assumed to be already compressed. Rename the file and try
again.
file: filename too long to tack on .Z
The file cannot be compressed because its name is longer than 12 characters.
Rename and try again. This message does not occur on BSD systems.
file already exists; do you wish to overwrite (y or n)?
" Respond "y" if you want the output file to be replaced; "n" if not.
uncompress: corrupt input
A SIGSEGYV violation was detected which usually means that the input file
is corrupted. '
compression: xx.xx%
Percentage of the input saved by compression. (Relevant only for =v.)
- not a regular file: unchanged
When the input file is not a regular file, (e.g. a directory), it is left unaltered.
— has xx other links: unchanged '
The input file has links; it is left unchanged. See In(1) for more informa-
tion. '
— file unchanged 4
-No savings is achieved by compression. The input remains virgin.

Although compressed files are compatible between machines with large memory, =b12 should
be used for file transfer to architectures with a small process data space (64KB or less, as exhi-

bited by the DEC PDP series, the Intel 80286, etc.)

compress should be more flexible about the existence of the ¢.Z’ suffix.

February 6, 1989 MIPS Computer System:s, Inc.

CORD (1) RISC/os Programmer’s Reference CORD (1)

NAME
cord — rearranges procedures in an executable file to facilitate better cache mapping.

SYNOPSIS :
cord [-v] [-o outfile] [-f] [-c cachesize] [-p maxphases] obj_file reorder_file

DESCRIPTION .
The cord command rearranges procedures in an exectable object file to maximize efficiency in
a machine’s cache. By rearranging the procedures properly, we end up reducing the instruc-
tion cache miss rates. Cord does not attempt to determine the correct ordering, but is given a
reorder file containing the desired procedure order. The reorder file is generated by the ftoc
program, which in turn generates a reorder file from a set of profile feedback files (see
prof(1)).
Processed lines in the reorder file are called procedure lines. Each procedure line must be on
a separate source line. Each procedure line must contain the source name of the file, fol-
lowed by a blank followed by a qualified procedure name. Nested procedures must be

qualified x.y where x is the outer procedure. A newline or blank can follow the procedure
name:

foo.c bar (everything else following is ignored)

Lines beginning with # are comments, lines beginning with $ are considered cord directive
lines. The only directive currently understood is $phase. This directive will consider the rest
of the file (until the end of file or next $phase) as a new phase of the program and will order
the procedures accordingly. A procedure may appear in more than one phase, resulting in
more than one copy of it in the final binary. First, cord will try to relocate procedure refer-
ences to a copy of the procedure belonging to the requesting phase; otherwise it will relocate
the references to a random copy.

We suggest you use the -cord option to a compiler driver like cc(I) rather than execute cord
directly. Cord options can be specified with -Wz,cordarg0,cordargl,.... If you have to run
cord by hand, you may want to run it once with the driver using the -v flag on a simple pro-
gram. This will enable you to see the exact passes and the arguments involved in using cord.

Obj is an executable object file with its relocation information intact. This can be achieved by
passing the -r -z -d options to the linker, Id(1). The linker option -r maintains relocation
information in the object file, but will not make it a ZMAGIC file (hence -z). It also will not
allocate common variables (hence -d) as it would without the option.

WARNING: Since cord works from an input list of procedures generated from profile output,
the resulting binary is data dependent. In other words, it may only preform well on the same
input data that generated the profile information, and may preform worse than the original
binary on other data. Furthermore, if the hot areas in the cache don’t fit well into one
cachepage, performance can degrade.

The cord command accepts these options:

-y Print verbose information. This includes listing those procedures considered
part of other procedures and cannot be rearranged (these are basically assem-
bler procedures that may contain relative branches to other procedures rather
than relocatable ones). The listing also lists those procedures in the flipped
area (if any) and a mapping of old location to new.

-f Flip the first cachepage size procedures. The assumption when cord was writ-
ten was that procedures would be reordered by procedure density
(cycles/byte). This option ensures that the densest part of each page following
the first cachepage would conflict with the least-dense part of the first

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CORD(1) RISC/os Programmer’s Reference CORD(1)

cachepage.

-¢ cachesize
Specify the cachesize (in bytes) of the machine on which you want to execute.
This only affects the -f option. If not specified, 65536 is used.
-0 outputfile : :
Specifies the output file. If not specified, a.out is used.
-p phasemax ‘ '
specifies the maximum number phases allowed. The default is 20.
SEE ALSO ‘
prof(1), froc(1), cc(1), ld(1), MIPS Languages Programmer Guide

Page 2 February 13, 1989 - MIPS Computer Systems, Inc.

CORD2(1) RISC/os Programmer’s Reference CORD2(1)

NAME
cord2 — rearranges basic blocks in an executable file to facilitate better cache mapping.

SYNOPSIS

cord2 [-v] [-o oulfile] [-c cachewords] [-d] [-b bridge_limit] [-n] [-A addersfile] [[-C countsfile]
...] obj

DESCRIPTION
The cord2 command extracts basic blocks from a program and deposits them in a new area in
the text, making jumps from and to that area as necessary. By separating the basic blocks,
you can reduce instruction cache miss rates. Cord2 takes the output of a pixie profiling run as
input (see pixie(1)).

Obj is an executable object file. Cord2 only requires one addersfile; it will create the filename
by appending .Bbaddrs to the obj filename if none is specified with -A. Many counts files can
be specified from many runs with multiple -C arguments; if none is specified cord2 will create
the counts filename by appending .Counts to the obj name. Multiple counts files will be added
together into an internal counts array represented with C double-type elements. The counts
array elements contain the density of a block or cycles/byte. If you specify -n, then the
counts are normalized so that each counts array entry is cycles/totalcycles. When one counts is
specified, the default is to favor small blocks; -n negates that. When many counts files are
specified, -n also negates favoring one counts file. This is because its totalcycles may exceed
the totalcycles of another counts file.

Cord2 determines which basic blocks to insert by sorting the counts array and collecting the
blocks with the highest counts that will fit into the new area. Cord2 may skip over huge blocks
that won’t fit at the end of the new area.

Once the blocks are determined, they are inserted into the new area, and their original loca-
tion is modified to jump to the new area. At the end of each block in the new area, a jump is
added back to the original block’s subsequent or fall-through location, and the branch/jump
target (if necessary). Both entering and exiting the new area is optimized to take advantage of
other blocks also in the new area, and jump delay slots.

Many times there may be one or more fall-through blocks of a block in the new area which
are 1) small, 2) hardly ever used, and 3) not in the new area. If the block following these fall-
through blocks is in the new area, the fall-through blocks are called bridge blocks. It may be
more costly to generate jumps to and from- bridge blocks rather than to just copy them.
Cord2 allows you to specify that bridge blocks be added to the new area if they total less than
the bridge_limit instructions between two new-area blocks. You may specify the bridge_limit
with -b; the default is zero. Bridge blocks may bump blocks out of the new area that mxght
normally fit into it.

WARNING: Since cord2 works from profile output, the resulting binary is data dependent. In
other words, it may perform well only on the same input data that generated the profile infor-
mation, and may perform worse than the original binary on other data. Furthermore, if the
hot areas in the cache don’t fit well into one cachepage, performance can degrade.

The cord2 command also accepts these options:

-d Fill the delay slots with nops only when adding jumps to and from the new
area.
-V Print verbose information. This includes statistics about the cord2 process.

-y -y Print all of the -v information but include detailed dissamblies of the code
moved, changed and generated by cord2.

-¢ cachewords
Specify the number of words in the cache of the machine on which you want

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CORD2(1) RISC/os Programmer’s Reference CORD2(1)

to execute. This will actually be the size of the new area. Cachesize may be a
misnomer, as you can specify a size other than your machine’s cache size;
however, it is probably the correct number.
-0 outputfile
Specifies the output file. If not specifled, a.out.cord2 is used.
BUGS
Cord2 adds the new area to the end of text so any program using the erext (see Id(1)) symbol
may not work. ‘
SEE ALSO -
pixie(1), cord(1), MIPS Languages Programmer Guide

Page 2 February 13, 1989 MIPS Computer Systems, Inc.

CP(1-BSD) RISC/os Programmer’s Reference CP(1-BSD)

NAME

Cp — Copy

SYNOPSIS

cp [—ip] filel file2
cp [—ipr] file ... directory

DESCRIPTION

Filel is copiéd onto file2. By default, the mode and owner of file2 are preserved if it already

- existed; otherwise the mode of the source file modified by the current umask(2) is used. The

—p option causes cp to attempt to preserve (duplicate) in its copies the modification times and
modes of the source files, ignoring the present umask .

In the second form, one or more files are copied into the directory with their original file-
names.

cp refuses to copy a file onto itself.

If the —i option is specified, cp will prompt the user with the name of the file whenever the
copy will cause an old file to be overwritten. An answer of ’y’ will cause cp to continue. Any
other answer will prevent it from overwriting the file.

If the —r option is specified and any of the source files are directories, cp copies each subtree
rooted at that name; in this case the destination must be a directory.

SEE ALSO

cat(1), mv(1), rcp(1C)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

CPP (1) RISC/os Programmer’s Reference ' CPP (1)

NAME

cpp — the C language preprocessor
SYNOPSIS

/usr/lib/cpp [option ...] [ifile [ofile]]
DESCRIPTION

Cpp is the C language preprocessor which is invoked as the ﬁrst pass of any C compilation
using the cc(1) command. Thus the output of cpp is designed to be in a form acceptable as
input to the next pass of the C compiler. As the C language evolves, cpp and the rest of the
C compilation package will be modified to follow these changes. Therefore, the use of cpp
other than in this framework is not suggested. The preferred way to invoke.cpp is through the
cc(1) command since the functionality of ¢pp may someday be moved elsewhere. See m4(1)
for a general macro processor.’

Cpp optionally accepts two file names as arguments. Ifile and ofile are respectivefy the input
and output for the preprocessor. They default to standard input and standard output if not
supplied. : ,

The following options to cpp are recognized:

-P Preprocess the input without producing the line control information used by the next
pass of the C compiler.

-C By default, cpp strips C-style comments. If the —C option is specified, all comments
(except those found on cpp directive lines) are passed along.

~Uname
Remove any initial definition of name, where name is a reserved symbol that is
predefined by the particular preprocessor. The current list of these possibly reserved
symbols includes: None of these are defined by cpp. Instead, the compiler drivers,
cc(1), as(1), pc(1), and f77(1) define these symbols.

operating system: unix, ibm, gcos, os, tss, dmert

target hardware: mips, interdata, pdpl11, u370, u3b, u3b5, u3b2, u3b20d, vax
host hardware: host_mips

languages: LANGUAGE_C, LANGUAGE_ASSEMBLY,

LANGUAGE_PASCAL, LANGUAGE_FORTRAN
UNIX system variant: RES, RT
lint(1): lint

~Dname

~Dname=def
Define name as if by a #define directive. If no =def is given, name is defined as 1.
The =D option has lower precedence than the =—U option. That is, if the same name
is used in both a —=U option and a —D option, the name will be undefined regardless
of the order of the options. .

~Idir Change the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include
files whose names are enclosed in "" will be searched for first in the directory of the
ifile argument, then in directories named in =—1I options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the directory of
the ifile argument is not searched.

e | This option changes the algorithm for searching for #include files to never look in the
standard list.

—M Print, one per line on standard output; the path names of included files. Each is
prefixed with ifile’s last component name with the suffix changed to ‘.0’ followed by a

MIPS Computer Systems, Inc. February 13, 1989 Page 1

CPP (1) RISC/os Programmer’s Reference _' CPP (1)

Page 2

“” and a space (for example “hello.o: /usr/include/stdio.h”).

Two special names are understood by cpp. The name __LINE__ is defined as the current line
number (as a decimal integer) as known by cpp, and __FILE__ is defined as the current file

name (as a C string) as known by c¢pp. They can be used anywhere (including in macros) just
as any other defined name.

All cpp directives start with lines begun by #. The directives are:

#define name token-string
Replace subsequent instances of name with token-string.

#define name(arg, ..., arg) token-string

Notice that there can be no space between name and the (. Replace subsequent
instances of name followed by a (, a list of comma separated tokens, and a) by
token-string where each occurrence of an arg in the roken-string is replaced by the
corresponding token in the comma separated list. When a macro with arguments is
expanded, the arguments are placed into the expanded token-string unchanged. After
the entire token-string has been expanded, cpp re-starts its scan for names to expand at
the beginning of the newly created token-string .

#undef name
Cause the definition of name (if any) to be forgotten from now on.

#ident "string"
This directive is recognized for compatibility but ignored.

#include "filename"

#include <filename >
Include at this point the contents of filename (which will then be run through cpp).
When the <filename> notation is used, filename is only searched for in the standard
places. See the —I option above for more detail.

#line integer-constant "filename"
Causes cpp to generate line control information for the next pass of the C compiler.
Integer-constant is the line number of the next line and filename is the file where it
comes from. If "filename" is not given, the current file name is unchanged.

#endif

Ends a section of lines begun by a test directive (#if, #ifdef, or #lfndef) Each test
directive must have a matching #endif.

#ifdef name

The lines following will appear in the output if and only if name has been the subject
of a previous #define without being the subject of an intervening #undef.

#ifndef name
The lines following will not appear in the output if and only if name has been the sub-
ject of a previous #define without being the subject of an intervening #undef.

#if constant-expression

Lines following will appear in the output if and only if the constant-expression evalu-
ates to non-zero. All binary non-assignment C operators, the ?: operator, the unary
—, !, and ~ operators are all legal in constant-expression. The precedence of the
operators is the same as defined by the C language. There is also a unary operator
defined, which can be used in constant-expression in these two forms: defined (name)
or defined name. This allows the utility of #ifdef and #ifndef in a #if directive. Only
these operators, integer constants, and names which are known by cpp should be used
in constant-expression. In particular, the sizeof operator is not available.

To test whether either of two symbols, foo and fum, are defined, use

February 13, 1989 MIPS Computer Systems, Inc.

CPP (1) RISC/os Programmer’s Reference CPP(1)

#if defined(foo) || defined(fum)

#else Reverses the notion of the test directive which matches this directive. So if lines pre-
vious to this directive are ignored, the following lines will appear in the output. And
vice versa.

The test directives and the possible #else directives can be nested.

FILES ‘

/usr/include standard directory for #include files
SEE ALSO

cc(1), as(1), pe(1), £77(1), m4(1)
DIAGNOSTICS

The error messages produced by cpp are intended to be self-explanatory. The line number
and filename where the error occurred are printed along with the diagnostic.

NOTES
When newline characters were found in argument lists for macros to be expanded, previous
versions of ¢pp put out the newlines as they were found and expanded. The current version
of cpp replaces these newlines with blanks to alleviate problems that the previous versions had
when this occurred.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

CRYPT (1-BSD) RISC/os Programmer’s Reference CRYPT (1-BSD)

NAME

crypt — encode/decode

SYNOPSIS

crypt [password]

DESCRIPTION

FILES

crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. crypt encrypts and decrypts
with the same key:

crypt key <clear >cypher
crypt key <cypher | pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption
mode. '

The security of encrypted files depends on three factors: the fundamental method must be
hard to solve; direct search of the key space must be infeasible; ‘sneak paths’ by which keys
or cleartext can become visible must be minimized.

crypt implements a one-rotor machine desighed along the lines of the German Enigma, but
with a 256-element rotor. Methods of attack on such machines are known, but not widely;
moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed
to be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys
are restricted to (say) three lower-case letters, then encrypted files can be read by expending
only a substantial fraction of five minutes of machine time.

Since the key is an argument to the crypr command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypr takes care to destroy any record of
the key immediately upon entry. No doubt the choice of keys and key security are the most
vulnerable aspect of crypr.

/dev/tty for typed key

SEE ALSO

BUGS

ed(1), makekey(8)

There is no warranty of merchantability nor any warranty of fitness for a particular purpose
nor any other warranty, either express or implied, as to the accuracy of the enclosed materials
or as to their suitability for any particular purpose. Accordingly, Bell Telephone Laboratories
assumes no responsibility for their use by the recipient, Further, Bell Laboratories assumes
no obligation to furnish any assistance of any kind whatsoever, or to furnish any additional
information or documentation.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

DATE (1-BSD) RISC/os Programmer’s Reference DATE (1-BSD)

NAME
date - print and set the date

SYNOPSIS
date [-nu] [-d dst] [-t timezone] [yymmddhhmm [.ss]]

DESCRIPTION ‘ ‘
If no arguments are given, the current date and time are printed. Providing an argument will
set the desired date; only the superuser can set the date.

The -d and - flags set the kernel’s values for daylight savings time and minutes west of GMT.
If dst is non-zero, future calls to gettimeofday(2) will return a non-zero tz_dsttime. Timezone
provides the number of minutes returned by future calls to getrimeofday(2) in tz_minuteswest.
You should also set the default timezone by using the command zic(8). Details are given in
that manual page.

The -u flag is used to display or set the date in GMT (universal) time. yy represents the last
two digits of the year; the first mm is the month number; dd is the day number; kA is the hour
number (24 hour system); the second mm is the minute number; .ss is optional and represents
the seconds. For example:

date 8506131627

sets the date to June 13 1985, 4:27 PM. The year, month and day may be omitted; the default
values will be the current ones. The system operates in GMT. date takes care of the conver-
sion to and from local standard and daylight-saving time.

If timed(8) is running to synchronize the clocks of machines in a local area network, date sets
‘the time globally on all those machines unless the =n option is given.

FILES
/usr/adm/wtmp to record time-setting, In /usr/adm/messages, date records the name of the
user setting the time.

SEE ALSO
zic(1), gettimeofday(2), utmp(5), timed(8),
TSP: The Time Synchronization Protocol for UNIX 4.3BSD, R. Gusella and S. Zatti

DIAGNOSTICS
- Exit status is 0 on success, 1 on complete failure to set the date, and 2 on successfully setting
the local date but failing globally.

Occasionally, when timed synchronizes the time on many hosts, the setting of a new time
value may require more than a few seconds. On these occasions, date prints: ‘Network time
being set’. The message ‘Communication error with timed’ occurs when the communication
between date and timed fails.

BUGS .
The system attempts to keep the date in a format closely compatible with VMS. VMS, how-
ever, uses local time (rather than GMT) and does not understand daylight-saving time. Thus,
if you use both UNIX and VMS, VMS will be running on GMT.

MIPS Computer Systems, Inc. : February 6, 1989 : Page 1

DBX (1) _ RISC/os Programmer’s Reference DBX (1)

NAME
dbx - source-level debugger

SYNOPSIS
dbx [~1 directory] [c file] [-i] [-1] [-pixie] [object] [core]
DESCRIPTION
Dbz, a source-level debugger, runs under UMIPS-BSD (4.3 BSD) and UMIPS-V (V.3) versions

of the operating system. It can handle UMIPS-V shared libraries. This enhanced version of
dbx works with cc(1), f77(1), pc(1), as(1), and MIPS machine code.

The object file used with the debugger is produced by specifying an appropriate option (usually
—g) to the compiler. The resulting object file contains symbol table information, including
the names of all source files that the compiler translated to create the object file. These
source files are accessible from the debugger. If —g is not specified, limited debugging is pos-
sible.

If a core file exists in the current directory or a coredump file is specified, dbx can be used to
look at the state of the program when it faulted.

Running dbx
If a .dbxinit file resides in the current directory or in the user’s home directory, the commands
in it are executed when dbx is invoked. -

When invoked, dbx recognizes these command line options:

=1 directory or =ldirectory
Tells dbx to look in the specified directory for source files. Multiple directories can
be spec’i‘ﬁed by using multiple —I options. Dbx searches for source files in the current
directory and in the object file’s directory whether or not —I is used.

—c file Selects a command file other than .dbxinit.

=i Uses interactive mode. This option does not treat #s as comments in a file. It
prompts for source even when it reads from a file. With this option, dbx also has
extra formatting as if for a terminal.

-r Runs the object file immediately.

—pixie Uses pixie output. The executable must be ‘executable.pixie’, and the. non-pixie exe-
cutable must be in the same directory as the pixie executable.

—prom Permits debugging in the standalone environment when using the MIPS System
Programmer’s Package. For more information, refer to the System Programmer’s
Package Reference manual.

—sable Permits debugging programs running under the processor simulator when the MIPS
System Programmer’s Package.

The dbx monitor offers powerful command line editing. For a full description of these
emacs-style editing features, see csh(1).

Multiple commands can be specified on the same command line by separating them with a
semicolon (;). If the user types a string and presses the stop character (usually “z; see stty(1)
), dbx tries to complete a symbol name from the program that matches the string.

dbx can also run under emacs as inferior, which means under this mode, dbx is controlled by
emacs and communicates with emacs. When in emacs, command M-x dbx starts dbx and will
prompt you for filename to be debugged. In MIPS environment, the following keys are bound
to commonly used dbx commands: M-n, M-s, M-i, M-u, M-d, C-¢ C-f, C-x space represents
for next, step, stepi, up, down, finish, set breakpoint at current line respectively.’ Note that in

MIPS Computer Systems, Inc. February 13, 1989 | Page 1

DBX (1) RISC/os Programmer’s Reference DBX(1)

emacs, M-x usually means esc-x, C-x means ctl-x. In emacs you can define your own key bind-
ing.

The Monitor
These commands control the dbx monitor:
\[string] [integer] [—integer]
Specifies a command from the history list.

help Prints a list of dbx commands, using the UNIX system more command to display the
list.

history Prints the items from the history list. The default if 20.
quit[!] Exit dbx after verification. If ! is specified, verification isn’t required.

Controlling dbx
alias [name(argl,...argN)"string"]
Lists all existing aliases, or, if an argument is specified, defines a new alias.

unalias alias command_name
Removes the specified alias.

delete expressionl, ...expressionN
_ delete all
Deletes the specified item from the status list. The argument all deletes all items
from the status list.

playback input [file]
Replays commands that were saved with the record input command in a text file.

playback output [file]
Replays debugger output that was saved with the record output command.

record input [file]
Records all commands typed to dbx.

record output [file]
Records all dbx output.

h [shell command]
Calls a shell from dbx or executes a shell command.

status Lists currently set stop, record, and trace commands.

tagvalue (tagname)
Returns the value of tagname. If the tags extends to more than one line, or if it con-
tains arguments, an error occurs. tagvalue can be used in any expression.

set [variable = expression)
Lists existing debugger variables and their values. This command can also be used to
assign a new value to an existing variable or to define a new variable.

unset variable
Removes the setting of a specified debugger variable,

Examining Source
Iregular expression
Searches ahead in the source code for the regular expression.

?regular expression
Searches back in the source code for the regular expression.

Page 2 February 13, 1989 MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

edit [file]
Calls an editor from dbx.

file [file] Prints the current file name, or, if a file name is specified, this command changes the
current file to the specified file.

func [expression] [procedure]
Moves to the specified procedure (activation level), or, if an expression or procedure
isn’t specified, prints the current activation level.

list [expression:integer)
list [expression]

Lists the specified lines. The default is 10 lines.
tag tagname

Sets the current file/line to the location specified by tagname. Operations are similar
to the tag operations in vi(1).

use [directoryl ... directoryN] .
Lists source directories, or, if a directory name is specified, this command substitutes
the new directories for the previous list.

whatis variable
Prints the type declaration for the specified name.

which variable
Finds the variable name currently being used.

whereis variable A
Prints all qualifications (the scopes) of the specified variable name.

Controlling Programs
assign expressionl = expression2
Assigns the specified expression to a specified program variable.
[n] cont [signal]
cont [signal] to line
cont [signal] in procedure
Continues executing a program after a breakpoint. »n breakpoints are ignored if 7 is

specified before stepping; If specified, signal is delivered to the processing being
debugged.

goto line
Goes to the specified line in the source.

next [integer]
Steps over the specified number of lines. The default is one. This command does
not step into procedures.

rerun [argl ... argN] [<filel][>file2]

rerun [argl ... argN] [<filel] [> &file2]
Reruns the program, using the same arguments that were specified to the run com-
mand. If new arguments are specified, rerun uses those arguments.

run [argl ... argN] [<filel] [>file2]

run [arg] ... argN] [<filel] [>&file2]
Runs the program with the specified arguments.

return [procedure)
Continues executing until the procedure returns. If a procedure isn’t specified, dbx

MIPS Computer Systems, Inc. February 13, 1989 Page 3

DBX(1) RISC/os Programmer’s Reference DBX (1)

assumes the next procedure.

step [integer]
Steps the specified number of lines. This command steps into procedures. The
default is one line.

Setting Breakpoints
catch [signal]
Lists all signals that dbx catches, or, if an argument is specified, adds a new signal to
the catch list.”

ignore [signal]

Lists all signals that dbx does not catch. If a signal is specified, this command adds

the signal to the ignore list.
stop [variable]
stop [variable] at line [if expression]
stop [variable] in procedure [if expression)

stop [variable] if expression
Sets a breakpoint at the specified point.

trace variable [at line [if expression]

trace variable [in procedure [if expression)
Traces the specified variable.

when [variable] [at line] {command_list}

when [variable] [in procedure] {command_list}
Executes the specified dbx comma separated command hst

Examining Program State
dump [procedure] [.]

Prints variable information about the procedure. If a dot (.) is specified, this com-

mand prints global variable information on all procedures in the stack and the vari-
ables of those procedures.

down [expression]
Moves down the specified number of activation levels in the stack The default is
one level.

up [expression)
Moves up the specified number of activation levels on the stack. The default is one.

print expressionl,...expressionN
Prints the value of the specified expression. If expression is a dbx keyword, it must
be enclosed within parentheses For example, to print out a variable called ’output’
(which is also a vanable in the playback and record commands) you must type: print
(output)

printf "string", expressionl,...expressionN
Prints the value of the specified expression, using C language string formatting. As in
the print command, if expression is a dbx keyword, you must enclose it within
parentheses.

printregs
Prints all register values.

where Does a stack trace, which shows the current activation levels.

Page 4 February 13, 1989 ~ MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

where n Prints out only the top » levels of the stack.

Debugging at the Machine Level
[n] conti [signal]

conti [signal] to address

conti [signal] in procedure g
Continues executing assembly code after a breakpoint. n breakpoints are ignored if n
is specified before stepping; If specified, signal is delivered to the processing being
debugged.

nexti [integer]
Steps over the specified number of machine instructions. The default is one. This
command does not step into procedures.

stepi [integer]
Steps the specified number of machine instructions. This command steps into pro-
cedures. The default is one instruction.

stopi [variable] at address [at address [if expression]
stopi [variable] in procedure {if expression]

stopi [variable] if expression
Sets a breakpoint in the machine code at the specified point.

tracei variable at address [at address if expression)]

tracei variable in procedure [at address if expression)
Traces the specified variable in machine instructions.

wheni [variable] [at address] {command_list}

wheni [variable] [in procedure] {command_list}
Executes the specified dbx comma separated command list.

address[?]/<count><mode>
Searching forward (or backward, if ? is specified,) prints the contents address or
disassembles the code for the instruction address; count is the number of items to be
printed at the specified address. mode is one of the characters in the following table
producing the indicated result:

Print a short word in decimal

Print a long word in decimal

Print a short word in octal

Print a long word in octal

Print a short word in hexadecimal
Print a long word in hexadecimal
Print a byte in octal

Print a byte as a character

Print a string of characters that ends in a null
Print a single precision real number
Print a double precision real number
Print machine instructions

Prints data in typed format.

37ty 0O XX OO0 O

address/<countL><value><mask>
Searches for a 32-bit word starting at the specified address; count specifies the
number of word to process in the search; an address is printed when the the word at

MIPS Computer Systems, Inc. February 13, 1989 Page 5

DBX (1) RISC/os Programmer’s Reference DBX (1)

address, after an AND operation with mask, is equal to value.

Predefined dbx Variables
The debugger has these predefined variables:

$addrfmt
Specifies the format for addresses. This can be set any specification that a C printf
statement can format. The default is zero.

$byteaccess »
Same as $addrfmt.

$casesense
When set to a nonzero value, specifies that uppercase and lowercase letters be taken
into consideration during a search. When set to 0, the case is ignored. The default is
0,

$curevent
Shows the last even number as seen in the status feature. Set only by dbx.

$curline Specifies the current line. Set only by dbx.

$Scursrcline
Shows the last line listed plus 1. Set only by DBX

$curpc Specifies the current address. Used with the wi-and [i aliases.

$datacache
Caches information from the data space so that dbx must access data space only
once. To debug the operating system, set this variable to 0; otherwise, set it to a
nonzero value. The default is 1.

$debugflag
For internal use by dbx.

$defin For internal use by dbx.
$defout For internal use by dbx.

$dispix For use when debugging pixie code. When set to 0, machine code is show while
debugging. When set to 1, pixie code is shown. The default is 0.

$hexchars
Output characters are printed in hexadecimal format (set, unset).

$hexin Specifies that input constants are hexadecimal.

$hexints
When set to a nonzero value, changes the default output constants to hexadecimal.
Overrides $octints.

$hexstrings
When set to 1, specifies that all strings are printed in hexadecimal; when set to 0,
strings are printed in character format.

$historyevent
Shows the current history line.

$lines number of lines for history. The default is 20

$listwindow
Specifies how many lines the list command prints.

$main Specifies the name of the procedure that dbx will start with. This can be set to any
procedure. The default is "main"”

Page 6 February 13, 1989 MIPS Computer Systems, Inc.

DBX (1) RISC/os Programmer’s Reference DBX (1)

$maxstrlen
Specifies how many characters of a string that dbx prints for pointers to strings. The
default is 128.

$octin When set to non-zero, changes the default input constants to octal. When set, $hex-
int overrides this setting.

$octints Qutput integers are printed octal format (set, unset).

$page Specifies whether to page long information. A nonzero value turns on paging; a 0
turns it off. The default is 1.

$pagewindow
Specifies how many lines print when information runs longer than one screen. This
can be changed to match the number of lines on any terminal. If set to 0, this vari-
able assumes one line. The default is 22, leaving space for continuation query).

$pdbxport
port name from /etc/remote[.pdbx] used to connect to target machine for pdbx

$printwhilestep
For use with the step[n] and stepi[n] instructions. A non-zero integer specifies that
all n lines and/or instructions should be printed out. A zero specifies that only the
last line and/or instruction should be printed out. The default is zero.

$pimode
“Prints input when used with the playback input command. The default is 0.

$printdata
When set to a nonzero value, the contents of registers used are printed next to each
instruction displayed. The default is O.

$printwide
When se to a nonzero value, the contents of variables are printed in a horizontal for-
mat. The default is 0.

$prompt
Sets the prompt for dbx.

$readtextfile
When set to 1, dbx tries to read instructions from the object file rather than the pro-
cess. dbx executes faster when debugging remotely using the System Programmer’s
Package. This variable should always be set to 0 when the process being debugged
copies in code during the debugging process. The default is 1.

$regstyle
A zero value causes registers to be printed out in their normal r format (10,r1,...r31).
A nonzero value causes the registers to be printed out in a special format (zero, at,
v0, v1,...) commonly used in debugging programs written in assembly language. The
default is 0.

$repeatmode ,
When set to a nonzero value, after pressing the RETURN key (for an empty line),
the last command is repeated. The default is 1. '

$rimode
When set to a nonzero value, input will is recorded while recording output . The
default is 0.

$sigtramp
Tells dbx the name of the code called by the system to invoke user signal handlers.
This variable is set to sigvec for UMIPS-BSD and to sigtramp for UMIPS-V

MIPS Computer Systems, Inc. February 13, 1989 Page 7

DBX (1)

$tagfile

RISC/os Programmer’s Reference DBX (1)

Contains a filename, indicating the file in which the tag command and the tabvalue
macro are to search for tags.

Predefined dbx Aliases
The debugger has these predefined aliases:

?
a

b

a 6

— e MGG R B

Page 8

li
norS

ni or Si

pd
pi

po
pr

-

2 == F

Prints a list of all dbx commands.

Assigns a value to a program variable,

Sets a breakpoint at a specified line.

Stops in a specified procedure.

Continues program execution after a breakpoint.

Deletes the specified item from the status list.

Looks at the specified file.

Moves to the specified activation level on the stack.

Goes to the specified line and begins ‘executing the program there.
Lists all items currently on the history list.

Shows what items are on the status list.

Lists the next 10 lines of source code.

Lists the next 10 machine instructions.

Step over the specified number of lines without stepping into procedure calls.

Step over the specified number of assembly code instructions without stepping into
procedure calls.

Prints the value of the specified expression or variable.

Prints the value of the specified expression or variable in decimal.
Replays dbx commands that were saved with the record input command.
Prints the value of the specified expression or variable in octal.

Prints values for all registers. px Prints the value for the specified variable or expres-
sion in hexadecimal.

Ends the debugging session.

Runs the program again with the same arguments that were specified with the run
command. '

Records in a file every command typed.

Records all debugger output in the specified file.

Steps the next number of specified lines.

Steps the next number of specified lines of assembly code instructions.
Does a stack trace.

Lists the previous 10 lines.

Lists the 5 lines preceding and following the current line.

Lists the 10 lines preceding and following the current line.

Lists the 5 machine instructions preceding and following the machine instruction.

February 13, 1989 *"MIPS Computer Systems, Inc.

(

(

DBX(1) _ RISC/os Programmer’s Reference DBX (1)

SEE ALSO
MIPS Languages Programmer Guide .

MIPS Computer Systems, Inc. February 13, 1989 Page 9

DD (1-BSD) RISC/os Programmer’s Reference DD (1-BSD)

NAME (

dd - convert and copy a file

SYNOPSIS
dd [option=value] ...
DESCRIPTION
dd copies the specified input file to the specified output with possible conversions. The stan-

dard input and output are used by default. The input and output block size may be specified
to take advantage of raw physical I/0O.

option values

if= input file name; standard input is default

of= output file name; standard output is default

ibs=n ~ input block size n bytes (default 512)

obs=n output block size (default 512)

bs=n set both 1nput and output block size, supersedmg ibs and obs; also, 1f no
- conversion is specified, it is particularly efficient since no copy need be done

cbs=n conversion buffer size

skip=n skip n input records before starting copy

files=n copy n input files before terminating (makes sense only where input is a

magtape or similar device). ,
seek=n seek n records from beginning of output file before copying
count=n copy only n input records

conv=ascii convert EBCDIC to ASCII
ebedic convert ASCII to EBCDIC
ibm slightly different map of ASCII to EBCDIC

block convert variable length records to fixed length (
unblock convert fixed length records to variable length
Icase map alphabetics to lower case
ucase map alphabetics to upper case
swab swap every pair of bytes
noerror do not stop processing on an error
sync pad every input record to ibs
.., ... several comma-separated conversions

Where sizes are specified, a number of bytes is expected. A number may end with k, b or w
to specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated
by x to indicate a product. '

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the first two
cases, cbs characters are placed into the conversion buffer, any specified character mapping is
done, trailing blanks trimmed and new-line added before sending the line to the output. In
the latter three cases, characters are read into the conversion buffer, and blanks added to
make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and output blocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images per record
into the ASCII file x:

dd if=/dev/rmt0 of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. dd is especially suited to I/O on the raw physical devices
because it allows reading and writing in arbitrary record sizes.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

DD (1-BSD) RISC/os Programmer’s Reference DD (1-BSD)

SEE ALSO
cp(1), tr(1)
DIAGNOSTICS
f+p records in(out): numbers of full and partial records read(written)

BUGS
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the
CACM Nov, 1968. The ‘ibm’ conversion, while less blessed as a standard, corresponds better
to certain IBM print train conventions. There is no universal solution.
One must specify “conv=noerror,sync’”’ when copying raw disks with bad sectors to insure dd
stays synchronized.

Certain combinations of arguments to conv= are permitted. However, the block or unblock
option cannot be combined with ascii, ebcdic or ibm. Invalid combinations silently ignore all
but the last mutually-exclusive keyword. :

Page 2 February 6, 1989 MIPS Computer Systems, Inc.

DEROFF (1-BSD) RISC/os Programmer’s Reference DEROFF (1-BSD)

NAME

deroff — remove nroff, troff, tbl and eqn constructs
SYNOPSIS

deroff [—w | file ...
DESCRIPTION

deraff reads each file in sequence and removes all nroff and troff command lines, backslash
constructions, macro definitions, egn constructs (between ‘EQ’ and ‘.EN’ lines or between
delimiters), and table descriptions and writes the remainder on the standard output. deroff
follows chains of included files (‘.so’ and ‘.nx’ commands); if a file has already been included,
a ‘.so’ is ignored and a ‘.nx’ terminates execution. If no input file is given, deroff reads from
the standard input file.

If the —w flag is given, the output is a word list, one ‘word’ (string of letters, digits, and apos-
trophes, beginning with a letter; apostrophes are removed) per line, and all other characters
ignored. Otherwise, the output follows the original, with the deletions mentioned above.

SEE ALSO
troff(1), eqn(1), tbl(1)

BUGS

deroff is not a complete roff interpreter, so it can be confused by subtle constructs. Most
errors result in too much rather than too little output. slkfjsldfjsdlslk.

MIPS Computer Systems, Inc. February 6, 1989 - Page 1

DICTION (1-BSD) RISC/os Programmer’s Reference DICTION(1-BSD)

NAME

diction, explain — print wordy sentences; thesaurus for diction
SYNOPSIS

diction [=ml] [=mm] [=n] [=f pfile] file ...

explain
DESCRIPTION

diction finds all sentences in a document that contain phrases from a data base of bad or
‘wordy diction. Each phrase is bracketed with []. Because diction runs deroff before looking
at the text, formatting header files should be included as part of the input. The default macro
package —ms may be overridden with the flag =mm. The flag =ml which causes deroff to skip
lists, should be used if the document contains many lists of non-sentences. The user may sup-
ply her/his own pattern file to be used in addition to the default file with =f pfile. If the ﬂag
~n is also supplied the default file will be suppressed.

Explain is an interactive thesaurus for the phrases found by diction.

SEE ALSO
deroff(1)

BUGS

Use of non-standard formatting macros may cause incorrect sentence breaks. In particular,
diction doesn’t grok —me.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

DIS(1) RISC/os Programmer’s Reference v DIS(1)

NAME
dis — disassemble an object file
SYNOPSIS
dis [-h] [-s] [-p procedure] [file ...]
DESCRIPTION
Dis disassembles object files into machine instructions. Please note that assember code and

machine code can differ on this machine. For a full description of the machine language, see
the R2000 Processor User’s Guide. A file can be an object or an archive.

The =h, flag causes the general register names to be printed, rather than the software register
names. The =—p flag disassembles only the specified procedure from the object file. The =S
causes source lisitings to be listed, Otherwise, only instructions will listed.

BUGS
Disassembling an archive is not currently operational.

MIPS Computer Systems, Inc. February 13, 1989 Page 1

DU (1-BSD) RISC/os Programmer’s Reference DU (1-BSD)

NAME
du — summarize disk usage

SYNOPSIS
do[=a][=f][=s][name ...]

DESCRIPTION
du gives the number of kilobytes contained in all files and, recursively, directories within. each
specified directory or file name. If name is missing, ‘.’ is used.
The option =s causes only the grand total to be given.
The option —a causes an entry to be generated for each file. Absence of either causes an
entry to be generated for each directory only.
The option —f causes the size calculation of directories to ignore sizes of subdirectories. This
is useful for finding “fat” directories (those that have lots of files at the top level, as opposed
to trees that have lots of files).
A file which has two links to it is only counted once.

SEE ALSO
df(1), quot(8)

BUGS

Non-directories given as arguments (not under —a option) are not listed.

In previous versions of du , if there are too many distinct linked files, du counts the excess
files multiply.

Previous versions of du required options to be in the order —s followed by —a if both are
given. This version uses getopt(3), and thus any order is allowed.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

EQN(1-BSD) RISC/os Programmer’s Reference EQN(1-BSD)

NAME
eqn, neqn, checkeq — typeset mathematics
SYNOPSIS
eqgn [—dxy |[=pn][=sn][=fn][file]...
checkeq [file] ...
DESCRIPTION

eqn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems photo-
typesetter, negn on terminals. Usage is almost always

eqn file ... | troff
neqn file ... | nroff

If no files are specified, these programs read from the standard input. A line beginning with
*EQ’ marks the start of an equation; the end of an equation is marked by a line beginning
with “.EN’. Neither of these lines is altered, so they may be defined in macro packages to get
centering, numbering, etc. It is also possible to set two characters as ‘delimiters’; subsequent
text between delimiters is also treated as egn input. Delimiters may be set to characters x and
y with the command-line argument —dxy or (more commonly) with ‘delim xy’ between .EQ
and .EN. The left and right delimiters may be identical. Delimiters are turned off by ‘delim
off. All text that is neither between delimiters nor between .EQ and .EN is passed through
untouched. :

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines, braces, double quotes, tildes or
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character
like x could appear, a complicated construction enclosed in braces may be used instead.
Tilde ~ represents a full space in the output, circumflex ~ half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub i makes
X;, a sub i sup 2 produces a;%, and e sup {x sup 2 + y sup 2} gives er 7,

Fractions are made with over: a over b yields %.

1
VaxZibx +¢

The keywords from and to introduce lower and upper limits on arbitrary things: lih x; is

n—~ooo

sqrt makes square roots: I over sqrt {ax sup 2 +bx+c} results in

made with lim from {n—> inf } sum from 0 to n x sub i.

Left and right brackets, braces, etc., of the right height are made with left and right: left [x
2
sup 2 + y sup 2 over alpha right] “~="1 produces x2+y7 ‘= 1. The right clause is optional.

Legal characters after left and right are braces, brackets, bars, ¢ and f for ceiling and floor,
and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, lpile, cpile, and rpile: pile {a above b above c}

a
produces b. There can be an arbitrary number of elements in a pile. Ipile left-justifies, pile
c

and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 } ccol { 1 above 2 } } pro-
X; 1

duces y, 2 In addition, there is rcol for a right-justified column.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

EQN(1-BSD) RISC/os Programmer’s Reference EQN(1-BSD)

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec, dyad, and under: x dot =
f(t) bar is x =f (t), y dotdot bar “="n under is § = n, and x vec ="y dyad is ¥ = ¥.

Sizes and font can be changed with size n or size 4n, roman, italic, bold, and font n. Size
and fonts can be changed globally in a document by gsize n and gfont 7, or by the command-
line arguments =sn and =fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the prevxous size; this
may be changed by the command-line argument =pn, :

Successive display arguments can be lined up. Place mark before the desired lineup point in
the first equation; place lineup at the place that is to line up vertically in subsequent equa-
tions.

Shorthands may be defined or existing keywords redefined with define; define thing % replace-
ment % defines a new token called thing which will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords like sumY() int ([) inf (c0) and shorthands like >= (>) -> (—), and != (%) are
recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA.
Mathematical words like sin, cos, log are made Roman automatlcally Troff(1) four-character
escapes like \(bs ((J) can be used anywhere. Strings enclosed in double quotes "..." are
passed through untouched; this permits keywords to be entered as text, and can be used to
communicate with roff when all else fails.

SEE ALSO

BUGS

Page 2

troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics-User’s Guide
J. F. Ossanna, NROFF/TROFF User’s Manual

To embolden digits, parens, etc., it is necessary to quote them, as in ‘bold "12.3".

February 6, 1989 - MIPS Computer Systems, Inc.

ERROR (1-BSD) - RISC/os Programmer’s Reference ERROR (1-BSD)

NAME
error — analyze and disperse compiler error messages

SYNOPSIS
error [=n][=s][=q][=v][—t suffixlist] [=I ignorefile] [name]

DESCRIPTION
error analyzes and optionally disperses the diagnostic error messages produced by a number of
compilers and language processors to ‘the source file and line where the errors occurred. It
can replace the painful, traditional methods of scribbling abbreviations of errors on paper,
and permits error messages and source code to be viewed simultaneously w1thout machina-
tions of multiple windows in a screen editor.

error looks at the error messages, either from the specified file name or from the standard
input, and attempts to determine which language processor produced each error message,
determines the source file and line number to which the error message refers, determines if
the error message is to be ignored or not, and inserts the (possibly slightly modified) error
message into the source file as a comment on the line preceding to which the line the error
message refers. error messages which can’t be categorized by language processor or content
are not inserted into any file, but are sent to the standard output. error touches source files
only after all input has been read. By specifying the =q query option, the user is asked to
confirm any potentially dangerous (such as touching a file) or verbose action. Otherwise error
proceeds on its merry business. If the —t touch option and associated suffix list is given, error
will restrict itself to touch only those files with suffices in the suffix list. error also can be
asked (by specifying =v) to invoke vi(1) on the files in which error messages were inserted;
this obviates the need to remember the names of the files with errors.

error is intended to be run with its standard input connected via a pipe to the error message
source. Some language processors put error messages on their standard error file; others put
their messages on the standard output Hence, both error sources should be piped together
into error. For example, when using the csh syntax,

make -s lint |& error —q —v

will analyze all the error messages produced by whatever programs make runs when making
lint.

error knows about the error messages produced by: make, cc, cpp, ccom, as, ld, lint, pi, pc,
f77, and DEC Western Research Modula-2. error knows a standard format for error messages
produced by the language processors, so is sensitive to changes in these formats. For all
languages except Pascal, error messages are restricted to be on one line. Some error messages
refer to more than one line in more than one files; error will duplicate the error message and
insert it at all of the places referenced.

error will do one of six things with error messages.

synchronize
Some language processors produce short errors describing which file it is process-
ing. error uses these to determine the file name for languages that don’t include the
file name in each error message. These synchronization messages are consumed
entirely by error.

discard error messages from lint that refer to one of the two lint libraries, /usr/lib/llib-Ic
and /usr/lib/llib-port are discarded, to prevent accidently touching these libraries.
Again, these error messages are consumed entirely by error.

nullify error messages from lint can be nullified if they refer to a specific function, which
is known to generate diagnostics which are not interesting. Nullified error messages
are not inserted into the source file, but are written to the standard output. The

MIPS Computer Systems, Inc. February 6, 1989 Page 1

ERROR (1-BSD) RISC/os Programmer’s Reference ERROR (1-BSD)

names of functions to ignore are taken from either the file named .errorrc in the
users’s home directory, or from the file named by the =I option. If the file does
not exist, no error messages are nullified. If the file does exist, there must be one
function name per line.

not file specific ,
error messages that can’t be intuited are grouped together, and written to the stan-
dard output before any files are touched. They will not be inserted into any source
file. '

file specific : v
error message that refer to a specific file, but to no specific line, are written to the
standard output when that file is touched.

true errors error messages that can be intuited are candidates for insertion into the file to
which they refer.

Only true error messages are candidates for inserting into the file they refer to. Other error
messages are consumed entirely by error or are written to the standard output. error inserts
the error messages into the source file on the line preceding the line the language processor
found in error. Each error message is turned into a one line comment for the language, and is
internally flagged with the string “###” at the beginning of the error, and “% % %” at the end
of the error. This makes pattern searching for errors easier with an editor, and allows the
messages to be easily removed. .In addition, each error message contains the source line
number for the line the message refers to. A reasonably formatted source program can be
recompiled with the error messages still in it, without having the error messages themselves
cause future errors. For poorly formatted source programs in free format languages, such as C
or Pascal, it is possible to insert a comment into another comment, which can wreak havoc
with a future compilation. To avoid this, programs with comments and source on the same
line should be formatted so that language statements appear before comments.

Options available with error are:
=n Do not touch any files; all error messages are sent to the standard output.

—q The user is queried whether s/he wants to touch the file. A “y” or “n” to the question is
necessary to continue. Absence of the —q option implies that all referenced files
(except those referring to discarded error messages) are to be touched.

—v After all files have been touched, overlay the visual editor vi with it set up to edit all files
touched, and positioned in the first touched file at the first error. If vi can’t be found,
try ex or ed from standard places.

—~t Take the following argument as a suffix list. Files whose suffixes do not appear in the
suffix list are not touched. The suffix list is dot separated, and “«” wildcards work.
Thus the suffix list:

".c.y.foox.h"
allows error to touch files ending with “.c”, “.y”, “.foo” and “.y”.
=s Print out statistics regarding the error categorization. Not too useful.

error catches interrupt and terminate signals, and if in the insertion phase, will orderly ter-
minate what it is doing.

AUTHOR
Robert Henry
FILES
~/ .errorrc function names to ignore for lint error messages
/dev/tty user’s teletype
Page 2 February 6, 1989 MIPS Computer Systems, Inc.

FRROR (1-BSD) RISC/os Programmer’s Reference ERROR (1-BSD)

BUGS
Opens the teletype directly to do user querying.

Source files with links make a new copy of the file with only one link to it.

Changing a language processor’s format of error messages may cause error to not understand
the error message.

error, since it is purely mechanical, will not filter out subsequent errors caused by ‘floodgating’
initiated by one syntactically trivial error. Humans are still much better at discarding these
related errors.

Pascal error messages belong after the lines affected (error puts them before). The alignment
of the ‘|’ marking the point of error is also disturbed by error.

error was designed for work on CRT’s at reasonably high speed. It is less pleasant on slow
speed terminals, and has never been used on hardcopy terminals.

MIPS Computer Systems, Inc. February 6, 1989 Page 3

EXPAND (1-BSD) RISC/os Programmer’s Reference EXPAND (1-BSD)

NAME .
expand, unexpand — expand tabs to spaces, and vice versa

SYNOPSIS
expand [—tabstop] [—tabl,tab2,...,tabn] [file ...]
unexpand [=—a | [file ...]

DESCRIPTION
expand processes the named files or the standard input writing the standard output with tabs
changed into blanks. Backspace characters are preserved into the output and decrement the
column count for tab calculations. expand is useful for pre-processing character files (before
sorting, looking at specific columns, etc.) that contain tabs. '

If a single tabsrop argument is given, then tabs are set fabstop spaces apart instead of the
default 8. If multiple tabstops are given then the tabs are set at those specific columns.

. Unexpand puts tabs back into the data from the standard input or the named files and writes
the result on the standard output. By default, only leading blanks and tabs are reconverted to
maximal strings of tabs. If the —a option is given, then tabs are inserted whenever they would
compress the resultant file by replacing two or more characters.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

F77(1) RISC/os Programmer’s Reference F77(1)

NAME

f77 - MIPS Fortran 77 compiler
SYNOPSIS

77 [option] ... file ...
DESCRIPTION

F77, the MIPS ucode Fortran 77 compiler, produces files in the following formats: MIPS
object code in MIPS extended coff format (the normal result), binary or symbolic ucode,
ucode object files and binary or symbolic assembly language. F77 accepts several types of
arguments:

Arguments whose names end with ‘.f" are assumed to be Fortran 77 source programs. They
are compiled, and each object program is left in the file whose name consists of the last com-
ponent of the source with ‘.0’ substituted for ‘.f’. The ‘.0’ file is only deleted when a single
source program is compiled and loaded all at once. Files ending in ‘.F’ are assumed to con-
tain Fortran code which is to be run through the C preprocessor first.

Arguments whose names end with ‘.r’ or ‘.¢’ are assumed to be RATFOR or EFL source pro-
grams, respectively. These programs are first transformed by the appropriate preprocessor
and then compiled by f77, producing ‘.0’ files.

Arguments whose names end with ‘.s’ are assumed to be symbolic assembly language source

programs. They are assembled, producing a ‘.0’ file. Arguments whose names end with ‘.i’

are assumed to be Fortran 77 source after being processed by the C preprocessor. They are
".compiled without being processed by the C preprocessor.

If the highest level of optimization is specified (with the —O3 flag) or only ucode object files
are to be produced (with the —j flag) each Fortran 77, RATFOR or EFL source file is compiled
into a ucode object file. The ucode object file is left in a file whose name consists of the last
component of the source with ‘.u’ substituted for .f’, ‘.r’, or ‘.¢’.

The suffixes described below primarily aid compiler development and are not generally used.
Arguments whose names end with “B’, ‘.(’, *.§’, and ‘.M’ are assumed to be binary ucode,
produced by the front end, optimizer, ucode object file splitter and ucode merger respectively.
Arguments whose names end with ‘.U’ are assumed to be symbolic ucode. Arguments whose
names end with ‘.G’ are assumed to be binary assembly language, which is produced by the
code generator and the symbolic to binary assembler.

Files that are assumed to be binary ucode, symbolic ucode, or binary assembly language by
the suffix conventions are also assumed to have their corresponding symbol table in a file with
a T’ suffix. '

F77 always defines the C preprocessor macros mips, host_mips and unix to the C macro
preprocessor. If the —cpp option is present f77 defines the C preprocessor macro
LANGUAGE_FORTRAN when a ‘.f, ‘.r’, or ‘.¢’ file is being compiled. F77 will define the C
preprocessor macro LANGUAGE_ASSEMBLY when a ‘s’ file is being compiled. It also
defines SYSTYPE_SYSV by default but this changes if the —systype name option is specified
(see the description below).

The following options are interpreted by f77 and have the same meaning in cc(1). See ld(1)
for load-time options.

-c Suppress the loading phase of the compilation and force an object file to be pro-
duced even if only one program is compiled.

—g0 Have the compiler produce no symbol table information for'symbolic debugging.
This is the default.

—g1 Have the compiler produce additional symbol table information for accurate but

MIPS Computer Systems, Inc. February 13, 1989 Page 1

F77(1)

Page 2

RISC/os Programmer’s Reference v (1)

limited symbolic debugging of partially optimized code.

-g or —g2

-w

-pl or =p

-00
-01

Have the compiler produce additional symbol table information for full symbolic
debugging and not do optimizations that limit full symbolic debugging.

Have the compiler produce additional symbol table information for full symbolic
debugging for fully optimized code. This option makes the debugger inaccurate.

Suppress warning messages.

Do not permit any profiling. This is the default. If loading happens, the standard
runtime startup routine (ertl.o) is used, no profiling library is searched.

Set up for profiling by periodically sampling the value of the program counter. This
option only effects the loading. When loading happens, this option replaces the stan-
dard runtime startup routine with the profiling runtime startup routine (mertl.o) and
searches the level 1 profiling library (libprofl.a). When profiling happens, the startup
routine calls monstartup(3) and produces a file mon.out that contains execution-
profiling data for use with the postprocessor prof(l).

Turn off all optimizations.

Turn on all optimizations that can be done quickly. “This is the default.

-0 or —-02

Invoke the global ucode optimizer. —O3 Do all optimizations, including global regis-
ter allocation. This option must precede all source file arguments. With this option,
a ucode object file is created for each Fortran 77, RATFOR, or EFL source file and
left in a ‘v’ file. The newly created ucode object files, the ucode object files
specified on the command line and the runtime startup routine and all the runtime
libraries are ucode linked. Optimization is done on the resulting ucode linked file
and then it is linked as normal producing an “a.out” file. No resulting ‘.0’ file is left
from the ucode linked result as in previous releases. In fact —e¢ can no longer be
specified with =-O3.

—feedback file

—cord

=J

Used with the —gbrd option to specify file to be used as a feedback file. This file is
produced by prof(1) with its —feedback option from an execution of the program
produced by pixie(1).

Run the procedure-rearranger, cord(1), on the resulting file after linking. The rear-
rangement is done to reduce the cache conflicts of the program’s text. The output of
cord(1) is left in the file specified by the =—o output option or ‘a.out’ by default. At
least one —feedback file must be specified.

Compile the specified source programs, and leave the ucode object file output in
corresponding files suffixed with ‘.u’. :

—ko output

Name the output file created by the ucode loader as output. This file is not removed.
If this file is compiled, the object file is left in a file whose name consists of output
with the suffix changed to a ‘.0’. If output has no suffix, a ‘.0’ suffix is appended to
output.

Pass options that start with a —k to the ucode loader. This option is used to specify
ucode libraries (with —klx) and other ucode loader options.

"~ Compile the specified source programs and leave the symbolic assembly language out-

put in corresponding files suffixed with *.s’.

February 13, 1989 MIPS Computer Systems, Inc.

F77(1)

RISC/os Programmer’s Reference : F77(1)

-P Run only the C macro preprocessor and put the result for each source file (by suffix
convention, i.e. “.f’, ‘.r’, ‘.¢’ and ‘.s’) in a corresponding ‘.i’ file after being processed
by appropriate preprocessors. The ‘.i’ file has no ‘#’ lines in it. This sets the —cpp

option.

-E Run only the C macro preprocessor on the files (regardless of any suffix or not), and
send the result to the standard output. This sets the —cpp option.

—o output .
Name the final output file outpur. If this option is used, the file ‘a.out’ is undis-
turbed.

~Dname=def

=Dname

Define the name to the C macro preprocessor, as if by ‘#define’. If no definition is
given, the name is defined as "1".

=Uname
Remove any initial definition of name.

=Idir ‘#include’ files whose names do not begin with ‘/’ are always sought first in the direc-
tory of the file argument, then in directories specified in —I options, and finally in the
standard directory (/usr/include). :

-1 This option will cause ‘#include’ files never to be searched for in the standard direc-
tory (/usr/include). : '

=G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. Num is assumed to be a decimal number. If num is zero, no data is
accessed from the global pointer. The default value for num is 8 bytes.

-y Print the passes as they execute with their arguments and their input and output files.

-V Print the version of the driver and the versions of all passes. This is done with the
what (1) command.

—std Have the compiler produce warnings for things that are not standard in the language.

—cpp Run the C macro preprocessor on all Fortran source files before compiling. This
includes Fortran sources created by RATFOR or EFL .

—nocpp ,
Do not run the C macro preprocessor on any Fortran source files before compiling.

This is the default for mf77(1). This includes Fortran sources created by RATFOR or
EFL .

—Olimit num
Specify the maximum size, in basic blocks, of a routine that will be optimized by the
global optimizer. If a routine has more than this number of basic blocks it will not
be optimized and a message will be printed. An option specifying that the global
optimizer is to be run (=0, —02, or —03) must also be specified. Num is assumed
to be a decimal number. The default value for num is 500 basic blocks.

Fither object file target byte ordering can be produced by f77. The default target byte order-
ing matches the machine where the compiler is running. The options —EB and —EL specify
the target byte ordering (big-endian and little-endian, respectively). The compiler also defines
a C preprocessor macro for the target byte ordering. These C preprocessor macros are MIP-
SEB and MIPSEL for big-endian and little-endian byte ordering respectively.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

F77(1) RISC/os Programmer’s Reference F77(1)

If the specified target byte ordering does not match the machine where the compiler is run-
ning, then the runtime startups and libraries come from /usr/libeb for big-endian runtimes on
a little-endian machine and from /usr/libel for little-endian runtimes on a big-endian machine.

=EB Produce object files targeted for big-endian byte ordering. The C preprocessor macro
MIPSEB is defined by the compiler.

—EL Produce object files targeted for little-endian byte ordermg The C preprocessor
macro MIPSEL is defined by the compiler.

The following options are specific for f77:

—i2 Make the default integer constants and variables short. All logical quantities will be
short. =—id is the default.

-onetrip or ~1
Compile DO loops that execute at least once if reached. (Fortran 77 DO loops are not
executed if the upper limit is smaller than the lower limit.)

=66 Suppress extensions that enhance Fortran 66 compatibility.

-C Generate code for runtime subscript range checking. The default suppresses range
checking.

—U Do not “fold” cases. F77 is normally a no-case language (for example a equals A).
The —U option causes f77 to treat uppercase and lowercase separately.

—u Make the default type of a variable undefined, rather than using the default Fortran
rules.

-W Suppress all warning messages. If the option is =w66, only Fortran 66 compatibility
warnings are suppressed.

—=wl Suppress warnings about unused variables (but permit other warnings unless —w is also
specified).

-F Apply the EFL and RATFOR preprocessors to relevant files and put the result in files
whose names have their suffix changed to ‘.f. (No .0’ files are created.)

—m Apply the M4 preprocessor to each EFL or RATFOR source file before transforming it
with the ratfor (1) or efi(1) preprocessors. The temporary file used as the output of the
m4(1) preprocessor is that of the last component of the source file with a ‘.p’ substi-
tuted for the ‘.’ or “.r’. This temporary file is removed unless if the =K option is
specified. s

-E Use any remaining characters in the argument as EFL options whenever processing a
‘.¢’ file. The temporary file used as the output of the EFL preprocessor has the last

component of the source file with a .f substituted for the ‘.¢’. This temporary file is
removed unless the —K option is specified.

-R Use any remaining characters in the argument as RATFOR options whenever process-
ing a “.r’ file. The temporary file used as the output of the RATFOR preprocessor is
that of the last component of the source file with a ‘.f* substituted for the ‘.r’. This
temporary file is removed unless the —K option is specified.

—automatic
Place local variables on the runtime stack. The same restrictions apply for this option
as they do for the automatic keyword. This is the default.

~static
Cause all local variables to be staticly allocated.

—noextend_source
Pad each source line with blanks or truncate it as need be to make it 72 bytes long.

Page 4 February 13, 1989 MIPS Computer Systems, Inc.

F77(1) RISC/os Programmer’s Reference F77(1)

—extend._source _
Pad each source line with blanks if need be to make it 132 bytes long, but do not trun-
cate it if it exceeds 132 bytes.

-=d_lines
The d_lines option specifies that lines with a D in column 1 are to be compiled and
not to be treated as comment lines. The default is to treat lines with a D in column 1
as comment lines.

—~col72 This option sets the SVS Fortran 72 column option mode for source statements.

~col120
This option sets the SVS Fortran default mode for source statements,

-=yms

Cause the runtime system to behave like VMS Fortran with regard to interpreting car-
riage control on unit 6.

=N[qgxscnl)nnn
Make static tables in the compiler bigger. The compiler will complain if it overflows its
tables and suggest you apply one or more of these flags. These flags have the following

meanings: ‘

q Maximum number of equivalenced variables. Default is 150.

X Maximum number of external names (common block names, subroutine and
function names). Default is 200.

s Maximum number of statement numbers. Default is 401.

c Maximum depth of nesting for control statements (e.g. DO loops). Default is
20.

n Maximum number of identifiers. Default is 1009.

1 Maximum number of labels. Default is 125.

The option described below is primarily used to provide UNIX compilation environments
other than the native compilation environment.

-systype name

Use the named compilation environment name. See compilation(7) for the compila-
tion environments that are supported and their names. This has the effect of changing
the standard directory for ‘#include’ files, the runtime libraries and where runtime
libraries are searched for. The new items are located in their usual paths but with
/name prepended to their paths. Also a preprocessor macro of the form
SYSTYPE_NAME (with name capitalized) is defined in place of the default
SYSTYPE_SYSV.

The options described below primarily aid compiler development and are not generally used:

—Hc Halt compiling after the pass specified by the character ¢, producing an intermediate
file for the next pass. The ¢ can be [fjusmoca]. It selects the compiler pass in the
same way as the —t option. If this option is used, the symbol table file produced and
used by the passes, is the last component of the source file with the suffix changed to
©.'T’ and is not removed.

—K Build and use intermediate file names with the last component of the source file’s
name replacing its suffix with the conventional suffix for the type of file (for example
‘.B’ file for binary ucode, produced by the front end). These intermediate files are
never removed even when a pass encounters a fatal error. When ucode linking is per-
formed and the —K option is specified the base name of the files created after the

MIPS Computer Systems, Inc. February 13, 1989 Page 5

F77(1)

Page 6

RISC/os Programmer’s Reference F77(1)

ucode link is ‘v.out’ by default. If —~ko output is specified, the base name of the
object file is output without the suffix if it exists or suffixes are appended to ourput if it
has no suffix.

—# Converts binary ucode files (‘.B’) or optimized binary ucode files (“*.0’) to. symbolic
ucode (a ‘U’ file) using btou (1). If a symbolic ucode file is to be produced by con-
verting the binary ucode from the Fortran 77 compiler front end then the front end
option —Xu is used instead of brou (1).

-Wc/c...],argl[,arg2...] ‘
Pass the argument(s] argi to the compiler pass[es] c/c..]. The c’s are one of [pfjusmo-
cablyz]. The c’s selects the compiler pass in the same way as the =t option.

The options =—t[hpfjusmocablyzrFIUSMnt|, ~hpath, and ~Bstring select a name to use for a
particular pass, startup routine, or standard library. These arguments are processed from left
to right so their order is significant. When the =B option is encountered, the selection of
names takes place using the last —h and —t options. Therefore, the =B option is always
required when using —h or —t. Sets of these options can be used to select any combination of
names.

The ~EB or —EL options, the —p[01] options and the —systype option must precede all =B
options because they can affect the location of runtimes and what runtimes are used.

—t[hpfjusmocablyzrFIUSMnt] .
Select the names. The names selected are those designated by the characters follow-
ing the —t option according to the following table:
Name Character
include h (see note below)
cpp p
fcom f
ujoin j
uld u
usplit s
umerge m
uopt 0
ugen c
as0 a
asl b
Id 1
ftoc y
cord z
[m]ert[1n].o r
libF77.a F
1ibI77.a I
ibU77.a U
libisam.a S
libm.a M
libprofl.a n
btou, utob t

If the character ‘h’ is in the —t argument then a directory is added to the list of direc-
tories to be used in searching for ‘#include’ files. This directory name has the form
COMP_TARGET_ROOT/usr/includestring . This directory is to contain the include files
for the string release of the compiler. The standard directory is still searched.

~hpath ;

Use path rather than the directory where the name is normally found.

February 13, 1989 MIPS Computer Systems, Inc.

(

F77(1) RISC/os Programmer’s Reference F77(1)
g

~Bstring
Append string to all names specified by the —t option. If no ~t option has been pro-
cessed before the =B, the =—t option is assumed to be ‘“hpfjusmocablyzrFIUSMnt”.
This list designates all names. If no —t argument has been processed before the ~B
then a —Bstring is passed to the loader to use with its —lx arguments.

Invoking the compiler with a name of the form f77string has the same effect as using a
—Bstring option on the command line.

If the environment variable COMP_HOST_ROOT is set, the value is used as the root directory
for all pass names rather than the default /. If the environment variable
COMP_TARGET_ROOT is set, the value is used as the root directory for all include and library
names rather than the default /. This affects the standard directory for ‘#include’ files,
/usr/include, and the standard library, /usr/lib/libc.a. If this is set, the first directory that is
searched for libraries, using the =lx option, is COMP_TARGET_ROOT/usr/lib/cmplrs/cc. The
standard directories for libraries are then searched, see Id(1).

If the environment variable TMPDIR is set, the value is used as the directory to place any tem-
porary files rather than the default /tmp/ .

If the environment variable RLS_ID_OBJECT is set, the value is used as the name of an object
> link in if a link takes place. This is used to add release identification information to
objects. It is always the last object specified to the loader. See ris_id(1) for the tools to
create. this information.

Other arguments are assumed to be either loader options or Fortran 77-compatible object
files, typically produced by an earlier f77 run, or perhaps libraries of Fortran 77-compatible
routines. These files, together with the results of any compilations specified, are loaded in the
order given, producing an executable program with the default name a.out.

FILES
file.f input file
file.o object file
a.out loaded output
/tmp/ctm? temporary
/usr/lib/cpp C macro preprocessor
/usr/lib/fcom Fortran 77 front end
/usr/lib/ujoin binary ucode and symbol table joiner
/usr/bin/uld ucode loader

/usr/lib/usplit binary ucode and symbol table splitter
/usr/lib/umerge procedure intergrator

/usr/lib/uopt optional global ucode optimizer

/usr/lib/ugen code generator

/usr/lib/as0 symbolic to binary assembly language translator
/usr/lib/asl binary assembly language assembler and reorganizer
/usr/lib/crtl.o runtime startup

/usr/lib/crtn.o runtime startup

/usr/lib/mcrtl.o startup for profiling

/usr/lib/libc.a standard library, see intro(3)
/usr/lib/libprofl.a level 1 profiling library

/usr/lib/1ibF77.a Fortran intrinsic function library
/ust/lib/1ibI77.a Fortran I/O library

/usr/lib/libU77.a Fortran UNIX interface library
/usr/lib/libisam.a Indexed sequential access method library
/usr/lib/libm.a Math library

/usr/include standard directory for ‘#include’ files

MIPS Computer Systems, Inc. February 13, 1989 Page 7

F77(1)

RISC/os Programmer’s Reference F77(1)
/usr/bin/1d MIPS loader
/usr/lib/ftoc interface between prof(1) and cord(1)
/usr/lib/cord procedure-rearranger
/usr/bin/btou binary to symbolic ucode translator
/usr/bin/utob symboalic to binary ucode translator
/ust/bin/efl extended Fortran language preprocessor
/usr/bin/ratfor rational Fortran dialect preprocessor
mon.out file produced for analysis by prof(1)

Runtime startups and libraries for the opposite byte sex of machine the compiler is running on
have the same names but are located in different directories. For big-endian runtimes on a
little-endian machine the directory is /usr/libeb and for httle—endlan runtimes on a big-endian
machine the directory is /usr/libel.

SEE ALSO
Languages Programmer’s Guide

cc(1), as(1), efi(1), ratfor(1), m4(1), monstartup(3), prof(1), 1d(1), dbx(1), what('

DIAGNOSTICS

NOTES

Page 8

The diagnostics produced by f77 are intended to be self—explanatory Occasional messages can
be produced by the assembler or loader, :

The standard library, /usr/lib/libc.a, is loaded by using the -lc loader option and not a full
path name. The wrong one could be loaded if there are files with the name libc.astring in the
directories specified with the —L loader option or in the default directories searched by the
loader.

The handling of include directories and libc.a is confusing.

February 13, 1989 ~ MIPS Computer Systems, Inc.

FIND (1-BSD) RISC/os Programmer’s Reference FIND (1-BSD)

NAME
find — find files

SYNOPSIS
find pathname-list expression
find pattern

DESCRIPTION
In the first form above, find recursively descends the directory hierarchy for each pathname in
the pathname-list (i.e., one or more pathnames) seeking files that match a boolean expression
written in the primaries given below. In the descriptions, the argument n is used as a decimal
integer where +n means more than n, —n means less than n and » means exactly n.

The second form rapidly searches a database for all pathnames which match partern. Usually
the database is recomputed weekly and contains the pathnames of all files which are publicly
accessible. If escaped, normal shell “globbing” characters (‘#, ‘?’, ‘[, and ’]) may be used in
pattern, but the matching differs in that no characters (e.g. ‘/’) have to be matched explicitly.
As a special case, a simple pattern containing no globbing characters is matched as though it
were spatternxs; if any globbing character appears there are no implicit globbing characters.
—name filename
True if the filename argument matches the current file name. Normal shell argu-
ment syntax may be. used if escaped (watch out for ’, ‘?” and).
—perm onum
- True if the file permission flags exactly match the octal number onum (see
chmod(1)). If onum is prefixed by a minus sign, more flag bits (017777, see stat(2))
become significant and the flags are compared: (flags&onum)==onum .

~fstype rype
True if the filesystem to which the file belongs is of type type, where type is typically
4.3 or nfs.

—type ¢ True if the type of the file is ¢, where cis b, ¢, d, f, 1, p or s for block special file,
character special file, directory, plain file, symbolic link, fifo, or socket.

~links n True if the file has »n links.

—prune Always true. Has the side effect of pruning the search tree at the file. That is, if
the current pathname is a directory, find will not descend into that directory.

—depth Always true, Has the side effect of causing a depth-first search,’ That is, the chil-
dren of the directory are processed before the directory itself. The options =—cpio
and —ncpio cause —depth to be turned on by default.

—user uname
True if the file belongs to the user uname (login name or numeric user ID).

—nouser True if the file belongs to a user not in the /etc/passwd database.

—group gname
True if the file belongs to group gname (group name or numeric group ID).

—nogroup o
True if the file belongs to a group not in the /etc/group database.
—size n True if the file is n blocks long (512 bytes per block).
—inum n True if the file has inode number n.
—atime n True if the file has been accessed in n days.

—ctime n True if the inode has been changed in n days (see Is(I) for more information).

MIPS Computer Systems, Inc. February 13, 1989 Page 1

"FIND (1-BSD) RISC/os Programmer’s Reference FIND (1-BSD)

—mtime n True if the file has been modified in n days.

=~exec command
True if the executed command returns a zero value as exit status. The end of the
command must be punctuated by an escaped semicolon. A command argument
Y} is replaced by the current pathname.

—~ok command
Like —exec except that the generated command is written on the standard output,
_ then the standard input is read and the command executed only upon response y.

—print Always true; causes the current pathname to be printed.

-ls Always true; causes current pathname to be printed together with its associated
statistics. These include (respectively) inode number, size in kilobytes (1024 bytes),
protection mode, number of hard links, user, group, size in bytes, and

~ modification time. If the file is a special file the size field will instead contain the
major and minor device numbers. If the file is a symbolic link the pathname of the
linked-to file is printed preceded by “->”, The format is identical to that of “Is
-gilds” (note however that formatting is done internally, without executing the ls
program).

—newer file
True if the current file has been modified more recently than the argument file.

—cpio file Write the ‘current file on the argument file in standard cpio format. Implies
—depth.

~ncpio file
Write the current file on the argument file in ASCII (=C) cpio format, Implies
—depth,

—xdev Always true; causes find not to traversé down into a file system dlfferent from the
one on which current argument pathname resides.

The primaries may be combined using the followmg operators (in order of decreasing pre-
cedence):

1) A parenthesized group of primaries and operators (parentheses are special to the Shell
and must be escaped).

2) The negation of a primary (‘" is the unary not operator).

3) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri-
maries).

4) Alternation of primaries (‘—~o’ is the or operator),
p p

EXAMPLES

Page 2

To find all accessible files whose pathname contains “find’:
find find
To typeset all variants of manual pages for ‘Is’:
vtroff -man ‘find *xmans/1s.?*¢
To remove all files named ‘a.out’ or ‘«.0’ that have not been accessed for a week:
find / \(—name a.out —~o —name ’+.0’ \) —atime +7 —exec rm {} \;

The following will print Is-like information for all files in the current directory and subdirec-
tories except for files in RCS directories:

find . -name RCS -prune -o -print

February 13, 1989 MIPS Computer Systems, Inc.

FIND (1-BSD) RISC/os Programmer’s Reference FIND (1-BSD)

FILES
/etc/passwd
/etc/group
/usr/lib/find/find.codes coded pathnames database

SEE ALSO
sh(1), test(1), fs(5)
Relevant paper in February, 1983 issue of ;login:.

BUGS
The first form’s syntax is painful, and the second form’s exact semantics is confusing and can

vary from site to site.
More than one “newer’ option does not work properly.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

FMT (1-BSD) RISC/os Programmer’s Reference FMT (1-BSD)

NAME
fmt — simple text formatter
SYNOPSIS
fmt [name ...]
DESCRIPTION
fmt is a simple text formatter which reads the concatenation of input files (or standard input if
none are given) and produces on standard output a version of its input with lines as close to
72 characters long as possible. The spacing at the beginning of the input lines is preserved in
the output, as are blank lines and interword spacing.
fmt is meant to format mail messages prior to sending, but may also be useful for other simple
tasks. For instance, within visual mode of the ex editor (e.g. vi) the command . .
I}Hmt
will reformat a paragraph, evening the lines.
SEE ALSO
nroff(1), mail(1)
AUTHOR
Kurt Shoens
BUGS

The program was designed to be simple and fast — for more complex operations, the standard
text processors are likely to be more appropriate.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

FROM (1-BSD) RISC/os Programmer’s Reference FROM (1-BSD)

NAME
from — who is my mail from?
SYNOPSIS
from [—s sender] [user]
DESCRIPTION
from prints out the mail header lines in your mailbox file to show you who your mail is from.

If user is specified, then user’s mailbox is examined instead of your own. If the -s option is
given, then only headers for mail sent by sender are printed.

FILES ’
_ /usr/spool/mail/x
SEE ALSO

biff(1), mail(1)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

FSPLIT (1-BSD) RISC/o0s Programmer’s Reference FSPLIT (1-BSD)

NAME
fsplit — split a multi-routine Fortran file into individual files

SYNOPSIS '
fsplit [-e efile] ... [file]

DESCRIPTION
fsplit takes as input either a file or standard input containing Fortran source code. It attempts
to split the input into separate routine files of the form name.f, where name is the name of the
program unit (e.g. function, subroutine, block data or program). The name for unnamed
block data subprograms has the form blkdtaNNN.f where NNN is three digits and a file of this
name does not already exist. For unnamed main programs the name has the form
mainNNN.f. If there is an error in classifying a program unit, or if name.f already exists, the
program unit will be put in a file of the form zzzNNN.f where zzzNNN.f does not already exist.
Normally each subprogram unit is split into a separate file. When the -e option is used, only
the specified subprogram units are split into separate files. E.g.:

fsplit -e readit -e doit prog.f

will split readit and doit into separate files.

DIAGNOSTICS '
If names specified via the -e option are not found, a diagnostic is written to standard error.

AUTHOR '
Asa Romberger and Jerry Berkman

BUGS

fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit.
Nonstandard source formats may confuse fsplit,

It is hard to use -¢ for unnamed main programs and block data subprograms since ybu must
predict the created file name. '

MIPS Computer Systems, Inc. February 6, 1989 Page 1

(

FTOC(1) RISC/os Programmer’s Reference ‘ FTOC (1)

NAME
ftoc — interface between prof and cord

SYNOPSIS
ftoc filel ...

DESCRIPTION

ftoc reads one or more feedback files produced by the —feedback option of the profiler
prof(1) and writes onto stdout a reorder-file for use with the cache-rearranging program
cord(1). It interprets each feedback file as representing one phase of a program’s execution.
In other words, if a program behaves in two distinct ways depending on its-input, you could
create two different feedback files by executing the program twice with different input data,
and both froc and cord will understand that the information from the first file is distinct from
that of the second file. '

As an example, to improve the instruction-cache performance of a program called hello, you
could generate a new hello.cord program by saying:

cc -o hello hello.c

pixie -o hello.pixie hello

hello

prof -pixie -feedback hello.feedback hello

ftoc hello.feedback > hello.reorder

cord -o hello.cord hello hello.reorder

The reorderfile consists of a list of lines of the form:
sourcefile procname.procname... 1

where "procname.procname...” represents an outer-to-inner list of nested procedures, and n is
10 times the percentage of the procedure’s "density" with respect to the total of the densities
of all procedures. ("Density" is the ratio of a procedure’s total cycles to its total static instruc-
tions.) A line consisting of "$phase" separates information from different feedback files.

SEE ALSO
cord(1), prof(1)

MIPS Computer Systems, Inc. February 13, 1989 Page 1

GPROF (1) RISC/os Programmer’s Reference GPROF (1)

NAME

gprof — display call graph profile data

SYNOPSIS

gprof [options | [a.out [gmon.out ...]]

DESCRIPTION

5BSD

gprof produces an execution profile of C, Pascal, or Fortran77 programs. The effect of called
routines is incorporated in the profile of each caller. The profile data is taken from the call
graph profile file (gmon.out default) which is created by programs which are compiled with the
—pg option of cc, pc, and f77. That option also links in versions of the library routines
which are compiled for profiling. The symbol table in the named object file (a.out default) is
read and correlated with the call graph profile file. If more than one profile file is specified,
the gprof output shows the sum of the profile information in the given profile files.

First, a flat profile is given, similar to that provided by prof(1). -This listing gives the total exe-
cution times and call counts for each of the functions in the program, sorted by decreasing
time.

- Next, these times are propagated along the edges of the call graph. Cycles are discovered,

and calls into a cycle are made to share the time of the cycle. A second listing shows the
functions sorted according to the time they represent including the time of their call graph des-
cendents. Below each function entry is shown its (direct) call graph children, and how their
times are propagated to this function. A similar display above the function shows how this
function’s time and the time of its descendents is propagated to its (direct) call graph parents.

Cycles are also shown, with an entry for the cycle as a whole and a listing of the members of
the cycle and their contributions to the time and call counts of the cycle.

The following options are avaijlable:

—a suppresses the printing of statically declared functions. If this option is given, all
relevant information about the static function (e.g., time samples, calls to other func-
tions, calls from other functions) belongs to the function loaded just before the static
function in the a.out file.

—-b supresses the printing of a description of each field in the profile.

-c the static call graph of the program is discovered by a heuristic which examines the
text space of the object file. Static-only parents or children are indicated with call
counts of 0. o

—e name
suppresses the printing of the graph profile entry for routine name and all its descen-
dants (unless they have other ancestors that aren’t suppressed). More than one —e
option may be given. Only one name may be given with each —e option.

=E name
suppresses the printing of the graph profile entry for routine name (and its descen-
dants) as —e, above, and also excludes the time spent in name (and its descendants)
from the total and percentage time computations. (For example, —E mcount —E
mcleanup is the default.)

~f name
prints the graph profile entry of only the specified routine name and its descendants.
More than one —f option may be given. Only one name may be given with each —f
option.

~F name
prints the graph profile entry of only the routine name and its descendants (as —f,
above) and also uses only the times of the printed routines in total time and

February 13, 1989 Page 1

GPROF (1) ‘ RISC/os Programmer’s Reference GPROF (1)

FILES

percentage computations. More than one —F option may be given. Only one name
may be given with each —F option. The —F option overrides the —E option.

—-$ a profile file gmon.sum is produced which represents the sum of the profile informa-
tion in all the specified profile files. This summary profile file may be given to subse-
quent executions of gprof (probably also with a —s) to accumulate profile data across
several runs of an a.out file.

-7, displays routines which have zero usage (as indicated by call counts and accumulated
time). This is useful in conjunction with the —c option for discovering which routines
were never called.

a.out the namelist and text space.
gmon.out dynamic call graph and profile.
gmon.sum summarized dynamic call graph and profile.

SEE ALSO

BUGS

Page 2

monitor(3), profil(2), cc(1), prof(1)

“gprof: A Call Graph Execution Profiler”’, by Graham, S.L., Kessler, P.B., McKusick, M.K.;
Proceedings of the SIGPLAN ’82 Symposium on Compiler Construction, SIGPLAN Notices,
Vol. 17, No. 6, pp. 120-126, June 1982.

Beware of quantization errors.” The granularity of the sampling is shown, but remains statisti-
cal at best. We assume that the time for each execution of a function can be expressed by the
total time for the function divided by the number of times the function is called. Thus the
time propagated along the call graph arcs to parents of that function is directly proportional to
the number of times that arc is traversed.

Parents which are not themselves profiled will have the time of their profiled children pro-
pagated to them, but they will appear to be spontaneously invoked in the call graph listing,
and will not have their time propagated further. Similarly, signal catchers, even though
profiled, will appear to be spontaneous (although for more obscure reasons). Any profiled
children of signal catchers should have their times propagated properly, unless the signal
catcher was invoked during the execution of the profiling routine, in which case all is lost.

The profiled program must call exit(2) or return normally for the profiling information to be
saved in the gmon.out file. '

February 13, 1989 5BSD

GRAPH (1G-BSD) RISC/os Programmer’s Reference GRAPH (1G-BSD)

NAME

graph — draw a graph
SYNOPSIS

graph [option] ...
DESCRIPTION

graph with no options takes pairs of numbers from the standard input as abscissas and ordi-
nates of a graph. Successive points are connected by straight lines. The graph is encoded on
the standard output for display by the plot (1G) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is printed as a

label beginning on the point. Labels may be surrounded with quotes "...", in which case they
may be empty or contain blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

—-a Supply abscissas automatically (they are missing from the input); spacing is given by

the next argument (default 1). A second optional argument is the starting point for
automatic abscissas (default 0 or lower limit given by =x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

~g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).
-1 Next argument is label for graph. ‘

—m Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected
(default). Some devices give distinguishable line styles for other small integers.

-3 Save screen, don’t erase before plotting.

—x [1] If 1 is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x
limits. Third argument, if present, is grid spacing on x axis. Normally these quantities
are determined automatically. ‘

=y [1] Similarly for y.
=—h Next argument is fraction of space for height.
-W Similarly for width.

-r Next argument is fraction of space to move right before plotting.
-u Similarly to move up before plotting. '
~t Transpose horizontal and vertical axes. (Option =x now applies to the vertical axis.)

A legend indicating grid range is produced with a grid unless the —s option is present.
If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
spline(1G), plot(1G)

BUGS

graph stores all points internally and drops those for which there isn’t room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

GROUPS (1-BSD) RISC/os Programmer’s Reference GROUPS (1-BSD)

NAME

groups ~ show group memberships
SYNOPSIS

groups [user]
DESCRIPTION

The groups command shows the groups to which you or the optionally specified user belong.
Each user belongs to a group specified in the password file /etc/passwd and possibly to other
groups as specified in the file /etc/group. If you do not own a file but belong to the group
which it is owned by then you are granted group access to the file. '

When a new file is created it is given the group of the containing directory.
SEE ALSO .

setgroups(2)
FILES

/etc/passwd, /etc/group

BUGS
More groups should be allowed.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

HEAD (1-BSD) RISC/os Programmer’s Reference HEAD (1-BSD)

NAME
head - give first few lines
SYNOPSIS
head [—count] [file ...]
DESCRIPTION
This filter gives the first count lines of each of the specified files, or of the standard input. If
count is omitted it defaults to 10. ‘
SEE ALSO

tail(1)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

INDENT (1-BSD) RISC/os Programmer’s Reference INDENT (1-BSD)

NAME
indent - indent and format C program source

SYNOPSIS
indent [input-file [output-file 1] [=bad | =nbad] [—bap |=nbap | [=bbb | =nbbb]
[=bc |=nbc] [=bl|=br] [=cn] [=cdn] [=cdb |=ncdb] [—=ce |=nce] [—cm]
[=clin] [=dn] [=din] [=dj|=ndj] [=—ei|=nei] [—fcl |—nfc1] [=in]
[~ip |~nip] [=In] [~len] [=lp |=nlp] [=npro] [—pes | =npes] [=ps |-np8]
[=psl | =npsl][=sc | =nsc] [=sob | =nsob][=st | [=troff] [=v | =nv]

- DESCRIPTION

indent is a C program formatter. It reformats the C program in the input-file according to the
switches. The switches which can be specified are described below. They may appear before
or after the file names.

NOTE: If you only specify an input-file, the formatting is done ‘in-place’, that is, the formatted
file is written back into input-file and a backup copy of input-file is written in the current direc-
tory. If.input-file is named ‘/blah/blah/file’, the backup file is named file. BAK.

If output-file is specified, indent checks to make sure it is different from input-file.

. OPTIONS
: The options listed below control the formatting style imposed by indent.

—bad,—nbad If —bad is specified, a blank line is forced after every block of declarations.
Default: =nbad.

=—bap,—nbap If —bap is specified, a blank line is forced after every procedure body.
Default: =nbap.

=bbb,~nbbb If =bbb is specified, a blank line is forced before every block comment.
Default: =nbbb.

=bc,=~nbc If =bc is specified, then a newline is forced after each comma in a declara-
tion. =—nbc turns off this option. The default is =nbec.

=br,=bl Specifying =bl lines up compound statements like this:

{

code

Specifying =br (the default) makes them look like this:

if (...){
code
}
-cn The column in which comments on code start. The default is 33.
=cdn The column in which comments on declarations start. The default is for

these comments to start in the same column as those on code.

=~cdb, —=ncdb Enables (disables) the placement of comment delimiters on blank lines. With
this option enabled comments look like this:
/%
* this is a comment
*/
Rather than like this:
/+ this is a comment %/
This only affects block comments, not comments to the right of code. The
default is —cdb.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

. INDENT (1-BSD)

—cCe, —~nce

~cin

=clin

=-din
—=dj,=ndj

—ei, —nei

=fcl, =nfcl

=-in

=ip, =nip

~In
=lp, —nlp

—npro

—pcs,=npcs

—Pps,=nps

Page 2

RISC/os Programmer’s Reference INDENT (1-BSD)

Enables (disables) forcing ‘else’s to cuddle up to the immediately preceding
‘Y. The default is —ce. '

Sets the continuation indent to be n. Continuation lines will be indented that
far from the beginning of the first line of the statement. Parenthesized
expressions have extra indentation added to indicate the nesting, unless —Ip is
in effect. =ci defaults to the same value as —i.

Causes case labels to be indented n tab stops to the right of the containing
switch statement. —cli0.5 causes case labels to be indented half a tab stop.
The default is =—cli0. (This is the only option that takes a fractional argu-
ment.)

Controls the placement of comments which are not to the right of code.
Specifying =—d1 means that such comments are placed one indentation level
to the left of code. The default =d0 lines up these comments with the code.
See the section on comment indentation below.

Specifies the indentation, in character positions, from a declaration keyword
to the following identifier. The default is —dil6. :

=dj left justifies declarations. =—ndj indents declarations the same- as code.
The default is =ndj.

Enables (disables) special else-if processing. If enabled, ifs following elses

‘will have the same indentation as the preceding if statement. The default is

=ei.

Enables (disables) the formatting of comments that start in column 1. Often,
comments whose leading ¢/’ is in column 1 have been carefully hand format-
ted by the programmer. In such cases, —nfcl should be used. The default is
-fcl.

The number of spaces for one indentation level. The default is 8.

Enables (disables) the indentation of parameter declarations from the left
margin. The default is —ip.

Maximum length of an output line. The default is 78.

Lines up code surrounded by parenthesis in continuation lines. If a line has a
left paren which is not closed on that line, then continuation lines will be
lined up to start at the character position just after the left paren. For exam-
ple, here is how a piece of continued code looks with —nlp in effect:
pl = first_procedure(second_procedure(p2, p3),
third_procedure(p4, p5));
With =Ip in effect (the default) the code looks somewhat clearer:
p1 = first_procedure(second_procedure(p2, p3),
third_procedure(p4, p5));
Inserting two more newlines we get:
pl = first_procedure(second_procedure(p2,
‘ p3),
third_procedure(p4,

P3));
Causes the profile files, ‘./.indent.pro’ and ‘/.indent.pro’, to be ignored.

If true (=pes) all procedure calls will have a space inserted between the name
and the ‘(. The default is =npcs.

If true (=ps) the pointer following operator ‘~>’ will be surrounded by spaces

February 6, 1989 MIPS Computer Systems, Inc.

INDENT (1-BSD) RISC/os Programmer’s Reference INDENT (1-BSD)

on either side. The default is —nps.

—psl,—npsl If true (—psl) the names of procedures being defined are placed in column 1
— their types, if any, will be left on the previous lines. The default is =psl.

—S$C,=NSC Enables (disables) the placement of asterisks (‘¢’s) at the left edge of all com-
ments. The default is —sc.

—sob,~nsob If —sob is specified, indent will swallow optional blank lines. " You can use
this to get rid of blank lines after declarations. Default: =nsob.

—st Causes indent to take its input from stdin, and put its output to stdout.

~Ttypename Adds typename to the list of type keywords. Names accumulate: =T can be
specified more than once. You need to specify all the typenames that appear
in your program that are defined by typedefs — nothing will be harmed if you
miss a few, but the program won’t be formatted as nicely as it should. This
sounds like a painful thing to have to do, but it’s really a symptom of a prob-
lem in C: typedef causes a syntactic change in the language and indent can’t
find all typedefs.

—troff Causes indent to format the program for processing by troff. It will produce a
fancy listing in much the same spirit as vgrind. If the output file is not
specified, the default is standard output, rather than formatting in place.

=V,=nv —v-turns on ‘verbose’ mode; —nv turns it off. When in verbose mode, indent
reports when it splits one line of input into two or more lines of output, and
gives some size statistics at completion. The default is =nv.

FURTHER DESCRIPTION
You may set up your own ‘profile’ of defaults to indent by creating a file called .indent.pro in
either your login directory and/or the current directory and including whatever switches you
like. Switches in ‘.indent.pro’ in the current directory override those in your login directory
(with the exception of -T type definitions, which just accumulate). If indent is run and a
profile file exists, then it is read to set up the program’s defaults. The switches should be
separated by spaces, tabs or newlines. Switches on the command line, however, override
profile switches.

Comments

‘Box’ comments. indent assumes that any comment with a dash or star immediately after the
start of comment (that is, /=’ or ‘/%’) is a comment surrounded by a box of stars. Each line
of such a comment is left unchanged, except that its indentation may be adjusted to account
for the change in indentation of the first line of the comment.

Straight text. All other comments are treated as straight text. indent fits as many words
(separated by blanks, tabs, or newlines) on a line as possible. Blank lines break paragraphs.

Comment indentation

If a comment is on a line with code it is started in the ‘comment column’, which is set by the
—cn command line parameter. Otherwise, the comment is started at n indentation levels less
than where code is currently being placed, where n is specified by the —dn command line
parameter. If the code on a line extends past the comment column, the comment starts
further to the right, and the right margin may be automatically extended in extreme cases.

Preprocessor lines

In general, indent leaves preprocessor lines alone. The only reformatting that it will do is to
straighten up trailing comments. It leaves embedded comments alone. Conditional compila-
tion (#ifdef...#endif) is recognized and indent attempts to correctly compensate for the syn-
tactic peculiarities introduced.

MIPS Computer Systems, Inc. February 6, 1989 Page 3

INDENT (1-BSD) RISC/os Programmer’s Reference INDENT (1-BSD)

FILES

BUGS

C syntax

indent understands a substantial amount about the syntax of C, but it has a ‘forgiving’ parser.
It attempts to cope with the usual sorts of incomplete and misformed syntax. In particular,
the use of macros like:

#define forever for(;;)
is handled properly.

J/.indent.pro profile file
“/.indent.pro profile file

indent has even more switches than Is.

- A common mistake that often causes grief is typing:

Page 4

indent *.c
to the shell in an attempt to indent all the C programs in a directory. This is probably a bug,
not a feature.

February 6, 1989 ~ MIPS Computer Systems, Inc.

(

KILL (1-BSD) RISC/o0s Programmer’s Reference KILL (1-BSD) .

NAME
kill - terminate a process with extreme prejudice

SYNOPSIS
kill [—sig] processid ...
kill -1

DESCRIPTION
kill sends the TERM (terminate, 15) signal to the specified processes. If a signal name or
number preceded by ‘-’ is given as first argument, that signal is sent instead of terminate (see
sigvec(2)). The signal names are listed by ‘kill -I’, and are as given in /usr/include/signal.h,
stripped of the common SIG prefix.
The terminate signal will kill processes that do not catch the signal; ‘kill -9 ..." is a sure kill,
as the KILL (9) signal cannot be caught. By convention, if process number 0 is specified, all
members in the process group (i.e. processes resulting from the current login) are signaled
(but beware: this works only if you use sk (1); not if you use csh(l)) Negative process numbers
also have special meanings; see kill(2) for details.
The killed processes must belong to the current user unless he is the super-user.
The process number of an asynchronous process started with ‘&’ is reported by the shell. Pro-
cess numbers can also be found by using ps(1). kill is a built-in to csh(1); it allows job
specifiers of the form “%...” as arguments so process id’s are not as often used as kill argu-
ments. See csh(1) for details.

SEE ALSO
csh(1), ps(1), kill(2), sigvec(2)

BUGS

A replacement for “kill 0” for csh (1) users should be provided.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LAST (1-BSD) RISC/os Programmer’s Reference LAST (1-BSD)

NAME
last — indicate last logins of users and teletypes
SYNOPSIS
last[=N][—a][name...][tty...]
DESCRIPTION ‘
last will look back in the wimp file which records all logins and logouts for information about
a.user, a teletype or any group of users and teletypes. Arguments specify names of users or
teletypes of interest. Names of teletypes may be given fully or abbreviated. For example ‘last
0’ is the same as ‘last tty0’. If multiple arguments are given, the information which applies to
any of the arguments is printed. For example ‘last root console’ would list all of "root’s" ses-
sions as well as all sessions on the console terminal. last will print the sessions of the
specified users and teletypes, most recent first, indicating the times at which the session
began, the duration of the session, and the teletype which the session took place on. If the
session is still continuing or was cut short by a reboot, last so indicates.
The pseudo-user reboot logs in at reboots of the system, thus
last reboot '
will give an indication of mean time between reboot.
If last is interrupted, it indicates how far the search has progressed in wtmp. If interrupted
with a quit signal (generated by a control-\) last indicates how far the search has progressed so
far, and the search continues.
OPTIONS ‘
=N By default, all logins and logouts that match are printed. This option limits the report to
N lines. ‘
—a Print information from all data base files. By default, the report only includes data from
/usr/adm/wimp, which only applies to the last current period (usually a month). The —a
option tells last to get data from wtmp.0, wtmp. 1, and so forth.
FILES
/usr/adm/wtmpx login data base files
/usr/adm/shutdownlog which records shutdowns and reasons for same
SEE ALSO
wtmp(5), ac(8), lastcomm(1)
AUTHOR
Howard Katseff
BUGS

The =—a option causes last to look at wtmp, wrmp.0, wtmp.1, and so forth, but it stops as soon
as it finds a missing file, so if there is a wtmp.5 but no wtmp.4, processing stops with wtmp. 3.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LASTCOMM (1-BSD) RISC/os Programmer’s Reference LASTCOMM (1-BSD)

NAME

lastcomm - show last commands executed in reverse order

SYNOPSIS

lastcomm [command name] ... [user name] ... [terminal name] ...

DESCRIPTION

FILES

lastcomm gives information on previously executed commands. With no arguments, lasicomm
prints information about all the commands recorded during the current accounting file’s life-
time. If called with arguments, only accounting entries with a matching command name, user
name, or terminal name are printed. So, for example,

lastcomm a.out root ttyd0 ,
would produce a listing of all the executions of commands named a.out by user root on the
terminal ttyd0.

For each process entry, the following are printed.
The name of the user who ran the process.
Flags, as accumulated by the accounting facilities in the system.
The command name under which the process was called.
The amount of cpu time used by the process (in seconds).
The time the process exited.

The flags are encoded as follows: “S” indicates the command was executed by the super-user,
“F” indicates the command ran after a fork, but without a following exec, ‘““C” indicates the
command was run in PDP-11 compatibility mode (VAX only), “D” indicates the command
terminated with the generation of a core file, and “X” indicates the command was terminated
with a signal.

/usr/adm/acct

SEE ALSO

last(1), sigvec(2), acct(8), core(5)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LD(1)

RISC/os Programmer’s Reference LD (1)

NAME
Id — MIPS link editor
uld — ucode link editor -
SYNOPSIS
Id [option] ... file ...
uld [option] ... file ...
DESCRIPTION :

Ld, the MIPS link editor, runs on MIPS machines under the UNIX system 4.3bsd and System
V. It links MIPS extended coff object files. The archive format understood by Id is the one
created by the MIPS archiver ar(1).

The ld command combines several object files into one, preforms relocation, resolves external
symbols, and supports symbol table information for symbolic debugging. In the simplest case,
the names of several object files are given. Ld combines them, producing an object module
that can be executed or used as input for a subsequent /d run. (In the latter case, the —r
option must be given to preserve the relocation entries.) The output of Id is left in a.out. By
default, this file is executable if no errors occurred during the load.

The argument object files are concatenated in the order specified. The entry point of the out-
put is the beginning of the text segment (unless the —e option is specified).

The uld command combines several ucode object files and libraries into one ucode object file.
It “hides” external symbols for better optimizations by subsequent compiler passes. The sym-
bol tables of coff object files loaded with ucode object files are used to determine what exter-
nal symbols not to “hide” along with files specified by the user that contain lists of symbol
names. :

If any argument is a library, it is searched exactly once at the point it is encountered in the
argument list. Only those routines defining an unresolved external reference are loaded. The
library (archive) symbol table (see ar(1)) is a hash table and is searched to resolved external
references that can be satisfied by library members. The ordering of library members is unim-
portant.

The following options are recognized by both Id and uld . Those options used by one and not
the other are ignored. Any option can be preceded by a ‘k’ (for example =ko outfile) and
except for —klx have the same meaning with or without the preceding ‘k’. This is done so that
these options can be passed to both link editors through compiler drivers.

When searching for libraries the default directories searched are /lib/, /usr/lib/cmplrs/cc,
/usr/lib/ and /usr/local/lib/ . If the target byte ordering of the object files being loaded is of
the opposite byte ordering of the machine the link editor is running on then the default search
directories for libraries are changed. The change is to replace the last name of the directories
from “lib/” to “libeb/” or “libel/” to match the target byte ordering of the objects being
loaded.

The symbols ‘etext’, ‘edata’, ‘end’, ‘_ftext’, ‘_fdata’, ‘_fbss’, ‘_gp’, °_procedure_table’,
_procedure_table_size’ and ‘_procedure_string_table’ are reserved. These loader defined sym-
bols if referred to, are set their values as described in end(3). It is erroneous to define these
symbols.

-0 outfile

Produce an output object file by the name outfile. The name of the default object file
is a.out.

—lx Search a library libx.a, where x is a string. A library is searched when its name is
encountered, so the placement of a =1 is significant.

—klx Search a library libx.b, where x is a string. These libraries are intended to be ucode

MIPS Computer Systems, Inc. February 13, 1989 Page 1

1LD(1)

Page 2

RISC/os Programmer’s Reference LD(1)

object libraries. In all other ways, this option is like the —Lx option.

~Ldir Change the algorithm of searching for libx.a or libx.b to look in dir before looking in
the default directories. This option is effective only if it precedes the =l options on
the command line.

~L Change the algorithm of searching for libx.a or libx.b to never look in the default
directories. This is useful when the default directories for libraries should not be
searched and only the directories specified by —Ldir are to be searched.

~Kdir Change the default directories to the single directory dir. This option is only intended
‘to be used by the compiler driver. Users should use the ~L and —Ldir options to get
the effect they desire.

~Bstring :
Append string to the library names created for the —lx and —klx when searching for
library names. For each directory to be searched the name is first created with the
string and if it is not found it is created without the string.

—p file Preserve (don’t “hide’”) the symbol names listed in file when loading ucode object
files. The symbol names in the file are separated by blanks, tabs, or newlines.

-s Strip the symbolic information from the output object file.

-X Do not preserve local (non-.globl) symbols in the output symbol table; enter external
and static symbols only. This option saves some space in the output file.

-r Retain relocation entries in the output file. Relocation entries must be saved if the
output file is to become an input file in a subsequent /d run. This option also prevents
final definitions from being given to common symbols, and suppresses the ‘undefined
symbol’ diagnostics.

-d Force definition of common storage and define loader defined symbols even if -r is
present.

—u symname
Enter symname as an undefined in the symbol table. This is useful for loading entirely
from a library, since initially the symbol table is empty and an unresolved reference is
needed to force the loading of the first routine.

=F or —z .
Arrange for the process to be loaded on demand from the resulting executable file
(413 format) rather than preloaded, a ZMAGIC file. This is the default.

-n Arrange (by giving the output file a 0410 "magic number") that when the output file is
executed, the text portion will be read-only and shared among all users executing the
file, an NMAGIC file. This involves moving the data areas up to the first possible
pagesize byte boundary following the end of the text.

-N Place the data section immediately after the text and do not make the text portion
read only or sharable, an OMAGIC file. (Use "magic number" 0407.)

=T num
Set the text segment origin. The argument num is a hexadecimal number. See the
notes section for restrictions.

=D num
Set the data segment origin. The argument num is a hexadecimal number. See the
notes section for restrictions.

=B num
Set the bss segment origin. The argument num is a hexadecimal number. This option

February 13, 1989 MIPS Computer Systems, Inc.

LD (1) RISC/os Programmer’s Reference LD (1)

can be used only if the final object is an OMAGIC file.

—e epsym
Set the default entry point address for the output file to be that of the symbol epsym.

—m Produce a map or listing of the input/output sections on the standard output (UNIX
system V-like map).

—~M Produce a primitive load map, listing the names of the files that will be loaded (UNIX
4.3bsd-like map). '

~S _ Set silent mode and suppress non-fatal errors.
-v Set verbose mode. Print the name of each file as it is processed.

—ysym Indicate each file in which sym appears, sym’s type and whether the file defines or
references sym. Many such options may be given to trace many symbols.

-V Print a message giving information about the version of Id being used.

—VS num
Use num as the decimal version stamp to identify the a.out file that is produced. The
version stamp is stored in the optional and symbolic headers.

—f fill Set the fill pattern for ‘“holes” within an output section. The argument fill is a four-
byte hexadecimal constant.

—G num
The argument num is taken to be a decimal number that is the largest size.in bytes of
a .comm item or literal that is to be allocated in the small bss section for reference off
the global pointer. The default is 8 bytes.

—bestGnum
Calculate the best =G num to use when compiling and linking the files which pro-
duced the objects being linked. Using too large a number with the =G num option
may cause the gp (global-pointer) data area to overflow; using too small a number may
reduce your program’s execution speed.

—count, =—nocount, —countall

These options control which objects are counted as recompilable for the best =G num
calculation. By default, the —bestGnum option assumes you can recompile everything
with a different =G num option. If you cannot recompile certain object files or
libraries (because, for example, you have no sources for them), use these options to
tell the link editor to take this into account in calculating the best =G num value.
—nocount says that object files appearing after it on the command line cannot be
recompiled; —count says that object files appearing after it on the command line can
be recompiled; you can alternate the use of —nocount and —count. —countall over-
rides any —nocount options appearing after it on the command line.

-b Do not merge the symbolic information entries for the same file into one entry for that
file. This is only needed when the symbolic information from the same file appears
differently in any of the objects to be linked. This can occur when object files are
compiled, by means of conditional compilation, with an apparently different version
of an include file.

—jmpopt and —nojmpopt
Fill or don’t fill the delay slots of jump instructions with the target of the jump and
adjust the jump offset to jump past that instruction. This allways is disabled for
debugging (when the —gl, —g2 or —g flag is present). When this option is enabled it
requires that all of the loaded program’s text be in memory and could cause the loader
to run out of memory. The default is =nojmpopt.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

LD(1) RISC/os Programmer’s Reference » LD (1)

—g or —g[0123]
These options are accepted and except for —gl, —g2 or —g disabling the —jmpopt
have no other effect.

—A file This option specifies incremental loading, i.e. linking is to be done in a manner so
that the resulting object may be read into an already executing program. The next
argument, file, is the name of a file whose symbol table will be taken as a basis on
which to define additional symbols. Only newly linked material will be entered into
the text and data portions of a.out, but the new symbol table will reflect every symbol
defined before and after the incremental load. This argument must appear -before any
other object file in the argument list. The =T option may be used as well, and will be
taken to mean that the newly linked segment will commence at the corresponding
address (which must be a correct multiple for the resulting object type). The default
resulting object type is an OMAGIC file and the default starting address of the text is
the old value of end rounded to SCNROUND as defined in the include file
<senhdr.h>. Using the defaults, when this file is read into an already executing pro-
gram the intial value of the break must also be rounded. All other objects except the
argument to the —A option must be compiled =G 0 and this sets =G 0 for linking.

The following options are used by the command mkshlib(1) and are not intended for general
use.

-c Create a target shared library object file. This is a LIBMAGIC file (443 format). The:
objects linked must be compiled with =G 0 and this sets =G 0 for.linking. This file is
demand paged and the headers are part of the text but on there own page so real text
starts on the next page where the text is loaded.

—i file The .text section of file is moved into the .init section of the resulting object file.

Ld and uld accept object files targeted for either byte ordering with their headers and symbolic
tables in any byte ordering; however Id and uld are faster if the headers and symbolic tables
have the byte ordering of the machine that they are running on. The default byte ordering of
the headers and symbolic tables is the target byte ordering of the output object file. For non-
relocatable object files the default byte ordering of the headers and symbolic tables can’t be
changed.

—EB Produce the output object file with big-endian byte ordered headers and symbolic
information tables.

—EL Produce the output object file with little-endian byte ordered headers and symbolic
information tables.

FILES .
/lib/libx.a
/usr/lib/libx.a
/usr/local/lib/libx.a libraries
a.out output file
SEE ALSO
cc(1), pe(1), £77(1), as(1), ar(1)
NOTES

Any of the three types of objects can be run on UMIPS-BSD or UMIPS-V systems. On both
systems the segments must not overlap and all addresses must be less than 0x80000000. The
stack starts below 0x80000000 and grows through lower addresses so space should be left for
it. For ZMAGIC and NMAGIC files the default text segment address is 0x00400000 and the
default data segment address is 0x10000000. For OMAGIG files the default text segment
address is 0x10000000 with the data segment following the text segment. The default for all

Page 4 February 13, 1989 MIPS Computer Systems, Inc.

LD(1) " RISC/os Programmer’s Reference LD (1)

types of files is that the bss segment follows the data segment.

For OMAGIC files to be run under the operating system the -B flag should not be used
" because the bss segment must follow the data segment which is the default.

Under UMIPS-BSD the segments must be on 4 megabyte boundaries. Objects linked at
addresses other than the default will run under the 2.0 and later UMIPS-BSD releases.

Under UMIPS-V the segments must be on 2 megabyte boundaries. OMAGIC files will run
under the 1,1 and later UMIPS-V releases,

MIPS Computer Systems, Inc, | February 13, 1989 Page 5

LEAVE (1-BSD) " RISC/os Programmer’s Reference LEAVE (1-BSD)

NAME
leave — remind you when you have to leave

SYNOPSIS
leave [[+]hhmm]

DESCRIPTION
leave waits until the specified time, then reminds you that you have to leave. You are rem-
inded 5 minutes and 1 minute before thé actual time, at the time, and every minute thereafter.
When you log off, leave exits just before it would have printed the next message.
The time of day is in the form hhmm where hh is a time in hours (on a 12 or 24 hour clock).
All times are converted to a 12 hour clock, and assumed to be in the next 12 hours.
If the time is preceeded by ‘+’, the alarm will go off in hours and minutes from the current
time. _
If no argument is given, leave prompts with "When do you have to leave?". A reply of newline
causes leave to exit, otherwise the reply is assumed to be a time. This form is suitable for
inclusion in a .login or .profile.
leave ignores interrupts, quits, and terminates. To get rid of it you should either log off or use
“kill -9 giving its process id.
If leave is executed within the script(1) or window(l) command, it prints the message "Unre-
gistered login" and aborts, This is because the only way leave can tell if you have logged out is
to look -at the login resgistry information for the port in the file /etc/utmp, and these com-
mands do not register the port.

SEE ALSO

calendar(1)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LINT(1) RISC/os Programmer’s Reference LINT (1)

NAME

lint — a C program checker
SYNOPSIS

lint [option] ... file ...
DESCRIPTION

Lint attempts to detect features of the C program files that are likely to be bugs, non-portable,
or wasteful. It also checks type usage more. strictly than the compilers. Among the things
that are currently detected are unreachable statements, loops not entered at the top, automatic
variables declared and not used, and logical expressions whose value is constant. Moreover,
the usage of functions is checked to find functions that return values in some places and not
in others, functions called with varying numbers or types of arguments, and functions whose
values are not used or whose values are used but none returned. '

Arguments whose names end with .c are taken to be C source files. Arguments whose names
end with .In are taken to be the result of an earlier invocation of /int with either the —c or the
—o option used. The .In files are analogous to .o (object) files that are produced by the cc(1)
command when given a .c file as input. Files with other suffixes are warned about and
ignored.

Lint will take all the .c,.In, and llib-Ix.In (specified by —lx) files and process them in their
command line order. By default, /int appends the standard C lint library (llib-lc.In) to the end
of the list of files. However, if the =p option is used, the portable C lint library (llib-port.ln)
is appended instead. "When the —c option is not used, the second pass of lint checks this list
of files for mutual compatibility. When the —c¢ option is used, the .In and the llib-Lx.In files
are ignored.

Any number of lint options may be used, in any order, intermixed with file-name arguments.
The following options are used to suppress certain kinds of complaints:

—a Suppress complaints about assignments of long values to variables that are not long.

-b Suppress complaints about break statements that cannot be reached. (Programs pro-
duced by lex or yacc will often result in many such complaints).

-=h Do not apply heuristic tests that attempt to intuit bugs, improve style, and reduce
waste.

-u Suppress complaints about functions and external variables used and not defined, or
defined and not used. (This option is suitable for running lint on a subset of files of a
larger program).

-V Suppress complaints about unused arguments in functions.
—X Do not report variables referred to by external declarations but never used.
The following arguments alter lint’s behavior:

—lx Include additional lint library llib-lx.In, For example, you can include a lint version of
the Math Library llib-lm.In by inserting —Im on the command line. This argument
does not suppress the default use of llib-lc.In. These lint libraries must be in the
assumed directory. This option can be used to reference local lint libraries and is use-
ful in the development of multi-file projects.

—n Do not check compatibility against either the standard or the portable lint library.

-p Attempt to check portability to other dialects (IBM and GCOS) of C. Along with
stricter checking, this option causes all non-external names to be truncated to eight
characters and all external names to be truncated to six characters and one case.

-C Cause lint to produce a .In file for every .c file on the command line. These .In files

MIPS Computer Systems, Inc. February 13, 1989 Page 1

LINT (1) RISC/os Programmer’s Reference LINT (1)

FILES

Page 2

are the product of /int’s first pass only, and are not checked for inter-function compa-
tibility.

—o lib Cause lint to create a lint library with the name llib-liib.In. The =—c option nullifies
any use of the —o option. The lint library produced is the input that is given to lint’s
second pass. The —o option simply causes this file to be saved in the named lint
library. To produce a llib-Iib.In without extraneous messages, use of the =x option is
suggested. The —v option is useful if the source file(s) for the lint library are just
external interfaces (for example, the way the file llib-lc is written). These option set-
tings are also available through the use of “lint comments” (see below).

The =D, =U, and —I options of cpp(1) and the —g and =—O options of cc(1) are also recog-
nized as separate arguments. The —g and =O options are ignored, but, by recognizing these
options, lint’s behavior is closer to that of the cc(1) command. Other options are warned
about and ignored. The pre-processor symbol “lint” is defined to allow certain questionable
code to be altered or removed for /int. Therefore, the symbol “lint” should be thought of as
a reserved word for all code that is planned to be checked by lint.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREA CHED+/
‘at appropriate points stops comments about unreachable code. (This com-
ment is typically placed just after calls to functions like exit(2)).

/xVARARGSn +/
suppresses the usual checking for variable numbers of arguments in the follow-
ing function declaration. The data types of the first n arguments are checked,;
a missing n is taken to be 0.

/+*ARGSUSEDx/
turns on the =v option for the next function.

/sLINTLIBRARYx/
at the beginning of a file shuts off complaints about unused functions and
function arguments in this file. This is equivalent to using the =—v and —x
options.

Lint produces its first output on a per-source-file basis. Complaints regarding included files
are collected and printed after all source files have been processed. Finally, if the —¢ option
is not used, information gathered from all input files is collected and checked for consistency.
At this point, if it is not clear whether a complaint stems from a given source file or from one
of its included files, the source file name will be printed followed by a question mark.

The behavior of the —c¢ and the —o options allows for incremental use of lint on a set of C
source files. Generally, one invokes lint once for each source file with the —c option. Each
of these invocations produces a .In file which corresponds to the .c file, and prints all mes-
sages that are about just that source file. After all the source files have been separately run
through lint, it is invoked once more (without the —c option), listing all the .In files with the
needed —Lx options. This will print all the inter-file inconsistencies. This scheme works well
with make(1); it allows make to be used to lint only the source files that have been modified
since the last time the set of source files were linfed.

/usr/lib the directory where the lint libraries specified by the —lx option must exist

/usr/lib/lint[12] first and second passes

Just/lib/llib-lc.ln declarations for C Library functions (binary format; source is in
/usr/lib/llib-1c)

/ust/lib/llib-port.In declarations. for portable functions (binary format; source is in
/usr/lib/llib-port)

February 13, 1989 MIPS Computer Systems, Inc.

LINT (1) . RISC/os Programmer’s Reference LINT (1)

/ust/lib/llib-lm.In ~ declarations for Math Library functions (binary format; source is in (
/usr/lib/1lib-1m) '
/usr/tmp/«lint« temporaries
SEE ALSO

cc(1), cpp(1), make(1).

BUGS .
exit(2), longjmp(3C), and other functions that do not return are not understood; this causes
various lies.

MIPS Computer Systems, Inc. February 13, 1989 Page 3

LN (1-BSD): RISC/os Programmer’s Reference LN (1-BSD)

NAME
In — make links

SYNOPSIS
In [=s] sourcename [targetname |
In [=—s] sourcenamel sourcename? [sourcename3 ...] targetdirectory

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all its protec-
tion information, etc.) may have several links to it. There are two kinds of links: hard links
and symbolic links.

By default /n makes hard links. A hard link to a file is indistinguishable from the original
directory entry; any changes to a file are effective independent of the name used to reference
the file. Hard links may not span file systems and may not refer to directories.

The =—s option causes /n to create symbolic links. A symbolic link contains the name of the
file to which it is linked. The referenced file is used when an open(2) operation is performed
on the link. A stat(2) on a symbolic link will return the linked-to file; an Istat(2) must be
done to obtain information about the link. The readlink(2) call may be used to read the con-
tents of a symbolic link. Symbolic links may span file systems and may refer to directories.

Given one or two arguments, /n creates a link to an existing file sourcename. If targetname is
given, the link has that name; targetname may also be a directory in which to place the link;
otherwise it is placed in the current directory. If only the directory is specified, the link will
be made to the last component of sourcename.

Given more than two arguments, /n makes links in targetdirectory to all the named source
files. The links made will have the same name as the files being linked to.

SEE ALSO
rm(1), cp(1), mv(1), link(2), readlink(2), stat(2), symlink(2)

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LOOK (1-BSD) RISC/os Programmer’s Reference LOOK (1-BSD)

NAME
look — find lines in a sorted list

SYNOPSIS
look [=df] string [file]

DESCRIPTION
look consults a sorted file and prints all lines that begin with string. It uses binary search.

The options d and f affect comparisons as in sort(1):

d ‘Dictionary’ order: only letters, digits, tabs and blanks participate in comparisons.
f Fold. Upper case letters compare equal to lower case,

If no file is specified, /usr/dict/words is assumed with collating sequence =df.

FILES
/usr/dict/words

SEE ALSO
sort(1), grep(1)

MIPS Computer Systems, Inc. February 6, 1989 ‘ Page 1

LOOKBIB (1-BSD) RISC/os Programmer’s Reference LOOKBIB (1-BSD)

NAME

indxbib, lookbib - build inverted index for a bibliography, find references in a bibliography

SYNOPSIS

indxbib database ...
lookbib [—n | database

DESCRIPTION

FILES

Indxbib makes an inverted index to the named databases (or files) for use by lookbib(1) and
refer(1). These files contain bibliographic references (or other kinds of information)
separated by blank lines.

A bibliographic reference is a set of lines, constituting fields of bibliographic information.
Each field starts on a line beginning with a “%?”, followed by a key-letter, then a blank, and
finally the contents of the field, which may continue until the next line starting with “%”.

Indxbib is a shell script that calls /usr/lib/refer/mkey and /usr/lib/refer/inv. The first pro-
gram, mkey, truncates words to 6 characters, and maps upper case to lower case. It also dis-
cards words shorter than 3 characters, words among the 100 most common English words,
and numbers (dates) < 1900 or > 2000. These parameters can be changed; see page 4 of the
Refer document by Mike Lesk. The second program, inv, creates an entry file (.ia), a posting
file (.ib), and a tag file (.ic), all in the working directory.

lookbib uses an inverted index made by indxbib to find sets of bibliographic references. It
reads keywords typed after the “>" prompt on the terminal, and retrieves records containing
all these keywords. If nothing matches, nothing is returned except another “>’’ prompt.

lookbib will ask if you need instructions, and will print some brief information if you reply
“y”. The “-n” flag turns off the prompt for instructions.

It is possible to search multiple databases, as long as they have a common index made by
indxbib. In that case, only the first argument given to indxbib is specified to lookbib.

If lookbib does not find the index files (the .i[abc] files), it looks for a reference file with the
same name as the argument, without the suffixes. It creates a file with a ’.ig’ suffix, suitable
for use with fgrep. It then uses this fgrep file to find references. This method is simpler to
use, but the .ig file is slower to use than the .i[abc] files, and does not allow the use of multi-
ple reference files.

x.ia, x.ib, x.ic, where x is the first argument, or if these are not present, then x.ig, x

SEE ALSO

BUGS

refer(1), addbib(1), sortbib(1), roffbib(1), lookbib(1)

Probably all dates should be indexed, since many disciplines refer to literature written in the
1800s or earlier.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LPQ(1-BSD) RISC/os Programmer’s Reference , LPQ(1-BSD)

NAME
Ipq — spool queue examination program

SYNOPSIS
Ipq[+[n]][-1][-Pprinter] [job # ...][user ...]

DESCRIPTION
Ipq examines the spooling area used by /pd(8) for printing files on the line printer, and reports
the status of the specified jobs or all jobs associated with a user. [pq invoked without any argu-
ments reports on any jobs currently in the queue. A =P flag may be used to specify a particu-
lar printer, otherwise the default line printer is used (or the value of the PRINTER variable in
the environment). If a + argument is supplied, Ipq displays the spool queue until it empties.
Supplying a number immediately after the + sign indicates that Ipq should sleep n seconds in
between scans of the queue. All other arguments supplied are interpreted as user names or
job numbers to filter out only those jobs of interest.
For each job submitted (i.e. invocation of Ipr(1)) Ipq reports the user’s name, current rank in
the queue, the names of files comprising the job, the job identifier (a number which may be
supplied to Iprm(1) for removing a specific job), and the total size in bytes. The =l option
causes information about each of the files comprising the job to be printed. Normally, only as
much information as will fit on one line is displayed. Job ordering is dependent on the algo-
rithm used to scan the spooling directory and is supposed to be FIFO (First in First Out). File
names comprising a job may be unavailable (when lpr(1) is used as a smk in a pipeline) in
which case the file is indicated as “(standard input)".
If Ipg warns that there is no daemon present (i.e. due to some malfunction), the Ipc(8) com-
mand can be used to restart the printer daemon.

FILES
/etc/termcap for manipulating the screen for repeated display
/etc/printcap to determine printer characteristics
/usr/spool/x the spooling directory, as determined from printcap
Jusr/spool/+/cfx control files specifying jobs
/usr/spool/«/lock the lock file to obtain the currently active job

SEE ALSO
Ipr(1), lprm(1), Ipc(8), Ipd(8)

BUGS ‘
Due to the dynamic nature of the information in the spooling directory lpq may report unreli-
ably. Output formatting is sensitive to the line length of the terminal; this can results in
widely spaced columns.

DIAGNOSTICS

Unable to open various files. The lock file being malformed. Garbage files when there is no
daemon active, but files in the spooling directory.

MIPS Computer Systems, Inc. February 6, 1989 : Page 1

'LPR (1-BSD RISC/os Programmer’s Reference LPR (1-BSD)
g

NAME
Ipr - off line print
SYNOPSIS

Ipr [=Pprinter | [—=#num][=C class] [=J job) [=T sitle] [=i [numcols]) [—1234 font | [
=wnum | [—pltndgvcfrmhs] [name ...]

DESCRIPTION
Ipr uses a spooling daemon to print the named files when facilities become available. If no
names appear, the standard input is assumed. The =P option may be used to force output to
a specific printer. Normally, the default printer is used (site dependent), or the value of the
environment variable PRINTER is used.

The following single letter options are used to notify the line printer spooler that the files are
not standard text files. The spooling daemon will use the appropriate filters to prmt the data
accordingly. :

=p Use pr(1) to format the files (equivalent to print).

=1 Use a filter which allows control characters to be printed and suppresses page breaks.
=t The files are assumed to contain data from roff(1) (cat phototypesetter commands).
=n The files are assumed to contain data from ditroff (device independent troff).

—d The files are assumed to contain data from fex(l) (DVI format from Stanford).

—~g The files are assumed to contain standard plot data as produced by the plot(3X) routines
(see also plot(1G) for the filters used by the printer spooler).

=v The files are assumed to contain a raster image for devices like the Benson Varian.
—c The files are assumed to contain data produced by cifplor(l).

=f Use a filter which interprets the first character of each line as a standard FORTRAN car-
riage control character.

The remaining single letter options have the following meaning.

=r Remove the file upon completion of spooling or upon completion of printing (with the
—s option).

—m Send mail upon completion.
=h Suppress the printing of the burst page.
=s Use symbolic links. Usually files are copied to the spool directory.

The =C option takes the following argument as a job classification for use on the burst page.
For example,

Ipr -C EECS foo.c

causes the system name (the name returned by hostname(1)) to be replaced on the burst page
by EECS, and the file foo.c to be printed.

The —J option takes the following argument as the job name to print on the burst page. Nor-
mally, the first file’s name is used.

The =T option uses the next argument as the title used by pr(1) instead of the file name.

To get multiple copies of output, use the —#num option, where num is the number of copies
desired of each file named. For example,

Ipr —#3 foo.c bar.c more.c

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LPR (1-BSD) RISC/os Programmer’s Reference LPR (1-BSD)

would result in 3 copies of the file foo.c, followed by 3 copies of the file bar.c, etc. On the
other hand,

cat foo.c bar.c more.c |lpr —#3
will give three copies of the concatenation of the files.

The =i option causes the output to be indented. If the next argument is numeric, it is used as
the number of blanks to be printed before each line; otherwise, 8 characters are printed.

The —w option takes the immediately following number to be the page width for pr.

The =s option will use symlink(2) to link data files rather than trying to copy them so large
files can be printed. This means the files should not be modified or removed until they have
been printed.

The option —1234 Specifies a font to be mounted on font position i. The daemon will con-
struct a .railmag file referencing /usr/lib/vfont/name.size.

FILES
[etc/passwd personal identification
/etc/printcap printer capabilities data base
lust/lib/1pdx« line printer daemons
/usr/spool/x directories used for spooling
/usr/spool/«/cfx daemon control files "
Jusr/spool/«/dfx data files specified in "cf" files
ust/spool/«/tfx temporary copies of "cf" files

SEE ALSO
Ipq(1), lprm(1), pr(1), symlink(2), printcap(5), Ipc(8), Ipd(8)

DIAGNOSTICS
If you try to spool too large a file, it will be truncated. [pr will object to printing binary files.
If a user other than root prints a file and spooling is disabled, Ipr will print a message saying
so and will not put jobs in the queue. If a connection to lpd on the local machine cannot be
made, Ipr will say that the daemon cannot be started. Diagnostics may be printed in the
daemon’s log file regarding missing spool files by Ipd.

BUGS
Fonts for troff and tex reside on the host with the printer. It is currently not possible to use
local font libraries.

Page 2 February 6, 1989 MIPS Computer Systems, Inc.

LPRM (1-BSD) RISC/os Programmer’s Reference LPRM (1-BSD)

NAME

lprm - remove jobs from the line printer spooling queue

SYNOPSIS

Iprm [=Pprinter | [=][job # ...][user ...]

DESCRIPTION

Iprm will remove a job, or jobs, from a printer’s spool queue. Since the spooling directory is
protected from users, using /prm is normally the only method by which a user may remove a
job. ‘
Iprm without any arguments will delete the currently active job if it is owned by the user who
invoked Iprm.

If the = flag is specified, /prm will remove all jobs which a user owns. If the super-user
employs this flag, the spool queue will be emptied entirely. The owner is determined by the
user’s login name and host name on the machine where the /pr command was invoked.

Specifying a user’s name, or list of user names, will cause [prm to attempt to remove any jobs
queued belonging to that user (or users). This form of invoking /prm is useful only to the
super-user.

A user may dequeue an individual job by specifying its job number. This number may be
obtained from the Ipq (1) program, e.g.

% lpq -1

1st: ken [job #013ucbarpa]
(standard input) 100 bytes

% lprm 13

Iprm will announce the names of any files it removes and is silent if there are no jobs in the
queue which match the request list.

Iprm will kill off an active daemon, if necessary, before removing any spooling files. If a dae-
mon is killed, a new one is automatically restarted upon completion of file removals.

The =P option may be usd to specify the queue associated with a specific printer (otherwise
the default printer, or the value of the PRINTER variable in the environment is used).

FILES

/etc/printcap printer characteristics file

/usr/spool/x spooling directories

/usr/spool/«/lock lock file used to obtain the pid of the current

. daemon and the job number of the currently active job

SEE ALSO

Ipr(1), 1pq(1), 1pd(8)
DIAGNOSTICS

“Permission denied" if the user tries to remove files other than his own.
BUGS

Since there are race conditions possible in the update of the lock file, the currently active job
may be incorrectly identified.

MIPS Computer Systems, Inc. February 6, 1989 Page 1

LS (1-BSD) RISC/os Programmer’s Reference LS(1-BSD)

NAME
Is — list contents of directory

SYNOPSIS
Is [—acdfgilqrstul ACLFR] name ...

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. By default, the output is sorted alpha-
betically. When no argument is given, the current directory is listed. When several arguments
are given, the arguments are first sorted appropriately, but file arguments are processed before
directories and their contents.

There are a large number of options:

-] List in long format, giving mode, number of hard links, owner, size in bytes, and time
of last modification for each file. (See below.) If the file is a special file the size field
will instead contain the major and minor device numbers. If the file is a symbolic link
the pathname of the linked-to file is printed preceded by “->".

-g Include the group ownership of the file in a long output.
-t Sort by time modified (latest first) instead of by name.

—-a List all entries; in the absence of this option, entries whose names begin with a period
(-) are not listed.

-5 Give size in kilobytes of each file.

—d If argument is a directory, list only its name; often used with ~I to get the status of a
directory.

=L If argument is a symbolic link, list the file or directory link references rather than the
link itself.

-r Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

-u Use time of last access instead of last modification for sorting (with the =t option)
and/or printing (with the =l option).

-c Use file status change time for sorting or printing.

—i For each file, print the i-number in the first column of the report.

-f Force each argument to be interpreted as a directory and list the name found in each

slot. This option turns off =, =t, =s, and ~r, and turns on =—a; the order is the
order in which entries appear in the directory.

-F cause directories to be marked with a trailing ¢/°, sockets and fifos with a trailing (|),
symbolic links with a trailing ‘@’, and executable files with a trailing ‘.

-R recursively list subdirectories encountered.

-1 force one entry per line output format; this is the default when output is not to a ter-
minal.

-C force multi-column output; this is the default when output is to a terminal.

-q force printing of non-graphic characters in file names as the character ‘?’; this is the
default when output is to a terminal.

The mode printed under the —1 option contains 11 characters which are interpreted as follows:
the first character is

d if the entry is a directory;
b if the entry is a block-type special file;

MIPS Computer Systems, Inc. February 13, 1989 Page 1

LS(1-BSD) RISC/os Programmer’s Reference _ LS(1-BSD)

FILES

BUGS

Page 2

if the entry is a character-type special file;

if the entry is a symbolic link;

if the entry is a socket, or

if the entry is a fifo (a.k.a. "named pipe") special files;
if the entry is a plain file.

v » =0

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next refers to permissions to others in the same user-group; and the
last to all others. Within each set the three characters indicate permission respectively to
read, to write, or to execute the file as a program. For a directory, ‘execute’ permission is
interpreted to mean permission to search the directory. The permissions are indicated as fol-
lows:

if the file is readable;

if the file is writable;

if the file is executable;

if the indicated permission is not granted.

|N€’1

The group-execute permissidn character is given as s if the file has the set-group-id bit set;
likewise the user-execute permission character is given as s if the file has the set-user-id bit set.

The last character of the mode (normally X’ or ‘-’) is t if the 1000 bit of the mode is on. See
chmod (1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

/etc/passwd to get user id’s for ‘Is —I’.

/etc/group to get group id’s for ‘Is —g’.

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide unless it is a tty with a nonzero window
size, in which case the window size is used. '

The option setting based on whether the output is a teletype is undesirable as “Is —s”’ is much
different than “Is —s |Ipr”. On the other hand, not doing this setting would make old shell
scripts which used Is almost certain losers.

Due to an oversight, many versions of this document incorrectly state that the —c option uses
the file creation time. Unix does not store file creation times, so this is impossible.

February 13, 1989 MIPS Computer Systems, Inc.

MKSHLIB (1) RISC/os Programmer’s Reference MKSHLIB (1)

NAME

mkshlib — create a shared library
SYNOPSIS

mkshlib —s specfil [—t target] [—=h host] [=n] [—q] [~V]
DESCRIPTION

The mkshlib command builds both the host and target shared libraries. A shared library is
-similar in function to a normal, non-shared library, except that programs that link with a
shared library will share the library code during execution. Programs that link with a non-
shared library will get their own copies of each library routine used.

The host shared library is an archive that is used to link-edit user programs with the shared
library [see ar(4)]. A host shared library can be treated exactly like a non-shared library and
should be included on compiler driver (cc(1), etc.) command lines in the usual way. Further,
all operations that can be performed on an archive can also be performed on the host shared
library.

The target shared library is an executable module. that is attached to the user’s process during
execution of a program using the shared library. The target shared library contains the code
for all the routines in the library and must be fully resolved. The target will be brought into
memory during execution of a program using the shared library, and subsequent processes that
use the shared library will share the copy of code already in memory.” The text of the target is
always shared, but each process will get its own copy of the data.

The user interface to mkshlib consists of command line options and a shared library
specification file. The shared library specification file describes the contents of the shared
library. :

The mkshlib command invokes other tools, such as the archiver, ar(1l), the assembler, as(1),
and the link editor, /d(1). Tools are invoked through the use of execvp(3), which searches

. directories in the user’s PATH. Also, suffixes to mkshlib are parsed in the same manner as
suffixes to the compiler drivers, and invoked tools are given the suffix, where appropriate.
For example, mkshlib1.0 will invoke 1d1.10.

The following command line options are recognized by mkshlib:

—s specfil Specifies the shared library specification file, specfil. This file contains the
information necessary to build a shared library. Its contents include the
branch table specifications for the target, the pathname in which the target
should be installed, the start addresses of text and data for the target, the ini-
tialization specifications for the host, and the list of object files to be included
in the shared library (see details below).

—t target Specifies the name, target, of the target shared library produced on the host
machine. When target is moved to the target machine, it should be installed
at the location given in the specification file (see the #target directive below).
If the —n option is used, a new target shared library will not be generated.

—h host Specifies the name<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>