Arisiciolal Intelisgenoe Frojoct--RNE and NIT Computntion Contor
Nemo 27 -. SLTPLIFY
by $24 m \mathrm{Harc}$

1. anerad poncripetion

91.Wplify io a complicble aet or 45 8-expression-defined funotions which simplisy algobrsio oxpreusions. The expressions Which are appropriate for ofmplify are dofined recursively as follows:
$P=$ all atous, fixed and floatins point numbers
Q - ell expreasions of the form:

(MINUS . a),
(RECXP . E),
(DIVIDE, n_{1}, B_{2}),
(POWER, a_{1}, s_{2}),
(SUBr, $\varepsilon_{1}, \delta_{2}$).
where $s_{1} s_{1}, s_{2}, \ldots, s_{n} \in P \cup Q$.
sinpolify is a function, not a pseudo-function, that 1s, the 110t structure of an exprossion is not modified by gimplify. almplify telies about 6000 mords of free storage when stoned sent. S-exprosaion and sbout 9000 words when compiled. It tales about 5 minutes to read all the functions into tho 709 using the onilne cand reacer, and about 4 minutos from tapo. .
2. oxdering

It is posaible for two exprossions having the amo algobreic structur to be roprosentied by different list atructures, o. So (PIJS 2 X) and (PLUS X 2). This oreates a sorious problew, for a LISP funcetion to recognize equality of algebraic form would be quite complex and timo consuring. Fherefore the simplification routines une the deviae of congnionily ordoring all the aigobreic exproseions which thoy oraate. Thus it is poselble to rocognize equality of form with equnl.

The ordering schome used provides a hierarahy of S-expressions

$$
\begin{aligned}
& \text { This page is } \\
& \text { missing from } \\
& \text { the original } \\
& \text { document. }
\end{aligned}
$$

7．porform all the abovo amplifiostione on tores oocurring in the denominator if the ergument contains DIVIDE＇s and RECIP＇s．
nirmentx］w1 1 ：
i。 ohange the sign of x if it in a number
2．thros awoy the NINUS if x iff or the form（NLNUS ．E）
S．reverge the order of 5 whr exprosalons．
pixwen［ x ］w111：
1．divide 1.0 by x if π 1.3 a nuribor
2．yield oons［MINUS；0imrop［E］］if x is（MINUS ．E）
3．chrow anay finftisl RECIP．
4．reverac the ordior of DIVIDE expressions，koeping numeri－ cal terms（if present）in the numerstor

5．Bimplify each temm in PRCON expreasions separatoly．
stmaiv［x；y］－Gimpra［2act［x；simroply］］］
gimpors［D；e］w111：
2．yield 1 if e is 0 ．
2．yield 0 if bis 0 。
3．yield b if e is 1 ．
4．porrorm the propor numerical operation is imginary numbers are not involved，e．g．$(-1)^{3}=-1,(1)^{2.4}=1$ ， $(-1)^{2.4}=($ PCNER－1 2．4）．

5．yield cono［RECIP；氏1mpNr［ $E ; e]$ ］if b＝（RECIP E）．
6．almpilify acch term individually in PRDCC or DIVIDE expreazions． 7．treat a symbolic minus sign if poasible（if e is an integar）．
8。 muttiply exponents if b is itself a POWER expression．
s\｛rasun $[x ; y]=$ simpls［11st［ $x ; 81$ manin［y］］］

4．Uaing simplify

It is quito secepteble to use the subrunctions oinple［2］， singra［ 1 ］，siminin［ x ］，etc．separately，providod that the argu－ ments of these funotions have been simplified．In fact this is ediviseble．for if one lots theso funotions put the conrectivea

$$
\begin{aligned}
& \text { This page is } \\
& \text { missing from } \\
& \text { the original } \\
& \text { document. }
\end{aligned}
$$

phof[x] gots the sboolute vilue of fixed or glonting point numborso Is x is not a nucber an error will result. difo[x:y] is primarily for firod point numberne If x is divisable by y or x is a flowting point nurber it 1 s T ; F otherwise. If either x or y is not a number on exror will oocus.
ged [$x ; y$] is for fixed point numbers. It finds the greatost combon divisor if $x \cdot \neq 0$ and $y \neq 0$, and x and y are ixed point numbers. If $x=0$ gad[xyy] $m y$, if $y=0 \operatorname{god}[x ; y] m x$.
mepand[$2 ; \mathrm{fl}]$ is the some as mppcon, except it appends resultent liots instesd of nconc-ing thom.

Enpsra[$2 ; p]$ is a predicato in one variable. mepend is Tis $p\left[x_{1}\right]$ is T for every $x_{1} \in L\left(2 m\left(\dot{x}_{1}, x_{2}{ }^{p} x_{3}, \ldots, x_{n}\right)\right)$.
mghegrg[e] 1 s sn output function - 1t turms the expreation e into a list which will print out like Fortran. This is for convenience in raoding the output.
greatex[x;y] gives a unique ondering of atomio symbols. If x pnd y ere atoms, gnentex[$x ; y]=T$ if y occupies a higher storage locstion that x 。

2nrseg [x;y] oxders S-expressions uniquely. The velation between the curferent pousible eloments x and y is:

NII < number < 2 tom < list.
The oxder among numbers is by increasing magnitude, the atoms ane ondered by grester (vec above), and liats ano ordered accordIng to the ilsot element, or by succeeding elements in the case when $\cos [x]=\cos [y]$, and by lengih if corrosponding elemonts are eques.
ondan $[2]$ onderg the top level of the 11st 2 by the scheme Given above.

Enarpie: $\operatorname{order}[(X \quad(A, B, C)(A)(A, B) 3$ Nun 4)]
$=$ (NIL $34 X(A)(A, B)(\dot{A}, B, C))$
Inmori[x;e] recopies the top level of E, inserting x into the proper position to yield an ordered inst.

All subfuotions have boẹn tested on a 11 mited number of trini cuses. The connective functions ars lanown to work on a Iarge olass of exprossions, but some bugs may remain. piesse bring any information about bugs to 26-265.

