Artifiosal Inteatagence Protento-RTE and NTT Computation Center Wenc 2s--The Proofokester
by
Paul Abrahama

January 25,2961

 园

ABSTRAOL

The Prcofohocker 15 a heurdetsaaily criented computer program for cheoking rashematicai proofs, with the ohesking of textboou procfe as Ats ultinete goal. it conetruste, fron each proof step giten to $4 . t$, a oorresponding sequence of formal stepe, if pessible. It recoria the ourrent state of the proof in the form of what it is sulfistent to prove. Theve are two zogioal rules of Anferenoe: modun powezt and insertion fif it is aufficient to prove B, and A ss a sheorem, then st so suifisient to prove A inplises B), mine permssible formal ateps snolude these rules of inference as well as provisuon for handinng definitions, lemas, caloulations, and rerersion tc previous states. As of now, most of the formaisans ane programmed and partsaily debugged, but the heurjstic aspeots have get to be programies.

TABLE UF CONTENTS

I Purpoee and Philosophy 3
II Organszation of the Proofichecker7
IIJ Logices Fomadions of the Eroofohecker 13
IV The Fossitiae Proof sweps in the Proofcheover . . 17
7 Current Statio and Future Plane 21

PURPOSE AND PHILOSGFHY

A proofchecker is a computer program thech checks nathematical proofs to see if they are correct. A mathematical proci is a symbot1c expresaion, and so can be used as Input data for a computer program writton in a symbol-maniplating ianguage, Now if a proposed proof has been surficlently formalized, it can be checked by a stmple set of rules; but if the proos is of the sort that appeare in most mathematics textbooks, the cheoksng procedure must be extremely elaborate and even then cannot be guaranteed to work all the time. Cheoks ng textbook proofs is the uitimate goal of the Proorohecker project, even though it probably wial not be reached. This goal will cot the direction of theee efforts; how fav tirey go renas ns to be seen. Some programs heve already been checkd out; many remain to be viritter. As of this writing, two elementary formal proofs have been checked.

A number of the 1deas presented in this paper arose from suggestions made by john NoCarthy: however, the views expressed hove are not nevsesarily in agreement with MeCarthy's.

There are two diffisulties that erise in devising a procedure for checking textbook proofs. First, the proofs are written in English; second, they are ambigious, fnformas, and full of gaps. I an not at present planning to deal with the firet problem; though it is intereating, it is irrelevant to the main purpose of the Proofchecker project. Therefore, I will assume that the proofs which I would ilke the Proorchecker to exarine will be presented in a iormalized and stylized larguage, but one which makes no attempts to clarify the logical defects of the English original from which they are taken. The Proofchecicer will have to correct these defects and okeck the resuiting formal proof at the same time.

Essentially, the Proofohecker works by taking each step that It is given and generating from it a sequense of formal steps. Thus the proof given to it reaily serves as a set of hints on how to conetruct a formal proof of the theorem at hand. The Proofcheoker must be something of a proof inventor, for it must among
other things be able to handle stops lakelled as "obvious". As the aapab111ties of the Froofcheckar 1ncrease, it will get better and better at proving new theorens. In ract, we way view the job of the Proofchecker to be to invent proofs, given a set of hints; In the two extreme cases, the hints are esther nonexistent or are all the atepe of a formalized proor.

Ve may consider the problem from the v ewpont of checking nethods for generating pwoors, 1.e., seeing if a proposed method of proof generatson geneateg a proot of a desired theorem. The two viempoints ane equivilert; for a technique which will utilize hints \&s simply a proof generator with an input. Further, the Proofcherkon mast be able to msia use of Anformation on that the menbera of a cerlain ciass of simbolic expreesions are legitimate prooft. Such a piece of infortiation is a metatheorem. In order for any proofrchecking sustem to utilize metatheorems, they must be built into its atrueture. In the Proofchecker, metatheorems may be adied without shanging the overall pattern of operation; ascent*a..iy, they are added to the list of permissible proof steps, so thay they act ifke adifticial rules of inference (which, indeed, they are).

The Heurletia Appioach 2nd Helated Work

The Proofcheciter wi?l make extensive use of heuristic methods and techniques. This is nscessary because a straightforward search through the space of compctions between suceessive hints would involve en impossibly lary. amount of computation. One scheme which I hope wtil be useful hse will be the "Qeneral Eroblem Solving Syster ${ }^{\text {" }}$ of Newell and Eacn. This system has alroady been used in solving problems an trfgonometry, elementery algebra, and logio. The chief feature of ine system is its separation of problem content from problem-solving zechnique. It makes use of two principal heuristics: means-ewis enatysis, which involves knowing what aethode of attack al appropriate to partioular situations, and planning, which invoives consideration of an abstraction of the
problem et hand. Closely reisted to the fianning heuristio is the heuristic of modele as used by Gelernter. This heuristic, for the case of plane goemetri, fnvolvea drawing ifguces and checking them to see what relationslipa hold between varfous line segments, argles, etc.

There is a regenslanse betwecn the role of hinte in the Proofchecker and the role of advice in heCarihy's Advice Taker scheme. In each case, te want a machlne to make use or pleces of inforuation given to it rrom an oxternal gource in oraier to solve a problets. In the case of. the Proofchecker, the atitucture of the "advice" makes it mach ensien to dotarmine how to use it.

Problem Nomains

The Proofchecker will not be tied to any particular area of mathematics, although I 3xpeot to work mánily on abstract algebre at rinet. The Prooftheciker, like the methematician, is intended to be a general-purpese ievice. For a given probiem donsin, it will have relevant theorems, heuristics, and model-maing mechanims atored in its memory. Actually ${ }_{7}$ it would be uaeful if the Proofchocicer could be Eusre of eili the theorems it had ever proved, though $1 t$ might have less ready access to those from different domsing. The difficulty here is that theri simply 1sn't enough room in the computer, as things etend non, for the adAftional theorems.

One possible area cf application, though adrattedly somewhat futuristic, is to the ckeckout of lavee zyctems. The psesent way that one checks such a syaten to see $1 f$ it works is to present it with a wide varlety of inputs representirig both typical and extreme cases, and see if the proper output results. Howsver, it often happens that this methoc simply doesn't work; the system falls under some unanticspated combination of circumatanoes which never oicurred in the test ases. One nay to check out auoh a system, however, $1 s$ to prove thet it worls, Such a proof, of courge, would be inposaible for a human to construct for a system of even midd
complaxity; but a machane ufght be abje to construct such a proof, using as hints the tescriptison of the fumesons and Intended mote of operations of varsous components and subccmponents of the syaten. And in a prcof attempt, one maght come up asth a coumberexample and pcasibly even suggest a remsdy.

QRAANKZRTJON OF THE PROONCHECKER

The Proof checker is organized arto two constellations of progrems: Nethot and Verify in ar ilition to the data internal to these prograns, there is a list o? theorema, a list of definitions, and a 31st on legicimate proof steps. The theorem list and definition list may be augceated with time. Verify will accept a proposad formal proof atep and determine if it is coment; If the step is correct, Verify will co the necessary updating of the state of the iniverse, Hethod will determine what the next step should be; it will maks use of the hinte given as input in finding this step. The steps which Yerify will acoept muat be in Etandardized form; thus, all of the touvistics are in the province of lethos, thouch Ver: fy will hande updating in such a way as to make the use of heurictics easy.

Tho current state of the proof is recorded in the form of what it is sufficient to p:ove. We will call thie expression the sufficiency, i.e., at each stage it fo aufficient to prove the suificiency. Then indtalily, the surficienoy te the theorem wa wish to prove; and when the sufficiency hes been reduped to T (truth), we know we have proved the theorem. We may record the suffictercy at various stagee of the proor and refor back to it 2ater, so that if we condust an unsucoassful eubprobiem exploration, we san return to an ecriler aubproblen without having to repeat the Infitial stops of the procf.

This particular form of recorising the ourrent situation is convenient because of the Hide variety of logical. structares which may appear in a theorem or in its proof. To use a 21 et of hypotheaes end conclueions weuld be awksard, for instance, in handing an if-and-only-if thsorea, unless it were to be bzoken fown into two eeparate theorens. Yet euch theorsms are often proved by a sequerce of biconditionals, and this natural soquence can be retained in the sufficiency formiation of the proof. Furthermore, this formulation makss baclowards proofs ouite easy to hendle, and they are perhaps the most natural kind. At the same tine, it is possible by using
certain logical tautologies to make forvard proofs; and the machinery for handling such proofe can be billt into Nethod in such a way tiat the user need not be aware or the few complications thet this enteils.

The Theorem Ifat

The Proofchecker is enfowed with an initial set of theorems which are placed on a theoren list, and each rewly proved theorem Is added to this 3 ist. Lemmas proved during the course of proving a thecren are also added to this 11st. Whenever a theorem is referred to in a proof, j.t is brought to the head of the theorem list, so that frequently used theorens are easily accessible.

Eack theoren consists of a name, a list of varlables, and a form. hhenever the theorem is used in a proof, it is referred to by name; the vaviables designate those elements in the form which may be substituted for. We may think of the varisbles as designating univereal quentifiers which implicitly precede the Porm so as to convert it to a theorem in the ordinary sense. The form is the actukl statement of the theorem; no inherent restrintione are plased upon 1 ts formet, though for any problen domein, the format w111 be apecified.

The Defirition Ifst

The Proofchecker ales has available to it a 1.1 st of deifnitions, A proof may be interrupted at any point to make a new definition. A derinition $\{\varepsilon$ simply an abbreviation, with provision for aubstituting for certain variables within 1t。 Each definition consiets of two names, a 11st of variables, and a form. The reference name is used khen we refer to the definition in a proof step, and the Internal nama is the one actually resorded in the sufficiency and In any theorems or the theorsm list in which the definition is used, The form ard variables operate in the same way as the form and variables in a theorem. Derinitions, like theorems, are arranged so that recentiy used definitions appear at the head the list.

The Noed for 3 No Names
We need two names in e derinttion because otherulse wo nay ascidentally assign to a definition a reference nome which aiready has a meaning; and then oy making vae of the definftion, we nay make a false step thich fill pase thirach An ovemplo Xill illustrate the danger. Surpose now that we heve only one name associated with a derinticn. Let ue deffne AnD with variables X and Y as ($N O X,(O R, X, Y)$). Thus AND is the names, (X, Y) is the L1et of variables, and (NOT, (OR, $X, Y)$) to the forin. Now suppose that we have as theorem (NCT, ($\mathrm{OR}, \mathrm{T}, \mathrm{T}$)). Then the theorem is the originel surficiency. Dy ualug the deptnition, we may then get ae sufficsency (AND, T, T); and by other means me may reduce this to Th. Thus we pould have zonehow prevanted from entering the AND into the sufficiency in the above example, wo would not have been able to carry out the proor. If an internel name, say Gooorj, haci been ontered in $p: a v o$ of AND, te would have had as sufficiency ($061005,7,2$), which would be unprovable since $\mathbf{0} 0005$ has no knoth properties.

In cenaral, we use the reference name when we refer to a definition in a proof, but the internal nama is the one actually recondec in the surficiency. The Verify program handles the substitution of the friternal nam for the reference name actomatically. The invernal namo ite a seviy berarsted symiol which can be gavanteed not to have been used for anything before; the progron which oreates euch symbola in L: SP is cajled Genoym, The symbols it generates are of the forio Gxxay, wore tha xis are decital digits.

Redofinition

It is possible to rederine a lierra sjen though it has previously been defined. When wa do this, homaver, wo lost the ability to refer to the previous dof'inition. Thie is because whan we search the definition list for the reference name, we will always come to the later definition finst; and we can access a deffinition in a proof atep only through ite reference name. This is as one would iske it to be; for it permits us to make temporary clefinitions
of teras without precining the later use of thene terms for other purposes. The interna. names of tho suecessive def1nitions will remain inique, so there is no danger of confasion,

Preservation of Subpioblems
Often, in a heuristio proof, we will make steps thich, while correct, don't help to prove the theosem. Since such steps may actually lead us to a situation there the buffefency is a felsity (ard hence unprovalie), we nuet have a way to go beck to previous sufficserexes. At the same thine, we rion't want to ksep all previous sufficiencies, becauge it mey take up too mach rocm, Therefore, there are two ways in which wo nay save past sufficiencies.

Reverting

When we make a step, we may requast that the ast sufficiency be preserved. Ke may gein zosess to it by reverting one or more times, depending on how far along we have noved subsequently. There $i s$ a parameter, bet by Nathod, which tells Jerify whether or not to preserve the most vecont eurfisienoy.

Tre IIst of Preserved Subproblems
The reverting procedure is not adoquate when we wish to back up several steps, move off in another direction, and then, after the rew exploration proves feasible, return to where we started. It is inadequate benawle the starting point lies on a different bramh of the exploration tree fin orcer to kendie this, there is provieion for naming the cument sufriciency at any time and storing it on a 21st of aubproblens to be preserved. At any point, we mey reattaciz it if we w'sh. We ruay also remove any sufficiency from the 11st of preserved subproblems. The items on the 11st of preserved subproblems are then accessed by their names. When the theorem at hand hes been proved, the ist of preserved subproblens is actonst'caliy clearod.

Froof Stepe and Theis Punerets
Each typa of proof step ta rapuarented by a program which taker the paramehers of the sfep as input, upjates thatever noods to be ujsated, and gives as oitpit T or I' depenitng on whather or not che proor stop is cospect. IN tati onems may De incorporatad into the system if they are set up as proco steps; ordinartiy, they will taks the suffictanoy ac ab inmut, test it or a subexpiestaion of it hor a parviculut proptry and then trensform it
 coreespond to a metathsoxem; susi a progean whid reduce the surfsofency to a stagien but ioetouls equivalent form, The actual matathoonow toould be thet the reeult of elmplizication is In every case lozs cally acusvelstt to the original form.

The Yer fy Fiogran
The Versty zuogran, we we have potntsd out, checirg each suc力cssive ztep of the mocos anc perfonia yarions kinds of up. dating. Befoce extmining any steps, it eswins internal namet to
 moantnge Therearter, when veritoled are referred to by their nswee, Nexify rejicoss these nemaz with lla friternal mames in the ateps on the proos. Fine mathed nasi no: even be avare of the exdetence of these Anternal nsmes. Varify also sets the sufficiency Indefaliny to be the fheorem we wish to prcto; whon the theorem has been proved, "entiy plance it et the head if the theorem list. Verdfy repatediy calis on Nathoc to prodse a proof etep. Esoh proon atep te indicated by the nam or a pugran and a set or argumente for thet poogram. Versty checke the the program name 18 on the list of zogitinnate proos $\varepsilon t \in p$, and, il so, operates the program. The result indiatee whether or not the atep was correct; the proof step program handies the upietsifi that needs to be done

The Method Program

Methol 1 s calzed upon repeatedjy by Verisy to Iurnish proof steps. While Verify will probebly remain unchanged as the Proorohecker is modirled, Mathod w.ll be hichiy pubject to change. Method uses heursstic mothods, In genaral, to determine what the next proor step should be. At present, Nethod simply feeds the . Input A1rectiy to Verify, but this is oniy in order to check out Versiy, As wort paogressos. Kathod wall bscone wore and mone elaborete.

One possible way of elaborating Nethod is to do eo hierarchicaliy. Rather than reltiste Wethed to actsount for new improvements, E hew Nethoi would be written which uses the oid one as a subprogratn. This technique 1 a Nell sdapted to heuristic programs.

Role of Common Subexpressione

In auocessive eufficienoles, there will often be large subexpiesclois which are carrited along intant anl sre thererore sdentical. The Froofchecirer has baen organtzed so as to have both surificiencies refer to the same cops of awch a subexpresaion. In goneral, copytng is evoidsd as mwh as possible, seving storaze and time.

This might appear to be merely a pracoinal progremoing devive, but it has an interecting counterpant in texibook mathematics, Essantially, comon subexplegeions ast lite pronouns; they are weeful in the same way that it is useful in a book to write an equation, number it, anci later on refer to st by number. If we Gid not use the numbering technique or $i t e$ gquivazent, we would have to write the equetion out in full whenever we wanted to refer to it.

LOOICAL GOIPRORTYONS OF THE PROOPCHECKER

Forve 1 Desoription

We will etart with a slaes of patrs $\left(T_{i}, 0_{i}\right)$ for $4=1, \hat{c}, \ldots$, which we shall call inftal theoroms. Each $T_{i f}$ is a symboilc ex. pressions each θ_{1} is a aet of atomic symbols $\alpha_{ \pm 1}, \alpha_{12}, \ldots, \alpha_{1 n_{1}}$. Wer refer to T_{1} an the form of the theorem and to the $\alpha_{1 j}$ as the
 pressions, then the reauzt of eukstituting μ_{1} for $\alpha_{k, 1}$, for \mathcal{A}_{2}, for \ldots, ψ_{k} for $C_{k n_{k}}$ in r_{x} is a theo.em instence. Note that the x_{y} are theorem fnetances by the jdensity substitution.

A propertydegs symboi is an atomic symbol which is used solely as a vamiable in a theower, and sor no othor purpoee, For instance, AHD and PNATAE wolid not be procertyless symbo: s. In LiSP, the fanction GENSYM in used tc creste these symbots.

Ie" S_{0} be a eynbolic expresston, and suppose that there exists a sequence of sentences $S_{1}, S_{2}, \cdots, S_{n}$ such that $S_{1-1} \leftarrow S_{1}\{=1$, e.... n) and s_{12} ie the symbo2 ${ }^{t} \tau^{t}$. (The meaning of "wow will be explainad shortiy; T repreeents trath.) Iet. $E_{2}, E_{4^{\prime}}, \ldots$, B_{m} be a sut of propertylese symbois, and donote this set by η. Then the pair $\left(S_{0}, \eta\right)$ is a theoren. Furthernore, the initisl theorems are theorms. The chess of theorens is trias formed reoursively, starting with the inithal theorems.

We denote "B is a theoren ins same r by -S , and "it is suffiolart to prove $S^{\prime \prime}$ by $\mathcal{H} S$. The Jogizal system is based on two ruines of inference:

1. If $F T$ and $\mathcal{T} S_{t}$ then -1 g . (Inserition rule)
2. If $\vdash \cdot \operatorname{SNS}$ and $\mathcal{H} S^{t}$, then $-1 S$. (Modus ponens)
\square
Intuttivejy, s-st wane $-1 s 0$ fst. Formally we say $S-S^{\prime}$ if and only if
```
1. St 18 of the form T AS and fT, or
```

2. $+\mathrm{s}^{2} \supset \mathrm{~s}$, or
3. St in obtakned fron S by substituting for some subexpreselon of s the equivelent of that subexpressicn, provided that the eubexpreaston is not pact of a quated subexpresston.

Equi velent subexproscions aze of two types:

1. A deftnea temia is squivatent to thas winch it def?nes.
2. An eyprensfon which represents the resait of a oalculation As equavelont to the reaurt itreif. The oalculation is porformed by evelueting the exp:ession and then repaeing is by the quoted wesult of the eqnatuation.

For instense,
(SURST, (Q1ONE, ($\mathrm{A}, \mathrm{B})),(Q 00 \mathrm{E}, 2),(2002 \mathrm{E},(\mathrm{CONS}, \mathrm{P}, \mathrm{Q})))$
would be equsvalent to
(cucte, (Conat ($P,(A, E)$) .
Here sumst is a ubse function whiok sunetitutes its first argunens for 1 te vecond argument in its thirs argureat.

The diefintior of - is chenged then metatheorems are aded to the syetcra Therazore, the above beacription corresponds to the systen as 1.t now stanis, but is not pertarent.

Ro'e of thitial Tocorens

The initia: theorems difeer from exions as twe think of them In thet for most o:oblem domstns there is no effort to make them non-rodundant. By uning a system with a large inftial endowment, Interosting reault: are reached more cuickiy. It is true that all of mathe natice may bo constructed from lower predicate calcuius With deatity; bus the working tathemstotan does not ordnarily move 1 se of tuis foot, even though he is evere of it. This is as or ie for topo.ogists ard algebresolets as it is for hydrodynamiosets ani nomeracal enalysts, sven though the former may ocastonaily gtve

$$
\begin{aligned}
& \text { This page is } \\
& \text { missing from } \\
& \text { the original } \\
& \text { document. }
\end{aligned}
$$

"he rangern of the Ceicijettor Rule
In permftting the saicuitation iale, the have let the wolf in the foor. We wou: A İte the Proos hooker, when given a proof, to be gueranteed to asve us a rorsist. However, when we introduce the calculation mue, we cen no icngov gusrantee this, except at
 and proosed to cavoulate ite velwe, the calsulation way not ter-
 suternacsaion to see whe* $n=5$ or sot the calautation will ran wils In sone tense and destros tive Froofnhenien progran or nodify itt zontente, fofantasthoaily stever deamatice prograti, for inetances noght ieurn to chost by iodsaytug the peremstera of the proof--hecker ao as to foree th to accogt false steps!) steese proklems mav be gotved by manthg aid aajoujatson atepe or sh interprettve botss, but this requires a ris rate ard quite elaborate interrueter
 conzant Ieval-ianguage progreas would heve to be fnterpreted
 the contro3 D' a program called Errorcet. Erronset caiaes most. desected errues ma nor-tepminathis calculabions to reiurn to control to the Proofcheckez. it wit not catch all eusp. errore, so this Logiael soophole doss remant. Howevor, defectute proofo wheth do get by Errorget wizl orlinamjly ceugo the Proofunecker to stop rather than to give a falea ancwer.

When versfy reieftes a proos step from Natkod, it checks to see if the step is of one of the resognzod tyros, and har the appropntate naker of garametom with ats It rot, the atep se erronaous. if trece stitenia ane wet, the mane on the top te taiken an the rame of a tunction, and the parametera of the orep as angumonts of thet function. Fot each type of step, the verme

The types of prof" stece rove veen selented fon thér upe. fulnars as pr'smt:ivee or bu゙idung-bicoks in comotrucine the types

 spoostic theorers, they beantie guite poiterfuis
Tise fchown step ars amatande ar preseat:
2. anert
Thín sfés has as peramaters the reme of a theoren
and a list cf ftivif:twsoms. The comesponisng sur taon
finas the thacter on the theorem 2..ct, performe the f
whe to the retatting shacnem thatiante art the cumpent
ouffsamen if the nomed theoreth is not or the theoren
Itet, or so the variakies on the pubstitition sist do
not correnpow to the vartabjes of the theorem, the step
is rejected.
2. Modus
flice erep tisn ap parameter the mawe of a theoren. Whe sorreepont'ng runction Ennis the theorets on the
 the ratsebies of the thocrem, and then applees the rule of reterge modue coners :o the vesulting theorem ard the wurront, sitflozency, The stey ulil bo rejested 10 tto

Le not of the ferm insineb, antecedent, consequent), or Af the suafictifnizy is nos a gubseotiation instange on the acneequent witt respect to tra rantakies of the theorem
3. Calo土ate
 Indiate the atbexpression of the suffsciency whose value Is to be calvilates. If the list bas no elomente, the Eubexpression is the ent tro expresston. Tle ptep replases
 wail be retecteth ar tre inst mecties an atcoto symbol or a quoted exjreasticn pocope is is exhausted.
4. Lenga

2tice step hss as argatonts a nome d list of vartalles,
and a form. Jn thas :sev, tive Procschericer is used
recursively to choct the pronf of a lemina, whise temporacily negleosing the menn theoren, if che lemax is proven, It Is aisted to the thaoreta LAst; in eny sase, control it retirned to the procf of the matn theorem wher esther the iempa is prover on the Proofohester is told to give up on it.
5. Makedef

Thea giep tas as argunents a name, a list of vantabies, and a fort The oorresponding funcion eirss assigns an Internaz name to be the aquivalont of the referance nate. It then plaies the ilet which contaires both names, the varizabies, the the form at the begtuntris of the defindtion İst.
6. Une def

This siop has af paramaters a rame and a ilst of A-s
 presaion of the surficlemcy: the name is the reference name of a dextuttion The correaponatrag punction gets
 outexpression : 0 ree $A f$ it at a satsititution fnetance of
the form of the definttion $\quad 3 \hbar^{2}$ so, it replaces the subexpressson by a $2 s s$ whoto Asrat olomar: is the interna name of the definitior. The remeining elements heve the property that if thoy are matiches eequentialiy with the vartabies of the faftnitsor and gulatitutes for these var'tabies ta the form, the result is the original subexpression.
7. Unteftne

Thes stop hes as paremeter a list of $A^{*} \varepsilon$ and f^{\prime} s What indicato a subexprespison of the surfocieray. The first element of this sulexpeesqion 18 taiken as the frternal name of a defintticn, ard the dezantton lict is searched foz that nare. A suk 303cation lifti is formac by matuhtne the eucceesise otements of the subexpreseion With the vasiabies of the definftion, and then the sndicated sitststations ars penformen on the form of the definition. Fi.naily, the sabexpression is repiaced by the reault of this subatitution. The stop is refeotcd If the namei dufiattion ig not on the definitior list, or if the nawber of exements foalowing the internal neme of the tefinstion in the suborproseson is-not equal to the namer of tardaties cit bize suexpression.
8. Nemepron

This abep haz as 弓aramo:er a reforence name it vauben \& yair phoes fy-ct ovenotit is the reas and whose neacm elerent: Is the surcen: sufficiency to be placed on the list of pressrved sutprotictis. The ourrent sufficiency W112 be able ta be restorej if reoessary at a later time.
9. Feattack

Thse step has as psiameten the rame of a sthproblem on the 1 tist of proscried eutprotiems. its causea the ourrent sufficieriay to te set to the sufficienoy paired
 The etep is rejoctud ir khe name ooes not cormerpont to a name on the Ifet of preatnver subprobleas.
10. Kiljprob

This sleg har at parameter the neme of a problen on the list of proserved surypoilems, It causes that subproblem to be celeted Rras the 11 et.
11. Donothstrig

This ther, has no peratetens, and hes no offent whatzcever.
1.2. Revert

This step has mo paransters. It causes us to take the second nost recent eutficlency as the current eufficioncy, Jit the sument auffotency is the thoorem ve wish to prove, the step if cefeoted. Winless the currerv sufflcteroy it seved by a nemenns, a revert fill ceuso it to be lost.
13. Qed
chie siep has no peremesers. if the current affictenoy is "n", we place the tiverem at the inet or the theosem 11st, and Verdy wlll return with an ancwer of T. If the Euftiolercy is not T, the step $2 s$ rejesed.

CURTBM SIATCS AND FUTURF PLANS
As of this writine, the Vorify proerat in in the process of debugzing, and the fletrod progran fe in its mot rudimentary form; Nethnd merely takes a ijsc of stepe, peels them of f one by one, and passes thers to vemfy, while prentarg ont uefal information. The program has reen coied antirely an IISp, which 3eems to be we3: suited to the appisation. In parescuatr, fta randisng of cotmon aubexpreset on without wrnesessary dupzication wils probebiz ease the sterage ditixouitaes zonatderatiy when che problems get more complicated and the theorom and desinntion lista gez longer. I have alreaty urdt:en ajl the furctions which ckesk the disferent stepe, though some of then are in meen of revtsion.

After Verify a! 1 fts sutellite functions have ceen che ked out, I pian to worik os improving tewhod, at the same time applytne It to atstract aigebra. My finst, etes tilil be to incorporate maso-steps whick wi. combtre several inatvidual stepe along with epesifj , theoreng. Next is ehall builid in rachinory which alioce
 stitutions might be onitted ian is ofter done An the oitation of a theorem. in a textbock proof Af Aet siat, I shall irvestigate varsous $2 e a r n t r y$ meckotisme whith might be Ancorporated, However, さt se difficuit to anfi=ipate at this polnt just what course the project will fojiow; the plams at each stage was we influenced strongiy by the resulte of the preceding etage.

