

Lisp rvlachine Manual

Third Edition

March 1981

Daniel Weinreb
David Moon

This report describes research done at the Artificbl Intelligence Laboratory of lhe Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligcnce research is provided in
part by the Advanced Research Projects Agency of the DCP~H tment of Defense LInder Office of
Naval Research Contract numhcr NOOO 14-80-C-0505.

(OCopyright by the 1\lassachusctts Institute of Technolugy; Cambridge, Mass. 02139
All rights reserved.

Preface

The Lisp Machine manual describes both the language and the "operating system" of the Lisp
machinc. The language, a dialect of Lisp. is completely documented by this manual. The
software environment and operating-systcm-Iike parts of the system contain many things which are
still in a state of flux. This manual confines itself primarily to the stabler parts of the system,
and docs not address the window system and user interface at all. That documentation will be
released as a separate volume at a later time.

Any comments. suggestions, or criticisms will be welcmned. Please send Arpa network mail
to BUG-I.MMAN@MIT-AI.

Those not on the Arpanet may send U.S. mail to
Danicl L Weimcb or David A. Moon
Room 926
545 Technology Square
Camhridge. Mass. 02139

Note

The Lisp machine is a prodlll.:t of the efforts of many people too numerous to list here and of
the "unique ellvironmeat of the M.l.T. Artificial Intelligence Laboratory.

Portions of this manual were written by IUchard Stallman. Mike McMahon, and Alan
Bawden. The chapter un the LOOP iteration macro is a" reprint of. Laboratory for Computer
Science memo TM-169. by Glenn Burke.

Lisp Machine Manual Summary Table of Contents

Sununary Table of Contents

1. Introduction
2. Primitive Object Types .
3. Evaluation
4. flow of Control.
5. Manipulating List Structure.
6. Symbols.
7. Numbers.
8. Arrays ..
9. Strings ..
lO. Functions.
II. Closures. .
12. Stack Groups .

. 13. Locatives . . .
14. Subprimitives .
15. Areas
16. The Compiler.
17. Macros
12. The LOOP Itera.Liou Macro
19. Dcfstmct
20. Objects, Message Passing, and Flavors .
2.1. The I/O System.
22. Naming ufFiles
23. Packages
24. tvlaintaining Large Systems
25. Processes
26. Errors and Debugging. . .
27. How to Read Assembly Language.
28. Querying the User.
29. Initializations
30. Dates and Times.
31. Miscellaneous Useful Functions.
Concept Index.
Flavor Index ..
Message Index.
Meter Index ..
Variable Index.
Function Index

. 1

. 6

.12

.30

.48

.78

.84

.98
115
124
144
149
156
158
177
181
191
204
226
245
276
332
345
359
377
389

.417

. 435
.' . 438

441
447
456
459
460
461
462
464

1(i'~IAR-81

Table of Contents ii

Table of Contents

1. Introduction.
1.1 General Information . .
1.2 Structure of the Manual.
1.3 Nocational Conventions and i-Iclpful Notes

2. Primitive Object Types
2.1 Data Types .
2.2 Predicates.

3. Evaluation .
3.1 Variables.
3.2 Functions.
3.3 Some Functions and Special Forms .
3.4 Multiple Values.

4. Flow of Control.
4.1 Conditionals . .
4.2 Iteration
4.3 Non-J-ocal Exits.
4.4 Mapping

5. Manipulating List Structure.
5.l Conses
5.2 Lists

. 5.3 Alteration of List Structure .
5.4 Cdr-Coding ..
5.5 Tables
5.6 Lists as Tables. .
5.7 Association Lists
5.8 Property Lists ..
5.9 Hash Tables. . .
5.9.1 Hashing on Eq.
5.9.2 I-lashing on Equal .
5.9.3 Hash Tables and the Garbage Collector.
5.9.4 I-lash Primitive.

S.lO Sorting . .
5.11 Resources. . .

6. Symbols
6.1 1'111: Vallie Cell .
6.2 The Function Cell.
6.3 The Pn~perty List.
6.4 The Print Name. .
6.5 The Package Cell .
6.6 Creating Symbols.

7. Numbers
7.1 NUllleric Predicates.
7.2 Numeric Comparisons

Lisp Machine Manual

· 1
· 1
· 1
.2

· 6
· 6
.7

12
13
18
21
26

30
30
35
43
45

48
49
50
57
59
61
61
64
66
69
70
71
72
73
74
76

78
78
79
80
81
81
81

84
86
87

Lisp M<lchine Manual

7.3 Arithmetic
7.4 Transcendental Functions ..
7.5 Numeric Type Conversions.
7.6 Logical Operations on Numbers
7.7 Byte Mnnipulation Functions.
7.8 Random Numbers
7.9 24-Bit Numbers
7.10 Doubic-Precision Arithmetic

8. Arrays
8.1 Extra Features of Arrays ...
8.2 Basic A rray Functions
8.3 Getting Inf0l1llJtion Abollt an Array.
8.4 Changing the Size of an Array
8.5 Arrays Overlaid With Lists . .
8.6 Adding to the End of an Array
8.7 Copying an Array
8.8 Matrices and Systems of Linear Equations.
8.9 Planes
8.10 Madisp Array COl11paribility.

9. Strings
9.1 Characters
9.2 Upper and LOW(.'f Case Letters .
1).3 Basic String Opcl'(ltions .

. 9.4 String Searching
9.5 110 to Strings
9.6 Maclisp-Compatible Functions.

10. Functions.
10.1 What Is a Function?
10.2 Function Specs
10.3 Simple FUllction Definitions.

iii

lOA Operations the User Can Perform on Functions
10.5 Kinds of Functions . . .

10.5.1 Interpreted Functions . .
10.5.2 Compiled Functions . . .
10.5.3 Other Kinds of Functions.

10.6 Function-Defining Special Forms.
10.7 Lambda-List Keywords
10.8 How Programs Manipulate Definitions.
10.9 [-low Programs Examine Functions ..
W.lD Encapsulations.
lO.lO.l Rerwme-Within Encap:;ulations .

11. Closures.
11. L What a Closure [s.
1 L2 Examples of the the ufClosurcs.
11.3 Closure-ManipuJatingFul1ctions.
11.4 Entities.

Table of Contents

.88

.90

.91

.91

.94

.95

.96

.97

.98
100
102
105
106
107
108
109
111
112
113

lIS
115
116
116
119
121
123 .

124
124
124
126
128
129
130
131
131
132
135
135
137
139
143

144
144
146
147
148

Table of Contents

12. Stack Groups
12.1 Resuming of Slack Groups.
12.2 Stack Group States
12.3 Stack Group Functions. . .
12.4 Input/Output in Stack Groups.
12.5 An Example of Stack Groups.

13. Locatives
13.1 Cells and Locatives.
13.2 Functions Which Operate on Locatives.

14. SlIbprimitives .
14.1 Data Types
14.2 Forwarding
14.3 Pointer Manipulation
14.4 Analyzing Structures.
14.5 Crcating Object<; ...
14.6 l.ocking SlIbprimitive .
14.7 I/O Dcyice SlIbprimitives .
14.8 Special Memory Refcrencing.
14.9 Swragc l.ayout Definitions ..
I tl.l0 Function-Calling SlIbprimitives.
14.11 I.ambda-Binding Subprimitive .
14.12 The PagingSystem ..
14.13 Closurc SlIbprimitives
14.14 Microcode Variables .
14.15 Meters.

15. Areas
15.1 Area Functions and Variables
15.2 Interesting Areas

16. The Compiler
16.1 The Basic Operations of the Compiler .
16.2 How to Invoke the Compiler.
16.3 Input to the Compiler
16.4 Compiler Declarations.
16.5 Compiler Source-Level Optimizers.
16.6 Files thut lVlaclisp Must Compile.
16.7 Putting Data in QFASL Files.

17. Macros
17.1 Introduction to Macros ..
17.2 Aids for Dcfining Macros

17.2.1 Dcfmacro
17.2.2 Backquote

17.3 Substitutable Functions .
17.4 Aids for Debugging Macros
17.5 Displacing Macros
17 Ji Advanced Features of Defmacro .
17.7 Function~; to Expand Macros.
17.8 Generalized Variables

iv Lisp Machine Manual

· 149
· 150
· 151
· 152
· 153
· 154

· 156
· 156
· 156

· 158
· 158
· 160
· 161
· 162
· 162
.163
.163
· 164
· 166
· 167
· 168
· 168
· 170
.171
· 173

· 177
· 178
· 180

· 181
.' · 181

· 181
· 182
· 184
· 187
· 188
· 189

· 191
· 191
.192
· 193
.194
· 197
· 198
· 198
· 199
.200
· 201

16-MAR-81

Lisp Machine Manual

18. The LOOP Iteration Macro
18.1 fntroduction.
18.2 Clauses
18.2.1 fteration-Driving Clauses.
18.2.2 Bindings.
18.2.3 Entrance and Exit
18.2.4 Side Effects.
18.2.5 Values
18.2.6 Endtests
18.2.7 Aggregated Boolean Tests
18.2.8 Conditionalization
18.2.9 Miscellaneous Other Clauses.

18.3 Loop Synonyms.
18.4 Dat.1. Types
18.5 Destntcturing
18.6 The Iteration Framework .
18.7 [temtion Paths
18.7.1 Pre-Defined Paths . . .

18.7.1.1 'Ibe Interned-Symbols Path .
18.7.1.2 Sequence Iteration

18.7.2 Defining Paths
18.7.2.1 An Example Path Definition.

19. Defstruct
19.1 Introduction to Stntcture Macros
19.2 How to Use Oefstruct.
19.3 Options to Defstntct
19.4 Using the Constructor and Alterant Macros
19.4.1 Constmctor Macros.
19.4.2 Alterant Macros
19.4.3 By-position Constructor Macros

19.5 Byte Fields
19.6 Groupc'd Arrays.'.
19.7 Named Structures
19.8 The si:dcfstruct-description Structure .
19.9 Extensions to Defstruct
19.9.1 An Example
19.9.2 Syntax ofdefstruct-definc-type .
19.9.3 Optiuns to defstntct-definc-type.

20. Objects, Message Passing, and Flavors .
20.1 Introduction.
20.2 Objects
20.} Modularity
2004 Generic Opcrations .
20.5 Generic Operations in Lisp
20.6 Simple Use of Flavors. .
20.7 Mixing Flavors . .
20.8 Flavor Functions .
20.9 Dell1avor Options.
20.10 Flavor Families

v

..

Table of Contents

204
204
205
206
208
210
210
210
212
213
213
214
215
215

· 216
· 217
· 218

219
220
220
221

· 223

· 226
· 226
· 228.
· 229

., 235

· 235
· 236

236
237
238
239

· 240
· 242
· 242
· 242

243

· 245
· 245
· 245
· 246
· 249
· 250
· 251
· 255
· 258

264
· 268

IIl-MAR-81

.. I

Table of Contents

20.11 Vanilla Flavor
20.12 Method Combination
20.13 [mplemcntation of Flavors .
20.13.1 Order of Definition
20.13.2 Changing a Flavor.
20.13.3 Restrictions

20.14 Entities
20.15 Useful Editor Commands.

21. The I/O System
21.1 The Character Set
21.2 Printed Representation. . .
21.2.] What the Pri nler Produces.
2 L2.2 What The Reader Accepts.
2.1.2.3 Macro Characters.
21.2.4 Sharp-sign Abbrcviations .
21.2.5 Special Character Names.
21.2.6 The Readtable .

21.3 Input Functions. .
21.4 Output Functions .
21.5 [/0 Streams. . . .

U.5.l What Streams Arc.
21.5.2 General Purpose Stream Operations.
21.5.3 Special Purpose Stream Opcrations .
21.5.4 Standard Streams.
21.5.5 Making Your OWI1 Stream

21.6 Formatted Output
21.6.1 The Fonnat Function. . .
21.6.2 The Output Subsystem . .
21.6.3 Formatting Lisp Code .. .

21.7 Rubollt Handling
21.8 The :read and :print Stream Operations
21.9 Accessing Files
21.9.1 Loading Files
21.9.2 File Property Lists
21.9.3 File Stream Operations .

21.10 Accessing Directories.

22. Naming of Files
22.1 Path names.
22.2 Defaults and Merging .
22.3 Gcneric Path names .
22.4 Path name Functions ..
22.5 Path name Messages ..
22.6 Host File Systems Supported.
22.6.1 rrs
22.6.2 TOPS-20

22.7 Maclisp COIl version .
22.8 Examples

vi Lisp Machine Manual

.269

.270

.272

.272

.273

.274

.274

.275

.276

.276

.280

.280

.283

.285

.286

.288

.289

.291

.294

.297

.297

.297

.300

.302

.303

.305

.305

.314

.318

.319

.322
. . .323

.325

.326

.329

.330

.332

.332

. 335

.337

.337

.340

.341

.342

.343

.343

.344

lG-~'IAR '8t

Lisp Machine Manual

23. Packages
23.1 The Need for Multiple Contexts. .
23.2 The Organization of Name Spaces.
23.3 Shared Programs
23.4 Declaring Packages
23.5 Packages and Writing Code.
23.6 Shadowing
23.7 Packages and Interning ...
23.8 Status Infonnation
23.9 Packages, Loading, and Compilation.
23.10 Subpackages.
23.11 Initialization of the Package System.
23.12 Initial Packages.

24. Maintaining Large Systems
24.1 Defining a System.
24.2 Transfonnations.
24.3 Making a System
24.4 Adding New Keywords to make-system.
24.5 Adding New Options for defsystem .
24.6 More esoteric Transfonnations
24.7 The Patch Facility. .

24.7.1 Defining aSysLcm
24.7.2 Loading Patches.
24.7.3 Making Patches .

24.8 Saving New Versions: Disk Partitions .
24.8.1 Concepts.
24.8.2 Manipulating the Label.
24.8.3 Updating Software ...
24.8.4 Installing New Software
24.8.5 Installing New Microcode .

25. Processes
25.1 The Scheduler. .. .
25.2 Locks
25.3 Creating a Process.
25.4 Process Messages .

25.4.1 Process Attributes
25.4.2 Run and Arrest Reasons
25.4.3 Bashing the Process. .

25.5 Pmcess Flavors
25.6 Other Process Functions.

26. Errors and Debugging.
26.1 The Error System . .

26.1.1 Conditions. . . .
26.1.2 Error Condition!) .
26.1.3 Signalling Errors.
26.1.4 Standard Condition Names.
26.1.5 Errsct

26.2 The Debugger

vii

"

..

Table of Contents

345
345
346
347
348
349
350
351
354
354
355
356
357

359
359
361
362
363
364
365
366
369
370
370
371
371
372
373
374
375

377
378
381
382
383
383
385
385
386
387

389
389
389
391
393
396
397
.398

I{dvL\R-Sl

Table of Contents

26.2.1 Entering the Debugger ..
26.2.2 How to Use the Debugger.
26.2.3 Debugger Commands. . .
26.2.4 Summary of Commands. .

26.3 Tracing Function Execution .
26.4 Advising a Function. . .
26.4.1 Designing the Advice. . .
26.4.2 :around Advice.

viii

26.4.3 Advising One Function Within Another ..
26.5 Stepping Through an Evaluation.
26.6 Evalhook
26.7 The MAR
26.8 Variable Monitoring

27. How to Read Assembly Language
27.1 Introduction
27.2 A More Advanced Example.
27.3 The Rest of the Instmctions .
27.4 Function Entry
27.5 Special Class IV Instmctions .
27.6 Estimating Run Time

28. Querying the User. . .

29. Initializations
29.1 System Initialization Lists

30. Dates and Times.
30.1 Getting the Time.
30.1.1 Elapsed Time in 60ths ofa·Second.
30.1.2 Elapsed Time ill Microseconds

30.2 Printing Dater. and Times . .
30.3 Reading Dates and Times . .
30.4 Time Conversions.
30.5 internal Functions.

31. Miscellaneous Useful Functions
31.1 Poking Around in the Lisp World
31.2 Utility Programs
31.3 The Lisp Top Level ..
31.4 The Garbage Collector.
31.5 Logging In
11.6 Dribble Files. . . .
31.7 Status and SStatus .

Concept Index.
Flavor Index. .
Message Index.
Meter Index ..
Variable Index.

..

Lisp Machine Manual

.398

.399

.400

.403

.404

.407

.409

.410

.4lO

.411

.413

.414

.415

.417

.417

.420

.423

.426

.428

.431

.435

.438

.439

.441

.442

.442

.442

.443

.443

.444

.445

.447

.447

.449

.451

.453

.453

.454

.454

.456

.459

.460

.46L

.462

t6-MAR-8L

Lisp Machine Manual ix Table of Contents

Function Index ' 464

1('-MAR-81

Lisp Macl1ine ':vfamldl 1 In trodllction

L Introduetion

1.1 GCllcrallnformatioll

The Lisp Ivfaclline is a new computer system designed to provide a high performance and
economical implcment<ltinll of the Lisp language. It is a personal computation system, which
means I.hat processor'; and milin memories arc Illlt time-multiplexed: when using <I I.isp Machine,
you get your o',vn prnc,:ssor and memory system [(H' the JUl"<llion of the session. It is designed
this way to relie"e the problems of thc running af large (.isp programs on tilllc-sharing systems.
(\er~:thiug on the I.isp \lachinc is writtell ill Lisp, including all systcm programs: there is nevcr
any IIced to program in machine languagc. The system is highly intera<.:ti\'c.

The !.isp iv\;lchinc execute:; a new dialect of Lisp calkJ Lisp ivlachine Lisp, dc\ eloped at the
M.I.T. ,\("(ificlal (ntelligem:e I.aburatory nJr LIse in artifkial il1t~lligel1<.:e research and related fields.
It is c:Iosc\y rehlted tn the t\1aclisp dialect, and attclIlpv; to lIlaintain a good degree of
cllllipatihilily wilh M,idbp, while also providing many illlpn)\Cmcnts and ncw Icature:;. ~Iaclisp,
in tum, is ba~ed on Lisp 1.5.

Tlli:, c1uclIlll:nL is r.lle rcf('rcllcc m<Jnual for the l.isp M<lchine (.isp language, This document is
not d LlIl!lriaL ;111d it SlillwtiillC:; refcr~; to li.rilL'tilllls and C(I'H':Cpts that <lrc IWI c~phil!L'd until later
!11 the manual. It is as:,ullh!cl that YIlU havc a basic workiug k!lowledge ld' ~(lIl1C i i';p di:llect: you
\\.il1 he <;ble [() ngllfc (JIll the reST ut' the bnguagc from this manual.

Thert' arc also flCiliLics explaineJ in lhis il1anual [11<'[ilr,: 110[r.::a:ly P;ifl 'If the I.i"p \'lIIguage.
Some lit' lhese art' subrouti DC p:ll;bgc~; of general lISC, and llthers arc iouis used in writing
prc lgrall1S, Howcver, the: Lisp [\.(achinc window 3ystcm, :lild the major utility progrmns, are not
dOcLllflcnted here.

i.2 Structure of the ~vlanm,l

The manual starts nut with an explanation of the language. Chapter 2 explains thc Jilfcrent
primitive types of Lisp object. and presents some basic predicate functions for testing types.
Chapter J cxr.tains the process of evaluation, which is the !reart of the Lisp language. Chapter 4
introduces the basic Lisp control structures.

The next several chapters explain the details of thc various prmllt!ve data'"types of the
language, and the n.mclions t.har deal with rhcm. Ch~lpter 5 deals 'Nith c(Jnscs and the highcr-level
structures lha[can be huilt out of them, Stich as trees, lists. association lists, ililJ propcrty lists.
Cl1al)lt~r G deals with symbols. chapter 7 with the \'ariOl~s kinds of number:., and chaptcr 8 with
arrays, Char[cr 9 explains character ~trillgs, which all' a special killd of array.

Aller this there arc some dwptcrs that expbi:l more abllll{ functions. function-calling, and
Idaled Ill<lttcrs; Cklptcr iO prcselll~ ~lll Ihe kinds uf "UIlI:li,HI'i in the i;1I1gLl<!gC. cxplains fUl1ction
specs, ~lllt! tdls 110\\ l(l lII:lIdpuhl.l' dci1t1itiolls of l'ulI«i(;n~;, Ch:lpkrs 11 and 12 discuss closures
and stack-groups. {,liO t;H.:ilitics usc-Ilil f()f creating COrl!l:linc~ and otller ,itkll1cl'd control and'
aCCC:-iS struclures.

DSK:LMMAN:f.NTRO 42 16-MAR-81

Notational Conventions and Helpful Notes 2 Lisp Machine Manual

Ncxt, a fcw lowcr-Icvel isslles are dealt with. Chapter 13 explains locatives, which are a 'kind
of pointer to memory cells. Chapter 14 explains the "subprimitivc" functions, which are primarily
lIseful for implementation of the Lisp language itself and the Lisp t'-.Iachinc·s "operating system".
Chapter 15 discusses areas, which give you control over storage allocation and locality of
reference.

Chaprer 16 discusses thc Lisp compiler. which converts Lisp programs into "machine
languagc". Chapter 17 explains the I.isp macro f:lci Ii cy . which allows users to write, their own
extensions to Lisp. cxtending both the interpreter and thc compiler. The next two chapters go
into detail about two such extensiolls. one that provides a powerful itcration control stnlcture
(chapter 18), and Olll' that provides a powerful data structure nlciliry (ch,lptcr 19).

Chapter 20 docllmcnts flavors. a language facility to provide, gcncric functions using the
paradigm used in Smalltalk and the Actor tilln i lies of languages, l'alled "object-oricnted
programming" or" "message passing". Flavors are widely lIsed by the system programs of [he Lisp
1\lachine, as well as being available to the user as a language feature.

Chapler 21 explains the Lisp ~,Iachine's Input/Output system, including streams and the
printed I'/'[lf('sclltaliul/ (If r -isp objects. Chapter 22 duculllents how Lo deal with pathnames (the
names of files).

Chapter 23 d\!~crihes the pack.:ge SYS[cI1I. which allows many name spaces within a single Lisp
ellvironment, Chapter 14 dllculllcnL<; Lhe, "system" fllciIi ty, which helps you create and mnintain
programs that reside in many meso

Chapter 25 discusses the facilities for multiple processes :l11d how to. write programs that use
concurrent computation. Chapter 26 explains how exceptional conditions (errors) can be handled
by programs, handled by 'users, and debugged. Chapter 27 explains the instruction set of the
Lisp Machine, and tells you how to examine the output of the' compiler. Chapter 28 documents
some functions till' qUNying the liSeI', chapter 30 explains some funclions fix manipulating dates
and timet), and chapter 31 contains other miscellaneous functions and facilities.

1.3 Notational Conventions and Helpful Notes

There arc several conventions of notation, and various points that should be understood
before reading the manual to avoid confusion. This section explains those conventions.

The symbol "=}" will be used to indicate evaluation in examples. Thus, when you see "foo
=} nil", this means thc same thing as "the result of evaluating.too is (or would have been) nil".

The symbul "= =)" will be lIsed to indicate macro expansion in' examples. This, when you
see "(foo bar) = => (aref bar 0)", this means the same thing as "the resulL of macro-expanding
(faD bur) is (or would have been) (are'A bar 0)".

A typical description of a Lisp fUllction looks like this:

DSK:UvIMAN;I.NTRO 42 16-M/\R-81

Lisp Machine Manual 3 Notational Conventions and Helpful Notes

funct ion-name argl arg2 &optional argJ (arg4 (faa 3»
The function-name function adds together argl and arg2, and then multiplies the result
by arg3. If arg3 is not provided, the multiplication isn't done. function-name then
returns a list whose first element is this result and whose second element is arg4. Here is
an example:

(function-name 3 4) => (7 (3 food})
(function-name 122 'bar) => (6 bar)

Note the use of fonts (typefaces). The name of the function is in bold-face in the first line of
the description. and the arguments are in italics. Within the text, printed representations of Lisp
objects are in a difTerent bold-fact font, such as (+ faa 56), and argument references are
italicized, such as argl and arg2. 1\ different, fixed-width font, such as funct i on-name, is
used for Lisp examples that are set olf from the text.

The word "&optional" in the list of arguments lells you that all of the arguments past this
point are optional. The default value can be specified explicitly, as with llrg4 whose dct~llIlt value
is the result of evaluating the form (faa 3). If no default value is specified, it is the symbol nil.
This syntax is used in lambda-lists in the language, which are explained in section 3.2, page 18.
Argument lists may also contain "&rest", which is part of the same syntax.

Descriptions of variables, special forms, macros, and methods look like this:

typical-variable Variable
The variable typical-variable is used for typical things

do-three-times Special Fonn
A do-three-times form looks like

(do-three-times foml)
It evaluates fonn three times.

with-foo-bound-to-nil Macro
The form (with-foo-bound-to-nil form} fonn2 ... } evaluates the fonns with the symbol
faa bound to nil. [t expands as follows:

(with-foo-bound-to-nil
foml}
form2 ...) ==>

(let «faa nil)}
form/
foml2 ...)

message-name arg/ arg2 &optional arg3 (to flavor-name)
This is the documentation of the effect of sending a message named message-name,
with arguments arg/, arg2, and arg3, to an instance of flavor flavor-name.

Most numbers shown are in octal radix (base eight). Spelled out numbers and numbers
followed by a decimal point are in decimal. This is because, by default, Lisp Machine Lisp types
out numbers in base 8; don't be surprised by this. To change it, see the documentation 011 the
variables ibase and base (page 283).

DSK:LMMAN;I.NTRO 42 16-MAR-81

Notational Conventions and Helpful Notes 4 Lisp Machine Manual

All uses of the phrase "Lisp reader", unless further qualified, refer to the part of Lisp which
reads characters from 1I0streams (the read function), and not the person reading this manual.

There are several terms which are used widely in other references on Lisp, but are not used
much in this document since they have become largely obsolete and misleading. For the benefit
of those who may have seen them before, they are: "S-expression", which means a Lisp object;
"Dotted pair", which means a cons; and "Atom", which means, roughly, symbols and numbers
and sometimes other things, but not conses. The terms "list" and "tree" are defined in chapter 5,
page 48.

The characters acute accent (') (also called "single quote") and semicolon (;) have special
meanings when typed to Lisp; they are examples of what are called macro characters. Though
the mechanism of macro characters is not of immediate interest to the new user, it is important to
understand the effect of Ulese two, which are used in the examples.

When the Lisp reader encounters a "''', it reads in the next Lisp object and encloses it in a
quote special form. That is, 'faa-symbol turns into (quote faa-symbol), and '(cons 'a 'b)
turns into (quote (cons (quote a) (quote b))). The reason for this is that "quote" would
otherwise have to be typed in very frequently, and would look ugly.

The semicolon is used as a commenting character. When the Lisp reader sees one, the
remainder of the line is discarded.

The character .. /" is used for quoting strange characters so that they arc not interpreted in
their lIsual way by the Lisp reader, but rather are treated the way normal alphabetic characters
are treated. So, tor example, in order to give a "r to the reader, you must type "1/",. the first
"/" quoting the second one. When a character is preceeded by a "I" it is said to be slashified.
Slashifyillg also turns off the effects of macro characters such as .. , " and ";".

The fi)lIowing characters also have special meanings, and may not be used in symbols without
slashification. These characters are explained in detail in the section on printed-representation
(section 21.2.2, page 283) .

"

. Double-quote delimits character strings.

. Number-sign introduces miscellaneous reader macros.

Backquote is used to construct list structure.

Comma is used in conjunction with backquote.

Colon is the package prefix.

Characters between pairs of vertical-bars are quoted.

8 Circle-cross lets you type in characters using their octal codes.

;\11 Lisp code in this manual is written in lower case. In fact, the reader turns all symbols
into upper-case. and consequently everything prints out in upper case. You may write programs
in whichever case you prefer.

You will see various symbols that have the colon (:) character in their names. By convention,
all "keyword". symbols in the Lisp machine system have names starting with a colon. The colon
character is not actually part of the print name; but is a package prefix indicating that the symbol
belongs to the package with a null name, which means the user package. So, when you print

DSK:LMMAN;I.NTRO 42 16-MAR-81

· Lisp Machine Manual 5 Notational Conventions and Helpful Notes

such a symboL you won't see the colon if the current package is user. However, you should
always type in the colons where the manual tells you to. This is all explained in chapter 23;
until you read that, just make believe that the colons are part of the names of the symbols, and
don't worry that tl1CY sometimes don't get printed out for keyword symbols.

This manual documents a number of internal functions and variables, which can be identified
by the "si:" prefix in their names. The "si" stands for "system internals". These functions and
variables are documented here because they are things you sometimes need to know about.
However, they are considered internal to tlle system and their behavior is not as guaranteed as
that of everything else. They may be changed in the future.

Lisp Machine Lisp is descended from Mac1isp, and a good deal of effort was expended to try
to allow Maclisp programs to run in Lisp Machine l.isp. Throughout the manual, there are notes
about differences between the dialects. For the new lIscr, it is important to note that many
functions herein exist solely filr Maclisp compatibility: they should no/ be used in new programs.
Such functions are clearly marked in the text.

The Lisp Machine character set is not quite the same as that lIsed on I.T.S. nor on Multics;
it is described in full detail elsewhere in the manual. The important thing to note for now is that
the character "newline" is the same as "return", and is represented by the number 215 octal.
(This Illllnber should nol be built into any programs.)

When the text speaks of "typing Control-Q" (for example), this means to hold down me
CTRL key on the keyboard (either of the two), and, while holding it down, to strike tlle "Q"
key. Similarly, to lype "Meta"?", hold down eiuICf or lhl! META key:, and strike "P". To type
"Control-Meta-T" hold down both CTRL and META. Unlike ASCn, tllere arc no "control
characters" in tlle character set; Control and Meta are merely things that can be typed on me
keyboard.

rvIany of the functions refer to "areas". The area feature is only of interest to writers of large
systems, and can be safely disregarded by me casual lIser. [t is described in chapter 15.

DSK:LMMAN; LNTRO 42 16-MAR-Sl

Primitive Object Types 6 Lisp Machine Manual

2. Prilnitive Object '"fypes

2.1 Data Types

This section enumerates some of the various different pmmt!ve types of objects in Lisp
Machine Lisp. The types explained below include symbols, conses, various types of numbers,
two kinds of compiled code objects, locatives, arrays, stack groups, and closures. With each is
given the associated symbolic name, which is returned by the function data -type (page 158).

;\ symbol (these are sometimes called "atoms" or "atomic symbols" by other texts) has a print
name, a bindillg, a definition. a property list. and a package.

The print name is a string, which may be obtained by the function get-pname (page 81).
This string serves 'IS the printed representation (sec section 21.2.1, page 280) of the symbol. Each
symbol has a bindil/;j (sometimes also called the "value"), which may be any Lisp object. It is
also referred to sometimes as the "contents of the value cell", since internally every symbol has a
cell called the value cell which holds the binding. It is accessed by the symeval function (page
78), and updated by the set function (page 78). (That is, given a symbol, you usc symeval to
find out what its binding is, ami usc set to change its binding.) Each symbol has a definition,
which may also be any Lisp object. It is also referred to as the "contents of the function cell",
since internally every symbol has a cell called the jLlIlclion cell which holds the definition. The
definition can be accessed by the fsymeval Function (page 79), and updated with fset (page 79),
although usually the tlll1ctions fdefinition and fdefine arc employed (page 135). The property list
is a list of an c\cn number ()f elenwnts; it can be aCL"cs'>cd directly· by plist (page 80), and
updated directly by setplist (page 80), although usually the functions get. putprop, and remprop
(page 67) arc used. The property list is used (() associate any number of additional attributes with
a symbol-attributes not used frequently enough to deserve their own cells as the value and
deHnition do. Symbols also have a package cell, which indicates which "package" of names the
symbol belongs to: This is explained further in the section on packages (chapter 23) and can be
disregarded by the casual user.

The primitive function for creating symbols is make-symbol (page 82), although most
symbols are created by read. intern, or fasload (which call make-symbol themselves.)

A COilS is an object that cares about two other objects, arbitrarily named the car and the cdr.
These objects can be accessed with car and cdr (page 49), and updated with rplaca and rplacd
(page 57). The primitive function for creating conses is cons (page 49).

There arc several kinds of numbers in Lisp Machine Lisp. FiXIlUI71S represent integers in the
range of -2t23 to 2t23-1. Bigllums represent integers of arbitrary size, but they are more
expensive to use than fixl1ums because they occupy storage and arc slower. The system
automatically converts between fixnums and bigl1ums as required. FlollulIls are floating-point
numbers. SlJIall-jlollutllS arc another kind of floating-point numbers, with less range and precision,
but less computational overhead. Other types of numbers are likely to be added in the future.
Sec chapter 7, page 84 for full details of these types and the cOllversions between them.

The usual form of compiled. executable code is a Lisp object called a "Function Entry
Frame" or "FEF". A FEF contains the code for one function. This is analogous to what Maclisp
calls a "subr pointer". FEFs arc produced by the Lisp Compiler (chapter 16, page 181), and are

DSK:LMMAN;FD.DTP 37 16-MAR-81

Lisp Machine Manual 7 Predicates

lIsually found as the definitions of symbols. The printed representation of a FEF includes its
name, so that it can be identified.

Another Lisp object which represents executable code is a "micro-code entry". These are the
microcoded primitive functions of the Lisp system, and user functions compiled into microcode.

About the only useful thing to do with any of these compiled code objects is to apply it to
arguments. However, some functions are provided for examining such objects, for user
convenience. See arglist (page 137), args-info (page l38), describe (page 448), and
disassemble (page 448).

A locative (sec chapter 13, page 156) is a kind of a pointer to a single memory cell anywhere
in the system. The contents of this cell can be accessed by cdr (see page 49) and updated by
rplacd (see page 57) ..

An arra), (sec chapter 8, page 98) is a set of cells indexed by a tuple of integer subscripts.
The contents of the cells may be accessed and changed individually. There are several types of
arrays. Some have cells which may contain any object, while others (numeric arrays) may only
contain small positive numbers. Strings are a type of array; the clement.') are 8-bit unsigned
numbers which encode characters.

A list is not a primitive data type, but rather a data structure made up Gut of conses and the
symbol nil. See chapter 5, page 48.

2.2 Predicates

A predicate is a function which tests for some condition involving its arguments and returns
the symbol t if the condition is true, or the symbol nil if it is not true. Most of the following
predicates are for testing what data type an object has; some other general-purpose predicates are
also explained. .

By convention, the names of predicates usually end in the letter "p" (which stands for
"predicate").

The following predicates are for testing data types. These predicates return t if the argument
is of the type indicated by the name of the function, nil if it is of some other type.

symbo lop arg
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

11stp arg
listp returns t if its argument is a cons, otherwise nil. Note thut this means (listp nil) is
nil even though nil is the empty list. [[his may be changed in the future.]

DSK:LMMAN;FD.DTP 37 16-MAR-81

Predicates 8 Lisp Machine Manual

n11 stp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. This is the
recommended predicate for tcnninating iterations or recursions on lists. It is, in fact,
identical to atom, and so (nlistp nil) returns t. [fhis may be changed in the future, if
and when listp is changed.]

atom arg
TIle prcdicate atom returns t if its argument is not a cons, otherwise nil.

f1xp arg
fixp returns t if its argument is a fixnum or a bignum, otherwise nil.

f10atp arg
floatp returns t if its argument is a flonum or a small Honum, otherwise nil.

smal1-floatp arg
small-floatp returns t if arg is a small Honum, otherwise nil.

b1gp a~ .
bigp returns t if arg is a bignum, otherwise nil.

numberp arg
numberp returns t if its argument is any kind of number, otherwise nil.

str 1 ngp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg
arrayp returns t if its argument is an array, otherwise nil. ,Note that strings are arrays.

subrp arg
subrp returns t if its argument is any compiled code object, otherwise nil. The Lisp
Machine system doesn't use the term "subr", but the name of this function comes from
Maclisp.

closurep arg
closurep returns t if its argument is a closure, otherwise nil.

ent1typ arg
entityp returns t if its argument is an entity, otherwise nil. See section 11.4, page 148 for
information about "entities".

locat 1vep arg
locativep returns t if its argument is a locative, otherwise nil.

typep arg &optional type
typep is really two different functions. With one argument, typep is not really a
predicate; it returns a symbol describing the type of its argument. With two arguments,
typep is a predicate which returns t if arg is of type type, and nil otherwise. Note that
an object can be "of" more than one type, since one type can be a subset of another.

DSK:LMMAN ;FD.DTP 37 16-MAR-81

I -isp Machine Manual 9

The symbols that can be returned by typep of one argument are:

:symbol

:fixnum

:bignum

:flonum

arg is a symbol.

arg is a fixnum (not a bignum).

arg is a bignllm.

arg is a Honum (not a small-flonum).

:small-flonum arg is a small flonum.

:Iist

:Iocative

arg is a cons.

arg is a locative pointer (see chapter 13, page 156).

:compiled - function

Predicates

mg is the machine code for a compiled function (sometimes called a
FEF).

:microcode-function
arg is a function written in microcode.

:closure arg is a closure (see chapter iI, page 144).

:select - method
arg is a select-method table (see p"ge 131).

:stack -group ar!; is a stack-group (see chapter 12, page 149).

:string arg is a string.

:array arg is an array that is nota string.

:random Returned for any built-in data type that does not fit into one of the above
categories.

faa An object of user-defined data type foo (any symbol). The primitive type
of the object could be array, instance, or entity. See Named Structures,
page 239, and Flavors, chapter 20, page 245.

The type argument to typep of two arguments can be any of the above keyword symbols
(except for :random), the name of a user-dcfined data type (either a named structure or a
flavor), or one of the following additional symbols:

:atom

:fix

:float

:number

:instance

:entity

Any atom (as detennined by the atom predicate).

Any kind of fixed-point number (fixnum or bignum).

Any kind of floating-point number (flonum or small-flonllm).

Any kind of number.

An instance of any flavor. See chapter 20, page 245.

An entity. typep of one argument returns the name of the particular user
defined type of the entity, rather than :entity.

See also data -type, page 158.

Notc that (typep nil) = > :symbol, and (typep nil ':list) = > nil; the latter may be
changed.

DSK:LMMAN;FD.DTP 37 16-MAR-81

Predicates 10 Lisp Machine Manual

The following functions are some other general purpose predicates.

eq x y
(eq x y) = > t if and only if x and yare the same object. It should be noted that things
that print the same are not necessarily eq to each other. In particular, numbers with the
same value need not be eq, and two similar lists are usually not eq.
Examples:

(eq 'a 'b) => nil
(eq 'a 'a) => t
(eq (cons 'a 'b) (cons 'a 'b» => nil
(setq x (cons 'a 'b» (eq x x) => t

Note that in Lisp Machine Lisp equal fixnums are eq; this is not true in Maclisp.
Equality does not imply eq-ness for other types 'of numbers. To compare numbers, use
=; see page 87.

naq x y
(neq x y) = (not (eq x y)). This is provided simply as an abbreviation for typing
convenience.

equal x y
The equal predicate returns t if its argllments are similar (isomorphic) objects. (cf. eq)
Two numbers are equal if Lhey have the Same value tind type (for exmnplc, a ftonum is
never equal to a fixnum, even if = is true of them). For conses, equal is defined
recursively as the two car's being equal and the two cdr's being equal. Two strings are
equal if they have the same iength, and the characters composing them are the same; see
string-equal, page 117. Alphabetic case is ignored (but see alphabetic-case-affects
string-comparison, page 116). All other objects are equal if and only if they are eq.
Thus equal could have been defined by:

(defun equal (x y)
(cond «eq x y) t)

«neq (typep x) (typep y» nil)
«numberp x) (= x y»
«stringp x) (string-equal x y»
«listp x) (and (equal (car x) (car y»

(equal (cdr x) (cdr y»»»

As a consequence of the above definition, it can be seen that equal may compute forever
when applied to looped list stmcture. In addition, eq always implies equal; that is, if
(eq a b) then (equal a b). An intuitive definition of equal (which is not quite correct) is
that two objects are equal if they look the same when printed out. For example:.

(setq a '(1 2 3»)
(setq b '(12 3»)
(eq a b) => nil
(equal a b) => t
(equal "Faa" "foo") => t

DSK:LMMAN;FD.OP 28 16-MAR-81

Lisp Machine Manual

not x
null x

11 Predicates

not returns t if x is nil, else nil. null is the same as not; both fimctions are included for
the sake of clarity. Use null to check whether something is nil; use not to invert the
sense of a logical value. Even though Lisp uses the symbol nil to represent falseness. you
shouldn't make understanding of your program depend on this fortuitously. For example.
one. often writes:

(cond ((not (null 1st)} ... }
(...)}

rather than
(cond {1st ...

{ ... }}

There is no loss of efficiency, since these will compile into exactly the same instmctions.

DSK:LMMAN;FD.OP 28 16-MAR-81

Evaluation 12 Lisp Machine Manual

3. Evaluation
The following is a complete description of the actions taken by the evaluator, given a fonn to

evaluate.

If f01111 is a number, the result is form.

If form is a string, the result is fOl1n.

If f017l1 is a symbol, the result is the binding of form. If f01711 is unbound, an error is
signalled. The way symbols are bound is explained in section 3.l, page 13 below.

If form is not any of the above types, and is not a list, an error is signalled.

In all remaining cases, form is a list. The evaluator examines the car of the list to figure out
wllat to do next. There arc three possibilities: this form may be a ,special f0/711, a macro fOl1n,
or a plain-old jillletion forll1. Conceptually, the evaluator knows specially about all the symbols
whose appearance in the car of a fOim make that form a special fDlm, but the way the evaluator
actually works is as follows. If the car of the form is a symbol, the evaluator finds the object in
th~ function call of the symbol (sec chapter 6, page 78) and starts all over as if that object had
been the car {If the list. If the car isn't a symbol. then if it's a cons whose car is the symbol
macro. then this is a macro form; if it is a "special function" (sec page 129) then this is a
special fOl1n; otherwise, it should be a regular function, and this is a function form.

If f0171l is a special foml. then it is handled accordingly; each special fOl1n works ditferently.
Ail of lhem arc documented in this manual. The internal workings of special fOlllS are explained
in more detail in page 129, but this hardly ever affects you.

If f01711 is a macro form, then the macro is expanded as explained in chapter 17.

If f01111 is a function fonn, it calls for the application of a function to arguments. The car of
the form is a function or the name of a function. The edr of the form is a list of subfonns.
Each subform is evaluated, sequentially. The values produced by evaluating the subforms are

. called the "arguments" to the function. The function is then applied to those argul11ents.
Whatever results the function returns are the values of the original fonn.

There is a lot more to be said about evaluation. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is explained in section 3.1, page
l3. A basic explanation of functions is in section 3.2, page 18. The way functions can return
more than one value is explained in section 3.4, page 26. The description of all of the kinds of
functions, and the means by which they are manipulated, is in chapter 10. Macros are explained
in chapter 17. The evalhook facility, which lets you do something arbitrary whenever the
evaluator is invoked, is explained in section 26.6, page 4l3. Special forms are described all over
the manual; each special fonn is in the section on the facility it is part of.

DSK:LMMAN ;FD.EVA 69 16-MAR-S1

Lisp Machine Manual 13 Variables

3.1 Variables

In Lisp Machine Lisp, variables are implemented using symbols. Symbols are used for many
things in the language, such as naming functions, naming special forms, and being keywords;
they are also useful to programs written in Lisp, as parts of data structures. But when the
evaluator is given a symbol, it treats it as a variable, using the value cell to hold the value of the
variable. If you evaluate a symbol, you get back the contents of the symbol's value cell.

There are two different ways of changing the value of a variable. One is to set the variable.
Setting a variable changes its value to a new Lisp object, and the previous value of the variable is
forgotten. Setting of variables is usually done with the setq special form.

The other way to change the value of a variable is with binding (also called "lambda
binding"). When a variable is hound, its old value is first saved away, and then the value of the
variable is made to be the new I .isp object. When the binding is undone, the saved value is
restored to be the value of the variable. Bindings are always followed by unbindings. The way
this is enforced is that binding is only done by special forms that are defined to bind some
variabfes, then evaluate some sub forms, and then unbind those variables. So the variables are all
unbound when the form is finished. This means that the evaluation of the form doesn't disturb
the values of the variables that are bound; whatever their old value was, before the evaluation of
the form. gets restored when the evaluation of the form is completed. If such a form is exited by
a non-local exit of any kind, such as *throw (see page 43) or return (sec page 41), the bindings
are undone whenever the form is exited.

The simplest construct fur binding variables is the let special flJrITl. The do and prog special
Forms can also bind variables, in the same way let does, but they also control the tlow of the
program and so arc explained elsewhere (see page 35). let* is just a sequential version of let; the
other special Fonns below are only used for esoteric purposes.

Binding is an important part of the process of applying interpreted functions to arguments.
This is explained in the next section.

When a Lisp function is compiled, the compiler understands the use of symbols as variables.
However, the compiled code generated by the compiler does not actually use symbols to represent
variables. Rather, the compiler converts the references to variables within the program into more
efficient references, that do not involve symbols at all. A variable that has been changed by the
compiler so that it is not implemented as a symbol is called a "local" variable. When a local
variable is bound, a memory cell is allocated in a hidden, internal place (the Lisp control stack)
and the value of the variable is stored in this cell. You cannot use a local variable without first
binding it; you can only use a local variable inside of a special form that binds that variable.
Local variables do not have any "top level" value; they do not even exist outside of the form
that binds them.

The variables which are associated with symbols (the kind which are used by non-compiled
programs) are called "special" variables.

Local variables and special variables do not behave quite the same way, because "binding"
means different things for the two of them. Binding a special variable saves the old value away
and then uses the value cell of the symbol to hold the new value, as explained above. Binding a
local variable, however, does not do anything to the symbol. In fact, it creates a new memory
cell to hold the value, i.e. a new local variable.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Variables 14 I -isp Machine Manual

Thus, if you compile a function, it may do different things after it has been compiled. Here
is an example:

(setq a 2)

(defun foo ()
(let ((a 5))

(bar)))

(defun bar ()
a)

(foo) => 5

(compile 'fool

(foo) => 2

; Set the variable a to the value 2.

; Define a function named faa.
; Bind the symbol a to the value 5.
; CaU the function bar.

; Define a function nametl bar.
; [tjust returns the value of the variable a.

; Calling faa returns 5.

; Now compile faa.

; This time, calling faa returns 2.

This is a very bad thing, because the compiler is only supposed to speed things up, without
changing what the function docs. Why did the function faa do something e1ilTerent when it was
compiled? Because a was converted from a special variable into a loc<ll variable. After faa was
compiled, it no longer had any effect on the vallie cell of the symbol a, and so the symbol
retained its old contents, namely 2.

In most uses of variables in Lisp pro.'Srams, this problem doesn't collie lip. The reason it
happened here is because the nl11ction bar refers to the symbol a without first binding a to
anything. A reference to a variable that you didn't bind yourself is called a free reference; in this
example, bar makes a free reference to a.

We mentioned above that you can't use a local variable without first binding it. Another way
to say this is that you can't ever have a free reference to a local variable. If you try to do so,
the compiler will complain. In order for our functions to work, the compiler must be told not to
convert a into a local variable; a must remain a special variable. Normally, when a function is
compiled, all variables in it are made to be "local". You can stop the compiler from making a
variable local by "declaring" to the compiler that the variable is "special". When the compiler
sees references to a variable that has been declared special, it uses the symbol . itself as the
variable instead of making a local variable.

Variables can be declared by the special fOlms defvar and defconst (see below), or by
explicit compiler declarations (see page 185). l11e most common use of special variables is as
"global" variables: variables used by many different nmctions throughout a program, that have
top-level values.

Had bar been compiled, the compiler would have secn the ft'ce refcrence and printed a
warning message: Warning: a declared special. It would have automatically declared a to be
special and proceeded with the compilation. It knows that frec references mean that special
declarations arc needed. But when a function is compiled that binds a variable that you want to
be treated as a special variable but that you have not explicitly declared, there is, in general, no
way for the compiler to automatically detect what has happened, and it will produce incorrect
outpuLSo you must always provide declarations for all variables that you want to be treated as
special variables.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 15 Variables

When you declare a variable to be special using declare rather than local-declare, the
declaration is "global"; that is, it applies wherever that variable name is seen. After fuzz has
been declared special using declare, all following uses of fuzz will be treated by the compiler as
references to the same special variable. Such variables arc called "global variables", because any
fUllction can use them; their scope is not limited to one function. The special fOims defvar and
defconst are useful for creating global variables; not only do they declare the variable special,
but they also provide a place to specify its initial value, and a place to add documentation. In
addition, since the names of these special fonl1s start with "def" and since they are used at the
top-level of files, the Lisp Machine editor can find them easily.

Here are the special forms used for setting variables.

satq Special Form
The special fonn (setq l'arl jbrlll! l'ar2 jorIllL.) is used to set the value of a variable or
of many variables. First jorm! is evaluated, and var! is set to the result. Then fOrtll2 is .
evaluated, and var2 is set to the result, and so on for all the variables. setq returns the
last value set, i.e. the result of the evaluation of its last sub form.
Example:

(setq x (+ 3 2 1) Y (cons x nil»
x is set to 6, y is set to (6), and the setq form returns (6). Note that the first set was
performed before the second form was evaluated, allowing that form to use the new value
of x.

psetq Special Fom!
A. psetq form is just like a setq form, except that the variables are set "in parallel"; first
all of the torms are evaluated, and then the symbols are set to the resulting values.
Example:

(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
b => 1

Here are the special forms used for binding variables.

1 at Special Form
let is used to bind some variables to some objects. A let fOim looks like

(1 et ((var! vforml)
(var2 vform2)
'")

bfonnl
bform2
...)

When this form is evaluated, first the vjomls are evaluated. Then the vars are bound to
the values returned by the corresponding Ifunlls. Thus the bindings happen in parallel;
all the Ifo/"lIls are evaluated before any of the vars are bound. Finally, the bforllls are
evaluated sequentially, the old values of the variables 'are restored, and the result of the
last bfoml is returned.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Variables 16 J.isp Machine Manual

lat- Special Form
. let* is the same as let except that the binding is sequential. Each l'ar is bound to the

value of its 110rll1 before the next 1101711 is evaluated. This is useful when the computation
of a 1101711 depends on the value of a variable bound in an earlier vform.

1 et- if Special Fonn
let- if is a variant of let in which the binding of variables is conditional. The variables
must all be special variables. The special fOlm

(1 e t - if cond
((vad val-I) (var-2 val-2) . ..)

body-fonlll bo(fj'-form2 ...)
first evaluates the predicate form condo J I' the result is non-nil, the value forms I'al-i,
vaJ-2, etc. are evaluated and then the variables var-I, var-2. etc. are bound to them. If
the result is nil, the vars and l'als arc ignored. Finally the body forms are evaluated.

1 at - 9 lob a 11 y Special Foml
let-globally is similar in form to let (see page 15). The difference is that let-globally
does not bind the variables; instead, it saves the old values and sets the variables, and
sets up an unwind -protect (sec pagc 44) to set them back. The illlportant difference
between let-globally and let is that when the current stack group (sec chapter 12, page
14\)) co-calls some other stack group, the old values of the variables arc /lot restored.
Thus let- globally makes the new valucs visible in all stack groups and processes that
don't bind the variables themselves. not just thc current stack group.

pl'ogv Special Form
progv is a special form to provide d1C user with extra control over binding. It binds a
list of special variables to a list of values, and d1en evaluates some forms. The lists of
special variables and values are computed quantitics; d1is is· what makes progv different
from let, prog, and do;

(progv symbol-list value-list f017lli /011112 ...)
first evaluates symbol-list and value-list, and dlen binds each symbol to the corresponding
value. If too few values are supplied, d1C remaining symbols arc bound to nil. If too
many values are supplicd, the excess values are ignored.

After fue symbols havc been bound to dIe values, the forms are evaluatcd, and finally the
symbols' bindings are undone. The result rcturned is dIe value of the last form.
Example:

(setq a 'faa b 'bar)

(progv (list a b 'b) (list b)
(list a b foo bar))

=> (faa nil bar nil)
During dle evaluation of d1e body of this progv, faa is bound to bar, bar is bound to
nil, b is bound to nil, and a retains its top-level valuc faa.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 17 Variables

progw Special Forlll
progw is a somewhat modified kind of pragv. Like progv, it only works for special
variables. A pragw form looks like:

(p rogw l'ars-alld-l'al-jof7lls-jorlll jorm! jorm2 ...)
First, I'ars-alld-l'al-jorllls-jonn is evaluated. Its value should be a list that looks like the
first subform of a let:

((var! val-jonn-l)
(var2 val-Jonn-2)
...)

Each clement of this list is processed in turn, by evaluating the I'{/l-jotm, and binding the
vat to the resulting value. Finally, the jorms are evaluated sequentially, the bindings are
undone, and the result of the last jOl7/l is returned. Note that the bindings are sequential,
nut paralleL

This is a very unusual special fOIm because of the way the evaluator is called on the
result of an evaluation. Thus progw is mainly useful for implementing special forms and
for functions part of whose contract is that they call the interpreter. For an example of
the laller, see sys:*break-bindings* (page 452); break implements this by using progw.

Here arc the special fomls for defining special variables.

defval' Special Form
defvar is the recommended way to declare the LIse of a global variable in a program.
Placed at top level in a file,

(defvar variable)
declares I'{/riable special for the sake of compilation, and records its location for the sake
of the editor so that you can ask to see where the variable is defined. If a second
subform is supplied,

(defvar variable inilial-value)
variable is initialized to the result of evaluating the form inilial-I'aiue unless it already has
a value, in which case it keeps that value. initial-value is not evaluated unless it is used; .
this is useful if it does something expensive like creating a large data structure.

defvar should be used only at top level, never in function definitions, and only for global
variables (those used by more than one function). (defvar foo 'bar) is roughly equivalent
to

(deClare (special faD))
(if (not (boundp 'faD))

(setq foo 'bar))

(defvar variable initial-value documentation)
allows you [0 include a documentation string which describes what the variable is for or
how it is to be used. Using such a documentation string is even better than commenting
the use of the variable, because the documentation string is accessible to system programs
that can show the doculTlentation to you while you are using the machine.

If defvar is used in a patch file (see section 24.7, page 366) or is a single fann (not a
region) evaluated with the editor's compile/evaluate from buffer commands, if there is an
initial-value the variable is always set to it regardless of whether it is already bound.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Functions 18 Lisp Machine Manual

defconst Special Fonn
defconst is the same as defvar except that if an initial value is given the variable is
always set to it regardless of whether it is already bound. The rationale for this is that
defvar declares a global variable, whose value is initialized to something but will then be
changed by the functions that use it to maintain some state. On the other hand,
defconst declares a constant, whose value wiIl never be changed by the normal operation
of the program, only by changes to the program. defconst always sets the variable to the
specified value so that if, while devcJoping or debugging the program, you change your
mind about what the constant value should be, and then you evaluate the defconst fOlm
again, the variable will get the new value.

3.2 Functions

In the description of evaluation on page 12, we said that evaluation of a function form works
by applying the function to the results of eV(lluating the argument subforms. What is a function,
and what does it mean to apply it? In Lisp Machine Lisp there are many kinds of functions, and
Llpplying them may do many different kinds of things. For full details, see chapter 10, page 124.
Here we will explain the most basic kinds of functions LInd how they work. [n particular, this
section explains lalllbda lists and all their importLlnt features.

The simplest kind of user-defined function is the fall/bda-expression, which is a list that looks
like:

(1 amb d a lambda-list body! body2 ...)
The first clement of the lambda-expression is the symbul lambda; the second element is a list
called the lambda list, and the rest of the elements are called the body. The lambda list. in its
simplest form, is just a list of variables. Assuming that this simple form is being used, here is
what happens when a lambda expression is applied to some arguments. "First, the number of
arguments and the number of variables in the lambda list must be the same, or else an error is
signalled. Each variable is bound to the corresponding argument value. Thell the forms of the
body are evaluated sequentially. After this, the bindings are all undone, and the value of the last
form in the body is returned.

This may sound something like the description of let, above. The most important difference
is that the lambda-expression is not a fonn at all; if you try to evaluate a lambda-expression, you
will get told that lambda is not a defined function. The lambda-expression is a Junction, not a
form. A let fOim gets evaluated, and the values to which the variables are bound come from the
evaluation of some subforms inside the let form; a lambda-expression gets applied, and the values
are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with other
languages. Some other tenninologies would refer to these as Jonnal parameters, and to arguments
as actual parameters.

T .ambda lists can have more complex structure than simply being a list of variables. There are
additional features accessible by Llsing certain keywords (which start with &) and/or lists as
clements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with one must
only take a certain, fixed number of arguments. As we know, many very useful functions, such
as list, append, +, and so on, accept a varying number of arguments. Maclisp solved thiS

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 19 Functions

problem by the lise of lop"s and !.'>llbrs, which were somewhat inelegant since the parameters had
. to be referred to by numbers instead of names (e.g. (arg 3). (For compatibility reasons, Lisp
Machine Lisp supports lexprs, but they should not be used in new programs).

In general, a function in Lisp Machine Lisp has zero or more required parameters, followed
by zero or more optional parameters, followed by zero or one rest parameter. This means that
the caller must provide enough arguments so that each of the required parameters gets bound,
but he may provide some extra arguments for each of the optional parameters. Also, if there is a
rest parameter, he can provide as many extra arguments as he wants, and the rest parameter will
be bound to a list of all these extras. Also, optional parameters may have a default-fonn, which
is a form to be evaluated to produce the default argument if none is supplied.

Here is the exact explanation of how this all works. When apply (the primitive function that
applies functions to arguments) matches lip the arguments with the parameters, it follows the
following algorithm:

The first required parameter is bound to the first argument.
successive required parameters to the successive arguments. If, during
arguments left but there are still some required parameters which have
an error is caused ("too few arguments").

apply continues to bind
this process, there are no
not been bound yet, then

Next. atter all required parameters arc handled, apply continues with the optional parameters,
binding each argument to each sliccessive parameter. If, during this process, there are no
arguments left. each remaining optional parameter's default-form is evaluated, imd the parameter
is bound to it. This is done OilC: parameter at a tillle; that is, first one defmlit-rollfl is evaluated,
and then the parameter is bound to iI, [hen the next dct:1L1lt-form is evaluated, and so on. This
allows the denlLllt for an argument to depend on the previuus argument.

Finally, if there is no resl parameter and there are no remaining arguments, we are finished.
If there is no rest parameter but there are still some arguments remaining, an error is caused
("too many arguments"). I3ut if there is a rest parameter, it is bound to a list- of all of the
remaining arguments. (If there are no remaining arguments, it gets bound to nil.)

The way you express which parameters are required, optional, and rest is by means of
specially recognized symbols, which are called & - keywords, in the lambda list. All such symbols'
print nmnes begin with the character "& It. A list of all such symbols is the value of the symbol
lambda -list-keywords.

The keywords used here are &optional and &rest. The way they are used is best explained
by means of examples; the following are typical lambda lists, followed by descriptions of which
parameters are required, optional, and rest

(a be) a, b, and c arc all required. The function must be passed three arguments.

(a b &optional c)
a and b are required, c is optional. The function may be passed either two or
three arguments.

(&optional a b c)
a,b, and c are all optional. The function may be passed any number of
arguments between zero and three, inclusive.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Functions 20 Lisp Machine Manual

(&r est a) a is a rest parameter. The function may be passed any number of arguments.

(a b &optional c d &rest e)
a and b are required, c and d are optional, and e is rest. The function may be·
passed two or more arguments.

In all of the cases above, the default-fonn for each parameter is nil. To specify your own
default forms, instead of putting a symbol as the element of a lambda list, put in a list whose
first clement is the symbol (the parameter itself) and whose second clement is the default-form.
For example:

(a &optional (b 3»
The default-form for b is 3. a is a required parameter, and so it doesn't have a
default form.

(&optional (a 'faa) b (c (symeval a» &rest d)
a's default-form is 'faa, b's is nil, and· c's is (symeval a). Note that if the
function whose lambda list this is were called on no arguments, a would be
bound to the symbol faa, and c would be bound to the binding of the symbol
foo: this illustrates the fact that cach variable is bound immediately after its
default-form is evaluated, and so latcr default-forms may take advantage of earlier
parameters, in the lambda list. b andd would be bound to nil. .

It is also possible to include, in the lambda list, some other symbols which are bound to the
values of their default-forms upon cntry to the function. These are "ot parameters, and they are
never bound to arguments; they just get bound, as if they appeared in a let form. (Whether you
usc these aux-variables or bind the variables with let is a stylistic deciSion.)

To include such symbols, put them after any parameters,_ preceeded by the &-keyword &aux.
Examples:

(a &optional b &rest c &aux d (e 5) (f (cons a e»)
d, e, and f ate bound, when the function is called, to nil, 5, and a cons of the
first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list. of arguments to which a rest-parameter is bound is set
up in whatever way is most efficiently implemented, rather than in the way that is most
convenient for the function receiving the arguments. It is not guaranteed to be a "real" list
Sometimes the rest-args list is stored in the function-calling stack, and loses its validity when the
function returns. If a rest-argument is to be returned or made part of permanent list-structure, it
must first be copied (see copylist, page page 53), as you must always assume that it is one of
these special lists. The system will not detect the error of omitting to copy a rest-argument; you
will simply find that you have a value which seems to change behind your back. At other times
the rest-args list will be an argument that was given to apply; therefore it is not safe to rplaca
this list as you may modify permanent data structure. An attempt to rplacd a rest-args list will
be unsafe in this case, while in the first case it would cause an error, since lists in the stack are
impossible to rplacd.

There are some other keywords in addition to those mentioned here. See section 10.7, page
135 for a complete list You only need to know about &optional and & rest in order to
understand this manual.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 21 Some Functions and Special Forms

J .ambda lists provide "positional" arguments: the. meaning of an argument comcs from its
position in the lambda list. For cxample, the first argument to cons is the object that will be the
car of the new cons. Sometimes it is desirable to usc "keyword" arguments, in which the
meaning of an argument comes from a "keyword" symbol that tells the callee which argument this
is. While lambda lists do not provide keyword arguments directly, there is a convention for
functions that want arguments passed to them in the keyword fashion. The convention is that the
function takes a rest-argument, whose value is a list of alternating keyword symbols and argument
values. If cons were written as a keyword-style function, then instead of saying

(cons 4 (foo»
you could say either of

(cons ':car 4 ':cdr (foo))
or
(cons' :cdr (foo) ':car 4)

assumillg the keyword symbols were :carand :cdr. Keyword symbols are always in the keyword
package, and so their printed representations always start with a culon: the reason for this is
given in chapter 23.

111is lise of keyword arguments is only a convention; it is not built into the function-calling
mechanism of the language. Your function must contain Lisp programming to take apart the rest
parameter and make sense of the keywords and values. The special form keyword-extract (see
page 39) may he u!>eful for this.

3.3 Some Functions and Special Forms

This section describes some functions and special forms. Some are parts of the evaluator, or
closely related to it. Some have to do specifically with issues discussed above such as keyword
arguments. Some are just fundamental Lisp forms that are very important

eval x
(eval x) evaluates x, and retums the result
Example:

(setq x 43 foo 'bar)
(eval (list 'cons x 'fool)

=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluation is done implicitly. If you are
writing a simple Lisp program and explicitly calling eval, you are probably doing
something wrong. eval is primarily useful in programs which deal with Lisp itself, rather
than programs about knowledge or mathematics or games.

Also, if you are only interested in getting at the value of a symbol (that is, the contents
of the symbol's value cell), then you should use tlle primitive function symeval (see page
78).

Note: the actual name of. the compiled code for eval is "si: *eval"; this is because use of
the evalhook feature binds the function cell of eval. If you don't understand this, you
can safely ignore it.

DSK:LMMAN:FD.EVA 69 16-MAR-81

Some Functions and Special Fanus 22 Lisp Machine Manual

Note: unlike Maclisp, eval never takes a second argument; there arc no "binding context
pointers" in Lisp Machine Lisp. They are replaced by Closures (see chapter 11, page
144).

app ly f arglis!
(apply f arglist) applies the function f to the list of arguments arglist. arglist should be a
list; f can be any function.
Examples:

(setq fred '+) (apply fred '(12» => 3
(setq fred '-) (apply fred '(12» => -1
(apply 'cons '((+ 2 3) 4» =>

((+ 2 3) . 4) nvt (5 . 4)

Of course, arglist may be nil.

Note: unlike Mac1isp, apply never takes a third argument; there are no "binding context
pointers" in I.isp Machine Lisp.

Compare apply with funeall and eval.

funcall f &rest args
(fu neall f al a2... all) applies the function f to the arguments aI, a2, ... , an. f may
not be a special form nor a macro; this would not be meaningful.
Example:

(COliS 1 2) => (1 . 2)
(setq cons 'plus)
(funcall cons 1 2) => 3

This shows that the use of the symbol cons as the name of a function and the use of
that symhol as the name of a variable do not interact. The cons fonn invokes the
function named cons. The funeall form evaluates the variable and gets the symbol plus,
which is the name of a different function.

lexpr-funcall f &rest args
lexpr-funeall is like a cross between apply and funeall. (Iexpr-funcall f al a2... an I)
applies the function f to the arguments al through an followed by the elements of the list
I. Note that since it treats its last argument specially, lexpr-funcall requires at least two
arguments.
Examples:

(lexpr-funcall 'plus 1 1 1 '(1 1 1» => 6

(defun report-error (&rest args)
(lexpr-funcall (function format) error-output args»

lexpr- funeall with two arguments does the same thing as apply.

Note: the Mactisp functions subrcall, Isubreall, and arraycall are not needed on the Lisp
Machine; funcall is just as efficient. arrayeall is provided for compatibility; it ignores its first
subform (the Maclisp array type) and is otherwise identical to aref. subreall and Isubrcall are
not provided.

DSK:LMMAN ;FD.EVA 69 16-MAR-Sl

Lisp Mw.:hine Manual 23 Some Functions and Special Forms·

ca 11 jilllclioll &rest argulIlellhpecijicaliofls
call offcrs a vcry general way of controlling what arguments you pass to a function. You
can provide eithcr individual argumcnts a la funcal! or lists of argumcnts a la apply, in
any ordcr. In addition, you can make somc of thc argumcnts oplioflal. If the function is
not prcparcd to accept all the arguments you specify, no error occurs if the excess
arguments are optional ones. Instead, the excess arguments are simply not passed to the
function.

The argumellt-specs arc alternating kcywords (or lists of keywords) and valucs. Each
keyword or list of keywords says what to do with the value that follows. If a value
happens to require no keywords, providc 0 as a list of keywords for it.

Two keywords are prcsenrly dcfined: :optional and :spread. :spread says that the
fullowing value is a list of arguments. Otherwise it is a single argument. :optional says
that all the following arguments are optional. It is not necessary to spccify :optional with
all thc folluwing argulllcflHjJccs, bccause it is sticky.

Example:
(call #'foo () x ':spread y '(:optional :spread) z () w)

The argumcnts passed to foo are the valuc of x. the clements of the valuc of y, the
clemcnts of thc valuc of z, and the value of w. The function foo must be prepared to
accept all thc arguments which come from x and y, but if it docs not want the rcst, they
are ignored.

quote .')'peciu! Form
(quote x) simply returns x. It is useful specifically because x is not evaluated; the quote
is how you make a form that returns an arbitrary Lisp objcct. quote is used to include
constants in a form.
Examples:

(quote x) => X

(setq x (quote (some list))) X => (some list)

Since quote is so useful but somewhat cumbersome to type, the reader normally converts
any fOlm prcceded by a single quote (,) character into a quote form.

For example,
(setq x '(some list)
is converted by read into
(setq x (quote (some list»)

function SpecwIFonn
function spccial forms look like (function fonn). This means different things depending
on whether form is a symbol, or a list. (Note that in neither case is form evaluated.)

If you want to pass an anonymous function as an argument to a function, you could just
use quote; for example:

(mapc (quote (lambda (x) (car x»)) some-list)
This works fine as far as thc evaluator is concerned. However, the compiler cannot tell
that thc first argument is going to be used as a function; for all it knows, mapc will
treat its first argument as a piece of list structure, asking for its car and cdr and so forth.
So the compiler cannot compile the function; it must pass the lambda-expression
unmodified. This means that the function will not get compiled, which will make it

DSK:LMMAN;FD.EVA 69 16-MAR-81

Some Functions and Special Forms 24 Lisp Machine Manual

false

true

execute more slowly than it might otherwise.

The function special form is one way to tell the compiler that it can go ahead and
compile the lambda-expression. You just use the symbol function instead of quote:

(mapc (function (lambda (x) (car x))) some-list)
This will cause the compiler to generate code such that mapc will be passed a compiled
code object as its first argument.

That's what the compiler does with a function special form whose form is not a symbol.
The evaluator, when given such a form, just returns form; that is, it treats function just
like quote.

To ease typing, the reader converts #' thing into (function thing). So #' is similar to '
except that it produces a function form instead of a quote form. So the above form
could be written as

(mapc #'(lambda (x) (car x)) some-list)

If fimn is a symbol, then function returns the contents of the function cell location of
form; it is like fsymeval except that it is a special form instead of a function,and so

(function fred) is like (fsymeval 'fred)
function is the same for the compiler and the interpreter when forlll is a symbol.

Because of this, using function rules out the possibility of later changing the function
definition of x, including tracing it. Care is required!

The other way to tell the compiler that an argument that is a bmbda expression should
be compiled is for the function that takes the function as an argument to use the
&functional keyword in its lambda list; see section 10.7, page 135. The basic system
functions that take functions as arguments, such as map and sort, have this &functional
keyword and hence quoted lambda-expressions given to them will be recognized as
functions by the compiler.

In fact, mapc uses &functional and so the example given above is bogus; in the
particular case of the first argument to the function mapc, quote and function are
synonymous. It is good style to use function (or #') anyway, to make the intent of the
program completely clear.

Takes no arguments and returns nil.

Takes no arguments and returns t.

comment Special Fonn
comment ignores its form and returris the symbol comment.
Example:

(defun faa (x)
(cond ((null x) 0)

(t (comment x has something in it)
(1+ (faa (cdr x»)))))

DSK:LMMAN;FD.EVA 69 16-MAR-81

I -isp Machine Manual 25 Some Functions and Special Forms

Usually it is preferable to comment code using the semicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which are
ignored by the lisp reader.
Example:

(defun faa (x)
(cond «null x) 0)

(t (1+ (faa (cdr x»» ;x has something in it
»

A problem with such comments is that they are discarded when the form is read into
Lisp. [f the function is read into Lisp, modified. and printed out again, the comment
will be lost. However, this style of operation is hardly ever used; usually t.he source of a
function is kept in an editor buffer and any changes are made to the bulfer, rather than
the actual list structure of the function. Thus, this is not a real problem.

progn SpecialFonn
t\ progn-form looks like (progn forml form2 ...). The forms arc evaluated in order from
left to right and the value of the last one is returned. progn is the primitive control
structure construct for "compound statements". Although lambda-expressions, cond fOfl11s,
do fOIlTIS, dnd many other control structure forms lise progn implidtly. that is. th~y
allolA' multiple t(mTIs in their bodies. there arc occasions when one needs to evaluate a
number (If forms lor their side-effects and make them appear to be a single form.
Example:

(foo (edt' a)

progl Special Form

(prugn (setq b (extract frob»
(car b)

(cadr b»

prog1 is similar to progn, but it returns the value of its first form. It is most commonly
used to evaluate an expression with side effects, and return a value which must be
computed before the side effects happen.
Example:

(setq x (prog1 y (setq y x»)
interchanges the values of the variables x and y,

prog2 Special Fonn
prog2 is similar to progn and prog1, but it returns its second form. It is included
largely for Maclisp compatibility.

See also bind (page 168), which is a subprimitive that gives you maximal control over
binding.

The following three functions (arg, setarg, and listify) exist only for compatibility 'with
Mac1isp lexprs. To write functions that can accept variable numbers of arguments, usc the
&optional and &rest keywords (see section 3.2, page 18).

DSK:LMMAN;FD.EVA 69 16-MAR-S1

1\1ultiple Values 26 Lisp Machine Manual

arg x
(arg nil), when evaluated during the application of a lexpr, gives ·the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable. .

(arg i), when evaluated during the application of a lexpr, gives the value of the i'th
argument to the lexpr. i must be a fixnum in this case. It is an error if i is less than 1
or greater than the number of arguments supplied to the lexpr.
Example:

(defun foo nargs
(print (arg 2»
(+ (al'g 1)

(arg (- nargs 1»»

" ;dcfine a lexpr foo.
;print the second argument.
;retllrn the sum of the first
;and next to last arguments.

setarg i x
setarg is used only during the application of a lexpr. (setarg i x) sct'\ the lexpr's i'th
argument to x. i must be greater than zero and not greater than the number" of
arguments passed to the lexpr. After (setarg i x) has been done, (arg i) will return x.

listify 11

(Iistify 1/) manufactures a list of II of the arguments of a lexpr. With a positive argument
11, it returns a list of the first 11 arguments of the Icxpr. With a negative argument n, it
returns a list of the last (abs 1/) arguments of "the lexpr. Basically, it works as if defined
as follows:

(defun listify (n)
(cond «minusp n)

(listifyl (arg nil) (+ (arg nil) n 1»)
(t
(listifyl n 1» »

(defun 1 i s t ify 1 (n m) ; auxiliary function.

3.4 lVlultiple Values

(do «i n (1- i»
(result nil (cons (arg i) result»)

« < i m) result) »

The Lisp machine includes a fc1cility by which the evaluation of a form can produce more
than one value. When a function needs to return more than one result to its caller, multiple
values are a cleaner way of doing this than returning a list of the values or setq'ing special
variables to the extra values. In most Lisp function caUs, multiple values are not used. Special
syntax is required both to produce multiple values and to receive them.

The primitive for producing multiple values is values, which takes any number of arguments
and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. The other primitive for producing
multiple values is return, which when given more than one argument returns all its arguments as
the values of the prog or do from which it is returning. The variant return-from also can
produce multiple values. Many system functions produce multiple values, but they all do it via
the values and return primitives.

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 27 Multiple Values

The special forms for receiving multiple values are multiple-value, multiple-value-bind, and
multiple-value-list. These consist of a form and an indication of where to put the values
returned by that form. With the first two of these, the caller requests a certain number of
returned values. If fewer values are returned than the number requested, then it is exactly as if
the rest of the values were present and had the value nil. If too many values are returned, the
rest of the values arc ignored. This has the advantage that you don't have to pay attention to
extra values if you don't care about them, but it has the disadvantage that error-checking similar
to that done for function caIling is not present.

val ues &rest args
Returns multiple values, the values of its arguments. This is the primitive function for
producing lTIultiple values.

va 1 ues-l i st list
Returns llIultiple values, the elements of the list. (values -list '(a b e)) is the same as
(values 'a 'b 'e).

return and its variants can only be used within the do and prog special forms and their
variants, and so they are explained on page 41.

multiple-value Special Form
(multiple-value I'ar-list fimn) is a special form used fiJr calling a function which is
expected to return more than one value. var-/ist shaull! be a list of variables. form is
evaluated, and the variables in I'm·-lis! arc set (not lambda-bound) to the values returned
by lam/. If more values ale relurlled than there arc variables in var-list, lhcn the extra
values are ignored. If there are more variables than values returned, extra values of nil
are supplied. If nil appears in the var-list, then the corresponding value is ignored (you
can't lise nil as a variable.)
Example:

(multiple-value (symbol already-there-p)
(intern "goo"»

[n addition to its first value (the symbol), intern returns a second value, which is t if the
symbol returned as the first value was already interned, or else nil if intern had to create
it. So if the symbol goo was already known, the variable already-there-p will be set to
t,otherwise it will be set to nil. The third value returned by intern will be ignored.

multiple-value is usually used for effect rather than for value; however, its value is
defined to be the first of the values returned by form.

mu 1t i P 1 e-va 1 ue-b i nd Special Fonn
This is similar to multiple-value, but locally binds the variables which receive the values,
rather than setting them. The form looks like:

(multiple-value-bind var-list form
body ...)

First fimn is evaluated. Then the variables in var-list are bound to the values returned by
form. Then the forms of body are evaluated sequentially, the bindings are undone, and
the result of the last form in body is returned.

DSK:LMMAN;FD.EVA 69 16-MAR-Sl

Multiple Values 28 Lisp Machine Manual

mult iple-val ue-l i st Special Form
(multiple-value-list Jorm) evaluates JOI11I, and returns ·a list of the values it returned.
This is uscful for when you don't know how many values to expect.
Example:

(setq a (multiple-value~list (intern "goo")))
a => (goo nil #<Package User»

This is similar to the examplc of multiple-value abovc; a will bc set to a list of three
c1emcnts, the three values returned by intern.

Due to the syntacticstructurc of Lisp, it is often the case that the value of a certain form is
the value of a suh-form of it. For example, the value of a cond is the value of thc last form in
the selected dause. In most such cascs, if the sub-form produces multiple values, thc original
form will also produce all of those values. This passil/g-back of Illultiplc values of coursc has no
cffect unless eventually one of the spccial forms for receiving multiple valucs is reached. The
exact rule governing passing-back of multiple valucs is as follows:

If X is a form, and Y is a sub-form of X, then if the value of Y is unconditionally returned
as the value of X, with no intcrvening computation, thcn all the multiple values returned by Y
are rcturned by X. In all othcr cases, multiple valucs or only single values may be returned at
the discrction of the implemcntation; lIsers should not depend on whatever way it happens to
work, as it may change in the futurc or in other implemcntations. The reason we don't guarantee
llon-transmission of Illultiple values is because such a guarantec would not be very useful and the
efficiency cost of enforcing it would be high. Even setq'ing a variable to the result of a form.
then returning the value of that variable might be inade to pass multiple values by an optimizing
cumpiier ,.,.hidl· realized that the setqing of the variable was unnecessary.

Notc that usc of a form as an argument to a function never receives mUltiple values from that
foml. That is. if thc form (faa (bar» is evaluated and the call to bar returns many values. foo
will still only be called on one argument (namely. the first value returned), rather than being
called on all the values returned. We choose not to generate several separate arguments from the
scveral values. because this would make the source code obscure; it would not be syntactically
obvious that a single form does not correspond to a single argument. Instead, the first value of a
form is used as the argument and the remaining values are discarded. Receiving of multiple
values is done only with the above-mentioned special forms.

For clarity, descriptions of the interaction of several common special fonns with multiple
values follow. This can all be deduced from the rule given above.

The body of a defun or a lambda. and variations such as the body of a function. the body
of a let. etc., pass back multiple values from the last form in the body.

eval. apply, funcall. and lexpr-funcall pass back mUltiple values from the fimction called.

progn passes back multiplc values from its last form. progv and progw do so also. prog1
and prog2, however. do not pass back multiple values.

Multiple values are passed back from the last subform of an and or or form. but not from
previous forms since the return is conditional. Remember that multiple values arc only passed
back when the value of a sub-form is unconditionally returned from the containing form. For
example, consider the form (or (foo) (bar)). If foo returns a non-nil first value. then only that
value will be returned as the value of the form, But if it returns nil (as its first value). then or

DSK:LMMAN;FD.EVA 69 16-MAR-81

Lisp Machine Manual 29 Multiple Values

returns whatever values the call to bar returns.

cond passes back multiple values from the last form in the selected clause, but not if the
clause is only one long (Le. the returned value is the value of the predicate) since the return is
conditional. This mle applies even to the last clause, where the return is not really conditional
(the implementation is allowed to pass or not to pass multiple values in this case, and so you
shouldn't depend on what it docs). t should be used as the predicate of the last clause if multiple
values are desired, to make it clear to the compiler (and any human readers of the code!) that
the return is not conditional.

The variants of cond such as if, select, selectq, and dispatch pass back multiple values
from the last form in the selected clause.

prog passes back the number of values given as arguments to the return that returns from it.
Recall that return can be given many subforms, in which case it causes the prog to return many.
values. (return jarm) looks a bit ambiguous; you might think it returns all the values returned
by form. In fact, it mayor may not; as always the implementation is not constrained not to
return extra values, and you should not depend on what it docs in this case. I f you want to
return from a prog with all the values returned by a form, ·use multiple-value-return (see page
42): (multiple-value-return jiJ11ll) returns from a prog, passing back all the values of fonn.

do behaves like prag with respect to return. All the values of the last exit-fonll arc returned.

unwind-protect docs 1/0/ p,iss back multiple values. It clearly· should, but this is currently
difficult to implement. This will be fixed in the future.

DSK:LMMAN;FD.EVA 69 16-MAR-Sl

Flow of Control 30 Lisp Machine Manual

4. Flow of Control
Lisp provides a variety of stmctures for flow of control.

Function application is the basic method for constmction of programs. Operations are written
as the application of a function to its arguments. Usually, Lisp programs are written as a large
collection of small functions, each of which implements a simple operation. These functions
operate by calling one another, and so larger operations are defined in terms of smaller ones.

A function may always call itself in Lisp.· The calling of a function by itself is known as
recursiol1; it is analogous to mathematical induction.

The pcrforming of an action repeatedly (usually with somc changes between repetitions) is
called iteration, and is provided as a basic control structure in most languages. The do statement
of PLlI, the for statement of AI.GOI'/60, and so on arc examples of iteration primitives. Lisp
provides two general iteration facilities: do and loop, as well as a variety of special-purpose
iteration Jllcilities. (loop is sufficiently complex that it is explained in its own chapter later in the
manual; see page 204.) There is also a very general constmct to allow the traditional "goto"
control structure, called prog.

A cOllditional construct is one which allows a program to make a decision, and do one thing
or another based on some logical condition. Lisp provides the simple one-way conuitionals and
and or, the simple two-way condilional if, and more general multi-way conditionals such as cond
and selectq. The choice uf which form to use in any particular situation is a matter of personal
taste and style.

There are some non-local exit control stmctures, analogous to the leave, exit, and escape
constructs in many modern languages. The general ones are *catch and *throw; there is also
return and its variants. used for exiting iteration the constructs do, loop, and prog.

Lisp Machine Lisp also provides a coroutine capability, explained in the section on stack
groups (chapter 12, page 149), and a multiple-process facility (see chapter 25, page 377). There is
also a facility for generic function calling using message passing; see chapter 20, page 245.

4.1 Conditionals

if Special Fonn
if is the simplest conditional form. The "if-then" fonTI looks like:

(if predicate-form then-form)
predicate-form is evaluated, and if the result is non-nil, the then-form is evaluated and
its result is returned. Otherwise, nil is returned.

In the "if-then-else" form, it looks like
(i f predicate - form then - form e!.se-form)

predicate- form is evaluated, and if the result is non-nil, the then -form is evaluated and
its result is returned. Otherwise, the else-fonn is evaluated and its result is· returned.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 31 . Conditionals

If there arc more than three subforms, if assumes you want more than one else-jimn;
they are eyaluated sequentially and the result of the last one is returned, if the predicate
returns nil. There is disagreement as to whether this consistutes good programming style
or not.

cond Special Fonn
The cond special form consists of the symbol cond followed by several clauses. Each
clause consistS of a predicate form, called the antecedent, followed by zero or more
consequent forms.

(con d (antecedent consequent consequent. ..)
(anteeedellt)
(alltecedent cOl/sequent ...)
. ..)

The idea is that each clause represents a case which is selected if its antecedent is satisfied
and the antecedents of all preceding clauses were not satisfied. When a clause is selected,
its consequent forms are evaluated.

cond processes its clauses in order from left to right. First. the antecedent of the current
clause is evaluated. If the result is nil, cbnd advances to the next clause. Otherwise, the
cdr of the clause is treated as a list consequent forms 'Nhich are evaluaLed in order ti'om
left to right. After evaluating the consequents, cond returns without inspecting any
remaining cttuses. The value of the cond special form is the value of the last consequent
evalualed, or the value of the <tlltcCl.!delll if Lhere were Ill> cUllsequents in the clause. If
cond runs out of clauses, that is, if every antecedent eV<lluates to nil, and thus no case is .
selected, the value of the cond is nil.
Example:

(cond «zerop x)
(+ y 3»

((nu 11 y)
(setq y 4)
(cons x z»·

(z)

(t
105)

)

cond-every Special Form

; First clause:
; (ze rap x) is the antecedent.
; (+ y 3) is thl,! consequent.
;A clause with 2 consequents:
; this
; and this.
;A clause with no consequents: the antecedent is
; just z. Ifz is non-nil, it will be returned.
; An antecedent of t
; is always satisfied.
; This is the end of the condo

cond-every has the same syntax as cond, but executes every clause whose predicate is
satisfied, noL just the first. If a predicate is the symbol otherwise, it is satisfied if and
only if no preceding predicate is satisfied. The value returned is the value of the last
consequent form in the lasL clause whose predicate is satisfied. lvlultiple values are not
returned.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Conditionals 32 Lisp Machine Manual

and Special Form
(and forml form2...) evaluates the forms one at a time, from left to right. If any form
evaluates to nil, and immediately returns nil without evaluating the remaining forms. If
all the fonns evaluate to non-nil values, and returns the value of the last form.

and can be used in two different ways. You can use it as a logical and function, because
it returns a true value only if all of its arguments are true. So you can use it as a
predicate:

(if (and soerates-is-a-person
all-people-are-mortal)

(setq soerates-is-mortal t)}

I3ecause lhe order of evaluation is well-defined, you can do
(if (and (boundp 'x)

(eq x 'faa»
(setq y 'bar»

knowing that the x in the eq fcirm will not be evaluated if x is found to be unbound.

You can also use and as a simple conditional form:
(and (setq temp (assq x y)}

(rp"laed temp z»
(and bright-day

gloriolJs-day
(prine "It is a bright and glorious day.")}

Note: (and) = > t, which is the identity for the and operation.

or Special Form
(or fonnl fonn2 ...) evaluates the forms one by one from left to right. If a fonn evaluates
to nil, or proceeds to evaluate the next fonll. If there are no more forms, or returns nil.
I3ut if a fomz evaluates to a non-nil value, or immediately returns that value without

" evaluating any remaining forms.

As with and; or can be used either as a logical or function, or as a conditional.
(or it- i s-fi sh

it-is-fowl
(print "It is neither fish nor fowl."})

Note: (or) = > nil, the identity for this operation.

sal actq Special Form
selectq is a conditional which chooses olle of its clauses to execute by comparing the
value of a form against various constants, which are typically keyword symbols. Its form
is as follows:

(selectq key-Jorm
(test consequent consequent •.•)
(test consequent consequent •.• l
(test consequent cOl/sequent •..)
...)

The first thing selectq does is to evaluate key-fonn; call the resulting value key. Then
selectq considers each of the clauses in" turn. If key matches the clause's test, the

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 33 Conditionals

consequents of this clause are evaluated, and selectq returns the value of the last
consequent. If there arc no matches, selectq returns nil.

A test may be· any of:

1) A symbol

2) A number

3) A list

4) t or otherwise

If the key is eq to the symbol, it matches.

If the key is eq to the number, it matches. Only small
numbers (fiX1/UlI/s) will work.

If the key is eq to one of the clements of the list, then it
matches. The clements of the list should be symbols or
fixnums.

The symbols t and otherwise are special keywords which
match anything. Either symbol may be used, it makes no
difTerence; t is mainly for compatibility with Maclisp's
caseq construct. To be useful, this should be the last
clause ill the selectq.

Note that the tests are /lolevaluated; if you want them to be evaluated usc select rather
than selectq.
Example:

(selectq x
(faa (do-this»
(bar (do-that»
((LJ a z q u u X III U Ill) (d 0 - the - 0 the r - t hi n 9))
(otherwise (ferrar nil "Never heard of ~S" x»)

is equivalent to
(cond «eq x 'faa) (do-this»

«eq x 'bar) (do-that»
«memq x '(baz quux mum» (do-the-other-thing»
(t (ferror nil "Never heard of ~S" x»)

Also see defselect (page 134), a special form for defining a function whose body is like a
selectq.

select Special Form
select is the same as selectq, except that the elements of the tesls are evaluated before
they are used.

This creates a syntactic ambiguity: if (bar bazl is seen the first clement of a clause, is it
a list of two forms, or is it one form? select interprets it as a list of two fOlIDS. If you
want to have a clause whose test is a single form, and that form is a list, you have to
write it as a list of one form.
Example:

(sel ect (frob x)
(foo 1)
({bar baz) 2)
({(current-frob» 4)
(otherwise 3»

is equivalent to

DSK:LMMAN;FD.FLO 82 16-MAR-81

Conditionals 34 Lisp Machine Manual·

(let «var (frob x»)
. (cond «eq var fool 1)

selector Special Form

«or (eq var bar) (eq var baz» 2)
«eq var (current-frob» 4)
(t 3»)

selector is the same as select, except that you get to specify the function used for the
comparison instead of eq. For example,

,(se1ecto~ (frob x) equal
« '(one. two» (frob-one x»
«'(three. four» (frob-three x»
(otherwise (frob-any x»)

is equivalent to
(let «var (frob x»)

(cond «equal var '(one. two» (frob-one x»
«equal var '(three. four» (frob-three x)')
(t (frob-any x»»

d1 spatch Special Form
(dispatch byte-specifier number clauses ...) is the same as select (not selectq), but the key
is obtained by evaluating (Idb byte-specifier I/uinber). byte-::.pecifier and llulI/ber are both
evaluated. Byte specifiers and Idb are explained on page 94.
Example: '

(princ (dispatch 0202 cat-type
(0 "Siclluese.")
(1 "Persian.")
(2 "Alley.")
(3 (ferror nil

"-S is not a known cat type."
. cat-type»»

It is not necessary to include all possible values of the, byte which will be dispatched on.

selectq-every SpecmlForm
selectq-every has the same syntax as selectq, but, like cond-every, executes every
selected clause instead of just the first one. If an otherwise clause is present, it is
selected if and only if no preceding clause is selected. The value returned is the value of
the last form in the last selected clause. Multiple values arc not returned. Example:

(selectq-every animal
«cat dog) (setq legs 4»
«bird man) (setq legs 2»
«cat bird) (put-in-oven animal»
«cat dog man) (beware-of animal»)

caseq Special Form
The caseq special form is provided for Maclisp compatibility. It is exactly the same as
selectq. This is not perfectly compatible with Maclisp, because selectq accepts otherwise
as well as t where caseq_ would not accept otherwise, and because Maclisp does some
error-checking that selectq does not. Maclisp programs that use caseq will work
correctly so long as they don't use the symbol otherwise as the key.

DSK:LMMAN;FD.FLO 82 16-MAR-81

'\
i

Lisp Machine Manual 35 Iteration

4.2 Iteration

do Special Fonl1
The do special form provides a simple generalized iteration facility, with an arbitrary
number of "index variables" whose values are saved when the do is entered and restored
when it is left, i.e. they are bound by the do. The index variables are used in the
iteration performed by do. At the beginning, they are initialized to specified values, and
then at the end of each trip around the loop the values of the index variables are
changed according to specified rules. do allows the programmer to specify a predicate
which determines when the iteration will terminate. The value to be returned as the result
of the form may. optionally. be specified.

do comes in two varieties.

The' more general. so-called "new-style" do looks like:
(do ((I'ar illil repeal) ...)

(end-lest eXil-foml ...)
body . ..)

The first item in the form is a list of zero or more index variable specifiers. Each index
vilriable specifier is a list of the name of a variable var. an initial value form illit. which
defaults to nil if it is omitted. and a repeat value form repeat. If repeat is omitted, the
rar is not changed bet\\een repetitions.

An index variable specifier can also be just the !lame of a variable. raliter lhan a list. In
this case. the variable has an initial value of nil. and is not changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of the first
iteration, .all the init forms arc evaluated, then the vars are bound to the values of the
illit forms. their old values being saved in the usual way. Note that the init forms are
evaluated before the vars are bound, i.e. lexically outside of the do. At the beginning of
each succeeding iteration those vars that have repeat forms get set to the values of their
respective repeat forms. Note that all the repeat forms are evaluated before any of the
vars is set

TIle second element of the do-form is a list of an end-testing predicate form end-test, and
zero or more forms, called the exit-fo171/S. This resembles a cond clause. At the
beginning of each iteration, after processing of the variable specifiers, the end-test is
evaluated. If the result is nil. execution proceeds with the body of the do. If· the result
is not nil, the exit-forms are evaluated from left to right and then do returns. The value
of the do is the value of the last exit-foml, or nil if there were no exit-forms (flat the
value of the end-test as you might expect by analogy with cond).

Note that the e1ld-lest gets evaluated before the first time the body is evaluated. do first
in itializes the variables from the iI/it fOims. then it checks the end-test, then it processes
the body, lhell it deals with the repeat forms, then it tests the end-lest again, and so on.
If the end-test returns a non-nil value the first time, then the body will never be
processed.

DSK:LMMAN;FD.FLO 82 16~MAR-81

Iteration 36 Lisp Machine Manual

If the second clement of the form is nil, there is no elld-leS! nor eXil-/onlls, and the body
of the do is executed only once. [n this type of do it is an error to have repeals. This
type of do is no more powerful than let; it is obsolete and provided only for Maclisp
compatibility.

If the second clement of the fonn is (nil), the end-test is never true and there are no
exit-folms. The body of the do is executed over and over. The infinite loop can be
terminated by lise of return or *throw.

If a return special form is evaluated inside the body of a do, then the do immediately
stops, unbinds its variables, and returns the values given to return. See page 41 for more
details about return and its variants. go special forms (sec page 41) can also be lIsed
inside the body of a do and they mean the same thing that they do inside prog fOlms,
but we discourage their use since they complicate the control structure in a hard-to
understand way.

The other, so-called "old-style" do looks like:
(do l'ar illil repeal end-test body . ..)

The first time through the loop I'ar gets the value of the illil form; the rem(lll1ll1g times
through the loop it gets the vallie or the repeat form, which is re-evaluated each time.
Note that the iflit rorm is evaluated before I'a,. is bound, i.e. kxically olilside of the do.
Each time arollnd the loop, after var is set, md-Iesl is evaluated. I f it is non-nil, the do
finishes and returns nil. If the end-lest evaluated to nil, the body of the loop is executed.
As with the new-style do, return alld go may bclIsed in the body, and lhey have the
s,-une meaning.

Examples of the older variety of do:
(setq n (array-length faa-array»
(do i 0 (1+ i) (= i n)

(aset 0 faa-array i)} ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f(car zz)})))

; this applies f to each element ofx
; continuously until freturns zero.
; Note that the do has no body.

return fOlnlS are often useful to do simple searches:
(do i 0 (1+ i) (= i n) ; Iterateoverthelengthoffoo-array.

(and (= (aref faa-array i) 5} ;lfwefindanelementwhich
; equals 5,

(return i))) ; then return its index.

Examples of the new form of do:
(do ((i 0 (1 + i)} ; This is just the same as the above example,

(n (array-length faa-array)})
((= in» ; but written as a new-style do.

(aset 0 foo-array i» ; Note how thesetq is avoided.

DSK:LMMAN;f<'D.FLO 82 16-MAR-81

Lisp Machine Manual 37 Iteration

; z starts as list and is cdr'ed each time. (do «z list (cdr z»
(yother-list)
(x»

; y starts as other-list, and is unchanged by the do.
; x starts as nil and is not changed by the do.

(n il)
body)

; The end-test is nil, so this is an infinite loop.
; Presumably the body uses return somewhere.

The constmction
(do «x e (cdr x»

(oldx x x»
«null x»

body)
exploits parallel assignment to index variables. On the first iteration, the vallie of old x is
whatever value x had before the do was entered. On succeeding iterations, oldx contains
the value that x had on the previous iteration.

In either form of do, the body may contain no forms at all. Very often an iterative
algoriLhm can be most clearly expressed entirely in the repeals and exit-Jonlls of a new
style do, and the body is empty.

(do «x x (cdr x»
(y y (cdr y»
(z nil (con~ (f x y) z»)

{(or (null x) (null y»
(nl'evel'se z»

)

is like (map li s t ' f x y) (see page 45).

;exploits parallel assignment.

;typical usc ofnreverse.
;no do-body required.

Also see loop (page 204), a general iteration facility based on a keyword syntax rather than a list
stmcture syntax.

do-named Special Fonn
Sometimes· one do is contained inside the body of an outer do. The return function
always returns from the innermost surrounding do, but sometimes you want to return
from an outer do while within an inner do. You can do this by giving the Quter do a
name. You use do-named instead of do for the outer do, and usc return-from (see
page 42), specifying that name, to return from the do-named.

The syntax of do-named is like do except that the symbol do is immediately followed by
the name, which should be a symbol.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Iteration 38

Example:
{do-named george {{a 1 (1+ a»

(d • f 00))

{(> a 4) 7)
(do ({c b (cdr c»)

{ (n u llc))

(return-from george (cons b d)
...))

Lisp Machine IVfanual

If the symbol t is used as the name, then it will be made "invisible" to returns; that is,
returns inside that prog will return to the next outermost level whose name is not t.
(return-from t ...) will return from a prog named t. This feature is not intended to be
used by user-written code; it is for macros to expand into.

progs and loops can have names just as dos can. Since the same functions are used to
return from all of these forms, all of these names are in the same name-space; a return
returns from the innenl10st enclosing iteration form, no matter which of these it is, and
so you need to use names if you nest any of them within any other and want to return to
an outer one from inside an inner one.

dot imes Special Form
dotimes is a convenient abbreviation for the most common integer iteration. (dotimes
(index CUll/It) bod)' ...) performs bud)' the number of times given by the value of count,
wilh index bOllnd to 0, 1, cle. on sllccessive iterations.
Example:

(dotimes (i (II m n)
(frob i»

is equivalent to:
(do ((i a (1+ i»

(count (II m n»)
((~ i count»

(frob i»
except that the name count is not used. Note that i takes on values starting at zero
rather than one, and that it stops before taking the value (/ / m n) rather than after.
You can usc return and go inside the body, as with do.

dol 1st Special Fonn
dolist is a convenient abbreviation for the most common list iteration. (dolist (item list)
body ...) performs body once for each element in the list which is the value of list, with
item bound to the successive clements.
Example:

{dolist (item (frobs fool)
(mung item»

is equivalent to:

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 39

(do ((1st (frobs faa) (cdr 1st»
(item))

((null 1st)}
(setq item (car 1st)}
(mung item))

Iteration

except that the name 1st is not used. You can use return and go inside the body, as
with do.

keyword-extract Special Fonn
keyword-extract is an aid to writing Cunctions which take keyword arguments in the
standard fashion. The form·

(keyword-extract key-list iteratioll-var
keywords flags otlIer-c1auses . ..)

will parse the keywords out into local variables of the n.mctiol1. key-list is a form which
evaluates to the list of keyword arguments; it is generally the fUl1ction's &rest argument.
iteration-var is a variable used to iterate over the list; sometimes othel~clallses will use the
form

(car (setq iteration-I'ar (cdr iteration-var}»
to extract the next element of the list. (Note that this is not the same as pop.)

keywords defines the symbols which are keywords to he fi)lIowed by an argument. Each
ciement of keywords is either the name of a local variable which receives the argument
and is also the keyword, or a list of the keyword and the variable, for use when they are
different or the keyword is not to go in the keyword padagc. Thus if keywords is (foo
(ugh bletch) bar) then the keywords recognized will be :foo, ugh, and :bar. If :foo is
specified its argument will be stored into foo. If :bar is specified its argument will be
stored into bar. If ugh is specified its argument will he stored into bletch.

Note that keyword -extract docs not bind these local variables; it assumes you will have
done that somewhere else in the code that containstlle keyword-extract form.

flags defines the symbols which arc keywords not followed by an argument. If a flag is
seen its corresponding variable is set to 1. (You are assumed to have initialized it to nil
when you bound it with let or &aux.) I\s in keywords, an clement of flags may be either
a variable from which the keyword is deduced, or a list of the . keyword and the variable.

If there are any other-clauses, they are selectq clauses selecting on the keyword being
processed. These can be used to do special processing of certain keywords for which
simply storing the argument into a variable is not good enough. After the olher-clauses
there will be an otherwise clause to complain about any undefined keywords found in
key-list.

prog Special Forni
prog is a special fOim which provides temporary variables, sequential evaluation of forms,
and a "goto" facility. 1\ typical prog looks like:

DSK:LMMI\N;FD.FLO 82 16-MAR-81

[teration 40

(p rog (var/I'arl (l'arJ illil3) var4 (var5 init5))
tagl

tag2

)

statementl
statement2

statement3

Lisp Machine Manual

The first subform of a prag is a list of variables, each of which may optiolTally have an
initialization fotm. The first thing evaluation of a prag fonn does is to evaluate all of the
;lI;t fonns. Then each variable that had an illil form is bound to its value, and the
variables that did not have an illit form arc bound to nil.
Example:

(prog «a t) b (c 5) (d (car '(zz . pp»»
<body>
)

The initial value of a is t. that of b is nt/, that of c is the fixnllm 5, and that of d is
the symbol zz. The binding and initialization of the variables is done in parallel: that is,
all the initial values arc computed before any of the variables arc changed. prag* (see
page 41) is the same as prag except that this initialization is sequential rather than
parallel.

The part of a prog after the variable list is called the . body. Each clement of tIle body is
either a ~ymbo1. in which case it is called a lag, or anything else (almost always a list),
in which case it is called a stalement.

After prog binds the variables, it processes each form in its body sequentially. tags are
skipped over. statements are evaluated, and their returned values discarded. If tIle end of
the body is reached, the prag returns nil. However, two special fonns may be used in
prog bodies to alter the flow of control. If (return x) is evaluated. prog stops processing
its body, evaluates x, and returns tIle result. [f (go lag) is evaluated, prog jumps to tl1e
part of the body labelled with the lag, where processing of the body is continued. tag is
not evaluated. return and go and their variants are explained fully below.

The compiler requires that go and return fonns be lexically within the scope of tl1e prog;
it is not possible for a function called from inside a prag body to return to the prag.
That is. tl1e return or go must be inside the prog itself, not inside a function called by
tl1e prog. (This restriction happens not to be enforced in the interpreter, but since all
programs are eventually compiled, tl1e convention should be adhered to. The restriction
will be imposed in future implementations of tl1e interpreter.)

See also the do special fonn, which uses a body similar to prog. TIle do, *catch, and
*thraw special forms are included in Lisp Machine Lisp as an attempt to encourage goto
less programming style, which often leads to more readable, more easily maintained code.
The programmer is recommended to use these functions instead of prag wherever
reasonable.

If the first sub form of a prog is a non-nil symbol (rather than a variable list), it is tl1e
name of the prog, and return-from (see page 42) can be used to return from it. See
do-named, page 37.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 41

Example:
(P I' a 9 (x Y z) ; x, y, z arc prog variab les - temporaries.

(setq y (car w) z (cdr w» ;wisafreevariable.
loop

(cond «null y) (return x»
«null z) (go err»)

rejoin

err

prog* Special Form

(setq x (cons (cons (car y) (car z»
x))

(setq y (cdr y)
z (cdr z»

(go 1 oop)

(break are-you-sure? t)
(setq z y)
(go rejoin»

Iteration

The prog* special form is almost the same as prog. The only difference is that the
binding and initialization of the temporary variables is done sequentially, so each one can
depend on the previolls ones. For example,

(prog* «y z) (x (car y»)
(return x)}

IclUfnS the car of the value of z.

go Special Fontl
The (go lag) special form is used to do a "go-to" within the body of a do or a prog.
The lag must be a symbol. It is not evaluated. go transfers control ta the point in the
body labelled by a tag eq to. the one given. If there is no such tag in the body, the
budies of lexically containing progs and dos (if any) are examined as well. If no tag is
found, an error is signalled.

Example:
(prog (x y z)

(setq x somefrob)
loop

do something
(if some predicate (go endtag»
do something more
(if (minusp x) (go loop»

endtag
(return z»

return Special Fonn
return is used to exit from a prog-Iike special form (prog, prog*, do, do-named,
dotimes, dolist, loop, etc.) The values of return's arguments are returned by the prog as
its values.

In addition, break (sec page 451) recognizes the typed-in form (return value) specially. If
this form is typed at a break, value will be evaluated and returned as the value of break.

DSK:LMMAN;FD.FLO 82 16-MAR-81

• I
,

Iteration 42 Lisp Machine Manual

If not specially recognized by break, and not inside a prog-like form, return will cause
an error.
Example:

(do ((x x (cdr x»
(n 0 (* n 2»)

((null x) n)
(cond ((atom (car x»

(setq n (1+ n»)
((memq (caar x) '(sys boom bleah»
(return n»»

Note that the return form is very unusual: it docs not ever return a value. A return
form may not appear as an argument to a regular function, but only at the top level of a
prog or do, or within certain special forms such as conditionals which arc within a prog
or do. A return as an argument to a regular function would be not only useless but
possibly meaningless. The compiler does not bother to know how to compile it correctly
in all cases. The same is true' of go.

return is usually used with one argument, to return one value, but it can also be used
with llIultiple arguments, to return multiple values from a prog or do. For example,

(defun assqn (x table)
(do ((1 table (cdr 1»

(n 0 (1+ n»)
((null 1) nil)

(if (eq (caar 1) x)
(return (car 1) n»»

This function is like assq, but it retuflls an additional value which is the index in the
table of the entry it found. See section 3.4, page 26 for more information.

return-from Special FOIm
A return-from form looks like (return-from name fonnl fOl"m2 ...). The fonns are
evaluated, and then arc returned from the innermost containing prog-like special form
whose name is name. See the description of do-named (page 37) in which named dos
and progs are explained.

return-list list
list mllst not be nil. This function is like return except that the prog returns all of the
elements of list; if list has more then one clement, the prog docs a multiple-value return.

To direct the returned values to a prog or do-named of a specific name, use
(return - from name (return -list list» .

mult i P 1 a-va 1 ue- return Special Fonn
(multiple-value-return (function arg/ arg2 ...) applies the function to the arguments, and
returns from the current do or prog with the same values as jilllclioll returns. This
function is not very weIl-named; it is reaIly just a close relative of return.

Also sec defunp (page 128), a variant of defun that incorporates a prog into the function body,

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 43 Non-Local Exits

4.3 Non-Local Exits

·catch Special Fonn
*catch is a special form used with the ·throw function to do non-local exits. A *catch
form looks like (*catch tagJorm). First tag is evaluated; the. result is called the "tag" of
the *catch. Then Jorm is evaluated and its value is returned, except that if, during the
evaluation of Joml, the function *throw is called with the same tag as the tag of the
*catch, then the evaluation of Jorm is aborted, and the *catch fonn immediately returns
the value that was the second argument to *throw without further evaluating Jonn.

The fag's are used to match up *throw's with *catch's. (*catch 'faa Jorl/l) will catch a
(~throw 'faa Jorlll) but not a (*throw 'bar jiJ17I1). It is an error if *throw is done when
there is no suitable ·catch (or catch-all; see below).

The values t and nil for tag are special: a ·catch whose tag is one of these values will
catch throws to any tag. These are only for internal use by unwind-protect and catch
all respectively. The only difference between t and nil is in the error checking; t implies
that aftcr a "cleanup handler" is cxecuted control wiII be thrown again to the same tag,
thereforc it is an error if a specific catch for this tag does not exist highcr up in the stack.
With nil, the error check isn't done.

*catch returns up to four values; trailing null values are not returned for reasons of
microcode simplicity, but the values not returned will default to nil if !l1ey arc received
with the multiple-value or multiple-value-bind .spccial forms. If the catch completes
normally, the first value is the valuc of form and the scc.;onli is nil. If a *throw occurs,
the first value is the second argument to *throw, and the second valuc is the first
argument to ·throw, the tag thrown to. Thc third and tourth values are the third and
tourth arguments to *unwind-stack (see page 44) if that was used in place of *throw;
otherwise thcse values are nil. To summarize, thc four values rcturncd by *catch are the
value, the tag, the active-framc-count, and thc action.
Example

(*catch 'negative
(mapcar (function (lambda (x)

y»

(cond (minusp x)
(*throw 'negative x»

(t (f x» »)

which returns a list of f of each element of y if they are all positive, otherwise the first
negative member ofy.

*throw fag value
*throw is used with *catch as a structured non-local cxit mechanism.

(*throw tag x) throws the value of x back to the most recent ·catch labelled with tag or
t or nil. Other ·catches are skipped over. Both x and fag arc evaluated, unlike the
Maclisp throw function.

The values t, nil, and 0 for lag are reserved and used for internal purposes. nil may not
be used, because it would cause an ambiguity in the returned valucs of *catch. t may
only be used with ·unwind-stack. 0 and nil are used internally when returning out of
an unwind-protect.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Non-Local Exits 44

See the description of *catch for further details.

catch Macro
th row ,"'[acro

Lisp Machine Manual

catch and throw arc provided only for Maclisp compatibility. (catch foml tag) is the
same as (*catch'tagfonn). and (throwfonll tag) is the same as (*throw'tagfimn). The
forms of catch and throw without tags arc not supported.

·unw; nd-stack tag mlue active-jrame-coullt action·
This is a generalization of *throw provided for program-manipulating programs such as
the error handler.

tag and value arc the same as the corresponding arguments to *throw.

/\ lag of t in vokes a special feature whereby the entire stack is unwound, and then the
fUllction action is called (sec below). During this process unwind- protects receive control,
but catch -ails do not. This feature is provided fur the benefit of system programs which
want to unwind a stack completcly~

active-fralllc-coullt, if non-nil, is the number of frames to bc unwound. The definition of
a "frame" is implcll1el1lation-depcndent. If this counts down to zero before a suitable
*catch is found. the *unwind -stack terminates and thaI framc rcturns l'alue to whoever
called it. This is similar to Maclisp's freturn function.

If llction is non-nil, whenevcr the *unwind-stack would be ready to temlinate (either due
to actil'e-jiwlle-coullt or due to tag being caught as in *throw), instead action is called
with one argument, value. If tag is t, meaning throw out thc whole way, then the
function action is not allowed to return. Otherwise the function action may return and its
value will be returned instead of value from tile *catch-or from an arbitrary fum::tion if
active-frame-count is in use. In this case the *catch does not return multiple values as it
normally does when ti}rown to. Note that it is often Llseful for action to be a stack-group.

Note that if both active-franze-coullt and action are nil, ·unwind-stack is identical to
*throw.

unw; nd-protect Special Fonn
Sometimes it is necessary to evaluate a form and make sure tilat certain side-effects take
place after the form is evaluated; a typical example is:

(progn
(turn-on-water-faucet)
(hairy-function 3 nil 'faa)
(turn-off-water-faucet))

The non-local exit facility of Lisp creatcs a situation in which the above code won't work,
however: if hairy-function should do a *throw to a *catch which is outside of the
progn form, then (turn-off-water-faucet) will never be evaluated (and the faucet will

. presumably be left running). This is particularly likely if hairy-function gets an error and
the user tells tile error-handler to give up and flush tile computation.

In order to allow the above program to work, it can be rewritten using unwind-protect
as follows:

DSK:LMMAN;FD.FLO 82 16-MAR-81

I -isp Machine Manual 45

(unwind-protect
(progn (turn-on-water-faucet)

(hairy-function 3 nil 'fool)
" (turn-off-water-faucet»

Mapping

If hairy-function docs a *throw which attempts to quit out of the evaluation of the
unwind-protect, the (turn-off-water-faucet) fonn will be evaluated in between the time
of the *throw and the time at which the *catch returns. [f the progn returns normally,
then the (turn-off-water-faucet) is evaluated, and the unwind-protect returns the result
of the progn.

One thing to note is that the body of an unwind-protect cannot return multiple values.
[I'his ought to be fixed, but it's hard.]

The general t(mn of unwind-protect looks like
(unwi nd-protect prat{!cted-jann

cleanup-jannl
cleanup-jol1n2
...)

protectcd-jonll is evaluated, and when it returns or when it attempts to quit out of the
unwind-protect, the cleallup-!orms arc evaluated. The value of the unwind-protect is
the value of protected-jOlm.

catch-all Macro
(catch-all ji)/"/II) is like (*catch sOllie-tag jorm) except that it will catch a *throw to any
tag at all. SilH.:e the tag thrown to is the second returned value, the caller of catch -all
may continue throwing to that tag if he wants. The one thing that catch-all will not
catch is a *unwind-stack with a tag of t. catch-all is a macro which expands into
*catch with a lag of nil.

If you think you want this, most likely you are mistaken and you really want unwind
protect.

4.4 Mapping

map fen &rest lists
mapc fell &rest lists
map 11 s t fen &rest lists
mapcar fen &rest lists
map con fen &rest lists
mapcan fen &rest lists

Mapping is a type of iteration in which a fi.l11ction is successively applied to pieces of a
list. There are several options for the way in which the pieces of the list are chosen and
for what is done with the results returned by the applications of the function.

For example, mapcar operates on successive elements of the list. As it goes down the
list, it calls the function giving it an clement of the list as its one argument: first the
car, then the cadr, then the caddr, etc., continuing until the end of the list is reached.
The value returned by mapcar is a list of the results of the successive calls to the
function. An example of the use of mapcar would be mapcar'ing the fhnction abs over
the list (1 -2 -4.5 6.0e15 -4.2), which would be written "as (mapcar (function abs) '(1

DSK:LMMAN;FD.FLO 82 16-MAR-81

Mapping 46 I jsp Machine Manual

-2 -4.5 6.0e15 -4.2». The result is (1 2 4.5 6.0e15 4.2).

In general, the mapping functions take any number of arguments. For example,
(mapcar f xl x2 ... XIl)

I n this case f must be a function of II arguments. mapcar wilt proceed down the lists xl,
x2. XII in parallel. The first argument to f will come from xl ,the second from x2,
etc. The iteration stops as sobnas any of the lists is exhausted.

There arc five other mapping functions besides mapcar. maplist is like map car except
that the function is applied to the list and successive cdr's of that list rather than to
slIccessive clements of the list. map and mapc are like map list and mapcar respectively,
except that they don't relurn any useful value. These functions arc used when the
function is being called merely for its side-effects, rather than its returned· values.
rnapcan and mapcon arc like mapcar and maplist respectively, except lhat they combine
the results of the function using nconc instead of list. That is, rnapcon· could have been
defined by

(defun mapcon (f x y)
(apply 'nconc (maplist f x y»)

Of course, this definition is less general than the real one.

Sometimes a do or n str<ligiltfilrwnrd recursion is pl'efcrable to a map: however, the
mapping ttl11ctions should be used wherever they naturally apply because this increases the
clarity of the code. .

Often f will be a lambda-expression, rather thall a symbol; for example,
(mapcar (function (lambda (x) (cons x something)})

some-list)

The fimctional argument . to a mapping function must be a function, acceptable to
apply-it cannot be a macro or the name of a special tOlm.

DSK:LMMAN;FD.FLO 82 16-MAR-81

Lisp Machine Manual 47

Here is a [able showing the relations between the six map functions:

returns

applies function to

successive.1 successive 1
sublists 1 elements 1

---------------+--------------+---------------+
its own 1 1
second map 1 mapc 1

argument 1 1
---------------+--------------+---------------+

list of the
function
results

maplist mapcar

---------------+--------------+---------------+
nconc of the

function
resu lts

map con mapcan

---------------+--------------+---------------+

t-,:Iapping

There are also functions (rnapatoms and rnapatoms-all) for mapping over all symbols in
certain packages. See the explanation of packages (chapter 23, page 345).

DSK:LMMAN;FD.FLO 82 16-MAR-81

Manipulating List Structure 48 Lisp Machine Manual

5. 1\1anil)uJating List Structure
This chapter discusses functions that manipulate conses, and higher-level structures made up

of conses such as lists and trees. It also discusses hash tables and resources, which arc related
facilities.

A cons is a primitive Lisp data object that is extremely simple: it knows about two other
objects, called its car and its cdr.

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A typical list
is a chain of conses: the cdr of each is the next cons in the chain, and the cdr of the last one is
the symbol nil. The cars of each of these conses are called the e1ell/fllls of the list. A list has
one clement for each cons; the empty list, nil, has no clements at aiL Here are the printed
representations of some typical lists:

(faa bar) ;1his list has two elements.
(a (b c d) e) ;1his list has three elements.

Note that the second list has three clements: a, (b c d), and e. The symbols b, c, and dare
I/ot clements of the list itself. (They are clements of the list which is the second clement of the
original list.)

A "dotted list" is like a list except that the cdr of the last cons does not have to be nil. This
name comes from the printed representation, which includes a "dot" character. Here is an
example:

(a b • c)
This "dotted list" is made of two conses. The car of the first COilS is the symbol a, and the cdr
of the first cons is the second cons. The car of the second cons is the symbol b, and the cdr of
the second cons is the symbol c.

A tree is any data structure made up of conses whose cars and cdrs are other conses. The
following are all printed representations of trees:

(faa. bar)
«a b) (c d»
«a. b) (c d e f (9 . 5) s) (7 . 4»

These definitions are not mutually exclusive. Consider a cons whose car is a and whose cdr is
(b (c d) e). Its printed representation is

(a b (c d) e)
It can be thought of and treated as a cons, or as a list of four elements, or as a tree containing
six conses. You can even think of it as a "dotted list" whose last cons just happens to have nil
as a cdr. Thus, lists and "dotted lists" and trees are not fundamental data types; they are just
ways of thinking about structures of conses.

A circular list is like a list except that the cdr of the last cons, instead of being nil, is the
first cons of the list. This means the the conses are all hooked together in a ring, with the cdr of
each cons heing the next cons in the ring. While these arc perfectly good Lisp objects, and there
arc functions to deal with them, many other functions will have trouble with them. Punctions
that expect lists as their arguments often iterate down the chain of conses waiting to see a nil,
and when handed a circular list this can cause them to compute forever. The printer (see page
294) is one of these functions; if you try to print a circular list the printer will never stop

DSK:LMMAN;FD.CON 130 16-MAR-81

I -isp Machine Manual .49 Conses

producing text. You have to be careful what you do with circular lists.

The Lisp Machine internally uses a storage scheme called "cdr coding" to represent conses.
This scheme is intended to reduce the amount of storage used in lists. The use of cdr"coding is
invisible to programs except in terms of storage efficiency; programs will work the same way
whether or not lists are cdr-coded or not. Several of the functions below mention how they deal
with cdr-coding. You can completely ignore all this if you want. However, if you are writing a
program that allocates a lot of conses and you are concerned with storage efficiency, you may
want to learn about the cdr-coded representation and how to control it. The cdr-coding scheme is
discllssed in section SA, page 59.

5.1 Conses

car x

cdr x

Returns the car of x.'
Example:

(car '(abc» => a

Returns the cdr of x.
Example:

(cdr '(a b c» => (b c)

Officially car and cdr are only applicable to conses and locatives. However, as a matter of
convenience, car and cdr of nil return nil.

c ... r x
All of the compositions of up to four car's and cdr's are defined as functions in their
own right. 'I11e names of these functions begin with "c" and end with "r", and in.
between is a sequence of "a'''s and "d"'s corresponding to the composition performed by
the function.
Example:

(cddadr x) isthesameas (cdr (cdr (car (cdr x»»
The error checking for these functions is exactly the same as for car and cdr above.

cons x y
cons is the primitive function to create a new COilS, whose car is x and whose cdr is y.
Examples:

(cons 'a 'b) => (a . b)
(con s 'a (co n s 'b (cons 'c nil») = > (a b c)
(cons 'a '(b cd» => (a b c d)

ncons x
(ncons x) is the same as (cons x nil). The name of the function is from "nil-cons".

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lists 50 Lisp Machine Manual

xcons x y
xcons ("exchanged cons") is like cons except that the order of the arguments is reversed.
Example:

(xcons 'a 'b) => (b . a)

cons-in-area x y area-number
This function creates a cvns in a specific area. (Areas are an advanced feature of storage
management, explained in chapter IS; if you aren't interested in them. you can safely
skip all this stuff). The first two arguments arc the same as the two arguments to cons,
and the third is the number of the area in which to create the cons.
Example:

(cons-in-area 'a 'b my-area) => (a . b)

ncons-in-area x area-number
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

xcons- in - area x y area-number
(xcons-in-area x)' area-number) = (cons-in-area), x area-number)

The oackquote reader macro facility is also generally useful for creating list stnlcture,
especially mostly-constant list structure, or forms constructed by plugging variables into a template.
It is documented in the chapter on macros; see chapter 17, page 191.

car-location COilS

car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location functiori; it is difficult because of the cdr-coding scheme (see
section 5.4, page 59).

5.2 Lists

length list
length returns the length of list. The length of a list is the number of clements in it.
Examples:

(length nil) => 0
(length '(a b cd)} => 4
(length '(a (b c) d» => 3

length could have been defined by:
(defun length (x)

(cond «atom x) O}

or by:
«1+ (length (cdr x)»} })

(defun length (x)
(do «n 0 (1+ n})

(y x (cdr y}»
« atom y) n) »

except that it is an error to take length of a non-nil atom.

DSK: LMMAN ;FD.CON 130 16-MAR-Sl

Lisp Machine Manual

fi rst list
second list
th i rd list
fourth list
fifth list
sixth list
seventh list

51 Lists

These functions take :l list as an argument, and return the first, second, etc. clement of
the list. first is identical to car, second is identical to cadr, and so on. The reason
these names arc provided is that they make more sense when. you arc thinking of the
mgument as a list rather than just as a cons.

rest1 list
rest2 list
rost3 list
r'ast4 list

restn returns the rest of the clements of a list, starting with clement Ii (counting the first
clement as the zeroth). Thus rest1 is identical to cdr, rest2 is identical to cddr, and so
on. The reason these names arc provided is that they make morc sense when you arc
thinking of the argument as a list rather than just as a cons.

nth 1l list
(nth II list) returns the fI'th clement of lis I, where the zeroth clement is the car of the
list
Examples:

{nth 1 '(foo bar gaek» ~> bar
(nth 3 '(foo bar gaek» => nil

Tf 11 is greater than the length of the list, nil is returned.

Note: this is not the same as the InterLisp function called nth, which is similar to but
not exactly the same as the Lisp lvlachine function nthcdr. Also, some people have used
macros and functions called nth of their own in their Maclisp programs, which may. not
work the same way; be careful.

nth could have been defined by:
{defun nth (n list)

(do «i n (l- i»

nthcdr 1l list

(1 li s t (c d r 1}»
«zerop i) (car 1»»

(nthcdr 1/ list) cdrs list 1l times, and returns the result
Examples:

(nthcdl' 0 '(a b e» => (a b c)
(nthcdr 2 '(a be» => (e)

In other words, it returns the /I'th cdr of the list. If Il is greater than the length of the
list, nil is returned.

This is similar to TnterLisp's function nth, except that the IntcrLisp function is one-based
instead of zero-based; sec the InterLisp manual for details. nthcdr could have been
defined by:

DSK:LMMAN;FD.CON lJO 16-MAR-81

Lists

(defun nthcdr (n list)
(do «i 0 (1+ i»

52

(list list (cdr list»)
«= n) list»)

Lisp Machine Manual

1 as t list-
last returns the last cons of list. If list is nil, it returns nil. Note that last is
unfortunately 1I0t analogous to first (first returns the first element of a list, but last
doesn't return the last element of a list); this is a historical artifact.
Example:

(setq x '(a bed»
(last x) => (d)
(rp1acd (last x) '(e f»
x => '(a b c d e f)

last could have been defined by:
(defun last (x)

1 i s t &rest args

(cond «atom x) x)
((atom (cdr x» x)
«last (cdr x») »

list constl1lcts and returns a list of its arguments.
Example:

(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4)

list could have been defined by:
(defun list (&rest args)

1 i st· &rest args

(let «list (make-list (length args»))
(do «1 list (cdr 1»

(a args (cdr a»)
«null a) list) .

(rp1aca 1 (car a»»)

list* is like list except that the last cons of the constructed list is "dotted". It must be
given at least one argument. .
Example:

(list* 'a 'b 'c 'd) => (a be. d)
111is is like

(cons 'a (cons 'b (cons 'c 'd»)

More examples:
(list* 'a 'b) => (a . b)
(list* 'a) => a

list-in-area area-number &rest args
list-in-area is exactly the same as list except that it takes an extra argument, an area
number, and creates the list in that area.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

I
J

Lisp Machine Manual 53 Lists

1ist*-1n-area area-number &rest args
list * - in - area is exactly the same as list* except that. it takes an extra argument, an area
number, and creates the list in that area.

make -11 s t length &rest options
This creates and returns a list containing length elements. length should be a fixnum.
optiolls are alternating keywords and values. The keywords may be either of the
following:

:area The value specifics in which area (see chapter. 15, page 177) the list
should be created. It should be either an area number (a fixnum), or nil
to mean the default area.

:initial-value The clements of the list will all be this value. It defaults to nil.

make-list always creates a cdr-coded list (see section 5.4, page 59).
Examples:

(make-list 3) => (nil nil nil)
(make-list 4 ':initial-value 7) => (7 7 7 7)

When make-list was originally implCmented, it took exactly two arguments: the area and
the length. This obsolete form is still supported so lhal old programs will continue to
work, but the new keyword-argumenl form is preferred.

circular-list &rest args
circular-list constructs a circular list whose elemcnts arc args, repcated infinitely.
circular-list is the same as list except that the list itself is used as the last cdr, instead of
nil. circular-list is especially useful with mapcar, as in the expression

(mapcar (function +) faa (Circular-list 5»
which adds each clement of foo to 5.

circular-list could have been defined by,
(defun circular-list (&rest elements)

(setq elements (copylist* elements»
(rplacd (last elements) elements)
elements)

copy11 st list &optional area
Returns a list which is equal to list, but not eq. copylist does not copy any elements of
the list: only the conses of the list itself. The returned list is fully cdr-coded (see section
5.4, page 59) to minimize storage. If the list is "dotted", that is, (cdr (last list)) is a
non-nil atom, this will be true of the returned list also. You may optionally specify the
area in which to create the new copy.

copyl1st* list &optional area
This is the same as copylist except that the last cons of the resulting list is never cdr
coded (see section 5.4, page 59). This makes for increased efficiency if you nconc
somelhing onto the list later.

DSK:LMMAN;FD.CON 130 16-MAR-81

Lists 54 Lisp Machine Manual

copyal ist list &optional area
copyalist is for copying association lis_ts (sec section 5.5, page 61). The list is copied, as
in copylist. Tn addition, each clement of list which is a cons is replaced in the copy by a
new cons with the same car and cdr. You may optionally specify the area in which to
create the new copy.

copy tree tree
copytree copies all the conses of a tree and makes a new tree with the same fringe.

reverse list
reverse creates a new list whose clements arc the clements of list taken
reverse d()es not modify its argument, unlike nreverse which is faster
its argument.
Example:

(reverse '(a b (c d) e)} => (e (c d) b a}
reverse could have been defined by:

nreversa .list

(defun reverse (x)
(do {(l x (cdr l})

(r nil
{cons (car 1) r»)

«nul1 1) r»)'

; scan down argument,
; putting each element
: ill to list. until
; no more elements.

in reverse order.
but does modify

nreverse reverses its argument, which should be a list. The argument is destroyed by
rplacd's all through the lisl{t:f. reverse).
Example:

(nrever~e '(a b c)} => (c b a)
nreverse could have been defined by:

(defun nreverse {x}
(cond «null x) nil)

({nreversel x nil»»

(defun nreversel (x y) ;auxiliaryfullction
(cond «null (cdr x)} (rplacd x y})

«nreversel (cdr x) (rplacd x y»)})
; ; this last call depends on order of argument evaluation.

Currently, nreverse does something inefficient with cdr-coded (sec section 5.4, page 59)
lists, because it just uses rplacd in the straightforward way. This may be fixed someday.
In the meantime reverse might be preferable in some cases.

append &rest lists
The arguments to append are lists. The result is a list which is the concatenation of the
arguments. The arguments are not changed (cf. ncone).
Example:

(append '(a b c) 'Cd e f) nil '(g» => (a bed e f g)
append makes copies of the conses of all the lists it is given, except for the last one. So
the new list will share the conses of the last argument to append, but all of the other
conses will be newly created. Only the lists are copied, not the elements of the lists.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

:'.

Lisp Machine Manual 55 Lists

A version of append which only accept~ two arguments could have been defined by:
(defun append2 (x y) . .

(cond «null x) y)
«cons (car x) (append2 (cdr x) y» »}

The generalization to any number of arguments could then be made (relying on ear of nil
being nil):

(defun append (&rest args)
(if « (length args) 2) (car args)

(append2 (car args)
(apply (function append) (cdr args}»}}

These definitions do not express the full functionality of append; the real definition
minimizes storage utilization by cdr-coding (see section 5.4, page 59) the list it produces,
using cdr-next except at the end where a full node is used to link to the last argument,
unless the last argument is nil in which Case cdl~llil is used.

neone &rest lists
neane takes lists as arguments. It returns a list which is the arguments concatenated
together. The arguments are changed, rather than copied. fcf. append, page 54)
Example:

{setq x '(a b c»
(setq y '{d e f}}
(neone x y) => (a bed e f)
x => (a bed e f)

Note that the value of x is now different, since its last cons has been rplaed'd to the
value of y. If the nennc form is evaluated again, it would yield a piece of "circular" list
structure, whose printed representation would be (a bed e f d e f d e f.;.), repeating
forever.

neane could have been defined by:
(defun ncone (x y)

(cond «null x) y)

nreconc x y

(t (rplacd (last x) y}
x} »

; for simplicity, this definition
; only works for 2 arguments.
;hook y onto x
; and return the modified x;

(nreeone x y) is exactly the same as {neone (nreverse x) y} except that it is more
efficient. Doth x and y should be lists.

nreeonc could have been defined by:
(defun nrecone (x y)

{cond «null x) y}
«nreversel x y)} })

using the same nreverse1 as above.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lists 56 Lisp Machine Manual

butlast list
This creates and returns a list with the same clements as list, excepting the last clement.
Examples:

(butlast '(a bed)) => (a b c)
(butlast '«a b) (c d))) => ((a b))
(butlast '(a)) => nil
(butlast nil) => nil

The name is from the phrase "all clements but the last".

nbutlast list
This is the destructive version of butlast: it changes the cdr of the second-to-Iast cons of
the list to nil. If there is no second-to-last cons (that is, if the list has fewer than two
clements) it returns nil.
Examples:

fi rstn /I list

(setq faa
(nbutlast
faa => (a
(nbutlast

'(abc
faa) =>
b c)
'(a)) =>

d))
(ab c)

nil

firstn returns a list of length II. whose clements are the first II clements of list. [f list is
fewer than 11 clements long, the remaining elements of the returned list will be nil.
Examp[e:

(firstn 2 '(a bed)) => (a b)
(firstn 0 '(a b cd)) => nil
(firstn 6 '(a bed» => (a bed nil nil).

nl eft /I list &optional tail
Returns a "tail" of list, i.e. one of the conses that makes up list, or nil. (nlett fl list)
returns the last n clements of list. [f n is too large, nleft will return list.

(nleft n list tail) takes cdr of list enough times that taking 11 more cdrs would yield tail,
and returns that. You can see that when tail is nil this is the same as the two-argument
case. If tail is not eq to any tail of list, nleft will return nil.

1 d i ff list sublist
list should be a list, and sublist should be one of the conses that make up list. Idiff
(meaning "list difference") will return a new list, whose elements are those elements of list
that appear before sublist.
Examples:

(setq x '(a bed e»
(setq y (cdddr x») => (d e)
(ldiff x y) => (a b c)
but
(ldiff '(a bed) '(c d» => (a bed)
since the sublist was not eq to any part of the list.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lisp Machine Manual 57 Alteration of List Structure

5.3 Alteration of List Structure

The functions rplaca and rplacd arc used to make alterations in already-existing list structure;
that is, to change the cars and cdrs of existing conses.

The stmcture is not copied but is physically altered; hence caution should be exercised when
using these functions, as strange side-effects can occur if portions of list structure become shared
unbeknownst to the programmer. The nconc, nreverse, nreconc, and nbutlast functions
already described, and the delq family described later, have the same property.

rplaca x y
(rplaca x y) changes the car of x to y and returns (the ll1odified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:

rplacd x y

(setq 9 '(a be»
(rplaca (c~r g) 'd) => (d c)
Now 9 => (a d c)

(rplacd x y) changes the cdr of x to)' and returns (the modified) x. x must be a cons
or a locative.)' may be any [jsp object.
Example:

(setq x '(a be»
(rplacd x'd) => (a . d)
Now x => (a . d)

subst /lew old tree
(subs! new old tree) substitutes nelV for all occurrences of old in tree, and returns the
modified copy of tree. The original tree is unchanged, as subst recursively copies all of
free replacing elements equal to old as it goes.
Example:

(subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane»))

=> (Shakespeare wrote (The Tempest»

subst could have been defined by:

(defun sub~t (new old tree)
(cond ((equal tree old) new) ;ifitemequaltoold,replace.

((a t om t r e e) t r e e) ;if no substructure, return argo
((con s (s u b s t new old (c art r e e)) ;otherwise recurse.

(subst new old (cdr tree)))
Note that this n.mction is not "destructive"; that is, it docs not change the car or cdr of
any already-existing list stmcture.

Note: certain details of subst may be changed in the future. It may possibly be changed
to usc eq rather than equal for the comparison, and possibly may subsLitute only in cars,
not in cdrs. This is still being discussed.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Alteration of List Structure 58 Lisp Machine Manual

nsubst flew old tree
nsubst is a destructive version of subst. The list structure of tree is altered by replacing
each occurrence of old with flew. nsubst could have been defined as

(defun nsubst (new old tree)
(cond «eq tree old) new)

«atom tree) tree)
{t

; Ifitem eq to old, replace.
;lfno substructure, return argo
;Otherwise, recurse.

subl is aUst tree

(rplaca tree (nsubst
(rplacd tree (nsubst
tree»)

new old (car tree»)
new old (cdr tree»)

sublis makes substitutions for symbols in a tree. The first argument to sublis is an
association list (see section 5.5, page 61). The second argument is the tree in which
substitutions are to be made. sublis looks at all symbols in the fringe of the tree; if a
symbol appears in the association list occurrences of it are replaced by the object it is
associated with. The argument is not modified: new conses are created where necessary
and only where necessary, so the newly created tree shares as much of its substructure as
possible with the old. For example, if no substitutions are made, the result is just the
old tree.
Example:

(sublis '«x. 100) (z . zprime»
'(plus x (minus 9 z x p) 4»

=> (plus 100 (minus 9 zprime. 100 p) 4)

sublis could have been defined by:
(defun sublis (alist sexp)

(cond «atom sexp)

nsubl isalist tree

(let «tern (assq sexp alist»)
(if tern (cdr tern) sexp»)

«let «car (sublis alist (car sexp»)
(cdr (sublis alist (cdr sexp»»

(if (and (eq (car sexp) car) (eq (cdr sexp) cdr»
sexp
(cons car cdr»»}}

nsublis is like sublis but changes the original tree instead of creating new.

nsublis could have been defined by:
(defun nsublis (alist tree)

(cond «atom tree)
(let «tern (assq tree alist»)

(if tern (cdr tern) tree»)
(t (rplaca tree (nsublis alist (car tree»)

(rplacd tree (nsublis alist (cdr tree))
tree»)

DSK:LMMAN;FD.CON 130 i6-MAR-81

Lisp Machine Manual 59 Cdr-Coding

5.4 Cdr-Coding

This section explains the internal data format used to store conses inside the Lisp Machine.
Casual users don't have to worry about this; you can skip this section if you want. It is only
important to read this section if you require extra storage efficiency in your program.

The usual and obvious internal representation of conses in any implementation of Lisp is as a
pair of pointers, contiguous in memory. If we call the amount llf storage that it takes to store a
Lisp pointer a "word", then" conses nonnally occupy two words. One word (say it's the first)
holds the car, and the other word (say it's the second) holds the cdr. To get the car or cdr of a
list, you just reference this memory location, and to change the car or cdr, you just store into
this memory location.

Very often, conses are used to store lists. If the above representation is used, a list of 11

elemcnt'l requires two times 11 words of memory: II to hold the pointers to the clements of the
list, and II to point to the next cons or to nil. To optimize this particular case of using COllses,
the Lisp Machine uses a storage representation called "cdr coding" to store lists. The basic goal is
to allow a list of II clements to be stored in only II locations, while allowing conses that are not
parts of lists to be stored in the usual way.

The way it works is that there is an extra two-bit field in every word of memory, called the
"cdr-code" field. There arc three meaningful values that this field can have, which arc called cdr
normal, cur-next, and cdr-nil. The· regular, non-compact way to store a cons is by two
contiguous words, the first of which holds the car and the second of which holds the cdr. In this
Cdse, the cdl code of the fir~t woru is cur-normal. (The Cdl c:udc or ule second word doesn't
matter; as we will see, it is never looked at.) The cons is represented by a pointer to the first of
the two words. When a list of 1/ clements. is stored in the most compact way, pointers to the 11

elements occupy 1/ contiguous memory locations. The cdr codes of all these locations are cdr-next,
except the last location whose cdr code is cdr-nil. The list is represented as a pointer to the first
of the II words.

Now, how are the basic operations on conses defined to work based on this data stmcture?
Finding the car is easy: you just read the contents of the location addressed by the pointer.
Finding the cdr is more complex. First you must read the contents of the location addressed. by
the pointer, and inspect the cdr-code you find there. If the code is cdr-normal, then you add
one to the pointer, read the location it addresses, and return the contents of that location; that is,
you read the second of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any more reading; that is, you return a pointer to the
next word in then-word block. If the code is cdr-nil, you simply return nil.

If you examine these mles, you will find that they work fine even if you mix the two kinds
of storage representation within the same list. There's no problem with doing that.

How about changing the stmcture? Like car, rplaca is very easy; you just store into the
location addressed by the pointer. To do an rplacd you must read the location addressed by the
pointer and eX<lmine the cdr code. If the code is cdr-normal, you just store into the location one
greater than that addressed by the pointer; that is, you store into the second word of the two
words. But if the cdr-code is cdr-next or cdr-nil, there is a problem: there is no memory cell
that is storing the cdr of the cons. That is the cell that has been optimized out; it just doesn't
exist.

DSK:LMMAN;FD.CON 130 16-MAR-81

Cdr-Coding 60 Lisp Machine Manual

This problem is dealt with by the use of "invisible pointers". An invisible pointer is a special
kind of pointer, recognized by its data lype (Lisp Machine pointers include a data type field as
well as an address field). The way they work is that when the Lisp Machine reads a word from
memory, if that word is an invisible pointer then it proceeds to read the word pointed to by the
invisible pointer and lise that word instead of the invisible pointer itself. Similarly, when it writes
to a location, it first reads the location, and if it contains an invisible pointer then it writes to the
location addressed by the invisible pointer instead. (111is is a somewhat simplified explanation;
actually there are several kinds .of invisible pointer that are interpreted in different ways at
different times, used for things other than the cdr coding scheme.)

Here's how to do an rplacd when the cdr code is cdr-next or cdr-nil. Call the location
addressed b.y the first argument to rplacd I. First, you allocate two contiguous words (in the
same area that 1 points to). Then you store the old contents of 1 (the car of the cons) and the
second argument to rplacd (the new cdr of the cons) into these two words. You set the cdr-code
of the first of the two words to cdr-normal. Then you write an invisible pointer. pointing at the
first of the two words, into location L (It doesn't matter what the cdr-code of this word is, since
the invisible pointer data type is checked first, as we will see.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the initial
reading of the word pointed to by. the Lisp pointer that represents the cons will find an invisible
pointer in the addressed cell. When lhe invisible pointer is seen. the address it contains is used
in place of the original address. Su the newly-allocated two-word cons will be used for any
operation uone Oil the uriginal object.

Why is any of this important. tu users? In fllC[, it is <III invisible to you; everything works the
same way whether ur not comp,lct representation is lIsed, from the point of vicw of the semantics
of the languagc. 'nult is, thc only dilference that any of this makes is a difference in efficiency.
The compact rcprcscntation is morc efficient in most cases. However, if the conses are going to
get rplacd'cd, thclI invisible pointers will bc created, extra memory will be allocatcd, and the
compact representation will be seen to degrade storage efficiency rather than improve it. Also,
accesses that go through invisible pointers are somewhat slower,. since more memory references are
needed. So if you care a lut about storage efficiency, you should be careful about which lists get
stored in which representations.

You should try to use the normal representation for those data structures that will be subject
to rplacding operations, including nconc and nreverse, and the compact representation for other
structures. The functions cons, xcons, ncons, and· their area variants make conses in the
normal representation. The functions list; list * , list- in - area, make-list, and append use the
compact representation. The other list-creating functions, including read, currently make normal
lists, although this might get changed. Some functions, such as sort, take special care to operate
efficiently on compact lists (sort effcctively treats them as arrays). nreverse is rather slow on
compact lists, currently, since it simple-mindedly lIses rplacd, but this will be changed.

(copylist x) is a suitable way to copy a list, converting it into compact form (see page 53).

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lisp Machine Manual 61 Tables

5.5 Tables

Lisp Machine Lisp includes Functions which simplify the maintenance of tabular data
stnlctures of several varieties. The simplest is a plain list of items, which models (approximately)
the concept of a set. There are functions to add (cons), remove (delete, delq, del, del-if,
del-if-not, remove, remq, rem, rem-iF, rem-iF-not), and search for (member, memq, mem)
items in a list. Set union, intersection, and difference functions can be easily written using these.

AssocialiOlr lists are very commonly used. An association list is a list of conses. The car of
each cons is a "key" and the cdr is a "datum", or a list of associated data. The functions assoc,
assq, ass, memass, and rassoc may be used to retrieve the data, given the key. For example,

«tweety . bird) (sylvester. cat) .
is an association list with two clements. Given a symbol representing the name of an animal, it
can retrieve what kind of animal this is .

• S'trueltlred records can be stored as associatIOn lists or as stereotyped cons-stnlctures where
each element of tlle structure has a certain car-cdr patll associated with it. However, these are
better implemented using structure macros (see chapter 19~ page 226).

Simple Iist-stnlcture is very convenient, but may not be eilicient enough for large data bases
because it takes a long lime to search a long list. l.isp Machine l-isp includes hash table tllCilities
for more efficient but more complex tables (sec section 5.9, page 69), and a hashing Function
(sxhash) to aid u·sers ilr constnlcting their own facilities.

5.6 Lists as Tables

memq item list
(memq item list) returns nil if item is not one of tlle ekments of list. Otherwise, it
returns tllC sublist of list beginning with tl1efirst occurrence of item; that is, it rcturns
me first cons of tl1e list whose car is item. Thc comparison is made by eq. Because
memq returns nil if it doesn't find anything, and somcthing non-nil if it finds something,
it is often used as a predicate.
Examples:

. (memq 'a '(I 2 3 4» => nil
(memq 'a '(9 (x a y) cad e a f» => (a d e a f)

Note that the value returned by memq is eq to the portion of me list beginning with a.
Thus rplaca on tlle result of memq may be used, if you first check to make sure memq

. did not return nil.
Example:

(let «sublist (memq x z») ; Search for x in the listz.
(if (not (null sublist» ;Ifitisfound,

(rp 1 aca subl i st y») ; Rcplace it with y.

memq could have been defined by:
{defun memq (item list)

(cond «null list) nil)

DSK:LMMAN;FD.CON 130

«eq item (car list)} list)
(t(memq item (cdr list}») »

16-MAR-Sl

Lists as Tables 62 Lisp Machine Manual

memq is hand-coded in microcode and therefore especially fhst.

member item list
member is like memq, except equal is used for the comparison, instead of eq.

memberc()uld have been defined by:
(defun member (item list)

(cand ((null list) nil)
«(equal item (car list» list)
(t (member item (cdr list»)) »

mem predicate item list
mem is the same' as memq except that it takes an extra argument which should be a
predicate of two arguments, which is lIsed for the comparison instead of eq~ (mem 'eq a
b) is the same as (memq a b). (mem 'equal a b) is the same as (member a b).

mem is usually used with equality predicates other than eq and equal, such as =, char
equal or string -equal. It can also be used with non-commutative predicates. The
predicate is called with item as its first argument and the clement of list as its second

. argument, so
(mem #'< 4 list)

finds the first clement in list for which « 4 x) is tme; that is, it finds the first clement
greater than or equal to 4.

find-'position-il1-11st item list
find-position-in-list looks down list tc.}r an clement which is eq to item, like memq.
However, it returns the numeric index in the list at which it found the first occurence of
item, or nil if it did not find it at all. This function is sort of the complement of nth
(see page 51); like nth, it is zero-based.
Examples:

(find-pasition-in-list 'a '(a be» => 0
(find-pasition-in-list 'c '(a b c» => 2
(find-position-in-list. 'e '(a b c» => .nil

fi nd-pos it i 011- i 11-11 st-equa 1 item list
find-position-in-list-equal is exactly the same as find-position-in-list, except that the
comparison is done with equal instead of eq.

ta i 1 P sublist list
Returns t if sublist is a sublist of list (i.e. one of the conses that makes up list).
Otherwise returns nil. Another way to look at this is that tailp returns t if (nthedr II list)
is sublist, for some value of Il. tailp could have been defined by:

(defun tailp (sublist list)
(do list list (cdr list) (null list)

(if (eq sublist list)
(retul'n t»»

DSK:LMMAN ;FD.CON 130 16-MAR-81

Lisp Machine Manual 63 Lists as Tables

de 1 q item list &optional n
(delq item list) returns the list with all occurrences of item removed. eq is llsed for the
comparison. The argument list is actually modified (rplacd'ed) when instances of item are
spliced out. delq should be used for value, not for effect. That is, use

(setq a (delq 'b a»
rather than

(delq 'b a)
These two arc 1101 equivalent when the first element of the value of a is b ..

(delq ilem list n) is like (delq ilem list) except only the first II instances of item are
deleted. II is allowed to be zero. I f II is greater than or equal to the number of
occurrences of item in the list, all occu rrences of item in the list will be deleted.
Example:

(delq 'a '(b a c (a b) d a e» => (b c (a b) d e)

delq could have been defined by:
(defun delq (item list &optional (n 7777777» ;7777777 as infinity.

(cond ((or (atom list) (zerop n» list)
((eq item (car list»
(delq item (cdr list) (1- n»)

(t (I'placd list (delq item (cdr list) n»»)

de 1 ete . ilelll lisl &optional 11

delete is the same as delq except that equal is used for the comparison instead of eq.

de 1 predicate item list &optional 11

del is the same as delq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (del 'eq a
b) is the same as (delq a b). (cf. mem, page 62)

remq ilem list &optional 11

remq is similar to delq, except that the list is not altered; rather, a new list is returned.
Examples:

(setq x '(a b c d e f»
(remq 'b x) => (a c d e f)
x => (a bed e f)
(remq 'b '(abc b a b) 2) => (a cab)

remove item list &optional n
remove is the same as remq except that equal is used for the comparison instead of eq.

rem predicate item list &optional 11

rem is the same as remq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (rem 'eq a
b) is the same as (remq a b). (cf. mem, page 62)

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Association Lists 64 Lisp Machine Manual

subset predicate list
rem- i'f -not predicate list

predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of list and removing the ones for which the predicate returns nil.
One of this function's names (rem-if-not) means "remove if this condition is not true";
Le. it keeps the elements for which predicate is true. The other name (subset) refers to
the function's action if list is considered to represent a mathematical set

sUbset-not predicate list
rem- if predicate list

. predicate should be a fUllction of one argument. A new list is made by applying predicate
to all of the clements of list and removing the ones for which the predicate returns non
nil. Olle of this function's names (rem-if) means "remove if this condition is true". The
other name (subset-not) refers to the function's action if list is considered to represent a
mathematical set

de 1-1 f predicate list
del-if is just like rem-if except that it modifies list rather than creating a new list.

de1-if-not predicate list
del- if - not is just like rem - if- not except that it modifies list rather than creating a new
list.

eva ry list predicate &optional siep-jullction
every ceturns t if predicate returns lion-nil when applied to every element of list, or nil if
predicate returns nil for some clement. If step-jullction is present, it replaces cdr as the
function used to get to the next clement of the list; cddr is a typical function to use
here.

some list predicate &optiol1al step-junction .
some returns a tail of Nst such that the car of the tail is the first clement that the
predicate retunis non-nil when applied to, or nil if predicate returns nil for every clement.
If step-jullction is present, it replaces cdr as the function used to get to the next element

. of the list; cddr is a typical function to use here.

5.7 Association Lists

as s q item aUst
(assq item alist) looks up item in the association list (list of conses) alist. The valiJe is
the first cons whose car is eq to x, or nil if there is none such.
Examples:

(assq 'r '«a. b) (c . d) (r . x) (s . y) (r . z)}}
=> (r. x)

(assq 'fooo '«faa bar) (zoo. goo») => nil

(assq 'b '«a b c) (b c d) (x.y z})} => (b c d)

DSK:LMMAN;FD.CON 130 16-MAR-81

Lisp Machine Manual 65 Association Lists

It is okay to rplacd the result of assq as long as it is not nil, if your intcntion is to
"updatc" Lhc "table" that was assq's sccond argumcnt.
Example:

(setq values '«x. 100) (y . 200)(z . 50»)
(assq 'y values) => (y . 200)
(rplacd (assq 'y values) 201)
(ass q , y val u e s) = > (y . 2 0 1) now

A typical trick is to say (cdr (assq x y». Since thc cdr of nil is guarantccd to be nil,
this yiclds nit if no pair is found (or if a pair is found whosc cdr is niL)

assq could havc bcen dcfined by:
(defun assq (i tem list)

(cond «null list) nil)
(eq item (caar list» (car list»
«assq item (cdr list») »

as S oc item alist
assoc is likc assq cxcept that tJ1C comparison uses equal instead of eq.
Example: .

(assoc '(a b) '((x. y) (a b) . 7) ((c. d) .e»)
=> ((a b) . 7)

assoc could have becn defined by:
(defun assoc (item list)

(culld «null list) nil)
«(equal item (caar list» (car list»
«(assoc item (cdr list») »

as s predicate item alist
ass is the same as assq except that it takes an extra argument which should be a
predicate of two argumcnts, which is llsed for the comparison instcad of eq. (ass 'eq a
b) is thc samc as (assq a b). (cf. mem, page 62) As with mem, you may use non
commutative prcdicatcs; the first argumcnt to thc prcdicate is ilem and the second is the
key of me clemcnt of alist.

mamas s predicate item aUst
memass searches aUst just like ass, but rcturns thc portion of thc list beginning with the
pair containing item, rather than the pair itsclf. (car (memass x y z» = (ass x y z).
(cf. mem, pagc 62) As with mem, you may use non-commutativc predicates; the first
argumcnt to thc predicatc is item and the second is thc key of the clement of aUst.

rassq item alisl
rassq means "rcverse assq". It is likc assq, but it tries to find an elcment of alist whose
cdr (not car) is eq to item. rassq could have becn defined by:

(defun rassq (item in-list)
(do 1 in-list (cdr 1) (null 1)

(and (eq item (cdar 1»
(return (car 1»»)

DSK:LMMAN;fTI.CON 130 16-MAR-81

Property Lists 66 Lisp Machine Manual

rassoc item £llist
rassoc is to rassq as assoc is to assq. That is, it finds an elcmcnt whosc cdr is equal
to item.

'rass predicate item alist
rass is to rassq as ass is to assq. That is, it takes a predicate to be used instead of eq.
(cf. mem, page 62) As with mem, you may usc non-commutative prcdicates; the first
argument to the predicate is item and the second is the cdr of the clemcnt of £llist.

sassq item alist fen
(sassq item alist fell) is like (assq item alist) except that if item is not found in alist,
instead of returning nil, sassq calls the function fcn with no arguments. sassq could
have been defined by:

(defun sassq (item alist fen)
(or (assq item alist) .

(apply fen nil»)

sassq and sassoc (see below) arc of limited usc. These arc .primarily. leftovers from Lisp
1.5.

sassoc ilem a/ist fen
(sassoc itelll ulist fell) is like (assoc itell/ alist) cxcept that if itfmis not (hund in a/ist,
instead of returning nil, sassoc calls lhc ILlIlction fi:n with no argulTImts. sassoc could
hm'c been defined by:

(deFun sassor; (item alist fen)
(or (assoc item alist)

(apply fen nil)})

pa1rlis cars cdrs
pair lis 'takes two lists and makes an aSSOCIatIOn list which associates clements of the first
list wilh corresponding clements of the second list.
Example:

(pairlis '(beef clams kitty) '(roast fried yu-shiang»
=> «beef. roast) (clams. fried) (kitty. yu-shiang»

5.8 Property Lists

From time immemorial, Lisp has had a kind of tabular data structure called a property list
(plist for short). A property list contains zero or more entries; each entry associates from a
keyword symbol (called the indicator) to a Lisp object (called the value or, sometimes, the
properly). There are no duplications among the indicators; a property-list can only havc one
property at a time with a given name.

This is very similar to an association list. The difference is that a property list is an object
with a unique identity; the opcrations for adding and removing property-list entries are side
effecting operations which alter the property~list radlcr than making a new onc. An association list
with no entries would bc dlC empty list 0, i.e. the symbol nil. There is only one empty list, so
all empty association lists are dle same object. Each empty property-list is a separate and distinct
object.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lisp Nlachine Manual 67 Property Lists

The implementation of a property list is a memory cell containing a list with an even number
(possibly zero) of clements. Each pair of clements constitutes a property: the first of the pair is
the indicator and the second is the value .. The memory cell is there to give the property list a
unique identity and to provide for side-effecting operations.

The term "property list" is sometimes incorrectly used to refer to the list of entries inside the
property list, rather than the property list itself. This is regrettable and confusing.

How do we deal with "memory cells" in Lisp; i.e. what kind of Lisp object is a property list?
Rather than being a distinct primitive data type, a property list can exist in one of three forms:

1. A property list can be a cons whose cdr is the list of entries and whose car is not used
and available to the user to store something.

2. The system· associates a property list with every symbol (see section 6.3, page 80). A
symbol can be used where a property list is expected; the property-list primitives will
automatically find the symbol's property list and use it.

3. A property list can be a memory cell in the middle of some data structure, such as a list,
an array, an instance, or a defstmct. An arbitrary memory cell of this kind is named by a
locativc (see chapter 13, page 156). Such locatives arc typically created with the loct special form
(see page 202) ..

Property lists of the first kind are called "disembodied" property lists because they are not
associated with a symbol or lither data structure. The way to create a disembodied property list is
(ncons nil), or (ncons dala) to store data in the car of the property list

Here is an example of the list of entries inside the property list of a symbol named b1 which
is being used by a program which deals with blocks:

(color blue on b6 associated-with (b2 b3 b4»

There are three properties, and so the list has six elements. The first property's indicator is
the symbol color, and its value is the symbol blue. One says that "the value of b1 's color
property is blue", or, informally, that "b1 's color property is blue.". The program is probably
representing the information that the block represented by b1 is painted blue. Similarly, it is
probably representing in the rest of the property list that block b1 is on top of block b6, and
that b1 is associated with blocks b2, b3. and b4.

get

getl

plist indicator
. get looks up plist's indicator property. If it finds such a property, it returns the value;

otherwise. it returns nil. If plist is a symbol, the symbol's associated property list is used.
For example, if the property list of faa is (baz 3). then

(get 'fDa 'baz) => 3
(get 'fDa 'zoo) => nil

plist indiCator-list
getl is like get. except that the second argument is a list of indicators. getl searches
down plist for any of the indicators in indicator-list, until it finds a property whose
indicator is one of the clements of indicator-list. If plist is a symbol, the symbol's
associated property list is used.

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Property Lists 68 Lisp Machine Manual

getl returns the portion of the list inside plist beginning with the first such property which
it found. So the car of the returned list is an indicator, and the cadr is the property
value. If none of the indicators on indicator-list are on the property list, getl returns nil.
for example, if the property list of faa were

(bar (1 2 3) baz (3 2 I) color blue height six-two}
then

(getl 'faa '(baz height»
=> (baz (3 2 I) color blue height six-two}

When more than one of the indicators in indicator-list is present in plist, which one getl
returns depends on the order of the properties. This is the only thing that depends on
that order. The order maintained by putprop and defprop is not defined (their behavior
with respect to order is not guaranteed and may be changed without notice).

putprop plist x inC/icator
This gives plist an indicator-property of x. Mter this is done, (get plist indicalor) will
return x. If plist is a symbol, the symbol's associated property list is used.
Example: .

(putprop 'Nixon 'not 'crook)

dafprop Special Fonn
defprop is a fotm of putprop with "unevaluated arguments", which is sometimes more
convenient for typing. Normally it doesn't make sense to use a property list rather than a
symbol as the plist argument.
Example:

(defprop faa bar next-to)
is the same as

(putprop 'foo 'bar 'next-to)

remprop plist indicator
This removes plist's indicator property, by splicing it out of the property list It returns
that portion of the list inside plist of which the former indicator-property was the car.
car of what rem prop returns is what get would have returned with the same arguments.
If pUst is a symbol, the symbol's associated property list is used. For example, if the
property list of faa was

(color blue height six-three near-to bar)
then

(remprop 'foo 'height) => (six-three near-to bar)
and faa's property list would be

(color blue near-to bar)
If pUst has no indicator-property, then remprop has no side-effect and returns nil.

DSK:LMMAN;FD.CON 130 16-MAR-81

Lisp Machine Manual 69 Hash Tables

5.9 Hash Tables

A hash table is a Lisp object that works something like a property list. Each hash table has a
set of entries, each of which associates a particular key with a particular vallie. The basic
functions that deal with h'ash tables can create entries, delete entries, and find the value that is
associated with a given key. Finding the value is very fast even if there are many entries,
because hashing is used; this is an important advantage of hash tables over property lists.
Hashing is explained in section 5.9.4, page 73.

A given hash table can only associate one l'alue with a given key; if you try to add a second
I'allie it will replace lhe first.

Hash tables come in two kinds, the difference being whether the keys are compared llsing eq
or using equal. [n other words, there are hash tables which hash on Lisp /J~iects (using eq) and
there arc hash tables which hash on trees (using equal). The following discussion refers to the eq
kind of hash table; the other kind is described later, and works analogously,

Hash tables of the first kind are created with the function make-hash-table, which takes
various options, New entries arc added to hash tables with the puthash function. To look up a
key and find the associated value, the gethash function is used. To remove an entry, use
remhash, Here is a simple example.

(setq a (make-hash-table))

(puthash 'color- .'brown a)

(pu t.hash 'name 'fred a)

(gethash 'color a) => brown

(gethash 'name a) => fred

In this example, the symbols color and name are being used as keys, and the symbols
brown and fred arc being used as the associated values. The hash table has two items in it, one
of which associates from color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can be any
Lisp object. The Lisp function eq is used to compare keys, rather lhan equal. This means that
keys arc really objects, but it means that it is not reasonable to use numbers other than fixnums
as keys.

When a hash table is first created, it has a size, which is the maximum number of entries it
can hold. Usually the actual capacity of the table is somewhat less, since the hashing is not
perfectly collision-free. With the maximum possible bad luck, the capacity could be very much
less, but this rarely happens. If so many entries are added lhat lhe capacity is exceeded, the hash
table will automatically grow, and the entries will be rehashed (new hash values will be
recomputed, and everything will be rearranged so that the tast hash lookup still works). This is
transparent to the caller; it all happens automatically.

DSK:LMMAN;FD.CON 130 16-MAR-81

Hash Tables 70 Lisp Machine Manual

The describe function (see page 448) prints a variety of useful information when applied to a
hash table.

This hash table facility is similar to the hasharray facility of Interlisp, and some of the
function names are the same. However, it is 1101 compatible. The exact details and the order of
arguments are designed to be consistent with the rest of the Lisp Machinc rathcr than with
[ntcrlisp. For instancc, the order of argumcnts to maphash is diffcrent, we do not have the
fnterlisp "systcm hash tablc", and wc do not havc thc Intcrlisp restriction that keys and values
may not bc nil. Note, howevcr, that thc ordcr of argumcnts to gethash, puthash, and remhash
is not consistcnt with thc Lisp machinc's get, putprop, and rernprop, eithcr. This is an
un fortunatc rcsult of thc haphazard historical dcvelopmcnt of Lisp.

If the calling program is using multiprocessing, it must be careful to make surc that there are
ncvcr two processes both rcferencing the hash tablc at thc same time. Thcre is no locking built
into hash tables: if you have two proccsses that both want to rcference the same hash table, you
mllst arrange mutual exclusioll yourself by using a lock or somc othcr means. Even two processes
just doing gethash on the same hash table must synchronizc themselves, because getl1ash may be
f()rced by. garbage collection to rchash the table. Don't worry about this if you don't use
multiprocessing; but if you do use multiprocessing, you will have a lot of trouble if you don't
understand this.

Hash tables ai'e implementcd with a special kind of array. arrayp of a hash table will return
t. However, it is illegal to lise normal array operations on a hash tablc, and in gencral they will
not work. [[ash tables should be manipulated only with the functions described below.

5.9.1 Hashing on Eq

This section documents the functions for eq hash tables, which use objects as keys and
associate other objects with them.

make-hash-table &rest options
This creates a new hash table. Valid option keywords are:

:size

:area

Sets the initial size of the hash table, in entries, as a fixnum. Thc default
is 100 (octa\). The actual size is rounded up from the size you specify to
the next size that is "good" for the hashing algorithm. You won~t
necessarily be able to store this many entries into the table before it
overflows and becomes bigger; but except in the case of extreme bad luck
you will be able to store almost this many.

Specifies the area in which the hash table should be created. This is just
like the :area option to make-array (see page 102). Defaults to nil (Le.
default-cons-area).

:rehash -function
Specifies the function to be used for rehashing when thc table becomes
full. Defaults to thc internal rehashing function that docs the uSllal thing.
If you want to write your own rehashing function, you will have to
understand all the internals of how hash tables work. These internals are
not documented here, as the best way to learn them is to read the source
code.

DSK:LMMAN;FD.CON 130 16-MAR-81

Lisp l'.lachine Manual 71 Hash Tables

:rehash -size Specifics how much to increase the size of the hash table when it becomes
full. This can be a fixnum which is the number of entries to add, or it
can be a flonum which is the ratio of the new size to the· old size. The
default is 1.3, which causes the table to be made 30% bigger each time it
has to grow.

gethash key hash-table
Find the entry in hash-table whose key is key, and return the associated value. If there is
no such entry, return nil. Returns a second value, which is t if an entry was found or
nil if there is no entry for key in this table.

puthash key vallie hash-table
Create an entry associating key to value; if there is already an entry for key, then replace
the value of that entry with value. Returns value. The hash table automatically grows if
necessary.

remhash key hash-table
Remove any entry for key in hash-table. Returns t if there was an entry or nil if there
was not.

Ulap h as h jl/lldiol/ hash-table
For each entry in hash-table, call junc/ioN on two arguments: the key of the entry and
the valuc of the entry.

c 1 r h as h hli~h-llible
Remove all the cntries from hash·lllble. Returns the hash table itself.

5.9.2 Hashing 011 Equal

This section documents the functions for equal hash tables, which use trees as keys and
associate objects with them. The function to make one is slightly different from make-hash
table because the implementations of the two kinds of hash table differ, but analogous operations
are provided.

maks-'squal--hash-table &rest options
This creates a new hash table of the equal kind. Valid option keywords are:

:size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). The actual size is rounded up from the size you specify to
the next "good" size. You won't necessarily be able to store this many
entries into the table before it overflows and becomes bigger; but except
in the case of extreme bad luck you will be able to store almost this
many.

:area Specifics the area in which the hash table should be created. This is just
like the :area option to make-array (see page lO2). Defaults to nil (Le.
default - cons- area).

:rehash -threshold
Specifics how full the table can be before it must grow. TI1is is typically
a flonum. The default is 0.8, i.e. 80%.

DSK:LMMAN;FD.CON 130 16-MAR-81

Hash Tables 72 Lisp Machine Manual

:growth - factor
Specifics how much to increase the size of the hash table when it becomes
full. This is a Honum which is the ratio of the new size to the old size.
The default is 1.3, which causes the table to be made 30% bigger each
time it has to grow.

gethash-equal key hash-table
Find the entry in hash-table whose key is equal to key, and return the associated value.
If there is no such entry, return nil. Returns a second value, which is t if an entry was
found or nil if there is no entry for key in this table.

puthash-equal key vallie hash-table
Create an entry associating key to I'allle; if there is already an entry for key, then replace
the value of that entry with I'allie. Returns I'alue. If adding an entry to the hash table
exceeds its rehash threshold, it is grown and rehashed so that searching docs not become
too slow.

remhash-equal key.hash-table
Remove any entry for key in hash-table. Returns t if there was an entry or nil if there
was not.

maphash-equal JUllctio/l hash-table
For each entry in hash-Iable, call Junctio/l on two arguments: Lhe key of the entry and
th·~ v<llue of the entry.

cl rhash-equal hash-table
Rcmove all the cntries from hash-table. Returns the hash table itself.

5.9.3 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the object.
When the copying garbage collector changes the addresses of object, it lets the hash facility know
so that gethash will rehash the table based on the new object addresses.

There will eventually be an option to make-hash-table which tells it to make a "non-GC
protecting" hash table. This is a special kind of hash table with the property that if one of its
keys becomes "garbage", i.e. is an object not known about by anything other than the hash table,
then the entry for that key will be silently removed from the table. When these exist tllCY will be
documented in this section.

DSK:UvfMAN;FD.CON 130 16-MAR-Sl

Lisp Machine Manual 73 Hash Tables

5.9.4 I lash Primitive·

Hashing is a technique used in algorithms to provide fast retrieval of data in large tables. A
fUJlc.tion, known as a "hash function", is created, which takes an object that might be used as a
key, and produces a number associated with that key. This number, or some function of it, can
be used to specify where in a table to look for the datum associated with the key. It is always
possible for two different objects to "hash to the same value"; that is, for the hash function to
return the same number for two distinct objects. Good hash functions arc designed to minimize
this by evenly distributing their results over the range of possible numbers. However, hash table
algorithms must still deal with this problem by providing a secondary search, sometimes known as
a rehash. For more information, consult a textbook on computer algorithms.

sxhash tree
sxhash computes a hash code of a tree, and returns it as a fixllllm, which may be
positive or negative. A property of sxhash is that (equal x y) implies (= (sxhash x)
(sxhash y». The number returned by sxhash is some possibly large number in the
range allowed by fixnums.

Here is an example of how to lise sxhash in maintaining hash tables of trees:
Cdefun knownp (x &aux i bkt) ;Iook lip xin the table

(setq i (abs (remainder (sxhash x) 176»)
;The remainder should be reasonably randomized.

(setq bkt (aref table i»
;bkt is thus a list of all those expressions that
;hash into the same number as does x.

(memq x bkt»

To write an "intern" for trees, one could
(defun sintern (x &aux bkt item)

(setq i (abs (remainder (sxhash x) 2n-l»)
;2n-l sta~ds for a power of 2 minus one .

. ;This is a good choice to randomize the
;result of the remainder operation .

. (setq bkt (aref table i»
(cond ((setq tern (memq x bkt»

(car tern»
(t (aset (cons x bkt) table i)

x) »
sxhash . provides what is called "hashing on equal"; that is, two objects that are equal are

considered to be "the same" by sxhash. Therefore, sxhash is useful for retrieving data when
two keys that arc not the same object but are equal are considered the same. If you consider
two such keys to be different, then you need "hashing on eq", where two different objects are
always considered different. Tn some Lisp implementations, there is an easy way to create a hash
function that hashes on eq, namciy, by returning the virtual address of the storage associated
with the objecl. But in other implclilentations, of which Lisp tvIachine Lisp is one, this doesn't
work, because the address associated with an object can be changed by the relocating garbage
collector. The hash tables created by make- hash -table deal with this problem by using the
appropriate sllbprimitives so that they· interface correctly with the garbage collector. If you need a
hash table that hashes on eq, it is already provided; if you need an eq hash function for some

DSK:LMMAN ;FD.CON 130 16-MAR-81 .

Sorting 74 Lisp Machine Manual

other reason, you must build it yourself, either using the provided eq hash table facility or
carefully using subprimitives.

5.1 0 Sorting

Several functions are provided for sorting arrays and lists. These functions lise algorithms
which always terminate no matter what sorting predicate is used, provided only that the predicate
always terminates. The main sorting functions are not stable; that is, equal items may not stay in
their original order. If you want a stable sort, use the stable versions. But if you don't care
about stability, don't use them since stable algorithms are significantly slower.

After sorting, the argument (be it list or array) has been rearranged internally so as to be
completely ordered .. In the case of an array argument, this is accomplished by permuting the
elements of the array. while in the list case. the list is reordered by rplacd's in the same manner
as nreverse. Thus if the argument should not be clobbered, the user must sort a copy of the
argument. obtainable by til/array or copylist, as appropriate. Furthermore, sort of a list is like
delq in that it should not be used f()r effect; the result is conceptually the same as the argument
but in F,ict is a different Lisp object.

Should the comparison pn~dicate cause an error. such as a wrong type argument error, the
state of the list or array being sorted is undellned. However, if the error is corrected the sort
will, or course, proceed correctly.

The sorting package is smai't about compact lists; it sorts compact sublists as if they were
arrays. See section 5.4, page 59 for an explanation of compact lists, and A. I. Memo 587 by
Guy L. Steele Jr. for an explanation of the sorting algorithm.

sort fable predicate
The first argument to sort is an array or a list. The second is a predicate, which must be
applicable to all the objects in the array or list. The predicate should take two arguments,
and return non-nil if and only if the first argument is strictly less than the second (in
some appropriate sense).

The sort function proceeds to sort the contents of the array or list under the ordering
imposed by the predicate, and returns the array or list modified into sorted order. Note
that since sorting requires many comparisons, and thus many calls to the predicate,
sorting will be much faster if the predicate is a compiled fUllction rather than interpreted.
Example:

(defun mostcar (x)
(cond «symbolp x) x}

«mostcar (car x})})}

(sort 'fooarray
(function (lambda (x y).

(alphalessp (mostcar x) (mostcar y)}}}}
If fooarray contained these items before the sort:

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lisp Machine Manual 75

(Tokens (The lion sleeps tonight»
(Carpenters (Close to you»
«Rolling Stones) (Brown sug~r»
«Beach Boys) (I get around»)
(Beatles (I want to hold your hand»

then after the sort fooarray would contain:
«Beach Boys) (I get around»
(Beatles (I want to hold your hand»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
(Tokens (The lion sleeps tonight»

Sorting

When sort is given a list, it may change the order of the conses of the list (using
rplacd), and so it cannot be used merely for side-effect; only the returned I'alue of sort
will be the sorted list. This will mess up the original list; if you need both the original
list and the sorted list, you must copy the original and sort the copy (sec copylist, page
53).

Sorting an array just moves the c1emenl~ of the array into different places, and so sorting
an array for side-effect only is all right.

sortcar x predicate
sortcar is the same as sort except that the predicate is applied to the cars of the clements
of x, instead of directly to the clements of x. Example:

(surtcar '«3 .' dog) (1 . cat) (2 . bird» #'<)
=> «1. cat) (2 . bird) (3 . dog»

Remember that sortcar, when given a list, may change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side-eftcct; only the returned value of
sortcar will be the sorted list.

stable-so.rt x predicate
stable-sort is like sort, but if two elements of x arc equal. i.e. predicate returns nil

. when applied to them in either order, then those two elements will remain in their
original order.

stable-sortcar x predicate
stable-sortcar is likesortcar, but if two clements of x ate equal, i.e. predicate returns
nil when applied to their cars in either order, then those two elements will remain in
their original order.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of records of group-size
elements each. These records are considered as units, and are sorted with respect to one
another. The predicate is applied to the first clement of each record; so the first clements
act as the keys on which the records arc sorted.

DSK:LMMAN;FD.CON 130 . 16-MAR-81

Resources 76 Lisp Machine Manual

sort-grouped-array-group-key array group-size predicate
This is like sort-grouped-array except that the predicate is applied to four arguments:
an array. an index into that array. a second array. and an index into the second array.
predicate should consider each index as the subscript of the first clement of a record in
the corresponding array. and compare the two records. This is more general than sort
grouped-array since the function can get at all of the elements of the relevant records.
instead of only the first clement.

5.11 Resources

Storage allocation is handled differently by different computer systems. In many languages,
the programmer must spend a lot of time thinking about when variables and storage units are
allocated and deallocated. In Lisp, freeing of allocated storage is normally done automatically by
the Lisp system; when an object is no longer accessible to the Lisp environmellt. it is garbage
collected. This relieves the programmer of a great burden, and makes writing programs much
easier.

However. automatic freeing of storage incurs an expense: ITlOre computer resources must be
devoted to the garbage collector. If a program is designed to allocate temporary storage. which is
then left as garbage. more of the computer must be devoted til the collection of garbage; this
expense can be high. In some cases, the programmer may decide that it is worth putting up with
the inconvenience of having to free storage under program control, rather than letting the system
do it automatically. in order to prevent a great deal of overhead from the garbage collector.

It usually is not worth worrying about freeing of storage when the units of storage are very
small things sllch as conses or small arrays. Numbers are not a problem, either; fixnums and
small HOllums do not occupy storage, and the system has a special way of garbage-collecting the
other kinds of numbers with low overhead. But when a program allocates and then gives up very
large objects at a high rate (or large objects at a very high rate), it can be very worthwhile to
keep track of that one kind of object manually. Within the Lisp Machine system, there are
several programs that are in this position. The Chaosnet software allocates and frees "packets",
which are moderately large, at a very high rate. The window system allocates and frees certain
kinds of windows. which are very large, moderately often. Doth of these programs manage their
objects manually, keeping track of when they are no longer used.

When we say that a program ;'manually frees" storage, it docs not really mean that the
storage is freed in the same sense that the garbage collector frees storage. Instead, a list of
unused objects is kept. When a new object is desired, the program first looks on the list to see if
there is one around already, and if there is it uses it. Only if the list is empty does it actually
allocate a new one. When the program is finished with the object. it returns it to this list.

The functions and special forms in this section perform the above function. The set of objects
forming each such list is called a "resource"; for example. there might be a Chaosnet packet
resource. defresource defines a new resource; allocate-resource allocates one of the objects;
deallocate-resource frees one of the objects (putting it back on the list); and with-resource
temporarily allocates an object and then frees it. .

DSK:LMMAN;FD.CON 130 16-MAR-Sl

Lisp Machine Manual 77 Resources

de f re S ou r ce SpecialForm
The defresource special form is used to define a new resource. The fonTI looks like this:

(de f res 0 u r c e name
fonnI
fonn2
...)

name should be a symbol; it is the name of the resource. The value cell and the
function cell of this symbol are both used; therefore, you may not have a variable or a
function by the same name as any resource. The forms are the body of the defresource
form, and should be the body of a function which creates and returns a new object of
the desired type. The body gets run when a caller tries to allocate an object and there
aren't any on the list.

When the defresource form is evaluated, the body is run once, creating a single object
to put on the list. If you specify (name t) instead of nallle in the defresource fOlm, this
initial creation will be suppressed and the list will be initially empty.

allocate-resource name
Allocate an object from the resource specified by name. If there is an object 011 the list,
remove it from the list and return it; otherwise, create a new one (using the body of the.
defresource) and return it.

Note that the with - resource special form is usually what you want to use, rather than
allocate - resource itscl f; see below.

deallocate-resource Ilame resource
Free the object resource, returning it to the list of the resource specified by name.

with-resource Special Form
The with - resource special form looks like this:

(with - (' e sou r c e (name variable)
. fonnI

fonn2
...)

The fO/1ns are evaluated sequentially with variable bound to an object allocated from the
resource of the given name. with-resource is often more convenient than calling
allocate-resource and deallocate-resource. Furthennore it is careful to free the object
when the body is exited, whether it returns normally or via *throw. This is done by
using unwind-protect; see page 44.

Here is an example of the use of resources:
(defresource huge-16b-array

(make-array 1000 ':type 'art-16b))

(defun do-complex-computation (x y)
(with-resource (huge-16b-array temp-array)

(aset 5 temp-array i)
. . .))

DSK:LMMAN;RESOUR 6

;Within the body, the array can be used.

;The array is returned at the end .

16-MAR-Sl

Symbols 78 Lisp Machine Manual

6. SYlubols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. This object
is called the symbol's binding or value, since it is what you get when you evaluate the symbol.
The binding of symbols to values allows symbols to be used as the implementation of variables in
programs.

The value cell can also be empty, referring to no Lisp object, in which case the symbol" is
said to be unbound. This is the initial state of a symbol when it is created. An attempt to
evaluate an unbound symbol causes an error.

Symbols are often used as special variables. Variables and how they work arc described in
section 3.l, page 13. The symbols nil and t are always bound to themselves; Lhey may not be
assigned, bound, or otherwise used as variables. Attempting to change the value of nil or t
<usually) causes an error.

set symbol value
set is the primitive for assignment of symbols. '1l1e symbol's value is changed to value;
value may be any Lisp object. set returns IJalite.
Example:

(set (cond «eq a b) 'c)
(t 'd»

'faa)
will either set c to faa or set d to faa.

symeval sym
symeval is the basic primitive for retrieving a symbol's value. (symeval sym) returns
sym's current binding. This is the function called by eval when it is given a symbol to
evaluate. If the symbol is unbound, then symeval causes an error.

boundp sym
boundp returns t if sym is bound; otherwise, it returns nil.

makunbound sym
makunbound causes sym to become unbound.
Example:

(setq a 1)
a => 1
(makunbound 'a)
a => causes an error.

makunbound returns its argument.

DSK:LMMAN;FD.SYM 67 16-MAR-81

Lisp Machine Manual 79 The Function Cell

va 1 u e - c a 11 - 1 0 c at i on sym
value-cell-location returns a locative pointer to sym's value cell. See the section on
locatives (chapter 13, page 156). It is preferable to write

(locf (symeval sym»
instead of calling this fl.lnction explicitly.

This is actually the internal value cell; there can also be an external value cell. For
details, see the section on closures (chapter 11, page 144).

Note: the function value-cell-location works on symbols that get converted to local
variables (see section 3.1, page 13): the compiler knows about it specially when its
argument is a quoted symbol which is the name of a local variable. It returns a pointer
to the cell that holds the value of the local variable.

6.2 The Function Cell

Every symbol also has associated with it a jime/ion cell. The jime/ion cell is similar to the
value cell; it refers to a Lisp object. When a function is referred to by name, that is, when a
symbol is applied or appears as the car of a form to be evaluated, that symbol's function cell is
llsed to find its deji'l/ilion, the functional object which is to be applied. For example, when
evaluating (+ 5 6), the evaluator looks in +'s function cell to find the definition of +, in this
case a FEF containing a compiled program, to apply to 5 and 6.

Maclisp docs not have function cells: instcZid, it looks for special properties on the property
list. This is one of the major incompatibilities between the two dialects.

Like the value cell, a function cell can be empty, and it can be bound or assigned.
(However, to bind a function cell you must llse the bind subprimitive: see page 168.) The
following functions are analogous to the value-cell-related functions in the previolls section.

fsymeval sym
fsymeval returns sym's definition, tl1e contents of its function cell. If the function cell is
empty, fsymeval causes an error.

fset sym definition
fset stores definition, which may be any Lisp object, into sym's fl.mction cell. It returns
definition.

fboundp sym
fboundp returns nil if sym's function cell is empty, i.e. sym is undefined. Otherwise it
returns t.

fmakunbound sym
fmakunbound causes sym to be undefined, i.e. its function cell to be empty. [t returns
sym.

DSK:LMMAN;FD.SYM 67 16-MAR-Sl

The Property List 80 Lisp Machine Manual

function-call-location sym
function-cell-location returns a locative pointer to sym's function cell. See the section
on locatives (chapter 13, page 156). It is preferable to write

(loef (fsymeval sym»
rather than calling this function explicitly.

Since nmctions are the basic building block of Lisp programs, the system provides a variety
of facilities for dealing with functions. Refer to chapter 10 for details.

6.3 The Property List

Every symbol has an associated property list. See section 5,8, page 66 for documentation of
property lists. When a symbol is created, its property list is initially empty.

The Lisp language itself docs not use a symbol's property list filr anything. (This was not
trlle in older Lisp implementations, where the print-name, value-cell, and function-cell of a
symbol were kept on it'> property list.) However, various system programs usc the property list to
associate information with the symbol. For instance, the editor uses the property list of a symhol
which is the name of a function to remember where it has the source code for thatnmctiort, and
the compiler uses the property list of a symbol which is the name of a special form to remember
huw to compile that special form. .

Because of the existence of print-name, value, nmction, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in fonner
times value and pname) exist in Lisp Machine Lisp:

plist sym
This returns the list which represents the property list of sym. Note that this is not the
property list itself; you cannot do get on it

satplist sym list
This sets the list which represents the property list of sym to list. setplist is to be used
with caution (or not at all), since property lists sometimes contain internal system
properties, which are used by many useful system functions. Also it is inadvisable to have
the property lists of two different symbols be eq, since the shared list stmcture will cause
unexpected effects on one symbol if putprop or remprop is done to the other.

propa rty-ca 11-1 ocat 1 on sym
This returns a locative pointer to the location of sym's property-list cell. This locative
pointer is equally valid as sym itself, as a handle on sym's property list

. DSK:LMMAN;FD.SYM 67 16-MAR-81

Lisp Machine Manual 81 The Print Name

6.4 The Print Name

Every symbol has an associated string called the prillt-Ilame, or pname for short. This string
is used as the external representation of the symbol: if the string is typed in to read, it is read
as a reference to that symbol (if it is interned), and if the symbol is printed, print types out the
print-name. For more infOlmation, see the sections on the reader (sec section 21.2.2, page 283)
and printer (see section 21.2.1, page 280).

get-pname sym
This returns the print-name of the symbol sym.
Example:

(get-pname 'xyz) => "xyz"

samepnamap syml sym2
This predicate returns t if the two symbols s)'1111 and 5),1112 have equal print-names; that
is, if their printed representation is the same. Upper and lower case letters are normally
considered the same. If either or both of the arguments is a string instead of a symbol,
then that string is used in place of the print-name. samepnamep is useful for
determining if two symbols would be the same except that they are in different packages
(see chapter 23, page 345).
Examples:

(samepnamep 'xyz (maknam '(x y z» => t

(~amepnamep 'xyz (maknam '(w x y» => nil

(samepnamep 'xyz "xyz") => t

This is the same function as string-equal (see page 117).

6.5 The Package Cell

Every symbol has a package cell which is used, for interned symbols, to point to the package
which the symbol belongs to. For an uninterned symbol, the package cell contains· nil. For
information about packages in general, see the chapter on packages, chapter 23, page 345. For
infOlmation about package cells, see page 352.

6.6 Creating Symbols

Theflmctions in this section are primitives for creating symbols. However, before discussing
them, it is important to point out that most symbols are created by a higher-level mechanism,
namely the reader and the intern function. Nearly all symbols in Lisp arc created by virtue of
the reader's having seen a sequence of input characters that looked like the printed representation
of a symbol. When the reader sees such a p.r., it calls intern (sec page 351), which looks up the
sequence of characters in a big table and sees whether any symbol wiLh this print-name already
exists. If it docs, read uses the already-existing symbol. If it does not, then intern creates a new
symbol and puts it into the table, and read uses that new symbol.

DSK:LMMAN;FD.SYM 67 16-MAR-81

Creating Symbols 82 Lisp Machine Manual

A symbol that has been put into such a table is called an interned symbol. Interned symbols
are normally created automatically; the first time someone (such as the reader) asks for a symbol
with a given print-name that symbol is automatically created.

These tables are called packages. In the Lisp machine, interned symbols are the province of
the package system. Although interned symbols are the most commonly used, they will not be
discussed further here. For more information, turn to the chapter on packages (chapter 23, page
345).

An Ulliflterned symbol is a symbol used simply as a data object, with no special cataloging.
An uninterned symbol prints the same as an interned symbol with the same print-name, but
cannot be read back in.

'n1e following functions can be used to create uninterned symbols explicitly.

make- symbo 1 pl/allle &optional pennallenl-p
This creates a new uninterned symbol, whose print-name is the string pname. The value
and function bindings will be unbound and the property list will be empty. If permanent
p is specified, it is assumed that the symbol is going to be interned and probably kept
around forever: in this case it and its pname will be put in the proper areas. If
pcrmanel/l-p is nil (the default), the symbol goes in the default area and the pn'ame is not
copied. pemzallenl-p is mostly for the use of intern itself.
Examples:

(setq a (make-symbol "faa"» => faa
(symeval a) => ERRORI

Notc that the symbol is I/ot interned; it is simply created and returned.

copysymbo 1 sym copy-props
This returns a new uninterned symbol with the same print-name as sym. If copy-props is
non-nil, then the value and function-definition of the new symbol will be the same as
those of sym, and the property list of the new symbol will be a copy of sym's. If copy
props is nil, then the new symbol will be unbound and undefined, and its property list
will be empty.

gensym &optional x
gensym invents a print-name, and creates a new symbol with that print-name. It returns
the new, uninterned symboL

The invented print-name is a character prefix (the value of si:*gensym-prefix) followed
by the decimal representation of a number (the value of si:*gensym-counter), e.g.
"gOOO1". The number is increased by one every time gensym is called.

If the argument x is present and is a Ijxnum, then si: * gensym - counter is set to x. If x
is a string or a symbol, then si:*gensym-prefix is set to the first character of the string.
or of the symbol's print-name. After handling lhe argument, gensym creates a symbol as
it would with no argument

DSK:LMMAN;FD.SYM 67 16-MAR-81

Lisp Machine Manual

Examples:
if
then

83

(gensym) => g0007
(gensym 'faa) => f0008
(gensym 32.) => f0032
(gensym) => f0033

Creating Symbols

Note that the number is in decimal and always has four digits, and the prefix is always
one character.

gensym is usually used to create a symbol which should not normally be seen by the
lIser, and whose print-namc is unimportant, except to allow easy distinction by eye
bctween two stich symbols. The optional argumcnt is rarely supplied. The name comes
from "generate symbol", and thc symbols produced by it arc often called "gensyms".

DSK:LMMAN;FD.SYM 67 16-MAR-81

Numbers 84 I jsp Machine Manual

7. Nunlbers
Lisp Machine Lisp includes several types of numbers, with different characteristics. Most

numeric functions will accept any type of numbers as arguments and do the right thing. That is
to say, they are generic. In Mac1isp, there are generic numeric functions (like plus) and there
are specific numeric functions (like +) which only operate on a certain type, and are much more
efficient. In Lisp Machine Lisp, this distinction does not exist; both function names exist for
compatibility but they arc identical. The microprogrammed stmcture of the machine makes it
possible to have only the generic functions without loss of efficiency.

The types of numbers in I jsp Machine Lisp are:

fixnum Fixnums are 24-bit 2's complement binary integers. These arc the "preferred,
most efficient" type of number.

bignum Bignums arc arbitrary-precision binary integers.

flonum Flonums are floating-point numbers. They have a mantissa of 32 bits and an
exponent of 11 bits, providing a precision of about 9 digits and a range of about
IOt300. Stable rounding is employed.

smalHlonum Small flonums arc another fOlmof floating-point number; with a mantissa of 18·
bits and an exponent of 7 bits, providing a precision of ahout 5 digits and a
range of about lOt L9. Stable rounding is employed. Small flonums arc useful.
because, like fixllums, and unlike flonums, they don't require any storage.
Computing with small 1l0l1UIllS is more eIl1cienl than with regular flollums because
the operations are tilster and consing overhead is eliminated.

Generally, Lisp objects have a unique identity; each exists, independent of any other, and
you can usc the eq predicate to detennine whether two references are to the same object or not.
Numbers are the exception to this rule; they don't work this way. The following function, when
compiled, may return nil (its behavior is considered undefined, but as this manual is written it
actually does return nil):

(defun faa ()
(let «x (float 5»)

(eq x (car (cons x nil»»)
This is very strange from the point of view of Lisp's usual object semantics, but the
implementation works this way" in order to gain efficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So, the rule is that the result of
applying eq to numbers is undefined, and may return either t or nil at will. If you want to
compare the values of two numbers, use = (see page 87).

Fixnums and smallflonums are exceptions to this rule; some system code knows ~at eq
works on fixnums used to represent characters or small integers, and uses memq or assq on
them. eq works as well as == as an equality test for fixnums. Small flonums that are = tend to
be eq also, but it is unwise to depend on this.

The distinction between fixnums and bignums is largely transparent to the user. lbe user
simply computes with integers, and the system represents some as fixnums and the rest (less
efficiently) as bignums. The system automalically converts back and forth between fixnums and
bignums based solely on the size of the integer. There are a few "low level" functions which

DSK:LMMAN;FD.NUM 67 16-MAR-81

.,

I

l-isp r"lachi.11e Manual 85 Numbers

only work on fixnums; this fact is noted in their docLllllentation. Also when using eq on
numbers the user needs to be aware of the fixnulll/bignum distinction.

Integer computations cannot "overflow", except for division by zero, since bignums can be of
arbitrary size. Floating-point computations can get exponent overflow or underflow, if the result is
too large or small to be represented. Exponent overflow always signals an error. Exponent
underflow normally signals <In error, and assumes 0.0 as the answer if the user says to proceed
from the error. However, if the value of the variable zunderflow is non-nil, the error is skipped
and computation proceeds with 0.0 in place of the result that was too small.

When an arithmetic function of more than one argulllent is given arguments of different
numeric types, uniform coercion rules are followed to convert the arguments to a common type,
which is also the type of the result (fbr functions which return a number). When an integer
meets a small fionum or a fionum, the result is a small flollum or a flonum (respectively). When
a small flonum meets a regular ftonum, the result is a regular flonum .

. Thus if the constants in a numerical algorithm are written as small flonums (assuming this
provides adequate precision), and if the input is a small flollum, the computation will be done. in
small-l1onum mode and the result will a small l1onum, while if the input is. a large flonum the
computations will be done in full precision and the result will be a flonum.

The Lisp machine never automatically converts between flonums and small flonums, in the
way it automatically converts between I1xllllms and bigllllms, since this would lead either to
inefficiency or to unexpected numerical inaccuracies. (When a small flonum meets a flonum, the
result is a flollum, but if you use only one type, all the results will be of the same type too.)
This means that a small-flollum computation can get an exponent overflow error even when the
result could have been represented as a large flonum.

Floating-point numbers retain only a certain number of bits of precision; therefore, the results
of computations are only approximate. Large flollums have 31 bits and small fionums have 17
bits, not counting the sign. The method of approximation is "stable rounding". The result of an
arithmetic operation will be the flonum which is closest to the exact value. I fthe exact result falls
precisely halfway between two flollums, the result will be rounded down if the least-significant bit
is 0, or up if the least-significant bit is l. This choice is arbitrary but insures that no systematic
bias is introduced.

Integer addition, subtraction, and multiplication always produce an exact result. Integer
division, on the other hand, returns an integer rather than the exact rational-number result. The
quotient is truncated towards zero rather than rounded. The exact rule is that if A is divided by
B, yielding a quotient of C and a remainder of D, then A = B * C + D exactly. D is either
zero or the same sign as A. Thus the absolute value of C is less than or equai to the tme
quotient of the absolute values of A and H. This is compatible with Maclisp and most computer
hardware.

Unlike Maclisp, I -isp Machine Lisp does not have number declarations in the compiler. Note
that because fixnums and small flonums require no associated storage they are as efficient as
declared numbers in Maclisp. Bignums and (large) flonums are less efficient, however bignum and
flonul11 intenTIediate results are garbage collected in a special way that avoids the overhead of the
full garbage collector.

DSK:LMMAN;FD.NUM 67 16-MAR-81

Numeric Predicates 86 Lisp Machine Manual

The different types of numbers can be distinguished by their printed representations. A
leading or embedded (but 1/01 trailing) decimal point, and/or an exponent separated by "e",
indicates a ftonum. If a number has an exponent separated by "s", it is a small flonum. Small
ftonums require a special indicator so that naive users will not accidentalIy compute with the lesser
precision. Fixnums and bignums have similar printed representations since there is no numerical
value that has a choice of whether to be a fixnum or a bignum; an integer is a bignum if and
only if its magnitude too big for afixnum. See the examples on page 284,in the description of
what the reader understands.

7.1 Numcric Prcdicates

zerop x
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causes an
error. For flonums, this only returns t for exactly 0.0 or O.OsO; there is no "fuzz".

plusp x
Returns t if its argument is a POSitIve number, strictly greater than zero. Otherwise it
returns nil. If x is not a number, plusp causes an error.

minusp x
Returns t if its argument is a negative number, strictly less than zero. Otherwise it
returns nil. If x is not a number, minusp causes an error.

oddp /lulI/ber
Returns t if number is odd, otherwise nil. If number is not a fixnum or a bignum, oddp
causes an error.

evenp /lumber
Returns t if /lumber is even, otherwise nil. If /lumber is not a fixnum or a biguum;
evenp causes an error.

s;gnp SpecialFoml
signp is used to test the sign of a number. It is present only for Maclisp compatibility,
and is not recommended for use in new programs. (signp lest x) returns t if x is a
number which satisfies the test, nil if it is not a number or does not meet the test. test
is not evall13ted, but x is. test can be one of the full owing:

I x < 0
Ie x ~ 0
e x = 0
n
ge

.g

x = 0
x ~ 0
x> 0

Examples:
(signp
(signp
(signp

1 e 12) => t
n 0) => nil
9 'fool => nil

See also the data-type predicates fixp, floatp, bigp, small-floatp, and numberp (page 8).

DSK:LMMAN;FD.NUM 67 16-MAR-81

Lisp Machine Manual 87 Numeric Comparisons

7.2 Numeric Comparisons

All of these functions require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp in which generally only the spelled-out names work for all kinds
of numbers).

= x y
Returns t if x and yare numerically equal. An integer can be = to a Honum.

greaterp x y &rest lIIore-args
) x y &rest lIlore-args

greaterp compares its arguments from left to right. If any argument is not greater than
the next, greaterp returns nil. But if the arguments are monotonically strictly decreasing,
the result is t.
Examples:

(greaterp 4 3) => t
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2 0) => nil

)= x y &rest lIlore-args
~ x y &rest lIlore-args

~ compares its arguments from left to right. ff any argument is less than the next, ~

returns. nil. But if the arguments are monotonically decreasing or equal, the result is t.

los S P x y &rest lIlore-args
< x y &rcst t/wre-args

lessp compares its arguments from left to right. If any argument is not less than the
next, lessp returns nil. But if the arguments are mi)l1otonically strictly increasing, the
result is t.
Examples:

(lessp 3 4) => t
(lsssp 1 1) => nil
(lessp 0 1 2 3 4) => t
(lessp 0 1 3 2 4) => nil

< = x y &rest more-args
S x y &rest more-args

;t: x y

s compares its arguments from left to right. If any argument is greater than the next, S
returns nil. But if the arguments are monotonically increasing or equal, the result is t.

Returns t if x is not numerically equal to y, and nil otherwise.

max &rest args
max returns the largest of its arguments.
Example:

(max 1 3 2) => 3
max requires at least one argument.

DSK:LMMAN;FD.NUM 67 16-MAR-81

Arithmetic 88

mi n &rest args
min returns the smallest of its arguments.
Example:

(min 1 3 2) => 1
min requires at least one argument.

7.3 Arithmetic

Lisp Machine Manual

All of these functions require that their arguments be numbers, and signal an error if given a
non-number. They. work on all types of numbers, aULomatically perfonningany required
coercions (as opposed to Maclisp, in which generally only the spelled-out versions work for all
kinds of numbers, and the "$" versions are needed for ftonums). .

P 1 us &rest args
+ &rest args
+$ &rest args

Returns the sum of its arguments. If there are no arguments, it returns 0, which is the
identity tt)r this operation.

difference arg &rest args
Returns its first argument minus all of the rest of its arguments.

m1 nus x
Returns the negative of x.
Examples:

(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args
- $ arg &rest args

abs x

With only one argument, - is the same as minus; it returns the negative of its argument.
With more than one argument, - is the same as difference; it returns its first argument
minus all of the rest of its arguments.

Returns lxi, the absolute value of the number x. abs could have been defined by:
(defun abs (x)

(cond «(minusp x) (minus x»
(t x»))

time s &rest args
"'. &rest args
'" $ &rest args

Returns the product of its arguments. If there arena arguments, it returns 1, which is
the identity for this operation.

DSK:LMMAN;FD.NUM 67 16-MAR-81

I.isp Machine Manual 89

quot i ent arg &rest args
Returns the first argument divided by all of the rest of its arguments.

/ / arg &rest args
/ /$ arg &rest args

Arithmetic

Thc name of this function is written / / rather than / bccause / is the quoting character.
in Lisp syntax and must be doubled. With more than one argument, / / is the same as
quotient: it returns the first argument divided by all of the rest of its arguments. With
only one argunlcnt, (1/ x) is the same as (1/ 1 x). The exact rules for the meaning of
the quotient and remainder of two integers are givcn on page 85.
Examples:

(I I 3 2) => 1 ;Fixnum division truncates.
(II 3 -2) => -1
(II -3 2) => -1
(II -3 -2) => 1
(II 3 2.0) => 1.5
(II 3 2.0s0) => 1.5s0
(I I 4 2) => 2
(II 12. 2. 3.) => 2
(114.0) => .25

remainder x y
\ x y

Rc:turns the relllainder of x divided by y. x and y must bc integers (ftxnums or
hignullls). The exact ruics for tJ1C meaning of the qumient and remainder of two integers
arc given on page 85.

add1 x
1+ x
1+$ X

(\ 3 2) => 1
(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

(add1 x) is the same as (plus x 1).

sub1 x
1- x
1-$ x

(sub1 x) is the same as (difference x 1). Note that the short name may be confusing:
(1 - x) does /lot mean I-x; rather, it means x-I.

ged x y
\\ x y

Returns the greatest common divisor of x and y. x and y must be integers (fixnums or
bignums).

DSK:LMMAN;FD.NUM 67 I6-MAR-81

Transcendental Functions

*dif x y
*plus x y
*quo x y
*times x y

90 Lisp Machine Manual

These are the internal micro-coded arithmetic functions. There is no reason why anyone
should need to write code with these explicitly, since the compiler knows how to generate
the appropriate code for plus, + , etc. These names are only here for Maclisp
compatibility.

7.4 Transcendental Functions

Most of these functions are only for floating-point arguments; if given an integer they will
convert it to a flonum. If given a small-flonum, they will return a small-nonum. There area
couple of exceptions, which are documented explicitly.

expt x y
A X Y
A$ X Y

Returns x raised to the)"th power. The result is an integer if both arguments are
integers (evcn if y is 11cgativc!) and tloating-point if either x or y or both is floating-point.
If the exponent is an integer a repeatedcsquaring algorithm is used, while if the exponent
is tloating tile result is (exp (* y (log x))). .

exp x
Returns e raised to the x'th power, where e is the base of natural logarithms.

log x
Returns the natural logarithm of x.

sqrt x
Returns the square root of x.

isqrt x
Integer square-root. x must be an integer; the result is the greatest integer less than or
equal to the exact square root of x.

sin x
Returns the sine of x, where x is expressed in radians.

sind x
Returns the sine of x, where x is expressed in degrees.

cos x
Returns the cosine of x, where x is expressed in radians.

cosd x
Returns the cosine of x, where x is expressed in degrees.

DSK:LMMAN;FD.NUM 67 16-MAR-Sl

Lisp Machine Manual 91 Numeric Type Conversions

atan y x
Returns the arctangent of the angle y/x.]t always returns a non-negative number
between zero and 277.

atan2 y x
Returns the arctangent of the angle >VX, except that it returns a number between -77 and
77.

7.5 Numeric Type Conversions.

These nmctions arc provided to allow specific conversions of data types to be torced, when
desired.

fix x
Converts x from a nOI1UI11 (or small-nonum) to an integer. truncating towards negative
infinity. The result is a fixnul11 or a bignum as appropriate.]f x is already afixnum or a
bignum, it is returned unchanged.

fixr x
Converls x from a Ilonum (or smalHlonum) to an integer. rounding to the nearest integer.
]f x is exactly halfway between two integers. this rounds up (towards positive infinity).
fixr could have heen denned by:

(defun fixr (x)
(if (fixp x) x(fix (+ x 0.5»»

float x
Converts any kind of number to a Ronum.

small-float x
Converts any kind of number to a small Honum.

7.6 Logical Operations on Numbers

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish and rot
have an inherent word-length limitation and hence only operate on 24-bit fixnums. Negative
numbers are operated on in their 2's-complement representation.

log 1 0 r &rest args
RetUrns the bit-wise logical inclusive or of its arguments. At least one argument is
required.
Example:

(logior 4002 67) => 4067

logxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At least one argument is
required.
Example:

(logxor 2531 7777) => 5246

DSK:LMMAN;FD.NUM 67 16-MAR-81

Logical Operations on Numbers 92 Lisp Machine Manual

log an d &rest args
Returns the bit-wise logical alld of its arguments. At least one argument is required.
Examples:

(logand 3456 707) ~> 406
(logand 3456 -100) => 3400

lognot number
Returns the logical complement of number. This is the same as logxor'ing number with
-1.
Example:

(lognot 3456) => -3457

boo 1 e jil &rest args
boole is the generalization of logand. logior, and logxor. fil shotild be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of /lz is abed (a is the most significant bit, d the least) then the truth
table for the Boolean operation is as follows:

y

I 0 1

01 a c
x I

11 b d

If boole has more than three arguments, it is associated left to right; thus,
(boole fn x y z) = (boole fn (boole fn x y) z)

With two arguments, the result of boole is simply its second argument. At least two'
arguments arc required.

Examples:
(boole 1 x y)
(boole 6 x y)
(boole 2 x y)

= (logand x y)
= (logxor xy)

(logand(lognot x) y)

logand, logior, and logxor are usually preferred over the equivalent forms of boole, to
avoid putting magic numbers in the program.

bit-test x y
bit-test is a predicate which returns t if any of the bits designated by the 1's in x are 1's
in y. bit-test is implemented as a macro which expands as follows:

(bit-test x y) '==> (not (zerop (logand x y)})

lsh x y
Returns x shifted left y bits if y is positive or zero, or x shifted right Iyl bits if y is
negative. Zero bits arc shifted in (at either end) to fill unused positions. x and y must
be fixnums.

DSK:LMMAN;FD.NUM 67 16-MAR-81

Lisp Machine Manual

Examples:

ash x y

(1 s h 4 1) => 10
(lsh 14 -2) => 3
(lsh -1 1) => -2

93 Logical Operations on Numbers

;(octal)

Shifts x arithmetically left y bits if y is positive, or right -y bit'> if Y is negative. Unused
positions are filled by zeroes from the right, and by copies of the sign bit from the left.
Thus, unlike Ish, the sign of the result is always the same as the sign of x. If x is a
fixnum or .a hignum, this is a shifting operation. If x is a flol1um, this does scaling
(multiplication by a power of two), rather than actually shirting any bits.

rot x y
Returns x rotated left y bits if y is positive or zero, or x rotated right Lvi bits if y is
negative. The rotation considers x as a 24-bit number (unlike Mac1isp, which considers x
to be a 36-bit number in both the pdp-IO and Multics implementations). x and y must
be fixnums.
Examples:

haulong x

(rot 1 2) => 4
(rot 1 -2) => 20000000
(rot -1 7) => -1
(rot 15 24.) => 15

This retLlfll~ the number 01 significant bits in Ixl. x may be a fixnum or a bignum. Its
sign is ignored. The result is the least integer strictly greater than the basc-2 logarithm of
Ixl·
Examples:

haipart x n

(hau1ong O)=> 0
(hau1ong 3) => 2
(haulong -7) => 3

Returns the high Il bits of the binary representation of lxi, or the low -Il bits if n is
negative. x may be a fixnum or a bignum; its sign is ignored. haipart could have been
defined by:

(defun haipart (x n)
(setq x (abs x»
(if (minusp n)

(logand x (1- (ash 1 (- n)}})
(ash x (min (- n (haulong x»

0)) »

DSK:LMMAN;FD.NUM 67 16-MAR-81

Byte Manipulation Functions 94 Lisp Machine Manual

7.7 Byte IVIaniJ1ulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguoLls set of bits is called
a byte. Note that we are not using the term byte to mean eight bits, but rather any number of
bit') within a number. These functions use numbers called byle specifiers to designate a specific
byte position within any word. Byte specifiers are fixnums whose two lowest octal digits represent
the size of the byte, and whose higher (usually two, but sometimes more) octal digits represent
the position of the byte within a number, counting from the right in bits. A position of zero
means that the byte is at the right end of the number. For example, the byte-specifier 0010 (Le.
10 octa\) refers to the lowest eight bits of a word; and the byte-specifier 10 10 refers to the next
eight bits. These byte-specifiers will be stylized below as ppss. The maximum value of the ss
digits is 27 (octal), since a byte must fit in a fixnum although byres can be loaded from and
deposited into bignums. (Bytes are always positive numbers.) The format of byte-specifiers is
taken tj'om the pdp-1O byte instl1lctions.

1 db ppss num
ppss specifics a byte of Illllll to be extracted. The ss bits of the byte starting at bit pp are
the lowest ss bits in the returned value, and the rest of the bits in the returned value are
zero. The name I:f the function, Idb, means "load byte". lIum may be a fixnum or a
bignum.
Example:

(ldb 0306 4567) => 56

load-byte Ilum pusition size
This is like !db except that instead of lIsing a byte specifier, the position and size are
passed as separate arguments. The argument order is not analogous to that of Idb so that
load-byte can be compatible with Maclisp.

ldb-tast ppss y
Idb-test is a predicate which returns t if any of the bits designated by the byte specifier
ppss are 1's in y. That is, it returns t if the designated field is non-zero. Idb -test is
implemented as a macro which expands as follows:

(ldb-test ppss y) ==> (not (zerop (ldb ppss y»)

mask-field ppss Ilurn
This is similar to Idb; however, the specified byte of num is returned as a number in
position pp of the returned word; instead of position 0 as with Idb. nurn must be a
fixnum.
Example:

(mask-field 0306 4567) => 560

dpb byle ppss. num
Returns a number which is the same as Ilum except in the bits specified by ppss. The
low ss bits of byle are placed in those bits. byte is interpreted as being right-justified, as
if it were the result of Idb. fllIJn may be a fixnllm or a bignum. The name means
It deposit byte".
Example:

(dpb 23 0306 4567) => 4237

DSK:UvlMAN;FD.NUM 67 16-MAR-Sl

I jsp Machine Manual 95 Random Numbers

depos it-byte I/LIlIl posilion size byte
This is like dpb except that instead of using a byte specifier. the posiliof/ and size are
passed as separate arguments. The argument order is not analogous to that of dpb so that
deposit-byte can be compatible with Maclisp.

deposit-field byte ppSS llum
This is like dpb. except that byte is not taken to be left-justified; the ppss bits of byte are
used for the ppss bits of the result. with the rest of the bits taken from I/U111. 1/U111 must
be a fixnum.
Example:

(deposit-field 230 0306 4567) => 4237

The behavior of the following two functions depends on the size of fixnums. and so functions
using them may not work the same way on future implementations of the Lisp Machine. Their
names start with "%" because they are more like machine-level subprimitives than the previous
functions.

%logldb ppss fixllum
%Iogldb is like Idb except that it only loads -out of fixnums and allows a byte size of 30
(octal), i.e. all 24. bits of the fixnum including the-sign bit

%1ogdpb byte ppss fixllum
%Iogdpb is like dpb except that it only deposits into fixnums. Using this to change the
sign-bit witl leave the result as a fixnum. white dpb would produce a bignum result for
arithmetic correctness. %Iogdpb is good for manipulating fiXlllllll bit-masks slich as are
used in some internal system tables and data-structures.

7.8 Random Numbers

The functions in this section provide a pseudo-random number generator facility. The basic
function you use is random, which returns a new pseudo-random number each time it is called.
Between calls, its state is saved in a data object called a random-array. Usually there is only one
random-array; however,if you want to create a reproducible series of pseudo-random numbers,
and be able to reset the state to control when the series starts over, then you need some of the
other functions here.

random &optional arg random-array
(random) returns a random fixnum, pOSltIVe or negative. If arg is present, a fixnum
between 0 and arg minus 1 inclusive is returned. If random-array is present, the given
array is used instead of the default one (see below). Otherwise, the default random-array
is used (and is created if it doesn't already exist). The algorithm is executed inside a
without-interrupts (see page 379) so two processes can use the same random-array
without colliding.

A random-array consists of an array of numbers, and two pointers into the array. The
pointers circulate around the array; each time a random number is requested, both pointers are
advanced by one, wrapping around at the end of the array. Thus, the distance forward from the
first pointer to the second pointer, allowing for wraparound, stays the same. Let the length of
the array be length and the distance between the pointers be offset. To generate a new random
number, each pointer is set to its old value plus one, modulo length. Then the two elements of

DSK:LMMAN;FD.NUM 67 16-MAR-Sl

24-Bit Numbers 96 Lisp Machine Manual

the array addressed by the pointers are added together; the sum is stored back into the array at
the location where the second pointer points, and is returned as the random number after being
normalized into the right range.

This algorithm produces welhdistributed random numbers if length and offset are chosen
carefully, so that the polynomial xt!ength+xtoffsel+l is irreducible over the mod-2 integers.
The system uses 71. and 35.

The contents of the array. of numbers should be initialized to anything moderately random, to
make (he algorithm work. The contents get initialized by a simple random number generator,
based on a number called the seed. The initial value of the seed is set when the random-array is
created, and it can be changed. To have several different controllable resettable sources of
random numbers, you cari create your own random-arrays. If you don't care about reproducibility
of sequences, just use random without the randOfil-array argument.

s1: random-creah-array length offset seed &optional (area nil)
Creates. initializes. ,ind returns a random-array. length is the length of the array. offset is
the distance between the pointers and should be an integer less than length. seed is the
initial value of the seed, and should be a fixnum. This calls si:random-initialize on the
random array before returning it.

si:random-initia11ze array &optional new-seed
arrct)' must be a random-array, such as is created bysi:random-create-array. If new
seed is provided. it should be a ftxnum; and the seed is set to it. si:random-initialize
reinitializes the contents of the array from the seed (calling random changes the conlents
of the array and the pointers, but lIotthe seed). .

7.9 24·Bit Numbers

Sometimes it is desirable to have a form of arithmetic which has no overflow checking (which
would produce bignums), and truncates results to the word size of the machine. In Lisp Machine
I.isp, this is provided by the following set of functions. Their answers are only correct modulo
2t24.

These functions should not be used for "efficiency"; they are probably less efficient than the
functions which do check for overflow. They are intended for algorithms which require this sort
of arithmetic, such as hash functions and pseudo-random number generation.

%24-bit-plus x y
Returns the sum of x and y modulo 2t24. Both arguments must be fixnums.

%24-bit-d1fferonce x y
Returns the difference of x and y modulo 2t24. Both arguments must be fixnums.

%24-bit-times x y
Returns the product of x and ymodulo 2t24. Both arguments must be fixnums.

DSK:LMMAN;FD.NUM 67 16-MAR-81

Lisp Machine Manual 97 Double-Precision Arithmetic

7.1 () Double· Precision Arithmetic

These peculiar functions are useful in programs that don't want to use bignums for one reason
or another. They should usually be avoided, as they are difficult to use and understand, and they·
depend on special numbers of bits and on the use of two's-complement notation.

%multiply-fractians Iluml nwn2
Returns bits 24 through 46 (the most significant half) of the product of Iluml and l/urn2.
If you caB this and %24-bit-times on the same arguments Illlln! and llum2, regarding
them as integers, you can combine the results into a double-precision product. If /luml
and /lll/112 are regarded as two's-complement fractions, -1 ~ /WIIl < 1, %multiply
fractions returns 112 of their correct product as a fraction. (The name of this function
isn't too great.)

%d i v i de- daub 1 e dil'ide//{J[24:46] dil'ide/ld[O:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient. Causes an error if division by zero or
if the quotient won't fit in single precision.

%rema 1 ndar-daubl e diloidend[24:46] dividelllJ[O:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the remainder. Causes an error if division by zero.

%flaat-doubla high24 !ow24
hi~h24 and /uII'24, which mList be J1xnums, are concatenated to produce a 48-uit unsigned
positive integer. A Ilonum containing the same value is constructed and returned. Note
thar only the 31 most-significant bits arc ret<lined (after removal of leading zeroes.) This
function is mainly for the benefit of read.

DSK:LMMAN;FD.NUM 67 16-MAR-Sl

Arrays 98 Lisp Machine Manual

8. Arrays
An array is a Lisp object that consists of a group of ceUs, each of which may contain an

object. The individual cells are selected by numerical subscripts.

The dimensionality of an array (or, the number of dimensions which the array has) is the
number of subscripts used to refer to one of the elements of the array. The dimensionality may
be any integer from one to seven, inclusively.

The lowest value for any subscript is zero; the highest value is a property of the array. Each
dimension has a size, which is the lowest number which is too great to be used as a subscript.
For example, in a one--dimensional array of five clements, the size of the one and only dimension
is five, and the acceptable values of the subscript are zero, one, two, three, and four.

The most basic primitive functions for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for examining the contents of arrays, and aset, which
is lIsed for storing into arrays~

An- array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an clement of an array. There are many
functions, described in this chapter, which take arrays as arguments and perform lIseful operations
on them.

Another way of handling arrays, inherited from Madisp, is to treat them as functions. In this
- case each array has a name, which is a symbol whose function definition is the array. The Lisp

machine supports this style by allowing an array to be applied to arguments, as if it were a
function. The argumenls are treated as subscripts and the array is referenced appropriately. The
store special fOim (see page 114) is also supported. This kind of array referencing is considered
to be obsolete, and is slower than the usual kind. It should not be used in new programs.

There are many types of arrays. Some types of arrays can hold Lisp objects of any type; the
other types of arrays can only hold fixnums or flonums. The array types are known by a set of
symbols whose names begin with "art-" (for ARray Type).

The most commonly used type is called art-q. An art-q array simply holds Lisp objects of
any type.

Similar to the art-q type is the art-q-list. Like the art-q, its elements may be any Lisp
object. The difference is that the art-q-list array "doubles" as a list; the function g-I-p will
take an art-q-list array and return a list whose clements are those of the array, and whose actual
substance is that of the array. If you rplaca clements of the list, the corresponding element of
the array will change, and if you store into the array, the corresponding element of the list will
change the same way. An attempt to rplacd the list will cause an error, since arrays cannot
implement that operation.

There is a set of types called art-1b, art-2b, art-4b, art-8b, and art-16b; these names are
short for "1 bit", "2 bits", and so on. Each element of an art-lib array is a non-negative
fixl1um, and only the least significant 11 bits are remembered in the array; all of the others are
discarded. Thus art-1b arrays store only 0 and 1, and if you store a 5 into an art-2b array and
look at it later, you will find a 1 rather than a 5.

DSK:LMMAN;FD.ARR 101 16-MAR-81

I.isp Machine Manual 99 Arrays

These arrays are used when it is known beforehand that the fixnums which will be stored are
non-negative and limited in size to a certain number of bit'>. Their advantage over the art-q
array is that they occupy less storage, because more than one clement of the array is kept in a
single machine word. (For example, 32 clements of an art-1b array or 2 clements of an art-16b
array will fit into one word).

There are also art-32b arrays which have 32 bits per element. Since fixnums only have 24
bits anyway, these are the same as art-q arrays except that they only hold fixnums.

Character strings are implemented by the art-string array type. This type acts similarly to the
art-8b; its clements must be fixnums, of which only the least significant eight bits are stored.
However, many important system functions, including read, print, and eval, treat art-string
arrays very differently from the other kinds of arrays. These arrays are usually called strillgs, and
chapter 9 of this manual deals with functionr. that manipulate them.

The art-float array type is a special-purpose type whose clements are fionums. When storing
into such an array the value (any kind of number) will be converted to a fionum, using the float
function (sec page 91). The advantage of storing flonums in an art-float array rather than an
art-q array is that the -numbers in an art-float array are not true Lisp objects. Instead the array
remembers the numerical- value, and when it is aref'ed creates a Lisp object (a flonum) to hold
the vatue. Ikcallse the system docs special storage management for bignums and flonums tllat are
intenncdiate results, the use of art-float arrays can save a lot of work for the garbage-collector
and hence greatly increase perfonnance. An intermediate result is a l-isp object passed as an
argulllent, stored in a local variable, or returned as the value of a function, but not stored into a
global variable, a Ilon-art-float array, or list structure. art-float illTays also provide a locaiity of
reference advantage over art-q arrays containing flonums, since the flonums are contained in the
array rather than being separate objects probably on different pages of memory.

There are tllree types of arrays which exist only for the implementation of stack groups; these
types are called art-stack-group··head, art-special-pdt, and art-reg-pdl. Their clements may
be any Lisp object; their use is explained in tlle section on stack groups (see chapter 12, page
149).

array-types Variable
The value of array-types is a list of all of the array type symbols such as art-q,art-4b,
art-string and so on. The values of these symbols are internal array type code numbers
for the corresponding type.

ar ray- types array-type-code
Given an internal numeric array-type code, returns the symbolic name of that type.

array-a 1 emants-per--q Variable
array-elements-per-q is an association list (see page 64) which associates each array type
symbol with tlle number of array clements stored in one word, fi)r an array of that type.
If the value is negative, it is instead tlle number of words per array clement, for arrays
whose clements are more tllan one word long.

DSK:LMMAN;FD.ARR 101 16-MAR-81

Extra Features of Arrays 100 Lisp Machine Manual

array-el ements - par- q array-t)'pe-code
Given the internal array-type code number, returns the number of array clements stored
in one word, for an array of that type. If the value is negative. it is instead the number
of words per array element, for arrays whose clements are more than one word long.

ar ray- bi ts -pe r- e 1 ament Variable
The value of array-bits-per-element is an association list (see page 64) which associates
each array type symbol with the number of bits of unsigned number it can hold. or nil if
it can hold Lisp objects.. This can be used to tell whether an array can hold Lisp objects
or not.

ar ray-bi ts -per-e 1 ement arra)'-type-code
Given the internal array-type code numbers. returns the number of bits per cell for
unsigned numeric arrays, or nil for a type of array that can contain Lisp objects.

array-element-size array
Given an array. returns the number of bits that fit in an clement of that array. for array
that can hold general Lisp objects, the result is 24., assuming you will be storing
unsigned fixnums in the array.

8.1 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q array
which is attached to the main array. So an array which has a leader acts like tWll arrays joined
together. The leader can he stored into and examiried by a special set of functions, different from
those used for the main array: array-leader and store-array-Ieader. The leader is always one
dimensional, and always can hold any kind of Lisp object, regardless of the type or
dimensionality of the main part of the array.

Very often the main part of an array will be a homogeneous set of objects, while the leader
will be used to remember a few associated non-homogeneous pieces' of data .. In this case the
leader is not used like an array; each slot is used differently from the others. Explicit numeric
subscripts should not be used for the leader elements of such an array; instead the leader should
be described by a defstruct (see page 228).

By . convention, element 0 of the array leader of an array is used to hold the number of
elements in the array that are "active" in some sense. When the zeroth element is used this way,
it is called a fill pointer. Many array-processing functions recognize the fill pointer. For instance,
if it string (an array of type art-'string) has seven elements, but its fill pointer contains the value
five, then only clemente; zero through four of the string arc considered to be "active"; the string's
printed representation will be five characters long, string-searching functions will stop after the
fifth element, etc.

The system does not provide a way to turn off the fill-pointer convention; any array that has
a Icadermust reserve clement 0 for the 1111 pointer or avoid using many of the array functions.

Leader clement 1 is used in conjunction with the "named structure" feature to associate a
"data type" with the array; sec page 239. Element 1 is only treated specially if the array is
flagged as a riamed structure.

DSK:LMMAN;FD.ARR 101 16-MAR-81

Lisp Machine Manual 101 Extra Features of Arrays

The following explanation of di5placed arrays is probably not of interest to a beginner; the
section may be passed over without losing the c011linuity of the manual.

Nonnally, an array is represented as .a small amount of header information, followed by the
contents of the array. However, sometimes it is desirable to have the header infonnation removed
from the actual contents. One such uccasion is when the COll[ents of the array must be located in
a special part of the Lisp Machine's address space, such as the· area used for the control of
input/output devices, or the bitmap memory which generates the TV image. Displaced arrays are
also llsed to reference certain special system tables, which are at fixed addresses so the microcode
can access them easily.

If you give make-array a fixnum or a locative as the value of the :displaced-to option, it
will crl!ate a displaced array referring to that location of virtual memory and its successors.
References to clements of the displaced array will access that part of stomgc, and return the
contents; the regular aref alld aset functions arc used. If the array is on~ whose clements are
Lisp objects, caution should be used: if the region of address spaCl! does not contain typed Lisp
objects, the integrity of the storage system and the garbage collector could be damaged. If lhe
array is one whose clements arc bytes (such as an art-4b type), then there is no problem. Tt is
important to know, in this case, that the clements of such arrays are allocated from the right to
the left within the 32-bit words.

It is also possible to have an array whose contents, instead of being located at a fixed place
in virtual memory, arc defined to be those of another array. Such an array is called an iI/direct
array, and is created by giving make-array an array as the value or the :disp!aced-to option.
The elfl!cls of this are simple if bmh arrays have the same [yp'e; the two arrays share all
clements. An object stored in a certain clement of one can be retrieved from the corresponding
clement of the other. This, by itself, is not very useful. However, if'the arrays have different
dimensionality, the manner of accessing the clements differs. Thus, by creating a one-dimensional
alTay of nine clements which was indirccted to a second, two-dimensional array of three elements
by three, then the elements could be accessed in either a one~dimensional or a two-dimensional
manner. Weird effects can be produced if the new array is of a different type than the old array;
this is not generally recommended. Indirecting an art-mb array to an art-nb array will do the
"obvious" thing. For instance, if m is 4 and Il is 1, each clement of the first array will contain
fOLir bits from the second array, in right-to-Ieft order.

It is also possible to create an indirect array in such a way dlat when an attempt is made to
reference it or store into it, a constant number is added to the subscript given. This number is
called the index-offset, and is specified at the time the indirect array is created, by giving a
fixllum to make-array as the value of the :index-offset option. Similarly, the length of the
indirect array need not be the full length of the array it indirects to; it can be smaller. The
nsubstring function (see page lIS) creates such arrays. When using index offsets with multi
dimensional arrays, there is only one index offset; it is added in to dlC "linearized" subscript
which is dIe result of multiplying each subscript by an appropriate coefficient and adding dlem
together.

DSK:LMMAN;FD.ARR 101 16-MAR-Sl

Basic Array Functions 102 Lisp Machine Manual

8.2 flasic Array Functions

make-array dimclISions &rest options.
This is the primitive function for making arrays. dimensions should be a list of fixnums
which are the dimensions of the array; the length of the list will be the dimensionality of
the array. For convenience when making a one-dimensional array, the single dimension
may be provided as a fixnum rather than a list of one fixnum.

optiollS are alternating keywords and values. The keywords may be any of the following:

:area The value specifics in which area (sec chapter 15, page 177) the list
should be created. It should be either an area number (a fixnum), or nil
[() mean the default area.

:type The value should be a symbolic name of an array type; the most common
of these is art-q, which is the default. The clements of the array are
initialized according to the type: if the array is of a type whose elements
may only be fixnull1s or flol1ums, then every element of the array will
initially be a or 0.0; otherwise, every clement will initially be nil. See
the description of array types on page 98. The value of the option may
also be the value of a symbol which is an array type name (that is, an
internal numeric array type code).

:displaced-to If this is not nil, then the array will be a displaced array. If the value is
a fixnulTI or a locative, make-array will create a regular displaced array
which refers to the specified section of virtual address space. If the value
is an array, make-array will create an indirect array (sec page 101).

:Ieader-Iength The value should be a fixnum. The array will have a leader with that
many elements. The elements of the leader will be initialized to nil unless
the :Ieader-list option is given (see below).

:Ieader-list The value should be a list. Call the number of clements in the list fl.

The first n elements of the leader will be initialized from sllccessive
elements of this list. If the :Ieader-Iength option is not specified, then
the length of the leader will be n. If the :Ieader-Iength option is given,
and its value is greater than n, then the nth and following leader
clements will be initialized to nil. If its value is less than n, an error is
signalled. The leader elements are filled in forward order; that is, the car
of the list will be stored in leader element 0, the cadr in element 1, and
so on.

:displaced - index - offset
If this is present, the value of the :displaced-to option should be an
array, and the value should be a non-negative fixnum; it is made to be
the index-01fset of the created indirect array. (See page 101.)

:named - structure
If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array will be tagged as a named structure (see page 239.)
If the array has a leader, then this symbol will be stored in leader
clement 1 regardless of the value of the :Ieader-list option.

DSK:LMMAN;FD.ARR 101 16-MAR-81

Lisp Machine Manual 103

Examples:
;; Create a one-dimensional array offive clements.
(make-array 5)
;; Create a two-dimensional array,
;; three by four, with four-bit clements.
(make-array '(34) ':type 'art-4b)
;; Create an array with a three-clement leader.
(make-array 5 ':leader-length 3)
;; Create an array with a leader, providing
;; iniLial values for the leader clements.

Basic Array Functions

(setq a (make-array 100 ':type 'art-1b
':leader-list '(t nil)))

(array-leader a 0) => t
(array-leader a 1) => nil
;; Create a named-structure with five leader
;; elements, initializing some of them.
(setq b (make-array 20 ':leader-length 5

':leader-list '(a nil faa)
':named-structure 'bar))

(array-leader b 0) => 0
(array-leader b 1)
(array-leader b 2)
(array-leader b 3)
(array-leader b 4)

=>
=>
=>
=>

bar
faa
nil
nil

make-array r~turns the newly-created array, and also returns, as a second value, the
number of words allocated in the process of creating the array, i.e. the %structure-total
size of the array.

When ma~<e-array was originally implemented, it took its arguments in the following
fixed pattern:

(ma k e - a r ray area type dimensions
&op t i on a 1 displaced-to leader

displaced-index-offset
named-structure)

leader was a combination of the :Ieader-Iength and :Ieader-list options, and the list was
in reverse order. This obsolete form is still supported so that old programs will continue
to work, but the new keyword-argument fOlm is preferred.

araf array &rest subscripts
Returns the clement of array selected by the subscripts. The subscripts must be fixnums
and their number must match the dimensionality of array.

ar-1 array i
ar-2 array i j
ar-3 array i j k

These are obsolete versions of aref that only work for one, two, or three dimensional
arrays, respectively. There is no reason ever to usc them.

DSK:LMMAN;FD.ARR 101 16-MAR-Sl

Basic Array Functions 104 Lisp Machine Manual

aset x array &rest subscripts
Stores x into the clement of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array. The returned value is
x.

as-1 x array i
as - 2 x array i j
as-3 x array i j k

These are obsolete versions of aset that only work for one, two, or three dimensional
arrays, respectively. There is no reason ever to use them~

aloe array &rest subscripts
Returns a locative pointer to thc clement-cell of array selected by the subscripts. The
subscripTs must be fixnums and their number must match the dimensionality of array. See
the explanation of locatives in chapter 13, page 156.

ap-1 array
ap-2 array i j
ap-3 array i j k

These arc ohsolete versions of aloe that only work for one, two,. or three dimensional
arrays, respectively. There is no rcason c\'er to use them.

The compiler turns mef into ar-1, ar-2, etc. according to the number of subscripts specified,
turns Elset into as-1, as-2, etc .. and turns aloe into ap-1, ap-2, etc. For arrays with more
than 3 dimensions the compileI' uses the slightly less efficient form since the special routines only
exist for 1, 2, and 3 dimensioas. There is Ill} reason for any program to call ar-1, as-1, ar-2,
etc. explicitly; they arc documented because there used to be such a reason, and many old
programs use these functions. New programs should use aref, aset, and aloe.

/\ reb ted fUllction, provided only for Maclisp compatibility, is arraycall (page 114).

array-l eader array i
array should be an array with a leader, and i should be a fixnum. This returns the i'th
clement of array's leader. This is analogolls to aref.

store-array-leader x array i
array should be an array with a leader, and i should be a fixnum. x may be any object.
x is stored in the i'th clement of array's leader. store'-array-Ieader returns x. This is
analogous to aset.

ap-leader array i
array should be an array with a leader, and i should be a fixnum. This returns a locative
pointer to the i'th element of array's leader. See the explanation of locatives, chapter 13,
page 156. This is analogoLls to aloe.

DSK:LMMAN;FD.ARR 101 16-MAR-S1

Lisp Machine Manual 105 Getting Information About an Array

8.3 Getting Inrormation Ahout an Array

array-type array
Returns the symbolic type of array.
Example:

(setq a (make-array '(35)))
(array-type a) => art-q

a r r ay - 1 eng t h array
array may be any array. This returns the total number of elements in array. For a one
dimensional array, this is one greater than the maximum allowable subscript. (But if fill
pointers are being used, you may want to use array-active·-Iength.)
Example:

(array-length (make-array 3)) => 3
(array-length (make-array '(3 5)))

=> 17 ;octal, which is 15. decimal

array-active-length array
If array does not have a fill pointer, then this returns whatever (array-length array)
would have. I f array does have a fill pointer, array- active-length returns it. See the
general explanation ()f the use of fill pointers, on page 100.

array-#-dims array
Returns the dimensionality of array. Note that the name of the function includes a "#",
which IlIllst bl': sl<lshif1ed i r you want to be able to read your program in Mac1isp. (It
duesn't need to be slashified for the Lisp machine reader, which is smarter.)
Example:

(array-#-dims (make-array '(3 5))) => 2

array-d1mension-n II array
array may be any kind of array, and n should be a fixnum. If fl is between 1 and the
dimensionality of array, this returns the lI'th dimension of array. If fl is 0, this returns
the length of the leader of array; if array has no leader it returns nil. If n is any other
value, this returns nil.
Examples:

(setq a (make-array '(35) ':leader-length 7))
(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-dimensions array
array-dimensions returns a list whose elements are the dimensions of array.
Example:

(setq a (make-array '(3 5)))
(array-dimensions a) => (3 5)

Note: the list returned by (array-dimensions x) is equal to the cdr of the list returned
by (arraydims x).

DSK:LMMAN;FD.ARR 101 16-MAR-81

Changing the Size of an Array .106 Lisp Machine Manual

arraydims array
array may be any array; it also may be a symbol whose function cell contains an array,
for Mac1isp compatibility (see section 8.10, page 113). arraydims returns a list whose first
clement is the symbolic name of the type of array, and whose remaining elements are its
dimensions.
Example:

(setq a (make-array '(3 5»)
(arraydims a) => (art-q 3 5)

array-in-bounds-p array &rest subscripts
This function checks whether subscripts is a legal set of subscripts for array, and returns t
if they arc; otherwise it returns nil.

array-di spl aced-p array
array may be any kind of array. This predicate returns t if array is any kind of displaced
array (induding an indirect array). Otherwise it returns nil.

array-indiract-p array
array may be any kind of array. This predicate returns t if array is an indirect array.
Otherwise it returns nil.

array-indexad-p array
array may be any kind of array. This predicate returns t if array is an indirect array with
an index-offset. Otherwise it returns nil. .

array-has-loader-p array
array may be any array. This predicate returns t if array has a leader; otherwise it
returns nil.

array-leader-length array
array may be any array. This returns the length of array's leader if it has one, or nil if
it does not

8.4 Changing the Size of an Array

adjust-array-s1z8 array new-size
If array is a one-dimensional array, its size is changed to be new-size. If array has more
than one dimension, its size (array-length) is changed to new-size by changing only the
last dimension.

If array is made smaller, the extra clements are lost; if array is made bigger, the new
clements arc initialized in the same ft1shion as make-array (see page 102) would initialize
them: either to nil or 0, depending on the type of array.
Example:

(setq a (make-array 5»
(aset 'foo a 4)
(aref a 4) => foo
(adjust-array-size a 2)
(aref a 4) => an error occurs

DSK:LMMAN;FD.ARR 101 16-MAR-81

Lisp Machine Manual 107 . Arrays Overlaid With Lists

If the size of the array is being increased, adjust-array-size may have to allocate a new
array somewhere.]n that case, it alters array so that references "to it will be made to the
new array instead, by means of "invisible pointers" (see structure-forward, page 160).
adjust-array-size will return this new array if it creates one, and otherwise it will return
array. De careful to be consistent about using the returned result of adjust-array-size,
because you may end up holding two arrays which are not the same (i.e. not eq). but
which share the same contents.

a r r ay - grow array &rest dimensions
array-grow creates a new array of the same type as array. with the specified dimensions.
Those elements of array that are still in bounds arc copied into the new array. The
clements of the new array that arc not in the bounds of army arc initialized to nil or 0 as
appropriate. If array has a leader, the new array will have a copy of it. array-grow
returns the new array and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always creates a new array rather than growing or
shrinking the array in place. But array-grow of a multi-dimensional array can change all
the subscripts and move the clements around in memory to keep each element at the
same logical place in the array.

return-array array
This peculiar function attempts to returns array to free storage. If it is displaced, this
returns the displaced array itself, not the data that the array points to. Currently return
array docs nothing if the array is not at the end of its region, i.e. if it was not the most
recently allocated non-list object in its area. This will eventually be renamed to reclaim,
when it works for other objects than arrays.

If you still have any references to array anywhere in the Lisp world after this function
returns •. the garbage collector can get a fatal error if it sees them. Since the form that
calls this function must get the array from somewhere, it may not be clear how to legally
call return-array. One of the only ways to do it is as follows:

(defun fune ()
(let ((array (make-array laO»)

(return-array (progl array (setq array nil»»)
so that the variable array does not refer to the array when return - array is called. You
should only call this function if you know what you are doing; otherwise the garbage
collector can get fatal errors, De careful.

8.5 Arrays Overlaid With Lists

These functions manipulate art-q-list arrays, which were introduced on page 98.

g-l-p array
array should be an art-q-Iist array. 111is returns a list which shares the storage of array.

DSK:LMMAN;FD.ARR 101 16-MAR-81

Adding to the End of an Array 108

Example:
(setq a (make-array 4 ':type 'art-q-list))
(aref a 0) => nil
(setq b (g-l-p a») => (nil nil nil nil)
(rplaca b t)
b => (t nil nil nil)
(aref a 0) => t
(aset 30 a 2)
b => (t nil 30 nil)

Lisp Machine Manual

The following two functions work strangely, in the same way that store docs, and should not be
used in new programs.

get-l is t-poi nter- i nto- ar ray array-ref
The argument array-rej is ignored, but should be a reference to an art-q-list array by
applying the array to subscripts (rather than by aref) , This returns a list object which is a
portion of the "list" of the array, beginning with the last clement of the last array which
has been called as a function.

get -1 ocat ; va - poi nter- i nto- ar ray array-ref
get-Iocative-pointer-into-array is similar to get-list-pointer-into-array, except that it
returns a locative, and doesn't require the array to be art-q -list. Usc aloe instead of this
function in new programs.

8.6 Adding to the End of an Array

array-push array x
array must be a one-dimensional array which has a fill pointer, and x may be any object.
array-push attempts to store x in the clement of the array designated by the fill pointer,
and increase the fill pointer by one. If the fill pointer does not designate an clement of
the array (specifically, when it gets too big), it is unaffected and array-push returns nil;
otherwise, the two actions (storing and incrementing) happen uninterruptibly, and array
push returns the jomwr value of the fill pointer, i.e. the array index in which it stored x.
If the array is of type art-q-list, an operation similar to neone has taken place, in that
the element has been added to the list by changing the cdr of the formerly last element.
The cdr coding is updated to ensure this.

I

array-push-extend array x &optional extension
array-push-extend is just like array-push except that if the fill pointer gets too large,
the array is grown to fit the new element; i.e. it never "fails" the way array-push does,
and so never returns nil. extension is the number of elements to be added to the array if
it needs to be grown. It defaults to something reasonable, based on the size of the array.

array-pop array
array must be a one-dimensional array which has a fill pointer. The fill pointer is
decreased by one, and the array clement designated by the new value of the fill pointer is
returned. I f the new value docs not designate any clement of the array (specifically, if it
had already reached zero), an error is caused. The two operations (decrementing and
array referencing) happen uninterruptibly. If the array is of type art-q -list, an operation
similar to nbutlast has taken place. The cdr coding is updated to ensure this.

DS K :UvHvIAN ;FD.ARR 101 16-MAR-Sl

Lisp Machine Manual 109 Copying an Array

8.7 Copying an Array

fi 11 array array x
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. There are two forms of this function, depending on the type of x.

[f x is a list. then fillarray fills up array with the elements of list. I f x is too short to fill
lip all of array, then the last element of x is used to fill the remaining elements of array.
If x is too long, the extra elements are ignored. If x is nil (the empty list), array is filled
with the dcf,lult initial value for its array type (nil or 0).

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains an
array), then the clements of arra), arc filled up from the elements of x. I f x is too small,
then the extra clements of array are nut affected. .

If array is Illulti-dimensional, the clelllents are accessed in row-major order: the last
subscript varies the most quickly. The same is true of x if it is an array.

Jillarray returns array.

l'j 5 tar ray array &optional limit
arra), may be any type of array, or, for iVraclisp compatibility, a symbol whose function
cell cuntains an array. Iistarray creates and returns a list whose clements are those of
array. If limit is present, it should be a fixnulll, and only the first limit (if there are
more than that many) elerllents of drray are useJ, and so the maximum length of the
returned list is limit.

If array is multi-dimensional, the elements are accessed in row-major order: the last
subscript varies the most quickly.

1 ist-array-leader array &optional limit
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. iist-array-ieader creates and returns a list whose elements are
those of array's leader. If limit is present, it should be a fixnum, and only the first limit
(if there are more than that many) elements of array's leader are used, and so the
maximum length of the returned list is limit. If array has no leader, nil is returned.

copy-array-contents from w
from and to must be arrays. The contents of from is copied into the contents of to,
clement by clement If 10 is shorter than from, the rest of from is ignored. If from is
shorter than to, the rest of 10 is filled with nil if it is a q-type array, or 0 if it is a
numeric a1Tay or a string, or 0.0 if it is a flonum array. This function always returns t.

Note that even if from or 10 has a leader, the whole array is used; the convention that
leader element a is the "active" length of the array is not used by this function. The
leader itself is not copied.

copy-array-contents works on multi-dimensional arrays. from and to are "linearized"
subscripts, and column-major order is used, i.e. Ihe first subscript varies fastest (opposite
/rom fillarray).

DSK:LMMAN;FD.ARR 101 16-MAR-81

Copying an Array 110 Lisp Machine Manual

copy-array-contents-and-leadar from to
This is just like copy-array-contents, but the leader of from (if any) is also copied into
to. copy-array-contents copies only the main part of the array.

copy-array-portion from-array from-start from-end to-array to-start to-end
The portion of the array from-array with indices greater than or equal to from-start and
less than from-end is copied into the portion of the array to-array with indices greater than
or equal to (o-start and less than to-end, element by clement. If there arc more elements
in the selected portion of to-array than in the selected portion of from-array, the extra
clements arc filled with the default value as by copy-array-contents. If there are more
clements in the selected portion of from-array, the extra ones are ignored. Multi
dimensional arrays are treated the same way as copy-array-contents treats them. This
function always returns t. .

b itb 1 t alu width height from-array from- x from-y to-array (0-x (o-y
from-array and lo-array must be two-dimensional arrays of bits or bytes (art-1 b, art-2b,
art-4b, art-8b, art-16b, or art-32b).bitblt copies a rectangular portion of froll/-array
into a rectangular portion of (a-array. The value stored can be a Boolean function of the
new value and the value already there, under the control of alu (see below). This
function is most commonly used in connection with raster images for TV displays.

The top-left corner of the source rectangle is (aref from-array from-.\" from-y). The top-left
corner of the destination rectangle is (aref to-array to-x lo-y). width and height are the
dimensions of both rectangles. If width or heigh! is zero, bitblt docs nothing.

from-array i:md to-array are allowed to be the same array. bitblt normally traverses the
arrays in increasing order of x and y subscripts. If widtlr is negative, then (abs width) is
lIsed as the width, but the processing of the x direction is done backwards, starting with
the highest value of x and working down. If height is negative it is treated analogously.
When bitblt'ing an array to itseU: when the two rectangles overlap, it may be necessary to
work backwards to achieve the desired effect, such as shifting the entire array upwards by
a certain number of rows. Note that negativity of width or height does not affect the (x,y)
coordinates specified by the arguments, which are still the top-left corner even if bitblt
starts at some other corner.

If bitblt goes outside the bounds of the source array, it wraps around. This allows such
operations as the replication of a small stipple pattern through a large array. If bitblt goes
outside the bounds of the destination array, it signals an error.

If SI'C is an element of the source rectangle, and dst is the corresponding clement of the
destination rectangle, then bitblt changes the value of dst to (boole alu src dst). See the
boole function (page 92). There are symbolic names for some of the most useful alu
functions; they are tv:alu-seta (plain copy), tv:alu-ior (inclusive or), tv:alu-xor
(exclusive or), and tv:alu-andca (and with complement of source).

bitblt is written in highly-optimized microcode and goes very much faster than the same
thing written with ordinary aref and aset operations would. Unfortunately this causes
bitblt to have a couple of strange restrictions. Wrap-around does not work correctly if
from-array is an indirect array with an index-offset. bitblt will signal an error if the first
climensions of from-array and to-array are not both integral multiples of the machine word
length. For art-1b arrays, the first dimension must be a multiple of 32., for art-2b

DSK:LMMAN;FD.ARR 101 16-MAR-81

Lisp Machine Manual 111 Matrices and Systems of Linear Equations

arrays it must be a multiple of 16., etc.

8.8 Matrices and Systems of Linear Equations

The ftmctions in this section perform some useful matrix operations. The matrices are
represented as two-dimensional Lisp arrays. These functions are part of the mathematics package
rather than the kernel array system, hence the "math:" in the names.

rna th : lOul tip 1 y-ma t rices matrix-/ matrix-2 &optional matrix-3
1\1ultipJies matrix-I by matrix-2. If matrix-] is supplied, multiply-matrices stores the
result,> into lIlatrix-] and returns IIllitrix-]; otherwise it creates an array to contain the
answer and returns that. All matrices must be two-dimensional arrays, and the first
dimension of matrix-2 must equal the second dimension of matrix-I_

math: invert-matrix matrix &optional into-matrix
Computes the inverse of matrix. If illlo-malrix is supplied, stores the result into it and
returns it; otherwise it creates an array to hold the result, and returns that. matrix must
be two-dimensional and square. The Gauss-Jordan algorithm with partial pivoting is used.
Note: if you want to solve a set of simultaneous equations, you should not use this
fUllction; use math:decompose anu math:solve (sec below).

math: transpose-matrix lIlatrix &optional illlo-matrix
Tr<1nspo<;r.:; lIIalrix. If il1lo-lllatrix is supplied, stores the result into it and rcturns it;
otherwise it cremes an army to hold the result, and returns that. lIlatrix must be a two
dimensional array. ill to-matrix , if provided, must be two-dirncm,ional and have sufficient
dimensions to hold the transpose of matrix.

math: determ1 nant matrix
Returns the determinant of matrix. matrix must be a two-dimensional square matrix.

The next two functions are used to solve set'l of simultaneous linear equations.
math:decompose takes a matrix holding the coefficients of the equations and produces the LU
decomposition; this decomposition can then be passed to math:solve along with a vector of right
hand sides to get the values of the variables. If you want to solve the same equations for many
different sets of right-hand side values, you only need to call math:decompose once. In terms of
the argument names used below, these two functions exist to solve the vector equation A x = b
for x. A is a matrix. band x are vectors.

math: decompose a &optional lu ps
Computes the LU decomposition of matrix a. If lu is non-nil, stores the result into it
and returns it; otherwise it creates an array to hold the result, and returns that. The
lower triangle of fu, with ones added along the diagonal, is L, and the upper triangle of
III is U, such that the product of Land U is a. Gaussian elimination with partial
pivoting is used. The III array is permuted by rows according to the permutation array ps,
which is also prouuced by this function; if the argument ps is supplied, the permutation
anay is stored into it; otherwise, an array is created to hold it. This function returns two
values: the LU decomposition and the permutation array.

DSK:LMMAN;FDARR 101 16-MAR-81

Planes 112 Lisp Machine Manual

math:solve III]IS b &llptional x
This function takes the LU UCCOIllposition and associated permutation array produced by
math:decompose, and solves the set of simultaneous equations ucfined by· the original
matrix a and the right-hand sides in the vector b. If x is supplied, the solutions arc
stored into it and it is returned; otherwise, an array is created to hold the solutions and
that is returned. b must be a one-dimensional array.

math: 1 is t- 2d - array array
Returns a Jist of lists containing the values in array, which must be a two-dimensional
array. There is one clement for each row; each clement is a Jist of the values in that
row.

math: f i 11- 2d - array array list
This is the opposite of math:list-2d-array. list should be a list of lists, with each
clement being a list corresponding to a row. array's clements arc stored from the list.
Unlike fjllarray (see page 109), if list is not long enough, math:fill-2d-array "wraps
around", starting over at the beginning. The lists which arc clements of list also work
this way.

8.9 Planes

t\ plane is an array whose bounds, in each dimension, arc plus-infinity and minus-infinity; all
integers arc legal as indices. Planes are distinguished not by size and shape, but by number of
diillensions alone. \Vhen a plane is creal.ell, a defuult value Itlllst be specified. At thilt ltlllll1Cnt,
evcry componcnt of the planc has that valuc. As you can't ever change more than a finite
number of components, only a finite region of the plane need actually be stored.

The regular array accessing functions don't work on planes. You can usc make-plane to
create a plane, plane-mel or plane-ref to gct the value of a componcnt, and plane-asel or
plane-store to store into a component. array- # -dims will work on a plane.

A plane is actually stored as an array with a leader. The array corresponds to a rectangular,
aligned region of the plane, containing all the components in which a plane-store has been done
(and others, in general, which have never been altered). The lowest-coordinate corner of that
rectangular region is given by the plane-origin in the array leader. The highest coordinate corner
can be found by adding the plane-origin to the array-dimensions of the array. The plane
default is the contents of all the clements of the plane which are not actually stored in the array.
The plane-extension is the amount to extend a plane by in any direction when the plane needs
to be extcnded. Thc default is 32.

If you never usc any negative indices, then the plane-origin will be all zeroes and you can
use regular array functions, such as aret and aset, to access the portion of the plane which is
actually stored. This can be useful to speed up certain algorithms. In this case you can even lise
the bitblt fUllction on a two-ciilllC'llsiollal plane of bits or bytes, provided you don't change the
plane-extension to a number that is not a multiple of 32.

DSK:LMMAN;FDARR 101 16-MAR-81

Lisp Machine Manual 113 Maclisp Array Compatibility

make- plana type rank defalill &optional (extellsion32.)
Creates and returns a plane. type is the array type symbol (e.g. art-1b). rallk is the
number of dimensions. dejault is the default component value as explained above.
extension is the amount to extend by as explained above.

plane-origin pfulle
A list of numbers, giving the lowest coordinate values actually stored.

pl ane-defaul t plane
'lllis is the contents of the infinite number of plane clements which are not actually
stored.

plane-extension plane
The amount to extend the plane by in any direction when plane-store is done outside of
the currently-stored portion ..

plane - aref plane &rest subscripts
plane-ref plane subscripts .

These two functions return the contents of a specified clement of a plane. They differ
only in the way they take their arguments; plane-aref wants the subscripts as arguments,
while plane-ref wants a list of subscripts.

pl ane-asat dalum plane &rest subscripts
pl ane-store datulIl plane subscripts

These two functiolls Slore datum into the specified dement of a plane, eXLending it if
necessary, and return datum. They dilfer only in the way they take their arguments;
plane-aset wants the subscripts as arguments, while plane-store wants a list of
subscripts.

8.10 lVIaclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility, and should not be
used in new programs.

Fixnum arrays do not exist (however, see the Lisp Machine's small-positive-integer arrays).
Flonum arrays exist but you do not use them in the same way; no declarations are required or
allowed. "Un-garbage-collected" arrays do not exist. Readtables and obarrays are represented as
arrays, but unlike Maclisp special array types are not used. See the descriptions of read (page
292) and intern (page 351) for information about read tables and obalTays (packages). There are
no "dead" arrays, nor arc Multics "external" arrays provided.

The arraycall function exists for compatibility but should not be used (see aref, page 103.)

Subscripts are always checked for validity, regardless of the v,llue of *rset and whether the
code is compiled or not. However, in a multi-dimensional array, an error is only caused if the
subscript" would have resulted in a reference to storage outside of the array. For example, if you
have a 2 by 7 array and refer to an clement with subscripts 3 and 1, no error will be caused
despite the fact that the reference is invalid; but if you refer to clement 1 by 100, an error will
be caused. In other words, subscript errors will be caught if and only if they refer to storage
outside the array; some errors arc undetected, but they will only clobber some other clement of

DSK:LMMAN;FD.ARR 101 16-MAR-81

Maclisp ArrilY Compatibility 114 Lisp Machine Manual

the same array rather than clobbering sl~mething completely unpredictable.

Currently, multi-dimensional arrays are stored in column-major order rather than row-major
order as in Maclisp. Row-major order means that successive memory locations differ in the last
subscript, while column-major order means that successive memory locations differ in the first
subscript. This has an effect on paging performance when using large arrays; if you want to
reference every element in a multi-dimensional array and move linearly through memory to
improve locality of reference, you must vary the first subscript fastest rather than the last.

loadarrays and dumparrays are not provided. However, arrays can be put into "QFASL"
files; see section 16.7, page 189.

The *rearray fimction is not provided, since not· all of it') functionality is available on the
Lisp Machine. Thc most common uses can be rcplaced by adjust-array-size.

Tn Maclisp, arrays are usually kept on the array property of symbols, and the symbols are
used instead of the arrays. Tn order to provide some degree of compatibility for this manner of
using arrays, the array, "'array, and store functions are provided, and when arrays are applied
to arguments, the arguments are treated as subscripts and apply returns the corresponding clement
of the array.

a r r ay "e symbol type &cval &rest dims
This creates an art-q type array in default-array-area with the given dimensions. (That
is. dims is given to make-array as its first argument.) type is ignored. If symbol is nil,
the array is returned; otherwise, the array is put in the fUlldion cell of !>J'moul, and
symbol is returned.

*array symbol type &rest dims
This is just like array, except that all of the arguments are evaluated.

stors Special Fonll
The form (store a"ay-ref x) stores x into the specified array clement. array-ref should be
a form which references an array by calling it as a function (aref forms are not
acceptable). First x is evaluated, then array-ref is evaluated, and then the value of x is
stored into the array cell last referenced by a function call, presumably the one in array
ref.

xstore x array-ref
This is just like store, but it is not a special form; this is because the arguments are in
the other order. This function only exists for the compiler to compile the store special
form into, and should never be used by programs.

a r r ay call ignored array &rest subscripts
(arraycall t a"ay subJ sub2 ...) is the same as (aref a"ay subl sub2 ...). It exists for
Maclisp compatibility.

DSK:LMMAN;FD.ARR 101 16-MAR-81

Li~p Machine Manual 115 Strings

9. Strings

Strings are a type of array which represent a sequence of characters. The printed
representation of a string is its characters enclosed in quotation marks, for example "foo bar".
Strings are constants, that is, evaluating a string returns that string. Strings are the right data
type to use for text-processing.

Strings are arrays of type art-string; each clement holds an eight-bit unsigned fixnum. This
is because characters are represented as fixnums, and for fundamental characters only eight bits
are used. The fUllctions described in this section provide a variety of useful operations on strings.
Several of the functions actually work on any type of one-dimensional array and may be useful
for other than string processing. art-16b arrays (arrays of 16-bit positive numbers) are sometimes
used instead of strings; the extra bit'i allow for mUltiple fonts or an expanded character set The
way characters work, including multiple fonts and the extra bits from the keyboard, is explained
in section 21.1, page 276. Note that you can type in the fixnums that represent characters using
" # /" and "# \ "; for example, # If reads in as the fixnum that represents the character "f',
and # \return reads in as the fixnum that represents the special "return" character. See page 286
for details of this syntax.

[n place of a string, most of these functions will accept a symbol or a fixnum as an
argument, and will coerce it into a string. Given a symbol, its print name, which is a string,
will be used. Given a fixnum, a one-character string containing the character designated by that
fiXllU111 will be used.

Since strings are arrays, the usual array-referencing ti.lI1ctioll aref is used to extract the
characters of the string as fixnums. For example,

(aref "frob" 1) => 162 ;lower-case r
Note that the character at the beginning of the string is clement zero of the array (rather than
one); as usual in Lisp Machine Lisp, everything is zero-based.

It is also legal to store into strings (using aset). As with rp[aca on lists, this changes the
actual object; one must be careful to understand where side-effects will propagate to. When you
are making strings that you intend to change later, you probably want to create an array with a
fill-pointer (see page 100) so that you can change the length of the string as well as the contents.
The length of a string is always computed using array-active-[ength, so that if a string has a
fill-pointer, its value will be used as the length. -

9.1 Characters

character x
character coerces x to a single character, represented as a fiXIlUffi. If x is a number, it
is returned. If x is a string or an array, its first clement is returned. If x is a symbol,
the first character of its pname is relurned. Otherwise, an eITOl' occurs. The way
characters are represented as I1xnurns is explained in section 21.1, page 276.

DSK:LMMAN;FD.STR 87 16-MAR-81

Upper and Lower Case Letters 116 Lisp Machine Manual

char-equal chleh2
This is the primitive for comparing characters for equ<llity; many of the string functions
call it. chi and ell2 must be fixnums. The result is t if the characters are equal ignoring
case and font; otherwise nil. %%ch-char is the byte-specifier for the portion of a
character which excludes the font infonnation.

char-lessp chi eh2
This is the primitive for comparing characters for order; many of the string functions call
it. chI and ch2 must be fixnums. The result is t if chi comes before eh2 ignoring case
and font. otherwise nil. Details of the ordering of characters are in section 21.1. page
276.

9.2 Upper aud Lower Case Letters

alphabet 1 c-case-affects-string-compari son Variable
This vnriable is normally nil. If it is t. char-equal, char-Iessp. and the string searching
and comparison functions will distinguish between upper-case and lower-case letters. It it
is nil. lower-case characters behave as if they were the same character but in upper-case.
It is all right to bind this to t around a string operation, but changing its global value to
t will break many system functions and user interfaces and so is not recommended.

char-llpcasa eh
Jf eh, which must be a fixnum, is a lower·case alphahetic chaiacter its upper-case form is
returned; otherwise. ell itself is returned. If font information is present it is preserved.

char-downcase eh
If eh, which must be a fixnum, is a upper-case alphabetic character its lower-case form is
returned; otherwise, ell itself is returned. If font information is present it is preserved.

string-upcase Siring
Rcturns a copy of SIring, with all lower case alphabetic characters replaced by the
corresponding upper case characters.

string-downcase string
Returns a copy of string, with all upper case alphabetic characters replaced by the
corresponding lower case characters.

-9.3 Basic String Operations

str1ng x
string coerces x into a string. Most of the string functions apply this to their string
arguments. If x is a string (or any array), it is returned. If x is a symbol, its pname is
returneu. If x is a non-negative fixnum lcss than 400 octal, a one-character-Iong string
containing it is created and returne,d. If x is a pathname (sec chapter 22, page 332), the
"string for printing" is returned. Otherwise, an error is signalled.

DSK:LMMAN;FD.STR 87 16-MAR-81

Lisp Machine Manual 117 Basic String Operations

string-longth siring
string-length returns the number of characters in siring. This is 1 if string is a number,
the array-active-Iength (see page 105) if string is an array, or the array-active-Iength
of the pname if string is a symbol.

string-equal stringl string2 &opdonal (idxlO) (idx20) liml Iim2
string-equal compares two strings, returning t if they are equal and nil if they are not.
The comparison ignores the extra "font" bits in 16-bit strings and ignores alphabetic case.
equal calls string-equal if applied to two strings.

The optional arguments idxl and idx2 are the starting indices into the strings. The
optional arguments lim I and lil1l2 arc the final indices; the comparison stops just before
the final index. /ill/I and lilll] default to the lengths of the strings. '111ese arguments are
provided so that you can efficiently compare substrings.
Examples:

(string-equal "Foo" "faa") => t
(string-equal "foo" "bar") => nil
(string-equal "element" "select" 0 1 3 4) => t

%stl'ing-equal string! idx! string2 idx2 COllnt
%string-equal is the microcode primitive which string-equal calls. [t returns t if the
counl characters of stringl starting at iJxl are char-equal to the COl/ill characters of
string2 slarting at idx2, or nil if the characters are not equal or if COLIllt lUns oil" the
length of either array.

Instead of a fixnum, count may also be nil. r n this case, %string -equal compares the
substring from idxl to (string-length string/) against the substring from idx2 to (string
length string2). If the lengths of these substrings differ, then they are not equal and nil
is returned.

Notc that string! and string2 must really be strings; the usual coercion of symbols and
fixnums to strings is not performed. This function is documented because certain
programs which require high efficiency and are willing to pay the price of less generality
may want to use %string-equal in place of string-equal.

Examples:
To compare the two stringsfoo and bar:
(% s t r i n g - e qua 1 foo 0 bar 0 n 11)
To see if the stringjoo starts with the characters "bar":
(% s t r i n 9 - e qua 1 foo 0 tI bar" 0 3)

string-lessp string1 string2
string-Iessp compares two su·ings lIsing dictionary order (as defined by char-Iessp). The
result is t if stringl is the lesser, or nil if they arc equal or string2 is the lesser.

substr i ng sIring start &optional end area
This extracts a substring of string, starting at .the character specified by start and going· up
to but not including the character specified by end. start and end are O-origin indices.
The length of the returned string is end minus start. If end is not specified it defc1ults to
the length of string. The area in which the result is to be consed may be optionally
specified.

DSK:LMMAN;FD.STR 87 16-MAR-81

Basic String Operations 118 Lisp Machine Manual

Example:
(substring "Nebuchadnezzar" 4 8) => "chad"

nsubstri ng string start &optional end area
nsubstring is the same as substring except that the substring is not copied; instead an
indirect array (see page i01) is created which shares part of the argument string.
Modifying one string will modify the other.

Note that nsubstring does not necessarily use less storage than substring; an nsubstring
of any length uses at least as much storage as a substring 12 characters long. So you
shouldn't use this just "for efficiency"; it is intended for lIses in which it is important to
have a 5ub:ming which. if inodified, will calise the original string to be modified too.

str i ng-append &rest strings
Any number of strings are copied and concatenated into a single string. With a single
argument, string -append simply copies it. J f the first argument is an array. the result
will be an array of the same type. Thus string - append can be used to copy and
concatenate any type of I-dimensional array.
Example:

(string-append #/! "faa" HI!) => "!foo!"

. string-ncone I1lvJificd-st';l/g &rest strings
string-neane is like string-append except that instead of making a new string containing
the concatenation of its arguments, string- neane modifies its first argument. modified
Siring must have a fill-pointer so that additional characters can be tacked onto it.
Compare this with array-push-extend (page 108). The value of string-neane is
modified-string or a new, longer copy of it; in the latter case the original copy is
forwarded to, the new copy (see adjust-array-size, page 106). Unlike neone, string
neane with more than two arguments modifies only its first argument, not every argument
but the last.

string-trim char-set SIring
This returns a substring of string, with all characters in char-set stripped off' of the
beginning and end. char-set is a set of characters, which can be represented· as a list of
characters or a string of characters.
Example:

(string-trim '(#\sp)" Dr. No ") => "Dr. No"
(string-trim nab" "abbafooabb") => "faa"

stri ng-1 eft-tr 1m char-list string
This returns a substring of string, with all characters in char-list stripped off of the
beginning. char-set is a set of characters, which can be represented as a list of characters
or a string of characters.

s tr i ng- right - tr 1m char-list sIring
This returns a substring of sIring, with all characters in chm~list stripped off of the end.
chm~set is a set of characters, which can be represented as a list of characters or a string
of characters. .

DSK:LMMAN;FD.STR 87 16-MAR-81

Lisp Machine Manual 119 String Searching

str 'j 119- rever sa sIring
Returns a copy of sIring with the order of characters reversed. This will reverse a 1-
dimensional array of any type.

str i ng-nravarsa string
Returns string with the order of characters reversed, smashing the original string, rather
than creating a new one. If sIring is a number, it is simply returned without consing up
a string. This will reverse a I-dimensional array of any type.

string-pl ural ize string
string-pluralize returns a string containing the plural of the word in the argument sIring.
Any added characters go in the same case as the last character of slrillg.
Example:

(string-pluralize "event") => "events"
(string-plul'alize "Man") => "Men"
(string-pluralize "Can") => "Cans"
(string-pluralize "key") => "keys"
(string-pluralize "TRY") => "TRIES"

For words with llIultiple plural forms depending on the meaning, string-pluralize cannot
always do the right thing.

9.4 String Searching

string-search-char dlll'- Siring &optional lfromO) 10
string-search-cilar searche<; through sIring starting at the index from. which defaults to
the beginning, and returns the index of the first character which is char-equal to char,
or nil if none is found. If the 10 argument is supplied, it is used in place of (string
length siring) to limit the extent of the search.
Example:

(string-search-char #/a "banana") => 1

%string-saarch-char char string from to
%string-search-char is the microcode primitive which string-search-char and other
functions call. string must be an array and char, from, and 10 must be fixnums. Except
for this lack of type-coercion, and the fact that none of the arguments is optional,
%string-search-char is the same as string-search-char. This function is documented
for the benefit of those who require the maximum possible efficiency in string searching.

string-saarch-not-char char string &optional (from 0) to
string-search-not-char searches through sIring starting at the index from, which defaults
to the beginning, and returns the index of the first character which is lIol char-equal to
char, or nil if none is found. If the to argument is supplied, it is used in place of
(string-length sIring) to limit the extent of the search.
Example:

(string-search-not-char #/b "banana") => 1

DSK:LMMAN;FD.STR 87 16-MAR-81

String Searching 120 Lisp Machine Manual

s t r i n 9 - sea r c h key string &optional (from 0) to
string-search searches for the string key in the string siring. The search begins at jinn/,
which defaults to the beginning of string. The value returned is the index of the first
character of the first instance of key, or nil if none is found. If the to argument is
supplied, it is used in place of (string-length string) to limit the extent of the search.
Example:

(string-s~arch "an" "banana") => 1
(string-search "an" "banana" 2) => 3

string-search-set char-set string &optional (!romO) to
string-search -set searches through string looking for a character which is in char-set.
The search begins at the index from, which defaults to the beginning. It returns the
index of the first character which is char-equal to some element of chat~s('t, or nil if
none is found. If the to argument is supplied, it is used in place of (string-length
string) to limit the extent of the search. char-set is a set of characters, which can be
represented as a list of characters or a string of characters.
Example:

(string-search-set '(#/n #/0) "banana") => 2
(string-search-set "no" "banana") => 2

string-saarch-not-set char-set string &optional (!romO) to
string -search - not-set searches through strillg looking for a character which is not in
cha/~set. The search begins at the index ji'OlIl, which defaults to the beginning. It
returns the index of the first character which is not char -equal to any element of char
sei, or nil if nune is tlnmd. If the 10 argllmem is supplied, it is used in place of
(string--Iength string) to limit the extent of the search. char-set is a set of characters,
which can be represented as a list of characters or a string of characters.
Example:

(string-search-not-set '(#/a #/b) ~banana") => 2

string-reversa-search-char char string &optional from (toO)
string-reverse-search-char searches through string in reverse order, starting from the
index one less than from, which defaults to the length of strillg, and returns the index of
the first character which is char-equal to char, or nil if none is found. Note that the
index returned is from the beginning of the string, although the search starts from the
end. If the to argument is supplied, it limits the extent of the search.
Example:

(string-reverse-search-char #/n "banana") => 4

stri ng-reverse-search-not-chnr char string &optionaJ from (to 0)
string-reverse-search-not-char searches through string in reverse order, starting from
the index one less than jinm, which defaults to the length of string, and returns the
index of the first character which is nut char-equal to char, or nil if none is found.
Note that the index returned is from the beginning of the string, although the search
starts from the end. If the to argument is supplied, it limits the extent of the search.
Example: .

(string-reverse-search-not-char #/a "banana") => 4

DSK:LMMAN;FD.STR 87 16-MAR-81

I.isp Machine Manual l21 110 to Strings

string-reverse-search key siring &optional ji"Oln (100)

string-reverse-seafch searches for the string key in the string string. The search
proceeds in reverse order, starting from the index one less than Fam, which defaults to
the length of siring, and returns the index of the first (leftmost) character of the first
instance found, or nil if none is found. Note that the index returned is from the
beginning of the string, although the search starts from the end. The Fom condition,
restated, is that the instance of key found is the rightmost one whose rightmost character
is before the ji"Olll'th character of string. If the to argument is supplied, it limits the
extent of the search.
Example:

(string-reverse-seal'ch "na" "banana") => 4

stri ng-reverse-search-se t cliar-sel string &optional Fom (to 0)
string - reverse -search -set searches through siring in reverse order, starting from the
index olle less than [rOIl/, which defaults to the length of siring, and returns the index of
the first character which is char-equal to some clement of char-scI, or nil if none is
found. Note that the index returned is from the beginning of the string, although the
search starts from the end. If the 10 argument is supplied, it limits the extent of the
search. char-sci is a set of characters, which can be represented as a list of characters or
a string of characters.

(s tri ng-reverse-seal'ch-set "ab" "banana") => 5

string-reversa-search-not-sat char-sel ~/"ing &optional [rOil! (toO)
string-rtNerse-search-not-set searches thruugh Siring ill reverse order, starting from the
in<il!x (hle h:~s· Lhan ji"Oln. which dcf:1UI[s to the knglh of SIring. and returns th~~ index of
the first character which is lIot char-equal to any clement of cliar-set, or nil if none is
found. Note that the index returned is frum the beginning of the string, although the
search starts from the end. If the 10 argument is supplied, it limits the extent of the
search. char-set is a set of characters, which can be represented as a list of characters or
:1 string of characters.

(string-reverse-search-not-set '(lila #/n) "banana") => 0

See also intern (page 351), which given a string will return "the" symbol with that print
name.

9.5 I/O to Strings

The special forms in this section allow you to create I/O streams which input from or output
to a string rather than a real I/O device. See section 21.5.l, page 297 for documentation of I/O
streams.

Vii th-input-from-string Special Form
The form

(wi th- i nput-from-stri ng (var string)
body)

evaluates the forms in body with the variable var bound to a· stream which reads
characters from the string which is the value of the form string. The value of the special
form is the value of the last form in its body.

DSK:Uv1MAN;FD.STR 87 16-MAR-81

110 to Strings 122 Lisp Machine Manual

The stream is a function that only works inside the with-input-from-string special fonn, .
so be careflll what you do with it. You cannot usc it after control leaves the body, . and
you cannot nest two with-input-from-string special forms and use both streams since the
special-variable bindings associated with the streams will conflict. It is done this way to
avoid any all(Jcation of memory.

After string you may optionally specify two additional "arguments". The first is index:
(with-input-from-string (var string index)

body)
uses index as the starting index into the string, and sets index to the index of the first
character not read when with-input-from-string returns. If the whole string is read, it
will be set to the length of the string. Since index is updated it may not be a general
expression; it must be a variable or a setf-able reference. The index is not updated in
the event of an abnormal exit from the body, such as a *throw. The value of index is
not updated until with-input-from-string returns, so you can't use its value within the
body to see how far the reading has gotten.

Use of the index feature prevents multiple values from being returned out of the body,
currently.

(with-·input-from-string (var string index limit)
body)

uses the value of the fiJrm limit, if the value is not nil, in place of the length of the
string. If you want to specify a limit but not an il/dex, write nil fOf index.

with-output-to-str1ng Special Foml
This special form provides a variety of ways to send output to a string through an 110
stream.

(with -outpu t- to- s tr i ng (var)
body)

evaluates the forms in body with var bound to a stream which saves the characters output
to it in a string. The value of the special fonn is the string.

(with -output- to- s tr i n9 (var string)
body)

will append its output to the string which is the value of the form string. (This is like
the string-nconc function; see page 118.) The value returned is the value of the last
form in the body, rather than the string. Multiple values are not returned. string must
have an array-leader; element 0 of the array-leader will be used as the fill-pointer. If
string is too small to contain all the output, adjust-array-size will be used to make it
bigger.

(with - output- to-s tr i n 9 (var string index)
body)

is similar to the above except that index is a variable or setf-able reference which· contains
the index of the next character to be stored into. It must be initialized outside the with
output-to-string and will be updated upon nonnal exit. The value of index is not
updated until with-output-to-string returns, so you can't use its value within the body
to see how far the writing has gotten. The presence of index means that sIring is not
required to have a fill-pointer; if it does have one it will be updated.

DSK:LMMAN;FD.sTR 87 16-MAR-81

Lisp Machine Manual 123 Mac1isp-Compatiblc Functions

The stream is a "downward closure" simulated with special variables, so be careful· what
you do with it. You cannot usc it after control leaves the body, and you cannot nest two
with-output-to-string special forms and use both streams since the special-variable
bindings associated with the streams will conflict. It is done this way to avoid any
allocation of memory.

It is OK to use a with-input-from-string and with-output-to-string nested within one
another, so long as there is only one of each.

Another way of doing output to a string is to usc the format facility (sec page 305).

9.6 Maclisp·Compatihle Functions

The following fUllctions arc provided primarily for Maclisp compatibility.

alphalessp SIring! slring2
(alphalessp SIring! slring2) is equivalent to (string-Iessp SIring! slring2).

getchar string index
Returns the index'th character of SIring as a symbol. Note thal I-origin indexing is used.
This function is mainly for Mac\isp compatibility; aref should be used to index into
strings (however, aref will not coerce symbols or numbers into strings).

gatcharn string index
Returns the index'th character of SIring as a fixnum. Note that l-origin indexing is used.
This function is mainly for Maclisp compaLibility; aref should be used to index into
strings (however, aref will not coerce symbols or numbers into strings).

ascii x
ascii is like character, but returns a symbol whose printname· is the character instead of
returning a fixnum.
Examples:

(ascii 101) => A
(ascii 56) => I.

The symbol returned is interned in the current package (see chapter 23, page 345).

maknam char-list
maknam returns an uninterned symbol whose print-name is a string made up of the
characters in char-list.
Example:

(maknam '(a b #10 d» => abOd

imp lode char-list
implode is like maknam except that the returned symbol is interned in the current
package.

The samepnamep function is also provided; see page 81.

DSK:LMMAN;FD.STR 87 16-MAR-Sl

Functions 124 Lisp Machine Manual

10. Functions
Functions arc the basic building blocks of Lisp programs. This chapter describes the functions

in Lisp Machine Lisp that are used to manipulate functions. It also explains how to manipulate
special fonns and macros.

This chapter contains internal details intended for those wntlng programs to manipulate
programs as well clS material suitable for the beginner. Feel free to skip sections that look
complica[ed or uninteresting when reading this fix the first time.

10.t '''hat Is a Function?

There arc many different kinds or functions in Lisp Machine I.isp. Here are the printed
representations of examples of some of them:

faa
(lambda (x) (car (last x»)
(named-lambda faa (x) (car (last (x»»
(subst (x) (car (last x»)
#<dtp-fef-pointer 1424771 append>
#<dtp-u-entry 270 last>
#<-dtp-closure 1477464>

We will examinc these and ()[hcr typcs of functions in detail later in this chapter. There is one
thing they all have in common: a function is a Lisp object that can be applied to arguments. All
of the above objects may be applied to some arguments and will return a value. Functions are
Lisp objects <lnd so can be manipulated in all the lIslial ways; you can pass them as arguments,
return them as values, and make other Lisp objects refer to them.

10.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists describe other
places where a function can be found. A Lisp object which describes a place to find a function is
called a junction spec. ("Spec" is short for "specification".) Here are the printed representations of
some typical function specs:

faa
(:property faa bar)
(:method tv:graphics-mixin :draw-line)
(:internal faa 1)
(:within faa bar)
(:location #<dtp-locative 7435216»

Function specs have two purposes: they specify a place to remember a function, and they
serve to nallle functions. The most common kind of function spec is a symbol, which specifies
that the function cell of the symbol is the place to remember the function. We will see all the
kinds of fUllction spec, and what they mean, shortly. Function specs are not the same thing as
fUllctions. You cannot, in general. apply a function spec to arguments. The time. to use a
function spec is when you want to do something to the function, such as define it, look at its
definition, or compile it.

DSK:LMMAN;FD.FUN 52 16-MAR-Sl

Lisp Machine Manual 125 Function Specs

Some kinds of functions remember their own names, and some don't. The "name"
remembered by a function can be any kind of function spec, although it is usually a symbol. In
the examples of functions in the previous section, the one starting wilh the symbol named
lambda, the one whose printed representation included dtp-fef-pointer, and the dtp-u-entry
remembered names (the function specs faa, append, and last respectively). The others didn't
remember their names.

To define a filllCtioll spec means to make that function spec remember a given function. This
is done with the fdefine function; you give fdefine a function spec and a function, and fdefine
remembers the function in the place specified by the function spec. The function associated with
a function spec is called lhe defillitioll of the function spec. /\ single function can be the
definition of more than one function spec at the same time, or of no function specs.

To define a fill/ction means to create a new function, and define a given function spec as that
new function. This is what the. defun special form does. Several other special forms, such as
defmethod (page 258) and defselect (page 134) do this too.

These special forms that define functions usually take a function spec, creMe a function whose
name is that function spec, and then define that function spec to be the newly-created function.
rv"lost function definitions are done this way, and so usually if you go to a function spec and see
what function is there, the function's name will be the same as the function spec. However, if
you define a function named foo with defun, and then define the symbol bar to be this same
fUllction, the name of the function is 1ll1affectcd; both faa and bar are defined to be the same
function, and the name of that function is foo, not bar.

/\ function spec's definition in general consists of a basic definition surrounded by
encapsulations. Both the basic definition and the encapsulations arc functions, but of recognizably
different kinds. \Vhat defun creates is a basic definition, and usually that is all there is.
Encapsulations are made by function-altering functions such as trace and advise. When the
function is called, the entire definition, which includes the tracing and advice, is used. If the
function is "redefined" with defun, only the basic definition is changed; the encapsulations are
left in place. See the section on encapsulations, section 10.10, page 139.

A function spec is a Lisp object of one of the following types:

a symbol
The fi.mction is remembered in the function cell of the symbol. See page 79 for an
explanation of function cells and the primitive fi.mctions to manipulate them.

(:property symbol property)
The function is remembered on the property list of the symbol; doing (get symbol
property) would return the function. Storing functions on property lists is a frequently
used technique for dispatching (that is, deciding at run-time which function to call, on
the basis of input data).

(:methodjlavor-Ilame message)
(:method jlal'01~f/all1e method-type message)

The function is remembered inside internal data stmctures of the flavor system, and in the
flavor-method-symbol of the fi.ll1ction. See the chapter on flavors (chapter 20, page 245)
for details.

(:Iocation pointer)
The fi.mction is stored in the cdr of pointer, which may be a locative or a list This is

DSK:LMMAN;FD.FUN 52 16-MAR-81

Simple Function Definitions 126 Lisp Machine Manual

For pointing at an arbitrary place which there is no other way to ·describe. This form of .
Function spec isn't useful in defun (and related special fonns) because the reader has no
printed representation for locative pointers and always creates new lists; these Function
specs are intended for programs that manipulate functions (see section 1O.S, page 135).

(:with in with in-ju 1/C lioll ju IIction- to-affect)
This refers to the meaning of the symbol jUllction-lo-affect, but only where it occurs in
the .text of the definition of wilhin-junction. If you define this function spec as anything
but the symbol jilllclion-lo-affecl itself, then that symbol is replaced throughout the
definition of withill-junction by a new symbol which is then defined as you specify. See
the section on function encapsulation (section 10.10. page 139) for more in formation.

(:internal jilflcfion-spcc !lulllber)
Some Lisp functions contain internal functions, created by (function (lambda ...)) forms.
These internal functions need names when compiled, but they do not have symbols as
names; instead they are named by :internal Function-specs. jilllction-spec is the containing
function. number is a sequence number; the first internal function the compiler comes
across in a given function will be numbered 0, the next I, etc. Internal functions are
remembered inside the FEF of their containing function.

(symbol properly)
I f symbol is not recognized as one of the keywords above, this function spec is the same
as (:property sYlllhol property). This is provided for CDll1p,llibility with Maclisp, which
allows this syntax in certain places. This form should be avoided since sYll1bol might
conflict with some existing or future keyword.

Here is an exalllple of the use of a function spec which is not a symbol;
(defun (:property faa bar-maker) (thing &optional kind)

(set-the 'bar thing (make-bar 'foo thing kind»)
This puts a Iimction on foo's bar-maker property. Now you can say

(fun cal 1 (g e t 'f 0 a ' bar - m a k e r) 'b a z)

Unlike the other kinds of function spec, a symbol can be used as a function. If you apply a
symbol to arguments, the symbol's fll11ction definition is used instead. If the definition of the first
symbol is another symbol, the definition of the second symbol is used, and so on, any number of
times. But this is an exception; in general, you can't apply function specs to arguments.

10.3 SimIlle Function Definitions

dafun Special Fonn
defun is the lIsual way of defining a function which is part of a program. A defun form
looks like:

(de fun name lambda-list
body . ..)

Ilame is the function spec you wish to define as a function. The lambda-list is a list of
the names to give to the arguments of the function. Actually, it is a little more general
than that; it can contain lambda-list keywurds such as &optional and &rest. (These
keywords are explained in section 3.2, page IS and other keywords are explained in
section 10.7, page 135.)

DSK:UvlMAN;FD.FUN 52 16-MAR-S1

Lisp Machine Manual 127 Simple Function Definitions

defun creates a list which looks like
(name d -1 amb da name lall/bda-list body . ..)

and puts it in the function cell of /lame. name is now defined as a function and can be
called by other forms.

Examples:
(defun addone (x)

(1+ x»

(defun faa (a &optiona1 (b 5) c &rest e &aux j)
(setq j (+ (addone a) b»
(cond ((not (null c»

(cons j e»
(t j»)

addone is a function which expects a number as an argument: and returns a number one
larger. foo is a complicated function which takes one required argument, two optional
arguments, and any number of additional arguments which are given to the function as a
list named e.

,\ declaration (a list starting with declare) can appear as the first clement of the body. It
is equivalent [0 a local-declare (see page 184) surrounding the entire defun form. For
example,

(defun faa
(declare
(bar»

(x)
(specinl x)

; bar uses x free.
is equivalent to and preferable to

(local-declare «special x»
(defun foo (x)

(bar»)
(It is preferable because the editor expects the open parenthesis of a top-level fll11ction
definition to be the first character on a line, which isn't possible in the second form
without incorrect indentation.) .

A documentation string can also appear as the first element of the body (following the
declaration, if there is one). (It shouldn't be the only thing in the body; otherwise it is
the value returned by the function· and so is not interpreted as documentation. A string
as an element of a body other than the last element is only evaluated for side-effect, and
since evaluation of strings has no side effects, they aren't useful in this position to do any
computation, so they are interpreted as documentation.) This documentation string
becomes part of the function's debugging info and can be obtained with the ftmction
documentation (see page 137). The first line of the string should be a complete sentence
which makes sense read by itsett: since there are two editor commands to get at the
documentation, one of which is "brief' and prints only the first line. Example:

DSK:LMMAN;FD.FUN 52 16-MAR-81

Operations the User Can Perfonn on Functions 128 Lisp Machine Manual

defunp Macro

(defun my-append (&rest lists)
"Like append but copies all the lists.

This is like the Lisp function append, except that
append copies all lists except the last, whereas
this function copies all of its arguments
including the last one."

...)

Usually when a ntnction uses prog, the prog fOim is the entire body of the function; the
definition of sllch a nlllctioll looks like (defun nallle arglis/ (prog l'arlisl ",)), Although
the lise of prog is generally discouraged, prog fans may want to LIse this special form.
For convenience, the defunp macro can be used to produce such definitions. A defunp
form such as

(defunp fetn (args)
form!
form2

formn)
expands into

(defun fctn (args)
(prog ()

form!
fOI'm2

(retlll'n formn»)

You can think of defunp as being like defun except that you can return out of the
middle of the function's body.

For more information on defining functions, and other ways of doing so, see section 10.6,
page 132.

10.4 Operations the User Can Perform on Functions

Here is a list of the various things a user (as opposed to a program) is likely to want to do to
a function. In all cases, you specify a function spec to say where to find the function.

To print out the definition of the nmction spec with indentation to make it legible, use
grindef (see page 318). This works only for interpreted functions. If the definition is a compiled
function, it can't be printed out as Lisp code, but its compiled code can be printed by the
disassemble function (see page 448).

To find out about how to call the function, you can ask to see its documentation, or its
argument names. (The argument names are lIsually chosen to have mnemonic significance for the
caller). Use arglist (page 137) to see the argument names and documentation (page 137) to see
the documentation string. There are also editor commands for doing these things: the
CTRL/SHIFT /0 and MET A/SHIFT 10 commands arc for looking at a function's documentation,
and CTRL/SHIFT / A is for looking at an argument list. CTRLlSHIFT / A does not ask for the
function name; it acts on the nll1ction which is called by the innermost expression which the

DSK:LMMAN;FD.FUN 52 16-MAR-81

Lisp Machine Manual 129 Kinds of Functions

cursor is inside. Usually this is the function which will be called by the form you are in the
process of writing.

You can see the function's debugging info alist by means of the function debugging-info (see
page 137).

When you are debugging, you can use trace (see page 404) to obtain a printout or a break
loop whenever the function is called. You can customize the definition of the function, either
temporarily or permanently, using advise (see page 408).

10.5 Kinds or Functions

There are many kinds of functions in Lisp Machine Lisp. This section briefly describes each
kind of function. Note that a function is also a piece of data and can be passed as an argulllent,
returned, put in a list, and so forth.

Before we start classifying the functions, we'll first discuss something about how the evaluator
works. As we said in the basic description of evaluation on page 12, when the evaluator is given
a list whose first element is a symbol, the form may be a function form, a special form, or a
macro form. If the definition of the symbol is a function, then the fUllction is just applied to the
result of evaluating the rest of the sub forms. If the definition is a cons whose car is macro, then
it is a macrn fOlm; these are explained in chapter 17, page 191. What about special forms?

Conceptually, the evaluator knows specially abom all special forms . (thm's why they're called
that). However, the Lisp JVrachine Lisp implementation actually uses the definition of symbols
that name special forms as places to hold pieces of U1e evaluatoL The definitions of such symbols
as prog, do, and, and or actually hold Lisp objects. whkh we will call special JUlie/ions. Each
of these functions is the part of the Lisp interpreter that knows how to deal with that special
form. NOImally you don't have to know about this; it's just part of the hidden internals of how
the evaluator works. However, if you try to add encapsulations to and or something like that,
knowing this will help you understand the behavior you will get.

Special functions are written like regular functions except that the keywords "e and
&eval (see section 10.7, page 135) are used to make some of the arguments be "quoted"
arguments. The evaluator looks at the pattern in which arguments to the special function are
"quoted" or not, and it calls the special function in a special way: for each regular argument, it
passes the result of evaluating the corresponding sub form, but for each "quoted" argument, it
passes the sub form itself without evaluating it first. For example, cond works by having a special
function that takes a "quoted" &rest argument; when this function is called it is passed a list of
cond clauses as its argument.

If you apply or funcall a special function yourself, you have to understand what the special
form is going to do with it'> arguments; it is likely to call eval on parts of them. This is different
from applying a regular function, which is passed argument values rather than Lisp expressions.

Defining your own special form, by using "e yourself, can be done; it is a way to
extend the Lisp language: Macros are another way of extending the Lisp language. It is
preferable to implement language extensions as macros rather U1an special forms, because macros
directly define a Lisp-to-Lisp translation and therefore can be understood by both the interpreter
and the compiler. Special forms, on the other hand, only extend the interpreter. The compiler

DSK:LMMAN;FD.FUN 52 16-MAR-81

Kinds of Functions 130 LispMachine Manual

has to be modified in an ad hoc way to understand each new special form so that code using it
can be compiled. Many of the functions documented as special fonns in this manual are actually
macros, for this reason. Since all real programs are eventually compiled, writing your own special
functions is strongly discouraged.

There are four kinds of functions, classified by how they work.

First, there are ;nterpreted functions: you define them with defun, they are represented as
list structure, and they are interpreted by the Lisp evaluator.

Secondly, there are compiled functions: they are defined by compile or by loading a qfasl
file, they are represented by a special Lisp data type: and they are executed directly by the
microcode. Similar to compiled functions are microcode functions, which are written in microcode
(either by hand or by the micro-compiler) and executed directly by the hardware.

Thirdly, there are various types of Lisp object which can be applied to arguments, but when
they are applied they dig up another function somewhere and apply it instead. These include
dtp-select-method, closures, instances, and entities.

Finally, there are various types of Lisp object which, when used as functions, do something
speciai reiated to the specific datil type. These include arrays and stack-groups.

10.5.1 Interpreted Functions

An interpreted function is apiece of list structure which represents a program according to
the rules of the Lisp interpreter. Unlike other kinds of functions, an interpreted fimction can be
printed out and read back in (it "has a printed representation that the .reader understands), can be
pretty-printed (see page 318), and can be opened up and examincdwith the usual functions for
list-structure manipulation.

There are three kinds of interpreted functions: lambdas, named-lambdas, and substs. A
lambda fimction is the simplest kind. It is a list that looks like this:

(1 ambda lambda-list fonnl fonn2 . ..)
The symbol lambda identifies this list as a lambda function. lambda-list is a description of what
arguments the fimction takes; see section 3.2, page 18 for details. The fonns make up the body
of the function. When the function is called, the argument variables are bound to the values of
the arguments as described by lambda-list, and then the forms in the body are evaluated, one by
one. The value of the function is the value of its last form.

A named-lambda is like a lambda but contains an extra clement in which the system
remembers the function's name, documentation, and other information. Having the fimction's
name there allows tlle error handler and other tools to give the user more infonnation. This is
the kind of function that defun creates. A named-lambda function looks like this:

(named-l ambda name lambda-Ust bodyfurms . ..)
If the name slot contains a symbol, it is the function's name. Otherwise it is a list whose car is
the name and whose cdr is the function's debugging information atist. See debugging-info, page
137. .

DSK:LMMAN;FD.FUN 52 16-MAR-81

Lisp Machine Manual 131 Kinds of Functions

A subst is just like a lambda as far as the interpreter is concerned. It is a list that looks like
this:

(sub s t lambda-list forl111 form2 . ..)
The difference between a subst and a lambda is the way they are handled by the compiler. A
call to a normal function is compiled as a closed subroutine; the compiler generates code to
compute the values of the arguments and then apply the function to those values. A call to a
subst is compiled as an open subroutine; the compiler incorporates the body forms of the subst
into the function being compiled, substituting the argument forms for references to the variables
in the subst's lambda-list. This is a simple-minded but useful facility for opel! or ill-line coded
functions. It is simple-minded because the argument forms can be evaluated multiple times or out
of order, and so the semantics of a subst may not be the same in the interpreter and the
compiler. substs are described more fully on page 197. with the explanation of defsubst.

10.5.2 Compiled Functions

There are two kinds of compiled functions: lI1acrocoded functions and microcoded functions.
The Lisp compiler converts lambda and named-lambda functions into macrocoded functions. A
macrocoded nll1ction's printed representation looks . like:

#<dtp-fef-pointer 1424771 append>
This type of Lisp object is also called a "Fullction Entry Frame", or "FEF" for short. Like "car"
and "cdr", the name is historical in origin and doesn't really mean anything. The object contains
Lisp TVlachine machine code that does the computation expressed by the function; it also contains
a description of the arguments acceptl.!d, any COllstants required, the name, documentation, and
lIlher things. Unlike Maclisp "subr-objects", macrocudcd functions are full-fledged objects and can
be passed as arguments, stored in dC:lta stmcture, and applied to arguments.

The printed representation of a microcoded nl1lction looks like:
#<dtp-u-entry 270 last>

Most microcompiled till1ctions arc basic Lisp primitives or subprimilives written in Lisp Machine
microcode. You can also convert your own macrocodc functions into microcode functions in some
circumstances, using the micro-compiler.

10.5.3 Other Kinds of Functions

A closure is a kind of nmction which contains another nmction and a set of special variable
bindings. When the closure is applied, it puts the bindings into effect and then applies the other
nmction. When that returns, the closure bindings are removed. Closures arc made with the
function closure. See chapter 11, page 144 for more information. Entities are slightly different
from closures; see section 11.4, page 148.

A select-method (dtp-select-method) is an a-list of symbols and functions. When one is
called the first argument is looked up in the a-list to find the particular function to be called.
This function is applied to the rest of the arguments. The a-list may have a list of symbols in
place of a symbol, ill which case the associated timctioll is called if the first argument is any of
the symbols on the list. If cdr of last of the a-list is not nil, . it is a dejhult handler nmction,
which gets called if the message key is not found in the a-list. Select-methods can be created
with the defselect special form (see page 134).

DSK:LMMAN;FD.FUN 52 16-MAR-81

Function-Defining Special Forms 132 Lisp Machine Manual

An instance is a message-receIVIng object which has some state and a table of message
handling functions (called methods). Refer to the chapter on flavors (chapter 20, page 245) for
further infonnation.

An array can be used as a function. The arguments to the array arc the indices and the value
is the contents of the element of the array. This works this way for Mac1isp compatibility and is
nol recommended usage. Use aref (page 103) instead.

A stack group can be c<tlled as a function. This is one way to pass control to another stack
group. See chapter 12, page 149.

10.6 Function-Defining Special Forms

defun is a special fonn which is put in a program to define a function. defsubst and macro
are others. This section explains how these special forms work, how they relate to the different
kinds of functions, and how they interface to the rest of the function-manipulation system.

Function-defining special fonns typically take as arguments a function spec and a description
of the function to be made, usually in the form of a list of argument names and some fonus
which constitute the body of the function. They construct a function. give it the function spec as
its name. illld deflne the n.mction spec to be the new function. Different special forms make
diffcrclH kinds of functions. defun makes a named-lambda function, and defsubst makes a
subst function. macro makes a macro; though the macro definition is not really a function, it is
like a function as fai as definition handling is concerned.

These special forms are used in writing programs because the n.mction names and bodies are
constants. Programs that define functions usually want to compute the n.mctions and their names,
so they use fdefine. See page 135.

A1\ of these n.mction-defining special forms alter only the basic definition of the function spec.
Encapsulations are preserved. See section 10.10, page 139.

The special forms only create interpreted functions. There is no special way of defining a
compiled function. Compiled functions are made by compiling interpreted ones. The same special
fOlm which defines the interpreted function, when processed by the compiler, yields the compiled
function. See chapter 16, page 181 for details.

Note that the editor understands these and other "defining" special fonus (e.g. defmethod,
defvar, defmacro, defstruct, etc.) to some extent, so that when you ask for the definition of
something, the editor can flnd it in its source file and show it to you. The general convention is
that anything which is used at top level (not inside a function) and starts with def should be a
special form {or defining things and should be understood by the editor. defprop is an exception.

The defun special form (and the defunp macro which expands into a defun) are used for
creating ordinary interpreted functions (see page 126).

For Maclisp compatibility, a type symbol may be inserted between name and lambda-list in
the defun f01111. The following types are understood:

expr 'Dle same as no type.

DSK:LMMAN;FD.FUN 52 16-MAR-81

Lisp Machine Manual 133 Function-Defining Special Forms

fexpr

macro

"e and &rest arc prefixed to the lambda list.

A macro is defined instead of a nOimal function.

If lambda-list is a non-nil symbol instead of a list, the function is recognized as a Mac1isp
lexpr and it is converted in such a way that the arg, setarg, and listify functions can be used to
. access its arguments (see page 26).

The defsubst special fonn is used to create subst functions. It is used just like defun but
produces a list starting with subst instead of one starting with named-lambda. The subst
function acts just like the corresponding named-lambda function when applied, but it can also
be open-coded by the compiler. See page 197 for full information.

The macro special form is the primitive means of creating a macro. It gives a function spec
a definition which is a macro definition rather than a actual function. A macro is not a function
because it cannot be applied, but it can appear as the car of a form to be evaluated. See chapter
17, page 191.

The defselect special fOlm defines a select-method function. See page l34.

Unlike the above special forms, the next two (deft and def) do not create new functions. They
simply serve as hints to the editor that a function is being stored into a function spec here, and
therefore if someone asks for the source code of the definition of that function spec, this is the
place to look for it.

daf Special Form
If a function is created in some strange way, wrapping a def special form around the
code that creates it informs the editor of the connec,tion. The form

(def junction-spec
fonnl joml2 • ..) ,

simply evaluates the forms jannl, jor1112 , etc. It is assumed that these forms will create
or obtain a function somehow, and make it the definition of junction-spec.

Alternatively, you could put (def junction-spec) in front of or anywhere near the forms
which define the function. The editor only uses it to tell which line to put the cursor on.

deff Special Form
deff is a simplified version of def. The form

(de ff junction-spec definition-creator)
evaluates the form definition-creator, which, should produce a function, and makes that
function the definition of jUllction-spec, which is not evaluated. deff is used for giving a
function spec a definition which is not obtainable with the specific defining forms such as
delun and macro. For example,

(deff foo 'bar)
will make faa equivalent to bar, with an indirection so that if bar changes faa will
likewise change;

(deff foo (function bar»)
copies the definition of bar into faa with no indirection, so that further changes to bar
will have no effect on faa.

, DSK:LMMAN;FD.FUN 52 16-MAR-81

Function-Defining Special Forms 134 Lisp Machine Manual

@defi ns Alaero
This macro turns into nil, doing nothing. It exists for the sake of the @ listing
generation program, which uses it to declare names of special fonns which define objects
(such as fi.lllctiolls) that @ should cross-reference.

defun-compatib111ty x
This function is used by defun and the compiler to convert Maclisp-style lexpr, fexpr,
and macro defuns to Lisp Machine definitions. x should be the cdr of a (defun ...) fOim.
defun-cornpatibility will return a corresponding (defun ...) or (macro ...) fonn, in the
usual Lisp Machine fonnat. You shouldn't ever need to call this yourself.

defselect Special FornI
defselect defines a function which is a select-method. This function contains a table of
subfunctions; when it is called, the first argument, 11 keyword symbol, is looked up in
the table to determine which subfunction to call. Each subfunction can take 11 different
number of arguments, and have a different pattern of &optional and &rest arguments.
defselect is useful for a variety of "dispatching" jubs. By analogy with the more general
message passing facilities described in chapter 20, page 245, the ,slIbfunctions arc
sometimes called methods and the first argument is sometimes called a message.

The speciai form looks like
(def s e 1 e c t (jilllClioll-spec (I£fault-handler no-which-operations)

(keyword (args ...)
body ...)

, (keYlvord (args. ..)
body ...)

...)
jimctioll-spec is the name of the function to be defined. dejault-handler is optional; it
must be a symbol and is a function which gets called if the select-method is called with
an unknown message. If default-handler is lInsupplicd or nil, then an error occurs if an
unknown message is sent If no-wliich-operations is non-nil, the :which-operations
method which would nonnally be supplied automatically is suppressed. The :which
operations method takes no arguments and returns a list of all the message keywords in
the defselect.

If function-spec is a symbol, and default-handler and no-which-operations are not supplied.
then the first subfonn of the defselect may be just function-spec by itself, not enclosed in
a list

The remaining subforms in a defselect define methods. keYlVord is the message keyword,
or a list of several keywords if several messages are to be handled by the same
subfullction. args is a lambda-list: it should not include the first argument, which is the
message keyword. body is the body of the function.

A method subform can instead look like:
(keyword . symbol)

In this case, symbol is the name of a function which is to be called when the keyword
message is received. It will be called with the same arguments as the select-method,
including the message symbol itself.

DSK:LMMAN;FD.FUN 52 16-MAR-81

Lisp Machine Manual 135 Lambda-List Keywords

10.7 Lmnbda·bist Keywords

This section documents all the keywords that may appear in the "lambda-list" (argument list)
(see section 3.2, page 18) of a function, a macro, or a special form. Some of them arc allowed
everywhere, while others are only allowed in one of these contexts; those are so indicated.

1 ambda-l; s t-keywords Variable
The value of this variable is a list of all of the allowed "&" keywords. Some of these are
obsolete and don't do anything; the remaining ones are listed below.

&optional Separates the required arguments of a function from the optional arguments. See
section 3.2, page 18.

&rest

&aux

Separates the required and optional arguments of a function from the rest
argument. There may be only one rest argument. See page 19 for full
information about rest arguments. See section 3.2, page 18.

Separates the arguments of a function from the auxiliary variables. Following
&aux you can put entries of the form

(variable illitial-value-fol7ll)
or just variable if you want it initialized to nil or don't care what the initial value
is.

&special Declares the following arguments and/or auxiliary variables to be special within
the scope of this function.

&Iocal

&functional

Turns off a preceding &special for the variables which follow.

Preceding an argument, tells the compiler that the value of this argument will be
a function. When a caller of this function is compiled, if it passes a quoted
constant argument which looks like a lunc,tion (a list beginning with the symbol
lambda) the compiler will know that it is intended to be a function rather than a
list that happens to start with that symbol, and will compile it.

"e

&eval

&list-of

&body

Declares that the following arguments are not to be evaluated. This is how you
create a special function. See the caveats about special forms, on page 129.

Turns off a preceding "e for the arguments which follow.

This is for macros defined by defmacro only. Refer to page 199.

This is for macros defined by defmacro only. It is similar to & rest, but declares
to grindef and, the code-formatting module of the editor that the body forms of a
special fonn follow and should be indented accordingly. Refer to page 199.

10.8 How Programs ManipUlate Definitions

fdefi ne function-spec definition &optional (careflllly nil) (no-query nil)
This is the primitive which defun and everything else in the system uses to change the
definition of a function spec. If carefully is non-nil, which it lIsually should be, then only
the basic definition is changed, the previous basic definition is saved if possible (see
undefun, page 137), and any encapsulations of the function such as tracing and advice
are carried over from the old definition to the new definition. carejillly also causes the
user to be queried if the function spec is being redefined by a file different from the one
that defined it originally, or if fUllction-spec belongs to a package other than the current

DSK:LMMAN;FD.FUN 52 16-MAR-81

How Programs Manipulate Definitions 136 Lisp Machine Manual

one. However, these warnings are suppressed if either argumcnt l/o-quefY is non-nil, or if
the global variable inhibit- fdefine-warnings is non-nil.

If fdefine is called while a file is being loaded, it records what file the function definition
came from so that the editor can find the source code.

If jimction-spec is a symbol, and it was already defined as a fi.mction, and carejully is
non-nil, the symbol's :previous:"'definition property is Llsed to save the previous definition.
If tile previous definition is an interpreted function, it is also saved on the :previous
expr-definition propcrty~ These properties are llscd by the undefun function (page 137),
which restorcs thc previous definition, and the uncornpile function (page 181), which
restores tlle previous intcrpretcd definition. Thc';e things are also done for :rnethod
function specs, using the property list of the flavor-mcthod-symbol (see page 259).

defun and the other function-defining special forms all supply t for carejully and nil or
nothing for l/o-queI)'. Operations which construCt encapsulations, such as trace, are the
only ones which use nil for carejully.

in h; b it- 'fdefi ns-warn i ngs Variable
This variable is norlllally nil. Setting it non-nil prevents fdefine from asking about
ljllcs(ionablr: function definitions such as a function being redefined by a different file than
defined it 01 iginally, or a symbol that belongs to one package being defined by a file that
belongs to a different package.

sys : fdef i iH3-f i 1 e- pathname Variable
While loading a file, this is the gencric-pathnamc t()r the file, The rest of rhe time it is
nil. fdefine lIses this to remember what file defines each function.

fset-earefully symbol definition &optional jbrce-jlag
This fUllction is obsolete. It is equivalent to

(felefi ne symbol definition t jorce-flag)

fdaf; nadp junction-spec
This returns t if junction-spec has a definition, or nil if it does not.

fdaf in it i on jilIlction-spec
This returns jUllclion-spec's definition. If it has none, an error occurs.

s -j : fdaf; n 1 t; on-1 oeat i on function-spec
This returns a locative pointing at the ceIl which contains jUflclion-spec's definition. For
somc kinds llf function spccs, though not for symbols, this can cause data structure to be
created to hold a definition. For example, if jilllction-spec is of the :property kind, then
an entry may have to be added to the property list if it isn't already there. [n practice,
you should write (Ioct (fdefinition jilllctiofl-spec)) instead of calling this fi.mction explicitly.

s; :fdafinition-symbo1-or-loeation junction-spec
This attempts to return a symbol which is equivalent as a function spec to the one
supplied. The symbol is not created spccially so that si:fdefinition -symbol-or-Iocation
can return it. Rather, some kinds of function specs are implemcnted in strch a way that a
symbol is already part of the dam structure and used to hold thc function. si:fdefinition
symbol-or-Iocation is the way to get that symbol. Supplying that symbol as a function

DSK:LMMAN;FD.FUN 52 16-MAR-Sl

Lisp Machine Manual 137 How Programs Examine Functions

spec is equivalent to supplying jUl/cliol/-spec: in addition, the previous definitions of
jllllctioll-~pec are stored as properties on that symbol.

For those types of function specs which do not use a symbol's function cell to point to
the definition, si:fdefinition-symbol-or-Iocation returns a locative to the cell which is
used. Don't do get or putprop on this!

un dafun jilflclion-spec
If junction-spec has a saved previous basic definition, this interchanges the current and
previous basic definitions, leaving the encapsulations alone. This undoes the effect of a
detun, compile, etc. See also uncompile (page 181).

10.9 How Programs Examine Functions

These functions take a function as argument and return infonnation about that function.
Some also accept a function spec and operate on its definition. The others do not accept function
specs in general but do accept a symbol as. standing for its definition. (Note that a symbol is a
function as well as a function spec).

documentat'jon jllllc/ion
Given a fimction or a function spec, this finds its documentation string, which is stored
in various different places depending on the kind of function. If there is no
documentation, nil is returned.

dabugg 1 ng-1 nfo jUllction
This returns the debugging info alist of junction, or nil if it has none.

arg 1 i st junction &opr.ional rcal-flag
arglist is given a function or a function spec, and returns its best guess at the nature of
the function's lambda-list. It can also return a second value which is a list of descriptive
names for the values returned by the function.

If junction is a symbol, arglist of its function definition is used.

If the junction is an actual lambda-expression, its cadr, the lambda-list, is returned. But
if junction is compiled, arglist attempt" to reconstruct the lambda-list of the original
definition, using whatever debugging information was saved by the compiler. Sometimes
. the actual names of the bound variables are not available, and arglist uses the symbol
si:*unknown* for these. Also, sometimes the initialization of an optional parameter Is too
complicated for arglist to reconstruct; for these it retuni.s the symbol si: "hairy·.

Some functions' real argument lists are not what would be most descriptive to a user. A
function may take a&rest argument for technical reasons even though there are standard
meanings for the first clement of that argument. For such cases, the definition of the
function can specify, with a local declaration, a value to be returned when the user asks
about the argument list. Example:

(defun foo (&rest rest-arg)
(declare (arglist x y &rest ~»
.....)

real-flag allows the caller of arglist to say that the real argument list should be used even

DSK:LMMAN;FD.FUN 52 16-MAR-81

How Programs Examine Functions 138 Lisp Machine Manual

if a declared argument list exists. Note that while normally declares are only for the
compiler's benefit, this kind of declare alfects all functions, including interpreted
functions.

arglist cannot be relied upon to return the exactly correct answer, since some of the
infonnation may have been lost. Programs interested in how many and what kind of
argumcnts there are should use args-info instead. In general arglist is to be used for
documentation purposes, not for reconstructing the original source code of the function.

When a function rcturns multiple values, it is useful to give the values names so that the
caller can be reminded which valuc is which. By means of a return -list declaration in
the function's definition, entirely analogous to the arglist dcclaration above, you can
specify a list of mnemonic names for the returned valucs. This list will be returned by
arglist as tJ1C second value.

(arglist 'arglist)
=> (function &optional real-flag) and (arglist return-list)

args-info junction
args-info rcturns a fixnum called the "numcric argument descriptor" of the jUllction,
which describes the way the function takes arguments. This descriptor is lIsed internally
by Lt,e microcode, the evaluator, and the compilci. jUllctioll can be a function or a
function spec.

The information is stored in various bits and byte fields ill thc fixllum, . which are
referenced by the symbolic names shown below. By the uSllal Lisp Machine cOIlvention,
those starting with a single "%" are bit-masks (meant to be logand'ed or bit-test'ed with
the number), and those starting with "%%" are byte descriptors (meant to be used with
Idb or Idb -test).

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments which may be passed to this function,
i.e. the number of "required" parameters.

%%arg -desc - max - args
This is the maximum number of arguments which may be passed to this function,
i.e. the sum of the number of "required" parameters and the number of
"optional" paramaters. If there is a rest argument, this is not really the maximum
number of arguments which may be passed; an arbitrarily-large number of
arguments is permitted, subject to limitations on the maximum size of a stack
frame (about 200 words).

%arg -desc - evaled - rest
If this bit is set, the function has a "rest" argument, and it is not "quoted".

%arg -desc-quoted-rest
If this bit is sct, tJle function has a "rest" argument, and it is "quoted". Most
special forms have this bit

%arg-desc-fef-quote-hair
If this bit is set, there arc some quoted arguments other than the "rest" argument
(if any); and the pattern of quoting is too complicated to describe here. The

DSK: LMMAN;FD.FUN 52 16-MAR-81

Lisp Machine ivlanual l39 Encapsulations

ADL (Argument Description List) in the FEF should be consulted. This is only
for special forms.

%arg -desc - interpreted
This function is not a compiled-code object, and a numelic argument descriptor
cannot be computed. Usually args-info will not return this bit, although %args
info will.

%arg - desc - fef - bind - hair
There is argument initialization, or something else too complicated to describe
here. The ADL (Argument Descriptiun List) in the FEF should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both be set.

%args-info jimction
This is an internal function: it is like args-info but does not work for interpreted
functions. Also, jilllction must be a function, not a function spec. It exists because it has
to be in the microcode anyway, for apply and the basic function-calling mechanism.

10. to Encapsulations

The definition of a function spec actually has two parts: the bllSic definition, and
encapsulatio/ls. The hasic definition is what n.ll1ctions like defun create, and encapsulations are
additions made by trace or advise to the basic deflnition. 'Ille purpose of making the
encapsulation a separate object is to keep track of what WaS made by defun and what was made
by trace. If defun is done a second time, it replaces the old basic definilion with a new one
while leaving the encapSUlations alone.

Only advanced users should ever need to use encapsulations directly via the primitives
explained in this section. The most common things to do with encapsulations are provided as
higher-level, casier-tn-use features: trace (see page 404) and advise (see page 408) ..

The way the basic definition and the encapsulations are defined is that the actual definition of
the function spec is the outermost encapsulation; this contains the next encapsulation, and so on.
The innermost encapsulation contains the basic definition. The way this containing is done is as
follows. An encapsulation is actually a function whose debugging info alist contains an element of
the form

(s; : encapsul ated-def; n; t; on unillterned-symbol encapsulation-type)
The presence of such an clement in the debugging info alist is how you recognize a function to
be an encapsulation. An encapsulation is usually an interpreted function (a list starting with
named -lambda) but it can be a compiled function also, if the application which created it wants
to compile it.

uniJ1lemed-symbo/'s function definition is the thing that the encapsulation contains, usually the
basic definition of the function spec. Or it can be another encapsulation, which has in it another
debugging info item containing another uninterned symbol. Eventually you get to a function
which is not an encapsulation; it does not have the sort of debugging info item which
encapsulations all have. That function is the basic definition of the function spec.

DSK:LMMAN;FD.FUN 52 IG-MAR-81

Encapsulations 140 Lisp Machine Manual

Literally speaking, the definition of the function spec is the outermost encapsulation, period.
The basic definition is not the definition. If you arc asking for the definition of the function spec
because you want to apply it, the outermost encapsulation is exactly what you want. But the
basic definition can be found mechanically from the definition, by following the debugging info
alists. So it makes scnse to think of it as a part of the definition. In regard to the function
defining special forms such as defun, it is convenient to think of the encapsulations as connecting
between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

si :encapsulate Macro
A call to si:encapsulate looks like

(s i: encapsul ate jUllction-spec oliter-jilllctioll type
body-Jorm
extra-debugging-info)

All the subf<H1ns of this macro are evaluated. In fact, the macro could almost be
replaced with an ordinary function, except for the way body-jorlll is handled.

jilllelion-spec evaluates to the function spec whose definition the new encapsulation should
become. oUler-jilllclioll is another function spec, which should often be the same one. Its
only purpose is to be used ill any error messages from si:encapsulate.

type evaluates to a symbol which identifies the purpose of the encapsulation; it says what
the application is. For example, it could be advise or trace. The list of possible types is
defined by the SystClil because el1cap~lllatiolls are supposed tu be kept in an order
according to their type (sec si:encapsulation-standard-order, page 141). type should
have an si:encapsulation-grind-function property which tells grindef what to do with an
encapsulation of this type.

body-form is a form which evaluates to the body of the encapsulation-definition, the code
to be executed when it is called. Backquote is typically usee! for this expression; see
section 17.2.2, page 194. si:encapsulate is a macro because, while body is being
evaluated, the variable si:encapsulated-function is bound to a list of the fDlm (function
ullinlerned-symbol), referring to the uninterned symbol used to hold the prior -definition of
function-spec. If si:encapsulate were a function, body-form would just get evaluated
normally by the evaluator before si:encapsulate ever got invoked, and so there would be
no opportunity to bind si:encapsulated -function. The fDIm body-jorm should contain
(apply,si:encapsulated-function arglist) somewhere if the encapsulation is to live up to
its name and truly serve to encapsulate the original definition. (The variable arglist is
bound by some of the code which the si:encapsulate macro produces automatically.
When the body of the encapsulation is run arglist's value will be the list of the arguments
which the encapsulation received.)

extra-debugging-injo evaluates to a list of extra items to put into the debugging info alist
of the encapsulation function (besides the one starting with si:encapsulated -definition
which every encapsulation must have). Some applications find this useful for recording
information about the encapsulation for their own later use.

When a special function is encapsulated, the encapsulation is itself a special function with
the same argument quoting pattern. (Not all quoting patterns can be handled; if a
particular special form's quoting pattern cannot be handled, si:encapsulate signals an

DSK:LMMAN;FD.FUN 52 16-MAR-81

l.isp Machine Manual 141 Encapsulations .

error.) Therefore, when the outenllost encapsulation is started, each argument has been
evaluated or not as appropriate. Because each encapsulation calls the prior definition with
apply, no further evaluation takes place, and the basic definition of the special form also
finds the arguments evaluated or not as appropriate. The basic definition may call eval on
some of these arguments or parts of them; the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the definition of
jUllction-spec is a macro. then si:encapsulate automatically encapsulates the expander
function instead. In this case, the definition of the uninterned symbol is the original
macro definition, not just the original expander function. It would not work for the
encapsulation to apply the macro definition. So during the evaluation of body-jonn,
si:encapstilated-function is bound to the fonn (cdr (function Ull ill temed-sYl11bo/)) , which
extracts the expander fllnction from the prior definition of the macro.

Because only the expander function is actually encapsulated, the encapsulation does not
sec the evaluation or compilation of the expansion itself. The value returned by the
encapsulation is the expansion of the macro call, not the value computed by the
expansion.

It is possible for one function to have Illultiple encapsulations, created by different subsystems.
In this case, the order of encapsulations is illdependent of the order in which they were made. It
depends instead on their types. All possible encapsulation types have a toul! order and a new
encapsulation is put in the right place among the existing encapSUlations according to its type and
their types ..

s1: ancapsul ation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the order that
the encnpsulations arc supposed to be kept in (innennost encapsulations first). If you want
to add new kinds of encapsulations, you should add another symbol to this list. Initially
its value is .

(advise trace si:rename-within)
advise. encapsulations arc used to hold advice (see page 408). trace encapsulations are
used for implementing tracing (see page 404). si:rename-within encapsulations are used
to record the fact that function specs of the form (:within lVithin-junction altered-jullctioll)
have been defined. The encapsulation goes on lVithill-junction (see section 10.10.1, page
143 for more information).

Every symbol used as an encapsulation type must be on the list si:encapsulation -standard
order. In addition, it should have an si:encapsulation-grind-function property whose value is a
function that grindef will call to process encapsulations of that type. This function need not take
cme of printing the encapsulated function because grindef will do that itself. But it should print
any information abollt the encapsulation itself which the user ought to sec. Refer to the code for
the grind function for advise to see how to write one.

To find the right place in the ordering to insert a new encapsulation, it is necessary to parse
existing ones. This is done with the function si:unencapsulate-function-spec.

DSK:LMMAN;FD.FUN 52 16-MAR-Sl

Encapsulations 142 Lisp Machine Manual

s1 : unencapsul ate-funct ion-spoc junction-spec &optional encapsulation-types
This takes one function spec and returns another. If the original fi.l1lction spec is
undefined, or has only a basic definition (that is, its definition is not an encapsulation),
then the original function spec is returned unchanged.

If the definition of junction-spec is an encapsulation, then its debugging info is examined
to find the uninterned symbol which holds the encapsulated definition, and also the
encapsulation type. If the encapsulation is of a type which is to be. skipped over, the
uninterned symbol replaces the original function spec and the process repeats.

The value returned is the uninterned symbol from inside the last encapsulation skipped.
This ul1interned symbol is the first one which docs not have a definition which is an
encapsula£ion that should be skipped. Or the value can be /tlllelion-spec: if /tmclion-spec's
definition is not an encapsulation which should be skipped.

The types of encapsulations to be skipped over are specified by encapsulation-lypes. This
can be a list of the types to be skipped, or nil meaning skip all encapsulations (this is the
default). Skipping all encapsulations means returning the uninterned symbol which holds
the basic definition of junction-spec. That is, the definition of the function spec returned
is the basic definition of the function spec supplied. Thus,

{fdefinition (si:unencapsulate-function-spec 'foo)}
returns the basic definition of faa, and

(fdefine (si:unencapsulate-function-spec 'foo) 'bar}
sets the basic definition Oust like u~ing fdefine with carejully supplied as t).

encapsulalion-lypes can also be a symbol, which should be an encapsulation type; then we
skip all types which are supposed to come outside of the specified type. For example, if
encapsulation-lypes is trace, then we skip all types of encapsulations that come outside of
trace encapsulations, but we do not skip trace encapsulations themselves. The result is a
function spec which is where the trace encapsulation ought to be, if there is one. Either
the definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of junction-spec, and this function spec is where
it would belong if there were one. For example,

(let «tern (si:unencapsulate-function-spec spec 'trace}})
(and (eq tern (si:unencapsulate-function-spec tern '(trace))}

(si : encapsu 1 ate tern spec 'trace • (.. . body . ..)}})
finds the place where a trace encapsulation ought to go, and makes one unless there is
already one there.

(let «tern (si:unencapsulate-function-spec spec 'trace)})
(fdefine tern (fdefinition (si:unencapsulate-function-spec

tern '(trace))})}
eliminates any trace encapsulation by replacing it by whatever it encapsulates. (If there is
no trace encapsulation, this code changes nothing.)

These examples show how a subsystem can insert its own type of encapsulation in the
proper sequence without knowing the names of any other types of encapsulations. Only
the· variable si:encapsulation -standard-order, which is used by si:unencapsulate
function-spec, knows the order.

DSK:LMMAN;FD.FUN 52 16-MAR-81

I -

Lisp Machine Manual 143 Encapsulations

t 0.1 O. t Rename-Within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation goes
around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within faa bar), then bar gets renamed to altered-bar
within-faa wherever it is called from faa, and faa gets a si:rename-within encapsulation to
record Ule fact. The purpose of the encapsulation is to enable various parts of the system to do
what seems natural to the user. For example, grindef (see page J 18) notices the encapsulation,
and so knows to print bar instead of altered-bar-within-foo, when grinding Ule definition of
faa.

Also, if you redefine faa, or trace or advise it, the new definition gets Ule same renaming
done (bar replaced by altered-bar-within-foo). To make ulis work, everyone who alters part of
a function definition should pass the new part of the definition through the function si:rename-
within-new-definition-maybe. .

s i : rename-wi th; n- new-def; nit; on-maybe junc/ioll-spec ne1V-structure
Given new-structure which is going to become a part of the definition of function-spec,
perform on it the replacements described by the si:rename-within encapsulation in the
definition of fUllc/iull-spec, if there is one. The altered (copied) list structure is returned.

rt is nut neccs5ary to call this function yourself when you replace the basic uefinition
because fdefine with careflilly supplied as t <;toes it for you. si:encapsulate does this to
the body of the new encapsulation. So you only need to call si:rename-within-new
definition-maybe yourself if you are rplac'illg part pf the definition.

For proper results, fUl1ctiolZ"spec must be the outer-level function spec. That is, the value
returned by si:unencapsulate-function":spec is 1I0t the right thing to use. It will have
had one or more encapsulations stripped off, including the si:rename-within encapsulation
if any, and so no renamings will be done.

DSK:LMMAN;FD.FUN 52 16-MAR-81

Closures 144 Lisp Machine Manual

11. Closures
A closure is a type of Lisp functional object useful for implementing certain advanced access

and control stmctures. Closures give you more explicit control over the environment, by allowing
you to save the environment created by the entering of a dynamic contour (Le. a lambda, do,
prog, progv, let, or any of several other special forms), and then usc that environment
elsewhere, even afkr the contour has been exited.

] l.t What a Closure Is

There is a view of lambda-binding which we will use in this section because it makes it easier
to explain what closures do. In this view, when a variable is bound, a new value cell is created
for it. The old valuc cell is saved away somewhere and is inaccessible. Any references to the
variable will get the contents of the new value cell, and any setq's will change the contents of
the new value cell. When the binding is undone, the new value cell goes away, and the old
value cell, along with its contents, is restored.

For example, consider the following sequence of Lisp fotms:
(setq a 3)

(let ((a 10))
(pr'int (+ a 6)))

(print a)
Initially there is a value cell for· a, and the setq {ann makes the contents of that value cell be 3.
Thcn the lambda-combination is eyaluatcLi. a is bound [Q 10: the old value cell, which still
contains a 3, is saved away, and a ncw value cell is created with 10 as its contents. The
reference to a inside the lambda expression evaluates to the current binding of a, which is the
contents of its current value cell, namely 10. So 16 is printed. Then the binding is undone,
discarding the new value cell, and restoring the old value cell which still contains a 3. The final
print prints out a 3.

The form (closure var-list junction), where var-/ist is a list of variables and jUllction is any
function, creates and returns a closure. When this closure is applied to some arguments, all of
the value cells of the variables on var-list are saved away, and the value cells that those variables
had at the time closure lVas called (that is, at the time the closure was created) are made to be
the value cells of the symbols. Then jilllclion is applied to the argument. (This paragraph is
somewhat complex, but it completely describes the operation of closures; if you don't understand
it, come back and read it again after reading the next two paragraphs.)

Here is another, lower levcI explanation. The closure object stores several things inside of it.
First, it saves the jilllclioll. Secondly, for each variable in var-!ist, it remembers what that
variable's value cell was when thc closure was created. Then when the closure is called as a
function, it first temporarily restores the value cells it has remembered inside the closure, and
then applies jlmclioll to the same arguments to which the closure itsclf was applied. When the
function returns, the value cells are restored to be as tbey were before the closure was called.

DSK:LMMAN;FD.CLO 27 16-MAR-81

Lisp Machine Manual

Now. if we evaluate the fonn
(setq a

(let ((x 3»

145

(closure '(x) 'frob»))

What a Closure Is

what happens is that a new value cell is created for x, and its contents is a fixnum 3. Then a
closure is created, which remembers the function frob. the symbol x. and that value cell. Finally
the old value cell of x is restored, and the closure is returned. Notice that the new value cell is
still around, because it is still known about by the closure. When the closure is applied, say by
doing (funcal! a 7), this value cell will be restored and the value of x will be 3 again. [1' frob
uses x as a free variable, it will sec 3 as the value.

A closure can be made around any function, lIsing any fOlm which evaluates to a function.
The fonn could evaluate to a lambda expression, as in '(lambda 0 x), or to a compiled function,
as would (function (lambda 0 x)). In the example above. the form is 'frob and it evaluates to
the symbol frob. A symbol is also a good function. It is usually better to close around a symbol
which is the name of the desired function, so that the closure points to the symbol. Then, if the
symbol is redefined, the closure will usc the new definition. If you actually prefer that the
closure continue to use the old definition which was current when the closllre was made, then
dose arollnd the definition of the symbol rather than the symbol itself. In the above example,
that would be done by

(closure '(x) (function frob»

Because of the way closures arc implemented, the variables to be closed over must not get
turned into "local val iablcs" by the compiler. Therefore. all such variables mllst be declared
special. This can be done with <Inexplicit declare (see page 184). with a special form such as
defvar (page 17), or with let.,.closed (page 147). In simple cases, a local-declare around the
binding will do the job. Usually the compiler can tell when a special declaration is missing, but
in the case of making a closure the compiler detects this after already acting on the assumption
iliat the variable is local, by which time it is too late to fix things. The compiler will warn you if
this happens.·

In the Lisp Machine's implementation of closures, lambda-binding never really allocates any
storage to create new value cells. Value cells are only created by the closure function itself,
when they are needed. Thus, implementors of large systems need not worry about storage
allocation overhead from this mechanism if they are not using closures.

Lisp Machine closures are not closures in the true sense, as they do not save the whole
variable-binding environment; however, most of that environment is irrelevant, and the explicit
declaration of which variables arc to be closed allows the implementation to have high efficiency.
They also allow the programmer to explicitly choose for each variable whether it is to be bound
at the point of call or bound at the point of definition (e.g. creation of the closure), a choice
which is not conveniently available in other languages. In addition the program is clearer because
the intended effect of the closure is made manifest by listing the variables to be affected.

The implementation of closures (which it not usually necessary for you to understand) involves
two kinds of value cells. Every symbol has an illternal I'a/ue cell, which is where its value is
normally stored. When a variable is closed over by a closure, the variable gets an external value
cell to hold its value. The ·;!xternal value cells behave according to the lambda-binding model
used earlier in this section. TIle value in the external value cell is found through the usual access
mechanisms (such as evaluating the symbol, calling symeval, etc.), because the internal value cell

DSK:LMMAN;FD.CLO 27 16-MAR-81

Examples uf the Use of Closures l46 Lisp Machine Manual

is made to contain an invisible pointer to the external value cell currently in effect. A symbol
will use such an invisible pointer whenever its current value cell is a value cell that some closure
is remembering; at other times, there won't be an invisible pointer, and the value will just reside
in the internal value cell.

11.2 Examples of the Use of Closures

One thing we can d(l with closures is to implement a generator, which is a kind of function
which is called slIccessively to obtain successive clements of a sequence. We will implement a
function make-list-generator, which takes a list, and returns a generator which will rettlrn
successive clements of the list. When it gets to the end it should return nil.

. The problem is that in between calls to the generator, the generator must somehow remember
where it is tip to in the list. Since all of its bindings are undone when it is exited, it cannot save
this information in a bound variable. It could save it in a global variable, but the problem is
that if we want to have more than one list generator at a time, they will all try to use the same
global variable and get in each other's way.

Here is how we can use closures to solve the problem:
(defun make-list-generator (1)

(declare (special 1»
(closure '(1)

(function (lambda ()
(prog! (cal' 1)

(setq 1 (cdr 1»»»)
Now we can make as many list generators as we like; they won't get in each other's way because
each has its own (external) value cell tor I. Each of these value cells was created when the
mal,e-Iist-generator function was entered, and the value cells are remembered by the closures.

The following form uses closures to create an advanced accessing environment:
(declare (special a b»

(defun faa ()
(setq a 5»

(defun bar ()
(cons a b»

·(let «a 1)
(b 1)}

(setq x (closure '(a b) 'faa»
(setq y (closure '(a b) 'bar»)

When the let is entered, new value cells are created for the symbols a and b, and two closure.s
arc created that both point to those value cells. If we do (fllnea" x), the function foo will be
nm, and it will change the contents of the remembered value cell of a to 5. If we then do
(funea" y), the function bar will return (5. 1). This shows that the value cell of a seen by the
closure y is the same value cell seen by the closure x. The top-level value cell of a is unaffected.

DSK:LMMAN;FD.CLO 27 16-MAR-81

Lisp Machine Manual 147 Closu re- Man ip ulati ng Functions

t 1.3 C]osufc-IVlanipulating Functions

closure var-lis! jUllction
This creates and returns a closure of jUllction over the variables in var-list. Note that all
variables on var-lis! must be declared special if the function is LO compile correctly.

To tcst whether an object is a closure, usc the closurep prcdicate (see pagc 8). Thc typep
function will rcturn the symbol closure if given a closure. (typep x 'closure) is cqtlivalent to
(c1osurep x).

symeval-in-closure closure symbol
This rcturns the binding of symbol in thc environment of closure; that is, it rcturns what
you would get if you rcstored the value cells. known ahout by closure and then evaluated
symbol. This allows you to "look arollnd insidc" a closure. If symbol is not closed over
by closure, this is just like symeval.

set-in-closure closure symbol x
This sets the binding of symbol in the cnvironment of closure to x; that is, it docs what
would happen if you restored the value cells known about by closure and then set sYlllbol
to x. This allows you to changc the contents of Lhc vallie cells known about by a
closure. If .sYlllbol is not closed over by clusllre, this is just like set.

1 ocate- i n- closure closure symbol
This returns the location of the place in closure: where thc saved vahle of symbol is stored.
An equivalent thing to ~Iritc is (Iod (sYIll8val-in-dosure ciosure symbol)).

closur's-al ist closure
Returns an alist of (syl/lbol. value) pairs describing the bindings which the closure
performs when it is called. This list is not the same one that is actually stored in the
c1osurc; that one contains pointcrs to value cells rather than symbols, and c1osure-alist
translates them back to symbols so you can understand thcm. As a result, clobbering part
of this list will not change the closure.

cl osure-funct i on closure
Returns the closed function from closure. This is the function which was the second
argument to closure when the closure was created.

1et-closod SpecwIFonn
When using closures, it is very common to bind a set of variables with initial values, and
then make a closure over those variables. Furthcrmore the v.lriables mllst be declared as
"special" for the compiler. let-closed is a special form which does all of this. It is best
dcscribed by example:

DSK:LMMAN;FD.CLO 27 16-MAR-81

Entities

11.4 Entities

148

(let-closed «a 5) b (c 'x»
(function (lambda () ... »}

macro-expands into

(local-declare «special a be»
(let «a 5) b (c 'x»

(closure '(a b c)
(function (lambda () ... »»)

Lisp Machine Manual

An entity is almost the same thing as a closure; the data type is nominally different but an
entity behaves just like a closure when applied. The difference is that some system functions,
sllch as print, operate on them differently. When print sees a closure, it prints the closure in a
standard way. When print sees an entity, it calls the entity to ask the entity to print itself.

To some degree, entities are made obsolete by flavors (sec chapter 20, page 245). The use of
entities as message-receiving objects is explained in section 20.14, page 274.

entity variable-list jime/ion
Returns a newly constructed entity. This function is just like the function closure except
that it returns an entity instead of a closure.

To test whether an object is an entity, use the entityp predicate (see page 8). The functions
symevaHn-closure, closure-alist, closure-function, etc. also operate on entities.

DSK:LMMAN;FD.CLO 27 16-MAR-81

Lisp Machine Manual 149 Stack Groups

12. Stack Groups
A slack group (usually abbreviated "SG") is a type of Lisp object useful for implementation

of certain advanced control structures such as coroutines and generators. Processes, which are a
kind of coroutine, are built on top of stack groups (sec chapter 25, page 377). A stack group
represents a computation and its internal state, including the Lisp stack.

At (iny time, the computation being performed by the Lisp rVlachine is associated with one
stack group. called the currellt or l1al1ling stack group. The operation of making some stack
group be the current stack group is called a resumption or a slack group slVitch; the previously
mnning stack group is said to have resumed the new stack group. The resume operation has two
parts: first, the state of the nmning computation is saved away inside the current stack group,
and secondly the stIlte saved in the new stack group is restored, and the new stack group is made
current. Then the computIltion of the new stack group resumes its course.

The stack group itself holds a great deal of stIlte in formation. It contains the control stack, or
"regular PDL". The control stack is what you arc shown by the backtracing commands of the
error handler (Control-B, Meta-B, and Control-Mela-B);it remembers the function which is
running, its caller, its caller's caller, etc., and the point of execution of each function (the "return
addresses" of each function). A stack group also contains the environment stack, or "special
PDl.". This contains all of the values saved by lambda-binding. The name "stack group" derives
from the existence of thcse two stacks. Finally, the stack group contains various internal state
in fi>rlllation (conLcnts lJf machine registers and so on).

When the state of the current stack group is saved away, all of its hindings arc undone, and
when the state is restored, the bIndings arc put back. Note that although bindings are
temporarily undone, unwind-protect handlers are lIot run by a stack-group switch (see let
globally, page 16).

Each stack group is a separate environment fo'r purposes of function calling, throwing,
dynamic variable binding, and condilion signalling. AU stack groups run in the same address
space, thus they share the same Lisp data and the same global (not lambda-bound) variables.

When a new stack group is created, it is empty: it doen't contain the state of any
computation; so it can't be resumed. In order to get things going, the stack group must be set to
an initial state. This is done by "presetting" the stack group. To preset a stack group, you
supply a function and a set of arguments. The stack group is placed in such a state that when it
is first resumed, this ftmction will caU those arguments. The function is called the "initial"
function of the stack· group.

DSK:LMMAN;FD.SG 47 16-MAR-S1

Resuming of Stack Groups 150 Lisp Machine Manual

12.1 Resuming of Stack Groups

The interesting thing that happens to stack groups is that they resume each other. When one
stack group resumes a second stack group, the current state of Lisp execution is saved away in
the first stack group, and is restored from the second stack group. Resuming is also called
"switching stack groups".

At any time, there is one stack group associated with the current computation; it is called the
current stack group. The computations associated with other stack groups have their states saved
away in memory, and they are not computing. So the only Slack group that can do anything at
all, in particular resuming other stack groups, is the current one.

You can look at things from the point of view of one computation. Suppose it is running
along, and it resumes some stack group. Hs state is saved away into the current stack group, and
the computation associated with the .one it called starts up. The original computation lies dormant
in the original stack group, while other computations go around resuming each other, until finally
the original stack group is resumed by someone. Then the computation is restored from the stack
group and gets to run again.

There arc several ways that the current stack group can resume other stack groups. This
section describes al! of them.

Associated with each stack group is a resumer. 'Inc resumer is nil or another stack group.
Some fOlms of resuming examine and alter the resumer of some stack groups.

Resuming has another ability: it can transmit a Lisp object from the old stack group to the .
new stack group. Each stack group specifies a value to transmit whcnever it resumes another stack
group; whenever a stack group is resumed, it receives a value;

In the descriptions below, let c stand for the current stack group, s stand for some other
stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If c calls s as a function
with one argument x. then s is resumed, and the object transmitted is x. When c is resumed
(usually-but not necessarily-by s). the object transmitted by that resumption will be returned as
the value of the call to s. This is one of the simple ways to resume a stack group: call it as a
function. The value you transmit is the argument to the function, and the value you receive is
the value returned from the ftmction. Furthermore, this form of resuming sets s's resumer to be
c.

Another way to resume a stack group is to use stack-group-return. Rather than allowing
you to specify which stack group to resume, this function always resumes the resumer of the
current stuck group. Thus, this is a good way to resumc whoever it was who resumed you,
assuming he did it by function-calling. stack-group-return takes one argument which is the
object to transmit. It returns when someone resumes the current stack group, and returns one
value, the object that was transmitted by that resumption. stack-group-return docs not affect
thc resumer of any stack group.

The most ftmdamental way to do resuming is with stack-group-resume, which takes two
arguments: the stack group, and a value to transmit. It returns when someone resumes the
current stack group, rcturning the value that was transmittcd by that resumption, and does not

DSK:LMMAN;FD.SG 47 16-MAR-81

j

Lisp tv'lachinc Manual 151 Stack Group States

affect any stack group's resumer.

If the initial function of c attempts to return a value x, the regular kind of Lisp function
return cannot take place, since the function did not have any caller (it got there when the stack
group was initialized). So instead of normal function returning, a "stack group return" happens.
c's resumer is resumed, and the value transmitted is x. c is left in a state ("exhausted") from
which it cannot be resumed again; any attempt to resume it will signal an error. Presetting it will
make it work again.

Those arc the "voluntary" forms of stack group switch: a resumption happens hecause the
computation said it should. There are also two "involuntary" fonns, in which anuther stack group
is resumed without the explicit request of the nltlning program.

If an error occurs, the current stack group resumes the error handler stack group. The value
transmitted is partially descriptive of the error, and the error handler looks inside the saved state
of lhe erring stack group to get the rest of the information. The error handler recovers from the
error by changing the saved state of the erring stack group and then resuming it.

When certain events occur, typically a I-second clock tick, a sequence break occurs. This
forces lhe current stack group to resume a special stack group called the scheduler (see section
25.1, page 378). The scheduler implements processes by resuming, one afIer another, the stack
group of each process that is ready to run.

sys :%current-stack-group-previ aus -stack-group Variable
The binding of this variable is the (csumer of the cunent stack group.

sys :%current-stack-group Variable
The value of sys:%current·-stack-group is the stack group which is currently running. A
program can lise this variable to get its hands on its own stack group.

12.2 Stack Group States

A stack group has a slate, which controls what it will do when it is resumed. The code
number for the state is returned by the function sys:sg-current-state. This number will be the
value of one of the following symbols. Only the states actually used by the current system are
documented here; some other codes are defined but not used.

sys:sg-state-active
The stack group is the current one.

sys:sg-state-resumable
The stack group is waiting to be resumed, at which time it will pick up
its saved machine state and continue doing what it was doing before.

sys:sg-state-awaiting-return
The stack group called some other stack group as a function. When it is
resumed, it will return from that fi.ll1ction call.

sys:sg -state - awaitintJ - initial-call
The stack group has been preset (see below) but has never been called.
When it is resumed. it will call its initial function with the preset
arguments.

DSK:LMMAN;FD.SG 47 16-MAR-Sl

Stack Group Functions 152 Lisp Machine Manual

sys:sg-state-exhausted
The stack group's initial function has returned. It cannot be resumed.

sys:sg -state- awaiting -error- recovery
When a stack group gets an error it goes into this state, which prevents
anything from happening to it until the error handler has looked at it. In
the meantime it cannot be resumed.

sys:sg -state - invoke - call- on - return
When the stack group is resumed, it will call a function. The function
and arguments are already set up on the stack. The debugger uses this to
force the stack group being debugged to do things.

12.3 Stack Groul) Functions

make-stack-group flame &optional optiol/s
This creates and returns a new stack group. /lal/le may be any symbol or string; it is
used in the stack group's printed representation. options is a list of alternating keywords
and values. The options are not too useful; most calls to make-stack-group don't need
any options at all. The options are:

:sg-area The an:a in which to create the slack group structure itscif. Defauits to
the default area (the value of default-eons-area).

:regular-pdl-area
The arc::! ill which to create the regular PDL. Note that this l11ay 110t· be
any area; only certain areas will do, because regular PDLs are cached in
a hardware device called the pdf buffer. The default is sys:pdl-area.

:special-pdl-area
The area in which to create the special PDL. Defaults to the default area
(the value of default-cons-area).

:regular-pdl-size
Length of the regular PDL to be created. Defaults to 3000.

:special- pdl-size
Length of the special PDL to be created. Defaults to 2000.

:swap-sv- on -call-out
:swap-sv-of-sg-that-calls-me

These flags def.1ult to 1. If these are 0, the system does not maintain
separate binding environments for each stack group. You do not want to
use this feature.

:trap-enable This determines what to do if a microcode error occurs. If it is 1 the
system tries to handle the error; if it is 0 the machine halts. Defaults to
1.

:safe If this flag is 1 (the default), a strict call-return discipline among stack
groups is enforced. If 0, no restriction on st:1ck-group switching is
imposed.

DSK:LMMAN;FD.SG 47 . 16-MAR-81

Lisp Machine Manual 153 . Input/Output in Stack Groups

stack-group-preset stack-group jUllction &rest arguments
This sets up stack-group so that when it is resumed, jUllction will be applied to arguments
within the stack group. Both stacks are made empty; all saved state in the stack group is
destroyed. stack -group- preset is typically used to initialize a stack group just after it is
made, but it may be done to any stack group at any time. Doing this to a stack group
which is not exhausted will destroy its present state without properly cleaning up by
nmning unwind-protects.

stack-group-resume s x
Resumes s, transmitting the value x. No stack group's resumer is affected.

stack-group-return x
Resumes the current stack group's resumer, transmitting the value x. No stack group's
resumer is affected.

symeval-;n-stack-group symbol sg
Evaluates the variable sY/llbol in the binding environment of sg. If sg is the current stack
group, this is just symeval. Otherwise it looks inside sg to see if symbol is bound there;
if so, the binding is returned; if not, the global value is returned. If the variable has no
value this will get an unbound-variable error,

There are a large number of functions in the sys: and eh: packages for manipulating the
internal details of stack groups. These are not documented here as they are not necessary for
most llsers or even system programmers to know about.

12.4 Input/Output in Stack GrouI)s

Because each stack group has its own set of dynamic bindings, a stack group will not inherit
its creator's value of terminal-io (see page 302), nor its caller's, unless you make special
provision for this. The terminal-io a stack group gets by default is a "background" stream which
docs not normally expect to be used. If it is used, it will turn into a "background window"
which will request the user's attention. Usually this is because an error printout is trying to be
printed on the stream. [This will all be explained in the window system documentation.]

If you write a program that uses multiple stack groups, and you want them all to do input
and output to the terminal, you should pass the value of terminal-io to the top-level function of
each stack group as part of the stack-group-preset, and that function should bind the variable
terminal-io.

Another technique is to use a closure as the top-level function of a stack group. This closure
can bind terminal- io and any other variables that are desired to be shared between the stack
group and its creator.

DSK:LMMAN;FD.SG 47 16-MAR-81 .

An Example of Stack Groups 154 Lisp Machine Manual

12.5 An Example of Stack Groups

The canonical coroutine example is the so-called samefringe problem: Given two trees,
determine whether they contain the same atoms in the same order, ignoring parenthesis stmcture.
A better way of saying this is, given two binary trees built out of conses, determine whether the
sequence of atoms on the fringes of the trees is the same, ignoring differences in the arrangement
of the internal skeletons of the two trees. Following the usual rule for trees, nil in the cdr of a
cons is to be ignored.

One way of solving this problem is to usc generator coroutines. We make a generator for
each tree. Each time the generator is called it rcturns the next clement of the fringe of its tree.
After the generator has examined the. cntire tree, it returns a special "exhausted" flag. The
generator is most naturally written as a recursive function. The usc of co routines, Le. stack
groups. allows the two generators to recurse separately on two different control stacks without
having to coordinate with each other.

The program is very simple. Constructing It 111 the usual bottom-up style, we first write a
recursive function which takes a tree and stack-group-retLirns each clement of its fringe. The
stack - group- return is how the generator coroutine delivers its output. We could easily test this
function by changing stack -group - return to print and trying it on some examples.

(defun fl' i ng~ (tree)
(cond ((atom tree) (stack-group-return tree»

(t (fringe (car tree))
(if (not (null (cdr tree»))

(fringe (cdr tree»»))

Now we package this function inside another, which takes care of relurning the special
"exhausted" flag.

(defun fringel (tree exhausted)
(fringe tree)
exhausted)

The samefringe function takes the two trees as arguments and returns t or nil. It creates two
stack groups to act as the two generator coroutines, presets them to run the fringe1 function,
then goes into a loop comparing the two fringes. The value is nil if a difference is discovered, or
t if they are still the same when the end is reached.

(defun samefringe (treel tree2)
(let (sgl (make-stack-group "samefringel"»

(sg2 (make-stack-group "samefringe2"»
(exhausted (ncons nil»))

(stack-group-preset sgl #'fringel treel exhausted)
(stack-group-preset s92 #'fringel tree2 exhausted)
(do (vi v2) (nil)

(setq vi (funcall sgl nil)
v2 (funcal] sg2 nil»

(cond «(neq vi v2) (return nil»)
((eq vi exhausted) (return t))))))

Now we test it on a couplc of eX3mples.

DSK:LMMAN;FD.SG 47 16-MAR-81

Lisp Machine Manual 155

(samefringe '(a b c) '(a (b e») => t
(samefringe '(a b e) '(a bed» => nil

An Example of Stack Groups

The problem with this is that a stack group is quite a large object, and we make two of them
every time we compare two fringes. This is a lot of unnecessary overhead. It can easily be
eliminated with a modest amount of explicit storage allocation, using the resource facility (see
page 77). While we're at it, we can avoid making the exhausted flag fresh each time; its only
important property is that it not be an atom.

(defresouree samefringe-coroutine
(make-stack-group "for-samefringe"»

(defvar exhausted-flag (ncons nil»

(defun samefringe (treel tree2)
(with-resource (samefringe-eoroutine sgl)

(with-resource (samefringe-coroutine sg2)
(stack-group-preset sgl #'fringel treel exhausted-flag)
(stack-group-preset sg2 #'fringel tree2 exhausted-flag)
(do (vI v2) (nil)

(setq vi (funcall sgl nil)
v2 (Funcall sg2 nil»

(cand ((neq vI v2) (return nil»
((eq vI exhausted-flag) (return t»»»)

Now we can compare thl.! fringes of two trees with no allocation of memory whatsuever.

DSK:LMMAN;FD.SG 47 16-MAR-81

Locatives 156 Lisp Machine Manual

13. Locatives

13.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer to a cell. Locatives are inherently a
more "low level" constmct than most Lisp objects; they require some knowledge of the nature of
the Lisp implementation. Most programmers will never need them.

A cell is a machine word which can hold a (pointer to a) lisp object. For example, a
symbol has five cells: the print name cell. the value cell, the function cell, the property list cell,
and the package cell. The value cell holds (a pointer to) the binding of the symbol, and so on.
Also, an array leader of length II has 11 cells, and an art -q array of II clements has 1/ cells.
(Numeric arrays do not have cells in this sense.) A locative is an object that points to a cell; it
lets you refer to a cell, so that you can examine or alter its contents.

There arc a set of functions which create locatives to cells; the functions arc documented with
the kind of object to which .they create a pointer. See ap-1, ap-Ieader, car-location, value
cell-location, etc. The macro loct (see page 202) can be lIsed to convert a form which accesses
a cell to one which creates a locative pointer to that cell: fi)r example,

(locf (fsymeval x» ==> (function-cell-location x)
lod is very convenient because it saves the writer alld reader of a program from having to
remember the names of all the functions that create locatives.

13.2 Functions \Vhich Operate on Locatives

Either of the fimctions car and cdr (see page 49) may be given a locative, and will return
the contents of the cell at which the locative points.

For example,
(car (value-cell-location x»
is the same as
(syrneval x)

Similarly, either of the functions rplaca and rplacd may be used to store an object into the
cell at which a locative points.

For example,
(rplaca (value-cell-location x) y)
is the same as
(set x y)

If you mix locatives and lists, then it matters whether you use car and rplaca or cdr and
rplacd, and care is required. For. example, the following function takes advantage of value-cell
location to cons up a list in forward order without special-case code. The first time through the
loop, the rplacd is equivalent to (setq res ...); on later times through the loop the rplacd tacks
an additional cons onto the end of the list.

DSK:LMMAN;FD.LOC 18 16-MAR-Sl

Lisp Machine Manual 157 Functions Which Operate on Locatives

(defun simp1ified-version-of-mapcar (fcn 1st)
(do ((1st 1st (cdr 1st»

(res nil)
(loc (va1ue-ce11-1ocation 'res»)

((null 1st) res)
(rp1acd loc

(setq loc (ncons (funca11 fcn (car 1st»»»)
You might expect this not to work if it was compiled and res was not declared special, since
non-special compiled variables are not represented as symbols. However, the compiler arranges
for it to work anyway, by recognizing value-cell-location of the name of a local variable, and
compiling it as something other than a call to the value-cell-location function.

DSK:LMMAN;FD.LOC 18 16-MAR-81

Sllbprimitives 158 Lisp Machine Manual

14 .. Subprhl1itives
Subprimitives are functions which are not intended to be used by the average program, only

by "systcm programs". They allow one to manipulate the environment at a level lower than
normal Lisp. They are described in this chapter. Subprimitives usually have names which start
with a % character. The "primitives" described in other sections of the manual typically use
subprimitives to accomplish their work. The subprimitives take the place of machine language in
other systems, to some extent. Subprimitives are nonnally hand'coded in microcode.

Thcre is plenty of stuff in this chapter that is not fi.llIy explained; there are tenns that are
undefined, there are forward referenccs, and so on. Furthermore, most of what is in here is
considered subject to change without notice. In fact, this chapter docs not exactly belong in this
manllal; but in some other more low-level manual. Since the lattcr manual does not exist. it is
herc for the interim.

Subprimitives by their vcry nature cannot do full chccking. Improper usc of subprimitivcs can
destroy the cnvironment. Subprimitives come in varying degrees of dangerousncss. Those without
a % sign in their naine cannot destroy the cnvironment, but are dcpendent on "internal" details
of the J -isp implementation. The ones whose names start with a % sign can violate system
coriventions if used improperly. The subprimitives al"e documented here since they need to be
documented somewhere, but this manual docs not document ail the things you nced to know in
order to lise them. Still other subprimitives are not documcnted here because they are very
specialized. Most of these are never uscd cxplicitly by a programmer; the compiler inserts them
into thc program [0 perlorm uperationS which arc expresscu ditl'crenlly ill the soui'ce code.

The most common problem you can calise using subprimitives, though by no means the only
one, is to create illegal pointers: pointcrs that are, for one reason or another, according to
storage convcl1liol1s, not allowcd to exist. Thc storage conventions are not documented; as we
said, you have to be an expert to correctly use a lot of the functions in this chapter. If you
create such an illegal pointer, it probably will not be detected immediately, but later on parts of
the system may scc it, notice that it is illegal, and (probably) halt the Lisp Machine.

In a certain sense car, cdr, rplaca, and rplacd are sub primitives. If these are given a
locative instead of a list. they will access or modify the cell addressed by the locative without
regard to what· object the cell is inside. Subprimitives can be used to create locatives to strange
places.

14.1 Dnta Types

data-type arg
data -type returns a symbol which is the name for the internal data-type of the "pointer"
which represents argo Note that some types as seen by the user are not distinguished
from each other at this level, and some user types. may be reprcsented by more than one
internal type. For example, dtp-extended-Ilumber is thc symbol that data-type would
return for either a Honum or a bignum, cven though those two types are quite different.
The typep function (page 8) is a higher-level primitive which is more useful in most
cases; normal programs should always usc typep rather than data-type. Some of tllese
type codes are internal tag fields tlmt are never llsed in pointers tllat represent Lisp

DSK:LMMAN;FO.sun 46 16-MAR-81

Lisp Machine Manual 159 Data Types

objects at all. but they are documented here anyway.

dtp-symbol The object is a symbol.

dtp-fix

dtp-small-flonum

The object is a fixnum; the numeric value is contained in the
address field of the pointer.

The object is a small flonum; the numeric value is contained in
the address field of the pointer.

dtp-extended-number The object is a 110num or a bignum. This value will also be
used for future numeric types.

dtp-Iist The object is a cons.

dtp-Iocative

dtp-array-pointer

dtp- fef - pointer

dtp-u-entry

dtp-closure

dtp-stacl~ -group

dtp-instance

dtp-entity

dtp-select-method

dtp-header

dtp-array-header

dtp-symbol-header

dtp - instance - header

dtp-null

dtp-trap

dtp-free

The object is a locative pointer.

The object is an array.

The object is a compiled function.

Tl1e object is a microcode entry.

The object is a closure; see chapter 11, page 144.

The object is a stack-group; see chapter 12. page 149.

The object is an instance of a flavor. i.e. an "active object". See
chapter 20. page 245.

The object is an entity: see section UA. page 148.

The object is a "select-method"; see page 13l.

An internal type lIsed to mark the first word of a multi-word
structure.

An internal type used in arrays.

An internal type used to mark the first word of a symbol.

An internal type used to mark the first word of an instance.

Nothing to do with nil. This is used in unbound value and
function cells.

. The zero data-type, which is not used. This hopes to detect
microcode bugs.

This type is used to fiU free storage, to catch wild references.

dtp-external-value-cell-pointer

dtp - header - forward

dtp-body-forward

DSK:LMMAN ;FD.SUB 46

An "invisible pointer" used for external value cells. which are
part of the closure mechanism (sec chapter 11. page 144), and
used by compiled code to address value and function cells.

An "invisible pointer" used to indicate that the structure
containing it has been moved elsewhere. The "header word" of
the suucture is replaced by one of these invisible pointers. See
the fUllction structure-forward (page 160).

An "invisible pointer" used to indicate that the structure
containing it has becn moved elsewherc. This points to the word

16-MAR-S1

Forwarding

dtp - one'-q -forward

dtp-gc-forward

q-data-types Variable

160 Lisp Machine Manual

containing the header-forward, which points to the new copy of
the stnIcture. .

An "invisible pointer" used to indicate that the single cell
containing it has been moved elsewhere.

This is used by the copying garbage colleclor to flag the obsolete
copy of an object; it points to the new copy.

The value of q -data -types is a list of all of the symbolic names for data types described
above under data-type. These arc the symbols whose print names begin with "dtp-".
The values of dlese symbols are thc internal numeric data-type codes for the various types.

q- data- types type-code
Givcn the intcrnal numeric data-type code, returns dle corresponding symbolic name.
This "function" is actually an array.

14.2 Forwarding

An invisible poil/ler is a kind of pointer that does not represent a Lisp object, but just resides
in memory. Thcrc are several kinds uf invisiblc pointer, and there arc various rules about where
dley mayor may not appear. The basic propcrty of an invisible pointer is that if thc Lisp
rVlachinc reads a word of memory and finds ~\l1 in visiblc pointer there, instead of sccing the
invisible pointer as the rcsult of the read, it does a second read, at the location addressed by the
invisible pointer, and rcturns that as the rcsult instead. Writing behavcs in a similar fashion.
When die Lisp machine writes a word of mcmory it first checks to see if that word contains an
invisible pointer; if so it goes to the location pointcd to by fuc invisiblc pointer and tries to write
there instead. Many subprimitives that read and write mcmory do not do this checking.

structure-forward old-object nelv-object
This causes refcrences to old-object to actually reference new-object, by storing invisible
pointcrs in old-object. It returns old-object.

An example of fue usc of structure-forward is adjust-array-size. If fue array is being
madc bigger and cannot be expanded in place, a new array is allocated, fue contcntsare
copied, and fue old array is structure-forwarded to fue new one. This forwarding ensures
that pointers to the old array, or to cells wid1in it, continue to work. When the garbage
collcctor goes to copy fue old array, it notices dlC forwarding and uses die ncw array as
the copy; d1US the overhead of forwarding disappcars cvcntually if garbage collection is in
use.

follow-structure-forwarding object
Normally returns object, but if object has bccn structure-forward'ed, returns the objcct
at d1C end of d1C chain of forwardings. If object is not cxactly an objcct, but a locative
to a cell in thc middlc of an objcct, a locative to the corresponding ccll in thc latest copy
of the objcct will be returned.

DSK:LMMAN;FD.SUB 46 16-MAR-Sl

Lisp Machine Manual 161 Pointer Manipulation

'forward-va 1 ue-cell jiv1I1-s),lIlbo/ to-symbol
This alters frolll-sYllibol so that it always has the same valLIe as to-symbul, by sharing its
value cell. A dtp-one-q-forward invisible pointer is stored into ji"Om-symbul's value cell.
Do not do this while ji"Oln-::'Ylllbo/ is lambda-bound, as the microcode does not bother to
check for that case and something bad will happen when from-symbol gets unbound. The
microcode check is omitted to speed up binding and unbinding.

To forward one arbitrary cell to another (rather than specifically one value cell to
another), given two locatives do

(%p - s to re- tag- an d- pO'j n te r locative I d tp-one - q- fa rward lucative2)

'follow-call-forwarding lac el'cp-p
loc is a locative to a cell. Normally loe is returned, but if the cell has been forwarded,
lhis follows the chain of forwardings and returns a Im:ative to the fiilal cell. If the cell is
part of a structure which has been forwarded, the chain of structure forwardings is
followed, too. If el'Cp-p is t, external value cell pointerS arc followed; if it is nil they are
not.

14.3 Pointer Manipuhllion

It should again be emphasized that improper lise of these functions can damage or destroy the
Lisp em'ironment. It is pllssiblc to crcale pointers with illegal data-type, pointers to non-existent
objects, and pointers to untyped storage which will completely confuse the garbage coltector.

%data-type x
Returns the data-type field of x, as a fixnum.

%pointar x
Returns the pointer field of x, as a fixnum. For most types, this is dangerous since the
garbage collector can copy the object and change its address.

%make-pointar data-type pointer
This makes up a pointer, with data-type in the data-type field and pointer in the pointer
field, and returns it. data-type should be an internal numeric data-type code; these are
the values of the symbols that start with dtp-. pointer may be any object; its pointer
field is used. This is most commonly used for changing the type of a pointer. Do not
use this to make pointers which are not allowed to be in the machine, such as dtp-null,
invisible pointers, etc.

%make-pointar-offsetdala-type pointer offset
This returns a pointer with data-type in the data-type field, and pointer plus offset in the
pointer field. rIlle data-type and pointer arguments are like those of %make-pointer;
offset may be any object but is usually a fixnum. The types of the arguments are not
checked: their pointer fields arc simply added together. This is useful fi)l' constructing
locative pointers into the middle of an object. However, note that it is illegal to have a
pointer to untyped data, such as the inside of a FEF or a numeric array.

DSK:LMMAN;FD.SU13 46 16-MAR-81

Analyzing Structures 162 Lisp Machine Manual

%pointer-difference poill{er-I poil/tef~2

Returns a fixnum which is pointer-I minus poilller-2. No type checks are made. For the
result to be meaningful, the two pointers must point into the same object, so that their
difference cannot change as a result of garbage collection.

14.4 Analyzing Structures

%fi nd-structure-header pointer
This subprimitive finds the stl1lcture into which pointer points. by searching backward for
a header. It is a basic low-level function used by stich things as the garbage collector;
pointer is normally a locative, but its data-type is ignored. Note that it is illegal to point
into an "unboxed" portion of a structure, for instance the middle of a numeric array.

In structure space, the "containing structure" of a pointer is well-defined by system
storage conventions. In list space, it is considered to be the contiguolls, cdr-coded
segment of list surrounding the location pointed to. If a cons of the list has been copied
out by rplacd, the contiguous list includes that pair and ends at that point.

%f i nd- structure-1 eade r pointer
This is identical to %find - structure --header, except that if the structure is an array with
a leader, this returns a locative pointer to the leader-header, rather than returning the
array-pointer itself. Thus the result of %find -structure -leader is always the lowest
address in the structure. This is the one used internally by the garbage collector.

%structure-boxad-size o~;ect
Returns the number of "boxed Q's" in object. This is the number of words at the front
of the structure which contain normal Lisp objects. Some structures, for example FEFs
and numeric arrays, contain additional "unboxcd Q's" following their "boxed Q's". Note
that the boxed size of a POL (either regular or special) docs not include Q's above the
current top of the POL. Those locations arc boxed but their contents is considered
garbage, and is not protected by the garbage collector.

%structure-tota1-siz9 object
Returns the total number of words occupied by the representation of object, including
boxed Q's, unboxed Q's, and garbage Q's off the ends of PDLs.

14.5 Creating Objects

%a 11 ocate- and -- i nit i ali Z9 data-type header-type header second-word area size
This is the sub primitive for creating most stmctured-type objects. area is the area in
which it is to be created, as a fixnum or a symbol. size is the number of words to be
allocated. The value returned points to the first word allocated, and has data-type data
type. Uninterruptibly, the words allocated are initialized so that storage conventions arc
preserved at all times. The first word, the header, is initialized to have Izeade~{)'pe in its
data-type field and header in its pointer field. The second word is initialized to second
word. The remaining words are initialized to nil. The tlag bits of all words are set to O.
The cdr codes of all words except the last are set to cdr-next; the cdr code of the last
word is set to cdr-nil. It is probably a bad idea to rely on this.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Lisp Machine Manual 163 Locking Subprimitive

The basic functions for creating list-type objects are cons and make-list; no special
subprimitive is needed. Closures, entities. and select-methods are based on lists, but there is no
primitive for creating them. To create one, create a list and then use %make-pointer to change
the data type from dtp-list to the desired type.

%allocate-and-initial ize-array header data-length leader-length area size
This is the subprimitive for creating arrays, called only by make-array. It is different
from %allocate-and-initialize because arrays have a more complicated header structure.

14.6 Locking SlIhprimitive

%store-condit ;ona1 puinter old new
This is the basic locking primitive. pointer is a locative to a cell which is unimerruptibly
read and written. If the contents of the cell is eq to old. then it is replaced by nelV and
t is returned. Otherwise, nil is returned and the contents of the cell is not changed.

14.7 110 Device Subprimitives

%unibus-read address
Returns the contents of the register at the specified Unibus address. as a fixnum. You
must specify a full IS-bit address. This is guaranteed to read the location only once.
Since the Lisp Machine Unibus does not support byte operations. this always references a
16-bit word, and so address will normally be an even number.

%un ibus-write address data
Writes the 16-bit number data at the specified Unibus address, exactly once.

%xbus-read io-offset
Returns the contents of the register at the specified Xbus address. io-offset is an offset
into the I/O portion of Xbus physical address space. This is guaranteed to read the
location exactly once. The returned value can be either a fixnum or a bignum.

%xbus-write io-offset data
Writes data, which can be a fixnum or a bignutn, into the register at the specified Xbus
address. io-offset is an offset into the I/O portion of Xbus physical address space. This is
guaranteed to write the location exactly once.

sys : %xbus-wr i te -sync w-loc JA.~data delay sync-loc sync-mask sync-value
Does (%xbus-write w-loc IV-data). but first synchronizes to within about one microsecond
of a cenain condition. The synchronization is achieved by looping until

(= (logand (%xbus-r'ead sync-Ioc) sync-mask) sync-value)
is false, then looping until it is true, then looping delay times. Thus the write happens a
specified delay after the leading edge of the synchronization condition. The number of
microseconds of delay is roughly one third of delay.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Special f\1emory Referencing 164 Lisp Machine Manual

sys:%ha1t
Stops the machine.

14.8 Special Memory Referencing

%p-contents-offset base-pointer offset
This checks the eel! pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real stntcture pointed to, it adds offset to the resulting
forwarded base-pointer and returns the contents of that location.

There is no %p-contents, since car performs that operation.

%p-contents-as-1ocative poil/ter .
Given a pointer to a memory location containing a pointer which isn't allowed to be "in
the machine" (typically an invisible pointer) this function returns the contents of the
location as a dtp-Iocative. It changes the disallowed data type to dtp-Iocative so that
you can safely look at it and see what it points to.

%p -contents- 8$-1 ocat 1 va-offset base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
tl)rwarding pointers to the real stntcturc pointed to, it adds offset to the resulting
forwarded base-poinfer, fetches the contents of that location, and returns it with the data
lype chunged to dtp-Iocative in case it was a type which isn't al1<lwed to be "in the
machine" (typically an invisible pointer). This can be used, for example, to analyze the
dlp-external-value-cell-pointer pointers in a FEF, which are lIsed by the compiled
code to reference value cells and function cells of symbols.

%p-storo-contents pointer value
value is stored into the data-type and pointer fields of the location addressed by pointer.
The cdr-code and flag-bit fields remain unchanged. value is returned.

%p-store-contents-offset value base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real stntcture pointed to, it adds offset to the resulting
forwarded base-pointer, and stores value into the data-type and pointer fields of that
location. The cdr-code and flag-bit fields remain unchanged. value is returned.

%p-store-tag-and-pointer pointer miscjields plltrjield
Creates a Q by taking 8 bits from mise fields and 24 bits from plll1:/ield, and stores that
into the location addressed by poinler. 'I11e low 5 bit~ of miscjields become the data-type,
the next bit becomes the flag-bit, and the top two bits become the cdr-code. This is a
good way to store a forwarding pointer from one structure. to another (for example).

%p-·l db ppss pointer
This is like Idb but gets a byte from the location addressed by pointer. Note that you
can load bytes out of the data type etc. bits, not just the pointer field, and that the word
loaded out of need not be a fixnum. The result returned is always a fixllum, unlike %p
contents and friends.

DSK:LMMAN ;FD.SUn 46 16-MAR-81

l-isp Machine Manual 165 Special Memory Referencing

%p-ldb-offset ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, the byte specified by ppss is loaded
from the contents of the location addressed by the forwarded ba5e-poillter plus offset, and
returned as a fixnum. This is the way to reference byte fields within a stmcture without
violating system storage conventions.

%p -dpb value ppss pointer
The vallie, a fixnum, is stored into the byte selected by ppss in the word addressed by
poinler. nil is returned. You can use this to alter data types, cdr codes, etc.

%p-dpb-offsat vallie ppss base-pointer uffset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, the mlue is stored into the byte
specified by ppss in the location addressed by the forwarded base-pointer plus offset. nil is
returned. This is the way to alter unboxed data within a structure without violating
system storage conventions.

%p-mask-field ppss pointer
This is similar to %p-Idb, except that the selected byte is returned in its original position
within the word instead of right-aligned.

%p-mask-f; a1 d-offset ppss base-pointer offset
This is similar to %p-Iclb-offset, except that the selected byte is returned in its original
position within the wonl instead uf right-aligned.

%p-doposit-field value ppss pointer
This is similar to %p-dpb, except that the selected byte is stored from the corresponding
bits of value rather than the right-aligned bits.

%p-daposit-field--offset I'alue ppss base-pointer offset
This is similar to %p-dpb-offset, except that the selected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%p-poi ntar pointer
Extracts the pointer field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-data-type pointer
Extracts the data-type field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-cdr-code pointer
Extracts the cdr-code field of the contents of the location addressed by pointer and returns
it as a fixnum.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Storage Layout Definitions 166 Lisp Machine Manual

%p-flag-bit poinler
Extracts the flag-bit field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-store-poi ntar pointer value
Clobbers the pointer field of the location addressed by pointer to value, and returns value.

%p-store-data-type pointer value
Clobbers the data-type field of the location addressed by pointer to value, and returns
value.

%p-store-cdr-code pointer value
Clobbers the cdr-code field of the location addressed by pointer to value, and returns
value.

%p-store-flag-bit pointer value
Clobbers the flag-bit field of the location addressed by poinler to value, and returns value.

%stack-frame-pointer
Returns a locative pointer to its caller's stack frame. This function is not defined in the
interpreted Lisp environment; it Dilly works in compiied code. Since it turns into a
"misc" instruction, the· "caller's stack frame" really means "the frame for the FEF that
executed the %stack - frame - pain ler instruction".

14.9 Storage Layout Definitions

The following special variables have values which define the most· important attributes of the
way Lisp data structures are laid out in storage. In addition to the variables documented here,
there are many others which arc more specialized. They arc not documented in this manual since
they are in the system package rather than the global package. The variables whose names start
with %% are byte specifiers, intended to be used with subprimitives such as %p-Idb. If you
change the value of any of these variables, you will probably bring the machine to a crashing
halt.

%%q-cdr-code Variable
The field of a memory word which contains the cdr-code. See section 5.4, page 59.

%%q-fl ag-bit Variable
The field of a memory word which contains the flag-bit. In most data structures this bit
is not used by the system and is available for the user.

%%q-data-type Variable
The field of a memory word which contains the data·type code. See page 158.

%%q-poi ntar Variable
The field of a memory which contains the pointer address, or immediate data.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Lisp Machine Manual 167 Function-Calling Subprimitives

%%q-pointer-within-paga Variable
The field of a memory word which contains the part of the address til at lies within a
single page.

%%q-typed-pointer Variable
The concatenation of the %%q -data -type and O/O%q - pointer fields.

%%q - a 11- but - typed- po inter Variable
The field of a memory word which contains the tag fields, %O/Oq -cdr-code and %%q
flag -bit.

%%q-al1-but-poi nter Variable
The concatenation of all fields of a memory word except fiJr %%q-pointer.

%%q-a11-but-cdr-code Variable
The concatenation of all fields of a memory word except for %%q - cdr- code.

%%q-high-half Variable
%%q-1 ow- ha If Variable

The two halves of a memory word. These fields are only used in storing compiled code.

cdr-normal Variable
cdr-next Variable
cdr-nil Variable
cdr -sr ror Variable

The values of these four variables are the numeric values \vhich go in the cdr-code field
of a memory word. See section 5.4, page 59 for tile details of cdr-coding.

14.10 Function-CaHing Subllrimitives

These subprimitives can be used (carefully!) to call a function with the number of arguments
variable at nm time. They only work in compiled code and are not defined in the .interpreted
Lisp environment. The preferred higher-level primitive is lexpr-funcall (page 22).

%open - ca 11- block function n-adi-pairs destination
Starts a call to function. n-adi-pairs is the number of pairs of additional information.
words already %push'ed; normally this should be O. destination is where to put the
result; the USClll1 values are 0 for the value to be ignored, 1 for the value to go onto the
stack, 3 for tile value to be tile last argument to the previous open call block, and 4 for
the value to be returned from this frame.

%push value
Pushes value onto the stack. Use tilis to push tile arguments.

%activate-open-call-b1ock
Causes tile call to happen.

DSK:LMIvlAN ;FD.SU1l46 16-MAR~81

Lambda-Binding Subprimitive 168 Lisp Machine Manual

%pop
Pops the top value off of the stack and returns it as its value. Use this to recover the
result from a call made by %open-call-block with a destination of 1.

%assure-pdl-room n-words
Call this before doing a sequence of %push's or %open-call-blocks which will add n
words to the current frame. This subprimitive checks that the frame will not exceed the
maximum legal frame size. which is 255 words including all overhead. This limit is
dictated by the way stack frames are linked together. If the fj'ame is going to exceed the
legal limit, %assure-pdl-room will signal an error.

14.11 Lambda-Binding Subprimitive

bin d locative value
Binds the cell pointed to by locative to x, in the caller's en virollment. 111is function is
not defined in the interpreted Lisp environment; it only works from compiled code. Since
it turns into an instruction. the "caller's environment" really means "the binding block for
the stack frame that executed the bind instmction". The preferred higher-level primitives
which turn into this are let (page IS), let-if (page 16), and progv (page 16).
[I'his will be n:;namcd to %bind in the future.]

14.12 The Paging System

[Someday this may discuss how it works.)

si :wire'-paga address &optional (wire-pt)
If lVire-p ·is t, the page containing address is wir(!d-down; that is, it cannot be paged-out.
If wil'e-p is nil, the page ceases to be wired-down.

s1:unwire-page addre~
(si:unwire-page address) is the same as (si:wire-page address).

sys :page-in-structure object
Makes sure that the storage which represents object is in main memory. Any pages which
have been swapped out to disk are read in, using as few disk operations as possible.
Consecutive disk pages are transferred together, taking advantage of the full speed of the
disk. If object is large. this will be much faster than bringing the pages in one at a time
on demand. The storage occupied by object is defined by the %find-structure-Ieader
and %structure-total-size subprimitives.

sys:page-in-array array &optional from to
This is a version of sys:page-in-structure which can bring in a portion of an array.
from and 10 are lists of subscripts; if they are shorter than lhe dimensionality of array,
the remaining subscripts are assumed to be zero.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Lisp Machine Manual 169 The Paging System

sys : pago- in-words address II-words
Any pages in the range of address space starting at address and continuing for Ii-words
which have been swapped out to disk are read in with as few disk operations as possible.

sys:page-1n-area area-number
sys :page-in-region region-number

All swapped-out pages of the specified region or area are brought into main memory.

sys: page-out--structurl3 object
sys :pnge-out-array array &optional from to
sys: page-olit-woI'ds address Ii-lVords
sys : page -out- area area-number
sys :page-out-region region-number

These arc similar to the above, except that take pages Ollt of main memory rather than
bringing them in. Any modified pages are written to disk, using as few disk operations as
possible. The pages are then made flushable: if they are not touched again soon their
memory will be reclaimed for other pages. Use these operations when you are done with
a large object, to make the virtual memory system prefer reclaiming that object's memory
over swapping something else out.

sys : %c han go- page - s ta tu s l'irtClal-address swap-status I1ccess-status-alld-lIleta-bits
The page hasl1 table entry for the page containing I'irtual-address is found and altered as
specified. t is returned if it was found, nil if it was not (presumably the page is swapped
out.) swap-status and access-status-and-tI1cta-bils call be nil if thuse fields are not to be
changed. This doesn't make any error checks; you can really screw things up if you call
it with the wrung arguments.

sys :%compute-page-hash virtual-address
This makes the hashing function for the page hash table available to the user.

sys : %c rea te-phys i ca l-page physical-address
This is used when adjusting the size of real memory available to the machine. It adds an
entry for the page frame at physical-address to the page hash table, with virtual address
-1, swap status ftushable, and map status 120 (read only). This doesn't make error
checks; you can really screw things up if you call it with the wrong arguments.

sys : %del eto-phys 1 ca 1- page physical-address
If there is a page in the page frame at physical-address, it is swapped out and its entry is
deleted from the page hash table, making that page frame unavailable for swapping in of
pages in the future. This doesn't make error checks; you can really screw things up if
you call it with the wrong arguments;

sys :%disk-restore hig1i-16-bils low .. 16 .. bils
Loads virtual memory from the partition named by the concatenation of the two 16-bit
arguments, and starts executing it. The name a refers to the default load (the one the
machine loads when it is started up), This is the primitive used by disk-restore (see
page 373).

DSK:LMMAN;FD,SUB 46 16-MAR-S1

Closure Subprimitives 170 Lisp Machine Manual

sy s : %d 1 sk - save physica!-mem-size higli-16-bils /uw-16-bils
Copies virtual memory into the partition named by the concatenation of the two 16-bit
arguments (0 means the default), then restarts the world, as if it had just been restored.
The physicai-mem-size argument should come from %sys-com-mernory-size in system
communication-area. This is the primitive used by disk-save (see page 373).

14.13 Closure SlIhprimitives

These functions deal with things like what closures deal with: the distinction between internal
and external vallie cells and control over how they work.

sys: %b 1 nd 1ng-1 nstancos list-oJ-symbols
This is the primitive that could be used by closure. First, if any of the symbols in /ist
oJ-symbols has no external value cell, a new external value cell is created for it, with the
contents of the internal value cell. Then a list of locatives, twice as long as list-oj
symbols. is created and returned. The clements are grouped in pairs: pointers to the
internal and external value cells, respectively, of each of the symbols. closure could have
been defined by:

(defun closure (variables function)
(%mak8-pointer dtp-closure

(cons function (sys:%binding-instances variables)}}}

sy s : ~~us i n g- b 1 nd1 ng-; n s tan cas installce-list
This function is the primitive operation that invocation of closlires could use. It takes a
list sllch as sys:%binding-instances returns, and for each pair of clements in the list, it
"adds'~ a binding to the current stack frame, in the same manner that the bind function
(which should be called %bind) does. These bindings remnin in effect until the frame
returns or is unwound.

sys:%using-binding-instances checks for redundant bindings and ignores them. (A
binding is redundant if the symbol is already bound to the desired external value cell).
This check avoids excessive growth of the special pdl in some cases and is also made by
the microcode which invokes closures, entities, and instances.

sys :%i ntarnal-val ua-cell symbol
. Returns the contents of the internal value cell of symbol. dtp-one-q-forward pointers

are considered invisible, as usual; but dtp-external-value-cell-pointers are nOI; this
function can return a dtp-external-value-cell-pointer. Such pointers will be considered
invisible as soon as they leave the "inside of the machine". meaning internal registers and
the stack.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Lisp Machine Manual 171 Microcode Variables

14.14 Microcode Variables

The following variables' values actually reside in t.he scratchpad memory of the processor.
They are put there by dtp-one-q-forward invisible pointers. The values of these variables are
used by the microcode. Many of these variables are highly internal and you shouldn't expect to
understand them.

%mi eroeode-varsion-number Variable
This is the version number of the currently-loaded microcode, obtained from the version
number of the microcode source file.

sys : %number-of -mi cro- antri as Variable
Size of micro-code-entry-area and related areas.

default-eons-area is documented on page 178.

sys: number-eons-area Variable
The area number of the area where bignums and flonums are consed. Normally this
variable contains the value of sys:extra-pdl-area, which enables the "temporary storage"
feature for numbers, saving garbage collection overhead.

sys:%current-stacl~ -group
documellted on page 151.

and sys:%current-stack - group - previous-stacl~ -group are

sys :%eurrent-stack-group-state Variable
The sg-state of the currently-running stIck group.

sys: %current- stack -gl'oup-ca 11 ; ng-args-poi ntElr Variable
The argument list of the currently-running stack group.

sys: %currant-staek-group-ca 11 i ng-args-number Variable
'Dle number of arguments to the currently-running stack group.

sys :%trap-m1 ero-pc Variable
The microcode address of the most recent error trap.

sys :%1 nit i al-faf Variable
The function which is called when the machine starts up. Normally this is the definition
of si:lisp-top-Ievel.

sys: %i nit 1al-staek-group Variable
The stack group in which the machine starts up.

sys :%error-handler-stack-group Variable
The stack group which receives control when a microcode-detected error occurs. This
stack group cleans up, signals the appropriate condition, or assigns a stack group to nm
the debugger on the erring stack group.

DSK:LMMAN;FD.SUB 46 16-MAR-81

Microcode Variables 172 Lisp Machine Manual

sys :%scheduler-stack-group Variable
The stack group which receives conrroi when a sequence break occurs.

sys :%chaos-csr-address Variable
A fixnum which is the virtual address which maps to the Unibus location of the Chaosnet
interface.

%mar-low Variable
A fixnum which is the inclusive lower bound of the region of virtual memory subject to
the MAR feature (see section 26.7, page 414).

%mar-hi gh Variable
A fixnum which is the inclusive upper bound of the region of virtual memory subject to
the MAR feature (see section 26.7, page 414).

sys:%inhibit-read-only Variable
If non-nil, you can write into read-only areas. This is used by fasload.

self is documented on page 262.

inhibit-scl1eduling - flag is doclIlllented on page 379.

i nh i b it- scaven 9 i ng-f1 ag Variable
If non-nil, the scavenger is turned o IT. The scavenger is the quasi-asynchronous portion of
the garbage collector, which normally mns during cOl1sing operations.

sys : %reg i on- cons- alarm Variable
Incremented whenever a new region is allocated.

sys :%p'age-cons-al arm Variable
increments whenever a new page is allocated.

sys:%gc-flip-ready Variable
t while the scavenger is running, nil when there are no pointers to oldspace.

sys :%gc-generation-number Variable
A fixnum which is incremented whenever the garbage collector flips, converting one or
more regions from newspace to oldspace. If this number has changed, the %pointer of
an object may have changed.

sys : %di sk - run -1 i ght Variable
A fixnum which is the virtual address of the TV buffer location of the mn-Iight which
lights lip when the disk is active. This plus 2 is the address of the run-light for the
processor. This minus 2 is the address of the run-light for the garbage collector.

sys :%loaded-band Variable
A fixnum which contains the high 24 bits of the name of the disk partition from which
virtual memory was booted. Used to create the greeting message.

DSK:LMMAN;FD.SUB 46 16-MAR-81

. \

I.isp Machine Manual 173

sys :%disk-blocks-per-track Variable
sys: %d i sk-bl ocks- per- cyl inder Variable

Configuration of the disk being llsed for paging. Don't change these!

sys :%read-compare-enables Variable

Meters

A fixnum which controls extra disk error-checking. Bit 0 enables read-compare after a
read, bit 1 enables read-compare after a write. Normally this is O.

sys: current ly-prepared-sheet Variable
Used for communication between the window system and the microcoded graphics
primitives.

The next four have to do with a metering system which is not yet documented in this manual.

sys: %meter-gl oba l-enab 1 e Variable
t if the metering system· is turned on for all stack-groups.

sys :%meter-buffer-pointer Variable
A temporary buffer used by the metering system.

sys :%meter-disk-address Variable
Where the metering system writes its next block of results on the disk.

sys: %m8 ter-tli sk -count Variable
The number of disk blocks remaining for recording of metering information.

sys: a-memory-l ocat ion- namos Variable
A list of all of the above symbols (and any others added after this documentation was
written).

14.15 Meters

read-meter name
Returns the contents of the microcode meter named name, which can be a fixnum or a
bignum. name must be one the symbols listed below.

write-meter name value
Writes value, a fixnum or a bignum, into the microcode meter named name. name must
be one the symbols listed below.

The microcode meters are as follows:

sys :%count-chaos-transmit- aborts Meter
The number of times transmission on the Chaosnet was aborted, either by a collision or
because the receiver was busy .

DSK:LMMAN;FD.SUB 46 16-MAR-Sl

Meters 174 Lisp Machine Manual

sys :%count-cons-work Meter
sys :%count-scavenger-work Meter

Internal state of the garbage collection algorithm.

sys :%tv-clock-rate Meter
The number of TV frames per clock sequence break. The default value is 67 which

. causes clock sequence breaks to happen about once per second.

sys : %count-fi rst-l eve l-map- re loads Me.ler
The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

sys :%count-second-level-map-reloads Meter
The number of times the second-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

sys :%count-meta-bits-map-reloads Meter
The number of times the virtual address map was reloaded to contain only "meta bits",
not an actual physical address.

sys: %count-"pdl-buffar- raad-faul ts "teier
The number of read references to the pdl buffer which were virtual memory references
that trapped.

sys :%count-pdl-buffer-wr1te-faults Meter
The number of write references to the pdl buffer which were virtual memory references
that trapped.

sys :%count-pdl-buff'lr-mamory·-faults Meter
The number of virtual memory references which trapped in case they should have gone to
the pdl buffer, but turned out to be real memory references after all (and therefore were
needlessly slowed down,)

sys :%count-di sk-page- reads Meter
The number of pages read. from the disk.

sys :%count-dislc-page-wr1tes Meter
The number of pages written to the disk.

sys :%count-fresh-pages Meter
The number of fresh (newly-consed) pages created in core, which would have otherwise
been read from the disk.

sys :%count-d1sk-pagEl-read-oparat1ons Meter
The number of paging read operations; this can be smaller than the number of disk pages
read when more than one page at a time is read.

DSK:LMMAN;FD.SUB 46 16-MAR-Sl

Lisp Machine Manual 175 Meters

sys :%count-disk-paga-writa-operations Meter
The number of paging write operations; this can be smaller than the number of disk
pages written when more than one page at a time is written.

sys :%count-di sk -prepages-used Meter
The number of times a page was used after being read in before it was needed.

sys :%count-disk-prepages-not-usad Meter
The number of times a page was read in before it was needed, hut got evicted before it
was ever used.

sys: %count-di sk -page-write-wa its Meter
The number of times the machine waited for a page to finish being written out in order
to evict the page.

sys : %coun t- d; sk -page-wr i te- busys Meter
The number of times the machine waited for a page to finish being written out in order
to do something else with the disk.

sys :%disk-wait-time Meter
The time spent waiting for the disk, in microseconds. This can be used to distinguish
paging time from running time when measuring and optimizing the' perfonnance of
programs.

sys :%count-disk- errors Aieter
The number of recoverable disk errors.

sys :%count-disk-racal ibrates lVleter
The number of times the disk seek mechanism was recalibrated, usually as part of error
recovery.

sys :%count-disk-acc-corracted-arrors }.leter
The number of disk errors which were corrected through the error correcting code.

sys : %coun t-d i sk - read-compare- differences J'vfeter
The number of times a read compare was done, no disk error· occurred, but the data on
disk did not match the data in memory.

sys: %count-di s k -read- compare- rereads }.leter
The number of times a disk read was done over because after the read a read compare
was done and did not succeed (either it got an error or the data on disk did not match
the data in memory).

sys :%count-disk-read-compara-rowrites Meter
The number of times a disk write was done over because after the write a read compare
was done and did not succeed (either it got an error or the data on disk did not match
the data in memory).

DSK:LMMAN ;FD.SUn 46 16-MAR-81

Meters 176 Lisp Machine Manual

sys :%disk-error-log-pointer Meter
Address of the next entry to be written in the disk error log. The function si:print-disk
error-log (see page 450) prints this log.

sys: %eount-agod-pages Meter
The number of times the page ager set an age trap on a page, to determine whether it
was being referenced.

sys:%count-age-flushed-pages Ah~r
The number of times the page ager saw that a page still had an age trap and hence made
it "flushable", a candidate for eviction from main memory.

sys: %agi ng-depth Meter
A number from 0 to 3 which controls how long a page must remain unreferenced before
it becomes a candidate for eviction from main memory.

sys: %eount-fi ndeore-steps Meter
The number of pages inspected by the page replacement algorithm.

sys: %count-fi ndeore-emergenei as Meter
The l1111nber of times no eyictahle pilgc was found and extra aging had to be done.

sys : a-momory-eountar- block - names Variable
/\ list of all of the above symbols (and any others added after this documentation was
written).

DSK:LMMAN;FD.SUB 46 16-MAR-81

Lisp Machine Manual 177 Areas

15. Areas
Storage in the Lisp machine is divided into areas. Each area contains related objects, of any

type. Areas are intended to give the user control over the paging behavior of his program,
among other things. By putting related data together, locality can be greatly increased. Whenever
a new object is created the area to be lIsed can optionally be specified. For example, instead of
using cons you can lise cons-in-area (see page 50). Object-creating functions which take
keyword arguments generaHy accept a :area argument. You can also control which area is used
by binding default-colls-area (see page 178); most functions that allocate storage use the value
of this variable. by defcllllt, to specify the area to use.

There is a default Working Storage area which collects those objects which the user has not
chosen to control explicitly.

Areas also give the user a handle to control the garbage collector. Some areas can be
declared to be "static", which means that they change slowly and the garbage collector should not
attempt to reclaim any space in them. This can eliminate a lot of useless copying. A "static"
area can be explicitly garbage-collected at infrequcnt intervals when it is believed that that might
bc worthwhile.

Each area can potcntial1y have a differellt storage discipline, a different paging algorithm, and
even a different data representation. The microcode will dispatch on an attribute of the area at
the appropriate times. The structure of the machine makes the perfonnancc cost of these features
negligible; informatIOn about areas is stored iJl c:\tra bits in the memury mapping hardware where
it can be quickly dispatched on by the microcode; these dispatches lIsual1y have to be done
anyway to make the garbage collector work. and to implement. invisible pointers .. This feature is
not currently used by the system, except for the liSUSlnIcturc distinction described below.

Each area has a name and a number. The name is a symbol whose value is the number.
The number is an index into various internal tables. Normally the name is treated as a special
variable, so the number is what is given as an argument to a function that takes an area as an
argument. Thus, areas are not Lisp objects; you cannot pass an area itself as an argument to a
function; you just pass its number. There is a maximum number of areas (set at cold-load
generation time); you can only have that many areas before the various internal tables overflow.
Currently (as this manual is written) the limit is 256. areas, of which 64. already exist when you
start.

The storage of an area consists of one or more regions. Each region is a contiguous section
of address space WitlI certain homogeneous properties. The most important of these is the data
represellialion type. A given region can only store one type. The two types that exist now are list
and sln/clure. A list is anything made out of conses (a closure for instance). 1\ stmcture is
any tiling made out of a block of memory with a header at the front; symbols, strings, arrays,
instances. compiled functions, etc. Since lists and structures canllot· be stored in the same region,
they cannot be on the same page. It is necessary to know about this when using areas to increase
locality of reference.

When you create an area, one region is created initially. When you try to allocate memory to
hold an object in SOme area, the system tries to find a region that has tile right data
representation type to hold this object, and that has enough room for it to fit. If there isn't any

DSK:LMMAN;AREI\S 30 16-MAR-Sl

Area Functions and Variables 178 Lisp Machine Manual

such region, it makes a new one (or signals an error; see the :size option to make-area, below).
The size of the new region is an attribute of the area (controllable by the :region-size option to
make-area). If regions arc too large, memory may get taken up by a region and never used. If
regions arc too small, the system may run out of regions because regions, like areas, are defined
by internal tables that have a fixed size (set at cold-load generation time). Currently (as this
manual is written) the limit is 256. regions, of which about 90. already exist when you start. (If
you're wondering why the limit on regions isn't higher than the limit on areas, as it clearly ought
to be, it's just because both limits have to be multiples of 256. for internal reasons, and 256.
regions seem to be enough.)

IS.l Area Functions and Variables

defaul t-cons-area Variable
The value of this variable is the number of the area in which objects are created by
default. It is initially the number of working-storage-area. Giving nil where an area is
required uses the value of default-eons-area. Note that to put objects into an area
other than working-storage-area you can either bind this variable or use functions such
as cons-in-area (see page 50) which take the area as an explicit argument.

make-area &rest keywords
Creates a new area, whose name and attributes are specified by the keywords. You must
specify a symbol as a name; the symbol will be setq'ed to the area-number of the new
area, and that number will also be returned, so t.hat you can usc make-area as the
initialization of a defvar. The arguments are taken in pairs. t.he fiIst being a keyword and
the second a "value" for that keyword. The last three keywords documented herein are in
the nature of subprimitives; like the stuff in chapter 14, their meaning is system
dependent and is not documented here. The following keywords exist:

:name A symbol which will be the name of the area. This item is required.

:size The maximum allowed size of the area, in words. Defaults to infinite. If
the number of words allocated to the area reaches this size, attempting to
cons an object in the area will signal an en-or.

:region-size The approximate size, in words, for regions within this area. The default
is the area size if a :size argument was given, otherwise. a suitable
medium size. Note that if you specify :size and not :region-size, the
area will have exactly one region. When making an area which will be
very big, it is desirable to make the region size larger than the default
region size to avoid creating very many regions and possibly overflowing
the system's fixed-size region tables.

:representation
The type of object to be contained in tile area's initial region. The
argument to this keyword can be : list, :structure, or a numeric code.
:structure is the default. If you arc only going to cons lists in your area,
you should specify :list so you don't get a useless structure region.

:gc The type of garbage-collection to be employed .. The choices are :dynamic
(which is the defhult) and :static. :static means that the area will not be
copied by the garbage collector, and nothing in tile area or pointed to by
the area will ever be reclaimed, unless a garbage collection of this area is

DSK:LMMAN;AREAS 30 16-MAR-81

Lisp Machine Manual

:read-only

:pdl

179 Area Functions and Variables

manually requested.

With an argument of t, causes the area to be made read-only. Defaults to
nil. If an area is read-only, then any attempt to change anything in it
(altering a data object in the area, or creating a new object in the area)
will signal an error unless sys:%inhibit-read-only (see page 172) is bound
to a non-nil value.

With an argument of t, makes the area suitable for storing regular-pdls of
stack-groups. This is a special attribute due to the pdl-buffer hardware.
Defaults La nil. Areas for which this is nil may 1101 be used to store
regular-pdls. Areas for which this is t are relatively slow to access; all
references to pages in the area will take page faults to check whether the
referenced location is really in the pdl-buffer.

sys:%%region - map-bits
Lets you specify the //lap bils explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region -space-type .
Lets you specify the space Iype explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region -scavenge-enable
Lets you override the scavenge-enable bit explicitly. This is an internal
flag ('CIated to the garbage collector. Don't mess with thisl

Example:
(make-area '":name 'foo-area

describe-area area

':gc ':dynamic
':representation ':li~t)

area may be the name or the number of an area. Various attributes of the area are
printed .

. area-list Variable
The vallie of area -list is a list of the names of all existing areas. This list shares storage"
with the internal area name:: table, so you should not change it.

%area-number pointer
Returns the number of the area to which poinler points, or nil if it does not point within
any known area. The data-type of poinlel' is ignored.

%ragion-number pointer
Returns the number of the region to which pointer points, or nil if it does not point
within any known region. The data-type of poinler is ignored. (This information is
generally nut very interesting to users; it is important only inside the system.)

DSK:LMMAN;AREAS 30 16-MAR-81

Interesting Areas 180 Lisp Machine Manual

area-name number
Given an area number, retufIls the name. This "function" is actually an array.

Sec also cons-in-area (page 50), list-in-area (page 52), and room (page 448).

15.2 Interesting Areas

This section lists the names of some of the areas and tells what they are for. Only the ones
of the most interest to a user arc listed: there are many others.

work i ng-storage-area Variable
This is the normal value of default-eons-area. Most working data arc conscd in this
area.

permanent-storage-area Variable
This area is to be used for "permanent" data, which will (almost) never become garbage.
Unlike working-storage-area. the contents of this area are not continually copied by the
garbage collector; it is a static area.

sys :p-n-string Variable
Print-names of symbols arc stored in this area.

sys: nr-sym Variable
This area contains most of the symbols in the Lisp world. except t and nil, which are in
a different· place for historical reasons.

sys: pkg-area Variable
This area contains packages, principally the hash tables with which intern keeps track of
symbols.

macro-comp11 ed-program Variable
FEFs (compiled functions) are put here by the compiler and by fasload.

sys: property-11 st-area Variable
This area holds the property lists of symbols.

sys: init-l 1st-area Variable
sys :fasl-constants-area Variable

These two areas contain constants used by compiled programs.

DSK:LMMAN;AREAS 30 16-MAR-81

Lisp Machine Manual 181 The Compiler

16. The"Colupiler

16.l The Basic Operations of the Comlliler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machine's instnlction set, so that they will run more quickly and take up less storage. Compiled
functions are represented in Lisp by FEFs (Function Entry Frames). which contain machine code
as well as various mher infonnation. The printed representation of a FEF is

#<DTP-FEF-POINTER address name>

If you want to understand the output of the compiler, refer to chapter 27, page 417.

There are three ways to invoke the compiler from the Lisp Machine. First, you may have an
interpreted function in the Lisp environment which you would like to compile. The function
compile is used to do this. Second, you may have code in an editor buffer which you would
like to compile. The Zwei editor has commands to read code into Lisp and compile it. Third,
you may. have a program (a group of function definitions and other forms) written in a file on the
file system. The compiler can translate this file into a QFASL file. Loading in the QFASL file is
almost the same as reading in the source file; the difference is that the functions defined in the
file will be defined as compiled functions instead of inlerprcted functions. The qc-file fUllction is
used for translating source files into QFASL files.

16.2 How to Imoke tlte Compiler

comp 11 e junctioli-spec &optional dejinition
If definition is supplied, it should be a lambda-expression. Otherwise junction-spec (this is
usually a symbol, but see section 10.2, page 124 for details) should be defined as an
interpreted function and its definition will be used as the lambda-expression to be
compiled. The compiler converts the lambda-expression into a FEF, saves the lambda
expression as the :previous-expr-definition and :previous-definition properties of
jUllction-spec if it is a symbol, and changes jUllction-spec's definition to be the FEF. (See
fdefine, page l35). (Actually, if jimclion-spec is not defined as a lambda-expression, and
junction-spec is a symbol, compile will try to find a lambda-expression in the :previous
expr-definition property of jUllction-spec and use that instead.)

uncomp11e symbol
If symbol is not defined as an interpreted function and it has a :previous-expr-definition
property, then un compile will restore the function cell from the value" of the pi·operty.
(Otherwise. uncompile does nothing and returns "Not compiled".) This "tindoes" the
effect of compile. See also undefun, page l37.

qc -f 11 e filename &optional Olllpul-jiie load-flag in-care-flag package jilIlctiolls-defined
file-local-declarations dont-set-deJaull-p read-then-process-j!ag

This function takes a fonnidable number of arguments, but nonnally only one argument
is supplied. The file filename is given to the compiler, and the output of the compiler is
written to a file whose name is filename except with a file type of "QFASL". The input
format for files to the compiler is described on section 16.3, page 182. Macro definitions,
subst definitions, and special declarations created during the compilation are undone

DSK:LMMAN;COMPIL 53 16-MAR-81

Input to the Compiler 182 Lisp Machine Manual

when the compilation is finished.

The optional arguments allow certain modifications to the standard procedure. output:file
lets you change where the output is written. package lets you specify in what package the
source file is to be read. Normally the system knows, or asks interactively, and you need
not supply this argument. load-jlag and in-core-j/ag are incomprehensible; you don't want
to use them. jUllctiolls-defilled and file-local-declarations are for compiling multiple files as
if they were one. dOllt-set-dejault-p suppresses the changing of the default file name to
filename that normally occurs.

Nonnally, a form is read from the file and processed and then another form is read and
processed, and so on. But if read-then-process-j/ag is non-nil, the whole source file is read
before any of it is processed. This is not done by default; it has the problenl that
compile-time reader-macros defined in the file witt not work properly.

qc-file-load filename
qc-file-Ioad compiles a file and then loads in the resulting QFASL file.

See also the disassemble function (page 448), which lists the instructions of a compiled
function in symbolic form.

16.3 Input to the Compiler

The purpose of qc-file is to take a file and produce a translated version which does the same
thing as the original except that the functions arc compiled; qc-file reads through the input file,
processing the forms in it one by one. For each fornI, suitable binary output is sent to the
QF ASL file so that when the QFASL file is loaded the effect of that source form will be
reproduced. The differences between source files and QFASL files are· that QFASL files are in a
compressed binary form which reads much taster (but cannot be edited), and that function
definitions in QFASL files have been translated from Lisp forms to FEFs.

So, if the source contains a (defun ...) form at top level, then when the QF ASL file is
loaded, the function will be defined as a compiled function. If the source file contains a form
which is not of a type known specially to the compiler,then that form (encoded in QFASL
format) will be output "directly" into the QFASL file, so that when the QFASL file is loaded
that form will be evaluated. Thus, if the source file contains (setq x 3), then the compiler will
put in the QF ASL file instructions to set x to 3 at load time (that is, when the QF ASL file is
loaded into the Lisp environment). It happens that QFASL files have a specific way to setq a
symbol. For a more general form, the QF ASL file would contain instructions to recreate the list
structure of a form and then call eval on it.

Sometimes we want to put things in the file that are not merely meant to be translated into
QF ASL form. One such occasion is top level macro definitions; the macros must actually get
defined within the compiler in order for the compiler to be able to expand them at compile time.
So when a macro form is seen, it should (sometimes) be evaluated at compile time, and should
(sometimes) be put into the QFASL file.

Another thing we sometimes want to put in a file is compiler declarations. These are forms
which should be evaluated at compile time to tell the compiler something. They should not be
put into the QF ASL file, unless they are useful for working incrementally on the fimctions in the

DSK:LMMAN;COMPIL 53 16-MAR-81

J .isp Machine Manual 18J Input to the Compiler

file, compiling them one by one from the editor.

Therefore, a facility exists to allow the user to tell the compiler just what to do with a form.
One might want a form to be:

Put into the QFASL file (compiled, of course), or not.

Evaluated within the compiler, or not.

Evaluated if the file is read directly into Lisp, or not

Two forms arc recognized by the compiler to allow this. The less general, old-fashioned one
is declare; the completely general one is eval-when.

An eval-when fonn looks like
(eva l-when times-list

fonni
fonn2
...)

The times-list may contain one or more of the symbols load, compile, or eval. If load is
present, the forms are written into the QF ASL file to be evaluated when the QFASL file is
loaded (except that defun forms will put the compiled definition into thc QFASL me instead). If
compile is prescnt. the fOri/IS arc evaluated in the compiler. If eval is present, the fOl7lls are
evaluated when read into Lisp: this is because eval-when is defined as a special form in Lisp.
(The compilcr ignores eval in the times-list.) For cxamplc,

(eval-when (compile eval) (macro faa (x) (cadr x}»)
'.'!ould dctlllC faa as a macro in the compiler and when the ·file is read in interpreted, but not
when the QFASL file is fasloaded.

For the rest of this section, we will LIse lists such as are given to eval-when, e.g. (load
eval), (load compile), etc. to describe when forms arc evaluated.

A declare form looks like (declare fonni fom12 ...). declare is defined in Lisp as a special
form which does nothing; so the fOims within a declare are not evaluated at eval time. The
compiler does the following upon finding /ol7n within a declare: if form is a call to either
special or unspecial, fonn is treated as (load compile); otherwise it is treated as (compile).

If a form is not enclosed in an eval-when nor a declare, then the times at which it will be
evaluated depend on the f01m. The following table summarizes at what times evaluation will take
place for any given form seen at top level by the compiler.

(eval-when times-list/onnI ...)
times-list

(declare (special ...)) or (declare (unspecial ... »
(load compile)

(declare anything-else)
(compile)

(special ...) or (unspecial ...)
(load compile eval)

(macro ...) or (defmacro ...) or (defsubst ...)
(load compile eval)

DSK:LMMAN;COMPIL 53 16-MAR-81

Compiler Declarations

(comment ",) fgnored at all times.

(compiler-let «vat val) , ..) body ...)

184 Lisp Machine Manual

Processes the budy in its nonnal fashion, but at (compile eva!) time, the
indicated variable bindings are in effect. These variables will typically affect the
operation of the compiler or of macros.

(local-declare (£led dec! ...) body ...)
Processcs the body in its nonnal fashion, with the indicated declarations added to
the front of the list which is the value of local-declarations.

(defflavor .. ,) or (defstruct ...)
(load compile eval)

(defun ...) or (defmethod ...) or (defselect ...)
(!oad eval), but at load time what is processed is not this form itself, but the
result of compiling it.

anything-else (load eval)

Sometimes a macro wants to return more than one form for the compiler top level to see
(and to be evaluated). The following facility is providcd for such macros. If a form

(pragn (quote campi le) for1111 fonn2 ...)
is SCCII at the compiler top level, all of the forll/s are processed as if they had been at compiler
top level. (Of course, in the interpreter they will all be evaluated, aad the (quote compile) will
harmlessly evaluate to the symbol compile anti be ignored.)

Elva l-when Special Form
An eval-when form looks like

(eva l-when till1es-list form! for1112 ...)
1 f one of the clements of times-list is the symbol eval, thei1 the fonns are evaluated;
otherwise eval-when cloes nothing.

But when seen by the compiler, this special form does the special things described above.

decl are Special FOl1n
declare does nothing, and returns the symbol declare.

l3ut when seen by the compiler, this special form does the special things described above.

16.4 ComI}iIcr Declarations

This section dl:scribes functions meant to be called during compilation, and variables meant to
be set or bound during compilation, by using declare or local-declare.

local-declare Special Form
A local-declare fonn looks like

(local-declare (decl! £lecl2 ...)
form!
fonn2
...)

Each decl is consed onto the list local-declarations while the fonns are being evaluated
(in the interpreter) or compiled (in the compiler). There arc two uses for this. First, it

DSK:LMMAN;COMPIL 53 16-MAR-Sl

j'

I

Lisp Machine Manual 185 Compiler Declarations

can be IIsed to pass information from outer macros to inner macros. Secondly, the
compiler will specially interpret certain decls as local declarations. which only apply to the
compilations of the jomls. It understands the following forms:

(special var! var2 ...)
The variables vad, var2, etc. will be treated as special variables during
the compilation of the forms.

(unspecial var! var2 ...)
The variables var!, l'ar] , etc. will be treated as local variables during the
compilation of the fonns.

(arglist . arglist) .
Putting this local declaration around a defun saves arglist as the argument
list of the function, to be used instead of its lambda-list if anyone asks
what it'i arguments are. This is purely documentation.

(return ,..list . values)
Putting this local declaration around a defun saves values as the return
values list of the function, to be used if anyone asks what values it
returns. This is purely documentation.

(def name . definition)

special Special Fonn

name will be dclined for the compiler during the compilation of the
forms. The compiler uses this to keep track of macros and opcn-codable
functions (defsubsts) defined in the file being compiled. Note that the
cddr of this item is a function.

(special vad var2 ...) causcs the variables to be declared to be "special" for the compiler.

unspec1al Special Forni
(unspecial var! var2 ...) removes any "special" declarations of the variables for the
compiler.

The next three declarations are primarily for Maclisp compatibility.

*expr Special Fonn
(*expr sym! sym2 ...) declares sym!, sym2, etc. to be names of functions. In addition it
prevents these functions from appearing in the list of functions referenced but not defined
printed at the end of the compilation.

*lexpr Special Fonn
(*Iexpr syml sym2 ...) declares syml, sym2, etc. to be names of functions. In addition
it prevents these functions from appearing in the list of functions referenced but not
defined printed at the end of the compilation.

*fexpr Special Fonn
(*fexpr sym! sym2 ...) declares syml, sym2, etc. to be names of special fOlms. In
addition it prevents these names from appearing in the list of functions referenced but not
defined printed at the end of the compilation.

DSK:LMMAN;COMPIL 53 16-MAR-Sl

Compiler Declarations 186 Lisp Machine Manual

There are some advertised variables whose compile-time. valucs affect the operation of the
compiler. 'Ille lIser may set these variables by including in his file forms such as

(declare (setq open-code-map-switch t»

run-in-macl isp-switch Variable
If this variable is non-nil, the compiler will try to warn the user about any constructs
which will not work in Maclisp. By no means will all Lisp machine system fUllctions not
huilt in to Maclisp be cause for warnings; oIlly those which could not be written by the
lIser in Maciisp (for eX~lmple, make-array, value-cell-location, etc.). Also, lambda-list
keywords such as &optional and initialized prog variables will be mentioned. This switch
also inhibits the warnings for obsolete MaC\isp fimctions. The default value of this
variable is nil.

obso 1 ata-funct ion-warn; ng- swi tch Variable
If this variable is non-nil, the compiler will try to warn the user whenever an "obsolete"
Maclisp-compatibility function such as maknam or samepnamep is used. The default
value is t.

a 11 ow-var 1 ab 1 es- i n-funct i on-pos 1 t 1on-swi tch Variable
If this variable is non-nil, the compiler allows the use of the name of a variable in
function position to mean that the variable's value should be funcall'd. This is for
compatibility with old Maclisp programs. The default value of this variable is nil.

open -coda-map·-switch Variable
If this \'ariablc is non-nil, the compiler will attempt to produce inlinc cude for the
tnapping functions (mape. mapcar, etc., but 11m mapatoms) if the function being
mapped is an anonymous lambda-expression. This allows that function to reference the
local variables of the enclosing funcrion without the need for special declarations. The
generated code is aiso more efficient. The default value is t. .

an -speci al-sw1 tch Variable
If this variable is non-nil, the compiler regards all variables as special, regardless of how
they were declared. This provides full compatibility with the interpreter at the cost of
efficiency. The default is nil.

1 nh i b i t-style-warn 1 ngs-swi tch Variable
If this variable is non-nil, all compiler style-checking is turned off. Style checking is used
to issue obsolete function warnings and won't-run-in-Maclisp warnings, and other sorts of
warnings. The default value is nil. See also the inhibit-style-warnings macro, which
acts on one level only of an expression.

compiler-let Macro
(compiler-let (variable value) ...) body ... }, syntactically identical to let, allows compiler
switches to be bound locally at compile time, during the processing of the body forms.
Example:

(compiler-let ((open-code-map-switch nil)
(map (function (lambda (x) ...) faa)

will prevent the compiler from open-coding the map. When interpreted, compiler-let is
equivalent to let. This is so that global switches which atfect the behavior of macro
expanders can be bound locally.

DSK:LMMAN;COMPIL 53 16-MAR-81

Lisp Machine Manual 187 Compiler Source-Level Optimizers

inhibit-style-warnings Macro
(inhibit-style-warnings jonll) prevents the compiler from perfonning style-checking on
the top level of form. Style-chccking will still be done on the arguments of jom1. Both
obsolete function warnings and won't-nm-in-Mac1isp warnings are done by means of the
style-checking mechanism, so, for example,

(setq bar (inhibit-style-warnings (value-cell-location fool)}
will not warn that value-cell-location will not work in Maclisp, but

(inhibit-style-warnings (setq bar (value-cell-location fool»~
will warn, since inhibit-style-warnings applies only to the top level of the form inside it
(in this case, to the setq).

16.5 Compiler Source-Level O)ltimizers

The compiler stores optimizers for source code on property lists so as to make it easy for the
user to add them. An optimizer can be used to transform code into an equivalent but more
efficient form (for example, (eq obj nil) is transfonned into (null vbj) , which can be compiled
better). An optimizer can also be used to tell the compiler how to compile a special form. For
example, in the interpreter do is a special form, implemented by a function which takes quoted
arguments and calts eval. In the compiler, do is expanded in a macro-like way by an optimizer,
into equivalent Lisp code using prog, cond, and go, which the compiler understands.

The compiler finds the optimizers to apply to a form by looking for the compiler:optimizers
property of the symbol which is the car of the form. The value of this property should be a list
of optimiLcrs, cadi of which mllst be a fUJIl:tiol1 of olle argument. The compiler tries each
optimizer in turn, passing the form to be optimized as the argument. An optimizer which returns
the original (imn unchanged (eq to the argument) has "done n()thing", and the next optimizer is
tried. If the optimizer returns anything else, it has "done something", and the whole process
starts over again. This is somewhat like a Markov algorithm. Only after all the optimizers have
been tried and have done nothing is an ordinary macro definition processed. This is so that the
rnal:l'O definitions, which will be seen by the interpreter, can be overridden for the compiler by
optimizers.

Optimizers should not be used to define new language features, because they only take effect
in the compiler; the interpreter (that is, the evaluator) doesn't know about optimizers. So an
optimizer should not change the effect of a form; it should produce another form that does the
same thing, possibly faster or with less memory or something. That is why they are called
optimizers. If you want to actually change the form to do something else, you should be using
macros.

compi 1 er: add-opt 1mi zer optimizer junction
Puts optimizer on junction's optimizers list if it isn't there already. optimizer is the name
of an optimization function, and function is the name of the function calls to which are to
be processed.

DSK:LMMAN;COMPIL 53 16~MAR-81

Files that Maclisp Must Compile 188 Lisp Machine Manual

16.6 Files th~t Maclisp Must Compile

Certain programs are intended to be run both in Maclisp and in Lisp Machine Lisp. Their
source files need some special conventions. For example, such Lisp Machine constructs as &aux
and &optional must not be used. All special declarations must be enclosed in declares, so that
the Maclisp compiler will see them. It is suggested that you turn on run-in-maclisp-switch in
sllch files, which will warn you about a lot of bugs.

The macro-character combination "# Q" causes the object that follows' it to be visible only
when compiling for the Lisp Machine. The combination "# M" causes the following object to be
visible only when compiling for Maclisp. These work only on subexpressions of the objects in the
file, however. To conditionaJize top-level objects, put the macros if-for-lispm and if-for-maclisp
arollnd them. (You can only put these around a single object.) The if-for-Iispm macro turns off
run-in-maclisp-switch within its object, preventing spurious warnings from the compiler. The
Q macro-character does not do this, since it can be used to conditionalize any S-expression, not
just a top-level form.

To allow a file to detect what environment it is being compiled in, the following macros are
provided:

if-for-11spm Macro
If (if-for-lispm fonll) is seen at the top level of the compiler. f0I111 is passed to the
compiler top level if the output of the compiler is a QFASL file intended for the Lisp
Machine. If the Lisp Machine interpreter sees this it will evaluate form (the macro
expands into jorm).

if-for-mac11sp lIlacro
If (if-for-maclisp form) is seen at the top level of the compiler, f01711 is passed to the
compiler top level if the output of the compiler is a FASL file intended for Maclisp (e.g.
if the compiler is COMPLR). If the Lisp Machine interpreter sees this it will ignore it
(the macro expands into nil).

1f-for-mac11 sp-el se-l1 spm Macro
If (if-for-maclisp-else-Iispm forml form2) is seen at the top level of the compiler,
fonnl is passed to the compiler top level if the output of the compiler is a FASL file
intended for Maclisp; otherwise fonn2 is passed to the compiler top level.

1f-in-11spm Macro
On the Lisp Machine, (if-in-lispm form) causes foml to be evaluated; in Maclisp, form
is Ignored.

if-1n-maclisp Macro
In Mac1isp, (if-in-maclisp fonn) causes fonll to be evaluated; on the Lisp Machine, form
is ignored.

When you have two definitions of one function, one conditionalized for one machine and one
for the other, put them next to each other in the source file with the second "(defun" indented
by one space, and the editor will put both function definitions on the screen when you ask to
edit that function.

DSK:LMMAN;COMPIL 53 16-MAR-81

Lisp Machine ~-1anual 189 Putting Data in QF ASL Files

fn order to make sure t.l-tat those macros and macro-characters are defined when reading the
file into the Maclisp compiler, you must make the file start with a prelude, which will have no
effect when you compile on the real machine. The prelude can be found in "AI: LMDOC;
.COMPL PRELUD"; this will also define most of the standard Lisp Machine macros and reader
macros in Maclisp, including defmacro and the backquote facility.

Another useful facility is the form (status feature lispm), which evaluates to t when
evaluated on the Lisp machine and to nil when evaluated in Maclisp.

16.7 Putting Data in QFASL Files

It is possible to make a QF ASL file containing data, rather than a compiled program. This
can be useful to speed lip loading of a data structure into the machine, as compared with reading
in printed representations. Also, certain data structures sLlch as arrays do not have a convenient
printed representation as text, but can be saved in QFASL files. For example, the system stores
fonts this way. Each font is in a QFASL file (on the LMFONT directory) which contains the
data structures for that font. When the file is loaded, the symbol which is the name of the font
gets set to the array which represents the font. Putting data into a QFASL file is often referred
to as "fasdwl1ping rhe data".

In compiled programs, the constants are saved in the QFASL file in this way. The compiler
optimizes by making constants which are equal become eq when the file is loaded. This does not
happen when you make a data file yourself; identity of objects is prc:served. Note that when a
QFASL file is loaded, objects that lNere eq when the file was writtcn alC still eq; lhis does nut
normally happen with text files.

The following types of objects can be represented in QFASL files: Symbols (but uninterned
symbols will be interned when the file is loaded), numbers of all kinds, lists, strings, arrays of all
kinds, instances, and FEFs.

When an instance is fasdumped (put into a QFASLfile), it is sent a :fasd -form message,
which must return a Lisp form which, when evaluated, will recreate the equivalent of that
instance. This is because instances are often part of a large data structure, and simply fasdumping
all of the instance variables and making a new instance with those same values is unlikely to
work. [nstances remain eq; the :fasd -form message is only sent the first time a particular
instance is encountered during writing of a QFASL file. If the instance does not accept the
:fasd-form message, it cannot be fasdumped.

campi 1 er: fasd-symbol-val ue filename symbol
Writes a QFASL file named filename which contains the value of symbol. When the file
is loaded, symbol will be setq'ed to the same value. filename is parsed with the same
defaults that load and qc -file usc. The file type defaults to "qfasl". .

compiler:fasd-font /lame
Writes the font named name into a QFASL file with the appropriate name (on the
LMFONT directory).

DSK:LMMAN;COMPIL 53 16-MAR-81

Putting Data in QF ASL Files 190 Lisp Machine Manual

comp i 1 er: fas d-fi 1 e- symbo 1 s- prope rt i as filename symbols properties dump-vaiues-p
dump-jullcliollS-P new-sYlllbol-julIction

This is a way to dump a complex data stmcture into a QF ASL file. The values, the
function definitions, and some of the properties of certain symbols are put into the
QFASL file in such a way that when the file is loaded the symbols will be setqed.
fdefined, and putproped appropriately. The user can control what happens to symbols
discovered in the data structures being fasdumped.

filename is the name of the file to be written. It is parsed with the same defaults that
load and qc-file use. The file type defaults to "qfasl".

symbols is a list of symbols to be processed. properties is a list of properties which are to
be fasdumped if they are found on the symbols. dump-vailies-p and dump-jullclions-p
control whether the values and function definitions arc also dumped.

new-s)'mbol-junction is called whenever a new symbol is found in the structure being
dumped. It can do nothing, or it can add the symbol to the list to be processed by
calling compiler:fasd-symbol-push. The value returned by new-symbol-jullction is
ignored.

DSK:LMMAN;COMPIL 53 16-MAR-81

Lisp Machine Manual 191 Macros

17. l\1acros

17.1 Introduction to Macros

If eva I is handed a list whose car is a symbol, then eval inspects the definition of the symbol
to find out what to do. If the definition is a cons, and the car of the cons is the symbol macro,
then the definition (Le. that cons) is c'aIled a macro. The cdr of the cons should be a function of
one argument. eval applies the function to the form it was originally given, takes whatever is
returned, and evaluates that in lieu of the original form.

Here is a simple example. Suppose the definition of the symbol first is
(macro lambda (x) _

(list 'car (cadr x»)
This thing is a macro: it is a cons whose car is the symbol macro. What happens if we try to
evaluate a t(mn {first '(a b c»? We11, eval sees thal it has a list whose car is a symbol (namely,
first), so it looks at the definition of the symbol and sees that it is a cons whose car is macro;
the definition is a macro.

eval takes the cdr of the cons, which is supposed ti) be the macro's expander jillletion, and
calls it providing as an argument the original form that eval was handed. So it calls (lambda (x)
{list 'car (cadr x))) with argument (first '(a be». Whatever this returns is the expansion of the
macro call. It will be evaluated in place of the original form.

[n this case, x is bound to (first '(a be)), (cadr x) evaluates to '(a b c), and (list 'car
(cadr x)) evaluates to (car '(a be)), which is the expansion. eval now evaluates the expansion.
(car '(a b c» returns a, and so the result is that (first '(a b c» returns a.

What have we done? We have defined a macro caned first. What the macro does is to
translate the form to some other fOim. OUf translation is very simple-it just translates forms that
louk like (first x) into (car x), for any form x. We can do much more interesting things with
macros, but first we will show how to define a macro.

l11e primitive special form for defining macros is macro. A macro definition looks like this:
(macro lIame (arg)

body)

To define our first macro, we would say
(macro first (x)

{list 'car (cadr x»)

Here arc some more simple examples of macros. Suppose we want any foml that looks like
(add one x) to be translated into (plus 1 x). To define a macro to do this we would say

(macro addone (x)
{list 'plus '1 (cadr x}»

Now say we wanted a macro which would translate (increment x) into (setq x (1 + x). This
would be:

DSK:LMMAN;MACROS 56 16-MAR-81

Aids for Defining Macros 192 Lisp Machine Manual

(macro increment (x)
(list 'setq (cadr x) (list '1+ (cadr x»»

Of course, this macro is of limited usc ftil ness. The reason is that the form in the cadrof the
increment fonn had better be a symbol. If you tried (increment (car x)), it would be translated
into {setq (car x) {1 + (car x))), and setq would complain. (If you're interested in how to fix
this problem, see setf (page 201); but this is irrelevant to how macros work.)

You can see from this discussion that macros are very different from functions. A function .
would not be able to tell what kind of subfonns are around in a catt to itself; they get evaluated
before the function ever sees them. However, a macro gets to look at the whole tonn and see
just what is going on there. Macros arc not functions; if first is defined as a macro, it is not
meaningful to apply first to arguments. A macro docs not take arguments at all; its expander
function takes a Usp form and turns it into another Lisp form.

The purpose of ftmctions is to compute; the purpose of macros is to trans/ate. Macros are
used tor a variety of purposes, the most common being extensions to the Lisp language. For
example,] jsp is powerful enough to express many different control structures, but it docs not
provide every control structure anyone might ever possibly want. Instead, if a user wants some
kind of control structure with a syntax that is not provided, he can translate it into some fonn
that Lisp does know about.

For example, someone might want a limited iteration construct which increments a variable by
one until it exceeds a limit (like the FOR statement of the BASIC language). He might want it
til look like

(f 0,' all 0 0 (p "i n t a) (p" i n t (:I< a a»)
To get this, he could write a macro to translate it into

(do a 1 (1+ a) (> a 100) (print a) (print (* a a»)
A macro to do this could be defined with

(macr'o for (x)
{cons 'do

(cons (cad" x)
(cons (caddr x)

(cons (list '1+ (cadr x»
(cons (list '> (cadr x) (cadddr x»

(cddddr x}»»»
Now he has defined his own new control structure primitive, and it will act just as if it were a
special form provided by Lisp itself.

17.2 Aids for Defining Macros

The main problem with the definition for the for macro is that it is verbose and clumsy. If it
is that hard to write a macro to do a simple specialized iteration construct, one would wonder
how anyone could write macros of any real sophistication.

There are two things that make the definition so inelegant. One is that lhe programmer must
write things like "(cadr x)" and "(cddddr x)" to refer to the parts of the form he wante; to do
things with. The other problem is that the long chains of calls to the list and cons functions are
very hard to read.

DSK:LMMAN;MACROS 56 16-MAR-Sl

Lisp Machine Manual 193 Aids for Defining Macros

Two featmes nre provided to solve these two problems. The defmacro rriacro solves the
fonner, and the "backquote" (•) reader macro solves the latter.

17.2.1 Defmacro

Instead of referring to the parts of our form by "(cadr x)" and such, we would like to give
names to the various pieces of the form, and somehow have the (cadr x) automatically generated.
This is done by a macro called defmacro. It is easiest to explain what defmacro does by
showing an example. Here is how you would write the for macro using defmacro:

(defmacro for (var lower upper. body)
(cons 'do

(cons var
(cons lower

(cons (list '1+ var)
(cons (list '> var upper)

body))))))

The (var lower upper. body) is a pattern to match against the body of the macro (to be .
more precise, to match against the cdr of the argument to the macro). If defmacro tries to
match the two lists

(\far lower upper. body)
and
(a 1 100 (print a) (print (* a a)))

val' will get bound to the symlll)l a. lower tu the I1xnulll 1, upper Lo the ftXI1UIll 100, and body
to the list ((print a) (print (* a a))). Then inside the body of the defmacro, var, lower, upper,
and body are variables, bound to the matching part., of the macro fonn.

defmacro Macro
defmacro is a general purpose macro-defining macro. A defmacro form looks like

(defmacro name pattern . body)
The pal/ern may be anything made up out of symbols and conses. It is matched against
the body of the macro form; hath pattern and the form are car'ed and cdr'ed identically,
and whenever a non-nil symbol is hit in pattern, the symbol is bound to the
corresponding part of the form. All of the symbols in pattern can be used as variables
within body. name is the name of the macro to be defined. body is evaluated with these
bindings in effect, and its result is returned to the evaluator as the expansion of the
macro.

Note that the pattern need not be a list the way a lambda-list must. In the above example,
the pattern was a "dotted list", since the symbol body was supposed to match the cddddr of the
macro form. If we wanted a new iteration form, like for except that our example would look like

(for a (1 100) (print a) (print (* a a)))
Gust because we thought that was a nicer syntax), then we could do it merely by modifying the
pattern of the defmacro above; the new pattern would be (var (lower upper). body).

Here is how we would write our other examples using defmacro:

DSK:LMMAN;MACROS 56 16-MAR-Sl

Aids for Defining Macros

(defmacro first (the-list)
(list 'car the-list)}

(defmacro addone (form)
(list 'plus '1 form})

(defmacro increment (symbol)

194

(list 'setq symbol (list '1+ symbol}»

Lisp Machine Manual

All of these were very simple macros and have very simple patterns, but these examples show
that we can replace the (cadr x) with a readable mnemonic name slIch as the-list or symbol,
which makes the program clearer. and enables documentation facilities such as the arglist function
to describe the syntax of the special form defined by the macro.

There is another version of defmacro which defines displacing macros (see section 17.5, page
198).defmacro has other, more complex features; sec section 17.6, page 199.

17.2.2 Backquote

Now we deal with the other problem: the long stl'ings of calls to. cons and list. This
problem is relieved by introducing some new characters that are special to the Lisp reader. Just
as the single-quote character makes it easier to type things of the form (quote x), so will some
more new special characters make it easier to type forms that create new list structure. 111e
functiomllity provided by these characters is calted the backquote tacility.

The backquote fhcility is used by giving a backquote character (•), followed by a form. If
the form docs not ('ontain any use of the comma character. the backquote acts just like a single
quote: it creates a fonn which, when evaluated, produces the form toHowing the backquote. For
example,

'(a b c) => (a b c)
'(a b c) => (a b c) ~

So in the simple cases, backquote is just like the regular single-quote macro. The way to get it to
do interesting things is to include a comma somewhere inside of the form following the
backquote. The comma is followed by a form, and that form gets evaluated even though it is
inside the backquote. For example,

(setq b 1)
'(a b c) => (a b c)
'(a ,b c) => (a 1 c)
, (abc ,(+ b 4) ,(- b 1) (def ,b)} => (abc 5 0 (def 1)}

In other words, backquote quotes everything except things preceeded by a comma; those things
get evaluated.

A list following a backquote can be thought of as a template for some new list sU·ucture. The
part,;; of the list that are preceeded by commas arc fonns that fill in slots in the template;
everything else is just constant structure that will appear in the result. This is usually what you
want in the body of a macro; some of the form gerierated by the macro is constant, the same
thing on every invocation of the macro. Other parts arc different every time the macro is called,
often being functions of the form that the macro appeared in (the "arguments" of the macro).
The latter parts are the ones for which you would use the comma. Several examples of this sort
of use follow.

DSK:LMMAN;MACROS 56 16-MAR-81

Lisp Machine Manual 195 Aids for Defining Macros

When the reader sees the '(a ,b c) it is actually generating a form such as (list 'a b 'c).
The actual fDlm generatod may usc list, cons. append. or whatever might be a good idea; you
should never have to concern YOlirself with what it actually turns into. All you need to care
about is what it evaluates to. Actually, it doesn't use the regular functions cons, list, and so
forth, but uses special ones instead so that the grinder can recognize a form which was created
with thebackquote syntax, and print it using backquote so that it looks like what you typed in.

This is generally found to be pretty confusing by most people; the best way to explain
further seems to be with examples. Here is how we would write our three simple macros using
both the defmacro and backquote facilities.

(defmacro first (the-list)
'(car ,the-list»

(defmacro addone (form)
'(plus 1 ,form»

(defmacro increment (symbol)
'(setq ,symbol (1+ ,symbol»)

To finally demonstrate how easy it is to define macros with these two facilities, here is the final
form of the for macro.

(defmacro for (var lower upper. body)
'(do ,var ,lower (1+ ,var) (> ,var ,upper) . ,body»

Look a[how much simpler that is than [he original definition. Also, look how closely it
resemble~ the code it is vrothicing. The fUl1l.:tionalily of lhe for really stands right out when
written this way.

If a comma inside a backquote fonn is followed by an "atsign" character (@), it has a special
meaning. The ",@" should be followed by a furm whose value is a list; then each of the
elements of .the list is put into the list being created by the backquote. In other words, instead of
generating a call to the cons function, backquote generates a call to append. For example, if a
is bound· to (x y z), then '(1 ,a 2) would evaluate to (1 (x y z) 2), but '(1 ,@a 2) would
evaluate to (1 x y Z 2).

Here is an example of a macro definition that uses the ",@" constmction. Suppose you
wanted to extend Lisp by adding a kind of special form called repeat-forever, which evaluates
all of its subforms repeatedly. One way to implement this would be to expand

(repeat-forever fonni fonn2 fonn3)
into

(prog ()
a formi

fonn2
fonn3
(go a»

You could define the macro by
(defmacro repeat-forever body

• (p rag ()
a ,@body

(go a»)

DSK:LMMAN;MACROS 56 16-MAR-Sl

Aids for Defining Macros 196 Lisp Machine Manual

Advanced macro writers sometimes write "macro-defining macros": fonTIs which expand into
forms which, when evaluated, define macros. In such macros it is often useful to usc nested
backquote constructs. The following example illustrates the usc of nested backquotes in the
writing of macro-defining macros.

This example is a very simple version of defstruct (see page 228). You should first
understand the basic description of defstruct before proceeding with this example. The defstruct
below docs not accept any options, and only allows the simplest kind of items; that is, it only
allows forms like

(de f s t r u c t ("ame)
item I
item2
item3
item4
...)

We would like this fonn to expand into
(progn 'compile

(defmacro iteml (x)
, (aref ,x 0»

(defmacro item2 (x)
'(aref ,x 1»

(defmacro item3 (x)
'Carer ,x 2)}

(defmacl'o item4 (x)
'(aref ,x 3»

...)
Here is the macro to perform the expansion:

(defmacro defstruct ({name) . items}
(do «item-list items (cdr item-list})

(ans nil)
(i 0 (1+ i»)

«null item-list)
, {progn 'compil e . , (nreverse ans»)

(setq ans
(cons '{defmacro ,(car item-list) (x)

'(aref ,x ,',i»
ans»»

The interesting part of this definition is the body of tlle (inner) defmacro fonn: ' (aref . ,x
,',i). Instead of using this b,lckquote construction, we could have written {list 'aref x ,i}: that is,
the ",'," acts like a comma which matches the outer backquote, while the "," preceeding the "x"
matches with the inner backquote. Thus, the symbol i is evaluated when the defstruct fonn is
expanded, whereas tlle symbol x is evaluated whcn the accessor macros are expanded.

Backquotc can be useful in situations other than the writing of macros. Whenever there is a
piece of list stnlcture to be consed up, most of which is constant, the use of backquote can make
the program considerably clearer.

DSK:LMMAN;MACROS 56 16-MAR-81

Lisp Machine Manual 197 Substitutable Functions

17.3 Substitutable Functions

A substitutable function is a function which is open coded by the compiler. It is 'like any
other function when applied, but it can be expanded instead, and in that regard resembles a
macro.

defsubst Special Form
defsubst is used for defining substitutable functions. It is used just like defun.,

(de f sub s t Ilame lambda-list . body)
and does almost the same thing. It defines a function which executes identically to the
one which a similar call to defun would define. The difference comes when a function
which calls this one is compiled. Then, the call will be open-coded by substituting the
substitutable function's definition into the code being compiled. The function itself looks
like (subst lambda-list. body). Such a function is called a subst. For example. if we
define

(defsubst square (x) (* x x»

(defun foo (a b) (square (+ a b»)
then if faa is used interpreted. square will work just as if it had been defined by defun.
If Foo is compiled, however, the squaring will be substituted into it and it will compile
just like

(defun foo (a b) (* (+ a b) (+ a b»)
square's defillition would be

(subst (x) (* x x»

A similar square could be defined as a macro, with
(defmacro square (x) '(* IX ,x»

In general, anything that is implemented as a subst can be re-implemented as a macro,
just by changing the defsubst to a defmacro and putting in the appropriate backquote
and commas. The disadvantage of macros is that they are not functions, and so cannot
be applied to arguments. Their advantage is that they can do much more' powerful things
than substs can.

You will notice that the substitution perfOlmed is very simple and takes no care about the
possibility of computing an argument twice when it really ought to be computed once.
For instance, in the current implementation, the functions

(defsubst reverse-cons (x y) (cons y x»
(defsubst in-order (a b c) (and « a b) « be»)

would present problems. When compiled, because of the substitution a call to reverse
cons would evaluate its arguments in the wrong order, and a call to in-order could
evaluate its second argument twice. This will be fixed at some point in the future. but
for now lhe writer of defsubst's must be cautious. Also all occurrences of the argument
names in the body are replaced with the argument forms. wherever they appear. Thus an
argument name should not be used in the body for anything else. such as a function
name or a symbol in a constant.

DSK:LMMAN;MACROS 56 16-MAR-81

Aids for Debugging Macros 198 Lisp Machine Manual

17.4 Aids for Dehugging Macros

mexp
mexp goes into a loop in which it reads forms and sequentially expands them, printing
out the result of each expansion (using the grinder (see page 318) to improve readability).
It telminates when it reads an atom (anything that is not a cons). If you type in a form
which is not a macro form, there will be no expansions and so it will not type anything
out, but just prompt you for another form. This allows you to see what your macros are
expanding into, without actually evaluating the result of the expansion.

17.5 Disl)lacing Macros

Every time the the evaluator sees a macro form, it must call the macro to expand the fonn.
If this expansion always happens the same way, then it is wasteful to expand the whole fOlm
every time it is reached; why not just expand it once? A macro is passed the macro form itself,
and so it can change the car and cdr of the form to something else by using rplaca and rplacd!
This way the first time the macro is expanded, the expansion will be put where the macro form
lIsed to be, and the next time that form is seen, it will already be expanded. A macro that does
this is called a displacing macro, since it displaces the macro fonn with its expansion.

The major problem with this is that the Lisp form gets changed by its evaluation. If you
were to write a program which used such a macro, call grindef to look at it, then run the
program and call grindef again, you would sec the expanded macro the second time. Presumably
[he reason the macro is there at all is that it ll1akes the program look nicer; we would like to
prevent the unnecessary expansions, but still let grindef display the program in its more attractive
f0l111. This is done with the function displace.

Anothing thing to worry about with displacing macros is that if you change the definition of a
displacing macro, then your new definition will not take effect in any form that has already been
displaced. If you redefine a displacing macro, an existing form using the macro will use the new
definition only if the form has never been evaluated. .

d1 spl ace fonn expansion
fonn must be a list. displace replaces the car and cdr of fonn so that it looks like:

(s i : dis P 1 ace d original-fonn expansion)
origil/al-jonn is equal to fonn but has a different top-level cons so that the replacing
mentioned above doesn't affect it. si:displaced is a macro, which returns the caddr of its
own macro form. So when the si:displaced form is given to the evaluator, it "expands"
to expansion. displace returns expansion.

The grinder knows specially about si:displaced forms, and will grind sllch a form as if it had
seen the original-form instead of the si:displaced form.

So if we wanted to rewrite our addone macro as a displacing macro, instead of writing
(macro addone (x)

(list 'plUS '1 (cadr x»)
we would write

(macro addone (x)
(displace x (list 'plus '1 (cadr x»»

DSK:LMMAN;MACROS 56 16-MAR-81

Lisp Machine Manual 199 Advanced Features of Defmacro

Of course, we r<~al1y want to use defmacro to define most macros. Since there is no way to
gel at the original macro form itself from inside the body of a defmacro, another version of it is
provided:

defmacro-di spl ace Alaero
defmacro-displace is just like defmacro except that it defines a displacing macro, using
the displace function.

Nuw we can write the dispbcing version of addone as
(defmacro-displace addone (val)

(list 'plus '1 val»
All we have changed in this example is the defmacro into defmacro-displace. addone is now
a displacing macro.

17.6 Advanced Features or Dermacro

The pattern in a defmacro is more like the lambda-list of a normal function than revealed
above. It is allowed to contain certain &-keywords ..

,1optional is followed by I'L7riablc, (variable), (variable default), or (variable defiwlt present-p),
exactly the same as in a function. Nme that defilUll is still a fllrm to be evaluated, eyen though
variable i'i not being bOllnd to the value of a form. l'aria/J/e docs llot have to be a symbol; it can
be a p,lttcrn. In this case the first form is disallowed because it is syntactically ambigous. The
piittcrn must be enclosed in J singleton list. If I'miable is d pattern, Jejauli can be evaluated
more than once.

Using &rest is the same as using a dotted list as the pattern, except that it may be easier to
read and leaves a place to put &aux.

&aux is the same in a macro as in a function, and has nothing to do with pattern matching.

defmacro has a couple of additional keywords not allowed in functions.

&body is identical to &rest except that it informs the editor and the grinder that the
remaining subforrns constitute a "body" rather than "arguments" and should be indented
acco rdingly .

&list-of pattern requires the corresponding position of the form being translated to contain a
list (or nil). It matches paltern against each clement of that list. Each variable in pattern is
bound to a list of the corresponding values in each element of the list matched by the &list-of.
This may be clarified by an example. Suppose we want to be able Lo say things like

(send-commands (aref turtle-table i)
(forward 100)
(beep)
('left 90)
(pen 'down 'rerl)
(forward 50)
(pen 'up»

We could define a send-commands macro as follows:

DSK:LMMAN;MACROS 56 16-MAR-Sl

Functions to Expand Macros 200

(defmacro send-commands (object
&body &list-of (command. arguments»

'(let «0 ,object»

Lisp Machine tvlanual

. ,(mapcar #'(lambda (com args) '(send a ',com .• args»
command arguments»)

Note that this example uses &body together with &list-of, so you don't see the list itself; the list
is just the rest of the macro-fomI.

You can combine &optional and &Iist-of. Consider the following example:
(defmacro print-let (x &optional &list-of «vars vals)

'«base 10.)
(*nopoint t»»

'«lambda (,@vars) (print ,x»
,@vals»

(print-let fool ==>
«lambda (base *nopoint)

(print foo»
12
t)

(print-let foo «bar 3»} ==>
«lambda (bar)

(pl'int fool)
3)

In this example we aren't using &body or anything like it, so you do see the list itself; that is
why you see parentheses around the (bar 3).

17.7 Functions to Expand Macros

The following two n.mctions are provided to allow the user to control expansion of macros;
they are often useful for the writer of advanced macro ~ystems, and in tools that want to examine
and understand code which may contain macros.

macroexpand-l jbnn
If fonn is a macro fonn, this expands it (once) and returns the expanded fOmI.
Otherwise it just returns fonn. macroexpand -1 expands defsubst function fOmIS as well
as macro forms.

macroexpand fonn
If form is a macro form, this expands it repeatedly until it is not a macro fonn, and
returns the final expansion. Otherwise, it just returns jiJml. macroexpand expands
defsubst function forms as well as macro forms.

DSK:LMMAN;MACROS 56 16-MAR-81

Lisp Machine Manual 201 Generalized Variables

17.8 Generalized Variables

In Lisp, a variable is something that can remember one piece of data. The main operations
on a variable are to recover that piece of data, and to change it. These might be called access
and update. The concept of variables named by symbols, explained in section 3.1, page 13, can
be generalized to any storage location that can remember one piece of data, no matter how that
location is named.

For each kind of generalized variable, there arc typically two functions which implement the
conceptual access and update operations. For example, symeval accesses a symbol's value cell,
and set updates it. array-leader accesses the contents of an array leader clement, and store
array--Ieader updates it. car accesses the car of a cons, and rplaca updates it.

Rather than thinking of this as two functions, which operate on a storage location somehow
deduced from their arguments, we can shift our point of view and think of the access funcrion as
a name for the storage location. Thus (symeval 'fool is a name· for the valLIe of faa, alld (aref a
105) is a name for the 105th clement of the array a. Rather than having to remember the
update function associated with each access function, we adopt a uniform way of updating storage
locations named in this way, using the setf special form. This is analogous to the way we use
the setq special form to convert the name of a variable (which is also a fonn which accesses it)
into a form which updatcs it.

setf is particularly useful in combination with structure-accessing macros, such as those created
with defstruct, because the knowledge of the representation of the structure is embedded inside
the macro, and the progrilillmcr shouldn't have to know what it is in or<ler lo alter all element of
the structure.

setf is actually a macro which expands into the appropriate update function. It has a
database, explained below, which associates from access ftmctions to update functions.

sotf Macro
setf takes a form which accesses something, and "inverts" it to produce a corresponding
fonn to update the thing. The form for setf is

(set f access-foml value)
It expands into an update form, which stores the result of evaluating the form value into
the place referenced by the access-form.
Examples:

(setf (array-leader foo 3) 'bar)
==> (store-array-leader 'bar foo 3)

(setf a 3) ==> (setq a 3)
(setf (plist 'a) '(foo bar)) ==> (setplist '<1 '(foo bar})
(setf (aref q 2) 56) ==> (aset 56 q 2)
(setf (cadr w) x) ==> (rplaca (cdr w) x)

If access-form invokes a macro or a substitutable I1Hlction, then setf expands the access
form and starts over again. This lets you use setf together with deFstruct accessor macros.

For the sake of efficiency, the code produced by setf docs not preserve order of
evaluation of the argument fonns. This is only a problem if the argument forms have
interacting sidc-effects. For example, if you evaluate

DSK:UvlMAN;MACROS 56 16-MAR-81

Generalized Variables 202 Lisp Machine Manual

(setq x 3)
(setf (aref a x) (setq x 4»

then the form might set clement 3 or element 4 of the array. We do not guarantee
which one it will do; don't just try it and see and then depend on it, because it is
subject to change without notice .

. Furthermore, the value produced by setf depends on the structure type and is not
guaranteed; setf should be used for side effect only.

Besides the access and update conceptual operations on variables, there is a third basic
operation. which we might call locale. Given the name of a storage cell, dle locate operation will
return the address of that cell as a locative pointer (see chapter 13, page 156). This locative
pointer is a kind. of name for dle variable which is a first-class Lisp data object. It can be passed
as an argument to a function which operates on any kind of variable, regardless of how it is
named. It can be used to bind dle variable, using the bind subprimitive (sec page 168).

Of cOllrse this can only work on variables whose implementation is really to store dleir value
in a memory cell. A variable with an update operation dlat encrypts dIe value and an access
operation dlat decrypts it could not have dIe locale operation, since the value per se is not
actually stored anywhere.

locf Macro
locf takes a form which accesses some cell, and produces a corresponding fOim to create
a locative pointer to that cell. The form for loct is

(.1 a c f access-farm)
Examples:

(locf (array-leader faa 3» ==> (ap-leader faa 3)
(locf a) ==> (value-cell-location 'a)
(locf (plist 'a» ==> (property-cell-location 'a)
(locf (aref q 2» ==> (aloe q 2)

If access-form invokes a macro or a substitutable function, then locf expands the access
form and starts over again. This lets you use lad together with defstruct accessor macros.

Both setf and lad work by means .of property lists. When the form (setf (aref q 2) 56) is
expanded, self looks for the self property of the symbol aref. The value of dIe setf property of
a symbol should be a cons whose car is a pattern to be matched with the access-fonn, and whose
cdr is the corresponding update-fonn, with the symbol si:val in place of the value to be stored.
The setf property of aref is a cons whose car is (aref array. subscripts) and whose cdr is
(aset si:val array. subscripts). If the transfonnation which setf is to do cannot be expressed as
a simple pattern, an arbitrary function may be used: When the form (setf (faa bar) baz) is
being expanded, if the setf property of faa is a symbol, the function definition of dlat symbol
will be applied to two arguments, (faa bar) and baz, and the result wm be taken to be the
expansion of the setf.

Similarly, the lad function uscs the locf property. whose value is analogous. For example,
the lad property of aref is a COilS whose car is (aref array. subscripts) and whose cdr is (aloc
array. subscripts). There is no si:val in the case of locI.

DSK:LMMAN;MACROS 56 16-MAR-81

Lisp Machine Manual 203 Generalized Variables

incf Alacro
Increments the ·value of a generalized variable. (incf ref) increments the value of ref by 1.
(incf ref amount) adds amount to ref and stores the sum back into ref

incf expands into a setf fonn, so ref can be anything that setf understands as its access
foml. This also means that you should not depend on the returned value. of an incf
fonn.

You must take great care with incf because it may evaluate parts of ref more than once.
For example,

(incf (car (mumble») ==>
(setf (car (mumble» (1+ (car (mumble»» ==>
(rplaca (mumble) (1+ (car (mumble»»

The mumble function is called more than once, which may be significantly inefficient if
mumble is expensive, and which may be downright wrong if mumble has side-effects.
The same problem can come up with the decf, push, and pop macros (see below).

decf Macro
Decrements the value of a generalized variable. (decf ref) decrements the value of ref by
1. (decf ref amoullt) subtracts amount from ref and stores the difference back into ref

decf expands into a setf fonn, so ref can be anything that setf understands :.1S its access
furm. This also means that you should not depend on the returned value of a decf form.

push Macro
Adds an item to the front of a list which is stored in a generalized variable. (push item
ref) creates a new cons whose car is the result of evaluating item and whose cdr is the
contents of ref, and stores the new cons into ref

The form
(push (hairy-function x y z) variable}

replaces the commonly-used construct
(setq variable (cons (hairy-function x y z) variable)}

and is intended to be more explicit and esthetic.

All the caveats that apply to incf apply to push as well: forms within ref may be
evaluated more than once. The returned value of push is not defined.

pop Macro
Removes an element from the front of a list which is stored in a generalized variable.
(pop ref) finds the cons in ref, stores the cdr of the cons back into ref, and returns the
car of the cons.
Example:

(setq x '(a be»
(pop x) => a
x => (b c)

All the caveats that apply to incf apply to pop as well: forms 'within' ref may be
evaluated more than once.

DSK:LMMAN;MACROS 56 16-MAR-Sl

The LOOP Iteration Macro 204 Lisp Machine Manual

18. The LOOP Iteration Macro

lS.1 Introduction

loop is a Lisp macro which provides a programmable iteration facility. The same loop
module operates compatibly in Lisp Machine Lisp, Maclisp (PDP-lO and Multics), and NIL, and
a moderately compatible package is under development for the MOL programming environment.
loop was inspired by the "FOR" facility of CLISP in InterLisp; however; it is not compatible
and differs in several details.

TIle general approach is that a form introduced by the word loop generates a single program
loop, into which a large variety of features can be incorporated. The loop consists of some
initialization (prologue) code, a body which may be executed several times, and some exit
(epilogue) code. Variables may be declared local to the loop. The features are concerned with
loop variables, deciding when to end the iteration, putting user-written code into the loop,
returning a value from the construct, and iterating a variable through various real or virtual sets
of values.

The loop form consists of a series of clauses, each introduced by a kcyword symbol. Forms
appearing in or implied by the clauses of a loop i-onn arc classed as those to be executed as
iilitinlization. code, body code, and/or exit code; within each part of the template that loop fills
in, they are executed strictly in the order implied by the original composition. 111 us, just as in
ordinary Lisp code, side-effects may be used, and one piece of code may depend on following
another for its proper operation. This is the principal philosophy differcnce flOm [llterLisp's
"FOR" facility.

Note that loop forms are intended to look like stylized English rather than Lisp code. There
is a notably low density of parentheses, and many of the keywords are accepted in several
synonymous forms to allow writing of more euphonious and grammatical English. Some find this
notation verbose and distasteful, while others find it flexible and convenient. The fonner are
invited to stick to do.

Here are some examples to illustrate the use of loop.

(defun print-elements-of-list (list-of-elements)
(loop for element in list-of-elements

do (print element»)

The above function prints each element in its argument, which should be a list It returns
nil.

(de fun gat he" - ali s t - e n t r i e s (1 i s t - of - p air s)
(loop for pair in list-of-pairs

collect (car pair»)

gather-alist-entries takes an association list and returns a list of the "keys"; that is,
(gather-alist-entries '«faa 1 2) (bar 259) (baz))) returns (foo bar baz).

DSK:LMMAN;LOOPTM 300 16-MAR-81

I jsp Machine Manual 205

(defun extract-interesting-numbers (start-value end-value)
(loop for number from start-value to end-value

when (interesting-p number) collect number}}

Clauses

The above function takes two arguments, which should be fixnums, and returns a list of all
the numbers in that range (inclusive) which satisfy the predicate interesting-po

(defun find-maximum-element (an-array)
(loop for i from 0 below (cadr (arraydims an-array»

maximize (funcall an-array ill)

find-maximum-element returns the maximum of the elements of its argument, a one
dimensional array.

(defun my-remove (object list)
(loop for element in list

unless (equal object element) collect element)}

my-remove is like the Lisp function delete, except that it copies the list rather than
destructively splicing out elements. This is similar, although not identical, to the Lisp Machine
function remove.

(defun find-frob (list)
(loop for element in list

when (frobp element) return element
finally (error 'IFrob not found in listl list)})

This returns the first clement of its list argument which satisfies the predicate frobp. if none
is found, an error is generated.

18.2 Clauses

Internally, loop constructs a prog which includes variable binoings, pre-iteration (initialization)
code, post-iteration (exit) code, the body of the iteration, and stepping of variables of iteration to
their next values (which happens on every iteration after executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords which it deals
with. For example,

(loop for x inl do (print x}).
contains two clauses, "for x in 1" and "do (print x)". Certain of the parts of the clause
will be described as being expressions, e.g. (print x) in the above. An expression can be a single
Lisp form, or a series of forms implicitly collected with progn. An expression is terminated by
the next following atom, which is taken to be a keyword. This syntax allows only the first form
in an expression to be atomic, but makes misspelled keywords more easily detectable.

loop uses print-name equality to compare keywords so that loop forms may be written
without package prefixes; in Lisp implementations that do not have packages, eq is used for
comparison.

DSK:LMMAN;LOOPTM 300 16-MAR-81

Clauses 206 Lisp Machine Manual

Bindings and iteration variable steppings may be performed either sequenLially or in parallel,
which affects how the stepping of one iteration variable may depend on the value of another.
The syntax for distinguishing the two will be described with the corresponding clauses. When a
set of things is "in parallel", all of the bindings produced will be performed in parallel by a
single lambda binding. Subsequent bindings will be performed inside of that binding
environment.

18.2.1 Iteration-Driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop and takes
on a new value on each successive iteration. Note that if more than one iteration-driving clause is
used in the same loop, several variables are created which all step together through their values;
when any of the iterations terminates, the entire loop terminates. Nested iterations are not
generated; for those, you need a second loop form in the body of the loop. In order to not
produce strange interactions. iteration driving clauses are required to precede any clauses which
produce "body" code: that is, all except those which produce prologue or epilogue code (initially
and finally), bindings (with). the named clause, and the iteration termination clauses (while and
until).

Clauses which drive the iteration may be arranged to perfOim their testing and stepping either
in series or in parallel. They are by default grouped in series, which allows the stepping
computation of one clause to use the just-computed values of the iteration variables of previous
clauses. They may be made to step "in parallel", as is the case with the do special form, by
"joining" the iteration clauses with the keyword and. The furm Ulis typically takes is ~orncthing
like

(loop ... for x = (f) and for y = ~U then (g x) ... }
which set.s x to (f) on every iteration, and binds y to the value of iniL for the first iteration, and
on every iteration thereafter sets it to (9 x), where x still has the value from the previous
iteration. Thus, if the calls to f and 9 are not order-dependent, this would be best written as

(loop ... for y = ~U then (g x) for x = (f) ...)
because, as a general rule, parallel stepping has more overhead than sequential stepping.
Similarly, the example

(loop for sublist on some~list

and for previous = 'undefined then sublist
...)

which is equivalent to the do construct
(do ((sublist some-list (cdr sublist})

(previous 'undefined sublist»
((null sublist) ...)

...)
in terms of stepping, would be better written as

(loop for previous = 'undefined then sublist
for sublist on some-list
...)

When iteration driving clauses are joined with and, if the token following the and is not a
keyword which introduces an iteration driving clause, it is assumed to be the same as the keyword
which introduced the most recent clause; thus, the above example showing parallel stepping could
have been written as

DSK:LMMAN;LOOPTM 300 16-MAR-Sl

Lisp Machine Manual 207 Clauses

(loop for sublist on some-list
and previous 'undefined then sublist
...)

The order of evaluation in iteration-driving clauses is that those expressions which are only
evaluated once are evaluated in order at the beginning of the form. during the variable-binding
phase, while those expressions which are evaluated each time around the loop are evaluated in
order in the body.

One common and simple iteration driving clause is repeat:

repeat expression
'nlis evaluates expression (during the variable binding phase), and causes the loop to
iterate that many times. expression is expected to evaluate to a fixnum. If expression
evaluates to a zero or negative result, the body code will not be executed,

All remaining iteration driving clauses are subdispatches of the keyword for, which is
synonomous with as. In all of them a variable of iteration is specified. Note that, in general, if
an iteration driving clause implicitly supplies an endtest, the value of this iteration variable as the
loop is exited (Le., w.hen the epilogue code is nl11) is undefined. (This is discussed in more detail
in section 18.6.)

Here are all of the varieties of for clauses. Optional parts are enclosed in curly brackets. The
data-types as used here are discussed fully in section 18.4.

for val' {data-type} in exprl {by expr2}
This iterates over each of the elements in the list exprl. If the by subclause is
present, expr2 is evaluated once on entry to the loop to supply the function to be
used to fetch sllccessive sublists, instead of cdr ..

for var {data-type} on exprl {by expr2}
This is like the previous for format, except that val' is set to successive sub lists of the
list instead of successive elements. Note that since var will always be a list, it' is not
meaningful to specify a data-type unless var is a destructuring pattern, as described in
the section on destructuring, page 216. Note also that loop uses a null rather than an
atom test to implement both this. and the preceding clause.

for var {data-type} = expr
On each iteration, expr is evaluated and var is set to the result

for var{data-type} = exprl then expr2
var is bound to exprl when the loop is entered, and set to expr2 at all but the first
iteration. Since exprl is evaluated during the binding phase, it cannot reference other
iteration variables set before it; for that, use the following:

for l'ar {data-type} first exprl then expr2
This sets var to exprl on the first iteration. and to expr2 (re-evaluated) on each
sllcceeding iteration. The evaluation of both expressions is performed inside of the
loop binding environment, before the loop body. This allows the first value of var to
come from the first value of some other iteration variable, allowing such constmcts as

(loop for term in poly
for ans first (car term) then (gcd ans (car term»
finally (return ans»

DSK:LMMAN;LOOPTM 300 16-MAR-81

Clauses 208 Lisp Machine Manual

for var {data-type} from exprl {to expr2} {by expr3}
This pcrfOlms numeric iteration. var is initialized to exprJ, and on each succeeding
iteration is incremented by expr3 (default 1). If the to phrase is given, the iteration
telminates when var becomes greater than expr2. Each of the expressions is evaluated
only once, and the to and by phrases may be written in either order. downto may
be used instead of to, in which case var is decremented by the step value, and the
endtest is adjusted accordingly. If below is used instead of to, or above instead of
downto, the iteration will be tenninated before expr2 is reached, rather than after.
Note that the to variant appropriate for the direction of stepping must be used for the
endtest to be formed correctly; Le. the code will not work if expr3 is negative or
zero. If no limit-specifying clause is given, then the direction of the stepping may be
specified as being decreasing by using down from instead of from. upfrom may also
be used instead of from; it forces the stepping direction to be increasing. The data
type defaults to fixnum.

for l'ar{data-type} being expr and its path '"
for var{data-tJ'pe} being {eachlthe} path ...

This provides a user-definable iteration facility. path names the manner in which the
iteration is to be performed. The ellipsis indicates where various path dependent
preposition/expression pairs may appear. See the section on Iteration Paths (page 218)
for complete documentation.

18.2.2 Bindings

The with keyword may be used to esulhlish initial bindings, that is, variables which are local
to the loop but are only set once, rather than on each iteration. The with clause looks like:

with varl {data-type} {= exprl}
{and var2 {dala-type} {= expr2}} ...

If no expr is given, the variable is initialized to the appropriate value for its data type, usually
nil.

with bindings linked by and are performed in parallel; those not linked are performed
sequentially. That is,

(loop with a = (faa) and b = (bar) and c
...)

binds the variables like

whereas

«lambda (a b c) •.• }
(faa) (bar) nil)

(loop with a = (faa) with b = (bar a) with e ...)
binds the variables like

((1 amb d a (a)
« 1 ambda (b)

«lambda (e) ...)
nil »

(bar a»)
(faa»

All expr's in with clauses are evaluated in the order they are written, in lambda expressions
surrounding the generated prog. The loop expression

DSK:LMMAN;LOOPTM 300 16-MAR-81

Lisp Machine Manual 209 Clauses

(loop with a = xa and b = xb
with c = xc
for d = xd the n (f d)

and e = xe then (g e d)
for pin xp
with q = xq
...)

produces the following binding contour, where t1 is a loop-generated temporary:
(lambda (a b)

((lambda (c)

xc»
xa xb)

((lambda (d e)
((1 amb d a (p t1)

«(lambda (q) ...)
xq»

nil xp»
xd xe)}

Because all expressions in with clauses are evaluated during the variable binding phase, they are
best placed ncar the front of the loop form for stylistic reasons.

For binding more than one variable with no particular initialization, one may use the
construct

',\lith variable-list {data-t),pe-list} {and ... }
as in

with (i j k tl t2) (fixnum fixnum fixnum) ...
A slightly shorter way of writing this is

with (i j k) fixnum and (tl t2) ...
These are cases of deslructuring which loop handles specially; destIucturing and data type
keywords are discussed in sections IS.5 and IS.4.

Occasionally there are various implementational reasons for a variable not to be given a local
type declaration. If this is necessary, the nodeclare clause may be used:

nodeclare variable-list
The variables in variable-list are noted by loop as not requiring local type declarations.
Consider the following:

(declare (special k) (fixnum k»
(defun foo (1)

(loop for x in 1 as k fixnum = (f x) ... })
If k did not have the fixnum data-type keyword given for it, then loop would bind it
to nil, and some compilers would complain. On the other hand, the fixnum keyword
also produces a local fixnum declaration for k; since k is special, some compilers will
complain (or error out). The solution is to do:

(dafun foo (l)
(loop nodeclare (k)

for x in 1 as k fixnum = (f x) ., .})
which tells loop not to make that local declaration. The nodeclare clause must come
before any reference to the variables so noted. Positioning it incorrectly will cause this
clause to not take effect, and may not be diagnosed.

DSK:LMMAN;LOOPTM 300 16-MAR-Sl

Clauses 210 Lisp Machine Manual

18.2.3 Entrance and Exit

initially expression
This puts expression into the prologue of the iteration. It will be evaluated before any
other initialization code other than the initial bindings. For the sake of good style,
the initially clause should therefore be placed after any with clauses but before the
main body of the loop.

finally expression
This puts expression into the epilogue of the loop, which is evaluated wIlen the
iteration terminates (other than by an explicit return). For stylistic reasons, then, this
clause should appear last in the loop body. Note that certain clauses may generate
code which terminates the iteration without running the epilogue code; this behavior
is noted with those clauses. Most notable of these are those described in the section
18.2.7. Aggregated Boolean Tests. This clause may be used to cause the loop to
return values in a non-standard way:

(loop for n in 1
sum n into the-sum
count t into the-count
finally (return (quotient the-sum the-count»)

(S.2.4 Side Effects

do expression
doing expression

expression is evaluated each time through the loop, as shown in the print'-elements
of-list example on page 204.

18.2.5 Values

The following clauses accumulate a return value for the iteration in some manner. The
general form is

type-ofcollection expr{data-type} {into var}
where type-ofcollection is a loop keyword, and expr is the thing being "accumulated" somehow.
If no into is specified, then the accumulation will be returned when the loop terminates. If there
is an into, then when the epilogue of the loop is reached, var (a variable automatically bound
locally in the loop) will have been set to the accumulated result and may be used by the epilogue
code. In this way, a user may accumulate and somehow pass back mUltiple values from a single
loop, or use them during the loop. It is safe to reference these variables during the loop, but
they should not be modified until the epilogue code of the loop is reached. For example,

(loop for x in list
collect (faa x) into faa-list
collect (bar x) into bar-list
collect (baz x) into baz-list

finally (return (list faa-list bar-list baz-list»)
has the same effect as

DSK:LMMAN; LOOPTM 300 16-MAR-81

Lisp Machine Manu&l 211

(do ((g0001 list (cdr g0001»
(x) (faa-list) (bar-list) (baz-list»

((null g0001)
(list (nreverse faa-list)

(nreverse bar-list)
(nreverse baz-list»)

(setq x (car g0001»
(setq faa-list (cons (faa x) faa-list»
(setq bar-list (COBS (bar x) bar-list»
(setq baz-list (cons (baz x) baz-list»)

Clauses

except that loop arranges to t(mn the lists in the correct order, obvialing the nreverses at the
end, and allowing the lists to be examined during the computation.

collect expr {into var}
collecting ...

This causes the values of expr on each iteration to be collected into a list

nconc expr {into var}
nconcing ...
append ...
appending ...

These are like collect, but the results are nconced or appended together as
appropriate.

(loop for i from 1 to 3
nconc (list i (* i i»}

=> (.l 1 2 4 3 9)

count expr{into vat} {data-type}
counting ...

If expr evaluates non-nil, a counter is incremented. The data-type defaults to fixnum.

sum expr {dala-type} {into var}
summing .. ,

Evaluates expr on each iteration, and accumulates the sum of all the values. data-type
defaults to number, which for all practical purposes is notype. Note that specifying
data-type implies that both the sum and the number being summed (the value of
expr) will be of that type.

maximize expr{data-type} {into var}
minimize .;.

Computes the maximum (or minimum) of expr over all iterations. data-type defaults
to number. Note that if the loop iterates zero times, or if conditionalization prevents
the code of this clause from being executed, the result will be meaningless. If loop
can determine that the arithmetic being performed is not contagious (by virtue of
data-type being fixnum, flonum. or small-flonum). then it may choose to code this
by doing an arithmetic comparison rather than calling either max or min. As with the
sum clause, specifying data-type implies that both the result of the max or min
operation and the value being maximized or minimized will be of that type.

Not only may there be multiple accumulations in a loop, but a single accumulation may come
from multiple places with ill the same loop fonn. Obviollsly, the types of the collection must be
compatible. collect, ncone. and append may all be mixed, as may sum and count. and
maximize and minimize. For example,

DS K: LMMAN;LOOPTM" 300 16-MAR-81

Clauses 212 Lisp Machine Manual

(loop for x in '(a b c) for y in '«1 2) (3 4) (5 6»
collect x
append y)

=> (a 1 2 b 3 4 c 5 6)
The following computes the average of the entries in the list list-offrobs:

(loop for x in list-of-frobs
count t into count-var
sum x into sum-var

finally (return (quotient sum-var count-var»)

18.2.6 Endtests

111C following clauses may be used to provide additional control over when the iteration gets
terminated, possibly causing exit code (due to finally) to be perfonned and possibly returning a
value (e.g., from collect).

whileexpr
If expr evaluates to nil, the loop is exited, performing exit code (if any), and
returning any accumulated value. The test is placed in the body of the loop where it
is writtcn. It may appear between sequential for clauses. .

until expr
Identical to while (not expr).

This may be needed, for example, to step through a strange data sU'udure, as in
(loop until (top-of-concept-tree? concept)

for concept = expr then (superior-concept concept)
...)

Note that the placement of the while clause before the for clause is valid in this case because of
the definition of this particular variant of for, which binds concept to its first value rather than
setting it from inside the loop.

The following may also be of use in terminating the iteration:

loop-finish Macro
(loop-finish) causes the iteration to terminate "normally", the same as implicit temiination
by an iteration driving clause, or by the use of while or until-the epilogue code (if any)
will be run, and any implicitly collected result will be returned as the value of the loop.
For example,

(loop for x in '(1 2 3 4 5 6)
collect x
do (cond «= x 4) (loop-finish»»

=> (1 2 3 4)
This particular example would be better written as until (= x 4) in place ·of the do
clause.

DSK:LMMAN;LOOPTM 300 16-MAR-81

Lisp Machine ivlanual 213 Clauses

18.2.7 Aggregated Doolean Tests

All of these clauses perform some test, and may immediately terminate the iteration
depending on the result of that test.

always expr
Causes the loop to return t if expr always evaluates non-null. If expr evaluates to nil,
the loop immediately returns nil, without running the epilogue code (if any, as
specified with the finally clause); otherwise, t will be returned when the loop finishes,
after the epilogue code has been run.

never expr
Causes the loop to return t if expr never evaluates non-null. This is equivalent to
always (not expr).

thereis expr
If expr evaluates non-nil, then the iteration is tenninated and that value is returned,
without running the epilogue code.

18.2.8 Conditionalization

These clauses may be used to "conditionalize" the following clause. They may precede any of
the side-effecting or value-producing clauses, such as do, collect, always, or return.

when expr
if expr

If expr evaluates to nil, the following clause will be skipped, otherwise not.

unless expr
This is equivalent to when (not expr)).

Multiple conditionalization clauses may appear in sequence. If one test fails, then any
following tests in the immediate sequence, and the clause being conditionalized, are skipped.

Multiple clauses may be conditionalized under the same test by joining them '!\'ith and, as in
(loop for i from a to b .

when (zerop (remainder i 3»
collect i and do (print i»

which returns a list of all multiples of 3 from a to b (inclusive) and prints them as they are
being collected.

Conditionals may be nested. For example,
(loop for i from a to b

when (zerop (remainder i 3»
do (print i)
and when (zerop (remainder i 2»

collect i)
returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from a to b.

Useful with the conditionalization clauses is the return clause, which causes an explicit return
of its "argument" as the value of the iteration, bypassing any cpiloguccode. That is,

when exprl return expr2
is equivalent to

DSK:LMMAN;LOOPTM 300 16-MAR-81

Clauses 214 Lisp Machine Manual

when exprl do (return expr2)

Conditionalization of one of the "aggregated boolean value" clauses simply causes the test
which would cause the iteration to terminate early not to be performed unless the condition
succeeds. For example,

(loop for x in 1
when (significant-p x)

do (print x) (prine "is significant.")
and thereis (extra-special-significant-p x»

does not make the extra-special-significant-pcheck unless the significant-p check succeeds.

The format of a conditionalized clause is typically something like
when exprl keyword expr2

If expr2 is the h~yword it. then a variable is generated to hold the value of exprl, and that
variable gets substituted forexpr2. Thus, the composition

when expr return it
is equivalent to the clause

thereis expr
and one may collect all non-null values in an iteration by saying

when expression collect it
If multiple clauses are joined with and. the it keyword may only be used in the first. jf muitipie
whens, unlesses, and/or ifs occur in sequence, the value substituted for it will be that of the last
test performed.

18.2.9 Miscellaneous Other Clauses

named name
This gives the prog which loop generates a name of name, so that one may use the
return-from form to return explicitly out of that particular loop:

(loop named sue

do (loop ... do (return-from sue value) ...)
...)

The return-from form shown causes value to be'" immediately returned as the value of
the outer loop. Only one name may be given to any particular loop constmct. This
teature does not exist in the Mac1isp version of loop, since Mac1isp does not support
"named progs".

return expression
Immediately returns the value of expression as the . value of the loop, without running
the epilogue code. This is most useful with some sort of conditionalization, as
discussed in the previous section. Unlike most of the other clauses, return is not
considered to "generate body code", so it is allowed to occur between iteration
clauses, as in

(loop for entry in list
when (not (humberp entry»

return (error ...)
as frob = (times entry 2)
...)

If one instead desires the loop to have some return value when it finishes normally,

DSK:Uv1MAN;LOOPTM 300 16-MAR-Sl

Lisp Machine Manual 215 Loop Synonyms

one may place a call to the return function in the epilogue (with the finally clause,
page· 210).

18.3 Loop Synonyms

define-loop-macro Macro
(define-loop-macro keyword) may be used to make keyword, a loop keyword (such as
for), into a Lisp macro which may introduce a loop form. For example, after evaluating

(define-loop-macro for),
one may now write an iteration as

(for i from 1 below n do ...)

This facility exists primarily for diehard users of a predecessor of loop. Its unconstrained use
is not recommended, as it. tends to decrease the transportability of the code and needlessly uses
up a function name.

18.4 Data Types

In many of the clause descriptions. an optional data-type is shown. A data-type in this sense
is an atomic symbol, and is recognizable as such by loop. These are used for declaration and
initialization purposes; for example, in

(loop for x in 1 .
maximize x flcnum into the-max.
sum x flonum into the-sum
...)

the flonum data-type keyword for the maximize clause says that the result of the max operation,
and its "argument" (x), will both be Honums; hence loop may choose to code this operation
specially since it knows there can be no contagious arithmetic. The flonum data-type keyword for
the sum clause behaves similarly, and in addition causes the-sum to be correctly initialized to
0.0 rather than O. The flonum keywords will also cause the variables the-max and the-sum to
be declared to be flonum, in implementations where such a declaration exists. In general, a
numeric data-type more specific than number, whether explicitly specified or defaulted, is
considered by loop to be license to generate code using type-specific arithmetic functions where
reasonable. The following data-type keywords. are recognized by loop (others may be defined; for
that, consult the source code):

fixnum An implementation-dependent limited range integer.

f10num An implementation-dependent limited precision floating point number.

small-f1onum
This is recognized in th~ Lisp Machine implementation only, where its only
significance is for initiali~ation purposes, since no sllch declaration exists.

integer Any integer (no range restriction).

number Any number.

notype Unspecified type (Le., anything else).

DSK:LMMAN;LOOPTM 300 16-MAR-81

Destructuring 216 Lisp Machine Manual

Note that explicit specification of a non-numeric type for an operation which is numeric (such
as the summing clause) may cause a variable to be initialized to nil when it should be O.

If local data-type declarations must be inhibited, one can usc the nodeclare clause, which is
described on page 209.

18.5 Destructuring

Des/melt/ring provides one with the ability to "simultaneously" assign or bind mUltiple
variables to components of some data structure. Typically this is used with list structure. For
example,

{loop with (fda. bar) = '(a b c) ...)
has the effect of binding foo to a and bar to (b c).

loop's destructuring support is intended to parallel if not augment that provided by the host
Lisp implementation, with a goal of minimally providing destl1lcturing over list strllctllre patterns.
Thus. in Lisp implementations with no system ocstructuring support at all, one may still use Iist
structure patterns as loop iteration variables, and in with bindings. [n NIL, loop also supports
destructuring over vectors.

One may specify the data types of the components of a pattern by using a corresponding
paltern uf the data type keywords in place of a single data type keyword. This syntax remains
unambigllolls because wherever a data type keyword is possible, a loop keyword is the only other
possibility. Thus, if one wants to do

(loop for x in 1
as i fixilum = (car x)
and j fixnum (cadr x)
and k fixnum = (cddr x)
...)

and no reference to x is needed, one may instead write
{loop for (i j . k) (fi xnum fi xnum . fi xnum) in 1 ...)

To allow some abbreviation of the data type pattern, an atomic component of the data type
pattern is considered to state that all components of the corresponding part of the variable pattern
are of thae type. That is, the previous form could be written as

{loop for (i j . k) fixnum in 1 ...)
This generality allows binding of multiple typed variables in a reasonably concise manner, as in

(loop with (a b c) and (i j k) fixnum ...)
which binds a, b, and c to nil and i, j, and k to 0 for use as temporaries during the iteration,
and declares i, j, and k to be fixnums for the benefit of the compiler.

(defun map-aver-properties (fn symbol)
(loop for (propname propval) on' (plist symbol) by 'cddr

do (funcall fn symbol propname propval»))
maps fll over the properties on symbol, giving it arguments of the symbol, the property name,
and the value of that property.

[n Lisp implementations where loop perfonns its own dcstructLlfing, notably Multics MacJisp
and Lisp Machine Lisp, one can cause loop to use already provided destructLlfing support instead:

DSK:LMMAN;LOOPTM 300 16-MAR-S1

Lisp Machine Manual 217 The Iteration Framework

s i : 1 oop-usa- system-destructuri ng1 Variable
This variable Dilly exists in loop implementations in Lisps which· do not provide
destnIcturing support in the default environment. It is by default nil. If changed, then
loop will behave as it does in Lisps which do provide destructuring support: destructuring
binding will be performed using let, and destnIcturing assignment will be performed using
desetq. Presumably if one's personalized environment supplies these macros, then one
should set this variable to t; there i~, however, little (if any) efficiency loss if this is not
done.

18.6 The Iteration Framework

This section describes the way loop constmcts iterations. It is necessary if you will be writing
your own iteration paths, and may be useful in clarifying what loop does with its input.

loop considers the act of stepping to have four possible part'). Each iteration-driving clause
has some or all of these four parts, which are executed in this order:

pre-slep-endlest
This is an endtest which determines if it is safe to step to the next value of the
iteration variable.

steps Variables which get "stepped". This is internally manipulated as a list of the form (vari
vall var2 val2 ...); all of those variables are stepped in parallel, meaning that all of the
!'a/s arc evaluated before any of !he vars are set.

post-slep-elldtest
Sometimes you can't see if you are done until you step (0 the next value; that is, the
endtest is a function of the stepped-to value.

pseudo-steps ~
Other things which need to be stepped. This is typically used for internal variables
which arc more conveniently stepped here, or to set up iteration variables which are
functions of some internal variable(s) which are actually driving the iteration. This is a
list like steps, but the variables in it do not get stepped in parallel.

The above alone is actually insufficient in just about all iteration driving clauses which loop
handles. What is missing is that in most cases the stepping and testing for the first time through
the loop is different from that of all other times. So, what loop deals with is two four-tuples as
above; one for the first iteration, and one for the rest. The first may be thought of as describing
code which immediately precedes the loop in the prog, and the second as following the body
code-in fact, loop does just this, but severely perturbs it in order to reduce code duplication.
Two lists of forms are constructed in parallel: one is the first-iteration endtests and steps, the
other the remaining-iterations cndtests and steps. These lists have dummy entries in them so that
identical expressions will appear in the same position in both. When loop is done parsing all of
the clauses, these lists get merged back together such that corresponding identical expressions in
both lists arc not duplicated unless they are "simple" and it is worth doing.

Thus. one may get some duplicated code if one has mUltiple iterations. Alternatively, loop
may decide to use and test a flag variable which indicates whether one iteration has been
performed. In general, sequential iterations have less overhead than parallel iterations, both from
the inherent overhead of stepping multiple variables in parallel, and from the standpoint of
potential code duplication.

DSK:LMMAN ;LOOPTM 300 16-MAR-81

Itcration Paths 218 Lisp Machine Manual

Onc other point which must be noted about parallel stcpping is that although the user
itcration variables are guaranteed to be stepped in parallcl, the placement of the endtcst for any
particular iteration may be either before or after the stcpping. A notablc case of this is

(loop for i from 1 to 3 and dummy = (print 'faa)
collect i)

=> (1 2 3)
but prints faa four times. Certain other constmcts, such as for var on, mayor may not do this
depcnding on the particular construction.

This problem also means that it may not be safe to examine an iteration variable in the
epiloguc of the loop form. As a general rule, if an iteration driving clause implicitly supplies an
endtest, thcn one cannot know the state of the itcration variable when the loop tellninates.
Although one can guess on the basis of whether the iteration variable itself holds the data upon
which the endtest is based, that guess lIlay be wrong. Thus,

(loop for subl on expr

finally (f subl))
is incorrect, but

(loop as frob = expr while (g frob)

finally (f frob»
is safe because the endtest is explicitly dissociated from the stepping.

18.7 Iteration Paths

Iteration paths provide a mechanism for user extension of iteration-driving clauses. The
interface is constraincd so that the definition of a path need not depend on much of the internals
of loop. The typical fonn of an iteration path is .

for var {data-type} bei ng {each I the} pathname {preposition! expr!} ...
pathname is an atomic symbol which is defined as a loop path function. The usage and
defaulting of data-type is up to the path nmction. Any number of preposition/expression pairs
may be present; the prepositions allowable for any particular path are defined by that path. For
example,

(loop for x being the array-elements of my-array from 1 to 10
...)

To enhance readability, pathnames are usually defined in both the singular and plural fonns; this
particular example could have been written as

(loop for x being each array-element of my-array from 1 to 10
...)

Another format, which is not so generally applicable, is
for var {data-type} be; ng exprO and its pathname {preposition! expr!} . ..

In this format, var takes on the value of exprO the first time through the loop. Support for this
fOl1nat is llsually limited to paths which step through some data structure, slich as the "superiors"
of something. Thus, we can hypothesize the cdrs path, such that

but

(loop for x being the cdrs of '(~ be. d) collect x)
=> ((b c . d) (c . d) d)

DSK:LMMAN;LOOPTM 300 16-MAR-81

I.isp Machine Manual 219 I teration Paths

(loop for x being '(a b c . d) and its cdrs collect x)
=> «a b c . d) (b c . d) (c . d) d)

To satisfy the anthropomorphic among you, his, her, or their may be substituted for the its
keyword, as may each. Egocentricity is not condoned. Some example lIses of iteration paths are
shown in section 18.7.1.

Very often, iteration paths step internal variables which the user does not specify, slich as an
index into some data-structure. Although in most cases the user does not wish to be concerned
with such low-level matters, it is occasionally useful to have a handle on such things. loop
provides an additional syntax with which one may provide a varhlb1c name to be used as an
"internal" variable by an iteration path, with the using "prepositional phrase". The using phrase
is placed with the other phrases associated with the path, and contains any number of
keyword/variable-name pairs:

(loop for x being the array-elements of a using (index i)
'")

which says that the variable i should be used to hold the index of the array being stepped
through. The particular keywords which may be lIsed are defined by the iteration path; the index
keyword is recognized by all loop sequence paths (section 18.7.1.2). Note that any individual
using phrase applies to only one path; it is parsed along with the "prepositional phrases". It is
an error if the path does not call for a variable lIsing that keyword.

By special dispensation, if a pa/hl/Glile is not recognized, then the default-loop-path path
will be invoked upon a syntactic transfonnation of the original input. Essentially, the loop
fragment

for l'ar uei ng frob
is taken as if it were

f 0" va,. be i n g de f a u 1 t -loop - pat h i n frob
and

for var be i n 9 expr and it s frob .•.
is taken as if it were

for vat being expr and its default-loop-path in frob
Thus, this "undefined pathname hook" only works if the default-loop-path path is defined.
Obviously, the use of this "hook" is competitive, since only one such hook may be in use, and
the potential for syntactic ambiguity exists if frob is the name of a defined iteration path. This
feature is not for casual use; it is intended for use by large systems which wish to use a special
syntax for some feature they provide.

18.7.1 Pre-Defined Paths

loop comes with two pre-defined iteration path functions; one implements a mapatoms-like
iteration path facility, and the other is used for defining iteration paths for stepping through
sequences.

DSK:LMMAN;LOOPTM 300 16-MAR-81

Iteration Paths 220 Lisp Machine Manual

18.7.1.1 The Interned-Symbols Path

The interned - symbols iteration path is like a mapatoms for loop.
(loop for sym being interned-symbols ...)

iterates over all of the symbols in the current package and its superiors (or, in Maclisp, the
current obarray). This is the same set of symbols which mapatoms iterates over, although not
necessarily in the same order. The particular package to look in may be specified as in

(loop for sym being the interned-symbols in package ...)
which is like giving a second argument to mapatoms.

In Lisp implementations with some sort of hierarchical package structure slIch as Lisp Machine
Lisp, one may restrict the iteration to be over just the package specified and not its superiors, by
using the local- interned - symbols path:

(loop for sym being the loca1-interned-symbo1s {in package}
...)

Example:
(defun my-apropos (sub-string &optional (pkg package»

(loop for x being the interned-symbols in pkg
when (string-search sub-string x)

when (or (boundp xl (fboundp x) (plist x»
do (print-interesting-info x»)

In the Lisp Machine and NIL implementations of loop, a package specified with the in
preposition may be anything acceptable to the pkg - find - package fUllction. The code generated
by this path will contain calls to internal loop functions, with the etfect that it will be transparent
to changes to the implementation of packages. In the Maclisp implementation, the obarray must
be an array pointer, not a symbol with an array property.

18.7.1.2 Sequence Iteration

One very common form of iteration is that over the clements of some object which is
accessible by means of an integer index. loop defines an iteration path function for doing this in
a general way, and provides a simple interface to allow users to define iteration paths for various
kinds of "indexable" data.

defi ne-loop-sequence-path Macro
(def i ne -1 oop- sequen ce - path palh-Ilame-or-names

fetch-fUll size-fun
sequence-type defau!t-var-type)

path-name-or-names is either an atomic path name or list of path names. fetch-fun is a
function of two arguments: the sequence, and the index of the item to be fetched.
(Indexing is assumed to be zero-origined.) size-fUll is a function of one argument, the
sequence; it should return the number of elements in the sequence. sequence-type is the
name of the data-type of the sequence, and de.fi1ll11-vm~l)'pe the name of the data-type of
the clements of the sequence. These last two items arc optional.

DSK:LMMAN;LOOPTM 300 16-MAR-Sl

Lisp Machine Manual 221

The I.isp Machine implementation ofloop utilizes the Lisp
Machine array manipulation primitives to define hoth
array-element and array-elements as iteration paths:
(define-loop-sequence-path (array-element array-elements)

aref array-active-length}
Then, the loop clause

for var bei ng the array-el ements of ,array

I teration Paths

will step l'ar over the clements of array, starting from O. The sequence path function also accepts
in as a synonym for of.

The range and stepping of the iteration may be specified with the lise of all of the same
keywords which are accepted by the loop arithmetic stepper (for var from ...); they are by, to,
downto. from. downfrom. below, and above, and are illterpreted in the same manner. Thus,

(loop for val' being the al'ray-elements of array
from 1 by 2

...)
steps val' over all of the odd clements of array, and

(loop for var being the array-elements of array
downto 0

...)
steps in "reverse" order.

(define-loop-sequence-path (vector-elements vector-element)
vref vector-length notype notype)

is how lhe vector-elements i[cfation path can be defined in NIL (which it is). One can then do
su<.:h things as

(defun conS-a-lot (item &restv other-items)
(and other-items

(loop for x being the vector-elements of other-items
collect (cons item x»»

All such sequence iteration paths allow one to specify the variable to be used as the index
variable, by use of the index keyword with the using prepositional phrase, as described (with an
example) on page 219.

18.7.2 Defining Paths

This section and the next may not be of interest to those not interested in defining their own
iteration paths.

A loop iteration clause (e.g. a for or as clause) produces, in addition to the code which
defines the iteration (section 18.6), variables which must be hound, and pre·iteration (prologue)
code. This breakdown allows iI user-interface to loop which dues not have to depend on or know
about the internals of loop. To complete this separation, the iteration path mechanism parses lhe
clause before giving it to the user function which will return those items. A function to generate
code for a path may be declared to loop with the define-loop-path function:

DSK:LMMAN;LOOPTM 300 16-MAR-81

Iteration Paths 222 Lisp Machine Manual.

defino-loop-path Macro
(defi ne-1 oop-path patlmame-or-names path-jullclion

lisl-ofallowable-prepositiolls
datum-l datum-2 ...)

This defines path-function to be the handler for the path(s) pathname-or-names, which may
be either a symbol or a list of symbols. Such a handler should follow the conventions
described below. The datum-i are optional; they are passed in to path-ful/ction as a list

The handler will be called with the following arguments:

patli-name
The name of the path which caused the path function to be invoked.

variable
The "iteration variable".

data-type
The data type supplied with the iteration variable. or nil if none was supplied.

prepositiollal-phrases
This is a list with entries of the form (preposition expression), in the order in which
they were collected. This may also include some supplied implicitly (e.g. of phrases,
and in phrases for the default-loop-path path); the ordering will show the order of
evaluation which should be followed for the expressions.

inclusive?
This is t if I'ariable should have the starting puint of the path as its value on the first
iteration (by virtue uf bdng specified with syntax like for var being expr and its
pathlllllne), nil otherwise.

aI/owed-prepositions
This is the list of allowable preposttlons declared for the· pathname that caused the
path function to be invoked. It and data (immediately below) may be used by the
path function such that a single function may handle similar paths.

data This is. the list of "data" declared for the path name that caused the path function to
be invoked. It may, for instance, contain a canonicalized pathname, or a set of
functions or flags to aid the path function in determining what to do. In this way,
the same path function may be able to handle different paths.

The handler should return a list of either six or ten elements:

variable-bindings
This is a list of variables which need to be bound. TIle entries in it may be of the
form variable, (variable expression), or (variable expression data-type). Note that it Lc;
the responsibility of the handler to make sure the iteration variable gets bound. All of
these variables will be bound in parallel; if initialization of one depends on others, it
should be done with a setq in the prologue-forms. Returning only the variable
without any initialization expression is not allowed if the variable is a destructuring
pattern.

prologue-fonns
This is a list of forms which should be included in the loop prologue.

the four items of the iteration specification
TIl esc are the four items described in section 18.6, page 217: pre-step-elldtest, steps,

DSK:LMMAN;LOOP'fM 300 16-MAR-81

Lisp Machine Manual

posl-step-em/tes/, and pseudo-steps.

another jour items ojileratioll specification

223 Iteration Paths

If these four items are given, they apply to the first iteration, and the previous four
apply to all slicceeding iterations; otherwise, the previous four apply to all iterations.

Here are the routines which are used by loop to compare keywords for equality. In all cases,
a token may' be any Lisp object, but a keyword is expected to be an atomic symbol. In certain
implementations these functions may be implemented as macros.

s;: loop-tequal token keyword
This is the loop token comparison fi.ll1ction. token is any Lisp object; keyword is the
keyword it is to be compared against. It returns t if they represent the same token,
comparing in a manner appropriate for the implementation.

s;: loop-tmember token keyword-list
The member variant of si:loop-tequaJ.

s i : 1 oop- tas soc token keyword-ali.'il
The assoc variant of si:loop-tequal.

If an iteration path function desires to make an internal variable accessible to the user, it
should call the following function instead of gensym:

s1: loop-named-variable keyword
This should only be called from within an iteration path function. [f keyword has been
specified in a using phrase for this path, the corresponding variable is returned;
otherwise, gensym is called and that new symbol returned. Within a given path function,
this routine should only be called once for any given keyword.

If the user specifies a using preposition containing any keywords for which the path
function does not call si:loop-named-variable, loop will inform the user of his error.

18.7.2.1 An Example Path Definition

Here is an example function which defines the string-characters iteration path. This path
steps a variable through all of the characters of a string. It accepts the format

(loop for var being the string-characters of str ...)

The function is defined to handle the path by
(define-laap-path string-characters str'ing-chars-path

(of»

DSK:LMMAN;LOOIYL'M 300 16~MAR-81

Iteration Paths 224 Lisp Machine Manual

Here is the n.mction:
(defun string-chars-path (path-name variable data-type

prep-phrases inclusive?
allowed-prepositions data
&aux (bindings nil)

(prologue nil)
(string-var (gensym»
(i ndex-var .(gensym»
(size-var (gensym»)

allowed-prepositions data; unused variables
To iterate over the characters of a string, we need
to save the string, save the size of the string,
step an index variable through that range, setting
the user's variable to the character at that index.
Default the data-type of the user'~ variable:

(cond «null data-type) (setq data-type 'fixnum»)
; We support exactly one "preposition", which is
; required, so this check suffices:
(cond «null prep-phrases)

(error "Missing OF in iteration path"
(list path-name variable»»

; We do not support "inclusive" iteration:
(cond (not (null inclusive?»

(error "Inclusive stepping not supported"
(list* path-name variable prep-phrases»»

; Set up the bindings
(setq bindings (list (list variable nil data-type)

(list string-var (cadar prep-phrases»
(list index-var 0 'fixnum)
(list.size-var 0 'fixnum»}

; Now set the size variable
(setq prologue {list '(setq ,size-var (string-length

,stri ng-var}»)
appropriate stuff, explained below. ; and

(list
return the
bindings
prologue
'(= ,index-var ,size-var)
nil
nil
(list variable '{char-n ,string-var ,index-var}

index-var '(1+ ,index-var»)}

The first clement of the returned list is lhe bindings. The second is a list of fonus to be
placed in the prologue. The remaining clements specify how the iteration is to be performed.
This example is a particularly simple case, for two reasons: the actual "variable of iteration",
index-var, is purely internal (being gensymmed), and the stepping of it (1 +) is such that it
may be performed safely without an cndtest. Thus index-var may he stepped immediately after
the setting of the user's variable, causing the iteration specification for the first iteration to be
identical to lhe iteration specification for an remaining iterations. This is advantageous from the
standpoint of the optimizations loop is able to perform, although it is frequently not possible due

DSK:LMMAN;LOOlYfM 300 16-MAR-81

Lisp Machine Manual 225 Iteration Paths

to the semantics of the iteration (e.g., for var first exprl then expr2) or to subtleties of the
stepping. It is safe for this path to step the user's variable in the pseudo-sleps (the fourth item of
an iteration specification) rather than the "real" steps (the second), because the step value can
have no dependencies on any other (user) iteration variables. Using the pseudo-steps generally
results in some efficiency gains.

If one desired the index variable in the above definition to be user-accessible through the
using phrase feature with the index keyword. the function would need to be changed in two
ways. First, index-var should be bound to (si:loop-named-variable 'index) instead of
(gensym). Secondly, the eftkiency hack of stepping the index variable ahead of the iteration
variable must not be done. This is effected by changing the last form to be

(list bindings prologue
nil
(list index-var '(1+ ,index-var))
'(= ,index-var ,s;ze-var)
(list variable '(char-n ,string-var ,index-var))
nil
nil
'(= ,index-var ,s;ze-var)
(list variable '(char-n ,string-var ,index-var)))

Note that although the second '(= ,index-var ,size-var) could have been placed earlier (where
the second nil is), it is best for it to match up with the equivalent test in the first iteration
specification grouping.

DSK:UvlMAN;LOOPTM 300 16-MAR-81

Dcfstrnct 226 Lisp Machine Manual

19. Defstruct

19.1 Introduction to StructUl'{! Macros

defstruct provides a facility in Lisp for creating and using aggregate datatypes with named
clements. These are like "structures" in PLlI, or "records" in PASCAL. In the last two chapters
we saw how to use macros to extend the control stnlctures of Lisp; here we see how they can be
used to extend Lisp's data st1l1ctures as well.

To expbin the basic idea, assume you were writing a I.isp program that dealt with space
ships. In your program, you want to represent a space ship by a Lisp object of some kind. The
interesting things about a space ship, as far as your program is concerned, are its position (X and
Y), velocity (X and Y), and mass. How do you represent a space ship?

Well, the representation could be a list of the x-position, y-position, and so on. Equally well
it could be an array of five clements. the zeroth being the x-position, the first being the y
position, and so on. The problem with both of these representations is that the "clements" (such
as x-position) occupy places in the object which arc quite arbitrary, and hard to remember (Hmm,
was the mass the Ulird or the fourth clement of the array?). This would make programs harder to
write and reaci. Wha[we would like to sec are names, easy to remember and to understand. If
the symbol foo were bound to a representation of a space ship, then

(ship-x-position fool
could return its x-position, and

(ship-y-position fool
its y-position, and so forth. detstruct docs just this.

defstruct itself is a macro which defines a structure. For the space ship example above, we
might define the structure by saying:

(defstruct (ship)
silip-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

This says that every ship is an object with five named components. (This is a very simple
case of defstruct; we will see the general form later.) The evaluation of this fonn does several
things. First, it defines ship-x-position to be a macro which expands into an aref form; that is,
(ship-x-position foo) would turn into (aref faD 0). All of the "elements" are defined to refer to
sequentially increasing clements of the array, e.g. (ship-mass faa) would turn into (aref foo 4).
So a ship is really implemented as an array, although that fact is kept hidden. These macros are
called the accessor macros, as they arc used to access clements of the structure. (They are
actually substs (sec section 10.5.1, page DO) rather than macros, so that you can manipulate
them as functions (e.g. pass them as alguments to mapcar), but we will continue to refer to them
as macros.)

defstruct will also define make-ship to be a macro which expands into a call to make-array
which will create an array of the right size (namely, 5 clements). So (setq x (make-ship)) will
make a new ship, and x will be bound to it. This macro is called the COllstructor macro, because

DSK:LMMAN;DEFSTR 73 16-MAR-Sl

Lisp Machine Manual 227 Introduction to Structure Macros

it constructs a new structure.

We also want to be able to change the contents of a structure. To do this, we use the setf
macro (see page 201), as follows (for example):

(setf (ship-x-position x) 100)
Here x is bound to a ship, and after the evaluation of the setf form. the ship-x-position of that
ship will be 100. The way this works is that the setf form expands into (aset 100 x 0); again,
this is invisible to the programmer.

We can now usc the describe-defstruct function to look at the ship object, and see what its
contents are:

(describe-defstruct x 'ship) =>

#<art-q-5 17073131> is a ship
ship-x-position: 100
ship-y-position: nil
ship-x-velocity: nil
ship-y-velocity: nil
ship-mass: nil

#<art-q-5 17073131> .
(The describe-defstruct function is explained more fully on page 228.)

By itself, this simple example provides a powerful structure definition tool. But, in fact,
defstruct has many other features. First of all, we might want tv speci(y what kind of Lisp
object lo use for the "implementaliun" of the sll1lcture. The example above implemenled a
"ship" as an array, but defstruct can also impJcment structures as array-leaders, lists, and other
things. (For array-leaders, the accessor macros expand into calls to array-leader, and for lists, to
nth, and so on.)

Most structures arc implemented as arrays. Lists take slightly less storage, but elements near
the end of a long list are slower to access. Array leaders a!\ow you to have a homogeneous
aggregate (the array) and a heterogeneous aggregate with named clements (tile leader) tied together
into one object.

defstruct allows you to specify to the constmctor macro what the various clements of the
stmcture should be initialized to. It also lets you give, in the defstruct form, default values for
the initialization of each clement

The defstruct in Lisp Machine Lisp also works in various dialects of Maclisp, and so it has
some features that are not useful in the Lisp Machine. When possible, the Maclisp-specific
features attempt· to do something reasonable or harmless on the Lisp Machine. to make it easier
to write code that will run equally well in the Lisp Machine and Mac lisp. (Note that this
defstruct is not necessarily the default one installed in Mac1isp!)

DSK:LMMAN; DEFSTR 73 16-MAR-Sl

How to Use Defstmct 228

19.2 How to Use Defstruct'

defstruct Macro
A call to defstruct looks like:

(de f s t rue t (/lallle option-! option-2 ...)
slot-descriplion-]
slol-description-2
...)

Lisp Machine Manual

/lame must be a symbol; it is the name of the structure. It is given a si:defstruct
description property that describes the attributes and elements of the structure; this is
intended to be lIsed by programs that examine Lisp programs, that want to display the
contents of structures in a helpful way. name is used for other things, described below.

optio/l-n may be either a symbol, which should be one of the recognized option names,
listed in the next section, or a list, whose car should be one of the option names and the
rest of which should be "arguments" to the option. Some options have arguments that
default; others require that arguments be given explicitly.

s/ot-descriplion-n may be in any of three forms:
(1) sIal-name
(2) (s/ot-name deji.1Ult-illii)
(3) ((slot-name-! byle-spec-! de/aull-inil- f)

(slol-name-2 byle-spec-2 dejaull-init-2)
...)

slot-flame must always be a symbol, and each slot-name is defined as an access macro.
Each sIal-description allocates one emry of tlle physical structure, even though in fom} (3)
several slots are defined.

In form (1), slot-name defines a slot with the given name. An accessor macro will be
defined with the name slot-name (but see the :conc-name option, page 230). In form
(2), the slot is defined the same way, but you specify the default initiallzation for the slot.
Initialization is explained further on page 235. Form (3) lets you use the byte field
feature of defstruct, which is explained on page 237.

You can't have two defstructs that both define the same accessor macro. To do so is like
defining two functions with the same name; the latest definition is the one that takes effect, and
lhe earlier definition is clobbered. For this reason, as well as for clarity in the code, it is
conventional to prefix the names of all of the accessor macros with some text unique to tl1e
structure. In the example above, all the names started with ship-. The :conc-name option
provides such prefixes automatically (see page 230); you can also just put them in yourself as was
done in the example.

The describe-defstruct function lets you examine an instance of a structure.

describe-defstruct instance &optional name
describe-defstruct takes an instance of. a structure, and prints out a description of the
instance, including the contents of each of its slots. !lame should be the name of the
structure; you mllst provide the name of the structure so that describe -defstruct can
know what stmcture inslance is an instance of, and therefore figure out what the names of
the slots of instance are.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 229 Options to Defstmct

If inslanee is a named structure, you don't have to provide name, since It IS Just the
named structure symbol of illstallce. Normally the describe function (see page 44S) will
call describe-defstruct if it is asked to describe a named structure; however some named
structures have their own idea of how to describe themselves. See page 239 for more
information about named structures.

19.3 Options to Dcfstruct

This section explains each of the options that can be given to defstruct.

Here is an example that shows the typical syntax of a call to defstruct that gives several
options.

:type

(defstruct (faa (:type :array)

a
b)

(:make-array (:type 'art-8b :leader-length 3»
:conc-name
(:size-symbol faa»

The :type option specifies what kind of I.isp object will be used to implement the
structure. It must he given one argument, which must be one of the symbols
elllltTIeraled below, or a user-defined type. If the option itself is not provided,
the type defaults to :array. You can define your own types; this is explained on
page 242.

:array Use an array, storing components in the body of the array.

:named-array
Like :array, but make the array a named structure (see page 239) using
the nallle of the structure as the named stmcture symbol. Element 0 of
the array will hold the named structure symbol and so will not be used to
hold a component of the stmcture.

:array -leader
Use an array, storing components in the leader of the array. (See the
:make-array option, described below.)

:named-array-Ieader
Like :array-Ieader, but make the array a named stnlcture (see page 239)
using the name of the structure as the named structure symbol. Element
1 of the leader will hold the named structure symbol and so will not be
lIsed to hold a component of the structure.

:Iist Use a list.

:named-list
Like :Iist, but the first clement of the list will hold the symbol that is the
name of the structure and so will not be used as a component.

:fixnum-array
Like :array, but the type of the array is art-a2b.

:flonum-array
Like :array, but the type of the array is art-float.

DSK:LMMAN;DEFSTR 73 16-MAR-Sl

Options to Defstruct 230 Lisp Machine Manual

:tree The structure is implemented out of a binary tree of conses, with the
leaves serving as the slots.

:fixnum
This unusual type implements the structure as a single fixnum. The
structure may only have one slot. This is only useful with the byte field
feature (see page 237); it lets you store a bunch of small numbers within
fields of a fixnum, giving the fields names.

:grouped - array
This is described on page 238.

:constructor This option takes one argument, which specifies the name of the constructor
macro. If the argument is not provided or if the option itself is not provided, the
name of the constructor is made by concatenating the string "make -" to the
name of the structure. If the argument is provided and is nil, no constructor is
defined. Use of the constructor macro is explained on page 235.

:alterant This option takes one argument, which specifies the name of the alterant macro.
If the argument is not provided or if the option itself is not provided, the name
of the alterant is made by concatenating the string "alter-" to the name of the
Slructure. If t11e argument is provided and is nil, no alterant is defined. Use of
the alterant macro is expiained on page 235.

:default - pointer
Normally, the accessors defined by defstruct expect to be given exactly one
argument. However, if t11e :default- pointer argument is used, the argument to
each accessor is optional. If you lise an accessor in the usual way it will do the
usual thing, but if you invoke it without its argument, it will behave as if you
had invoked it on the result of evaluating t11e form which is the argument to the
:default-pointer argument. Here is an example:

(defstruct (room (:default-pointer -default-room*»
room-name
room-contents)

(room-name x)
(room-name)

==> (aref x 0)
==> (aref -default-room* 0)

If the argument to the :default-pointer argument is not given, it defaults to the
name of the structure.

:conc-name It is conventional to begin the names of all the accessor macros of a structure
wit11 a specific prefix. Usually they all start with t1le name of t11e structure
followed by a hyphen. The :conc-name option allows you to specify this prefix
and have it concatenated onto the front of all t1le slot names to make the names
of the accessor macros. The argument should be a symbol; its print-name is used
as the prefix. If the argument is not present, the prefix will be the name of the
structure followed by a hyphen. (If this option is not used at all, then there is no
prefix; the names of the accessors are the same as the slot names.) Note that in
the constructor and alterant macros, you still usc the slot names rather tl1an the
accessor macro names. Here is an example:

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 231 Options to Defstmct

:include

(defstruct (door :conc-name)
knob-color
width)

(setq d (make-door knob-color 'red width 5.0))

(door-knob-color d) ==> red

This option is used for building a new structure definition as an extension of an
old structure definition. Suppose you have a stmcture called person that looks
like this:

(defstruct (person :conc-name)
name
age
sex)

Now suppose you want to make a new structure to represent an astronaut. Since
astronauts are people too, you would like them to also have the attributes of
name, age, and sex, and you would like Lisp functions that operate on person
structures to operate just as well on astronaut structures. You can do this by
defining astronaut with the :include option, as follows:

(defstruct (astronaut (:include person))
helmet-size
(favorite-beverage 'tang))

The :include option inserts the slots of the included structure at the front of the
list of slots for this structure. That is, an astronaut will have five slots; first the
three defined in person, and then after those the two defined in astronaut itself.
The accessor macros defined by the person structure can be applied to instances
of the astronaut structure, and they will work correctly. The following examples
illustrate how you can use astronaut structures:

(setq x (make-astronaut name 'buzz
age 45.
sex t
helmet-size 17.5))

(person-name x) => buzz
(favorite-beverage x) => tang

Note that the :conc-name option was not inherited from the included structure;
it only applies to the accessor macros of person and not to those of astronaut.
Similarly, the :default-pointer and :but-first options, as well as the :conc-name
option, only apply to the accessor macros for the stntcture in which they are
enclosed; they arc not inherited if you :include a structure that uses them.

The argument to the :include option is required, and must be the name of some
previollsly defined structure of the same type as this structure. :include docs not
work with structures of type :tree or of type :grouped-array.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Options to Defstruct 232 Lisp Machine Manual

The following is an advanced feature. Sometimes, when one structure includes
another, the default values for the slots that came from the included sUucture are
not what you want. The new structure can specify different default values for the
included slots than the included structure specifics, by giving the :include option
as;

(: include namenew-init-l ... new-ini/-Il)

Each new-illit-i is either the name of an included slot or a list of the form (name
ofinc!uded-slot illil-jonn). If it is just a slot name, then in the new structure the
slot will have no initial value. Otherwise its initial value form will be replaced by
the init-form. The old (included) structure is unmodified.

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45., then we could have said:

(defstruct (astronaut (:include person (age 45.»)
helmet-size
(favorite-beverage 'tang»

:named This means that you want to use one of the "named" types. If you specify a type
of :nrray, :array-Ieader, or : list, and give the :named option, then the :named
array, :named-array-Ieacler. or :named-list type will be used instead. Asking
for type :array and giving the :named option as well is the same as asking for
the Lype :named-array; the only difference is stylistic.

:make-array This option allows you to control those aspt:cts of the array Llsed to implement lhe
stlUcture that are not otherwise constrained by defstruct. For example, you might
want to control the area in which the array is allocated. Also. if you are creating
a structure of type :array-Ieader, you almost certainly want to specify the
dimensions of the array to be. created. and you may want to specify the type of
the array. Of course, this option is only meaningful if the stmcture is, in fact,
being implemented by an array.

TIle argument to the :make-array option should be a list of altemating keyword
symbols to the make-array function (see page 102), and forms whose values are
the arguments to those keywords. For example, (:make-array (:type 'art-16b»
would request that the type of the array be art-16b. Note that the keyword
symbol is not evaluated.

defstruct overrides any of the :make-array options that it needs to. For
example, if your stmcture is of type :array, then defstruct will supply the size of
that array regardless of what you say in the :make-array option. .

Constructor macros for structures implemented as arrays all allow the keyword
:make-array to be supplied. Attributes supplied therein overide any :make-array
option attributes. supplied in the original defstruct form. If some attribute appears
in neither the invocation of the constmctor nor in the :make-array option to
defstruct, then the constructor will chose appropriate defaults.

If a structure is of type :array-Ieader, you probably want to specify the
dimensions of the array. The dimensions of an array are given to :make-array as
a position argument rather than a keyword argument, so there is no way to

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 233 Options to Defstruct

specify them in the above syntax. To solve this problem, you can use the
keyword :dimensions or the keyword :Iength (they mean the same thing), with a
value that is anything acceptable as make-array's first argument.

:times This option is used for structures of type :g rouped - array to control the number
of repetitions of the structure that will be allocated by the constructor macro. The
constructor macro will also allow :times to be used as a keyword that will
override the value given in the original defstruct fonn. If :times appears in
neither the invocation of the constructor nor in the :make-array option to
defstruct, then the constructor will only allocate one instance of the stl11cture.

:size-symbol The :size-symbol option allows a user to specify a symbol whose value will be
the "size" of the stmcturc. The exact meaning of this varies, but in general this
number is the one you would need to know if you were going to allocate one of
these structures yourself. The symbol will have this value both at compile time
and at nll1 time. If this option is present without an argument, then the name of
the structure is concatenated with" -size" to producc the symbol.

:size-macro This is similar to the :size-symbol option. A macro of no arguments is defined
that expands into the size of the structure. The name of this macro defaults as
with :size-symbol.

:initial-offset This allows you to tel1 defstruct to skip over a certain number of slots before it
starts allocating the slots dcscribcd in the body. This option requires an argument
(which must be a fixnum) which is the number of slots you want defstruct to
skip. To make usc of this option requires that you have some familiarity with
huw defstrUCl is implementing your struclure; olherwise, you will be unable to
make usc of the slots that defstruct has left unused.

:but-first This option is best explaineu by example:

:displace

(defstruct (head (: type : 1 i s t)
(:default-pointer person)
(:but-first person-head»

nose
mouth
eyes)

The accessors expand like this:

(nose, x)
(nose)

==> (car (person-head x»
==> (car (person-head person»

The idea is that :but- first's argument will be an accessor from some other
structure, and it is never expected that this structure will be found outside of that
slot of that other structure. Actually, you can use anyone-argument function, or
a macro that acts like a one-argument function. It is an error for the :but-first
option to be used without an argument.

Normally all of the macros defined by defstruct will be simple displacing macros.
l11ey will use the function displace to actually change the original macro form,
so that it will not have to be expanded over and over (see page 198). The
:displace option allows the user to supply some other function to use instead of
displace.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Options to Defstruct 234 Lisp Machine Manual

The argument to the :displace option should be a two argument function that will
be called whenever a macro expansion occurs. The two arguments will be the
original form and the form resulting from macro expansion. The value returned
by this function will be used for further evaluation. Note that the function
displace is the function used if the :displace option isn't given. The function
progn will cause the macro to be expanded every time.

Giving the :displace argument with no arguments, or with an argument of t, or
with an argument of displace, is the same is not giving it at all. Giving an
argument of nil or progn means to use regular macros instead of displacing
macros.

Note [hat accessor macros are normally substs (unless you give the :callable
accessors option with argument nil). If the accessors are really substs, they are
not affected by :displace. However, the constructor and alterant macros, and the
:size-macro, are still affected.

:callable-accessors
This option controls whether accessor macros are really functions, and therefore
"callable", or whether thay arc really macros. With an argument of t, or with no
argument, or if the option is not provided, then the accessor macros nrc really
functions. Specifically, they arc substs, so that they have all the efficiency of
macros in compikd programs, while still being function objects that can be
manipulated (passed to map car, etc.). If the argument is nil then the accessor
macros will really be macros; either displacing macros or not. depending on the
:displace argument.

:eval-·when Normally the macros defined by defstruct are defined at eval-time, compile-time,
and load-time. This option allows the user to control this behavior. The
argument to the :eval-when option is just like the list that is the first subfbrm of
an eval-when sp('cial form (sec page 184). For example, (:eval-wllen (:eval
:compile» will cause the macros to be defined only when the code is running
interpreted or inside the compiler.

:property For each stmcture defined by defstmct, a property list is maintained for the
recording of arbitrary properties about that stmcture. (That is, there is one
property list per stmcture definition, not one for each instantiation of the
structure.)

type

other

The :property option can be used to give a defstruct an arbitrary property.
(:property property-name value) gives the defstruct a property-name property of
value. Neither argument is evaluated. To access the property list, the user will
have to look inside Ule defstruct-description structure himself (see page 240).

In addition to the options listed above, any currently defined type (any legal
argument to the :type option) can be used as an option. This is mostly for
compatibility with the old version of defstruct. It allows you to say just type
instead of (:type type). It is an error to give an argument to one of these
options.

Finally, if an option isn't found among those listed above, defstruct checks the
property list of the name of the option to sec if it has a non-nil :defstruct-option
property. If it does have such a property, then if the option was of the form

DSK:LMMAN;DEFSTR 73 16-MAR-Sl

Lisp Machine Manual 235 Using the Constructor and Alterant Macros

(option-name value), it is treated just like (:property option-flame value). That is,
the defstruct is given an option-flame property of value. It is an error to use
such an option without a value.

This provides a primitive way for you to define your own options to defstruct.
Several of the options listed above are actually implemented using this mechanism.

19.4 Using the Constructor and Alterant Macros

After you have defined a new structure with defstrllct, you can create instances of this
structure using the constructor macro, and you can alter the values of its slots using the alterant
macro. By default. defstruct defines both the constructor and the alterant, forming their names
by concatenating "make- II and "alter- ", respectively, onto the name of the structure. You can
specify the names yourself by passing the name you want to use as the argument to the
:constructor or :alterant options, or specify that you don't want the macro created at all by
passing nil as the argument.

19.4.1 Constructor Macros

A call to a constructor macro, in general, has the form
(Ilame-ofcollstructor-macro

s),mbol-l Jonn-l
symbol-2 jo,m-2
...)

Each symbol may be either the name of a slot of the structure, or a specially recognized
keyword. All the fonns are evaluated.

If symbol is the name of a slot, then that element of the created structure will be initialized
to the value of fonn. If no symbol is present for a given slot, then the slot will be initialized in
accordance with the default initialization specified in the call to defstruct. (In other words, the
initialization specified to the constmctor overrides the initialization specified to defstruct.) If the
defstruct itself also did not specify any initialization, the element's initial value is undefined. You
should always specify the initialization, either in the defstruct or in the constructor macro, if you
care about the initial value of the slot

Notes: The order of evaluation of the initialization forms is not necessarily the same as the
order in which they appear in the constructor call; you should make sure your code does not
depend on the order of evaluation. The forms arc re-evaluated on every constructor-macro call,
so that if, for example, the form (gensym) were used as an initialization fOlm, then every call to
the constmctor macro would create a new symbol. The symbols should be slot names, not
accessor names (they are different when the :conc-name option is being used).

There arc two symbols which are specially recognized by the constmctor. They are :make
array, which should only be lIsed for :array and :array-Ieader type structures (or the named
versions of those types), and :times, which should only be used for :grouped-array type
stmctures. If one of these symbols appears instead of a slot name, then it is interpreted just as
the :make-array option or the :times option (sec page 232), and it overrides what was requested
in that option. For example:

DSK:LMMAN;DEFSTR 73 16-MAR-81

Using the Constmctor and Alterant Macros 236

(make-ship ship-x-position 10.0
ship-y-position 12.0

Lisp Machine Manual

:make-array (:leader-length 5 :area disaster-area)}

19.4.2 Alterant Macros

A call to the alterant macro, in general, has the form
(name-ojalteram-macro illstallce-fonn

slot· name-l fonn-l
s/ol-name-2 fonn-2
... J

illsfance-fonn is evaluated, and should return an instance of the stmcturc~ Each form is evaluated,
and the corresponding slot is changed to have the result as its new value. The slots are altered
after all the forms are evaluated. so you can exchange the values of two slots, as follows:

(alter-ship enterprise
ship-x-position (ship-y-position enterpris~)
ship-y-position (ship-x~position enterprise»

As with the constructor macro, the order of evaluation of the forms is undefined. Using the
alterant macro can produce more efficient Lisp than lIsing consecutive setfs 'Nllen you arc altering
two byte fields of the same object, or when you arc using the :but-first option.

19.4.3 By-position Constructor lVlacros

If the :eonstruetor option is given as (:eonstruetor flame arglist), then instead of making a
keyword driven constructor, defstrllet defines a "function style" constructor, taking arguments
whose meaning is determined by the argument's position rather than by a keyword. 'Ibe arglist is
used to describe what the arguments to the constm<.:tor will be. In the simplest case something
like (:eonstruetor make-foo (a b e» defines make-foo to be a three-argument constructor macro
whose arguments are used to initialize the slots named a, b, and c.

In addition, the keywords &optional, & rest, and &aux are recognized in the argument list
They work in the way you might expect, but there are a few fine points worthy of explanation:

(:constructor make-faa
(a &optional b (c 'sea) &rest d &aux e (f 'eff)})

'nlis defines make-foo to be a constructor of one or more arguments. The first argument is
used to initialize the a slot. The second argument is used to initialize the b slot. If there isn't
any second argument, then the default vallie given in the body of the defstruct (if given) is used
instead. 'The third argument is used to initialize the e slot. If there isn't any third argument,
then the symbol sea is lIsed instead. Any arguments foItowing the third argument are collected
into a list and used to initialize the d slot. If there arc three or fewer arguments, then nil is.
placed in the d slot. The e slot is flat initialized; its initial value is undefined. Finally, the f slot
is initialized to contain the symbol eff.

The actions taken in the band e cases were carefully chosen to allow the user to specify all
possible behaviors. Note that the &aux "variables" can be used to completely override the default
initializations given in the body.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 237 Byte Fields

Since there is so much freedom in defining constructors this way, it would be cfUel to only
allow the :constructor option to be given once. So, by special dispensation, you are allowed to
give the :constructor option more than once, so that you can define several different constmctors,
each with a different syntax.

Note that even these "function style" constructors do not guarantee that their arguments will
be evaluated in the order that you wrote them. Also note that you cannot specify the :make
array nor :times information in this fOlm of constructor macro.

19.5 Byte Fields

The byte field feature of defstruct allows you to specify that several slots of your structure
are bytes (see section 7.7, page 94) in an integer stored in one clement of the structure. For
example, suppose we had the following stmcture:

(defstruct (phone-boak-entry (:type :list»
name
address
(area-code 617.)
eXChange
1 i ne'-number)

This will work correctly. However, it wastes space. Area codes and exchange numbers are
always kss than 1000., and so both can fit into 10. bit fields \\'hel1 expresscd as billclry 11IHnbers.
Since Lisp Machine fiXI1UlllS have (more than) 20. bits, both of these values can be packed into a
single tixnum. To tell defstruct to do so, you can change the structure definition to the
following:

{defstruct (phone-book-entry (:type :list»
name
address
«area-code 1212 617.)

(exchange 0012})
line-number}

The magic numbers 1212 and 0012 are byte specifiers to be used with the functions Idb and
dpb. The various macros will now expand as follows:

(area-code pbe) ==> (ldb 1212 (caddr pbe)}
(exchange pbe) ==> (ldb 0012 (caddr pbe)}

(make-phane-book-entry
name' IFred Oerfl
address '1259 Octal St. 1
exchange ex
line-number 7788.)

= = > (1 i st' I F r' e dOe rf 1 • 12590 c tal St. I (d P b ex 12 2322000) 17154)

DSK:LMMAN;DEFSTR 73 16-MAR-Sl

Grouped Arrays

(alter-phone-book-entry pbe
area-code ac
exchange ex)

==> «lambda (g0530)
(setf (nth 2 g0530)

238 Lisp Machine Manual

(dpb ac 1212 (dpb ex 12 (nth 2 90530)))))
pbe)

Note that the alterant macro is optimized to only read and write the second element of the
list once, even though you arc altering two different byte fields within it. This is more efficient
than using two setfs. In general, you can provide arbitrary Lisp forms as the hyte specifiers in
the defstruct slot descriptions, but if you happen to provide constants (fixnums), some better
optimizations can be done. You don't really· have to worry about how the expansion happens,
anyway.

[f the byte specifier is nil, then the accessor macro will be defined to be the usual kind that
accesses the entire Lisp object, thus returning all the byte field components as a fixnum. These
sluts may have default initialization forms. Constructor macros initialize words divided into byte
fields as if they were deposited in in the following order:

l) Illitializations for the entire word given in the defstruct form.

2) Initializations for the byte fields given in the dcfstruct form.

J) Initializations for the entire word given in the constructor macro fonn.

4) Initializations for the byte fields given in the constructor macro form.

Alterant macros work similarly: . the modification for the entire Lisp object is done first,
fullowedby modificmions to specific byte fields. If any byte fields being initialized or altered
overlap each other, the action of the constructor and alterant will be unpredictable.

19.6 Grouped Arrays

The grouped array feature allows you to store several instances of a structure side-by-side
within an array. This feature is somewhat limited; it does not support the :include and :named
options.

The accessor macros are defined to take a first "argument" which should be a fixnum, and is
the index into the array of where this instance of the structure starts. It should be a multiple of
the size of the structure, for things to make sense. The normal "argument" (the structure) is
given to the accessor macros as their second "argument".

Note that the "size" of the structure (as given in the :size symbol and the :size- macro) is
the number of clements in one instance of the stmcture; the actual length of the array is the
product of the size of the structure and the number of inst.lnces. The number of instances to be
created by the constructor macro is given as the argument to the :times option to defstruct, or
the :times keyword of the constnictor macro.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 239 Named Structures

19.7 Named Structures

The flamed structure featllre provides a very simple form of user-defined data type. Any array
may be made a named structure, although llsually the :named option of defstruct is used to
create named structures. The principal advantages to a named structure are that it has a more
informative printed representation than a normal array and that the describe function knows how
to give a detailed description of it. (You don't have to usc describe-defstruct, because <;lescribe
can figure out what the names of the slots of the structure are by looking at the named structure's
name.) Because of these improved user-interface features it is recommended that "system" data
structures be implemented with named structures.

Another kind of user-defined data type, more advanced but less efficient when just. used as a
record stmcture, is provided by the flavor feature (sec chapter 20, page 245).

A named structure has an associated symbol, called its "named stmcture symbol", which
represents what user-defined type it is an instance of; the typep function, applied to the named
structure, will return this symbol. If the array has a leader, then the symbol is found in clement
1 of the leader; otherwise it is found in element 0 of the array. (Note: if a numeric-type array
is to be a named stmcture, it must have a leader, since a symbol cannot be stored in any
element of a Ilumeric array.)

If you cal! typep with two arguments, the first being an instance of a named stmcture and
the second being its named structure symbol, typep will return t. t will also be returned if the
second argument is the named structure symbol of a :named defstruct included (using the
:ineilide option, see page 231) by the defstruet for this structUfC. For example, if the structure
astronaut includes the stll.lcturc person, and person is a named SUl.lcture, then giving typep an
instance of an astronaut as the first argument, and the symbol person as the second argument,
will retum t. This reflects the fact that an astronaut is, in fact, a person, as well as being an
astronaut.

You may associate with a named stmcture a function that will handle various operations that
can be done on the named structure. Currently, you can control how the named stmcture is
printed, and what describe will do with it

To provide such a handler function, make the function be the named-structure-invoke
property of the named structure symbol. The functions which know about named stmctures will
apply this handler function to several arguments. The first is a "keyword" symbol to identify the
calling function, and the second is the named structure itself. The rest of. the arguments passed
depend on the caller; any named sUl.lcture function should have a "&rest" parameter to absorb
any extra arguments that might be passed. Just what the function is expected to do depends on
the keyword it is passed as its first argument. The following are the keywords defined at present:

:wh ich - operations

:print-self

Should return a list of the names of the operations the function handles.

The arguments are :print-self, the named structure, the stream to output to, the
current depth in list-stl1lcture, and t if slashification is enabled (prin1 versus
prine). The printed representation of the named structure should be output to the
stream. If the named stmcture symbol is not defined as a function, or :print-self
is not in its :which-operations list, the printer will default to a reasonable
printed representation, namely:

DSK:LMMAN;DEFSTR 73 16-MAR-81

The si:defstnlct-description Stmcture 240 Lisp Machine Manual

<nall1ed-slf1lcture-symbol oclal-address>

:describe The arguments arc :describe and the named stmcturc .. It should output a
description of itself to standard - output. If the named stl1lcturc symbol is not
defined as a function, or :describe is not in its :which -operations list, the
describe system will check whcther the named stl1lcture was created by using the
:named option of defstruct; if so, the names and values of the stl1lcture's fields
will be enumerated.

The following functions operate on named stl1lctures.

named-structure-p x
This semi-predicate returns nil if x is not a named stl1lcture; otherwise it returns x's
named structure symbol.

named-structure-symbol x
x should be a named stl1lcture. This returns x's named structure symbol: if x has an
array leader, clement 1 of the leader is returned, otherwise element 0 of the array is
returned.

make-array-·j nto- namod-structure array
array is made to be a I1<lmed structure, and is returned.

named-stl'ucture-invoke sIr op &rest args
sfr should be a named structure, and op should be a keyword symhol. The handler
function of the named s[mcture symbol, found as the value of the named -structure- .
invoke property of the symbol, is called with appropriate arguments.

19.8 The si:dcfstruct-descrilltion Structure

This section discusses the in ternal structures used by defstruct that might be useful to
programs that want to interface to defstruct nicely. For example, if you want to write a program
that examines stl1lctures and displays them the way describe (sec page 448) and the Inspector do,
your program will work by examining these structures. The information in this section is also
necessary for anyone who is thinking of defining his own structure types.

Whenever the user defines a new structure using defstruct, defstruct creates an instance of
the si:defstruct-description structure. TI1is structure can be found as the si:defstruct
description property of the name of the structure; it contains such useful information as the
name of the structure, the number of slots in the structure, and so on.

The si:defstruct-description structure is defined as follows, in the system - internals package
(also called the si package): (This is a simplified version of the real definition. There are other
slots in the structure which we aren't telling you about.)

DSK:LMl'v[AN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 241 The si:defstIl.lct-description Stmcture

(defstruct (defstruct-description

name

(:default-pointer description)
(:conc-name defstruct-description-))

size
property-alist
slot-alist)

The name slot contains the symbol supplied by the user to be the name of his structure,
such as spaceship or phone-book -entry.

The size slot contains the total number of locations in an instance of this kind of structure.
This is 1I0t the same 11umber as that obtained from the :size-symbol or :size-macro options to
defstruct. A named stIl.lcture, for example, usually uses lip an extra location to store the name
of the structure, so the :size- macro option will get a number one larger than that stored in the
defstruct description.

The property-alist slot contains an alist with pairs of the form (property-name . property)
containing properties placed there by the :property option to defstruct or by property names used
as options to defstruct (sec the :property option, page 234).

The slot-alist slot contains an alist of pairs of the fonn (slot-name. slol-description). A slol
description is an instance of the defstruct-slot-description structure. The defstruct-slot
description structure is defined somcthing like this, also in the si package: (This is a simplified
version of the real definition. There are other slots in the structure which we aren't telling you
about.)

(defstruct (defstruct-slot-description
(:default-pointer slot-description)
(:eonc~name defstruet-slot-description-»)

number
ppss
in it-code
ref-macro-name)

The number slot contains the number of the location of this slot in an instance of the
structure. Locations are numbered starting with 0, and continuing up to one less than the size of
the structure. The actual location of the slot is detelmined by the reference-consing function
associated with the type of the structure; see page 243.

The ppss slot contains the byte specifier code for this slot if this slot is a byte field of its
location. If this slot is the entire location, then the ppss slot contains nil.

The init-code slot contains the initialization code supplied for this slot by the user in his
defstruct form. I f there is no initialization code for this slot then the init-code slot contains the
symbol si:%%defstruct-empty%%.

The ref-macro-name slot contains the symbol that is defined as a macro that expands into a
reference to this slot (that is, the name of the accessor macro).

DSK:LMMAN;DEFSTR 73 16-MAR-Sl

Extcnsions to Dcf.<;truct 242 Lisp Machine Manual

19.9 Extensions to Defstruct

The macro defstruct-define-type can be used to teach defstruct about new types that it can
LIse to implement structures.

dafstruct-def; na-type Macro
This macro is LIsed for teaching defstruct about new types; it is described in the rest of
this chapter.

19.9.1 All Example

Let us start by examining a sample call to defstruct-define-type. This is how the :list type
of strLIcture might have been defined:

(defstruct-define-type :list
(:cons (initialization-list description keyword-options)

:list
'(list. ,initialization-list})

(:ref (slot-number description argument)
'(nth ,slot-number ,argument»)

This is the simplest possible form of defstruct-define-type. It provides defstruct with two
l.isp forms: one for creating forms to construct instances of the structure, and one for creating
fonns to become the bodies of accessors fUi slots of the structure.

The keyword :cons is followed by a list of three variables that will be bound while the
constructor-creating form is evaluated. The first, initialization-list, will be bOllIld to a list of the
initialization fonns for the slots of the structure. The second, description, will be bound to the
defstrllct-description structure for the structure (see page 240). 'l'he third variable and the :list
keyword will be explained later.

The keyword :ref is followed by a list of three variables that will be bound while the
accessor-creating fonn is evaluated. The first, slot-number, will bound to the number of the slot
that the new accessor should reference. The second, description, will be bound to the
defstrllct-description SUl.lcture for the structure. The third, argument, will be bound to the
form that was provided as the argument to the accessor macro.

19.9.2 Syntax of defstruct-deline-type

The syntax of defstruct-define-type is:

(defstruct-define-type rype
uplioll-I
option-2
...)

where each oplion-i is either the symbolic name of an option 'or a list of the fonn (option-name.
rest). Different options interpret rest in different ways. The symbol type is given an si:defstruct
type-description property of a srructure that describes the type completely.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 243 Extensions to Defstruct

19.9.3 Options to defstruct-define-type

This section is a catalog of all the options currently known about by defstruct-define-type.

:cons The :cons option todefstruct-define-type is how you supply defstruct with the
necessary code that it needs to cons lip a form that will construct an instance of a
structure of this type.

:ref

The :cons option has the syntax:
(: con s (inils descriplion keywords) kind

body)
body is some code that should construct and return a piece of code that will
construct, initialize, and return an instance of a structure of this type.

The symbol if/its will be bound to the information that the constructor conser
should usc to initialize the slots of the structure. The exact form of this argument
is determined by the symbol kind. There are currently two kinds of initialization.
There is the :list kind, where inits is bound to a list of initializations, in the
correct order, with nils in uninitialized slots. And there is the :alist kind, where
inils is bound to an alist with pairs of the form (s/ol-number . in it-code).

The symbol description will be bound to the instance of the defstruct-description
structure (see page 240) that defstruct maintains for this particular struCture. This
is so that the constructor conser can find out such things as the total size of the
structure it is supposed to create.

The symbol keywords will be bound to an alist with pairs of the form (keyword.
value), where each keyword was a keyword supplied to the constructor macro that
wasn't the name of a slot, and value was the Lisp object that followed the
keyword. This is how you can make your own special keywords. like the existing
:make-array and :times keywords. See the section on using the constructor
macro on page 235. You specify the list of acceptable keywords with the
:keywords option (see page 244).

It is an error not to supply the :cons option to defstruct-define-type.

The :ref option to defstruct-define-type is how the user supplies defstruct with
the necessary code that it needs to cons up a form that will reference an instance
of a structure of this type.

The :ref option has the syntax:
(: ref (/lumber description argo! ... arg-n)

body)
body is some code that should· construct and return a piece of code that will
reference an instance of a structure of this type.

111e symbol /lumber will be bound to the location of the slot that is to be
referenced. This is the same number that is found in the number slot of the
defstruct-slot-description stmcture (see page 241).

DSK:LMMAN;DEFSTR 73 16-MAR-81

Extensions to Defstruct 244 Lisp Machine Manual

:overhead

:named

:!<eywords

:defstruct

The symbol description will be bound to the instance of the defstruct-description
structure that defstruct maintains for this particular structure.

The symbols arg-i are bound to the forms supplied to the accessor as arguments.
NOImally there should be only one of these. The last argument is the one that
will be defaulted by the :default-pointer option (see page 230). defstruct will
check that the user has supplied exactIy Il arguments to the accessor macro before
calling tile reference consing code.

It is an error not to supply the :ref option to defstruct-define-type.

The :overhead option to defstruct-define-type is how tile user declares to
defstruct that the implementation of this particular type of structure "uses up"
some number of locations in tile object actually constructed. This option is used
by various "named" types of structures that store the name of the structure in one
location.

The syntax of :overhead is: (:overhead n) where n is a fixnum that says how
many locations of overhead this type needs.

This number is only used by the :siie-macro and :size-symbol options to
defstruct (see page 233).

The :named option to defstruct-define-type controls the use of the :named
option to defstrllCt. With no argument. tile :named option means tIlat this type
is an acceptable "named structure". With an argument. as in (:named type-name),
the symbol type-name should be tile name of some other S(J1lcture type that
defstruct should use if someone asks for the named version of this type. (For
example. in the definition of tile :Iist type the :named option is used like this:
(:named :narned-list).)

The :keywords option to defstruct-define-type allows the user to define
additional constructor keywords for this type of structure. (TIle :make-array
constructor keyword for structures of type :array is an example.) The syntax is:
(:keywords keyword-]... keyword-n) where each keyword-i is a symbol tIlat the
constmctor conser expects to find in the keywords alist (explained above).

The:defstruct option to defstruct-define-type allows the user to run some code
and return some fonns as part of the expansion of the defstruct macro.

The :defstruct option has the syntax:
(: de f s t r u c t (description)

body)
body is a piece of code that will be mn whenever defstruct is expanding a
defstruct form that defines a structure of this type. The symbol description will
be bound to the instance of tile defstruct-description structure that defstruct
maintains for this particular structure.

The value returned by the body should be a list of forms to be included with
tIlose that the defstruct expands into. Thus. if you only want 1:0 run some code
at defstruct-expand time, and you don't want to actually output any additional
code, tIlen you should be careful to return nil from the code in tIlis option.

DSK:LMMAN;DEFSTR 73 16-MAR-81

Lisp Machine Manual 245 Objects, Message Passing, and Flavors

20. Objects, Message Passing, and Flavors

20.1 Introduction

The object oriented programming style used in the Smalltalk and Actor families of languages
is available in Lisp Machine Lisp, and used by the Lisp Machine software system. Its purpose is
to perform generic opera/ions on objects. Part of its implementation is simply a convention in
procedure calling style; part is a powerful language feature, called Flavors, for defining abstract
objects. This chapter attempts to explain what programming with objects and with message
passing means, the various means of implementing these in Lisp Machine Lisp, and when you
should use them. It assumes no prior knowledge of any other languages.

20.2 Objects

When writing a program, it is often convenient· to model what the program does in terms of
objects: conceptual entities that can be likened to real-world things. Choosing what objects to
provide in a program is very important to the proper organization of the program. In an object
oriented design, specifying what objects exist is the first task in designing the system. In a text
editor, the objects might be "pieces of text", "pointers into text", and "display windows". In an
electrical design system, the objects might be "resistors", "capacitors", "transistors", "wires", and
"display windows". After specifying what objects there are, the next task of the design is to
figure (lut what operations can be performed on each object. In the text editor example,
operations on "pieces of text" might include inserting text and deleting text; operations on
"pointers into text" might include moving forward and backward; and operations on "display
windows" might include rcJisplaying the window and changing with which "piece of text" the
window is associated.

In this model, we think of the program as being built around a set of objects, each of which
has a set of operations that can be performed on it. More rigorously, the program defines several
types of object (the editor above has three types), and it can create many instances of each type
(that is, there can be many pieces of text, many pointers into text, and many windows). The
program defines a set of types of object, and the operations that can be performed on any of the
instances of each type.

This should not be wholly unfamiliar to the reader. Earlier in this manual, we saw a few
examples of this kind of programming. A simple example is disembodied property lists, and the
fimctions get, putprop, and rem prop. The disembodied property list is a type of object; you
can instantiate one with (cons nil nil) (that is, by evaluating this form you can create a new
disembodied property list); there are three operations on the object, namely get; putprop, and
remprop. Another example in the manual was the first example of the use of defstruct, which
was called a ship. defstruct automatically defined some operations on this object: the operations
to access its clements. We could define other functions that did useful things with ships, such as
computing their speed, angle of travel, momentum, or velocity, stopping them, moving them
elsewhere, and so on.

In both cases, we represent our conceptual object by one Lisp object. The Lisp object we use
for the representation has structure, and refers to other Lisp objects. In the property list case,
the Lisp object is a list with alternating indicators and values; in the ship case, the Lisp object is

DSK:LMMAN;FLAYOR 70 16-MAR-81

Modularity 246 Lisp Machine Manual

an array whose derails are taken care of by defstruct. In both cases, we can say that the object
keeps track of an internal state, which can be examined and altered by the operations available
for that type of object. get examines the state of a property list, and putprop alters it; ship-x
pOSition examines the state of a ship, and (setf (ship-mass) 5.0) alters it.

We have now seen the essence of object-oriented programming. A conceptual object is
modelled by a single Lisp object, which bundles up some state information. For every type of
object, there is a set of operations that can be performed to examine or alter the state of the
object.

20.3 Modularity

An important benefit of the object-oriented style is that it lends itself to a particularly simple
and lucid kind of modularity. If you have modular programming constructs and techniques
available, it helps and encourages you to write programs· that are easy to read <tndunderstand,
and so are more reliable and maintainable. Object-oriented programming lets a programmer
implement a useful facility that presents the caller with a set of external interfaces, without
requiring the caller to understand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box; the program knows
what lhe facility's external interfaces guarantee to do, and that is all it knows.

For example, a program that uses disembodied property lists never needs to know that the
property list is being maintained as a list of alternating indicators and values; the program simply
performs the ojx;ratiolls, passing them inputs and getting back OUlpULS. The program only
depends on the external definition of these operations: it knows that if it putprops a property,
and doesn't mmprop it (or putprop over it), then it can do get and be sure of getting back the
same thing it put in. The important thing about this hiding of the details of the implementation
is that someone reading a program that llses disembodied property lists need not concern himself
with how they are implemented: he need only understand what they undertake to do. This saves
the programmer a lot of time, and lets hien concentrate his energies on understanding the
program he is working on. Another good thing about this hiding is that the representation of
property lists could be changed, and the program would continue to work. For example, instead
of a list of alternating elements, the property list could be implemented as an association list or a
hash table. Nothing in the calling program would change at all.

The same is true of the ship example. The caller is presented with a collection of operations,
such as ship-x-position, ship-y-position, ship-speed, and ship-direction; it simply calls
these and looks at their answers, without caring how they did what they did.]n our example
above, ship-x-ponition and ship-y-position would be accessor functions, defined automatically
by defstruct, while ship-speed and ship -direction . would be functions defined by the
implementor of the ship type. The code might look like this:

DSK:LMMAN;FLAYOR 70 16-MAR-Sl

~~--~------

Lisp Machine IVranual

(deFstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(defun ship-speed (ship)

247

(sqrt (+ (A (ship-x-velocity ship) 2)
(A (ship-y-velocity ship) 2»»

(defun ship-direction (ship)
(atan (ship-y-velocity ship)

(ship-x-velocity ship»)

tvlodularity

The cal1er need not know that the first two functions were structure accessors and that the
second two were written by hand and do arithmetic. Those facts would not be considered part of
the black box characteristics of the implementation of the ship type. The ship type dl:)es not
guarantee which functions will be implemented in wl]ich ways; such aspects are not part of the
contract between ship and its callers. [n fact, ship could have been written this way instead:

(defstruct (ship)
ship-x-position
s hip - Y - P o.s i t ion
ship-speed
ship-dir'ection
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship»»

(defun ship-y-velocity (ship)
(* (ship-speed ship) (sin (ship-direction Ship»·»

In this second implementation of the ship type,. we have decided to store· the velocity in polar
coordinates instead of rectangular coordinates. This is purely an implementation decision; the
caller has no idea which of the two ways the implementation works, because he just performs the
operations on the object by calling the appropriate functions.

We have now created our own types of objects, whose implementations are hidden from the
programs that use them. Such types are usually referred to as abstract types. The object-oriented
style of programming can be used to create abstract types by hiding the implementation of the
operations, and simply documenting what the operations are defined to do.

Some more terminology: the quantities being held by tbe clement" of the ship structure are
referred to as illstallce variables. Each instance of a type has the same operations defined on it;
what distinguishes one instance from another (besides identity (eqness» is the values that reside in
its instance variables. The example above illustrates that a caller of operations does not know
what the instance variables are; our two ways of writing the ship operations have different
instance variables, but from the outside they have exactly the same operations.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Modularity 248 Lisp Machine Manual

Onc might ask: "But what if the caller evaluates (aref ship 2) and notices that he gets back
the x-velocity i'ather than the speed? Then he can tell which of the two implementations were
used." This is true; if the caller were to do that, he could tell. However, when a facility is
implemented in the object-oriented style, only certain functions are documented and advertised:
the functions which are considered to be operations on the type of object. The contract from
ship to its callers only speaks about what happens if the caller calls these functions. The contract
makes no guarantees at all about what would happen if the caller were to start poking around on
his own using aref. A caller who does so is ill error; he is depending on something that is not
specified in the contract. No guarantees were ever made about the results of such action, and so
anything may happen; indeed, ship may get reimp1cmented overnight, and the code that does the
aref will have a different effect entirely and probably stop working. This example shows why the
concept of a contract between a callee and a caller is important: the contract is what specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Lisp Machine Lisp· makes no attempt
to have the language automatically forbid constructs that circumvent the contract. This is
intentional. One reason for this is that the Lisp Machine is an interactive system, and so it is
important to be able to examine and alter internal state interactively (usually from a debugger).
Furthermore, there is no strong distinction between the "system" programs and the "user"
programs on the Lisp Machine; users are allowed to get" into any part of the language system and
change what they want to change.

In summary: by defining a set of operations, and making only a specific set of external
entrypoint5 available to tile caller, the programlller can create his own abstract types. These types
can be u~cful fhdlilies for other prograills and programmers. Since the implementation of the
type is hidden from the callers, modularity is maintained, and the implementation call be changed
easily.

We have hidden the implementation of an abstract type by making its operations into
functions which the user may call. The important thing is not that they are functions-in Lisp
everything is done with functions. The important thing is that we have defined a new conceptual
operation and given it a name, rather than requiring anyone who wants to do the operation to
write it out step-by-step. 1bus we say (ship-x-velocity s) rather than (aref s 2).

It is just as true of such abstract-operation functions as of ordinary functions that someti~es
they arc simple enough that we want the compiler to compile special code for them rather than
really calling the function. (Compiling special code like this is often called open-coding.) The
compiler is directed to do this through usc of macros, def.<mbsts, or optimizers. defstruct
arranges for this kind of special compilation for the functions that get the instance variables of a
structure.

When we use this optimization, the implementation of the abstract type is only hidden in a
certain sense. It does not appear in the Lisp code written by the lIser, but does appear in the
compiled code. The reason is that there may be some compiled functions that i.lse the macros (or

• whatever): even if you change the definition of the macro, the existing compiled code will
continue to use the old definition. Thus, if the implementation of a module is changed programs
that usc it may need to be recompiled. This is something we sometimes accept for the sake of
efficiency.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Lisp Machine Manual 249 Generic Operations

In the present implementation of flavors, which is discllssed below, there is no such compiler
incorporation of non modular knowledge into a program, except when the "outside'accessible
instance variables" feature is used; see page 267, where this problem is explained further. If you
don't use the "outside-accessible instance variables" feature, you don't have to worry about this.

20.4 Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction. It may want
to deal with other objects that are like ships in that they are movable objects with mass, but
unlike ships in othe.r ways. I\. more advanced model of a ship might include the concept of the
ship's engine power, the number of passengers on board. and its name. I\.n object representing a
meteor probably would not have any of these, but might have another attribute such as how
much iron is ill it.

However, all kinds of movable objects have pOSitiOnS, vc1ocities, and masses, and the system
will contain some programs that deal with these quantities in a uniform way, regardless of what
kind of object the attributes apply to. For example, a piece of the system that calculates every
object's orbit in space need not worry about the other, more peripheral attributes of various types
of objects: it works the same way for all objects. Unfortunately, a program that tries to calculate
Lh~ orbit of a ship will need to know the ship's attributes, and will have to call sl1ip-x-position
and sl1ip-y-velocity and so on. The problem is that thest~ fUllctiolls won't work for meteors.
There would have to be a second program to calculate orbits for meteors that would be exactly
the same, except that where the first one calls Sllip-x-position, the: secund one would call
meteo.--x-positioil, and So Oil. This wuuld be very bad; a gre:lt dcal of code would have to
exist in multiple copies, all of it would have to be maintained in parallel, and it would take up
space for no good reason.

What is needed is an operation that can be perfomlcd on objects of several different types.
For each type, it should do the thing "ppropriate for that type. Such operations are called
generic operations. The classic example of generic operations is the aritlllllctic functions in most
programming languages, including Lisp Machine Lisp. The + (or plus) function will accept
either fixnums or Honums, and perform either fixnum addition or flonum addition, whichever is
appropriate, based on the data types of the objects being manipulated. In our example, we need
a generic x-position operation that can be perfonned on either ships, meteors, or any other
kind of mobile object represented in the system. This way, we can write a single program to
calculate orbits. When it wants to know the x position of the object it is dealing with, it simply
invokes the generic x-position operation on the object, and whatever type of object it has, the
correct operation is performed, and the x position is returned.

I\. terminology for the use of such generic operations has emerged from the Smalltalk and
I\.ctor languages: perfonning a generic operation is called sending a message. The objects in the
program are thought of as little people, who get sent messages and respond with answers. In the
example above, the objects are sent x-pOSition messages, to which they respond with their x
position. This message passing is how generic operations arc performed.

Sending a message is a way of invoking a function. Along with the name of the message, in
general, some arguments are passed; when the object is done with the message, some values are
returned. The sender of the message is simply calling a function with some arguments, and
getting some values back. The interesting thing is that the cal1er did not specify the name of a
procedure to call. Instead, it specified a message name and an object; that is; it said what

DSK:LMMAN;FLA VOR 70 16-MAR-81

Generic Operations in Lisp 250 Lisp Machine Manual

operation to perform, and what object to perfimn it on. The function to invoke was found from
this in formation.

When a message is sent to an object, a function therefore must be found to handle the
message. The two data used to figure out which function to call are the type of the object, and
the name of the message. The same set of functions are used for all instances of a given type, so
the type is Ule only attribute of U1e object used to figure out which nll1ction to call. The rest of
the message besides the name are data which are passed as arguments to the function. so the
name is the only part of U1e message used to find the function. Such a function is called a
lIlethod. For example, if we send an x-position message to an object of type ship, U1en the
fimction we find is "the ship type's x- position method". A method is a function that handles a
specific kind of message to a specific kind of object; this method handles messages named x
position to objects of type ship.

In our new terlllinology: the orbit-calculating program finds U1e x pOSitIOn of the object it is
working on by scnding that object a message named x-position (with no arguments). The
returned value of the message is the x position of the object. If the object was of type ship,
then the ship type's x--position method was invoked; if it was of type meteor, then the meteor
type's x-position method was invoked. The orbit-calculating program just sends the message, and

'the right function is invoked based on the type of the object. We now have true generic
functions, in tile tl)lnJ of message passing: the same operation can mean different things
depending on the (ype of Ule object.

20.5 G{'ncric 0IH:ratloils in Lisp

How do we implement message passing in Lisp? By convention, objects that receive messages
are always jilllcliollal objects (that is, you can apply them to arguments), and a message is sent to
an object by calling that object as a function, passing the name of the message as the first
argument, and Ule arguments of the message as the rest of Ule argumcnts. Message names are
represented by symbols; normally these symbols arc in the keyword package (see chapter 23, page
345) since messages are a protocol for communication between different programs, which may
reside in dHferent packages. So if we have a variable my-ship whose value is an object of type
ship, and we want to know its x position, we send it a message as follows:

(funcall my-ship' :x-position)

This form returns the x position as its returned value. To set the ship's x position to 3.0, we
send it a message like this: .

(funcall my-ship ':set-x-position 3.0)

It should be stressed that no new features are added to Lisp for message sending; we simply
define a convention on the way objects take arguments. The convention says that an object
accepts mcssages by always interpreting its first argument as a message name. The object must
consider this message name, find the function which is the method for that message name, and
in voke U1at function.

This raises the question of how m{'ssage recelvmg works. The object must somehow find the
right method for the message it is sent. FurU1ermore, the object now has to be callable as a
function; objects can't just be defstructs any more, since Ulose aren't functions. nut Ule stmcture

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

Lisp Machine Manual 251 Simple Use of Flavors

defined by defstruct was doing something useful: it was holding the instance variables (the
internal state) of the object. We need a fUllction with internal state; that is, we need a coroutine.

Of the Lisp Machine Lisp features presented so far, the most appropriate is the closure (see
chapter 11, page 144). A message-receiving object could be implemented as a closure over a set
of instance variables. The function inside the closure would have a big selectq fOim to dispatch
on its first argument. (Actua1\y, rather than using closures and a selectq, the Lisp Machine
provides entities and defselect; see section 11.4, page 148.)

While lIsing closures (or entities) does work, it has several serious problems. TIle main
problem is that in urder to add a new operatiun to a system, it is necessary to modify a lot of
code; you have to find all the types lhat understand that operation, and add a new clause to the
selectq. The problem with this is that you cannot textually separate the implementation of your
new operation from the rest of the system; the methods must be interleaved with the other
operations for the type. Adding a new operation should only require adding Lisp code; it should
not require II/o£iijj>ing Lisp code.

The conventional way of making generic operations is to have a procedure for each operation,
which has a big selectq for all the types; this means you have to modify code to add a type.
The way described above is to have a procedure for each type, which has a big selectq for all
the operations; this means yuu have to modify code to add an operation. Neither uf lhese has
the desired property that extending the system should only require adding code, rather than
llludifying code.

Closures (anti entities) arc also soml:w hal cluHlsy and t:rutle. A far more :-.treamlined,
convenient, and powerful system for creating message-receiving objects exists; it is called the
f7al'o/' mechanism. With flavors, you can add a new method simply by adding code, without
modifying anything. Furthermore, many common and useful things to do are very easy to do
wil.hf1avors. The rest of this chapter describes flavors.

20.6 Simple Use of Flavors

A flavor, in its simplest form, is a definition of an abstract type. New flavors are created
with the defflavor special form, and methods of the flavor are created with the defmethod special'
form. New instances of a flavor arc created with the make-instance function. This section
explains simple uses of these fonus.

For an example of a simple use of flavors, here is how the ship example above would be
implemented.

DSK:LMMAN;FLA VOR 70 16-MAR-81

Simple Usc of Flavors 252

(defflavor ship (x-position y-position
x-velocity y-velocity mass)

()
:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (A x-velotity 2)

(A y-velocity 2»»

(defmethod (ship :direction) ()
(atan y-velocity x-velocity»

Lisp Machine Manual

The code above creates a new flavor. The first subform of the defflavor is ship, which is the
name of the new flavor. Next is the list of instance variables: they arc the five that should be
familiar by now. The next sub form is something we will get to later. The rest of the subfonns
are the body of the defflavor, and ew:h one specifies an option about this flavor. In our
example, there is only one option, namely :gettable-instance-variables. This means that for
each instance variable, a method should automatically be generated to return the value of that
in~tance variable. The name of the message is a symbol with the same name as the instance
variable, but interned on the keyword package. . Thlls, methods are created to handle the
mcssages :x - position, :y- position, and so on.

Each of the two defmethod forms adds a method to the flavor. The first one adds a handler
to the !llvnr ship for mcssages named :c;peed. The second subful'ln is the lambda-list, and the
rest is the budy of [he function thal handles the :speed message. The body can refer to or set
any instance variables of the flavor, the same as it can with local variables or special variables.
When any instance of the ship flavor is invoked with a first arguinent of :direction, the body of
the second defmethod will be evaluated in an environment in which the illstance variables of
ship refer to the instance variables of this instance (the one to which the message was sent). So
when the arguments of atan are evaluated, the values of instance variables of the object to which
the message was sent will be used as the arguments. atan will be invoked, and the result it
returns will be returned by the instance itself.

Now we have seen how to create. a new abstract type: a new flavor. Every instance of this
flavor will have the five instance variables named in the defflavor fonn, and the seven methods
we have seen (five that were automatically generated because of the :gettable-instance-variables
option, and two that we wrote ourselves). The way to create an instance of our new flavor is
with the make-instance function. Here is how it could be used:

(setq my-ship (make-instance 'ship»

This wiII return an object whose primed representation is:

#<SHIP 13731210>

(Of course, the vallie of the magic number will vary; it is not interesting anyway.) The
argument to make--instance is, as you can see, the name of the flavor to be instantiated.
t\:lditional arguments, not used here, are init options, that is, commands to the flavor of which
we are making an instance, selecting optional features. This will be discussed more in a moment.

DSK:LMMAN;FLA VOR 70 16-MAR-81

l.isp Machine Manual 253 Simple Use of Flavors

Examination of the flavor we have defined shows that it is quite useless as it stands, since
there is no way to set any of the parameters. We can fix this up easily. by putting the
:settable-instance-variables option into the defflavor form. '111is option tells defflavor to
generate methods for messages named :set-x-position, :set-y-position, and so on; each such
method takes one argument, and sets the corresponding instance variable to the given value.

Another option we can add to the defflavor is :initable-instance-variables. to allow us to
initialize the values of the instance variables when an instance is first created. :initable-instance
variables does not create any methods; instead, it makes initializatiull keywords named :x
position. :y-position, etc., that can be used as init-option arguments to make-instance to
initialize the corresponding instance variables. The set of init options are sometimes called the
init-plis{ because they are like a property list.

Here is the improved defflavor:
(defflavor ship (x-position y-position

x-velocity y-velocity mass)
()

:gettable-instance-variables
:settable-instance-variables
: initable-instance-variables)

All we have to do is evaluate this new defflavor, and the eXlstll1g flavor definition will be
updated and now include the new methods and initialization options. In fact. the instance we
gcneraied a while ago \vill now be able to accept these new messages! We can set the Illass of
the ~;!Jip we crealcd by evaluating

(funcall my-ship' :set-mass 3.0)
and the mass instance variable of my -ship will properly get set to 3.0. If you want to play
around with flavors, it is lIseful to know that describe of. an instance tells you the flavor of the
instance and the values of its instance variables. If we were to evaluate (describe my-ship) at
this point, the following would be printed:

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
Y-POSIiION: unbound
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS: 3.0

Now that the instance variables are "initable", we can create another ship and initialize some
of the instance variables using the init-plist. Let's do that and describe the result:

DSK:LMMAN;FLAYOR 70 16-MAR-Sl

Simple Use of Flavors 254 Lisp Machine Manual

(setq her-ship (make-instance 'ship ':x-position 0.0
':y-position 2.0
':mass 3.5»

==> #<SHIP 13756521>

(describe her-ship)
#<SHIP 13756521>, an object of flavor SHIP,

has instance variable values:
X-POSITION: 0.0
V-POSITION: 2.0
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS: 3.5

A flavor can also establish default initial values for instance variables. These dcf.1ult values are
used when a new instance is created if the values are nol initialized any other way. The syntax
for specifying a defaull initial value is to replace the name of the .instance variable by a list,
whose first element is the name and whose second is a form lo evaluate to produce the default
initial value. For example:

(defvar *default-x-velocity* 2.0)
(defvar *default-y-velocity* 3.0)

(defflavor ship ((x-position 0.0)
(y-position O.O)
(x-velocity *default-x-velocity*)
(y-velocity *default-y-velocity*)
mass}

()
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables}

(setq another-ship (make-instance 'ship ':x-position 3.4»

(describe another-ship)
#<SHIP 14563643>, an object of flavor SHIP,

has instance variable values:
X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
V-VELOCITY: 3.0
MASS: unbound

x-position was initializcd explicitly, so the default was ignored. y-position was initialized
from the default value, which was 0.0. The two velocity instance variables were initialized from
their dcfault values, which came from two global variables. mass was not explicitly initialized
and did not have a default initialization, so it was left unbound.

DSK:LMMAN;FLA VOR 70 16-MAR-81

Lisp Machine Manual 255 Mixing Flavors

There arc many other options that can be used in defflavor, and the init options can be Llsed
more flexibly than just to initialize instance variables: full details arc given later in this chapter.
But even with the small set of features we have seen so far, it is easy to write object-oriented
programs.

20.7 Mixing Flavors

Now we have a system for defining message-receIVIng objects so that we can have generic
operations. If we want to create a new type called meteor that would accept the same generic
operations as ship, we could simply write another defflavor and two more defmethods that
looked just like those of ship, and then meteors and ships would both accept the same
operations. ship would have some more instance variables for holding attributes specific to ships,
and some more methods for operations that arc not generic, but arc only defined for ships; the
same would be true of meteor.

However, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have to be repeated. The code now needs to be
maintailled in many places, which is always undesirable. The power of flavors (and the name
"flavors") comes from the ability to mix several flavors and get a new flavor. Since the
li.ll1ctionality of ship and meteor partially overlap. we can take the common functionality and
move it intlJ it') own flavor, which might be called moving-object. We would define moving
object the same way as we defined ship in the pre\ious section. Then, ship and meteor could
be defined like this:

(defflavor ship (engine-power number-of-passengers name)
(movin!J-object)

:gettable-instance-variables)

(defflavor meteor (percent-iron) (moving-object)"
:initable-instance-variables)

These defflavor forms use the second subforrn, which we ignored previously. The second
subforrn is a list of flavors to be combined to form the new flavor; such flavors are called
compollents. Concentrating on ship for a moment (analogous things are tme of meteor), we see
that it has exactly one component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it shares with
meteor. fly incorporating moving-object, the ship flavor acquires all of its instance variables,
and so need not name them again. It also acquires all of moving-abject's methods, too. So
with the new definition, ship instances will still accept the :x-velocity and :speed messages, and
they will do the same thing. However, the :engine-power message will also be understood (and
will return the value of the engine-power instance variable).

What we have done here is to take an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of it. Any ship or meteor can do anything a
moving object can do, and each also has its own specific abilities. This kind of building can
continue; we could define a flavor called ship-with -passenger that was built on top of ship,
and it would inherit al1 of moving-object's instance variables and methods as well as ship's
instance variables and methods. Furthermore, the second subfOlm of defflavor can be a list of
several components, meaning lhat the new flavor should combine all the instance variables and
methods of all the flavors in the list, as well as the ones those flavors arc built on, and so on.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Mixing Flavors 256 Lisp Machine Manual

All the components taken together form a big tree of flavors. 1\ flavor is built from its
components, its components' components, and so on. We sometimes use the term "components"
to mean the immediate components (the ones listed in the defflavor), and sometimes to mean all
the components (including the components of the immediate components and so on). (Actually, it
is not strictly a tree, since some flavors might be components through more than one path. It is
really a directed graph; it can even be cyclic.)

The order in which the components arc combined to form a flavor is important. The tree of
flavors is turned into an ordered list by perfonning a top-dolt'n, depth-first walk of the tree,
including non-tenninal nodes be/ore the subtrees they head, and eliminating duplicates. For
example, if flavor-1 's immediate components are flavor- 2 and flavor-3, and flavor-2's
components are flavor-4 and flavor-5, and flavor-3's component was flavor-4, thell the
complete list of components of flavor-1 would be:

flavor-I, flavor-2, flavor-4, flavor-5. flavor-3
The flavors earlier in this list are the more specific, less basic ones; in our example, ship-with
passengers would be first in the list, followed by ship, followed by moving-object. A navor is
always the first in the list of its own components. Notice that flavor-4 does not appear twice in
this list. Only the first occurrence of a flavor appears; duplicates are removed. (The elimination
of duplicates is done during the walk; if there is a cycle in the directed graph, it will not cause a
non-terminating computation.)

The set of instance variables for the new flavor is the unioll of all the sets of instance
variables in all the component flavors. If both flavor-2 and flavor-3 have instance variables
Hdl1led foo, then flavor-1 will have an instmct! variable named faa, aud ailY mel.iluus that refer
to foo will refer to Lhis same instance variable. Thus different components of a flavor can
communicate 'Nilh one another usiIig shared instance variables. (Typically, only one component
ever sets the variable, and the others only look at it.) The default initial value for an instance
variable comes from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor system.
When a flavor is defined, a single f1Jl1ction, called a combined method, is constmcted for each
message supported by the flavor. This function is constmcted out of all the methods for that
message fi'om all the components of the flavor. There are many different ways that methods can
be combined; these can be selected by the user when a flavor is defined. The user can also
create new forms of combination.

There are several kinds of methods. but so far, the only kinds of methods we have seen are
primal)' methods. The default way primary methods are combined is that all but the earliest one
provided are ignored. In other words, the combined method is simply the primary method of the
first flavor to provide a primary method. What this means is that if you are starting with a flavor
faa and building a flavor bar on top of it, then you can override foo's method for a message by
providing your own method. Your method will be called, and faa's will never be called.

Simple overriding is often lIseful; if you want to make a new flavor bar that is just like faa
cxcept that it reacts completely differently [0 a few messages, Olen this will work. However, often
you don't want to completely override the base flavor's (faa's) method; sometimes you want to
add some extra things to be done. This is where combination of methods is used.

The usual way methods arc combined is that one flavor provides a primary method, and other
flavors provide daemon methods. The idea is that the primary method is "in charge" of the main
business of handling tlle message, but other flavors just want to keep informed that the message

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

T .isp Machine fvlanual 257 Mixing Flavors

was sent, or just want to do the part of the operation associated with their own area of
responsibility.

When methods are combined, a single primary method is found; it comes from the first
component flavor that has one. Any primary methods belonging to later component flavors are
ignored. This is just what we saw above; bar could override faa's primary method by providing
its own primary method.

lIowever, you can define other kinds of methods. In particular, you can define daemon
methods. They come in two kinds, before and after. There is a spccial syntax in defmethod for
defining such methods. Here is an example of the syntax. To give the ship flavor an after
daemon method t()r the :speed message, the following syntax wOlild be used:

(defmethod (ship :after :speed) ()
body) .

Now, when a message is sent, it is handled by a new function called the COli/billed method.
The cOll1bined method first calls all of the before daemons, then the primary method, then all the
after daemons. Each method is passed the same arguments that the combined method was given.
The returned values from the combined method are the \allies returned by the primary method;
any values returned from the uaemons are ignored. Before-daemons are called in the order that
tlavors arc combined. i\' hile after-daemons are callcu in the reverse order. In other wurds, if you
build bar on top of foo, then bar's before-daemons will run before any of those in faa, and
bar's after-daemons will run after allY of those in faa.

The [(:<1S0Il fur lhis ofder is to keep the Inouularity order correct. [I' we create flavor-1 built
on flavor- 2: then it should not matter what flavor-2 is built out of. Our new before-daemons
go bcfbre all methods of flavor-2, and our new arter-daemons go after all methods of flavor-2.
Note that if you have no daemons, this reduces to lhe form of combination described above. The
most recently auded compunent flavor is the highest level of abstraction; you build a higher-level
object on top of a lower-level object by adding new components to the front. The syntax for
defining daemon methods can be found in the description of defmethod below.

To make this a bit more clear, let's consider a simple example that is easy to play with: the
:print-self method. The Lisp printer (Le. the print function; see section 21.2.1, page 280) prints
instances of flavors by sending them :print-self messages. The first argument to the :print-self
message is a stream (we can ignore the others for now), and the receiver of the message is
supposed to print its printed representation on the stream. In the ship example above, the reason
that instances of the ship flavor printed the way they did is because the ship flavor was actually
built on top of a very basic flavor called vanilla-flavor: this component is provided automatically
by defflavor. It was vanilla -flavor's :print-self method that was doing the printing. Now, if we
give ship its own primary method for the :print-self message, then that method will take over
the job of printing completely; vanilla-flavor's method will not be calleu at all. However, if we
give ship a before-daemon method for the :print-self mcssage, then it wi\l get invoked before the
vanilla - flavor message, and so whatever it prints will appear before what vanilla -flavor prints.
So we can use before-daemons to add prefixes to a printed representation; similarly, after
daemons can add sulTlxes.

There are other ways to combine methods besides daemons, but this way is the most
common. The more advanced ways of combining methods are explained in a later section; see
section 20.l2, page 270. The vanilla -flavor and what it does for you are also explained later; see
section 20.l1, page 269.

DSK:LMMAN;FLAYOR 70 16-MAR-81

Flavor Functions 258

20.8 Flavor Functions

deffl avor Macro
A flavor is defined by a form

(de ff 1 a va r jlavor-name (varl var2 ...) (flavl jlav2 . ..)
optl opt2 .. .)

Lisp Machine Manual

flavo/~nllme is a symbol which serves to name this flavor. It will get an si:flavor property
of the internal data-structure containing the details of the flavor.

(typep obj), where obj is an instance of the flavor named flavor-name, will return the
symbol flal'Or-namc. (typep obi flavor-name) is t if obi is an instance of a flavor, one of
whose components (possibly itself) is flavor-name.

var!, var2, etc. are the names of the instance-variables containing the local state for this
flavor. 1\ list of the nallle of an instance-variable and a default initiali1.ation form is also
acceptable; the initialization form will be evaluated when an instance of the flavor is
created if no other initial value for the variable is obtained. If no initialization is
specified, the variable will remain unbound.

jlavl, jlav2, etc. are the names of the component flavors out of which this flavor is built.
The lcatures of thuse flavors <Ire inherited as described previously.

opt!, opt2, etc. are options; each option may be either a keyword symbol or a list of a.
keyword symbol and arguments. The options to defflavor are described on section 20.9,
page 264.

*a 11-f1 avor- names· Variable
This is a list of the names of all the flavors that have ever been defflavor'ed.

defmethod Macro
A method, that is, a function to handle a particular message sent to an instance of a
particular flavor, is defined by a form such as

(defmethad (jlavor-name method-type message)· lambda-list
Ianni lonn2 .. .)

flavor-name is a symbol which is the name of the flavor which is to receive the method.
method-type is a keyword symbol for the type of method; it is omitted when you are
defining a primary method, which is the usual case. message is a keyword symbol which
names the message to be handled.

The meaning of the method-type depends on what kind of method-combination is declared
for this message. For instance, for daemons :before and :after arc allowed. See section
20.12, page 270 for a complete description of method types and the way methods are
combined.

lambda-list describes the arguments and "aux variables" of the function; the first argument
to the method, which is the message keyword, is automatically handled, and so it is not
included in the lambda-list. Note that methods may not have "e arguments; that is
they must be functions, not special fOlIDS. 1017111, lonll2, etc. arc the function body; the
value of the last form is returned.

DSK:LMMAN;FLA YOR 70 16-MAR-81

Lisp Machine Manual 259 Flavor Functions

The variant form
(defmethad (flavor-name message) jllnction)

where jimction is a symbol, says that flavor-naflle's method for message is jimetion, a
symbol which names a function. That function must take appropriate arguments; the first
argument is the message keyword.

If you redefine a method that is already defined, the old definition is replaced by the new
one. Given a flavor, a message "name, and a method type, there can only be one
function. so if you define a :before daemon method for the faa flavor to handle the :bar
message, then you replace the previous before-daemon; however, you do not affect the
primary meLilOd or methods of :lllY other type, message name or flavor.

The function spec for a method (see section 10.2, page 125) looks like:
(: me t had flavor-name message) or
(: me thad flavor-namc /IIethod-type /IIessage)

This is useful to know if you want to trace (page 404) or advise (page 408) a method, or
if you want to poke around at the method function itself, e.g. disassemble (page 448) it.

defmethod actually defines a symbol, called the flal'or-mclhoc/-sj'lIIbo/, as a function, and
the Ilavor system goes through that symbol to call the method. The flavor-method-symbol
is fi.mned by concatenating (with hyphens) the l1avor name, the method type, the message
name, alld "method" (for example, ship-x- position-method, ship-after-y-velocity
method, ship - combined - mass -method, etc.). The property list of this symbol is used
to allow undefun (page 137) and uncompile (page IS 1) to wurk. This is Jikely to be
dlallgCU in the fUlure.

make-instance flavor-name iI/if-option] value! ifliL-oplioll2 value2 ...
Creates and returns an instance of the specified navor. Arguments after the first are
alternating init-option keywords and arguments to tilOse keywords. These options arc used
to initialize instance variables and to select arbitrary options, as describeu above. If the
flavor supports the :init message, it is sent to the newlyccreated object with one argument,
the init-plist. This is a disembodied property-list containing the in it-options specified and
those defaulted from the flavor's :default-init-plist. make-instance is an easy-to-call
interface to instantiate-flavor; for full details refer to that function.

instantiate-fl avar flavor-flame inil-plist &optional send-init-message-p
return- unhandled-keywords area

This is an extended version of make-instance, giving you more features. Note that it
takes the init-plist as an argument, rather than taking a &rest argument of in it-options
anu values.

The inil-plist argument must be a disembodied property list; locf of a &rest argument
will do. I3ewarc! This property list can be modified; the properties from the detault-init
plist are putprop'ed on if not already present, and some :init methods do explicit
putprops onto the init-plist.

In the event that :init methods do remprop of properties already on the init-plist (as
opposed lo simply doing get and putprop), thell the init-plist will get rplacd'ed. This
means that the actual list of options will be modified. It also means that locf of a &rest
argument will not work; the caller of instantiate-flavor must copy its rest argument (e.g.
with append); this is because rplacd is not allowed on &rest arguments.

DSK:LMMAN;FLAYOR 70 16-MAR-Sl

Flavor FUllctions 260 Lisp Machine Manual

First, if the flavor's method-table and other internal information have not been computed
or are not up to date, they are computed. This may take a substantial amount of time
and invoke the compiler, but will only happen once for a particular flavor no matter how
many instances you make, unless you change something.

Next, the instance variables are initialized. There are several ways this initialization can
happen. If an instance variable is declared. initable, and a keyword with the same spelling
as its namc appears in il/it-plis!, it is set to the vallie specified after that keyword. If an
instancc variable does not get inirialized this way, and an initialization form was specified
for it in a defflavor, that form is evaluated and the variable is set to the result. The
initialization form may not depend on any instance variables nor on self; it will not be
evaluated in the "inside" environment in which methods are called. If an instance variable
does nut get initialized either of these ways it will be left unbound; presumably an :init
method should initialii'.e it (see below). Note that a simple empty disembodied property
list is (nil), which is what you should give if you want nn empty init-plist. If you usc nil,
the property list of nil will be used, which is probably not what you want.

If any keyword appears in the illil-plist but is not used to initialize an instance variable
and is not declared in an :init-keywords option (see pngc 265) it is presllmed to be a
misspelling. So any keywords that you handle in an :init handler should also be
rnel1liOlicd ill the :init-keywords option of the definition of the ftnvor.

I f the rClIIl'II-ull/wlldled-kcYlI'(mis argument is not supplied, such keywords are complained
about by signalling an error. But if /"clilm-lIll/i([!1dled-kl'yworc/s is supplied non-nil, a list
ut'slich keywords is reiurtlcd as the secolld v<.tltle ()r illstantiate- flavor.

Notc that default values in the illil-plist can come from the :default-init-·p!ist option to
defflavor. Sec page 265.

! f the send-illit-message-p argument is supplied and llon"nil, an :init message is sent to the
newly-created instance, with one argument, the inil-plisl. get can be used to extract
options from this property-list. Each flavor that needs initializntion can contribute an :init
method, by defining a daemon.

If the area argument is specified, it is the number of an area in which to cons the
instance; otherwise it is consed in the default area.

defwrapper Macro
This is hairy and if you don't understand it you should skip it.

Sometimes the way the flnvor system combines the methods of ditferent flavors (the
daemon system) is not powerful enough. In that cnse defwrapper can be used to define a
macro which expands into code which is wrapped around the invocation of the methods.
This is best explained by an example; suppose you needed a lock locked during the
processing of the :foo message to the bar navor, which tilkes two arguments, nnd you
have a lock-frobboz special-form which knows how to lock the lock (presumably it
generates an unwind-protect). locl<-frobboz needs to sec the first argument to the
message; perhaps that tells it what sort of operation is going to be pcrfonTIed (read or
write).

DSK:LMMAN;FLAYOR 70 16-MAR-81

Lisp Machine Manual 261

(defwrapper (bar :foo) ((argl arg2) . body)
'(.lock-frobboz (self argl)

. ,body»

Flavor Functions

The use of the body macro-argument prevents the defwrapper'ed macro from knowing
the exact implementation and allows several defwrappers from different flavors to be
combined properly. .

Note well that the argument variables, arg1 and arg2, arc not referenced with commas
before them. These may look like defmacro "argument" variables, but they are not.
Those variables are not bound at the time the defwrapper-deflned macro is expanded and
the back-quoting is done: rather the result of that macro-expansion and back-quoting is
code which, when a message is sent, will binu those variables to the arguments in the
message as local variables of the combined method.

Consider another example. Suppose you thought you wanted a :before daemon, but
found that if the argument was nil you· needed to return from processing the message
immediately, without executing the primary method. You could write a wrapper such as

(defwrapper (bar : foo) ((arg 1) . body)
'(cond ((null argl» ;00 nothing if argl is nil

(t before-code
. ,body»)

Suppose you need a variable for communication among the daemons for a particular
message; perhaps the :arter uaernolls neeu tu know what the primary method did, and it
is something that cannot be easily deduced from just the arguments. You might usc an
instance vaJiable for this, or you might create a special variable which is bound during
the processing of the message and used free by the methods.

(defvar *communication*)
(defwrapper (bar :foo) (ignore. body)

'(let ((*communication* nil»
. ,body»

Similarly you might want a wrapper which puts a ·catch around the processing of a
message so that anyone of the methods could throw out in the event of an unexpected
condition.

If you change a wrapper, the change may not take effect automatically. You must use
recompile-flavor with a third argument of nil to force the effect to propagate into the
compiled code which the system generates to implement the flavor. The reason for this is
that the flavor system cannot reliably tell the difference between reloading a file containing
a wrapper and really redefining the wrapper to be different, and propagating a change to
a wrapper is expensive. [fhis may be fixed in the future.]

Like daemon methods, wrappers work in outside-in order; when you add a defwrapper
to a flavor built on other flavors, the new wrapper is placed outside any wrappers of the
component flavors. However, all wrappers happen before allY daemons happen. When
the combined method is built, the calls to the before-daemon methods, primary methods,
and after-daemon methods are all placed together, and then the wrappers are wrapped
around them. Thus, if a component flavor defines a wrapper, methods added by new
flavors will execute within that wrapper's context.

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

Flavor Functions 262 Lisp Machine Manual

undafmethod Afacro
(undefmet'hod (flavor :before :message))
removes the method created by
(defmethod (flavor :before :message) (args) ...)

To remove a wrapper, use undefmethod with :wrapper as the method type.

self Variable
When a message is sent to an object, the variable self is automatically bound to that
object, for the benefit of methods which want to manipulate the object itself (as opposed
to its instance variables).

funca 11- se If message arguments ...
When self is an instance or an entity, (funcall-self args ...) has the same effect as
(funcall self args ...) except that it is a little faster since it doesn't have to re-establish the
context in which the instance variables evaluate correctly. If self is not an instance (nor
an "entity", see section 11.4, page 14S), funcall-self and funcall self do the same thing.

When self is an instance, funcall-self will only work correctly if it is used in a method
or a funcrion, wrapped in a declare-flavor-instance-variables, that was called (not
ncces!)arily directly) n'oll1 a method. Otherwise the instance-\'ariablc~; will not be already
set up.

1 ax p r ' fu n ca 11- s elf messageargul1Iellls... list-afarguments
This function is t\ cross between lexpr-ful1call and funcall-self. When self is an illstance
or an entily, (Iexpr-funcall-self args ...) has the same effect as (lexpr-funcall self args ...)
except that it is a little faster since it doesn't have to re-establish the context in which the
instance variables evaluate correctly. If self is not an instance (nor an "entity", see
section 11.4, page 148), lexpr-funcall-self and lexpr-funcall do the same thing.

dec 1 are-fl avor- i nstance-variab las Macro
Sometimes you will write a function which is not itself a method, but which is to be
called by methods and wants to be able to access the instance variables of the object self.
The form

(dec 1 are-f 1 avor- ins tance- v ar i ab 1 e s (flavor-name)
junction-definition)

surrounds the jUllction-definition with a declaration of the instance variables for the
specified flavor, which wi!! make them accessible by name. Currently this works by
declaring them as special variables, but this implementation may be changed in the future.
Note that it is only legal to call a function defined this way while executing inside a
method for an object of the specified flavor, or of some flavor built upon it.

recompi 1 a-fl avor flavor-nome &optional single-message (use-old-combined-methodst)
(du-dependents t)

Updates the internal data of the flavor and any flavors that depend on it. If single
II/essage is supplied non-nil. only the methods for that message are changed. The system
does this when you define a new method that did not previously exist. If IIse-old
combined-methods is t, then tlw existing combined metllod functions will be used if
possible. New ones will only be generated if the set of methods to be called has changed.
This is tile default. If lIse-old-coll1billed-melhads is nil, automatically-generated functions to
call multiple metllods or to contain code generated by wrappers will be regenerated

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

Lisp Machine Manual 263 Flavor Functions

unconditionally. If you change' a wrapper, you must do recompile-flavor with third
argument nil in order to make the new wrapper take effect. If do-dependents is nil, only
the specific flavor you specified will be recompiled. Normally it and all flavors that
depend on it will be recompiled.

recompile-flavor only affects flavors that have already been compiled. Typically this
means it affects flavors that have been instantiated, but does not bother with mixins (see
page 268).

comp i 1 a-fl avor-methods Macro
The form (compile-flavor-methods flavor-nall1e-] flavor-name-2 ...), placed in a file to be
compiled, will cause the compiler to include the automatically-generated combined
methods for the named flavors in the re~;ulting qfasl file, provided all of the necessary
flavor definitions have been made. Furthermore, when the qfasl file is loaded, internal
data structures (such as the list of all methods of a l1avor) will get generated.

This means that the combined methods get compiled at compile time, and the data
structures get generated at load time, rather than both things happening at run time. 'Illis
is a very good thing to use, since the need to invoke the compiler at run-time makes
programs that use flavors slow the first time they are run. (The compiler will still be
called if incompatible changes have been made, such as addition or deletion of methods
that must be called by a combined method.)

You should only liSC compile-flavor-methods for flavors that are going to be
instantiated. Fur a flavur lhat will never be instanliated (that is, a flavor that only serves
to be a component of other flavors that actually do get instantiated), it is a complcte
wastc of time.

The compile-flavor-methods forms should bc compiled after all of the information
needed to create the combined methods is available. You should put these forms after all
of the definitions of all relevant flavors, wrappers, and methods of all components of the

. flavors mcntioned.

When a compile-flavor-methods form is seen by the interpreter, the combined methods
are compiled and the internal data stmctures are generated.

gat-handler-for object message
Given an object and a message, will return that object's method for that message, or nil
if it has nonc. When object is an instance ofa flavor, this function can be useful to find
which of that flavor's components supplies the method. If you get back a combined
method, you can use the List Combined Methods editor command (page 275) to find out
what it does.

This function can be used with other things than flavors, and has an optional argument
which is not relevant here and not documented.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Demavor Options 264 Lisp Machine Manual

fl avor -811 OWS - i n it - keyword- p flaviwflall1e keYlVord
Returns non-nil if the flavor named flal'or-name allows keyword in the init options when it
is instantiakd, or nil if it docs not. The non-nil value is the name of the component
flavor which contributes the support of that keyword.

symeval-in-instance instance symbol &optional no-error-p
This function is used to find the value of an instance variable inside a particular instance.
Ills/alice is the instance to be examined, and symbol is the instance variable whose value
should be returned. If there is no such instance variable, an error is signalled, unless 110-

error-p is non-nil in which case nil is returned.

set-in-instance ills/once symbol value
This function is used to alter the value of an instance variable inside a particular instance.
Instance is the insrance to be altered, _\JlIlbvl is the instance variable whose value should
be set, and vallie is the new value. If there is no such instance variable, an error is
signalled.

locate-in-instance installce symbol
Returns a locative pointer to the cell inside ills/ance which holds the value of the instance
variable named sYlI/bol.

describe--fl avor flal'ur-name
This function pi int:; out descriptive information ahoU[a flavor; it is self-explanatory. An
important thing it tells you that can be hard to figure out yourself is the combined list of
compollent Ibvors; this list is wl,at is primed after lhc phrase "and directly or indirectly
depends on".

si :*flavor--compilations* Variable
This variable contaills a history of when the flavor mechanism invoked the compiler. It is
a list; clements toward the front of the list represent more recent compilations. Elements
arc typically of the form

_ (: me th ad flavor-name type message-name)
and type is typically :combined.

You may setq this variable to nil at any time; for instance before loading some files that
you suspect may have missing or obsolete compile-flavor-methods in them.

20.9 Defilwt'or Options

There are quite a few options to defflavor. They arc all described here, although some are
for very specialized purposes and not of interest to most users. Each option can be written in two
forms; either the keyword by itself, or a list of the keyword and "arguments" to that keyword.

Several of these options declare things about instance variables. These options can be given
with arguments which arc instance variables, or without any arguments in which case they refer to
all of the instance variables listed at the top of the defflavor. This is /lot necessarily all the
instance variables of the componet'lt flavors; just the ones mentioned in this flavor's defflavor.
When arguments are given, they must be instance variables that were listed at the top of the
clefflavor; otherwise they are assumed to be misspelled and an error is signalled. It is legal to
declare things about instance variables inherited from a component flavor, but to do so you must

DSK:LMMAN;FLAYOR 70 16-MAR-81

Lisp !V1achinc Manual 265 , Demavor Options

list these instance variables explicitly in the instance variable list at the top of the defflavor.

:gettable- instance-variables
Enables automatic generation of methods for getting the values of instance variables. The
message name is the name of the variable, in the keyword package (Le. put a colon in
front of it.)

:settable-instance-variables
Enables automatic generation of methods for setting the values of instance variables. The
message name is ":set-" followed by the name of the variable. All settable instance
\'arbbles are also automatically made getlable and initable.

:initable- instance -variables
The instance variables listed as arguments, or all instance variables listed in this defflavor
if the keyword is given alone. are made illitable. This means that they can be initialized
through use of a keyword (a colon tollowed by the name of the variable) as an init-option
argument Lo make-instance.

:init- keywords
The arguments are declared to be keywords in the initialization property-list which are
processed by this flavor's :init methods. The system uses this for error-checking: before
the system sends the :init message, it makes sure that all the keywords in the init-plist are
either initable-instance-variablcs, or clements of this list. If the caller misspells a keyword
Of otherwise lIses a keyword that no component flavor handles, this feature will signal an
error. When you write a :init handler that accepts some keywords, they 5hould be listed
in the :init - keywords option uf the flavor.

:default-init- plist
The arguments are alternating keywords and value forms, like a property-lit>t. When the
flavor is instantiated. these properties and values are put Into the inir-plist unless already
present. This allows one component Havor to dc'tault an option to another component
flavor. The value forms arc only evaluated when and if thcy are used. For example,

(:default-init-plist :frob-array
(make-array IOO)}

would provide a default "frob array" for any instance for which the user did not provide
one explicitly.

:required-instance-variables
Declares that any flavor incorporating this one which is instantiated into an object must
contain the specified instance variables. An error occurs if there is an attempt to
instantiate a flavor that incorporates this one if it does not have these in its set of instance
variables. Note that this option is not one of those which checks the spelling of its
arguments in the way described at the start of this section (if it did, it would be useless).

Required instance variables may be freely accessed by methods just like normal instance
variables. The difference between listing, instance variables here and listing them at the
front of the defflavor is that the latter declares that this flavor "owns" those variables and
will take care of initializing thcm, while the fonner dcclares that this navor depends on
those variables but that some other flavor must be provided to manage them and whatever
features they imply.

:required - methods
The arguments are names of messages which any flavor incorporating this one must
handle. An error occurs if there is an attempt to instantiate such a flavor and it is lacking

DSK:LMMAN;FLA VOR 10 16-MAR-81

DefHavor Options 266 Lisp Machine Manual

a method for one of these messages. Typically this option appears in the defflavor for a
base flavor (sec page 268). Usually this is used when a base flavor does a funcall-self
(page 262) to send itself a message that is not handled by the base flavor itself; the idea
is that the base flavor will not be instantiated alone, but only with other components
(mixins) that .do handle the message. This keyword allows the error of having no handler
for the message be detected when the flavor is defined (which usually means at compile
time) rather than at run time.

:included-flavors
The arguments arc names of flavors to be included in this flavor. The difference between
declaring flavors here and declaring them at the top of the defflavor is that when
component flavors are combined, all the included flavors come after all the regular flavors.
Thus included fla\Ors act like defaults. For an example of the use of included flavors,
consider the ship exmnple given earlier. and suppose we want to define a relativity-mixin
which increases the mass dependent on the speed. We might write, .

(defflavor relativity-mixin () (moving-object»
(defmethod (relativity-mixin :mass) ()

(II ~ass (sqrt (- 1 (A (II (funcall-self ':speed)
speed-of-light)

2»»).
but this would lose because any flavor that had relativity- mixin as a component would get
moving-object right after it in its component list. As a base flavor. moving-object
should be last in the list of components so that other components mixed in can replace its
methods and so that daemon methods combine in the right order. So instead we write,

(defflavor relativity-mixin () ()
(:included-flavors moving-object)

which allows relativity- mixin's methods to access moving - object instance variables such as
mass (the rest mass), but does not specify a place for moving-object in the list of
components. (Actually it puts it at the end, where it will usually be eliminated as a
duplicate, unless some other component flavor explicitly mentions the included flavor as a
component.)

:no-vanilla-flavor
Unless this option is specified, si:vanilla-flavor is included (in the sense of the
:included-fJavors option). vanilla-flavor provides some default methods for the :print-.
self, :describe, :which-operations, :get-handler-for, :eval-inside-yourself, and
:funcall-inside-yourself messages. See section 20.11, page 269.

:default - handler
The argument is the name of a fimction which is to be called when a message is received
for which there is no method. It will be called with whatever arguments the instance was
called with, including the message name; whatever values it returns will be returned. If
this option is not specified on any component flavor, it defaults to a function which will
signal an error.

:ordered - instance -variables
This option is mostly for esoteric internal system uses. The arguments are names of
instance variables which must appear first (and in this order) in all instances of this flavor,
or any flavor depending on this flavor. This is Llsed for instance variables which are
specially known about by microcode, and in connection with the :out:3ide-accessible
instance-variables option. If the keyword is given alone, the arguments default to the
list of instance variables given at the top of this defflavor.

DSK:LMMAN;FLA VOR 70 16-MAR-81

Lisp Machine Manual 267 Deffiavor Options

:outside - accessible - instance-variables
The argumt'nts are instance variables which are to be accessible from "outside" of this
object, that is from functions other than methods. A macro (actually a defsubst) is
defined which takes an object of this flavor as an argument and returns the value of the
instance variable; setf may be used to set the value of the instance variable. The name
of the macro is the name of the flavor concatenated with a hyphen and the name of the
instance variable. These macros are similar to the accessor macros created by defstruct
(see chapter 19, page 226.)

This feature works in two different ways, depending on whether the instance variable has
been declared to have a fixed)Iot in all instances, via the :ordered -instance-variables
option.

If the variable is not ordered, the position of its value cell in the instance will have to be
computed al. run time. This takes noticeable time, although less than actually sending a
message would take. An error will be signalled if the argument to the accessor macro is
not an instance or is an instance which does· not have an instance variable with the
appropriate name. However, there is no error check that the flavor of the instance is the
flavor the accessor macro was defined for, or a flavor built upon that flavor. This error
check would be too expensive.

rf the variable is ordered, the wmpiler will cllmpile a call to the accessor macro into a
subprimilive which simply accesses that variable's assigned slot by number. This
suhprimitive is only 3 or 4 times slower than car. The only error-checking performed Is
to JIIake sure that tile argument is really an instance and is really big enough [() contain
that slot. There is no check that the accessed slot really bchlngs to an instance variable of
the appropriate name. Any functions that use these accessor macros will have to be
recompiled if the number or order of instance variables in the flavor is changed. The
system will not know automatically to do this recompilation. If you aren't very careful,
you may forget to recompile something, and have a very hard-lo-find bug. Because of
this problem, and because using these macros is less elegant than sending messages, the
use of this option is discouraged. In any case the use of these accessor macros· should be
confined to the module which owns the flavor, and the "general public" should send
messages.

:accessor-prefix
Normally the accessor macro created by the :outside-accessible-instance-variables
option to access the flavor Is instance variable l' is named fl'. Specifying (:accessor
prefix get$) would cause it to be named get$l' instead.

:select - method - order
This is purely an efficiency hack due to the fact that currently the method-table is
searched linearly when a message is sent. The arguments are names of messages which
are frequently used or for which speed is important. Their methods are moved to the
front of the method table so that they arc accessed more quickly.

:method -combination
Declares the way that methods from different flavors will be combined. Each "argument"
to this option is a list (type order messageJ message2 ...). M essageJ, message2, etc. are
names of messages whose methods are to be combined in the declared TIlshion. type is a
keyword which is a defined type of combination; see section 20.12, page 270. Order is a
keyword whose interpretation is up to 1}1Je; typically it is either :base-flavor-first or

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

Flavor Families 268 Lisp Machine Manual

:base -flavor-last.

Any component of a flavor may specify the type of method combination to be used for a
particular message. If no component specifies a type of method combination, then the
default type is used, namely :daemon. If more than one component of a flavor specifics
it, then they must agree on the specification, or else an error is signalled.

:documentation
The list of arguments to this option is remembered on the flavor's property list as the
:documentation property. The (loose) standard for what can be in this list is as follows;
this may be extended in the future. A string is documentation on what the flavor is for:
this may consist of a brief overview in the first line, then several paragraphs of detailed
documentation. A symbol is one of the following keywords:

:mixin A flavor that you may wallt to mix with others to provide a useful
feature.

:essential-mixin A flavor that must be mixed in to all flavors of its class, or
inappropriate behavior will ensue.

:Iowlevel-mixin A mixin Llsed only to build other mixins.

:combination /\ combination of flavors for a specific purpose.

:special - purpose ;\ flavor used for some internal or kludgey PllIlJOS(, by a particular
program, which is not intended for general use.

This Jo.;umentation can be viewed with the uescribe-flavor fUllction (sct.! page 264) or
the editor's Meta-X Describe Flavor command (see page 275).

20.10 Flavor Families

The following organization conventions are recommended for all programs that use flavors.

A base flavor is a flavor that defines a whole family of related flavors, all of which will have
that base flavor as one of their components. Typically the base flavor includes things relevant to
the whole family, such as instance variables, :required-methods and :required-instance
variables declarations, default methods for certain messages, :method -combination declarations,
and documentation on the general protocols and conventions of the family. Some base flavors are
complete and can be instantiated, but most are not instantiatable and merely serve as a base upon
which to build other flavors. The base flavor for the faa family is often named basic-jiJO.

A lI1ixin flavor is a flavor that defines one particular feature of an object. A mixin cannot be
instantiated, because it is not a complete description. Each module or feature of a program is
defined as a separate mixin: a usable flavor can be constructed by choosing the mixins for the
desired characteristics and combining them, along with the appropriate base flavor. l3y organizing
your tlavors this way, you keep separate features ill separate flavors, and you can pick and choose
among them. Sometimes the order of combining mixins does not matter, but orten it does,
because the order of flavor combination controls the order in which daemons are invoked and
wrappers arc wrapped. Such order dependencies would be documented as part of the conventions
of the appropriate family of flavors. A mixin flavor that provides the mumble feature is often
named mumble - mixin.

DSK:LMMAN;FLAYOR 70 16-MAR-81

I jsp M<lchine Manual 269 Vanilla Flavor

I f you arc wnLIng a program that uses someone else's facility to do something, using that
nlcility's flavors and methods, your program might still define its own flavors, in a simple way.
The facility might provide a base flavor and a set of mixins, and the caller can combine these in
various combinations depcnding on exactly what it wants, since the facility probably would not
providc all possihle useful combinations. Even if your priYatc flavor has cxactly the same
components as a pre-existing flavor, it can still be uscful since you can use its :default-init--plist
(see page 265) to select options of its componcnt tlavors and you can define one or two inctllOds
to customize it "just a little".

20.11 Vanilla Flavor

s i : van i 11 a-fl avor Flavor
Unless you specify otherwise (with the :no-vanilia-flavor option to defflavor), evcry
flavor iI/eludes the "vanilla" flavor, which has 110 instance variables but providcs some
basic lIseful methods. Thus, nearly every instancc may be assumed to handle thc
following mcssagcs.

:print-self stream prindepth slashify-p
The object should output its printed-representatiim to a stream_ The printer scnds this
message when it encounters an instance or <'lIi entity. The ilrgumcnts arc the stream, thc
Clirrent depth ill list-structure (for comparison with prinlevel), and whether slashification is
cnabled (prin 1 vs prine: see page 280). Vanilla-flavor ignores the last two arguments,
anJ print:; sllmething like #(;1al'or-II11lllf aClal-address). The flL1lJof~!tallle tells you what
type Ilf object it is, and the (lclal-address allows you to tell dilTercnl objeClg apart
(provided the garbage collector doesn't mov..:! them behind your back).

:dElscriba
Thc object should dcscribe it)elf, printing a description onto the standard-ou\put stream.
The describe function sends this message when it ellcounters an instance or an entity.
Vanilla-flavor outputs the object, the name of its flavor, and the names and valucs of its
instance-variables, in a reasonable format

:which-operat1ons
The object should rcturn a list of the messages it can handle. Vanilla-flavor generates the
list once per flavor and remembers it, minimizing consing and compute-time. If a new
mcthod is added, the list is regencrated the next time someone asks for it.

: get-handl er-for operation
The object should rcturn the method it uses to handle operation. If it has no handler for
that messagc, it should return nil. This is like the get-handler-for function (see page
263), but, of course, you can only use it on objects known to accept messages.

:eval-inside-yourself fonn
The argumcnt is a form which is evaluated in an environment in which special variables
with the names of the instance variables are bound to the values of the instance variables.
It works to setq one of these spccial variables; the instance variable will be modified.
This is mainly intended to bc used for debugging. An especially useful valuc of foml is
(break t); this gets you a Lisp top level loop inside thc environment of the methods of
the flavor, allowing you to examine and alter instance variables, and run functions tlIat
use the instance variablcs.

DSK:LMMAN;FLAVOR 70 16-MAR-Sl

Method Combination" 270 Lisp Machine Manual

: funca 11- ins i de -you rs elf JUIIClioll &rest args
jilllctio/l is applied to args in an environment in which special variables with the names of
the instance variables arc bound to the values of the instance variables. It works to setq
one of these special variables; the instance variable will be modified. This is mainly
intended to be used for debugging.

20.12 Method Combination

As was mentioned earlier, there arc many ways to combine methods. The way we have seen
is called the :daemon type of combination. To use one of thc others, you use the :method
combination option to defflavor (see page 267) to say that all the methods fbr a certaill message
to this flavor, or a flavor built on it. should be combined in a ccrtain way.

The f!lllowing types of method combination arc supplied by the system. It is possible to
define your OWII types of method combination; fi)r information on this, sec the code. Note that
for most types of method combination other than :daemon you must define the ordcr in which
the methods are combined. eithcr :base-flavor-first or :base-flavor-Iast. In this context, base
flavor means the last clement of the flavo(s fully-expanded list of components.

Which method typc kcywords are all(w.'cd depends on the typc of mcthod combination
selccted. Many of them allow only untyped methods. There are also certain method types used
for in ternal purposes.

:daemon This is the dct~lI)t type of method combination. All the :before methods are
called, then the primary (ulltyped) method for tile outermost navor that has one is
called. then all the :utter methods arc called. Thc value returned is the value of
tile primary method.

:progn All the methods are called, inside a progn special foim. No typed metllods are
allowed. 'Illis means that all of the methods are called, and the result" of the
combined method is whatever tile last of the methods returns.

:or All the methods are called, inside an or special fOlm. No typed methods are
allowed. This means that each of the methods is called in turn. If a method
returns a non-nil value. that value is returncd and none of the rest of the
methods are called; otherwise, the next mcthod is called. In othcr words, each
method is given a chance to handle the message; if it doesn't want to handle the
message, it should return nil, and the next method will get a chance to try.

:and All the methods are called, inside an and special form. No typed methods are
allowed. The basic idea is much like :or; see above.

:Iist Calls all the methods and returns a list of their returned values. No typed
methods are allowed.

:inverse-list CaJ1s each melhod with one argument; these arguments are sllccessive clements of
the list which is the sole argument to the messagc. No typed methods arc
allowed. Returns no particular vallie. If tile result of a :Iist-combined message is
sent back with an :inverse-list-combined message, with the same ordering and
with corresponding method definitions, each component flavor receives the value
which came from that flavor.

DSK:LMMAN;FLA VOH. 70 16-MAR-Sl

Lisp Machine Manual 271 Method Combination

Here is a table of all the method types used in the standard system (a user can add more, by
defining new forms of method-combination).

(no type) If no type is given to defmethod, a primary method is created. This is the most
common type of method.

:before
:after

:default

:wrapper

:combined

These are used for the before-daemon and after-daemon methods used by
:daemon method-combination.

If there are no untyped methods among any of the flavors being combined, then
the :default methods (if any) are treated as if they were untyped. If there arc any
untyped methods, the :default mcthods are ignored.

Typically a base-flavor (see page 268) will define some default methods for certain
of the messages understood by its family. When using the default kind of
method-combination these default methods will not be called if a flavor provides
its own method. But with certain strange forms of method-combination (:or for
example) the base-flavor uses a :default method to achieve its desired effect.

Used internally by defwrapper.

Used internally for automatically-generated combillcd methods.

The most common form of combination is :daemon. One thing may not be dear: when do
you lise a :before daemon and when do you usc an :after daemon? I n some ca~;es the primary
method performs a clearly-defined action and the choice is obvious: :before :Iaunch -rocket puts
in the fuel, and :after :Iaunch -- rocket turns on the radar tracking.

In other cases the choice can be less obviolls. Consider the :init message, which is sent to a
newly-created object. To decide what kind of daemon to lise, we observe the order in which
daemon methods are called. First the :before daemon of the highest level of abstraction is called,
then :before daemons of sllccessively lower levels of abstraction are called, and finally the :before
daemon (if any) of the base flavor is called. Then the primary method is called. After that, the
:after daemon for the lowest level of abstraction is called, followed by the :after daemons at
successively higher levels of abstraction.

Now, if there is no interaction among all these methods, if their actions are completely
orthogonal, then it doesn't matter whether you use a :before daemon or an :after daemon. It
makes a difference if there is some interaction. The interaction we are talking about is usually
done through instance variables; in general, instance variables are how the methods of different
component flavors communicate with each other. In the case of the :init message, the init-piist
can be used as well. The important thing to remember is that no method knows beforehand
which other flavors have been mixed in to form this flavor; a method cannot make any
assumptions about how this flavor has been combined, and in what order the various components
are mixed.

This means that when a :before daemon has run, it mllst assume that none of the methods
for this message have run yet. But the :after daemon knows that the :before daemon for each of
the other flavors has nm. So if one flavor wants to convey information to the other, the first one
should "transmit" the information in a :before daemon, and the second one should "receive" it in
an :after daemon. So while the :before daemons are ntn, information is "transmitted"; that is,
instance variables get set lip. Then, when the :after daemons are mn, they can look at the

DSK:LMMAN;FLA vOR 70 16-MAR-81

Implementation of Flavors 272 Lisp Machine Manual

instance variables and act on their values.

In the case of the :init method, the :before daemons typically set lip instance variables of the
object based on the init-plist, while the :after daemons actually do things, relying 011 the fact that
all of the instance variables have been initialized by the time they are called.

Of course, since flavors are not hierarchically organized, the notion of levels of abstraction is
not strictly applicable. However. it remains a useful way of thinking about systems.

20.13 Implementation of Flavors

An object which is an instance of a flavor is implemented using the data type dtp-instance.
The i'epresentatiol1 is a structure whose first word, tagged with dtp-instance-header. points to a
structure (known to the microcode as an "instance descriptor") containing the internal data for the
flavor. The remaining words of the structure arc value cells containing the values of the instance
variables. The instance descriptor is a defstruct which appears on the si:f1avor property of the
flavor name. It contains. among other things, the name of the flavor. the size of an instance, the
table of methods for handling messages, and infi)rmation fbr accessing the instance variables.

cJefflnlJDr creates such a data structure tor each flavor. and links them togethcr according to
the dependency relationships between flavors.

A message is sent to an instance simply by calling it as a function, with the first argument
bcing the message keyword. The microcode binds self to the object. binds the instaiice variables
(as special closure vdriablcs) to the value cells in the instance. and calls a cltp-select-method
associated with Ihe flavor. This dtp-select-method associates the message keyword to the actual
fUllction to be called. If there is only one method, this is that method, otherwise it is ,ill

automatically-generated fllnction. called the combined method (see page 256), which calls the
appropriate methods in· the right order. If there are wrappers, they are incorporated into this
combined method.

The function-specifier syntax (:method flavor-name optional-method-type message-name) is
understood by fdefine and related functions. It is preferable to refer to methods this way rather
than by explicit use of the flavor-method-symbol (see page 259).

20.13.1 Order of Det1nition

There is a certain amount of freedom to the order in which you do defflavor's, defmethod's,
and defwrapper's. This freedom is designed to make it easy to load programs containing complex
flavor stnlctures without having to do things in a certain order. It is considered important that
not all the methods for a flavor need be defined in the same file. Thus the part.itioning of a
program into files can be along modular lines.

The rules for the order of definition arc as follows.

nefore a method can be defined (with defmethod or defwrapper) it') flavor must have been
defined (with defflavor). This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be
compiled.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Lisp IYlachine Manual 273 Implementation of Flavors

When a flavor is defined (with defflavor) it is not necessary that all of its component flavors
be defined already. This is to allow defflavor"s to be spread between files according to the
modularity of a program, and to provide for mutually-included flavors (see the :included-flavors
defflavor option, page 266). Methods can be defined for a flavor some of whose component
flavors are not yet defined, however in certain cases compiling those methods will produce a
spurious warning that an instance variable was declared special (because the system did not realize
it was an instance variable). In the current implementation these warnings may be ignored,
although that may not always be true in the future.

The methods automatically generated by the :gettable-instance-variables and :settable
instance-variables defflavor options (see page 265) are generated at the time the defflavor is
done.

The first time a flavor is instantiated, the system looks through all of the component flavors
and gathers various information. At this point an error will be signalled if not all of the
components have been defflavor'ed. This is also the time at which certain other errors are
detected, for instance lack of a required instance-vari,lble (see the :required - instance-variables
defflavor option, page 265). The combined methods (sec page 256) are generated at this time
also, unless they already exist. They will already exist if compile-flavor-methods was used, but
if those methods are obsolete because of changes made to component flavors since the
compilalion, new combined melhods will be made.

After a flavor has been instantiated, it is possible to make changes to it. These changes will
affect all existing instances if pO$sib1c. This is Jescribcd mure fully immediately below.

20.13.2 Changing a Flavor

You can change anything about a flavor at any time~ You can change the flavor's general
attributes by doing another defflavor with the same name. You can add or modify methods by
doing defmethod's. If you do a defmethod with the same flavor-name, message-name, and
(optional) method-type as an existing method, that method is replaced with the new definition.
You can remove a method with undefmethod (see page 262).

These changes will always propagate to all flavors that depend upon the changed flavor.
Nonmilly the system will propagate the changes to all existing instances of the changed flavor and
all flavors that depend on it. However, this is not possible when the flavor has been changed so
drastically that the old instances would not work properly with the new flavor. This happens if
you change the number of instance variables, which changes the size of an instance. It also
happens if you change the order of the instance variables (and hence the storage layout of an
instance), or if you change the component flavors (which can change several subtle aspects of an
instance). The system does not keep a list of all the instances of each flavor, so it cannot find
the instances and modify them to conform to the new flavor definition. Instead it gives you a
warning message, on the error-output stream, to the effect that the flavor was changed
incompatibly and the old instances will not get the new version. The system leaves the old flavor
data-structure inLlct (the old instances will continue to point at it) anel makes a new one to
contain the new version of the flavor. If a less drastic change is made, the system modifies the
original flavor data-structure, thus affecting the old instances that point at it. However, if you
redefine methods in such a way that they only work for the new version of the flavor, then trying
to usc those methods with the old instances won't work.

DSK:LMMAN;FLAVOR 70 16-MAR-81

Entities 274 Lisp Machine Manual

One exception to this is that changes to clefwrapper's are never automatically propagated.
This is because doing so is expensive and the system cannot tell whether you really changed it or
just redefined it to be the same as it was. (Note that the initial definition of a wrapper is
propagated, but redefinitions of it are not.) See the documentation of defwrapper for more
details.

20.1 3.3 Restrictions

There is presently an implementation restriction that when using daemons, the primary
method may return at most three values if there arc any :after daemons. This is because the
combined method needs a place to remember the values while it calls the daemons. This will be
fixed some day.

r n this implementation, all message names must be in the keyword package, in order for the
flavor-method-symbols (sec page 259) to be uniquc, and for various tools in the editor to work
correctly.

20.14 Entities

An elltit)' is a Lisp object; lhe entity is one of the prtlllltI\'e data types provided by the Lisp
fvlachillc sys.tem (the data-type function (see page 158) will return cltp-entity if it is given an
entity). Entilies arc just like closures: they have all the same attributes and functionality. The
only difference between the two primitive types is their datI type: entities are ckarly
distinguished from closures because they have a different data type. The re<1son there is an
important difference between them is that various parts of the (not so primitive) Lisp system treat
them differently. The Lisp functions that deal with entities are discussed in section 11.4, page
148.

A closure is simply a kind of function, but an entity is assumed to be a message-receIVIng
object. Thus. when the Lisp printer (see section 21.2.1, page 280) is given a closure, it prints a
simple textual representation, but when it is handed an entity, it sends the entity a :print-self
message, which the entity is expected to handle. The describe function (see page 448) also sends
entities messages when it is handed them. So when you want to make a message-receiving object
out of a closure, as described on page 251, you should use an entity instead.

Usually there is no point in using entities instead of flavors. Entities were introduced into
Lisp Machine Lisp before flavors were, and perhaps they would not have been had flavors already
existed. Flavors have had considerably more attention paid to efficiency and to good tools for
using them.

Entities are created with the entity function (sec page 148). The function part of an entity
should usually be a function created by defselect (see page 134).

DSK:LMMAN;FLA VOR 70 16-MAR-81

Lisp M,lchine Manual 275 Useful Editor Commands

20.15 Useful Editor Commands

Since we presently lack an editor manual. this section briefly documents some editor
commands that are useful in conjunction with flavors.

meta-.
The meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit Definition can find the definition of it method if you give
(: me tho d flavor type message)

as the function name. The keyword :method may be omitted. Completion will occur on
the flavor name and message name as usual with Edit Definition.

meta - X Describe Flavor
Asks fi)r a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be lIsed to aid in guessing the name of a flavor). The display produced is
mouse sensitive where there are names of flavors and of mcthods; as usual the right-hand
mouse button gives you a menu of operations and the left-hand mouse button docs the
most common operation. typically positioning the editor to the source code for the thing
you are pointing at

meta - X List Methods
meta- X Edit Methods

Asks you for a message in the mini-buffer and lists all the flavors which havc a method
for that message. You may type in the message nallie, point to it with the mouse, or let
it default to the message which is being sent by the Lisp form the cursor is inside of.
List Methods produces a mouse-sensitive display allowing you to edit selected methods or
just see which flavors have methods, while Edit Methods skips the display and proceeds
directly to editing the methods. As usual with this type of command. the editor
command control-. is redefined to advance the editor cursor to the next method in the
list, reading in its source file if necessary. Typing control-. white the display is on the
screen edits the first method.

meta - X List Combined Methods
meta-X Edit Combined Methods

Asks you for a message and a flavor iri two mini-buffers and lists all the methods which
would be called if that message were sent to an instance of that flavor. You may point to
the message and flavor with the mouse, and there is completion for the flavor name. As
in List/Edit Methods, the display is mouse sensitive and the Edit version of the command
skips the display and proceeds directly to the editing phase.

List Combined Methods can be very useful for telling what a flavor will do in response to
a message. It shows you the primary method, the daemons, and the wrappers and lets
you see the code for all of them; type control-. to get to successive ones.

DSK:LMMAN;FLA VOR 70 16-MAR-81

The [f0 System 276 Lisp Machine Manual

21. The I/O System
The Lisp Machine provides a powerful and flexible system for performing input and output to

peripheral devices. To allow device independent IIO (that is, to allow programs to be written in
a general way so that the program's input and output may be connected with any device), the
Lisp Machine I/O system provides the concept of an "IIO stream". What streams are, the way
they work, and the functions to create and manipulate streams, are described in this chapter.
This chapter also describes the Lisp "[f0" operations read and print, and the printed
representation they use for Lisp objects.

21.1 The Character Set

The Lisp Machine represents characters as fixnums. The mapping between these numbers and
the characters is listed here. The mapping is similar to ASCII, but somewhat modified to allow
the LIse of the so-called SAIL extended graphics, while avoiding certain ambiguities present in
ITS. For a long time ITS treated the Backspace, Control-I-t and Lambda keys on the keyboard
identically as character code 10 octal; this problem is avoided from the start in the Lisp
Machine's mapping.

It is worth pointing out that although the Lisp machine character set is dilTerent from the
pdp-IO charactcr set. when files are transferred between Lisp machines and pdp-lO's the characters
arc automatically converted. Details of the mapping are explained below.

Fundamental characters arc eight bits wide. Those less than 200 octal (with the 200 bit oil)
and only those are printing graphics; when output to a device they arc a$sull1ed to print a
character and move the "cursor" olle character position LO the right. (All software provides for
variable-width fouts, so the term "character position" shouldn't be taken too literally.)

Characters in the range of 200 to 236 inclusive are used for special characters. Characler 200
is a "null character", which docs not correspond to any key on the keyboard. The null character
is not used for anything much; fasload uses it internally. Characters 201 through 236 correspond
to the special function keys on the keyboard such as Return and Call. The remaining characters
are reserved for future expansion.

It should never be necessary for a user or a source program to know these numerical values.
Indeed, they are likely to be changed in the future. There are symbolic names for all characters;
see below.

Most of the special characters do not normally appear in files (although it is not forbidden tor
files to contain them). These characters exist mainly to be Llsed as "commands" from the
keyboard.

A few special characters, however, are "format effectors" which are just as legitimate as
printing characters in lext files. The names and meanings of these characters are:

Return The "carriage return" character which separates lines of text. Note that the pdp-
10 convention that lines are ended by a pair of characters, "carriage return" and
"line feed", is not used.

DSK:LMMAN;IOS 155 16-MAR-Sl

Lisp Machine Manual 277 The Character Set

Page The "page separator" chmacter which separates pages of text.

Tab The "tabulation" character which spaces to the right until the next "tab stop".
Tab stops are nonnally every 8 character positions.

The space character is considered to be a printing character whose printed image happens to be
blank, rather than a fonnat effector.

In some contexts, a fixnum can hold both a character code and a font number for that
character. The following byte specifiers are defined:

%%ch-char Variable
The value of %%ch-char is a byte specifier for tile field of a fixnutn character which
holds the character code.

%%ch-font Variable
The value of %%ch -font is a byte specifier for the field of a fixllum character which
holds the font number.

Characters read in from the keyboard include a character code and control bits. A character
cannot contain both a font number and control bits, since these data are both stored in the same
bits. The following byte specifiers are provided:

%%kbd-char Variable
The value of %%kbd -char is a byte specifier for the field of a keyboard character which
holds the normal eight-bit character code.

%%kbd-control Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard character which
is 1 if either Control key was held down.

%%kbd-meta Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard character which
is 1 if either Meta key was held down.

%%kbd-super Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard character which
is 1 if either Super key was held down.

%%kbd-hyper Variable
The value of %%kbd-char is a byte specifier for the field of a keyboard, character which
is 1 if either Hyper key was held down.

This bit is also set if Control and/or Meta is typed in combination with Shift and a letter.
Shift is much easier than Hyper to reach with the left hand.

%%kbd-control-meta Variable
The value of %%kbd -char is a byte specifier for the four-bit field of a keyboard
character which contains the above control bits. The least-significant bit is Control. The
most significant bit is Hyper.

DSK:LMMAN;IOS 155 16-MAR-81

The Character Set 278 Lisp Machine Manual

The following fields arc used by some programs that encode signals from the mouse in a the
format of a character. Refer to the window system documentation for an explanation of how
these characters are generated.

%%kbd-mouse Variable
The value of%%kbd - mouse is a byte specifier for the bit in a keyboard character which
indicates that the character is not really a character, but a signal from the mouse.

%%kbd-mouse-button Variable
The vallie of %%kbd -mouse-button is a byte specifier for the field in a mouse signal
which says which hutton was clicked. The value is D. 1. or 2 for the left, middle, or
right button, respectively.

%%kbd-mouse-n-cl; cks Variable
The value of %%kbd-mouse-n-clicks is a byte specifier for the field in a mouse signal
which says how many times the button was clicked. The value is olle less than the
nllmber of times the button was clicked.

When any of the control bits (Control, Meta, Super, or Hyper) is set in conjunction with a
letter, the letter will always be upper-case. The character codes which consist of a lower-case
letter and non-zero control bits are "holes" in the character set which arc never used for anything.
Note thm when Shin is typed in conjuction with Control and/or Meta and a letter, it means
Hyper rather than Shift.

Since the contrnl bits are not part of the fllndmll(~ntal 8-bit character codes, there is no way
to express keyboard input in Lemls of simple character codes. However. there is a convention
which the relevant programs accept for encoding keyboard input into a string of characters: if a
character has its Control bit on, prefix it with an Alpha. If a character has its Meta bit on,
prefix it with a Deta. If a character has both its Control and Meta bits on, prefix it with an
Epsilon. If a character has its Super bit on, prefix it with a Pi. If a character has its Hyper bit
on. prefix it with a Lambda. To get an Alpha, Beta, Epsilon, Pi, Lambda, or Equivalence into
the string, quote it by prefixing it with an Equivalence.

When characters are written to a file server computer that normally uses the ASCII character
set to store text, Lisp Machine characters arc mapped into an encoding that is reasonably close to
an ASCII transliteration of the text. When a file is written, the characters are converted into this
encoding, and the inverse transformation is done when a file is read back. No information is lost.
Note that the length of a file, in characters, will not be the same measured in original Lisp
Machine characters as it will measured in the encoded ASCII characters. In the currently
implemented ASCII file servers, the following encoding is used. All printing characters and any
characters not mentioned explicitly here are represented as tl1emselves. Codes 010 (lambda), 011
(gamma), 012 (delta), 014 (plus-minus). 015 (circle-plus). 177 (integral), 200 through 207
inclusive. 213 (delete/vt). and 216 and anything higher. arc preceeded by a 177; that is, 177 is
used as a "quoting character" for these codes. Codes 210 (overstrike), 211 (tab), 212 (line), and
214 (page). arc converted to their ASCII cognates, namely 010 (backspace), 011 (horizontal tab),
012 (line feed), and 014 (form feed) respectively. Code 215 (return) is converted into 015
(carriage return) followed by 012 (line feed). Code 377 is ignored completely, and so cannot be
stored in files.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 279 The Character Set

000 center-dot (.) 040 space 100 @ 140 •
001 down arrow (*) 041 ! 101 A 141 a
002 alpha (a) 042 " 102 B 142 b
003 beta (In 043 # 103 C 143 c
004 and-sign (A) 044 $ 104 0 144 d
005 not-sign (~) 045 % 105 E 145 e
006 epsilon (E) 046 & 106 F 146 f
007 pi ('IT) 047 , 107 G 147 g
010 1 ambda (i\) 050 (110 H 150 h
011 gamma (y) 051) 111 I 151 i
012 delta (8) 052 0\1 112 J 152 j
013 uparrow (t) 053 + 113 K 153 k
014 plus-minus (±) 054 , 114 L 154 1
015 circle-plus (ED) 055 - 115 M 155 m
016 in fin ity (00) 056 116 N 156 n
0.17 partial delta (a) 057 / 117 0 157 0

020 left horseshoe (e) 060 0 120 P 160 P
021 right horseshoe (~) 061 1 121 Q 161 q
022 up horseshoe (n) 062 2 122 R 162 r
023 down horseshoe (U) 063 3 123 S 163 s
024 universal quantifier (V) 064 4 124 T 164 t
025 existential quantifier (3) 065 5 125 U 165 u
026 c "j r c 1 e - X (0) 066 6 126 V 166 v
027 double-arrow (&) 067 7 127 W 167 w
030 left arrow (~) 070 B 130 X 170 x
031 right arrow (-+) 071 9 131 Y 171 Y
032 not-equals (t:.) 072 132 Z 172 z
033 diamond (altmode) (~) 073 133 [173 {
034 less-or-equal (S;) 074 < 134 \ 174 I
035 greater-or-equal (:~) 075 = 135] 175 }
036 equivalence (=) 076 > 136 A 176 -
037 or (v) 077 ? 137 - 177 f
200 null character 210 overstrike 220 stop-output 230 iv
201 break 211 tab 221 abort 231 hand-up
202 clear 212 line 222 resume 232 hand-down
203 call 213 delete/vt 223 status 233 hand-left
204 terminal escape 214 page 224 end 234 hand-right
205 macro/backnext 215 return 225 235 system
206 help 216 quote 226 i i 236 network
207 rubout 217 hold-output 227 iii
237-377 reserved for the future

The Lisp Machine Cha~acter Set

DSK:LMMAN;IOS 155 16-MAR-81

Printed Representation 280 Lisp Machine Manual

21.2 Printed Representation

People cannot deal directly with Lisp objects, because the objects live inside the machine. In
order to let us get at and talk about Lisp objects, Lisp provides a represenlation of objects in the
form of printed text; this is called the printed representation. This is what you have been seeing
in the examples throughout this manual. Functions such as print prin1, and prine take a Lisp
object, and send the characters of its printed representation to a stream. These functions (and the
internal functions they call) arc known as the printer. The read function takes characters from a
stream, interprets them as a printed representation of a Lisp object. builds a corresponding object
and returns it; it and its subfutlctions are known as the reader. (Streams are explained in section
21.5.1, page 297.) .

This section describes in detail what the printed representation is for any Lisp object. and just
what read docs. For the rest of the chapter. the phrase "printed representation" will lIsually be
abbreviated as "p.r.".

21.2.1 "'hat the Printer Produces

The printed representation of an object depends on its type. In this section. we will consider
e~H.:h type of object and explain how it is printed.

Printing is done either '.'lith or without slashi/ication. The non-slashified version is nicer
looking in gellcral, but if you give it to read it won't do the right tJling. The slashified version is
carefully set lip 50 that read wm be able to read it in. 'Ille primary effects of slashification are
that special characters used with other than tJlcir nonnal meanings (e.g. a parenthesis appearing in
the name of a symbol) are prcceeded by slashes or cause tJle namc of the symbol to be enclosed
in vertical bars. and that symbols which are not from the current package gct printed out with
th~ir package prefixes (a package prefix looks like a symbol followed by· a colon).

For a fixnum or a bignuni: if thc number is negative, the printed represcntation begins with
a minus sign ("-"). Then, the value of the variable base is examined. If base is a positive
fixnum, the number is printed out in that base (base defaults to 8); if it is a symbol with a
si:prine-funetidn property, the value of the property will be applied to two arguments: minus of
the number to be printed, and the stream to which to print it (this is a hook to allow output in
Roman numerals and the like); otherwise the value of base is invalid and an error is signalled
Finally, if base equals 10. and the variable *nopoint is nil, a decimal point is printed out.
Slashification does not affect the printing of numbers.

base Variable
The value of base is a number which is the radix in which fixnums are printed, or a
symbol with a si:prine-funetion property. The initial valuc of base is 8.

*nopoint Variable
I f the valuc of *nopoint is nil, a trailing decimal point is printed when a fixnum is
printed out in base 10. This allows the numbers to be read back in correctly even if
ibase is not 10. at the time of reading. If *nopoint is non-nil, the trailing dccimal
points are suppresscd. The initial value of *nopoint is nil.

DSK:LMMAN;IOS 155 16-MAR-Sl

Lisp Machine Manual 281 Primed Representation

For a Ilonum: the printer first decides whether to usc ordinary notation or exponential
notation. If the magnitude of the number is too large or too small, such that the ordinary
notation would require an unreasonable number of leading or trailing zeroes, then exponential
notation will be used. The number is printed as an optional leading minus sign, one or more
digits, a decimal point, one or more digits, and an optional trailing exponent, consisting of the
letter "e", an optional minus sign, and the power of ten. The number of digits printed is the
"correct" number; no infimnation presell[in the Honum is lost, and no extra trailing digits are
printed that do not represent information in the flonum. Feeding the p.r. of a Honum back to the
reader is always supposed to produce an equal flonum. Flonums are always printed in decimal;
they are not affected by slashification nor by base and ·nopoint.

For a small Ilonum: the printed representation is very sirriilar to that of a flonum, except that
exponential notation is always used and the exponent is delimited by "s" rather than "e".

For a symbol: if slashification is off, the p.r. is simply the successive characters of the print
name of the symbol. If slashification is on, two changes mllst be made. First, the symbol might
require a package prefix in order that read work correctly, assliming that the package into which
read will read the symbol is the one in which it is being printed. See the section on packages
(chapter 23, page 345) for an explanation of the package name prefix. Secondly, if the p.r. would
not read in 'as a symbol at all (that is. if the print-name looks like a number. or contains special
characters), then the p.r. must have some quoting tor those characters, either by the usc of
slashes ("J") before l!ach special character, or by the usc of vertical bars ("I") around the whole
name. The decision whether quoting is required is done using the readtable (see section 21.2.6,
page 289), so it is always accurate pl"mided that read table has the sallle value when the output is
read back in as when it was printed.

For a string: if slashification is off, the p.r. is simply the successive characters of the string.
If slashification is on, the srring is printed between double quotes, and any characters inside the
string which need to be preceeded by slashes will be .. Normally these are just double-quote and
slash. Compatibly with Maclisp, carriage return is lIot ignored inside strings and vertical bars.

For an instance or an entity: if the object has ~ method for the :print-self message, that
message is sent with three arguments: the stream to print to, the current depth of list structure
(see below), and whether slashification is enabled. The object should print a suitable p.r. on the
stream. See chapter 20, page 245· for documentation on instances. Most such objects print like
"any other data type" below, except with additional information such as a name. Some objects
print only their name when slashification is not in effect (when prine'ed).

For an array which is a named structure: if the array has a named structure symbol with a
named-strueture-invoke property which is the name of a function, then that function is called
on five arguments: the symbol :print-self, the object itself, the stream to print to, the current
depth of list structure (see below), and whether slashification is enabled. A suitable printed
representation should be sent to the stream. This allows a user to define his own p.r. for his
named stmctures: more infonnation can be found in the named structure section (see page 239).
[f the named structure symbol does not have a named-strueture-invoke property, the printed
representation is like that for random data-types: a number sign and a less than sign, the named
stmcture symbol, the numerical address of the array, and a greater than sign.

Other arrays: the p.r. starts with a number sign and a less-than sign. Then the "art-"
symbol for the array type is printed. Next the dimensions of the array are printed, separated by
hyphens. This is followed by a space, the machine address of the array, and a greater-than sign.

DSK:LMMAN;IOS 155 16-MAR-81

Printed Representation 282 Lisp Machine Manual

Conses: The p.r. for conses tends to favor lists. It starts with an open-parenthesis. Then,
the car of the cons is printed, and the cdr of the COilS is examined. I f it is nil, a close
parenthesis is printed. If it is anything else but a cons, space dot space followed by that object is
printed. If it is a cons, we print a space and start all over (from tlle point after we printed the
open-parenthesis) using tllis new cons. Thus, a list is printed as an open-parentllesis, the p.r.'s of
its elements separated by spaces, and a close-parenthesis.

This is how the usual printed representations such as (a b (foo bar) c) are produced.

The following additional feature is provided for the p.r. of conses: as a list is printed, print
maintains the length of the list so far, and the depth of recursion of printing lists. If the length
exceeds the value of the variable prinlength. print will terminate the printed representation of the
list with an ellipsis (three periods) and a close-parenthesis. If the depth of recursion exceeds tlle
value or the variable prinlevel. then the list will be printed as "**". These two features allow a
kind of abbreviated printing which is more concise and suppresses detail. Of course, neither tlle
ellipsis nor the "**" can be interpreted by read, since the relevant information is lost.

pr; n 1 eve 1 Variable
prinlevel can be set to the maximum number of nested lists that can be printed before
tl}(.~ printer will give liP and just print a "**". If it is nil. which it is initially, any
number of nes[ed lists can be printed. Otherwise. the value of prinlevel mllst be a
fixllum.

prin16ngth Variable
prinlength call be set to the maxinilirn Ilurllber o[elements of a list that will be printed
before the printer will give LIp and print a "".". If it is nil. which it is initially, any
length list may be printed. Otherwise, the value of pr'inlength must be a fixllum.

For any other data type: the p.L starts with a number sign and a less-than sign ("<"), the
"dtp-" symbol for this datatype. a space, and the octal machine address of the object. Then, if
the object is a microcoded function, compiled function, or stack group, its name is printed.
Finally a greater-than sign (")") is printed.

Including the machine address in the p.r. makes it possible to tell two objects of tllis kind
apart without explicitly calling eq on them. This can be very useful during debugging. It is
important to know that if garbage collection is turned on, objects will occasionally be moved, and
therefore their octal machine addresses will be changed. It is best to shut off garbage collection
temporarily when depending on these numbers.

None of tlle p.r.'s beginning with a number sign can be read back in, nor, in general, can
anything produced by instances, entities, and named structures. Just what read accepts is the
topic of the next section.

DSK:LMtvIAN;IOS 155 16-MAR-81

Lisp Machine Manual 283 Printed Representation

21.2.2 What The Reader Accepts

The purpose of the reader is to accept characters, interpret them as the p.r. of a Lisp object,
and return a corresponding Lisp object. The reader cannot accept everything that the printer
produces; for example, the p.r.'s of arrays (other than strings), compiled code objects, closures,
stack groups etc. cannot be read in. However, it has many features which are not seen in the
printer at all, such as more flexibility, comments, and convenient abbreviations for frequently-used
unwieldy constmcts.

This section shows what kind of p.r.'s the reader understands, and explains the readtable,
reader macros, and variotls features provided by read.

In general, the reader operates by recognizing tokens in the input stream. Tokens can be self
delimiting or can be separated by delimiters sllch as whitespace. A token is the p.r. of an atomic
object such as a symbol or a number, or a special character sllch as a parenthesis. The reader
reads one or more tokens until the complete p.r. of an object has been seen, and then construct')
and returns that object.

The reader understands the p.r.'s of fixnums in a way more general than is employed by the
printer. Here is a complete description of the format for fixnums.

Let a simple fiXlIlIlIl be a string of digits, optionally prcceeded by a plus sign or a minus sign,
and optionally fi)lIowed by a trailing decimal point. A simple fixnum will be interpreted by read
as a fixni!lTI. If the trailing decimal point is present, the digits will be interpreted in decimal
radix: otherwise. they will be considered as a number whose radix is the value of tile variable
ibase.

ibase Variable
The value of ibase is a number which is the radix' in which fixnums are read. rine initial
value of ibase is 8.

read will also understand a simple fixnum, followed by an underscore ("_It) or a circumflex
(It A It), followed by another simple fixnum. "The two simple fixnums will be interpreted in the
usual way, then the character' in between indicates an operation to be perfOlmed on the two
fixnums. The underscore indicates a binary "left shift"; that is, the fixnum to its left is doubled
the number of times indicated by the fixnum to its right. The circumflex multiplies the fixnum to
its left by ibase the number of times indicated by the fixnum to its right. (The second simple
fixnum is not allowed to have a leading minus sign.) Examples: 645_6 means 64500 (in octal)
and 645 A 3 means 645000.

Here are some examples of valid representations of fixnums to be given to read:
4
23456.
-546
+45 A +6
2_11

The syntax for bignums is identical to the syntax for fixnums. A number is a bignum rather
than a fixnum if and only if it is too large to 'be represented as a fixnum. Here are some
exmaples of valid representations of bignums:

DSK:LMMAN;IOS 155 16-MAR-81

Printed Representation 284

72361356126536125376512375126535123712635
-123456789.
105_1000
105_1000.

Lisp IVlachine Manual

The syntax for a flonum is an optional plus or minus sign, optionally some digits, a decimal
point. and one or more digits. Such a flol1um or a simple fixnum. followed by an "e" (or "En)
and a simplefixnum. is also a !1onum; the fixnum after the "e" is the exponent of 10 by which
the number is to be scaled. (The exponent is not allowed, to have a trailing decimal point.) If the
exponent is introduced by "s" (or "S") rather than "e", the number is a small-flonum. Here are
some examples of printed-representations lhat read as flonums:

0.0
1.5
14.0
0.01
.707
-.3
+3.14159
6.03e23
lE-9
1.e3

Here arc some exmnples of printed-representations that read as slTwlHlol1ums:
OsO
1. 5s9
-42S3
1. s5

A string of letters, numbers. and "extended alphabetic" characters is recognized by the reader
as a symbol. provided it cannot be interpreted as a number. Alphabetic case is ignored in
symbols; lower-case letters are translated to upper-case. When the reader sees the p.r. of a
symbol, it interns it on a package (see chapter 23, page 345 for an explanation of interning and
the package system). Symbols may start with digits; you could even have one named "-345T";
read will accept this as a symbol without complaint. If you want to put strange characters (such
as lower-case letters, parentheses, or reader macro characters) inside the name of a symbol, put a
slash before each strange character. If you want to have a symbol whose print-name looks like a
number, put a slash before some character in the name. You can also enclose the name of a
symbol in vertical bars, which quotes all characters inside, except vertical bars and slashes, which
must be quoted with slash.
Examples of symbols:

foo
bar/(baz/)
34w23
IFrob Salel

The reader will also recognize strings, which should be surrounded by double-quotes. If you
want to put a double-quote or a slash inside a string, preceed it by a slash.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 285 Printed Representation

Examples of stIings:
"This is a typical string."
"That is known as a I"cons celli" in Lisp."

When read sees an open parenthesis, it knows that the p.r. of a cons is coming, and calls
itself recursively to get the clementS of the cons or the list that follows. Any of the following are
valid:

(foo . bar)
(foo bar baz)
(foo . (bar. (baz . nil)))
(foo bar . quux)

The first is a cons, whose car and cdr are both symbols. The second is a list, and the third is
exactly the same as the second (although print would never produce it). The fourth is a "dotted
list"; the cdr of the last cons cell (the second one) is not nil, but quux.

Whenever the reader sees any of the above, it creates new cons cells; it never returns eXlstmg
list structure. This contrasts with the case for symbols, as very often read returns symbols that it
found interned in the package rather than creating new symbols itself. Symbols arc the .only thing
that work this way.

The dot that separates the two clements of a dotted-pair p.r. for a cons is only recogni7ed if
it is surrounded by delimiters (typically spaces). Thus dot may be freely used within print-names
of symbols and within numbers.

If the circ\e-X (".~!!) charm.:tcr is encolilltered, it is an octal escape, which may be useful for
including weird characters in the input l11e next three characters are rcad and interpreted as an
octal number, and the character whose code is that number replaces the circle-X and the digits in
the input stream. This character is always taken to be all: alphabetic character, just as if it had
been preceded by a slash.

21.2.3 Macro Characters

Certain characters arc defined to be macro characters. When the reader sees one of these, it
calls a function associated with the character. 1'his function reads whatever syntax it likes and
returns the object represented by that syntax. Macro characters are always token delimiters;
however, they are not recognized when quoted by slash or vertical bar, nor when inside a string.
Macro characters are a syntax-extension mechanism available to the user. Lisp comes with several
predefined macro characters:

Quote (') is an abbreviation to make it easier to put constants in programs. '/00 reads the
same as (quote Joo).

Semicolon (;) is used to . enter comments. The semicolon and everything up through the next
caniage return are ignored. Thus a comment can be put at the end of any line without affecting
the reader.

Backquote (.) makes it easier to write programs to construct lists and trees by using a
template. See section 17.2.2, page 194 for details.

DSK:LMMAN;10S 155 16-MAR-81

Printed Representation 286 Lisp Machine Manual

Comma (,) is part of the syntax of backquote and is invalid if used other than inside the
body of a backquote. See section 17.2.2, page 194 for details.

Sharp sign (#) introduces a number of other syntax extensions. See the following section.
Unlike the preceding characters, sharp sign is not a delimiter. A sharp sign in the middle of a
symbol is an ordinary character.

The function set-syntax-macro-char (see page 289) can be used to define your own macro
characters.

21.2.4 Sharp-sign Abbreviations

The reader's syntax includes several abbreviations introduced by sharp sign (#). These take
the general form of a sharp sign. a second character which identifies tlle syntax, and following
arguments. Certain abbreviations allow a decimal number or certain special "modifier" characters
between tlle sharp sign and the second character. Here arc the currently-defined sharp sign
constnlcts; more are likely to be added in the future.

I # I x reads in as tlle number which is the character code for the character x. For
example, # la is equivalent to 141 but clearer in its intent. This is the recommended
way to include character con:;tants in your code. Note that the slash causes this construct
to be parsed correctly by the editors, Emacs and Zwei.

As in strings, upper and lower-case letters are distinguished after # I. Any character
works after # I, even lhose that are normally special to read, Stich as parentheses. Even
non-printing characters may be used, although for them # \ is preferred.

The character can be modified with control and meta bits by inserting olle or more special
characters between tlle # and the I. #a.lx generates Control-x. #filx generates Meta-x.
#w I x generates Super-x. #f.. I x generates Hyper-x. These can be combined, for instance
#wfil& generates Super-Meta-ampersand. Also, #elx is an abbreviation for #afilx.
When control bits are speciqed, and x is a lower-case alphabetic character, the character
code for the upper-case version of the character is produced.

\ # \ name reads in as the number which. is the character code for ilie non-printing
character symbolized by name. A large number of character names are recognized; these
are documented below (section 21.2.5, page 288). In general, ilie names iliat are written
on the keyboard keys are accepted. The abbreviations cr for return and sp for space are
accepted and generally preferred, since these characters are used so frequently. The page
separator character is called page, although form and clear-screen are also accepted
since the keyboard has one of those legends on the page key. The I1Iles for reading name
are t11e same as those for symbols; tllllS upper and lower-case letters are not distinguished,
and the name must be termillated by a delimiter such as a space, a carriage return, or a
parentllesis.

When the system types out the name of a special character, it uses tlle same table as the
\ reader; therefore any character name typed out is acceptable as input

The character can be modified with control and meta bits by inserting special characters as
with #1.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 287 Printed Representation

A # A X is exactly like #0. / x if the input is being read by the Lisp machine; it generates
Control-x. In Maclisp x is converted to upper case and then exclusive-or'ed with 100
(octal). Thus # A X always generates the character returned by tyi if the user holds down
the control key and types x. (In Maclisp #0. / x sets the bit set by the Control key when
the TTY is open in FIXNUM mode.)

#' #'foo is an abbreviation for (function faa). faa is the p.r. of any object. This
abbreviation can be remembered by analogy with the ' macro-character, since the function
and quote special forms are somewhat analogolls.

, # ,faa evaluates foo (the p.r. of a Lisp fOlm) at read time, unless the compiler is doing
the reading, in which case it is arranged that jilO will be evaluated when the QFASL file
is loaded. This is a' way, f()r example, to include in your code complex list-structure
constants which cannot be written with quote. Note that the reader does not put quote
around the result of the evaluation. You must dll this yourself if you want it, typically
by using the ' macro-character. An example of a case where you do not want quote
around it is when this object is an clement of a constant list.

#. # . foC? evaluates fuo (the p.r. of a lisp form) at read time, regardless of who is doing the
reading.

0 # 0 /llimber reads I/umber in octal regardless of the setting of ibase. Actually, any
expression can be prefixed by # 0; it will be read with ibase bound to 8.

X # X /lumber reads /llImber in radix 16. (hexadecimal) regardless of the setting of ibase.
As with # 0, any expression can be prefixed by # X.
[Unfortunately #X docs not completely work. currently, since it does not cause the letters
;\ through F to be recognized as numbers. This docs not seem to have bothered anyone.]

R # radixR number rcads number in radix radix regardless of the setting of ibase. As with
0, any expression can be prefixed by # radixR; it will bc read with ibase bound to
radix. mdix must consist of only digits, and it is read in decimal.

For example, # 3R 102 is another way of writing 11. and # 11 R32 is another way of
writing 35. Bases larger than ten do not work completely, since there are only ten digit
characters.

Q # Q faa reads as foo if the input is being read by the Lisp machine, otherwise it reads as
nothing (whitespace).

M # M faa reads as faa if the input is being read into MacLisp, otherwise it reads as nothing
(whitespace).

N # N fuo reads as faD if the input is being read into NIL or compiled to run in NIL,
otherwise it reads as nothing (white space). Also, during the reading of faa, the reader
temporarily defines variuus NIL-compatible sharp-sign abbreviations (such as #1 and # ")
in order to .parse the form correctly, even though its not going to be evaluated.

+ This abhreviation provides a read-lime conditionalization facility similar to, but more
general than, that provided by It M, # N, and # Q. It is used as # + feature fom!. If
feature is a symbol, then this is read as form if (status feature fellture) is t. If (status
feature feature) is nil, then this is read a'i whitcspace. Alternately, feature may be a
boolean expression composed of and, or, and not operators and symbols representing
items which may appear on the (status features) list. (or lis pm amber) represents
evaluation of the predicate (or (status feature lispm) (status feature amber» in the
read-time environment.

DSK:LMMAN; [OS 155 16-MAR-81

Printed Representation 288 Lisp Machine Manual

For example .. # + lispm jonn makes jorl/1 exist if being read by the Lisp machine. and is
thus equivalent to #0 j017l1. Similarly, # + maclisp form is equivalent to #M [01711.
+ (or lispm nil) }orlll will make f0I711 exist on either the Lisp machine or in NIL. Note
that items may be added to the (status features) list by means of (sstatus feature
jealllre), thus allowing the lIser to selectively interpret or compile pieces of code by
parameterizing this list. See page 455.

- # -feature f017n is equivalent to # + (not feature) [onn.

#< This is not legal reader syntax. It is used in the p.r. of objects which cannot be read
back in. Attempting to read a #< will cause an error.

The function set-syntax- # ·-macro-char (see page 290) can be used to define your own
sharp sign abbreviations.

21.2.5 Special Character Names

The followil}g are the recognized special character names, in alphabetical order except with
synonyms together and linked with equal signs. These names can be used after a "# \" to get

. the character code for that character. Most of these characters type out as this name enclosed in
a lozenge. First we list the special nll1ction keys.

abort break
delete = vt end
hand-right hand-lip

jj

line = If macro·= back-next
overstrike = bacl<space = bs
quote resume
space = sp status
tab terminal = esc

call
hand-down
help

clear-· input = clear
hand-left
hold-output

iii iv
network
page = clear-screen = form
return = cr rubout
stop-output . system

These are printing characters which also have special names because they may be hard to type
on a pdp-lO.

altmode
integral

circle-plus
lambda

delta
plus-minus

gamma
uparrow

The following are special characters sometimes used to represent single and double mOllse
clicks. The buttons can be called either I, m, r or 1, 2, 3 depending on stylistic preference.
These characters all contain the %%kbd-mouse bit

mouse-I-1 = mouse-1-1 mouse-I-2 =mouse-1-2
mouse-m-1 = mouse-2-1 mouse-m-2= mouse-2-2
mouse-r-1 = mouse-3-1 mouse-r-2 = mouse-3-2

DSK:LMMAN;[OS ISS 16-MAR-81

l.isp Machine Manual 289 Printed Representation

21.2.6 The Headtable

There is an data structure called the rem/table which is used to control the reader. It contains
information about the syntax of each character. Initially it is set up to give the standard Lisp
meanings to all the characters, but the user can change the meanings of characters to alter and
customize the syntax of characters. It is also possible to havc sevcral rcadtables describing
different syntaxes and to switch from one to another by binding the symbol readtable.

read tab 10 Variable
The value of read table is the current readtable. This starts out as the initial standard
re'ldtable. You can bind this variable to temporarily change the readtabIc being used.

si: initial-reacitable Variable
Tile value of si:initial-readtable is the initial standard readtable. You should not ever
change the contents of this readtable; only examine it, by using it as the fro/ll-readtable
argument to copy-readtable or set-syntax-from-char.

The user can program the reader by changing the readtable in any of three ways. The syntax
of a character can be set to one of several predefined possibilities. A character can be made into
a lIIacro character, whose interpretation is controlled by a user-supplied function which is called
when the charJcter is read. The user can create a completely new readtable, using the readtablc
cOIllPiler (LMIO;RTC) to denne new kinds of syntax and to assign syntax classes to characters.
Use of the readtable compiler is not documented here.

cOPY-I'sadtable &optillnal !rum-read/able tv-read/able
/roll1-readlable, which defaults to the current rcadtable, is copied. If to-readlable is
unsupplied or nil, a fresh copy is made. Otherwise 10- read/able is clobbered with the
copy. Use copy-readtable to get a private readtable before using the folIowing functions
to change the syntax of characters in it. The value of readtable at the start of a Lisp
machine session is the initial standard rcadtable, which usually should not be modified.

set-syntax-from-char to-char from-char &optional to-readtable /rom-read/able
Makes the syntax of to-char in to-readtable be the same as the syntax of from-char in
Fom-readtable. to-readtable defaults to the current readtable, and Fom-readtable defaults
to the initial standard readtable. .

set- character-trans 1 at i on from-char to-char &optional readtable
Changes read/able so that Fom-char will be translated to to-char upon read-in, when
readtable is the current readtable. This is normally used only for translating lower case
letters to upper case. Character translations arc turned off by slash, string quotes, and
vertical bars. read/able defaults to the current readtable.

set-syntax-macro-char char jillll:lioll &optional read/able
Causes char to be a macro character which when read calls jilllctioll. read/able defaults to
the current readtable.

jilllc/ioll is called with two arguments: list-sa-far and the input stream. When a list is
being read, /is/-sa-far is that list (nil if this is the first clement). At the "top level" of
read, list-so-ji1r is the symbol :toplevel. After a dotted-pair dot, lis/-sa-far is the symbol
:after-dot. jimetion may read any number of characters from the input stream and
process them however it likes.

DSK:LMMAN;IOS 155 16-MAR-81

Printed Representation 290 I jsp t'vlachine Manual

jilllction should return three values, called thing, type, and splice-p. thing is the object
read. If splice-p is nil, thing is the result. If splice-p is non-nil, then when reading a list
thing replaces the list being read-often it will be list-so-jclr with something else nconc'ed
onto the end. At top-level and after a dot if splice-p is non-nil the thing is ignored and
the macro-character docs not contribute anything to the result of read. type is a historical
artifact and is not really used; nil is a safe value. Most macro character functions return
just one value and let the other two default to nil.

jil11ction should not have any side-effects other than on the stream and list-so-far. Because
of the way the rubout-handler works, jilllctioll can be called sever,tI times during the
reading of a single expression in which the macro character only appears once.

chllr is given the same syntax that single-quote, backquote, and comma have in the initial
readtablc (it is called :macro syntax).

set-syntax-#-macro-char char jilllclioll &optional readtable
Causes jimctiofl to be called when # char is read. rmdtable defaults to the current
readtablc. The fUllction's arguments and return values arc the same as for normal macro
characters, documented above. When jilllclio/l is called, the special variable si:xr-sharp
argument contains nil or a number which is the number or special bits beween the #
and char.

set-syntax-from-dascl"iption cltar description &optional readtable
Sets the syntax of char in readtable to be that dcscribed by the symbol description. The
following descriptions arc defincd ill tlie ~lanuarJ rcadlaule:

si:alphabetic

si:break

si :wh itespace

si:single

si:slash

si:verticalbar

si:doublequote

si:macro

si:circlecross

An ordinary character such as "A".

A token separator such as "(". (Obviollsly left parenthesis has
other properties besides being a break.

A token separator which can be ignored, such as " ".

A self-delimiting single-character symbol. . The initial readtabte
does not contain any of these.

The character quoter. In the initial readtablc this is "I".

The symbol print-name quoter. In the initial readtable this is "I".
The string quater. In the initial readt:1ble this is • "'.

A macro character. Don't use this, usc set-syntax-macro-char.

The octal escape for special characters. In the initial readtable this
is "0".

These symbols will probably be moved to the standard keyword package at some point.
rcadtable defaults to the current readtable.

setsyntax character arg2 arg3
This exists only for Maclisp compatibility. The above functions arc preferred in new
programs. The syntax of character is altered in the current readtable, according to arg2
and arg3. character can be a /lxnum, a symbol, or a string, i.e. anything acceptable to
the character function. arg2 is usually a keyword; it can be in any package since this is
a Maclisp compatibility fUllction. The following values are allowed for arg2:

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual

:macro

:splicing

:single

nil

a symbol

291 Input Functions

The character becomes a macro character. arg3 is the name of a function
to be invoked when this character is read. The function takes no
arguments, may tyi or read from standard - input (Le. may call tyi or
read without specifying a stream), and returns an object which is taken as
the result of the read.

Like :macro but the object returned by the macro function is a list which
is nconced into the list being. read. If the character is read not inside a
list (at top level or after a dotted-pair dot), then it may return 0 which
means it is ignored. or (obj) which means that obj is read.

The character becomes a self-delimiting single-character symbol. If arg3 is
a fixnum, the chamcter is translated to that character.

The syntax of the character is not changed, but if arg3 is a fixllum, the
character is translated to that character.

The syntax of the character is changed to be the same as that of the
character arg2 in the standard initial readtable. arg2 is converted to a
character by taking the first character of its print name. Also if arg3 is a
fixllum, the character is translated to that character.

setsyntax-sharp-macro character type jUl1ction &optional reacltable
This exists only for Maclisp compatibility. set-syntax- # -macro-char is preferred. If
jilllctioll is nil, # character is turned off, otherwise it becomes a macro which calls
jilllcliol/. type can be :macro, :peek-macro, :splicing, or :peel<-spiicing. The splicing
part controls whether jilllction returns a single object or a list of objects. Specifying peek
causes character to remain in the input stream when junction is called; this is lIscr·ul if·
character is something like a left parenthesis. junction gets one argument, which is nil or
the number between the # and the character.

21.3 Input FUllctions

Most of these functions take optional arguments called stream and eofoption. stream is the
stream from which the input is to be read; if unsuppJied it defaults to the value of standard
input. The special pseudo-streams nil· and t are also accepted, mainly for Maclisp compatibility .

. nil means the value of standard-input (Le. the default) and t means the value of terminal-io (Le.
the interactive terminal). This is all more-or-Iess compatible with Maclisp, except that instead of
the variable standard-input Maclisp has several variables and complicated nIles. For detailed
documentation of streams, refer to section 21.5.1, page 297.

eofoption controls what happens if input is from a file (or any other input source that has a
definite end) and the end of the file is reached. If no eofoptioll argument is supplied, an error
will be signalled. If there is an eofoption, it is the value to be returned. Note that an eofoption
of nil means to reulrn nil if the end of the file is reached; it is flat equivalent to supplying no
eofoption.

Functions such as read which read an "object" rather than a single character will always
signal an error, regardless of eofoption, if the file ends in the middle of an object. For example,
if a file does not contain enough right parentheses to balance the left parentheses in it, read will
complain. If a file ends in a symbol or a number immediately followed byend-of-file, read will
read the symbol or number successfully and when called again will see the end-of-file and obey

DSK:LMMAN;IOS 155 16-MAR-81

Input Functions 292 Lisp Machine Manual

cofoptioll; If a file contains ignorable text at the end, such as blank lines and comments, read
will not consider it to end in the middle of an object and will obey eofoptioll.

These end-of-file conventions are not completely compatible with Maclisp. Maclisp's deviations
from this are generally considered to be bugs rather than features.

The preferred order of arguments is the stream first and d1en d1e eof-option. However, if the
first argument is not a plausible stream and the second argument is missing or a stream, d1en the
first argument is assumed to be the eof-option rather d1an the stream. This mainly for
compatibility with old Maclisp programs, but some programs may find it useful to specify an eof
option while reading from standard-input.

Notc that all of these functions will echo dlCir input if used on an interactive stream (one
which supports the :rubout-handler operation; see below.) The hll1ctions that input more than
one character at a time (read, readline) allow the input to be edited using rubout. tyipeek
echoes all of the characters that were skipped over if tyi would have echoed them; the character
not removed from dle stream is not echoed either.

read &optional stream eofoption
read reads in the printed representation of a Lisp object from stream, builds a
corrcsponding Lisp object, and returns the object. The details have been explained above.

read-pre.-sorva-del ;101 tars Variable
Ccrtain printed represcntations given to read, notably t110SC of symbols and numbers,
require a delimiting character after them. (Lists do not, because the matching close
parenthesis serves to mark the end of the list.) Normally read wiII throwaway the
delimiting character if it is "whitcspace", but will preserve it (with a :untyi stream
operation) if the character is syntactically meaningful, since it may be the start of the next
expression.

If read - preserve-delimiters is bound to t around a call to read, no delimiting characters
will be thrown away, even if they are whitespace. This may be useful for certain reader
macros or special syntaxes.

ty1 &optional stream eofoption
tyi inputs one character from stream and returns it. The character is echoed if stream is
interactive. except that Rubout is not echoed. The Control, Meta, etc. shifts echo as
prefix alpha, beta, etc.

The :tyi stream operation is preferred over the tyi function for some purposes. Note that
it docs not echo. See section 21.5.2, page 297.

readl i ne &optional stream eofoption
readline reads in a line of text, terminated by a carriage return. It returns the line as a
character string, without the return character. This function is llsually llsed to get a line
of input from the user.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 293 Input Functions

re adc h &optional stream eofoplion
This function is provided only for Maclisp compatibility, since in the Lisp Machine
characters are always represented as fixnums. readch is just like tyi, except that instead
of returning a fixnum character, it returns a symbol whose print name is the character
read in. The symbol is interned in the current package. This is just like a Maclisp
"character object".

ty; peek &optional peek-type stream eofoption
This function is provided mainly for Maclisp compatibility; the :listen stream operation is
usually clearer (see page 298).

What tyipeek docs depends on the peek-I),pe, which defaults to nil. With a peek-type of
nil, tyipeek returns the next character to be read from Slream, without actually removing
it from the input stream. The next time input is done from slrealll the character will still
be there: in general, (= (tyipeek) (tyi)) is 1.

If peek-type is a fixnum less than 1000 octal, then tyipeek reads characters from stream
until it gets one equal to peek-type. That character is not removed from the input stream.

If peek-type is 1, then tyipeek skips over input characters until the start of the printed
representation of a Lisp object is reached. As above, the last character (the one that starts
,111 object) is not removed from the input stream.

The form of tyipeek supported by rvlaclisp in which peck-type is a fixnull1 not less than
1000 octal is nut supported. since the rcadtable formats of the Maclisp reader and the
Lisp Machine reader are quite different.

Characters passed over by tyipeek are echoed if stream is interactive.

The following functions are related functions which do not operate on streams. Most of the text
at the beginning of this section does not apply to them.

read-fram-string SIring &optional eofoplioll (idxO)
The characters of string are given sllccessively to the reader, and the Lisp object built by
the reader is returned. Macro characters and so on will all take effect. If SIring has a fill
pointer it controls how much can be read.

eofoption is what to return if the end of the string is reached, as with other reading
functions. idx is the index in the string of the first character to be read.

read - from -string returns two values; the first is the object read and the second is the
index of the first character in the string not read. If the entire string was read, this will
be either the length of the string or 1 more than the length of the string.

Example:
{read-from-string "(a b c)") => (a b c) and 7

DSK: LMMAN; lOS 155 16-MAR-81

Output Functions 294 [.isp Machine Manual

readl; st chGl~list
This function is provided mainly for Maclisp compatibility. char-list is a list of characters.
The characters may be represented by anything that the function character accepts:
fixnums, strings, or symbols. The characters are given successively to the reader, and the
Lisp object built by the reader is returned. Macro characters and so on will all take
effect.

If there are more characters in char-list beyond those needed to define an object, the
extra characters are ignored. If there are not enough characters, an "eof in middle of
object" error is signalled.

Sec also the with-input-from-string special form (page 121).

21.4 Outl1Ut Functions

Thcse functions all take an optional argument called streall/, which is where to send the
output. If ul1supplied stream defaults to the vallie of standard-output. If strealll is nil, the
value of standard-output (Le. the default) is used. If it is t, the value of terminal-io is used
(i.e. the interactive tenninal). If stream is a list of streams, then the output is performed to all of
ll1e streams (this is not impic-l11cllteu yet, and an error is signalled in this case). This is all more
O!'-Ic~;s compatible with rvtaclisp, except that illstead of the variable standard - output Maclisp has
se\eral '. ariablcs· anc! complicated rules. For detailed documentation of streams, refer to section
21.5.1, page 297.

p r i n t x &optional stream
prin1 olltputs the printed representation of x to stream, with slashification (see page 280).
x is returned.

print-then-space x &optional stream
prin1-then-space is like prin1 except that output is followed by a space.

p r in t x &optional stream
print is just like prin1 except that output is preceeded by a carriage return and followed
by a space. x is returned.

pr i nc x &optional stream
princ is just like prin1 except that the output is not slashified. x is returned.

tyo char &optional stream
tyo outputs the character char to stream.

ta r p r i &optional stream
terpri outputs a carriage return character to stream.

The format function (see page 305) is very useful for producing nicely formatted text. It can
do anything any of the above functions can do, anc! it makes it easy to produce good looking
lllI:!ssages and such. format can generate a string or output to a stream.

The grindef function (see page 31S) is useful for formatting Lisp programs.

DSK:LMMAN;fOS 155 16-MAR-Sl

Lisp Machine Manual 295 Output Functions

Sec also the with-output--to-string speCial form (page 122).

stream-copy-until-eof frolll-stream to-stream &optional leader-size
stream-eopy-until-eof inputs characters from from-strealll and Olltputs them to to-stream,
until it reaches the end-of-file on the jimll-stream. For example, if x is bound to a
stream for a file opened for input, then (stream-eopy-until-eof x terminal-io) will print
Lhe file on the console. .

If Fom-stream supports the :line-in operation and to-stream supports the :line-out
operation, then stream-copy-until-eof will usc those operations instead of :tyi and :tyo,
for greater efficiency. leader-size wiII be passed as the argument to the :line- in operation.

eu rsorpos &rest args
This tlll1ction exists primarily fbr Mac1isp compatibility. Usually it is preferable to send
the appropriate messages (see the window system documentation).

eursorpos normally operates on the standard - output stream; however, if the first
argument is a stream or t (meaning terminal-io) then cursorpos uses that stream and
looks at the following arguments as described below. Note that eursorpos only works on
streams which are capable of these operations, for instance windows.

(cursorpos) = > (line. columll), the current cursor position.

(eursorpos lille COIUIIlIl) moves the cursor to that position. It returns t if it succeeds and
nil if it doesn't.

(eursorpos up) performs a special operation coded by op, and returns t if it succeeds
and nil if it doesn't. op is tested by string comparison,it is not a keyword symbol and
may be in any package.

exploden x

F Moves one space to the right.
B Moves one space to the left.
D Moves one line down.
U Moves one line up.
T Homes up (moves to the top left corner). Note that t as the first argument to

eursorpos is interpreted as a stream, so a stream must be specified if the T
operation is used.

Z Home down (moves to the bottom left corner).
A Advances to a fresh line. See the :fresh-line stream operation.
C Clears the window.
E Clear from the cursor to the end of the window.
L Clear from the cursor to the end of the line.
K Clear the character posiLion at the cursor.
X B then K.

exploden returns a list of characters (as fiXIlUI11S) which are the characters that would be
typed out by (prine xl (Le. the unslashified printed representation of x).
Example: .

(exploden '(+ 112 3)) => (50 53 40 61 62 40 63 51)

DSK:LMMAN;lOS 155 16-MAR-81

Output Functions 296 Lisp Machine Manual

exp·'odec x
explodee returns a list l>f characters represented by symbols which are the characters that
would be typed out by (prine x) (Le. the unslashified printed representation of x).
Example:

(explodec '(+ 112 3)) => (I(+ I 11 12 I 13 I))
(Note that there are slashified spaces in the above list.)

explode x
explode returns a list of characters represented by symbols which are the characters that
would be typed out by (prin1 x) (Le. the slashified printed represelltation of x).
Example:

(explode '(+ 112 3)) => (I(+ I II /l 12 I 13 I))
(Note that there are sla~ihificd spaces in the above list.)

f1ats·ize x
flatsize returns the number of characters in the slashificd printed representation of x.

f1 ate x
flate returns the number of characters in the unslashified printed representation of x.

DSK:LMMAN;IOS 155 16-MAR-Sl

I -isp Machine Manual 297 110 Streams

21.5 I/O Streams

21.5.1 What Streams Are

Many programs accept input characters and produce output characters. The method for
performing input and output to one device is very different from the method for some other
device. We would like our programs to be able to use any device available, but without each
program having to know about each device.

Tn order to solve this problem, we introduce the concept of a stream. A stream is a source
andlor sink of characters. A set of operatiolls is available with every stream; operations include
things like "output a character" and "input a character". The way to perform an operation to a
stream is the same for all streams, although what happens inside the stream is very different
depending on what kind of a stream it is. So all a program has to know is how to deal with
streams.

A stream is a message-receiving object. This means that it is something that you can apply to
arguments. The first argument is a keyword symbol which is the name of the operation you wish
to perform. The rest of the arguments depend on what operation you are doing. Message-passing
is explained in the l1avor chapter (chapter 20, page 245).

Some streams can only do input. some can only do output, and some c<ln do both. Some
operations arc:' only supported by some streams. Also, there are some operations which the stream
may not support by it~:elf. but wilJ work anyway, albeit slowly, because the "stream default
handler" can handle them. If you have a stream, there is an operation called :which-operations
that will return a list of the names of all of the operations that arc supported "natively" by the
stream. A II streams support :which - operations, and so it may not be in the list itself.

2l.5.2 General Purpose Stream Operations

Here are some simple operations. Listed are the name of the operation, what arguments it
takes, and what it does.

: tyo char
The. stream will output the character char. For example, if s is bound to a stream, then
the form

(funcall s ':tyo #/B)
will output a "n" to the stream.

: ty; &optional eo!
The stream will input aile character and return it. For example, if the next character to
be read in by the stream is a "e", then the fonn

(funcall s ':tyi)
will return the value of # Ie (that is, 103 octal). Note that the :tyi operation will not
"echo" the character in any fashion; it just does the input. The tyi function (see page
292) will do echoing when reading from the terminal.

DSK:LMMAN;lOS 155 16-MAR-81

I/O Streams 298 Lisp Machine Manual

The optional eo! argument to the :tyi message tells the stream what to do if it gets to the
end of the file. If the argument is not provided or is nil, the stream will return nil at the
end of file. Otherwise it will signal an error, and print out the argument as the error
message. Note that this is /lot the same as the eof-option argument to read, tyi,. and
related functions.

: unty1 char
The stream will remember the character char, and the next time a character is input, it
will return Ole saved character. In other words, :untyi means "stuff this character back
into the input source". For example,

(fun call s ' : un ty i 120)
(funca11 s ': tyi) ==> 120

This operation is used by read, and any stream which supports :tyi must support :untyi as
well. Note that you are only allowed to :untyi one character before doing a :tyi,and you
aren't allowed to :untyi a different character than the last character you read from the
stream. Some streams implement :untyi by saving the character, while others implement it
by backing lip the pointer to a buffer.

:wh1ch-operat1ons
Returns a list of the operations supported "natively" by the stream.
Example:

(funca11 s ':which-operations)
==> (:tyi :tyo :untyi :line-out :listen)

Any stream must either support :tyo, or support both :tyi emd :untyi. There are several other,
more advanced input and output operations which will work on any stream that can do input or
output (respectively). Some streams support these operations themselves; you can tell by looking
at the list returned by the :which-operations operation. Others will be handled by the "stream
default handler" even if the stream does Dot know about the operatiOli itself. However, in order
for the defllllit handler to do one of the more advanced output operations, the stream must
support :tyo, and for the input operations the stream must support :tyi (and :untyi).

Here is the list of such operaUons:

:11sten
On an interactive device, the :listen operation returns non-nil if there are any input
characters immediately available, or nil if there is no immediately available input. On a
non-interactive device, the operation always returns non-nil except at end-of-file, by virtue
of the default handler. The main purpose of :listen is to test whether the user has hit a
key, perhaps trying to stop a program in progress.

:fresh-l1ne
This tells the stream that it should position itself at the beginning of a new line; if the
stream is already at the beginning of a fresh line it will do nothing, otherwise it will
output a carriage return. For streams which don't support this, the default handler will
always output a carriage return.

DSK:LMMAN;[OS 155 16-MAR-81

Lisp Machine Manual 299 110 Streams

:string-out siring &optional start end
The characters of the string are successively output to the stream. This operation is
provided for two reasons; first, it saves the writing of a loop which is used very often,
and second, many strc;uTIs can perform this operation much more efficiently than the
equivalent sequence of :tyo operations. If the stream doesn't support :string-out itself,
the default handler will turn it into a bunch of :tyos.

If start and end are not supplied, the whole string is output. Otherwise a substring is
output: start is the index of the first character to be output (defaulting to 0), and end is
one greater than the index of the last character to be output (defaulting to the length of
the string). Callers need not pass these arguments, but all streams that handle :string -out
mllst check for them and interpret them appropriately.

: 1 i no-out string &opti6nal start end
The characters of the string, followed by a carriage return character, are output to the
stream. start and end optionally specify a substring, as with :string -out. 1 f the stream
doesn't support :Iine-out itself, the dct:1ult handler will turn it into a bUllch of :tyos.

:line-in &optional leader
The stream should input one line from the input source, and return it as a string with the
carriage return character stripped 0[. Contrary to what you might assume from its llame,
this operation is not much like the readline function.

Many streams have a string which is used as a butTer for lines. If this string itself were
returned, thcre would lJC problellls causcd if the callcr or lilt stream allcmptcd to save
the string away somewhere, because the tontents of the string would change when the
next line was read in. In order to solve this problem, the string must be copied. On the
other hand, some streams don't reuse the string, and it would be wasteful to copy it on
every :Iine-in operation. '111is problem is solved by using the leader argument to :line-in.
If leader is nil (the default), the stream will not bother to eopy the string, and the caller
should not rely on the contents of that string after the next operation on the stream. If
leader is t, the stream will make a copy. If leader is a fixnum then the stream will make
a copy with an array leader leader clements long. (This is used by the editor, which
represents lines of buffers as strings with additional information in their array-leaders, to
eliminate an extra copy operation.)

If the stream reaches the end-of-file while reading in characters, it will return the
characters it has read in as a string, and return a second value of t. The caller of the
stream should therefore arrange to receive the second value, and check it to sec whether
the string returned was a whole line or just the trailing characters after the last carriage
return in the input source.

:clear-input
The stream clears any buffered input If the stream docs not handle this, the default
handler will ignore it.

DSK:LMMAN;IOS 155 16-MAR-81

I/O Streams 300 Lisp Machine Manual

:clear-output
The stream clears any buffered OlitpUt. If the stream does not handle this, the default
handler will ignore it.

:f1n1sh
This is for output streams to buffered asynchronous devices, such as the Chaosnet. :finish
waits until the currently pending [10 operation has been completed. It does not do
anything itself; it is just used to await completion of an operation. If there is buffered
output for which I/O has nol yet been started, it remains buffered. Do :force-output
before :finish if you do not want this effect. If the stream does not handle this, the
default handler will ignore it.

:force-output
This is for output 5treams to butTered asynchronous devices, such as the Chaosnet.
:force-outpllt causes any buffered output to be sent to the device. It docs not wait for it
to complete; use :finish for that. If a stream supports :force-output, then :tyo, :string
out, and :line-out may have no visible effect until a :force-output is done. If the
stream does not handle this, the default handler will ignore it.

: close &optional mode
The stream is. "closed", and no further operations should be performed on it. However,
it is all right to :close a closed stream. If the stream does not handle :close, the default
handler will ignore it.

The lIIuJe argument is normally not supplied. If il b :abort. we arc abnormally exiling
from the lise of th:s str('am. If the stream is outputting to a file, and has not been closed
already, the stream's newly-created file will be deleted; it will be as if it was never
opened in the first place. Any previously existing file with the same name will remain,
undisturbed.

21.5.3 Special Purpose Stream Operations

There are several other defined operations which the default handler cannot deal with; if the
stream does not support the operation itself, then sending that message will cause an error. This
section documents the most commonly-used, least device-dependent stream operations. Windows,
files, and Chaosnet connections have their own special stream operations which are documented
separately.

: rubout-handler options jUllction &rest args
This is supported by interactive streams such as windows on the TV terminal, and is
described in its own section below (see section 21.7, page 319).

: beep &optionai type
This is supported by interactive streams. It attracLc; the attention of the user by making an
audible beep and/or flashing the screen. type is a keyword selecting among several
different beeping noises. 111e allowed types have not yet been defined and type is
currently ignored.

DSK:LMMAN;IOS 155 16-MAR-Sl

I.isp Machine Manual· 301 110 Streams

: ty; -no-hang &optional eo!
Just like :tyi except that if it would be necessary to WHIt 111 order to get the character,
returns nil instead. This lets the caller efficiently check for input being available and get
the input if there is any. :tyi - no - hang is different from :listen because it reads a
character and because it is not simulated by the default-handler for streams which don't
support it.

:untyo-mark
This is used by the gIinder (see page 318) if the output stream supports it. It takes no
arguments. The stream should return some object which indicates where output has gotten
up to in the stream.

: untyo mark
This is used by the grinder (see page 318) in conjunction with :untyo":mark. It takes one
argument. which is something returned by the :untyo-mark operation of the stream. The
stream should back up output to the point at which thc object was rcturned.

: read-cursorpos &optional (Ullils':pixel)
This operation is supported by windows. It returns two values: the current x and y
coordinates of the cursor. It takes one optional argument. which is a symbol indicating in
what units x and y should be; the symbols :pixel and :character arc understood. :pixel
means that the coordinates are measured in display pixels (bits), while :character means
that the coordinates are measured in characters horizontally and lines vertica!ly.

This operation, and :set-cursorpos, are used by the format "-I" request (see page
308), which is why "-T" doesn't work on all streams. Any stream that supports this
operation must support :set-cursorpos as well.

:sat-cursorpos x y &optional (ullits':pixel)
This operation is supported by the same streams that support :read-cursorpos. It sets
the position of the cursor. x and yare like the values of :read-cursorpos and units is
the same as the units argument to :read-cursorpos.

:clear-screen
Erases the screen area on which this stream displays. Non-window streams don't support
this operation.

There are many other special-purpose stream operations for graphics. They are not
documented here, but in the window-system documentation. No claim that the above operations
arc the most useful subset should be implied.

DSK:LMMAN;IOS 155 16-MAR-Sl

I/O Streams 302 Lisp Machine Manual

21.5.4 Standard Streams

There are several variables whose values are streams used by many functions in the Lisp
system. These variables and their uses are listed here. By convention, variables which are
expected to hold a stream capable of input have names ending with -input, and similarly for
output. 'I110se expected to hold a bidirectional stream have names ending with -io.

standard- input Variable
In the normal Lisp top-level loop, input is read from standard -input (that is, whatever
stream is the value of standard-input). Many input functions, including tyi and read,
take a stream argument which defaults to standard-input.

standard-output Variable
In the nonnal Lisp top-level loop, output is sent to standard-output (that is, whatever
stream is the value of standard-output). Many output functions, including tyo and print.
takc a strcam argument which dcfaults to standard-output.

error-output Variable
The valuc of error-output is a stream to which error messages should be sent. Normally
this is the same as standard-output, but standard-output might be bound to a file and
error-output left going to the terminal. n'his scems not be used by things which ought
to Lise it.]

query -10 Variable
The value of query-io is a stream which should be used when asking questions of the
user. The question should be output to this stream, and the answer read from it. The
rcason for this is that when the normal input to a program may be coming from a file,
questions such as "Do you rcally want to delete all of the files in your directory??" should
be sent directly to the user, and the answer should come from the user, not from the
data file. query-io is used by fquery and related functions; see page 436.

terminal-io Variabk
The value of terminal-io is the stream which connects to the user's console. In an
"interactive" program, it will be the window from which the program is being run; I/O
on this stream will read from the keyboard and display on the TV. However, in a
"background" program which does not normally talk to the user, terminal-io defaults to a
stream which does not ever expect to be used. If it is used, perhaps by an error printout,
it turns into a "background" window and requests the user's attention.

trace-output Variable
The value of trace-output is the stream on which the trace function prints its output.

eh : error-handl er-i 0 Variable
[f non-nil, this is the stream which the error handler should use. This is used during
debugging to divert the error handler to a stream which is known to work. The default
value of nil causes the error handler to lIser error-output [or should, anyway].

standard-input, standard-output, error-output, trace-output, and query-io are initially
bound to synonym streams which pass all operations on to the stream which is the value of
terminal-io. Thus any operations perfonned on those streams will go to the TV terminal.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 303 110 Streams

No user program should ever change the value of termiilal-io. A program which wants (for
example) to divert output to a file should do so by binding the value of standard-output; that
way error messages sent to error-output can still get to the user by going through terminal-io,
which is usually what is desired.

make-syn-stream symbol
make-syn-stream creates and returns a "synonym stream" (syn for short). Any
operations sent to this stream will be redirected to the stream which is the value of
symbol. A synonym stream is actually a symbol named s)'lIlbol-syn -stream whose
function definition is symbol, with a property that declares it to be a legitimate stream.
The generated symbol is interned in the same package as symbol.

make-broadcast-stroam &rest streams
Returns a stream which only works in the output direction. Any output sent to this
stream will be sent to all of the Slreams given. The :which-operations is the intersection
of the :which-operations of all of the streams. The value(s) returned by a stream
operation are the values returned by the last stream in streams.

21.5.5 lVlal\ing Your Own Stream

Here is a sample output stream, which accepts characters and conses them onto a list.·
(defvar the-list nil)
(defun list~output-stream (op &optional argl &rest rest)

(selectq op
(: tyo
(setq the-list (cons argl the-list»)

(:which-operations '(:tyo»
(otherwise

(stream-default-handler (function list-output-stream)
op al'gl rest»»

The lambda-list for a stream must always have one required parameter (op), one optional
parameter (arg1), and a rest parameter (rest). This allows an arbitrary number of arguments to
be passed to the default handler. This is an output stream, and so it supports the :tyo operation.
Note that all streams must support :which-operations. If the operation is not one that the
stream understands (e.g. :string-out), it calls the stream-default-handler. The calling of the
default handler is required, since the willingness to accept :tyo indicates to the caller that :string- .
out will work.

Here is a typical input stream, which generates successive characters of a list

DSK:LMMAN;IOS 155 16-MAR-Sl

I/O Streams 304 Lisp Machine Manual

(defvar the-list) ;Put your input list here
(defvar untyied-char nil)
(defun list-input-stream (op &optional argl &rest rest)

(selectq op
(: tyi

(cond «not (null untyied-char»

(: un tyi

(progl untyied-char (setq untyiad-char nil»)
«null the-list)

(and argl (error argl»)
(t (progl (car the-list)

(setq the-list (cdr the-list»»»

(setq untyied-char argl»
(:which-operations '(: tyi :untyi»
(otherwise

(stream-def~ult-handler (function list-input-stream)
op argl rest»»

The important things to note are that :untyi m~lst be supported, and that the stream must
check for having reached the end of the information, and do the right thing with the argument to
the :tyi operation.

The above stream uses a free variable (the-list) to hold the list of characters, and another
one (untyied -char) to hold the :untyied character (if any). You might want to have several
instances of this type of stream, wilhout their interfering with one another. This is a typical
example of the usefulness of closures in defining streams. The following function will take a list,
and return a stream which generates successive characters of that list

(defun make-a-list-input-stream (list)
(let-closed «list list) (untyied-char nil»

(function list-input-stream»)

The above streams are very simple and primitive. When designing a more complex stream" it
is useful to have some tools to aid in the task. The defselect function (page 134) aids in
defining message-receiving functions. The flavor system (chapter 20, page 245) provides powerful
and elaborate facilities for programming message-receiving objects.

stream-default-handler stream op arg/ rest
stream-default-handler tries to handle the op operation on stream, given arguments of
arg/ and the elements of rest. The exact action taken for each of the defined operations
is explained with the documentation on that operation, above.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 305 Formatted Output

21.6 Formatted Output

There are two ways of doing general formatted output. One is the function format. The
other is the output subsystem. format uses a control string written in a special format specifier
language to control the output format. output provides Lisp n.ll1ctions to do output in particular
fomlats.

For simple tasks in which only the most basic format specifiers are needed, format is easy to
use and has the advantage of brevity. For more complicated tasks, the format specifier language
becomes obscure and hard to read. Then output becomes advantageous because it works with
ordinary Lisp control constructs.

For fonnatting Lisp code (as opposed to text and tables), there is the grinder (see page 318).

21.6.1 The Format Function

format destination control-SIring &rest args
format is used to produce formatted output. format outputs the characters of control
sIring, except that a tilde ("~") introduces a directive. The character after the tilde,
possibly preceded by prefix parameters and modifiers, specifies what kind of formatting is
desired. Most directives use one or more clements of args to create their output; the
typical directive puts the next element of args into the output, formatted in some special
way.

The output is sent to destination. If destination is nil, a string is created which contains
the output; this string is returned as the value of the call to format. In all other cases
format returns no interesting value (generally it returns nil). If destination is a stream, the
output is sent to it. If destination is t, the output is sent to standard - output. If
destination is a string with an array-leader, such as would be acceptable to string-nconc
(see page 118), the output is added to the end of that string.

A directive consists of a tilde, optional prefix parameters separated by commas, optional colon
(":") and atsign (n@,,) modifiers, and a single character indicating what kind of directive this is.
The alphabetic case of the character is ignored. The prefix parameters are generally decimal
numbers. Examples of control strings:

"-S" This is an S directive with no parameters.
"-3 , 4 : @s" This is an S directive with two parameters, 3 and 4,

and both the colon and atsign flags.
"-,4S" Dle first prefix parameter is omitted and takes

on its default value, while the second is 4.

format includes some extremely complicated and specialized features. It is not necessary to
understand all or even most of its features to use format efficiently. The beginner should skip
over anything in the following documentation that is not immediately useful or clear. The more
sophisticated features are there for the convenience of programs with complicated formatting
req uirements.

Sometimes a prefix parameter is used to specify a character, for instance the padding character
in a right- or left-justifying operation. In this case a single quote (" , ") followed by the desired
character may be used as a prefix parameter, so that you don't have to know the decimal numeric

DSK:LMMAN;FD.FIO 11 16-MAR-Sl

Formatted Output 306 Lisp Machine Manual

values of characters in the character set. For example, you can use
"~5, 'Od" insteadof "~5,48d"

to print a decimal number in five columns with leading zeros.

In place of a prefix parameter to a directive, you can put the letter V, which takes an
argument from args as a parameter to the directive. Normally this should be a liumber but it
doesn't really have to be. This feature allows variable column-widths and the like. Also, you can
use the character # in place of a parameter; it represents the number of arguments remaining to
be processed.

Here are some relatively simple examples to give you the general. flavor of how format is
used.

(format ni 1 "foo") => "foo"
(setq x 5)
(format nil "The answer is -D." x) => "The answer is 5."
(format nil "The answer is ~3D." x) => "The answer is 5."
(setq y "elephant")
(format nil "Look at the ~A!" y) => "Look at the elephant!"
(format nil "The character -:@C is strange." 1003)

=> "The"character Meta-fi (Top-X) is strange."
(setq n 3)
(format nil "-0 item-:P found." n) => "3 items found."
(format nil "-R dog-:[s are-; is-] here." n (= n 1»

=> "three dogs are here."
(format nil "-R tlog-:*-[~I; is~:;s are-J here." n)

=> "three dogs are here."
(format nil "Here -[-I;is-: ;are-] -:*-R pupp-:@P." ~)

=> "Here are three puppies."

The directives will now be described. arg will be used to refer to the next argument from
args.

-A arg, any Lisp object, is printed without slashification (as by prine). ~:A prints () if
arg is nil; this is useful when printing something that is always supposed to be a list
- nA inserts spaces on the right, if necessary, to make the column width at least II.

The @ modifier causes the spaces to be inserted on the left rather than the right.
-mincol,colinc,minpad,padcharA is the Rill form of -A, which allows elaborate control
of the padding. The string is padded on the right with at least minpad copies of
padchar; padding characters are then inserted colinc characters at a time until the total
width is at least mincol. The defaults are 0 for mincol and minpad, 1 for colinc, and
space for padchar.

-S This is just like -A, but arg is printed with slashification (as by prin1 rather than
prine).

-D arg, a number, is printed as a decimal integer. Unlike print, ~D will never put a
decimal point after the number. -nO uses a column width of 11; spaces are inserted
on the left if the number requires less than II columns for its digits and sign. If the
number doesn't fit in n columns, additional columns arc used as needed. - n ,mD uses
111 as the pad character instead of space. If arg is not a number, it is printed in -A
fonnat and decimal base. The @ modifier causes the number's sign to be printed
always; the default is only to print it if the number is negative. The : modifier causes

DSK:LMMAN;FD.FIO 11 16-MAR-Sl

Lisp Machine Manual 307 Formatted Output

commas to be printed between groups 'of three digits; the third prefix parameter may
be used to change the character used as the comma. Thus the most general fOlm of
-0 is -millcol,padchar,commacharO.

-0 This is just like -0 but prints in octal instead of decimal.

-F arg is printed in floating point. -nF rounds arg to a preCISIOn of Il digits. The
minimum value of 11 is 2. since a decimal point is always printed. If the magnitude of
arg is too large or too small, it is printed in exponential notation. If arg is not a
number, it is printed in -A format. Note that the prefix parameter n is not mincol;
it is the number of digits of precision desired. Examples:

(format nil "-2F" 5) => "5.0"
(format nil "-4F" 5) => "5.0"
(format nil "-4F" 1.5) => "1.5"
(format nil "-4F" 3.14159265) => "3.142"
(format nil "-3F" 1e10) => "1.0e10"

-E arg is printed in exponential notation. This is identical to -F, including the use of a
prefix parameter to specify the number of digits. except that the number is always
printed with a trailing exponent, even if it is within a reasonable range.

-C (character arg) is put in the output. arg is treated as a keyboard character (see page
277). thus it may contain extra control-bits. These are printed first by representing
them with Greek letters: alpha «(~) for Control. beta (fJ) for Meta, epsilon (e) for
Control and Meta, lambda (;\) for Hyper, pi (77) for Super. If the character itself is
alpha. beta, epsilon, lambda. pi, or equivalence-sign (::), then it is preceded by an
o/quivalcnce-sign tu quote it.

With the colon flag (-:C), the names of the control bits are spelled out (e.g.
"Control,..Meta-F"). and also non-printing characters are represented by their names
(e.g. "Return") rather than being output as themselves.

With both colon and atsign (-:@C),' the colon-only format is printed, and then if the
character requires the Top, Front, or Greek shift key(s) to type it, this fact is·
mentioned (e.g .. "'t/ (Top-U)"). This is the format used for telling the user about a key
he is expected to type, for instance in prompt messages.

For all three of these formats, if the character is not a keyboard character but a mouse
"character", it is printed as "Mouse-", the name of the button, "_", and the number
of clicks.

With just an atsign (-@C), the character is printed in such a way that the Lisp reader
can understand it, using "# I" or "# \".

-% Outputs a carriage return. -n% outputs n carriage returns. No argument is used.
Simply putting a carriage return in the control string would work, but -% is usually
used because it makes the control string look nicer in the Lisp source program.

-& The :fresh -line operation is performed on the output stream. Unless the stream knows
that it is already at the front of a line, this outputs a carriage return. - n & does a
:fresh -line operation and then o'utputs n-i carriage returns.

-I Outputs a page separator character (#\page). -III does this 11 times. With a :
modifier, if the output stream supports the :clear-screen operation this directive clears

DSK:LMMAN;FD.FIO 11 16-MAR-81

Formatted Output 308 Lisp Machine Manual

the screen, otherwise it outputs page separator character(s) as if no modifier were
present. I is vertical bar, not capital l.

-X Outputs a space. -/lXoutputs n spaces.

Outputs a tilde. - n - outputs n tildes.

- <CR> Tilde immediately followed by a carriage return ignores the carriage return and any
whitespace at the beginning of the next line. With a :, the whitespace is left in place.
With an @, the carriage return is \eft in place. This directive is typically used when a
format control string is too long to fit nicely into one line of the program.

- * arg is ignored. -11 * ignores the next 11 arguments. -: * "ignores backwards"; that is,
it backs up in the list of arguments so that the argument last processed will be
processed again. -11:* backs up n arguments. When within a -{ construct (see
below), the ignoring (in either direction) is relative to the list of arguments being
processed by the iteration.

-p If arg is not 1, a lower-case "s" is printed. ("P" is for "plural".) -:P does the same
thing, after doing a -: *; that is, it prints a lower-case s if the last argument was not
1. -@P prints "y" if the argument is 1, or "ies" if it is not. -:@P does the same
thing, but backs up first.

- T Spaces over to a given column. -11 ,lilT will output sufficient spaces to move the
cursor to column II. If the cursor is already past column 11, it will output spaces to
move it to column /l + mk, for the smallest integer value k possible. fl and 111 default
to 1. Without the colon flag, nand If/ are in units of characters; with it, Uley arc in
units of pixels. Note: this operation Dilly works properly on streams that support the
:read -cursorpos and :set-cursorpos stream operations (see page 301). On other
streams, any - T operation will simply output two spaces. When format is creating a
string, -Twill work, assuming that the first character in the string is at the left
margin.

-R -R prints arg as a cardinal English number, e.g. four. -:R prints arg as an ordinal
number, e.g. fourth. -@R prints arg as a Roman numeral, e.g. IV. -:@R prints arg
as an old Roman numeral, e.g. lIII.

- n R prints arg in radix fl. The flags and any remaining parameters are used as for
the -D directive. Indeed, -0 is the same as -10R. The full fOlm here is therefore
- radix ,minco/ ,padchar,commacharR.

-n G "Goes to" the nUl argument. -OG goes back to the first argument in args. Directives
after a -nG will take sequential arguments after the one gone to. When within a -{
constmct, the "goto" is relative to the list of arguments being processed by the
iteration. This is an "absolute goto"; for a "relative goto", see - *.

-[strO-;strl-; ... -;strn-]
This is a set of alternative control strings. The alternatives (called clauses) are
separated by -; and the construct is terminated by -]. For example,

"-[Siamese -;Manx -;Persian -;Tortoise-Shell -
-;Tiger -;Yu-Shiang -]kitty"

The al'gth alternative is selected; 0 selects the first. If a prefix parameter is given (Le.
- n D, then the parameter is used instead of an argument (this is useful only if the
parameter is "# H). If arg is out of range no alternative is selected. After the selected
alternative has been processed, the control string continues after the -].

DSK:LMMAN;FD.FIO 11 16-MAR-81

Lisp Machine Manual 309 Formatted Output

-[sMJ-';strl-; ... -;stm-:;default-] has a default case. If the last -; used to separate
clauses is instead -:;, then the last clause is an "else" clause, which is pcrfonned if no
other clause is selected. For example,

U-[5iamese -;Manx -;Persian -;Tiger -
-;Yu-Hsiang -:;Bad -] kittyU

-[-tagOO,tagOl, ... ;sI10-taglO,tagll, ... ;strl ... -] allows the clauses to have explicit tags.
The parameters to each -; are numeric tags for the clause which follows it. That
clause is processed which has a tag matching the argument. If -al ,a2 ,bl ,b2 , ... :; (note
the colon) is used, then the following clause is tagged not by single values but by
ranges of values al through a2 (inclusive), bi through b2, etc. -:; with no
parameters may be used at the end to denote a default clause. For example,

"-[-'+,'-,'*,'II;operator -'A,'Z,'a, 'z: ;letter -
-'a, '9: ;digit -:;other -]"

-:[false-;true-] selects the false control string if arg is nil, and selects the tnle control
string otherwise.

-@[t11le-] tests the argument. If it is not nil, then the argument is not used up, but
is the next one to be processed, and the one clause is processed. If it is nil, then the
argument is used up, and the clause is not processed. For example,

(setq prinlevel nil prinlength 5)
(format nil "-@[PRINLEVEL=-D-]-@[PRINLENGTH=-D-]"

prinlevel prinlength)
=> "PRINLENGTH=5"

The combination of -[and # is useful, for example, . for dealing with English
conventions for printing lists:

(setq foo "Items:-#[none-; -5-; -S and -
-5-: ;-@{-#[-1; and-] _S_A,_}_].")

(format nil fool
=> "Items: none."

(format nil faa 'faa)
=> "Items: Faa. "

(format nil foo 'foo 'bar)
=> "Items: Faa and BAR. "

(format nil foo 'foo 'bar 'baz)
=> "Items: Faa, BAR, and BAZ. "

(format nil foo 'faa 'bar 'baz 'quux)
=> "Items: Faa, BAR, BAZ, and QUUX."

-; Separates clauses in -[and -< constructions. It is undefined elsewhere.

-] Terminates a -[. It is undefined elsewhere.

-{slr- } This is an iteration construct. The argument should be a list, which is lIsed as a set of
arguments as if for a recursive call to format. The string str is used repeatedly as the
control string. Each iteration can absorb as many elements of the list as it likes; if sIr
uses up two arguments by itself, then two clements of the list will get used up each
time around the loop. If before any iteration step the list is empty, then the iteration
is terminated. Also, if a prefix parameter n is given, then there will be at most n
repetitions of processing of sir. Here are some simple examples:

DSK:LMMAN;FD.FIO 11 16-MAR-81

Formatted Output 310

(format nil "Here it is:-{ -S-}." '(a be)}
=> "Here it is: A B C."

Lisp Machine Manual

(format nil "Pairs of things:-{ <-S,-S>-}." '(a 1 b 2 c 3»
=> "Pairs of things: <A,I> <B,2> <e,3>."

-:{str-} is similar, but the argument should be a list of sublists. At each repetition
step one sublist is used as the set of arguments for processing sIr; on the next
repetition a new sublist is used, whether or not all of the last sublist had been
processed. Example: °

(format nil "Pairs of things:-:{ <-S,-S>-}."
'«a 1) (b 2) (c 3»)

=> "Pairs of things: <A,I> <B,2> <e,3>."

-@{str-} is similar to -{slr-}, but instead of using one argument which is a list,
all the remaining argumellls are used as the list of arguments for the iteration.
Example:

(format nil "Pairs of things:-@{ <-S,-S>-}."
'a 1 'b 2 'c 3)

=> "Pairs of things: <A,I> <B,2> <e,3>."

-:@(Slr-} combines the features of -:{slr-} and -@(slr-}. ° All the remal1l1ng
arguments arc used, and each one must be a list. On each iteration the next argument
is used as a list of arguments to sIr. Example:

(format nil "Pairs of things:-:@{ <-S,-S>-}." 0

'(a 1) '(b 2) '(e 3»
=> "Pairs of things: <A,I> <B,2> <C,3>."

Terminating the repetition constmct with -:} instead of -} forces sIr to be processed
at least once even if the initial list of arguments is null (hc)wever, it will not override
an explicit prefix parameter of zero).

If sir is empty, then an argument is used as sir. It must be a string, and precedes
any arguments processed by the iteration. As an example, the following are
equivalent:

(lexpr-funcall #'format stream string args)
(format stream "-1{-:}" string args)

This will use string as a formatting string. The -1 { says it will be processed at most
once, and the -:} says it will. be processed at least once. Therefore it is processed
exactly once, using args as the arguments.

As anotller example, the format function itself uses format-error (a routine internal to
the format package) to signal error messages, which in turn uses ferror, which uses
format recursively. Now format-error takes a string and arguments, just like format,
but also prints some additional information: if the control string in etl-string actually
is a string (it might be a list-sec below), then it prints the string and a little arrow
showing where in the processing of the control string the error occurred. The variable
etl- index points one character after the place of the error.

DSK:LMMAN;FD.FIO 11 16-MAR-81

Lisp Machine Manual 311

(defun format-error (string &rest args)
(if (stringp ct1-string)

Formatted Output.

(ferror nil ~-1{-:}-%-VT'-%-3X/~-A/"-%~

string args (+ ct1-index 3) ct1-string)
(ferror nil "-1{-:}" string args»)

This first processes the given string and arguments using -1 { -:}, then tabs a variable
amount for printing the down-arrow, then prints the control string between double-
quotes. The effect is something like this: .

(format t "The item is a -[Foo-;Bar-;Loser-]." 'quux)
»ERROR: The argument to the FORMAT ~-[~ command

must be a number ,
~The item is a -[Foo-;Bar-;Loser-].~

Terminates a -{, It is undefined elsewhere.

-lIlinco!,coliIlC ,lIlillpad ,padchar<lext - > justifies text within a field at least lIlincul wide.
text may be divided up into segments with -;-the spacing is evenly divided between
the text segments. With no modifiers, the leftmost text segment is left justified in the
field, and the rightmost text segment right justified; if there is only one, as a special
case, it is right justified. The : modifier causes spacing to be introduced before the
first text segment; the @ modifier causes spacing to be added after the last. Mil/pad,
default 0, is the minimum number of padehar (default space) padding characters to be
output between each segment. If the tOlal width needed to satisfy these constraints is
greater than mincol, then millcol is adjusted upwards in eolinc increments. coline
defaults to 1. minco! defaults to O. For example,

(format nil ~-lO<foo-;bar->")

(format nil ~-lO:<foo-;bar->")

(format nil ~-lO:@<foo-;bar->")

(format ni 1 ~-lO<foobar->~)
(format nil ~-lO:<foobar->")

(format nil ~-lO@<foobar->")

(format nil "-lO:@<foobar->")

=>
=>
=>
=>
=>
=>
=>

~foo bar"
~ foo bar"
~ foo bar "
" foobar"
" foobar"
"foobar "
" foobar "

(format nil ~$-lO", '*<-3f->~ 2.59023) => ~$******2.59"

Note that text may include format directives. The last example illustrates how the -<
directive can be combined with the -f directive to provide more advanced control over
the formatting of numbers.

Here are some examples of the use of _ within a -< construct. _A is explained in
detail below, however the general idea is that it eliminates the segment in which it
appears and all following segments if there are no more arguments.

(format nil "-15<-S-;-A-S-;- -S->~ 'foo)
=> " FOD"

(format nil "-15<-S-;-A-S-;- -S->" 'foo 'bar)
=> "FOD BAR"

(format nil "-15<-S-;- -S-;-A-S->" 'faa 'bar 'baz)
=> "FOD BAR BAZ"

DSK:LMMAN;FD.FIO 11 16-MAR-81

Fornlatted Output 312 Lisp MachiilC Manual

The idea L'i that if a scgment contains a -", and format nms out of arguments, it just
stops there instcad of getting an error, and it as well as the rest of the segments are
ignored. .

If the first clause of a -< is terminated with -:;. instead of -;, then it is used in a
special way. All of the clauses are processed (subject to -", of course), but the first
one is omitted in performing the spacing and padding. When the padded result has
been determined, then if it will fit on the current line of output, it is output, and the
text for the first clause is discarded. If, however, the padded text will not fit on the
currcnt line, then the text segment' for the first clause is output before the padded text.
The first clause ought· to contain a carriage return (-%). The first clause is always
processed; and so any arguments it refers to will be used; the decision is whether to
use the resulting segment of text, not whether to process the first clause. If the -:;
has a prefix parameter 11, then the padded text must fit on the current line with II

character positions to spare to avoid outputting the first clause's text. For example, the
control string

"-X" -{-<-X" -1" -S->_A -}·-X" 0, , 0 t ,. • , ,. 0

can be used to print a list of items separated by commas, without breaking items over
line boundaries, and beginning each line with ";; fl. The prefix parameter 1 in -1:;
accounts for the width of the comma which will follow the justified item if it is not
the last clement in the list, or the period if it is. If -:; has a second prefix
parameter, then it is used as the width of the line, thus overriding the natural line
width of the output stream. To make the preceding example use a line width of 50,
one would write

"-X;; -{-<-%;; -1,50:; _S_>_A,_}._%"

If the second argument is not specified, then format sees whether the stream handles
the :size-in-characters message. If it does, then format sends that message and uses
the first returned value as the line length in characters. If'it doesn't, format uses 95.
as the line length.

Rather than using this complicated syntax, one can often call the fhnction
format:print-list (see page 3l3).

-> Terminates a -<. It is undefined elsewhere.

_" 'nlis is an escape construct. If there are no more arguments remaining to be processed,
then the immediately enclosing -{ or -< construct is terminated. If there is no such
enclosing construct, then the entire formatting operation is terminated. In the -< case,
the formatting is performed, but no more segments are processed before doing the
justification. The -" should appear only at the beginning of a -< clause, because it
aborts the entire clause. _A may appear anywhere in a -{ construct

If a prefix parameter is given, then termination occurs if the parameter is zero.
(Hence _A is the same as - # A.) If two parameters are given, termination occurs if
they are equal. If three are given, termination occurs if the second is between the
other two in ascending order. Of course, this is useless if all the prefix parameters are
constants; at least one of them should be a # or a V parameter.

If ,.:.'" is used within a -:{ constmct, then it merely terminates the current iteration
step (because in the standard case it tests for remaining arguments of the current step
only); the next iteration step commences immediately. To terminate the entire iteration

DSK:LMMAN;FD.FIO 11 16-MAR-81

Lisp Machine Manual 313 Formatted Output

process, use -:"'.

-Q An escape to arbitrary user-supplied code. arg is called as a function; its arguments
are the prefix parameters to ~Q, if any. args can be passed to the function by using
the V prefix parameter. The function may output to standard -output and may look
at the variables formatcolon -flag and formatatsign -flag, which are t or nil to reflect
the : and @ modifiers on the -0. For example,

(format t "~VQ" faa bar)
is a fancy way to say

(funcall bar faa)
and discard the value. Note the reversal of order; the V is processed before the Q.

The user can define his own directives. How to do this is not documented here; read the
code. Names of user-defined directives longer than one character may be used if they are
enclosed in backslashes (e.g. ~4,3\GRAPH\).

format also allows cOlltrol-string to be a list of strings and lists, which is processed from left
to right. Strings arc simply printed. Lists are taken as directives; the first clement is the directive
letter, and the remaining clement" are the prefix parameters to the directive. If the car of a list is
not a recognized directive, the list is simply evaluated as a form; anything it writes to the
standard - output stream will appear in the result of format.

format:print-list destination element-format list &optional separator start-line
tilde-brace-options

This function provides a simpler interface for the specific purpose of printing comma
separated lists with no list clement split across two lines; see the description of the -:;
directive (page 312) to see the more complex way to do this within format. destination
tells where to send the output; it can be t, nil, a string - nconc-able string, or a stream,
as with format. element-fonnat is a format control-string which tells how to print each
element of list; it is used as the body of a "-{ ... ~}" constmct. separator, which
defaults to ", " (comma, space) is a string which goes after each clement except the last.
format control commands are not recommended in separator. start-line, which defaults to
three spaces, is a format control-string which is used as a prefix at the beginning of each
line of output, except the first. format control commands are allowed in separator, but
they should not swallow arguments from list. tilde-brace-oplions is a string inserted before
the opening "{"; it defaults to the null string, but allows you to insert colon and/or
atsign. The line-width of the stream is computed the same way that the -:; command
computes it; it is not possible to override the natural line-width of the stream.

DSK:LMMAN;FD.FIO 11 16-MAR-81

Formatted Output 314 Lisp Machine Manual

21.6.2 The Output Subsystem

The formatting functions associated with the output subsystem allow you to do formatted
output using Lisp-style control structure. Instead of a directive in a format control string, there is
one fonnatting function for each kind of fonnatted output.

The calling conventions of the fonnatting functions are all similar. The first argument is
usually the datum to be output. The second argument is usually the minimum number of
columns to lise. The remaining arguments are options-alternating keywords and values.

Options which most functions accept include :padchar, followed by a character to use for
padding: :minpad, followed by the minimum number of padding characters to output after the
data; and :tab- period, followed by the distance between allowable places to stop padding. To
make the meaning of :tab-period clearer, if the value of :tab-period is 5, the minimum size of
the field is 10, and the value of:minpad is 2, then a datum that takes 9 characters will be
padded out to 15 characters. The requirement to usc at least two characters of padding means it
can't fit into 10 characters, and the :tab-period of 5 means the next allowable stopping place is
at 10+5 characters. The default values for :minpad and :tab-period, if they arc not specified,
are zero and one. The default value for :padchar is space.

The formatting functions always output to standard -output and do not require an argument
to specify Ule stream. The macro formatoutput allows you to specify the stream or a string, just
as format docs, and also makes it convenient to concatenate constant and variable output.

fOi'mat: output Macro
formatoutput makes it convenient to intersperse arbitrary output operations with printing
of constant strings. A call to formatoutput looks like this:

(for'mat: output stream slring-or-form strillg-or-fonn ...)
standard-output is bound to stream, and each string-or-fonn is processed in succession
from left to right. If it is a string it is printed, otherwise it is evaluated and the value is
discarded. Presumably the forms will send output to standard -output.

If stream is written as nil, Ulen the output is put into a string which is returned by
formatoutput. If stream is written as t, then the output goes to the prevailing value of
standard-output. Otherwise stream is a form which must evaluate to a stream.

Here is an example:
(format:output t "FDD is " (print fool " now." (terpri))

Because format output is a macro, what matters about stream is not whether it evaluates
to t or nil, but whether it is actually written as t or nil.

format: outfmt Macro
Some system functions ask for a format control string and arguments, to be printed later.
If you wish to generate the output using the formatted output functions, you can use
format:outfmt.

(forma t : au t frnt string-or-form strillg-or-fonn ...)
produces a control argument which will eventually make format print U1e desired output
(this is a list whose one clement is a string containing the output). A call to
formatoutfmt can be used as the second argument to ferror, for example:

DSK:LMMAN;FD.FIO 11 16-MAR-81

Lisp Machine Manual 315 Formatted Output

(ferror nil (format:outfmt "Faa is II (format:onum faa)
" which is too 1al'ge"»

fo rma t: 0 n urn number &optional radix mimvidth &rest options
format:onum outputs /lumber in base radix, padding to at least millwidth columns and
obeying the other padding options specified as described above.

radix can be a number, or it can be :roman, :english, or :ordinal. The default radix is
1 o. (decimal).

Two special keywords are allowed as options: :signed and :commas. :signed with value
t means print a sign eyen if the number is positive. :cornmas with value t means print a
comma every third digit in the customary way. These options arc meaningful only with
numeric radices.

fo rma t : ofl oa t number &optional n-tiigits jbrce-('xponential-llotation lIlinwidth &rest options
formatofloat outputs /lumber as a floating point number using iz-digits digits. If jorce
('xponential-notatiull is non-nil, then an exponent is always used. lIlilllVidl/z and options are
used to control padding as usual.

fo rma t : os tr; n 9 string &optional lIIillll'iJlh &rest options
format:ostring outputs siring, padding to at least lIlimvidtlz columns if lIIilllvidth is not nil,
and obeying the other padding options specified as described above.

Normally the contents of the string arc left-justified; any padding follows the data. The
special option :right-justify causes the padding to come before the data. The amount of
padding is not affected.

The argument need not really be a string. Any Lisp object is allowed, and it is output
by princ~

format: opr; nt object &optional mimvidth &rest options
format:oprint prints object, any Lisp object, padding to at least mifllvidth columns if
min width is not nil, and obeying the padding options specified as described above.

Normally the data are left justified; any padding follows. The special option :right-justify
causes the padding to come before the data. The amount of padding is not affected.

The printing of the object is done with prin1.

format: ochar character &optional style top-explain minwidth &rest options
format:ochar outputs character in one of three styles, selected by the style argument.
mimvidth and options control padding as usual.

If style is :read, nil, or not spccified, thcn the charactcr is printed using # / or # \ so
that it could be read back in.

If style is :editor, then the output is in the style of the string "Meta-Rubout".

If style is :sail, a somewhat more abbreviated style is used in which alpha, beta, etc. are
used to represent "Control" and "Meta", and shorter names for characters arc also used
when possible. See section 21.1, page 276.

DSK:LMMAN;FD.FIO 11 16-MAR-81

Fonnatted Output 316 Lisp Machine Manual

!Up-explaill is useful with the :editor and :sail styles. It says that any character which has
to be typed using the Top or Greek keys should be followed by an explanation of how to
type it. For example: "a (Top-Z)" or "a (Greek-a)", depending on the type of
keyboard in use.

format: tab millcol &rest options
formattab outputs padding at least until column mincol. It is the only formatting
function which bases its actions on the actual cursor position rather than the width of
what is being output. The padding options :padchar, :minpad, and :tab -period are
obeyed. Thus, at least the :minpad number of padding characters are output even if that
goes past lIIincol, and once past millco!, padding can only stop at a multiple of :tab
period characters past millcol.

In addition. if the :terpri option is t, then if column millcol is passed, formattab starts a
new line and indents it to mincol.

The :unit option specifies the units of horizontal position. The default is to count in units
of characters. If :unit is specified as :pixel, then the computation (and the argument
millco! and the :minpad and :tab-period options) are in units of pixels.

format: pad Macro
format:pad is used for printing several items in a fixed amount of horizontal space,
padding between them to use up any excess space. A call to Format:pad looks like this:

(format:pad (minwidth oplions ...)
body-forms)

Each of the body-Jonns prints one item. The padding goes between items. The entire
format pad always uses at least milllvidth columns; any columns that the items don't need
are distributed as padding between the items. If that isn't enough space, then more space
is allocated in units controlled by the :tab-period option until there is enough space. If
it's more than enough, the excess is used as padding.

If the :minpad option is specified, then at least that many pad characters must go
between each pair of items.

Padding goes only between items. If you want to treat several actual pieces of output as
one item, put a progn around them. If you want padding before the first item or after
the last, as well as between the items, include a dummy item nil at the beginning or the
end.

If there is only one item, it is right justified. One item followed by nil is left-justified.
One item preceded and followed by nil is centered. Therefore, format pad can be used
to provide the usual padding options for a function which does not provide them itself.

forma t: p 1 u r a 1 /lumber singular &optional plural
format plural outputs eiUler the singular or the plural fonn of a word depending on the
value of flumber. The singular is lIsed if and only if number is 1. singular specifics the
singular form of the word. string-pluralize is used to compute the plural, unless plural
is explicitly specified.

DSK:LMMAN;FD.FIO 11 . 16-MAR-81

Lisp Machine Manual 317 Formatted Output

It is often useful for /luII/ber to be a value returned by fonnat:onum, which returns its
argument. For example:

(format:p1ura1 (format:onum n-frobs) " frob")
will print "1 frob" or "2 frobs".

format:breakline Macro
format:breakline is used to go to the· next line if there is not enough room for something
to be output on the current line. A call to format:breakline looks like this:

(format:break1ine linel prillt-ifterpri
print-always ...)

The print-always fonTIs print the text which is supposed to fit on the line. lillel is the
column before which the text must end. If it doesn't end before that column, then
formatbreakline moves to the next line and executes the prilll-ifleipri fOlm before doing
the prillt-always fOlms.

Constant strings arc allowed as wcll as forms for prilll-ifierpri and prillt-always. A
constant string is just printed.

To go to a new line unconditionally, simply call terpri.

Here is an example which prints the clements of a list, separated by commas, breaking
lines between clcments when necessary.

(defun pc1 (list 1ine1)
(do «1 list (cdr 1}}) «null 1»

(format:breakline line1" "
(prine (car 1»
(and (cdr 1) (prine" ")}»~)

DSK:LMMAN;FD.FIO 11 16-MAR-81

Formatted Output 318 Lisp Machine Manual

21.6.3 F ormaHing Lisp Code

9 r i ndef Special Fonn
Prints the definitions of one or more functions; with indentation to make the code
readable. Certain other· "pretty-printing" transformations are performed: The quote
special form is represented with the ' character. Displacing macros are printed as the
original code rather than the result of macro expansion. The code resulting from the
backquote (') reader macro is represented in terms of ' .

The subfOlms to grindef arc the function specs whose definitions are to be printed; the
usual way grindef is used is with a form like (grindef foo) to print the definition of faa.
When one of these sub forms is a symbol, if the symbol has a value its value is prettily
printed also. Definitions are printed as defun special fonns, and values are printed as
setq special fOims.

If a function is compiled, grindef will say so and try to find its previous interpreted
definition by looking on an associated property list (sec uncompile (page 18t). This will
only work if the fbnction's interpreted definition· was once in force; if the definition of
the function was simply loaded from a QFASL file, grindef will not find the interpreted
definition and will not be able to do anything useful.

With no subfiJrms, grindef assumes the same arguments as when it was last called.

9 r i n d - top -1 e val obj &optional lvidth (stream standard - output) (ulltyo-p nil)
(displaced'si:displaced) (terpri-p t) notify-fUll loc

Pretty-prints obj on stream, putting up to lVidth 'characters per line. This is the pnmltIve
interface to the pretty-printer. Note that it docs not support variable-width fonts. If the
width argument is supplied, it is how many characters wide the output is to be. If width
is unsupplied or nil, grind-tap-level will try to figure out the "natural width" of the
stream, by sending a :size-in-characters message to the stream and using the first
returned value. If the stream doesn't handle that message, a width of 95. characters is
used instead.

The remaining optional arguments activate various strange features and usually should not
be supplied. These options are for internal use by the system, and are only documented
here for completeness. If ulltyo-p is t, the :untyo and :untyo- mark operations will be
used on stream, speeding up the algorithm somewhat. displaced controls the checking for
displacing macros; it is the symbol which flags a place that has been displaced, or nil to
disable the feature. If terpri-p is nil, grind-tap-level does not advance to a fresh line
before printing.

If lIotify-JUIl is non-nil, it is a function of three arguments which is called for each
"token" in the pretty-printed outppt. Tokens are atoms, open and close parentheses, and
reader macro characters such as '. The arguments to Ilotify-full are the' token, its
"location" (sec next paragraph), and t if it is an atom or nil if it is a character.

loc is the "location" (typically a cons) whose car is obj. As the grinder recursively
descends through the structure bdng printed, it keeps trac~ of the location where each
thing came from, for the benefit of the notify-fUll, if any. This makes it possible for a
program to correlate the printed Olltput with the list structure. The "location" of a close
parenthesis is t, because close parentheses have no associated location.

DSK:LMMAN;FD.FIO 11 16-MAR-81

Lisp Machine Manual 319 Rubout Handling

21.7 Rubout Handling

The rubout handler is a feature of all interactive streams, that is, streams which connect to
terminals. Its purpose is to allow the user to edit minor mistakes in typein. At the same time, it
is not supposed to get in the way; input is to be seen by Lisp as soon as a syntactically complete
fonn has been typed. The definition of "syntacticalIy complete form" depends on the function
that is reading from the stream; for read, it is a Lisp expression.

Some interaCtive streams ("editing Lisp listeners") have a rubout handler which allows input to
be edited with the full power of the Zwei editor. Other streams have a simple rubout handler
which just allows rubbing out of single characters, and a few simple commands like clearing the
screen and erasing the entire input typed so far. This section describes the general protocol used
to deal with any rubout handler, and it also discusses the simple rubout handler and what
commands it deals with.

The tricky thing about the rubout handler is the need for it to figure out when you are all
done. The idea of a rubout handler is that you can type in characters, and they arc saved up in
a buffer so that if you change your mind, you can rub them out and type different characters.
However, at some point. the rubout handler has to decide that the time has come to stop putting
characters into the buffer, and let the function, such as read, start processing the characters.
This is called "activating". The right time to activate depends on the· function calling the rubout
handler. and may be very complicated (if the function is read, figuring out when one Lisp
expression has been typed requires knowledge of all the various printed representations, what all
currently-defined reader macros do, and so on). Rllbollt handlers should not have to know how
to parsl! the characlers in the buffer to figure out what the caller is reading and when to activate;
only the caller should have to know this. The rubout handler interface is organized so that the
calling function can do all the parsing, while the rubout handler does all the handling of I1lbouts,
and the two are kept completely separate. .

The basic way that the mbout handler works is as follows. When an input function that reads
an "object", such as read or readline (but not tyi), is called to read from a stream which has
:rubout- handler in its :which -operations list, that function "enters" the mbout handler. It then
goes ahead :tyi'ing characters from the stream. Because control is inside the rubout handler, the
stream will echo these characters so the user can see what he is typing. (Normally echoing is
considered to be a higher-level function outside of the province of streams, but when the higher
level function tells the stream to enter the rubout handler it is also handing it the responsibility
for echoing). The mbout handler is also saving all these characters in a buffer, for reasons
disclosed in the following paragraph. When the function, read or whatever, decides it has
enough input, it returns and control "leaves" the rubout handler. That was the easy case.

If the user types a rubout, a *throw is done, out of all recursive levels of read, reader
macros, and so forth, back to the point where the rubout handler was entered. Also the rubout
is echoed by erasing from the screen the character which was rubbed out. Now the read is tried
over again, re-reading all the characters which had been typed and not rubbed out, not echoing
them this time. When the saved characters have been exhausted, additional input is read from
the user in the usual fashion.

The effect of this is a complete separation of the functions of rubout handling and parsing,
while at the same time mingling the execution of these two functions in such a way that input is
always "activated" at just the right time. It does mean that the parsing function (in the usual
case, read and all macro-character definitions) must be prepared to be thrown through at any

DSK:LMMAN;FD.FIO 11 16-MAR-S1

Rubollt Handling 320 Lisp Machine Manual

time and shc)uld not have non-trivial side-effects, since it may be called Illultiple times.

If an error occurs while inside the rubout handler, the error message is printed and then
additional characters are read. When the user types a rubout, it rubs out the error message as
well as the character that caused the error. The user can then proceed to type the corrected
expression; the input will be reparsed from the beginning in the usual f.1shion.

The simple rubout handler also recognizes the special characters Clear-Input, Clear-Screen,
and Delete. (These arc Clear, FOIm, and VT on old keyboards.) Clear-Screen clears the screen
and echoes back the buffered input. Clear-Input is like hitting enough mbouts to flush all the
buffered input. Delete is like Clear-Screen in that it echoes back the input, but it docs not clear
the screen. [It should be moved to a different key, shouldn't it?]

If a character with control shifts (Control, Meta, Super, or Hyper) is typed at a rubout
handler that does not suppOrl the full set of editing commands, such as the simple rubout
handler, it beeps and ignores the character. These characters arc reserved in this context for
editing usc. The rubout handler based on the Zwei editor interprets control chmacters in the
usual f:wei way: as editing commands, allowing you to edit your buffered input. When not
inside the rubout handler, and when typing at a program that uses control characters for its own
purposes, control characters are treated the same as ordinary characters.

The fi)lIowing explanation tells you how to write your own function that invokes therubout
handler. The functions read and readline both work this way. You should usc the readline1
example, below, as a template for writing your own function.

The way that the rtlbout handler is entered is complicated, since a *catch must be
established. The variable rubout-handler is non-nil if the current process is inside the mbout
handler. This is used to handle recursive calls to read from inside reader macros and the like. If
rubout-handler is nil, and the stream being read from has :rubout-handler in its :which
operations, functions such as read send the :rubout-handler message to the stream with
arguments of a list of options, the ftmction, and· its arguments. The rubout handler initializes
itself and establishes its *catch, then calls back to the specified function with rubout-handler
bound to t. User-written input reading functions should follow this same protocol, to get the
same input editing benefits as read and read line.

rubout-handler Variable
t if control is inside the mbout handler in this process.

As an example of how to use the rubout handler, here is a simplified version of the read line
function. It doesn't bother about end-of-file handling, use of :Iine- in for efficiency, etc.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 321 Rubollt Handling

(defun read11nel (stream)
;; If stream does rubout handling, get inside rubout handler
(cond «and (not rubout-handler)

(memq ':rubout-handler
(funcal1 stream ':which-operations»)

(funca11 stream ':rubout-handler '() #'read1inel stream»
" Accumulate characters until return
(t (do «ch (funcal1 stream ':tyi)

(funca11 stream ':tyi»
(len 100)
(string (make-array 100 ':type 'art-string»
(idx 0»

«or (null ch) (= ch #\cr»
(adjust-array-size string idx)
string)

(if (= idx len)
(adjust-array-size string (setq len (+ len 40»»

(aset ch string idx)
(setq idx (1+ idx»»»

The first argument to the :rubout-handler message is a list of options. The second argument
is the function that the mbout handler should call to do the reading, and lhe rest of the
arguments are passed to that function. Note that in the example above, readline1 is sending the
:rubout-Ilandler message passing itself as the funclion, and ilS own arguments as the arguments.
This is the usual thing to do. It isn't passing any options.

Each option in the list of options given as the first argument to the :rubout-handler message
consists of a list whose first element is a keyword and whose remaining clements are "arguments"
to that keyword. Note that this is not the same format as the arguments to a typical function that
takes keyword arguments; rather this is an a-list of options. The standard options are:

(:full-rubout val)
If the user mbs out all the characters he typed, then control will be
returned from the mbout handler immediately. Two values are returned;
the first is nil and the second is val. In the absence of this option, the
rubout handler would simply wait for more characters to be typed in, and
would ignore any additional mbouts.

(:pass-through charI char2 ...)
The characters charI. char2, etc. are not to be treated as special by the
mbout handler. You can use this to override the default processing of
characters such as Clear-Input and to receive control characters. Any
function that reads input and uses non-printing characters for anything
should list them in a :pass-through option. This way, if input is being
rubout-handled by the editor, those non-printing characters will get their
desired meaning rather than their meaning as editor commands.

(:prompt fimction)
(:repromptjullction)

DSK:LMMAN;IOS 155

When it is time for the user to be prompted, junction is called with two
arguments. The first is a stream it may print on; the second is the
character which caused the need for prompting, e.g. # \clear- input or

16-MAR-81

The : read and :print Stream Operations 322 Lisp Machine Manual

\clear-screen, or nil if the I1Ibout handler was just entered.

The difference between :prompt and :reprompt is that the latter does not
call the prompt function when the rubout handler is first entered, but
only when the input is redisplayed (e.g. after a screen clear). If both
options are specified then :reprompt overrides :prompt except when the
I1Ibout handler is first entered.

(:initial- input string)
Pretends that the user typed string. When the I1Ibout handler is entered,
sIring is typed out. The user can add more characters to it or rubout
characters from it.

21.8 The :rcad nlld :print Stream Operations

A stream can specially handle the reading and printing of objects by handling the :read and
:print stream operations. Note that these operations are optional and most streams do not support
them.

If the read function is given a stream which has :read in its which-operations, then instead
or reaLling in the normal way it sends the :read message to the stream with one argument, read's
('ofopliol/ if it had one or a magic internal marker if it didn't. Whatever the stream returns is
what read returns. If the stream wants to implement the :read operation by internally calling
read, it must use a dilft~rent stream which does not have :read in its which-operations.

If a stream has :print in its which-operations, it may intercept all object printing operations,
including those due to the print, prin1, and prine functions, those due to format, and those
used internally, for instance in printing the elements of a list. The' stream receives the :print
message with three arguments: the object being printed, the prindeplh (for comparison against the
prinlevel variable), and slashiJy-p (t for prin1, nil for prine). If the stream returns nil, then
normal printing takes place as usual. If the sU'eam returns non-nil, then print does nothing; the
stream is assumed to have output an appropriate printed representation for the object. The two
following functions are useful in this connection; however, they are in the system-internals
package and may be changed without much notice.

s 1 : p r i nt-ob j act object prindeplh slashify-p stream &optional which-operations
Outputs the printed-representation of object to stream, as modified by prindepth and
slashify-p. This is the internal guts of the Lisp printer. When a stream's :print handler
calls this function, it should supply the list (:string-out) for which-operations, to prevent
itself from being called recursively. Or it can supply nil if it does not want to receive
:string-out messages.

s i : p r in t -1 is t list prilldepth slashify-p stream which-operatioflS
This is the part of the Lisp printer that prints lists. t\ stream's :print handler can call this
function, passing along its own arguments and its own which-operations, to arrange for a
list to be printed the normal way and the stream's :print hook to get a chance at each of
the list's elements.

DSK:LMMAN;IOS 155 16-MAR-Sl

Lisp Machine Manual 323 Accessing Files

21.9 Accessing Files

The Lisp Machine can access files on a variety of remote file servers, which are typically (but
not necessarily) accessed through the Chaosnet, as well as accessing files on the Lisp Machine
itself, if the machine has its its own file system. This section tells you how to get a stream which
reads or writes a given file, and what the device-dependent operations on that stream arc. Files
are named with patill/ames. Since pathnames are quite complex they have their own chapter; see
chapter 22, page 332.

with-open-fi 1 eSpecial Fonn
(with-open-file (stream pathl/ollle options) body! body2 ...) evaluates the body forms with
the variable stream bound to a stream which reads or writes the file named by the value
of pathflallle. opliofls should evaluate to a keyword or list of keywords. These options
control whether the stream is for input from a existing file or output to a new file,
whether the file is text or binary, etc.

When control leaves the body, either normally or abnormally (via *throw), the file is
closed. If a new output file is being written, and control leaves abnonnally. the file is
aborted and it is as if it were never written. Because it always closes the file, even when
an error exit is taken, with -open -file is preferred over open. Opening a large Humber
of files and forgetting to close them tends to break some remote file servers, ITS's for
example.

pathflame is the name of the file to be opened; it can be a pathname object, a string, a
symbol, or a Maclisp-compalible "namelist". It can be anything acceptable to fs:parse
path name; the complete nIles for parsing pathnames are explained in chapter 22, ·page
332.

If an error, such as file not found, occurs the user is asked to supply an alternate
pathname, unless this is overridden by options. At that point he can quit out or enter
the error handler, if the error was not due to a misspelled pathname.

options is either a single symbol or a (possibly-null) list of symbols. The following option
symbols are recognized:

:in, :read Select opening for input (the default).

:out, :write, :print

:fixnum

:ascii

Select opening for output; a new file is to be created.

Select binary mode, otherwise character mode is used. Note that fixnum
mode uses 16-bit binary words and is not compatible with Maclisp fixnum
mode which uses 36-bit words. On the pdp-lO, fixnum files are stored
with two I6-bit words per pdp-l0 word, left-justified and in pdp-I0 byte
order.

The opposite of :fixnum. This is the default.

:single, :block Ignored for compatibility with the Maclisp open function.

:byte-size Must be followed by a num'ber in the options list, and must be used in
combination with :fixnum. The number is the number of bits per byte,
which can be from 1 to 16. On a pdp-l0 file server these bytes will be
packed into words in the standard way defined by the ILOB instmction.

DSK:LMMAN;IOS 155 16-MAR-81

Accessing Files 324 Lisp Machine Manual

The :tyi stream operation will (of course) return the bytes one at a time.

:probe' The file is not being opened to do I/O, but only to find out information
about it. A stream is returned but the normal 110 messages should not
be sent to it. The special file-attribute messages described below (see
section 21.9.3, page 329) may be sent. It is as if the stream were
immediately closed after opening it. :probe implies :noerror and :fixnum.

:noerror If the file cannot be opened, then instead of returning a stream, a string
containing the error message is returned. If :noerror was not specified,
this error string would have been displayed and the user would have been
asked to supply an alternate path name.

:super-image Disables the special treatment of mbout in ascii files. Normally rubout is
an escape which causes' the following character to be interpreted specially,
allowing all characters from 0 through 376 to be stored. This applies to
pdp-lO file servers only.

:raw Disables all character set translation in ascii files. This applies to pdp-lO
file servers only.

:deleted
:temporary These options are for 1'OPS-20 file servers only. They specify TOPS-20-

specific attributes of the file to be opened.

For compatibility with the Maclisp open function (sec below), which uses the same
keywords as with-open-file, the keyword symbols can be in any package and need not
be prefixed with colons. Lisp machine programs should include the colons for consistency
of style.

For example, evaluating any of the forms
{with-open-file (faa "info;dir >" ':in) ... }
(with-open-file (faa "INFO;OIR >" '(:read» ...)
(with-open-file (faa "OIR > INFO;" ':read) ... }

will open the file "AI: INFO; DIR)" (assuming AI is the current default file server),
and will return an input stream which will return successive characters of the file.

open pathname options
Returns a stream which is connected to the specified file. Unlike Maclisp, the open
ftmction only creates streams for files; streams for other devices are created by other
functions. The pathname and options arguments are the same as in with-open-file; see
above. If an error, such as file not found, occurs, the user is asked to supply an
alternate path name, unless this is overridden by options.

When the caller is finished with the stream, it should close the file by using the :close
operation or the close function. The with-open-file special form does this automatically,
and so is usually preferred. open should only be used when the control structure of the
program necessitates opening and closing of a file in some way more complex than the
simple way provided· by with-open-file. Any program that uses open should set up
unwind-protect handlers (see page 44) to close its files in the event of an abnormal e~it.

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 325 Accessing Files

cl ase stream
The close function simply sends the :close message to stream.

renamef file new-name &optional (error-pt)
file can be a pathname or a stream which is open to a file. The specified file is renamed
to new-name (a pathname). If err01~p is t, then if an error occurs it will be signalled as a
Lisp error. If error-p is nil and an error occurs, the error message will be returned as a
string, otherwise t will be returned.

deletef file &optional (error-pt)
file can be a path name or a stream which is open to a file. The specified file is deleted.
If error-p is t, then if an error occurs it will be signalled as a Lisp error. If error-p is nil
and an error occurs, the error message will be returned as a string, otherwise t will be
returned.

probef pat/lIlame
Returns nil if there is no file named palhnallle, otherwise returns the a path name which is
the true name of the file, which can be different from pat!Jnl7llle because of file links,
version numbers, etc.

fs:closo-all-files
Closes all open files. This is useful when a program has run wild opening files and not
closing them.

21.9.1 Loading Files

To load a file is to read through the file, evaluating each form in it. Programs are typically
stored in files: the expressions in the file are mostly special fOims such as defun and defvar
which define the functions and variables of the program.

Loading a compiled (or QFASL) file is similar, except that the file does not contain text but
rather pre-digested expressions created by the compiler which can be loaded more quickly.

These functions are for loading single files. There is a system for keeping track of programs
which consist of more than one file; for further information refer to chapter 24, page 359.

load pathllame &optional pkg nonexistent-ok dont-set-deJaull
This function loads the file named by path name into the Lisp environment. If the file is a
QF ASL file, it calls fasload; otherwise it calls readfile. Normally the file is read into its
"home" package, but if pkg is supplied it is the package in which the file is to be read.
pkg can be either a package or the name of a package as a string or a symbol. If pkg is
not specified, load prints a message saying what package the file is being loaded into. If
nonexistent-ok is specified, load just returns if the file cannot be opened.

pathllallle can be anything acceptable to fs:parse-pathname; pathnames and the complete
rules for parsing them are explained in chapter 22, page 332. patlznallle is defaulted from
fs:load - pathname-defaults (see page 337), which is the set of defaults used by load.
qc-file, and similar functions. Nonnally load updates the path name defaults from
pathllame. but if dOllt-set-deJault is specified this is suppressed.

DSK:LMMAN;IOS 155 16-MAR-81

Accessing Files 326 Lisp Machine Manual

If pathnallle contains an FNI but no FN2, load will first look for the file with an FN2 of
QFASL, then it will look for an FN2 of >. For non-ITS file systems, this generalizes to:
if pathname specifies a type and/or a version, load loads that file. Otherwise it first looks
for a type-QFASL file, then a type-LISP file, in both cases looking for the newest
version.

readf11 e palJlIlame &optional pkg Ilo-msg-p
readfile is the version of load for text files. It reads and evaluates each expression in the
file. As with load, pkg can specify what package to read the file into. Unless Ilo-msg-p is
t, a message is printed indicating what file is being read into what package. The
defaulting of pat/mallie is the same as in load.

fasload pathliame &optional pkg lIo-msg-p
fasload is the version of load for OF ASL files. It defines functions and performs other
actions as directed by the specifications inserted in the file by the compiler. As with load,
pkg can specify what package to read the file into. Unless lIo-msg-p is t, a message is
printed indicating what file is being read into what package. The defaulting of pathname
is the same as in load.

21.9.2 File Property Lists

Any text file can contain a ''.property list" which specifies severa] attributes of the file. The
above loading functions, the compiler, and the editor look at this property list. File property lists
are especially useful in program source files, i.e. a file that is intended tu be luaded (or compiled
and then loaded).

I f the first non-blank line in the file contains the three characters II - ole - ", some text, and "-
>Ie -" again, the text is recognized as the file's property list. Each property consists of the property
name, a colon, and the property value. If there is more than one property they are separated by .
semicolons. An example of such a property list is:

; -oIe- Mode:Lisp; Pack~ge:Cellophane; Base:l0 -*-
The semicolon makes this line look like a comment rather than a Lisp expression. This defines
three properties: mode, package, and base. Another example is:

.c This is part of the Lisp machine manual. -*- Mode:Bolio -*-

A property name is made up of letters, numbers, and otherwise-undefined punctuation
characters such as hyphens. A property value can be such a name, or a decimal number, or
several such items separated by commas. Spaces may be used freely to separate tokens. Upper
and lower-case letters are not distinguished. There is flO quoting convention for special characters
such as colons and semicolons. Thus file property lists arc similar in spirit to Lisp property lists.

The file property list format actually has nothing to do with Lisp; it is just a convention for
placing some information into a file that is easy for a program to interpret. The Emacs editor on
the pdp-lO knows how to interpret these property lists (primarily in. order to look at the Mode
property).

Within the Lisp Machine, there exists a parser for file property lists that creates some Lisp
data stl1lcture that corresponds to the file property list. When a file property list is read in, it is
converted into Lisp objects as follows: Symbols are read in the keyword package. Numbers are
read in decimal. If a property value contains any commas, then the commas separate several

DSK:LMMAN ;IOS 155 16-MAR-81

Lisp Machine Manual 327 Accessing Files

expressions which arc formed into a list

When a file is edited, loaded, or compiled, its file property list is read in and the properties
are stored on the property list of the generic pathname (see section 22.3, page 337) for that file,
where they can be retrieved with the :get and:plist messages. So the way you examine the
properties of a file is usually to use messages to a path name object that represents the generic
pathname of a file. Note that there other properties there, too. The function fs:file-read
property-list (see below) reads the file property list of a file and sets up the properties on the
generic pathname; editing, loading, or compiling a file will calI this function, but you can call it
yourself if you want to examine the properties of an arbitrary file.

If the property list text contains no colons, it is an old Emacs fOimat, containing only the
value of the Mode property.

The following are some of the property names allowed and what they mean.

Mode The editor major mode to be used when editing this file. This is typically the
name of the language in which the file is written. The most common values are
Lisp and Text.

Package

Base

Lowercase

Fonts

Backspace

Patch-File

The name of the package into which the file is to be loaded. See chapter 23,
page 345 for in formation about packages.

The number base in which the file is written. This affects both ibase and base,
since it is confusing to have the input and output bases be different. The most
common values are 8 and lO.

If the property value is not nil, the file is written in lower-case letters and the
editor does not tratislate to upper case. (The editor does not tranSlate to upper
case by default unless the user selects "Electric Shift Lock" mode.)

The property value is a list of font names, separated by commas. The editor uses
this for files which are written in more than one font.

If the property value is not nil, the file may contain backspaces which cause
characters to overpi'int on each other. The default is to disallow overprinting and
display backspaces the way other special function keys are displayed. This default
is to prevent the confusion that can be engendered by overstruck text.

If the property value is not nil, the file is a "patch file". When it is loaded the
system will not complain about function redefinitions. Furthermore, the
remembered source file names for functions defined in this file will not be
changed to this file, but will be left as whatever file the function came from
originally. In a patch file. the defvar special-form turns into defconst; thus
patch files will always reinitialize variables.

You are free to define additional file properties of your own. Howver, you should choose
names that are different from all the names above, and from any names likely to be defined by
anybody else's programs, to avoid accidental name conflicts.

The following function is the parser for file property lists.

DSK:LMMAN;IOS 155 16-MAR-81

Accessing Files 328 Lisp Machine Manual

f s : file - read - p rope r ty-l is t pat/mallie stream
pathn(llllc should bc a pathname objcct (1101 a string or namclist. but an actual pathname);
llsually it is a generic pathname (see section 22.3, page 337). stream should be a stream
that has been opened and is pointing to the beginning of the file whose file property list
is to be parsed. This function reads from the stream until it gets the file property list,
parses it, puts corresponding propelties onto the property list of palhllame, and finally
sets the stream back to the begin ning of the file by using the :set- pointer file stream
operation (see page 330).

The fundamental way that programs in the Lisp Machine react to the presence of properties
on a file's file property list is to examine the property list in the generic pathname. However,
there is another way that is more convenient for some applications. File properties can cause
special variables to be bound whenever Lisp expressions are bcing read from thc file-whcn the
file is being loaded, when it is being compiled, when it is being read from by the editor, and
whcn its QFASL file is being loaded. This is how the Package and Base properties work. You
can also deal with properties this way, by using the following function:

fs : fi 1 e- prope rty-b i ndi ngs palhllame
This function examines the property list of palhllame, and finds all those property names
that have fs:fiIe-property-bindings properties. Each such property name specifies a set of
variables to bind, and a sct of values to which to bind them. This function returns two
values: a list of all the vuriables, and a list of all the corresponding values. Usually you
use this function by calling it on a generic pathname what has had fs:file-'read - property
list done on it, and then you use the two returned values as the first two subforms to a
progv special form (see page 16). Inside the body of the progv lhe specified bindings
will be in effect. .

Usually palhname is a generic pathname.' It can also be a locative, in which case it is
interpreted to be the property list itself.

Of the standard property names, the following ones have fs:file-property-bindings, with
the following effects. Package binds the variable package (see page 351) to the package.
Base. binds the variables base (see page 280) and ibase (see page 283) to the value.
Patch-file binds fs:this-is-a-patch-file to the value.

Any properties whose names do not have a fs:file-property-bindings property are ignored
completely. .

You can also add your own property names that affect bindings. If an indicator symbol
has an fs:file-property-bindings property, the value of that property is a function which
is called when a file with a file property of that name is going to be read from. The
function is given three arguments: the file pathname, the property name, and the
property value. It must return two values: a list of variables to be bound and a list of
values to bind them to. The function for the Base keyword could have been defined by:

DSK:LMMAN;IOS 155 16-MAR-81

Lisp Machine Manual 329 Accessing Files

(defun (:base f11e-property-bindings) (file ignore bse)
(if (not (and (typep bse 'fixnum)

(> bse 1)
« bse 37.»)

(ferror nil "File -A has an illegal -*- Base:-s -*-"
file bse»

(values (list 'base 'ibase) (list bse bse»)

21.9.3 File Stream Operations

The following messages may be sent to file streams, in addition to the nOlmal 110 messages
which work on all streams. Note that several of these messages arc useful to send to a file stream
which has been closed. Some of these messages use path names; refer to chapter 22, page 332 for
an explanation of path names.

:pathname
Returns the path name that was opened to get this stream. This may not be identical to
the argument to open, since missing components will have been filled in from defaults,
and the path name may have been replaced wholesale if an error occurred in the attempt
to open the original pathname.

:truename
Returns the pathname of the file actually open on this stream. This can be different from
what :pathname returns because of file links, Ingical devices, mapping of "newest"
version to a particular version number, etc. For an Olltput stream the tmename is not
meaningful until after the stream has been closed, at least when the file server is an ITS.

:qfaslp
Returns t if the file has a magic flag at the front that says it is a QFASL file, nil if it is
an ordinary file.

: 1 ength
Returns the length of the file, in bytes or characters. For text files on pdp-I0 file servers,
this is the number of pdp-lO characters, not Lisp machine characters. The numbers are
different because of character-set translation; see page 278 for a full explanation. For an
output stream the length is not meaningful until after the stream has been closed, at least
when the file server is an ITS.

:creation-data .

:1nfo

Returns the creation date of the file, as a number which is a universal time. See the
chapter on the time package (chapter 30, page 441).

Returns a string which contains the version number and creation date of the file. This
can be used to tell if the file has been modified between two opens. For an output
stream the info is not meaningful until after the stream has been closed, at least when the
file server is an ITS.

DSK:LMMAN;IOS 155 I6-MAR-8I

Accessing Directories 330 Lisp Machine Manual

:set-byte-s1ze new-b)'te-size
This is only allowed on binary ("fixnum mode") file streams. The byte size can be
changed to any number of bits from 1 to 16.

: del e te &optional (error-p t)
Deletes the file open on this stream. For the meaning of error-p, see the deletef
function. The file doesn't really go away until the stream is closed.

: rename new-name &optional (error-p t)
Reilames the file open on this stream. For the meaning of error-p, see the renamef
function.

:read-po1nter
Returns the current posItIOn within the file, in characters (bytes in fixnum mode). For
text files on pdp-lO file servers, this is the number of Lisp machine characters, not pdp-
10 characters. The numbers are different because of character-set translation.

:set-pointer new-pointer
Sets the reading position within the file to new-pointer (bytes in fixnum mode). For text
files on pdp-] 0 file servers, this will not do anything reasonable unless new-poillter is 0,
because of character-set translation. This operation is for input streams only.

:rewind
This is the same as :set-pointer O. TIlis operation is for input streams only.

: get- input-buffer &optional eof
Returns three values: a buffer array, the index in that array of the next input byte, and
a count of the number of bytes remaining in the array. If the end of the file has been
reached, returns nil or signals an error, based on the eof argument, just like the :tyi
message. After reading as many bytes from the array as you care to, you must send the
:advance-input-buffer message. This operation is for input streams only. It is a kludge
to provide for faster input from files.

: advance-; nput-buffer &optional new-pointer
If new-pointer is non-nil, it is the index in the buffer array of the next byte to be read.
If new-pointer is nil, the entire buffer has been used· up. This operation is for input
streams only.

File output streams implement the :finish and :force-output messages.

21.10 Accessing Directories

fs : di rectory-11 st pathllame &rest options
Finds all the files that match palJlllamc and returns a list with one clement for each file.
Each clement is a list whose car is the path name of the file and whose cdr is a list of the
properties of the file; thus the clement is a "disembodied" property list and get may be
lIsed to access the file's properties. The car of one clement is nil; the properties in this
clement are properties of the file system as a whole rather than of a specific file.

DSK:LMMAN;IOS 155 16-MAR-Sl

Lisp Machine tvlanual 331 Accessing Directories

The matching is done by using the asterisk character (*) as a wild-card character. The
exact syntactic details are host-dependent, but in general a pathname component that
consists of just a * matches any value of that component, and a pathname component
that contains * and other characters matches any character in the starred positions and
requires the specified characters otherwise.

TI1e options are keywords which modify the operation. The following options are currently
defined:

:noerror

:deleted

If a file-system error (such as no such directory) occurs during the
operation, normally an error will be signalled and the user will be asked
to supply a new pathname. However, if :noerror is specified then in the
event of an error a string describing the error will be returned as the
result of fs:directory-list. This is identical to the :noerror option to
open.

'I'll is is for TOPS-20 file servers. I t specifics that deleted (but not yet
expunged) files arc to be included in the directory listing.

The properties that may appear in the list of property lists returned by fs:directory-list
arc host-dependent to some extent. The following properties arc those that arc' defined for
both ITS and TOPS-20 file servers. This set of properties is likely to be extended or
changed in the future.

:Iength - in - bytes

:byte-size

The length of the file expressed in terms of the basic units in which it is
written (characters in the case of a text file).

The number of bits in one of those units.

:Iength-in-blocks

:block -size

TI1e length of the file in terms of the file system's unit of storage
allocation.

The number of bits in one of those units.

:creation-date The date the file was created, as a universal time. See chapter 30, page
441.

:reference-date
The most recent date that the file was used, as a universal time.

:author TI1e name of the person who created the file, as a string.

:not-backed-up
t if the file exists only on disk, nil if it has been backed up on magnetic
tape.

DSK:LMMAN ;IOS 155 16-MAR-81

Naming of Files 332 Lisp Machine Manual

22. Nalning of Files
A Lisp Machine generally has access to many file systems. While it may have its own file

system on its own disks, usually a community of Lisp Machine users want to have a shared file
system accessible by any of the Lisp Machines over a network. These shared file systems can be
implemented by any computer that is capable of providing file system service. A file server
computer may be a special-purpose computer that does nothing but service file system requests
from computers on a network, or it might be an existing time-sharing system.

Programs need to use names to designate files within these file systems. The main difficulty in
dealing with names of files is that different file systems have different naming formats for files.
For example, in the ITS file system, a typical name looks like:

DSK: GEORGE; Faa QFASL
with DSK being a device name, GEORGE being a directory name, FOO being the first file name
and OF ASL being the second file name. However, in TOPS-20, a similar file name is expressed
as:

PS:<GEORGE>FOO.QFASL
It would be unreasonable for each program that deals with file names to be expected to know
about each different file name fonnat that exists; in fact, new fonnats could get added in the
future, and existing programs should retain their abilities to manipulate the names.

The functions and flavors described in this chapter exist to solve this' problem. They provide
an interface through which a program can deal with names of files and manipulate them without
depending ull anythiug about their syntax. This lets a program deal with multiple remote file
servers ~imultaneously, using a unifonn set of conventions.

22.1 Pathnames

All file systems dealt with by the Lisp machine arc mapped into a common model, in which
files are named by something called a palhname. A path name always has six components,
described below. These components are the' common interface that allows programs to work the
same way with different file systems; the mapping of the pathname components into the concepts
peculiar to each file system is taken care of by the pathname software. This mapping is described
for each file system later in this chapter.

These are the components of a pathname. They will be clarified by an example below.

host The name of the file system machine on which the file resides.

device

directory

name

type

version

Corresponds to the "device" or "file structure" concept in many host file systems.

The name of a group of related files belonging to a single user or project.
Corresponds to the "directory" concept in many host file systems.

The name of a group of files which can be thought of as conceptually the "same"
file.

Corresponds to the "filetype" or "extension" concept in many host file systems.
This says what kind of file this is.

Corresponds to the "version number" concept in many host file systems. This is a
number which increments every time the file is modified.

DSK:LMMAN;PATHNM 30 16-MAR-Sl

Lisp Machine Manual 333 Pathnames

As an example, consider a Lisp program named CONCH. If it belongs to GEORGE, who
uses the FISH machine, the host would be FISH, the device would be the default probably, and
the directory would be GEORGE. On this directory would be a number of files related to the
CONCH program. The source code for this program would live in a set of files with name
CONCH, type LISP, and versions 1, 2, 3, etc. The compiled fonn of the program would live in
files named CONCH with type QFASL; each would have the same version number as the source
file that it came from. If the program had a documentation file. it would have type INFO.

Note that a path name is not necessarily the name of a specific file. Rather, it is a way to get
to a file; a pathname need not correspond to any file that actually exists, and more than one
paLlmame can refer to Ll1e same file. For example, the pathname with a version of "newest" will
refer to the same file as a path name with the same components except a certain number as the
version. In systems with links, multiple file names, logical devices, etc. two path names that look
quite different may really turn out to address the same file. To get from a pathname to a file
requires doing a file system operation such as open.

A pathname is an instance of a flavor (sec chapter 20. page 245); exactly which flavor·
depends on what the host of the path name is. If p is a pathname, then (typep p 'fs:pathname)
will return t. (fs is the file-system package.) There are functions for manipulating path names, and
there are also messages that can be sent to them: These are described later in this chapter.

Two important operations of the pathname system are parsing and merging. Parsing is the
conversion of a string-which might be something typed in by the user when asked to supply the
name of a file-into a pathname object. This involves finding Ollt what host the pathname is ror,
then lIsing the file nalIle syntax conventions of that host to parse the string into the standard
pathname components. Merging is the operation which takes a pathname with missing
components and supplies values for those components from a set of defaults.

Since each kind of file server can have its own character string representation of names of its
files, there has to be a different parser for each of these representations, capable of examining
such a character string and figuring out what each component is. The parsers all work dilferently.
How can the parsing operation know which parser to use? The first thing that the parser does is
to figure out which host this filename belongs to. A filename character string may specify a host
explicitly, by having the name of the host, followed by a colon, either at the beginning or the
end of the string. For example, the following strings all specify hosts explicitly:

AI: COMMON; GEE WHIZ This specifies host AI.
COMMON; GEE WHIZ AI: So does this.
AI: ARC: USERS1; FOO BAR So does this.
ARC: USERS1; FOO BAR AI: So does this.
EE:PS:<COMMON>GEE.WHIZ.5 This specifies host EE.
PS:<COMMON>GEE.WHIZ.5 EE: So does this.

If the string docs not specify a host explicitly, the parser will assume some particular host is the
one in question, and will use the parser for that host's file system. The optional arguments
passed to the parsing function (fs:parse-pathname) tell it which host to assume. Note: the
parser won't be confused by strings starting with "DSK:" or "PS:" because it knows that neit11er
of those is a valid host name. (If some file system's syntax allowed file names that stalt with the
name of a valid host followed by a colon, there could be problems.)

Path names, like symbols, are interned. This means that there is only one pathname object
with a given set of components. If a character string is parsed into components, and some

DSK:LMMAN;PATHNM 30 16-MAR-81

Path names 334 l.isp Machine Manual

path name object with exactly those components already exists, Ulen the parser returns the existing
pathname object raUler Ulan creating a new one. The main reason for Ulis is that a path name has
a property list (sec section 5.8, page 66). The system stores properties on pathnames to remember
information about Ule file or family of files to which that path name refers. So you can parse a

. character-string Ulat represents a filename, and then look at its property list to get various
infol111ation known about that paUlIlame. The components of a pathname are never modified once
the pathname has been created; just as the print-name of a symbol is never modified. The only
thing that can be modified is the property list

A paU1Ilame can be converted into a string, which is in the file name syntax of its host's file
system, except that the name of the host followed by a colon is inserted at the front. prin1 of a
path name (-S in format) prints it like a Lisp object (using the usual "#(" syntax), while prine
of a paUuwme (-A in format) prints it like a file name of Ule host file system. The string
function, applied to· a pathname, returns Ule string that prine would print. Thus pathnames may
be used as arguments to functions like string -append.

Not all of the components of a paUlllame need to be specified. If a component of a
path name is missing, its value is nil. Before a file server can do anything interesting with. a file,
Stich as opening the file, all the missing components of a path name must be filled in from
defaults. But palhnames with missing componeilts arc often handed around inside Ule machine,
since almost all pathnames typed by users do not specify all the components explicitly. The host
is not allowed to be missing from any path name; since the behavior of a pathname is host
dependent to some extent, it has to know what its host is. All pathnames have host attributes,
even if the string being parsed docs not specify one explicitly.

A component of a paUlllame can also be the special symbol :unspeeifie. This means that the
component has been explicitly determined not to be there, as opposed to being missing. One way
this can occur is with generic path names, which refer not to a file but to a whole family of files.
The version, and usually the type, of a generic path name are ·:unspeeifie. Another way·
:unspeeific is used has to do with mapping of pathnames into file systems such as ITS that do
not have all six components. A component that is really not there will be :unspeeifie in the
pathname. When a pathnmne is converted to a string, nil and :unspecifie both cause the
component not to appear in the string. The difference occurs in the merging operation, where. nil
will be replaced with the default for that component, while :unspeeifie is left alone.

What values are allowed for components of a path name depends, in general, on the
pathname's host. However, in order for pathnames to be usable in a system-independent way
certain global conventions are adhered to. These convcntions are stronger for the type and version
than for fue other components, since the type and version are actually understood by many
programs, while UIC other components are usually just treated as something supplied by the user
which just needs to be remembered.

The type is always a string (unless it is one of the special symbols nil and :unspecific).
Many programs that deal with files have an idea of what type they want to use. For example,
Lisp source programs are "lisp", compiled Lisp programs are "qfasl", text files are "text", tags
files are "tags", etc. Just what characters are allowed in the type, and how many, is system
dependent.

The version is either a number (specifically, a positive fixnum), or a special symbol. nil and
:unspeeific have been explained above. :newest refers to fue largest version number that exists
when reading a file, or that number plus one when writing a new file. :oldest refers to the

DSK:LMMAN;PATHNM 30 16-MAR-81

Lisp Machine Manual 335 Defaults and Merging

smallest version number that exists. Some file systems may define other special version symbols,
such as :installed for example.

The host is always a suing. The Lisp machine has a fixed list of hosts that it knows about.

The device, directory,· and name are more system-dependent. l11ese can be strings (with host
dependent rules on allowed characters and length), or they can be structured. A structured
component is a list of strings. This is used for file system features such as hierarchical directories.
The system is arranged so that programs do not need to know about structured components unless
they do host-dependent operations. Giving a string as a path name component to a host that
wants a structured value converts the string to the appropriate form. Giving a structured
component to a host that does not understand them converts it to a string by taking the first
clement and ignoring the rest

Some host file systems have features that do not fit into this path name model. For instance,
directories might be accessible as files, there might be complicated structure in the directories or
names, or there might be relative directories, sllch as "<" in Multics. These features appear in
the parsing of strings into pathnames, which is one reason why the strings are written in host
dependent syntax. Path names for hosts with these features are also likely to handle additional
messages besides the common ones documented in this chapter, for the benefit of host-dependent
programs which want to access those features. However, note that once your program depends on
any such features, it will only work for certain file servers and not others; in general, it is a
good idea to make your program work just as well no matter what file server is being used.

22.2 Defaults and lVIerging

When the user is asked to type in a pathname, it is. of course unreasonable to require the
user to type a complete pathname, containing all components. Instead there are defaults, so that
components not specified by the user can be supplied automatically by the system. Each program
that deals with pathnames typically has its own set of defaults.

The system defines an object called a defaults a-list. Functions are provided to create one,
get the default pathname out of one, merge a pathname with one, and store a pathname back
into one. A defaults a-list can remember more than one default pathname if defaults are being
kept separately for each host; this is controlled by the variable fs:*defaults-are-per-host*. The
main plimitive for using defaults is the function fs:merge-pathname-defaults (see page 338).

In place of a defaults a-list, you may use just a path name. Defaulting one pathname from
another is useful for cases such as a program that has an input file and an output file, and asks
the user for the name of both, letting the unsupplied components of one name default from the
other. Unspecified components of the output path name will come from the input pathname,
except that the type should default not to the type of the input but to the appropriate default
type for output from this program.

The implementation of a defaults a-list is an aSSOCIatIon list of host names and default
path names. The host name nil is special and holds the defaults for all hosts, when defaults are
not per-host.

DSK:LMMAN;PATHNM 30 16-MAR-81

Defaults and Merging 336 Lisp Machine Manual

The merging operation takes as input a pathname, a defaults a-list (or another pathname), a
default type, and a default version, and returns a pathname. Basically, the missing components
in the path name arc filled in from the defaults a-list, except that if no type is specified the
default type is used, and if no version is specified the default version is used. By default, the
default type is :unspecific, meaning that if the input pathname has no type, the user really wants
a file with no type. Programs that have a default type for the files they manipulate will supply it
to the merging operation. The default version is usually :newest; if no version is specified the
newest version in existence should be used. The default type and version can be nil, to preserve
the information that they were missing in the input pathname.

The full details of the merging niles arc as follows. First, if the pathname explicitly specifies
a host and docs not supply a device, then the device will be the default file device for that host.
Next, if the pathname does not specify a host, device, directory, or name, that component comes
from the defaults.

The merging rules for the type and version arc more complicated, and depend on whether the
pathname specifies a name. If the pathname doesn't specify a name, then the type and version,
if not provided, will come from the defaults, just like the other components. However, if the
pathlJilmc does specify a name, then the type and version are not affected by the defaults. The
reason for this is that the type and version "belong to" some other filename, and are unlikely to
have anything to do with the new one you are typing in. Finally, if this process leaves the type
or version missing, the default type or default version is used (these were inputs to the merging
operation).

The e/Tect of all this is [hat if the user supplies just a name, the host, device, and directory
will.come from the defaults, but the type and version will come from the default type and default
version arguments to the merging operation. If the user supplies nothing, or just a directory, the
name, type, and version will come over from the defaults together. If the host's file name syntax
provides a way to input a type or version without a name, the user cim let the name default but
supply a different type or version than the one in the defaults.

The following special variables are parts of the path name interface that are relevant to
defaults.

fs: *defaults-are-per-host* Variable
This is a user customization option intended to be set by a user's LlSPM INIT file (see
section 31.5, page 453). The default value is nil, which means that each program's set of
defaults contains only one default pathname. If you type in just a host name and a colon,
the other components of the name will default from the previous host, with appropriate
translation to the new host's pathname syntax. If fs:*defaults-are-per-host* is set to t,
each program's set of defaults will maintain a separate default pathname for each host. If
you type in just a host name and a colon, the last file that was referenced on that host
will be used.

fs: *default-pathname-defaults* Variable
This is the default defaults a-list; if the pathname pnmltlves that need a set of defaults
are not given one, they use this one. Most programs, however, should have their own
defaults rather than using these.

DSK:LM!vlAN;PATHNM 30 16-MAR-Sl

Lisp Machine Manual 337 Generic Pathnames

fs: load-pathname-defaults Variable
This is the defaults a-list for the load and qC-fiIe functions. Other functions may share
these defaults if they deem that to be an appropriate user interface.

fs: 1 ast-f1 1 e-opened Variable
This is the pathname of the last file that was opened. Occasionally this is useful as a
default. Since some programs deal with files without notifying the user, you must not
expect the user to know what the value of this symbol is. Using this symbol as a default
may cause unfortunate surprises, and so such use is discouraged.

22.3 Generic Pathnames

A generic path name stands for a whole family of files. The property list of a generic"
pathname is used to remember information about the family, some of which (such as the package)
comes from the - * - line (see section 21.9.2, page 326) of a source file in the family. All types
of files with that name, in that directory, belong together. They are different members of the
same family; for example, they might be source code, compiled code, and documentation for a
program. All versions of files with that name, in that directory, belong together.

The generic pathname of pathname p has the same host, device, directory, and name as p
docs. Howevcr, it has a version of :unspecific. Furthclmore, if the type of p is one of the
clements of fs:*known-types·, then it has a type of :unspecific; otherwise it has the same type
as p. The reason that the type of the generic pathname works this way is that in some file
systems, like ITS, the type component may actually be part of the file name; ITS files named
"DIRECT IONS" and "DIRECT ORY" do not belong together.

The :generic-pathname message to a pathname returns its cOiTesponding generic pathname.
See page 341.

fs: 4Iknown-types· Variable
This is a list of the file types which are "not important"; constructing a generic pathname
will strip off the file type if it is in this list. File types not in this list are really part of
the name in some sense. The initial list is

("lisp" "qfasl" "text" nil :unspecific)
Some users may need to add to this list

22.4 Pathname Functions

These functions are what programs use to parse and default file names that have been typed in or
otherwise supplied by the user.

fs: parse-pathname thing &optional host defaults
This turns thing, which can be a pathname, a string, a symbol, or a Maclisp-style name
list, into a pathnamc. Most functions which are advertised to take a pathname argument
call fs:parse-pathname on it so that they will accept anything that can be turned into a
path name.

DSK:LMMAN;PATHNM 30 16-MAR-81

Path name Functions 338 Lisp Machine Manual

This function does 1I0t do defaulting, even though it has an argument named de/au Its; it
only does parsing. The host and eif/aulls arguments are there because in order to parse a
string into a path name, it is necessary to know what host it is for so that it can be parsed
with the file name syntax peculiar to that host. If thing does not contain a manifest host
name, then if host is non-nil, it is the host name to use, as a string. [f thing is a string,
a manifest host name may be at the beginning or the end, and consists of the name of a
host followed by a colon. If host is nil then the host name is obtained from the default
pathname in de/aulls. If defaults is not supplied, the default defaults (fs:*default
pathname-defaults*) are used.

Note that if host is specified, and thing contains a host name, an error is signalled if they
are not the same host.

fs :merge-pathname-defaults pathname &optional defoults ciejiwlf-I),pe de/aull-version
Fills in unspecified components of pafllllame from the defaults, and returns a new
pathname. This is the function that most programs should caIl to process a file name
supplied by the user. pafhnalllc can be a pathname, a string, a symbol, or a Mac1isp
namelist. The returned value will always be a path name. The merging rules are
documented on page 335 ..

If de/aults is a pathname, rather than a defaults a-list, then the defaults are taken from its
components. This is how you merge two path names (in Maclisp that operation is called
merget).

ciejillllts defaults to the value of fs: *default- pathname-defaults* if unsllpplied. de/ault
type defaults to :unspecific. defoult-I'ersioll defaults to :newest.

fs :merge-and-set-pathname-defaults pathname &optional defoults default-type
default-version .

This is the same as fs:merge-pathname-defaults except that after it is done the result is
stored back into de/au Its. This is handy for programs that have "sticky" defaults. (If
defoults is a pathname rather than a defaults a-list, then no storing back is done.) The
optional arguments default the same way as in fs:merge-pathname-defaults.

This function yields a pathname given its components.

fs :make-pathname &rest options
The options are alternating keywords and values, which specify the components of the
pathname. Missing components default to nil, except the host (all pathnames must have a
host). The :defaults option specifies what defaults to get the host from if none is
specified. The other options allowed are :h05t, :device, :structured - device, :directory,
:structured -directory, :name, :structured - name, :type, and :version.

DSK:LMMAN;PATHNM 30 16-MAR-Sl

Lisp Machine Manual 339 Path name Functions

These functions are used to manipulate defaults a-lists directly.·

fs:make-pathname-defaults
Creates a defaulrs a-list initially containing no defaults. Asking this empty set of defaults
for its default pathname before anything has been stored into it will return the file FOa
on the user's home directory on the host he logged in to.

fs: defaul t-pathname &optional defaults host default-type default-version
This is the primitive function for getting a default pathname out of a defaults a-list.
Specifying the optional arguments host, default-Iype, and default-version to be non-nil
forces those fields of the returned pathname to contain those values.

If fs: *defaults-are- per- host* is nil (its default value), this gets the one relevant default
from the a-list. I f it is t, this gets the default for host if one is specified, otherwise for
the host most recently used.

If defaults is not specified, the defau1lt defaults are used.

This function has an additional optional argument illternal-p, which users should never
supply.

fs: set-defaul t-pathname patlllla11le &optional defaults
This is the primitive function for updating a set of defaults. It stores palhname into
defaults. If defaults is not specified, the default defaults are used.

These functions return useful information.

fs: user-homed1 r &optional host reset-p .
Returns the pathname of the logged-in user's home directory on host, which defaults to
the host the user logged in to. Home directory is a somewhat system-dependent concept,
but from the point of view of the Lisp machine it is the directory where the user keeps
personal files such as init files and mail. This function returns a pathname without any
name, type, or version component (those components are all nil). If reset-p is specified
non-nil, the machine the user is logged in to is changed to be host.

fs: init-fi le-pathname program-name &optional host
Returns the pathname of the logged-in user's init file for the program program-name, on
the host, which defaults to the host the user logged in to. Programs that load init files
containing user customizations call this function to find where to look for the file, so that
they need not know the separate init file name conventions of each host operating system.
The program-name "L1SPM" is used by the login function.

These functions arc useful for poking around.

fs: descr 1 be- pathname pallmame
If palhnallle is a pathname object, this describes it, showing you its properties (if any)
and information about files with that name that have been loaded into the machine. If
pathl/ame is a string, this describes all interned pathnames that match that string, ignoring
components not specified in the string. One thing this is useful for is finding what
directory a file whose name you remember is in. Giving describe (see page 448) a
path name object will do tile same thing as this function will.

DSK:LMMAN;PATHNM 30 16-MAR-81

Pathname Messages 340 Lisp Machine Manual

fs: pathname-pl1 st pat/marne
Parses and defaults pathllaJlle then returns the list of properties of that pathname.

fs: ·pa thname,..hash.:.tab 1 e* Variable
This is the hash table in which path name objects are interned. Applying the function
maphash-equal to this will extract all the pathnames in the world.

22.5 Pathname l\1essages

This section documents the messages a user may send to a path name object. Pathnames
handle some additional messages which arc only intended to be sent by the file system itself. and
therefore arc not documented here. Someone who wanted to add a new host to the system would
need to understand those internal messages. This section also docs not document messages which
arc peculiar to path names of a particular host; those would be documented under that host.

: host (topathname)
: devi ce (to path name)
: directory (to pathname)
: name (to pathname)
: type (to pathname)
:varsion (topathname)

These return the components of the palhname. The returned values can be strings,
special symbols, or lists of strings in the case of structured components. The type will
always be a string or a symbol. The version will always be a number or a symbol.

: new-dav i co del' (to path name)
: new-structured-dev;ce del' (to pathname)
: new- d1 rectory dir (to pathnam~)
: new-structured-di rectory dir (to pathname)
: new-name name (to pathname)
: new-structured-name name (to pathname)
: new-type type (to pathname)
: new-version version (to pathname)

These return a new pathname which is the same as the pathname they are sent to except
that the value of one of the components has been changed. The "structured" messages
expect a list of strings. If the component is not structured on this host, the first string in
the list is used and the rest are ignored. The "unstructured" messages expect a string (or
a special symbol). but accept a list of strings if this host allows this component to be
struc tured.

: new-pathname &rest options (to pathname)
This returns a new path name which is the same as the path name it is sent to except that
the values of some of the components have been changed. options is a list of alternating
keywords and values. The keywords all specify values of pathn<lme components; they are
:host, :device, :structured -device, :directory, :structured -directory, :name,
:structured-name, :type, and :version.

DSK:LMMAN;PATHNM 30 16-MAR-81

Lisp Machine Manual 341 Host File Systems Supported

: generic-pathname (to pathname)
Returns the generic pathname for the family of files of which this pathname is a member.
See section 22.3, page 337 for documentation on generic pathnames.

Messages to get a path name string out of a pathname object:

: stri ng-for-pr i nt i ng (to pathname)
Returns a string which is the printed representation of the path name. This is the same
as what you get if you prine the pathname or take string of it.

: stri ng-for-whol i ne (to pathname)
Returns a string which may be compressed in order to fit in the who line.

: str1 ng-for-edi tor (to pathname)
Returns a string which is the path name with its components rearranged so that the name
is first. The editor uses this form to name its buffers.

: stri ng-for-di red (to pathname)
Returns a string to be used by the directory editor. The string contains only the name,
type, and version.

: s tr i ng-for- host (to pathname)
Returns a string which is the path name the way the host file system likes to see it.

Messages to manipulate the property list of a pathname:

: get indicator (to pathname)
: get 1 list-ofilldicators (to pathname)
: putprop value indicator (to pathname)
: remprop indicator (to pathname)
: p 1 is t (to pathname)

These manipulate the pathname's property list analogously to the functions of the same
names (sec page 67), which don't (currently) work on instances.

22.6 Host File Systems Supported

This section lists the host file systems supported, gives an example of the path name syntax for
each system, and discusses any special idiosyncracies. More host types will no doubt be added in
the future.

DSK:LMMAN;PATHNM 30 16-MAR-81

Host File Systems Supported 342 Lisp Machine Manual

22.6.1 ITS

An ITS pathname looks like "HOST: DEVICE: OIR; Foa 69". The default device is DSK:
but other devices such as ML:, ARC:, DVR:, or PTR: may be used.

ITS docs not exactly fit the virtual file system model, in that a file name has two components
(FNI and FN2) rather than three (name, type, and version). Consequently to map any virtual
pathname into an n's filename, it is necessary to choose whether the FN2 will be the type or the
version. The rule is that usually the type goes in the FN2 .and the version is ignored; however,
certain types (LISP and TEXT) arc ignored and instead the version goes in the FN2. Also if the
type is :unspecific the I-"'N2 is the version.

Given an ITS filename, it is converted into a pathname by making the FN2 the version if it
is "<", ")", or a number. Otherwise the FN2 becomes the type. ITS path names allow the
special version symbols :oldest and :newest. which correspond to "<" and ")" respectively. If a
version is specified, the type is always :unspecific. rf a type is specified, the version is :newest
unless the type is a normally-ignored type (such as LISP) in which case the version is :unspecific
so that it docs not override the type.

Each component of an ITS pathname is mapped to upper case and truncated to six characters.

Special characters (space, colon, and semicolon) in a component of an ITS path name can be
quoted by prefixing them with right horseshoe (:J) or equivalence sign (=). Right horseshoe is the
same character code in the Lisp machine character set as control-Q in the ITS character set.

An ITS path name can have a structured name, which is a list of two strings, the FNl and
the FN2. In this case there is neither a type nor a version.

An ITS pathname with an FN2 but no FNl (i.e. a type and/or version but no name) is
represented with the placeholder FNI "~", because ITS path name syntax provides no way to
write an FN2 without· an FNI before it.

The ITS init file naming convention is "homedir; user program".

fs: *1ts-uninteresting-types* Variable
The ITS file system docs not have separate file types and version numbers; both
components are stored in the "FN2". This variable is a list of the file types which are
"not important"; files with these types use the FN2 for a version number. Files with
other types use the FN2 for the type and do not have a' version number. The initial list
is

("lisp" "text" nil :unspecific)
Some users may need to add to this list.

: fn 1 (to its-pathname)
: fn2 (to its-pathname)

These two messages return a string which is the FNI or FN2 host-dependent component
of t11e pathname. .

DSK:LMMAN;PATHNM 30 16-MAR-81

Lisp Machine Manual 343 Maclisp Conversion

22.6.2 TOPS-20

A TOPS-20 pathname looks like "HOST:DEVICE:(DIRECTORY)NAME.TYPE.VERSION".
The default device is PS:.

TOPS-20 pathnames are mapped to upper case. Special characters (including lowercase letters)
arc quoted with the circle-x (0) character, which has the same character code in the Lisp machine
character set as control-V in the TOI>S-20 character set

TOPS-20 pathnames allow the special version symbols :oldest and :newest, which correspond
to " .. -2" and " .. 0" respectively.

The directory component of a TOPS-20 path name may be structured. The directory
<FOO.BAR) is represented as the list ("FOO" "BAR").

The TOPS-20 init file naming convention is "<user>program.lNIT".

When there is an attempt to display a TOPS-20 file name in the who-line and there isn't
enough room to show the entire name, the name is truncated and followed by a center-dot
character to indicate that lhere is more to the name than can be displayed.

22.7 Maclisp COllversion

This section briefly discusses how to convert from Maclisp I/O and filename functions to the
corresponding but often more general Lisp machine ones.

TIle functions load, open, probef, renamef, and deletef are upward compatible. Most of
them take optional additional arguments to do additionai things, usually connected with error
handling. Where Maclisp wants to see a file name in the fDlm of a symbol or a list, the Lisp
machine will accept those or a string or a pathname object.

load keeps defaults, which it updates from the file name it is given.

The old-I/O functions uread, crunit, etc. do not exist in the Lisp machine. fasload exists
but is a function rather than a special form.

TIlere is a special form, with-open-file, which should replace most calls to open. See page
323.

The functions for manipulating file names themselves are different. The system will accept a
namelist as a pathname, but will never create a namelist. mergef is replaced by fs:fiIe-merge
pathname-defaults. defaultf is replaced by fs:d,efault-pathname or fs:set-default-pathname,
depending on whether it is given an argument. namestring is replaced by the :string -for
printing message to a pathname, or the string function. namelist is approximately replaced by
fs:parse-pathname. (status udir) and (status homedir) arc approximately replaced by fs:user
homedir. The truename function is replaced by the probef function, which returns the tmename
if the file exists or nil if it doesn't. The directory and allfiles functions are replaced by
fs:directory-list. .

DSK:LMMAN;PATHNM 30 16-MAR-Sl

Examples 344 Lisp Machine Manual

22.8 Examples

The following examples illustrate some of the rules of parsing and merging. They assume that
the default host is an ITS host named AI.

If we parse the string "AI:COMMON;NOMEN 5" (by calling fs:parse-pathname). we get
back a pathname that prints as #<ITS-PATHNAME "AI: COMMON; NOMEN 5">. Its host is
"AI", its device is "DSK" (because of the rule that when you specify a host and don't specify a
device, the standard filc-storage device for that host is used), its name is "COMMON", its type is
nonexistent (:unspecific), and its version is 5. Call this pathname p.

Parsing just the string "faa" returns a pathname that prints as #<ITS-PATHNAME "AI:
Faa">. The host is "AI", the name is "Faa", and all the other components arc unspecified.

If we merge this with p (by calling fs:merge-pathname-defaults with this pathname as its
first argument and p as its second), the result is a pathllame that prints as # (ITS - PATH NAME
"AI: COMMON; Faa >">, with host "AI", uevice "DSK", directory "COMMON", name
"Faa", type :unspecific, and version :newest. This is because of the rule that when a name is
explicitly specified, the type and version of the defaults are ignored. The version, 5, was ignored,
and the version of the result came from the defaull-l'ersiOIl argument to fs:merge-pathname
defaults, which had the value :newest. The type, similarly, came from the default-type
argumcnt, which had the value :unspecific.

Parsing "Faa BAR" returns a pathname that prints as #<ITS-PATHNAME "AI: . Faa
BAR">. It has host "AI", name "Faa", and type "BAR"; tile directory is nil and the version is
:newest. Merging this with p gives a pathname that prints as #(ITS-PATHNAME "AI:
COMMON; Faa BAR">; it has host "AI", device "DSK", directory "COMMON", name
"Faa", type "BAR", and version :newest. If we ask for the generic pathname of this new
pathname, what we get prints exactly the same, but one of its componcnts is different: its
version is :unspecific. This difference does not appear in the printed representation because ITS
filenames cannot convey both a meaningful type and a meaningful version number at the same
time.

DSK:LMMAN;PATHNM 30 16-MAR-81

Lisp Machine Manual 345 Packages

23. Packages

23.1 The Need for Multiple Contexts

A Lisp program is a collection of function definitions. The functions are known by their
names, and so each must have its own name to identify it. Clearly a programmer must not use
the same name for two different functions.

The Lisp machine consists of a huge Lisp environment, in which many programs must coexist.
All of the "operating system", the compiler, the editor, and a wide variety of programs are
provided in the initial environment. Furthermore, every program which the user uses during his
session must be loaded into the same environment. Each of these programs is composed of a
group of functions; apparently each function must have its own distinct name to avoid conflicts.
For example, if the compiler had a function named pUll, and the user loaded a program which
had its own function named pull, the compiler's pull would be redefined, probably breaking the
compiler.

It would lIot really be possible to prevent these conllicts, since the programs are written by
lllany different people who could never get together to hash out who gets the privilege of lIsing a
specific name such as pull.

Now, if we arc to enable two programs to coexist in the Lisp world, each with its own
function pull, then each program must have its own symbol named "pull", because there can't be
two function definitions on thc· samc symbol. This means that separate "!lame spaces"-mappings
between names and symbois--must be provided for the two programs. The package system is
designed to do just that.

Under the package system, the author of a program or a group of closely related programs
identifies them together as a "package". The package system associates a distinct name space with
each package.

Here is an example: suppose there are two programs named chaos and arpa, for handling
the Chaosnet and Arpanet respectively. The author of each program wants to have a function
called get-packet, which reads in a packet from the network (or something). Also, each wants
to have a function called allocate-pbuf, which allocates the packet buffer. Each "get" routine
first allocates a packet buffer, and then reads bits into the buffer; therefore, each version of get
packet should call the respective version of allocate-pbuf.

Without the package system, the two programs could not coexist in the same Lisp
environment. But the package feature can be used to provide a separate name space for each
program. What is required is to declare a package named chaos to contain the Chaosnet
program, and another package arpa to hold the Arpanet program. When the Chaosnet program
is read into the machine, its symbols would be entered in the chaos package's name space. So
when the Chaos net program's get-packet referred to allocate-pbuf, the allocate-pbuf in the
chaos name space would be found, which would be the allocate-pbuf of the Chaosnet
program-the right one. Similarly, the Arpanet program's get-packet would be read in using the
arpa package's name space aui would refer to the Arpanet program's allocate-pbuf.

DSK:LMMAN;PACKD 77 16-MAR-81

The Organization of Name Spaces 346 Lisp Machine Manual

To understand what is going on here, you should keep in mind how Lisp reading and loading
works. When a me is gotten into the Lisp machine, either by being read or by being fasloaded,
the file itself obviously cannot contain Lisp objects; it contains printed representations of those
objects. When the reader encounters a printed representation of a symbol, it calls intern to look
up that string in some name space and find a corresponding symbol. The package system
arranges that the correct name space is used whenever a file is loaded.

23.2 The Organization of NameSpaces

We could simply let every name space be implemented as one obarray, e.g. one big table of
symbols. The problem with this is that just about every name space wants to include the whole
Lisp language: car, cdr, and so on should be available to every program. We would like to
share the main I -isp system between several name spaces without making many copies.

Instead of making each name space be one big array, we arrange packages in a tree. Each
package has a "superpackage" or "parent", from which it "inherits" symbols. Also, each package
has a table, or "obarray", of its own additional symbols. The symbols belonging to a package are
simply those in the package's own obarray, followed by those belonging to the superpackage. The
root of the tree· of packages is the package called global, which has no superpackage. global
contains car and cdr and all the rest of (he standard Lisp system. In Ollr example, we might
have two other packages called chaos and arpa, each of which would have global as 'its parent
Here is a picture of the resulting tree structure:

global
I

/-------------------------~--\

I I
chaos arpa

In order to make the sharing of the global package work, the intern nmction is made more
complicated than in basic Lisp. In addition to the string or symbol to intern, it must be told
which package to do it in. First it searches for a symbol with the specified name in the obarray
of the specified package. If nothing is found there, intern looks at its superpackage, and then at
the superpackage's superpackage, and so on, until the name is found or a root package such as
global is reached. When intern reaches the root package, and· doesn't find the symbol there
either, it decides that there is no symbol known with that name, and adds a symbol to the
originally specified package.

Since you don't normally want to worry about specifying packages, intern nonnally uses the
"current" package, which is the value of the symbol package. This symbol serves the purpose of
the symbol obarray in Mac1isp.

Here's how that works in the above example. When the Chaos net program is read into the
Lisp world, the current package would be the chaos package. Thus all of the symbols in the
Chaosnet program would be interned on the chaos package. If there is a reference to some well
known global symbol such as append, intern would look for "append" on the chaos package,
not find it look for "append" on global, and find the regular Lisp append symbol, and return
lhat. I f, however, there is a reference to a syi'nbol which the user made up himself (say it is
called get-packet), the first time he uses it, intern won't find it on either chaos nor global. So
intern will make a new symbol named get-packet, and install it on the chaos package. When
get-packet is referred to later in the Chaosnet program, intern will find get-packet on the

DSK:LMMAN;PACKD 77 16-MAR-81

Lisp Machine Manual 347 Shared Programs

chaos package.

When the Arpanet program is read in, the current package would be arpa instead of chaos.
When the Arpanet program refers to append, it gets the global one; that is, it shares the same
one that the Chaosnet program got. However, if it refers to get-packet, it will not get the same
one the Chaosnet program got, because the chaos package is not being searched. Rather, the
arpa and global packages are getting searched. So intern will create a new get-packet and.
install it on the arpa package.

So what has happened is that there are two get- packets: one for chaos and one for arpa.
The two programs are loaded together without name conflicts.

23.3 Shared Programs

Now, a very important feature of the Lisp machine is that of "shared programs"; if one
person writes a function to, say, print numbers in Roman numerals, any other function can call
it to print Roman numerals. This contrasts sharply with PDP-lO system programs, in which
Roman numerals have been independently reimplemented several times (and the ITS filename
parser several dozen times).

For example, the routines to manipulate a robot arm might be a separate program, residing
in a package named arm. If we have a second program called blocks (the blocks world, of
course) which wanted to manipulate the ann, it would want to call functions which are defined
on the arm obarray, and therefore not in blocks's own name space. Without special provision,
there would be no way for any symbols not in the blocks name space to be part of any blocks
functions.

The colon character (":") has a special meaning to the Lisp reader. When the reader sees a
colon prccecded hy the name of a package, it will read in the next Lisp object with package
bound to that package. The way blocks would call a function named go-up defined in arm
would be by asking to call arm:go-up, because "go-up would be interned· on the arm package.
What arm:go-up means precisely is "the symbol named go-up in the name space of the package
arm."

Similarly, if the chaos program wanted to refer to the arpa program's allocate-pbuf
function (for some reason), it would simply call arpa:allocate-pbuf.

An important question which should occur at this point is how the names of packages are
associated with their obarrays and other data. This is done by means of the "refname-alist" which
each package has. This alist associates strings called reference names or rejharnes with the packages
they name. Normally, a package's refnamc-alist contains an entry for each subpackage, associating
the sub package with its name. In addition, every package has its own name defined as a rcfname,
referring to itself. However, the user can add any other refnames, associating them with any
packages he likes. This is useful when multiple versions of a program are loaded into different
packages. Of course, each package inherits its superpackage's refnames just as it does symbols.

In our example, since arm is a subpackage of global, the name arm is on global's refname
alist, associated with the arm package. Since blocks is also a subpackage of global, when
arm:go-up is seen the string "arm" is found on global's refname alist.

DSK:LMMAN;PACKD 77 16-MAR-81

Declaring Packages 348 Lisp Machine Manual

When you want to refer to a symbol in a package which you and your superpackages have no
refnames for-say, a subpackage named foo of a package ,named bar which is under global-you
can use multiple colons. For example, the symbol finish in that package faa could be referred to
as foo:bar:finish. What happens here is that the second name, bar, is interpreted as a refname
in the context of the package faa.

23.4 Declaring Packages

Defore any package can be referred to or loaded, it must be declared. This is done with the
special form package-declare, which tells the package system all sorls of things, including the
name of the package, the place in the package hierarchy for the new package to go, its estimated
size, and some of the symbols which belong in it.

Here is a sample declaration:
(package-declare foo global 1000

()
(shadow array-push adjust-array-size)
(extern foo-entry»

What this declaration says is that a package named faa should be created as an inferior of
global. the package which contains advertised global symbols. 1 ts obarray should initially be large
enough to hold 1000 symbols, though it will grow automatically if that isn't enough. Unless there
is a specific reason to do otherwise, you should make all of your packages direct inferiors of
global. The size you give is increased slightly to be a good value for the hashing algorithm used.

After the size comes the "file-alist", which is given as 0 in the example. This is an obsolete
feature which is not nOlmally used. The "system"-defining facilities should be used instead. See
chapter 24, page 359.

Finally, the faa package "shadows" array-push and adjust-array-size, and "externs" foo
entry. What shadowing means is that the faa package should have its own versions of those
symbols, rather than inheriting its superpackage's versions. Symbols by these names will be added
to the foo package even though there are symbols on global already with those names. This
allows the faa package to redefine those functions for itself without redefining them in the global
package for everyone else. What externing means is that the faa package is allowed to redefine
faa-entry as inherited from the global package, so that it is redefined for everybody. If foo
attempts to redefine a function such as car which is present in the global package but neither
shadowed nor externed, confirmation from the user will be requested.

Note that externing doesn't actually put any symbols into the global package. It just asserts
permission to redefine symbols already there. This is deliberate; the intent is to enable the
maintainers of the global package to keep control over what symbols arc present in it. Decause
inserting a new symbol into the global package can cause trouble to unsuspecting programs which
expect that symbol to be private, this is not supposed to be done in a decentralized manner by
programs written by one user and used by another unsllspecting lIser. Here is an example of the
trouble that could be caused: if there were two user programs, each with a function named

. move-square, and move-square were put on the global package, all of a sudden the two
functions would share the same symbol, resulting in a name conflict. While all the definitions of
the functions in global are actually supplied by subpackages which extern them (global contains
no files of its own), the list of symbol names is centralized in one place, the file "AI: LlSPM2;

DSK:LMMAN;PACKD 77 16-MAR-Sl

Lisp Machine Manual 349 Packages and Writing Code

GLOBAL)", and this file is not changed without notifying everyone, and updating the
documentation in this manual.

Certain other things may be found in the declarations of various internal system packages.
They are arcane and needed only to compensate for the fact that parts of those packages are
actually loaded before the package system is. They should not be needed by any user package.

Your package declarations should go into separate files containing only package declarations.
Group them however you like, one to a file or all in one file. Such files can be read with load.
It doesn't matter what package you load them into, so use user, since that has to be safe.

If the declaration for a package is read in twice, no hann is done. If you edit the size to
replace it with a larger one, the package will be expanded. At the moment, however, there is no
way to change the list of shadowings or externals; such changes will be ignored. Also, you can't
change the superpackage. If you edit the superpackage name and read the declaration in again,
you will create anew, distinct package without changing the old one.

package-decl are Macro
The package-declare macro is used to declare a package to the package system. Its
form is:

(pac k ag e - de c 1 are name slipelpackage size
jile-alist option-l option-2 ...)

The interpretation of the declaration is complicated; see section 23.4, page 348.

describe-package package-name
(describe-package package-name) is equivalent to (describe (pkg-find-package
package-name»; that is, it describes the package whose name is package-name.

23.5 Packages and Writing Code

The unsophisticated user. need never be aware of the existence of packages when writing his
programs. He should just load all of his programs into the package user, which is also what
console type-in is interned in. Since all the functions which users are likely to need are provided
in the global package, which is user's superpackage, they are all available. In this manual,
functions which are not on the global package are documented with colons in their names, so
typing the name the way it is documented will work.

However, if you are writing a generally useful tool, you should put it in some package other
than user, so that its internal functions will not conflict with names other users lise. Whether for
this reason or for any other, if you are loading your programs into packages other than user
there are special construct" that you will need to know about.

One time when you as the programmer must be aware of the existence of packages is when
you want to lise a function or variable in another package. To do this, write the name of the
package, a colon, and then the name of the symbol, as in eine:ed-get-defaulted-file-name.
You will notice that symbols in other packages print out that way, too. Sometimes you may need
to refer to a symbol in a package whose superior is not global. When this happens, use multiple
colons, as in foo:bar:ugh, to refer to the symbol ugh in the package named bar which is under
the package named foo.

DSK:LMMAN;PACKD 77 16-MAR-81

Shadowing 350 Lisp Machine Manual

Another time that packages intmde is when you usc a "keyword": when you check for
eqness against a constant symbol, or pass a constant symbol to someone else who will check for
it using eq. This includes using the symbol as either argument to get. In such cases, the usual
convention is that the symbol should reside in the user package, rather than in the package with
which its meaning is associated. To make it easy to specify user, a colon before a symbol, as in
:select, is equivalent to specifying user by name, as in user:select. Since the user package has
no subpackages, putting symbols into it will not cause name conflicts.

Why is this convention used? Well, consider the function make-array, which takes one
required argument followed by any Ilumber of keyword arguments. For example,

(make-array 100 'leader-length 10 'type art-string)
specifies, after the first required argument, two options with names leader-length and type and
values 10 and art-string. The file containing this fimction's definition is in the system-internals
package, but the function is available to everyone without the use of a colon prefix because the
symbol make-array is itself inherited from global. But all the keyword names, such as type, are
short and should not have to exist in global. However, it would· be a shame if all callers of
make-array had to specify system - internals: before the name of each keyword. After all, those
callers can include programs loaded into user, which should by rights not have to know about
packages at all. Putting those' keywords in the user package solves this problem. The correct way
to type the above fonn would be

(make-array 100 ':leader-length 10 ':type art-string)

Exactly when should a symbol go in user? At least, all symbols which the user needs to be
able to pass as an argument to any function in global must be in user if they aren't themselves
in global. Symbols used as keywords for arguments by any function should usually be in user,
to keep things consistent. However, when a program uses a specific property name to associate its
own internal memoranda with symbols passed in from outside, the property name should belong
to the program's package, so that two programs using the same property name in that way don't
conflict.

23.6 Shadowing

Suppose the user doesn't like the system nth function; he might be a former Interlisp user,
and expect a completely different meaning from it. Were he to say (defun nth - - -) in his
program (call it snail) he would clobber the global symbol named "nth", and so affect the "nth"
in everyone else's name space; (Actually, if he had not "externed" the symbol "nth", the
redefinition would be caught and the user would be warned.)

In order to allow the snail package to have its own (defun nth - - -) without interfering with
the rest of the Lisp environment, it must "shadow" out the global symbol "nth" by putting a new
symbol named "nth" on its own obarray. Normally, this is done by writing (shadow nth) in the
declaration of the snail package. Since intern looks on the sllbpackage's obarray before global, it
will find the programmer's own nth, and never the global one; Since the global one is now
impossible to see, we say it has been "shadowed." .

Having shadowed nth, if it is sometimes necessary to refer to the global definition, this can
b(! done bY' writing global:nth. This works because the refname global is defined in the global
package as a name for the global package. Since global is the superpackage of the snail package,
all refnames defined by global, including "global", are available in snail.

DSK:LMMAN;PACKD 77 16-MAR-81

Lisp Machine Manual 351 Packages and Interning

23.7 Packages and Interning

The function intern allows you to specify a package as the second argument. It can be
specified either by giving the package object itself, or by giving a string or symbol which is the
name of the package. . intern returns three values. The first is the interned symbol. The second
is t if the symbol is old (was already prcsent, not just added to the obarray). The third is the
package in which the symbol was actually found. This can be either the specified package or one
of its superiors.

When you don't specify the second argument to intern, the current package, which is the
value of the symbol package, is used. This happens, in particular, when you call read. Bind
the symbol package temporarily to the desired package, before calling things which call intern,
when you want to specify the package. When you do this, the function pkg-find-package,
which converts a string into the package it names, may be useful. While most functions that use
packages will do this themselves, it is better to do it only once when package is bound. The
function pkg -goto sets package to a package specified by a string. You shouldn't usually need
to do this, but it can be useful to "put the keyboard inside" a package when you are debugging.

package Variable
The value of package is the current package; many Functions which take packages as
optional arguments default to the value of package, including intern and related
functions.

pkg-goto &optional pkg
pkg may be a package or the name of a package. pkg is made the current package. It
defaults to the user package.

pkg-b1nd Macro
The form of the pkg-bind macro is (pkg-bind pkg . body). pkg may be a package or a
package name. The forms of the body are evaluated sequcntially with the variable
package bound to pkg.
Example:

(pkg-bind "zwei"
(read-from-string function-name»

111crc are actually four forms of the intern function: regular intern, intern-soft, intern
local, and intern-local-soft. -soft means that the symbol should not be added to the package if
there isn't already one; in that case, all three values are nil. -local means that the superpackages
should not be searched. Thus, intern-local can be used to cause shadowing. intern-local-soft
is a good low-level primitive for when you want complete control of what to search and when to
add symbols. All four forms of intern return the same three values, except that the soft forms
return nil nil nil when the symbol isn't found.

1 ntern SIring &optional (pkg package)
intern searches pkg and its superpackages sequcntially, looking for a symbol whose print
name is equal to SIring. If it finds such a symbol, it rcturns three values: the symbol, t,
and the package on which the symbol is interned. If it docs not find one, it creates a
new symbol with a print name of SIring, interns it into the package pkg, and returns the
new symbol, nil, and pkg.

DSK:LMMAN;PACKD 77 16-MAR-81

Packages and Interning 352 Lisp Machine Manual

If sIring is not a string but a symbol, intern searches for a symbol with the same print
name. If it doesn't find one, it interns sIring-rather than a newly-created symbol-in
pkg (even if it is also interned in some other package) and returns it

in t ern -1 0 cal sIring &optional (pkg package)
intern searches pkg(but 1/01 its superpackages), looking for a symbol whose print-name is
equal to string. If it finds such a symbol, it returns three values: the symbol, t, and
pkg If it does not find one, it creates a new symbol with a print name of sIring, and
returns the new symbol, nil, and pkg.

If string is not a string but a symbol,and no symbol with that print-name is already
interned in pkg, intern-local interns string-rather than a newly-created symbol-in pkg
(even if it is also interned in some other package) and returns it.

intern-soft siring &optional (pkg package)
intern searches pkg and its superpackages sequentially, looking fi)r a symbol whose print
name is equal to siring. If it finds such a symbol, it returns three values: the symbol, t,
and the package on which the symbol is interned. If it does not find one, it returns nil,
nil, and nil.

intern-local-soft sIring &optional (pkgpacl~age)

intern searches pkg (but not its superpackages), looking for a symbol whose print-name is
equal to siring. If it finds such a symbol, it returns three values: the symbol, t, and
pkg]f it does not find one, it returns nil, nil, and nil.

Each symbol remembers \vhich package it belongs to. While you can intern a symbol in any
number of packages, the symbol will only remember one: normally, the first one it was interned
in, unless you clobber it. This package is available as (symbol-package symbol). If the value is
nil, the symbol believes that it is uninterned.

The printer also implicitly uses the value of package when printing symbols. If slashification
is on, the printer tries to print something such that if it were given back to the reader, the same
object would be produced. If a symbol which is not in the current name space were just printed
as its print name and read back in, the reader would intern it on the wrong package, and return
the wrong symbol. So the printer figures out the right colon prefix so that if the symbol's printed
representation were read back in to the same package, it would be interned correctly. The prefix
is only printed if slashification is on, i.e. prin1 prints it and prine does not.

remob symbol &optional package
remob removes symbol from package (the name means "REMove from OBarray"). symbol
itself is unaffected, but intern will no longer find it on package. remob is always "local",
in that it removes only from the specified package and not from any superpackages. It
returns t if the symbol was found to be removed. package defaults to' the contents of the
symbol's package cell, the package it is actually in. (Sometimes a symbol can be in other
packages also, but this is unusual.)

DSK:LMMAN;PACKD 77 16-MAR-81

I
1

r

Lisp Machine Manual 353 Packages and Interning

symbol-package symbol
Returns the contents of symbol's package cell, which is the package which owns symbol,
or nil if symbol is uninterned.

package-cell-location symbol
Returns a locative pointer to symbol's package. cell. It is preferable to write

(locf (symbol-package symbol»
rather than calling this function explicitly.

mapatoms jUllction &optional (package package) (superiors-p t)
jUllction should be a function of one argument. mapatoms applies jUllction to all of the
symbols in package. If superiors-p is t, then the function ig also applied to all symbols in
package's superpackages. Note that the function will be applied to shadowed symbols in
the superpackages, even though they are not in package's name space. If that is a
problem, jUllctioll can try applying intern in package on each symbol it gets, and ignore
it if it is not eq to the result of intern; this measure is rarely needed.

mapatoms-all jUllclion &optiollal (package "global")
junctioll should be a function of one argument. mapatoms-all applies junction to all of
the symbols in package and all of package's subpackages. Since package defaults to the
global package, U1is normally gets at all of the symbols in all packages. It is used by
such functions as apropos and who-calls (see page 447)
Example:

{mapatoms-all
(function

{lambda (x)
(and (alphalessp 'z x)

(print x»»)

pkg-create-package name &optional (supel'package) (size200)
pkg-create-package creates and returns a new package. Usually packages are created by
package-declare, but sometimes it is useful to create a package just to use as a hash
table for symbols, or for some other reason.

If name is a list, its first element is taken as the packagc name and the second as the
program name; otherwise, name is taken as both. In either case, thc package name and
program name are coerced to strings. super is the superpackage for this package; it may
be nil, which is useful if you only want the package as a hash table, and don't want it to
interact with the rest of the package system. size is the size of the package; as in
package-declare it is rounded up to a "good" size for the hashing algorithm used.

pkg-k1l1 pkg
pkg may be eithcr a package or the namc of a packagc. Thc package should have a
superpackage and no subpackages. pkg-kill takes the package off its superior's subpackage
list and rcfname alist.

DSK:LMMAN;PACKD 77 16-MAR-81

Status Information 354 Lisp Machine Manual

pkg-fi nd-package x &optional (crcale-p nil) (under "global")
pkg-find-package tries to interpret x as a package. Most of the functions whose
descriptions say "... may be either a package or the name of a package" call pkg - find
package to interpret their package argument.

If x is a package, pkg-find-package returns it. Otherwise it should be a symbol or
string, which is taken to be the name of a package. The name is looked up on the
refname alists of package and its superpackages, the same as if it had been typed as part
of a colon prefix. If this finds the package, it is returned. Otherwise, creale-p controls
what happens. If create-p is nil, an error is signalled. If creatc-p is :find, nil is returned.
If create-p is :ask the lIser is asked whether to create it. Otherwise, a new package is
created, and installed as an in ferior of under.

A package is implemented as a stmcture, created by defstruct. The following accessor macros
are available on the global package:

pkg-name The name of the package, as a suing.

pkg- refname-alist The refname alist of the package, associating strings with packages.

pkg-super-pacl<age The superpackage of the package.

23.8 Status Information

The current package-Where your type-in is being interned-is always the value of the symbol
package. A package is a named stmcture which prints out nicely, so examining the value of
package is the best way to find out what the current package is. (It is also displayed in the
who-line.) Normally, it should be user, except when inside compilation or loading of a file
belonging to some other package.

To get more infOlmation on the current package or any other. use the function describe
package. Specify either a package object or a string which is a refname for the desired package
as the argument. This will print out everything except a list of all the symbols in the package. If
you want that, use (mapatoms 'print package nil). describe of a package will call describe
package.

23.9 Packages, Loading, and Compilation

It's obviolls that every file has to be loaded into the right package to serve its purpose. It
may not be so obvious that every file must be compiled in the right package, but it's just as true.
Luckily, this lIsually happens automatically.

When you have mentioned a file in a package's file-alist, requesting to compile that file with
qc-file or loading it with load automatically selects that package to perform the operation.

The system can get the package of a source file from its "file property list" (see section 21.9.2,
page 326). For instance, you can put at the front of your file a line such as If; -*- Mode:Lisp;
Package:System-lnterna!s -*-". The compiler puts the package name into the QFASL file for use
when it is loaded. If a file is not mentioned in a package's file-alist and doesn't have such a
package specification in it, the system loads it into the current package, and tells you what it did.

DSK:LMMAN;PACKD 77 16-MAR-81

Lisp Machine Manual 355 Subpackages

23.10 Subpackages

Usually, each independent program occupies one package, which is directly under global in
the hierarchy. But large programs, such as Macsyma, are usually made up of a number of sub
programs, which are maintained by a small number of people. We would like each sub-program
to have its own name space, since the program as a whole has too many names for anyone to
remember. So, we can make each sub-program into its own package. However, this practice
requires special care.

It is likely that there will be a fair number of functions and symbols which should be shared
by all of the sub-programs of Macsyma. These symbols should reside in a package named
macsyma, which would be directly undcr global. Then, each part of macsyma (which might be
called sin, risch, input, and so on) would have its own package, with the macsyma package as
its superpackage. To do this, first declare the macsyma package, and thcn declare the risch,
sin, etc. packages, specifying macsyma as the superpackage for each of them. This way, each
sub-program gets its own name space. All of these declarations would probably be in a together
in a file called something like "macpkg".

However, to avoid a subtle pitfall (described in detail in the appendix), it is necessary that
the macsyma package itself contain no files; only a set of symbols specified at declaration time.
This list of symbols is specified using shadow in the declaration of the macsyma package. At
the same time, the file-alist specified in the declaration must be nil (otherwise, you will not be
allowed to create the subpack.ages). The symbols residing in the macsyma package can have
values and definitions, but these must all be supplied by files in macsyma's subpackagcs (which
must "extern" those symbols as necessary). Note thaL lhis is exactly the same treatment that
global receives: all its fi.ll1ctions are actually defined in tIles which arc loaded into system
internals (si), compiler, etc.

To demonstrate the full power and convenience of this scheme, suppose there were a second
huge program called owl which also had a subprogram called input (which, presumably, does all
of the inputting for owl), and one called database. Then a picture of the hierarchy of packages
would look like this:

I I I
(others)

global
I

/--------------------------------\
I I

macsyma owl
I I

I I I I
risch sin input input database

I I I
(others)

Now, the risch program and the sin program both do integration, and so it would be natural
for each to have a function called integrate. From inside sin, sin's integrate would be referred
to as "integrate" (no prefix needed), while risch's would be referred to as "risch:integrate".
Similarly, from inside risch, risch's own integrate would be called "integrate", whereas sin's
would be referred to as "sin:integrate".

If sin's integrate were a recursive function, the implementor would be referring to it from
within sin itself, and would be pappy that he need not type out "sin:integrate" every time; he
can just say "integrate".

DSK:LMMAN;PACKD 77 16-MAR-81

Initialization of the Package System 356 Lisp Machine Manual

From inside the macsyma package or any of its other sub-packages, the two functions would
be referred to as "sin:integrate" and as "risch:integrate". From anywere else in the hierarchy,
they would have to be called "macsyma:sin:integrate" and "macsyma:risch:integrate".

Similarly, assume that each of the input packages has a function called get-line. From inside
macsyma or any of macsyma's subprograms (other than input), the relevant function would be
called inputget-iine, and the irrc\evant one owl:inputget-iine. The converse is true for owl and
its sub-programs. Note that there is no problem arising from the fact that both owl and
macsyma have subprograms of the same name (input).

You might also want to put Macsyma's get-line function on the macsyma package. Then,
from anywehere inside Macsyma, the function would be called get-line; from the owl package
and subpackages it could be referred to as macsyma:get-line.

23.11 Initialization of the Package System

This section describes how the package system is initialized when generating a new software
release of the Lisp Machine system; none of this should affect users.

When the world begins to be loaded, there is no package system. There is one "obarray",
whose format is different from that used by the package system. After sufficiently much of the
Lisp environment is present for it to be possible to initialize the package system, that is done. At
that time, it is necessary to split the symbols of the old-style obarray up among the various initial
packages.

The first packages created by initialization are the most important ones: global, system,
user, and system - internals. All of the symbols' already present are placed in one of those
packages. By default, a symbol goes into system-internals .. Only thoSe placed on special lists go
into one of the others. These lists are the file "AI: L1SPM2; GLOBAL)" of symbols which
belong in global, and the file "AI: L1SPM2; SYSTEM)" of symbols which go in system.

After the four basic packages exist, the package system's definition of intern is installed, and
packages exist. Then, the other initial packages format, compiler, zwei, etc. are declared and
loaded using package-declare and pkg-Ioad, in almost the normal manner. The exception is
that a few of the symbols present before packages exist really belong in one of these packages.
Their package declarations contain calls to forward and borrow, which exist only for this purpose
and arc meaningful only in package declarations, and are used to move the symbols as
appropriate. These declarations are kept in the file "AI: L1SPM; PKGDCL)".

globalize symbol &optional (package"global")
Sometimes it will be discovered that a symbol which ought to be in global is not there,
and the file defining it has already been loaded, thus mistakenly creating a symbol with
that name in a package which ought just to inherit the one from global. When this
happens, you can correct the situation by doing (globalize" symbol-nallle"). This function
creates a symbol with the desired name in global, merges whalever value, function
definition, and properties can be found on symbols of that name together into the new
symbol (complaining if there are conflicts), and forwards those slots of the existing
symbols to the slots of the new one using one-q-forward pointers, so that they will appear
to be one and the same symbol as far as value, function definition, and property list are
concerned. They cannot all be made eq to each other, but globalize does the next-best

DSK:LMMAN;PACKD77 16-MAR-81

Lisp Machine Manual 357 Initial Packages

thing: it takes ~ll; existing symbol from user, if there is one, to put it in global. Since
people who check for eq are normally supposed to specify user anyway, they will not
perceive any effect from moving the symbol from user into global.

If globalize is given a symbol instead of a string as argument, the exact symbol specified
is put into global. You can use this when a symbol in another package, which should
have been inherited from global, is being checked for with eq-as long as there arc not
lJVo different packages doing so. But, if the symbol is supposed to be in global, there
usually should not be.

If the argument package is specified, then the symbol is moved into that package from all
its subpackages, rather than into global.

23.1 2 Initial Pacl<ages

The initially present packages include:

global Contains advertised global functions.

user Used for interning the user's type-in. Contains all keyword symbols.

sys or system Contains internal global symbols used by various system programs. global is for
symbols global to the I.isp language, while system is for symbols global to the
Lisp machine "operating system".

si or system-internals .
Contains subroutines of many advertised system functions. si is a subpackage of
sys.

compiler

zwei

chaos

tv

Contains the compiler. compiler is a subpackage of sys.

Contains the editor.

Contains the Chaosnet controller.

Contains the window system.

format Contains the function format and its associated sub functions.
There are quite a few others, it would be pointless to list them all.

Packages which are used for special sorts of data:

fonts Contains the names of all fonts.

format Contains the keywords for format, as well as the code.

Here is a picture depicting the initial package hierarchy:

DSK:LMMAN;PACKD 77 16-MAR-81

Initial Packages 358 l.isp Machine Manual

global
I

/--------------------------~--------------------~-----\
I I I I I I I I

user zwei chaos system tv format fonts (etc)
I

/--------------\
I I

system-internals compiler

DSK:LMMAN;PACKD 77 16-MAR-81

Lisp Machine Manual 359 Maintaining Large Sy~tems

24. Maintaining Large Systenls
Most programs of any size will reside in more than one file on the file computer. This

improves the program's overall modularity and divides it into manageable chunks for editing and
compiling. However, it is also valuable to consider the program as a single unit to be compiled
and/or loaded into the Lisp machine environment. To do this efficiently requires knowing what
files have changed, for example which files need to be recompiled, and what relationships exist
between the various files, for example that a file containing macro definitions must be loaded
before another file can be compiled. The system facility described in this chapter does this.

24.1 Defining a System

defsystem Special Form
(defsystem name (key ord args ...) (keyword args ...) ...) defines a system named /lame. The
options selected by the keywords arc explained in detail later. In general, they fall into
two categories: properties of the system and ttallSjormalio/ls. A transformation is an
operation such as compiling or loading which takes one or more files and does something
to them. The simplest system is a set of files and a transformation to be performed on
~m. .'

Here arc a few examples.
(defsystem mysys

(:compile-load (ltAI: GEORGE; PROG1" "AI: GEORG2; PROG2"»)

(defsystem zma il
(: name "ZMai 1 ")
(:pathname-default "AI: ZMAIL;")
(: package zwei)
(:module defs "DEFS")
(:module mult "MULT" :package tv)
(:module main ("TOP" "COMNDS" "MAIL" "USER" "WINDOW"

"FILTER" mult "COMETH"»
(:compile-load defs)
(:compile-load main (:fasload defs»)

(defsystem bar
(:module reader-macros "RDMAC")
(:module other-macros "MACROS")
(:module main-program "MAIN")
(:compile-load reader-macros)
(:compile-load other-macros (:fasload reader-macros»
(:compile-load main-program (:fasload reader-macros

other-macros»)

The first example defines a new system called mysys, which consists of two files, both of
which arc to be compiled and loaded. The second example is somewhat more complicated. What
all the options mean will be specified shortly, but the primary difference is that there is a file
defs which must be loaded before the rest of the files (main) can be compiled. The final

DSK:LMMAN;MAKSYS 9 16-MAR-81

Defining a System 360 Lisp Machine Manual

example has two levels of dependency. reader-macros must be compiled and loaded before
other-macros can be compiled. Both reader-macros and other-macros must then be loaded
before main-program can be compiled.

The defsystem options other than transformations are:

:name Specifies a "pretty" version of the name for the system, for use in printing.

:component-systems
Specifies the names of other systems used to make up this system. Performing an
operation on a system with component systems is equivalent to perfonning the same
operation on all the individual systems. Format is (:camponent-systems names ...).

:package
Specifics the package in which transformations are performed. A package specified here
will override one in the - * - line of the file in question.

:pathname-default
Gives a local default within the definition of the system for strings to be parsed into
path names. Typically this specifics the directory, when all the files of a system are on the
same directory.

:madule
Allows assigning a name to a set of files within the system. This name can then be used
instead of repeating the filenames. The fonnat is (:module name files optiollS ...). files is a
module-specification, which can be any of the following:

a string This is a file name.

a symbol
This is a module name. It stands for all of the files which are in that module of
this system.

an external module component
This is a list of the form (system-name module-names ...), to specify modules in
another system. It stands for all of the files which are in all of those modules.

a list of module components
A module component is any of the above, or the following:

a list of file names
This is used in the case where the names of the input and output files of a
transformation are not related according to the standard naming conventions, far
example when a OF ASL file has a different name or resides on a different
directory than the source file. The file names in the list are used from left to
right, thus the first name is the source file. Each file name after the first in the
list is defaulted from the previous one in the list

To avoid syntactic ambiguity, this is allowed as a module component but not as a
module specification.

The currently defined options for the :inodule clause are

:package Overrides any package specified for the whole system for transformations
performed on just this module.

DSK:LMMAN;MAKSYS 9 16-MAR-Sl

Lisp Machine. Manual 361 TransfiJlmations

In the second. defsystem example above, there arc three modules. The first two each has
only one file, and the third one (main) is made up both of files and another module. To
take examples of the other possibilities,

(:module prog ({~AI: GEORGE; PROG~ ~AI: GEORG2; PROG~»)

(:module faa (defs (zmail defs»))
The prog module consists of one file, but it lives in two directories, GEORGE and
GEORG2. [f this were a Lisp program, that would mean that the file "AI: GEORGE;
PROG)" would be compiled into ~AI: GEORG2; PROG QFASL~. The foo module
consists of two other modules, the defs module in the same system, and the defs module
in the zmail system. It is not generally use nil to compile files that belong to other
systems, thus this foo module would not normally be the subject of a transformation.
However, dependencies (defined below) use modules and need to be able to refer to
(depend on) modules of other systems.

24.2 Transformations

Transformations are of two types, simple and complex. A simple transformation is a single
operation on a file, such as compiling it or loading it. A complex transformation takes the output
from one transformation· and performs another transfomlation on it, for example, loading the
results of compilation.

The general fonnat of a simple transformation is (name input dependencies condition). input is
usually a module specification or another transformation whose output is used. The transformation
nU/ne is to be performed 011 all the files in the module, or all the oulput files of the other
transformation.

dependencies and condition are optional.

dependencies is a trallsjonnatiofl specification, either a list (transjonnatioll-name module
names ...), or a list of such lists. A module-name is either a symbol which is the name of a
module in the current system, or a list (system-name module-names ...). A dependency declares
that all of the indicated transformations must be performed on the indicated modules before the
current transformation itself can take place. Thus in the zmail example above, the defs module
must have the :fasload transformation performed on it before the :compile. transformation can be
performed on main.

condition is a predicate which specifies when the transformation should take place. Generally
it defaults according to the type of the transformation. The defined simple transformations are:

:fasload Calls the fasload function to load the indicated files, which must be QFASL files.

:readfile

:compile

The condition defaults to si:fi1e-newer-than-installed-p, which is t if a newer
version of the file exists on the file computer than was read into the current
environment.

Calls the readfile function to read in the indicated files. Use this for files that are
not to be compiled. conditiun defaults to si:file-newer-than-installed-p.

Calls the qc-fiIe function to compile the indicated files. condition defaults to
si:fiIe-newer-than-.file-p which returns t if the source file has been written more
recently than the binary file.

DSK:LMMAN;MAKSYS 9 16-MAR-81

Making a System 362 Lisp Machine Manual

The defined complex transformations are

:compile-Ioad (:compile-Ioad input compile-dependencies load-dependencies compile-condition load
condition) is the same as (:fasload (:compile input compile-dependencies compile
condition) load-dependencies load-condition). This is the most commonly-used
transformation. Everything after input is optional.

:compile-Ioad-init
See page 366.

As was explained above, each filename in an input specification can in fact be a list of strings
for the case where the source file of a program differs from the binary file in more than just the
file type. In fact, every filename is treated as if it were an infinite list of filenames with the last
filename. or in the case of a single string the only filename, repeated forever at the end. Each
simple transformation takes some number of input filename arguments, and some number of
output filename arguments. As transformations are performed, these arguments arc t4lken fi'om the·
front of the filename list. The input arguments are actually removed 41nd the output arguments
left as input arguments to the next higher transformation. To make this clearer, consider the
prag module above having the :compile-Ioad transformation performed on it. This means that
prog is given as the input to the :compile transformation and the output from this transformation
is given as the input to the :fasload transformation. The :compile transformation takes one input
filename argument, the name of a lisp source file, and one output filename argument, the name
of the qfasl file. The :fasload transformation takes one input filename argument, the name of a
qtasl file, and no output filename arguments. So, for the first and only file in the prog module,
the filename argument list looks like ("AI: GEORGE; PROG" "AI: GEORG2; PROG" "AI:
GEORG2; PROG" ...). The :compile transfonnation is given arguments of "AI: GEORGE;
PROG" and "AI: GEORG2; PROG" and the filename argument list which it outputs as the
input to the :fasload trallsfonnation is ("AI: GEORG2; PROG" "AI: GEORG2; PROG" ...).
The :fasload transformation then is given its one argument of "AI: GEORG2; PROG".

24.3 Making a System

make-system name &rest keywords
The make-system function does the actual work of compiling and loading. In the
example above, if PROG1' and PROG2 have both been compiled recently, then

(make-system 'mysys)
will load them as necessary. If either one might also need to be compiled, then

(make-system 'mysys' :compile)
will do that first as necessary.

make-system lists what transfi>rmations it is going to perform on what files, asks the user
for confinnation, then performs the transfonnations. Before each transfOimation a message
is printed listing the transformation being perfonned, the file it is being done to, and the
package. This behavior can be altered by keywords.

These are the keywords recognized by the make-system function and what they do.

:noconfirm

:selective

Assumes a yes answer for all questions that would otherwise be asked of the user.

Asks the user whether or not to perform each transfonnation that appears to be
needed for each file.

DSK:LMMAN;MAKSYS 9 16-MAR-81

.',

Lisp Machine Manual 363 Adding New Keywords to make-system

:silent

:reload

:noload

A voids printing out each transformation as it is performed:

Bypasses the specified conditions for perfOiming a transformation. Thus files are
compiled even if they haven't changed and loaded even if they aren't newer than
the installed version.

Does not load any files except those required by dependencies. For use in
conjunction with the :compile option.

:compile

:batch

Compiles files also if need be. The default is to load but not compile.

Allows a large compilation to be done unattended. It acts like :noconfirm with
regard to questions, turns off more-processing and fdefine-warnings, and saves the
compiler warnings in an editor buffer and a file (iL asks you for the name).

:print-only Just prints out what transformations would be performed, does not actually do
any compiling or loading.

:noop Is ignored, mainly useful for programs that call make-system.

24.4 Adding New Keywords to make-system

make-system keywords are defined as functions on the si:make-system-keyword property of
the keyword. The functions are called with no arguments. Some of the relevant variables they
can use are

s;: o!tsystem-being-made* Variable
The internal data structure which represents the system being made.

si: ·rnake-system-forrns-to-be-eva1ed-before· Variable
A list of forms which are evaluated before the transfom1ations are performed.

s1: ·make-system-forms-to-be-eva1ed-after* Variable
A list of forms which are evaluated after the transformations have been performed.

s i : ·make-system-forms -to- be-eva 1 ed-fi na 11 y* Variable
A list of forms which are evaluated after the body of make-system has completed. This
differs from si:*make-system-forms-to-be-evaled-after* in that these forms are
evaluated outside of the "compiler context", which sometimes makes a difference.

s1 : *query-type· Variable
Controls how questions are asked. Its normal value is :normal. :noconfirm means no
questions will be asked and :selective asks a question for each individual file
transfom1ation.

s; : .. s 11 en t - p. Variable
If t, no messages are printed out.

s1: ·batch-mode-p· Variable
If t, :batch was specified.

DSK:LMMAN;MAKSYS 9 16-MAR-81

Adding New Options for de(<;ystem 364 I jsp Machine Manual

si:*redo-all* Variable
If t, all transformations are performed, regardless of the condition functions.

si : *top-l evel-transformat ions* Variable
A list of the names of transformations that will be performed, such as (:fasload :readfile).

si: *file-transformation-function* Variable
The actual function that gets called with the list of transformations that need to be
perfOimed. The default is si:do-file-transformations.

si: define-make-system-special-variable variable value
Causes variable to be bound to value, which is evaluated at make-system time, during
the body of the call to make-system. This allows you to define new variables similar to
those listed above. This "function" is really a special form; it does not evaluate its
arguments.

make-system keywords can have effect either directly when called, or by pushing a form to
be evaluated onto si:*make-system-forms-to-be-evaled-after* or one of the other two similar
lists. In general, the only useful thing to do is to set some special variable defined by si:define
make-system-special-variable. In addition to the ones mentioned above. user-defined
transfomlations may have their behavior controlled by new special variables, which can be set by
new keywords. I f you want to get at the list of transfOlmations to be performed. for example,
the right way would be to set si: * file - transformation - function to a new function. which then
might call si:do-file-transforrnations with a possibly modified list. That is how the :print-only
keyword works.

24.5 Adding New Options for defsystem

Options to defsystem are defined as macros on the si:defsystem-macro property of the
option keyword. Such a macro can expand into an existing option or transformation, or it can
have side effects and return nil. There are several variables they can use; the only one of general
interest is

s1: *system-being-defined* Variable
The internal data structure which represents the system which is currently being
constructed.

si: define-defsystem-special-variable variable value
Causes variable to be bound to value during the expansion of the defsystem special form.
This allows you to define new variables similar to the one listed above. This "function" is
really a special fonn; it does not evaluate its arguments.

s1: def1ne-simplo-transformation Special FornI
This is the most convenient way to define a new simple transformation. The form is

(si :define-simple-transformation name jUllction
default-condition input-file-types output-file-types
preUy-names compile-like load-like)

For example,

DSK:LMMAN;MAKSYS 9 16-MAR-81

Lisp Machine Manual 365 More Esoteric Transformations

(si:define-simple-transformation :compile si:qc-file-l
si:file-newer-than-file-p ("LISP") ("QFASL"))

;npu/-jile-/ypes and output-file-types arc how a transformation specifics how many input
filenames and output filenames it should receive as arguments, in this case one of each.
They also, obviously, specify the default file type for these pathnames. The si:qc-file-1
function is mostly like qc-file, except for its interface to packages. It takes input-file and
output-file arguments.

pretty-names, compile-J;ke, and load-like arc optional.

pretty-names specifics how messages printed for the user should print the name of the
transfonnation. It can be a list of the imperative ("Compile"), the present participle
("Compiling"), and the past participle ("compiled"). Note that the past participle is not
capitalized, because it is not used at the beginning of a sentence. prefty-names can be just
a string, which is taken to be the imperative, and the system will conjugate the participles
itself. If pretly-n(/Illes is omitted or nil it defaults to the name of the transformation.

cOll1pUe-like and load-like say when the transformation should be performed. Compile-like
transformations arc performed when the :compile keyword is given to make-system.
Load-like transformations are performed unless the :noload keyword is given to make
system. By default compile-like is t but load-like is nil.

Complex transfonnations are just defined as normal macro expansions, for example,
(defmacro (:compile-load si:defsystem-macro)

(input &optional cOIJl-dep load-dep
com-cond load-cond)

'(:fasload (:compile ,input ,com-dep ,com-cond)
,load-dep ,load-cond»)

24.6 lVlore Esoteric Transformations

It is sometimes useful to specify a transfonnation upon which something else can depend, bu't
which is not pcrfonned by default, but rather only when requested because of that dependency.
The transformation nevertheless occupies a specific place in the hierarchy. The :skip defsystem
macro allows specifying a transformation of this type. For example, suppose there is a special
compiler for the read table which is not ordinarily loaded into the system. The compiled version
should still be kept up to date, and it needs to be loaded if ever the read table needs to be
recompiled.

(defsystem reader
(: pathname-defaul t "AI: LMIO; ")
(:package system-internals)
(:module defs "RDDEFS")
(:module reader "READ")
(:module read-table-compiler "RTC")
(:module read-table "RDTBL")
(:compile-load defs)
(:compile-load reader (:fasload defs)
(:skip :fasload (:compile read-table-compiler»)
(:rtc-compile-load read-table (:fasload read-table-compiler»)

Assume that there is a complex transformation :rtc-:-compile-Ioad which is like :compile-Ioad,

DSK:LMMAN;MAKSYS 9 16-MAR-81

The Patch Facility 366 Lisp Machine Manual

except that is is built on a transformation called something like :rtc-compile, which uses the read
table compiler rather than the Lisp compiler. [n the above system, then, if the :rtc-compile
transformation is to be performed, the :fasload transformation must be done on read-table
compiler first, that is the read table compiler must be loaded if the read table is to be
recompiled. If you say (make-system 'reader ':compile), then the :compile transformation will
still happen on the read -table-compiler module, compiling the read table compiler if need be.
nut if you say (make-system 'reader), the reader and the read table will be loaded, but the
:sl<ip keeps this from happening to the read table compiler.

So far nothing has been said about what can be given as a condition for a transformation
except for the default functions which check for a source file being newer than the binary and so
on. [n general, any function which takes the same arguments as the transformation function (e.g.
qc-file) and returns t if the transformation needs to be performed, can be in this place as a
symbol, including for example a closure. To take an example, suppose there is a file which
contains compile-flavor-methods for a system, and which should therefore be recompiled ifany
of the flavor method definitions change. In this case, the condition function for compiling that
file should return t if either the source of that file itself or any of the files that define tile flavors
has changed. This is what the :compile-Ioad-init complex transformation is for. It is defined
like this:

(defmacro (:compile-load-init si:defsystem-macro)
(input add-dep &optiona1 com-dep load-dep

&aux function)
(setq function (let-closed «*additional-dependent-modules*

add-dep»
'compile-load-init-condition»

'(:fasload (:compile ,input ,com-dep ,function) ,load-dep»

{defun compile-load-init-condition (source-file qfasl-file)
{or (si:file-newer-than-file-p source-file qfasl-file)

(local-declare «special *additional-dependent-modules*»
(si:other-files-newer-than-file-p

additional-dependent-modules
qfasl-file»»

The condition function which will be generated when this macro is used returns t either if si:file
newer-than-file-p would with those arguments, or if any of the other files in add-dep, which
presumably is a module specification, are newer than the qfasl file.

24.7 The Patch Facility

The patch facility allows a system maintainer to manage new releases of a large system and
issue patches to correct bugs. It is designed to be used to maintain both the Lisp machine system
itself, and applications systems that are large enough to be loaded up and saved on a disk
partition.

When a system of programs is very large, it needs to be maintained. Often problems are
found and need to be fixed, or other little changes need to be made. However, it takes a long
time to load up all of the files that make up such a system, and so rather than having every user
load up all the files every time he wants to use the system, usually the files just get loaded once
into a Lisp world, and then the Lisp world is saved away on a disk partition. Users then use this

DSK:LMMAN;MAKSYS 9 16-MAR-81

Lisp Machine Manual 367 The Patch Facility

disk partition, and copies of it are distributed. The problem is that since the users don't load up
the system every time they want to lise it, they don't get all the latest changes.

The purpose of the patch system is to solve this problem. A patch file is a little file that,
when you load it, updates the old version of the system into the new version of the system.
Most often, patch files just contain new function definitions; old functions are redefined to do
their new thing. When you want to use a system, you first use the Lisp environment saved on
the disk, and then you load all the latest patches. Patch files are very small, so loading them
doesn't take much time. You can even load the saved environment, load up the latest patches,
and then save it away, to save future users the trouble of even loading the patches. (Of course,
new patches may be made later, and then these will have to be loaded if you want to get the
very latest version.)

For every system, there is a series of patches that have been made to that system. To get the
latest version of the system, you load each patch file in the series, in order. Sooner or later, the
maintainer of a system will want to stop building more and more patches, and recompile
everything, starting afresh. A complete recompilation is also necessary when a system is changed
in a far-reaching way, that can't be done with a small patch; for example, if you completely
reorganize a program, or change a lot of names or conventions, you might need to completely
recompile it to make it work again. After a complete recompilation has been done, the old patch
files are no longer suitable to use; loading them in might even break things.

The way all this is kept track of is by labelling each version of a system with a two-part
number. The two parts arc called the major l'ersiOIl nUlI/ber and the minor version number. The
minor version number is increased evcry timc a new patch is made; the patch is identified by the
major and minor version number together. The major version number is increased when the
program is completely recompiled, and at that time the minor version number is reset to zero. A
cumplete system version is identified by the major version· number, followed by a dot, followed
by the minor version number.

To clarify this, here is a typical scenario. A new system is created; its initial version number
is 1.0. Then a patch file is created; the version of the program. that results from loading the first
patch file into version 1.0 is called 1.1. Then another patch file might be created, and loading
that patch file into system 1.1 creates version 1.2. Then the entire system is recompiled, creating
version 2.0 from scratch. Now the two patch files are irrelevant, because they fix old software;
the changes that they reflect are integrated into system 2.0.

Note that the second patch file should only be loaded into system 1.1 in order to create
system 1.2; you shouldn't load it into 1.0 or any other system besides 1.1. It is important that
all the patch files be loaded in the proper order, for two reasons. First, it is very useful that any
system numbered 1.1 be exactly the same software as any other system numbered 1.1, so that if
somebody reports a bug in version 1.1, it is clear just which software is being complained about.
Secondly, one patch might patch another patch; loading them in some other order might have
the wrong effect.

The patch facility keeps track, in tlle file system, of a\1 tlle patch files tllat exist, remembering
which version each one creates. There is a separate numbered sequence of patch files for each
major version of each system. All of them arc stored in the file system, and tlle patch facility
keeps track of where tl1ey all are.

DSK:LMMAN;PATCH 16 16-MAR-S1

The Patch Facility 368 Lisp Machine Manual

For each patchable system there is a file called the system definition fife that tells where to
find all the other information, and tells which major version of the system is the latest one that
has been generated. These files and how to make them arc described below.

As you arc nmning on a Lisp Machine, you can tell the patch facility about a system by
calling si:add -patchable-system (see page 369) telling it the name of the system definition file.
/3y doing this, you add this system to the list of all systems "present" in the world. For each
system that is present, the patch facility keeps track of which version of each system is present,
and where the data on that system reside in the file system. This infonnation can be used to
update the Lisp world automatically to the latest versions of all the systems it contains. Once a
system is present, you can ask for the latest patches to be loaded, ask which patches arc already
loaded, and add new patches.

You can also load in patches or whole new systems and then save the entire Lisp environment
away ill a disk partition. This is explained on section 24.8, page 371.

When a Lisp Machine is booted, it prints out a line of information telling you what systems
are present, and which version of each system is loaded. This information is returned by the
function si:system -version -info. ft is followed by a text string containing any additional
information that was requested by whoever created the current disk partition (see disk -save, page
373).

pr i nt- sys tem-mod i f i cat ions &rest system-names
With no arguments, this lists all the systems present in this world and, for each system,
all the patches that have been made to it. For each patch it shows the major version
number (which will always be the same since a world can only contain one major
version), the minor version number, and an explanation of what the patch does,- as typed
in by the person who made the patch.

If print-system-modifications is called with arguments, only the modifications to the
systems named are listed.

si :get-system-version &optional system
Returns two values, the major and minor version numbers of the version of system
currently loaded into the machine, or nil if that system is not present. system defaults to
"System".

si :system-version-info &optional (briefpnil)
This returns a string giving infonnation about which systems and what· versions of the
systems arc loaded into the machine, and what microcode version is running. A typical
string for it to produce is:

"System 65.12, ZMail 19.1, microcode 739"
If briefp is t, it suppresses the microcode version, the name System, and the commas:

"65.12 ZMail 19.1"

DSK:LMMAN;PATCH 16 16-MAR-81

Lisp Machine Manual 369 The Patch Facility

24.7.1 Defining a System

In order to use the patch facility one must create a system definition file which contains the
parameters of your system. This file contains the printed representation of a list of the form:

(name major-version palch-dir-names patch-names 11 i 1)
The items of the list have the following meanin~s:

/lame A string which is the name of your system. This should be different from the
name of any other system. The name "System" is the name of the Lisp Machine
system itself.

major-version The major version number of the most recent version of your system. Once YOll
in itialize this the patch facility will maintain it automatically for you, rewriting
your system definition file.

patch-dil"'names

patch-names

A format control string which is used to get the name of the patch directory jile
for a given major version. There is one patch directory file for each major version
of each system, used by the patch facility to keep track of the patches to. that
major version. The format control string is passed one "argument": the major
version number. For example, if palch-dir-names is "AI: MYOIR; MY-O
(POIR)", the patch directory file for major version 259 would be AI: MYOIR;
MY259 (POIR). Be sllre to leave room in the name for a sufficient number of
digits of major version; remember that ITS filenames have only six characters.

A format control string which is used to get the name of the patch file for a
given major and minor version. This patch file holds the changes in that versioll
from its predecessor. The format control string is passed two "arguments": the
major version number and the minor version number. For example, if patch
names is "AI: MYOIR; -~.-Oil the source version of the patch file for major
version 259 and minor version 69 would be AI: MYOIR; 259.69 >. Note that
")" is used so that the patch file can be saved several times or edited.

Patch files get compiled, hence· there will also be files with names like 259.69
QFASL.

The nil at the end is used in the in-core version of this data structure and should always be
nil in the file. The system definition file for the Lisp machine system is AI: LMPAT; SYSTEM
(POIR) and contains .

("System" 48. "AI:· LMPAT; SYS-O (POIR)" "AI: LMPAT; -D.-Oil NIL)

Having created your system definition file, arrange the procedure for loading your system so
that after it is all loaded, it will invoke the si:add-patchable-system function, as follows.

si: add-patchable-system name s),slelll-dejinitiol1-jiie &optional new-major-version
Tells the patch facility about a system. /lame is its name (a string). s),slem-dejinition-jile is
the file name of its system dcfiriition file. If flew-major-version is t, you are making a new
release and the major version number will be il1l:rementcd. The system definition file will
be written out with the new major version number. If new-major-version is nil (the
default), the major version number remains unchanged.

DSK:LMMAN;PATCH 16 16-MAR-81

The Patch Facility 370 Lisp Machine Manual

After loading your system, you can save it with the disk -save function (see page 373). disk
save will ask you for any additional information you want printed as part of the greeting when
the machine is booted. This is in addition to the names and versions of all the systems present in
this world. If the system version will not fit in the 16-character field allocated in the disk label,
disk -save will ask you to type in an abbreviated form.

[Clearly "patchable system" in the above sense and "systems" in the sense of defsystem ought
to be related; they aren't currently, for historical reasons, but we hope to fix this soon.]

24.7.2 Loading Patches

load-patches &rest options
This function is used to bring the current world up to the latest minor version of
whichever major version it is, for all systems present, or for certain specified systems. If
there are any patches available. load-patches will otTer to read them in. With no
argulllents. load -patches updates all the systellls present in this world.

options is a list of keywords. Some keywords are followed by an argument. The
ft)l\owing options are accepted:

:systems list list is a list of names of systems to be brought up to date. [f this option
is not specified, all systems arc processed.

:verbose Print an explanation of what is being done. This is the default.

:selective For each patch, say what it is and then ask the user whether or not to
load it. This is the defalllt. [f the user answers "P", selective mode is
turned off for any remaining patches to the current system.

:noselective Turns off :selective.

:silent Turns off both :selective and :verbose. In :silent mode all necessary
patches are loaded without printing anything and without querying the
user.

Currently load - patches is not called automatically, but the system may be changed to offer
to load patches when the user logs in, . in order to keep things up to date.

24.7.3 Making Patches .

There are two editor commands that are used to create patch files. During a typical
maintenance session on a system you will make several edits to its source files. The patch system
can be used to copy these edits into a patch file so that they can be automatically incorporated
into the system to create a new minor version. Edits in a patch file can be modified function
definitions. new functions. modified defver's and defconst's, or arbitrary forms to be evaluated,
even including load's of new files .

. Meta-X Add Patch adds the region (if there is one) or else the current "defun" to the patch
file currently being constructed. The first time you give this command it will ask you what system
you are patching, allocate a new minor version number, and start constlUcting the patch file for
that version. If you change a function, you should recompile it, test it, then once it works use
Add Patch to put it in the patch file.

DSK:LMMAN;PATCH 16 16-MAR-81

Lisp Machine Manual 371 Saving New Versions: Disk Partitions·

The patch file being constructed is in an editor buffer. If you mistakenly Add Patch
something which doesn't work, you can select the buffer containing the patch file and delete it.
Then later you can Add Patch the corrected version.

While you are making your patch file, the minor version number that has been allocated for
you is reserved so that nobody else can use it. This way if two people arc patching a system at
the same time, they will not both get the same minor version number.

After making and testing all of your patches, usc meta-X Finish Patch to install the patch file
so that other users can load it. This will compile the patch file if you have not done so yourself
(patches are always compiled). It will ask you for a comment describing the reason for the patch;
load-patches and print-system-rnodifications print these comments.

After finishing your patch, if you do another Add Patch it will ask you which system again
and start a new minor version. Note that you can only be putting together patches for one
system at a time.

If you start making a patch file and for some reason never do a Finish Patch (you decide to
give up or your machine crashes), the minor version number that you were working on will
remain reserved. Since patch files mllst always be loaded in strictly sequential order, nobody will
be able to load any further patches made to this major version past this point. You must
manually edit the patch directory file for this major version, removing lhe line corresponding to
the aborted patch. It is OK for a minor version number to be skipped.

24.8 Saving New Versions: Disk Partitions

24.8.1 Concepts

The make-system and load-patches functions, described above, load software into the Lisp
world. This takes time; it is wasteful for everyone to sit through this loading of software every
time the software is to be used. Usually someone loads up software into a Lisp world and then
saves away the whole Lisp world in a partition on a disk. This section explains how to do this
and other things.

A Lisp Machine disk is divided into several named partitions (also called "bands" sometimes).
Partitions can be used for many things. Every disk has a partition named PAGE, which is used
to implement the virtual memory of the Lisp Machine. When you run Lisp, this is where the
Lisp world actually resides. There arc also partitions that hold saved images of the Lisp Machine
microcode, convehtionally named MeRn (where n is a digit), and partitions that hold saved
images of Lisp worlds, conventionally named LOOn. A saved image of a Lisp world is also
called a "virtual memory load" or "system load".

The directory of partitions is in a special block on the disk called the label. When you "cold
boot" a Lisp Machine by typing CTRLlMETA/CTRLlMETA-Rubout, the machine checks the
label to see which two partitions contain two important "files": the current microcode load, and
tIle current saved image of the Lisp world. These are kept separate so that lhe microcode can be
easily changed without going through the time-consuming process of generating a new system load.
When you "cold-boot", the contents of the current microcode band arc loaded into the microcode
memory, and then the contents of the current saved image of the Lisp world is copied into the

DSK:LMMAN;PATCH 16 16-MAR-81

Saving New Versions: Disk Partitions 372 Lisp Machine Manual

PAGE partition. Then Lisp starts running.

For each partition, the directory of partitions contains a brief textual description of the
contents of the partition. For microcode partitions, a typical description might be "UCAOR 739";
this means that version 739 of the microcode is in the partition. For saved Lisp images, it is a
little more complicated. Ideally, the description would say which versions of which systems are
loaded into the band. Unfortunately, there isn't enough room for that in most cases. A typical
description is "65.8 ZMail 19.1", meaning that this band contains version 65.8 of System and
version 19.1 of ZMail. The description is created when a Lisp world is saved away by disk -save
(sce below). .

24.8.2 Manipulating the Label

pr i nt-di sk-l abel &optional (ulli/O) (strea11lstandard-output)
Print a dcscription of the labcl of the disk specificd by Ullit onto stream. The description
starts with thc name of thc disk pack, various information about thc disk that is generally
unintercsting, and thc names of the two currcnt load partitions (microcode and savcd Lisp
image). This is followed by onc linc of description for each partition. Each onc has a
namc, disk addrcss, size, and textual description. The two partitions that arc the current
load partitions, uscd when you cold-boot, are precccded by asterisks. unit may be the
unit numbcr of the disk (most Lisp machincs just havc one unit, numbcrcd 0), or the
"host namc" of anothcr I -isp Machinc on thc Chaosnct (in which casc thc label of unit a
on that machine will be printed, and the uscr of that machine will be notified that you
are looking at his label).

set - eu r r.e n t- ban d partition-name
Set the current saved Lisp image partItIon to be partition-name. If partition-name is a
number, the name LOOn will be used.

set-eurrent-mi erol oad partition-name
Sct the current microcode partition to be partition-name. If partition-name is a number,
the name MeRn will be used.

When using the fimctions to set the current load partitions, be extra sure that you are
. specifying the correct partition. Having done it, cold-booting the machine will relaad from those

partitions. Some versions of the microcode will not work with some versions of the Lisp system,
and if yau set the two current partitions incompatibly, cold-booting the machine will fail; you
will need an expert ta fix this.

si :edit-disk-label unit &optional init-p
This runs an interactive label cditor on the specified unit. This editor allows you to
change any field in the label. The HELP key documents the commands. You have to be
an cxpert to necd this and to understand what it does, so the commands are not
documcntcd hcre. Ask someone if you necd help.

DSK:LMMAl'-f;PATCH 16 16-MAR-81

Lisp Machine Manual 373 Saving New Versions: Disk Partitions

print-loaded-band &optional Jonna/-dest
Tells you what you are currently running. This includes where it came from on the disk
and what version of each system is present in your Lisp environment. Jormat-dest defaults
to t; if it is nil the answer will be returned as a string rather than printed out.

disk-restore &optional partition
Allows booting from a band other than the current one. partitioll may be the name or
the number of a disk partition containing a virtual-memory load, or nil or omitted,
meaning to use the current partition. The specified partition is copied into the paging
area of the disk and then started.

Although you can use this to boot a different Lisp image than the installed one, this does
not provide a way to boot a different microcode image. disk -restore brings up the new
band with the currently running microcode.

disk-restore asks the user for confirmation before doing it.

24.8.3 Updating Software

Of all the procedures described in this section, the most common one is to take a partition
containing a Lisp image, update it to have all the latest patches, and save it away into a
partition.

The way you do this is to start by cold-booting the machine, to get a fresh, empty system.
Next, you must log in as something whose INIT file does not affect the Lisp world noticably (so
that when you save away the Lisp image, the side-effects of the INIT file won't get saved too);
you can log in as "L1SPM". Now you can load in any new software you want; usually you just
do (load - patches) and answer the questions, to bring all the present patchable systems up to
date, but you might also add a new system and load it up.

When you're done loading everything, do (print-disk-Iabel) to find. a band in which to save
your new Lisp world. It is best not to reuse the current band, since if something goes wrong
during the saving of the partition, while you have written, say, half of the band that is current,
it may be impossible to cold-boot the machine. Once you have found the partition, you use the
disk-save function to save everything into that partition.

disk-save partition-name
Save the current Lisp world in the designated partition. partition-name may be a partition'
name (a string), or it may be a number in which case the name LODn is used.

It first asks you for yes-orono confirmation that you really want to reuse the named
partition. Then it tries to figure out what to put into the textual description of the label.
1t starts with the brief version of si:system-version-info (see page 368). Then it asks
you for an "additional comment" to append to this; usually you just type a return here,
but you can also add a comment that will be returned by si:system-version-info (and
thus printed when the system is booted) from then on. If this doesn't fit into the fixed
size available for the textual description, it asks you to retype the whole thing (the version
info as well as your comment) in a compressed form that will fit. The compressed version
will appear in the textual description in print-disk-Iabel.

DSK:LMMAN;PATCH 16 16-MAR-81

Saving New Versions: Disk Partitions 374 Lisp Machine Manual

The Lisp environment is then saved away into the designated partition, and then the
equivalent of a cold-boot from that partition is done.

Once the patched system has been successfully saved and the system comes back up, you can
make it current with set-current-band.

Please don't save patched systems that have had the editor or the compiler run. This works,
but it makes the saved system a lot bigger. You should try to do as little as possible between the
time you cold-boot and the time you save the partition, in order to produce a clean saved
environment.

24.8.4 Installing New Software

The version numbers of the current microcode and system arc announced to the INFO-LISPM
mailing list. When a new system becomes available, mail is sent to the list explaining where to
find the new system and what is new about it. Sometimes a microcode and a system go together,
and the new system will not work with the old microcode and vice versa. When this happens
extra care is required to avoid getting incompatible loads current at the same time so that the
machine will not be able to boot itself.

All of the extant microcode versions can be found on the LISPI\'Il directory on At
Microcode version fIIlfl is in AI: LISPMl; UCADR IIIlI/MCR. To copy a new microcode version
into one of the microcode load partitions, first do a (print--disk -label) to ensure that the partition
you intend to bash is not the current one; if it was, and som(;thing went wrong in the middle of
loading the new microcode, it would be impossible to cold-boot, and this is hard to fix.

Then, install the microcode (on the non-current partition) by using si:load-mcr-file.

s i : 1 oad-mc r - f i 1 e microcode-file partition-name
Load the contents of the file microcode-file into the designated partition. Usually
microcode-file looks like "AI: LISPMl; UCADR IIIlI/MCR", and partition-name is "MCRl"
or "MCR2". This takes about 30 seconds.

The system load, unlike the microcode load, is much too large to fit in an AI fUe. Therefore,
the only way to install an updated system on a machine is to copy it from another machine that
already has it. So the first step is to find a machine that is not in usc and has the desired
system. We will call this the source machine. The machine where the new system will be
installed is the target machine. You can see who is logged into which machines, see which ones
are free, and use print-disk -label with an argument to examine the label of that machine's disk
and see if it has the system you want.

The function for actually copying a system load partition off of another machine is called as
follows. Before doing this, double-check the partition names by printing the labels of both
machines, and make sure no one is using the source machine.

s1: receive-band source-host source-band target-band
Copy the partition on source-host's partition named source-band onto the local machine's
partition named target-band. ("Band" means "partition".) This takes about ten minutes. It
types out the size of the partition in pages, and types a number every 100 pages telling
how far it has gotten. It puts up a display on the remote machine saying what's going

DSK:LMMAN;PATCH 16 16-MAR-81

Lisp Machine Manual 375 Saving New Versions: Disk Partitions

on.

To go the other direction, use si:transmit-band.

s;: transmit-band source-band target-host target-band
This is just like si:receive-band, except you use it on the source machine instead of the
target machine. It copies the local machine's partition named source-band onto target
machine's partition named target-band.

After transfening the band, it is good practice to make sure that it really was copied
successfully by comparing the original and the copy. All of the known reasons for errors during
band transfer have (of course) been corrected, but peace of mind is valuable. If the copy was not
perfectly faithful, you might not find out about it until a long time later, when you use whatever
part of the system that had not been copied properly.

s;: compare-band source-host source-band target-band
This is like si:receive-band, except that it does not change anything. It compares the
two bands and complains about any dilferences.

Having gotten the current -microcode load and system load copied into partitions on your
machine, you can make them current using set-current-microload and set-current-band.
Double-check everything with print-disk-':Iabel. Then cold-boot the machine, and the new system
should come up in a half-minute or so.

If the microcode you installed is not the same version as was installed Oil the source machine
from which you got the system load, you will need to follow the procedure given below under
"installing new microcode". This can happen if someone hasn't installed the current microcode yet
011 that other machine.

24.8.5 Installing New Microcode

When an existing system is to be used with a new microcode, certain changes need to be
made to the system, and it should then be dumped back out with the changes. Usually new
microcode is released only along with a new system, so you hardly ever have to do this. The
error handler has a table of errors that are detected by microcode. The hardware/microcode
debugger (CC) has a microcode symbol table. These symbols are used when debugging other
machines, and are also used by certain metering programs. These tables should be updated when
a new microcode is installed.

The error-handler will automatically update its table (from a file on the AI:LlSPM1; directory)
when the machine is booted with the new microcode. The CC symbol table is updated by the
following procedure:

(login 'lispm)
(pkg-goto 'cadr)
(cc-1oad-ucode-symbo1s "AI: LISPM1; UCADR flIlIlSYM")
(pkg-goto)

where mIll is the microcode version number. This operation will take a minute or two; after it
has read in most of the file the machine will stop for a long time while it sorts the symbols. It
will look like it has crashed, but it hasn't, really, and will eventually come back.

DSK:LMMAN;PATCH 16 16-MAR-Sl

Saving New Versions: Disk Paititions 376 Lisp Machine Manual

After booting the system with the new microcode and following the above procedure, the
updated system should be saved with disk-save as explained above. Note that this operation
does not change the system version number. Once the new band is verified to work, the old
band can be removed from the label with si:edit-disk-Iabel if desired.

DSK:LMMAN;PATCH 16 16-MAR-81

Lisp Machine Manual 377 Processes

25. Processes
The Lisp machine supports //lulti-processing; several computations can be executed

"concurrently" by placing each in a separate process. A process is like a processor, simulated by
software. Each process has its own "program counter", its own stack of function calls and its own
special-variable binding environment in which to execute its computation. (This is implemented
with stack groups, see chapter 12, page 149.)

If all the processes are simply trying to compute, the machine time-slices between them. This
is not a particularly efficient mode of operation since dividing the finite memory and processor
power of the machine among several processes certainly cannot increase the available power and in
fact wastes some of it in overhead. The way processes are nonnally lIsed is different; there can
be several on-going computations, but at a given moment only one or two processes will be trying
to nm. The rest will be either wailing for some event to occur, or stopped, that is, not allowed
to compete for resources.

A process waits for an event by means of the process-wait pnmltlve, which is given a
predicate function which defines the event being waited for. A module of the system called the
process scheduler periodically calls that function. If it returns nil the process continues to wait; if
it returns t the process is made runnable and its call to process-wait returns, allowing the
computation to proceed.

A process may be active or stopped. Stopped processes are never allowed to run; they are
not considered by the scheduler, and so will never become the current process unlil they are
made active again. The scheduler continually tests the waiting functions of all the active processes,
and those which return non-nil values are allowed to run. When you first create a process with
process-create, it is inactive.

A process has two sets of Lisp objects associated with it, called its run reasons and its arrest
reasons. These sets are implemented as lists. Any kind of object can be in these sets; typically
keyword symbols and active objects such as windows and other processes are found. A process is
considered active when it has at least one nm reason and no arrest reasons. A process that is not
active is stopped, is not referenced by the processor scheduler, and does not compete for machine
resources.

To get a computation to happen in another process, you must first create a process, and then
say what computation you want to happen in that process. The computation to be executed by a
process is specified as an initial jUllction for the process and a list of arguments to that function.
When the process starts up it applies the function to the arguments. In some cases the initial
function is written so that it never returns, while in other cases it performs a certain computation
and then returns, which stops the process.

To reset a process means to throw (see *throw, page 43) out of its entire computation, then
force it to call its initial function again. Resetting a process clears its waiting condition, and so if
it is active it will become runnabIc. To preset a Cunction is to set up its initial function (and
arguments), and then reset it. This is how you start up a computation in a process.

All processes in a Lisp machine run in the same virtual address space, sharing the same set of
Lisp objects. Unlike other systems which have special restricted mechanisms for inter-process

DSK:LMMAN;PROCES 23 16-MAR-Sl

The Scheduler 378 Lisp Machine Manual

communication, the Lisp machine allows processes to communicate in arbitrary ways through
shared Lisp objects. One process can infonn another of an event simply by changing the value of
a global variable. Buffers containing messages from one process to another can be implemented as
lists or arrays. The usual mechanisms of atomic operations, critical sections, and interlocks are
provided (see %store-conditional (page 163), without-interrupts (page 379), and process-lock
(page 381).) .

A process is a Lisp object, an instance of one of several flavors of process (see chapter 20,
page 245). The remainder of this chapter describes the messages you can send to a process, the
functions you can apply to a process, and the functions and variables a program running in a.
process can use to manipulate its process.

25.1 The Scheduler·

At any time there is a set of active processes; as described above, these are all the processes
which are not stopped. Each active process is either currently nmning, trying to nm, or waiting
for some condition to become true. The active processes are managed by a special stack group
called the scheduler, which repeatedly cycles through the active processes, determining for each
process whether it is ready to be run, or whether it is waiting. The scheduler determines whether
a process is ready to run by applying the process's lVait-jilllctioll to its wail-argull1ent-list. If the
wait- function returns a non-nil value, then the process is ready to run; otherwise, it is waiting. . If
the process is ready to run, the scheduler resumes the current stack group of the process.

When a process's wait-function returns non-nil, the scheduler will resume its sUlck group and
let it proceed. The process is now the current process, . that is, the one process that is running on
the machine. The scheduler sets the variable current-process to it. It will remain the current
process and continue to run until either it decides to wait, or a sequence break occurs. In either
case, the scheduler stack group will be resumed and it will continue 'to cycle through the active
processes. This way, each process that is ready to run will get its share of time in which to
execute.

A process can wait for some condition to become true by calling process-wait (see page
379), which will set up its wait-function and wait-argument-list accordingly, and resume· the
scheduler stack group. A process can also wait for just a moment by calling process-allow
schedule (see page 380), which resumes the scheduler stack group but leaves the process
nmnable; it will run again as soon as all other runnable processes have had a chance.

A sequence break is a kind of interrupt that is generated by the Lisp system for any of a
variety of reasons; when it occurs, the scheduler is resumed. The function si:sb-on (see page
380) can be used to control when sequence breaks occur. The default is to sequence break once a
second. Thus if a process runs continuously without waiting, it will be forced to return control to
the scheduler once a second so that any other runnable processes will get their turn.

The system does not generate a sequence break when a page fault occurs; thus time spent
waiting for a page to come in from the disk is "charged" to a process the same as time spent
computing, and cannot be used by other processes. It is done this way for the sake of simplicity;
this allows the whole implementation of the process system to reside in ordinary virtual memory, .
and not to have to worry specially· about paging. 'The perfonnance penalty is small since Lisp
machines arc personal computers, not multiplexed among a large number of processes. Usually
only one process at a time is runnable. .

DSK:LMMAN;PROCES 23 16-MAR-81

Lisp Machine Manual 379 The Scheduler

1\ process's wait function is free to touch any data structure it likes and to perfonn any
computation it likes. Of course, wait functions shou1d be kept simple, using only a small amount
of time and touching only a small number of pages, or system perfommnce will be impacted
since the wait function will consume resources even when its process is not running. If a wait
function gets an error, the error will occur inside the scheduler. All scheduling will come to a
halt and the user will be thrown into the error handler. Wait functions should be written in such
a way that they cannot get errors. Note that process-wait calls the wait function once before
giving it to the scheduler, so an error due simply to bad arguments will not occur inside the
scheduler.

Note well that a process's wait function is executed inside the scheduler stack-group, not
inside the process. This means that a wait function may not access special variables bound in the
process. It is allowed to access global variables. It could access variables bound by a process
through the closure mechanism (chapter 11, page 144), but more commonly any values needed by
the wait function are passed to it as arguments.

current-process Variable
The value of current-process is the process which is currently executing, or nil while the
scheduler is running. When the scheduler calls a process's wait-function, it binds
current-process to the process so that the wait-ftmction can access its process.

without-1 nterrupts Special FornI
The special form (without-interrupts form! forIl12 ...) evaluates the body forms form},
form2, etc. with inhibit-scheduling-flag bound to t. This is the recommended way to
lock out mulli-processing over a small critical section of code to prevent timing errors. In
other words the body is an atomic operatioll. The value(s) of a without-interrupts is/are
the value(s) of the last form in the body.
Examples:

(without-interru~ts
(push item list)

(without-interrupts
(cond «memq item list)

(setq list (de1q item list»
t)

(t ni1»-)

1 nh i b 1 t- schedu 11 ng-fl ag Variable
The value of inhibit-scheduling-flag is normally nil. If it is t, sequence breaks are
deferred until inhibit-scheduling-flag becomes nil again. This means that no process
other than the current process can run.

process-wait whostate function &rest arguments
This is the primitive for waiting. The current process waits until the application of
fUllctioll to arguments returns non-nil (at which time process-wait returns). Note that
fllllction is applied in the environment of the scheduler, not the environment of the
process-wait, so bindings in effect when process-wait was called will not be in effect
when fUllctioll is applied. Be careful when using any free references in fUllctioll. whostate
is a string containing a brief description of the reason for waiting. If the who-line at the
bottom of the screen is looking at this process, it will show whostate.

DSK:LMMAN;PROCES 23 16-MAR-81

The Scheduler 380 Lisp Machine Manual

Examples:
(process-wait "sleep"

#'(lambda (now)
(> (time-difference (time) now) 100.»

(time))

(process-wait "Buffer"
#'(lambda (b) (not (zerop (buffer-n-things b»»
the-buffer)

process-sleep il/tenlal
This simply waits for interval sixtieths of a second, and then returns. It uses process
wait.

procass-allow-schedule
This function simply waits momentarily; all other processes will get a chance to run
before the current process runs again.

sys: schadu 1 er-stack -group Variable
This is the stack group in which the scheduler executes.

sys : c 1 ock-funct i on-1 i st Variable
This is a list of functions to be called by the scheduler (with no arguments) 60 times a
second. These functions implement various system overhead operations such as blinking
the blink}ng cursor on the screen.

sys: act ive-processes Variable
This is the scheduler's data-structure. It is a list of lists, where. the car of each element is
an active process or nil and the cdr is information about that process.

sys: all-processes Variable
This is a list of all the processes in existence. It is mainly for debugging.

si: initial-process Variable
This is the process in which the system starts up when it is booted.

si : sb-on &optiona\ when
si:sb-on controls what events cause a sequence break, i.e. when re-scheduling occurs.
The following keywords are names of events which can cause a sequence break.

:clock This event happens periodically based on a clock. The default period is
one second. See sys:%tv-clock-rate, page 174.

:keyboard

:chaos

:call

Happens when a character is received from the keyboard.

Happens when a packet is received fj'om the Chaosnet, or transmission of
a packet to the Chaosnet is completed.

Happens when the CALL key on the keyboard is typed. This doesn't
work.

DSK:LMMAN;PROCES 23 16-MAR-81

Lisp Machine Manual 381 Locks

Since. the keyboard and Chaosnet are heavily buffered. there is no particular advantage to
enabling the :I<eyboard and :chaos events, unless the :clack event is disabled.

With no argument, si:sb-on returns a list of keywords for the currently enabled events.

With an argument, the set of enabled events is changed. The argument can be a
keyword, a list of keywords, nil (which disables sequence breaks entirely since it is the
empty list), or a number which is the internal mask, not documented here.

25.2 Locks

A lock is a software construct lIsed for synchronization of two processes. A lock is either held
by some process, or is free. When a process tries to seize a lock, it waits until the lock is free,
and then it becomes the process holding the lock. When it is finished, it unlocks the lock,
allowing some other process to seize it. A lock protects some resource or data structure so that
only one process at a time can use it.

In the Lisp Machine, a lock is a locative pointer to a cell. If the lock is free, the cell
contains nil; otherwise it contains the process Ulat holds Ule lock. The process-lock and
process-unlock functions are written in sllch a way as to guarantee that two processes can never
both think that they hold a certain lock; only one process can ever hold a lock at a time.

procass-lock locative
This is used to seize the lock which locative points to. If necessary. process-lock will
wait until Ule lock becomes free. When process-lock returns. the lock has been seized .

. process-unlock locative
This is used to unlock the lock which locative points to. If the lock is free or was locked
by some other process, an error is signaled. Otherwise the lock is unlocked.

It is a good idea to use unwind-protect to make sure that you unlock any lock iliat you
seize. For example, if you write

(unwind-protect
(progn (process-lock lock-3)

(function-i)
(function-2»

(process-unlock lock-3»
then even if function-1 or functian-2 does a *thraw, lock-3 will get unlocked correctly.
Particular programs iliat usc locks often define special forms which package iliis unwind-protect
up into a convenient stylistic device.

process-lock and process-unlock are written in terms of a sub-primitive function called
%store-conditional (see page 163), which is sometimes useful in its own right.

DSK:LMMAN;PROCES 23 16-MAR-S1

Creating a Process 382 Lisp Machine Manual

25.3 Creating a Process

There are two ways of creating a process. One is to create a "permanent" process which you
will hold on to and manipulate as desired. The other way is to say simply, "call this function on
these arguments in another process, and don't bother waiting for the result." In the latter case
you never actually use the process itself as an object. .

process-create name &rest options
Creates and returns a process named name. The process will not be capable of running
until it has been reset or preset in order to initialize the state of its computation.

The options are alternating key·words and values which allow you to specify things about
the process, however no options are necessary if you aren't doing anything unusual. The
following options are allowed:

:simple-p Specifying t here gives you a simple process (see page 387).

:flavor Specifies the flavor of process to be created. See section 25.5, page 386
for a list of all the flavors of process· supplied by the system.

:stack-group The stack group the process is to use. If this option is not specified a
stack group will be created according to the relevant options below.

:warm - boot - action
What to do with the process when the machine is booted. See page 385.

:quantum See page 384.

:priority See page 384.

:run-reasons Lets you supply an initial run reason. The default is nil.

:arrest- reasons
Lets you supply an initial arrest reason. The default is nil.

:sg-area The area in which to create the stack group. The default is the value of
default-eons-area.

:regular-pdl-area
The area in which to create the stack group's regular pdl. The default is
sys:linear-pdl-area.

:special- pdl-area
The area in which to create the stack group's special binding pdt. The
default is the value of default-cons-area.

:regular-pdl-size
How big to make the stack group's regular pdt. The default is large
enough for most purposes.

:special- pdl-size
How big to make the stack group's special binding pdt. The default is
large enough for most purposes;

:swap-sv-on-call-out
:swap-sv-of-sg -that-calls-me
:trap-enable Specify those attributes of the st.1ck group. You don't want to use these.

DSK:LMMAN;PROCES 23 16-MAR-Sl

Lisp Machine Manual 383 Process Messages

If you specify :f1avor, there can be additional options provided by that flavor.

The following three functions allow you to cal1 a function and have its execution happen
asynchronously in another process. This can be llsed either as a simple way to start up a process
which will nll1 "forever", or as a way to make something happen without having to wait for it
complete. When the function returns, the process is returned to a pool of free processes, making
these operations quite efficient. The only difference between these three functions is in what
happens if the machine is booted while the process is still active.

Normally the function to be nll1 should not do any 110 to the terminal. Refer to section
12.4, page 153 for a discussion of the issues.

process-run-function name junction &rest args
Creates a process named name, presets it so it will apply jilllctioll to args, and starts it
running. If the machine is warm-booted, the process is Oushed (sec page 386). If it is
then reset, filllClioll will be called again.

process-run-temporary-function name jUllction &rest args
Creates a process named name, presets it so it will apply junc/ion to args, and starts it
nll1ning. I f the machine is warm-booted, the process is killed (returned to the free pool).

p roce s s - ru n - res tartab 1 e- fun ct i on name filllction &rest args
Creates a process named nallle, presets it so it will apply jUllction to args, and starts it
nmning. If the machine is warm-booted, the process is reset and restarted .

. 25.4 Process Messages

These arc the messages that can be sent to any flavor of process. Certain process flavors may
define additional 'messages. Not all possible messages are listed here, only those of interest "to
the user".

25.4.1 Process Attributes

: name (to process)
Returns the name of the process, which was the first argument to process-create or
process-run-function, when the process was created. The name is a string which appears
in the printed-representation of the process, stands for the process in the who-line and the
peek display, etc.

: s tack -group (to process)
Returns the stack. group currcntly executing on bchalf of this process. This can be
different from the initial-stack-group if the process contains several stack groups which
coroutine among themselves, or if the process is in the error-handler, which mns in its
own stack group.

Note that the stack-group of a simple process (sec page 387) is not a stack group at all,
but a function.

DSK:LMMAN;PROCES 23 16-MAR-81

Process Messages 384 Lisp Machine Manual

:1n1t1al-stack-group (to process)
Returns the stack group the initial-function is called in when the process starts up or is
reset

:1n1t1al-form (to process)
Returns the initial "fonn" of the process. This isn't really a Lisp form; it isa cons
whose car is the initial-function and whose cdr is the list of arguments to which that
function is applied when the process starts up' or is reset. .

In a simple process (see page 387), the initial form is a list of one clement, the process's
nmction.

To change the initial form, send the :preset message (see page 385).

:wa1t-funct1on (to process)
Returns the process's current wait-function, which is the predicate llsed by the scheduler
to determine if the process is runnable. This is # 'true if the process is running, and
'false if the process has no current computation (just created, initial function has
returned. or "flushed" (sec page 386).

:wa1t-argument-l ist (to process)
Returns Ole arguments to the process's current wait-function. This will frequently be the
&rest argument' to process-wait in the process's stack, rather than a true list The
system always uses it in a sate manner, i.e. it forgets about it before process-wait
returns. .

:whostate (to process)
Returns a string which is the state of the process to go in the. who-tine at the bottom of
the screen. This is "run" if the process is nmning or trying to run. otherwise the reason
why the process is waiting. If the process is stopped, then this whostate string is ignored
and the who-tine displays arrest if the process is arrested or stop if the process has no
nm reasons. .

: quantum (to process)
: sat-quantum 60ths (to process)

Return or change the number of 60ths of a second this process is allowed to run without
waiting before the scheduler will run someone else. The quantum defaults to 1 second.

: quantum-rama1 n1 ng (to process)
Returns the amount of time remaining for this process to run, in 60ths of a second.

:pr1ority (to process)
: set-pr 1 or1 ty priority-number (to process)

Return or change the priority of this process. The larger the number, the more this
process gets to run. Within a priority level the scheduler runs all runnable processes in a
round-robin fashion. Regardless of· priority a process will not run for more than its
quantum. The default priority is 0, and no normal process uses other than O.

DSK:LMMAN;PROCES 23 16-MAR-81

Lisp Machine Manual 385 Process Messages

:warm-boot-act ion (to process)
: set-warm- boot- act; on action (to process)

Return or change the process's warm-boat-action, which controls what happens if the
machine is booted while this process is active. This can be nil, which means to "flush"
the process (see page 386), or a function to call. The default is si:process-warm-boot
restart, which resets the process, causing it to start over at its initial function. You can
also use si:process-warm-boot-reset, which throws out of the process' computation and
kills the process.

:simple-p (to process)
Returns nil for a normal process, t for a simple process. See page 387.

25.4.2 Hun and Arrest Reasons

: run-reasons (to process)
Returns the list of mn reasons, which are the reasons why this process should be active
(allowed to run).

: run-reason object (to process)
Adds objecl to the process's run reasons. This can activate the process.

: revoke- run- reason objecl (to process)
Removes object from the process's run reasons. This can stop the process.

: arrest- reasons (to process)
Returns the list of arrest reasons, which are the reasons why this process should be
inactive (forbidden to run).

: arrest- reason object (to process)
Adds object to the process's arrest reasons. This can stop the process.

: revoke-arrest-reason object (to process)
Removes object from the process's arrest reasons. This can activate the process.

: act i ve- p (to process)
: runnabl e-p (to process)

These two messages are the same. t is returned if the process is active, i.e. it can nm if
its wait-function allows. nil is returned if the process is stopped.

25.4.3 Bashing the Process

: preset JUIlCtioll &rest args (to process)
Sets the process's initial function to jilllctioll and initial arguments to args. The process is
then reset so lhat it will throw out of any current computation and start itself up by
applying jilllction to args. A :preset message to a stopped process will return
immediately, but will not activate the process, hence the process will not really apply
Junction to args until it is activated later.

DSK:LMMAN;PROCES 23 16-MAR-81

Process Flavors 386 Lisp Machine Manual

: reset &optional no-unwind kill (to process)
Forces the process to throw out of its present computation and apply its initial function to
its initial arguments, when it next runs. The throwing out is skipped if the process has
no present comptltation (e.g. it was just created), or if the no-unwind option so specifies.
The possible values for no-ullwind are:

:unless-current
nil Unwind unless the stack group to be unwound is the one we are currently

executing in, or belongs to the current process.

: always Unwind in all cases. This may cause the message to throw through its
caller instead of returning.

t Never unwind.

If kill is t, the process is to be killed after unwinding it. This is for internal use by the
:kill message only.

A :reset message to a stopped process will return immediately, but will not activate the
process, hence the process will not really get reset until it is activated later.

: fl ush (to process)
Forces the process to wait forever. A process may not :flush itself. Flushing a process is
different from stopping it, in that it is still active and hence if it is reset or preset it will
start running again.

: kill (to process)
Gets rid of the process. It is reset, stopped, and removed from sys:all- processes.

: 1 nterrupt Junction &rest args (to process)
Forces the process to apply Junction to args. When Junction returns, the process will
continue the interrupted computation. If the process is waiting, it wakes up, calls
junction, then waits again when junction returns.

If the process is stopped it will not apply Junction to args immediately, but later when it
is activated. Normally the :interrupt message returns immediately, but if the process's
stack group is in an unusual internal state it may have to wait for it to get out of that
state.

25.5 Process Flavors

These are the flavors of process provided by the system. It is possible for users to define
additional flavors of their own.

s1: process Flavor
This is the standard default kind of process.

DSK:LMMAN;PROCES 23 16-MAR-81

Lisp Machine Manual 387 Other Process Functions

si :simp1e-process Flavor
A simple process is one which has no stack group; instead it has a function which is
applied to no arguments whenever the wait-function returns t. Simple processes run inside
the scheduler stack group until they return, and of course cannot have any state since
Uley have no stack-group. Simple processes are a low-overhead mechanism for certain
purposes. For example, packets received from the Chaosnet are examined and distributed
to the proper receiver by a simple process which wakes up whenever there are any
packets in the input buffer.

Asking for the stack group of a simple process does not signal an error, but returns the
process's function instead.

A simple process cannot wait by calling process-wait; it must call si:set-process-wait
and then return.

25.6 Olher Process Functions

process-enable process
Activates process by revoking all its run and arrest reasons, then giving it a nm reason of
:enable.

process- reset-and-enab1e process
Resets process then enables it.

process- di sab 1e process
Stops process by revoking all its nm reasons. Also revokes all its arrest reasons.

The remaining functions in this section are obsolete, since they simply duplicate what can be done
by sending a message. They arc documented here because their names arc in the global package.

process-preset process junction &rest args
Just sends a :preset message.

process- reset process
Just sends a :reset message.

process-name process
. Gets the name of a process, like the :name message.

p roces s - stack -group process
Gets the current stack group of a process, like the :stack-group message.

process-initia1-stack-group proce~
Gets the initial stack group of a process, like the :initial-stack-group message.

process- initial-form process
Gets the initial "fonn" of a process, like the :initial-form message.

DSK:LMMAN;PROCES 23 16-MAR-81

Other Process Functions 388 Lisp Machine Manual

process-wa i t-funct i on process
Gets the current wait-function of a process, like the :wait-function message.

process-wait-argument-list p
Gets the arguments to the current wait-function of a process, like the :wait-argument-list
message.

process-whostate p
Gets the current who-line state string of a process, like the :whostate message.

DSK:LMMAN;PROCES 23 16-MAR-81

Lisp Machine Manual 389 Errors and Debugging

26. Errors and Debugging
The first section of this chapter explains how programs can handle errors, by means of

condition handlers. It also explains how a program can signal an error if it detects something it
doesn't like. .

The second explains how users can handle errors, by means of an interactive debugger; that
is, it explains how to recover if you do something wrong. A new user of the Lisp machine, or
someone who just wants to know how to deal with errors and not how to cause them, should
ignore the first section and skip ahead to section 26.2, page 398.

The remaining sections describe some other debugging facilities. Anyone who is going to be
writing programs for the Lisp machine should familiarize himself with these.

The trace facility provides the ability to perfonn certain actions at the time a function is
called or at the time it returns. The actions may be simple typeout, or more sophisticated
debugging functions.

The advise facility is a somewhat similar facility for modifying the behavior of a function.

The slep facility allows the evaluation of a form to be intercepted at every step so that the
user may examine just what is happening throughout the execution of the form.

The Mil R facility provides the ability to cause a trap on any memory reference to a word (or
a set of words) in memory. If something is getting clobbered by agents unknown, this can help
track down the source of the clobberage. .

26.1 The Error System

26.1.1 Conditions

Programmers often want to control what action is taken by their programs when errors or
other exceptional situations occur. Usually different situations are handled in different ways, and
in order to express what kind of handling each ·situation should have, each situation must have an
associated name. In Lisp Machine Lisp there is the concept of a condilion. Every condition has a
name, which is a symbol. When an unusual situation occurs, some condition is signalled, and a
handler for that condition is invoked.

When a condition is signalled, the system (essentially) searches up the stack of nested function
invocations looking for a handler established to handle that condition. The handler is a function
which gets called to deal with the condition. The condition mechanism itself is just a convenient
way for finding an appropriate handler function given the name of an exceptional situation. On
top of this is built the error-condition system. which defines what arguments are passed· to a
handler function and what is done with the values returned by a handler fUllction. Almost all
current use of the condition mechanism is for errors, but the user may find other uses for the
underlying mechanism.

DSK:LMMAN;ERRORS 57 16-MAR-81

The Error System 390 Lisp Machine Manual

The search for an appropriate handler is done by the function 'signal:

signa 1 condition-name &rest args
signal searches through all currently-established condition handlers, starting with the most
recent. ·If it finds one that will handle the condition condition-name, then it calls that
handler with a first argument of condition-name, and with args as the rest of the
arguments. If the first value returned by the handler is nil, signal wiII continue searching
for another handler; otherwise, it will return the first two values returned by the handler.
If signal doesn't find any handler that returns a non-nil value, it will return nil.

Condition handlers are established through the condition-bind special form:

cond it i on'- bind Special Fonn
The condition-bind special fonn is used for establishing handlers for conditions. It looks
like:

(con d i t i 011 - b i 11 d ((cOf/d-/ hand-/)
(cOlld-2 halld-2)
...)

body)
Each cond-II is either the name of a condition, or a list of names of conditions, or nil. If
it is nil, a handler is set up for all conditions (this docs not mean that the handler really
has to handle all conditions, but it will be olfered the chance to do so, and can return
nil for conditions which it is not interested in). Each hand-n is a form which is evaluated
to produce a handler f1mction. The handlers arc established sequentially such that the
cUl/d-/ handler wuuld be looked at first.
Example:

(condition-bind ((:wrong-type-argument 'my-wta-handler)
((lossage-l lossage-2) lossage-handler»

(prine "Hello there.")
(= t 69»

This first sets up the function my-wta-handler to handle the :wrong-type-argument
condition. Then, it sets ~IP the value of the symbol lossage-handler to handle both the
lossage-1 and lossage-2 conditions. With these handlers set up, it prints out a message
and then runs headlong into a wrong-type-argument error by calling the function = with
an argument which is not a number. The condition handler my-wta-handler will be
given a chance to handle the error. condition-bind makes use of ordinary variable
binding, so that if the cOndition-bind fonn is thrown· through, the handlers will be
disestablished. This also means that condition handlers are established only within the
current stack-group.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 391 The Error System

26.1.2 Error Conditions

[This section is incorrect. 11lC mechanism by which errors are signalled does not work. It
will be redesigned someday.]

The use of the condition mechanism by the error system defines an additional protocol for
what arguments are passed to error-condition handlers and what values they may return.

There are basically four possible responses to an error: proceeding, restarting, throwing, or
entering the debugger. The default action, taken if no handler exists or deigns to handle the
error (returns non-nil), is to enter the debugger. A handler may give up on the execution that
produced the error by throwing (see *throw, page 43). Proceeding means to repair the error and
continue execution. The exact meaning of this· depends on the particular error, but it generally
takes the fOim of supplying a replacement for an unacceptable argument to some function, and
retrying the invocation of that function. Restarting means throwing to a special standard catch-tag,
error-restart. Handlers cause proceeding and restarting by returning certain special values,
described below.

Each error condition is signalled with some parameters, the meanings of which depend all the
condition. For example, the condition :unbound-variable, which means that something tried to
find the value of a symbol which was unbound, is signalled with at le,ist one parameter, the
unbound symbol. It is always all right to signal an error condition with extra parameters beyond
those whose meanings are defined by the condition.

An .error condition handler is applied to several arguments. The first argument is the name of
the condition that was· signalled (a symbol). This allows the same function to handle several
different conditions, which is useful if the handling of those conditions is very similar. (The first
argument is also the name of the condition for non-error .conditions.) The second argument is a
format control string (see the description of format, on page 305). The third argument is t if the
error is proceedable; otherwise it is nil. The fourth argument is t if the error is restarfable;
otherwise it is nil. The fifth argument is the name of the function that signalled the error, or nil
if the signaller can't figure out the correct name to pass. The rest of the arguments are the
parameters with which the condition was signalled. If the format control string is used with these
parameters, a readable English message should be produced. Since more information than just the
parameters might be needed to print a reasonable message, the program signalling the condition is
free to pass any extra parameters it wants to, after the parameters which the condition is defined
to take. This means that every handler must expect to be called with an arbitrarily high number
of arguments, so every handler should have a &rest argument (see page 19).

An error condition handler may return any of several values. If it returns nil, then it is
stating that it does not wish to handle the condition after all; the process of signalling will
continue looking for a prior handler (established farther down on the stack) as if the handler
which returned nil had not existed at all. (This is also true for non-error conditions.) If the
handler does wish to handle the condition, it can try to proceed from the error if it is
proceedable, or restart from it if it is restartable, or it can throw to a catch tag. Proceeding and
restarting arc done by returning two values. The first value is one of the following symbols:

:return If the error was signalled by calling cerror, the second value is retumed as the
value of cerror. If the error was signalled by calling ferror, proceeding is not
allowed. If the error was detected by the Lisp system, the error will be
proceeded from, using the second value if a data object is needed. For example,

DSK:LMMAN;ERRORS 57 16-MAR-81

The Error System 392 Lisp Machine Manual

fo(an :undefined-function error, the handler's second value will be used as the
function to be called, in place of the non-existent function definition.

eh:return-value
If the error was signalled by caIling ferror or cerror, the second value is returned
from that function, regardless of whether the error was proceedable. If the error
was detected by the Lisp system, the second value is returned as the result of the
function in which the error was detected. It should be obvious that :return-value
allows you to do things that are totally unanticipated by the program· that got the
error.

:error- restart The second value is thrown to the catch tag error- restart.
The condition handler must not return any other sort of values. However, it can legitimately
throw to any tag instead of returning at all. If a handler tries to proceed an unproceedable error
or restart an unrestartable one, an error is signalled.

Note that if the handler returns nil, it is not said to have handled the error; rather, it has
decided not to handle it, but to "continue to signal" it so that someone else may handle it. [f an
error is signalled and none of the handlers for the condition decide to handle it, the debugger is
entered.

Here is an example of an excessively simple handler for the :wrong-type-argument
condition.

[Note that this code does not work in system 56.]

", This function handles tha ;wron~-type-argument condition,
which takes two defined parameters; a symbol indicating

", the correct type, and the bad value.
(defun sample-wta-handler (condition control-string

proceedable-flag restartable-flag
function correct-type bad-value
&rest rest)

(prog ()
(format error-output "-%There was an error in -S-%" function)
(lexpr-funcall (function format) error-output

control-string correct-type bad-value rest)
(cond«and proceedable-flag

(yes-or-no-p "Do you want use nil instead?"»
(return 'return nil»

(t (return nil»») ;don't handle

If an error condition reaches the error handler, the RESUME (or control-C) command may be
used to continue from it. If the condition name has a eh:proceed property, that property is
called as a function with two arguments, the stack-group and the "ete" (an internal error-handler
data structure). Usually it will ignore these arguments. If this function returns, its value will be
returned from the ferror or cerror that signalled the condition. If no such property exists, the
error-handler asks the user for a form, evaluates it, and causes ferror or cerror to return that
value. Putting such a property on can be used to change the prompt for this form, avoid asking
the lIser, or change things in more far-reaching ways.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 393 The Error System

26.1.3 Signalling Errors

Some error conditions are signalled by the Lisp system when it detects that something has
gone wrong. Lisp programs can also signal errors, by using any of the functions ferror, cerrar,
or error. ferror is the most commonly used of these. cerror is used if the signaller of the error
wishes to make the error be proceedable or restartable, or both. error is provided for Maclisp
compatibility.

A ferror or cerror that doesn't have any particular condition to signal should use nil as the
condition name. The only kind of handler that will be invoked by the signaller in this case is the
kind that handles all conditions, such as is set lip by

(condit i on-bi nd « ni 1 something) ...) ...)
In practice, the nil condition is used a great deal.

ferror condition-name control-string &rest params
ferrar signals the error condition condition-name. The associated error message is obtained
by calling format (see section 21.6.1, page 305) 011 cOlltrol-string and params. The error is
neither proceedable nor rcstartable, so ferror will not return unless the user forces it to
by intervening with the debugger. In most cases condition-name is nil, which means that
no condition-handler is likely to be found and the debugger will be entered.

Examples:
(cond «> sz 60)

(ferror nil
"The size, -S, was greater than the maximum"
sz»

(t (faa sz»)

(defun func (a b)
(cond «and (> a 3) (not (symbolp b»)

(ferror ':wrong-type-argument
"The name, -lG-S, must be a symbol"
'symbo1p
b»

(t (func-interna1 a b»»

If the error is not handled and the debugger is entered, the error message is printed by
calling format with control-string as the control string and the elements of params as the
additional arguments. Alternatively, the fomlatted output functions (page 314) can be
used to generate the error message:

(ferror nil
(format:outfmt "Frob has"

(format:plural (format:onum n-e1ts)
" element")

" which is too few"»
In this case params are not used for printing the error message, and often none are
needed. They may still be useful as infomlation for condition handlers, and those that a
condition. is documented to expect should always be supplied;

DSK:LMMAN;ERRORS 57 16-MAR-81

The Error System 394 Lisp Machine Manual

co r ro r proceedable-j1ag restarlablc-j/ag cOlldition-name cOlltrol-slring &rest params
cerror is just like ferror (see above) except for procecdable-jlag and restartable-j1ag. If
cerror is called with a non-nil proceedab/e-jlag, the caller should be prepared to accept
the returned value of cerror and use it to retry the operation that failed. Similarly, if he
passes cerror a non-nil reslaffable-j1ag, he should be sure that there is a *catch above
him for the tag error-restart.

If proceedable-jlag is t and the error goes to the debugger, if the user says to proceed
from the error he will be asked for a replacement object which cerror will return. If
proceedable-jlag is not t and not nil, the user will not be asked for a replacement object
and cerror will return no particular value when the error is proceeded.

Note: Many programs that want to signal restartable errors will want to use the error
restart special form; see page 395.
Example:

(do ()
((symbolp a})

; Do this stuff until a becomes a symbol.
(setq a (cerror t nil' :wrong-type-argument

"The argument -2G-A was -lG-S, ·which is not -3G-A"
'symbolp a 'a "a symbol"}»

Note: the fonn in this example is so useful that there is a standard special form to do it,
called check-arg (sec page 395).

e r ro I' message &.optional object interrupt
error is provided for Maclisp compatibility. In Maclisp, the functionality of error is,
essentially, that message gets printed, preceedcd by object if present, and that interrupt, if
present, is a user inter11lpt channel to be invoked.

In order to fit this definition into the Lisp Machine way of handling errors, error is
defined to be:

(cerror (not (null interrupt)}
nil
(or (get interrupt 'eh:condition-name)

interrupt}
(if (m iss i n g? object) ; If no object given

n_*_A"
n_s _An}

object
message}

Here is what that means in English: first of all, the condition to be signalled is nil if
interrupt is nil. If there is some condition whose meaning is close to that of one of the
Maclisp user inter11lpt channels, the name of that channel has an eh:condition-name
property, and the value of that property is the name of the condition to signal.
Otherwise, interrupt is the name of the condition to signal; probably there will be no
handler and the debugger will be entered.

If interrupt is specified, the error will be proceedable. The error will not be restartable.
The format control string and the arguments are chosen so that the right error message
gets printed, and the handler is passed everything there is to pass.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 395 The Error System

error-restart Macro
error-restart is useful for denoting a section of a program that can be restarted if certain
errors occur during its execution. An error-restart form looks like:

(error-restart
jomz-i
jonn-2
...)

The forms of the body are evaluated sequentially. If an error occurs within the evaluation
of the body and is restarted (by a condition handler or the debugger), the evaluation
resumes at the beginning of the error-restarfs body. The only way a restartable error
can occur is if cerror is called with a second argument of t.

Example:
(error-restart

(setq a (* b d»
(cond {{> a maxtemp}

{cerror nil t 'overheat
"The frammistat will overheat by -D. degreesl"
(- a maxtemp}}})

{setq q (cons a a»)
If the cerror happens, and the handler invoked (or the debugger) restarts the error, then
evaluation will continue with the (setq a (* b d», and the condition (> a maxtemp) will
get checked again.

error-restart is implemented as a macro that expands into:
(prog ()

loop {*catch 'error-restart

check-arg Macro

{return (progn
jonn-i
jorm-2
... »)

(go 1 oop)}

The check-arg form is useful for checking arguments to make sure that they are valid.
A simple example is:

(check-arg foo stringp "a string")
foo is the name of an argument whose value should be a string. stringp is a predicate of
one argument, which returns t if the argument is a string. "a string" is an English
description of the correct type for the variable.

The general form of check - arg is
(check-arg var-name

predicate
description
type-symbol)

I'ar-Ilame is the name of the variable whose value is of the wrong type. If the error is
proceeded this variable will be setq'ed to a replacement value. predicate is a test for
whether the variable is of the correct type. It can be either a symbol whose function
definition takes one argument and returns non-nil if the type is correct, or it can be a
non-atomic form which is evaluated to check the type, and presumably contains a

DSK:LMMAN;ERRORS 57 IG-MAR-Sl

The Error System. 396 Lisp Machine Manual

reference to the variable var-name. description is a sU'ing which expresses predicate in
English, to be used in error messages. type-symbol is a symbol which is used by condition
handlers to determine what type of argument was expected. It may be omitted if it is to
be the same as predicate, which must be a symbol in that case.

The use of the type-symbol is not really well-defined yet, but the intention is that if it is
numberp (for example), the condition handlers can tell that a number was needed, and
might u'y to convert the actual supplied value to a number and proceed.

[We need to establish a conventional way of "registering" the type-symbols to be used for
various expected types. It might as well be in the fonn of a table right here.]

The predicate is usually a symbol such as fixp, stringp, Iistp, or c!osurep, but when
there isn't any convenient predefined predicate, or when the condition is complex, it can
be a fonn. In this case you should supply a type-symbol which encodes the type. For
example:

(check-arg a
(and (numberp a) (S alD.) (> aD.»
"a number from one to ten"
·one-to-ten)

If this error got to the debugger, the message
The argument a was 17, which is not a number from one to ten.

would be printed.

In general; what constitutes a valid argulllent is specified in three ways in a check-argo
description is human-understandable, type-symbol is program-understandable, and predicate
is executable. It is up to the user to ensure that these three specifications agree.

check-arg uses predicate to determine whether the value of the variable is of the correct
type. If it is not, check-arg signals the :wrong-type-argument condition, with four
parameters. First, type-symbol if it was supplied, or else predicate if it was atomic, or
else nil. Second, the bad value. Third, the name of the argument (var-name). Fourth, a
string describing the proper type (description). If the error is proceeded, the variable is
set to the value returned, and check-arg starts over, checking the type again. Note that
only the first two of these parameters are defined for the :wrong-type-argument
condition, and so :wrong-type-argument handlers should only depend on the meaning
of these two.

26.1.4. Standard Condition Names

Some condition names are used by the kernel Lisp system, and are documented below; since
they are of global interest, they are on the keyword package. Programs outside the kernel system
arc free to define their own condition names; it is intended that the description of a function
include a description of any conditions that it may signal, so that people writing programs that
call that function may handle the condition if they desire. When you decide what package your
condition names should be in, you should apply the same criteria you would apply for
determining which package a function name should be in; if a program defines its own condition
names, they should not be on the keyword package.. For example, the condition names
chaos:bad-packet-format and arpa:bad-packet-format should be distinct. For ft.lfther
discussion, see chapter 23, page 345.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 397 The Error System

The following table lists all standard conditions and the parameters they take; more will be
added iil the future. '111ese are all error-conditions, so in addition to the condition name and the
parameters, the handler receives the other arguments described above.

:wrong-type-argument type-name value
value is the offending argument. and type-name is a symbol for what type is
required. Often, type-name is a predicate which returns non-nil if applied to an
acceptable value. If the error is proceeded, the value returned by the handler
should be a new value for the argument to be used instead of the one which was
of the wrong type.

:i nconsistent- arg u ments list-of il1collsisten t-argument- values
These arguments were inconsistent with each other, but the fault does not belong
to any particular one of them. '111is is a catch-all, and it would be good to
identify subcases in which a more specific categorization can be made. If the error
is proceeded, the value returned by the handler will be returned by the function
whose arguments were inconsistent.

:wrong - number- of- arguments ji/lli:tiof/ llumber-ofargs-sLipplied list-ofargs-supplied
jilllction was invoked with the wrong number of arguments. The clements of list
ofargs-supplied have already been evaluated. If the error is proceeded, the value
returncd should be a vallie to be returned by jUl/ction.

:invalid -function jill/ction-name
The name had a function dcfinition but it was no good for calling. You can
procced, supplying a valuc to rcturn as tile value of thc call to the function.

:invalid-form jorm
The so-called jorm was not a meaningful form for eva\. Probably.it was of a bad
data type. If the error is proceeded, the value returned should be a new form;
eval will use it instead. .

:undefined~function junction-name
The symbol jUllction-name was not defined as a function. If the error is
procceded, then the value returned will be used instead of the (non-existent)
definition of jUllction-name.

:unbound-variable variable-name

26.1.5 Errset

The symbol variable-name had no value. If the error is proceeded, then the value
returned will be used instead of the (non-existent) value of variable-name.

As in Mac1isp, there is an errset facility which allows a very simple form of error handling.
If an error occurs inside an errset, and no condition handler handles it, i.e. the debugger would
be entered, control is returned (thrown) to the errset. The en"set can control whether or not the
debugger's error message is printed. All errors are caught by errset, whether they are signalled
by ferror, cerror, error, or the Lisp systcm itself.

A problem with errset is that it is too powerful; it will apply to any unhandled error at all.
If you are writing code that anticipates some specific error, you should find out what condition
that error signals and set up a handler. If you use errset and some unanticipated error crops up,
you may not be told-this can cause very strange bugs. Note that the variable errset allows all

DSK:LMMAN;ERRORS 57 16-MAR-81

The Debugger 398 Lisp Machine Manual

errsets to be disablcd for debugging purposes.

errset Special Form
The special fonn (errset jonn flag) catches errors during the evaluation of form .. If an
error occurs, the usual error message is printed unless flag is nil. Then control is thrown
and the errset-form returns nil. flag is evaluated first and is optional, defaulting to t. If
no error occurs, the value of the crrset-form is a list of one element, the value of form.

errset Variable
If this variable is non-nil, errset-fonns are not allowed to trap errors. The debugger is
entered just as if there was no errset. This is intcnded mainly for debugging. The initial
value of errset is nil.

err Special Form
This is for MacIisp compatibility only and should not be used.

(err) is a dumb way to cause an error. If executed inside an errset, that errset returns
nil, and no message is printed. Otherwise an unseen throw-tag error occurs.

(err jonn) cvaluates jonll and causcs the containing errset to return the result. If executed
when not inside an errset, an unseen throw-tag error occurs.

(err fonn flag), which exists in MacIisp, is not supported.

26.2 The Debugger

When an error condition is signalled and no handlers decide to handle the error, an
interactive debugger is entered to allow the user to look around and see what went wrong, and to
help him continue the program or abort it. 111is section describes how to use the debugger.

26.2.1 Entering the Debugger

There are two kinds of errors; those generated by the Lisp Machine's microcode, and those
generated by Lisp programs (by using ferror or related functions). When there is a microcode
error, the debugger prints out a message such as the following:

»TRAP 5543 (TRANS-TRAP)
The symbol FOOBAR is unbound.
While in the function *EVAL ~ SI:LISP-TOP-LEVELI

The first line of this error message indicates entry to the debugger and contains some
mysterious internal microcode infonnation: the micro program address, the microcode trap name
and parameters, and a microcode back trace. Users can ignore this line in most cases. The second
line contains a description of the error in English. The third line indicates where the error
happened by printing a vcry abbreviated "backtrace" of the stack (see below); in the example, it
is saying that the error was signalled inside the function *eval, which was called by si:lisp-top
level1.

Here is' an example of an error from Lisp code:

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 399

»ERROR: The argument X was 1, which is not a symbol,
While in the function Faa ~ *EVAL ~ SI:LISP-TOP-LEVELI

The Debugger

Here the first line contains the English description of the error message, and the second line
contains the abbreviated backtrace. faa signalled the error by calling ferror, however ferror is
censored out of the backtrace.

After the debugger's initial message it prints the function that got the error and its arguments.

The debugger can be manually entered either by causing an error (e.g. by typing a ridiculous
symbol name such as nhsdgf at the Lisp read-eval-print loop) or by typing the BREAK key with
the META shift held down while the program is reading from the terminal. Typing the BREAK
key with both CONTROL and MET A held down will force the program into the debugger
immediately, even if it is running. If the BREAK key is typed without META, it puts you into a
read-eval-print loop using the break function (sec page 451) rather into the debugger.

ah process
Stops process and calls the debugger on it so that you can look at its current state. Exit
the debugger with the Control-Z command and eh will release the process and return.
process can be a window, in which case the window's process will be used.

If process is not a process but a stack group, the current state of the stack group will be
examined. The caller should ensure that no one tries to resume that stack group while
the debugger is looking at it.

26.2.2 How to Use the Debugger.

Once inside the debugger, the user may give a wide variety of commands. This section
describes how to give the commands, and then explains them in approximate order of usefulness.
A summary is provided at the end of the listing.

When the error hander is waiting for a command, it prompts with an arrow:

At this point, you may either type in a Lisp expression, or type a command (a Control or
Meta character is interpreted as a command, whereas most normal characters are interpreted as
the first character of an expression). If you type the HELP key or the? key, you will get some
introductory help with the error handler.

If YOll type a Lisp expression, it will be interpreted as a Lisp form, and will be evaluated in
the context of the function which got the error. That is, all bindings which were in effect at the
time of the error will be in en-eel when your form is evaluated, with certain exceptions explained
below. The result of the evaluation will be printed, and the debugger will prompt again with an
arrow. If, during the typing of the form, you change your mind and want to get back to the
debugger's command level, type the ABORT key or a Control-G; the debugger will respond with
an arrow prompt. In fact, at any time that typein is expected from you, while YOll are in the
debugger, you may type ABORT or Control-G to flush what you are doing and get back to
command level. This read -eval- print loop maintains the values of +, *, and - just as the top
level one does.

DSK:LMMAN;ERRORS 57 16-MAR-81

The Debugger 400 Lisp Machine Manual

If an error occurs in the evaluation of the Lisp expression you type, you will get into a
second error handler looking at the new error. YOll can abort the computation and get back to
the first error by typing tlle ABORT key (see below). However, if the error is trivial the abort
will be done automatically and tlle original error message will be reprinted.

Various debugger commands ask for Lisp objects, such as an object to return, or the name of
a catch-tag. Whenever it tries to get a Lisp object from you, it expects you to type in a 101m; it
will evaluate what you type in. This provides greater generality, since there are objects to which
you might want to refer tllat cannot be typed in (such as arrays). If me form you type is non
trivial (not just a constant fDlm), the debugger will show you the result of the evaluation, and
ask you if it is what you intended. It expects a Y or N answer (see the function y-or-n-p, page
435), and if you answer negatively it will ask you for another form. To quit out of the
command, just type ABORT or Control-G.

When the debugger evaluates a form, the variable bindings at the point of error are in effect
with tlle following exceptions:

terminal-io is rebound to the stream the error handler is using. eh:old-terminal-io is bound
to the value terminal-io had at tlle point of error.

standard-input and standard-output are rebound to be synonymous with terminal-io; their
old bindings are saved in eh:old-standard-input and eh:old-stanClard-output.

+ and * are rebound to the error handler's previous foml and previous value. When the
debugger is first entered, + is the last form typed, which is typically the one that caused the
error, and '" is the value of the previous fonn.

evalhook (see page 413) is rebound to nil, turning off the step facility if it had been in use
when tlle error occurred. .

Note that the variable bindings are those in effect at the point of error, 1101 those of the
current frame being looked at. This may be changed in the future.

26.2.3 Debugger Commands

All debugger commands are single characters, usually with the Control or Meta bits. The
single most useful command is ABORT (or Control-Z), which exits from the debugger and throws
out of me computation that got the error. This is the ABORT key, not a 5-letter command. ITS
users should note that Control-Z is not CALL. Often you are not interested in using the debugger
at all and just want to get back to Lisp top level; so you can do this in one character.

The ABORT command returns control to the most recent read-eval-print loop. This can be
Lisp top level, a break, or the debugger command loop associated with another error. Typing
ABORT multiple times will throw back to successively older read-eval-print or command loops
until top level is reached. Typing Control-Meta-ABORT, 011 tlle other hand, will always throw to
top level. Control-Meta-ABORT is not a debugger command, but a system command which is
always available no matter what program you are in.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 401 The Debugger

Note that typing ABORT in the middle of typing a form to be evaluated by the debugger
aborts that fonn, and returns to the debugger's command level, while typing ABORT as a
debugger command returns out of the debugger and the erring program, to the previous command
level.

Self-documentation is provided by the HELP or ? command, which types out some
documentation on the dehugger commands, including any special commands which apply to the
particular error currently being handled.

Often you want to try to proceed from the error. To do this, use the RESUME (or Control~
C) command. The exact way RESUME works depends on the kind of error that happened. For
some errors, there is no standard way to proceed at all, and RESUME will just tell you this and
return to the debugger's command level. For the very common "un hound variable" error, it will
get a Lisp object from you, which will be used in place of the (nonexistent) value of the symbol.
For unbound-variable or undefined-function errors, you can also just type l.isp forms to set the
variable or define the function, and then type RESUME; it will proceed without asking anything.

The debugger knows about a "current stack frame", and there are several· commands which
use it. The initially "current" stack frame is the one which signalled the error; either the one
which got the microcode-detected error, or the one which called ferroL cerror, or error. When
the debugger starts it up it shows you this frame in the following format:

FDD:
Arg 0 (X): 13
Arg 1 (Y): 1

and SU Ull. This means thal foo was called with two arguments, whose names (in the Lisp source
code) are x and y. The current values of x and yare 13 and 1 respectively. These may not be
the original arguments if foo happens to setq its argument variables.

The CLEAR-SCREEN (or Control-L) command clears the screen, retypes the error message
that was initially printed when the debugger was entered, and then prints out a description of the
current fJ.:'ame, in the above format.

Several commands are provided to allow you to examine the Lisp control stack and to make
other frames current than the one which got the error. The control stack (or "regular pdl") keeps
a record of all functions which are currently active. If you call foo at Lisp's top level, and it

, calls bar, which in turn calls baz, and baz gets an error, then a backtrace (a backwards trace of
the stack) would show all of this infonnation. The debugger has two back trace commands.
Control-B simply prints out the names of the functions on the stack; in the above example it
would print

BAZ ~ BAR ~ FDD ~ SI:*EVAL ~ SI:LISP-TDP-LEVELI ~ SI:LISP-TDP-LEVEL
The arrows indicate the direction of calling. The Meta-B command prints a more extensive
backtrace, indicating the names of the arguments to the functions and their current values; for
the example above it might look like:

DSK:LMMAN;ERRORS 57 16-MAR-81

The Debugger

BAZ:
Arg 0 (X): 13
Arg 1 (Y): 1

BAR:
Arg 0 (ADDEND): 13

FOO:
Arg 0 (FROB): (A Be. D)

and so on.

402 Lisp Machine Manual

The Control-N command moves "down" to the "next" frame (that is, it changes the current
frame to be the frame which called it), and prints out the frame in this same format. Control-P
moves "up" to the "previolls" frame (the one which this one called). and prints out the frame in
the same format. Meta-(moves to the top of the stack, and Meta-) to the bottom; both print
out the new current frame} Control-S asks you for a string, and searches the stack for a frame
whose executing function's name contains that string. That frame becomes current and is printed
out. These commands are easy to remember since they are analogous to editor commands.

Me'ta-L prints out the current frame in "full screen" format, which shows the arguments and
[heir values, the local variables and their values, and the machine code with an arrow pointing to
the next. instruction to be executed. Refer to chapter 27, page 417 for help in reading this
machine code.

Meta-N moves to the next frame and prints il oul in full-screen formal, and Meta-P moves to
the previous frame and prints it Ollt in full-screen format. Meta-S is like Control-S but does a
full-screen display.

Commands such as Control-N and Meta-N, which are meaningful to repeat, take a prefix
numeric argument and repeat that many types. The numeric argument is typed by using Control
or Meta- and the number keys, as in the editor.

Control-E puts you into the editor, looking at the source code for the function in the current
frame. This is useful when you have found a function which caused the error and needs to be
fixed. The editor command Control-Z will return to the error handler, if it is still there.

Meta-C is similar to Control-C, but in the case of an unbound variable or undefined function,
actually setqs the variable or defines the function, so that the error will not happen again.
Control-C (or RESUME) provides a replacement value but does not actually change the variable.

Control-R is used to return a value from the current frame; the frame that called that frame
continues running as if the function of the current frame had returned. This command prompts
you for a form, which it will evaluate; it returns the resulting valuc, possibly after confirming it
with you.

The Control-T command does a *throw to a given tag with a given value; you are prompted
for the tag and the value.

Control-Meta-R is a variation of Control-R; it starts the current frame over with the same
function and arguments. If the function has been redefined in the meantime (perhaps you edited
it and fixed its bug) the new definition is used. Control-Mcta-R asks for confirmation before.

DSK:LMMAN;ERRORS 57 16-MAR-81

Lisp Machine Manual 403 The Debugger

doing it.

The Control-Meta-N, Control-Meta-P, and Control-Meta-B commands are like the
corresponding Control- commands but don't censor the stack. When nmning interpreted code, the
error handler tries to skip over frames that belong to functions of the interpreter, stich as *eval,
prog, and cond, and only show "interesting" functions. The Control-Meta-U command goes tip
the stack to the next interesting function, and makes that the current frame.

Control-Meta-A takes a numeric argument n, and print') out the value of the nth argument of
the current frame. It leaves * set to the value of the argument. so that you can use the Lisp
read-eval-print loop to examine it. It also leaves + set to a locative pointing to the argument
on the stack, so that you can change that argument (by calling rplacd on dIe locative). Control
Meta-L is similar. but refers to dIe 11th local variable of the frame. Control-Meta-F is similar but
refers to the function executing in the frame; it ignores its numeric argument and doesn't allow
you to change the function.

Control-Meta-W calls the window error handler. a display-oriented debugger which is not
documented in Ulis manual. It should, however, be usable without further documentation.

26.2.4 Summary of Commands

Control-A

. Control-Meta-A

Control~B·

Meta-B

Control-Meta-B

Print argument list of function in current frame.

Examine or change the 11th argument of the current frame .

Print brief backtrace.

Print longer backtrace.

Print longer backtrace with no censoring of interpreter functions.

Control-C or RESUME Attempt to continue.

Meta-C Attempt to continue, setqing the unbollnd variable or otherwise
"permanently" fixing the error.

Control-Meta-C Attempt to restart (see the error-restart special form, page 395).

Control-E

Control-Meta-F

Control-G or ABORT

Edit the source code for the function in the current frame.

Set * to the function in the current frame.

Quit to command level. This is nota command, but something you can
type to escape from typing in a form~

Control-L or CLEAR SCREEN

Meta-L

Control-Meta-L

Control-N or LINE

Meta-N

Control-Meta-N

Redisplay error message and current frame.

Full-screen typeout of current frame.

Get local variable n.

Move to next frame. Widl argument, move down n frames.

Move to next frame with full-screen typeout. With argument, move down
n frames.

Move to next frame even if it is "uninteresting". With argument, move
down II frames.

DSK:LMMAN;ERRORS 57 16-MAR-81

Tracing Function Execution 404 Lisp Machine Manual

Control-P or RETURN Move to previolls frame. With argument, move lip 11 frames.

Meta-P

Control-Meta-N

Control-R

Meta-R

Control-Meta-R

Control-S

Meta-S

Control-T

Control-Meta-U

Control-Meta-W

Control-Z or ABORT

? or Help

Meta-(

Meta->

Move to previous frame with full-screen typeou"t. With argument, move
up n frames.

Move to previous frame even if it is "uninteresting". With argument,
move up n frames.

Return a value from the current frame.

Return multiple values from the current frame (doesn't work currently).

Reinvoke the function in the current frame (throw back to it and start it
over at its beginning.)

Search for a frame containing a specified function.

Same as control-S but does a full display.

Throw a value to a tag.

Move up the stack to the previous "interesting" frame.

Call the window error handler.

Abort the computation and throw back to the most recent break or
debugger, to the program's "comtmmd level", or to Lisp top level.

Print a help message.

Go to top of stack.

Go to bottom of stack.

Control-Q through Control-Meta-9
Numeric arguments to the following command are specified by typing a
decimal number with Control and/or Meta held down.

26.3 Tracing Function Execution

The trace facility allows the user to trace some functions. When a function is traced, certain
special actions will be taken when it is called, and when it returns. The default tracing action is
to print a message when the function is called, showing its name and arguments, and another
message when the function returns, showing its name and value(s).

The trace facility is closely compatible with Maclisp. One invokes it through the trace and
untrace special fonns, whose syntax is described below. Alternatively, you can use the trace
system by clicking "trace" in the system menu, or by using the "meta-X Trace" command in the
editor. This allows you to select the trace options from a menu instead of having to remember
the following syntax.

trace Special Form
A trace form . looks like:

(~race spec-l spec-2 ...)

Each spec can take any of the following forms:

a symbol This is a function name, with no options. The function will be traced in
the default way, printing a message each time it is called and each time it

DSK:LMMAN;ERRORS 57 16-MAR-Sl

Lisp Machine Manual 405 Tracing Function Execution

returns.

a list (function-name oplioll- J option-2 ...)
jUllction-name is a symbol and the optiolls control how it is to be traced.
The various options are listed below. Some options take "arguments",
which should be given immediately following the option name.

a list (:functionjullclion-spec option-J option-2 ...)
This is like the previous fonn except that jimction-spec need not be a
symbol (see section 10.2, page 124). It exists because if junction-name was
a list in the previous form, it would instead be interpreted as the
following form:

a list ((fullclion-ljimction-2 ...) option-i oplion-2 ...)
All of the functions are traced with the same options. Each junction can·
be either a symbol or a general function-spec.

The following trace options exist:

:break pred Causes a breakpoint to be entered after printing the entry trace
infonnation but before applying the traced function to its arguments, if
and only if pred evaluates to non-nil.

:exitbreak pred

:error

:step

:entrycond pred

:exitcond pred

:condpred

:wherein junction

:argpdl pdf

This is just like break except that the breakpoint is entered after the
function has been executed and the exit trace information has been
printed, but before control returns.

Caus~s the error handler to be called when the function is entered. Use
RESUME (or Control-C) to continue execution of the function. If this
option is specified, there is no printed trace output other than the error
message printed by the error handler.

Causes the fi.lllction to be single-stepped whenever it is called. See the
documentation on the step facility, section 26.5, page 411.

Causes trace information to be printed on function entry only if pred
evaluates to non-nil.

Causes trace information to be printed on function exit· only if pred
evaluates to non-nil.

This specifies both :exitcond and :entrycond together.

Causes the function to be traced only when called, directly or indirectly,
from the specified function junction. One can give several trace specs to
trace, all specifying the same function but with different wherein options,
so that the function is traced in different ways when called from different
functions.

This is different from advise-within, which only affect., the function being
advised when it is called directly from the other function. The trace
:wherein option means that when the traced function is called, the special
tracing actions occur if the other function is t11e caller of this function, or
its caller's caller, or its caller's caller's caller, etc.

l11is specifies a symbol pdf, whose value is initially set to nil by trace.
When th~ function is traced, a list of the current recursion level for the

DSK:LMMAN;DB.AID 51 16-MAR-81

Tracing Function Execution 406 Lisp Machine Manual

function, the function's name, and a list of argliments is consed onto the
pdf when the function is entered, and cdr'ed back off when the function is
exited. The pdf can be inspected from within a breakpoint, for example,
and used to determine the very recent history of the function. This option
can be used with or without printed trace output. Each function can be
given its own pdl, or one pdl may serve several functions.

:entryprintjonn The fonn is evaluated and the value is included in the trace message for
calls to the function. You can give this option more than once, and all
the values will appear, preceded by \ \.

:exitprintjonn The j01111 is evaluated and the value is included in the trace message for
returns from the function. You can give this option more than once, and
all the values will appear, preceded by \ \. .

:printjorm The j01111 is evaluated and the value is included in the trace messages for
both calls to and returns from the function. You can give this option
more than once, and all the values will appear, preceded by \ \.

:entry list This specifies a list of arbitrary forms whose values are to be printed along
with the usual entry-trace. The list of resultant values, when printed, is
preceded by \ \ to separate it from the other infol1nation.

:exit list This is similar to entry, but specifics expressions whose values arc printed
with the exit-trace~ Again, the list of values printed is preceded by \ \.

:arg :value :both nil These specify which of the usttal trace printouts should be enabled. If
:arg is specified, lhen on function entry lhe name of the function and the
values of its arguments will be printed. If :value is specified, then on
function exit the returned value(s) of the runction will be printed. If
:both is specified, both of these will be printed. If nil is specified,
neither wilt be printed. If none of these four options are specified the
default is to :both. If any further options appear after one of these, they
will not be treated as options! Rather, they will be considered to be
arbitrary forms whose values are to. be printed on entry and/or exit to the
function, along with the normal trace information. The values printed will
be preceded by a / /, and follow any values specified by :entry or :exit..
Note that since these options "swallow" all following options, if one is
given it should be the last option specified.

If the variable arglist is used in any of the expressions given for the :cond, :break, :entry,
or :exit options, or afLer the :arg, :value, :both, or nil option, when those expressions are
evaluated the value of arglist will be bound to a list of the arguments given to the traced
function. Thus

(trace (foo :break (null (car arglist»»
would cause a break in foo if and only if the first argument to foo is nil. arglist should perhaps
have a colon, but it can be omitted because this is the name of a system function and therefore
global.

Similarly, the variable values will be a list of the resulting values of the traced function. For
obviolls reasons, this should only be lIsed with the :exit option. values should perhaps have a
colon, but it can be omitted because this is the name of a system function and therefore global.

DSK:LMMAN;DB.AID 51 16-MAR-81

Lisp Machine Manual" 407 Advising a Function

The trace specifications may be "factored", as explained above. For example,
(trace ((faa bar) :break (bad-p arglist) :value»
is equivalent to
(trace (foo :break {bad-p arglist) :value)

(bar :break (bad-p arglist) :value»
Since a list as a fi.mction name is interpreted as a list of functions; non-atomic function names
(see section 10.2, page 124) are specified as follows:

(trace (:function (:method flavor :message) :break t»

trace returns as its value a list of names of all functions it traced. If called with no
arguments, as just (trace), it returns a list of all the functions currently being traced.

If you attempt to trace a function already being traced, trace calls untrace before setting up
the new trace.

Tracing is implemented with encapsulation (see section 10;10, page 139), so if the function is
redefined (e.g. with defun or by loading it from a QFASL file) the tracing will be transferred
from the old definition to the new definition.

Tracing output is printed on the stream which is the value of trace-output. This is
synlmymolls with terminal-io unless you change it.

untrace Special Fonn
untrace is used to undo the effects of trace and restore functions to their normal,
untraccd stale. untrace will take lIlultiple specifications, e.g. (un trace faa quux fuphoo).
Calling untrace with no arguments will untracc all functions currently being traced. .

Unlike Maclisp, if there is an error trace (or untrace) wilt invoke the error system and give
an English message, instead of returning lists withquestio"n marks in them. Also, the remtrace
function is not provided, since it is unnecessary.

trace-compile-flag Variable
If the value of trace-compile-flag is non-nil, the functions created by trace will get
compiled; allowing you to trace special forms such as cond without interfering with the
execution of the tracing filnctions. The default value of this flag is nil.

26.4 Advising a Functio~

To advise a function is to tell it to do something extra in addition to its actual definition. It
is done by means of the function advise. The something extra is called a piece of advice, and it
can be done before, after, or around the definition itself. The advice and the definition are
independent, in that changing either one does not interfere with the other. Each function can be
given any number of pieces of advice. .

Auvising is fairly similar to tracing, but its purpose is different. Tracing is intended for
temporary changes to a function to give the user information about when and how the function is
called and when and with what vallle it returns. Advising is intended for semi-pcnnanent changes
to what a fi.mction actually docs. The differences between tracing and advising arc motivated by
this difference in goals.

DSK:LMMAN;DIlAID 51 16-MAR-Sl

Advising a Function. 408 Lisp Machine Manual

Advice can be used for testing out a change to a function in a way which is easy to retract.
In this case, you would call advise from the terminal. It can also be used for cllstomizing a
function which is part of a program written by someone else. In this case you would be likely to
put a call to advise in one of your source files or your login init file, rather than modifying the
other person's source code.

Advising is implemented with encapsulation (see section 10.10, page 139), so if the function is
redefined (e.g. with defun or by loading it from a· QFASL file) the advice will be transferred
from the old definition to the new definition.

advise Special FornI
A fUl1ction is advised by the special form

(ad vis e fUllction class lIame position
form I fonn2 . ..)

None of this is evaluated. jimctiol/ is the function to put the advice 011. It is usually a
symbol, but any function spec· is allowed (sec section 10.2, page]24). The forms are the
advice; they get evaluated when the function is called. class should be either :before,
:after, or :around, and says when to execute the advice (before. after, or around the
execution of the definition of the function). The meaning of :around advice is explained
a couple of sections below.

name is used to keep track of multiple pieces of advice on the same function. /lame is an
arbitrary symbol which is remembered as the name of this particular piece of advice. If
you have no name in mind, lise nil; then we say the piece of advice is anonymous. A
given rUlIctiun and class can· have any number of pieces of anonymous advice, but it can
have only one piece of named advice for anyone name. If you try to define a second
one, it replaces the first. Advice for testing purposes is usually anonymous. Advice used
for customizing someone else's program should usually be. named so that multiple
customizations to one function have separate names. Then, if you reload a customization
that is already loaded, it does not get put on twice.

position says where to put this piece of advice in relation to others of the same class
already present on the same function. If position is nil, the new advice goes in the
default position: it usually goes at the beginning (where it is executed before the other
advice), but if it is replacing another piece of advice with the same name, it goes in the
same place that the old piece of advice was in.

If you wish to specify the position, position can be the numerical index of which existing
piece of advice to insert this one before. Zero means at the beginning; a very large
number means at the end. Or, positiO/l can be the name of an existing piece of advice of
the same class on the same function; the new advice is inserted before that one.

For example,
(advise factorial :before negativa-arg-check nil

(if (minusp (first arglist))
(ferror nil "factorial of negative argument")))

This modifies the factorial function so that if it is called with a negative argument it
signals an error instead of running forever.

DSK:LMMAN;DB.AID 51 16-MAR-81

Lisp Machine Manual 409 Advising a Function

unadvise Special Form
(unadvi se junction class position)

removes pieces of advice. None of its "arguments" are evaluated. function and class have
the same meaning as they do in the function advise. posilioll specifies which piece of
advice to remove. It can be the numeric index (zero means the first one) or· it can be the
name of the piece of advice.

unadvise can remove more than one piece of advice if some of its arguments are missing.
If positioll is missing or nil, then all advice of the specified class on the specified function
is removed. If class is missing or nil as well, then all advice on the specified function is
removed. (unadvise) removes all advice on all functions, since fimctiull is not specified.

The following are the primitive functions for adding and removing advice. Unlike the above
special forms. these are functions and can be· conveniently lIsed by programs. advise and
unadvise are actually macros which expand into calls to these two.

s1:adv1se-l junc/ion class name positioll jonns
Adds advice. The arguments have the same meaning as in advise. Note that the forms
argument is /101 a &rest argument.

si:unadvise-l filllclion &optional class position
Removes advice. If class or positiol! is nil or ullspecified. all classes of advice or advice at
all positions/with all names is removed.

You can find out ilUUllWl1y what advice a function has with grindef, which grinus the advice
on the fUllction as forms which are calls to advise. These are in addition to the definition of the
function.

To poke around in the advice structure with a program, you must work with the
encapsulation mechanism's primitives. See section 10.10, page 139.

s i : adv i sed-funct 1 ons Variable
A list of all functions which have been advised.

26.4.1 Designing the Advice

For advice to interact usefully with the definition and intended purpose of the function, it
must be able to interface to the data flow and control flow through the function. We provide
conventions for doing this.

The list of the arguments to the function can be found in the variable arglist. :before adviCe
can replace this list, or an element of it, to change the arguments passed to the dl~finition itself.
If you replace an clement, it is wise to copy the whole list first with

(setq arglist (copylist arglist)
Aftcr the function's definition has been executed, the list of the vallics it returned can be found
in thc variable values. :after advice can set this variable or replace its clements to cause different
values to be returned.

DSK:LMMAN;DB.AID 51 16-MAR-81

Advising a Function 410 Lisp Machine Manual

All the advice is executed within a prog, so any piece of advice can exit the entire function
with return. The arguments of the return will be returned as the values of the function. No
further advice will be executed. If a piece of :before advice docs this, then the function's
definition will not even be called.

26.4.2 :around Advice

A piece of :before or :after advice is executed entirely before or entirely after the definition
of the function. :around advice is wrapped around the definition; that is, the call to the original
definition of the fi.mction is done at a specified place inside the piece of :around advice. You
specify where by putting the symbol :do-it in that place.

For example, (+ 5 :do-it) as a piece of :around advice would add 5 to the value returned
by the function. This could also be done by (setq values (list (+ 5 (car values)))) as :after
advice.

When there is more than one piece of :around advice, they are stored in a sequence just like
:before and :after advice. Then, the first piece of advice in the sequence is the one started first.
The second piece is substituted for :do-it in the first one. The third one is substituted for :do-it
in the second one. The original definition is substituted for :do:" it in the last piece of advice.

:around advice can access arglist, but values is not set up until tile outermost :around
advice returns. At that time, it is set to the value returned by the :around advice. It is
reasonable for the advice to receive the values of the :do-it (e.g. with multiple-value-list) and
fool with tilem before returning tilern (e.g. with valueS-list).

:around advice can return from the prog at any time, whether the original definition has
been executed yet or not. It can also override the original definition by failing to contain :do-it.
Containing two instances of :do-it may be useful under peculiar circumstances. If you are
careless, the original definition may be called twice, but something like

(if (faa) (+ 5 :do-it) (* 2 :do-it))
will certainly work reasonably.

26.4.3 Advising One Function Within Another

It is possible to advise the function faa only for when it is called directly from a specific
other function bar. You do this by advising the function specifier (:within bar faa). That works
by finding all occurrences of faa in the definition of bar and replacing them with altered-foo
within-bar. This can be done even if bar's definition is compiled code. This symbol starts off
with faa as its definition; then it, rather than faa, is advised. The system remembers that faa
has been replaced inside bar, so that if you change the definition of bar, or advise it, lllen the
replacement is propagated to the new definition or to the advice. If you remove all the advice on
(:within bar faa), so that its definition becomes the symbol faa again, then the replacement is
unmade and everything returns to its original state.

(grindef bar) will print faa where it originally appeared, rather tilan altered-foo-within-bar,
so the replacement will not be seen. Instead, grindef will print out calls to advise to describe all
the advice that has been put on faa or anything else within bar.

DSK:LMMAN;DB.AID 51 16-MAR-81

Lisp Machine Manual 411 Stepping Through an Evaluation

An alternate way of putting on this sort of advice is to use advise-within.

advise-within Special Form
(advi se-wi thi n within-junclion jUlictiofl-to-advise

class name position
jonns ...)

advises junction-to-advise only when called directly from the function within-junction. The
other arguments mean the same thing as with advise. None of them are evaluated.

To remove advice from (:within bar faa), you can use unadvise on that function specifier.
Alternatively, you can use unadvise-within.

unadvise-within Special Font!
(unadvi se-wi thi n within-junctioll junction-to-advise class position)

removes advice which has been placed on (:within within-Jullction JUliction-to-advise). The
argllments class and positioll are interpereted as .for unadvise. For example, if those two
are omitted. then all advice placed on jUflctioll-to-adl'ise within within-jill/clion is removed.
Additionally, if jill/ction-to-advise is omitted, all advise on any function within lVithin
fUllction is removed. If there are no arguments, than all advice on one function within
another is removed. Other pieces of advice, which have been placed on one function and·
not limited to within another, are not removed.

(unadvise) removes absolutely all advice, including advice for one ftmction within another.

The function versions of advise-within and unadvise-within are called si:advise-wilhin-1
and si:unadvise-within -1. advise-within and unadvise-within are macros which expand into
calls to the otller two.

26.5 Stepping Through an Evaluation

'I11e Step facility gives you the ability to follow every step of the evaluation of a form, and
examine what is going on. It is analogous to a single-step proceed facility often found in
machine-language debuggers. If your program is doing sometlling strange, and it isn't obvious
how it's getting into its strange state, then the stepper is for you.

There are two ways to enter the stepper. One is by use of the step function.

step fonn
This evaluates jomt witl1 single stepping. It returns the value of fomt.

For example, if you have a function named faa, and typical arguments to it might be t and
3, you could say

(step '(foo t 3)}
and the form (foo t 3) will be evaluated with single stepping.

The other way to get into the stepper is to use the :step option of trace (see page 404). If a
function is traced with the :step option, then whenever that function is called it will be single
stepped.

DSK:LMMAN;D13.AID 51 16-MAR-S1

Stepping Through an Evaluation 412 Lisp Machine Manual

Note that any function to be stepped must be interpreted; that is, it must be a lambda
expression~ Compiled code cannot be stepped by the stepper.

When evaluation is proceeding with single stepping, before any form is evaluated, it is
(partially) printed out, preceded by a forward arrow (-+) character When a macro is expanded, the
expansion is printed out preceded by a double arrow (~) character. When a form returns a value;
the form and the values are printed out preceded by a backwards arrow (+-) character; if there is
more than one value being returned, an and-sign (A) character is printed between the values.

Since the forms may be very long, the stepper does not print all of a form; it truncates the
printed representation after a certain number of characters. Also, to show the recursion pattern of
who calls whom in a graphic fashion, it indents I.!ach form proportionally to its level of recursion.

After the stepper prints any of these things, it waits for a command from the user. There are
several commands to tell the stepper how to proceed, or to look at what is happening. 'The
commands are:

Control-N (Next)
Step to the Next thing. The stepper continues until the next thing to print out, and it
accepts another command.

Space Go to the next thing at this level. In other words, continue to evaluate at this level, but
don't step anything at lower levels. This is a good way to skip over parts of the
evaluation that don't interest you.

Control-U (Up)
Continueeyaluating until we go up one level-. This is like the space command, only more
so; it skips over anything 011 the current level as well as lower levels. .

Control-X (eXit)
Exit; finish evaluating without any more stepping.

Control-T (Type)
Retype the current form in full (without truncation).

Control-G (Grind)
Grind (Le. prettyprint) the current form.

Control-E (Editor)
Editor escape (enter the editor).

Control~B (Breakpoint)
Breakpoint This command put') you into a breakpoint (Le. a read-eval-print loop) from
which you can examine the values of variables and other aspects of the current
environment. From within this loop, the following variables are available:

step-form which is the current form.

step-values which is the list of returned values.

step-value which is the first retunIed value.
If you change the values of these variables, it will work.

·Control-L
Clear the screen and redisplay the last 10. pending forms (forms which are being
evaluated).

DSK:LMMAN;DB.AID 51 16-MAR-81

Lisp Machine Manual 413 Evalhook

Meta-L
Like Control-L, but doesn't clear the screen.

Control-Meta-L
Like Control-L, but redisplays all pending forms.

? or Help
Prints documentation on these commands.

It is strollgly suggested that you write some little function and try the stepper on it. If you
get a feel for what the stepper does and how it works, you will be able to tell when it is the
right thing to use to find bugs.

26.6 Evalhook

The evalhook facility provides a "hook" into the evaluator; it is a way you can get a Lisp
form of your choice to be executed whenever the evaluator is called. The stepper uses evalhook,
and usually it is the only thing that ever needs to. However, if you want to write your own
stepper or something similar, this is the primitive facility that you can use to do so. The way this
works is a bit hairy, but unless you need to write your own stepper you don't have to worry
about it.

evalhook Variable
If the value of evalhool< is non-nil, then special things happen in the evaluator. When a
form (any form, even a number or a symbol) is to be evaluated, evalhook is bound to
nil and the function which was evalhook's value is applied to one argument-the form
that was trying to be evaluated. The value it returns is then returned from the evaluator.

evalhooi< is bound to nil by break and by the error handler, and setq'ed to nil when errors
are dismissed by throwing to the Lisp top level loop. This provides the ability to escape from
this mode if something bad happens.

In order not to impair the efficiency of the Lisp interpreter, several restrictions are imposed
on evalhook. It only applies to evaluation-whether in a read-eval-print loop, internally in
evaluating arguments in fOlms, or by explicit use of the function eva!. It does /lot have any effect
on compiled function references, on use of the function apply, or on the "mapping" functions.
(On the Lisp Machine, as opposed to Mac1isp, it is not necessary to do (*rset t) nor (sstatus
evalhook t).) (Also, Maclisp's special-case check for store is not implemented.)

avalhook form hook
evalhook is a function which helps exploit the evalhook feature. The fonn is evaluated
with evalhook lambda-bound to the function hook. The checking of evalhook is
bypassed in the evaluation of fonn itself, but not in any subsidiary evaluations, for
instance of arguments in the fonn. This is like a "one-instruction proceed" in a machine
language debugger.

DSK:LMMAN;DB.AID51 16-MAR-Sl

414 Lisp Machine Manual

Example:
:: This function evaluates a torm while printing debugging information.
(defun hook (x)

(terpri)
(ava1hook x 'hook-function»

:; Notice how this function calls evalhook to evaluate the form f,
:; so as to hook the sub-fOlms.
(defun hook-function (f)

(let «v (evalhook f 'hook-function»)
(format t "form: s %value: 5 %" f v)
v»

;; This.isn't a very good program, sillce if/uses multiple
;; values, it will not work.

The following Olltput might be seen from (hook '(cons (car '(a. b» 'e»:
form: (quote (a . b»
v a 109: (a • b)
form: (car (quote (a . b»)
value: a
form: (quote c)
value: c
(a • c)

26.7 The MAR

The MAl{ facility allows any word or contiguous set of words to be monitored constantly,
and can cause an error if the words are referenced in a specified manner. The name MAR is
from the sinlilar device on the rrs PDP-lO's; it is an acronym for "Memory Address Register".
The MAR checking is done by the Lisp Machine's memory management hardware, and so the
speed of general execution when the MAR is enabled is not significantly slowed down. However,
the speed of accessing pages of memory containing the locations being checked is slowed down
somewhat, since every reference involves a microcode trap.

These are the n.mctions that control the MAR:

set-mar location cycle-type &optional n-words
11ie set-mar function clears any previous setting of the MAR, and sets the MAR on n
words words, starting at location. location may be any object. Often it will be a locative
pointer to a cell, probably created with the locf special form. II-words currently defaults
to 1. but eventually it may default to the size of the object. cycle-lj.1,e says under what
conditions to trap. :read means that only reading the location should calise an error,
:write means that only writing the location should. t means that both should. To set the
MAR to detect sctq (and binding) of the variable faa, use

(set-mar (va1ue-cell-location 'foo) ':write)

DSK:LMMAN;Dll.AID 51 16-MAR-81

Lisp Machine Manual 415 Variable Monitoring

claar-mar
This turns off the i\,1AR. Warm-booting the machine disables the MAR but does not turn
it off, i.e. references to the MARed pages are still slowed down. clear-mar does not
currently speed things back up until the next time the pages arc swapped out; this may
be fixed some day.

mar-mode
(mar-mode) returns a symbol indicating the current state of the MAR. It returns one of:

nil The MAR is not set.

:read

:write

t

The MAR will cause an error if there is a read.

The MAR will cause an error if there is a write.

The MAR will cause an error if there is any reference.

Note that using the MAR makes the pages on which it is set somewhat slower to access, until
the next time they are swapped out and back in again after the MAR is shut off. Also, usc of
the MAR currently breaks the read-only feature if those pages were read-only.

Proceeding from a MAR break allows the memory reference that got an error to lake place,
and continues the program with the MA R still effective. When proceeding from a write, the error
handler asks you whdher to allow the write to take place or to inhibit it, leaving the location
with its old contents.

Most-hut not al1~write operations first do a read. setq and rplaca arc examples. This
means that if the MAR is in :read mode it will catch writes as well as reads, however they will

. trap during the reading phase, and consequently the data to be written will not be displayed.
This also means that selting the rvlAR to t mode causes most writes to trap twice, first for a read
and then again for a write. So when the MAR says that it trapped because of a read, this means
a read at the hardware level, which may not look like a read in your program.

26.8 Variable Monitoring

mon i to r- v ar i ab 1 a var &optional current-va/ue-cell-only-p monitor-ju1lction
Calls. a given function just after a given special variable is setq'ed (by compiled code or
otherwise). Does not trigger on binding of the variable. The function is given both the
old and new values as arguments. It does not get the name of the variable as an
argument, so it is usually necessary to use a closure as monitor-junction in order to
remember this. The old value will be nil if the variable had been unbound.

The default monitoring function just prints the symbol and the old and new values. This
behavior can be changed by specifying the !/lonitor-jullction argument.

Normally this feature applies to all setq's, but if currellhalue-cell-ollly-p is specified non
nil, it applies only to those setq's which would alter the variable's currently active vallie
cell. This is only relevant when var is subject to a closure.

Don't try to usc this with variables that are forwarded to A memory (e.g. inhibit
scheduling-flag).

DSK:UvIMAN;DI3.AID 51 16-MAR-81

Variable Monitoring 416 Lisp Machine Manual

unmonitor-variable &optional var
If vat is being monitored. it is restored to normal. If no var is specified, all variables
that have been monitored are umnonitored.

()SK:I .\H\'I,\N;DIL\ID 51 16·MAR-81

Lisp Machine Manual 417 How to Read Assembly Language

27. I-Iow to Read Assenlbly Language
Sometimes it is useful to study the machine language code produced by the Lisp Machine's

compiler, usually in order to analyze an error, or sometimes to check for a suspected compiler
problem. This chapter explains how the Lisp Machine's instmction set works, and how to
understand what code written in that instmction set is doing. Fortunately, the translation between
Lisp and this instmction set is very simple: after you get the hang of it, you can move back and
forth between the tViO representations without much trouble. The following text does not assume
any special knowledge about the Lisp Machine, although it sometimes assumes some general
computer science background knowledge.

27.1 Introduction

Nobody looks at machine language code by trying to interpret octal numbers by hand.
InstC'ad, there is a program called the Disassembler which converts the numeric representation of
tlle instruction set into a more readable textual representation. It is called the Disassembler
beCduse it docs tlle opposite of what an Assembler would do: however, tllere isn't actually any
assembler that accepl'i tllis input format, since there is never any need to manually write assembly
language for the Lisp Machine.

The simplest way to invoke the Disassembler is with tlle Lisp function disassemble. Here is
a simple example. Suppose we type:

(defun foo (x)
(assq , key (get x 'propname»)

(compile 'fool

(disassemble 'fool

This defines tl1e function faa, compiles it, and invokes tl1e Disassembler to print out tl1e
textual representation of tl1e result of tl1e compilation. Here is what it looks like:

22 MOVE D-PDL FEFI6 ; , KEY
23 MOVE D-PDL ARGIO ;X
24 MOVE D-PDL FEF 11 ; 'PROPNAME
25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

The Disassembler is also used by tl1e Error Handler and tl1e Inspector. When you see stuff
like tlle above while using one of these programs, it is disassembled code, in tlle same format" as
the disassemble function uses. Inspecting a compiled code object shows tl1c disassembled code.

Now, what does this mean? Before we get started, there is just a little bit of jargon to learn.

The acronym PDL stands for Push Down List, and means the same tlling as Stack: a last-in
first-out memory. The terms POL and stack will be lIsed interchangeably. The Lisp Machine's
architecture is rather typical of "stack machines"; tllere is a stack that most instmctions deal with,
and it is used to hold valucs being computed, arguments, and local variables, as well as f1ow-of-

DSK:LMMAN;CODE 27 , 16-MAR-Sl

I n traduction 418 Lisp Machine Manual

control infoml<ltion. An important use of the stack is to pass arguments to instructions, though
not all instructions take their arguments from the stack.

The acronym "FEF" stands for Function Entry Frame. A FEF is a compiled code object
produced by the compiler. After the defun form above was evaluated, the function cell of the
symbol foo contained a lambda expression. Then, we compiled the function faa, and the
contents of the function cell were replaced bya "FEF" object. The printed representation of the
"FEF" object for foo looks like this:

#<DTP-FEF-POINTER 11464337 FOO>

The FEF has three parts (this is a simplified explanation): a header with various fixed-format
fields, a part holding constants and invisible pointers, ancl the main body holding the machine
language instructions. The first part of the FBF, the header, is not very interesting and is not
documented here (you can look at it with describe but it won't be easy to understand what it all
means). The second part of the FEF holds various constants referred to by the function; for
example, our function foo references two constants (the symbols key and propname), and so
(pointers to) those symbols are stored in the FEF. This part of the FEP also holds invisible
pointers to the value cells of all symbols that the function uses as variables, and invisible pointers
to" the function cells of all symbols that the function calls as functions. The U1ird part of the FEF
holds the machine language code itself.

Now we can read the disassembled code. The first instntction looked like this:

22 MOVE D-PDL FEFI6 ;' KEY

This instruction has several parts. The 22 is the "address of this instntctioll. The Disassembler
prints out the address of each instruction before it prints out the instntction, so that you can
interpret branching instntctions when you see them (we haven't seen one of these yet, but we will
later). The MOVE is an opcode: this is a MOVE instruction, which moves a datum from one
place to another. The D-PDL is a destination specification. The D stands for "Destination", and
so D-PDL means "Destination-POL": the destination of the datum being moved is the POL.
This means that the result will be pushed onto the POL, rather than just moved to the top; this
instruction is pushing a datum onto the stack. The next field of the instmction is FEFI6. This is
an address, and it specifies where the datum is coming from. The vertical bar serves to separate
the two parts of the address. The part before the vertical bar can be thought of as a base
register, and the part after the bar can be thought of as being an offset from that register. FEF
as a base register means the address of the FEF that we are disassembling, and so this address
means the location six words into the FEF. So what this instruction does is to take the datum
located six words into the FEF, and push it onto the POL. The instruction is followed by a
"comment" field, which looks like ;'KEY. This is not a comment that any person wrote; the
disassembler produces these to explain what is going on. The semicolon just serves to start the
comment, the way semicolons in Lisp code do. In this case, U1C body of U1e comment, 'KEY, is
teHing us that U1e address field (FEFI6) is addressing a constant (that is what the single-quote in
'KEY means), and U1at the printed representation of U1at constant is KEY. With the help of this
"comment" we finally get the real story about what this instruction is doing: it is pushing (a
pointer to) the symbol key onto the stack.

The next instntction looks like this:

DSK:LMMAN;CODE 27 16-MAR-Sl

Lisp,Machine Manual 419 Introduction

23 MOVE D-PDL ARG10 ;X

This is a lot like the previous instmction; the only difference is that a different "base register"
is being used in the address. TIle ARG "base register" is used for addressing your arguments:
ARGIO means that the datum being addressed is the zeroth argument. Again, the "comment"
field explains what that means: the value of X (which was the zeroth argument) is being pushed
onto the stack.

The third instIuctioll is just like the first one; it pushes the symbol propname onto the stack.

The fourth instmction is something new:

25 (MISC) GET D-PDL

The first thing we see here is (MISC). This means that this is one of, the so-called
miscellaneolls instructions. There are quite, a few of these instl1lcrions. With some exceptions,
each miscellaneous instIuction corresponds to a Lisp function and has the same name as that Lisp
fUllction. If a Lisp function has a corresponding miscellaneous instl1lction, then that function is
hand-coded in Lisp Machine microcode.

Miscellaneous insmlctions only have a destination field: they don't have any address field.
The input'! to the instruction come from the stack: the top 11 clements on the stack are used as
inputs to the instructiun and popped otf the stack, where II is the number of arguments taken by
the function. The result of the function is stored wherever the destination field says. In our case,
the function bdng .:;xccuted is get. a Lisp function of two arguments. The top two values will be
popped otf the stack. and used as the arguments to get (the value pushed first is the first
argul1lem, the value pushed second is the s\!cond argument, and so on). The result of the call to
get will be sent to the destination D-PDL; that is, it will be pushed onto the stack. (In case you
were wondering about how we handle optional arguments and multiple-value returns, rhe answer
is very simple: functions that use either of those features cannot be miscellaneous instIuctions!)
(If you are curious as to what functions are hand-microcoded and thus available as miscellaneous
instmctions, you can look at the defmic fonus in the file "AI: L1SPM; DEFMIC)".)

The fifth and last instruction is similar to the fourth:

26 (MISC) ASSQ D-RETURN

What is new here is the new value of the destination field. This one is called D-RETURN,
and it can be used anywhere destination fields in general can be used (like in MOVE instructions).
Sending something to "Destination-Return" means that this value should be the returned value of
the function, and that we should return from this function. This is a bit unusual in instmction
sets; rather than having a "return" instruction, we have a destination which, when stored into,
returns from the function. What this instluction does, then, is to invoke the Lisp function assq
on the top two clements of the stack, and return the result of assq as the result of this function.

Now, let's look at the program as a whole and see what it did:

DSK:LMMAN;CODE 27 16-MAR-81

A More Advallced Example

22 MOVE D-PDL FEFI6
23 MOVE D-PDL ARGIO
24 MOVE D-PDL FEFI7
25 (MISC) GET D-PDL
26 (MISC) ASSQ D-RETURN

420

; 'KEY
;X
; 'PROPNAME

Lisp Machine Manual

First it pushes the symbol key. TIlen it pushes the value of x. Then it pushes the symbol
propname. Then it invokes get. which pops the value of x and the symbol propname off the
stack and uses them as arguments, thus doing the equivalent of evaluating the form (get x
'propname). The result is left on the stack; the stack now contains the result of the get on top,
and the symbol key underneath that. Next. it invokes assq on these two values. thus doing the
equivalent of evaluating (assq 'key (get x 'propname)). Finally, it returns the value produced
by assq. Now, the original Lisp program we compiled was:

(defun foo (x)
(assq 'key (get x 'propname»)

We can see that the code produced by the compiler is correct: it will do the same thing as
the fi.mction we defined will do.

In summary, we have seen two kinds of instnlctions so far: the MOVE instnlctioll, which
takes a destination and an address. and two of the large set of miscellaneolls instnlctions, which
take only a destination, and implicitly get their inpul'i from the stack. We have seen two
destinations (D-PDL and D-RETURN), and two fonus of address (rEF addressing and ARG
addressing).

27.2 A lVlore Advanced Example

Here is a more complex Lisp function. demonstrating local variables, function calling,
conditional branching, and some other new instnlctions.

(defun bar (y)
{let «z (car y»)

(cond « atom z)
(setq z (cdr y»
(foo y»

(t
nil»»

The disassembled code looks like this:

DSK:LMMAN;CODE 27 16-MAR-81

1
I

Lisp Machine Manual

20 CAR D-PDL ARGIO
21 POP LOCALIO
22 MOVE D-IGNORE LOCALIO
23 BR-NOT-ATOM 30
24 CDR D-PDL ARGIO
25 POP LOCALIO
26 CALL D-RETURN FEFI6
27 MOVE D-LAST ARGIO
30 MOVE D-RETURN 'NIL

421

;Y
;Z
;Z

;Y
;Z
;#' FOO
;Y

A More Advanced Example

The first instnIction here is a CAR instnIction. It has the same format as MOVE: there is a
destination and an address. The CAR instruction reads the datum addressed by the address, takes
the car of it, and stores the result into the destination. In our example, the first instnIction
addresses the zeroth argument, and so it computes (car y); then it pushes the result onto the
stack.

The next instnIction is something new: the POP instnIction. It has an address field, but it
uses it as a destination rather than as a source. The POPinstnIction pops the top value otT the
stack, and stores that value into the address specified by the address field. Tn our example, the
value on the top of the stack is popped otT and stored into address LOCALIO. This is a new
farm of address; it means the zeroth local variable. The ordering of the local variables is chosen
by the compiler, and so it is not fully predictable, although it tends to be by order of appearance
in the code; fortunately you never have to look at these numbers, because the "comment" field
explains what is going on. In this case, the variable being addressed is z. So this instruction
pops the top value on lhe stack into the variable z. 'Ole first two insiructions work together to
take the car of y and store it into z, which is indeed the first thing the fi.mction bar ought to
do. (If you have two local variables with the same name, then the "comment" field wOIi't tell
you which of the two you're talking about; you'll have to. figure that out yourself. You can tell
two local variables with the same name apart by looking at the number in the address.)

The next instruction is a familiar MOVE instruction, but it uses a new destination: D
IGNORE. This means that the datum being addressed isn't moved anywhere. If so, then why
bother doing this instruction? The reason is that there is conceptually a set of indicator bits, as in
the PDP-H. Every instnlction that moves or produces a datum sets the "indicator" bits from that
datum so that following instmctions can test them. So the reason that the MOVE instnlction is
being done is so that someone can test the "indicators" set up by the value that was moved.
namely the value of z.

All instructions except the branch instructions set the "indicator" bits from the result produced
and/or stored by that instruction. (In fact, the POP in instruction 21 set the "indicators"
properly, and so the MOVE at instruction 22 is superfluous. However, the compiler is not clever
enough to notice that.)

TIle next instnIction is a conditional branch; it changes the flow of control, based on the
values in the "indicator" bits. The instruction is BR - NOT - ATOM 30, which means .. Branch, if
the quantity was not an atom, to location 30; otherwise proceed with execution". If z was an
atom, the Lisp Machine branches to location 30, and execution proceeds there. (As you can see
by skipping ahead, location 30 just contains a MOVE instmction, which will cause the function to
return nil.)

DSK:LMMAN;CODE 27 16-MAR-81

A More Advanced Example 422 Lisp Machine Manual

If z is not an atom, the program keeps going, and the CDR instruction is next. This is juSt
like the CAR instmction except that it takes the cdr; this instruction pushes the value of (cdr y)
onto the stack. The next one pops that value off into the variable z.

lllerc are just two more instructions left. These two instmctions will be our first example of
how function calling is compiled. It is the only really tricky thing in the instmction set. Here is
how it works in our example: .

26 CALL O-RETURN FEFI6
27 MOVE D-LAST ARGIO

;#'FOO
;Y

The form bcing compiled hcre is (faa y). This means we arc applying the function which is
in the function cell of the symbol faa, and passing it one argument, the value of y. The way
function calling works is in the following three steps. First of a1\, there is a CALL instruction
that specifics the function object being applied to arguments. This creates a new stack frame on
the stack, and stores the function object there. Secondly, all the arguments being passed except
the last one are pushed onto the stack. Thirdly and lastly, the last argument is sent to a special
destination, called 0- LAST, meaning "this is the last argument". Storing to tllis destination is
what actually calls the function, not tile CALL instmction itself.

There arc two things you might wonder about this. First of all, when the fUlJction returns,
what happens to the returned valuc? Well, this is what we use the destination field of the CALL
instruction for. The destination of the CALL is not stored into at the time tile CALL instruction
is executed; instead, it is saved on the stack (into tile stack frame created by the CALL
instl1lction, alung witll tile function object). l1len, when the fUllction actually returns, its result is
stored into that destination.

The other question is what happens when there isn't any last argument; that is, when there is
a call with no arguments at all? This is handled by a special instruction called CALLO. The
address of CALLO addresses the function object to be called; tile call takes place immediately,
and tile resull is stored into the destination specified by the destination field of the CALLa
instmction.

So, let's look at the two-instmction sequence above. The first instmction is a CALL; the
function object it specifies is at FEFI6, which the comment tells us is the contents of the function
cell of foo (the FEF contains an invisible pointer to that function cell). The destination field of
the CALL is D-RETURN, but we aren't going to store into it yet; we will save it away in the
stack frame and use. it later. So the function doesn't return at this point, even though it says D
RETURN in the instmction; this is the tricky part.

Next we have to push all tile arguments except the last one. Well, there's only one
argument, so nothing needs to be done here. Finally, we move the last argument (that is, the
only argument: the value of y) to D-LAST, lIsing the MOVE instruction. Moving to D-LAST is
what actually invokes the function, so at this point tile function faa is invoked. When it returns,
its result is sent to the destination stored in tile stack frame: D-RETURN. Therefore, the value
returned by the call to foo will be returned as tile value of tile function bar. Sure enough, this
is what the original Lisp code says to do.

When the compiler pushes arguments to a function ca!l, it sometimes does it by sending the
values to a destination called D-NEXT (meaning the "next" argument). This is exactly the same
as D-PDL; tile only reasons for tile difference arc very historical. They mean the same thing.

DSK:LMMAN;CODE 27 16-MAR-81

Lisp Machine Manual 423 The Rest of the Instructions

Here is another example to illustrate function calling. This Lisp function calls one function on
the resullS of another function.

(defun a (x y)
(b (c x y) y»

The disassembled code looks like this:

22 CALL D-RETURN FEFI6
23 CALL D-PDL FEFI7
24 MOVE D-PDL ARGIO
25 MOVE D-LAST ARGll
26 MOVE D-LAST ARGll

;#'8
;#'C
;X
;Y
;Y

The first instmction starts off the call to the function b. The destination field is saved for
later: when this function returns, we will return its result as a's result. Next, the call to c is
started. Its destination field, too, is saved for later; when c returns, its result should be pushed
onto the stack, so that it will be the next argument to b. Next, the first and second arguments
to c are passed; the second one is sent to D-LAST and so the function c is called. Its result, as
we said, will be pushed onto the stack, and thus become the first argument to b. Finally, the
second argument to b is passed, by storing ill D-LAST; b gets called, and its result is sent to
0- RETURN and is returned from a.

27.3 The Rest of the Instructions

Now that we've gotten some of the feel for what is going on, 1 will start enumerating the
instl1lctions in the instmction set. Thc instl1lctions fall into four classes. Class I instmctions have
both a destination and an addi·css. Class II instmctions· have an address, but no destination.
Class III instmctions are the branch instructions, which contain a branch address rathcr than a
general base-and-otfsct address. Class IV instructions have a destination, but no address; these
are the miscellancous instmctions.

We have already seen just about all the Class I instructions. There are nine of them in all:
MOVE, CALL, CALLO, CAR, CDR, CAAR, CADR, CDAR, and CODA. MOVE just moves a
datum from an address to a destination; the CxR and CxxR instructions are the same but
perfonn the function on the value before sending it to the dcstination; CALL starts off a call to a
function with some arguments;. CALLO pcrforms a call to a function with no arguments.

We've seen most of the possible forms of address. So far we have seen the FEF, ARG, and
LOCAL base registers. There are two other kinds of addresses. One uses a "constant" base
registcr, which addresses a set of standard constants: NIL, T, 0, 1, and 2. The disassembler
doesn't even bother to print out CONSTANTin, since the number 11 would not be even slightly
intercsting; it just prints out 'NIL or '1 or whatever. The other kind of address is a special one
printed as POL -POP, which means that to rcad thc value at this address, an object should be
popped off the top of the stack.

There is a higher numbcr of Class II instnlctions. The only one we've seen so far is POP,
which pops a value off the stack and stores it into the specified address. There is another
instruction called MOVEM (from the PDP-lO opcodc name, mcaning MOVE to Memory), which
stores. the top clement of the stack into the specificd address, but doesn't pop it off the stack.

DSK:LMMAN;CODE 27 16-MAR-Sl

The Rest of the Instmctions 424 Lisp Machine Manual

Then there are seven Class II instnlctions to implement heavily-used two-argument fimctions:
+, -, *, I, LOGAND, LOGXOR, and LOGIOR. These instmctions take their first argument
from the top of the stack (popping them off) and their second argument ti'om the specified
address, and they push their result on the stack. Thus the stack level does not change due to
dlese instnlctions.

Here is a small fimction that shows some of these new things:

(defun foo (x y)
(setq x (logxor y (- x 2}}»

The disassembled code looks like this:

16 MOVE D-PDL ARGII ;Y
17 MOVE D-PDL ARGIO ;X
20 - '2
21 LOGXOR PDL-POP
22 MOVEM ARGIO ;X
23 MOVE D-RETURN PDL-POP

Instructions 20 and 21 lise two of the new Class " instructions: the - and LOGXOR
instructions. Instmctions 21 and 23 use the POL -POP address type, and instruction 20 uses the
"constant" base register to get to a fixnum 2. Finally, instruction 22 uses the MOVEM
instruction; the compiler wants· to use the top value of the stack to store it into the value of x,
bUl it c1ucsn't want to pop it off the stack because It has another use fiJr it: Lo return it from the
function.

Another four Class II inst11lctions· implement some commonly used predicates: =, >, <, and
EO. The two arguments come from the top of the stack and the specified address; the stack is
popped, the predicate is applied to the two objects, and the result is left in the "indicators" so
that a branch instruction can test it and branch based on the result of the comparison. "These
instructions remove the top item on the stack and don't put anything back, unlike the previous
set which put their results back on the stack.

Next, there arc four Class II instructions to read, modify, and wIite a quantity in ways that
are common in Lisp code. These instructions are called SETE -CDR, SETE -CDDR, SETE -1 + ,
and SETE-1-. The SETE- means to set the addressed value to the result of applying the
specified one-argument function to the present value. For example, SETE-CDR means to read
the value addressed, apply cdr to it, and store the result back in the specified address. This is
used when compiling (setq x (cdr x)}, which commonly occurs in loops; the other functions are
used frequently in loops, too.

There are "two instructions used to bind special variables. TI1e first is I3IND-NIL, which binds
the cell addressed by the address field to nil; the second is BIND-POP, which binds the celt to
an object popped off the stack rather than nil. The latter instruction pops a value off the stack;
the tbnner docs not use the stack at all.

There are two instmctions to store common values into addressed cells. SET -NIL stores nil
into the cell specified by the address field; SET - ZERO stores O. Neither instruction uscs the
stack at all.

DSK:LMMAN;CODE27 16-MAR-81

Lisp Machine Manual 425 The Rest of the Instmctions

Finally, the PUSH-E instruction creates a locative pointer to the cell addressed by the
specified address, and pushes it onto the stack. This is used in compiling (value-cell-location
'z) where z is an argument or a local variable, rather than a symbol (special variable).

Those are all of the Class II instmctions. Here is a contrived example that uses some of the
ones we haven't seen, just to show you what they look like:

(declare (special *foo* *bar*»)

(defun weird (x y)
(cond «= x y)

(let «*foo* nil) (*bar* 5»
(setq x (cdr x»)

nil)
(t
(setq x nil)
(caar (va1ue-ce11-1ocation 'y»»)

The disassembled code looks like this:

24 MOVE D-PDL ARGIO ;X
25 = ARGI1 ;Y
26 [3R-NIL 35
27 BIND-NIL FEFI6 ;*FOO*
'>n MOVE D-PDL FEFI8 ; '5 .:IV

31 BIND-POP FEFI1 ;*BAR*
32 SETE-CDR ARGIO ;X
33 (MISC) UNBIND 2 bindings
34 MOVE D-RETUHN 'NIL
35 SET-NIL ARGIO ;X
36 PUSH-E ARGI1 ;Y
37 CAAR D-RETURN POL-POP

Instmction 25 is an = instmction; it numerically compares the top of the stack, x, with the
addressed quantity, y. The x is popped off the stack, and the indicators are set to the result of
the equality test. lnstmction 26 checks the indicators, branching to 35 if the result of the call to
= was NIL; that is, the machine will branch to 35 if the two values were not equal. Instntction
27 binds *foo* to nil; instmctions 30 and 31 bind *bar* to 5. Instmction 32 demonstrates the
use of SETE -CDR to compile (setq x (cdr x)), and instruction 35 demonstrates the use of SET
NIL to compile (setq x nil). Instruction 36 demonstrates the use of PUSH-E to compile (value
cell-location 'y).

The next class of instmctions, Class TIl, are the branching instructions. These have neither
addresses nor destinations of the usual sort; instead, they have branch-addresses: they say where
to branch, if the branch is going to happen. There are several instructions, differing in the
conditions under which they will branch, and whether they pop the stack. Branch-addresses are
stored internally as self-relative addresses, to make Lisp Machine code relocntable, but the
disassembler does the addition for you and prints out FEF-relative addresses so that you can
easily see where the branch is going to.

DSK:LMMAN;CODE 27 16-MAR-Sl

Function Entry 426 Lisp Machine Manual

The branch instmctions we have seen so far decide whether to branch on the basis of the "nil
indicator"; that is, whether the last vallie dealt with was nil or non-nil. SR - NIL branches if it
was nil, and SR -NOT -NIL branches if it was not nil. There are two more instmctions that test
the result of the atom predicate on the last value dealt with. SR-ATOM branches if the value
was an atom (that is, if it was anything besides a cons). and SR-NOT -ATOM branches if the
value was not an atom (that is, if it was a cons). The SR instmction is an unconditional branch
(it always branches).

None of the above branching instmctions deal with the stack. There are two more
instructions called SR-NIL-POP and SR-NOT -NIL-POP, which are the same as SR-NIL and
BR-NOT-NIL except that if the branch is not done, the top value on the stack is popped off the
stack. These are used for compiling and and or special forms.

Finally, there are the Class IV instmctions, most of which are miscellaneous hand-microcoded
Lisp functions. The file "AI:LlSPM; DEFMIC)" has a list of all the miscellaneous instmctions.
Most correspond to· Lisp func;tions, including the subprimitives, although some of these functions
are very low level internals that may not be documented anywhere (don't be disappointed if you
don't understand all of them). Please do not look at this file in hopes of finding obscure
functions that you think you can use to speed up your programs; in fact, the compiler
automatically uses these things when it can, and directly calling weird internal functions will only
serve to make your code hard to read, without making it any taster. In fact, we don't guarantee
that calling undocumented functions will continue to work in the fhture .

. The DEF~AIC ,file can be ,useful for dctcflnining if a given function is 111 nlicrocodc, although
the only definitive way tu teil is to compile some code thal uses it and look at the results, since
sometimes the compiler converts a documented fimction with one nam~ into an undocumented
one with another name.

27.4 Function Entry

When a function is first entered in Lisp Machine Lisp, interesting things can happen because
of the features that are invoked by use of the various "&.. keywords. The microcode performs
various services when a function is entered, even before the first instruction of the function is
executed. These services are called for by various fields or the header portion of the FEF,
including a list called the Argument Descriptor List, or ADL. We won't go into the detailed
format of any of this, as it is complex and the details are not too interesting. The describe
function will disassemble it, but not necessarily into a readily-comprehensible form.

The function-entry services include the initialization of unsupplied optional arguments and of
&AUX variables. The ADL has a little instruction set of its own, and if the form that computes
the initial value is something simple, such as a constant, or just a variable, then the ADL can
handle things itself. However, if things get too complicated, instructions are needed, and the
compiler generates some instmctions at the front of the function to initialize the unsupplied
variables. I n this case, the !\DL specifies several different starting addresses for the function,
depending on which optional arguments have been supplied and which have been omitted. If all
the optional arguments are supplied, then the ADL starts the function off after all the instructions
that would have initialized the optional arguments; since the arguments were supplied, their
values should not be set, and so all these instructions are skipped over. Here's an example:

DSK:LMMAN;CODE 27 16-MAR-81

[jsp Machine Manual 427

(declare (special *y*»

(defun faa (&optional (x (car *y*» (z (* x 3»)
(cons x z·»

The disassembled code looks like this:

32 CAR D-PDL FEFI6 ;*Y*
33 POP ARGIO ;X
34 MOVE D-PDL ARGIO ;X
35 * FEFlll ; '3
36 POP ARGI1 ;Z
37 MOVE- D-PDL ARGIO ;X
40 MOVE D-'PDL ARGI1 ;Z
41 (MISC) CONS D-RETURN

Function Entry

If no arguments are supplied, the function will be started at instruction 32; if only one
argument is supplied, it will be started at instruction 34; if both arguments are supplied, it will
be started at instruction 37. (If you do (describe 'fool and look at the incomprehensible stuff
that gets printed out, you can see the numbers 34 and 37 in lines that correspond to clements of
the ADL.)

The thing to keep in mind here is that when there is initialization of variables, you may see
it as code at the beginning of the function, or you may not, depending upon whether it is too
complex for the ADL to handle. This is· true of &aux variab1t:~ as well as unsupplied &optional
arguments.

When there is an &rest argument, it is passed to the function as the zeroth local variable,
rather than as any of the arguments. This is not really so confusing as it might seem, since an
&rest argument is not an argument passed by the caller, rather it is a list of some of the
arguments, created by the function-entry microcode services. In· any case the "comment" tells you
what is going on. In fact, one hardly ever looks much at the address fields in disassembled code,
since the "comment" tells you the right thing anyway. Here is a silly example of the use of an
&rest argument:

(defun prod (&rest values)
(apply #'* values»

The disassembled code looks like this:

20 MOVE D-POL FEFI6
21 MOVE D-PDL LOCALla
22 (MISe) APPLY D-RETURN

;#' *
;VALUES

As can be seen, values is referred to as LOCAL.\O.

Another thing the microcode does at function entry is to bind the values of any arguments or
&aux variables that are special. Thus, you won't see BIND instructions doing this, but it is still
being done.

DSK:LMMAN;CODE 27 16-MAR-81

Special Class IV Instructions 428 Lisp Machine Manual

27.5 Special Class IV Instructions

We said earlier that most of the Class IV instmctions are miscellaneous hand-microcoded Lisp
functions. However, a few of them arc not Lisp functions at all. There arc two instructiOtls that
are printed as UNBIND 3 bindings or POP 7 values (except that the number can be anything up
to 16 (these numbers are printed in decimal». These instmctions just do what they say,
unbinding the last 11 values that were bound, or popping the top 11 values off the stack.

There are also special instmctions to implement the Lisp list function, which is special
because it is a primitive which takes a variable number of arguments. Let's take a look at how
the compiler handles list.

(defun test-list (x y)
(list 2 x Y x))

The disassembled code looks like this:

16 (MISe) LIST 4 long O-RETURN
17 MOVE D-NEXT-LIST '2
20 MOVE D-NEXT-LIST ARGIO ;X
21 MOVE D-NEXT-LIST ARGII ;Y
22 MOVE D-NEXT-LIST ARGIO ;X

The instmction LIST 4 long prepares for the creation of a list of four elements; it allocates
the storage, but doesn't put anything into it. The destination is not used immediately, . but is
saved for later, Just as it is with CALL. Then the objects t.o be passed as arguments are
sllccessively generated and sent to a speciai destination, D-NEXT -LIST. This causes them to be
put into the storage allocated by the LIST instruction. Once the fourth such sending is done, all
the elements of the list are filled in, and the result (Le. the list itself) is sent to whatever
destination was specified in the LIST instruction.

By the way, that is the last of the destination codes; now you have seen all of them. In
summary, they are D...,IGNORE, D-PDL (and D-NEXT, which is the same thing), D-LAST, D
RETURN, and D-NEXT -LIST.

The array referencing functions-aref, aset, and aloe-also take a variable number of
arguments, but they are handled differently. For one, two, and three dimensional arrays, these
functions are turned into internal functions with names ar-1, as-1, and ap-1 (with the number
of dimensions substituted for 1). Again, there is no point in using these functions yourself; it
would only make your code harder to understand but not any faster at all. When there are more
than three dimensions, the old Maclisp way is used: arrays arc referenced by applying them as
functions, using their dimensions as arguments, and they are stored into using xstore, which is
like the Maclisp store but with its arguments in the other order. You can try compiling and
disassembling some simple functions yourself if you want to see this in action.

When you call a function and expect to get more than one value back, a slightly different
kind of function calling is used. Here is an example that uses multiple-value to get two values
back from a function call:

DSK:LMMAN;CODE 27 16-MAR-81

Lisp Machine Manual

(defun faa (x)
(let (y z)

(multiple-value (y z)
(bar 3)}

(+xyz»)

The disassembled code looks like this:

429

22 MOVE O-PDL FEFI6 ;#'BAR
23 MOVE D-PDL '2
24 (MISC) %CALL-MULT-VALUE D-IGNORE
25 MOVE D-LAST FEFI7 ;'3
26 POP LOCALl1 ;Z
27 POP LOCALIO ;Y
30 MOVE O-PDL ARGIO ;X
31 + LOCALIO ;Y
32 + LOCAL!l ;Z
33 MOVE D-RETURN POL-POP

Special Class IV Instmctions

A %CALL - MUL T -VALUE instmction is used instead of a CALL instruction. The destination
field of %CALL-MULT-VALUE is unused and will always be D-IGNORE. %CALL-MULT
VALUE t.akes t.wo "arguments", which it finds on the stack; it pops both of them. The first one
is the function object to be applied; the st!cond is the number of return values that are expected.
The rest of the call proceeds as usual, but when Ihe call returns, the returned values are left on
the stack. The Humber of objects left on till! stack is always the same as the second "argument"
to %CALL-MULT -VALUE. Tn Ollr example, the two values returned are left on the stack, and
they are immediately popped off into z and y. There is also a· %CALLO-MULT -VALUE
instmction, for the same reason CALLO exists.

The'multiple-value-bind form works similarly; here is an example:

(defun foo (x)
(mu1tip1e-va1ue-bind (y *foo* z)

(bar 3)
(+xyz}})

The disassembled code looks like this:

24 MOVE D-PDL FEFI8
25 MOVE D-POL FEFI7
26 (MISC) %CALL-MULT-VALUE
27 MOVE D-LAST FEFI7
30 POP LOCALI!
31 BIND-POP FEFI6
32 POP LOCALIO
33 MOVE O-POL ARGIO
34 + LOCALIO
35 + LOCALI!
36 MOVE D-RETURN PDL-POP

DSK:LMMAN ;CODE 27

;#'BAR
; '3

D-IGNORE
; '3
;Z
;*FOO*
;Y
;X
;Y
;Z

16-MAR-81

Special Class IV Instructions 430 Lisp Machine Manual

The %CALL - MUL T - VALUE instruction is still used, leaving the results on the stack; these
results are used to bind the variables.

Calls done with multiple-value-list work with the %CALL-MULT -VALUE-LIST instruction.
It takes one "argument" 011 the stack: the function object to apply. When the function returns,
the list of values is left on the top of the stack. Here is an example:

(-defun faa (x y)
(multiple-value-list (faa 3 y x»)

The disassembled code looks like this:

22 MOVE D-PDL FEFI6 ;#'FOO
23 (MISC) %CALL-MULT-VALUE-LIST D-IGNORE
24 MOVE D-PDL FEFI7 ;'3
25 MOVE D-PDL ARGII ;Y
26 MOVE D-LAST ARGIO ;X
27 MOVE D-RETURN PDL-POP

Returning· of more than one value from a fi.ll1ction is handled by special miscellaneous
instructions. %RETURN-2 and %RETURN-3 arc used tu return two or three values; these
instructions take two and three arguments, respectively, on the stack, and return from the current
function just as storing to D-RETURN would. If there arc morc than three return values, they
arc all pushed, then the number that there were is pushed, and then the %RETURN-N
instl1lction is executed. None of these instructions usc theil destination field. Note: the reiurn
list function is just an ordinary miscellaneolls instruction; it takes the list of values [() return as an
argument on the 'stack, and it returns those values from the current function.

The nmction lexpr-funcall is compiled using a special instmction called %SPREAD to iterate
over the clements of its last argument, which should be a list. %SPREAD takes one argument
(on the stack), which is a list of values to be passed as arguments (pushed on the stack). If the
destination of %SPREAD is D-PDL (or D-NEXT), then the values are just pushed; if it is 0-
LAST, then after the values are pushed, the function is invoked. lexpr-funcall will always
compile lIsing a %SPREAD whose destination is D-LAST. Here is an example:

(defun faa (a b &rest c)
(lexpr-funcall #'format t a c)
b)

The disassembled code looks like this:

20 CALL D-IGNORE FEFI6
21 MOVE D-PDL 'T
22 MOVE D-PDL ARGIO
23 MOVE D-PDL LOCALIO
24 (MISC) %SPREAD D-LAST
25 MOVE D-RETURN ARGll

;#'FORMAT

;A
;c

;B

Notc that in instmction 23. the address LOCAL/O is llsed to access the &rest argument.

DSK:LMMAN;CODE 27 16-MAR-81

Lisp Machine Manual 431 Estimating Run Time

The *catch special fom1 is also handled specially by the compiler. Here is a simple example
of *catch:

(defun a ()
(*catch 'faa (bar»)

The disassembled code looks like this:

22 MOVE D-PDL FEFI6
23 (MISC) %CATCH-OPEN D-PDL
24 MOVE D-PDL FEFI7
25 CALLO D-LAST FEFIB
26 MOVE D-RETURN PDL-POP

; , 26

; 'FOO
;#'BAR

The %CATCH -OPEN instruction is like the CALL instruction; it starts a call to the *catch
function. It takes one "argument" on the stack, which is the location in the program that should
be branched to if this ·catch is *thrown to. In addition to saving that program location, the
instruction saves the state of the stack and of special-variable binding so that they can be restored
in the event of a *throw. So instructions 22 and 23 start a *catch block, and the rest of the
function passes its two argument~. The ·catch function itself simply returns its second argument;
but if a *throw happens during the evaluation of the (bar) form, then the stack will be unwound
and execution will resume at instmction 26. The destination field of%CATCH -OPEN is like that
of CALL; it is saved on tile stack. and controls what will be done with the result of the call to
the *catch. Note that even though *catch is really a Lisp special form, it is compiled more or
less as if it were a function of two arguments.

To allow compilation of (multiple-value (...) (*catch ... », there is a special instruction called
%CATCH -OPEN - MUL T - VALUE, which is a cross between %CATCH -OPEN and %CALL
MULT -VALUE. multiple-value-list with *catch is not supported.

27.6 Estimating Run Time

You may sometimes want to estimate the speed at which a function will execute by
examination of the compiled code. This section gives some rough guidelines to the relative cost of
various instmctions; the actual speed may vary from these estimates by as much as a factor of
two. Some of these speeds vary with time; they speed up as work is done to improve system
efficiency and slow down sometimes when sweeping changes are made (for instance, when garbage
collection was introduced it slowed down some operations even when garbage collection is not
turned on.) However these changes are usually much less than a factor of two.

It is also important to realize that in many programs the execution time is detetmined by
paging rather than by CPU run time. The cost of paging is unfortunately harder to estimate than
run time, because it depends on dynamic program behavior and locality of data structure.

On a conventional computer such a~ the pdp-lO, rough estimates of the nm time of compiled
code are fairly easy to make. It is a reasonable approximation to assume that all machine
instmctions take about the same amount of time to execute. When the compiler generates a call
to a nmtime support routine, the user can estimate the speed of that routine since it is
implemented in the same instructions as the user's compiled program. Actual speeds can vary
widely because of data dependencies; for example, when using the plus function the operation

DSK:LMMAN;CODE 27 16-MAR-Sl

Estimating Run Time 432 Lisp Machine Manual

will be much slower if an argument is a bignum than if the arguments are all fixnums. However,
in Maclisp most performance-critical functions lise declarations to remove stich data dependencies,
because generic, data-dependent operations are so much slower than type-specific operations.

Things arc different in the Lisp machine. The instruction set we have just seen is a high-level
instruction set. Rather than specifying each individual machine operation. the compiler calls for
higher-level Lisp operations such as cdr or memq. This means that some instmctions take many
times longer to execute than others. Furthermore, in the Lisp machine we do not use data-type
declarations. Instead the machine is designed so that all instructions can be gel/eric; that is, they
determine. the types of their operands at run time. This means that there are data dependencies
that can have major effects on the speed of execution of an instmction. For instance, the +
instmction is quite fast if both operands tum out to be fixnums, but much slower if they are
bignums.

The Lisp machine also lIas a large amount of microcode, both to implement certain Lisp
functions and to assist with common operations such as function calling. rt is not as easy for a
user to read microcode and estimate its speed as with compiled code, although it is a much more
readable microcode'than on most compllters.

In this section we give some estimates of the speed of various operations. There are also
facilities for measuring the actual achieved speed of a program. These will not be documented
here as they arc currently being changed.

We wilt express all times in terms of the time to execute the simplest instl1lction, MOVE 0-
PDL ARGIO. This time is about two micrcJsccollds and will be called a "unit".

MOVE takes the same amount of time if the destination is O-IGNORE or O-NEXT, or if the
address is a LOCAL or POL-POP rather than an ARG. A MOVE that references a constant, via
either the FEF base register or the CaNST ANT base register, takes about two units. A MOVE
rhat references a special variable by means of U1C FEF base register and an invisible pointer takes
closer to three· units.

Use of a complex destination (O-LAST, O-RETURN, or O-NEXT -LIST) takes extra time
because of the extra work it has to do; calling a function, returning frorp. a function, or the
bookkeeping associated with forming a list These costs will be discussed a bit later ..

The other· Class J instmctions take longer than MOVE. Each memory reference required by
carlcdr operations costs about one unit. Note Ulat cdr requires one memory cycle if the list is
compactly cdr-coded and two cycles if it is not. The CALL instmction takes three units; The
CALLO instruction takes more, of course, since it actually calts the function.

The Class II (no destination) instmctions vary. The MOVEM and POP operations take about
one unit. (Of course they take more if FEF or CaNST ANT addressing is used.) The arithmetic
and logical operations and the predicates take two units when applied to fixnums, except for
multiplication and division which take five. The SETE -1 + and SETE -1- instructions take two
units, the same time as a push followed by a pop; i.e. (setq x (1 + x)) takes the same amount
of time as (setq x y). The SET -NIL and SET -ZERO instmctions take one unit The special
variable binding instmctions take several units.

DSK:LMMAN;CODE 27 16-MAR-Sl

Lisp Machine Manual 433 Estimating Run Time

A branch takes between one and two units.

The cost of calling a function with no arguments and no local variables that doesn't do
anything but return nil is about 15 units (7 cdrs or additions). This is the cost of a CALL FEFln
instruction, a MOVE to D-LAST, the simplest fonn of function-entry services, and a MOVE to
D-RETURN. If the function takes arguments the cost of calling the function includes the cost of
the instructions in the caller that compute the arguments. If the function has local variables
initialized to nil or optional arguments defaulted to nil there is a negligible additional cost. The
cost of having an &rest argument is less than one additional unit. But if the function binds
special variables there is an additional cost of 8 units per variable (this includes both binding the
variables on entry and unbinding them on return).

If the function needs an ADL. tYPically because of complex optional-argument initializations,
the cost goes lip substantially. It's hard to characterize just how Illuch it goes up by, since this
depends on what you do. Also calling for multiple values is more expensive than simple calling.

We consider the cost of calling functions to be somewhat higher than it should be. and would
like to improve it. But this might require incompatible system architecture changes and probably
will not happen, at least not soon.

folonum and bignum arithmetic arc naturally slower than fixnum arithmet.ic. For instance,
flonum addition takes 8 units more than tlxllum addition. and additipll of 6Q-bit bignums takes 15
units more. Note that these times include some garbage-collection overhead for the intermediate
results which have to be created in memory. Fixnums and small Honums do not take up any
memory and avoid this overhead. Thus smalHlollum additiun takes oniy about 2 units more than
fixnuOl addition. This garbage-collection overhead is of the "extra-pdl-area" sort rather than the .
full Baker garbage collector sort; if you don't understand this don't worry about it for now. .

Floating-point subtraction,rhultiplication, and divisio~ take just about the same time as
floating-point addition. Floating-point execution times can be as many as 3 units longer depending
on the arguments.

The run time of a Class IV (or miscellaneous) instmction depends on the instruction and its
arguments. The simplest instructions, predicates such as atom and numberp, take 2 units. This
is baliicaUy the overhead for doing a Class IV instruction. The cost of a more complex instlUction
can be estimated by looking at what it has to do. You can get a reasonable estimate by charging
one unit per memory reference. car operation, or cdr-coded cdr· operation. A non-cdr-coded cdr
operation takes two units. For instance, (memq 'nil '(a b c» takes 13 units, of which 4 are
pushing the arguments on the stack, 2 are Class IV instruction overhead. 6 are accounted for by
cars and cdrs, and 1 is "left over".

The cost of array accessing depends on the type of array and the number of dimensions. aref
of a I-dimensional non-indirect art-q array takes 6 units and aset takes 5 units. not counting
pushing the arguments onto the stack. (These arc the costs of the AR-1 and AS-1 instructions.)
A 2-dimensional array takes 6 units more. aref of a numeric array takes the same amount of
time as aref of an art-q array. aset takes 1 unit longer. aref of an art-float array takes 5 units
loriger than aref of an art-q array. aset takes 3 units longer.

The functions copy-array-contents and copy-array-portion optimize their array accessing to
remove overhead from the inner loop. copy-array-contents of an art-q array has a startup
overhead of 8 units, not including pushing the arguments, then costs just over 2 llnits per array

DSK:LMMAN;CODE27 16-MAR-81

Estimating Run Time 434 Lisp Machine Manual

clement.

The cons function takes 7 units if garbage collection is turned off. (list abc d) takes 24
units, which includes 4 units for getting the local variables a, b, C, and d.

DSK:J .Mr-.L\N;CODE 27 16-MAR-81

Lisp Machine Manual 435 Querying the User

28. Querying the User
The following functions provide a convenient and consistent interface for asking questions of

the user. Questions are printed and the answers are read on the stream query-io, which
nonnally is synonymous with terminal-io but can be rebound to another stream for special
applications.

We will first describe two simple functions for yes-orono questions, then the more general
function on which all querying is built

y-or-n-p &optional message stream
This. is used for asking the user a question whose answer is either "yes" or "no". It types
out message (if any), reads a one-character answer, echoes it as "Yes" or "No", and
returns t if the answer is "yes" or nil if the answer is "no". The characters which mean
"yes" are Y, T, space, and hand-up. The characters which mean "no" are N. mbout,
and hand-down. If any other character is typed. the function will beep and demand a "Y
or N" answer.

If the message argument is supplied. it will be printed on a fresh line (using the :fresh
line stream operation). Otherwise the caller is assumed to have printed the message
already. If you want a question mark and/or a space at the end of the message, you
mllst put it there yourself; y-or-n-p will not add it. stream detilUlts to the value of
query-io.

y-or-n-p should only be lIsed for questions which the user knows are coming. if the
user is not going to be anticipating the question (e.g. if the question is "Do you really'
want to delete all of your files?" out of the blue) then y-or-n-p should not be used,
because the user might type ahead a T, Y, N, space, or mbout, and therefore
accidentally answer the question. In such cases, use yes-or-no-p.

yes-or-no-p &optional message stream
This is used for asking the user a question whose answer is either "Yes" or "No". It
types out message (if any), beeps, and reads in a line from the keyboard. If the line is
the string "Yes", it returns t. If the line is "No", it returns nil. (Case is ignored, as are
leading and trailing spaces and tabs.) If the input line is anything else, yes-or-no-p
beeps and demands a "yes" or "no" answer. .

If the message. argument is supplied, it will be printed on a fresh line (using the :fresh
line stream operation). Otherwise the caller is assumed to have printed the message
already. If you want a question mark and/or a space at the end of the message, you
must put it there yourself; yes-or-no-p will not add it. stream defaults to the value of
query-io.

To allow the user to answer a yes-orono question with a single character, use y-or-n-p.
yes-or-no-p should be used for unanticipated or momentolls questions; this is why it
beeps and why it requires several keystrokes to answer it.

OSK:LMMAN;QUERY 8 16-MAR-81

Querying the User 436 Lisp Machine Manual

fQuery options jormat-string &rest jOl7lwt-args
Asks a question, printed by (format query-io jormal-slring jormat-args ...), and returns
the answer. fquery takes care of checking for valid answers, reprinting the question when
the user clears the screen, giving help, and so forth.

options is a list of alternating keywords and values, used to select among a variety of
features. Most callers will have a constant list which they pass as options (rather than
consing up a list whose contents varies). The keywords allowed are:

:type What type of answer is expected. The currently-defined types are :tyi (a
single character) and :readline (a line terminated by· a carriage return).
:tyi is thc default. .

:choices Defines the allowed answers. The allowed forms of choices are
complicated and explained below. The default is the same set of choices
as the y-or-n-p function (see above). Note that the :type and :choices
options should be consistent with each other.

:Iist-choices If t, the allowed choices are listed (in parentheses) after the question. The
default is t; supplying nil causes the choices not to be listed unless the
user tries to give an answer which is not one of the atlowed choices.

:help-function Specifics a ftmction to be catled if the user hits the HELP key. The
default help-function simply lists the available choices.. Specifying nil
disables special treatment of HELP. Specifying a function of three
arguments-the stream, the Jist of choices, and the type-Function-allows
slIIarter hclp processing. The type-function is the internal form of the
:type option and can usuatly be ignored.

:condition If non-nil, a condition to be signalled before asking the question. The
handler of this condition may supply an answer, in which case the user is
not asked. The details are given below. The default condition is :fquery.

:fresh-line . If t, query-io is advanced to a fresh line before asking the question. If
nil, the question is printed wherever the cursor was left by previous
typeout. The default is t.

:beep If t, fquery beeps to attract the user's attention to the question. The
default is nil, which means not to beep unless the user tries to give an
answer which is not one of the allowed choices.

:clear-input If t, fquery throws away type-ahead before reading the user's response to
the question. Use this· for unexpected questions. The default is nil, which
means not to throwaway typeahead unless the user tries to give an answer
which is not one of the allowed choices. In that case, typeahead is
discarded since the user probably wasn't expecting the question.

:select If t and query-io is a visible window, that window is temporarily selected
while the question is being asked. The default is nil.

:make-complete
If t and query-io is a typeout-window, the window is "made complete"
after the question has been answered. This tells the system that the
contents of the window are no longer useful. Refer to the window system
docllmentation For further explanation. The default is t.

DSK:UvlMAN;QUERY S 16-MAR-Sl

Lisp Machine Manual 437 Querying the User

The argument to the :choices option is a list each of whose elements is a choice. The
cdr of a choice is a list of the user inputs which correspond to that choice. These should
be characters for :type :tyi or strings for :type :readline. The car of a choice is either a
symbol which fquery should return if the user answers with that choice, or a list whose
first element is such a symbol and whose second element is the string to be echoed when
the user selects the choice. In the former case nothing is echoed. In most cases :type
:readline would use the first fonnat, since the user's input has already been echoed, and
:type :tyi would use the second fonnat, since the input has not been echoed and
furthennore is a single character, which would not be mnemonic to see on the display.

Perhaps this can be clarified by example. The yes-or-no-p function uses this list of
choices:

({t "Yes") (nil "No"))
and the y-or-n-p function uses this list:

(({t "Yes.") #/y #/t #\sp #\hand-up)
({nil "No.") #/n #\rubout #\hand-down))

If a condition is specified (or allowed to default to :fquery), before asking the question
fquery will signal the condition. (See section 26.1.1, page 389 for information about
conditions.) The handler will receive four arguments: the condition name, the options
argument to fquery, the Jorlllal-string argument to fquery, and the list of fhrmal-args
argurncnrs to fquery. As usual with conditions, if the handler returns nil the operation
proceeds as if there had been no handler. If the handler returns two values, t and ans,
fquery \'iill immediately return ails. No conventions have yet been lkfined for standard
COlldition IJalllt!S fur use wilh Iquery.

If you want to usc the fomlatted output functions instead of format to produce the
promting message, write

{fquery options (format: outfmt exp-or-string exp-or-string ...))
formatoutfmt puts the output into a list of a string, which makes format print it exactly
as is. There is no need to supply additional arguments to the fquery unless it signals a
condition. In that case the arguments might be passed so that· the condition handler can
see them. The condition handler will receive a list containing one string, the message, as
its third argument instead of just a string. If this argument is passed along to format, all
the right things happen. .

DSK:LMMAN;QUERY 8 16-MAR-81

Initializations 438 Lisp Machine Manual

29. Initializations
There are a number of programs and facilities in the Lisp Machine which require that

"initialization routines" be run either when the facility is first loaded, or when the system is
booted, or both. These initialization routines may set up data structures, start processes running;
open network connections, and so on.

An initialization that needs to be done once, when a file is loaded, can be done simply by
putting the Lisp fmms to do it in that file; when the file is loaded the forms will be evaluated.
However, some initializations need to be done each time the system is booted, and some'
initializations depen-rl on several files having been loaded before they can work.

The system provides a consistent scheme for managing these initializations. Rather than
having a magic function which runs when the system is started and knows everything that needs
to be initialized, each thing that needs initialization contains its own initialization routine. The
system keeps track of all the initializations through a set of functions and conventions, and
executes all the initialization routines when necessary. The system also avoids re-executing
initializations if a program file is loaded again after it has already been loaded and initialized.

There is something called an initialization list. 'nlis is an ordered list of illiJializations. Each
initialization has a name, a form to be evaluated, and a flag saying whether the fi}fln has yet
been evaluated or not. When the time comes, initializations are evaluated in the order that they
were added to the list. The name is a string and lies in the car of an initialization; thus assoc
may be Llsed on initialization lists.

add-; n it 1 ali zat i on flame [ann &optional list-a/keywords initialization-list-name
Adds an initialization called name with the forin form to' the initialization list specified
either by initialization-list-name or by keyword. If the initialization list already contains an
initialization called name, change its form to form.

initialization-list-name, if specified, is a symbol that has as its value the initialization list
If it is unbound, it is initialized (!) to nit If a keyword specifies an initialization list,
initialization-list-name is ignored and should not be specified.

The keywords allowed in list-o/keywords are of two kinds. These specify what
initialization list to use:

:cold Use the standard cold-boot list (see below).

:warm Use the standard warm-boot list (see below). This is the default.

:before-cold Use the standard before-disk-save list (see below).

:once Use the once-only list (see below).

:system Use the system list (see below).

These specify when to evaluate form:

:normal Only place the form on the list. Do not evaluate it until the time comes
to do this kind of initialization. This is the default uriless :system or
:once is specified. '.

DSK:LMMAN;INIT 5 16-MAR-81

Lisp Machine Manual 439 System Initialization Lists

:now Evaluate the form now as wel1 as adding it to the list.

:first Evaluate the form now if it is not flagged as having been evaluated
before. This is the default if :system or :once is specified.

:redo Do not evaluate the form now, but set the flag to nil even if the
initialization is already in the list and flagged t.

Actually, the keywords are compared with string-equal and may be in any package. If
both· kinds of keywords are used, the list keyword should come before the when keyword
in list-oikeYlVords; otherwise the list keyword may override the when keyword.

The add - initialization function keeps each list ordered so that initializations added first
are at the front of the list. Therefore, by controlling the order of ex.ecution of the
additions, ex.plicit dependencies on order of initialization can be controlled. Typically, the
order of additions is controlled by the loading order of files. The system list (see below)
is the most critically ordered of the pre-defined lists.

de 1 ete - i nit; ali za t i on name &optional keywords initialization-list-name
Removes the specified initialization from the specified initialization list. Keywords may be
any of the list options al10wed by add - initialization.

in; t; a 1; zat; ons initialization-list-name &optional redo-flag flag-value
. Perform the initializations in the specified list. redo-j!ag controls whether initializations that

have already been pcrfonned are re-performed; nil means no, non-nil is yes, and the
default is nil.]lug-value is the value to be bashed illto the flag slot of un entry. If it is
unspecified, it defaults to t, meaning that the system should remember that the
initialization has been done. The reason that there is no convenient way for you to
specify one of the specially-known-about lists is that you shouldn't be calling initializations
on them.

ra s at -; n; t i ali zat; on S initialization-list-name
Dashes the flag of all entries in the specified list to nil, thereby causing them to get rerun
the next time the function initializations is called on the initialization list

29.1 System Initialization Lists

The five initialization lists that are known about by the above functions allow you to have
your subsystems initialized at various critical times without modifying any system code to know
about your particular subsystems. This also allows only a subset of all possible subsystems to be
loaded wilhout necessitating either modifying system code (such as lisp-reinitialize) or such
kludgy methods as using fboundp to check whether or not something is loaded.

The :once initialization list is used for initializations that need to be done only once when the
subsystem is loaded and must never be done again. For example, there are some databases that
need to be initialized the first time the subsystem is loaded, but should. not be reinitialized every
time a new version of the software is loaded into a currently running system. This list is for that
purpose'. The initializations function is never run over it; its "when" keyword defaults to :first
and so the form is normally only evaluated at load-time, and only if it has not been evaluated
before. The :once initialization list serves a similar purpose to the defvar special form (see page
17), which sets a variable only if it is unbound.

DSK:LMMAN;INIT 5 16-MAR-Sl

System Initialization Lists 440 Lisp Machine Mariual

The :system initialization list is for things that need to be done before other initializations
stand any chance of working. Initializing the process and window systems, the file system, and
the ChaosNet NCP falls in this category. The initializations on this list are run every time the
machine is cold or wann booted, as well as when the subsystem is loaded unless explicitly
overridden by a :normal option in the keywords list In general, the system list should not be
touched by user subsystems, though there may be cases when it is necessary to do so.

The :cold initialization list is used for things which must be run mice at cold-boot time. The
initializations on this list are run after the ones on :system but before the ones on the :warm list
They are run only once, but are reset by disk-save thus giving the appearance of being run only
at cold-boot time.

'nle :warm initialization list is used for tllings which must be run every time the machine is
booted, including walm boots. The function that prints the greeting, for example, is on this list
Unlike the :cold list, the :warm list initializations are run regardless of tI1eir flags.

The :before-cold initialization list is a variant of the :cold list. Theseinitializations are run
before the world is saved out by disk-save. Thus they happen essentially at cold boot time, but
only once when tile world is saved, not each time it is started up. .

User programs are free to create their own initialization lists to be run at their own times.
Some system programs,. such as the editor, have tlleir own initialization. list for their own
purposes.

DSK:LMMAN;INIT 5 16-MAR-81

Lisp Machine Manual 441 Dates and Times

30. Dates and Times
The time: package contains a set of functions for manipulating dates and times: finding the

current time, reading and printing dates and times, converting between fonnats, and other
miscellany rcgardingpeculiarities of the calendar system. It also includes functions for accessing
the Lisp Machine's microsecond timer.

Times are represented in two different formats by the functions in the time package. One
way is to represent a time by many numbers, indicating a year, a month, a date, an hour, a
minute, and a second (plus, sometimes, a day of the week and timezone). The year is relative to
1900 (that is, if it is 1981. the year value would be 81); however, lhe functions that take a year
as an argument will accept either form. The month is 1 for January, 2 for February, etc. The
date is 1 for the first day of a month. The hour is a number from 0 to 23. The minute and
second are numbers from 0 to 59. Days of the week are fixnums, where 0 means Monday, 1
means Tuesday, and so on. I\. timezone is specified as the number of hours west of GMT; thus
in Massachusetts the timezone is 5. Any adjusunent for daylight savings time is separate from
this.

This "decoded" format is convenient for printing out times into a readable notation, but it is
inconvenient for programs to make sense of these numbers, and pass them around as arguments
(since there are so many of them). So there is a second representation. C<lllcd Universal Time,
which measures a time as the number of seconds sincc January I, 1900,al midnight GMT. This
"cncoded" format is easy to deal with inside programs, although it doesn't make much sense to
look at (it looks like a huge integer). So both formats are provided; there are fUllctions to
convertbctwecn the two formats: and many fi.ll1ctions exist in two fbrms, one tbr each format.

The Lisp Machine hardware includes a timer that counts once every microsecond. It is
controlled by a crystal and so is f.:1iriy accurate. The absplute value of this timer doesn't mean
anything useful, since it is initialized randomly; what you do with the timer is to read it at the
beginning and end of an interval, and subtract the two values to get the lcngth of the interval in
microseconds. These relative times allow you to time intervals of up to an hour (32 bits) with
microsecond accuracy.

The Lisp Machine keeps track of the time of day by maintaining a "timebase'" using the
microsecond clock to count off the seconds. When the machine first comes up, the time base is
initialized by querying hosts on the Chaos net to find out the current time.

There is a similar timer which counts in 60ths of a second rather than microseconds; it is
useful for measuring intervals of a few seconds or minutes with less accuracy. Periodic
housekeeping functions of the system are scheduled based on this timer.

DSK: LMMAN;TIME 16 16-MAR-81

I

Getting the Time 442 Lisp Machine Manual

30.1 Getting the Time

time:get-time
Get the current time, in decoded form. Return seconds, minutes. hours. date, month,
year, day-of-the-week. and daylight-savings-time-p, with the same meanings as
time:decode-universal-time (see page 444).

time:get-universal-time
Returns the current time. in Universal Time form.

30.L1 . Elapsed Time in 60ths of a Second

The following functions deal with a different kind of time. These are not calendrical
date/times, but simply elapsed time in 60ths of a second. These times are used filr many internal
purposes where the idea is to measure a small interval accurately, not to depend on the time of
day or day of month.

time
Returns a number which increases by 1 every 1160 of a second, and wraps around
rougl1ly once a day. Use the time-Iessp and time-difference functions to avoid getting
in trouble due to the wrap-around. time is completely incompatible with the Maclisp
function of the same name. .

tima-lessp timel time2
t if time! is earlier than time2, compensating for wrap-around, otherwise nil.

time-difference timel timel
Assuming timel is later than time2, returns the number of 60ths of a second difference
between them, compensating for wrap-around.

30.1.2 Elapsed Time in Microseconds

time:microsecond-time
Return the value of the microsecond timer, as a bignum.

time:fixnum-microsecond-time
Return the value of. the low 23 bits of the microsecond timer, as a fixnum. This is like
time:microsecond-time, with the advantage that it returns a value in the same fOlmat as
the time function, except in microseconds rather thall 60ths of a second. This means that
you can compare fixnum-microsecond-times with time-Iessp and time-difference.
time:fixnum-microsecond-time is also a bit faster, but has the disadvantage that since
you only see the low bits of the clock, the value can "wrap around" Illore quickly (every
few seconds). Note that the Lisp Machine garbage collector is so designed that the
bignums produced by time:microsecond-time are garbage-collected quickly and efficiently,
so the overhead for creating the bignums is really not high.

DSK:LMMAN;TIME 16 16-MAR-81

Lisp Machine Manual 443 Printing Dates and Times

30.2 Printing Dates and Times

time: pri nt-curren t-t i me &optional (stream standard -output)
Print the current time, formatted as in 11/25/80 14:50:02, to the specified stream.

time:print-time seconds minutes hours date 1I1011th year &optional
(strealll standard - output)

Print the specified time. formatted as in 11/25/80 14:50:02, to the specified stream.

time: PI'; nt-universal-t ime universal-time &optional (slrealll standard-output)
(Iilllezone time: *timezone*)

Print the specified time, fonnatted as in 11/25/80 14:50:02, to the specified stream.

time: p r i nt-cu r rent- da te &optional (slremn standard -output)
Print the current time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

time: p ri nt-date seconds minutes hOllrs date mOllth year day-of the-week &optional
(stream standard -output)

Print the specified time, formatted as in Tuesday the twenty-fifth of November, 1980;
3:50:41 pm, to the specified stream.

time: p r; n t": un; va r sa 1 - da te universal-tillle &optional (siream standard - output)
(timezolle time: *timezone*)

Print the specified time, formatted as in Tuesday the twenty-·fifth of November, 1980;
3:50:41 pm, to the specified stream.

time: pr; nt-br i ef - un 1 versa l-t ime universal-time &optional (stream standard-output)
reference-lime

This is like time:print-universaHime except that it omits seconds and only prints those
parts of universal-time that differ from reference-lime, a universal time that defaults to the
current time. Thus the output will be in one of the following three forms:

02: 59 ; the same day
3/4 14: 0 1 ; a different day in the same year
8/17174 15: 30 ; a different year

30.3 Reading Dates and Times

These functions will accept most reasonable printed representations of date and time and
convert them to the standard internal forms. The following are representative formats that are
accepted by the parser.

DSK:LMMAN;TIME 16 J6-MAR-81

Time Conversions 444 Lisp Machine Manual

"March 15, 1960" "15 March 1960" "3//15//60"
"15/ /3/ /60" "3//15//1960" "3-15-60"·" 15-3-1960"
"3-15" "15-March-60" "15-Mar-60" "March-15-60"
"1130." "11:30" "11:30:17" "11:30 pm" "11:30 AM" "1130" "113000"
"11.30" "11.30.00" "11.3" "11 pm" "12 noon"
"midnight" "m" "Friday, March 15, 1980" "6:00 gmt" "3:00 pdt"
"15 March 60" "15 march 60 seconds"
"Fifteen'March 60" "The Fifteenth of March, 1960;"
"One mi nute after March 3, 1960"
"Two days after March 3, 1960"
"Three minutes after 23:59:59 Dec 31, 1959"
"Now" "Today" "Yesterday" "two days after tomorrow"
"one day before yesterday" "the day after tomorrow"
"five days ago"

time: par s e siring &optional (start 0) (elld nil) (jiillirep t) base-time Illusl-have-time
date-Illust-have-year time-lI1usl-liave-second (daY-lIlusf-be-I'alid t)

Interpret string as a date and/or time, and return seconds, minutes, hours, date, month,
and year. start and end delimit a substring of the string; if end is nil, the end of the
string is used. l1lust-have-time means that sIring must not be empty. dale-lI1ust-liave-year
means that a year must be explicitly specified. till1e-lI1usl-hal'e-seculld means that the
second must be specified. daY-l/1llst-be- ralid means that if a day of the week is given,
then it must actually be the day that corresponds to the date. base-time provides the
defaults for unspecified components: if it is nil, the current time is useu. jlltllfep means
that the time should be imcrpreted as being in the future; for example, if the bas~ time
is 5:00 and the string refers to the time 3:00, that means the next day if fiilurep is non
nil, but it means lWO hours ago if futurep is nil.

time: parse-univarsal-t imo string &optional (startG) (end nil) (julurep t) base-lime
lIlust-lime-time date-lIl11st- have-year lime-must-Ital'e-second (daY-lI1usl-be- validt)

This is the same as time:parse except that it returns one integer, representing the time in
Universal Time.

30.4 Time Conversions

t ima: decode-un 1 versa l-t 1me universal-time &optional (timezonetime:*timezone*)
Convert universal-lime into its decoded representation. The following values are returned:
seconds, minutes, hours, date, month, year, .day-of-the-weck, daylight-savings-time-p.
dayliglit-savings-lime-p tells you whether or not daylight savings time is in effect; if so, the
value of hour has been adjusted accordingly_ You can specify timezone explicitly if you
want to know the equivalent representation for this time in other parts of the world.

time:encode-un1versal-time seconds lIlinules hours dale month year &optional timezone
Convert the decoded time into Universal Time fOimat, and return the Universal Time as
an integer. If you don't specify limezone, it dcf;lUlts to the current timczone adjusted for
daylight savings time; if you provide it explicitly. it is not adjusted for daylight savings
time. year may be absolute, or relative to 1900 (that is, 81 and 1981 both work).

DSK:LMMAN;TIME 16 16-MAR-81

Lisp Machine Manual 445 Internal Functions

time:*timezone* Variable
The value of time:*timezone* is the time zone in which this Lisp Machine resides,
expressed in terms of the number of hours west of GMT this time zone is. This value
does not change to reflect daylight savings time; it tells you about standard time in your
part of the wbrld.

30.5 Internal Functions

These functions provide support for those listed above. Some user programs may need to call
them directly, so they are documented here.

time:initialize-timebase
Initialize the timebase by querying Chaos net hosts to find out the current time. This is
called automatically during system initialization. You may want to call it yourself to
correct the time if it appears to be inaccurate or downright wrong.

time: dayl ight-savings-time-p hours date month year
Return t if daylight savings time is in effect for the specified hour; otherwise, return nil.
year may be absolute, or relative to 1900 (that is, 81 and 1981 both work).

time:daylight-savings-p
Return t if daylight savings time is currently in effect; otherwise, return nil.

tima:month-length month year
Return the number of days in the specified month; you must supply a year in case the
month is February (which has a different length during leap years). year may be absolute,
or relative to 1900 (that is, 81 and 1981 both work).

time:lsap-year-p year
Return t if year is a leap year; otherwise return nil. year may be absolute, or relative to
1900 (that is, 81 and 1981 both work).

time:verify-date date month year day-of the-week
If the day of the week of the date specified by date, mOllth, and year is the same as'day
ofthe-week, return nil; otherwise, return a string which contains a suitable error message.
year may be absolute, or relative to 1900 (that is, 81 and 1981 both work).

time:day-of-the-week-string day-of the-week &optional (mode':long)
Return a string representing the day of the week. As usual, 0 means Monday, 1 means
Tuesday, and so on. Possible values of mode are:

:Iong Return the full English name. such as "Monday", "Tuesday", etc. This
is the default.

:short

:medium

:french

:german

Return a three-letter abbreviation, sllch as "Mon", "Tue", etc.

Same as :short, but use "Tues" and "Thurs".

Return the French name, such as "Lundi", "Mardi", etc.

Return the German name, such as "Montag", "Dienstag", etc.

DSK:LMMAN;TIME 16 16-MAR-81

Internal Functions 446 Lisp Machine Manual

time:month-string mOlllh &optional (lIlode':long)
Return a string representing the month of the year. As usual, 1 means January, 2 means
February, etc. Possible values of mode are:

:Iong Return the full English name, such as "January", "February", etc. This
is the default.

:short

:medium

:roman

:french

:german

Return a three-letter abbreviation, such as "Jan", "Feb", etc.

Same as :short, but lise "Sept", "Novem", and "Decem".

Return the Roman numeral for mOllth (this convention is used in Europe).

Return the French name, such as "Janvier", "Fevrier", etc.

Return the German name, ·such as "Januar", "Februar", etc.

time: timazone- str i ng &optional (Iimezolle time:*timezone*)
(daylighl-SQl'illgs-p (time:daylight-savings-p)

Return the three-letter abbreviation for this time zone. For example, if timezone is 5,
then either "EST" (Eastern Standard Time) or "COT" (Central Daylight Time) will be
used, depending on daylight-savings-p.

DSK:LMMAN;TIME 16 16-MAR-81

Lisp Machine Manual 447 Miscellaneous Useful Functions

31. Miscellaneous Useful Functions
This chapter describes a number of functions which don't logically fit in anywhere else. Most

of these functions are not normally used in programs, but are "commands", i.e. things that you
type directly at Lisp.

31.1 Poking Around in the Lisp World

who- ca 11 s x &optional package
who-uses x &optional package

x must be a symbol or a list of symbols. who-calls tries to find all of the functions in
the Lisp world which call x as a function, use x as a variable, or use x as a constant.
(It won't find things that use cOllstants which contain x, such as a list one of whose
clements is x; it will only find it if x itself is used as a constant.) It tries to find all of
the functions by searching all of the function cells of all of the symbols on package and
package's descendants. package defaults to the global package, and so nonnally all
packages are checked.

If who-calls encounters an interpreted function definition, it simply tells you if x appears
anywhere in the interpreted code .. who-calls is smarter about compiled code, since it has
been nicely predigested by the compiler.

If x is a list of symbols, who-calls docs them all simultaneously, which is faster than
doing them one at a time.

who-uses is an obsolete name for who-calls.

The editor has a command, m-X List Callers, which is similar to who-calls.

The symbol unbound-function is treated specially by who-calls. (who-calls 'unbound
function) will search the compiled code for any calls through a symbol which is not
currently defined as a function. This is useful for finding errors such as functions you
misspelled the names of or forgot to write.

who-calls prints one line of infonnation for each caller it finds. It also returns a list of
the names of all the callers.

what-f1l as -call x &optional package
Similar to who-calls but returns a list of the pathnames of all the files which contain
functions that who - calls would have printed out. This is useful if you need to recompile
and/or edit all of those files.

apropos string &optional package
(apropos string) tries to find all symbols whose print-names contain string as a substring.
Whenever it finds a symbol, it prints out the symbol's name; if the symbol is defined as
a function and/or bound to a value, it tells you so, and prints the names of the
arguments (if any) to the function. It finds the symbols on package and package's
decendants. package defaults to the global package, so normally all packages are
searched. apropos returns a list of all the symbols it finds.

DSK:LMMAN;FD.HAC 76 16-MAR-81

Poking Around in the Lisp World 448 Lisp Machine Manual

wh e re - i s pnalllf &optional package
Prints the names of all packages which contain a symbol with the print-name pllame. If
p"ame is a string it gets upper-cased. The package package and all its sub-packages are
searched; package defaults to the global package, which causes all packages to be
searched. where - is returns a list of all the symbols it finds.

describe x
describe tries to tell you all of the interesting information about any object x (except for
array contents). describe knows about arrays, symbols, flonums, packages, stack groups,
closures, and FF.Fs, and prints out the attributes of each in human-readable form.
Somctimes it will describe something which it finds inside something else; such recursive
descriptions arc indented appropriately. For instance, describe of a symbol will tell you
about the symbol's value, its definition, and each of its properties. describe of a Honum
(regular or small) will show you its internal representation in a way which is useful for
tracking down roundoff errors and the like.

If x is a named-structure, describe handles it specially. To understand this, you should
read the section on named stmctures (sec page 239). First it gets the named-structure
symbol, and sees whether its function knows about the :describe operation. If the
operation is known, it applies the function to two arguments: the symbol :describe, and
the namcd-structure itself. Otherwise, it looks on the namect-stt1lcture symbol for
informacion which might have been left by defstruct: this information would [ell it what
the symbolic names for the entries in the structure are, and describe knows how to use
the 113m(;S to print out '.'illat each field's name and contellls is.

describe always returns its argument, in case you want to do something else 1O it.

'inspect x
A window-oriented version of describe. See the window system documentation for
details, or try it.

disassemble function
junction should be a FEF, or a symbol which is defined as a FEF. This prints out a
human-readable version of the macro-instructions in function. The macro-code instruction
set is explained in chapter 27, page 417.

The grindef function (see page 318) may be used to d1splay the definition of a non-compiled
function.

room &rest areas
room tens you the amount of physical memory on the machine, the amount of available
virtual memory not yet filled with data, and the amount of "wired" physical memory (Le.
memory not available for paging). Then it tells you how much room is left in some
areas. For each area it tells you about, it prints out the name of the area, the number of
regions which currently make lip the area, the current size of the area in kilowords, and
the amount of the area which has been allocated, also in kilowords. I f the area cannot
grow, the percentage which is free is displayed.

(room) tells you about those areas which are in the list which is the value of the variable
room. These are the most interesting ones.

DSK:LMMAN;FD.HAC 76 16-MAR-81

Lisp Machine Manual 449 Utility Programs

(room areal area2 ...) tells you about those areas, which can be either the names or the
numbers.

(room t) tells you about all the areas.

(room nil) does not tcll you about any areas; it only prints the header. TIlis is useful if
you just want to know how much memory is on the machine or how much virtual
memory is available.

room Variable
'01e value of room is a list of area names and/or area numbers, denoting the areas which
the function room will describe if given no argulllcnts. Its initial value is:

(working-storage-area macro-campi led-program)

set-rnemory-s i ze n-words
set-memory-size tells the virtual memory system to use only II-words words of main
memory for paging. Of course, n-words may not exceed the alllount of main memory on
the machine.

31.2 Utility Programs

ed &optional x
ed is rhe main n.mction for getting into the editor, Zwei. Zwei is not yet documented in
this manual, bur. the commands arc v(;ry similar to Emacs.

(ed) or (ed nil) simply enters the editor, leaving you in the same buffer as the last time .
you were in the editor.

(ed t) puts you in a fresh buffer with a generated name (like BUFFER-4).

(ed palhname) edits that file. patlmame may be an actual pathname or a string.

(ed'foo) tries hard to edit the definition of the foo function. It will find a buffer or file
containing the source code for faa and position the cursor at the beginning of. the code.
In general, foo can be any function-spec (see section 10.2, page 124).

(ed 'zwei:reload) reinitializes the editor. It will forget about all existing buffers, souse
this only as a last resort

di red &optional pathname
Puts up a window and edits the directory named by palhname. which defaults to the last
file opened. While editing a directory you may view. edit, compare, hardcopy, and
delete lhe files it contains. While in the directory editor type the HELP key for further
information.

rna i 1 &optional who what,
Sends mail by putting up a window in which you may compose the mail. who is a
symbol or a string which is who to send it to. what is a string which is the initial
contents of the mail. If these are unspecified they' can be typed in during composition of
the mail. Type the END key to send the mail and return from the mail function.

DSK:LMMAN;FD.HAC 76 16-MAR-81

Utili ty Programs 450 Lisp Machine Manual

bug &optional who what
Reports a bug. who is the name of the faulty program (a symbol or a string). It defaults
to lispm (the Lisp machine system itself). what is a string which is the initial contents of
the mail. bug is like mail but includes information about the system version and what
machine you are on in the text of the message. This information is important to the
maintainers of the faulty program; it aids them in reproducing the bug and in
detelmining whether it is one which is already being worked on or has already been fixed.

qsend who &optional what
Sends a message to another user. qsend is different from mail because it sends the
message immediately; it will appear within seconds on the other user's screen, rather than
being saved in her mail file.

who is a string of the form "user@!lOst"; host is the name of the Lisp machine or
timesharing system the user is currently logged-in to. what is a· string which is the
message. If what is not specified, you will be prompted to type in a message. Unlike
mail and bug, qsend docs not put up a window to allow you to edit the message; it just
sends it.

[qsend currently does not evaluate its arguments, and is implemented as a macro, but
lhis should probably be changed.]

print-sends
Reprints any messages that have been received. This is useful if you want to see a
message again.

tv:print-notifications
Reprints any notifications that have been received. The difference between notifications
and sends is that sends come from other users, while notifications are asynchronous
messages n·om the Lisp Machine system itself.

si:print-disk-error.-log
Prints information about the half dozen most recent disk errors (since the last cold boot).

peek &optional character
peek is similar to the ITS program of the same name. It displays various information
about the system, periodically updating it. Like ITS PEEK, it has several modes, which
are entered by typing a single key which is the name of the mode. The initial mode is
selected by the argument, character. If no argument is given, peek starts out by
explaining what its modes are.

has tat &rest hosts
Asks each of the hosts for its status, and prints the results. If no hosts are specified, all
hosts on the Chaosnet are asked. Hosts can be specified either by name or by number.

For each host, a line is output which either says that the host is not responding or gives
metering information for the host's network attachments. If a host is not responding, that
usually means that it is down or there is ·no such host at that address. A Lisp machine
can fail to respond if it is looping inside without-interrupts or paging extremely heavily.
such that it is simply unable to respond within a reasonable amount of time.

DSK:LMMAN;fO.HAC 76 16-MAR-81

Lisp Machine Manual 451 The Lisp Top Level

supdup &optional host
host may be a string or symbol, which wiIl be taken as a host name, or a number, which
will be taken as a host number. If no host is given, the machine you are logged-in to is
assumed. This function opens a connection to the host over the Chaosnet using the
Supdup protocol, and allows the Lisp Machine to be used as a terminal for any ITS or
TOPS-20 system.

To give commands to supdup, type the NETWORK key followed by one character. Type
NETWORK followed by HELP for documentation.

te 1 net &optional host simulate-imlac
telnet is similar to supdup but uses the Arpanet-standard Telnet protocol, simulating a
printing tenninal rather than a display tenninal.

31.3 The Lisp Top Level

These functions constitute the Lisp top level, and its associated functions.

si:lisp-top-level'
This is the first function called in the initial Lisp environment. It calls lisp-reinitialize,
clears the screen, and calls si:lisp-top-leveI1.

lisp-roinitializa
This function does a wide variety of things, such as resetting the 'values of various global
constants and initializing the error system.

si:lisp-top-levell
This is the actual top level loop. It reads a fOlm from standard - input, evaluates it,
prints the result (with slashification) to standard-output, and repeats indefinitely. If
several values are returned by the form all of them will be printed. Also the values of *,
+, -, II, + +, **, + + +, and *** are maintained (see below).

break Special Form
break is used to enter a breakpoint loop, which is similar to a Lisp top level loop.
(break tag) will always enter the loop; (break tag conditional-form) will evaluate
conditional-foml and only enter the break loop if it returns non-nil. If the break loop is
entered, break prints out

;Breakpoint ~g; Resume to continue, Abort to quit.
and then enters a loop reading, evaluating, and printing forms. A difference between a
break loop and the top level loop is that when reading a fonn, break checks for the
following special cases: If the Abort key is typed, control is returned· to the previous
break or error-handler, or to top··level if there is none. If the Resume key is typed,
break returns nil. If the symbol 9p is typed, break returns nil. If the list (return form)
is typed, break evaluates forlll and returns the result.

DSK:LMMAN;FD.HAC 76 16-MAR-81

The Lisp Top Level 452 Lisp Machine Manual

pr i n1 Variable
The value of this variable is normally nil. If it is non-nil, then the read-eval-print loop
will usc its value instead of the definition of prin 1 to print the values returned by
functions. This hook lets you control how things are printed by all read-eval-print
loops-the Lisp top level. the break function, and any utility programs thatinc1ude a
read-eval-print loop. It docs not affect output from programs that call the prin1 function
or any of its relatives such as print and format. If you set prin 1 to a new function,
remember that the rcad-eval-print loop expects the function to print the value but not to
output a return character or any other delimiters.

- Variable
While a form is being evaluated by a read-eval-print loop, - is bound to the fmm itself.

+ Variable
While a form is being evaluated by a read-eval-print loop, + is bound to the previous
form that was read by the loop.

• Variable
While a fOlm is being evaluated by a read-eval-print loop, * is bound to the result
printed the last time through the loop. If there were several values printed (because of a
multiple-value return), * is bound to the first value .

. / / Variable
While a form is being evaluated by a read-eval-print loop, 1/ is bound to a list of the
results printed the last time through the loop.

++ Variable
+ + holds the previous value of +, that is, the form evaluated· two interactions ago.

+++ Variable
+ + + holds the previous value of + + .

.. Variable
* * holds the previous value of *, that is, the result of the form evaluated two interactions
ago .

..... Variable
*** holds the previous value of **.

sys: *break-bi nd; ngs* Variable
When break is called, it binds some special variables under control of the list which is
the value of sys: *break - bindings *. Each clement of the list is a list of two elements: a
variable and a funn which is evaluated to produce the value to bind it to. The bindings
happen sequentially. Users may push things on this list (adding to the front of it), but
should not replace the list wholesale since several of the variable bindings on this list are
essential to the operation of break.

DSK:LMMAN;FD.HAC 76 16-MAR-81

Lisp Machine Manual 453 The Garbage Collector

1; sp-crash-l i st Variable
The value of lisp-crash-list is a list of forms. lisp-reinitialize sequentially evaluates
these forms. and then sets lisp-crash-list to nil.

In most cases, the initialization facility should be used ralher than lisp-crash-list. Refer
to chapter 29, page 438.

31.4 The Garbage Collector

gc-on
Turns garbage collection on. It is off by default, currently.

gc-off
Turns garbage collection off.

number-gc-on &optional (on-p t)
Turns the special bignum/flonum garbage collector on, or off if on-p is nil. This garbage
collector is on by default, since it has negligible overhead and significantly improves the
performance computational programs.

31.5 Logging In

Logging in tells the Lisp Machine who you arc, S0 that other users can see who is logged in,
you can receive messages, and your INIT file can be run. An IN IT file is a Lisp program which
gets loaded when you log in; it can be used to set up a personalized environment.

When you log out, it should be possible to undo any personalizations you have made so that
they do not affect the next user of the machine. Therefore, anything done by an INIT file
should be undoable. In order to do this, for every form in the INlT file, a Lisp fonn to undo
its effects should be added to the list which is the value of logout-list. The fUllctions login -setq
and login-eval help make this easy; see below.

user-id Variable
The value of user- id is either the name of the logged in user, as a string, or else an
empty string if there is no user logged in. It appears in the who-line.

logout-list Variable
The value of logout-list is a list of fOlms which are evaluated when a user logs out.

log inflame &optional host /oad-init-jile
Sets your name (the variable user-id) to. name and logs in aflle server 011 host, which
defaults to AI. host also becomes your detllllit file host. If host requires passwords for
logging in you will be asked for a password. When logging in to a TOPS-20 host, typing
an asterisk before your password will enable any special capabilities you may be
authorized to usc.

Unless load-illit-file is specified as nil, login will load your init file if it exists. On ITS,
your init file is name LISPM on your home directory. On TOPS-20 your init file is
LISPM.INIT on your directory.

DSK:LMMAN;FD.HAC 76 16-MAR-Sl

Dribble Files 454 Lisp Machine Manual

If an'yone is logged into the machine already, login logs him out before logging in name.
(See logout.) Init files should be written using the login-setq and login-eval functions
below so that logout can undo them. Usually, however, you cold-boot the machine
before logging in, to remove any traces of the previous user. login returns t.

. logout
First, logout evaluates the forms on logout-list. Then it sets user-id to an empty string
and logout-list to nil, and returns t.

login-setq Special Form
login-setq is like setq except that it puts a setq form on logout-list to set the variables
to their previous values. .

login-eval x
login-eval is used for fUnctions which are "meant to be called" from INIT files, such as
zwei:set-comtab-return-undo, which conveniently return a form to undo what they did.
login-eval adds the result of the form x to the logout-list.

31.6 Dribble Files

dribble-start filename
dribble-start opens filename as a "dribble file" (also known as a "wallpaper file"). It
rebinds standard-input and standard-output so that all of the terminal interaction is
directed to u1C file as well as the terminal..

dribble-end
This closes the file opened by dribble-start and resets the I/O streams.

31.7- Status and SStutus

The status and sstatus special forms exist for compatibility With Maclisp. Programs that wish
to run in both Mac1isp and Lisp Machine Lisp can use status to determine which of these they
arc running in. Also, (sstatus feature ...) can be used as it is in Maclisp.

status Special Fonn
(status features) returns a list of symbols indicating features of the Lisp environment.
The complete list of all symbols which may appear on this list, and their meanings, is
given in the Maclisp manual. The default list for the Lisp Machine is:

(loop de f s t r u c t site so rtf a s loa d s t r i n 9
newio roman trace grindef grind lispm)

The value of this list will be kept up to date as features arc added or removed from the
Lisp Machine system. Most important is the symbol lispm, which is the last element of
the list; this indicates that the program is execllting on the Lisp Machine. site is a
symbol indicating where the machine is located, slich as :mit or :xerox. The order of this
list should not be depended on. and may not be the same as shown above.

This features list is used by the # + read-time conditionalization syntax. . See page 287.

DSK:LMMAN;FD.HAC 76 16-MAR-81

Lisp t'vlachine Manual 455 Status and SStatus

(status feature !J)'lllbol) returns t if symbol is on the (status features) list. otherwise nil.

(status nofeature symbol) returns t if symbol is not on the (status features) list,
otherwise nil.

(status status) returns a list of all status operations.

(status sstatus) returns a list of all sstatus operations.

sstatus Special Form
(sstatus feature symbol) adds symbol to the list of features.

(sstatus nofeature symbol) remov.cs symbol from the list of features.

DSK:UvlMAN;FD.HAC 76 16-MAR-81

Concept Index

"&" keywords, 135
reader macros, 286
%%kbd fields, 277
60ths of a second, 442
active process, 377
advice to functions, 407
alist, 61
allocation of storage, 76
alphabetic C3S11, 116
alterant macros, 236
area, 50, 177
argument checking, 395
array, 8,98
array initialization, 102
array leader, 100, 103
array - clements loop iteration path, 220, 221
arrest reason, 377
association list, 61, 64
atom, 4,8
attribute, 66
band, 371
base-flavor, 268
basic definition, 125, 139
binding, 6
blocks. 67
byte, 94
by te speci fiefs. 94
calch, 43
cell, 156
character object, 293
character set, 276
circular list, 48
cleanup handler, 44
closure, 8, 144
combined-method, 256
compiled code, 417
compiler, 181
condition handler, 390
conditional, .30
conditionalization, read-time, 287
conditionalizing c1ause(s), in loop, 213
conditions, 389
cons, 7,48
constl11ctor macros, 235
control stl11cture, 30
coroutine, 144,149
data type, 7
data type keywords, in loop, 215
uales and times, 441
debugger, 398
declaration, 184
derlari ng packages, 348
default (pathname), 335
definition, 6, 124

456

Concept Index

defstruct, 226
dependency, 361
device (pathname), 332
directory (of files), 330
directory (pathname), 332
disembodied property list, 67
displaced array, 100,102
displacing macros. 198
dotted list, 48, 285
dotted pair, 4
clements (of a list), 48
encallsulation, 125, 139
entity. 8,148
eq versus equal, 10
equal versus =, 10
error system, 389
eval-when, L83
evalhook, n
evaluation, 12
exit, 30
external value cell, 145
r.1Sdump, 189
FEF, 6,131
file, 323
file directory, 330.
file property list, 326
filename, 332
fill pointer, 100
ftsh, 32
flavor, 245
flavor-method -symbol, 259
flow of control, 30
fonnalled output, 305
fonnalling lisp code, 318
function. 124
function cell. 79
function entry frame, 131
function renaming, 143
function spec, 124
generic path name, 337
grinding, 318
grouped array. 238
handling conditions, 390
handling errors, 389
hash table, 69, 73
horne directory, 339
host (l'uthname). 332
110 stream, 297
index ofr.~et. 101, 102
indicator, 66
indirect array, lOl, 102
init file, 339
initialitation, 438
input and output, 276

Lisp Machine Manual

16-MAR-Sl

Lisp Machine Manual

input to the compiler, 182
instance, 245
internal value cell, 145
interned-symbols loop iteration path, 220
invisible-pointer, 160
iteration, 30, 35, 204
ITS path names, 342
keyboard character, 277
kitty, 34
kitty, yu -shiang, 66,308
lambda list, 18
lambda-list keywords, 135
lexpr, 25
list, 48
loading, 325
local variable, 13
locative, 8, 156
lock, 381
loop, 204
lower case letter, 116
machine code, 417
Maclisp file manipulation, 343
macro character, 285
macro defining macros, 226
macro-defining macros, 193
macros, 191
mapping, 45
MAR, 414
merge (pathname), 333, 335
mes!i3ge, 245
method, 245
microseconds, 442
mixin, 268
module, 360
monitoring the value of a variable, 415
multiple accumulations, in loop, 211
multiple values, 26
multiprocessing, 377
name (pathname), 332
named stlUcture, 239
named -structure, 281
namelists (Maclisp compatibility), 343
naming convention, 7
nil. used as a condition name, 393
non -local exit, 30,43
number, 8.84
object, 245
optimizer. compiler, 187
lll'ller of evaluation in iteration clauses. in 10l'P, 207
package, 345
package dcclarat ions, 348
parse (pathname), 333
partition, 371
patch, 366
pathname, 332
plane, 112
plist, 66
ppss, 94
predicate, 7

457

pretty - printing, 318
print name, 6. 81
printer, 280
process, 377
process wait function, 377
program source file, 325
property list, 6. 66
property list. file, 326
querying the user, 435
quote, 23
reader, 283'
readtable, 289
record (structure), 226
recursion, 30
rename-within, 143
resource, 76
resumer, 150
returning multiple vaiues, 26
rubout handier, 319
run reason, 377
S-cxpression, 4
saving the Lisp world, 371
scheduler, 378

Concept Index

sequential vs parallel binding and initialization. in loop, 206
set, 61
self, 201
sharp sign reader macros, 286
signaller, 390
signalling conditions, 390'
signalling errors, 393
simple process, 387
single-character symbol, 290
slashification, 280
slot, 228
sorting, 74
special character, 288
special forms, 129
special variable, 13, 183
stack group, 99, 149
stepping through evaluation, 411
storage allocation, 76
stream, 297
string, 8, 115
structured path name components, 335
structures, 226
sl.lbprimitive, 158
su bscri pt, 98
substitution, 57
symbol. 6,7,78
system, 359
system nmintenunce, 366
tenninating the iteration, in loop, 212
throw, 43
times and dates, 441
TOPS - 20 pathnames, 343
tracing function execution, 404
transformation, 361
trcc, 48
type (pathname), 332

16-Mi\R-Sl

Concept Index

types of arrays, 98
universal time, 441
unspecific pathname components, 334
unwind protection, 44
unwinding a stack, 44
upper case letter, 116
vallie cell, 78
variable bindings. in loop, 208
version (pathname), 332
wait, 377'
yes-or-no, 435

458 Lisp Machine Manual

J
I,

16-Mi\ R-81

Lisp Machine Manual

si:process, 386
si:simple-process, 387
si:vanilla - flavor, 269

459

Flavor Index

Flavor Index

L6-MAR-81

Message Index

:active- p (to process), 385
:advance - input - buffer, 330
:arrest - reason (to process), 385
:arrest-reasons (to process), 385
:beep, 300
:c1ear- input, 299
:c1ear- output, 300
:c1ear-screen. 301
:c1ose, 300
:crealion-date, 329
:deJete. 330
:describe, 269
:device (to path name), 340
:directory (to pathname), 340
:cval- inside- yourself, 269
: fin ish. 300
:flush (to process), 386
:fnl (to its-pathname), 342
:fn2 (to its- path name), 342
:force- output, 300
: fresh-line, 2911
.:fullcall-inside-yourself, 270
:gcneric-palhname (to path name), 341
:get (to pathname), 341
:get- handlcr- for, 269
:gct- input - buffer, 330
:gell (to path name), 341
:host (to path name), 340
:info, 329
:initiai - form (to process), 384
:initial-stack-group (to process), 384
:interrupt (to process), 386
:kill (to process), 386
:lcngth, 329
:line- in, 299
: line - out, 299
:listen, 298
:name (to pathname),' 340
:lIamc (to process), 383
:ncw-device (topathname), 340
:new-dircctory (to pathname), 340
:ncw-name (topathllarne), 340
:ncw - palhname (10 pathnmne). 340
:IICW-SlrllClured-del'ice (to path name), 340
:new-slrllcilired-direclory (lopulhname), 340
:new-slnJclured-nallle (10 palhname), 340
:ncw -type (to pathnallle), 340
:new- version (10 path name), 340
:pathname, 329
:plist (10 palhnallle), 341
:prcset (10 process), 385
:print -self, 269
:priority (10 process), 384
:pUlprop (to pnlhnume), 341

460 Lisp Machine Manual

Message Index

:qfaslp, 329
:qllantum (to process), 384
:qllantum - remaining (to process), 384
:read - cursorpos, 301
:read-pointer, 330
:remprop (10 pathname), 341
:rename, 330
:reset (to process), 386
:revoke-arrest-reason (to process), 385
:revoke- nm - reason (to process), 385
:rewind, 330
:rubout - handler, 300
:run -reason (to process), 385
:run -reasons (to process), 385
:runllable-p (to process), 385
:set-byte-size, 330
:set - cursorpos, 301
:set - pointer, 330
:sel-priority (to process), 384
:set-quantulll (to process), 384
:set-waml-boot-action (to process), 385
:silllple-p (to process), 385
:stack - group (to process), 383
:string - for- dired (to path name), 341
:string - for- editor (to path name), 341
:string - for- host (to palhname), 341
:string - for- printing (to pl\thname), 341
:string- for-wholine (to path name), 341
:string - ou t, 299
:truename, 329
:tyi, 297
:tyi-no-hang, 301
:tyo, 297
:type (to pathname), 340
:untyi, 298
:untyo, 301
:untyo-mark, 301
:version (to path name), 340
:wait - argument -list (to process), 384
:wait- funclion (to process), 384
:warm-boot-action (to process), 385
:which -operations, 269,298
:whostate (to process), 384

16-ivIAR-81

Lisp Machine Manual

sys:%aging- depth, 176
sys:%count- age - flushed - pages, 176
sys:%count-agcd-l)ages, 176
sys:%count -chaos -transmit -aborL~, 173
sys:%count-cons-work, 174
sys:%count - disk - ecc - corrected -errors, 175
sys:%counl-disk-errors, 175
sys:"bcount - disk - page - read - operations, 174
~1's:%coullt-disk-page-reads, 174
sys:%count-disk-page-write-busys, 175
sys:%count-disk -page-write- operations, 175
sys:%count-disk-page-write-waits, 175
sys:%coum-disk-pagc-writes, t74
sys:%count-disk -prcpagcs- not-used, 175
sys:%count-disk-prepages-used, 175
sys:%count-disk-read-compare-differences, 175
sys:%count- disk - read - compare- rereads, 175
sys:%count - disk - read - compare- rewrites, 175
sys:%count- disk - reealibratcs, 175
sys:%count- findcore-clI1crgencics, 176
sys:%count- findcore-stcps, 176
sys:%count- first -level-map-reloads, 174
sys:%count-fresh-pages, 174
sys:%count-meta -bits-map-reloads,. 174
sys:%count-pdl-buffer-memory- f.'lults, 174
sys:%count- pdl- buffer- read - faults, 174
sys:%count -pdl- buffer-write-fautts, 174
sys:%count -scavenger-work, 174
sys:'1'oeount-second -level-map - reloads, 174
sys:%disk -error-log -pointer, 176
sys:%disk-wait-time, 175
sys:%tv-c1ock-rate, 174

461 rv'leter Index

Meter Index .1
I

l6-MAR-Sl

Variable Index 462 Lisp Machine Manual

Variable Index

%%ch-char, 277
%%ch - font, 277
%%kbd-char, 277
%%kbd-control, 277
%%kbd-control-meta, 277
%%kbd-hyper, 277
%%kbd-meta, 277
%%kbd -mouse, 278
%%kbd - mouse-button, 278
%%kbd-mouse-n-clicks, 278
%%kbd -super, 277
%%q-all-bul-cdr-code, 167
%%q-all-bul-pointer, l67
%%q-all-but-typed-I)ointer, 167
%%q-cdr-code, 166
%%q-data-type, 166
%%q - flag - bit. 166
%%q-high-half, 167
%%q-Iow-half,' 167
%%q-pointer, 166
%%q-pointcr-within-page, 167
%%q- typed -pointer, 167
%mar-high, 172
',amar-Iow, 172
%microcodc-version - number, 171
*, 452
**, 452
***, 452
all-flavor-names, 258
*nopoint, 280
+, 452
+ +, 452
+ + +, 452
-, 452
II, 452
all- special-switch, 186
allow - variables - in - function - position - switch, 186
alphabetic-case-affects-string-comparison, 116
area -list, 179
arglist, 406
array - biL~ - per-clement, 100
array-clements-per-q, 99
array - types, 99
art -16b, 98
art - lb, 98
art- 2b, 98
art·- 32b, 99
an-4b, 98
art -8b, 98
art - float, 99
an-q, 98
all - q -list, 98
art - reg - pdl, 99
art - special- pdl, 99

art - stack - group - head, 99
art -string, 99
base, 280
cdr-error, 167
cdr- next, 167
cdr-nil, 167
cdr-normal, 167
current - process, 379
default - cons - area, 178
ch:error-handler-io, 302
error-olltput, 302
crrsct, 398
evalhook, 413
Is:*default -Ilathname - defaults*, 336
f.~:*defaults-are-pcr-host*, 336
fs:*its - unillleresting - types*, 342
fs: *known - types·, 337
f.~:*llathname-hash-t.1ble*, 340
fs: last -file - opened, 337
fs:load -pathname-defaults, 337
ibase, 283
inhihit- fdefine-warnings, 136
inhibil-scavenging -flag, 172
inhibit - scheduling -flag, 379
inhibil-style-warnings-switch, 186
lambda -list - keywords, 135
lisp-crash-Iist, 453
logout -list, 453
macro - compiled - program, 180
obsolete - function - warning -switch, 186
opcn-code-map-switch, 186
package, 351
permanent - storage - area, 180
prinl, 452
prinlength, 282
prinlevel, 282
q - data - types, 160
query-io, 302
read -preserve-delimiters, 292
readtable, 289
room, 449
IUbout - handler, 320
run-in -maclisp-switch, 186
self, 262
si:*hatch-modc-p*, 363
si:*lile- transformation - function*, 364
si:*flavor-compilations*, 264
si:*makc- system - forms- (0- be-evaled -after*, 363
si:*make-sys(em - forms-(o- be-evaled - before*, 363
si:*make-sy:;(em- fClIms- to- be-cvuled - finally·, 363
si:*qllery-lype*, 363
si:*reao-all*, 364
5i:*silcnt -1'*, 363
si: 'system - being -defined*, 364

16-MAR-8l

Lisp Machine Manual

si:*system-being-made*, 363
si: *top -level-transformations·, 364
si:advised - functions, 409
si:encapsulation -standard -order, 141
si: initial- process, 380
si:initial- readtable, 289
si:loop-use-systcm - dcstructuring?, 217
standard - input, 302
standard - output, 302
sys:%chaos-csr-address, 172
sys:%current - staCK - group, 151
sys:%currcnt-stack -group -calling-args- number, 171
sys:%current -stack - group-calling-args- pointer, 171
sys:%current- stack - group -previous-stack -group, 151
sys:%current - stack - group - state, 171
sys:%disk -blocks-per-cylinder, 173
sys:%disk-blocks-per-track, 173
s),s:%disk-run-light, 172
sys:%error-handler-stack-group, 171
sys:%gc- flip - ready, 172
sys:%gc-generation - number, 172
sys:%inhibit - read -only, 172
sys:%initial- ref, 171
sys:%initial- stack - group, 171
sys:%loaded - band, 172
sys:%mcter- buITer- pointer, 173
sys:%meter- disk -address, 173
sys:%mctcr- disk - count, 173
sys:%metcr-global-enable, 173
sys:%number- of-micro - entries, 171
sys:%page-colls-alarm, 172
sys:%read - compare - enables, 173
sys:%region-colls-alarm, 172
sys:%scheduler-stack -group, 172
sys:%trap-micro-pc, 171
sys:*break-bindings*, 452
sys:a - memory - counter- block - names, 176
sys:a - memory -location - names, 173
sys:active-processes, 380
sys:all- processes, 380
sys:clock - function -list, 380
sys:currenlly- prepared -sheet, 173
sys:fasl-constants-arca, 180
sys:fdcfinc-lile- path name, 136
sys:init-list-area, 180
sys:nr-sym, 180
sys:number-cons-area, 171
sys:p- n -string, 180
sys:pkg-arca, 180
sys:property-list -area, 180
sys:schedulcr-stack -group, 380
tcrrninal- io, 302
time:*timezone*, 445
trace-compile- nag, 407
trace-output, 302
uscr- id, 453
values, 406
working -storage-area, 180

463 Variable lndex

HdvIAR-81

Function Index

,., 87

:S, 87
~, 87
%24-bit-difference, 96
%24-bit-plus, 96
%24-bit-times, 96
%aclivate-open-call-block, 167
%allocale- and - inilialize, 162
%allocate - and - inil ialize - array, 163
%area - number, 179
%args-info, 139
o/o.1ssure-pdl- room, 168
%Jata -type, 161
%di\'ide-double, 97
%find - sll1lcture - header, 162
%find-structure-Ieader, 162
%Iloat - double, 97
%Iogdpb, 95
%Iogldb, 95
%mnke- pointer, 161
%make-pninler-omel, 161
%mulliply- fraclions, 97
%open-call-block, 167
%p-cdr-code, 165
%p-contents-a~-Iocative, 164
%p-contents-as-Iocative-offset, 164
%p-conlenls-offset, 164
%p - data - type, 165
%p - deposit - field, 165
%p - deposit - field - offset, 165
%p-dpb, 165
%p-dpb-offset, 165
%p-Ilag-bit, 166
%p-Idb, 164
%p -Idb - offset, 165
%p -mask - field, 165
%p - mask - field - offset, 165
%p-pointer, 165
%I>-store-cdr-code, 166
%p-slore-contents, 164
%p-store-contents-offset, 164
%p-slore-data-type, 166
%p-slore- nag-bit, 166
%p-slore-poinler. 166
%p-slore-tag-and-poinlcr, 164
%poinler, 161
%pointcr- difference, 162
%pop, 168
%push, 167
%rcgion-number, 179
%rcmaindcr-double, 97
~~,l;jck- frame-poinler. 166
%slore-condilional. 163
'1slring-cqual, 117

464

Function Index

%string-search -char, 119
%structure-boxed -size, 162
%struclure-lotal-size, 162
%unibus-read, 163
%unibus-write, 163
%xbus-read, 163
%xbus-write, 163 .
*, 88
*$, 88
*array, 114
*catch, 43
*dif, 90
*cxpr, 185
*fexpr, 185
*lexpr, 185
*plus, 90
*quo, 90
*throw, 43
*limes. 90
"unwind -stack, 44
+, 88
+$, 88
-, 88
-$, 88
II, 89
11$, 89
1+, 89
1+$, 89
1-, 89
1-$, 89
<, 87
<=, 87
=, 87
>, 87
>=. 87
@define, 134
abs, 88
add - initialization, 438
addl, 89
adjust - array - size, 106
advise, 408
advisc- within, 411
allocale - resource, 77
aloe, 104
alphaicssp, 123
and, 32
ap-I, 104
ap-2, 104
ap- 3, 104
ap -leauer, 104
append, 54
apply, 22
apropos, 447
ar-l, 103

Lisp Machine Manual

16-MAR-Sl

Lisp Machine Manual

ar-2, 103
ar-3, 103
area - name, 180
aref, 103
arg, 26
arglist, 137
args-info, 138
array, 114
array- # - dims, 105
array-active-length, 105
array - biL~ - per-element, 100
array - dimensioll- n, 105
array - dimensions, 105
array-displaced-p, 106
array - clement - size, 100
array-elemellts-per-q, 100
array-grow, 107
array-has-leader-p, 106
array-in -bounds-p, 106
array-inde:ted-p, 106
array- indirect -p, 106
array-leader, 104
array-leader-length, 106
array-length, 105
array-pop, L08
array- push, 108
array-push-extend, 108
array - type, 105
array - types, 99
army call, 114
array dims, 106
arrayp, 8
as-I, 104
as-2, 104
as-3, 104
ascii, 123
aset, 104
ash, 93
ass, 6S
assot, 65
assq, 64
atan, 91.
atan2, 91
atom, 8
bigp, 8
bind, 168
bit-test, 92
bitblt, 110
boole, 92
boundp, 78
break, 451
bug, 450
huUast, 56
c. .. r, 49
canaar, 49
caaadr, 49
caaar, 49
caadar, 49
caaddr, 49

465 Function Index

caadr, 49
canr, 49
cadaar, 49
cadadr, 49
cadar, 49
caddar, 49
cadddr, 49
caddr, 49
cadr, 49
call, 23
car, 49
c:Ir-location, SO
caseq, 34
catch, 44
catch-all, 45
cdaaar, 49
cdaadr, 49
cdaar, 49
cdadar, 49
cdaddr, 49
cdadr, 49
cdar, 49
cddaar, 49
cddadr, 49
cddar, 49
cdddar, 49
cddddr, 49
cdddr, 49
cddt, 49
cdr, 49
cerror, 394
char-downease, 116-
char-equal, 116
char-Iessp, 116
char:"upcase, 116
character, 115
check-arg, 395
circular-list, 53
clear-mar, 415
close, 325
closure, 147
c1osurc-a1ist, 147
closure- function, 147
c1osurep, 8
clrhash, 71
clrhash-equal, 72
comment, 24
compile, 181
compile - navar-methods, 263
compiler-let, 186
compiler:add - optimizer, 187
compiler:fasd - file -symbols-properties, 190
compiler:fasd - font, 189
compilcr:fasd -symbol- value, 189
cond, 31
tond-every, 31
condition -bind, 390-
cons, 49
cons-in -area, 50

16-tvli\R -81

Function Index

copy - array - contents, 109
copy -array -conients-and -leader, 110
copy-array-ponion, 110
copy - read table, 289
copyalist, 54
copy list, 53
copylist*, 53
copysymbol, 82
copy tree, 54
cos,. 90
cosd, 90
cursorpos, 295
data - type, 158
dcallocate- resource, 77
debugging - info, 137
decf, 203
declare, 184
declare- fla~or-instance-variables, 262
def, 133
defconst, 18
deff. 133
deffiavor, 258
deline-loop-macro, 215
deline-loop-path, 222
deline-Ioop-scquence-Ilath, 220
defmacro, 193
dcfmacro- displace, 199
defmelhod, 258
defprop, 68
defresource, 77
defselect, 134
defstruct, 228
defstnlcl-define - type, 242
defsub&t, 197
defsystem, 359
defun, 126
defun -compatibility, 134
defunp, 128
dJlfvar, 17
defwmpper, 260
del, 63
del-if, 64
del- if-not, 64
delete, 63
delete - initialization, 439
deletef, 325
delq, 63
deJlosit - byte, 95
deposit - field, 95
describe, 448
describe-area, 179
describe- dcr.~truct, 228
describe-flavor, 264
describe-package, 349
di fTcrence, 88
dired, 449
disasscmble, 448
disk - restore, 373
disk-save, 373

466 J jsp Machine Manual

dispatch, 34
displace, 198
do, 35
do-named, 37
documentation, 137
dolist, 38
dotimcs, 38
dpb, 94
dribble-end, 454
drlbble-start, 454
ed, 449
eh, 399
entity, 148
entityp, 8
eq, 10
equal, 10
err, 398
error, 394
error- restart, 395
errset, 398
eval, 21
eval- when, . 184
evalhook, 413.
evenp, 86
every, 64
exp, 90
explode, 296
explodec, 296
exploden, .295
expt, 90
false, 24
fasload, 326
fboundp, 79
fdefine, 135
fdefinedp, 136
fdefinition, 136
ferror, 393
fifth, 51
fillarray, 109'
lind - position - in -list, 62
lind-position-in-Iist-equal, 62
first, 51
firstn, 56
fix, 91
fixp, 8
fixr, 91
flatc, 296
flatsize. 296
flavor-allows-init-keyword-p, 264
float, 91
floatp, 8
fmakunbound, 79
follow-cell- forwarding, 161
follow - structure..., forwarding, 160
format, 305
fornmtbrcakline, 317
formaL:ochar, 315
formaL:o/loat, 315
format:onum, 315

lb-I'vIAR-Sl

Lisp Machine Manual

format:oprint, 315
format:ostring, 315
format: ou tfmt, 314
fonnatoutput, 314
format:pad, 316
format plural, 316
fonnatprint -list, 313
fonnat:tab, 316
forward - value - cell, 161
fourth, 51
fquery, 436
fretum, 44
fs:c1ose-all- files, 325
r.~:derault-pathname, 339
fs:dcsclibe-pathname, 339
fs:directory-list, 330
fs:file- property - bindings, 328
fs:filc-read-property-list, 328
r.~:init - file-pathname, 339
f.~:makc-pathname, 338
fs:makc-pathnamc-defaults, 339
f.~:merge- and -set - pathname- defaults, 338
fs:merge- path namc- defaults, 338
ts:parse-pathname, 337
fs:palhname-plist, 340
fs:set - default-pathname, 339
fs:uscr- homedir, 339
fset, 79
fset-carefully, 136
fsymeval, 79
fu nca"lI, 22
funcall- self, 262
function, 23
function - cell-location, 80
g-I-p, 107
gc-off, 453
gc-on, 453
ged, 89
gensym, 82
get, 67
get - handler- for, 263
gct-list-pointer-into-array, 108
gct-locative-pointer-iIllo-array, 108
get - pname, 81
gctchar, 123
getcharn, 123
gethash, 71
gethash - equal, 72
getl, 67
glohalize, 356
go, 41
greaterp, 87
grind-top-Ievel, 318
grindef, 318
haipart, 93
haulong, 93
hostat, 450
if, 30
if- for-lispm, 188

467

if- for-maelisp, 188
if - for-maclisp - else -lispm, 188
if - in - lispm, 188
if-in -maclisp, 188
implode, 123
incf, 203
inhibit-style-warnings, 187
initializations, 439
inspect, 448
instantiate- flavor, 259
intern, 351
intern -local, 352
intern - IDeal-soft, 352
intern - soft, 352
L~qlt, 90
keyword-extract, 39
last, 52
Idb, 94
Idb - test, 94
Idiff, 56
length, 50
lessp, 87
let, 15
let·, 16
let - closed, 147
lel-globally, 16
let-if, 16
lexpr-flmcall, 22
Icxpr- funcall- self, 262
lisp - rcinitialize, 451
list, 52
list·, 52
list·-in-area, 53
list-array-Ieader, 109
list - in -area, 52
listarray, 109
listify, 26
listp, 7
load, 325
load - byte, 94
load -patches, 370
loc31- declare, 184
locate-in-closure, 147
locate - in - instance, 264
locativep, 8
loef, 202
log, 90
lugand," 92
login, -153
login -eval, 454
login-sctq, 454
logior, 91
log nut, 92
logout, 454
logxor, 91
loop, 204
loop -linish, 212
Ish, 92
Isubrcall, 22

Function Index

lll"ivlAR-81

Function Index

macroex pand, 200
macroexpand -1, 200
mail, 449
make-area, 178
make-array, 102
make - array - into- named -structure, 240
make - broadcast - stream, 303
make-cqual-hash-table, 71
make-hash-table, 70
make-instance, 259
make-list, 53
make-plane, 113
make-stack-group, 152
make-!>ymbol, 82
make-syn-stream, 303
make-system, 362
maknam, 123
makunbound, 78
map, 4S
mapatoms, 353
mapaloms-all, 353
mape, 4S
mapcan,· 45
mapear, 45
mapcon, 45
n1.1phash, 71
maphash-cqual, 72
map list, 45
mar-mode, 415
mask - field, 94
math:decompose, "Ill
malh:determinant, 111
math:filI-2d-array, III
math:invert-matrix, III
math:list-2d-arrclY, III
math:mulliply - matrices, 111
malh:solve, III
math:transpose-matrix, III
max .. 87
mem, 62
memass, 65
member, 62
memq, 61
mexp, 198
min, 88
minus, 88
minusp, 86
l11onitor-vuriabl~, 415
multiple-vulue, 27
multiple-value-bind, 27
mulliple- value-list, 28
multiple-value-return, 42
named - slructure - invoke, 240
narned -structure-p, 240
named -stmctuie-symbol, 240
nbullast, 56
ncone, 5S
ncons, 49
ncons-in-area, 50

" 468

neq, 10
nleft, 56
nlistp, 8
not, 11
nrecone, 55
nreverse, 54
nsublis, 58
nsubst, 58
nsubslring, 118
nsymbolp, 7
nth, 51
nthcdr, 51
null, 11
number~gc-on, 453
numberp, 8
oddp, 86
open, 324
or, 32
package'" cell-location, 353
package-declare, 349
pairlis, 66
peek, 450
pkg-bind, 351
·pkg-crcate-package, 353
pkg - find - package, 354
pkg-goto, 351
pkg - kill, 353
pkg-name, 354
pkg-rcfname-:aiist, 354
pkg-super-package, 354
plane-aref, 113"
plane-aset, 113
plane-default, 113
plane-extension, 113
plane-origin, 113
plane-ref, 113
plane-store, 113
plist, 80
plus, 88
plusp, 86
pop, 203
prinl, 294
prin1-then-space, 294
prine, 294
print, 294
print - disk -label, 372
prinl-loadcd - band, 373
print-sends, 450
prinl-system -modifications, 368
probeC, 325
process-allow-schedule, 380
process- create, 382
process-disable, 387
process-enable, 387
proccss- initial- form, 387
"proccss- initial-Slack - group, 387
process -lock, 38t
process-name, 387
process- preset, 387

Lisp Machine Manual

16-MAR-81

I.isp Machine Manual

process - reset, 387
process - reset -and - enable, 387
process-run- function, 383
process - run - rcstartable - function, 383
process - run -temporary - function, 383
process - sleep, 380
process - stacK - group, 387
process-unlock, 381
process-wait, 379
process - wait - argument -list. 388
process-wail- function, 388
process-whostate, 388
prog, 39
prog*, 41
prog1, 25
prog2, 25
progn, 25
progv, L6
progw, 17
property - cell-location, 80
psetq, 15'
push, 203
puthash, 71
puthash-equal, 72
putprop, 68
q-data-types, 160
qc-file, 18r
qc- file -load, 182
qsend, 450
quote, 23
quotient, 89
random, 9S
mss, 66
mssoc, 66
mssq, 6S
read, 292
read - from - stritig, 293
rcad-meter, 173
rcadeh, 293
readfile, 326
readline, 292
readlist, 294
recompile- flavor, 26i
rem, 63
rem-if, 64
relll- if-not, 64
remainder, 89
remilash, 71
rCllIhash-equal, 72
rcmob, 352
remove, 63
rempmp, 68
remq, 63
renamcf, 325
resCl- initializations, 439
rcstl, 51
rest2, ·51
r(;st3, 5l
rest4, 5l

469

return, 41
return-array, 107
return - from, 42
return .,-list, 42
reverse, 54
room, 448
rot, 93
rplaca, 57
rplacd, 57
samcpnamep, 81
sassoc, 66
sassq, 66
second, 51
select. 33
selector, 34
selectq, 32
selectq-evcry, 34
set, 78
set -character-translation, 289
set - current - band, 372
set - current - microload, 372
set-in-c1osure, 147
sct - in - instance, 264
set-mar, 414
set-memory-size, 449
set -syntax - # -macro-char, 290
set-syntax - from-char, 289
set- syntax - from - description, 290
sct-syntax -macro-char, 289
setarg, 26
setf, 201
setplisl, 80 .
setq, 15
setsynlaX, 290
setsyntax - sharp - macro, 291
seventh, 51
si:add-patchable-system, 369
~i:advise-l, 409
si:compare-banci, 315

Function Index

si:define- def.~ystem -special-variable, 364
si:define-make-system - spt.'Cial-variable, 364
si:define-simple-transformation, 364
si:edit-disk-Iabel, 372
si: encapsulate, 140
si: fdefinition -location, 136
si:fdefinition -symbol-or-Iocation, 136
si:get -system - version, 368
si:lisp-lOp-levcl, 451
:ii:lisp-top-level1, 451
si:load -mcr- tile, 374
si:loop-llarned - variable. 223
si: loop -1lis.'iOC, 223
si:loop-tcqual, 223
si:loop-tmcmber, 223
si:print-disk-errnr-Iog, 450
si:print-Iist, 322
si:prinl-objcct, 322
si:rnndo!11-crcate-array, 96
~i:random- illilialil,c, 96

Ib-rviAR -81

Function Index

si:rcccivc-band, 374
si:rcnamc - withip- new - definition - maybe, 143
si:sb-on, 380
si:systcm-vcrsion -info, 368
si:transmit-band, 375
si:unadvise-l, 409
si:unencaps\llate- function -spec, 142
si:unwirc-page, 168
si:wire-page, 168
signal, 390
signp, 86
sin, 90
sind, 90
Sixtll, 51
small· float, 91
small- iloatp, 8
some, 64
sort, '74
sort -grouped-array, 75
s0I1-:grouped-array-group-key, 76
sortcar, 75
special, 185
sqrt, 90
sstatus, 455
stable-sort, 75
Slublc-sOltcar, 75
stack-Group-preset. 153 '
stack - group - resume, 153
stack. -group-return, 153
status, 454 .
step, 411

, store, 114
store-array-leader, 104
!'stream - copy - until- eof, 295
stream-default-handier, 304
string, 116
string -append, 118
.string - downcase, 116
string-equal, 117
stri ng -left -trim, U8
string -Iengtll, 117
~tring -Icssp, 117
string-ncone, U8
string - nreverse, 119
string-pluralize, 119
string-reverse, 119
string-reverse-search, 121
string -reverse-search -char, 120
string-re\'crse-scarch -not -char, 120
string - reverse-search -not-set, 121
slring-re\'erse-scarch-sct, 121
stling - right- trim, 118
string-search, 120
string-search-char; 119
string - search - not- char, 119
string-search-not-set, 120
51 ri n!; - search - set, 120
slriilg-lrim, ll8
slring-upease, 116

470 Lisp Machine Manual

stringp, 8
slructure- forward, 160
subl, 89
sublis, 58
subrcaU, 22
subrp, 8
subset. 64
subset-not, 64
subst, 57
substring, 117
supdup, 451
sxhash, 73
symbol-package, 353
symbolp, 7
symeval, 78
symeval-in-closure, 147
symeval- in - instance, 264
symeval- in -stack - group, 153
sys:%binding - instances, 170
sys:%change-page-status, 169'
sys:%compute-page-hash, 169
sys:%create:"physical-page, 169
sys:%delete-physical-page, 169
sys:%disk - restore, 169
sys:%di.~k-save, 170
sys:%halt, 164
sys:%internal-value - cell, 170
sys:%using - binding - instances, 170
sys:%xbus-write-g}rnc, 163
sys:page-in-area, 169
sys:page- in - army, 168
sys:page- in - region, 169
sys: page - in ":" structure, 168
sys:page-in-words, 169
sys:page-out-area, 169
sys:page-out-army, 169
sys:page - out - region, 169
sys:page-out -structure, 169
sys:page-out-words, 169
tailp, 62
telnet. 451
terpri, 294
tllird, 51
tllrow, 44
time, 442
time-difference, 442
time-Iessp, 442
time:day-of-tlle-week-string, 445
time:daylight -savings-p, 445
time: day light - savings - time- p, 445
time: decode - universal- time, 444
time:encode-universal-time, 444
lime:fixnum -microsecond-time, 442
time:get-time, 442
limc:gcl-universal-time, 442
time:illilialize-timebase, 445
time:lcap-year-p, 445
time:microsecond - time, 442
limc:monlh-Iengtll, 445

16-MAR-Sl

Lisp Machine Manual

timc:month-string, 446
timc:parse, 444
timc:parse-univcrsal- time, 444
time:print- brief - universal- time, 443
timc:print- current - date, 443
time:print-current-time, 443
lime:print- date, 443
timc:print-time, 443
time:print - universal- date, 443
timc:print- universal- time, 443
time:timezone-string, 446
time:veriry-date, 445
times, 88
trace, 404
true, 24
tv:print - notific.1tions, 450
Lyi, 292
tyipcek, 293
tyo, 294
typcp, 8
unadvisc, 409
unadvise-within, 411
uncompile, 181
undcfmethod, 262
undcfun, 131
unmunitor-variable, 416
u nspecial, 185
untrace, 401
unwind-protect, 44.
value - cell-Ioention, 19
values, 21
values -list, 21
what- files-call, 441
where - is, 448
who-calls, 441
who-uscs, 441
with- input - from -string, 121
with - open - file, 323
with - output -Lo - string, 122
wiLh- resource, 11
without -interrupts, 319
write-meter, 113
xcons, 50
x cons - in - area, 50
xstore, 114
y-or-n-p, 435
yes-or-no-p, 435
zerop, 86
\, 89
\\, 89
"', 90
"'$, 90

471 Function Index

16-Mi\R-Sl

