Technical Report 294

Understanding Simple
Picture Programs

Ira P. Goldstein

MIT Artificial Intelligence Laboratory




This blank page was inserted to preserve pagination,




x Y -
//"‘\.' :
'
- *




ABSTRACT

What are the characteristics of the process by which an intent is
transformed into a plan and then a program? How is a program debugged?
This paper analyzes these questions in the context of understanding simple
turtle programs.

To understand and debug a program, a description of its intent is
required. For turtle programs, this is a model of the desired geometric
picture. A picture language is provided for this purpose.

Annotation is necessary for documenting the performance of a
program in such a way that the System can examine the procedure's behavior
as well as consider hypothetical lines of development due to tentative
debugging edits. A descriptive framework representing both causality and
teleology is developed.

To understand the relation between program and model, the plan must
be known. The plan is a description of the methodology for accomplishing
the model. Concepts are explicated for translating the global intent of a
declarative model into the local imperative code of a program.

Given the plan, model and program, the system can interpret the
picture and recognize inconsistencies. The description of the
discrepancies between the picture actually produced by the program and the
intended scene is the input to a debugging system. Repair of the program
is based on a combination of general debugging technique and specific
fixing knowledge associated with the geometric model primitives.

In both analyzing the plan and repairing the bugs, the system
exhibits an interesting style of analysis. It is capable of debugging
itself and reformulating its analysis of a plan or bug in response to self-
criticism. In this fashion, it can qualitatively reformulate its theory of
the program or error to account for surprises or anomalies.

Thesis Supervisor: Seymour A. Papert
Professor of Applied Mathematics



ACKNOWLEDGEMENTS

This work has grown out of the unique environment for studying
human and machine intelligence that has developed at the M. I. T.
Artificial Intelligence Laboratory. The author would like to express his
gratitude to the many members of the laboratory who encouraged and
criticized this research. Special thanks are due to Seymour Papert, Marvin
Minsky, Carl Hewitt, Gerry Sussman, David Marr, Patrick Winston, Bruce
Roberts, Ben Kuipers, Berthold Horn, Scott Fahlman, Henry Lieberman, Allen

Brown,- and Gerrianne Goldstein.

The author would also like to express his gratitude to Cheryl
Goodman for help in preparing the text and Suzin Jabari for drafting the

many illustrations.



privhulz 101 Insanoiivas supinu m‘%u g

T Mo s gpgaigygb_gggf“é"' 1iesn @ bos nsaud

sid 220vqxo 03 SALI biuow ofsus 98T LIS § fasoitianh

 bas bepsiwoIns’ wwﬂm ] : sbus.t:ne
abvish ';«;gg;q;iqmﬁ, o3 oub s16 aMmeks Tntom - - mg;;;{'ﬁ?

gou8 ,nefaniV A3inaed sk ;;gm - : 183 ,@éam‘v

© nelIA ,nswisdsi) yineH ,semids¥ 12008

Ixwesd o3 sbulissmy 24 mﬁaﬂ o1 siLl
o4 gaidlath 10} itedsl nised bas sxel




NN NN NNDNDNON

P et et et et et st
N DL WN -~

W WwwWwWwWwwWwwwwww
OO NI W N —

Table of Contents page 5

TABLE OF CONTENTS

ABSTRACT 2
ACKNOWLEDGEMENTS . 4

CHAPTER 1 -- INTRODUCTION 8

Understanding Programs 8
Turtle Programs and Logo 10
Picture Models 12
The Napoleon "rograms 13
Planning 14
Debugging 16
Organization 19
CHAPTER 2 -- PLANNING 21

1 Introduction 21
2 A Planning Vocabulary 21
3 Linear Plans 22
4 Insertions ‘ 24
.5 Skeletons 27
6 Global Planning 30
7 Open-Coding a3
8 Purpose Statements 35
9 Round Plans 36
.10 Program Writing . 40
CHAPTER 3 -- MODEL-DRIVEN DEBUGGING 46

Model Violations 46
Debugging Treel 47
Debugging as Search 60
Ordering Multiple Violations 61
Private Debugging 65
Linear Debugging 69
Imperative Knowledge 70
Deciding between Alternative Debugging Strategies 74
State Editor 80
.10 Assumption and Protection 85
.11 Summary of Debugging Concepts 88
.12 Classification of Bugs 89



o ® O™

L=~ -
S W N~

(S RN & RNE, NS, NS, IS, IS RS,
O NS W - PO NGO S WN -~

DRI D

NN SN NN NSNNNNN
-0 B NS WN -~

.1
.2
.3
.4

Table of Contents

CHAPTER 4 -- DEBUGGING EXAMPLES

Debugging Napoleon

Debugging a Big Mouth

An Example of a Model-Driven Debugging Failure
Debugging a Visible Interface

Fixing a Broken Neck

CHAPTER § -- OVERVIEW OF DEBUGGING

Hierarchical Debugging

Top-Level Debugging Guidance

Structure-Driven Debugging

Evolution-Driven Debugging

Process-Driven Debugging

Extensions with a Domain-Oriented Reasoning Program
Theory versus Procedure Bugs

Generalizability of Debugging Techniques

CHAPTER 6 -- DESCRIBING PERFORMANCE

The Description of Programs

Process Annotation

Semantics for Turtle Primitives
Antecedent Computation of Model Predicates
Schematic Description

Plan-Finding Advice

Debugging Advice

Analysis of More Complex Programs

CHAPTER 7 -- FINDING THE PLAN

Introduction

Finding the Plan for Stickman

Plan-Finding as Search

Linear Plan Space

Non-Linear Plans and Self-Criticism

Surprise Analysis

Treel, an Illustration of Heterarchy in Plan-Finding
Tree2, an Open Coded Tree Program

Plan-Finding for Sorting Programs

.10 Conclusions

CHAPTER 8 -- EXTENSIONS

Recapitulation

Extension to More Complex Programs
Extension to Learning

Extensions to Education

page 6

92

92
97
107
110
111

115

1156
116
116
118
120
123
124
125

127

127
129
132
133
135
136
137
138

142

142
143
145
146
149
154
157
160
167
169

172

172
172
173
173



> > > >

[ lEeclivelio-Rvelioclive]
NS W N~

oo sEeNeNeNaEaNe!]
N HE W N~

mmMmm
W N -

oW N

ot

Table of Contents

APPENDIX A -- THE TURTLE LANGUAGE

The State of the Turtle

The Basic Turtle Primitives
Fixed-Instruction Turtle Programs
Beyond Fixed-Instruction Programs

APPENDIX B -- PICTURE MODELS

The Tree Model

Triangle Model

Underdetermined Models
Disambiguating Multiple Reference
Logic

Models for More Complex Programs
Models as Nets

APPENDIX C -- DEBUGGING A WISHING WELL PROCEDURE

Performance Annotation

The Wishing Well Model

Finding the Plan

Fixing the Roof

Repairing the Well

Fixing the Topology of the Wishing Well
Debugging the Above Relations

APPENDIX D -- MORE ON IMPERATIVE SEMANTICS

Geometric Primitives
Logical Primitives

APPENDIX E -- MORE ON PLAN-FINDING

A Precise Statement of the Top-Level Loop
Explaining an Individual Code Statement
Finding Round Plans

BIBLIOGRAPHY

page 7

176

176
176
177
177

180

180
185
188
190
191
191
194

196

197
198
199
203
207
210
214

218

218
221
222
222

223
225

226



Introduction page 8

CHAPTER 1 -- INTRODUCTION

1.1 UNDERSTANDING PROGRAMS

What is the process by which an intent is transformed into a plan
and then a program? How is a procedure debugged? This paper analyzes
these questions in the context of understanding simple programs for drawing
pictures. Figure 1.1 and 1.2 illustrate some typical intended drawings and
the the corresponding pictures produced by programs with bugs.

To make concrete our theory of planning and debugging, a computer
monitor called MYCROFT has been designed that is able to repair programs
written by a beginner. In building such a monitor, fundamental problem
solving issues are addressed including simplification, linearity, planning,
annotation and self-criticism. This research provides insight into the
programming process which is useful both for better educating students and
for increasing the competence of machines.

It is important to note at the outset that by "design® I mean that
the system has been described in sufficient detail to be hand-
simulated but that it has not actually been implemented. The
criteria by which the concepts and techniques introduced were
Jjudged was their success on a large number of examples of actual
programs written by beginners. The system was not implemented to
avoid being submerged in details and artificial limitations due to
the idiosyncracies of the particular programming language. Also,
the primary goal of the research has been to find more precise ways
of describing the fundamentals of programming and debugging rather
than to construct a practical system for computer-aided
instruction. Currently, MYCROFT is being implemented in CONNIVER
[McDermott 1972], a LISP-based language with database, pattern-
matching and sophisticated control primitives. The implementation
is being undertaken in order to provide a platform for further
research and will be separately documented in a forthcoming Al
memo.



Introduction page 9

TURTLE PICTURES

/\ >

TREE

TREE1

FIGURE 1.1

O O

A

/TN «
N\

Intended
FACEMAN FACEMAN

FIGURE 1.2



Introduction page 10

1.2 TURTLE PROGRAMS AND LOGO

The pictures of figures 1.1 and 1.2 are drawn by program
manipulation of a graphic device called the turtle. The turtle has a pen
which can leave a track along the turtle's path. Turtles can be either
real physical devices or simulations on a graphic display. I shall limit
myself to display turtles to avoid problems of iﬂprecision due to motors,
drive belts and wheels. Figure 1.3 illustrates the behavior of the turtle
executing the following TRIANGLE procedure:

TO TRIANGLE

10 FORWARD 100
20 RIGHT 120

30 FORWARD 100
40 RIGHT 120

50 FORWARD 100
END

Appendix A provides further details of the turtle language.

Turtles play an important role in the LOGO environment where
children learn mathematics and problem solving by programming display
turtles, physical turtles with various sensors, and music boxes [Papert
1971a, 1971c, 1972a]. Turtle programs have proven to be an excellent
starting point for teaching programming to beginners (of all ages). Hence,
in building a system to understand such programs, we can expect to address
fundamental issues in the epistemology of procedures..

The turtle programs are expressed in LOGO syntax. LOGO's design
goals of clarity and simplicity make it ideal for expressing these programs
in a readable way. The syntax, however, is not of significance for the

problems of understanding these programs. Their important characteristics

are determined by the semantics of turtles.



DRAWING A TRIANGLE Introduction page 11

Initial State 2 Statement 10
TURTLE T FORWARD 100
AT Executed
HOME
Statement 20 4 Statement 30
RIGHT 120 [y FORWARD 100
Executed Executed
Statement 40 6 Statement 50
RIGHT 120 P FORWARD 100
Executed Executed

FIGURE 1.3



Introduction page 12

* 1.3 PICTURE MODELS

To judge the success of a program, MYCROFT requires as input from
the user a description of intent. A declarative language has been designed
to define picture models. These models specify important properties of the
desired final outcome without indicating the details of the drawing
process. The primitives of the model language are geometric predicates for
such properties as connectivity, relative position, length and location.
The following models are typical of those that the user might provide to

describe figure 1.4.

Intended Man

FIGURE 1.4



Introduction page 13

MODEL MAN

M1 PARTS HEAD BODY ARMS LEGS

M2 EQUITRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS, CONNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD

END

MODEL V

M1 PARTS L1 L2

M2 LINE L1, LINE L2

M3 CONNECTED L1 L2 (VIA ENDPOINTS)
END

MODEL EQUITRI
M1 PARTS (SIDE 3) (ROTATION 3)
M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)
M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 CONNECTED (SIDE 1) (SIDE 2)
M5 CONNECTED (SIDE 2) (SIDE 3)
M6 CONNECTED (SIDE 3) (SIDE 1)
END.
The MAN and V models are underdetermined: they do not describe, for

example, the actual size of the pictures nor the specific location of the
connection points. The user has latitude in his description of intent
because MYCROFT is designed to debug programs that are almost correct.
Therefore, not only the model, but also the picture drawn by the program
and the definition of the procedure provide clues to the purpose of the

program.

1.4 THE NAPOLEON PROGRAMS
To introduce the system, we will examine its performance on a stick
figure program and its sub-procedures intended to draw figure 1.4. Thesé

programs will be typical of the elementary class of fixed-instruction

programs which MYCROFT understands. A fixed-instruction program is one
wherein the primitives are restricted to constant inputs. Sub-procedures

are allowed; however, no conditionals, variables, recursions, or iterations



Introduction page 14

are permitted.

TO NAPOLEON <- (accomplish man)

10 VEE (- (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END

TO VEE <- (accomplish v)

10 RIGHT 45 <- (setup heading for 11)

20 BACK 100 <{- (accomplish 11)

30 FORWARD 100 ¢~ (retrace 11)

40 LEFT 90 {- (setup heading for 12)

50 BACK 100 <- (accomplish 12)

60 FORWARD 100 (- (retrace 12)

END

TO TRICORN <- (accomplish equitri)

10 FORWARD 50 <- (accomplish (piece 1 (side 1)))
20 RIGHT 90 <- (accomplish (rotation 1))
30 FORWARD 100 <- (accomplish (side 2))

40 RIGHT 90 <- (accomplish (rotation 2))
50 FORWARD 100 <- {accomplish (side 3))

60 RIGHT 90 <- (accomplish (rotation 3))
70 FORWARD 50 {- (accomplish (piece 2 (side 1)))
END

These programs have bugs. VEE draws figure 1.5, TRICORN figure 1.6, and

NAPOLEON figure 1.7.

1.5 PLANNING
The "<¢-" comments shown above constitute the plans for these

procedures and explain the purpose of the code in terms of the model. This
commentary is essential both for the system to Judge the success of the
program and to guide the debugging process. From a program-writing point
of view, the plan explains how a declarative model of global intent is to
be translated into the local imperative code of a program.

| The programmer can supply the plan; or, alternatively, MYCROFT can

analyze the model and program and deduce the plan. The latter was the case



u

Picture drawn by VEE

FIGURE 1.5

1(7
H W
N

N
l >
S

Picture drawn by
NAPOLEON

FIGURE 1.7

Introduction page 15

- E——\
—

Picture drawn by TRICORN

FIGURE 1.6

\~

Corrected TRICORN

FIGURE 1.8



Introduction page 16

for the above programs. The system initially searches for a linear plan.

This is a very simple but common type of plan in whic¢h the main goals are
achieved independently and interactions are limited to interfaces. An
interesting characteristic of the plan-finding algorithm is that it is
capable of correcting its linear hypothesis in response to anomalies and
thereby recognize more complex types of plans.

Planning expertise is obviously essential to both program-writing
and debugging. It reveals the user's intent, allowing proper recognition
of bugs, and provides guidance on the likely pitfalls of different abstract
planning structures. Plans organized around linearity, preparation,
interrupts, repetition, and global knowledge will be discussed in chapter
2.

1.6 DEBUGGING

Given the plan, model, and program, the system can interpret the
picture and recognize inconsistencies. The description of the
discrepancies between the picture actually produced by the program and the
intended scene is the input to the debugging system. The system recognizes
the following model violations in the NAPOLEON picture.

(NOT (LINE BODY)) ;The body is not a line.

(NOT (EQUITRI TRICORN)) ;The head is not an equilateral triangle.
(NOT (BELOW LEGS ARMS)) ;The legs are not below the arms.

(NOT (BELOW ARMS HEAD)) ;The arms are not below the head.

Repair of the program is based upon a combination of general
debugging techniques and specific imperative knowledge associated with the
geometric model primitives. The debugging techniques include the ability
to rank violations on the basis of debugging complexity; the ability to

analyze errors initially in a modular way but to be prepared to look for



Introduction page 17

"second-order" causes due to interactions; and criteria for choosing
between alternative debugging strategies. Imperative geometric knowledge
includes advice as to how to establish a desired geometric relation by such
means as manipulating the turtle's state at interfaces or altering the
scale of sub-pictures. '
This knowledge enables the system to correct the NAPOLEON, VEE and

TRICORN programs. The repair is accomplished in three steps: first the
head is corrected (figure 1.8); then the crooked body is straightened
(figure 1.9); and finally the orientation of the stick figure is fixed
(figure 1.10). The end result is the program shown below which
successfully draws the intended picture (figure 1.4). The underlined
statements are the corrections made by the debugger. The associated
underlined comments represent additions to the plan which explain the
assumptions and purposes of the corrections.

TO NAPOLEON <- (accomplish man)

3 RIGHT 90 <- (setup heading such-that (below legs arms)

(below arms head))
(- (assume (= (entry heading) 270))

10 VEE {- (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END

TO VEE <- (accomplish v)

(state-transparent vee)
10 RIGHT 45 {- (setup heading)
20 BACK 100 {- (accomplish 11)
30 FORWARD 100 <- (cleanup position)
40 LEFT 90 <{- (setup heading)
50 BACK 100 <- (accomplish 12)
60 FORWARD 100 <- (cleanup position)

70 RIGHT 45 <- (cleanup heading)
END '




Introduction page 18

f b uSEIeT

: Y L Ca EORGU
doe 1n #ls07
< Y
owEe nedpon @zﬁ.ﬁm,ﬁ.;mwﬂ} helne11nd i Duod
e

SniiE a4y oo swijpianivto e yvilsadl bas (00 gty

P 3 A ‘ 3 il F o ¥ RN
g omthe ot dlyss bos oedt IDDUD swnin)

sheg enobisetion offf s Zinsmelibaie

PRGNS

WOTH09AR 0T

33V ol

K B AN

i
281 QAAMRGE &)
.99 T3 o7
WACZIIET Gé

P
= &
P hgay

g& THaIR
$31 A0AE
801 QAAWR0Y
99 713

344 30A8
&8 1

FIGURE 1.10




Introduction page 19

TO TRICORN (- (accomplish equitri)
10 FORWARD 50 <- (accomplish (piece 1 (side 1)))
20 RIGHT 120 <- (accomplish (rotation 1))

(- (= (degrees (rotation 1)) 120)
30 FORWARD 100 <- (accomplish (side 2))
40 RIGHT 120 <~ (accomplish (rotation 2))
{- (= (degrees (rotation 2)) 120)
50 FORWARD 100 <- (accomplish (side 3))
60 RIGHT 120 {- (accomplish (rotation 3))

(- (= (degrees (rotation 3)) 120
70 FORWARD 50 <- (accomplish (piece 2 (side 1)

)
)

1.7 ORGANIZATION

The organization of the monitor system is illustrated in figure
1.11. The main flow of control is represgnted by the solid lines and is
from left to right‘in the flowchart. The dotted lines indicate advice.
The ovals are the major procedures used by MYCROFT and consist of ANNOTATE,
FINDPLAN, INTERPRET and DEBUG. The squares contain data. Input to the
system consists of the turtle program and picture model. Subsequent
processing produces a Cartesian picturg description, a plan, a list of
violations and finally an edited corrected progranm.

The next two chapters investigate the nature of planning and
debugging in the turtle world. This knowledge comprises the foundation of
the research. Subsequent chapters provide details of the algorithms for
finding the plan and for annotating the program's performance. The final
chapter discusses extensions of the basic system to the analysis of more

complex types of programs and to education.




page 20

Introduction

e 34N9I4

yoidhw jo sappow =

sjeaned - aoiape Buibbnqap

ejep

NOILD 1¥DS3Q|

HOLVIONNY

sasodind —

WVYOONd
a3¥1vd3y

SNOILVIOIA
71300N

1 4

NVd

ue|d mau pulj — B6uibbngap _o_n.m:m_n::

3dN1LOId
NVIS314VvD

WVYHYOO¥ud
ONVWYHOHY34

|

suoi3sabbns Buiuue|d yasn

1300w ,

140HOAW 40 LHVHOMOTS




Planning page 21

CHAPTER 2 -- PLANNING

2.1 INTRODUCTION

Picture models describe the intended picture: the turtle program
does the actual drawing. Plans serve as a bridge between the two by
indicating the problem solving strategy for achieving the model. Plans are
a necessary stage in translating a model into an actual program and are
vital knowledge for a debugging system. The abstract structure of a plan
can supply important suggestions about the underlying causes of bugs. In
this chapter, planning knowledge about linearity, preparation, interrupts,
global effects and repetition is discussed. Later chapters consider the
problems of finding the plan and debugging the program using the plan. A
vocabulary for talking about the structure of a procedure is introduced
which is useful for understanding both the design and debugging of

programs.

2.2 A PLANNING VOCABULARY

A main-step is defined as the code required to achieve a particular
sub-goal (sub-picture). A preparatory-step consists of code needed to
setup, cleanup or interface main-steps. Thus, from this point of view, a
program is understood as a sequence of main-steps and preparatory-steps. A
similar point of view is found in [Sussman 1973]. The plan consists of the
purposes linking main- and preparatory-steps to the model: in the turtle
world, the purpose of main-steps is to accomplish (draw) parts'of the
model; and the purpose of preparatoyy-steps is to properly setup or cleanup
the turtle state between main-steps or, perhaps, to retrace over some

© previous vector.



Planning page 22

A modular main-step is a sequence of contiguous code intended to
accomplish a particular goal. This is as opposed to an interrupted main-
step whose code is scattered in pieces throughout the program. In |
NAPOLEON, the main-steps for the legs, arms and head are modular; however,
the body represents an interrupted main-step due to the insertion of the
arms into its midst. The utility of making this distinction is that
modular main-steps can often be debugged in private (i.e. by being run
independently of the remainder of the procedure) while interrupted main-
steps commonly fail because of unforeseen interactions with the interleaved

code associated with other steps of the plan.

2.3 LINEAR PLANS

Linearity is an important design strategy for creating programs.
It has two stages. The first is to break the task into independent sub-
goals and design solutions (modular main-steps) for each. The second is
then to combine these main-steps into a single procedure by concatenating
them into some sequence, adding (where necessary) preparatory-steps to
provide proper interfacing. The virtue of this approach is that it divides
the problem into manageable sub-problems. A disadvantage is that
occasionally there may be constraints on the design of some main-step which
are not recognized when that step is designed independently of the
remainder of the problem. Another disadvantage is that linear design can
fail to recognize opportunities for sub-routinizing a segment of code
useful for accomplishing more than one main-step.

A linear plan will be defined as a plan consisting only of modular

main-steps and preparatory steps: a non-linear plan may include interrupted

main-steps. The plan of the following stick figure program THINMAN (a



Planning page 23

subset of NAPOLEON not containing the arm insert) is linear:

TO THINMAN

10 VEE {- (accomplish legs)

20 FORWARD 100 <- (accomplish body)

50 LEFT 90 {- (setup heading for head)

60 TRICORN <- (accomplish head)

END
THINMAN Picture of NAPOLEON -

turtle starts at HOME

FIGURE 2.1 FIGURE 2.2

The concept of linearity provides the basis for both program
writing and debugging techniques. With respect to program-writing,
constructing procedures using linear simplifications is briefly explored in
the final section of this chapter. With respect to debugging, a “linear"

approach to correcting bugs is the first technique that DEBUG applies and



Planning page 24

it is described in depth in the next chapter. It is mentioned here,
however, to provide a preview of the imperative use of "linearity® for

correcting programs. The first goal in linear debugging is to fix each

main-step independently so that the code satisfids all intended properties
of the model part being accomplished. Following this, the main-steps are
treated as inviolate and relations between model parts are fixed by
debugging preparatory-steps. This is not the only debugging technique
available to the system, but it is a valuable one for (1) ordering the
sequence in which the violations are repaired and (2) limiting the initial
search for the repair-point in the program at which the edit for each

violation should be made.

2.4 INSERTIONS
In programming, an interrupt is a break in normal processing for
the purpose of servicing a surprise. Interrupts represent an important
type of plan: they are a necessary problem solving strategy when a process
must deal with unpredictable events. Typical situations where interrupts
prove'useful include servicing a dynamic display, arbitrating the
conflicting demands of a time-sharing system, and recovering from certain
" types of errors. Interrupts can sometimes be used to recover from illegal
computations caused by undefined procedures, unbound variables, an
incorrect number of inputs or an undefined tag. (These facilities are
available in MACLISP [Moon 1973]). The difficulty in anticipating such
problems makes interrupts particularly useful. The appropriate correction
can be made and the computation recommenced (providing no unrecoverable

side effects have occurred). In the real world, biological creatures may

use an interrupt style of processing to deal with dangers of their



Planning page 25

environment such as predators.
A very simple type of interrupt is one in which the program
associated with the interrupt is performed for its side effects and is

state-transparent, i.e. the machine is restored to its pre-interrupt state

before ordinary processing is resumed. As a result, the main process never
notices the interruption. In the turtle world, an analogous type of
organization is that of an inserted main-step (insertion). It naturally
arises when the turtle, while accomplishing one part of a model (the
interrupted main-step), assumes an appropriate entry state for another part
(the insertion). An obyious planning strategy is to insert a sub-procedure
at the desired point in the execution of the interrupted main-step. Often,
the insertion will be state-transparent: for turtles, this is achieved by
restoring the heading, position and pen state. In the stick-figure example
described in chapter 1, the insertion of the arms into the body by
statement 30 of NAPOLEON is an example of a position- and pen- but not
heading-transparent insertion. Recall that debugging was accomplished by
adding a cleanup step to the responsible sub-proqedure (VEE) that insured

heading transparency.

TO NAPOLEON {- (accomplish man)

10 VEE <{- (accomplish legs)

20 FORWARD 100 {- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)

40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 <~ (setup heading)

60 TRICORN {- (accomplish head)

END

Insertions do not share all of the properties of interrupts. For
example, the insertion always occurs at a fixed point in the program rather

than at some arbitrary and unpredictable point in time. Nor does the



Planning page 26

insertion alter the state of the main process as happens in an error
handler. However, if one focuses on the planning process by which the
user's code was written, then the insertion, as an intervention in
accomplishing a main-step, does have the flavor of an interrupt.

Since a plan is relative to the choice of goals, it is important to
observe that the same program may represent different plans depending on
how the model is expressed. The "parts" constitute the sub-goals for
achieving the model and the plan is relative to this division of the
picture into parts. For example, if the model for MAN described the figure
by:

PARTS LEGS, BODY1, ARMS, BODY2, HEAD
then statement 30 of NAPOLEON would represent a main-step for the arms
rather than an insertion and the design of the program would be linear.

Understanding insertions plays a role in debugging. This occurs

through the creation of caveat comments by the plan-finder that warn the

debugger of suspicious code. In particular, if FINDPLAN observes an
insertion that is not transparent, then a caveat is generated. This
occurs, for example, during the analysis of VEE:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).
The non-transparent insertion may have been intended. The user's program
may be preparing for the next main-step within the insertion. Hence,
FINDPLAN does not immediately attempt to correct the anomalous code. The
code is corrected only if subsequent debugging of some model violation
confirms the caveat. The importance of this advice is that in subsequent
debugging, there will often be many possible corrections for a particular
model violation. The caveat is used to increase the plausibility of those

edits that eliminate FINDPLAN's complaint. In this way, the abstract form



Planning page 27

of the plan helps to guide debugging.

2.5 SKELETONS

Another type of insertion plan is one wherein all parts are
inserted with respect to a single picture object, the skeleton. This
object may be itself a model part, an invisible line or simply a point.
The FACE picture of figure 2.3 reveals an "invisible skeleton" in which all
of the parts of the face are drawn in relation to the vertical line of

symmetry passing through the center of the head.

Picture of FACE drawn in
relation to a VERTICAL AXIS

FIGURE 2.3
More than one plan usually exists for achieving a given model.
Another insertion plan common for faces is to draw all of the parts in
relation to the center of the head. See figure 2.4. Here the skeleton is
not a part but simply a point. For this special case where the insertions
are done with respect to a particular turtle state, the state is called the

local home of the plan. A very powerful debugging aid is to recognize that

the turtle is intended to return to the “home" following each main step.



Planning page 28

Picture of FACE drawn in
relation to CENTER of HEAD

FIGURE 2.4

It is illustrated in section 4.2 which describes the debugging of such a
face program.

In an extended system, more complex forms of insertions would have
to be understood. A "recursive-snowflake" is built upon the plan that
successively smaller triangles are recursively inserted into the sides of
their bigger brothers. (The semi-colon commentary shown in the following
programs is provided for the reader's benefit and is not generated by the
system.)

TO SNOW :S :N  ;accomplish snowflake. See figure 2.5.
10 SIDE :S :N ;accomplish (side 1 snowflake)

20 RIGHT 120 ;accomplish (rotation 1 snowflake)

30 SIDE :S :N ;accomplish (side 2 snowflake)

40 RIGHT 120 ;accomplish (rotation 2 snowflake)

50 SIDE :S :N ;accomplish (side 3 snowflake)
END



T2

s aobiatgmans (wiiiennil

efpoy ﬁw ; al-ls?éea;s;z

rqeb-aispob sndd vedmore

TOBhEAAR R

éﬁﬁw 100 ‘*”0*“* e

Boa g cidalisvg oo foom

niveds s 21 sisdl  awlewn

13w s Fguue

= . g ™ “ e BE . o
CRANRTIL ORI ERE coad 21 i B ozeviiimlvn
b F o n B o s i . :, § o b o e e i

Eosnsan peleiy sphetvond jishooneds o sweb ylisncizssal

FIDARIRT O
00] CHAWAOT o
381 THIIR O

R B
g1 GHAWED o

651 THOLHE oo
$6; URAWRGT ol

SNOW 100 1 SNOW 300 3
S wi o




Planning page 30

TO SIDE :S :N ;accomplish side

10 IF :N=0 THEN FORWARD :S STOP

20 SIDE :S/3 :N-1 ;accomplish first third of side

30 LEFT 60 ;insert vee (30-70) as second third of side
40 SIDE :S/3 :N-1

50 RIGHT 120

60 SIDE :S/3 :N-1

70 LEFT 60

80 SIDE :S/3 :N-1 ;accomplish last third of side

END

2.6 GLOBAL PLANNING

Linearity, preparation and interrupts are general problem-solving
strategies for organizing goals into programs. However, it is important to
remember that domain-dependent knowledge must be available to a debugging '
system. There is the obvious fact that the system must know the semantics
of thé primitives if it is to describe their effects.

Occasionally, domain-dependent knowledge of a more global nature is
used to design non-local strategies for achieving various model predicates.

For example, consider the following typical TRIANGLE program:

TO TRIANGLE <- (accomplish equitri)
10 FORWARD 100 <{- (accomplish (side 1))
20 RIGHT 120 <- faccomplish (rotation 1))
30 FORWARD 100 <{- (accomplish (side 2))
40 RIGHT 120 <- (accomplish (rotation 2))
50 FORWARD 100 <{- (accomplish (side 3))
END

e

Picture of TRIANGLE

FIGURE 2.6



Planning page 31

The responsibility for the fact that (side 1) connects to (side 3) cannot
be assigned to any local piece of code. Rather, the closure of the figure
is due to the geometric theorem that a broken-line formed from n equal line
segments interspersed by equal turtle rotations of 360/n degrees will form
a regular polygon.

Another example of global planning in the turtle world is the
completion of a side through the collinearity of connecting vectors drawn
at different times. An example is the manner in which (SIDE 1) of the

corrected TRICORN procedure is completed.

TO TRICORN ;corrected version
{- (accomplish equitri)
10 FORWARD 50 (- {accomplish (piece 1 (side 1)))
20 RIGHT 120 {- (accomplish (rotation 1))
30 FORWARD 100 {(- {accomplish (side 2))
40 RIGHT 120 {- (accomplish (rotation 2))
50 FORWARD 100 <(- (accomplish (side 3))
60 RIGHT 120 {- (accomplish (rotation 3))
70 FORWARD 50 (- (accomplish (piece 2 (side 1)))
END

Picture drawn by corrected TRICORN

FIGURE 2.7

In this case, the regular polyr~n theorem mentioned above is again used to
justify that the two pieces of (side 1) are connected. In addition, the
fact that the two vectors will have the same heading (and hence be
collinear) is based upon the sum of the rotations occurring between them

being 0 (mod 360). (An important simplifying characteristic of the turtle



Planning page 32

semantics is that each primitive affects only one component of the state;
hence, the occurrence of the FORWARD instructions in TRICORN is irrelevant
to the fact that the two pieces of (side 1) will be parallel.)

Typical bugs of programs based upon global plans are not satisfying
the domain theorem used to justify the global effect or applying the wrong
theorem. This was the case in the original TRICORN procedure in which all

of the rotations were erroneously 90 degrees (figure 2.8). To debug

‘_

Picture drawn by TRICORN

FIGURE 2.8

TRICORN, the geometric fact that the sum of the external rotations of a
regular polygon equals 360 degrees must be known; or, if this general
theorem is not known, then the system must be informed that each rotation
of an equilateral triangle must be 120 degrees. (This was, in fact, the
case in the EQUITRI model.) The conclusion to be drawn is that powerful
debugging systems cannot be based solely on problem-independent téchniques
but must include mechanisms for utilizing different types of knowledge --
some very specific to the application area. For this reason, the debugger
of chapter 3 has access to imperative semantics for geometric primitives
and specific theorems about turtle geometry in addition to general

debugging strategies for correcting programs.



2.7 OPEN-CODING

Planning page 33

In earlier examples, the plan has been indicated by "<-® commentary

which describes the purpose of each statement. This representation is not

adequate for purposes which extend over more than one statement. For

example, in the following "open-coded" program TREE3, the TOP and TRUNK are

accomplished by non-subroutinized code. The code for TOP is not even

contiguous.

MODEL TREE
M1 PARTS TOP TRUNK

Mz
M3

M4 VERTICAL TRUNK

M5 COMPLETELY-BELOW TRUNK TOP

M6 CONNECTED TOP TRUNK

M7 HORIZONTAL (BOTTOM (SIDE TOP))
END

TO

5
10
20
30
40
50
60
70
80
90

LINE TRUNK
EQUITRI TOP

TREE3

RIGHT 30
FORWARD 100
RIGHT 120
FORWARD 100
RIGHT 120
FORWARD 50
LEFT 90
FORWARD 100
BACK 100
RIGHT 90

100 FORWARD 50

END

-
TREE3

FIGURE 2.9

;Semi-colon commentary is provided for
;the reader's benefit and is not generated
;by the system.

;ifirst side of the triangle.

;first half of the third side

yinsert of trunk

;completion of the third side.

To define such plans, PURPOSE statements are used which explicitly mention

the code associated with the planning statement.



Planning page 34

(PURPOSE (TREE3 5) (SETUP HEADING FOR TOP)
(PURPOSE (TREE3 10-50, 100) (ACCOMPLISH TOP))
(PURPOSE (TREE3 60-90) (INSERT TRUNK TOP))

Open-coded sequences are segments of non-subroutinized code
responsible for a given purpose. This is reflected in the code appearing
as a group in the <code> part of a PURPOSE statement. These PURPOSE
statements are MYCROFT's internal representation of the plan. The "<-*
planning commentary represents a pretty-print of these purposes. The Rl
representation for the plan for TREE3 is shown below, with open-coded

sequences displayed as sub-routines named by the sub-model being

accomplished.
TO TREE3 <{- (accomplish tree)
5 RIGHT 30 {- (setup heading)

10 FORWARD 100 <-
20 RIGHT 120 <-

(accomplish (side 1 top)
(accomplish (rotation 1 top)

30 FORWARD 100
40 RIGHT 120
50 FORWARD 50
(60-90) LINE
100 FORWARD 50
END

TO LINE

60 LEFT 90

70 FORWARD 100
80 BACK 100

90 RIGHT 90
END

<- (accomplish (side 2 top)

<- (accomplish (rotation 2 top)

<- (accomplish (piece 1 (side 3 top)))
<- (open-coded insert for trunk)

<- (accomplish (piece 2 (side 3 top)))

<- (accomplish line)
<{- (setup trunk)

<- (accomplish trunk)
<- (cleanup position)
<- (cleanup heading)

Treating programs as labaled statements allows a more flexible

approach to describing the program than the notion that commentary can
exist solely at the interfaces between sub-procedures. This latter point

of view is found in Hewitt's Actor formalism for computation [Hewitt 1973].
It is inadequate, however, to describe the evolution of programs, insertion

type planning structures, or protections.



Planning page 35

The identification of open-coded sequences with a common purpose as
sub-routines is important for subsequent debugging. In TREE3, sub-routine
hames are generated for the triangle code and for the insert of the TRUNK.
Sub-routinization is not solely done for the economy of a single
representation for frequently used code. Perhaps more important is its use
for achieving conceptual modularity. It greatly facilitates debugging and
planning. It allows private debugging techniques (section 3.5). For
example, identifying the lines of the triangle "sub-routine® allows the
system to consider whether the triangle would be.successful if the insert
for the TRUNK was removed. If so, debugging can be focused on the
interactions of the two segments and rely on the assumption of first-order

success, i.e. that the main-steps accomplish their purposes.

2.8 PURPOSE STATEMENTS

The following table summarizes the syntax and vocabulary for the

planning assertions.

PURPOSE <code> <explanation)
Examples of <{code):

(TREE3 5) statement 5 of TREE3.

(TREE3 60-90)

statements 60 through 90 inclusive. Referred
to as an open-coded sequence.

(TREE3 10-50 100) = statements 10 to 50, inclusive, and statement 100.

Examples of <explanation):

(ACCOMPLISH TRUNK)

Draw the trunk.

(INSERT TRUNK TOP) Accomplish the trunk by a state
transparent sub-procedure inside the

code for TOP.



Planning page 36

(ACCOMPLISH (PIECE i (SIDE 1 TRIANGLE))) = Accomplish piece i
of side 1 of the triangle. The
remainder will be accomplished by another
piece of code. Depending on the
intervening program, this indicates
either a global or an insertion plan.

(SETUP HEADING FOR TRUNK) = Set up the state -- in this case
the heading -- in preparation for
accomplishing the trunk.

(SETUP HEADING SUCH-THAT (VERTICAL TRUNK)) = Set up the state --
in this case the heading -- in preparation
for the next step. The "such-that"
indicates the model statement to be
satisfied by the preparation, and is optional.

(RETRACE P1) = Preparatory step in which the <code) is
accomplished in such a way that it
overlaps a visible sub-picture P, making
itself "invisible".
Wherever possible, these assertions will be pretty-printed as "<-"
commentary for ease of reading, although the internal form manipulated by

the system is as given above.

2.9 ROUND PLANS

—_—

The remainder of this chapter proposes extensions to the MYCROFT
system. This section discusses programs containing simple loops and the
next considers the program-writing problem.

The first step in extending the planning vocabulary beyond those
plans used in fixed instruction procedures would be to develop a
description of round-structured programs. These are programs in which a
basic round is repeated some number of times. géggg plans must be
introduced which include a description of simple control patterns such as
an arithmetic counter, increment function and conditional for controlling
the number of repetitions. An example of a round program for a triangle

accompanied with planning commentary is:



Planning page 37

TO ITERATIVE.TRIANGLE <{- (accomplish triangle)
10 MAKE "SIDES" 0 {- (initialize counter :sides)
20 IF :SIDES = 3 THEN STOP (- (exit condition)
30 FORWARD 100 (- (round (accomplish side))
40 RIGHT 120 <= (round (accomplish rotation))
50 MAKE *SIDES" :SIDES+1 <{- (increment counter)
60 GO 20 <{- (loop boundary)
END
A

Picture of TRIANGLE - turtle
starts and ends at HOME

FIGURE 2.10

The basic round draws a side and a rotation of the triangle and is repeated
three times. See figure 2.10.

The existence of such primitives as DO, WHILE and MAP in various
high-level languages like LISP and ALGOL indicates the utility of round-
structured plans. The important elements of counter, exit condition and
round are made specific slots in a "repetition” primitive rather than
requiring the user to define a control structure each time as in the
previous ITERATIVE.TRIANGLE program. For example, in terms of the FORTRAN
DO primitive, ITERATIVE.TRIANGLE becomes:

TO ITERATIVE.TRIANGLE
10 DO 30 I=1,3 ;Repeat from here to statement 30 three times.
20 FORWARD 100

30 RIGHT 120
END

This is part of the "structured-programming” approach to simplifying



Planning page 38

debugging [Dyjkstra 1972]. Clarifying types of plans is clearly relevant
to structured-programming in that it can suggest higher level primitives to
incorporate in the language for the purpose of making these planning
structures explicit and less subject to bugs.

Round plans are particularly appropriate when the picture is
described in terms of a generic or typical element [Winston 1970]. An
obvious situation where this might occur is in the description of an
equilateral triangle. A generic rotation of 120 degrees and generic side
of some fixed length provides not only an economical description of the
figure but also suggests the use of a round-structured program to
accomplish instances of the generic part. EQUITRI, the equilateral
triangle model given in chapter 1, uses this typical element description:

MODEL EQUITRI ;generic model

M1 PARTS (SIDE 3) (ROTATION 3)

M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)

M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)

M4 RING CONNECTED SIDE

END
(See appendix B for details of this extension to the picturé language for
.4describ1ng "typical elements".) A round plan for the ITERATIVE.TRIANGLE
procedure given above would associate statement 20 with accomplishing the
generic side and statement 30 with the generic rotation.

A round plan can be implemented as either a recursive or iterative
procedure. In more sophisticated programming, iteration and recursion are
differentiated by such criteria as power, efficiency and modularity. Tags
can have overlapping scopes: recursion can occur in the interior rather
than only at the end of the program: procedures can be co-recursive. For

example, the following pair of co-recursive routines draws the binary tree



Planning page 39

of figure 2.11. An additional complexity is that :BRANCH is not passed
explictly as an input to SUBTREE but instead is passed indirectly as a free

variable.

TO BINARY.TREE :BRANCH

10 IF :BRANCH < 20 THEN STOP
20 SUBTREE 45

30 SUBTREE -45

END

TO SUBTREE :ANGLE

10 LEFT :ANGLE

20 FORWARD :BRANCH

30 RIGHT :ANGLE

40 BINARY.TREE :BRANCH/2
50 LEFT :ANGLE

60 BACK :BRANCH

70 RIGHT :ANGLE

END

BINARY TREE

FIGURE 2.11

However, for elementary round programs, this complexity is prohibited.
In an extended system, it is possible that the user might associate

a model in which the parts are explicitly named with a recursive or



Planning page 40

iterative program. The planning formalism must be designed to allow proper
binding of parts to code in such situations. An example is the following

recursive triangle program and explicit model.

TO TRIANGLE MODEL TRIANGLE

10 FORWARD 100 M1 PARTS S1 S2 S3 R1 RZ R3
20 RIGHT 120 M2 (EQUAL S1 S2 S3)

30 TRIANGLE M3 (= (DEGREES R1) 120)

END M4 (CONNECTED S1 S2)

To match code with model parts properly, the following syntax is proposed:
(PURPOSE (TRIANGLE 10 (ROUND 1)) (ACCOMPLISH S1)).
(PURPOSE (TRIANGLE 10 (ROUND 2)) (ACCOMPLISH S2)).
(PURPOSE (TRIANGLE 10 (ROUND 3)) (ACCOMPLISH S3)).

The round number becomes a part of the <{code)> designation.

The system is not knowledgeable about more complex control
structures. For example, it is not prepared to analyze interrupts which do
not return the world to the pre-interrupt state as happens with insertions.
Such interrupts are appropriate for real time applications such as
processing touch-turtle impacts. Nor is it familiar with backtracking, the
PLANNER control mechanism for handling failure [Hewitt 1972, Sussman 1970].
Being ignorant of such control structures, their corresponding plans and

typical,bugs, the system would be unable to understand or debug programs

using them. Future systems might be extended to handle such issues.

2.10 PROGRAM WRITING

This final section concludes with a brief excursion into Program-
Writing to illustrate the intimate relation between planning, debugging and
program-writing skills. Given the model, knowledge of plans can be used to

guide a top-down planning process which begins by specifying the purposes



Planning page 41

of the main-steps. The main-steps are then treated as sub-goals, with code
for each main-step being written by recursing the system and following the
same line of attack, i.e. writing a program for the main-step on the basis
of the sub-model describing the part to be accomplished. The preparatory-
steps of the template are then debugged, details being added to the
interfaces to make the predicates describing relations between main-steps
true.

To write a program:
. Pick some subset of the model and build a plan;
. Write a procedure for this plan;
Write sub-procedures for main-steps;

Debug the procedure to satisfy the remaining model
statements.

W N

Ultimétely, the model parts are described as primitive vectors or rotations
for which the imperative semantics for the turtle primitives apply.

The level of detail needed in a model to debug is often less than
is required to write a program. The reason for this is that the debugger
has access to the code which supplies additional constraints while the
program-writer has nothing but the model to guide its analysis. An
interesting extension would be to supply a sketch with the model (or even
instead of the model) in order to provide quantitative values for the size
of the parts and their relative positions.

The first step in this very simplified model of program-writing is
to build a linear super-procedure by assigning a sub-procedure call for
each model part. Although it is important not to get enmeshed in details
in writing the initial program, some principles of good design can be used
to provide an ordering for these main-steps. From a heuristic standpoint,

this represents the notion that a well-chosen sequence can simplify later



Planning page 42

debugging of the preparatory-steps. In the turtle world, this is done by
ordering the super-procedure on the basis of transitive sequences of such

predicates as CONNECTED, ABOVE and INSIDE.

LINEAR PLAN 1. Accomplish model parts by modular main-steps.

2. Concatenate main-steps into a procedure.
Prefer an ordering suggested by transitive
sequences of such predicates as CONNECTED,
ABOVE, and INSIDE occuring in the model.

3. Design preparatory-steps between each pair of
main-steps for satisfying relations between the
model parts accomplished by these main-steps.
For the MAN model, this planning paradigm would produce the
procedures SKELETON and LIMBS on the assumption that the system has already

associated VEE with the model V and TRICORN with the model EQUITRI.

TO SKELETON TO LIMBS

10 VEE <- (accomplish legs) 10 VEE <{- (accomplish legs)
20 FORWARD :BODY <- (accomplish body) 30 VEE <~ (accomplish arms)
60 TRICORN <- (accomplish head) 60 TRICORN ¢- (accomplish head)
END END

The length of the body is not known so the variable :BODY iS used. It is
up to the user to supply additional detail in order to determine the proper
value.

The next step is to accomplish, where possible, any unexplained
parts by inserts. SKELETON becomes closer to NAPOLEON by using the clue
that fhe arms are connected to the body between the head and legs. (This

must be deduced from the combination of connection and below constraints.)

 The result is the insertion of statement 30.



Planning page 43

INSERT PLAN 1. If several model parts (limbs) are
connected to a common skeleton, then
accomplish the skeleton in pieces, inserting
the limbs at the appropriate points.

2. Order limbs by transitive sequences.

Thus, from this point of view, inserts represent an elaboration of linear
plans for the purpose of accomplishing parts which do not fit easily into a
linear sequence.

These plan-generating criteria first produce a plan for
accomplishing the parts. This is a reasonable problem solving technique.'
It amounts to simplifying the problem to obtain a first approximation to
the solution. Achieving this approximate solution would be pointless,
however, if it could not be extended to a completg program. Fortunately,
this can indeed be done. The remaining model statements describing
relations between the parts are accomplished by writing preparatory-steps.
This is done by running the simplified precedure and using the debugger to
generate the code to be added at the main-step interfaces. For example, in
SKELETON, statement 50 LEFT 90 is added to make the HEAD completely above
the BODY. Thus, in this view of programming, debugging is a necessary
ability. The style of program-writing is to simplify the problem, build an
approximate solution, and then debug it until it satisfies all of the
constraints.

If debugging produces irreconcilable conflicts, a new plan must be
chosen. Sometimes the solution is to reorder the main-steps. At other
times, conflicts between a main-step and a preparation may require the
preparation to be moved to some earlier point in the procedure. Both of
these debugging techniques are discussed in Sussman [1973]. In some

situations, the independent design of the main-steps may be at fault and no




Planning page 44

reordering will be successful. This is the case for BIG.MOUTH (figure

2.12). The mouth is too large for the face. The important fact in such

O O
N

BIG.MOUTH
A non-linear bug in a face

FIGURE 2.12

cases is that the way in which the original linear plan fails often
provides guidance as to which alternative plan to choose.

In some circumstances, a program-writer should not begin with a
linear plan. This arises, for instance, if the picture can be described in
terms of a generic element. A typical example is the description of the
sides and rotations in the EQUITRI model given earlier. The obvious
strategy here would be to use a Round Plan.

ROUND PLAN 1. If the parts are generic, write a sub-procedure
(the round) which accomplishes the typical
element.
2. Repeat the round by the number of instances
required by the PARTS declaration.
The program-writer would then recurse and write the sub-procedure for the
basic round in terms of the generic description of the typical element.

This has been a very brief sketch of a difficult problem. However,



i
S
«

RO Planning page 45

its purpose has Meen .owly to fravid@soselidifiblon for the relationship
between planning, debugging, and program writing. Procfan-writinq using
debugging with no planning lacks any global tnddiNéiRe shil%¥irkcture of
the: probd em. - Rlaiin by i Wroid AONMGLAPWPEE G WP Yeult burden that
o theoplam beiph it f et Vil 50 PRMINRAR VA dibloqiii’ KikbTiries the
51 PTOGRORMIAG: task: & fArist AvuCiNg mm“ ah®th¥n trying
o Ml dar detedde wmmmaiﬁmﬁmﬁ. goal

rd

- et al enis gokzasy faniag

ig m@8a. o o wal 2§00

arattaastgs fad
b 2 e B3 AR < %é,éﬁs gj1§§2 LA

) . Cmy e ey Sheonl b
- oy it o EWENE ' EAGIETH EE WU e T LA
- & nr

- < 2B BY MO .

i 5 < R eyie sandl a7y E
fosind Yo sphyivind

o . ST

LR TVERR

. b
) o LN RS 8 -
> = - - X
. . . B
% 5 = =
- - = = a AT +43
Cwnon A w pgiiiolw © gl dyeen 2l 23W

sgil gyed rol o Uocte zAsRl i [lp aate FReYMRY 28700 AU0
o EEA 4% i T S - - R e

mtenimiis




Model-Driven Debugging page 46

CHAPTER 3 -- MODEL-DRIVEN DEBUGGING

3.1 MODEL VIOLATIONS

Access to models and plans allows a new dimension in error
detection. For most programming systems, including LISP and LOGO, the only
errors recognized automatically are syntactic--those which cause illegal
parsing of the input--and semantic--those which cause illegal computations.
A typical parsing error in both LOGO and LISP is the occurrence of
unmatched parentheses. Illegal computations are caused by attempts to make
illegal memory references, to execute undefined procedures, to jump to
undefined tags or to pass the wrong type or number of arguments to sub-
procedures. These errors are recognizable without requiring any special
knowledge of intent.

MYCROFT is designed to debug model violations. These are
recognized by comparing the output of a syntactiéally and semantically
correct turtle program (i.e. a program that is able to run to completion
without requesting any illegal computations) to the description of intent
provided by its picture model, using the plan to bind sub-pictures to model
parts. The result is a list of violated model predicates. The program is
considered correct when all of these violations have been explained and
eliminated.

The distinction between semantic errors and model violations is a
difference of manifestation and not a profound criterion for
discovering the underlying cause of the failure. The underlying
cause of semantic errors may be conceptual mistakes in planning,
forgotten prerequisites, or an inadequate understanding of the
interactions of competing goals. Similarly, model violations may
be simply due to a mistake in understanding the performance of a
programming primitive, failing to read in the proper files or even
a trivial syntactic mis-typing. For simplicity, however, the

debugging discussion will limit itself to the correction of model
violations.



Model-Driven Debugging page 47

Correcting model violations is accomplished by using two types of
procedural knowledge. The first are general debugging strategies for
repairing programs and the second are specific directions for fixing
particular geometric and logical predicates. Because overall guidance is
derived from the model, I shall call this type of analysis model-driven
debugging.

In this chapter, I shall assume the existence of a plan linking the
model to the program. The problem of finding the plan is postponed until
chapter 7. The next section provides an example of the debugger's
performance. This is followed by an analysis of the knowledge required to
debug turtle programs. Chapter 4 provides more examples and chapter 5
concludes the debugging discussion with an overview that considers

alternatives to model-driven debugging.

3.2 DEBUGGING TREEl

3.2.1 Bugs

This section presents a scenario in which MYCROFT successfully
debugs a tree procedure. The program TREE1 exhibits three errors.

TO TREE1 ;version 1

10 TRIANGLE {- (accomplish top)

20 RIGHT 50 <{- (setup heading)

30 FORWARD 50 <- (setup position)

40 RIGHT 50 (- (setup heading)

50 FORWARD 100 <- (accomplish trunk)

END
The rotation of line 20 is a "local preparation® error in that it fails to
cause the position setup (line 30) for the trunk to retrace a side of the

triangle. An unexpected runtime environment causes an improper orientation

for the top of the tree. Finally, the rotation of line 40 which



Model-Driven Debugging page 48

TOP

TRUNK

TREE1
VERSION 1

Intended TREE

FIGURE 3.1

establishes the orientation of the trunk is incorrect. MYCROFT

successfully debugs all of these problems.

3.2.2 Interpretation

Recall that MYCROFT requires, in addition to the user's programs, a
model of the intended picture. Many such predicate descriptions are
possible. This scenario will be based on the following typical TREE
description.

MODEL TREE

M1 PARTS TOP TRUNK

M2 LINE TRUNK

M3 TRIANGLE TOP

M4 VERTICAL TRUNK

M5 COMPLETELY-BELOW TRUNK TOP

M6 CONNECTED TOP TRUNK

M7 HORIZONTAL (BOTTOM (SIDE TOP))
END

To evaluate the success of the program with respect to model, two

ingredients are necessary.

1. The actual performance of the program must be documented. For
the turtle world, this is done by describing the picture



Model-Driven Debugging page 49

produced by the turtle in Cartesian terms. This annotation is
generated by a careful evaluation of the program in which
imperative semantics for the turtle primitives generate
descriptive assertions in a database. This is described in
chapter 6.

2. The plan must be available to describe the purpose of the code
in terms of the model. The plan is generated by the system if
the user fails to supply it. Section 7.7 describes the process
of finding the plan for TREEl. For this debugging scenario,
assume that the plan (as shown above) has been correctly
deduced.

With knowledge of the program's performance and purpose, INTERPRET
can generate a list of those model predicates which are violated. (See
figure 1.11 for the place of INTERPRET in the system flowchart.) This list
of violations is the input to DEBUG. For TREEl, these violations are:

(NOT (HORIZONTAL (SIDE TOP)))
(NOT (INVISIBLE (INTERFACE BETWEEN TOP AND TRUNK)))
(NOT (CONNECTED TOP TRUNK (VIA ENDPOINTS)))

(NOT (VERTICAL TRUNK))
(NOT (COMPLETELY-BELOW TRUNK TOP))

3.2.3 Ordering the Violations

MYCROFT now applies ordering criteria for deciding the sequence in
which the violations will be debugged. This is important to minimize
fruitless corrections which are only undone by the rgpair for a subsequent
error. One typical criterion is to debug properties before relations.

This is based on the problem-solving strategy of solving sub-problems
independently, when possible, before considering the difficulty of properly
fitting them together.

Another ordering criterion is to repair those violations wherein
the debugger is reasonably sure that the cause lies directly in the
responsible code and is not due to interactions with earlier parts of the

procedure. This criterion is useful for deciding to debug CONNECTED before



Model-Driven Debugging page 50

BELOW. The rationale for this is that connections are topological and
independent of the frame of reference. Hence, the repair-point must be in
the code between the TOP and the TRUNK. This is a consequence of the fact
that for fixed-instruction turtle programs, the initial environment
determines only the frame of reference and does not affect topological
properties. Fixed-instruction turtle programs draw rigid bodies. (The
implications for debugging of this rigid body property are discussed
further in section 3.7.2.) For BELOW, the repair-point is less constrained
and may even be due to the initial environment in which the TREEl procedure
is executed. (This criterion is not useful for further sorting the
violated properties in TREEl, as all of these violations are probably due
to some bug in the code prior to the main-step which accomplished the
violated part.)

Finally, if the violations are not yet completely ordered, the
subsets are debugged according to the temporal sequence in which the model
parts were accomplished. (Further details regarding these ordering
criteria and their rationale are developed in section 3.4.) For TREEl, the
result of this ordering is the following sequence of violations:

;Violations of Properties
(NOT (HORIZONTAL (SIDE TOP)))
(NOT (INVISIBLE ( INTERFACE BETWEEN TOP AND TRUNK)))
(NOT (VERTICAL TRUNK))

;Violations of Relations

(NOT (CONNECTED TOP TRUNK (VIA ENDPOINTS)))
(NOT (COMPLETELY-BELOW TRUNK TOP))

3.2.4 Overview of the Debugger's Performance

The ordered violations are corrected in sequence. This involves

choosing for each violation the culpable code and then making the



Model-Driven Debugging page 51

approbriate edits to the turtle program. Figure 3.2 shows the changes to
the picture as the program is edited.
The following table indicates the monitor's conclusions regarding

the abstract cause of each violation.

(NOT (INVISIBLE (INTERFACE BETWEEN TOP AND TRUNK))
<{=> Local Preparation Error in statement 20.

(NOT (CONNECTED TOP TRUNK (VIA ENDPOINTS)))
<{=)> Same cause as the visible interface.

(NOT (HORIZONTAL (SIDE TOP)))
<{=> Unexpected Runtime Environment

(NOT (COMPLETELY-BELOW TRUNK TOP)) .
<{=)> Same cause as (NOT (HORIZONTAL (SIDE TOP)))

(NOT (VERTICAL TRUNK)) <=> Local Preparation Error in STATEMENT 40.

The end result is the picture and program shown below. The underlined

commentary are additions to the plan inserted by the debugger.

TO TREE1 ;version 4

5 RIGHT 30 {- (setup heading such-that (horizontal (side top)))

10 TRIANGLE <{- (accomplish top)
20 RIGHT 60 (- (setup heading such-that

(retrace (interface statement 30) over (side 3 top))

30 FORWARD 50 <- (retrace (side 3 top))
40 RIGHT 90 {- (setup heading such-that (vertical trunk))
50 FORWARD 100 <- (accomplish trunk)

END

3.2.5 Making the Bottom Side of the Top Horizontal
The imperative semantics for HORIZONTAL guides the debugging
process in fixing (HORIZONTAL (SIDE TOP)). The definition of HORIZONTAL is

the disjunction:
(OR (= (DIRECTION V) 90) (= (DIRECTION V) 270)).

To make a side horizontal, the difference between its direction and 90 or



Model-Driven Debugging page 52

- DEBUGGING TREE!1

S
-

—)
e
TREE1
VERSION 1 TREE1
VERSION 2
TREE1
VERSION 3 e
TREE1
VERSION 4

FIGURE 3.2



Model-Driven Debugging page 53

270 is determined. The debugger must consider where in the procedure the
corrective rotation is to be added, i.e. the location of the repair-point.
Placing the rotation inside the TRIANGLE sub-procedure after statement 10
has bad side effects in that it destroys the triangle shape. Hence, the
rotation is associated with the entry state to the triangle code. This
still leaves two possibilities: (1) insert the rotation directly into the
beginning of the TRIANGLE sub-procedure or (2) add the rotation as
statement 5 to TREEl. Because the debugger is reluctant to modify the code
for a part which already satisfies its sub-modeli(in this case EQUITRI),
‘the edit is made to TREEl directly. (Section 3.6 elaborates the criteria
for when the edit is inserted into a sub-procedure versus when it is
inserted directly into the super-procedure.) The result is an edit which
modifies the entry state of TREE! and consequently the error is classified
as an Unexpected Runtime Environment. *
A choice exists with respect to which side of the TOP is to be made
horizontal. The user has not asserted directly:
(HORIZONTAL (SIDE 3 TOP)).

Choosing (side 1) or (side 2), however, leads to bad side effects. The
TRUNK is currently PARTLY-BELOW the TOP but this is undone by making either
of these two sides horizontal. Thus, the system prefers to make (side 3)
horizontal. The result is TREE1, version 2.

TO TREEl ;version 2

5 RIGHT 30 <- (setup heading such-that
(horizontal (side 3 top)))
<- (assume (enter TREEl line 5) (= cheading 0))
{- (protect :heading to TRIANGLE statement 60)

10 TRIANGLE

20 RIGHT 50

30 FORWARD 50

40 RIGHT 50

50 FORWARD 100
END



%R%M‘Cmf ﬁ%#ﬁﬁ #d2 Ailw bBeisizvess 20 pofizion

gini 9itaenis poligis

EIY szab2titdizzon owe

adt oy i oi des e

*ﬁmwx'fa

9 segfes Sae (3T Yo e
- tE
I T o O
i
nri DB i
o '_

-

i 2863 , Lt 5*’;5?15;}39& 2 il

CIRERT 2} 3Tuses edl . Isianxd

(MAEB s
satbead quser) -> O£ 7 j‘ E 3TOP)
i)
‘;az"ﬁw} SBUZEB) -~
i rogiog) <o




Model-Driven Debugging page 55

3.2.6 Making the Interface Invisible

The interface consists of the vector V drawn by statement 30. The
repair strategy is guided by the imperative semantics for INVISIBLE. This
consists of the following disjunction:

(OR (= (PENSTATE V) :UP) (RETRACE V W))
The first disjunct indicates that V will be invisible if the pen is up
. during its creation. The alternative strategy is for V to retrace the path
of some visible vector W.

Debugging invisibility by making the first disjunct tfue is
accomplished by inserting PENUP into the code prior to statement 30.
Inserting the PENUP before the TRIANGLE of statement 10 is prevent;d by the
bad side effect of making the TOP invisible. A PENUP insertion immediately
prior to statement 30 corrects the interface but has the bad side effect of
making the TRUNK invisible. This is not fatal since a PENDOWN might then
be added prior to drawing the TRUNK. Such would be the repair strategy
selected if retracing were unsuccessful. However, retracing is not only
possible, it results in beneficial side effects and is therefore preferred.

The alternative debugging strategy of retracing requires a choice
of the picture vector W over which the vector drawn by statement 30 is to
lie. The debugger prefers to satisfy the imperative semantics by making
minimal changes to the user's code. Hence, the first possibility is to
restrict the correction to altering the direction of V by inserting or
editing a rotation and refraining from also adding additional vector
instructions. This has the effect of rotating V around the sub-picture

drawn prior to the point in the program at which the rotation is being



Model-Driven Debugging page 56

inserted. Figure 3.4 shows the effect of inserting a rotation immediately

prior to statement 30 in TREEI. Other possibilities based on translating

Interface Vector V
ks
/

Picture of TREE1 -
turtle starts at HOME

FIGURE 3.4

as well as rotating V are not pursued since the rotation change has the
desired effect of causing V to overlap a visible vector.

The first candidate for the repair-point which is analyzed is the
one immediately preceding the location in the procedure which the error
became manifest. This is the rotation at statement 20. V can be made
invisible by modifying the input to thé RIGHT command in statement 20.
Indeed there are two possible candidates for the retrace: (SIDE 1 TOP) and
(SIDE 3 TOP).

Rotating V to coincide with (SIDE 1 TOP) is rejected since it
produces the additional violation of the TRUNK being inside the TOP. (This
is a violation since COMPLETELY-BELOW requires that the TRUNK be outside
~ the TOP.) A beneficial side effect occurs if V is rotated to coincide with
(SIDE 3 TOP) of the triangle, namely that the connection between the TOP
and the TRUNK is moved to an endpoint. Hence this is the preferred
debugging strategy and statement 20 is edited to be RIGHT 60. The error is

classified as a Local Preparation Error and TREEl, version 3, is produced.



Model-Driven Debugging page 57

SIDE 1 SIDE 2
SIDE 1 SIDE 2
SIDE 3
SIDE 3
Interface rotated to overla TREE1
rota verlap
VERSION 3
(SIDE 1 TOP)
Interface rotated to overlap
FIGURE 3.5 (SIDE 3 TOP)
FIGURE 3.6
TO TREE1 ;version 3, figure 3.6
5 RIGHT 30
10 TRIANGLE

20 RIGHT 60 <{- (setup heading such-that
(retrace (interface statement 30) (side 3 top)))
{- (protect :heading from triangle statement 60
to treel statement 30)
30 FORWARD 50 <- (retrace (side 3 top))
40 RIGHT 50
50 FORWARD 100
END

3.2.7 Making the Trunk Vertical

Debugging (VERTICAL TRUNK) is very similar to debugging the

previous horizontal violation. (VERTICAL V) is defined by:
(OR (= (DIRECTION V) 0) (= (DIRECTION V) 180)).

From an imperative standpoint, the first step is to compute the reqqired
rotation needed to establish the proper orientation of the TRUNK. This is
a rotation of 40 or 220 degrees. Again by the rigid body nature of fixed-
instruction turtle pictures, this rotation can be inserted anywhere into
the code prior to statement 50 and have the proper effect upon the

orientation of the TRUNK. The system explicitly considers initially only



Model-Driven Debugging page 58

the interfaces at statements 5, 20 and 40. Again the interior of the
triangle procedure is considered inviolate since it already satisfies its
sub-model EQUITRI. (The heuristic of editing interfaces and treating main-
steps as inviolate once they satisfy their sub-model is based on the linear
notion that interactions occur only at explicit interfaces. This
constraint on the debugging process is useful in limiting the number of
repair points considered but not always successful. Its limitations are
discussed further in section 3.6).

The initial setup at statement 5 is already constrained by the edit
to make the bottom side of the triangle horizontal. This is reflected in
the protection commentary. Similarly, the interface at statement 20 is
constrained by the previous edit to establish the invisibility of statement
30. Hence, the preferred location for the repair-point is at statement 40.

Recall that there are two possible headings, 0 and 180, for making
the TRUNK vertical. The correction to make the TRUNK vertical by
establishing a direction of 0 degrees (figure 3.7) is rejected since it
causes the TRUNK to overlap the TOP. On the other hand, no bad effects
occur from increasing this rotation by 30 degrees and giving the TRUNK a
direction of 180 (figure 3.8). This is the preferred correction and the
result is that statement 40 is edited to be "RIGHT 90°.

TO TREEI ;version 4, figure 3.8.

5 RIGHT 30

10 TRIANGLE

20 RIGHT 60

30 FORWARD 50

40 RIGHT 90 <- (setup heading such-that (vertical trunk))
{- (assume (enter TREEl statement 40) (= :heading 90))
(- (protect :heading through TREEl statement 50)

50 FORWARD 100
END



Model-Driven Debugging page 59

DIRECTION OF TRUNK = 0° DIRECTION OF TRUNK =180"
TREE1

FIGURE 3.7 VERSION 4

FIGURE 3.8

Making the TRUNK vertical has the beneficial side effect of
establishing the most restrictive type of BELOW relation between the TOP
and the TRUNK. The TRUNK is not only completely below the TOP, even the
centers of gravity are aligned. Hence, version 4 is the final program and
all of the violations are corrected. It is shown below complete with the

additional commentary added by the debugger.

TO TREEl ;version 4
5 RIGHT 30 <- (setup heading such-that (horizontal (side 3 top)))
{- (assume (enter TREEl statement 5) (= :heading 0))
<{- (protect :heading to TRIANGLE statement 60)
10 TRIANGLE <- (accomplish top)
20 RIGHT 60 <- (setup heading such-that
(retrace (interface statement 30) (side 3 top)))
<- (protect :heading from triangle statement 60
to treel statement 30)
30 FORWARD 50 <- (retrace (side 3 top))
40 RIGHT 90 <- (setup heading such-that (vertical trunk))
(- (assume (enter TREEl statement 40) (= :heading 90))
{- (protect :heading through TREEl statement 50)
50 FORWARD 100 <~ (accomplish trunk)
END



Model-Driven Debugging page 60

3.3 DEBUGGING AS SEARCH

A debugging strategy is a sequence of editing commands whose effect
is to modify the program so that it satisfies its model. There are
generally multiple debugging strategies for correcting a given set of
violations. These debugging strategies arise from choice of the location
at which the corrections are to be made as well as of the exact meaning
that the user intended.

To clarify the issues which arise in selecting the best debugging
sequence, it is useful to conceptualize the problem in terms of a search
metaphor. The space is that of all possible debugging strategies for
correcting the program. Each node is a set of model violations: the origin
of the space is the initial set of violations. An arc is an edit which
which leads to a node containing the new (and presumably fewer) set of
violations which are produced by the modified code. Branching occurs for
each possible patch for correcting a violation. A path through the space
constitutes a series of edits that transforms the program to an acceptable
form. For example, there are at least four possibilities for correcting
the visible interface violation of TREEI,

1. Add PENUP immediately before statement 30;

2. Add PENUP before statement 10;

3. Edit statement 20 such that statement 30 retraces (side 1 top);
4. Edit statement 20 such that statement 30 retraces (side 3 top).

Recognizing the existence of multiple possibilities for correcting

a program, it is appropriate to ask what knowledge is used to:
1. Choose the next model violation to be debugged?
2. Generate the possible corrections for that violation?
3. Choose the most plausible correction?

The following sections answer these questions. Ordering criteria

are introduced for choosing the sequence in which the violations are



Model-Driven Debugging page 61

debugged. A linear approach curtails the number of possible edit points

which are initially considered. The imperative semantics of the model
predicates are used to generate possible corrections. Plausibility

criteria are designed for selecting among alternative debugging strategies.

3.4 ORDERING MULTIPLE VIOLATIONS

Multiple bugs are difficult to fix. Guidelines are required to
order the sequence in which the violations are debugged. These guidelines
reflect an understanding of dependency relationships between violations,
thereby serving to minimize the unfortunate occurrence of a correction
undoing previous repairs or introducing new violations. The ordering is
done on the basis of preferring to repair:

(1) bugs in properties of model parts before bugs
in relations between model parts;

(2) bugs in intrinsic properties (or relations) before
bugs in extrinsic properties (or relations);

and (3) bugs occurring earliest in the temporal sequence
of execution.

The following paragraphs describe these criteria and explain their

rationale.

3.4.1 Debug Properties Before Relations

The system debugs violations of properties of model parts before
repairing violations of relations between model parts. This is based on
the important heuristic of first having a successful theory of the parts
before attempting an explanation of their interactions. This is more than
good style. The behavior of the interfaces is designed relative to the

entry-exit states of the code for the main-steps -accomplishing the parts.



Model-Driven Debugging page 62

To determine the specific state changes to be made at an interface, the
performance of adjacent main-steps must be established. Thus the code for
sub-pictures must be fixed prior to deciding on the proper edits to the
preparatory-steps.

Properties of individual model parts are described either by one-
place model primitives (e.g. VERTICAL, HORIZONTAL, LINE) or user-defined
models (e.g. MAN, V, EQUITRI). Properties are first-order constraints on

model parts because they are independent of relations between model parts.

The second-order description is built from relations beteen model
parts. The most common are such predicates as ABOVE, BELOW, and CONNECTED.

These are debugged only after the properties are corrected.

3.4.2 Debug Intrinsic Before Extrinsic Predicates

The idea behind the next ordering criterion is to estimate the
range of possible locations in the program at which the repair might be
made for each violation. Let the scope of a violation be the code between
the repair-point and the manifestation-point. The heuristic is then to fix
those violations of most-limited scope first; both because they are easiest
and because of dependency relationships.

For a property (P M), M a model part, the manifestation-point is
the location in the program at which M is completed and the truth of the
statement (P M) can be evaluated. The repair-point is the location in the
program at which the edit is eventually made to correct the violation. For
a relation (R M N), the manifestation-point is the location in the program
at which both M and N have been completed and the relation R can be
evaluated.

The heuristic of fixing violations of limited-scope first would be



Model-Driven Debugging page 63

pointless if there were no way to estimate the scope of a violation before
entering into the details of debugging. However, this is not the case.
One method for estimating the scope of a violation is to know whether the
property of relation is intrinsic to the responsible code.

A property (P M) is intrinsic to the code for M if it is
independent of preceding code and entirely due td the main-step for M.
Similarly, the relation (R M N) is intrinsic if it is independent of code
preceding M, assuming that M is achieved before N. Repair is simplified by
fixing intrinsic predicates before extrinsic ones since (1) for intrinsic
violations, the possible repair-points are easier to find since they cannot
occur prior to the code for M, and (2) the proper corrections for extrinsic
predicates depend upon the the code being intrinsically correct.

In the world of turtle geometry, intrinsic errors are distinguished
by being independent of the frame of reference: they cannot be corrected by
translating or rotating the picture. This is because in the simplified
environmen; of fixed-instruction turtle programs, code groups draw rigid
bodies. The initial interface of a code group has the effect of
establishing the origin and orientation of the sub-picture but does not
affect the local relations among vectors. Topological predicates
(invafiant under transformations that preserve connectivity) and geometric
predicates (invariant under translation and rotation) are independent of
~ the frame of reference and therefore yield intrinsic violations. Bugs in
the following model primitives are always intrinsic to the code group to
which they refer: OVERLAP, INSIDE, OUTSIDE, PARALLEL and CONNECTED.

Extrinsic errors are those affected by the initial environmént in
which the code group is executed. The initial environment consists of the

bindings of the turtle state variables -- :HEADING, :POSITION and :PEN.



Model-Driven Debugging page 64

These variables control the orientation, origin and visibility of the sub-
picture as well as its relation to previously drawn parts of the picture.
Model predicates which depend on the initial state are VERTICAL,
HORIZONTAL, BELOW, and ABOVE.

Debugging intrinsic violations first tends to establish the proper
connections at interfaces. Debugging extrinsic relations like ABOVE and
BELOW then becomes simply a matter of establishing the proper heading at
interfaces.

In the turtle world, the distinction between intrinsic and
extrinsic predicates is particularly easy to make; however, it remains a
useful debugging distinction in other domains. If a property of a program
is due to some local data structure (such as a bound variable) or local
control structure (such as a loop) and is independent of the preceding
code, then it is intrinsic and worth debugging in private before extrinsic

properties (whose causes are less easy to isolate) are repaired.

3.4.3 NAPOLEON's Violations

The following list of violations for NAPOLEON is ordered by the

above criteria:

;Violations of Properties
;Intrinsic Predicate
(NOT (EQUITRI TRICORN))

;Extrinsic Predicate
(NOT (LINE BODY))

;Violations of Relations
;Temporal Order -- {legs, arms} accomplished before {arms, head}.
(NOT (BELOW LEGS ARMS))
(NOT (BELOW ARMS HEAD))



Model-Driven Debugging page 55

- 3.5 PRIVATE DEBUGGING

For each violation, DEBUG must find the proper repair-point in the
program at which to insert the correction. Of course, the debugger knows
that the repair-point cannot follow the code for the parts mentioned in the
violation but this is hardly a sufficient constraint. Consequently, DEBUG
uses two heuristics--Private and Linear Debugging--to limit the possible
locations for the correction. Private debugging is described in this
section: linear debugging in the next.

An initial heuristic for constraining the possible repair-points
for a violated property is to limit consideration to the code directly |
responsible for the model part in question. This is done by running the
responsible code independently of the larger procedure of which it is a
part. Specifically, the responsible code is executed with the turtle
started at the entry state. The violated properties will be manifested in
this private environment if the main-step is modular. However, if there is
intervening code, i.e. the main-step is interrupted, then the linear
assumption that the cause is intrinsic to the responsible code and not due
to interactions may be wrong.

If the violation is manifest, the code group is then debugged in
this simplified context, free of the effects of the remainder of the
original program. Private debugging is used to repair the three incorrect
rotations of TRICORN. There are no complications when the edited sub-
procedure is rejoined to the NAPOLEON super-procedure.

The following program is a bugged version of TREE3, the tree
program discussed in section 2.7, in which the trunk is inserted into the

bottom side of the triangle. The bugs are underlined.



Model-Driven Debugging page 66

TO BUGGY.TREE3
10 FORWARD 100 <- (accomplish (side 1 top))

20 RT 90 <{- (accomplish (rotation 1 top))

30 FORWARD 100 <- (accomplish (side 2 top))

40 RT 90 (- (accomplish (rotation 2 top))

50 FORWARD 50 <- (accomplish (piece 1 (side 3 top)))
60 LEFT 90 <- (setup heading for trunk) )

70 FORWARD 100 <- (insert trunk (side 3 top))

80 BACK 100 <{- (cleanup position)

90 RIGHT 90 <~ (cleanup heading)

100 FORWARD 50 <- (accomplish (piece 2 (side 3 top)))
END

-

BUGGY.TREE3

FIGURE 3.9

. Debugging in private results in statements 10-50 and 100 being treated as a
sub-procedure. The rotations are properly edited to be 120 degrees, Only
then is the program considered in its entirety, with possible errors due to
the insert being analyzed. This is an example in which debugging is
greatly simplified by knowing the plan: without knowledge of the insert,
the debugger would flounder in considering lines 60 to 90 as possibly part
of the triangle.

The relationship between the picture drawn in private and in public
is simple for fixed-instruction turtle programs since the picture is a
rigid body and only its orientation and origin is affected by the initial
environment. For more complex programs, difficulty occurs in finding a
representative private environment and further research is necessary. This

is similar to the problem of diagram generation in geometry theorem proving



Model-Driven Debugging page 67 -

and to the problem of case analysis in automatic program verification.

The private repair may make assumptions about the entry state to
the code. If this happens, it will be reflected in ASSUME comments
regarding the entry state to the main-step. When run again in the real
context, any conflicts between gssumptions made in private about the
initial environment and the actual entry state are themselves debugged.
This is accomplished by adding code to accomplish the assumptions in the
super-procedure or, if this proves impossible without causing additional
violations, backtracking and attempting an alternative correction in
private.

An example of this would occur if the model for NAPOLEON had
declared that the body must be vertical. Debugging the body (statements 20
and 40) in private would result in the assumption being generated that the
entry heading must be 0 or 180 degrees. The code for the body is then
reconsidered in the context of the NAPOLEON super-procedure. The actual
entry state to statement 20 does not have :HEADING equal to 0 or 180
degrees. Consequently, the debugger now attempts to add a rotation at some
preceding point in the program to achieve this entry state. This addition
will most likely occur immediately prior to statement 20 or, perhaps, as
the initial setup to the NAPOLEON program. The debugger chooses whether to
prefer 0 or 180, and at which repair-point, on the basis of side effects,
minimal change to the user's program and planning caveats. This set of
plausibility criteria is described in section 3.8.

The system also checks for bad side-effects on code following the
edited sub-group due to a new exit state for the edited code. A cleanup
step may be needed to eliminate undesirable consequences of the private

repairs. The modified main-step may violate protection or assumption



Model-Driven Debugging page 68

commentary generated by other edits. If so, the standard practice is to
either (1) modify the offended edit in light of the new structure for the
main-step or (2) backtrack and correcting the main-step in private in some
alternative way. Section 3.10 provides details on the protection
mechanism.

Occasionally, when the code is run in private, the violation does
not occur. This happens because the main-step is not modular and the
violation is due to code appearing between pieces of an interrupted main-
step. Private debugging remains useful, however, because it clearly
indicates that the cause of the error is in the intervening code. For
NAPOLEON, (NOT (LINE BODY)) is an example: the body when run in private is
indeed a line. The bug is in the effect of the inserted VEE on the heading
of the second vector.

Private debugging is also used to correct intrinsic violations of
relations. Recall that the definition of an intrinsic relation is that it
is entirely due to the code between the model parts mentioned in the
relation. Hence, the repair-point must occur there. The same precautions
required when the code is rejoined to the super-procedure--i.e. satisfying
assumptions, and possibly cleaning up--must be taken. Outside the turtle
world where it may not be so easy to decide if a relation is intrinsic,
private debugging can still be attempted. Just as for properties, if the
violation does not appear in private, then it is known that it is not
intrinsic and the system can look for causes in preceding code.

For fixed-instruction programs, there cannot be conflicts of inputs
or free variables. The influence of the outside world on the sub-procedure
is completely confined to the initial turtle stafe -- position, heading,

pen. In more complex programs, hugs not amenable to "private debugging”



Model-Driven Debugging page 69

become more common due to such reasons as conflicts over free and bound
variables. Another situation where private debugging is inappropriate is
in fixing relationships accomplished globally. An extreme case of this
occurs in the following "5 triangles out of 2". The global method for
accomplishing the five triangles does not correspond to any local code

segment which can be considered privately.

5 TRIANGLES FROM 2

FIGURE 3.10

3.6 LINEAR DEBUGGING

Linear Debugging is a technique for limiting the possible repair-
points for correcting violations of both the intrinsic and extrinsic kind.
It is based upon the assumption that DEBUG has already privately repaired
the main-steps to satisfy their properties. The linear debugging technique
is to consider editing corrections only at preparatory-steps and not
internal to the code for the main-steps. Main-steps are treated as
inviolate black-boxes: their contents need neither be known nor changed.
This is based upon the assumption that the main-steps are independent and
that the only corrections necessary to repair relations is to make
adjustments at interfaces. This was the technique used to debug (VERTICAL

TRUNK) in TREEl. DEBUG limited the search for the proper edit by not



Model-Driven Debugging page 70

considering the addition of a rotation to the interior of the TRIANGLE sub-
procedure. Instead, it restricted itself to an anaiysis of possible
corrections at the level of the TREEl super-procedure.

It is necessary to disobey the linear prohibition against modifying
main-steps if the restriction to editing preparatory steps is unsuccessful.
This may happen because preparatory edits either fail to eliminate the
violation, or succeed in eliminating the violation but conflict with
previous edits or introduce new unfixable problems. Linear debugging will
fail when the cause of a violation of a relation between two model parts is
due to the code for one of the parts. GOOGLY.EYES (figure 3.11) is an
example. The bug in the overlap of the eyes and head is not in the

interface but in the size of the eyes.

GOOGLY.EYES

FIGURE 3 .11

3.7 IMPERATIVE KNOWLEDGE

How is the set of possible edits for repairing a violation

generated? The answer lies in the use of procedural knowledge associated



Model-Driven Debugging page 71

with the model primitives which provides direction on how to make the
predicate true. The system has imperative knowledge for logical primitives
like equality and conjunction as well as for geometric primitives
appropriate to the turtle world. This imperative knowledge is represented
as FIX programs which are invoked by the particular model predicate being
debugged. The output of a FIX program is a sequence of directions for the
editor which eliminates the violation.

In the NAPOLEON example, (NOT (EQUITRI TRICORN)) is a violation of
a user-model. Such violations are fixed by recursive entry to the debugger
and analyzing the code for the model in private. Such recursion ultimately

reduces the debugging to fixing violations of model primitives.

3.7.1 Imperative Knowledge for Geometric Primitives

The following discussion describes in a simplified way the
imperative knowledge associated with several of the model primitives.
Appendix D describes these semantics in greater detail. Let X and Y be
vectors and assume that X is accomplished before Y.

(LINE X Y) <=> (AND (PARALLEL X Y) (CONNECTED X Y))

The imperative semantics for AND directs the debugger to establish the
two relations of PARALLEL and CONNECTED. These are defined below.

(PARALLEL X Y) <=> (= (DIRECTION A) (DIRECTION B) (MOD 180))
The annotator records the DIRECTION of vectors. The repair is to
insert rotations between the code for X and the code for Y so that the
direction of Y becomes equal to the direction of X (mod 180).
(VERTICAL X) <=> (OR (= (DIRECTION X) 0) (= (DIRECTION X) 180))
Alter preceding rotations so as to make the direction of X 0 or 180.

(CONNECTED X Y)

Choose a connection point on X (P1) and a connection point on Y (rP2).
The connection point is sometimes specified in the model: for example,



Model-Driven Debugging page 72

the user may have indicated that it should occur (AT (MIDDLE (SIDE
.--))). Then compute the vector V from Pl to P2. The edit is to add
code for V into an interface between X and Y. This will have the
effect of translating Y so that Pl is moved to coincide with P2.

If the exact position is unknown, deduce it from constraints such as
preferring to effect the code in minimal ways. This is done by
manipulating individually the length and angle inputs to translation
and rotation interface steps (occurring between the code for X and the
code for Y) and observing if X and Y intersect as a result. Branch in
considering alternative allowable connection positions.

(ABOVE X Y) - (similar technique for BELOW, RIGHT-OF, LEFT-OF)

To compute the required correction for a given interface: assume that

the figure has already been debugged to be topologically correct--e.g.
all of the connections are correct. This implies that the only degree
of freedom in interfaces is the heading.

In considering a given interface, find the range of headings which
satisfy the predicate. The range is determined by first finding the
heading of most restrictive meaning of ABOVE -- CENTERED-ABOVE wherein
the center of gravity of X is directly above Y. Then relax this
heading to find the maximum range in which less restrictive meanings of
the predicate--COMPLETELY-ABOVE and PARTLY-ABOVE--remain true. To
select a specific heading to actually edit into the code, choose the
value that satisfies the most restrictive meaning of ABOVE. If there
is still a range of possible headings, use the average value. Record
the range considered in case later debugging results in conflicts and
another heading must be chosen.

3.7.2 The Rigid Body Theorem

Fixed-instruction turtle programs draw rigid bodies, i.e. the only
effect of the initial runtime environment is to alter the visibility,
origin or orientation of the frame of reference. This theorem simplifies
the generation of possible repair edits by allowing computation of the
required rotation for HORIZONTAL, VERTICAL and PARALLEL to be made only
once, independently of the point in the code at which the edit is to be
added. This is useful since there are usually many points at which
patching the code must be considered to fix these violations.

For example, suppose the side of a triangle is to be made



Model-Driven Debugging page 73

horizontal. The required rotation is computed for the side. However, if
the edit is made immediately prior to the code for the side, the triangle
shape will be destroyed. The rotation, however, can be added to preceding
code, rotating all subsequent vectors the same amount and consequently
still making the side horizontal.

In general, if the correction is a rotation of the frame of
reference, the edit can be added anywhere prior to the code group to be
rotated. If the rotation is to change the relation between two sub-
pictures, then it can often occur anywhere in the code occuring between the

main-steps which accomplish the sub-pictures.

3.7.3:Imperative Knowledge of Logical Predicates
The general advice for fixing (= (P A) (P B)) is to use the

~ imperative semantics for property P to either make (P A) equal to (P B) or
vice versa. For the simple case of fixed-instruction turtle programs, the
change is usually made to A or B on the basis of which occurs last. This
is preferred because of the rigid body nature of sub-pictures. For
example, suppose A occurs before B. Then adding RIGHT :ANGLE before A
rotates A but it also rotates B. An opposite rotation must be added after
A if B is not to be affected by the first edit. Thus, fixing the sub-
picture which occurs first commits the system to two changes of the
program. Of course, editing the code before B may also require a cleanup
because of bad side effects but this is not inevitable as it is in the
first case. This preference is reflected in the general debugging criteria
of avoiding conflicts, minimizing change to the user's program and
preferring beneficial side effects.

Thus, fixing equality consists of:



Model-Driven Debugging page 74
(1) General Knowledge: Either A or B can be fixed. Prefer
to alter the unprotected element (section 3.10); and

(2) Domain-Dependent Knowledge: Imperative semantics are
provided for relating primitives to their effects.

These semantics for primitives are used by the annotator to
document the effect of a statement of code, and by the debugger to add the
correct code to achieve a desired effect. For example, to alter the
direction of a vector, the annotation semantics for FORWARD (section 6.3)
indicate that the DIRECTION property of vectors is equal to the current
heading. The annotation semantics for RIGHT indicate that :HEADING is
incremented by :ANGLE following execution of "RIGHT :ANGLE". The
conclusion drawn by the debugger, then, is that gither "RIGHT :ANGLE® is
needed to fix the direction of B or "RIGHT -:ANGLE" is needed to fix the
direction of A, where :ANGLE equals the difference between the desired
direction and the actual direction.

To fix (AND C1 C2 ...), correct all of the conjuncts. Order the
debugging attack on the basis of the same criteria used to order the
initial set of violations, i.e. (1) correct properties of main-steps before
correcting relations between main-steps, (2) correct intrinsic before
extrinic predicates and (3) debug a given group of conjuncts at the same
level (with respect to the preceding criteria) in temporal order.

See appendix D for a description of imperative semantics for other

model primitives such as INSIDE, OUTSIDE, OVERLAP, OR, NOT and FOR-EACH.

3.8 DECIDING BETWEEN ALTERNATIVE DEBUGGING STRATEGIES

More than one debugging strategy is usually available to fix a
given violation. The strategies differ with respect to their estimate of

~ the repair-point and with respect to the type of correction they apply to



Model-Driven Debugging page 75

fix a given model violation. For example, the imperative semantics for
VERTICAL indicate the desired direction but allow the correction to be
added_into any prior interface. In TREEl, the trunk can be made VERTICAL
by adding the appropriate rotation to the procedure as either statement 5,
20 or 40. The preferred debugging strategy is the one that does minimal
violence to the user's code, reflects the abstract plan, and fixes the

greatest number of violations.

on the of Side Effects

The first criterion for Judging the success of a particular
debugging strategy is an analysis of the side effects of the corrections.
The debugging strategy with maximal beneficial side effects is preferred.
Beneficial side effects occur by eliminating additional model violations,
satisfying planning expectations or eliminating violations of rational
form. (The latter is defined in section 3.9 on the state editor.)

One might ask why an edit might have any beneficial side effects at
all. Isn't it more likely to have bad side effects and cause other
violations? The answer is that often several violations are caused
by the same error in the code. Then one debugging strategy will
stand out from its brethren by fixing this error and thereby
simultaneously curing several violations.

On the other hand, sometimes a correction causes additional model
violations. In this case, either the new violations can themselves be
debugged or the debugging strategy must be abandoned. Assumption and
protection commentary are used to help in understanding those bad side
effects wherein one edit undoes the effect of some other debugging edit.
This is discussed in section 3.10. If the bad sgde effect cannot be

eliminated, then the debugging strategy must be rejected. This is the case

with a linear debugging of GOOGLY.EYES (figure 3.11). The eyes cannot be



Model-Driven Debugging page 76

brought into the head by shrinking the interface without causing them to
overlap the nose. Thus this debugging strategy eliminates one violation
(OVERLAP EYE HEAD) only to introduce another (OVERLAP EYE NOSE). The
system is forced to consider non-linear debugging and fix the parts

themselves.

' 3.8.2 Plausibility on the Basis of Minimal Change

Another plausibility criterion is that of minimal change to the
user's code. A debugging strategy that changes an input is preferred to
one that adds lines; and a strategy that adds lines is in turn preferred to
one that deletes them. The rationale is that a repairman should make
minimal changes to a system. The goal is to fix the program in harmony
with the user's intent, not to redesign it. This caution is further
Justified by the fact that the system does not fully know the programmer's
intent or plan. Hence, it must be hesitant to make major revisions to his

program.

3.8.3 Plausibility on the Basis of Caveat Comments

A third basis for choosing between alternative debugging strategies
is advice from the annotator and plan-finder on likely errors. The
annotator alerts the debugger to oddities in program structure which may be
the underlying cause of some semantic violation (section 6.6). The plan-
finder fulfills the same purpose with respect to code that contradicts
expectations arising from the abstract form of the plan. The mechanism of
informing the debugger of the possibly erroneous code is through caveat
comments. The comments are noticed when the debugger considers the

associated code in the course of debugging some model violation. A repair



Model-Driven Debugging page 77

edit is accorded extra plausibility by the debugger if the correction
eliminates the complaint that initiated the caveat.

The annotator generates caveats upon noticing violations of
rational form. These are simply sequences of calls to the same primitive
such as FORWARD, RIGHT or PENUP. The code is odd: why didn't the user
simply coalesce them into a single call with a larger input or, in the case
of PENUP, include only the first instruction? The answer may be that the
user has forgotten to insert additional instructions -- for example RIGHT
commands -- into a FORWARD sequence. A caveat stating that code may be
missing is placed between each pair of elements in the sequence of
FORWARD's. A violation of rational form occurs in the following triangle
procedure because the user has forgotten the first rotation.

TO TRI

10 FORWARD 100 <- (caveat annotator rational-form-violation

(sequential statements 10 30))

30 FORWARD 100

40 RIGHT 120

50 FORWARD 100

END
An edit that inserts a rotation into such a sequence of FORWARD
instructions would eliminate the rational form violation and therefore be
. preferred in competition with other corrections which do not explain the
annotator's complaint. If the debugger corrects the program by eliminating
the annotation caveat, then the underlying cause of the error is considered
to be "Missing Code".

Caveats generated by the plan-finder are created by noting
insertions which are not transparent, global plans which depend on specific

runtime environments and linear plans in which main-steps use the same

resource such as an assumption about a particular state variable. In an



Model-Driven Debugging page 78

extended system, caveats would be useful for noticing such oddities as
round-structured programs which fail to halt and shared free variables.

A non-transparent insert is an example of a plan-finding caveat:
it may be intended but it is probably a bug. Consequently, FINDPLAN
generates a caveat associated with the code following the insert. The
caveat declares that if a correction is made that has the effect of making
the insert transparent, then the correction should be moved into the final
cleanup of the code for the insert. An example occurs in correcting the
crooked body of NAPOLEON. The plan-finder produces the following comment
for the interface code following the ARMS:

TO NAPOLEON
10 VEE

20 FORWARD 100
30 VEE {- (caveat plan-finder (not (rotation-transparent vee)))

40 FORWARD 100

50 LEFT 90

60 TRICORN

END
When the debugger proposes to add a rotation as line 35 which has the
effect of making VEE transparent, the caveat is noticed. The debugger is
then in a position to accomplish the required state edit and eliminate the
cause of the caveat by inserting the edit into VEE as its last line. Tﬁus,
the caveat has served to change a linear debugging strategy of editing the
interface between the arms and the body into a non-linear edit directly
into VEE.

Comments are used -- rather than the Annotator or Plan-Finder

immediately calling the Debugger to correct the violation -- because a

violation of rational form is not a guarantee of a bug: the oddity may be

harmless or even intended by the programmer. An example in which a



Model-Driven Debugging page 79

sequence of FORWARD instructions arises naturally is the following triangle
program:

TO TRI

10 FORWARD 50

20 FORWARD 50

30 RIGHT 120

40 FORWARD 100

50 RIGHT 120

60 FORWARD 100

END
The first two FORWARD's are surprising. However, if this TRI is being
debugged in preparation for being converted into a tree program with the
trunk inserted between statements 10 and 20 (similar to TREE3, section
2.7), then the apparent violation of rational form is explained.
Similarly, an absence of control in a recursive procedure is acceptable if
the turtle's halting is not desired. Beginning recursive programs for
triangles often take the following form:

TO TRI

10 FORWARD 100

20 RIGHT 120

30 TRI

END

The utility of comments is that if the code is not suspected of

being in error by the debugger, the comment has no effect. The comment has
an effect only if the debugging analysis finds a model violation that can
be corrected by changing the odd code. It is then that the comment enters
the analysis by supporting such a hypothesis with its own complaint about
the code. Its complaint -- non-transparent insert or sequential primitives
-- can then be used not only to support the plausibility of this debugging

strategy but also to suggest the proper repair -- make code transparent or

insert interface.



Model-Driven Debugging page 80

3.8.4 Guessing the Culpable Interface

Even with the restriction to linear edits, fixing a predicate
relating two main-steps may produce many possible edits. For example,
making the HEAD above the LEGS in NAPOLEON could be done by adding a
rotation in any of several places in the program preceding the execution of
the TRICORN sub-procedure. To limit the search for the proper edit, the
system initially considers ediis to only two interfaces -- the interface
immediately preceding the second main-step (i.e. code for the model part
accomplished last) and the initial setup to the program. The immediate
interface is preferred on the expectation that preceding interfaces have
already been protected in the course of debugging. The global setup is
considered because "Unexpected Runtime Environment" is a common cause of
- errors. The plausibility of these editing points is then analyzed by the
criteria described in the preceding sections -- beneficial side effects,
minimal change, and caveats as well as the protection criteria to be
described in section 3.10. If they are found implausible, additional
interfaces are considered in order proceeding backwards from the second

main-step.

Model-driven debugging ultimately produces a repair strategy

consisting of a series of calls to the state editor. Arriving at such a

strategy can be complex. Once discovered, however, the state editor then
proceeds to make the actual changes to the user's code. The importance of
the state editor is that it raises the conceptual level with which the
debugger interacts with the actual program. The state editor understands

instructions at a higher level than the ordinary LISP and LOGO editors.



Model-Driven Debugging page 81

Utilizing the imperative semantics of the turtle primitives, it is able to

modify code so as to achieve a given picture property. The editor comments
its corrections by indicating any assumptions about entry state. Rational

form criteria are used to clean up the edit and merge it, where

appropriate, with adjacent code.

3.9.1 What The State Editor Does

The purpose of the state editor is to achieve a desired state
description or picture property. Examples are:

(STATE.EDIT (AFTER (TREE LINE 10)) (= HEADING 90))
(STATE.EDIT (DURING TREE) (= (LENGTH TRUNK) 100))

The STATE.EDIT instruction has the following form:
(STATE.EDIT <where)> <{what)). .
{Where> specifies the location where the edit is to be made.

{where) = (<before, during, after)
(line, code-group, sub-procedure>)

"During" is a request that the edit be true during the code but not effect
the exit state: the edit is to be achieved with transparency. An example
is having the pen down during a main step, without affecting subsequent
main-steps.
The (what)> is a state specification in the form of an equality
constraining some turtle or picture property to have a given value:
turtle-state: (= <:HEADING, :POSITION, :PEN> <{value))
picture-state: (= <property of picture primitive> <value)).
Rotations, vectors and points are picture primitives. They are
described during annotation and represent the effects of executing
primitive turtle commands. Examples of their properties are endpoints,

length and direction for vectors and rays, vertex and degrees for



Model-Driven Debugging page 82

rotations.

3.9.2 How The State Editor Accomplishes Its Goals

P S E_AE ]

Achieving state edits is accomplished in two steps. The first
inserts into the code at the specified location the necessary turtle
primitives to cause the state to assume the desired value. The second step
cleans up the edit by applying Rational Form criteria.

An interesting fact is that the system produces state edits by
generating a plan and then debugging it. The system thus exhibits
the same style of planning-debugging in its own thinking as it does
in analyzing a user's code.

Each turtle primitive has semantics associated with it that
describe its effect. This is the same core of knowledge used to generate
annotétions. The state editor, however, uses this knowledge in an inverse
fashion from the annotator. Rather than asking what a given turtle
instruction produces; it inquires what turtle instruction can be used to

achieve a specific effect.

(PENUP) => (:PENSTATE <- :UP)

(RIGHT :A) => (:HEADING <- (+ :HEADING :A))
(RIGHT :A) => (= (DEGREES ROTATION) :A)
(FORWARD :R) :POSITION <- (NEWPOSITION :R :HEADING))

(FORWARD :R) ; Es (LENGTH VECTOR) :R)
See chapter 6 on Annotation for more detail.

The state editor is generally asked to achieve a given absolute
state at a desired location. Turtle commands, however, effect the world
relative to their entry state. Hence, in addition to knowing which
primitive alters which state variable, the system must know the current

entry state. This information is obtained from the annotator. The input

to the appropriate primitive is then simply



Model-Driven Debugging page 83

(DIFFERENCE <desired state> <old state)).
The assumed entry state is protected by an "Assumption" comment.
Upon inserting a line of code, the state editor invokes Rational
Form Criteria to criticize the relation of the insert to adjacent code.
The rational form criteria are local ind they do not criticize the overal%
' organization of the program. Hence, they can remain ignorant of the model.

They observe local oddities.

RATIONAL FORM CRITERIA

violation: Sequences of adjacent forwards
fix: Delete all but the first translation. Edit the input of the
first translation to be the sum of the inputs of the sequence.

violation: Sequence of rotations separated by non-movement commands.
fix: Delete all but the first rotation. Edit the input of the
first rotation to be the sum of the inputs of the sequence.

violation: Sequence of similar pen commands.
fix: Delete all but the first command of the sequence.

Mergers are not forced if adjacent similar commands are described
by different purposes. For example, two adjacent FORWARD instructions are
" not merged if they draw vectors which are pieces of different model parts.

MYCROFT illustrates in many ways the multiple use of knowledge.
Here we see recurrent use of the semantics for procedural
primitives. The criteria of rational form are similarly used in
many ways. The editor uses it to debug its plans while the
annotator uses it to generate caveats for possible structural
programming errors. This provides evidence that the system has
isolated fundamental types of knowledge related to understanding
and debugging programs.

3.9.3 Extensions To The State Editor

Debugging round-structured programs would require an editor capable

of accepting high level instructions to modify the recursive or iterative



Model-Driven Debugging page 84

mechanisms in the user's program. An example might be the request to
modify a program so that it iterates N rather than N+1 times, for a given
initialization of the loop. Such complexity is glearly manageable but,
nevertheless, one step above the local modifications made by the turtle
state editor.

Achieving a certain state for every round of an iterative or
recursive program requires the ability to describe schematically the
behavior of the loop. The state upon entry to the round changes with each
invocation. The system must understand the way in which one round affects
the next. It may also have to take special precautions to properly handle
the first or last instances. The technique of achieving the proper edit
could be either to solve for the first instance and hope the remaining
invocations are also satisfied; or, preferably, to understand the entry
condition to a generic round abstractly and be able to make the fix for all
rounds with confidence.

For programs with inputs, it is possible that the state comparison
occurs at the level of the schematic commentary. (See section 6.5 on
Schematic Description.) The schematic commentary describes formal
~ Performance, independent of input binding. If the request is itself
abstract, then this is obviously necessary. For example, demanding that
the length of a vector be equal to a previous vector can be accomplished by
identical formal inputs. If the state comparison occurs at the level of
the process, comments for protecting assumptions about input bindings

should be generated.



Model-Driven Debugging page 85

3.10 ASSUMPTION AND PROTECTION

DEBUG generates assumption and protection commentary associated
with each repair to aid in resolving difficulties when an edit causes new
violations or undoes the effects of some previous edit. Assumptions about
the entry state at the repair-point describe expectations on which the
.imperative semantics based their analysis. Protection commentary guards
the code from the repair-point to the manifestation-point (the place in the
code at which the sub-pictures referred to by the violated model predicate
were completed), again because the details of the repair depend upon the
state manipulations of the code between the edit and the manifestation-
point. Protection is introduced by Sussman in the context of debugging
blocks world programs [Sussman 1973].

A simple example arises for the following tree program:

TO TREE4 (- (accomplish tree)
10 TRIANGLE {- (accomplish top)
20 RIGHT 60 <{- (setup heading such-that
(overlap (interface statement 30) (side 3 top)))
30 FORWARD 50 <~ (retrace (side 3 top))
40 RIGHT 45 {- (setup heading for trunk)
50 FORWARD 100 <- (accomplish trunk)
END

TO TRIANGLE <~ (accomplish equitri)

10 FORWARD 100 <- (accomplish (side 1 triangle))

20 RIGHT 120 <~ (accomplish (rotation 1 triangle))

30 FORWARD 100 <- (accomplish (side 2 triangle))

40 RIGHT 120 <{- (accomplish (rotation 2 triangle))

50 FORWARD 100 <- (accomplish (side 3 triangle))
(cleanup position)

60 RIGHT 120 <{- (accomplish (rotation 3 triangle))
(cleanup heading)

END

See figure 3.12 for the picture drawn by TREE4 with the turtle starting at
the center of the screen and with a heading of zero degrees.

Debugging the base of the TOP to be horizontal results in the



Model-Driven Debugging page 86

TREE4 TREE4
VERSION 1 VERSION 2
Slanted base § trunk Base made horizontal
FIGURE 3.12 FIGURE 3.13

addition of statement 5 to TRIANGLE which rotates the triangle so that the
necessary orientation is established.

5 RIGHT 30 <- (setup heading such-that (horizontal (side 3 top)))
This produces figure 3.13. Debugging the TRUNK to be vertical by modifying
the initial setup, however, undoes this correction (figure 3.14).

3 RIGHT 45 <- (setup heading such-that (vertical trunk))

TREE4
VERSION 3
Trunk made vertical

FIGURE 3.14
The solution is for the initial correction of (HORIZONTAL (SIDE 3 TOP)) to

include commentary explaining its purpose, scope and assumptions.



Model-Driven Debugging page 87

Specifically, this commentary is:

1. An assumption that the entry state to statement 5 is :HEADING=0:
(ASSUME (TREE4 STATEMENT 5) (= :HEADING 0)).

2. A protection to any modifications of :HEADING from statement 5, the

repair-point, to statement 50 of TRIANGLE, the manifestation-point of
the error:

(PROTECT :HEADING UNTIL (TRIANGLE STATEMENT 50)).
Statement 50 is the manifestation-point of the error since it
accomplishes (side 3) and INTERPRET is then able to recognize that a
violation exists, i.e. that the base of the triangle is not
horizontal.
These comments force the debugger to prefer the alternative repair strategy
of making the trunk vertical by editing the rotation of statement 40 to be

RIGHT 90.
A second use of this commentary, in addition to preventing
. conflicts between edits, is to simplify debugging the procedure if it is
ever run in a new environment. Unsatisfactory initial state values are
immediately noticed by the assumption commentary. For example, if
statement 5 of TREE4 contains the assumption that the entry heading should
be 0, then being run in any other environment will generate a violation.
This violation then directs the debugging.
Thus, previous debugging sessions produce commentary whose
specificity eliminates complex questions of responsibility and
interpretion. The system has, in effect, generated the snapshots
of performance which Naur and Floyd utilize to verify programs
[Floyd 1967, Naur 1967].
The assumption comment is passed to the debugger as an instruction and the
result is that code is added prior to statement 5 which converts the
heading to the desired value.
Often a protection conflict can be resolved. The debugger is
simply recalled to achieve the edit which gave rise to the protection,

taking into consideration the new entry or exit state requirements. This

second call to the debugger involves less effort than the first. The



Model-Driven Debugging page 88

commentary from the first remains and indicates the desired Cartesian state
to be achieved at the manifestation-point. If the second edit succeeds
without causing unfixable violations as side effects, then the system has
patched its own edit and need not reject the basic form of its current

analysis.

3.11 SUMMARY OF DEBUGGING CONCEPTS

The debugger's knowledge divides into two categories: general
debugging technique and specific imperative knowledge of logic and
geometry. .

Debugging Technique

1. Linear Attack -- First verify main-steps privately. Then analyze
relations in terms of interfaces. Only if all else fails, modify
main-steps to fix relations.

2. Plausible Search -- Compare alternative debugging strategies using
plausiblity criteria of minimal change to the user's code and maximal
beneficial side effects.

3. Culpable Interfaces -- Prefer either the initial interface or the
interface immediately preceding the bugged module. This is based on
the assumption that the temporal attack has already verified
intermediate interfaces.

4. Caveats -- Use caveat comments generated by the Plan-Finder and
Annotator to suggest the location of the repair.

5. Intrinsic versus Extrinsic Errors -- Classify model violations as
intrinsic or extrinsic on the basis of whether the error is internal
to the code being examined. Intrinsic errors have limited scope and
can be debugged privately.

6. Handling Multiple Bugs -- Debug those violations of most-limited scope
first: that is, debug properties before relations; then intrinsic
predicates before extrinsic ones, and finally in temporal order.

7. Commentary -- Use commentary to express the purpose, assumptions and
scope (protection) of a correction and to notice conflicts between
different corrections.



Model-Driven Debugging page 89

Knowledge of Geometry and Logic

1. Imperative Semantics of Predicates -- In addition to standard
verification code, primitives have semantics that suggest what to do
to make the predicate come true. This consists of procedural
knowledge which examines code and generates edits to make a particular
geometric predicate true.

2. Rigid Body Theorem -- This theorem is a precise statement of the
effect of the initial environment on a segment of code for Fixed-
Instruction Turtle Progranms, namely that the code produces a rigid
body and that the initial environment affects only the orientation and
position.

3. Imperative Knowledge for Logical Predicates -- Procedures for making
conjunction, disjunction, negation, equality and set membership true
with minimal effort.

3.12 CLASSIFICATION OF BUGS

The following taxonomy of bugs summarizes the types of errors which
the s&stem debugs. The classification is independent of the geometric
details of the turtle world and provides general guidance for finding an
appropriate fix and repair locus for a violation. The specific details of
the state change made to the code is determined by the imperative semantics
for the violated model predicate.

Linear Main-Step Failure:
Manifestation: Failure of main-step to accomplish model
part in private, i.e. when run independently.
Fix: (Private Debugging) Repair in private, rejoin and
satisfy any initial assumptions.
Ex: (NOT (EQUITRI TRICORN)) in NAPOLEON.

Preparation Error:

Manifestation: Violation of relation between model parts.

Fix: (Linear Debugging) Find culpable interface, make
edit suggested by the imperative semantics for the
predicate, and protect assumptions and behavior until
the point at which the error was manifest.

Ex: See Unexpected Runtime Environment and Local
Preparation Errors



Model-Driven Debugging page 90

Unexpected Runtime Environment: (type of preparation failure)
Manifestation: Violation due to false assumptions of
the entry state to program. (Program does succeed in
certain environments).
Fix: Add an initial setup which converts the actual entry
state to the desired entry state.
Ex: (NOT (BELOW LEGS ARMS)) in NAPOLEON.

Local Preparation Error: (type of preparation error)
Manifestation: Violation intrinsic to the program,
and not dependent on the initial environment.
Fix: Modify state appropriate to the imperative semantics
for the violated predicate.
Ex: (NOT (VERTICAL TRUNK)) in TREEA4.

Non-Linear Main-Step Failure:
Manifestation: Main-step succeeds in private.
Fix: See resource conflicts, insertion errors,
and global errors described below.

Unconsidered Second-Order Constraint on Main-step:

(type of non-linear main-step failure)

Manifestation: Violation of a property of a model part
not detected in private. Manifested by analysis
of a relation between the main-step and some
other model part.

Fix: Modify main-step in such a way that violation is
corrected while the first-order description of properties
asserted in the model is still satisfied. Guidance is
provided by the imperative semantics for the predicate.
Examples of such transformations are dilation and
reflection.

Ex: (NOT (INSIDE MOUTH HEAD)) in BIG.MOUTH.

Resource Conflict: (type of non-linear main-step failure)
(Mentioned for completeness: not handled by debugger.)
Manifestation: Violation of a property of a part

described in the model which was not exhibited in private.
Fix: Some assumption made when run privately is being

violated in public. Such an assumption could be the

availability of a given resource, e.g. a free variable.
Ex: Attempt to correct both (VERTICAL BODY) and

(HORIZONTAL (SIDE TOP)) in TREE4 by modifying the

initial interface statement 5 (section 4.6)

Insertion Error: (type of non-linear main-step failure)

Manifestation: Main-step failure not indicated in private
with the additional element that a caveat comment
generated by the plan-finder informs the debugger
that the code group for the main-step surrounds an
insert which is not transparent.

Fix: Make insert state-transparent.

Ex: (NOT (LINE BODY)) in NAPOLEON.



Model-Driven Debugging page 91

Global Error: (type of non-linear main-step failure)
Manifestation: Model part accomplished non-locally fails.
Fix: Find relevant theorem which was the basis of expecting
the global plan to succeed. Find ‘assumptions made by
theorem which were not justified. Make these
assumptions true.

Ex: (NOT (LINE (SIDE 1 TRICORN))) in NAPOLEON.



Debugging Examples page 92

CHAPTER 4 -- DEBUGGING EXAMPLES

This chapter provides examples to illustrate the utility of the
debugging concepts described earlier. This will include debugging
scenarios for NAPOLEON, FACEl (a face with a non-linear bug) and FACEMAN (a
stick figure with an incorrectly connected head). If, at any point, the
reader feels overwhelmed with details, he should skip to the next chapter

which discusses debugging from a broader perspective.

4.1 DEBUGGING NAPOLEON
This section provides a debugging scenario describing MYCROFT's
correction of NAPOLEON. Recall that the NAPOLEON procedures with their

associated plans are:

TO NAPOLEON

{- (accomplish man)

10 VEE ¢~ (accomplish legs)

20 FORWARD 100 {- (accomplish (piece 1 body))
30 VEE (- (insert arms body)

40 FORWARD 100 <{- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading for head)

60 TRICORN {- (accomplish head)

END

TO VEE <~ (accomplish v)

10 RIGHT 45 ¢~ (setup heading for 11)

20 BACK 100 <{- (accomplish 11)

30 FORWARD 100 (- (retrace 11)

40 LEFT 90 {- (setup heading for 12)

50 BACK 100 <~ (accomplish 12)

60 FORWARD 100
END

<{- (retrace 12)

TO TRICORN <{- (accomplish equitri)

10 FORWARD 50 <{- (accomplish (piece 1 (side 1)))
20 RIGHT 90 <{- (accomplish (rotation 1))

30 FORWARD 100 <{- (accomplish (side 2))

40 RIGHT 90 {- (accomplish (rotation 2))

50 FORWARD 100 <~ (accomplish (side 3))

60 RIGHT 90 <{- (accomplish (rotation 3))

70 FORWARD 50
END

<{- (accomplish (piece 2 (side 1)))



Debugging Examples page 93

Figure 4.1 shows the intended stick figure and the bugged pictures produced
by these programs.

Interpreting the programs with respect to their models (given
earlier in section 1.3) produces the following list of violations, shown in
ordered form:

;Violations of Properties
;Intrinsic Property
(NOT (EQUITRI TRICORN))

;Extrinsic Property
(NOT (LINE BODY))

;Violations of Relations, ordered by execution sequence.

(NOT (BELOW LEGS ARMS))

(NOT (BELOW ARMS HEAD))

Correcting TRICORN is simplified by the explicit description of the
rotations by the EQUITRI model. The debugger has sufficient geometric
knowledge of regular polygons such that if the rotations were only
described as being equal, then could still deduce that they must be 120
degrees.

Fixing the crooked body is more complex. The difficulty arises
because the linear debugging approach of treating main-steps as inviolate
is inappropriate. The imperative semantics for LINE direct the debugger to
insert a rotation to make the two pieces of the body parallel. The natural
place to do this is as statement 35 in NAPOLEON immediately prior to the
second piece of the body.

Ordinarily, this is what would occur. However, the debugger
notices a caveat comment criticizing statement 30 for not being a rotation-
transparent insertion. The result is that the debugger considers adding

the rotation into VEE as the last line of code. This eliminates the



Intended stick figure

Picture drawn by VEE

FIGURE 4.1

Debugging Examples page 94

.{)
0 %

(
L/\
DY)

Picture drawn by NAPOLEON

Picture drawn by TRICORN




Debugging Examples page 95

complaint and makes VEE rotation-transparent. Consequently, this is the

preferred debugging strategy.

TO VEE <{- (accomplish v)

(state-transparent vee)
10 RIGHT 45 <- (setup heading)

20 BACK 100 <- (accomplish 11)
30 FORWARD 100 <- (cleanup position)
40 LEFT 90 <~ (setup heading)
50 BACK 100 <~ (accomplish 12)
60 FORWARD 100 <- (cleanup position)

70 RIGHT 45 <- (cleanup heading)
END

It remains to correct the BELOW relations. Treating main-steps as
inviolate and fixing relations by modifying setup steps limits the repair
of (BELOW LEGS ARMS) to three possible repair-points: (1) before the legs
as st;tement 5, (2) before the first piece of the body as statement 15 and
(3) before accomplishing the arms as statement 25. For BELOW, the
imperative semantics direct DEBUG to place the legs below the arms by
adding rotations at the setup steps. More drastic modifications to the
user's code are possible sucﬁ as the addition of position setups which
alter the topology of the picture; however, HYCROFT‘trics to be gentle to
the turtle program (using the heuristic that the user's code is probably
almost correct) and considers these larger changes tb the program only if
the simpler edits do not succeed. The first setup location considered is
the one immediately prior to accomplishing the arms. Adding a rotation as
statement 25, however, does not correct the viclation and is therefore
rejected. The next possible edit point is as statement 15. Here, the
. addition of RIGHT 135 makes the legs PARTLY-BELOW the arms and produces
figure 4.2. This edit is possible but is not preferred both because the

legs and arms now overlap and because the legs are not COMPLETELY-BELOW the



Debugging Examples page 96

NAPOLEON with Line 15 RIGHT 135

FIGURE 4.2

arms. MYCROFT is cautious, being primarily a repairman rather than a
designer, and is reluctant to introduce new connections not described in
;he model. Also, given a choice, MYCROFT prefers the most constrained
meaning of the model predicate. If the user had intended figure 4.2, then
further model description would be necessary such as (CONNECTED LEGS ARMS)
and (PARTLY-BELOW LEGS ARMS). . |
Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEGS ARMS)
and produces the intended picture. This correction has beneficial side
effects in establishing the proper relationship between the head and arms,

confirming for MYCROFT that the edit is reasonable, since a particular

underlying cause is often responsible for many bugs. Thus, the result of



Debugging Examples page 97

(DEBUG (BELOW LEGS ARMS)) is the addition of statement 5 plus the

associated commentary to the NAPOLEON program.

TO NAPOLEON <- (accomplish man)
5 RIGHT 90 (- (setup heading such-that (below legs arms)

(below arms head))
<- (assume (= (entry heading) 270))
10 VEE <- (accomplish legs)
20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)
40 FORWARD 100 <- (accomplish (piece 2 body))
50 LEFT 90 (- (setup heading for head)
60 TRICORN <- (accomplish head)
END

The assume comment records the entry state with respect to which the
edit was made. If the program is run at a future time in a new
envirenment, then debugging is simplified. The cause of the violation is
immediately seen to be an incorrect assumption, and the corresponding
repair is obvious. This illustrates the existence of levels of commentary
between the model and the program, each layer being more specific, but also
more closely tied to the particular code and runtime environment of the

program.

4.2 DEBUGGING A BIG MOUTH
This section provides an example of a face procedure which réquires
non-linear debugging. Figure 4.3 illustrates the intended face. Shown

below is the model provided to describe this fac@.



Debugging Examples page 98
FIGURE 4.3
MODEL FACE
M1 PARTS LEFT.EYE RIGHT.EYE NOSE MOUTH HEAD
M2 CIRCLE (HEAD LEFT.EYE RIGHT.EYE)
M3 EQUITRI NOSE
M4 LINE MOUTH
M5 INSIDE (LEFT.EYE RIGHT.EYE NOSE MOUTH) HEAD
M6 ABOVE (LEFT.EYE RIGHT.EYE) NOSE
M7 BELOW MOUTH NOSE
END
The following program FACEl is intended to accomplish this face but
actually draws figure 4.4. The main-steps are underlined.
TO FACE1l ;version 1
10 SMALLTRIANGLE <- (accomplish nose)
20 BIGCIRCLE <- (accomplish head)
30 LEFT 45 (- (setup heading (for interface left.eye))
40 FD.UP 100 {- (setup position for left.eye)
50 SMALLCIRCLE (- (accomplish left.eye)
100 BK.UP 100 ¢- (cleanup position such-that (at home))
110 RIGHT 90 {- (setup heading (for interface right. eye))
120 FD.UP 100 <~ (setup position for right.eye)
130 SMALLCIRCLE (- (accomplish right.eye)
140 BK.UP 100 <- (cleanup position such-that (at home))
150 LEFT 45 {- (cleanup heading such-that (at home))
160 RIGHT 180 {- (setup heading for (interface mouth))
170 FD.UP 50 {- (setup position for mouth)
180 RIGHT 90 <- (setup heading for mouth)
190 FORWARD 100 <- (accomplish (piece 1 mouth))
200 BACK 200 <- (accomplish (piece 2 mouth))

END



Debugging Examples page 99

FD.UP and BK.UP in FACEl are pen-transparent procedures that do a
FORWARD and BACK respectively with the pen up. The SMALLTRIANGLE has sides
of 20 and is a state-transparent, right-turning procedure. The circle sub-
procedures are not fixed-instruction but are written as iterative loops.
However, they shall simply be treated as inviolate sub-procedures. Since
they are, in fact, correct: debugging of FACEl will be possible. The
circle procedures are state transparent and begin at the center. The
SMALLCIRCLE has a radius of 20; and the BIGCIRCLE a radius of 100.

In FACEl, the cleanups are described as returning to a local home

state. The existence of this home state is noticed by the Plan-Finder on
the basis of observing (1) global connections occurring at this point and
(2) the abstract form of the code. Such recognition is very useful for
debugging. It can suggest that the underlying cause of a bug is a failure
to return to “home".

The first step in debugging is to compare the program's performance
to the model's demands and describe the discrepancies. Three violations
occur.

(NOT (INSIDE LEFT.EYE HEAD))
(NOT (INSIDE RIGHT.EYE HEAD))
(NOT (INSIDE MOUTH HEAD))

The violations are then debugged. Figures 4.4-4.7 show the stages
which the face picture goes through as the code for FACEl is edited. As we
shall see, the violations due to the position of the eyes are linear and
are fixed by editing appropriate interfaces. The violation due to the
overlap of the mouth and head, however, is not linear and the debugger is

forced to edit the main-step for the mouth.



Debugging Examples page 100

DEBUGGING FACE1

OD

N N

FACE1 FACE1
VERSION 1 VERSION 2
(FIX (INSIDE LEFT. EYE HEAD))
FIGURE 4.4
FIGURE 4.5
m
FACE1
FACE1
VERSION 3
VERSION 4

(FIX(INSIDE RIGHT.EYE HEAD))

(FIX (INSIDE MOUTH HEAD))
FIGURE 4.6

FIGURE 4.7



Debugging Examples page 101

4.2.1 Fixing the Position of the LEFT.EYE

The earliest violation in terms of the order in which the parts of
the FACE are accomplished is (INSIDE LEFT.EYE HEAD). The appropriate part
of the imperative semantics for INSIDE is:

To make X inside Y, where X is accomplished after Y,
If 1. the entry position of the interface is inside Y and
2. the exit position of the interface is outside Y,

then make the vectors of the interface shorter.

The first interface considered for this repair consists of
statements 30 and 40, as this is the one immediately preceding the code for
"~ the second part, LEFT.EYE. The appropriate change here is to alter the
input to the FD.UP instruction of statement 40. The specific input chosen
is thé average of the maximum and minimum values which satisfy the
constraint (rounded to the nearest multiple of 5). In this case, statement
40 can range from FD.UP 30 to FD.UP 80 and hence FD.UP 55 is chosen.
Alternatively, the graphic terminal could be used to display to the user
the range of permissible values and request his advice. In either case,
the commentary recorded is that the particular number chosen is simply the

result of selecting from a range of possible values. This allows the

number to be easily changed in reaction to subsequent debugging.
TO FACEl ;version 2

40 FD.UP 55 <- (setup position such-that (inside left.eye head))
(input chosen between 30, 80)

50 SMALLCIRCLE

100 BK.UP 55 <- (cleanup position such-that (at home))



Debugging Examples

ytrace of analysis
;general debugging technique

1. Begin with linear debugging, i.e. do not modify
the main-steps (sub-procedures) for parts.

2. INSIDE is local. Therefore, restrict consideration
of culpable interfaces to those in the causal chain
between the main-steps for the parts involved in the
relation.

a. Culpable interfaces restricted to occuring
between code for HEAD and LEFT.EYE.

b. Ignore TRANSPARENT inserts. They are not

page 102

in the causal chain. Hence, ignore SMALLTRIANGLE.

3. Possible culpable interfaces are statements 30 and 40.
4. Debug immediate interface, statement 40.
;imperative semantics
1. For a position interface (statement 40) such-that
a. origin of interface is inside
b. termination of interface is outside

shrink interface.

2. To shrink, find range which satisfies predicate
and choose average.

a. Maximum input such-that predicate is true is 80.
b. Minimum input such-that predicate is true is 30.

c. Annotate range.
d. Shrink input to (average max,min) = 55.

(STATE.EDIT (STATEMENT 40) (= LENGTH 55))
;general debugging technique
1. Debug consequences of edit. Statement 40 is a setup
with an associated cleanup. Fix cleanup so that

it succeeds given the new input to the setup.

(STATE.EDIT (CLEANUP (STATEMENT 100))
(= (LENGTH (STATEMENT 100)) (LENGTH (SETUP (STATEMENT 40)))))

; summary

(CAUSE - LOCAL PREPARATION ERROR)
(FIX - SETUP POSITION SUCH-THAT (INSIDE LEFT.EYE HEAD))



Debugging Examples page 103

4.2.2 Fixing the Position of the RIGHT.EYE

The analysis here is identical to that for the LEFT.EYE. An
amusing result is that the the face becomes crosseyed. The minimum
distance for the RIGHT.EYE is greater because of the position of the NOSE.
The model does not contain any advice that the eyes be at the same level,
nor does the system have any innate knowledge of the appearance of faces.
Consequently, the setup for the RIGHT.EYE becomes "FD.UP 60", rather than

"FD.UP 55".
TO FACE1l ;version 3

120 FD.UP 60 <- (setup position such-that (inside right.eye head))
130 SMALLCIRCLE
140 BK.UP 60 <- (cleanup position such-that (at home))

If the user is dissatisfied, he must supply additional model
specifications. The eyes would be made the same height if the following
assertion is supplied:

(RIGHT-OF RIGHT.EYE LEFT.EYE)
The range for statement 60 is computed. But now there is a better choice
than simply picking the average value. For the duration of this debugging
scenario, we assume that this advice has not been given and our final face

will remain slightly crosseyed.

4.2.3 Fixing the Overlap of the MOUTH and HEAD

Usually, debugging a violation between model parts is accomplished
by editing the interfaces appropriately. However, this technique is

unsuccessful if such edits either fail to eliminate the violation or



Debugging Examples page 104

introduce serious new violations. For FACEl, altering the interface prior
to the MOUTH fails to eliminate the overlap. The result is that the system
~ 1s forced to reject its hypotheses of Local Preparation Error and consider
a Non-Linear Main-Step failure, i.e. changing the code for one of the model
parts to which the predicate refers.

For the non-linear case, the semantics for INSIDE suggest to either
shrink the MOUTH or dilate the HEAD. Dilating the HEAD has bad side
effects with respect to connection with the BODY; hence, shrinking the
MOUTH is preferred. Shrinking preserves shape and consequently tends not
to introduce any new violations. Shrinking is defined procedurally as
altering the value of all vector instructions in the code segment by a
scale facter less than 1. In this case, the maximum size which the mouth
can be is 140, the minimum size 0. The average value of 70 is chosen. The
plan indicates that both statements 190 and 200 are pieces of the MOUTH.

Therefore, the size of both lines is altered to preserve shape.
TO FACE1 ;version 4

180 RIGHT 90
190 FORWARD 35 <- (shrink (piece 1 mouth)

such-that (inside mouth head))
200 BACK 70 {- (shrink (piece 2 mouth)

such-that (inside mouth head))
END

;trace
;general debugging technique

1. Begin with a linear attack. Hypothesize as a Local
Preparation Error.

;This proceeds as for the eyes. But this time, no interface can
;be edited to cause the mouth to be inside the head.



Debugging Examples page 105

2. Reject hypothesis. Attempt non-lineaf attack.

Hypothesize as Non-Linear Main-Step Failure.

;imperative semantics for INSIDE

1. Shrink the part to be inside. Compute maximum and

minimum size and take the average. In this case, the

maximum size is approximately 140. The minimum is zero.

Hence, the mouth is to be made of length 70.

(STATE.EDIT MOUTH (= LENGTH 70))

The mouth is in two pieces. Both are shrunk so that
the total visible length is 70.

; summary

(CAUSE - UNCONSIDERED EXTERNAL CONSTRAINT ON MAIN-STEP)
(FIX - SHRINK MAIN STEP)

Deciding that the underlying cause of the the overlap of the MOUTH
and the HEAD is that the MOUTH is too large requires a decision as to when
the "scale" error first occurred. The linear assumption made by the system
is that the error is local to the code directly responsible for the MOUTH,
statements 190 and 200. However, it is possible that the error includes
statement 170, the setup for the MOUTH. User advice is fequired to direct
 the system to extend the scale correction to statement 170.

The FACE is now successfully accomplished.



Debugging Examples page 106

TO FACE1 ;version 4
10 SMALLTRIANGLE
20 BIGCIRCLE
30 LEFT 45
40 FD.UP 55
50 SMALLCIRCLE
100 BK.UP 55 <- (cleanup position such-that (at home))
110 RIGHT 90
120 FD.UP 60 {- (setup position such-that (inside right.eye head))
130 SMALLCIRCLE
140 BK.UP 60 <- (cleanup position such-that (at home))
150 LEFT 45
160 RIGHT 180
170 FD.UP 50
180 RIGHT 90
190 FORWARD 35 <- (shrink (piece 1 mouth)
such-that (inside mouth head))
(shrink (piece 2 mouth)
such-that (inside mouth head))

e )
(]

(setup position such-that (inside left.eye head))

200 BACK 70 <

END

4.2.4 Orientation of the Nose

The nose never assumes the proper orientation. The reason is that
the user's model does not constrain its orientat{on. If the user added the
following statement to the FACE model

(HORIZONTAL (BOTTOM (SIDE NOSE))),
the system would add the appropriate rotation.

In editing FACEl such that the bottom of the nose becomes
horizontal, the following question would arise: If a rotation is inserted
before statement 10 to properly orient the triangle, should it be undone
following statement 10?7 Is the rotation local to the triangle or should
its effects be felt throughout the program? The answer depends on the
model and plan. In this case, a local home state is a central feature of

the plan and, therefore, the rotation would be made transparent.



Debugging Examples page 107

4.2.5 Limitations of Rational Form Criteria

Statements 150 LEFT 45 and 160 RIGHT 180 of FACEl are sequential
primitives of the :ame type and, therefore, are a violation of Rational
Form. However, the rationale for their existence is the use of a "local
home" state to which the turtle returns between accomplishing parts. This
is observed by the plan-finder. Because it is able to assign distinct
purposes to the two code statements, the caveat comment created by the
annotator (which was created before plan-finding) is erased.

This code is an example of why the system cannot always consider
violations of Rational Form to be bugs. In this case, it is clear to the
plan-finder that there was a reason for the apparent violation: namely the
goal of returning to the home state before preparing for the next main-
step. In other programs, bugs might obscure the existence of the local
home and the plan-finder would consequently believe that sequences of the
same primitive are unreasonable and generate a caveat comment. This would
be an error on the part of the plan-finder; however, the utility of caveat
comments is that they do not intrude on the debugging process unless the
debugger suspects the cause of a violation to be code in the vicinity of

thevcaveat.

4.3 AN EXAMPLE OF A MODEL-DRIVEN DEBUGGING FAILURE

Suppose the circle procedure used for the head of the face began on
the circumference. Let this procedure be CIRCUMCIRCLE. FACE2 utilizes
such a procedure and is based on the same plan as FACEl, i.e. a local home
at the center of the head is used to interface between main-steps. The

underlined statements are differences between FACE2 and FACEL.



Debugging Examples page 108

O

NON-TRANSPARENT HEAD

FACE2
FIGURE 4.8
TO FACE2
10 SMALLTRIANGLE ;Draw the nose at the center of the head.
12 FD.UP 100 ;Move to the circumference of the head.
14 LEFT 90 ;Orient turtle tangent to head.
20 CIRCUMCIRCLE ;Draw the head. (Left-turning circle.)

;The program should now return the turtle to the center
;of the head if it is to have a similar plan to FACEl
;as intended. However, it has a bug and the position
;cleanup is missing. The turtle is consequently left on
;the circumference of the circle and pointing :WEST rather than
;properly returned to the local home.
30 LEFT 45 ;Setup heading for moving to the LEFT.EYE.

;Remainder as in FACEl.

Following the HEAD in FACE2, the programmer has forgotten to do the
required "RIGHT 90" and "BK.UP 100" to return to the center of the face.
(This was not necessary in the original FACEl, since BIGCIRCLE was state-

transparent with respect to the center of the circle.) The result in FACE2



Debugging Examples page 109

is that the eyes and mouth are located outside the head. The fixing
semantics for OUTSIDE fails to debug this error. Fixing the interface and
inserting the "LEFT 90" does not move either the eyes or the mouth inside
the head. The occurrence of two errors which must be fixed simultaneously
confuses the system.

Planning advice, however, allows the system to succeed. The plan-
finder has discovered the user's abstract planning structure of an
insertion plan whose skeleton is the center of the head. The fact that
following the HEAD, the turtle does not return to this local home causes
the plan-finder to generate a caveat comment. When the analysis of the
violation of INSIDE leads the debugger to consider the interface (statement
30) following the HEAD as culpable, this comment plays a role. It results
in advice to the debugger that the proper correction is to achieve state
transparency with respect to the local home described in the plan. The
debugger can then go on to correct the INSIDE violation by shrinking the
interface.

Cleanup Debugging: If the Debugger suspects the cause of an error
to lie where a cleanup was expected by the Plan-Finder (as noted in
a caveat), then hypothesize the error to be a "forgotten cleanup"
and make a state.edit to insert this cleanup, i.e. a return to the
"home". Then continue debugging.

Without the advice of the plan-finder, the debugger could not
recognize the necessary intermediate step of returning to the center of the
face after drawing the head. Hence, this is an example where purely model-
driven debugging is inadequate. The problem with the picture is that it is
not able to guide the debugger to the required edits. It is also an
example wherein knowledge of plans simplifies the problem and allows

successful debugging.



Debugging Examples page 110

4.4 DEBUGGING A VISIBLE INTERFACE

Let FACE3 be a variant of FACEl in which statement 170, the setup
for the MOUTH, is visible. If the visible code is correctly described as
an interface (and not incorrectly assigned to some model part by the plan-

finder), then debugging is straight-forward.

TO FACE3

160 RIGHT 180 (- (setup heading for (interface mouth))
170 FORWARD 50 ;bug: VECTOR should be invisible.

180 RIGHT 90 <~ (setup heading for mouth)

190 FORWARD 100 <= (accomplish (piece 1 mouth))

200 BACK 200 - (accomplish (piece 2 mouth))

END

NS

VISIBLE INTERFACE
FACE3

FIGURE 4.9

INTERPRET would describe the violation as:
(NOT (INVISIBLE (INTERFACE STATEMENT 170))).

Visibility bugs are corrected by retracing and by penstate changes. Recall



Debugging Examples page 111

that the definition of (INVISIBLE V) is:
(OR (= (PENSTATE V) :UP) (RETRACE V W)).

The more common error is in penstate and that is the correction made here.

;trace
;debugging technique
1. Linear debugging. Bug in property of code.

The property is local to the code. Therefore,
although interfaces are not "main-steps" with
respect to the picture, the debugging attack here

is modular and the property can be fixed in private.

(STATE.EDIT (DURING INTERFACE) (= PENSTATE :UP))

ysummary

(CAUSE - PREPARATION STEP FAILURE)
(FIX - SETUP PEN SUCH-THAT (INVISIBLE INTERFACE))

The result is that statement 170 becomes the required FD.UP.

4.5 FIXING A BROKEN NECK

The following stick figure program FACEMAN illustrates the repair
of a connectivity relation, where the connection point is not explicitly
described. Suppose FACEl had been used to draw the head of a stick figure

as shown below (assume FACEl has been debugged):

TO FACEMAN ;version 1, see figure 4.10

10 VEE <~ (accomplish legs)

20 FORWARD 100 {- (accomplish (piece 1 body))
30 VEE <{- (insert arms body)

40 FORWARD 100 <~ (accomplish (piece 2 body))
50 PENUP (- (setup pen for interface)
60 FORWARD 50 <- (setup position)

70 PENDOWN {- (setup penstate for face)
80 FACE1 <- (accomplish face)

END

The default meaning for CONNECTED is connection at an endpoint of a



Debugging Examples page 112

oXe

FIGURE 4.10
vector. Hence, it is a violation for the BODY to overlap the HEAD. The

imperative semantics direct the debugger to choose the connection point.
For the BODY, the desired location is an endpoint. The upper endpoint is
the logical candidate as it is the entry state to the interface consisting
of statements 50, 60 and 70. This is confirmed by the fact that choosing
the lower endpoint of the BODY has bad side effects in terms of the legs
and head overlapping. The next step is to choose the point on the HEAD.
There is no clear candidate so the system resorts to considering minimal
changes to the user's code, in particular, manipulating the input to the
interface vector drawn by statement 60. This proves satisfactory.
Statement 60 drawing a vector of length 100 causes a connection with the

endpoint of the body and there are no bad side effects.



TO

10
20
30
40
50
60

70
80

Debugging Examples page 113

FACEMAN ;version 2, see figure 4.11

{- (accomplishes man)
VEE
FORWARD 100
VEE
FORWARD 100
PENUP
FORWARD 100 <- (setup position (for FACEl)

(such-that (connected body head)))

PENDOWN
FACE1

END

O O

v

FIGURE 4.11

The edit of altering the position of the HEAD relative to the BODY

by editing statement 60, rather than inserting an edit into the FACEl sub-



Debugging Examples page 114

procedure, reflects a linear analysis wherein the code for sub-procedures
is kept inviolate. The Rigid Body Theorem justifies computing the required

translation independent of its point of insertion into the program.

;trace
;debugging technique

1. CONNECTED is a topological model predicate.
Therefore, hypothesize as an internal Local Preparation
Error. The culpable interface is restricted to the
causal chain between the completion of the BODY
and the beginning of the HEAD.

2. For linear debugging of an interface, treat main-steps
as inviolate. Therefore, the culpable interface is
further restricted to occuring between BODY and FACE,
i.e. not inside the FACEl subprocedure.

;imperative semantics for CONNECTED

1. Compute the required translation. This is done in
several steps: »

a. Choose a connection point on the second part. Endpoints
are preferred. In this case, the second part is the BODY.
The preferred connection point is the upper endpoint.

Using the lower endpoint results in bad side effects.

b. Choose a connection point on the HEAD. Since the HEAD
does not have any endpoints, the strategy is to alter the
interfaces in a minimal way and observe where the
connection is produced. The only interface between the
body and the face is statement 60. The interior of the
face procedure is inviolate. Decreasing the input to
statement 60 moves the head down towards the body.
Connecting the upper endpoint of the body to the
circumference of the head satisfies the model.

(STATE.EDIT (BEFORE FACE1)
(= POSITION (+ POSITION <REQUIRED MOVEMENT>)))

; summary

(BUG - LOCAL PREPARATION ERROR)
(FIX - SETUP POSITION SUCH-THAT (CONNECTED BODY HEAD))



Overview of Debugging page 115

CHAPTER 5 -- OVERVIEW OF DEBUGGING

5.1 HIERARCHICAL DEBUGG ING

This chapter considers the debugging problem from a broader
perspective. The first observation to be made relates to the relationship
between code and commentary. Debugging is correcting a program so as to
satisfy its commentary. The problem becomes simpler as the commentary
becomes more explicit. Hence, a useful point of view from which to
describe the debugging process is to consider competence to debug
successively higher levels of commentary.

The level of the commentary refers to the specificity with respect
to the actual code. In this sense, the program itself is the
lowest level of commentary.

In the turtle world, the first level of description above the
actual code consists of "state descriptions". This commentary can be
passed directly as commands to a state editor which appropriately modifies
the program. No complex analysis in finding the locus of the correction is
necessary. An example is the set of assumptions generated while debugging
FACEMAN and TREEl. With this level of expertise assumed, debugging the
plan becomes finding the appropriate state commentary. Then, with an
understanding of how plans are debugged, the problem of finding the plan
given only the model can be considered.

This point of view is hierarchical with each stage assuming the
expertise of the preceding one. Notice that this same framework, when
viewed from the reverse perspective, can describe a program-writing system:
program writing works by successively detailing the level of description
until a program is produced.

This hierarchical point of view is only a first approximation. In



Overview of Debugging page 116

more complex situations, we should expect two-way communication between the
different levels of description. This is the case in the TREEl example

(section 7.7) where the debugger rejects the plan and requests a new one.

9.2 TOP-LEVEL DEBUGGING GUIDANCE

The top-level organization of model-driven debugging is to order
the model violations and then proceed to fix them in turn. This technique
makes the basic assumption that guidance in fixing the program can be
obtained by analyzing the specific details wherein the picture failed to
satisfy its description. Alternatively, top-level guidance can be obtained
through:

1. structure-driven debugging - insight into the form of programs, e.g.

such structural considerations as recursive and iterative control
patterns and global versus local variable scope.

2. evolution-driven debugging - the evolutionary or editing history of
the user's code.

3. process-driven debugging - the abstract form of the process at the
time of the error [Sussman 1973].

A more complete debugging system would exhibit all of these forms of

direction.

5.3 STRUCTURE-DRIVEN DEBUGG ING

Structure-driven debugging is concerned with "programming errors".

- These are errors stemming from the use of the language of procedures rather
than errors in theory or in planning. This class of errors includes bugs
in recursive and iterative control. Examples of such bugs are slip-through
errors (in which the end test of a loop fails to catch the counter), fence-
post problems (in which the program repeats the wrong number of times),

incorrect preparation between rounds, incorrect initialization and wrong-



Overview of Debugging page 117

way-counting. The following triangle program is an example of the last
type of bug where the counter should be incremented rather than
decremented.

TO TRI

10 MAKE "SIDES" 0

20 IF :SIDES=3 THEN STOP

30 FORWARD 100

40 RIGHT 120

50 MAKE "SIDES™ :SIDES-1 ;Decrements rather than increments counter.

60 GO 20

END
This error is noted by a caveat comment which provides later debugging
guidance.

Structural errors due to incorrect scoping of variables must be
handled when the complexity of programs is extended to allow inputs.
Typical errors are variables which are bound that should be free, free that
should be bound, and conflicts in names.

Each type of structural error would have a "fixer" that could
correct it. For control, an expert on integer arithmetic is useful to
decide how many rounds a given program will execute for a particular end
test, step function and initialization. (See Ruth [1973] for a discussion
of such an expert used to correct errors in simple sorting programs.)

The difficulty in debugging such errors is not in fixing them once
known but recognizing that they are the culprits in the first place.
Abstract knowledge of recursive and iterative planning is helpful. It is
used to find the plan of such programs, of course. It also aids debugging

by generating caveats which alert the system to the occurrence of

structural errors.



Overview of Debugging page 118

9.4 EVOLUTION-DRIVEN DEBUGGING

Editing errors arise from modifying an existing program to achieve
a new purpose. These errors include "incomplete variablization®,
"violating prerequisites®, and "unexpected interactions" (between free
variables). The clue to understanding these errors is in the nature of the
edits and their purposes.

As an example, a typical bug that occurs when editing a fixed
instruction triangle program into a program capable of drawing triangle of
arbitrary size is Incomplete Variabilization.

TO INCOMPLETELY.SCALED.TRI :SCALE

10 FORWARD 100 ;This line is missing the scale factor.

20 RIGHT 120

30 FORWARD 100%:SCALE

40 RIGHT 120

50 FORWARD 100%:SCALE
END

INCOMPLETELY-SCALED-TRI 1

INCOMPLETELY-SCALED-TRI 2

FIGURE 5.1

The evolution of the program can be recorded by noting the purpose
of each edit. Obviously, if the program is run in a new environment and

fails, the edit is suspected of causing the bug. If the model has not



Overview of Debugging page 119

changed, then this hypothesis can be tested by running the earlier version
of the program and observing if it succeeds in the new environment.

In finding the plan, multiple possibilites can be generated.
Hence, in the first debugging session, the contingency exists that the
program is being incorrectly interpreted because the system is using the
wrong plan. But, in subsequent sessions, the system can be more and more
convinced that it has found the right plan and focus attention on the
resulting bugs rather than examining alternative plans.

A mini-world of knowledge that would facilitate this type of
debugging is an understanding of the process of learning programming (and
the related problem-solving). Typical evolutions of a program are towards
greater generality and power. An example is first the addition of a
movement input to a SQUARE procedure to accomplish squares of any size and
then the insertion of a rotation input thereby generalizing to a POLY
program which can draw any regular polygon.

TO POLY :SIDE :ANGLE

10 FORWARD :SIDE

20 RIGHT :ANGLE

30 POLY :SIDE :ANGLE

END
(See figure B.7 for pictures drawn by this program.) Knowledge of the
typical bugs encountered in generalizing, in handling new environments, and
in coping with more complex procedural structures would provide insight

into the underlying cause of an error.



Overview of Debugging page 120

9.5 PROCESS-DRIVEN DEBUGGING

The idea of process-driven debugging is to observe the current
state and history of the process in order to diagnose the cause of a bug.
This is one of the basic notions developed in Sussman's HACKER program
[Sussman 1973]. The following is an example of this kind of debugging
drawn from Sussman's research. Imagine that a one-armed robot has been

asked to build the tower of three blocks shown in figure 5.2. This request

3

2

2 3 1
BEFORE AFTER

FIGURE 5.2

to the HACKER program is made by asking:

(ACHIEVE (AND (ON A B) (ON B C))).
Assuming the robot has had no previous experience with towers, its first
approach would be to simply follow the linear plan of:

(ACHIEVE (ON A B))
(ACHIEVE (ON B C)).

Unfortunately, this plan will fail. Step 1 results with A being placed on
B. However, when the time comes to move B onto C, A must be taken off
since the robot can only move one block at a time. Thus, in achieving the
second main-step, the robot has undone the first.

The manifestation of this disaster is recognized as a violation of



Overview of Debugging page 121

a protection created when A is placed on B. The protection asserts that

(ON A B) must remain true throughout the remainder of the program. The

clearing of the top of B in preparation to moving B onto C conflicts with

this protection. The underlying cause of the bug is determined by matching -

the state of the process against a collection of abstract patterns for

different types of bugs.

In this case, the bug pattern is shown in figure 5.3. The lower-

Protect

(TRUE (ON A B))

1St Conjunct

(ACHIEVE (ON A B))

Prerequisite

(PUT(ON A TABLE))

Prerequisite Mainstep

(CLEARTOP B) (PUT (ON B C))

2nd Conjunct
(ACHIEVE(ON B C))

AND

Pattern of PREREQUISI TE-CLOBBERS- BROTHER-GOAL

FIGURE 5.3

case labels represent the bug pattern: the upper-case code represents the

matching behavior in the program. The cure for such a bug which HACKER

applies is to alter the order of the main-steps. The result is that the

code for achieving the tower becomes:




Overview of Debugging page 122
(ACHIEVE (ON B C))
(ACHIEVE (ON A B)).

Note that if we think of the static form of the desired block
structure as the model, then the bug is not properly diagnosed. Each of
the main-steps in the original program is designed to achieve the placement
of a block into the proper relative position for the final goal state. The
difficulty is recognizing a constraint not mentioned in the model: namely
. that support from the bottom up is required. Process-driven debugging is
useful for recognizing unexpected interactions between independently
designed main-steps.

The turtle bugs which have been analyzed have been mostly of the
kind in which code fails to accomplish a predicate asserted in the model.
The problems have been ones of missing or incorrectly designed main-steps
or preparatory-steps. Bugs in which the code has been properly written but
is simply in the wrong order have not been considered. Such bugs are not
frequent in the turtle world for a very simple reason: ordering is not as
critical as it is in the blocks world. Although ordering may simplify the
required preparations, it is always the case that a turtle program can be
debugged without reordering the main-steps. This follows from the fact
that a main-step can never undo the success of a previous main-step as can
happen in the BLOCKS world. In the turtle world, pictures cannot be
erased. Therefore, this kind of interaction is impossible.

There are certain kinds of unfavorable interactions in the turtle
world. These arise from a main-step (which has been successful in private)
failing in the context of the super-procedure because of previous code
clobbering certain expected entry-state conditions. The most typical case

is when the pen is moved into the :UP state by some previous preparatory-



Overview of Debugging page 123

step and not returned to the :DOWN state before execution of a following
main-step, resulting in an invisible picture.

The utility of examining the state of the process becomes more
important as the programs become more complex. This is because main-step
failures due to unexpected interactions become more common as a result of

unexpected interactions due to global variables and shared data structures.

e R —_— -

Natural Models are those in which the facts asserted translatg
readily into local planning statements. These are the type of model given
for the trees, wishing wells and stick figures used in the debugging -
examp@es.‘ When the model expresses an outlook that is very distant from
the plan, (i.e. wherein most model statements are achieved globally), the
system is in trouble. There will be great difficulty in finding the plan
and understanding the purposes of the program structure. An example would
be a model for a face that references all parts to the center of the head
coupled to a program that builds the face from bottom to top without the
use of a local home state. A reasoning program for processinﬁ nodels_would
allow greater latitude in model specification. Such global properties as
area and symmetry could be understood, i.e. properly related to the program
. structure.

Examples of some useful geometric facts for understanding and
debugging are:

1. (Total Turtle Trip Theorem) A program is heading
transparent if and only if the sum of the rotations is 0

(mod 360).

2. (Poly Theorem) The turtle rotations for a regular
polygon equal 360/(number of sides).



Overview of Debugging page 124

Model violations may be due to errors in theory or errors in
procedural implementation. This distinction represents two ends of a
spectrum and not an absolute, discrete division.

Theory bugs are errors in the understanding of the domain in which
the program's effects are to occur. For example, such a bug‘is assuming an
incorrect relation between the length of the inscribed radius and the §1de
of the triangle. They occur in attempting to generate a plan from the
model.

Procedure bugs are errors in carrying out a correct plan. This
would include local preparation errors, unexpected runtime environments,
linear and non-linear main-step failures. This paper is generally
concerned with procedure bugs. To correct theory bugs, a theorem-prover is
necessary rather than an expert on programming.

Theory bugs blend into procedural bugs. An example is guessing the
wrong rotation for causing the turtle to line up with a previously drawn
vector. The plan is correct in desiring an overlap. But the understanding
of the necessary state relation is in error. The mistake may be
theoretical (due to an incorrect understanding of the sum of the rotations
in the triangle) or it may be procedural (due to an incorrect understanding
of the exit state of the preceding code-segment).

In a more complete model of the program writing and debugging
process, both a domain-dependent knowledge system and a programming expert

would be present.



Overview of Debugging page 125

5.8 GENERALIZABILITY OF DEBUGGING TECHNIQUES

The mini-world of programs in which MYCROFT operates is that of
Fixed-Instruction Turtle procedures. These are, of course, a particularly
simple form of program. Their simplicity allows the imperative semantics
for the geometric primitives to utilize the Rigid Body Theorem, justifying
the same state change to different interfaces to correct a given bug.

The debugging techniques used to handle even these simple programs
are by no means exhaustive. Nevertheless, it is worth noting that ﬁany of
the techniques utilized by MYCROFT are of broad application: an initially
linear analysis, the need to order the attack on multiple bugs, competence
to cope with alternative debugging strategies--these are useful regardless
of the nature of the top-level direction or the complexity of the program.

The debugger has also been designed to extend to more complex
geometric programs by describing and repairing bugs in a qualitative way.
Picture bugs are not explained in terms of Cartesian coordinates. Such
guantitative reasoning is not extendable. Instead, the bug is classified
as a preparation or main-step failure. Such abstract reasoning better
explains the problem because it tells "why". Indeed, this is the only way
to proceed when the model does not fully determine the picture to the
extent of actually being able to deduce coordinates.

The choice of plane geometry as the semantic domain for MYCROFT was
not accidental. Geometry allows the use of a Cartesian annotator and a
powerful model language for specifying spatial relations. Other domains
may not be susceptible to a MYCROFT-like approach because of the lack of
powerful ways in which to document the effects of the program and the lack
of a good model language. However, it is worth noting two points:

1. Spatial models are very important for programming in applications




memte&m

TIORGYH mr&: ni zawm k b
lanning )

CEEDOG

EEE By St
b R iR L

Yo svel sligmir

s .
el st
B Afis wuny of
i i %?quﬁ wdd I
e % o : oops 300 N
IR BV Lndd R axin o e gafdiiszsd v we'ég;@% e} SRR
S BELaaTIsT sgaad A LeniafaXs fon ens Egud
3 OBLooUD Ak
3l S
&% 1
i
[25
AR S 2 is yifemeed _isduneblinne Jon
isbou DoV
‘o @i ¥ 557 i
GHROER S Y B PETER L Ak




Describing Performance page 127

CHAPTER 6 -- DESCRIBING PERFORMANCE

6.1 THE DESCRIPTION OF PROGRAMS

Debugging is impossible without good description of a program's
purpose and performance. MYCROFT begins with the program and a model
describing the intended result. Two forms of additional commentary are
then generated: Performance Annotation documents the effect of running the
program while the "lan explains the intent. This commentary is organized
as sets of assertions in a database, bound together into sequences
representing what happened and why. Figure 6.1 shows part of the database
generated to describe TREE. The nodes are organized so that the horizontal
axis represents time and is used to answer such éausal questions as what
change§ occurred to which state variables and which code was responsible
for those changes. Similar data structures for describing programs are
used by Fahlman [1973] and Sussman [1973].

The vertical axis represents teleological abstraction and explains
the purpose of the code. Models fit into this descriptive framework as the
highest level of abstraction. They describe the final goal without ties to
specific plans or chronological performance. The next level is the plan,
indicating the sub-goal organization for accomplishing the model. Finally,
the teleology rests on a description of the actual performance of the
turtle program when executed in a particular initial environment.

MYCROFT analyzes a program by first building a complete performance
annotation and then applying the plan-finder to assign purposes to the
code. Performance annotation is accomplished by running the user's turtle
program in a "careful mode" which produces four kinds of description.

1. Process Annotation is a description of the output of the




<O00rrOmMmrM—Ae—m—— 3

—mOZ»ITOTMIMIVA p——- MO VIC T —ro

MODEL

PLAN

SCHEMA

PROCESS

INITIAL ANNOTATION FOR TREE

MODEL TREE
M1 PARTS TOP TRUNK
M2 TRIANGLE TOP

M7 (HORIZONTAL (SIDE TOP)

(SETUP HEADING

(ACCOMPLISH SUCH-THAT (ACCOMPLISH (ACCOMPLISH (ACCOMPLISH
TREE) ( HORIZONTAL(SIDE TOP)) (TOP TREE)) TRIANGLE) (SIDE 1 TRIANGLE)
| | I I I
POINT PO ROTATION RO STRUCTURE S1 STRUCTURE S1 POINT P1
STRUCTURE S0 DEGREES = 30 VECTOR VO
LENGTH =100
I I ~ [ I
POSITION = 0,0 HEADING = 30 POSITION 0,100

HEADING =0
PEN = DOWN

F1: Entering

TREE

DIRECTION = 30

FIGURE 6.1

F2: Executing F3: Executing F4: Entering F5: Executing
TREE 5 TREE 10 TRIANGLE TRIANGLE 10
RT 30 TRIANGLE FD 100
Time Sequence of Frames of Program
CAUSALITY >

dduewmdojiaqd Burqraosaq

821 abed



Describing Performance page 129

program. It consists of a record of the effects of executing
each program statement. For turtles, this consists of the
creation of vectors, vector structures, rotations and points.

2. Schematic Annotation isolates those properties of the program
and its performance which are independent of the initial
environment. This is important when debugging requires
knowledge of whether an error is due to the initial environment.

3. Planning Advice suggests the segmentation of the program with
respect to accomplishing the model on the basis of such criteria
as global connections.

4. Debugging Advice describes suspicious code by caveat comments
which aid in subsequent debugging.

Details of these four kinds of commentary are given below.

6.2 PROCESS ANNOTATION

Process annotation provides a description of the output of a
program and its sub-procedures in terms of some language appropriate to the
purpose for which the program was designed. For example, the performance
annotation for an arithmetic program might be in terms of.mathematical
equations to be satisfied at various points in the computation [Floyd
1967]. For turtle programs, an obvious choice is to produce a Cartesian
description of the picture drawn by the program. Annotation should reveal
the basic effects of the code, free of vagaries of individual programming
style. This would include knowing the description of a vector, regardless
of whether the actual command is FORWARD, BACK or SETXY. (The last command
moves the turtle to an absolute position on the screen.)

Annotation produces a sequence of frames. A frame is generated to
describe the execution of each primitive and sub-procedure call. Each
frame is a set of assertions specifying (1) any changes to the turtle's
state and (2) the properties of any picture elements which have been

created. The turtle's state consists of the values of the global variables



Describing Performance page 130

:HEADING, :POSITION and :PEN. Picture elements (created as side effects of

executing turtle commands) are vectors, rotations, points and structures

(vector sets drawn by recognizable code segments such as sub-procedures).
Figure 6.1 represents the annotation for.the first five frames of

the following TREE and TRIANGLE programs:

TO TREE TO TRIANGLE

5 RIGHT 30 10 FORWARD 100
10 TRIANGLE 20 RIGHT 120
20 RIGHT 60 30 FORWARD 100
30 FORWARD 50 40 RIGHT 120
40 RIGHT 90 50 FORWARD 100
50 FORWARD 100 60 RIGHT 120
END END

The commentary is generated by a request to ANNOTATE TREE starting at HOME,

where HOME is defined by:

:POSITION = (0, 0), the center of the screen
:HEADING = 0 degrees, pointing upwards
:PEN = "DOWN", the turtle will leave a track.

For more complex programs, the initial environment would consist of the
input bindings and the values of all free variables.

There are a total of 16 frames in the annotation for TREE as shown
in figure 6.2. This basic chronological sequence of frames is called the
CHRONTEXT [Sussman 1973] . The value of a state variable in a given frame
can be determined by looking back up the CHRONTEXT for the most recent
frame in which it was set. This frame will also indicate the code
responsible for the assignment. Frames can be chained in different
sequences other than the chronological order of execution. For example,
F1, F2, F3, F12, ... , F16 describes the performance of TREE,.treating the
call to the TRIANGLE sub-procedure as a primitive with no internal details.

On the other hand, the sequence F4, F5, ... , Fll annotates the performance



Describing Performance page 131

FRAME SEQUENCE FOR TREE

F1: Entering »  F2: Executing —
TREE TREE 5
RT 30

F3: Executing — F4: Entering —
TREE 10 TRIANGLE
TRIANGLE

r

F5: Executing —» +¢¢+ —3p»  F10: Executing ——
TRIANGLE 10 TRIANGLE 60
FD 100 RT 120

!

F11: Exiting ——>»  F12: Executing —»:.. —> F16:Exiting
TRIANGLE TREE 20 TREE
RT 60

FIGURE 6.2



Describing Performance page 132

of TRIANGLE independently (except for entry state) of the remainder of

TREE.

6.3 SEMANTICS FOR TURTLE PRIMITIVES

The process annotation is generated by imperative semantics
associated with each turtle primitive. These semantics describe the

performance of the turtle command.

SEMANTICS FOR (FORWARD :DISTANCE) ;Draws a vector.

(:VECTOR <-- (GENERATE-NAME 'V))
;All vertices, rotations, vectors and structures
;are given unique names to facilitate later debugging.
; If subsequent investigation reveals that the
,partlcular object has been given a label by
;the user, then the system name is replaced by the
yuser's identifier.

;Describe the Vector in terms of its direction and length.

(ASSERT (= (DIRECTION :VECTOR) :HEADING))
(ASSERT (= (LENGTH :VECTOR) :DISTANCE))
(ASSERT (= (VISIBILITY :VECTOR) <PENUP, PENDOWN, RETRACE))

;Update the State of the Turtle

(:POSITION <-- (FORWARD :DISTANCE))
; FORWARD :DISTANCE outputs coordinates of the new
;position. The turtle state variable :POSITION is set
;to this new location of the turtle.

(:POINT <-- (GENERATE-NAME 'P))
; If the coordinates are unique, bind :POINT to
;a new name for this position. If not, use the
;old name for the position. If a name already
;exists for this position, record the connections
;occurring at this point between :VECTOR and
;previous vectors.



Describing Performance page 133

SEMANTICS FOR (RIGHT :ANGLE) ;Rotates the turtle.
( :ROTATION <-- (GENERATE-NAME 'R))
;Describe the Rotation in terms of its vertex and degrees.

(ASSERT

(= (DEGREES :ROTATION) :ANGLE)
(ASSERT (

(VERTEX :ROTATION) :POSITION)

;Update the State of the Turtle

( :HEADING <-- (RIGHT :ANGLE)) ;RIGHT outputs the new heading.

At the level of the process, actual numerical values are determined
for the above properties. Because these assertions depend upon the
particular state of the initial environment, this is the most specific,
least abstract level of commentary when compared with the model, plan and

schematic annotation.

6.4 ANTECEDENT COMPUTATION OF MODEL PREDICATES

—_——— S L VWL

Certain geometric relations are particularly easy to observe during
annotation and are therefore precomputed at that time. Connectivity at
endpoints is an example of an important predicate which is simple to
compute during annotation. The process description, with its access to
numerical coordinates, can observe the turtle returning to a position which
was visited earlier. The antecedent computation of connectivity for TREE

is illustrated in figure 6.3.



Describing Performance page.134

ANTECEDENT COMPUTATION OF CONNECTED

vg \"A|
V2

V3

V4

Local Connections
(CONNECTED vg V1)
(CONNECTED V1 V2)

Global Connections
(CONNECTED V2 vga)
(CONNECTED V2 V4 )

FIGURE 6.3

ANTECEDENT SEMANTICS FOR CONNECTED

1. Record local connections due to the sequential behavior of the
" turtle.

2. If the turtle returns to a previously visited vertex, then record
the connections between the vector just drawn and any previous
vectors with endpoints at this vertex. Include the comment that
these connections are global.



Describing Performance page 135

Similarly, VERTICAL, HORIZONTAL and PERPENDICULAR are precomputed during
annotation.

Interior connections where the turtle recrosses some previous
vector or ABOVE relations are not noticed during annotation as they depend
on global properties of the picture and would be costly to compute.
Instead, they are determined only upon request during subsequent
interpretation and debugging.

The geometric model predicates are implemented as procedures which
expect to find their answer in the database. If it is present as a result
of annotation or previous computation, then it is immediately returned. If
not, the answer is computed and placed in the database. This is done using
FETCHs and IF-NEEDED procedures in CONNIVER [McDermott 1972], although it
could equally well be written using PLANNER's THGOAL and CONSEQUENT

theorems [Hewitt 1972, Sussman 1971].

6.5 SCHEMATIC DESCRIPTION

The performance annotation can be divided into Process and
Schematic description. Process annotation describes the performance of the
program in the particular runtime environment in which it was executed.
Schematic description treats the environment formally and examines the
definition. Properties of the code that are independent of the initial
runtime environment are asserted.

Fixed instruction turtle programs generate rigid bodies. The
initial environment affects the picture only with respect to its
visibility, origin and orientation. Therefore, schematic description is
particularly simple. All local properties such as connectivity,

inside/outside/overlap, and shape are schematic while properties describing



Describing Performance page 136

the numerical heading or position of parts are part of the process
description. The process annotations of the same program run in two
different environments are related by a change of coordinates consisting of
a translation and rotation.

For the turtle semantics of section 6.3, the creation of vectors
- and descriptions of their length are schematic properties while the
coordinates of their endpoints and their direction are part of the process
annotation. Refer again to figure 6.1 for an example of this distinction.

The importance of the schematic description for debugging is that
the system is assured that the runtime environment is irrelevant to
schematic properties. The debugger should not consider altering the
initial setup to fix a bug in a schematic property such as connectivity.
On the other hand, fixing the initial setup for an unexpected runtime
environment becomes a common debugging method when the property is process
dependent as is the case, for example, for HORIZONTAL and VERTICAL.

The need for schematic descriptions becomes much more important
when the programs are allowed inputs, iteration and recursioh. Two
techniques for generating schematic descriptions of more complex programs -

- Structural Analysis and Formal Execution -- are discussed in section 6.8.

6.6 PLAN-FINDING ADVICE
- Although performance annotation does not examine the model, it can
reveal clues to the grouping of the user's program into main- and
preparatory-steps which aid in finding the plan.
1. Sub-procedures that draw visible sub-pictures

are hypothesized to be main-steps that accomplish
some model part.



Describing Performance page 137

2. Maximal sequences of "invisible" primitives such
as (a) vectors drawn either by retracing or with the
pen up, (b) rotations, and (c) PENUP commands are
grouped together as possible preparatory-steps.
3. Maximal sequences of visible vector instructions
plus any intervening rotations are grouped as
possible main-steps.
4. Global connections suggest code boundaries. Thus,
maximal sequences of visible vectors can be segmented
on the basis of such connections.
This segmentation is tentative and may be revised in the light of later
consideration of the model.
The segmentation advice derived from the annotation of TREE
consists of three suggestions:

(SUGGESTION (PURPOSE (TREE 10) MAIN-STEP)
(REASON SUB-PROCEDURE CALL))

(SUGGESTION (PURPOSE (TREE 20, 30, 40) PREP-STEP)
(REASON MAXIMAL-SEQ-INVISIBLE-VECTORS))

(SUGGESTION (PURPOSE (TREE 50) MAIN-STEP)
(REASON MAXIMAL-SEQ-VISIBLE-VECTORS))

Reasons are given for the suggestions, allowing later analysis to have a
basis for accepting or rejecting the suggestion. The reason could be USER-
ADVICE, thus providing the ability for the user to interact with the

system's reasoning process.

6.7 DEBUGGING ADVICE

Oddities in the form of the program can create a suspicion of bugs.
The annotator notices these violations using Rational Form Criteria which
are sensitive to unexpected and apparently erroneous code. Caveat comments
are generated describing these complaints. The use of caveats was
described in section 3.8.3 for the purpose of guiding the debugger.

Additional examples of the use of caveat comments is found in the



Describing Performance page 138

wishingwell debugging scenario of appendix C.

Rational Form Criteria are based upon expectations of simple
efficiency and consist of noting sequences of the same turtle command. For
example, it would be surprising to find a series of FORWARD instructions
one after the other rather than a single command with'the total movement
expressed as the input. (Rational Form Criteria are also used by the State
Editor, section 3.9, to tidy up the insertion of additional code by the

debugger.)

6.8 ANALYSIS OF MORE COMPLEX PROGRAMS

This section explores possible extensions of the Annotator for the

purpose of describing more complex programs.

6.8.1 Structural Analysis

Structural analysis observes the definition of the procedure rather
than the process stack generated by running the program. For simple
iterative and recursive procedures, structural amalysis serves the
important function of abstracting the basic round and the control
structure. The round is sub-routinized and described in private. The
control is specified in terms of the counter, step function,
initialization, and exit condition of the loop or recursion. An integer
arithmetic expert for simple control allows the system to predict the
number of rounds and perceive such typical bugs as forgetting the exit
condition or slipping through the end test.

A natural extension of annotation for turtle programs is to use
structural analysis to recognize code for arcs. There is not a primitive

ARC command in the LOGO turtle vocabulary. However, user-procedures for



Describing Performance page 139

arcs are usually easy to recognize, appearing as loops of repeated small
equal vectors interspersed by small equal rotations. The following turtle
program is a typical arc procedure.

TO ARC :SIDE :DEGREES

10 IF :DEGREES<1 THEN STOP

20 RIGHT 1

30 FORWARD :SIDE

40 ARC :SIDE :DEGREES-1
END

[N

ARC 2 180 "ARC 1 180

FIGURE 6.4

If semantics are provided for recognizing arcs and describing their
important properties of radius and central angle, then this structural
abstraction allows the remainder of the plan-finding and debugging system
to treat arcs as simply another primitive. Using schematic analysis to
recognize standard patterns for control or arcs requires that it precede
the Process Annotation. In this way, the Process Annotation is advised of
the important state descriptors for the abstracted code and does not
produce unnecessary low-level assertions describing each vector and
rotation in the arc.

To handle programs with inputs, it is important to describe the



Describing Performance page 140

purpose of each variable. For example, in SCALED.TRI, structural analysis
of the definition is useful to reveal that the input is serving the role of
a scale factor. This allows the conclusion that the program draws a class

of similar figures and that the input does not effect the shape.

TO SCALED.TRI :SCALE
10 FORWARD 100%*:SCALE
20 RIGHT 120

30 FORWARD 100*:SCALE
40 RIGHT 120

50 FORWARD 100%*:SCALE
END

Pa
SCALED-TRI 1

SCALED:- TRI 2

FIGURE 6.5

6.8.2 Formal Execution of Programs with Inputs

A mechanism for discovering schematic properties is formal
execution of the procedure in which the program is run without binding
variables to actual input data. The result is that the numerical
coordinates of points are not known. However, certain facts are easy to
determine. This would include the degrees of rotations or length of
vectors where the input to the primitive is a constant. Similarly, local

connections due to the sequential behavour of the turtle are revealed.



Describing Performance page 141

Global connection, however, can become arbitrarily difficult to ascertain
without actually knowing the numerical coordinates. In formal execution,
the binding process is simulated, allowing the equality of vectors because
of identical formal inputs to be noted. (See [Hewitt 1972] on meta-

evaluation.)

6.8.3 Schematic Versus Process Description

The process description readily identifies global connections
wherein the turtle returns to a previous vertex. For fixed-instruction
turtle programs, such occurrences are not dependent on the initial
environment by the Rigid Body Theorem and are therefore recorded in the
schematic description. For more complex programs with inputs, a problem
arises in deciding which properties are schematic and which are dependent
on the input binding. One mechanism for deciding this question is to run
the program formally and solve the resulting analytic equations on
coordinates;'however, this rapidly becomes mathematically intractable. An
alternative approach is to check the dependency of the program on the
initial environment. If the dependency is solely for scale factor, global
orientation or center of coordinates, then analysis reduces to the rigid
body case. More generally, an alternative to formal analysis is to try a
program with inputs on test cases. This leads to the problem of choosing
representative cases, a good area for further research.

As programs become more complex, there is a trade-off between
diffiﬁult to deduce but absolutely reliable schematic description and easy
to obtain but questionable inductive properties. There is really no

~ resolution: the important point is to be sensitive to the trade-off.



Finding the Plan page 142

=
-4
—
(g
=
~3
[}

[}

]
[ ]
=
=]
—
=
(]
33l
-

L

7.1 INTRODUCTION

Finding the plan is supplying the PURPOSE statements
(<- commentary) illustrated in the previous examples for triangles, trees
and stick figures. The model, ihe program and the pgrformance annotation
are all utilized to aid in this task. Plan-finding is needed when:

1. The user has supplied only minimal planning commentary.

2. The beginner is unable to express his plan.

3. A teacher has supplied the model and is analyzing

students' programs, where the students' have not
supplied any planning statements.

Given the model and program, the system begins by looking for a
linear plan. The approach is to attempt to match model parts with modular
main-steps and relations between model parts with preparatory-steps.

For an extended system, if the program were either iterative or
recursive, then the system would look for a round plan. The goal
would be to describe the generic element by the round and the
relations between generic elements by the state interface between
rounds.

Insertion or global plans are suggested by surprises in the
syntactic structure of the program or suspicions about the cause of
violations implied by the linear interpretation. For example, the
occurrence of a sub-procedure in the midst of a code segment designed for
one model part suggests a transition to accomplish a new model part. The
old model part is presumably to be completed later. Demons are created for
discovering when the system returns to finish the uncompleted part. If the
intervening code is state-transparent, then the plan has an insertion

structure. If the completion depends upon theorems about the performance

of the intervening code, then the plan for the interrupted part is said to



Finding the Plan page 143

be global. Linear analysis coupled to an ability to debug this first-order
approach in response to anomalies is a powerful reasoning mechanism which
is used by the debugger as well.
Plan-finding obtains some guidance from the picture and some from
. the program in its effort to bind model parts to code. The picture
supplies such clues as:
(a) global connections which suggest sub-picture boundaries;
(b) retracing which suggests inserts; and
(c) violations of model statements which are then used both as
plausibility criteria (to distinguish between alternative
interpretations) and to generate demons (which look for the
completion of non-linear planning structures).
The program supplies quite different clues about intent. This includes:
(a) sub-procedure structure;
(b) surprises caused by one part being inserted intﬁ another;
both of which aid in recognizing sub-picture boundaries and
(c) the order in which the picture is drawn which, when combined with

program-writing criteria, suggests the order in which the model
parts are accomplished.

7.2 FINDING THE PLAN FOR STICKMAN

As an example, let us consider the problem of finding the plan for

NAPOLEON. Recall that the procedure is:

TO NAPOLEON ;5ee figure 1.7
10 VEE

20 FORWARD 100

30 VEE

40 FORWARD 100

50 LEFT 90

60 TRICORN

END



Finding the Plan page 144

Assume that the VEE sub-procedure has been previously annotated and
associated with the V model but that TRICORN and NAPOLEON have just been
defined and their purpose is unknown. By considéring sub-procedures as
candidates for accomplishing model parts (analysis by synthesis), TRICORN
is bound to the EQUITRI model. The result is two possible initial partial

plans. These are:

PARTIAL.PLAN.1: PARTIAL.PLAN.2:
10 VEE <- (accomplish legs) 10 VEE <- (accomplish arms)
30 VEE <- (accomplish arms) 30 VEE <- (accomplish legs)

60 TRICORN <- (accomplish head) 60 TRICORN <- (accomplish head)

Further constraints are imposed by FINDPLAN's program-writing
expectations. On the basis of BELOW, FINDPLAN expects:
" (accomplish legs) <-> (accomplish arms) <-> (accomplish head)
The double arrow "(->" indicates that the sequence may happen in either
forward or reverse order. On the basis of connectivity, the expectations
are:
~ (accomplish legs) <-> (accomplish body) <-> (accomplish head)
Taken together, the result is that statement 10 is believed to accomplish
. the LEGS and statement 30 the ARMS. Thus, PARTIAL.PLAN.1 is preferred.
The code of the program is then considered statement by statement.
Statement 20 draws a vector and is therefore believed to be the BODY. It
might be only a piece of the body but this is not pursued until the linear
assumption that the body is accomplished by a modular main-step is
rejected.
Statements 30 and 60 have already been assigned to the arms and
head, respectively. As a result, all of the model parts have been assigned

but statement 40 remains unexplained. FINDPLAN consequently backtracks and



Finding the Plan page 145

interprets statement 20 as only a piece of the body. A demon is created
for recognizing the body's completion and plan-finding recommences at
statement 30. Statement 40 satisfies this demon since it draws a vector
that begins at the endpoint of the first piece of the body. The result is
that it is considered (piece 2 body). Thus, with almost no search, the

plan for NAPOLEON is correctly deduced.

TO NAPOLEON {- (accomplish man)

10 VEE <- (accomplish legs)

20 FORWARD 100 {- (accomplish (piece 1 body))
30 VEE (- (insert arms body)

40 FORWARD 100 {- (accomplish (piece 2 body))
50 LEFT 90 {- (setup heading)

60 TRICORN <- (accomplish head)

END

7.3 PLAN-FINDING AS SEARCH

Finding the plan can be conceptualized as a search of a space of
"partial plans". The search begins with the model, the program and the
performance annotation. A partial plan is an explanation of some fraction
of the model in terms of the program. Given a partial plan, its daughters
are the result of generating alternative explanations for one of the
remaining unassigned model parts. A terminal node is reached when all of
the model parts have been explained and a complete plan is a path from the
root to a terminal node, wherein an explanation is provided for how each
model part is achieved.

A partial plan consists of PURPOSE comments which assign model

predicates to code, unassigned model parts, expectations, the implied
partial interpretation, and demons.



Finding the Plan page 146

PURPOSES - These are the basic statements of a plan and appear as "¢-*
commentary in the NAPOLEON procedure. Five kinds of purposes are
generated by FINDPLAN: accomplish, insert, setup, cleanup and retrace.

UNASSIGNED MODEL PARTS - The model specifies a 1list of parts. These
are either primitive picture objects (vectors or rotations) or sub-
models. An unassigned part is one without a PURPOSE statement
indicating how it is to be accomplished.

EXPECTATIONS - These are predictions of which part is expected to be
accomplished by the next main-step. They are based on applying
program-writing criteria of efficiency and simplicity to the model.

PARTIAL INTERPRETATION - Model predicates can be evaluated by ordinary
Cartesian geometry using the binding of model parts to code (which the
plan implies) and an annotated description of the code's effects. A
partial interpretation consists of those model predicates whose truth
value is known given the current partial interpretation.

DEMONS - Demons are used to explain subsequent code in such a way that
violations in the partial interpretation are eliminated. The
elimination results from debugging the system's linear analysis and
recognizing the existence of an interrupted or inserted main-step.
The partial plan is complete when all of the unassigned parts are
explained by PURPOSES. Debugging is fixing the violations of the resulting

complete interpretation.

7.4 LINEAR PLAN SPACE

The search for the plan is neither a standard breadth nor depth
first exploration of the space. Instead, the system initialiy assumes a
linear structure to the user's plan, looking to assign the parts to
sequential code segments. The possibility that a part is being
accomplished by disjoint segments of code or by insertions is not
considered. This greatly constrains the search space. Branching, however,
is not eliminated: for a given program, more than one linear plan will

usually be possible. To choose among the alternatives in this linear plan

space, several plausibility criteria are used consisting of (1) advice from

the annotator and debugger, (2) expectations based on program writing



Finding the Plan page 147

criteria and (3) the number of violations implied by the partial plan.

These are described in detail in the following paragraphs.

7.4.1 Advice from the User, Annotator and Debugger

Advice from the user, annotator or debugger is used to initialize
the partial plan space. Annotator advice originates in noticing (1) sub-
procedures that have been previously associated with a model and (2) code
groups that appear.to have a common purpose on the basis of such non-model
clues as subprocedurization, penstate changes and retracing. (These clues
were listed in section 6.6.) The first produces PURPOSE assertions which

form the initial partial plan; the second SUGGESTIONS which constrain the
code group to being interpreted as either a main- or preparatory-step.
Debugging advice is in the form of a request that the plan-finder supply a
new plan that does not make certain hypotheses about the program. This
interaction arises when the debugger finds all editing strategies for the

current plan implausible.

7.4.2 Expectations Based on the Model

Another method for guessing the plan is to consider the model from
the point of view of program-writing. Criteria of *efficiency" and
"simplicity" suggest the order in which the parts will be accomplished.
For example, it is expected that maximal advan;age will be taken of the
connections generated by the turtle's local behavior. Similarly,
transitive sequences of predicates like ABOVE are expected to be »
accomplished in a way that minimizes the need to retrace.

The model is analyzed for transitive seéuences of connectivity or

relative position (ABOVE, BELOW, RIGHT-OF, LEFT-OF). The
expectation is that that these sequences represent the probable



Finding the Plan page 148

order in which the parts are accomplished. For example, the MAN
model suggests the transitive sequence LEGS -> ARMS -> HEAD (or
vice versa) on the basis of both connectivity and position.

For sub-procedures or open-coded sequences, the expectations arise
from analysis of the sub-model describing the current part being
accomplished. This is simply a recursive analysis by the system which
eventually terminates on primitive picture objects, i.e. rotations and
vectors. For example, deciding that TRICORN in NAPOLEON accomplishes the
EQUITRI model leads to the expectation of a sequence of equal vectors
interspersed with 120 degree rotations. When the open-coded sequence is
completed, then the system "pop"s back to the NAPOLEON model.

One effect of expectations is to suggest which partial plans be
inves;igated first. For example, in considering an open-coded sequence for
a triangle, each FORWARD might be an entry into an open-coded state-
transparent sub-procedure for some other part. However, although this
possibility does exist, it is not "expected" and is consequently not
explored until the more likely planning structures are considered. Thus,
expectations provide a measure of plausibility which originates in a
knowledge of planning. Naturally, if the plan suggested by the
expectations leads to many violations, then alternative partial plans are
explored. This search constraint is of an “antecedent® character in that

it does not require comparison of alternative branches but rather directly

suggests the preferred next step in the current plan.

7.4.3 Violations as Plausibility Criteria

A third method is a plausibility estimate of partial plans based on
the number of violations implied by the binding of code to parts. These

violations may have two causes:



Finding the Plan page 149
(1) An error in the plan-finder's theory of the user's intent;
(2) An error in the user's implementation of his plan.
If the user's program were correct, then partial plans which implied
violations could be rejected immediately. Of course, the program may nqt
be bug free. In this case, the preferred plan is the one that implies the
fewest violations. This will usually be the plan intended by the user, but
this is not inevitable. If the program has many bugs, then the plan-finder
may indeed be hopelessly confused with no way to judge alternative
interpretations.
This is to be expected. A human programmer when given another
person's code and a description of the task will find it more and
more difficult to understand the program as the number of bugs
increases.

Specifically, the estimate used is simply the number of satisfied
model statements and expections minus the number of violated model
statements and expectations. If the program is bug free and the plan is
correct, then the plausibility number will be maximal. At any instant in
time, only those plans with the highest plausibility number are explored.
After analyzing a statement of code, the plausibility number is recomputed

and the active plans are rechosen. Inactive plans are "hung" and are not

resumed unless their active brethren become less plausible.

7.5 NON-LINEAR PLANS AND SELF-CRITICISM

Searching the linear plan space is not aQequate to recognize
inserted or interrupted main-steps. The basic mechanism for doing this is
to generate demons at points where FINDPLAN becomes suspicious of its
linear interpretation of the procedure. These demons await confirming
evidence that the linear plan is incorrect and, upon such confirmation,

modify the partial plan appropriately.



Finding the Plan page 150

Suspicions arise when violations occur. The suspicion is that the
violation is due, not to a bug in the user's program, but rather to an
error in the plan-finder's theory of the user's intentions. The assumption
- of linearity is questioned. For example, violations of "equal length" or
"connectivity" may be due to making the erroneous linear assumption that
the offending part is achieved in a single segment of code. The violations
are due to assuming that a piece is the entire part. Such a suspicion
gives rise to a planning demon looking for the completion of the side in
such a way that the violations are satisfied. It is in this way that
insertion or global plans for a given part are recognized.

Demons are procedures composed of an activation pattern and a body.
The demon sits on the sidelines ordinarily invisible to the plan-finding
process until a statement of code is examined that satisfies the demon's
activation pattern. At that point, the demon is invoked, grabs control
from the plan-finder and executes its body. This use of demons is based
upon an approach to comprehending children's stories developed in a recent
thesis by Charniak [Charniak 1972]. Demons are required because the
suspicion may be incorrect. The demon takes no action until the suspicion
is confirmed by the occurrence of code that can naturally be interpreted as
the completion of the interrupted part. If that code never occurS, then
the demon does nothing and the linear interpretation is preferred.

To be precise, when FINDPLAN binds an unassigned model part M to a
segment of code C and the resulting interpretation implies model
violations, there are three possible explanations:

1. The code is in error: a bug has been discovered.

2. C is not intended to accomplish M. Choose another interpretation
for C.



Finding the Plan page 151
3. C.accbmplishes only a PIECE of M. The remainder of M is achieved in
pieces. .

Possibility 1 requires no special action by FINDPLAN: the violation
will eventually be passed to DEBUG for correction.  Possibility 2 requires
that the a different linear plan be chosen. This will occur if the current
linear plan becomes less plausible than alternative linear interpretations
when compared in terms of the static plausibility fumction described
earlier. Possibility 3, however, represents an error in the plan-finder's
linear analysis of the program. Hence, to take account of possibility 3,
demons are generated. These demons are looking for better interpretations
than the current linear plan (i.e. interpretations which do not imply as
many violations).

Suppose FINDPLAN has just decided that statement C achieves model
part M and that this results in a violation because M is too small.
FINDPLAN suspects that M may be being accomplished in pieces. A completion
demon ' is created looking for subsequent code CC which would eliminate the
violation if CC is interpreted as another PIECE of M. If such code is
. found, the action of the demon is to edit the original partial plan so that
M is now considered as being achieved by an interrupted main-step. If the
code between the pieces of the main-step returns the turtle to the exit
state of the first piece, then it is interpreted as being an insertion.
Completion demons are also created when a vector is too short to accomplish
an intended connection. An example occurs in the linear interpretation of

TRICORN (with corrected rotations) shown below:



Finding the Plan page 152

TO TRICORN ;Incorrect linear plan initially deduced.

10 FORWARD 50 <- (accomplish (side 1))

20 RIGHT 120 {- (accomplish (rotation 1))

30 FORWARD 100 <- (accomplish (side 2))
;At this point in the plan-finding process, the violation
;of unequal sides occurs. A completion demon is created
;that is looking for a vector of length 50 that could be
;interpreted as the remainder of (side 1).

40 RIGHT 120 {- (accomplish (rotation 2))
50 FORWARD 100 <- (accomplish (side 3))

;Here the violation of (side 1) not being connected to
;(side 3) occurs. A second completion demon is created
;that is looking for another PIECE of (side 1) that connects
;to (side 3).
60 RIGHT 120 (- (accomplish (rotation 3))
70 FORWARD 50 <- (accomplish ?)
END
Both df the completion demons are triggered by statement 70. The result is
that statement 10 is reinterpreted to accomplish only (piece 1 (side 1))
and statement 70 is assigned the purpose of accomplishing
(piece 2 (side 1)). This produces the correct pian. (If the original
TRICORN had been used, the completion demon generated by statement 10 being
too short would still have found the correct plan: the connection demon,
however, would not have been of much help since the picture drawn by the
buggy tricorn is not closed.)

Suspiciors of some violations give rise to multi-purpose-code
demons. For example, if a side of a square causes the violation of unequal
sides because it is too long, then the suspicion arises that only part of
the long vector is intended to be the side. The remainder serves some
other purpose. A demon is created looking for confirmation that the long

vector serves multiple purposes. This confirmation is the subsequent

occurrence of missing parts or completion demons (which are themselves



Finding the Plan page 153

created by other suspicions or surprises).

An example occurs in finding the plan for the following flag
program and model:

MODEL FLAG

M1 PARTS BANNER POLE

M2 LINE BANNER

M3 TRIANGLE POLE

M4 CONNECTED POLE BANNER (VIA ENDPOINTS)
END

TO FLAG1

10 FORWARD 200 ;pole and side of banner
20 RIGHT 120

30 FORWARD 100 ;second side of banner
40 RIGHT 120

50 FORWARD 100 ;third side of banner
END

(ﬂ

a
FLAG

FIGURE 7.1

Statement 10 is intended as both the the flagpole and a side of the banner.
Initially, the linear attack interprets this vector as either the pole or a
side of the banner, not both. However, the violation of "unequal sides"
(which occurs under the latter interpretation) leads to a multi-purpose-
code demon interested in finding another purpose for part of statement 10.

Assigning to statement 10 the additional purpose of accomplishing the POLE



Finding the Plan page 154

satisfies this demon. The global connection in the interior of the vector
drawn by statement 10 (which was noted by the annotator) confirms this
interpretation and suggests to the plan-finder that the sub-vectors
represent the division of labor.

If the model for the flag described the picture in terms of a
LONG.POLE and a VEE, then the suspicion would not occur. Suspicions (and
plans in general) are not absolute but relative to the description of the

intent.

SUSPICION PATTERNS

Create a "completion demon® if the binding implies that a vector,
rotation or arc is too small or a connection is not met. The demon is
to be invoked by the occurrence of a statement of code which eliminates
the originating violation. The action of the demon is to sprout a
partial plan wherein the purpose of the statement is described as
"(PIECE I <originating object))".

Create a "multi-purpose-code demon" if the binding implies that a
vector, rotation or arc is too large. The demon is to be invoked by
any missing parts. Its action is to explain the missing part as a
second purpose of the originating code.

7.6 SURPRISE ANALYSIS

A surprise refers to the encounter of unexpected statements inside
the open-coded sequence for some model part. They are used to hypothesize
an interrupted main-step, without actually going to the effort of pursuing
an incorrect linear interpretation and correcting oneself on the basis of
suspicions. Essentially, they represent the alternative approach of
guessing immediately what the unexpected code means rather than waiting for
suspicious model violations to occur. The question is when to treat

unexpected code as a surprise and when to be more cautious and generate



Finding the Plan page 155

only a suspicion demon while remaining within a linear plan.

The criterion used is whether the unexpected code represents a
transition in syntactic type, for example, from a sequence of primitives to
a subprocedure. In this case, the anomaly is treated as a surprise. If
however, the unexpected code is simply an unexpected primitive than the
probability that this may be only a bug in a linear plan is too great to
immediately reject the linear interpretation. In this latter case, the
suspicion mechanisms described previously are used.

As an example of surprise analysis, consider the following FLAG2
procedure in which the POLE is accomplished by being inserted into an open-
coded sequence for the BANNER.

TO FLAG2

10 FORWARD 100 ;First side of the banner.

20 POLE

30 LEFT 120 :

40 FORWARD 100 ;Second side of the banner.

50 LEFT 120

60 FORWARD 100 ;Third side of the banner.

END

TO POLE ;State-transparent insert for the pole.

10 FORWARD 100

20 BACK 100

END

The decision that an equilateral triangle is being open-coded
produces the expectations of a linear sequence of equal vectors and 120
degreé rotations. These expectations arise from an examination of the
EQUITRI model. The POLE subprocedure then is a surprise because it occurs
in the midst of expecting a triangle. The surprise of an unexpected
statement of code that violates the current expectation can be explained in

two ways:

1. The intention was to satisfy the expectation and the statement



Finding the Plan page 156

v

FLAG

FIGURE 7.2
is in error, e.g. statement 20 was intended to be RIGHT 120 and the
POLE subprocedure is out of place.
2. The expectation is inappropriate because the plan-finder's
linear theory of the user's plan was in error. The statement is
not part of the open-coding of the current model part. Rather, the
code is the beginning of another part. The planning structure may
be that of an insertion of the new part or it may be that the old
part is to be completed by global effects.

Surprise analysis pursues the latter hypothesis. Statement 20 is
interpreted as a new model part: in this case the POLE. A demon is created
whose purpose is to note code that may be the completion of the interrupted
sequence. Otherwise, the completion may be misinterpreted as part of the
basic linear planning sequence.

In FLAGZ, the code for the triangle is interrupted by the insert
for the POLE. The result is that a demon is created awaiting completion of
the insert and recommencement of the interrupted part. Specifically, the
demon is looking for a RIGHT 120. Consequently, the demon is activated by
statement 30 with the result that this statement is assigned the purpose of

being "(ROTATION 2 BANNER)".



Finding the Plan page 157

7.7 TREE1, AN ILLUSTRATION OF HETERARCHY IN PLAN-FINDING

This section provides an example of recursive interaction between
the plan-finder and the debugger. The TREEl procedure with its associated

model and the correct plan is shown below:

MODEL TREE

M1 PARTS TOP TRUNK

M2 LINE TRUNK

M3 EQUITRI ToP

M4 VERTICAL TRUNK

M5 COMPLETELY-BELOW TRUNK TOP

M6 CONNECTED TOP TRUNK

M7 HORIZONTAL (BOTTOM (SIDE TOP))
END

TO TREE1

10 TRIANGLE <{- (accomplish top)
20 RIGHT 50 <- (setup heading)

30 FORWARD 50 <- (retrace)

40 RIGHT 50 {- (setup heading)

50 FORWARD 100 <- (accomplish trunk)

END
_—
TREE1
VERSION 1
Intended TREE
FIGURE 7.3

In TREE1, the rotations between the TOP and the TRUNK in statements
20 and 40 are incorrect. (See section 3.2 for a Debugging Scenario for

this program.) Segmentation advice supplied by the annotator initially



Finding the Plan page 158

misleads the plan-finder into the belief that the TRUNK is accomplished by
both statements 30 and 50. The result is that the plan-finder first
produces the following linear plan which errs in its interpretation of the
TRUNK.

TO TREE1 <~ (accomplish tree)

10 TRIANGLE <{- (accomplish top)

20 RIGHT 50 {- (setup heading)

(30-50) LINE {- (open-coded sequence for trunk)
END

TO LINE <= (accomplish line)
30 FORWARD 50 <- (accomplish (piece 1 line))
40 RIGHT 50 {- (setup heading)
50 FORWARD 100 <- (accomplish (piece 2 line))
END
FINDPLAN identifies statement 10 as the TOP of the tree by the fact
that the user-subprocedure TRIANGLE has been previously identified with the
EQUITRI model. One of the definitions of a line is that it is a set of
collinear vectors. Statements 30, 40 and 50 satisfy the requirement that
the vectors be connected although they are not parallel. The
interpretation that these vectors are the TRUNK is selected by the plan-
finder as the best choice. Alternative interpretations imply more
violations. (For example, the decision that statement 50 is the TRUNK has
the unsatisfactory consequence that statement 30 is an unexplained visible
vector.) As the following discussion indicates, the system eventually
discovers its mistake and finds the correct plan.
The plan, procedure and model are given to the debugger to correct
the implied violations. The debugger is, however, unable to repair the

program satisfactorily, given the commitment that statements 30 and 50 are

together the TRUNK. No debugging strategies that will make the TRUNK into



Finding the Plan page 159

a LINE are found plausible.

1. One strategy analyzed by the Debugger is to make the body
vectors collinear by altering the intervening rotation of statement
40 to be zero degrees. On the basis of rational form criteria,
statement 40 becomes pointless and is deleted, producing figure
7.4. The Debugger is very reluctant to delete completely a
statement of the user's code and therefore seeks an alternative
strategy.

2. Another way to make the body vectors parallel is to alter
statement 40 to be "RIGHT 180". This produces figure 7.5. The
result is that the TRUNK now overlaps the TOP of the tree in such a
way that the two violations of (VERTICAL TRUNK) and (COMPLETELY-
BELOW TRUNK TOP) cannot both be fixed. Fixing one unavoidably
violates the other.

USING PLAN 1 AS GUIDANCE FOR FIXING

TREE1
4
TREE1
VERSION 2A TREE1
FIGURE 7.4 VERSION 2B
FIGURE 7.5

MAKING LINES 30 AND 50 INTO A LINE

When no plausible debugging solution is found, the system reinvokes
the plan-finder with a request for a new plan. Along with this request,

the Debugger informs the plan-finder of that part of the current plan which



Finding the Plan page 160

was found unsatisfactory. In this particular case, the system asks for a
new plan which provides an alternative binding for TRUNK. Thus; the
control structure is not a strict hierarchy with one-way communication
between stages but a heterarchy with two-way communication occurring
between stages of the analysis process. (The notion of heterarchy is
introduced in [Minsky 1972].)

The plan-finder backtracks and selects the next most plausible plan
using the advice that the TRUNK is not accomplished by the combined action
of statements 30 and 50. The two possibilities are that either statement
30 or statement 50 is the TRUNK. The former implies an unexplained part
(statement 50) which is particularly implausible and therefore the latter
is preferred. Hence, the result is a plan wherein statement 30 is

explained as an interface (with a visibility bug) and statement 50 is the

TRUNK.
TO TREE1 <~ (accomplish tree)
10 TRIANGLE {- (accomplish top)
20 RIGHT 50 ¢~ (setup heading for retrace)
30 FORWARD 50 - (retrace)
40 RIGHT 50 - (setup heading for trunk)
50 FORWARD 100 {- (accomplish trunk)
END

This is the correct plan. When given to the debugger, the program
is successfully and plausibly edited to eliminate all of its bugs (section
3.2).

7.8 TREE2, AN OPEN CODED TREE PROGRAM

TREEZ is a linear, open-coded procedure for the TREE utilizing no
retracing or insertions. It is included here as an example to indicate the

simplicity of discovering the plan of open-coded procedures when they have



Finding the Plan page 161

~ no bugs and to illustrate precisely the partial plan data structure.

TO TREE2 ;See figure 7.6.
10 FORWARD 100 ;Statement 10 accomplishes the trunk.
20 LEFT 90

30 FORWARD 50 ;Statements 30-90 accomplish the
40 RIGHT 120 jtriangle by starting in the

50 FORWARD 100 ;middle of the bottom side.

60 RIGHT 120

70 FORWARD 100

80 RIGHT 120

90 FORWARD 50 N

END /)7 \\M
o

TREE 2

FIGURE 7.6

The need to recognize open-coding greatly increases the number of
possible planning interpretations. Open-coding is the opposite of sub-
routinization and is defined by code for a common purpose appearing
directly in the procedure rather than being compartmentalized into a sub-
procedure definition. Open-coding is recognized by recursing the plan-
finder and attempting to determine if the part of a given sub-model is
being achieved by the current statement. In TREE2, this means that
individual vector instructions may be interpreted as accomplishing the sub-
parts (sides) of a part (top) of the tree.

' This recursion can result in considering whether a part of a part

of a sub-model is being attempted. Thus it is clear that, as the



Finding the Plan page 162

complexity of the model increases, open-coding becomes more and more
difficult to recognize by the plan-finder and debug by the user. If
subroutinization is used, plan-finding does not become more complex with
increasing model complexity (providing, of course, that the
subroutinization corresponds in some reasonable way to the model parts).
This is to be expected: understanding many statements of open-code with
bugs and with no segmentation clues is very difficult for people.

Because there are no bugs, anotator advice serves to make the
problem of finding the plan for TREE2 manageable. The global connection
between the vectors drawn by statements 10, 30 and 90 causes the annotator
to suggest a code boundary at this point. This implies to the plan-finder
that the procedure is composed of two main parts: one consisting of
statement 10 and the other of statements 30 through 90. This annotation
advice prevents the plan-finder from exploring the possibility that
statement 10 is only the beginning of an open-coded sequence for either the
TRUNK or the TOP. Instead, statement 10 by itself must be the code for
either the TOP or the TRUNK.

To be precise, the following two partial plans are produced in
analyzing the purpose of statement 10: The -)> symbol used in the
expectation part of these partial plans designates the order in which the
parts are expected.

PARTIAL-PLAN 1 (PROGRAM TREEZ2) (MODEL TREE)
PURPOSES:
P1 ((PURPOSE (TREEZ 10) (ACCOMPLISH TRIANGLE)
(REASON: OPEN-CODING OF TRIANGLE TO ACCOMPLISH TOP))
UNASSIGNED PARTS: TRUNK
EXPECTATIONS:
FROM TREE MODEL, TOP -> TRUNK

INTERPRETATION:
SATISFACTIONS: NONE



Finding the Plan page 163

VIOLATIONS: (WRONG NUMBER OF SIDES), (NO ROTATIONS), etc.

PARTIAL-PLAN 2 (PROGRAM TREE2) (MODEL TREE)
PURPOSES:
P1 ((PURPOSE (TREEZ 10) (ACCOMPLISH TRUNK))
(REASON: OPEN-CODING OF LINE TO ACCOMPLISH TRUNK))

UNASSIGNED PARTS: TOP

EXPECTATIONS: FROM TREE MODEL, TRUNK -> TOP

INTERPRETATION:

SATISFACTIONS: (LINE TRUNK)

VIOLATIONS: NONE
Naturally, there are fewer violations when statement 10 is considered a LINE
rather than the entire TRIANGLE. Consequently, partial plan 2 is preferred in
which statement 10 is correctly analyzed as accomplishing the TRUNK.

Suspicions cause statements 30-90 to be correctly interpreted.

TO TREEZ <{- partial-plan 2
10 FORWARD 100 <- (accomplish trunk)
20 LEFT 90

; FINDPLAN about to consider statement 30.

30 FORWARD 50 ;Statements 30-90 accomplish the
40 RIGHT 120 ;triangle by starting in the

50 FORWARD 100 ;middle of the bottom side.

60 RIGHT 120

70 FORWARD 100

80 RIGHT 120

90 FORWARD 50

END

Linear analysis will assign statement 30 to accomplish the first side and
statement 50 to accomplish the second side of the top. This results in a
violation of unequal sides. As a result, a suspicion demon is created lookiﬁg
for the completion of the first side. To be precise, it is looking for a
vector of length 50 which is collinear with the vector drawn by statement 30.
Statement 90 satisfies this demon with the result that the first side is

interpreted as occuring globally in two parts and the violation of the sides

being of unequal length is eliminated. The end result is that (side 1) is



Finding the Plan page 164

recognized as being accomplished by an interrupted main-step. This results in

TREEZ being assigned the following plan:

(FINDPLAN (PROGRAM TREE2) (MODEL TREE))

TO TREE2 <{- (accomplish tree)

10 FORWARD 100 <{- (accomplish trunk)

20 LEFT 90 {- (setup heading)

(30-90) TRIANGLE (- (open-coded sequence for top)
END

TO TRIANGLE (- (accomplish triangle)
30 FORWARD 50 <~ (accomplish (piece 1 (side 1 triangle)))
40 RIGHT 120 {- (accomplish (rotation 1 triangle))
50 FORWARD 100 <- (accomplish (side 2 triangle))
60 RIGHT 120 {- (accomplish (rotation 2 triangle))
70 FORWARD 100 <- (accomplish (side 3 triangle))
80 RIGHT 120 {- (accomplish (rotation 3 triangle))
90 FORWARD 50  <- (accomplish (piece 2 (side 1 triangle)))
END
Without the advice from the annotator that statement 10 is a main-step,
the plan-finder must consider the possibility that it is the beginning of an
open-coded segment for the top of the tree. This possibility along with the
correct interpretation that statement 10 is the trunk is shown in figure 7.7.
The plan-finder would still be successful. In fact, even if all of the
rotations were incorrectly 90 degrees, the search would still eventually deduce
the right plan. This is illustrated in the following paragraphs.
BUGGY.TREEZ is intended to be the correct open-coded tree program

TREEZ; however, the triangle rotations are erroneously 90 degrees.



Finding the Plan page 165

FINDPLAN TREE2

PARTIAL.PLAN 3 PARTIAL.PLAN 2
line 10 line 10
accomplishes accomplishes
(SIDE 1} TOP TRUNK

line 20 line 20 line 20
accomplishes SETUP SETUP
(ROTATION 1) TOP HEADING HEADING

line 30 line 30
accomplishes. accomplishes
(SIDE 2) TOP (SIDE 1) TOP

Create Suspicion Demons to
explain unequal length of sides:

@ SIDE 1 incomplete
@ SIDE 2 multi~ purpose

FIGURE 7.7



TO
10
20
30
40
50
60
70
80
90

END

BUGGY . TREE2
FORWARD 100
LEFT 90
FORWARD 50
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 100
RIGHT 90
FORWARD 50

;the trunk

;part 1 of side 1

of the top

;bug: should be RIGHT 120
;side 2 of the top

;bug: should be RIGHT 120
;side 3 of the top

;bug: should be RIGHT 120
;part 2 of side 1 of the top

g

~

P

=N

BUGGY. TREE2

FIGURE 7.8

Finding the Plan

page 166

The result is that the annotator cannot supply any segmentation advice on the

basis of global connections. Consequently, more possibilities are explored

than for TREEZ.

Specifically, two more possibilities for the interpretation of

statement 10 must be considered: that statement 10 accomplishes the first side

of the triangle and that statement 10 accomplishes the first piece of the

trunk.



Finding the Plan page 167

PARTIAL-PLAN 3 (PROGRAM BUGGY.TREE2) (MODEL TREE)
PURPOSES:
P1 ((PURPOSE (TREEZ 10) (ACCOMPLISH (SIDE 1 TRIANGLE))
(REASON: BEGINS OPEN-CODING OF TRIANGLE TO ACCOMPLISH TOP))

UNASSIGNED PARTS: TRUNK
EXPECTATIONS:
FROM TRIANGLE MODEL, ROTATION -> 2(SIDE -> ROTATION)
FROM TREE MODEL, TOP -> TRUNK
INTERPRETATION:
SATISFACTIONS: NONE
VIOLATIONS: NONE

PARTIAL-PLAN 4 (PROGRAM BUGGY-TREE2) (MODEL TREE)
PURPOSES:
P1 ((PURPOSE (TREEZ2 10) (ACCOMPLISH (PIECE 1 TRUNK)))
(REASON: BEGINS OPEN-CODING OF LINE TO ACCOMPLISH TRUNK))

UNASSIGNED PARTS: TOP
EXPECTATIONS: FROM TREE MODEL, TRUNK -> TOP
INTERPRETATION:
SATISFACTIONS: NONE
.VIOLATIONS: NONE

Partial plans 2, 3 and 4 are equally plausible at this point. However, further
analysis eventually results in partial plan 2, the correct plan, implying the
fewest violations and therefore being chosen.

An interesting type of equivalence that one does not see in the
literature on program verification is that of equivalence with respect
to the plan. TREE2 and BUGGY.TREEZ are equivalent in this sense
despite that fact that the latter fails completely to accomplish the
intended TREE. This equivalence is interesting because it reflects an
identity with respect to intent, not simply actual performance.

7.9 PLAN-FINDING FOR SORTING PROGRAMS

Greg Ruth in a recent thesis [Ruth 1973] explores the problem of
diagnosing the bugs in simple sorting programs written by students. Just as in
our turtle world, he has the problem of finding the plan for the student's
program. His solution, however, is somewhat different.

As he observes, a model of a sort program for an array of integers A(1l)

» «+« » A(n) is simply the statement that the items are in order, i.e.



Finding the Plan page 168

A(LDA(G) = D],
This does not provide much information for understanding the intricacies of the
many varieties of sorting programs, e.g. bubble sorts, merge sorts, interchange
sorts.

Therefore, Ruth's plan-finder is supplied with a description of common
algorithms for sorting. The distinction between an algorithm and its
implementation is that (1) the algorithm is written in a higher language and
(2) the algorithm indicates various implementation choices and typical bugs.
The first property of the algorithm specification is illustrated by the
existence of an INTERCHANGE primitive in the algorithm language while several
assignments statements and the creation of a temporary variable are required in

the actual progranm.

ALGORITHM PROGRAM

( INTERCHANGE X Y) (SETQ T X)
(SETQ X Y)
(SETQ Y T)

The second property of Ruth's algorithm specifications is illustrated by the
fact.that the description of a bubble sort would include the information that
the sort could either bubble up the greatest element or the least element
depending on whether the array is sorted from A(n) to A(1) or A(1) to A(n). A
typical bug would be to slip through the endtest causing infinite repetition.

The notion of understanding common algorithms to aid in finding the
plan for a particular program is found in MYCROFT as well. Recall that the
plan-finder generates expectations from a consideration of the picture model
from a program-writing standpoint. These expectations are quite similar to
Ruth's algorithm descriptions. For example, from the MAN model, MYCROFT
expects the limbs to be accomplished in the order:

LEGS <-> ARMS <-> HEAD.



Finding the Plan page 169

For understanding more complex programs, it seems clear that knowledge
based on the expected algorithm will play a role. One cannot expect a program-
understanding system to redevelop all of the clever algorithms that can be used
to accomplish some goal. It is enough of a task to understand a particular
implementation (possibly with bugs), given knowledge of these algorithms. On
the other hand, the importance of research that investigates the transition
from a model of the intended result to possible algorithms should not be
underestimated. Such research is fundamental to the design of program-writing

systems.

7.10 CONCLUSIONS
The algorithm for plan-finding performs well when:
(1) The user supplies advice in the form of a partial plan;
(2) The procedure has subroutines;
(3) The procedure has few bugs.
If the program is not subroutinized and is full of bugs, the search grows
unmanageable and difficulties arise in selecting the most plausible candidate.
This performance is quite reasonable in the sense that exactly the same
statements are true of a human problem solver investigating a strange program.
It is possible that the user's intended plan cannot be discovered at
all: bugs can make any of several alternative interpretations equally
plausible. 1In figure 7.9, it is ambiguous which of the small circles of
SYM.FACE were intended to be the eyes and which the mouth. In such cases, the
system must ask advice as to the proper binding of code-segments to model
parts. This is not unreasonable since the user certainly knows the intended
binding.
The system is not prepared to find the clever plans of expert

programmers, nor is it prepared to deal with situations where the program is



Finding the Plan page 170

O

Vv

O O

SYM.FACE

FIGURE 7.9

based on a plan which is not suggested by the model.' This occurs when domain-
dependent knowledge not mentioned in the model is used to Justify global
effects. ‘An example is INSCRITRI, a triangle program based on the relationship
between a triangle and its inscribed circle (figure 7.10). The triangle is
drawn from a local home at the center of the triangle. The‘system does not
know, unless it is asserted explicitly in the model, the geometric relationship
between the radius of the inscribed circle and the side of the trianglé.
Program writing leaves the system free to choose a plan for programming
the model. Hence, it is never necessary to guess intent: the plan is not
found, it is constructed. Thus, although knowledge of the form and
implications of different plans is essential to program understanding,
debugging and writing, the search problem of finding the plan, in ignorance of
the user's intent, is not relevant to designing programs. Nevertheless, plan-
finding remains important as a crucible for testing the effectiveness of the
system's knowledge of plans, as a procedure for expanding sparse commentaries

and as a mechanism for generating intelligent questions if aid must be



3%:, ;i SRR B ,ar,‘l‘a”':h:;{ 'W m ’m m ‘,l

cuig uﬁ Ppiet Tne 9awbsdov 845 paiupudsh ni‘tté
ro [ 1R Es

B z‘-?

HOGR DS ebhUnles

e PO e P
2 odrnd o EFap pniEsss carulf

TO INSCRITRI : X
10 TEE :X

20 RT 120

30 TEE :X | VOLTAUTISA 5 &
oA B AR caidiiunne co w2 B Bedneneng 2ed tsaeg o odT

50 TE X

s

e
%‘ -
<
]
]
4
&
6'.,,
-
®
Qg
s’!.‘:
o
tq
-3
B
L
i
’o
Q"
@
P
.'
4
-
R
L4
-
vt
¥
Lot
s
ke
e

END

fZ, h""z

BT et “f';f.'é BFY eiaE f”&*ﬁﬁﬁ‘i%b —

TO 'TEE X

,aw“ afd Te Fi32ivmadoEsAl Irstieend mA
lKE “Y*:X « (8QRT 3.0)

30 FD:Y ,

SR PER § F gt

40 BK 2 =:Y
S0 FD :Y

PARTURG X319B00 JaLH Os AOICMYS £ o8

svim end Duitisgen o) rr oandznsixs zpolvde rh
Craat puisas toonbin 2biswed sd biuee gqedr 32ni: AT
CRIIW EmELYNE his ? fn‘ﬁ% az@’ﬁm% Yo gievisns sdd L eifs pniwollo

c fedpen ovirwnen bus svhm&n Yo amvo? LoD

3 .,:'g.g r}” *‘Bmﬁ FE P Erurah ol

i ogsle gai;amami nA

g gl diw zoldus veplancs of 8d
2 SIsel cgtoznee 3dpil bne dound

cvnad fi ooodlaany gf Fedd opodisivnren bleew slslomun add ezw ¢f aldizlon
cFbrimesdnost 8 Yo Fregnerenn sl o eRidwd ovsndbto Yo esnsmaol vg el

YU igaid iy &b soienedirs 218U pelosdade Delosqveny Gisinod sl aliw?

fgedn Y owerLonsy el moY pepnedis ad MED ois@ob edd szusued prijensral

veile treomse el Lewsidsers (goipeisld Yo mnlvedzd efil o3 2enwiuiyg
.

ol ividon esismlne zuoliev i noidsluwiz

"




Extensions page 172

CHAPTER 8 -- EXTENSIONS

8.1 RECAPITULATION

This paper has presented a system for annotating, planning and
debugging simple fixed-instruction turtle programs. The methods and knowledgg
employed are fundamental to understanding more complex programs, though they
are by no means exhaustive. An important characteristic of the system is the
fashion in which it simplifies debugging the procedure and finding the plan by
using a linear analysis, but is capable of handling more complex problems by

debugging this approach in response to surprises and suspicions.

8.2 EXTENSION TO MORE COMPLEX PROGRAMS

An obvious extension is to repairing the bugs of more complex programs.
The first step would be towards understanding round-structured programs.
Following this, the analysis of programs with inputs and programs with more
complex forms of iterative and recursive control should be undertaken.

An interesting step beyond the determinism of the display turtle would
be to consider turtles with sensory input as, for example, might be provided by
touch and light sensors. Here, the environment can hold surprises. It is not
possible to use the complete world description that is possible in annotating
the performance of ordinary turtles: the environment of a touch-sensitive
turtle can contain unexpected obstacles. This extension is particulary
interesting because the domain can be extended from the geometry of simple
pictures to the behaviour of biological creatures. The sensors allow
simulation of various animate activities of hiding, seeking, eating and mating

[Goldstein 1973].



Extensions page 173

8.3 EXTENSION TO LEARNING

The monitor does not reason about the nature of the model. It does not
attempt to note similarities between models, perform generalizations of
symbolic models from sketches, or recognize new models in terms of older ones.
One method to accomplish this would be to view the picture model as a net
(figure 8.1) and perform various matching and comparisons activites. This

approach is developed by Winston in his paper on Learning Structural

Descriptions [Winston 1970].

Sketches are over- rather than under-determined. (Our models have
generally been under-determined.) The symbolic models utilized so far provide
a clear target for the learning process. The problem can be characterized as
properly generalizing a sketch into a symbolic description. An important
question is whether a more knowledge-based procedural approach is preferable to
the uniform net matching of Winston.

MYCROFT is a performance model. It does not learn to plan, write or
debug programs. A difficult but valuable extension would be to consider how
such competence might be acquired. The organization of the system's analysis
into an iﬁitially "linear” attack followed by debugging its explanations to
handle more difficult situations could serve as a basis for self-improvement.
Sussman discusses some methods for a program writing system to learn by
debugging its own programs [Sussman 1973]. Much more research, however, is

needed on this issue.

8.4 EXTENSIONS TO EDUCATION

An understanding of the knowledge needed to plan, describe, debug and
write programs is important to developing an educational curriculum. The

thesis of the LOGO project is that such abilities are fundamental to problem



Extensions page 174

NET REPRESENTATION OF A TREE MODEL

TREE

ONE-PART-IS

TOP o » TRUNK

BELOW

CONNECTED

¥— —A-KIND-OF—— 4

y \
TRIANGLE LINE

¢~ TYPICAL-MEMBER HAS-PROPERTY-OF
\

SIDE DIRECTION
.- INSTANCE HAS -VALUE-OF
\/
3 VERTICAL

b ~A-KIND-OF

HAS-PROPERTY-OF HAS-VALUE -OF
L— VECTOR -g— DIRECTION ﬂé HORIZONTAL

FIGURE 8.1



Extensions page 175

solving and thinking. The competence model developed in this paper makes
precise some of the concepts that are at the foundation of procedural thinking.
From an educational standpoint, this research has several possible
applications.

It can serve as the basis of a monitor for aiding in the diagnosis and
correction of errors. The system can not only diagnose and correct bugs, but
can also display its analysis and inner thinking to the student; and thereby
serve as a model of the debugging process.

An interesting extension might be to build an editor that had access to
planning knowledge. A user could then modify‘(or write) his programs with high
level assertions about the structure of the plan and the purposes of the code.
The editor could translate such instructions into sub-routinization, proper
state interfacing, and commentary to simplify later debugging.

The user might be asked to supply his plan in the planning vocabulary
discussed in this thesis. By being asked to be explicit, he will acquire
better problem solving habits. As the system can utilize such plans to aid in
debugging, the extra burden will not seem pointless to the student.

Finally, perhaps the student himself might be asked to engage in the
kind of research described in this thesis: namely the activity of making |
explicit basic concepts of planning, programming and debugging. The student
would then be in a position to bootstrap his problem solving competence as well

as design his own personal computer assistant to aid in the programming proce



The Turtle Language page 176

APPENDIX A -- THE TURTLE LANGUAGE

The state of the turtle consists of :HEADING, :POSITION, and :PEN.
:HEADING is the direction in which the turtle is pointed and is a number
between 0 and 360. A convention is that a heading of zero points towards the
top of the page. :POSITION is the location of the turtle on the screen. The
center of the screen is (0 0). :PEN is either "UP" (invisible) or "DOWN"

(visible). The HOME state is:

:HEADING =0
:POSITION = (0 0)
:PEN = “DOWN"

A.2 THE BASIC TURTLE PRIMITIVES

Turtle programs will be limited to the primitives:

FORWARD :R moves the turtle :R steps starting from its current position and
in the direction of its current heading.

BACK :R = FORWARD -:R

RIGHT :A turns the turtle :A degrees clockwise. The new heading is the old
heading plus :A. The position is not changed.

LEFT :A = RIGHT -:A
PENUP 1lifts the pen up, making subsequent movements leave no track.
PENDOWN places the pen down, making subsequent movements leave a trail.

These commands will usually be abbreviated.

FD = FORWARD
BK s BACK
RT =z RIGHT
LT =z LEFT
PU = PENUP
PD =z PENDOWN



The Turtle Language page 177

A.3 FIXED INSTRUCTION TURTLE PROGRAMS

The turtle programs which are analyzed are built from the sig turtle
primitives -- FORWARD, BACK, RIGHT, LEFT, PENUP, PENDOWN -- and the use of sub-
procedures. Furthermore, they are restricted to be Fixed-Instruction. This
excludes the the use of conditionals, iteration, recursion, variables, arrays
and interrupts. The input to the turtle primitives consists of numerical
constants. These programs must halt.

Such simple programs are of interest because one cannot hope to
understand more complex programs without a foundation adequate to cope with
simple procedures. Furthermore, these programs are far from trivial with
respect to repairing their bugs. Finally, many of the ideas introduced

generalize naturally to handle more complex programs.

A.4 BEYOND FIXED-INSTRUCTION PROGRAMS

The LOGO language itself is certainly not limited to fixed-instruction
programs. Iteration, recursion, conditionals, variables and, in the most
current PDP-11 version of the language, even interrupts are possible.

More importantly, although fixed-instruction programs are usually the
first ones written by beginners, students are soon introduced to more complex.
procedures. A natural extension of the research described in this paper would
be to build a system capable of understanding the bugs that occur in these
evolutionary sequences.

To illustrate the more complex kinds of LOGO turtle programs that are
written and also to provide an example of a typical evolutionary sequence, the
following paragraphs illustrate the evolution of a POLY program capable of
drawing an arbitrary regular polygon. The first step would be within MYCROFT's

current competence: namely to understand and debug fixed-instruction programs



The Turtle Language page 178

for simple geometric shapes. The next would be to understand the problems that
usually arise in generalizing such procedures to variable sides. An example of

such a transition is shown below:

TO TRIANGLE --> TO TRIANGLE.WITH.INPUTS :SIDE
10 FORWARD 100 10 FORWARD :SIDE

20 RIGHT 120 20 RIGHT 120

30 FORWARD 100 30 FORWARD :SIDE

40 RIGHT 120 40 RIGHT 120

50 FORWARD 100 50 FORWARD :SIDE

60 RIGHT 120 60 RIGHT 120

END END

Subsequent steps in this process of generalization would typically be
to supply a control structure so that the procedure could draw a figure with an
arbitrary'number of sides and then couple that with a variable rotation between

sides. The result is a POLY procedure which can draw any regular polygon.

TO POLY :SIDE :ANGLE
10 FORWARD :SIDE

20 RIGHT :ANGLE

30 POLY :SIDE :ANGLE
END

The student might then wish to add a counter in order that the
program terminate. This is necessary if it is to be used as a sub-
procedure. Designing a counter requires the use of conditionals and

exiting commands.

TO STOP.POLY :SIDE :ANGLE :SIDES
10 IF :SIDES=0 THEN STOP

20 FORWARD :SIDE

30 RIGHT :ANGLE

40 STOP.POLY :SIDE :ANGLE :SIDES-1
END



TRt N TR e : The Turtle Language page 179

| shilpotnt, Eokbiliiiies to tackle the aifficult
problem of understanding varishles, conditismals, iterstion and recursion
- ' donios: bo ahed ;;”"ffi;_;;; f“? to amalyze a

.ﬁdfk Dehis

eetuafy eliws Yo

1300% 3390 T )8

in
SH

90T 3iMALS
MURT JADITASY 52
07 N WOIIE &

"(
T
1
{
!
H
!
H

i
Lk

e Y cvevsr zridivotg fnsaelsye RTAAY o7 f

&

PAE v 2l and gabvusedn wd deouosh ed blues Dws usresown wldolndy

cgdiupan 42 e¥ere 10 pd L zinemeisde [shom sAY o iebilsns

FREC ARIL LA

(hLSpmEl 2t L L drwgen 2Rl o8 Bl o4

CUEDN MIAEST X piiaRAR Y C0TUGV) @A) {X BOTIIV) %0)




Picture Models page 180

APPENDIX B -- PICTURE MODELS

This appendix describes in detail models .for the TREE and TRIANGLE
and then discusses general issues which arise in considering descriptions

of turtle pictures.

B.1 THE TREE MODEL

MODEL TREE

M1 PARTS TOP TRUNK

M2 LINE TRUNK

M3 TRIANGLE TOP

M4 VERTICAL TRUNK

M5 BELOW TRUNK TOP

M6 CONNECTED TOP TRUNK
END

Intended TREE

FIGURE B.1

M1 PARTS TOP TRUNK
The PARTS statement provides names for sub-pictures. It is not
strictly necessary and could be deduced by observing the inputs to the

remainder of the model statements, but is useful for clarity.

M2 LINE TRUNK
(LINE TRUNK) requires TRUNK to be a line segment. Its semantics
are:

(OR (VECTOR X) (AND (VECTORS X) (PARALLEL X) (CHAIN X))).



Picture Models page 181

This definition is ordinarily used to verify the predicate with respect to
the Cartesian picture. The debugging chapter discusses how these semantics
can be used in an imperative way to repair sequences of vectors that are

intended to be collinear but fail.

M3 TRIANGLE TOP
(TRIANGLE TOP) demands that the sub-picture TOP satisfy the model
defined for TRIANGLE. This sub-model is discussed in section B.2. Thus

models, once defined, become predicates in the picture language.

M4 VERTICAL TRUNK
The semantics for VERTICAL are:
(OR (= (DIRECTION X) 0) (= (DIRECTION X) 180))
where "X" must be bound to a vector. The Annotator records the DIRECTION
of vectors as a heading between 0 and 359 degrees. See chapter 6.
M5 BELOW TRUNK TOP
(BELOW X Y) can have several meanings, where X and Y are sub-
pictures (sets of vectors).
PARTLY-BELOW - some point of X is below Y
COMPLETELY-BELOW - every point of X is below Y
DIRECTLY-BELOW - COMPLETELY-BELOW & (WITHIN (X-SPAN X) (X-SPAN Y))
CENTERED-BELOW - COMPLETELY-BELOW & (= (XCOR (CG X)) (XCOR (CG Y)))
These four definitions are illustrated in figure B.2. "CG" returns the
coordinates of the center of gravity of a vector structure. ABOVE, RIGHT-
OF and LEFT-OF have similar definitions.

The user can specify the exact meaning. Alternatively, the system



Picture Models page 182

MEANINGS OF BELOW

A

(PARTLY -BELOW TRUNK TOP) (COMPLETELY-BELOW TRUNK TOP)

/\
\

(DIRECTLY-BELOW TRUNK TOP) (CENTERED-BELOW TRUNK TOP)

FIGURE B.2



Picture Models page 183

will assume by default the usual meaning of COMPLETELY-BELOW. If this is
found implausible due to the violations it implies, the system relaxes the
constraint and tries less specific meanings. To minimize this search, the

user can supply advice in the form of which meaning was intended.

M6 CONNECTED TOP TRUNK
There are several flavors of connectivity. Let P be the point of

connection. Then (CONNECTED X Y) can assume the following meanings.

ENDPOINTS - P is an endpoint of both a vector in X and a vector in Y.
TEE - P is an endpoint of a vector in X and an interior point
of a vector in Y.

INTERIORS - P is an interior point of both a vector in X and a
vector in Y.
OVERLAP - X overlaps Y, i.e. X and Y share a sub-segment.

These four definitions are illustrated in figure B.3.

The user can specify the type of connection by inserting in the

connectivity assertion:

(VIA <ENDPOINTS, TEE, INTERIORS, OVERLAP)).
The default is that the connection involve at least one labeled vertex,
i.e. ENDPOINTS or TEE.

The user can supply further specification by describing the
connection point. For example, the connection between the TRUNK and the
TOP of the TREE can be stated explicitly by:

M6 (CONNECTED TOP TRUNK (AT P))

WHERE M6.A (= P (ENDPOINT TRUNK))
M6.B (= P (MIDDLE (SIDE TOP)))
ENDPOINT acquires meaning through the descriptive properties associated

with vectors by the annotator. MIDDLE is simply a Cartesian function for

computing the midpoint. SIDE TOP is defined by interpreting TOP in terms



MEANINGS

\A

V2

(CONNECTED V1 V2
(VIA ENDPOINTS) (AT P))

\'Al
V2
N\

(CONNECTED V1 V2
(VIA INTERIORS) (AT R))

Picture Models page 184

OF CONNECTED

FIGURE B.3

Vi

V2

(CONNECTED V1 V2
(VIA TEE)(AT Q)

V1

'S

P
o=

Ve

I

\-.*—/

! 34

(CONNECTED V1 V2
(VIA OVERLAP)(AT I))



Picture Models page 185

of the TRIANGLE model.

B.2 TRIANGLE MODEL

An equilateral triangle is naturally described in terms of "typical
elements" [Winston 1970] for the sides and rotations. Typical elements are
useful when there are repeated occurrences of sub-parts having basically

the same description.

MODEL TRIANGLE
M1 PARTS (SIDE 3) (ROTATION 3)
M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)
- M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 RING CONNECTED SIDE
END

TRIANGLE

FIGURE B.4

M1 (PARTS (SIDE 3) (ROTATION 3)
The PARTS statement defines the generic names for the triangle's
sides and rotations. The index for each equals the number of expected
instances. A typical bug is for the control structure of an iterative or

recursive program to result in the wrong number of instances.

MZ (FOR-EACH SIDE (= (LENGTH SIDE) 100))
M3 (FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
The generic name SIDE refers to three vectors. The FOR-EACH

requires that each of these vectors have length 100. Similarly, M3



Picture Models page 186

constrains the DEGREES property of the three rotations to be 120.

It may be necessary to refer to the sides explicitly. This is
obviously necessary when a generic model is associated with an explicit
procedure. To accomplish this, the instances are numbered in the temporal
~ sequence in which they occurred. For example, if the sides of the triangle
are described by (PARTS (SIDE 3)), then the names (side 1), (side 2), and
(side 3) are bound to each "FORWARD 100" in the following explicit program.

TO TRI

10 FORWARD 100 (- (accomplish (side 1))

20 RIGHT 120

30 FORWARD 100 <- (accomplish (side 2))

40 RIGHT 120

50 FORWARD 100 <- (accomplish (side 3))

60 RIGHT 120
END

M4 RING CONNECTED SIDE
"RING" applies the predicate CONNECTED to pairs of sides. The
outcome is true if and only if there exists an ordering of the sides, Sl S2
S3 such that:
(CONNECTED S1 S2) & (CONNECTED S2 S3) & (CONNECTED S3 Sl);
The default ordering is the temporal sequence in which the instances were
generated. However, advice is possible referring to alternative orderings,
e.g.
(RING CONNECTED SIDES (ANY ORDERING))
(RING CONNECTED SIDES (TEMPORAL ORDERING))
(RING CONNECTED SIDES (REORDER ( TEMPORAL ORDERING) (2 1 3)))
The following illustrates an interpretation of the TRIANGLE model

with respect to a program with bugs. The planning commentary has been

generated by the Plan-Finder.



Picture Models page 187

TO TRIANGLE1 <- (accomplish triangle)

10 FORWARD 100 <- (accomplish (side 1))

20 RIGHT 100 <- (accomplish (rotation 1))
20 FORWARD 100 <- (accomplish (side 2))°
40 RIGHT 100 <- (accomplish (rotation 2))
50 FORWARD 100 <- (accomplish (side 3))
END

TRIANGLE 1
100° Rotations

FIGURE B.5

(INTERPRET (PROGRAM TRIANGLE1) (MODEL TRIANGLE))
(INTERNAL VIOLATIONS IN MODEL PARTS)
(NOT (= (ROTATION 1) 120))
(NOT (= (ROTATION 2) 120))
(NOT (EXISTS (ROTATION 3)))

(INTERNAL VIOLATIONS BETWEEN MODEL PARTS)
(NOT (CONNECTED (SIDE 3) (SIDE 1)))

Typical elements are particularly useful for describing the sub-
picture produced by a round of an iterative or recursive program. The fact
that the sub-picture is produced by the same segment of‘codo naturally
leads to similar descriptions for each occurence. An example is the

following iterative triangle program:



Picture Models page 188

TO ITERATIVE.TRIANGLE
10 MAKE "SIDES" 3
20 IF :SIDES=0 THEN STOP
30 FORWARD 100
40 RIGHT 120
50 MAKE "SIDES® :SIDES-1
60 GO 20
END
The typical elements SIDE and ROTATION mentioned in the model correspond to

lines 30 and 40 of the program.

B.3 UNDERDETERMINED MODELS

A problem faced by program writing more than by debugging and plan-
finding is that of the underdetermined model. Consider the FACE model.

MODEL FACE

M1 PARTS LEFT.EYE RIGHT.EYE NOSE MOUTH HEAD

M2 CIRCLE (HEAD LEFT.EYE RIGHT.EYE)

M3 TRIANGLE NOSE

M4 LINE MOUTH

M5 INSIDE (LEFT.EYE RIGHT.EYE NOSE MOUTH) HEAD

M6 ABOVE (LEFT.EYE RIGHT.EYE) NOSE

M7 BELOW MOUTH NOSE

END
This model simply does not state any special relationship between the eyes
beyond that they are inside the head and above the nose. It does not state
that they are of the same size, at the same height above the nose, and
equally placed about a vertical line of symmetry extending through the
center of the face. Figure B.6 illustrates unintended faces permitted by
this description. Hence, it is impossible to determine the program fully.

Debugging and plan-finding escape this problem by having the user's
program at their disposal. The program is presumably not far from correct.

Hence, it implicitly provides these unspoken constraints. For program

writing, however, there is no user-supplied code. Somehow, the additional



Picture Models page 189

UNINTENDED FACES

CROSS-EYED LIAR

PICASSO
SCOWL

FIGURE B.6



Picture Models page 190

model description must be provided.

One way is for the user to provide additional model statements.

(= (YCOORD LEFT.EYE) (YCOORD RIGHT.EYE))

(= (RADIUS LEFT.EYE) (RADIUS RIGHT.EYE))

(= (DISTANCE (CENTER NOSE) (CENTER LEFT.EYE))

(DISTANCE (CENTER NOSE) (CENTER RIGHT.EYE)))

Alternatively, a sketch could be supplied. The sketch could fill
in the numerical details for setting up the parts, determining inputs, and
constraining relative size. Indeed, this naturally leads to a very
interesting extension - that of generalizing an overdetermined sketch into
a symbolic model.

Finally, the system could be provided with an epistemology for

simple two-dimensional pictures such as faces, stickmen, wishing wells and

trees to guide in supplying the absent detail.

B.4 DISAMBIGUATING MULTIPLE REFERENCE

Further elaboration of the model may be needed by the user when the
original model accepts an unintended picture or in response to system
queries directed at disambiguating the meaning of a model predicate or of a
choice possibility. As indicated in the discussion of CONNECTED and BELOW
for the TREE model, advice can be given as to the intended meaning and
referenced objects. For example, the user can specify the intended
location of the connection point.

M6 (CONNECTED TOP TRUNK (AT (AND (TRUNK ENDPOINT)
(MIDDLE (TOP SIDE)))))

However, even with this advice for CONNECTED, more than one point
is suggested. (ENDPOINT TRUNK) returns two possibilities: (SIDE TOP)
returns three. In such cases, the predicate makes the most plausible

choice from among the possibilities. The constraint is satisfied if any



Picture Models page 191

possibility wins. Thus, to establish the right binding for a bugged
program with insufficient commentary, the ability to backtrack in a
multiple choice situation is required. [Hewitt 1972, Sussman 1971]. This
is considered in the "Plausible Search® procedures introduced in the plan-

finding and debugging chapters.

B.5 LOGIC

Logical connectives such as AND, OR and NOT are manageable in
models. They are rarely needed since the user his a specific picture in
mind when he describes the intent of his program. However, the teacher may
want to define a model for a set of pictures to aid in the debugging of a
class project. This leads to the use of disjunctions.

"AND" is implicit in models as the set of statements is treated as
a conjunction. However, for "NOT" statements, it is difficult to assign
local responsibility to a part of the program for the negation. The
negation is often accomplished implicitly.

A deduction system would be useful here. (NOT (BELOW X Y)) may
appear in.the plan as attempting to achieve (ABOVE X Y). The
imperative meaning of a negation is to achieve a particular
positive predicate. Deductions for converting negations into
positive model statements would aid in discovering the plan.

"OR" statements are a mechanism for defining a class of models, one
for each of the disjuncts. Discovering the intended disjunct can be

impossible where there are bugs. The simplest solution is to ask for

advice.

* B.6 MODELS FOR MORE COMPLEX PROGRAMS

For describing the picture drawn by a Fixed-Instruction Turtle

Program, it is sufficient to use only primitive model predicates and sub-



Picture Models page 192

models. If more complex programs are allowed, then the descriptive power
of a model must be increased. For example, if inputs and rounds are
allowed, then it is possible to transform the triangle program into a

procedure that draws any regular polygon.

TO POLY :SIDE :ANGLE
10 FORWARD :SIDE

20 RIGHT :ANGLE

30 POLY :SIDE :ANGLE
END

A variety of pictures drawn by this program are illustrated in Figure B.7.
A model is required that describes the class of pictures drawn by
this single program. A natural generalization to the picture language to

permit this is the use of variables.

MODEL POLY

M1 PARTS (SIDE ?N) (ANGLE ?N)
;7N is a variable which is instantiated by the
;interpretation process. The value is found by
;observing the number of SIDES in the picture.
;Naturally, this implies that the bug of "wrong number
;of sides"™ cannot be detected with this model.

M2 (RING CONNECTED SIDE)
;The default ordering for the ring of connections is
;the temporal order in which the sides are drawn.

M3 (RING EQUAL SIDE)

M4 (FOR-EACH ANGLE (= (DEGREES ANGLE) (QUOTIENT 360 ?N)))

END

Mathmematical facts can be inserted in the model: the relation between the
external angle and number of sides of a polygon is effectively stated in
the last line of the model.

For more complex programs, the model might itself be a recursive
description and perhaps be executed in parallel with the program to

establish the proper binding of code to parts. In this case, the parts

list would behave very much like a local variable list with pushing and



Picture Models page 193

POLY PICTURES

SQUARE
POLY 200 950

TRIANGLE
POLY 3008 120

POLY 275 156

HEXAGON

POLY 125 60

(

FIGURE B.7



Picture Models page 194

popping of the binding.

B.7 MODELS AS NETS

Predicate models can be represented as nets (section 8.3). Using a
uniform net-matching algorithm for "interpreting® the program's picture in
terms of the model, however, is unsatisfactory. Bugs can make determining
the proper match between model parts and sub-pictures very difficult. The
net provides no guidance for the order in which the match is attempted. It
is not able to draw on the various clues arising from the process, the
program, and the form of the model. The plan-finding analysis, on the
other hand, introduces a Plausible Search mechanism that is more
intelligent about the binding of program to model.

For more complex pictures, models must be extended to allow
variables (as in POLY), conditionals, and recursion. This type of
extension goes beyond the net representation of pictures. It is required
to handle the complexities caused by

interdependence of relations

dependence on context

abstract properties.
For example, in describing faces, there 1s‘a dependence between the
allowable eyes and the allowable noses. For certain types of eyes, certain
types of noses are required. For other types of eyes, noses are optional.

It is possible for a given relation to be sometimes necessary,
other times not, depending on complex properties of the figure. This is
not succinctly represented in nets. Complex dependencies can be handled by
procedures through the use of conditionals. The second way in which nets
are inadequate is in describing abstract properties. These may be more

subtle than the "typical element®. For example, the property of having



Picture Models page 193

"eyes" is a property of the scene. Eyes are usually two similar shapes
inside a head. However, they can be dissimilar to show certain
expressions. In other cases, they may overlap the head to det comic
effects. The recognition program must be able to interrogate the context
(net) describing the basic parts of the picture. But it must also be able
to investigate the supercontext for special reasons that cartoon eyes or
particular expressions might be used. The eye description is too complex--
too many if's depending on other parts and maybe's depending on context--to

be representable as a net.



Debugging a Wishing Well page 196

'APPENDIX C -- DEBUGGING A WISHING WELL PROCEDURE
This appendix presents a trace of the monitor system's performance
in repairing a wishing well program including annotation of the user's
program, finding the plan and debugging each violation. Figure C.1 shows
the intended picture. The program is open-coded, rather than sub-
routinized, with the result that finding the proper plan and correction the
bugs is correspondingly more complex. The program draﬁs figure C.2 and is

given below.

Y

N
P

FIGURE C.2

Intended WISHINGWELL

FIGURE C.1



Debugging a Wishing Well page 197

TO WW S ;version 1

10 FD 100 ;Statements 10-50 are intended to accomplish the roof.

20 RT 90 ;This rotation is a bug: it should be 120 degrees.

30 FD 100

40 RT 90 ;This is the same bug as statement 20. The triangle
;should be built from 120, not 90 degree rotations.

50 FD 100 ;The final side of the roof. It should be followed

;by a preparatory step to move the turtle to the
;proper initial position for drawing the pole. This
;step is missing. This is reflected in the Rational
;Form Violation of two contiguous FD instructions.

60 FD 200 ;This statement is intended to be the pole connecting
;the roof to the well.

70 RT 90

80 FD.50 ;iStatements 80-140 are intended to accomplish the well.
;Statement 80 draws one half of the first side. This
;1s to cause the connection point between the pole
;and the well to occur in the middle of the side.

90 RT 90

* 100 FD 100

110 RT 90

120 FD 100

130 RT 90

140 FD 100 ;The procedure should conclude with a final RT 90
;and FD 50 to finish the side begun in statement 80.
;However, this code is missing with the result
;that the well is not a closed figure.

END

C.1 PERFORMANCE ANNOTATION
Even without the model, the system can annotate the performance of

the program. For the graphic world of turtles, the annotation consists of
describing the points, vectors and angles in the picture, recording
relétionships such as connectivity which are obvious from the turtle's
local behavior, and generating suggestions for the Plan-finder and
Debugger. (See chapter 6.) Figure C.3 shows the vectors of the picture
named in the order in which they were drawn by the turtle. The local

connectivity relations between sequential vectors is recorded in the
| database although the global connection between the interiors of vectors v4

and V7 is not noticed by the Annotator. Too much computation is required



Debugging a Wishing Well page 198

to test for all such connections in the absence of any motive from the

model or plan.

V4] ’

V3 Va4 (

V7 l V5

V2

Vé

I

\"A

FIGURE C.3

The lengths of the vectors and the local connectivity at rotation
points are not dependent upon the turtle's initial state and are therefore
recorded as schematic properties. The orientation of the vectors are
affected by the initial state and are part of the process.annotation. The
annotator does not bother to record ABOVE, RIGHT-OF, LEFT-OF, or BELOW
relations because of the extent to which they depend upon the initial.
state.

No segmentation clues are available due to the open-coding of the
program. However, statements 50 and 60, being two sequqntial FORWARD
instructions, are a violation of rational form. This is recorded by a
Caveaf comment designed to lend credence to any repair hypotheses which

commit the system to inserting rotations between these two statements.

C.2 THE WISHING WELL MODEL

For the monitor to continue the debugging process, the intended

result must be described by the user. The following picture model



Debugging a Wishing Well page 199

describes the wishing well. The connection points between the roof, pole
and well are constrained with some precision as otherwise the system would

be unaware of certain bugs.

MODEL WISHINGWELL

M1 PARTS ROOF POLE WELL

M2 TRIANGLE ROOF

M3 LINE POLE

M4 SQUARE WELL

M5 ABOVE ROOF POLE WELL

M6 CONNECTED WELL POLE (AT P)
M7 (= P (MIDDLE (UPPER (SIDE WELL))))
M8 (= P (BOTTOM (ENDPOINT POLE)))

M9 CONNECTED POLE ROOF (AT Q)
M10 (= Q (MIDDLE (BOTTOM (SIDE ROOF))))
M1l (= Q ((UPPER (ENDPOINT POLE)))

M12 HORIZONTAL (BOTTOM (SIDE ROOF))

M13 HORIZONTAL (UPPER (SIDE WELL))

END

This model uses as sub-models descriptions for a square and an
equilateral triangle. These two sub-models are quite similar and hence

only the triangle model is given below.

MODEL TRIANGLE ;generic model

M1 PARTS (SIDE 3) (ROTATION 3)

M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)

M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 RING CONNECTED SIDE

END

See section B.2 for a discussion of generic models.

C.3 FINDING THE PLAN

To understand the relation of the program and its picture to the
model, the plan must be found. No clues are available in the form of
global connections at endpoints or sub-procedures. Therefore, the system

begins a search of the space of partial plans beginning with an analysis of



Debugging a Wishing Well page 200

the first statement of the program.
Statement 10 draws V1. There are three possible interpretations:

V1 is a part of either the TOP, the POLE or the WELL. However, program-
writing criteria related to accomplishing transitive predicates apply. In
particular, the description (ABOVE ROOF POLE WELL) suggests to the plan-
finder that the parts are accomplished in transitive order; hence, the
partial plan in which statement 10 is interpreted as part of the POLE is
hung, i.e. held in abeyance until the more fruitful partial plans either
prove complete or are themselves found too implausible. (In the latter
case, the hung plans are once again investigated). This leaves two
possible linear linear plans:

PLAN1 ;roof <> pole -> well

PLANZ ;well -> pole -)> roof.

Roof Pole

1

Well

-

PLAN1

FIGURE C.4

PLAN1 (figure C.4) interprets statements 10 through 50 (vectors V1,
VZ and V3) as the ROOF. Statement 60 is considered to be the POLE and the
remainder of the procedure to be the WELL. Under this binding of the

picture to the model, the following model statements are violated.



Debugging a Wishing Well page 201

(INTERPRET (PROGRAM WW) (MODEL WISHINGWELL) (PLAN PLAN1))

;Violations of Properties of Parts of WW
(NOT (TRIANGLE (Ww 10-50)))
(NOT (= (DEGREES (ROTATION 1)) 120))
(NOT (= (DEGREES (ROTATION 2)) 120))
(NOT (= (DEGREES (ROTATION 3)) 120))

(NOT (SQUARE (WW 80-140)))
(NOT (EQUAL SIDES))
(NOT (CLOSED SIDES))

;Violations of Relations between Parts of WW
;Intrinsic Violations
(NOT (= Q (MIDDLE (SIDE ROOF))))
(NOT (= P (MIDDLE (SIDE WELL))))

;Extrinsic Violations
(NOT (ABOVE ROOF POLE))
(NOT (ABOVE POLE WELL))

Well \ ___:\ Roof

o

<«— Pole

PLAN2

FIGURE C.5

PLANZ (figure C.5) analyzes the program in the opposite way: the
first four vectors are interpreted as the WELL, statement 80 (vector V5) as
the POLE and the remainder of the program (vectors V6, V7 and V8) as the
ROOF. Surprisingly, despite this different binding of the picture to the
model, the same set of violations is produced with the addition that the
third rotation of the square between V3 and V4 is missing, 1i.e.

(NOT (EXISTS (ROTATION 3 SQUARE))).



Debugging a Wishing Well page 202

PLAN] implies one less violation than PLANZ and is consequently
passed to the debugger. The user can alter this choice by explicitly
indicating his preference. This is one of those situations where muitiple
bugs prevent any clear selection of the intended plan. If WW had been
correct, the global connections at P between the WELL and the POLE and at Q
between the POLE and the ROOF would have suggested the segmentation of the
program into main-steps. It is the bugs combined with the open-coding that
makes proper interpretation difficult.

The pretty-print based on PLAN1 clearly reveals the structure of
the program. For readability, the code for the triangle and square is
named TRI and SQ: the system would not generate such mnemonic names

although it would treat the open-coded sequences for model parts as sub-

procedures.
TO WW3 - (accomplish wishingwell)
10 TRI {- (open-coded sequence for roof)
60 FD 200 <- (accomplish pole)
70 RT 90 {- (setup heading)
80 sSQ <- (open-coded sequence for well)
END
TO TRI <{- (accomplish triangle)
10 FD 100 <~ (accomplish (side 1 triangle))
20 RT 90 <- (accomplish (rotation 1 triangle))
30 FD 100 <~ (accomplish (side 2 triangle))
40 RT 90 <- (accomplish (rotation 2 triangle))
50 FD 100 <~ (accomplish (side 3 triangle))
END
TO SQ {- (accomplish square)
80 FD 50 {- (accomplish (side 1 square))
90 LT 90 <- (accomplish (rotation 1 square))
100 FD 100 <- (accomplish (side 2 square))
110 LT 90 <- (accomplish (rotation 2 square))
120 FD 100 <- (accomplish (side 3 square))
130 RT 90 <- (accomplish (rotation 3 square))
140 FD 100 <~ (accomplish (side 4 square)

END



Debugging a Wishing Well page 203

C.4 FIXING THE ROOF
The debugger first repairs violated properties. Hence, debugging
begins by repairing the ROOF.
(FIX (TRIANGLE TRI))
The first debugging strategy is to runthe responsible code in private.
Consequently, TRI is executed with the turtle initialized at the HOME
state. The result is the open rectilinear chain of figure C.6. The

program is commented with respect to the TRIANGLE model shown in section

c.2.
TO TRI ;extracted from WW, version 1
10 FD 100 (- (accomplish (side 1 triangle))
20 RT 90 {- (accomplish (rotation 1 triangle))
30 FD 100 (- (accomplish (side 2 triangle))
40 RT 90 <- (accomplish (rotation 2 triangle))
50 FD 100 <- (accomplish (side 3 triangle))
END

Given this binding of code to model parts, the violated model
statements ordered by the usual criteria are:
;Violations of Properties of TRI
(NOT (= (DEGREES (ROTATION 1)) 120)
(NOT (= (DEGREES (ROTATION 2)) 120)
(NOT (= (DEGREES (ROTATION 3)) 120)

;Violations of Relations between Parts of TRI
(NOT (CONNECTED (SIDE 3) (SIDE 1)))

Debugging the rotations is made simple by the numeric description
of the rotations supplied by the model. This illustrates, first of all,
the fashion in which debugging becomes simpler as the commentary becomes
more explicit. The imperative semantics for "=" suggests that "(P A)" be

made equal to "(P B)". The semantics for DEGREES indicates that this






Debugging a Wishing Well page 205

change is accomplished by inserting an approriate rotation.

(= (DEGREES ROTATION) :A) => (= (INPUT RIGHT) :A)
(This is the same semantic statement used by the annotator but in the <=
direction.) The insertion of RIGHT 120 is done for each rotation (see
figures C.7 and C.8) and the result is the program given below.

TO TRI ;WW version 3, satisfies visible model.
10 FD 100

20 RT 120 {- (= (degrees (rotation 1 triangle)) 120)
30 FD 100
40 RT 120 ¢~ (= (degrees (rotation 2 triangle)) 120)

50 FD 100

END

The violation (NOT (CONNECTED (SIDE 3) (SIDE 1))) is corrected as a
side effect of fixing the rotations of the triangle. Using the corrected
TRI code, WW draws figure C.9.

An important issue in the theory of debugging is the extent to
which making repairs depends upon specific domain-dependent knowledge
versus general techniques of wide applicability. Suppose the model for
TRIANGLE did not specify the rotations: could the procedure be debugged?
The only violation would be the lack of connectivity. The answer is that
there is no "General Debugging Knowledge® that would apply. Debugging
would be dependent on knowing the theorem that a regular polygon will close
if the rotations are equal to (number of sides)/360. The point is that
debugging competence, especially where global bugs are concerned, depends
- on insight into the domain. This is to be expected. Simply knowing a
language (in this case, that of procedures) cannot free the speaker of
knowing what he is talking about. There are important facts to be known
about planning, debugging and description; but these complement and cannot

replace understanding the problem domain.



Debugging a Wishing Well page 206

WW
Version 1

FIGURE C.9

TRI, version 3, is a typical non-transparent triangle procedure.
The model, however, specified three rotations. The program satisfies the
"visible" part of the model so this inconsistency is tolerable. However,
it may be a bug (as opposed to over-specification in the model).
Therefore, it is remembered as a Caveat comment.. This treatment is
identical to that of oddities noticed by the annotator with respect to
missing rotations. The comment is used only if subsequent debugging
indicates that the possible cause of some violation is a missing rotation
at the location where (ROTATION 3 ROOF) was expected. The caveat then adds
plausibility to the strategy and contributes its understanding of the

underlying cause.



Debugging a Wishing Well page 207

If the debugger is considering a correction to the heading in the

code immediately following TRIANGLE, then the caveat is observed

and an edit is made to insert the missing rotation in TRIANGLE.
This caveat in fact does play a debugging role in fixing the connection

between the pole and the roof. See section C.6.

C.5 REPAIRING THE WELL

(FIX (SQUARE SQ))
Correcting the WELL to be a SQUARE is the second main-step that
needs fixing. The SQUARE model is similar to the TRIANGLE model except for
the information that there are four sides and that the rotation is 90

degrees. On the basis of PLAN1, the commentary for statements 80-140 is

shown below.
TO SQ ;extracted from WW version 1, see figure C.10.
80 FD 50 <- (accomplish (side 1 square))
90 RT 90 {- (accomplish (rotation 1 square))
100 FD 100 <- (accomplish (side 2 square))
110 RT 90 <- (accomplish (rotation 2 square))
120 FD 100 <~ (accomplish (side 3 square))
130 RT 90 <- (accomplish (rotation 4 square))
140 FD 100 <- (accomplish (side 4 square))
END

(FIX (= (SIDE 1 WELL) 100))

This violation is more difficult to debug than the preceding
problem with the ROOF. The square is missing a part of the first side (See
figure C.10.). The debugger has several options:

1. The first is to modify the existing code.
2. The second is to find some part of the picture (i.e. program)

which may serve the additional purpose, beyond the one assigned to
it in the plan, of being the completion of side 1 of the square.



Debugging a Wishing Well page 208

3. The third is to reject the plan and call for a new one from the
plan-finder which does not explain side 1 of the triangle as
statement 80 of WW.
The first of these possibilities is examined. Only if there is no
plausible way to insert the code are the other debugging routes pursued.
There are two ways to modify the SQ code. The first is to alter

the input to some existing FD instruction: the second and more drastic way

is to add new code. This produces the square in figure C.11 and the

(SIDE 2)
2>~ (SIDE 1) (SIDE 3)
SQUARE (SIDE 4)
Version 1 SIDE 1 LENGTHENED
FIGURE C.10 FIGURE C.1

corresponding wishing well picture of figure C.12. It remains only to
correct the location of the connection points between the WELL, POLE and
ROOF. The resulting editing strategy is sufficient to fix all of the
violations.

The user, however, probably intended statement 80 to be only FD 50.
His plan was to have the starting position of the SQ be the proper
connection point to the POLE. This cannot be known while debugging the SQ
code in private. Private Debugging deliberately ignores the relationships
between the bugged object and other model parts in order to simplify
finding the repair.

To explore the elementary code-writing capabilities of the



Debugging a Wishing Well page 209

FIGURE C.12

debugger, let us assume that the user has prohibited modification of the SQ
code by protecting statements 80 to 140.

(PROTECT (STATEMENTS 80-100) USER-ADVICE)
In such an event, the debugger attempts to complete the short side by
inserting code for a vector. The code-writer for vectors is based on the
following imperative semantics: a vector is accomplished by determining
either (1) the starting point, direction and length or (2) the endpoints.

To determine the necessary information, the model constraints on

(side 1) are examined.

(CONNECTED (SIDE 1) (SIDE 4))

(CONNECTED (SIDE 1) (SIDE 2))

(= (LENGTH (SIDE 1)) 100)

The connectivity predicates indicate both of the desired endpoints.

Therefore, an explicit request can be passed to the state editor to create



Debugging a Wishing Well page 210

the needed vector. The result is the following SQUARE progranm.

SIDE 2

PART 1 SIDE 1

Jb SIDE 3
a

Inserted
Vector

SIDE 4

Inserted Rotation

CORRECTED SQUARE

FIGURE C.13
TO SQ ;WW version 4, satisfies visible model for square
80 FD 50 <- (accomplish (piece 1 (side 1 square)))
90 RT 90
100 FD 100
110 RT 90
120 FD 100
130 RT 90
140 FD 100
150 RT 90 (- (addcode (rotation 4 square) such-that
(= (degrees (rotation 4 square)) 90))
160 FD 50 (- (addcode (piece 2 (side 1 square)) such-that
(= (length (side 1 square)) 100))
END

Figure C.14 is the wishing well drawn by using the corrected code for the

roof and well.

C.6 FIXING THE TOPOLOGY OF THE WISHING WELL

The parts of the wishing well are now successfully accomplished.
The remainder of this debugging scenario treats SQ and TRI as inviolate
code sequences just as though they had been originally written as
subprocedures by the user. The identification of common purpose reduces

the complexity of analyzing the open-coded program. The next debugging



Debugging a Wishing Well page 211

WW
Version 4

FIGURE C.14
task is to insure that the parts are in the proper relation with one
another. The following intrinsic (i.e. topological) violations exist:

(NOT (CONNECTED POLE ROOF (AT (MIDDLE (BOTTOM (SIDE ROOF))))))
(NOT (OUTSIDE POLE WELL))

;This constraint is not explicit in the model but is
;a8 necessary condition for (COMPLETELY-ABOVE POLE WELL).
(FIX (CONNECTED POLE ROOF (AT (MIDDLE (BOTTOM (SIDE ROOF))))))
Connections are initially analyzed as Local Preparation Errors and
possible culpable interfaces are confined to those between the main-steps
for the input parts. Connectivity is debugged by finding or hypothesizing
the connection point, computing the required translation and then inserting

it into the most likely interface.



Debugging a Wishing Well page 212

The connection point Q is described by:
(= Q (MIDDLE (BOTTOM (SIDE ROOF))))
"SIDE ROOF" can refer to any of the three sides: branching occurs on the
basis of which is chosen. Preference is given to the currently “bottom"
side. If this debugging strategy is rejected, the search considers
alternative choices for the intended (BOTTOM SIDQ).

Under the direction of the CONNECTION semantics, the system
computes the vector V (direction 270 degrees, length 50) necessary to
translate the POLE such that the connection is at the midpoint of the
bottom side. This translation is not inserted directly into the TRI
procedure: main-steps are inviolate in linear debugging. The only
remaining editing locus between main-steps is at the interface between the
ROOF (statements 10-50) and the POLE (statement 60).

(STATE.EDIT (BETWEEN (CODE POLE) (CODE ROOF)) (INSERT V))

The resulting edit is the insertion of "RT 120" followed by “FD 50"

which achieves the desired effect. This produces WW version 5 and draws

figure C.15.

V- =\\l
Top of Pole

WW
Version 5

FIGURE C.15



Debugging a Wishing Well page 213

TO WW ;WW version 5, (connected pole roof) fixed.

10 TRI <- (open-coded sequence for roof)
53 RT 120 {- (setup heading such-that

(retrace (interface statement 55) (side 3 roof)))

55 FD 50 {- (retrace (side 3 roof) such-that
(= Q (middle (side roof))))

60 FD 200 <{- (accomplish pole)

70 RT 90

80 SQ <- (open-coded sequence for well)

END

This debugging edit is confirmed by the comment created as a result of the
existence of only two rotations in the triangle. The inserted RT 120
constitutes a third. Thus, this insertion is preferred over the
alternative of inserting RT 180 in order to retrace to the middle of

side 2.

(FIX (OUTSIDE POLE WELL))
The following represents a trace of the Debugger in repairing this

violation:

;debugging technique

1. Begin with a linear debugging attack. Hypothesize a
Local Preparation Error. Search for the culpable
interface.

2. OUTSIDE is classified as an intrinsic ‘violation.
Hence, the error is local. Therefore, restrict
possible interfaces to those in causal chain between
main-steps for input parts.

3. Hypothesize the most likely culpable interface to be
immediately preceding the second main-step.

;imperative semantics

1. The semantics for OUTSIDE direct that if the initial
position of the interface is on the border, a fix is to
have the exit heading of the interface point "out" rather
than "in". "Out" is defined as a heading that causes
the sub-figure to be rotated as a rigid body such that



2.

Debugging a Wishing Well page 214

it is outside.

A range of headings satisfies this constraint for the
POLE and the WELL: the average heading of 180
is selected by default.

(STATE.EDIT (BETWEEN (CODE POLE) (CODE WELL)) (= HEADING 180))

The State Editor, using Rational Form criteria, merges this fix

into statement 70 with the result that statement 70 becomes "LEFT 90". WW

version 6 is produced and draws figure C.16.

h = ® Y

\\Top of Pole

TO WW
10 TRI
53 RT 120

55 FD 50

60 FD 200
70 LT 90
80 SQ
END

WW
Version 6

FIGURE C.16

;WW version 6, (outside pole well) fixed.
{- (open-coded sequence for roof)
{- (setup heading such-that
(retrace (interface statement 55) (side 3 roof)))
(- (retrace (side 3 roof) such-that
(= Q (middle (side roof))))
<{- (accomplish pole)
<- (setup heading such-that (outside pole well))
{- (open-coded sequence for well)

C.7 DEBUGGING THE ABOVE RELATIONS

The remaining violationed relations are extrinsic, i.e. possibly

caused by the frame of reference. These violations are:

(NOT (COMPLETELY-ABOVE ROOF POLE))



Debuggind a Wishing Well page 215

(NOT (COMPLETELY-ABOVE POLE WELL))
(FIX (ABOVE ROOF POLE))

Following a linear attack, the analysis is to find the culpable
interface. For each interface, the semantics for ABOVE indicate the
desired state change. Two possible interfaces are considered: the initial
setup and the intermediate interface between the ROOF and the POLE. For
the initial interface, a rotation of LEFT 90 (as statement 5) causes the
ROOF to be above the POLE and, as a beneficial side effect, the POLE to be
in turn above the WELL. However, this correction causes the bottom side of
the ROOF to no longer be horizontal.

Alternatively, correcting the above relation by inserting LT 90 as
statement 57 corrects the violation, has the same beneficial side effect
and does not undo the orientation of the ROOF. Therefore this correction
is chosen.

(STATE.EDIT (BETWEEN (CODE ROOF) (CODE POLE)) (= HEADING 180))

The resulting program with the POLE properly above the WELL is:

TO WW ;WW version 7, (above roof pole) fixed.
10 TRI <- (open-coded sequence for roof)
53 LT 120 <{- (setup heading such-that
(retrace (interface statement 55) (side 3 roof)))
55 FD 50 (- (retrace (side 3 roof) such-that
(= Q (middle (side roof))))
57 LT 90 <- (setup heading such-that (above pole well))

<- (assume (= (entry heading) 270))
(- (protect heading through WW statement 60)

60 FD 200 <{- (accomplish pole)

70 LT 90 {- (setup heading such-that (outside pole well))
80 SQ {- (open-coded sequence for well)

END

(FIX (ABOVE ROOF WELL))

Fixing the interface between the ROOF and the POLE has the



Debugging a Wishing Well page 216

-

WW
Version 7

FIGURE C.17

beneficial side effect of putting the WELL above the POLE. Consequently,
the bug is fixed with the explanation that the saﬁe underlying cause of
Local Preparation Error which accounted for "(NOT (ABOVE POLE WELL))" is
responsible for this error as well. Protection of the "heading” is

extended to statement 80.



Debugging a Wishing Well page 217

TO wWW ‘ ;WW version 8, (above pole well) fixed.
10 TRI {- (open-coded sequence for roof)
53 LT 120 <~ (setup heading such-that
(retrace (interface statement 55) (side 3 roof)))
55 FD 50 (- (retrace (side 3 roof) such-that
(= Q (middle (side roof))))
57 LT 90 {- (setup heading such-that (above pole well))

<- (assume (= (entry heading) 270))
<- (protect heading through WW statement 80)

60 FD 200 <{- (accomplish pole)

70 LT 90 (- (setup heading such-that (outside pole well))
80 SQ <- (open-coded sequence for well)

END

The above program is the final result and the intended picture is achieve



More on Imperative Semantics page 218

APPENDIX D -- MORE ON IMPERATIVE SEMANTICS

The following discussion describes the imperative knowledge
associated with the model primitives in greater detail. Recall that the
purpose of the imperative semantics for the model primitives is to propose
specific edits at a given point in the program to correct a violation of
the primitive. As a convention, X and Y will represent sub-pictures, i.e.
sets of vectors in the picture drawn by the program while (CODE X) and

(CODE Y) are the code in the program which drew the sub-pictures.

D.1 GEOMETRIC PRIMITIVES
(LINE X) <=> (OR (VECTOR X) (AND (VECTORS X) (PARALLEL X) (CHAIN X)))

A picture is a line if and only if it is either a primitive vector or a
sequence of collinear vectors. The imperative semantics for OR and AND
direct the Debugger either to reduce a set of non-collinear vectors to
a single vector or to make them parallel and connnected. Imperative
semantics for PARALLEL and CONNECTED are provided below.

(VECTOR X)

A vector is the result of executing the turtle primitives FORWARD or
BACK. If X is a set of vectors, then the repair is to delete all but
one element of the set. This deletion is accomplished either by
deleting the responsible code or by modifying the plan so that the
interpretation does not commit all of the vectors to be part of X. See
the plan-finding scenario for TREEl (section 7.7) as an example of
heterarchy between the Debugger and the Plan-finder.

(PARALLEL X) <=> (FOR-EACH A,B IN X (= (DIRECTION A) (DIRECTION B)))

X is a set of vectors. Each vector has a direction. The repair is to
alter the direction of some subset of vectors so that all of the
elements of X have the same direction. The imperative semantics of
FOR-EACH guides the choice of the subset to be affected. Generally,
the first vector is considered correct and the remainder are made
parallel to it. The annotation semantics for vectors, section 6.3,

provides the link between turtle primitives and the direction property
of vectors.



More on Imperative Semantics page 219

(VERTICAL X) <=> (OR (= (DIRECTION X) 0) (= (DIRECTION X) 180))

If X is a vector, then alter preceding rotations so as to make its

direction 0 or 180. If X is a set of vectors, then accomplish this for
every element.

(HORIZONTAL X) <=> (OR (= (DIRECTION X) 90) (= (DIRECTION X) 270))

(INVISIBLE X) <=> (OR (= (PENSTATE X) :UP)
(EXISTS Y SUCH-THAT (RETRAGE X Y)))

Interface vectors are supposed to be invisible. This can be
accomplished in two ways. They can be drawn with the pen up or they
can overlay some picture vector.

(RETRACE X Y)

To cause X to retrace Y, find a visible part Y. If possible, choose Y
such-that it is already connected to X. If this is not possible, then
connect an endpoint of X to Y. The next step is to cause X to overlap
Y. If the connection is at an endpoint, then this is accomplished
simply by altering the direction of X. X must end on Y so that it is
invisible. If X is a chain of vectors, then each element of X must
retrace some element of Y.

(CONNECTED X Y)

Assume that X is accomplished after Y. Choose a connection point on X,
say P1, and a connection point on Y, say P2. If the exact position is
unknown, deduce it from constraints such as preferring minimal changes
to be made to the code. This has the imperative consequence of
searching for the connection point on Y by manipulating individually
the length and angle inputs to translation and rotation interface
steps. Branch in considering alternative allowable connection
positions. Debugging TREEl so that the trunk properly connects to the
top is an example. Then compute the vector V from P1 to P2. The edit
is to insert code for V into an interface between X and Y. By the
Rigid Body Theorem, this will have the effect of translating X so that
Pl is moved to coincide with P2.

(ABOVE X Y) - (similar technique for BELOW, RIGHT-OF, LEFT-OF)

To compute the required correction for a given interface: assume that
the figure has already been debugged to be topologically correct--e.g.
all of the connections are correct. This implies that the only degree
of freedom in interfaces is the heading.

In considering a given interface, find the range of headings which
satisfy the predicate. The range is determined by first finding the
heading of most restrictive meaning of ABOVE -- CENTERED-ABOVE wherein
the center of gravity of X is directly above Y. Then relax this
heading to find the maximum range in which less restrictive meanings of
the predicate--COMPLETELY-ABOVE and PARTLY-ABOVE--remain true. To



More on Imperative Semantics page 220

select a specific heading to actually insert into the code, choose the
value that satisfies the most restrictive meaning of ABOVE. If there
is still a range of possible headings, use the average value. Record
the range considered in case later debugging results in conflicts and
another heading must be chosen.

(INSIDE X Y) - (similar technique for OUTSIDE, OVERLAP)

INSIDE, OUTSIDE and OVERLAP do not depend on the global frame of
reference; they are rotation and translation invariant. Hence, the
guilty interface can be restricted to one occuring between X and Y.
Interfaces prior to X (assuming that X is accomplished first) need not
be considered. This is in contrast to predicates like ABOVE, BELOW,
RIGHT-OF and LEFT-OF whose truth value is affected by rotation.

Linear corrections required at a given interface:
(Assume that Y is accomplished first.)

1. If the entry position to the interface is on the border, then
insert a rotation such that the position change of the interface
moves X into the interior of Y. If, as a result of this, X comes
out the other side of Y, then decrease the length of the position
change as well. '

2. If the entry position of the interface is in Y, then decrease
the length of the position change accomplished by the interface
until X is inside Y.

3. If X and Y are achieved globally, then it will be very difficult
to find a simple repair to some interface between X and Y. The
turtle is not attempting some direct course from X to Y. The exact
starting position of X may have to be found.

Non-linear corrections to main-steps for X and Y:

If (1) linear debugging is unsuccessful, i.e. no modification of
any interface is possible that does not introduce more violations
and (2) the size of the part was not specified in the model, then
"scale-change" becomes a possible remedy. This is the technique
used to correct the GOOGLY.EYES face (figure 3.11). Specifically,
if X is overlapping Y, then either X can be shrunk or Y expanded.
This is accomplished by changing the scale factor, i.e. multiplying
the input to all vector instructions by the same constant.

Altering the scale of X does not introduce any shape change and
should therefore not cause any new violations of properties of X.
The preferred change -- shrinking X or expanding Y -- is decided by
minimizing bad side effects of the change.



More on Imperative Semantics page 221

© D.2 LOGICAL PRIMITIVES

A. Equality

To fix (= (P A) (P B)), use the imperative semantics for property P to
either make (P A) equal to (P B) or vice versa. Choose whether to
alter A or B on the basis of the usual debugging plausibility criteria
of avoiding conflicts, minimizing change to the user's program and
preferring beneficial side effects.

B. Logical Connectives

To fix (OR D1 D2 ...), repair one disjunct. In the absence of special
knowledge, set up parallel debugging strategies, each focused on a
different disjunct. Estimate plausibility of the preferred disjunction
on the basis of the estimated effort to make it come true. For
example, a disjunct that is itself a conjunction can be judged by how
many of the conjuncts are already true. An example is the meaning of
LINE as "(AND (VECTORS X) (PARALLEL X) (CHAIN X))".

To fix (AND C1 C2 ...), correct all of the conjuncts. Order the
debugging attack on the basis of dependency, i.e. correct conjuncts
constraining main-steps before correcting predicates describing the
relations between main-steps. A given group of violations at the same
level are debugged in temporal order. These are the criteria that were
used to order the initial set of violations.

To fix (NOT P), find the relation representing the negation of P, e.g.
ABOVE - BELOW, RIGHT - LEFT, or INSIDE - OUTSIDE, and establish it. In
general, the system really has no particular mechanism (or need) to
make a given predicate untrue. It does not care what extra predicates
are true of the picture so long as the model statements are correct.
i.e. it is not operating under the assumption that only the model
predicates should be true of the program.

C. Set Deletion

To make (SET X) into (SUBSET Y), eliminate (X - Y) by (1) deleting code
or (2) explaining (X - Y) as not part of X by finding a new plan.

D. (FOR-EACH (X1, X2, ... INX) (P1L&P2 & ...))

Debug those Xi which do not satisfy the predicates. Assume as correct
the majority view. For example, if the goal is to make a set of
vectors parallel, and a majority already are parallel and have some
heading, then debug the direction of the minority to equal this
heading.



More on Plan-Finding page 222

APPENDIX E -- MORE ON PLAN-FINDING

E.1 A PRECISE STATEMENT OF THE TOP-LEVEL LOOP

The top-level loop described below is for straight-line code. An
extension for round-structured programs is discussed in section E.3.

1. Create the initial partial plan on the basis of any user, annotator
or debugger advice.

2. For each active plan, explain the next statement of the program.
Precisely what to do for each type of statement of code that may be
encountered is stated in the next section.

3. After explaining a statement of code, update the unassigned model
parts, list of violated and satisfied model statements, and list of
violated and satisfied expectations.

4. Recompute the plausibility number of the new partial plans and
rechoose the active subset, i.e. those plans with the highest
plausibility number. The Plausibility Number is

(+ (plausibility # of interpretation)
(plausibility # of expectations))

where (plausibility # of interpretation)
= #satisfied.model.statements - #violated.model.statements

and (plausibility # of expectations)
= #satisfied.expectations - funsatisfied.expectations

5. If a partial plan has either explained all the model parts or
assigned a purpose to every statement of the program, then stop; else
go to step 2.

Internal violations are more significant than external ones and should

therefore probably be given more weight: however, the plausibility estimate

has not been fine-tuned to that extent.



More on Plan-Finding page 223

— ————————— —— et e e, ML k8

The following outline details what action the plan-finder takes as

it examines a statement of the program.

CODE IS A SUB-PROCEDURE

A. Context: There are remaining unassigned model parts and a new main
step is expected.

1. (PURPOSE (ACCOMPLISH <P>) where P is an unassigned model part.
Prefer those model parts suggested by planning expectations. This
constraint is usually insufficient to prevent some branching;
therefore each of the resulting alternatives is pursued. The plan-
finding process recurses to explain the code of the sub-procedure
in terms of the model description for P. Those partial plans which
result in a non-minimal number of violations when compared with
their brethren are hung, i.e. they are not pursued further but are
stored. They are reactivated only if the active partial plans
themselves become implausible. *

B. Context: In an open-coded sequence for model part P.

1. (PURPOSE (ACCOMPLISH <Q>)) where Q is the sub-partvof P next
expected.

2. (PURPOSE (ACCOMPLISH <Q>) where Q is not a part of P. This
represents a Surprise. Demons are generated to await the
completion of P in subsequent code.

C. Context: All model parts are assigned.
1. (PURPOSE CLEANUP). Cleanup to previous or canonical state.
2. (UNKNGWN PURPOSE). Pass on as an "extra-part® bug to debugger.

3. Plan incorrect. Undo previous planning choice.

CODE IS A TURTLE PRIMITIVE (FD, BK) ACCOMPLISHING A VISIBLE VECTOR

A. Context: Expecting new main step. The previous main-step has just
been completed.

1. (PURPOSE (BEGIN OPEN-CODED SEQUENCE FOR <P>)), where P is an
unassigned model part. Branching occurs in the choice of P.

2. (PURPOSE (SETUP POSITION)). This interpretation implies either
a pen bug or a "retrace" bug since preparatory steps are required
to be invisible. It is up to the debugger to decide the underlying



More on Plan-Finding page 224

cause. The plan-finder simply reports the purpose of the statement
as a "setup".

3. (PURPOSE (PIECE I <P>)), where P is a previously assigned model
part. The code is accomplishing a part of P. This is decided by
- recognition of the code by a previously created planning demon.

B. Context: In the open-coded sequence for P, sub-part Q is expected.

1. (PURPOSE (BEGIN OPEN-CODING FOR <Q>)). This explanation is
accepted if such an interpretation does not produce violations.
However, if this binding does imply violations, then either
Suspicion Demons are created or one of the alternative purposes
below is accepted.

a. (Suspicion Analysis) Interpreting the current code as the
beginning of an open-coded sequence for Q has generated
violations. The suspicion is that one of the previous purpose
assignments is incorrect. Some model part previously thought
to be accomplished completely has, in fact, only partially been
achieved. The particular violation suggests which model part
is incomplete, e.g. the shorter of a set of unequal vectors.
Generate a Suspicion Demon looking for code which will complete
the part and eliminate the violation.

2. (PURPOSE (BEGIN OPEN-CODING FOR <R>)), where R is an unexpected
model part. R is a surprise: the code begins a new model part. A
demon is created to recognize completion of the expected part Q in
subsequent code.

3. (PURPOSE (SETUP POSITION)). This interpretation implies a
visibility bug.

4. Plan incorrect. Reject previous choice.

C. Context: All model parts have been explained.
1. (PURPOSE (ACCOMPLISH (PIECE I <P>)), where P is a previously
assigned model part. This explanation is generated only if a
previously created demon accepts the current code as satisfying its
suspicion.
2. (PURPOSE UNKNOWN). Accept plan as correct. Code therefore has
a bug -- possibly either a visibility bug or extra code. It is up
to the debugger to decide.

3. Plan incorrect. Reject previous planning choice.

CODE IS A TURTLE PRIMITIVE (FD, BK) ACCOMPLISHING AN INVISIBLE VECTOR

1. (PURPOSE (SETUP POSITION)). If the invisibility is due to the
vector being a "retrace®, this is noted by “(SETUP POSITION BY



More on Plan-Finding page 225

RETRACE)".

2. (PURPOSE (CLEANUP POSITION)). If the code returns the turtle to a
previous endpoint, then that endpoint may represent a local Home state.

3. (PURPOSE (ACCOMPLISH <model part>)). This interpretation implies
the bug that the code should accomplish a visible vector.

CODE IS A ROTATION (RT, LT)

E.3

1. Ordinarily, rotations are analyzed as SETUPS or CLEANUPS.

2. The exception is that if they are named explicitly as model parts
(as in the TRIANGLE model), then they are formally treated similarly to
vectors, i.e. they can accomplish parts or begin open-coded sequences
for parts.

FINDING ROUND PLANS

The top level algorithm for directing the plan-finding analysis

would require the following additions to handle round-structured programs.

(Round plans are described in section 2.9).

A. Explain the control structure. Discover the end test, increment
function, initial value for counter, and scope of round. Use
structural analysis to identify as many parts of the control structure

from the definition as possible.

B. Sub-routinize the basic round. Explain the round via the generic
model parts. Use the algorithm described above to find the tie between
the round and the model description of the generic parts.



Bibliography page 226

Bibliography

[Floyd 1967]

Floyd, R. W.

"Assigning Meaning to Programs"

Proc. Symp App. Math AMS vol. XIX (1967)

(Fahlman 1973]

Fahlman, Scott

A Planning System For Robot Construction Tasks
AI-TR-283, MIT-AI-Laboratory (May 1973)

[Goldstein 1972]
Goldstein, Ira P.
LISP-LOGO - An Implementation of LOGO in LISP

——

LOGO Memo 7, MIT-Al-Laboratory (November 1972)

[Goldstein 1972]

Goldstein, Ira P.

GERMLAND

LOGO Working Paper 7, MIT-AI-Laboratory (February 1973)

[Hewitt 1971]

Hewitt, C.

"Procedural Embedding of Knowledge in PLANNER"
Proc. IJCAI 2 (Sept 1971)

[Hewitt 1972]

Hewitt, C.

Description and Theoretical Analysis (Using Schemata) of PLANNER: A
Language for Proving Theorems and Manipulating Models in a Robot
AI-TR-258, MIT-AI Laboratory (April 1972)

[Hewitt 1973]

Hewitt, C., P. Bishop, and R. Steiger

"A Universal Modular Actor Formalism for Artificial Inteligence”
Proc. IJCAI 3 (Aug 1973)

[McDermott 1972]

. McCermott, D.V. and G.J. Sussman

The CONNIVER Reference Manual

Al Memo 259 MIT-AI Laboratory (May 1972) (Revised July 1973)

[McDermott 1973]
McDermott, D.V.
Assimilation of New Information by a Natural Language Understanding System

——— -

[Moon 1973]

Moon, David, Reed, David et. al.
MACLISP REFERENCE MANUAL

Project MAC Memo, (December 1973)




Bibliography page 227

[Naur 1967]

Naur, P.

"Proof of Algorithms by General Snapshots®
BIT 6, 1967, 310-316.

[Papert 1971a]

Papert, Seymour A.

"Twenty Things to Do with a Computer®

Al Memo 248, MIT-AI Laboratory (June 1971)

[Papert 1971b]

Papert, Seymour A. :

"Teaching Children to be Mathematicians vs. Teaching About Mathematics"
AI Memo 249, MIT-AI Laboratory (July 1971)

[Papert 1971c]

Papert, Seymour A.

"A Computer Laboratory for Elementary Schools®
Al Memo 246, MIT-AI Laboratory (October 1971)

[Papert 1972a]

Papert, Seymour A.

"Teaching Children Thinking"

Programmed Learning and Educational Technology, Vol.9, No.5 (Sept1972)

[Papert 1972b]

Papert, Seymour A.

"On Making a Theorem for a Child"
Proc. ACM Conference (August 1972)

[Ruth 1973]

Ruth, G.R.

Analysis of Algorithm Implementations
MIT PhD Thesis (October 1973)

[ Sussman 1970]

Sussman, G.J., T. Winograd, and E. Charniak
Micro-Planner Reference Manual

Al Memo 203, MIT-AI Laboratory (July 1970)
(revised December 1971)

[Sussman 1972]

Sussman, G.J. and D.V. McDermott

"From PLANNER to CONNIVER - A Genetic Approach*
FJCC (1972)

[Sussman 1973] .
Sussman, G.J.

A Computational Model of Skill Acquisition
AI-TR-297, MIT-AI laboratory (August 1973)




CpuirgaEdlas Coand paldsesl LBy £ns

[Sussman 1973]
Suseman, G.J. ;
“A-S€inario of Planning apd:
Af'ﬂlrtlll Paper 54 (December

[wimon 1970)
Wisston, P.H.

m yral Deserintinss £
s i,

RLE-ntr ta0l (B YiY

vA "‘fﬂ?ﬁ' "u
initswedial ad of nebh{ldl
{IV81 wigl) visdsnods) 1A-TIF zﬁﬁx sas™ TA

- “onidntdT as hIldl giodusel”
e AT R igY cepaloaingT s nirenuld has égg’i'fﬁﬁ.f Boguer 0t

- feScgl yregsd} o e
Ao eEesd  (1reed
é%é:é” & w? aa*9ﬁ47 & gaxﬁsﬁ Ty
(5181 TzupuR) sanewined WIA 5071

oy

Qi f2uf) i
VAL G L AduA :
30 zfzvigﬁﬁ\ ) .
e dh TIH . ¥

cruptednssylonl adiivepil
{6785 wedoiob)
{630 semazud
intausdl L3 bas JbevyposiW T v @ nemezed | ‘
Ipursh ggg@*a?ﬁﬁ wuncf¥-oyl o E
(o%el ! L} yiolsvodsd TA-TIF 708 7eR TA i 1
: {I%9F =edsosad barboe} ‘ ‘

F850] nsmzavd
8 0.0 aamseed
> M,i‘n«@} siiana 3




CS-TR Scanning Project
Document Control Form Date: ¥ /3% /%

Report# AJ- JR-AGY

Each of the following should be identified by a checkmark:
Originating Department:

X Artificial Intellegence Laboratory (Al)
[0 Laboratory for Computer Science (LCS)

Document Type:

Technical Report (TR) O Technical Memo (TM)
O Other:

Document Information ~ Number of pages: LF (535 smaces)

Not to include DOD forms, printer intstructions, etc... original pages only.

Originals are: Intended to be printed as :
O Single-sided or O Single-sided or
X Double-sided X Double-sided
Print type:

[0 Typewriter (] offsetPress  [] Laser Print
[0 inkletPrinter [] Unknown )Z[ Other._CopV

Check each if included with document:

ﬂ\DOD Form ﬂ Funding Agent Form ﬁ Cover Page

Od Spine (O Printers Notes O Photo negatives

O Other:
Page Data:

Blank Pageswy page numbes:

Photographs/Tonal Material ey page numbeo:

Other (note description/page number) .
Description : Page Number:

sy FIVUNTs TITLE PAG i Re.CV
J
L B A L oo LEOCE e LS (A i DD i<ATioN,)

S ALY

(a7~ 255) Seanco STRAC QY ER Futsin AGT, Pob, TRETS ()

Scanning Agent Signoff:
Date Received: _L/_ﬁ/ié Date Scanned: S /9. 19¢ Date Returned: _S /8 /14

Lo -
Scanning Agent Signature: CJ/'A‘,'/M ,/{ % Mc o 94 DSILCS Document Fom -




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEFORE ComMPE TN RM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
Al-TR-294
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Understanding Simple Picture Programs Technical Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
_ . NOOO14-70-A-0003 (ARPA)
lra Goldstein c40708X (NSF)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::giR.AonRLKE'dErTT-NPUF:‘OBJEESST- TASK
Artificial Intelligence Laboratory
545 Technology Square

| Cambridge, Massachusetts 02139

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency September 1974
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, Virginia 22209 228

14. MONITORING AGENCY NAME & ADDRESS({f different from Controlling Oftice) 18. SECURITY CLASS. (of this report)

Office of Naval Research UNCLASSIFIED

lnf?rmat”)n §yssetps 15a. DECL ASSIFICATION/ DOWNGRADING
Arlington, Virginia 22217 SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Automatic Debugging Computer Education
Automatic Programming Problem Solving
Computer-Aided Instruction Program Debugging

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A computer monitor MYCROFT is described that understands simple programs
by generating commentary, discovering plans and debugging mistakes. The
interplay between procedural and declarative knowledge is analyzed and a
description of various planning paradigms and debugging techniques is
provided.

M
DD , 25", 1473  EoiTion OF 1 NOV 65 1S OBSOLETE UNCLASSIFIED
S/N 0102-014-6601 | —
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




Scanning Agent Identification Target

Scanning of this document was supported in part by
the Corporation for National Research Initiatives,
using funds from the Advanced Research Projects
Agency of the United states Government under
Grant: MDA972-92-J1029.

The scanning agent for this project was the
Document Services department of the M.L.T
Libraries. Technical support for this project was
also provided by the M.L.T. Laboratory for
Computer Sciences.

darptrgt. wpw Rev. 9/94



