Lisp Machine Manual

Fourth Edition

July 1981

Daniel Weinreb
David Moon

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided in
part by the Advanced Rescarch Projects Agency of the Department of Defense under Office of
Naval Rescarch Contract number N00014-80-C-0505.

¢ Copyright by the Massachusctts Institute of Technology; Cambridge, Mass. 02139
All rights reserved.

Preface

The Lisp Machine manual describes both the language and the "operating system” of the Lisp
Machine. The language, a dialect of Lisp called Zetalisp, is completely documented by this
manual. The software environment and operating-system-like parts of the system contain many
things which are still in a state of flux. This manual confines itself primarily to the stabler parts
of the system, and does not address the window system and user interface at all. That
documentation will be released as a separate volume at a later time.

Any comments, suggestions, or criticisms will be wclcomed. Please send Arpa network mail
to BUG-LMMAN@MIT-AL ’

Those not on the Arpanet may send U.S. mail to
Daniel 1.. Weinreb or David A. Moon
Room 926
545 Technology Square
Cambridge, Mass. 02139

Note

The Lisp Machine is a product of the efforts of many people too numerous to list here and
of the unique environment of the M.LT. Artificial Intelligence Laboratory.

Portions of this manual were written by Richard Stallman, Mike McMahon, and Alan
Bawden. The chapter on the LOOP iteration macro is a reprint of Laboratory for Computer
- Science memo TM-169, by Glenn Burke.

Lisp Machine Manual i Summary Table of Contents

Summary Table of Contents

L Introduction v v v it e s 1
2. Primitive Object Types &« o i e e e e e e e e e e e 7
3. BEvaluation . . . v . i e 13
4. Flowof Control. v v i i e i e e e e e e e e e e e e e e e e e e e 33
5. Manipulating List Structure. oo i e e e e e e e e 52
6. SYMDOIS . . v v v v i e 86
7 1 4L < - 92
B AITAYS .« v v v v v v e 107
1 1 126
J1O. FUNCHONS v v v v v v e 136
11. Closures. v v v v v v v v e v ot e e e e e e e e e e e e e e e e e e 158
12, StaCk GIOUPS .« . v v v v o v v e e i e s 163
13, LOCAtIVES & . . v v v e 170
14, Subprimitives« o o i e e e e e e e e e e e e e e e 172
15, ATCAS « & v v v e 192
16. TheCompiler vt i i i e e e e e e e e e e e e 197
17. MACIOS . « v v v v v o e o v e v e 208
18. The LOOPIteration MacCrO . . v v v v v v vt e et e et v e e et e v e e e e e e e e s 233
19, DefStrUCt v v v e 257
20. Objects, Message Passing,andFlavorso 279
21 TheIZOSYStEM . . o o v v v e e e e e e e e et e e e e e e e e e e e 314
22. Naming of FileS o o v i e e e e e e e e 376
23, Packages v i e 392
24. Maintaining Large Systemso i i . oo e e e e e e e e e e 406
25, PrOCESSES » v v v v vt e 428
26. Errorsand Debugging o o o i i i e e e 440
27. How to Read Assembly Language 469
28. Queryingthe USer. ov v v v i it e e e 487
29, INIHAlIZAtIONS . . &« & v o v e 490
30. Datesand Times. . . o v v v v e 493
31. Miscellaneous Useful Functions o v v v v v v i v v et e e e s V.. 499
ConceptIndex. e 509
FlavorIndex. N e e e e e e e e et e e e e e e e i e 512
MessageIndex. o i i e e e e e e 513
KeywordIndex o o i i i i e e e 515
Object Creation OPHONS. . . . v v v v v v e e e e e e e e e e e e e e e 518
MeterIndex. oo e e e e e e e e e e e e e e e e e e 519
Variable INAeX. . . . o o o e 520
Function IndeX v v o e 523

24-JUL-81

Table of Contents ii Lisp Machine Manual

Table of Contents

L Introduction. i e e e e e e e e 1
1.1 General Information e e e e e e e e e e 1
1.2 Structure of the Manual. e e e e e e 1
1.3 Notational Conventionsand Helpful Notes o v v v v v i v e e e 2

2. Primitive Object Types e e e e e e e e e e e 7
21 DataTypes oo e e e e e e 7
22 Predicates. o e e e e e e e e e e 8

JoEvaluation e e e e e 13
31 Variables e e e e e e 14
J2Functions. o i e e e e e e e e e 20
3.3 Some Functionsand Special Forms 23
34 Multiple Values. e e e, 29

4. FlowofControl. e e e 33
41 Conditionals e e e e e e e, 33
42 Tteration L e e e e e e e e e 38
43 Non-Local Exits. o ot 47
44 Mapping e e e e e S0

5. Manipulating List Structure e e 52
ST CONSES . . . o v e e e e e e, 53
S2LISIS o o e e e e e e 54
5.3 Alteration of List Structure e e e e 61
54CAr-Coding. e e e e e e e 63
SSTables e e e e e e e 65
5.6 ListsasTables. e e e e e e e e e e e e e 66
57 Association Lists 69
S8 Property Lists. L e e e e e 71
59 HashTables. 74

59.0 HashingonEq., 75
592 HashingonEqual 76
5.9.3 Hash Tables and the Garbage Collector. v v v s i i, 78
59.4 HashPrimitive. 78
500 Sorting e e 79
SILReESoUrces oov v o e e 81

6. Symbols. 86
6.1 TheValue Cell 86
6.2 TheFunctionCell. 87
6.3 TheProperty List. 88
6.4 ThePrintName. 89
6.5 ThePackage Cell o o 89
6.6 Creating Symbols. 90

24-JU1.-81

Lisp Machine Manual iii Table of Contents

J. NUMDETS v o s s e 92
7.1 NumericPredicates. ¢ v i i it e e e e e e e e e e e 94
72 NumericCompariSons v v v v v v v st et et e e e e e e 95
7 TN 111 Y 96
7.4 Transcendental Functions. i i i i i e e e e 99
7.5 Numeric Type Conversions. v v vt v v v v v v e e e e e e 99
7.6 Logical Operationson Numbers 0o 100
7.7 Byte Manipulation Functions. oo 102
78 Random NUmMDEIS v v i e it e e e e e e e e e e e e e e e e e e e 104
7.9 24-BItNUMDEIS . . v v v v v e et e e et e e e e e e e e e e e e e e e e e e 105
7.10 Double-Precision Arithmetic o i e 105

8. Arrays e 107
8.1 Extra Featuresof Arrays e 110
82 Basic ArrayFunctions e e e e e e e e 111
8.3 Getting Information Aboutan Array Lo e e e e e e e 114
8.4 Changingthe Sizeofan Array e e e e e e e e e e e e e e e e e 116
8.5 ArraysOverlaid With Lists o v v v i i i i e e e 117
8.6 Addingtothe Endofan Array o o e e e e e e 118
87 COPYINZANATTAY. . & v v v v v e e e et e e e e e e e e e 119
8.8 Matrices and Systems of Linear Equations. 0. 121
8.9 Planes e s 122
8.10 Maclisp Array Compatibility. o o o e 124

N 0 1 126
9.0 CharacterS . . v v v v v et e s 127
9.2 Upper and Lower Case Letter:, 127
9.3 Basic String Operations. . . . e 128
94 StringSearching e e e e e e e e e e e e e 131
95 I/OMOSIINGS . . & v v v v e 133
9.6 Maclisp-Compatible Functlons 135

DR 177 o 1 V- 136
10.1 What Is a Functicn?. e 136
10.2 FUunction SPecs v v v v v i e e e e e e e e e e e e e e e e e e 136
10.3 Simplc Function Dcﬁmtlons 139
10.4 Operations the User Can Perform on Functions e e e e e e e e e 141
10.5 Kinds Of FUNCHONS« v v vt e i et e e e e e e e e e e e e e e e e e 141

10.5.1 Interpreted FUnctions o v v i e e e e e e e e e e 143
1052 Compiled Functions 0 0 v v i e e e e 144
10.5.3 OtherKindsof Functions. . . & o v v v v i i vt e e s e e e e e 144
10.6 Function-Defining Special Forms o oo oo 145
10.7 Lambda-List Keywords . .« o 0 v o v i e e e e e e e e e e e e e e e e e 148
10.8 How Programs Manipulate Definitions. oo oo 149
10.9 How Programs Examinc Functions o v v v v oo i oo 150
10.10 Encapsulations. o i o i e e e e e e e e e e e e e e e 153
10.10.1 Rename-Within Encapsulations o o 0 oo e 156

24-JU1 -81

Table of Contents iv Lisp Machine Manual

11, ClOSUTES . . . v o v it e 158
11.1 WhataClosureIs i e e e e e e e e e e e e 158
11.2 Examples of the Use of CIOSUIES . . .+« v v v v v v e e e e e e e e e et e e e e e us 160
11.3 Closure-Manipulating Functions. 0 i v ittt e e e 161
114 Entities v v v v e 162

12, Stack Groups . & . . v o e 163
12.1 Resuming of Stack Groups. v v i v i i s e e e e e e e e e e e e 164
122 Stack Group States. v . v v v e e e e e e e e e e e e e e e e e e 165
123 Stack Group FUnctions. v v v vt e e s e e e e e e e e e e e e e e e e 166
12.4 Input/Outputin Stack GroupsS. o v v v v i e e e e e e e e e e e e e e e 167
12.5 AnExample of Stack Groups. i e e e e e e e e e 168

13, LOCAtVES. & o v v v v v e e e e e e e e e e e e e e e e e 170
13.1 Cellsand Locatives. e e e e e e e e 170
13.2 Functions Which Operateon Locatives. v i v v .. 170

14, Subprimitives L e e e e e e e e e e e e e e e 172
141 Data Types v v v v e e e e e e e e e e e e e e e e e e 173
142 Forwarding o o i i e 174
14.3 Pointer Manipulation e e e e e e e e e 176
144 Analyzing StrUCtUreS. v v v i e 176
145 Creating Objects. i i it e e e e e e e e e e e e e e e e 177
14.6 Locking Subprimitive e e e e e e e e e e e 178
14.7 170 Device Subprimitives e e e e e e e e e e e e e e e e 178
14.8 Special Memory Referencing. L e e e e 179
149 Storage Layout Definitions. i i e e e e e e e e e e e e 181
14.10 Function-Calling Subprimitives.« o v i vt i e e e 182
14.11 Lambda-Binding Subprimitive e e 183
14.12 ThePaging System o i i e e e e e e e 183
14.13 Closure Subprimitives o v v v e e e e e e e 185
14.14 Microcode Variables i e e e e e e e e e e 186
1415 Meters, e e e e e e e e e e e e e e e e 188

1S, ATRAS . . . e 192
15.1 AreaFunctionsand Variables e 193
152 Interesting Areas. v i i e e e e e e e e e e e e e e e e e e 195

16. The Compiler ot e 197
16.1 The Basic Operationsof theCompiler 197
16.2 How to Invokethe Compiler. i i i i it e e e e e e e e 197
16.3 InputtotheCompiler i i i e e e e e e e e e e 198
16.4 Compiler Declarations. e e e e e e e e e e e 201
16.5 Controlling Compiler Warnings v v v v v v e i e e e e e e e e 203
16.6 Compiler Source-level Optimizers. i i i it i i it et e e e 204
16.7 Files that Maclisp MustCompile. o i i i it e e e e e e 205
16.8 Putting Datain QFASL Files. i e e e e e e e 206

17, MUCTOS. . . o s e e e e e e e e e e e e e e e 208
17.1 Introduction to Macros. o L e e e e e e e e e e e e e 208
17.2 Aids for DefiningMacros L e e 210

24-1U1 .-81

Lisp Machine Manual v Table of Contents

1721 DefMacro . . v v v v o e 210
1722 BackqQuote . . . v . v o e e e e e e e e e e e e e e e e e e e 211
17.3 Substitutable Functions v . v i e e e e e e e e e e e e e e e e 215
17.4 HintstoMacro WIIteIS v v v v e e e et e e e et e e e e e e e e e 216
17.41 Name Conflicts. o i ittt e e e e e e e e e e e e e e e e 216
17.42 prog-contextConflicts e e 218
17.4.3 Macros ExpandingintoManyForms e e e e e 219
17.44 MacrosthatSurround Code. i i i i i e e e e e 220
17.4.5 Multiple and Qut-of-order Evaluation. 222
17.4.6 Nesting Macros. v v v v v v e e e e e e e e e e e e e e e e e e 223
17.47 Functions Used During Expansion oo 225
17.5 Aidsfor Debugging Macrost it e e e e e e e e e 226
17.6 Displacing Macros. v v v i i e e e e e e e e e e e e e e 226
17.7 Advanced Featuresof Defmacro. 0 e e e 227
17.8 Functionsto Expand Macros o v v i it e e e e e e e e e 228
17.9 Generalized Variables. o o i i e e e e e e e e e e e e e e 229
18. The LOOP Iteration MacCro ¢ v v i e i e e e e e et e e e et e e e e e 233
18.1 Introduction. . . . & & v v vt e 233
182 ClaUses & v v v v v v e 234
18.2.1 Iteration-Driving Clauses. o v v i i it e e e e 235
1822 Bindings o v it e e e e e e e e e e e e e e e e e e 237
18.2.3 Entranceand EXit e e e e e 239
1824 SIde Effects. . . v v vt i e 240
1825 Values. e e e e e e e e e e e e e e e e e 240
18.2.6 Endtests e 242
18.2.7 AggregatedBooleanTests L e e e 242
18.2.8 Conditionalization & v v i e e e e e e e e e e e e e e e e e e e 243
18.2.9 Miscellancous OtherClauses v . . v v v v v v v e e e s e e e e e e e 244
18.3 Loop Synonyms. e e e e e e e e 245
184 DataTypes e 245
18.5 Destructuring e 246
18.6 The Iteration Framework v v v v i e e e e e e e e e e e 247
18.7 Iteration Paths. o e 249
18.7.1 Pre-Defined Paths i e e e e e e e e e e e 250
18.7.1.1 The Interned-SymbolsPath v i 250
18.7.1.2 Sequence Iteration. L L. e e e e e e e e e e 251
18.7.2 Defining Paths o e e e e e e e e 252
18.7.2.1 An Example Path Definition.o oo oo 254
19, DICFSITUCE » v v v e o e e et et e 257
19.1 Introduction to Structure Macros« c v v i e e e e e e e e e 257
19.2 How to Use Defstruct e e e e e e e e e e e e e e e e e e 259
19.3 Optionsto DefStruct. v v v o e e e e e e e e 260
19.4 Using the Constructor and AlterantMacros o 0o oo 267
19.4.1 Constructor MacCroS. . & v v v v v v e 267
19.4.2 By-position Constructor Macros oo oo e e e e 268
19.4.3 Alterant Macros o v vt e e e e e e e e e e e e e e e e e e e 269
195 Byte Ficlds o o o e e e e e e e 269

24-JUI -81

Table of Contents vi Lisp Machine Manual

19.6 Grouped AITayS . . . v v v v vt e 271
197 Named StruCtUIES . . v v v v v v v v e e e e e e e et e e e e e e e e e e e e e .27
19.8 The si:defstruct-description Structure.« i it e e e e e e e e 273
199 ExtensionstoDefstruct. e e e e e e e e 275
19901 AnExample e 275
19.9.2 Syntax of defstruct-define-type e e e e 275
19.9.3 Options to defstruct-define-type. o v i i e e e e 276
20. Objects, Message Passing,andFlavors i v v vt 279
20.1 Introduction. L i e 279
202 OBJECtS . v v vt e 279
203 Modularity e 280
204 GenericOperations v v v it i e e e e e e e e e e e e e e e e 283
20.5 Generic Operationsin Lisp. 0 i i i e e e e e e e e e e e e 284
20.6 Simple Use of Flavors i it i e e e e e e e e e e e e e e e 286
20.7 MiXing Flavors o . o e s e 289
20.8 Flavor Functions. v i i i i i e 292
209 Defllavor Options o L i e e e e e e e e e e e e e e e e e 300
20.10 FlavorFamilies. 0 0 i i it e e e e e e e e e e e e e e e e e e 304
2011 Vanilla Flavor . . .« . . 0 o s i s e 305
20.12 Method Combination. v v v it i e 306
20.13 Implementation of FIavors v v v vt e e e e e e e e e e e e .. . 309
20.13.1 Orderof Definition v v i s e e e e e e e e e e e e e e e 309
20.13.2 Changinga Flavor. 0 i e e e e e e e e e e e 310
20.13.3 ReStriCtions . . v v v v v v i e 311
2014 Entities. o s e 311
20.15 Useful EditorCommands. v v i i i e e s e e et e e e e e e 311
20.16 Property List Messages . . . v v v v v v v e e e e e e e e e e e e e e e e e 312
21. The /O System o ot et e e e e e e e e e e e e e e 314
21.1 TheCharacter SEt v v v v v et e et e e e e e e e e e e e e e e e 314
21.2 Printed Representation. i i e e e e e e e e e e e e e e e e e e 319
21.2.1 Whatthe PrinterProduces. i i e e e e e e e e e e e e 319
21.2.2 What The Reader Accepts. o i 0 v i i e e e e e e e e e e e e e e e e 322
21.2.3 Macro Characters. e e e e e e e e e e e e e e e e e e 325
21.2.4 Sharp-sign Abbreviations L L e e e e e e 325
21.2.5 Special Character Names o v v vt e e e e e e e e e e e e e e e 328
2126 TheReadtable i i i i e e e e e e e e e e e e 328
21.3 Input Functions [R 331
214 Output FUnCHONS o o e i s e e s e e e e e e e e e e e 334
215 T/70 Streams. o i s e 338
2151 What Streams ATe. 0 i i n e 338
21.5.2 General Purpose Stream Operations. o . 0 i i i s e e e e e e 338
21.5.3 Special Purpose Stream Operations0 e e e e e e e e e 341
2154 Standard Streams L . L L e e e e e e e e e e e e e e 343
21.5.5 Making YourOwnStream e e e e e e e e 344
216 FormattedOutput 0 e e e e e 346
21.6.1 The Format Function. e e e 346
21.6.2 The Output Subsystem L o i ot s e e e e e e e e e e e 356

24-JUL.-81

Lisp Machine Manual vii Table of Contents

21.6.3 FormattingLispCode o o i i it e e e e e 360
217 Rubout Handling o v i e e e e e e e e e e e e 361
21.8 The :read and :print Stream OPErations« v v v v v v v v e b e e e e 364
219 Accessing Files o o e e e e e e e 365

219.1 Loading Files. o o it e e e e e 368

21.9.2 File Property Lists e e e e e e e e e e e e e e e e e 369

21.9.3 File Stream Operations. e e e e e e e e e e e e e e e e e e e mn
21.10 Accessing Directories. v o i v e e e e e e e e e e e e e 373

22. NamingofFiles. e e e e e e e e e e 376
221 Pathnames . . . o v v v vt e 376
222 Defaultsand Merging o v v v v i i e e e e e e e e e e e e e e e e e e 380
223 GenericPathnames i i i e e e e e e e e e e e 381
224 Pathname Functions. o v v o v i i s e et e e e e e e e e e e e e 382
225 Pathname Messages . . v v v v v v v v v e e e e e e e e e e e e e e 384
22.6 HostFile Systems Supported o v v v i it i e e e e e 386

22.6.1 ITS . . s e 386

2262 TOPS-20and TeneX . . v v v v v v v e e e e e e e e e e e e e e e e e e 387

22.6.3 Logical Pathnames v oo e e e e e e e e 388
227 Maclisp Conversion v v v v v vt e e e e e e e e e e e e e e e e e 390
228 Examples i . e e e e e e e e e e e e e e e e e e e ... 390

23, Packages e 392
23.1 The Need for Multiple Contexts. . . . o v . o v v v vt vt vt e e v o e o e e e e 392
23.2 The Organizationof Name Spaces.« v v v o v v v v v i vt i e e e e 393
233 Shared Programs v v v v v it e e e e e e e e e e e e e e e e e 394
23.4 Declaring Packages . . . v v v ot e i e e e e e e e e e e e e e e e e e e 395
23.5 Packagesand WritingCode« . . o o e e e e 396
236 Shadowing e e e e e e s e e e e e e e e e e e 397
23.7 Packagesand Interning 0 o o e e e e e e e e e 398
23.8 Status Informationt e 401
23.9 Packages, Loading, and Compllanor. 402
2310 SubpacKages. e e e e e e e e e e e e e e e e e e 402
23.11 Initialization of the Package Systermt. v v 0 v i v b o e e e 403
23.12 Initial PaCKages. + « v v v vt e 404

24. Maintaining Large SyStems o o o h i e e e e e e e e e e e 406
241 Defining aSysteml. o v v v i e e e e e e e e e e e e e e 406
24,2 TransformationsS. . . . v v v v o v e 409
243 MakingaSyStem v o i i e e e e e e e e e e e e e e e e e 411
24.4 Adding New Keywordstomake-system v v v v i i v v e e e 412
24.5 Adding New Options fordefsystem v v v v v v it i e 414
24.6 More Esoteric Transformations o o 0 e e e e e e 415
24.7 The Patch Facility. e e e e e e e e e e e e e e e 416

24.7.1 DefiningaSysicm L e e e e e e e e 418

2472 Patch files o e e e e e e e e e e e e e e e e e e 419

24773 LoadingPatches o L L L e e e e e e e e 420

2474 Making Palches L L e e e e e e e e e 420

2475 SySICM SHALUS. . . o . v v v e 421
24.8 Saving New Versions: Disk Pamtlons 422

24-JUL-81

Table of Contents viii Lisp Machine Manual

2481 CONCEPIS . & v v v i e 422
2482 ManipulatingtheLabel L . e 422
2483 Updating Software L e e e e e e e e e e e e e e s 424
2484 Installing New Software. 0 i i i i e e e e e e e e 425
24.8.5 Installing New Microcode. o i i i i i i e e e e e 426
2. PrOCESSES. .« v v vt i e 428
25.1 TheScheduler. i i it i i et e e e e e e e e e e s 429
25,2 LOCKS & v v i i e 432
25.3 Creating aProcess v v v i i e s 433
254 Process MeSSageS . » v v v v v e 435
25.4.1 Process AUIIDULES. & v v vt e e e e e e e e e e e e e e e e e e 435
2542 Runand Arrest Reasons. i v v i i i i e e e e e e e e e e e e 436
2543 Bashingthe Process. o . 0 o i i i it e e e e e e e e e e 437
25.5 Process Flavors v v v i i e e e e e e e e e e e e e e e e e e e 438
25.6 OtherProcessFunctions i v i i i i e e e e e e 439
26. Errorsand Debugging e e e e e e e e e e e e e e e 440
26.1 The Error System & 0 v v i i it e e e e s e e e e e e e e e e e e e 440
26.1.1 Conditions i i e 440
26.1.2 Error Conditions v vt i e e e e e e e e e e e e e e e e e 442
26.1.3 Signalling Errors L L e e e e e e e e e e e e 444
26.1.4 Standard Condition Names o i i i i e e e e e e e e e 448
0 T T - 449
26.2 The Debugger. o i i e e e e e e e e e e e e e e e e e 450
26.2.1 Enteringthe Debugger e e e e e e e e e e e e e 450
26.22 HowtoUscthe Debugger. i it i e e e e e e e e 451
26.2.3 DebuggerCommands. v v v v vt e e e e e e e e e e e e e e e e e 452
26.24 Summaryof Commands.t e e e e e e e e e e e e e e e 455
26.3 Tracing Function Execution 0 i e e e e e 456
26.4 AdvisingaFunction. e e e e e e e e e e e e e e e e e 460
264.1 Designingthe Advice 0t i e e e e e e e e e e e e e e e e e 462
2642 :around AdVICE L L e e e e e e e e e e e e e e e e e 462
26.4.3 Advising One Function WithinAnother. 463
26.5 Stepping Throughan Evaluation. i it i e v 464
26.6 Evalhook e e e e e e e e e e e e e e e e e e 466
26.7 The MAR e 467
26.8 Variable Monitoring L e e e e e e e e e e e e e e e e e 468
27. HowtoRead Assembly Language @ i i i it i i i ittt e 469
271 Introduction. L e 469
272 AMore Advanced Example L L e e e e e e e e e e e e e 472
27.3 The Restof the Instructions o i v i i et e e e e e e e e e e e 475
274 Function Entry 0 o e e e e e e e e e e e e e e e e e e e 478
27.5 Special Class IV Instructions i i i i it e e e e e e e e 480
27.6 Estimating RunTime 0 i e e e e e e e e e e e e e 484
28. Queryingthe User o L e e e e e 487

24-)UL.-8]

Lisp Machine Manual ix Table of Contents

29, Initializations . . . & v . vt e 490
29.1 System Initialization Lists oL e e e e e e 492
30. Datesand Times. . . . v v v v v e 493
301 Gettingthe TIme 0 v vt it e e e e e e e e e e e e 494
30.1.1 Elapsed Time in60thsofaSecond oo v v v v oo 494
30.1.2 Flapsed Time inMicroseconds o oo bt i oo 494
302 Printing Datesand Times o o v o v vt i e e e e e e e e 495
30.3 ReadingDatesand Times v o o i v it i 496
304 Time CONVEISIONS. & &« v v v v v b v v e e e m et e e o m e e et e e e e s 497
305 Internal FUNCHONS. . . . v v v v v o e s 497
31. Miscellaneous Useful Functions v« v v v v v v v e vt e e e e e e 499
31.1 Poking AroundintheLispWorld o 499
312 Udlity Programs. e e e e e e e e e e e e e e e e e e 501
313 TheLispTopLevel o o o i i it e e e s e e e e e e 503
314 The Garbage Collector o v v i v it i et e e s e 505
315 LoggingIn e e e e e e e e e e e e e e e 506
316 DribbleFiles e e e e e e e e e e e e e e e e 507
317 Statusand SStatus. e e e e e e e e e e e e e e 507
ConceptIndex. . . v v v v v i e e e e e e e e e e e e 509
Flavor IndeX. . . . v v v ot e e et e 512
Message INdex. . . v v v v o e e e e e e e e e e e e e 513
KeywordIndex« v v v v i it e e e e e e e e e e 515
Object Creation OPHONS. . . v v v v v v v v v v e e e e e e e e e e e 518
Meter IndeX 0 v i e s 519
Varable INAeX. . . v v v v o e 520
FunctionIndex e 523

24-JU1.-81

Lisp Machine Manual 1 Introduction

1. Introduction ‘

1.1 General Information

The Lisp Machine is a new computer system designed to provide a high performance and
economical implementation of the Lisp language. It is a personal computation system, which
means that processors and main memorics are not time-multiplexed: when using a Lisp Machine,
you get your own processor and memory system for the duration of the session. It is designed
this way to relieve the problems of the running of large Lisp programs on time-sharing systems.
Everything on the Lisp Machine is written in Lisp, including all system programs; there is never
any need to program in machine languag:. The system is highly interactive.

The Lisp Machine executes a new dialect of Lisp called Zetalisp, developed at the M.LT.
Artificial Intelligence Laboratory for use in artificial intelligence research and related fields. It is
closely related to the Maclisp dialect, and attempts to maintain a good degree of compatibility
with Maclisp, while also providing many improvements and new features. Maclisp, in turn, is
based on Lisp 1.5.

This document is the reference manual for the Zetalisp language. This document is not a
tutorial, and it sometimes refers to functions and concepts that are not explained until later in the
manual. It is assumed that you have a basic working knowledge of some Lisp dialect; you will
be able to figure out the rest of the language from this manual.

There are also facilities explained in this manual that are not really part of the Lisp language.
Some of these are subroutine packages of general use, and others arc tools used in writing
programs. However, the Lisp Machine window system, and the major utility programs, are not
documented here.

1.2 Structure of the Manual

The manual starts out with an explanation of the language. Chapter 2 explains the different
primitive types of Lisp object, -and presents some basic predicate functions for testing types.
Chapter 3 explains the process of evaluation, which is the heart of the Lisp language. Chapter 4
introduces the basic Lisp control structures.

The next several chapters explain the details of the various primitive data-types of the
language, and the functions that deal with them. Chapter 5 deals with conses and the higher-level
structures that can be built out of them, such as trees, lists, association lists, and property lists.
Chapter 6 deals with symbols, chapter 7 with the various kinds of numbers, and chapter 8 with
arrays. Chapter 9 explains character strings, which are a special kind of array.

After this there arc some chapters that cxplain more about functions, function-calling, and
related matters. Chapter 10 presents all the kinds of functions in the language, explains function-
specs, and tells how to manipulate definitions of functions. Chapters 11 and 12 discuss closures
and stack-groups, two facilitics uscful for creating coroutines and other advanced control and
access structures.

MC:I.MMAN;LNTRO 49 24-JUL.-81

Notational Conventions and Helpful Notes 2 Lisp Machine Manual

Next, a few lower-level issues are dealt with. Chapter 13 explains locatives, which are a kind
of pointer to memory cells. Chapter 14 explains the "subprimitive” functions, which are primarily
useful for implementation of the Lisp language itself and the Lisp Machine’s "operating system".
Chapter 15 discusses areas, which give you control over storage allocation and locality of
reference.

Chapter 16 discusses the Lisp compiler, which converts Lisp programs into "machine
language”. Chapter 17 explains the Lisp macro facility, which allows users to write their own
extensions to Lisp, extending both the interpreter and the compiler. The next two chapters go
into detail about two such extensions, one that provides a powerful iteration control structure
(chapter 18), and one that provides a powerful data structure facility (chapter 19).

Chapter 20 documents flavors, a language facility to provide generic functions using the
paradigm used in Smalltalk and the Actor families of languages, called "object-oriented
programming” or "message passing”. Flavors are widely used by the system programs of the Lisp
Machine, as well as being available to the user as a language feature.

Chapter 21 explains the Lisp Machine’s Input/Output system, including streams and the
printed representation of Lisp objects. Chapter 22 documents how to deal with pathnames (the
names of files).

Chapter 23 describes the package system, which allows many name spaces within a single Lisp
environment. Chapter 24 documents the “system" facility, which helps you create and maintain
programs that reside in many files.

Chapter 25 discusses the facilities for multiple processes and how to write programs that use
concurrent computation. Chapter 26 explains how exceptional conditions (errors) can be handled
by programs, handled by users, and debugged. Chapter 27 explains the instruction set of the
Lisp Machine, and tells you how to examine the output of the compiler. Chapter 28 documents
some functions for querying the user, chapter 30 explains some functions for manipulating dates
and times, and chapter 31 contains other miscellancous functions and facilities.

1.3 Notational Conventions and Helpful Notes

There are several conventions of notation, and various points that should be understood
before reading the manual to avoid confusion. This section explains those conventions,

The symbol "=>" will be used to indicate evaluation in examples. Thus, when you see "foo
=> nil", this means the same thing as "the result of ¢valuating foo is (or would have been) nil".

The symbol "==>" will be used to indicate macro cxpansion in cxamples. This, when you
see "(foo bar) ==> (aref bar 0)", this means the same thing as "the result of macro-expanding
(foo bar) is (or would have been) (aref bar 0)".

A typical description of a Lisp function looks like this:

MC:L.MMANLNTRO 49 24-JU1.-81

Lisp Machine Manual 3 Notational Conventions and Helpful Notes

function-name argl arg? &optional arg3 (arg4 (foo 3))
The function-name function adds together arg/ and arg2, and then multiplies the result
by arg3. 1f arg3 is not provided, the multiplication isn’t done. function-name then
returns a list whose first element is this result and whose second eclement is arg4.
Examples:
(function-name 3 4) => (7 4)
(function-name 1 2 2 ’bar) => (6 bar)

Note the use of fonts (typefaces). The name of the function is in bold-face in the first line of
the description, and the arguments are in italics. Within the text, printed representations of Lisp
objects are in a different bold-face font, such as (+ foo 56), and argument references are
italicized, such as argl and arg2. A different, fixed-width font, such as function-name, is
used for Lisp examples that are set off from the text.

The word "&optional” in the list of arguments tells you that all of the arguments past this
point are optional. The default value can be specified explicitly, as with arg4 whose default value
is the result of evaluating the form (foo 3). If no default value is specified, it is the symbol nil.
This syntax is used in lambda-lists in the language, which are explained in section 3.2, page 20.
Argument lists may also contain "&rest”, which is part of the same syntax.

The descriptions of special forms and macros look like this:

do-three-times form Special Form
This evaluates form three times and returns the result of the third evaluation.

with-foo-bound-to-nil form... Macro
This evaluates the forms with the symbol foo bound to nil. It expands as follows:

(with-foo-bound-to-nil
Jorml
form2 ...) ==>

(1et ((foo nil))
Jorml
form2 ...)

Since special forms and macros are the mechanism by which the syntax of Lisp is extended,
their descriptions must describe both their syntax and their semantics; functions follow a simple
consistent set of rules, but each special form is idiosyncratic. The syntax is displayed on the first
line of the description using the following conventions. Italicized words are names of parts of the
form which are referred to in the desciiptive text. They are not arguments, even though they
resemble the italicized words in the first line of a function description. Parentheses ("()") stand
for themselves. Square brackets ("[]") indicate that what they enclose is optional. Ellipses ("...")
indicate that the subform (italicized word or parcnthesized list) which precedes them may be
repeated any number of times (possibly no times at all). Curly brackets followed by cllipses
("{ }...") indicate that what they enclose may be repeated any number of times. Thus the first
line of the description of a special form is a "template” for what an instance of that special form
would look like, with the surrounding parentheses removed. The syntax of some special forms is
sufficiently complicated that it does not fit comfortably into this style; the first line of the
description of such a special form contains only the name, and the syntax is given by cxample in
the body of the description.

MC:EMMAN;LNTRO 49 24-JUL.-81

Notational Conventions and Helpful Notes 4 Lisp Machine Manual

The semantics of a special form includes not only what it "does for a living”, but also which
subforms are cvaluated and what the returned value is. Usually this will be clarified with one or
more examples.

A convention used by many special forms is that all of their subforms after the first few are
described as "body...". This means that the remaining subforms constitute the "body" of this
special form; they are Lisp forms which are evaluated one after another in some environment
established by the special form,

This ridiculous special form exhibits all of the syntactic features:

twiddle-frob [(frob option..)] {parameter value}... Special Form

This twiddles the parameters of .frob, which defaults to default-frob if not specified.
Each parameter is the name of one of the adjustable parameters of a frob; each value is
what value to set that parameter to. Any number of parameter/value pairs may be
specified. If any options are specified, they are keywords which sclect which safety checks
to override while twiddling the parameters. If neither frob nor any options are specified,
the list of them may be omitted and the form mav begin directly with the first parameter
name.

frob and the values are evaluated; the parameters and options are syntactic keywords and
not evaluated. The returned value is the frob whose parameters were adjusted. An error
is signalled if any safety checks are violated.

Methods, the message-passing equivalent of ordinary Lisp’s functions, are described in this
style:

message-name arg/ arg2 &optional arg3 (to flavor-name)
This is the documentation of the effect of sending a message named message-name,
with arguments arg/, arg2, and arg3, to an instance of flavor flavor-name.

Descriptions of variables ("special” or "global” variables) look like this:

typical-variable Variable
The variable typical-variable has a typical value....

Most numbers shown are in octal radix (base eight). Spelled out numbers and numbers
followed by a decimal point are in decimal. This is because, by dcfault, Zetalisp types out
numbers in base 8; don’t be surprised by this. If you wish to change it, see the documentation
on the variables ibase and base (page 322).

All uses of the phrase "Lisp rcader”, unless further qualified, refer to the part of Lisp which
reads characters from 1/0 streams (the read function), and not the person reading this manual.

There are scveral terms which arc used widely in other references on Lisp, but are not used
much in this document since they have become largely obsolete and mislcading. For the benefit
of those who may have scen them before, they are: "S-expression”, which means a Lisp object;
"Dotted pair”, which means a cons; and "Atom", which mecans, roughly, symbols and numbers
and sometimes other things, but not conscs. ‘The terms "list” and "tree™ are defined in chapter §,
page 52.

MC:LMMAN;I.NTRO 49 24-JU1 -81

Lisp Machine Manual 5 Notational Conventions and Helpful Notes

The characters acute accent (') (also called "single quote™) and semicolon (;) have special
meanings when typed to Lisp; they are examples of what are called macro characters. Though
the mechanism of macro characters is not of immediate interest to the new user, it is important to
understand the effect of these two, which are used in the examples.

When the Lisp reader encounters a "' ", it reads in the next Lisp object and encloses it in a
quote special form. That is, 'foo-symbol turns into (quote foo-symbol), and '(cons ’a 'b)
turns into (quote (cons (quote a) (quote b))). The reason for this is that "quote” would
otherwise have to be typed in very frequently, and would look ugly.

The semicolon is used as a commenting character. When the Lisp reader sees one, the
remainder of the line is discarded.

The character "/" is used for quoting strange characters so that they are not interpreted in
their usual way by the Lisp reader, but rather are trcated the way normal alphabetic characters
are treated. So, for example, in order o give a "/" to the reader, you must type "//", the first
"/" quoting the second one. When a character is preceeded by a "/" it is said to be slashified.
Slashifying also turns off the effects of macro characters such as "' " and ";".

The following characters also have special meanings, and may not be used in symbols without
slashification. These characters are explained in detail in the section on printed-representation
(section 21.2.2, page 322).

" Double-quote delimits character strings.
Number-sign introduces miscellancous reader macros.
' Backquote is used to construct list structure.
Comma is used in conjunction with backquote.
Colon is the package prefix.
| " Characters between pairs of vertical-bars are quoted.

® Circle-cross lets you type in characters using their octal codes.

All Lisp code in this manual is written in lower case. In fact, the rcader turns all symbols
into upper-case, and consequently cverything prints out in upper case. You may write programs
in whichever case you prefer.

You will see various symbols that have the colon (:) character in their names. By convention,
all "keyword" symbols in the Lisp Machine system have names starting with a colon. The colon
character is not actually part of the print name, but is a package prefix indicating that the symbol
belongs to the package with a null nane, which means the user package. So, when you print
such a symbol, you won't see the colon if the current package is user. However, you should
always type in the colons where the manual tells you to. This is all explained in chapter 23;
until you read that, just make believe that the colons are part of the names of the symbols, and
don’t worry that they sometimes don't get printed out for keyword symbols.

This manual documnents a number of internal functions and variables, which can be identified

by the “"sii prefix in their names. ‘The "si” stands for "system internals™. These functions and

variables are documented here because they are things you somctimes nced to know about.

MCTMMANENTRO 49 24-JU1-81

Notational Conventions and Helpful Notes 6 Lisp Machinc Manual

However, they are considered internal to the system and their behavior is not as guaranteed as
that of everything else. They may be changed in the future.

Zetalisp is descended from Maclisp, and a good deal of effort was expended to try to allow
Maclisp programs to run in Zetalisp. Throughout the manual, there are notes about differences
between the dialects. For the new user, it is important to note that many functions herein exist
solely for Maclisp compatibility; they should nor be used in new programs. Such functions are
clearly marked in the text.

The Lisp Machine character set is not quite the same as that used on LT.S. nor on Multics;
it is described in full detail elsewhere in the manual. The important thing to note for now is that
the character "newline” is the same as "return”, and is represented by the number 215 octal.
(This number should not be built into any programs.)

When the text speaks of "typing Control-Q" (for example), this mecans to hold down the
CTRL key on the keyboard (cither of the two), and, while holding it down, to strike the "Q"
key. Similarly, to type "Meta-P", hold down cither of the META keys and strike "P". To type
"Control-Meta-T" hold down both CTRL and META. Unlike ASCII, there are no "control
characters” in the character set; Control and Meta are merely things that can be typed on the
keyboard.

Many of the functions refer to "areas". The area feature is only of interest to writers of large
systems, and can be safely disregarded by the casual user. It is described in chapter 15.

MCAIMMANIINTRO 49 24-JU1-61

Lisp Machine Manual 7 Primitive Object Types

2. Primitive Object Types

2.1 Data Types

This scction enumerates some of the various different primitive types of objects in Zetalisp.
The types explained below include symbols, conses, various types of numbers, two kinds of
compiled code objects, locatives, arrays, stack groups, and closures. With ecach is given the
associated symbolic name, which is returned by the function data-type (page 173).

A symbol (these are sometimes callcd "atoms” or "atomic symbols™ by other texts) has a print
name, a binding, a definition, a property list, and a package.

The print name is a string, which may be obtained by the function get-pname (page 89).
This string scrves as the printed representation (see scction 21.2.1, page 319) of the symbol. Each
symbol has a binding (somectimes also called the "value™), which may be any Lisp object. It is
also referred to sometimes as the "cont:nts of the value cell”, since internally cvery symbol has a
cell called the value cell which holds the binding. It is accessed by the symeval function (page
86), and updated by the set function (page 86). (That is, given a symbol, you usc symeval to
find out what its binding is, and use set to change its binding.) Each symbol has a definition,
which may also be any Lisp object. It is also referred to as the "contents of the function cell”,
since internally every symbol has a cell called the finction cell which holds the definition. The
definition can be accessed by the fsymeval function (page 87), and updated with fset (page 87),
although usually the functions fdefiniticn and fdefine are employed (page 149). The property list
is a list of an even number of clements; it can be accessed directly by plist (page 88), and
updated dircctly by setplist (page 88), although usually the functions get, putprop, and remprop
(page 72) are used. The property list is used to associatc any number of additional attributes with
a symbol—attributes not used frequently cnough to deserve their own cells as the value and
definition do. Symbols also have a package cell, which indicates which "package™ of names the
symbol belongs to. This is explained further in the section on packages (chapter 23) and can be
disregarded by the casual uscr.

The primitive function for creating symbols is make-symbol (page 90), although most
symbols are created by read, intern, or fasload (which call make-symbol themselves.)

A cons is an object that cares about two other objects, arbitrarily named the car and the cdr.
These objects can be accessed with car and cdr (page 53), and updated with rplaca and rplacd
(page 61). The primitive function for creating conses is cons (page 53).

There are several kinds of numbers in Zectalisp. Fixnums represent integers in the range of
-2123 to 2123-1. Bignums represent integers of arbitrary size, but they arc more expensive to use
than fixnums because they occupy storage and are slower. The system automatically converts
between fixnums and bignums as required. [Flonums arc floating-point numbers. Small-flonums are
another kind of floating-point numbers, with less range and precision, but less computational
overhead. Other types of numbers are likely to be added in the future. Sce chapter 7, page 92
for full details of these types and the conversions between them.

MCEMMANFD.DTP 41 24-3U1 -81

Predicates 8 Lisp Machine Manual

The usual form of compiled, executable code is a Lisp object called a "Function Entry
Frame" or "FEF". A FEF contains the code for one function. This is analogous to what Maclisp
calls a "subr pointer”. FEFs arc produced by the Lisp Compiler (chapter 16, page 197), and are
usually found as the definitions of symbols. The printed representation of a FEF includes its
name, so that it can be identified.

Another Lisp object which represents exccutable code is a "micro-code entry”. Thesc are the
microcoded primitive functions of the Lisp system, and user functions compiled into microcode.

About the only useful thing to do with any of thesc compiled code objects is to apply it to
arguments. However, some functions arc provided for cxamining such objects, for user
convenience. Sce arglist (page 150), args-info (page 151), describe (page 500), and
disassemble (page 500).

A locative (sce chapter 13, page 170) is a kind of a- pointer to a single memory cell anywhere
in the system. The contents of this cell can be accessed by cdr (see page 53) and updated by
rplacd (see page 62).

An array (sce chapter 8, page 107) is a set of cclls indexed by a tuple of integer subscripts.
The contents of the cells may be accessed and changed individually. There are several types of
arrays. Some have cells which may contain any object, while others (numeric arrays) may only
contain small positive numbers. Strings are a type of array; the clements are 8-bit unsigned
numbers which encode characters.

A list is not a primitive data type, but rather a data structurc made up out of conses and the

symbol nil. Secec chapter 5, page 52.

2.2 Predicates

A predicate is a function which tests for some condition involving its arguments and returns
the symbol t if the condition is true, or the symbol nil if it is not true. Most of the following
predicates are for testing what data type an. object has; some other general-purpose predicates are
also explained.

By convention, the names of predicates usually end in the letter "p" (which stands for
"predicate”).

The following predicates are for testing data types. These predicates return t if the argument
is of the type indicated by the name of the function, nil if it is of some other type.

symbolp arg
symbolp returns t if its argument is a symbol, otherwise nil.

nsymbolp arg
nsymbolp returns nil if its argument is a symbol, otherwise t.

MCTMMANTD.DTP 41 24-JU1-81

Lisp Machine Manual 9 Predicates

1istp arg
listp returns t if its argument is a cons, otherwise nil. Note that this means (listp nil) is
nil even though nil is the empty list. [This may be changed in the future.]

nlistp arg
nlistp returns t if its argument is anything besides a cons, otherwise nil. nlistp is identical
to atom, and so (nlistp nil) rcturns t. [This may be changed in the future, if and when
listp is changed.]

atom arg
The predicate atom returns t if its argument is not a cons, otherwise nil.

numberp arg
numberp returns t if its argument is any kind of number, otherwise nil.

fixp arg
fixp returns t if its argument is a fixed-point number, ie. a fixnum or a bignum,
otherwise nil.

floatp arg
floatp returns t if its argument is a floating-point number, ic. a flonum or a small
flonum, otherwise nil.

fixnump arg
fixnump returns t if its argument is a fixnum, otherwise nil.

bigp arg
bigp returns t if arg is a bignum, otherwise nil.

flonump arg
flonump returns t if arg is a (large) flonum, otherwise nil.

small-floatp arg
small-floatp returns t if arg is a small flonum, otherwise nil.

stringp arg
stringp returns t if its argument is a string, otherwise nil.

arrayp arg
arrayp returns t if its argument is an array, otherwise nil. Note that strings are arrays.

functionp arg &optional allow-special-forms
functionp returns t if its argument is a function (essentially, something that is acceptable
as the first argument to apply), otherwise it returns nil. In addition to interpreted,
compiled. and microcoded fuiictions, functionp is true of closures, sclect-methods (sce
page 144), and symbols whosc function definition is functionp. functionp is not truc of
objects which can be called as functions but are not normally thought of as functions:
arrays, stack groups, entitics, and instances. [If allow-special-forms is specified and non-nil,
then functionp will be truc of macros and special-form functions (those with quoted
arguments). Normally functicnp returns nil for these since they do not behave like

MC:TMMANFD.IDTP 41 24-JUL-8]

Predicates 10 Lisp Machine Manual

functions. As a special case, functionp of a symbol whose function definition is an array
returns t, because in this case the array is being used as a function rather than as an
object.

subrp arg
subrp returns t if its argument is any compiled code object, othcerwise nil. The Lisp
Machine system doesn’t use the term “subr”, but the name of this function comes from
Maclisp.

closurep arg
closurep returns t if its argument 1s a closure, otherwise nil.

entityp arg
entityp returns t if its argument is an entity, otherwise nil. See section 11.4, page 162 for
information about "entities".

Tocativep arg
locativep returns t if its argument is a locative, otherwise nil.

typep arg &optional type
typep is really two different functions. With one argument, typep is not really a
predicate; it returns a symbol describing the type of its argument. With two arguments,
typep is a predicate which returns t if arg is of type type, and nil otherwise. Note that
an object can be "of" more than one type, since one type can be a subset of another.

The symbols that can be returned by typep of one argument are:

:symbol arg is a symbol.

fixnum arg is a fixnum (not a bignum).
:bignum arg is a bignum.

:flonum arg is a flonum (not a small-flonum).

:small-flonum arg is a small flonum,
list arg is a cons.
‘locative arg is a locative pointer (sce chapter 13, page 170).

:compiled-function
arg is the machine code for a compiled function (sometimes called a
FEF).

:microcode-function
arg is a function written in microcode.

:closure arg is a closure (sce chapter 11, page 158).

:select-method
arg is a sclect-method table (sec page 144),

:stack-group arg is a stack-group (sce chapter 12, page 163).

MCEMMANID.ITP 4 24-JU1-81

Lisp Machine Manual

:string
:array

:rrandom

foo

11 Predicates

arg is a string.
arg is an array that is not a string.

Returned for any built-in data type that does not fit into one of the above
categories.

An object of user-defined data type foo (any symbol). The primitive type
of the object cculd be array, instance, or entity. Sce Named Structures,
page 271, and Flavors, chapter 20, page 279.

The type argument to typep of two arguments can be any of the above keyword symbols
(except for :random), the name of a user-defined data type (cither a named structure or a
flavor), or one of the following additional symbols:

:atom

fix

:float
:number
sinstance

entity

Any atom (as dctermined by the atom predicate).

Any kind of fixcd-point number (fixnum or bignum),

Any kind of floating-point number (flonum or small-flonum).
Any kind of numnber,

An instance of any flavor. See chapter 20, page 279.

An entity. typep of one argument returns the name of the particular user-
defined type of “he entity, rather than :entity.

Sec also data-type, page 173.

Note that (typep nil) => :symbol, and (typep nil “list) => nil; the latter may be

changed.

The following functions are some other gencral purpose predicates.

eq x y

(eq x y) => 1t if and only if x and y are the same object. It should be noted that things
that print the same are not neccssarily eq to cach other. In particular, numbers with the
same valuc need not be eq, anc two similar lists are usually not eq.

Examples:

(eq 'a 'b) => nil

(eq 'a 'a) => t

(eq (cons 'a 'b) (cons ’a ’'b)) => nil

(setqg x (cons 'a 'b)) (eq x x) =>t
Note that in Zetalisp equal fixnums arc eq; this is not true in Maclisp. Equality does not
imply eq-ness for other types of numbers. To compare numbers, use =; see page 95.

neq x y

(neq x y) =

convenience.

(not (eq x y)). This is provided simply as an abbreviation for typing

MC:ITMMAN:TD.DTP 41 24-JU1-81

Predicates 12 Lisp Machine Manual

equal x y
The equal predicate returns t if its arguments are similar (isomorphic) objects. (cf. eq)
Two numbers are equal if they have the same value and type (for example, a flonum is
never equal to a fixnum, even if = is true of them). For conses, equal is defined
recursively as the two car’s being equal and the two cdr’s being equal. Two strings are
equal if they have the same length, and the characters composing them are the same; see
string-equal, page 128. Alphabetic case is ignored (but sce alphabetic-case-affects-
string-comparison, page 127). All other objects arc equal if and only if they are eq.
Thus equal could have been defined by:
(defun equal (x y)
(cond ((eq x y) t)

((neq (typep x) (typep y)) nil)

((numberp x) (= x y))

((stringp x) (string-equal x y))

((listp x) (and (equal (car x) (car y))

(equal (cdr x) (cdr y))))))

As a consequence of the above definition, it can be seen that equal may compute torever
when applied to looped list structure. In addition, eq always implies equal; that is, if
(eq a b) then (equal a b). An inuwitive definition of equal (which is not quite correct) is
that two objects are equal if they look the same when printed out. For example:

(setq a "(1 2 3))

(setq b "(1 2 3))

(eq a b) => nil

(equal a b) => t

(equal "Foo" "foo") => t

not x

null x
not returns t if x is nil, else nil. null is the same as not; both functions are included for
the sake of clarity. Use null to check whether something is nil; use not to invert the
sense of a logical value. Even though Lisp uses the symbol nil to represent falseness, you
shouldn’t make understanding of your program depend on this fortuitously. For example,
one often writes:

(cond ((not (null 1st)) ...)

(...)
rather than
(cond (1st ...)
(...))

There is no loss of efficiency, since these will compile into exactly the same instructions.

MC:T MMANFD.OP 29 24-1U1.-81

Lisp Machine Manual 13 Evaluation

3. Evaluation

The following is a complete description of the actions taken by the evaluator, given a form to
evaluate.

If form is a number, the result is form.
If form is a string, the result is form.

If form is a symbol, the result is the binding of form. If form is unbound, an error is
signalled. The way symbols are bound is explained in section 3.1, page 14 below.

If form is not any of the above types, and is not a list, an error is signalled.

In all remaining cases, form is a lis.. The evaluator examines the car of the list to figure out
what to do next. There are three possibilities: this form may be a special form, a macro form,
or a plain-old function form. Conceptually, the evaluator knows specially about all the symbols
whose appearance in the car of a form make that form a special form, but the way the evaluator
actually works is as follows. If the car of the form is a symbol, the evaluator finds the object in
the function cell of the symbol (sec chapter 6, page 86) and starts all over as if that object had
been the car of the list. If the car isn’t a symbol, then if it’s a cons whose car is the symbol
macro, then this is a macro form; if it is a "special function" (see page 141) then this is a
special form; otherwise, it should be a regular function, and this is a function form.

If form is a special form, then it is handled accordingly; each special form works differently.
All of them are documented in this manual. The internal workings of special forms are explained
in more detail on page 141, but this hardly ever affects you.

If form is a macro form, then the macro is expanded as explained in chapter 17.

If form is a function form, it calls for the application of a function to arguments. The car of
the form is a function or the name of a function. The cdr of the form is a list of subforms.
Each subform is evaluated, sequentially. The values produced by cvaluating the subforms are
called the "arguments" to the ‘function. The function is then applied to those arguments.
Whatever results the function refurns are the values of the original form.

There is a lot more to be said about evaluation. The way variables work and the ways in
which they are manipulated, including the binding of arguments, is explained in scction 3.1, page
14. A basic cxplanation of functions is in section 3.2, page 20. The way functions can return
more than one value is explained in section 3.4, page 29. The description of all of the kinds of
functions, and the means by which they are manipulated, is in chapter 10. Macros are explained
in chapter 17. The evalhook facility, which lets you do somcthing arbitrary whenever the
evaluator is invoked, is explained in section 26.6, page 466. Special forms are described all over
‘the manual; each special form is in the section on the facility it is part of.

MC:EMMANCFDEVA 77 24-JUL-81

Variables 14 Lisp Machine Manual

3.1 Variables

In Zetalisp, variables are implemented using symbols. Symbols are used for many things in
the language, such as naming functions, naming special forms, and being keywords; they are also
useful to programs written in Lisp, as parts of data structures. But when the evaluator is given a
symbol, it treats it as a variable, using the value cell to hold the value of the variable. If you
evaluate a symbol, you get back the contents of the symbol’s value cell.

There are two different ways of changing the value of a variable. One is to ser the variable.
Setting a variable changes its value to a new Lisp object, and the previous value of the variable is
forgotten. Setting of variables is usually done with the setq special form.

The other way 1o change the value of a variable is with binding (also called "lambda-
binding"). When a variable is bound, its old value is first saved away, and then the value of the
variable is made to be the new Lisp object. When the binding is undone, the saved value is
restored to be the value of the variable. Bindings are always followed by unbindings. The way
this is enforced is that binding is only done by special forms that are defined to bind some
variables, then evaluate some subforms, and then unbind those variables. So the variables are all
unbound when the form is finished. This means that the cvaluation of the form doesn’t disturb
the values of the variables that are bound; whatever their old value was, before the evaluation of
the form, gets restored when the evaluation of the form is completed. If such a form is exited by
a non-local exit of any kind, such as *throw (sce page 48) or return (sce page 45), the bindings
are undone whenever the form is exited.

The simplest construct for binding variables is the let special form. The do and prog special
forms can also bind variables, in the same way let does, but they also control the flow of the
program and so are explained clsewhere (see page 38). let* is just a sequential version of let; the
other special forms below are only used for esoteric purposes.

Binding is an important part of the process of applying interpreted functions to arguments,
This is explained in the next section.

When a Lisp function is compiled, the -compiler understands the use of symbols as variables.
However, the compiled code gencrated by the compiler does not actually use symbols to represent
variables. Rather, the compiler converts the references to variables within the program into more
efficient references, that do not involve symbols at all. A variable that has been changed by the
compiler so that it is not implemented as a symbol is called a "local" variable. When a local
variable is bound, a memory cell is allocated in a hidden, internal place (the Lisp control stack)
and the value of the variable is stored in this cell. You cannot usc a local variable without first
binding it; you can only usc a local variable inside of a special form that binds that variable.
Local variables do not have any "top level" value; they do not even exist outside of the form
that binds them.

The variables which are associated with symbols (the kind which are used by non-compiled
programs) arc called "special™ variables.

Local variables and special variables do not behave quite the same way, because "binding"

means different things for the two of them. Binding a special variable saves the old value away
and then uses the value cell of the symbol to hold the new value, as cxplained above. Binding a

MCIMMANFD.EVA 77 24-JUT-81

Lisp Machin¢ Manual 15 Variables

local variable, however, does not do anything to the symbol. In fact, it creates a new memory
cell to hold the value, i.e. a new local variable.

Thus, if you compile a function, it may do different things after it has been compiled. Here
is an example:

(setq a 2) ; Set the variable a to the value 2.
(defun foo () ; Define a function named foo.

(let ((a 5)) ; Bind the symbol a to the value 5.

(bar))) ; Call the function bar.

(defun bar () ; Define a function named bar.

a) ; It just returns the value of the variable a.
(foo) => 56 ; Calling foo returns 5.
(compile 'foo) ; Now compile foo.
(foo) => 2 ; This time, calling foo returns 2.

This is a very bad thing, because the compiler is only supposed to speed things up, without
changing what the function does. Why did the function foo do something different when it was
compiled? Because a was converted frcm a special variable into a local variable. After foo was
compiled, it no longer had any effect on the value cell of the symbol a, and so the symbol
retained its old contents, namely 2.

In most uses of variables in Lisp programs, this problem doesn’t come up. The reason it
happened here is because the function bar refers to the symbol a without first binding a to
anything. A reference to a variable that you didn’t bind yourself is called a free reference; in this
example, bar makes a free referchce to a.

We mentioned above that you can’t use a local variable without first binding it. Another way
to say this is that you can’t ever have a free reference to a local variable. If you try to do so,
the compiler will complain. In order for our functions to work, the compiler must be told not to
convert a into a local variable; a must remain a special variable. Normally, when a function is
compiled, all variables in it are made to be "local”. You can stop the compiler from making a
variable local by "decclaring” to the compiler that the variable is “special”. When the compiler
sees references to a variable that has been declared special, it uses the symbol itself as the
variable instead of making a local variable.

Variables can be declared by the special forms defvar and defconst (sec below), or by
explicit compiler declarations (sece page 201). The most common use of special variables is as
"global" variables: variables used by many different functions throughout a program, that have
top-level values.

Had bar been compiled, the compiler would have seen the free reference and printed a
warning message: Warning: a declared special. It would have automatically declared a to be
special and procceded with the compitation. It knows that free references mean that special

MC:IMMAN:ED.EVA 77 24-JU1.-81

Variables 16 Lisp Machine Manual

declarations are necded. But when a function is compiled that binds a variable that you want to
be treated as a special variable but that you have not explicitly declared, there is, in general, no
way for the compiler to automatically detect what has happencd, and it will produce incorrect
output. So you must always provide declarations for all variables that you want to be treated as
special variables.

When you declare a variable to be special using declare rather than local-declare, the
declaration is "global”; that is, it applies wherever that variable name is seen. After fuzz has
been declared special using declare, all following uses of fuzz will be treated by the compiler as
references to the same special variable. Such variables are called "global variables”, because any
function can use them; their scope is not limited to one function. The special forms defvar and
defconst are useful for creating global variables; not only do they dcclare the variable special,
but they also provide a place to specify its initial value, and a place to add documentation. In
addition, since the names of these special forms start with "def” and since they are used at the
top-level of files, the Lisp Machine cditor can find them easily.

Here are the special forms used for setting variables.

setq {variable value}... Special Form
The setq special form is used to set the value of a variable or of many variables. The
first value is evaluated, and the first variable is sct to the result. Then the second value is
evaluated, the second variable is set to the result, and so on for all the variable/value
pairs. setq returns the last value, ic. the result of the evaluation of its last subform.
Example:
(setq x (+ 3 2 1) y (cons x nil))

x is set to 6, y is set to (6), and the setq form returns (6). Note that the first variable
was set before the second value form was evaluated, allowing that form to use the new
value of x.

psetq {variable value}... Special Form
A psetq form is just like a setq form, except that the variables are set "in parallel”; first
all of the value forms are evaluated, and then the variables are set to the resulting values.

Example:
(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
b => 1

Here are the special forms used for binding variables.
let ((var value)..) body... Special Form

let is used to bind some variables to some objects, and cvaluate some forms (the "body™)
in the context of those bindings. A let form looks like

MC:IMMAN:I'D.EVA 77 24-JU1-81

Lisp Machine Manual 17 Variables

(et ((varl vforml)
(var2 _vform2)

ced)

bforml

bform2

When this form is evaluated, first the vforms (the values) are evaluated. Then the vars are
bound to the values returned by the corresponding vforms. Thus the bindings happen in
parallel; .all the vforms are evaluated before any of the vars are bound. Finally, the
bforms (the body) are evaluated sequentially, the old values of the variables are restored,
and the result of the last bform is returned.

You may omit the vform from ¢ let clause, in which case it is as if the vform were nil:
the variable is bound to nil. Furthermore, you may replace the entire clause (the list of
the variable and form) with just the variable, which also means that the variable gets
bound to nil. Example:

(let ((a (+ 3 3))

(b ’foo)
(c)
d)
ces)
Within the body, a is bound to 6, b is bound to foo, c is bound to nil, and d is bound
to nil.
let® ((var value)..) body... Special Form

let* is the same as let except that the binding is sequential. Each var is bound to the
value of its vform before the next vform is evaluated. This is useful when the computation
of a vform depends on the value of a variable bound in an earlier vform. Example:
(lets ((a (+ 1 2)) '
(b (+a a)))
ce)
Within the body, a is bound to 3 and b is bound to 6.

let-1f condition ((var value)..) body.. Special Form
let-if is a variant of let in which the binding of variables is conditional. The variables
must all be special variables. The let-if special form, typically written as
(let-if cond
((var-1 val-1y (var-2 val-2)...)
body-forml body-form?2. . .)

first evaluates the predicate forrn cond. If the result is non-nil, the value forms val-1,
val-2, etc. are evaluated and then the variables var-/, var-2, etc. arc bound to them. If
the result is nil, the vars and vals are ignored. Finally the body forms are evaluated.

let-globally ((var value)...) body.. Special Form
let-globally is similar in form to let (scc page 16). The difference is that let-globally
does not bind the variables; instead, it saves the old values and sets the variables, and
sets up an unwind-protect (sce page 49) to sct them back. The important difference
between let-globally and let is that when the current stack group (sce chapter 12, page
163) co-calls some other stack group, the old values of the variables are not restored.

MC:IMMAN:FD.EVA 77 24-JU1.-81

Variables 18 Lisp Machine Manual

Thus let-globally makes the new values visible in all stack groups and processes that
don’t bind the variables themselves, not just the current stack group.

progv symbol-list value-list body... Special Form
progv is a special form to provide the user with extra control over binding. It binds a
list of special variables to a list of values, and then evaluates some forms. The lists of
special variables and values are computed quantities; this is what makes progv different
from let, prog, and do.

progv first evaluates symbol-list and value-list, and then binds each symbol to the
corresponding value. If too few values are supplicd, the remaining symbols are bound to
nil. If too many values are supplied, the excess values are ignored.

After the symbols have been bound to the values, the body forms are evaluated, and
finally the symbols’ bindings are undone. The result returned is the value of the last form
in the body.
Example:

(setq a 'foo b 'bar)

(progv (1ist a b 'b) (list b)
(1ist a b foo bar))
=> (foo nil bar nil)
During the evaluation of the body of this progv, foo is bound to bar, bar is bound to
nil, b is bound to nil, and a retains its top-level value foo.

progw vars-and-vals-form body... Special Form

progw is a somewhat modified kind of progv. Like progv, it only works for special
variables. First, vars-and-val-forms-form is evaluated. Its value should be a list that looks
like the first subform of a let:

((varl val-form-1)

(var2 val-form-2)

cel)
Each clement of this list is processed in turn, by evaluating the val-form, and binding the
var to the resulting value. Finally, the body forms are evaluated sequentially, the bindings
are undone, and the rcsult of the last form is returned. Note that the bindings are
sequential, not parallel.

This is a very unusual special form because of the way the cvaluator is called on the
result of an evaluation. Thus progw is mainly useful for implementing special forms and
for functions part of whose contract is that they call the interpreter. For an example of
the latter, sce sys:*break-bindings* (page 505); break implements this by using progw.

Here are the special forms for defining special variables.

MC:I.MMAN:FD.EVA /1 24-JU1 81

Lisp Machine Manual 19 Variables

defvar variable [initial-value] [documertation) Special Form

defvar is the recommended way to declare the use of a global variable in a program.
Placed at top level in a file,

(defvar variable)
declares variable special for the sake of compilation, and records its location for the sake
of the editor so that you can ask to see where the variable is defined. If a second
subform is supplied,

(defvar variable initial-value)
variable is initialized to the result of evaluating the form initial-value unless it already has
a value, in which case it kecps that value. initial-value is not evaluated unless it is used;
this is useful if it does something expensive like creating a large data structure.

defvar should be used only at top level, never in function definitions, and only for global
variables (those used by more than one function). (defvar foo ’bar) is roughly equivalent
to
(deciare (special foo))
(if (not (boundp ’'foo))
(setq foo ’'bar))

(defvar variable initial-value documentation)
allows you to include a documentation string which describes what the variable is for or
how it is to be used. Using such a documentation string is even better than commenting
the use of the variable, because the documentation string is accessible to system programs
that can show the documentation to you while you are using the machine.

If defvar is used in a patch file (sce section 24.7, page 416) or is a single form (not a
region) evaluated with the editor's compile/evaluate from buffer commands, if there is an
initial-value the variable is always set to it regardless of whether it is already bound.

defconst variable [initial-value] [documentation) Special Form

defconst is the same as defvar cxcept that if an initial value is given the variable is
always set to it regardless of whether it is already bound. The rationale for this is that
defvar declares a global variable, whose value is initialized to somcthing but will then be
changed by the functions that use it to maintain some state. On the other hand,
defconst declares a constant, whose value will never be changed by the normal opcration
of the program, only by changes fo the program. defconst always sets the variable to the
specified value so that if, while developing or dcbugging the program, you change your
mind about what the constant value should be, and then you evaluate the defconst form
again, the variable will get the naw value. It is not the intent of defconst to declare that
the value of variable will never change; for example, defconst is not license to the
compiler to build assumptions about the value of variable into programs being compiled.

MC:I.MMAN:IFD.EVA 77 24-JUL-81

Functions 20 Lisp Machine Manual

3.2 Functions

In the description of evaluation on page 13, we said that evaluation of a function form works
by applying the function to the results of evaluating the argument subforms. What is a function,
and what does it mean to apply it? In Zetalisp there are many kinds of functions, and applying
them may do many different kinds of things. For full details, sce chapter 10, page 136. Here we
will explain the most basic kinds of functions and how they work. In particular, this section
explains lambda lists and all their important features.

The simplest kind of user-defined function is the lambda-expression, which is a list that looks

like:
(1ambda lambda-list bodyl body?...)

The first element of the lambda-expression is the symbol lambda; the second clement is a list
called the lambda list, and the rest of the elements are called the body. The lambda list, in its
simplest form, is just a list of variables. Assuming that this simple form is being used, here is
what happens when a lambda cxpression is applied to some arguments. First, the number of
arguments and the number of variables in the lambda list must be the same, or else an error is
signalled. Each variable is bound to the corresponding argument value. Then the forms of the
body are evaluated sequentially. After this, the bindings are all undone, and the value of the last
form in the body is returned.

This may sound something like the description of let, above. The most important difference
is that the lambda-expression is not a form at all; if you try to evaluate a lambda-expression, you
will get told that lambda is not a defined function. The lambda-expression is a function, not a
form. A let form gets evaluated, and the values to which the variables are bound come from the
evaluation of some subforms inside the let form; a lambda-expression gets applied, and the values
are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with other
languages. Some other terminologies would refer to these as formal parameters, and to arguments
as actual parameters.

I.ambda lists can have more complex structure than simply being a list of variables. There are
additional features accessible by using certain keywords (which start with &) and/or lists as
elements of the lambda list.

The principal weakness of the simple lambda lists is that any function written with one must
only take a certain, fixed number of arguments. As we know, many very uscful functions, such
as list, append, +, and so on, accept a varying number of arguments. Maclisp solved this
problem by the use of lexprs and Isubrs, which were somewhat inelegant since the parameters had
to be referred to by numbers instcad of names (e.g. (arg 3)). (For compatibility reasons, Zetalisp
supports lexprs, but they should not be used in new programs).’

In general, a function in Zetalisp has zero or more required parameters, followed by zero or
more optional parameters, followed by zero or one rest parameter. This means that the caller
must provide cnough arguments so that cach of the required parameters gets bound, but he may
provide some extra arguments for cach of the optional parameters. Also, if there is a rest
parameter, he can provide as many extra arguments as he wants, and the rest parameter will be
bound to a list of all these extras. Also, optional paramcters may have a default-form, which is a

MC:I.MMAN:FD.EVA 77 24-JU1.-81

Lisp Machine Manual 21 Functions

form to be evaluated to produce the default argument if none is supplied.

Here is the exact explanation of how this all works. When apply (the primitive function that
applies functions to arguments) matches up the arguments with the parameters, it follows the
following algorithm:

The first required parameter is bound to the first argument. apply continues to bind
successive required parameters to the successive arguments. If, during this process, there are no
arguments left but there are still some required parameters which have not been bound yet, then
an error is caused (“too few arguments”).

Next, after all required parameters are handled, apply continues with the optional parameters,
binding each argument to each succassive parameter. If, during this process, there are no
arguments left, each remaining optional parameter’s default-form is evaluated, and the paramcter
is bound to it. This is done one parameter at a time; that is, first one default-form is evaluated,
and then the parameter is bound to it, then the next default-form is evaluated, and so on. This
allows the default for an argument to depend on the previous argument.

Finally, if there is no rest parameter and there are no remaining arguments, we arc finished.
If there is no rest parameter but there are still some arguments remaining, an error is caused
("too many arguments™). But if there is a rest parameter, it is bound to a list of all of the
remaining arguments. (If there arc no remaining arguments, it gets bound to nil.)

The way you cxpress which paremecters are required, optional, and rest is by means of
specially recognized symbols, which arc called &-keywords, in the lambda list. All such symbols’
print names begin with the character "8". A list of all such symbols is the value of the symbol
lambda-list-keywords.

The keywords used here are &optional and &rest. The way they are used is best explained
by means of examples; the following are typical lambda lists, followed by descriptions of which
parameters are required, optional; and rest.

(a b c) a, b, and ¢ are all required. The function must be passed three arguments.

(a b &optional c))
a and b are required, ¢ is optional. The function may be passed cither two or

three arguments.

(&optional a b c)
a, b, and ¢ arc all optional. The function may be passed any number of

arguments between zerc and three, inclusive.

iy

(&rest a) a is a rest parameter. The function may be passed any number of arguments.

(a b &optional c d &rest e)
a and b are required, ¢ and d are optional, and e is rest. The function may be

passcd (w0 Or ore arguments.

In all of the cases above, the defaulr-form for cach optional paramecter is nil. To specify your
own default forms. instcad of putting a symbol as the clement of a Jambda list, put in a list
whose first clement is the symbol (the parameter itself) and whose second clement is the default-
form. Only optional parameters may have default forms; required parameters arc never defaulted,

MCTMMANIFDEVA 7T 24-JUl-81

Functions 22 Lisp Machine Manual

and rest parameters always default to nil. For example:

(a &optional (b 3))
The default-form for b is 3. a is a required parameter, and so it doesn’t have a
default form.

(&optional (a 'foo) b (c (symeval a)) &rest d)
a's default-form is 'foo, b’s is nil, and c’s is (symeval a). Note that if the
function whose lambda list this is were called on no arguments, a would be
bound to the symbol foo, and ¢ would be bound to the binding of the symbol
foo; this illustrates the fact that each variable is bound immediately after its
default-form is evaluated, and so later default-forms may take advantage of earlier
parameters in the lambda list. b and d would be bound to nil.

Occasionally it is important to know whether a certain optional parameter was defaulted or
not. You can’t tell from just examining its value, since if the value is the default value, there’s
no way to tell whether the caller passed that value explicitly, or whether the caller didn’t pass any
value and the parameter was defaulted. The way to tell for sure is to put a third element into
the list: the third element should be a variable (a symbol), and that variable is bound to nil if
the parameter was not passed by the caller (and so was defaulted), or t if the parameter was
passed. The new variable is called a "supplied-p” variable; it is bound to t if the parameter is
supplied. For example:

(a &optiona? (b 3 ¢))
The default-form for b is 3, and the "supplied-p" variable for b is ¢. If the
function is called with one argument, b will be bound to 3 and ¢ will be bound
to nil. If the function is called with two arguments, b will be bound to the value
that was passed by the caller (which might be 3), and ¢ will be bound to t.

It is also possible to include, in the lambda list, some other symbols which are bound to the
values of their default-forms upon entry to the function. These are not paramecters, and they are
never bound to arguments; they just get bound, as if they appeared in a let form. (Whether you
use these aux-variables or bind the variables with let is a stylistic decision.)

To include such symbols, put them after any parameters, precceded by the &-keyword &aux.
Examples:

(a &optional b &rest c &aux d (e 5) (f (cons a e)))
d, e, and f arc bound, when the function is called, to nil, 5, and a cons of the
first argument and 5.

Note that aux-variables are bound sequentially rather than in parallel.

It is important to realize that the list of arguments to which a rest-parameter is bound is set
up in whatever way is most efficiently implemented, rather than in the way that is most
convenient for the function receiving the arguments. It is not guarantced to be a "real” list.
Sometimes the rest-args list is stored in the function-calling stack, and loses its validity when the
function returns. If a rest-argument is to be returned or made part of permancnt list-structure, it
must first be copied (see copylist. page page 58), as you must always assume that it is onc of
these special lists. "The system will not detect the error of omitting to copy a rest-argument; you
will simply find that you have a value which scems to change behind your back. At other times

MCTMMANFDEVA 77 24-JU1.-81

Lisp Machine Manual 23 Some Functions and Special Forms

the rest-args list will be an argument that was given to apply; therefore it is not safe to rplaca
this list as you may modify permanen data structurc. An attempt to rplacd a rest-args list will
be unsafe in this case, while in the first case it would cause an error, since lists in the stack are
impossible to rplacd.

There are some other keywords in addition to those mentioned here. See section 10.7, page
148 for a complete list. You only need to know about &optional and &rest in order to
understand this manual.

Lambda lists provide "positional" arguments: the meaning of an argument comes from its
position in the lambda list. For example, the first argument to cons is the object that will be the
car of the new cons. Sometimes it is desirable to use "keyword" arguments, in which the
meaning of an argument comes from a "keyword” symbol that tells the callee which argument this
is. While lambda lists do not provide keyword arguments directly, there is a convention for
functions that want arguments passcd to them in the keyword fashion. The convention is that the
function takes a rest-argument, whose value is a list of alternating keyword symbols and argument
values. If cons were written as a keyword-style function, then instead of saying

(cons 4 (foo))
you could say either of

(cons ’:car 4 ':cdr (foo0))

or

(cons ':cdr (foo) ’:car 4)
assuming the keyword symbols were :car and :cdr. Keyword symbols are always in the keyword
package, and so their printed representations always start with a colon; the reason for this is
given in chapter 23.

This use of keyword arguments is only a convention; it is not built into the function-calling
mechanism of the language. Your function must contain Lisp programming to take apart the rest
parameter and make sense of the keywords and values. The special form keyword-extract (see
page 42) may be useful for this.

3.3 Some Functions and Special Forms

This section describes some functions and special forms. Some are parts of the evaluator, or
closely related to it. Some have to do specifically with issues discussed above such as keyword
arguments. Some are just fundamental Lisp forms that are very important.

eval x
(eval x) evaluates x, and returas the result.
Example:
(setq x 43 foo ’'bar)
(eval (1ist 'cons x ’'foo))
=> (43 . bar)

It is unusual to explicitly call eval, since usually evaluaticn is done implicitly. If you are
writing a simple Lisp program and cxplicitly calling eval. you arc probably doing
something wrong. eval is primarily uscful in programs which deal with Lisp itsclf, rather
than programs about knowledge or mathematics or games.

MC:LMMAN;FD.EVA 77 24-JU1 -81

Some Functions and Special Forms 24 Lisp Machine Manual

apply

Also, if you are only interested in getting at the value of a symbol (that is, the contents
of the symbol’s value cell), then you should use the primitive function symeval (see page
86).

Note: the actual name of the compiled code for eval is "si:*eval"; this is because use of
the evalhook feature binds the function cell of eval. If you don’t understand this, you
can safely ignore it.

Note: unlike Maclisp, eval never takes a second argument; there are no "binding context
pointers” in Zetalisp. They are replaced by Closures (see chapter 11, page 158).

[arglist
(apply f arglist) applies the function fto the list of arguments arglist. arglist should be a
list; fcan be any function.
Examples:

(setqg fred '+) (apply fred (1 2)) => 3

(setq fred '-) (apply fred '(1 2)) => -1

(apply ’cons '((+ 2 3) 4)) =>

((+23) .48) not (5. 4)

Of course, arglist may be nil.

Note: unlike Maclisp, apply never takes a third argument; there are no "binding context
pointers” in Zetalisp.

Compare apply with funcall and eval.

funcall f &rest args

lexpr-

(funcall fal a2 .. an) applics the function f to the arguments af, a2, .., an. f may
not be a special form 1.+ a macro; this would not be meaningful.
Example: .
(cons 1 2) => (1 . 2)

{setq cons ’plus)

(funcall cons 1 2) => 3
This shows that the use of the symbol cons as the name of a function and the use of
that symbol as the name of a variable do not interact. The cons form invokes the
function named cons. The funcall form evaluates the variable and gets the symbol plus,
which is the name of a different function.

funcall f &rest args

lexpr-funcall is like a cross between apply and funcall. (lexpr-funcall fal a2 ... anl)
applics the function fto the arguments a/ through an followed by the clements of the list
I. Note that since it treats its last argument specially, lexpr-funcall requires at lecast two
arguments.

MC:T MNMANFD.EVA 77 24-JU1 .-81

Lisp Machine Manual 25 Some Functions and Special Forms

Examples:
(1expr-funcall ’plus 1 11 (1 11)) =>6

(defun report-error (&rest args)
(1expr-funcall (function format) error-output args))

lexpr-funcall with two arguments does the same thing as apply.

Note: the Maclisp functions subrcall, Isubrcall, and arraycall are not needed on the Lisp
Machine; funcall is just as cfficient. arraycall is provided for compatibility; it ignores its first
subform (the Maclisp array type) and is otherwise identical to aref. subrcall and Isubrcall are
not provided.

call function &rest argument-specificctions

quote

call offers a very genecral way of controlling what arguments you pass to a function. You
can provide either individual arguments a la funcall or lists of arguments a la apply, in
any order. In addition, you can make some of the arguments optional. If the function is
not prepared to accept all the arguments you specify, no error occurs if the excess
arguments are optional ones. lInstead, the exccss arguments are simply not passed to the
function,

The argument-specs are altcrnating keywords (or lists of keywords) and values. FEach
keyword or list of keywords says what to do with the value that follows. If a value
happens to require no keywords provide () as a list of keywords for it.

Two keywords are presently defined: :optional and :spread. :spread says that the
following value is a list of arguments. Otherwise it is a single argument. :optional says
that all the following arguments are optional. It is not necessary to specify :optional with
all the following argument-specs, because it is sticky.

Example:

(call #'foo () x ’:spread y ’'(:optional :spread) z () w)
The arguments passed to foo are the value of x, the clements of the valuc of y, the
clements of the value of z, and the value of w. The function foo must be prepared to
accept all the arguments which come from x and y, but if it does not want the rest, they
are ignored.

object Special Form
(quote x) simply returns x. It is uscful specifically because x is not evaluated; the quote
is how you make a form that rcturns an arbitrary Lisp object. quote is used to include
constants in a form.
Examples;

(quote x) => x

(setq x (quote (some 1ist))) x => (some list)

Since quote is so uscful but somewhat cumbersome to type, the reader normally converts
any form preceded by a single quote (') character into a quote form.

MCTMMAND.EVA 77 24-JU1 -81

Some Functions and Special Forms 26 Lisp Machine Manual

For example,

(setg x ’'(some list))

is converted by read into

(setg x (quote (some list)))

function f Special Form
This means different things depending on whether fis a symbol or a list. (Note that in
neither case is f evaluated.)

If you want to pass an anonymous function as an argument to a function, you could just
usc quote; for example:
(mapc (quote (lambda (x) (car x))) some-list)

This works fine as far as the cvaluator is concerned. However, the compiler cannot tell
that the first argument is going to be used as a function; for all it knows, mapc will
treat its first argument as a piece of list structure, asking for its car and cdr and so forth.
So the compiler cannot compile the function; it must pass the lambda-expression
unmodified. This means that the function will not get compiled, which will make it
execute more slowly than it might otherwise.

The function special form is onc way to tcll the compiler that it can go ahead and
compile the lambda-cxpression. You just use the symbol function instead of quote:

(mapc (function (lambda (x) (car x))) some-list)
This will cause the compiler to generate code such that mapc will be passed a compiled-
code object as its first argument.

That's what the compiler does with a function special form whose subform f is not a
symbol. The evaluator, when given such a form, just returns f; that is, it treats function
just like quote.

To easc typing, the rcader converts #'thing into (function thing). So #’ is similar to
except that it produces a function form instcad of a quote form. So the above form
could be written as

(mapc #'(lambda (x) (car x)) some-list)

If fis a symbol, then function returns the definition (contents of the function cell
location) of f, it is like fsymeval except that it is a special form instcad of a function,
and so

(function fred) islike (fsymeval ’fred)
function is the same for the compiler and the interpreter when fis a symbol.

Another way of explaining function is that it causcs f to be treated the same way as it
would as the car of a form. [Evaluating the form {f argl arg2..) uscs the function
definition of fif it is a symbol, and otherwisc expects f to be a list which is a lambda-
expression.

You should be carcful about whether you use #' or '. Suppose you have a program
with a variable x whose value is assumed to contain a function that gets called on some
arguments. 1f you want that variable to be the car function, there are two things you
could say:

MC: T MMANEFD.EVA 7T 24-JU -R1

Lisp Machine Manual 27 Some Functions and Special Forms

false

true

(setq x ’'car)

or

(setq x #'car)
The former causes the value of x to be the symbol car, whereas the latter causes the
value of x to be the function object found in the function cell of car. When the time
comes to call the function (the program does (funcall x ...)), cither of these two will work
(because if you use a symbol a. a function, the contents of the symbol’s function cell is
used as the function, as explained in the beginning of this chapter). The former case is a
bit slower, because the function call has to indirect through the symbol, but it allows the
function to be redefined, traced (sece page 457), or advised (see page 460). The latter
case, while faster, picks up the function definition out of the symbol car and does not
sec any later changes to it.

The other way to tell the compiler that an argument that is a lambda expression should
be compiled is for the function that takes the function as an argument to use the
&functional keyword in its lambda list; sce section 10.7, page 148. The basic system
functions that take functions as arguments, such as map and sort, have this &functional
keyword and hence quoted lambda-expressions given to them will be rccognized as
functions by the compiler.

In fact, mapc uses &functional and so the cxample given above is bogus; in the
particular case of the first argument to the function mapc, quote and function are

synonymous. It is good style to usc function (or #°’) anyway, to make the intent of the
program complztely clear.

Takes no arguments and returns nil.

Takes no arguments and returns t.

ignore &rest ignore

Takes any number of argumentss and rcturns nil. This is often useful as a "dummy”
function; if you are calling a ‘unction that takes a function as an argument, and you
want to pass one that doesn’t dc anything and won’t mind being called with any argument
pattern, use this,

comment Special Form

comment ignores its form and r:turns the symbol comment.
Example:
(defun foc (x)
(cond ((null x) 0)
(t (comment x has something in it)
(1+ (foo (cdr x))))))

Usually it is preferable to comment code using the scmicolon-macro feature of the
standard input syntax. This allows the user to add comments to his code which arc
ignored by the lisp rcader.

MCIMMANID.EVA 77 24-JU1 .81

Some Functions and Special Forms 28 Lisp Machine Manual

progn

progl

prog2

Example:
(defun foo (x)
(cond ((null x) 0)
(t (1+ (foo (cdr x)))) ;X has something in it

))

A problem with such comments is that they are discarded when the form is read into
Lisp. If the function is read into Lisp, modified, and printed out again, the comment
will be lost. However, this style of operation is hardly ever used; usually the source of a
function is kept in an ecditor buffer and any changes are made to the buffer, rather than
the actual list structure of the function. Thus, this is not a rcal problem.

body... Special Form
The body forms arc evaluated in order from left to right and the value of the last one is
returned. progn is the primitive control structure construct for "compound statements”.
Although lambda-cxpressions, cond forms, do forms, and many other control structure
forms use progn implicitly, that is, they allow multiple forms in their bodies, there are
occasions when onc needs to cvaluate a number of forms for their side-effects and make
them appear to be a single form.
Example:
(foo (cdr a)
(progn (setq b (extract frob))
(car b))
(cadr b))

first-form body... Special Form
prog1 is similar to progn, but it returns the value of its first form rather than its last. It
is most commonly uscd to cvaluate an expression with side effects, and return a value
which must be computed before the side cffects happen.
Example:

(setq x (progl y (setq y x)))
interchanges the values of the variables x and y. prog1 never returns multiple values.

first-form second-form body... Special Form
prog2 is similar to progn and progl, but it rcturns its second form. It is included
largely for compatibility with old programs.

See also bind (page 183), which is a subprimitive that gives you maximal control over

binding.

The following three functions (arg, setarg, and listify) exist only for compatibility with
Maclisp lexprs. To write functions that can accept variable numbers of arguments, use the
&optional and &rest keywords (sce scction 3.2, page 20).

MC:EMMANID.EVA 77 24-JUI-81

Lisp Machine Manual 29 Multiple Values

arg x
(arg nil), when evaluated during the application of a lexpr, gives the number of
arguments supplied to that lexpr. This is primarily a debugging aid, since lexprs also
receive their number of arguments as the value of their lambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of the i’th
argument to the lexpr. i must be a fixnum in this case. It is an error if i is less than 1
or greater than the number of argaments supplied to the lexpr.

Example:.
(defun foo nargs ;define a lexpr foo.
(print (arg 2)) ;print the second argument.
(+ (arg 1) ;return the sum of the first
(arg (- nargs 1)))) ;andnext to last arguments.
setarg / x

setarg is used only during the application of a lexpr. (setarg i x) sets the lexpr's /’th
argument to x. i must be grcater than zero and not greater than the number of
arguments passed to the lexpr. Alter (setarg i x) has been done, (arg i) will return x.

1istify n
(listify n) manufactures a list of n of the arguments of a lexpr. With a positive argument

n, it returns a list of the first n arguments of the lexpr. With a negative argument n, it
returns a list of the last (abs n) arguments of the lexpr. Basically, it works as if defined
as follows:
(defun listify (n)
(cond ((minusp n)
(listifyl (arg nil) (+ (arg nil) n 1)))
(t
(listifyl n 1))))

(defun listifyl (n m) ; auxiliary function.
(do ((i n (1- 1))
(result nil (cons (arg i) result)))
((< i m) result)))

3.4 Multiple Values

The Lisp Machine includes a facility by which the evaluation of a form can produce more
than one value. When a function needs to return more than one result to its caller, multiple
values are a clcaner way of doing this than returning a list of the values or setq'ing special
variables to the extra values. In most Lisp function calls, multiple valucs are not used. Special
syntax is required both (o produce multiple values and to receive them.

The primitive for producing multiplé valucs is values, which takes any number of arguments
and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. The other primitive for producing
multiple values is return, which when given more than one argument returns all its arguments as
the values of the prog or do from which it is returning. ‘The variant return-from also can

MC:T MMAN:FFD.EVA 77 24-JUI-81

Multiple Values 30 Lisp Machine Manual

produce multiple values. Many system functions produce multiple values, but they all do it via
the values and return primitives.

The special forms for receiving multiple values are multiple-value, multiple-value-bind, and
multiple-value-list. These consist of a form and an indication of where to put the values
returned by that form. With the first two of these, the caller requests a certain number of
returncd values. If fewer values are returned than the number requested, then it is exactly as if
the rest of the values were present and had the value nil. If too many values are returned, the
rest of the values are ignored. This has the advantage that you don’t have to pay attcntion to
extra values if you don’t care about them, but it has the disadvantage that error-checking similar
to that done for function calling is not present.

values &rest args
Returns multiple values, its arguments. This is the primitive function for producing
multiple values. It is legal to call values with no arguments; it returns no values in that
case.

values-1ist [ist
Returns multiple values, the elements of the lisz. (values-list '(a b c)) is the same as
(values ’a ’b ’c). [/ist may be nil, the empty list, which causes no values to be returned.

return and its variants can only be used within the do and prog special forms and their
variants, and so they are explained on page 45.

multiple-vatue (variable..) form Special Form
multiple-value is a spccial form used for calling a function which is expected to return
more than one value. form is evaluated, and the variables are set (not lambda-bound) to
the values rcturned by form. If more values are returned than there are variables, then
the extra values are ignored. If there are more variables than values returned, extra
values of nil are supplied. If nil appears in the varlist, then the corresponding value is
ignored (you can’t use nil as a variable.)
Example:
(multiple-value (symbol already-there-p)
(intern "goo"))
In addition to its first value (the symbol), intern returns a second value, which is t if the
symbol returned as the first value was alrcady interned, or else nil if intern had to create
it. So if the symbol goo was already known, the variable aiready-there-p will be set to
t, otherwise it will be sct to nil. The third value returned by intern will be ignored.

multiple-value is usually used for effect rather than for value; however, its value is
defined to be the first of the values returned by form.

multiple-value-bind (variable..) form body... Special Form
This is similar to multiple-value, but locally binds the variables which receive the values,
rather than setting them, and has a body—a sct of forms which are evaluated with these
local bindings in effect. First form is evaluated. Then the variables are bound to the
values returned by form. Then the body forms are cvaluated sequentially, the bindings
arc undone, and the result of the last body form is returned.

MCIMMANFD.EVA 77 24-JU1.-81

Lisp Machine Manual K| Multiple Values

multiple-value-1ist form Special Form

multiple-value-list evaluates form, and returns a list of the values it rcturned. This is
useful for when you don’t know how many values to expect.
Example:

(setq a (multiple-value-list (intern "goo")))

a => (goo nil #<Package User>)
This is similar to the example of multiple-value above; a will be set to a list of three
elements, the three values returned by intern.

Due to the syntactic structure of Lisp, it is often the casc that the value of a certain form is
the value of a sub-form of it. For example, the value of a cond is the value of the last form in
the selected clause. In most such cascs, if the sub-form produces multiple values, the original
form will also produce all of those values. This passing-back of multiple values of course has no
effect unless eventually one of the special forms for receiving multiple values is rcached. The
exact rule governing passing-back of muliiple values is as follows:

If Xis a form, and Y is a sub-form of X, then if the value of Y is unconditionally returned
as the value of X, with no intervening computation, then all the multiple values returned by Y
are returned by X. In all other cases, multiple values or only single values may be returned at
the discretion of the implementation; users should not depend on whatever way it happens to
work, as it may change in the future or in other implementations. The reason we don’t guarantee
non-transmission of multiple values is because such a guarantee would not be very useful and the
efficiency cost of enforcing it would be high. Even setq’ing a variable to the result of a form,
then returning the value of that variable might be made to pass multiple values by an optimizing
compiler which realized that the setqing of the variable was unnecessary.

Note that usc of a form as an argument to a function never receives multiple values from that
form. That is, if the form (foo (bar)) is evaluated and the call to bar returns many values, foo
will still only be called on one argument (namely, the first value returncd), rather than being
called on all the values returned. We choose not to generate several separate arguments from the
several values, because this would make the source code obscure; it would not be syntactically
obvious that a single form does not correspond to a single argument. Instead, the first value of a
form is used as the argument and thc remaining values are discarded. Recciving of multiple
values is donc only with the above-mentioned special forms.

For clarity, descriptions of the interaction of several common special forms with multiple
values follow. This can all be deduced from the rule given above. Note well that when it says
that multiple values are not returned, it really means that they may or may not be returned, and
you should not write any programs that depend on which way it works.

The body of a defun or a lambda, and variations such as the body of a function, the body
of a let, etc., pass back multiple values from the last form in the body.

eval, apply, funcall, and lexpr-funcall pass back multiple values from the function called.

progn passes back multiple values from its last form. progv and progw do s0 also. prog1
and prog2, however, do not pass back nultiple values.

MC:IMMAN:IFD.EVA 77 24-JUL.-81

Multiple Values R Lisp Machine Manual

Multiple values are passed back from the last subform of an and or or form, but not from
previous forms since the return is conditional. Remember that multiple values are only passed
back when the value of a sub-form is unconditionally returned from the containing form. For
example, consider the form (or (foo) (bar)). If foo returns a non-nil first value, then only that
value will be returned as the value of the form. But if it returns nil (as its first value), then or
returns whatever values the call to bar returns.

cond passes back multiple values from the last form in the selected clause, but not if the
clause is only one long (i.c. the returned value is the value of the predicate) since the return is
conditional. This rule applics even to the last clause, where the return is not really conditional
(the implementation is allowed to pass or not to pass multiple values in this case, and so you
shouldn’t depend on what it docs). t should be used as the predicate of the last clause if multiple
values are desired, to make it clear to the compiler (and any human readers of the code!) that
the return is not conditional.

The variants of cond such as if, select, selectq, and dispatch pass back multiple values
from the last form in the selected clause.

The number of values returned by prog depends on the return form used to return from the
prog. (If a prog drops off the end it just returns a single nil.) If return is given two or more
subforms, then prog will return as many values as the return has subforms. However, if the
return has only one subform, then the prog will return all of the values returned by that one
subform.

do behaves like prog with r2spect to return. All the values of the last exit-form are returned.
unwind-protect passes back multiple values from its protected form.

*catch does not pass back multiple values from the last form in its body, because it is
defined to return its own second value (see page 47) to tell you whether the *catch form was
exited normally or abnormally. This is sometimes inconvenient when you want to propagate back
multiple values but you also want to wrap a *catch around some forms. Usually people get
around this problem by enclosing the *catch in a prog and using return to pass out the multiple
values, returning through the *catch. This is inelegant, but we don’t know anything that’s much
better.

MC:TMMANIFD.EVA 77 24-JU1.-81

Lisp Machine Manual 33 Flow of Control

4. Flow of Control

Lisp provides a variety of structures for flow of control.

Function application is the basic method for construction of programs. Operations are written
as the application of a function to its aiguments. Usually, Lisp programs are written as a large
collection of small functions, each of which implements a simple operation. These functions
operate by calling one another, and so la-ger operations are defined in terms of smaller ones.

A function may always call itself in Lisp. The calling of a function by itself is known as
recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between repetitions) is
called iteration, and is provided as a basic control structure in most languages. The do statement
of PL/1, the for statement of ALGOL/€0, and so on are examples of iteration primitives. Lisp
provides two general iteration facilities: do and loop, as well as a variety of special-purpose
iteration facilities. (loop is sufficiently complex that it is explained in its own chapter later in the
manual; see page 233.) There is also a very general construct to allow the traditional "goto”
control structure, called prog. ‘

A conditional construct is one which allows a program to make a decision, and do one¢ thing
or another based on some logical condition. Lisp provides the simple onc-way conditionals and
and or, the simple two-way conditional if, and more general multi-way conditionals such as cond
and selectq. The choice of which form to use in any particular situation is a matter of personal
taste and style.

There are some ncn-local exit control structures, analogous to the leave, exit, and - escape
constructs in many modern languages. The general ones are *catch and *throw; there is also
return and its variants, used for exiting i-cration the constructs do, loop, and prog.

Zetalisp also provides a coroatine capability, explained in the section on stack-groups (chapter
12, page 163), and a multiple-process facility (see chapter 25, page 428). There is also a facility
for generic function calling using message passing; see chapter 20, page 279.

4.1 Conditionals

if Special Form
if is the simplest conditional form. The "if-then” form looks like:
(if predicate-form then-form)
predicate-form is cvaluated, and if the result is non-nil, the then-form is evaluated and its
result is returned. Otherwise, nil is returned.

In the "if-then-clse” form, it looks like

(if predicate-form then-form else-form)
predicate-form is. evaluated, and f the result is non-nil, the then-form is evaluated and its
result is returned. Otherwise, the else-form is evaluated and its result is returned.

MC:IMMAN:IFDELO 95 24-JU1 -81

Conditionals 34 Lisp Machine Manual

If there are more than three subforms, if assumes you want more than one else-form;
they are evaluated sequentially and the result of the last one is returned, if the predicate
returns nil. There is disagreement as to whether this consistutes good programming style
or not.

cond Special Form
The cond special form consists of the symbol cond followed by several clauses. Each
clause consists of a predicate form, called the antecedent, followed by zero or more
consequent forms.
(cond (antecedent consequent consequent. . .)
(antecedent)
(antecedent consequent . . .)
)
The idea is that cach clause represents a case which is selected if its antecedent is satisfied
and the antccedents of all preceding clauses were not satisficd. When a clause is selected,
its conscquent forms are evaluated.
cond processes its clauses in order from left to right. First, the antccedent of the current
clausc is evaluated. If the result is nil, cond advances to the next clause. Otherwise, the
cdr of the clause is treated as a list conscquent forms which are evaluated in order from
left to right. After evaluating the consequents, cond rcturns without inspecting any
remaining clauses. The value of the cond special form is the value of the last consequent
evaluated, or the value of the antecedent if there were no consequents in the clause. If
cond runs out of clauses, that is, if every antecedent evaluates to nil, and thus no case is
sclected, the value of the cond is nil.
Example:
(cond ((zerop x) ; First clause:
(+y 3)) ; (zerop x)isthe antecedent.
; (+ y 3)isthe consequent.
((null y) ; A clause with 2 consequents:
(setq y 4) ; this
(cons x z)) ;and this.
(z) i A clause with no consequents: the antecedent is
; just z. If z is non-nil, it will be returned.
(t ; An antecedent of t
105) ; is always satisfied.
) ; This is the end of the cond.
cond-every Special Form

cond-every has the samc syntax as cond, but exccutes cvery clause whose predicate is
satisfied, not just the first. If a predicate is the symbol otherwise, it is satisfied if and
only if no preceding predicate is satisfied. ‘The value returned is the value of the last
consequent form in the last clause whose predicate is satisfied. Multiple values are not
returncd.

MCTNMNMANEDITO9S 24-JU1 -81

Lisp Machinc Manual 35 Conditionals

and form... Special Form
and evaluates the forms one at a time, from left to right. If any form evaluates to nil,
and immediately returns nil without cvaluating the remaining forms. If all the forws
evaluate to non-nil valucs, and 1eturns the value of the last form.

and can be used in two different ways. You can use it as a logical and function, because
it returns a true value only if all of its arguments are true. So you can use it as a
predicate:
(if (and socrates-is-a-person
all-people-are-mortal)
(setq socrates-is-mortal t))

Because the order of evaluation is well-defined, you can do
(if (and (boundp ’'x)
(eq x 'fo90))
(setq y ’'bar))
knowing that the x in the eq form will not be evaluated if x is found to be unbound.

You can also use and as a simple conditional form:
(and (setq temp (assq x y))
(rplacd temp z))
(and bright-day
glorious-day
(princ "It is a bright and glorious day."))

Note: (and) => t, which is the identity for the and operation.

or form... Special Form
or cvaluates the forms one by one from left to right. If a form cvaluates to nil, or
proceeds to cvaluate the next form. If there are no more forms, or returns nil. But if a
form evaluates to a non-nil value, or immediately returns that value without evaluating
any remaining forms.

As with and, or can be used either as a logical or function, or as a conditional.
(or it-is-fish
it-is-fowl
(print "It is neither fish nor fowl."))

Note: (or) => nil, the identity for this operation.

selectq Special Form
selectq is a conditional which chooses one of its clauses to exccute by comparing the
value of a form against various constants, which are typically keyword symbols. Its form
is as follows:

MC:LMMAN:IDIT.0 95 24-JUL-81

Conditionals 36 Lisp Machine Manual

(selectq key-form

(test consequent consequent . . .)

(test consequent consequent . ..)

(test consequent consequent . . .)

ced)
The first thing selectq does is to evaluate key-form; call the resulting value key. Then
selectq considers cach of the clauses in turn. If key matches the clause’s test, the
conscquents of this clause are evaluated, and selectq returns the value of the last
consequent. If there are no matches, selectqg returns nil.

A ftest may be any of:

1) A symbol If the key is eq to the symbol, it matches.

2) A number If the key is eq to the number, it matches. Only small
numbers (fixnums) will work.

3) Alist If the key is eq to one of the elements of the list, then it
matches. The elements of the list should be symbols or
fixnums,

4) t or otherwise The symbols t and otherwise are special keywords which

match anything. Either symbol may be used, it makes no
difference; t is mainly for compatibility with Maclisp’s
caseq construct. To be useful, this should be the last
clause in the selectq.

Note that the tests are not evaluated; if you want them to be evaluated use select rather
than selectq.
Example:
(selectq x
(foo (do-this))
(bar (do-that))
((baz quux mum) (do-the-other-thing))
(otherwise (ferror nil "Never heard of ~S" x)))
is equivalent to
{cond ((eq x 'foo) (do-this))
((eq x ’'bar) (do-that))
((memq x ’(baz quux mum)) (do-the-other-thing))
(t (ferror nil "Never heard of ~S" x)))

Also sec defselect (page 147), a special form for defining a function whose body is like a
selectq.

select Special Form
select is the same as selectq, cxcept that the clements of the tests are evaluated before
they are used.

‘This creates a syntactic ambiguity: if (bar baz) is scen the first element of a clause, is it

a hist of two forms, or is it one form? select interprets it as a list of two forms. If you
want to have a clause whose test is a single form, and that form is a list, you have to

MC: T MMAN;EFDEFLO 95 24-JU1.-81

Lisp Machine Manual 37 Conditionals

write it as a list of one form.
Example:
(select (frob x)
(foo 1)
((bar baz) 2)
(({current-frob)) 4)
(otherwise 3))
is equivalent to
(let ((var (frob x)))
{cond ((eq var foo) 1)
((or {(eq var bar) (eq var baz)) 2)
({(eq var (current-frob)) 4)
(t3)))

selector Special Form
selector is the same as select, except that you get to specify the function used for the
comparison instead of eq. For example,
(selector (frob x) equal
(("(one . two)) (frob-one x))
(("(three . four)) (frob-three x))
(otherwise (frob-any x)))
is equivalent to
{(1let ((var (frob x)))
(cond ((equal var '(one . two)) (frob-one x))
((equal var ’'(three . four)) (frob-three x))
(t (frob-any x))))

dispatch Special Form
(dispatch byte-specifier number clauses...) is the same as select (not selectq), but the key
is obtained by evaluating (Idb lyte-specifier number). byte-specifier and number are both
evaluated. Byte specifiers and Idb are explained on page 102.
Example:
(princ (dispatch 0202 cat-type
(0 "Siamese.")
{1 "Persian.")
(2 "Alley.")
(3 (ferror nil
"~S is not a known cat type."
cat-type))))
It is not necessary to include all possible values of the byte which will be dispatched on.

selectq-every Special Form
selectq-every has the same syatax as selectq, but, like cond-every, exccutes every

sclected clause instead of just the first one. If an otherwise clause is present, it is
sclected if and only if no preceding clause is selected. The value returned is the value of
the last form in the last sclected: clause. Multiple values are not returned. Example:

MC:IMMAN:FD.I-1 095 24-JU1L-81

Iteration

caseq

4.2 Ite

do

MC: .M

38 Lisp Machine Manual

(selectq-every animal
((cat dog) (setq legs 4))
((bird man) (setq legs 2))
((cat bird) (put-in-oven animal))
((cat dog man) (beware-of animal)))

Special Form
The caseq special form is provided for Maclisp compatibility. It is exactly the same as
selectq. This is not perfectly compatible with Maclisp, because selectq accepts otherwise
as well as t where caseq would not accept otherwise, and because Maclisp does some
error-checking that selectq docs not. Maclisp programs that use caseq will work
correctly so long as they don’t use the symbol otherwise as the key.

ration

Special Form

The do special form provides a simple generalized iteration facility, with an arbitrary
number of "index variables” whose values are saved when the do is cntered and restored
when it is left, iec. they are bound by the do. The index variables are used in the
iteration performed by do. At the beginning, they are initialized to specified values, and
then at the end of each trip around the loop the values of the index variables are
changed according to specified rules. do allows the programmer to specify a predicate
which determines when the iteration will terminate. The value to be returned as the result
of the form may, optionally, be specified.

do comes in two varieties.

The more gencral, so-called "new-style” do looks like:
(do ((varinitrepeat) ...)
(end-test exit-form ...)
body...)

The first item in the form is a list of zero or more index variable specifiers. Each index
variable specifier is a list of the name of a variable var, an initial value form init, which
defaults to nil if it is omitted, and a repcat value form repeat. If repeat is omitted, the
var is not changed between repetitions. If inir is omitted, the var is initialized to nil.

An index variable specifier can also be just the name of a variable, rather than a list. In
this case, the variable has an initial value of nil, and is not changed between repetitions.

All assignment to the index variables is done in parallel. At the beginning of the first
iteration, all the /nit forms arc cvaluated, then the vars are bound to the values of the
init forms, their old values being saved in the usual way. Note that the init forms are
evaluated before the vars arc bound, i.e. lexically outside of the do. At the beginning of
cach succceding iteration those vars that have repear forms get sct to the values of their
respective repeat forms. Note that all the repear forms are cvaluated before any of the
vars is sct.

MAN:EFD.ILO 95 24-JUL-81

Lisp Machine Manual 39 Iteration

The second element of the do-form is a list of an end-testing predicate form end-fest, and
zero or more forms, called the exir-forms. This resembles a cond clause. At the
beginning of each iteration, after processing of the variable specifiers, the end-test is
evaluated. If the result is nil, execution proceeds with the body of the do. If the result
is not nil, the exir-forms are evaluated from left to right and then do returns. The value
of the do is the value of the last exit-form, or nil if there were no exit-forms (not the
value of the end-test as you might expect by analogy with cond).

Note that the end-test gets evzluated before the first time the body is evaluated. do first
initializes the variables from the init forms, then it checks the end-fest, then it processes
the body, then it deals with the repeas forms, then it tests the end-fest again, and so on.
If the end-test returns a non-nil value the first time, then the body will never be
processed.

If the sccond element of the form is nil, there is no end-test nor exit-forms, and the body
of the do is executed only onze. In this type of do it is an error to have repeats. This
type of do is no more poweiful than let; it is obsolete and provided only for Maclisp
compatibility.

If the second element of the form is (nil), the end-test is never true and there are no
exit-forms. The body of the do is executed over and over. The infinite loop can be
terminated by use of return or *throw.

If a return special form is evaluated inside the body of a do, then the do immediately
stops, unbinds its variables, and returns the values given to return. See page 45 for more
details about return and its variants. go special forms (sce page 45) and prog-tags can
also be used inside the body of a do and they mean the same thing that they do inside
prog forms, but we discourage their use since they complicate the control structure in a
hard-to-understand way.

The other, so-called "old-style” do looks like:
(do var init repeat end-test body. . .)

The first time through the loop var gets the value of the init form; the remaining times
through the loop it gets the value of the repeat form, which is re-evaluated each time.
Note that the init form is evaluated before var is bound, i.e. lexically outside of the do.
Each time around the loop, after var is set, end-fest is evaluated. If it is non-nil, the do
finishes and returns nil. If the end-test evaluated to nil, the body of the loop is executed.
As with the new-style do, relurn and go may be used in the body, and they have the
same meaning.

MC: I MMAN:FD.IFL.O 95 24-JUL.-81

Iteration 40 Lisp Machine Manual

Examples of the older variety of do:
(setq n (array-length foo-array))
(do i 0 (1+ i) (= i n)
(aset 0 foo-array i)) ;zeroes out the array foo-array

(do zz x (cdr zz) (or (null zz)
(zerop (f (car zz)))))
; this applies fto each element of x
; continuously until f returns zero.
; Note that the do has no body.

return forms are often useful to do simple scarches:
(do i 0 (1+ i) (= 1i-'n) ;Iterate over the length of foo-array.
(and (= (aref foo-array i) 5) ;Ifwe find an clement which

; equals 5,
(return i))) ; then return its index.
Examples of the new form of do:
(do ((i 0 (1+ 1)) ; This is just the same as the above example,
(n (array-length foo-array)))
((= i n)) ; but written as a new-style do.

(aset 0 foo-array 1i)) ; Note how the setq is avoided.

(do ((z list (cdr z)) ;zstartsaslist and is cdred each time.
(y other-1list) ; y starts as other-list, and is unchanged by the do.

(x) ; X starts as nil and is not changed by the do.
w) ; w starts as nil and is not changed by the do.
(nil) ; The end-test is nil, so this is an infinite loop.
body) ; Presumably the body uses return somewhere.

The construction
(do ((x e (cdr x))
(oldx x x))
((null x))
body)

exploits parallel assignment to index variables. On the first iteration, the value of oldx is
whatever value x had before the do was entered. On succeeding iterations, oldx contains
the value that x had on the previous iteration.

In cither form of do, the body may contain no forms at all. Very often an iterative

algorithm can be most clearly expressed entirely in the repeats and exit-forms of a new-
style do, and the body is empty.

MCEMMAN:ED.ET.O 95 24-JU1 -81

Lisp Machine Manual 41 Iteration

(do ((x x (cdr x))
(v y (cdr y))
(z nil (cons (f x y) z))) ;exploits parallel assignment.
((or (null x) (nulil y))
(nreverse z)) ;typical use of nreverse.
) ;no do-body required.

islike (maplist 'f x y) (seepage5S0).

Also sce loop (page 233), a general iteration facility based on a keyword syntax rather than a list-
structure syntax.

do-named Special Form
Sometimes one do is contained inside the body of an outer do. The return function
always returns from the innermost surrounding do, but sometimes you want to return
from an outer do while within an inner do. You can do this by giving the outer do a
name. You use do-named instcad of do for the outer do, and use return-from (sce
page 46), specifying that name, to return from the do-named.

The syntax of do-named is likc do except that the symbol do is immediately followed by
the name, which should be a symbol.

Example:

(do-named george ((a 1 (1+ a))
(d ’foo))
((> a 4) 7)
(do ((c b (cdr c)))
((null c))

(return-from george (cons b d))

)

If the symbol t is used as the name, then it will be made "invisible” to returns; that is,
returns inside that do-named will return to the next outermost level whose name is not
t. (return-from t ..) will reurn from a do-named named t. This fcature is not
intended to be used by uscr-written code; it is for macros to expand into.

If the symbol nil is used as th¢ name, it is as if this were a regular do. Not having a
name is thc same as being named nil.

progs and loops can have name:s just as dos can. Since the same functions are used to
return from all of these forms, all of these names arc in the same name-space; a return
returns from the inncrmost enclosing iteration form. no matter which of these it is, and
so you need to use names if you nest any of them within any other and want to return to
an outer one from inside an inner one.

MC:T MMANIEDET.095 241081

Iteration 42 Lisp Machine Manual

dotimes (index count) body... Special Form
dotimes is a convenient abbreviation for the most common integer iteration. dotimes
performs body the number of times given by the value of count, with index bound to O,
1, etc. on successive iterations.
Example:
(dotimes (i (// m n))
(frob 1))
is equivalent to:
(do ((i 0 (1+ 1))
(count (// m n)))
((=z i count))
(frob i}))
except that the name count is not used. Note that i takes on valucs starting at zero
rather than one, and that it stops before taking the value (// m n) rather than after.
You can use return and go and prog-tags inside the body, as with do. dotimes forms
return nil unless returned from explicitly with return. For example:
(dotimes (i 5)
(if (eq (aref a i) ’'foo)
(return i)))
This form scarches the array that is the value of a, looking for the symbol foo. It
returns the fixnum index of the first clement of a that is foo, or else nil if none of the
elements are foo.

dolist (item lis)) body... Special Form
dolist is a convenicnt abbreviation for the most common list iteration. dolist performs
body once for cach element in the list which is the value of /ist, with item bound to the
successive elements.
Example:
(dolist (item (frobs foo))
(mung item))
is equivalent to:
(do ((1st (frobs foo) (cdr 1st))
(item))
((null 1st))
(setq item (car 1st))
(mung item))
except that the name lIst is not used. You can usc return and go and prog-tags inside
the body, as with do. dolist forms return nil unless returned from explicitly with return.

keyword-extract Special Form

keyword-extract is an aid to writing functions which take keyword arguments in the
standard fashion. The form

(keyword-extract key-list iteration-var

keywords flugs other-clauses. . .)

will parse the keywords out into local variables of the function. key-list is a form which
evaluates to the list of keyword arguments; it is generally the function’s &rest argument.
iteration-var is a variable used to iterate over the list; sometimes other-clauses will use the
form

MCTMMANIDET O 95 24-JU1-81

Lisp Machine Manual 43 [teration

prog

(car (setq iteration-var (cdr iteration-var)))
to extract the next clement of the list. (Note that this is not the same as pop.)

keywords defincs the symbols which arc keywords to be followed by an argument. Each
element of keywords is cither the name of a local variable which reccives the argument
and is also the keyword, or a list of the keyword and the variable, for usc when they are
different or the keyword is not to go in the keyword package. 'Thus if keywords is (foo
(ugh bletch) bar) then the keywords recognized will be :foo, ugh. and :bar. If :foo is
specified its argument will be stored into foo. If :bar is specified its argument will be
stored into bar. If ugh is specified its argument will be stored into bletch.

Note that keyword-extract does not bind these local variables; it assumes you will have
done that somewhere else in the code that contains the keyword-extract form.

flags defines the symbols which are keywords not followed by an argument. If a flag is
seen its corresponding variable s set to t. (You are assumed to have initialized it to nil
when you bound it with let or &aux.) As in keywords, an clement of flags may be either
a variable from which the keyword is deduced, or a list of the keyword and the variable.

If there are any other-clauses, they are selectq clauses selecting on the keyword being
processed. These can be used to do special processing of certain keywords for which
simply storing the argument into a variable is not good enough. After the other-clauses
there will be an otherwise clause to complain about any undefined keywords found in
key-list.

Special Form
prog is a special form which provides temporary variables, scquential evaluation of forms,
and a "goto” facility. A typical prog looks like:
(prog (varl var2 (variinit3) vard (var5init5))
tagl
statementl
statement?
tag?
statement3

)

The first subform of a prog is a list of variables, each of which may optionally have an
initialization form. The first thing evaluation of a prog form docs is to cvaluate all of the
init forms. Then cach variable that had an init form is bound to its value, and the
variables that did not have an init form are bound to nil.
Example:
(prog ((a t) b (c 5) (d (car ’(zz . pp))))

<body>

)
The inital value of a is t. that of b is nil. that of ¢ is the fixnum 5, and that of d is
the symbol zz. ‘The binding ard initialization of the variables is done in parallel; that is,
all the initial values are computed before any of the variables are changcd. prog* (sce
page 45) is the same as prog cxcept that this initialization is sequential rather than
parallel.

MC:IMMANIDIT.0 95 24-JU01-81

Iteration 44 Lisp Machine Manual

The part of a prog after the variable list is called the body. Each element of the body is
either a symbol, in which case it is called a rag, or anything clse (almost always a list),
in which case it is called a statement.

After prog binds the variables, it processes cach form in its body sequentially. tags are
skipped over. statements are cvaluated, and their returned values discarded. If the end of
the body is reached, the prog returns nil. However, two special forms may be used in
prog bodies to alter the flow of control. If (return x) is cvaluated, prog stops processing
its body, cvaluates x, and returns the result. If (go rag) is evaluated, prog jumps to the
part of the body labelled with the tag, where processing of the body is continued. lag is
not evaluated. return and go and their variants arc explained fully below.

The compiler requires that go and return forms be lexically within the scope of the prog;
it is not possible for a function called from inside a prog body to return to the prog.
That is, the return or go must be inside the prog itself, not inside a function called by
the prog. (This restriction happens not to be enforced in the interpreter, but since all
programs arc cventually compiled, the convention should be adhered to. The restriction
will be imposed in future implementations of the interpreter.)

Sece also the do special form, which uses a body similar to prog. The do, *catch, and
*throw special forms are included in Zetalisp as an attempt to encourage goto-less
programming style, which often leads to more rcadable, more casily maintained code.
The programmer is recommended to use these forms instead of prog wherever reasonable.

If the first subform of a prog is a non-nil symbol (rather than a variable list), it is the
name of the prog, and return-from (sce page 46) can be used to return from it. See
do-named, page 41.

Example:
(prog (x y z) ;x, y, zareprog variables - temporaries.
(setq y (car w) z (cdr w)) ;wis a free variable.
loop
(cond ((null y) (return x))
{((null z) (go err)))
rejoin
(setq x (cons (cons (car y) (car z))
x))
(setq y (cdr y)
z (cdr z))
(go loop)
err
(break are-you-sure? t)
(setq z y)

(go rejoin))

MO T MMANIFDLIT.O 95 23-5U1 81

Lisp Machine Manual 45 Iteration

prog* Special Form
The prog* special form is almost the same as prog. The only difference is that the
binding and initialization of the temporary variables is done sequentially, so each one can
depend on the previous ones. For example,
(prog* ((y z) (x (car y)))
(return x))
returns the car of the value of z.

go lag Special Form
The go special form is used to do a "go-to” within the body of a do or a prog. The fag
must be a symbol. It is not evaluated. go transfers control to the point in the body
labelled by a tag eq to the one given. If there is no such tag in the body, the bodics of
lexically containing progs and dos (if any) are examined as well. If no tag is found, an
error is signalled.

Example:
(prog (x y z)
(setq x some frob)
Toop
do something
(if some predicate (go endtag))
do something more
(if (minusp x) (go Tloop))
endtag
(return 2))

return value... Special Form
return is used to exit from a prog-like special form (prog, prog*, do, do-named,
dotimes, dolist, loop, ectc.) The value forms are evaluated, and the resulting valucs are
returned by the prog as its values.

In addition, break (sce page 504) recognizes the typed-in form (return value) spccially. If
this form is typed at a break, va/ue will be evaluated and returned as the value of break.
If not specially rccognized by break, and not.inside a prog-like form, return will cause
an Crror.
Example:
(do ((x x (cdr x))
(n 0 (»n 2)))
((null x) n)
{(cond ((atom (car «x))
(setqg n (1+ n)))
((memq (caar x) ’'(sys boom bleah))
(return n))))

Note that the return form is very unusual: it does not cver rcturn a value itsclf, in the
conventional scnse. It isn’t usefil to write (setqa (return 3)), because when the return
form is cvaluated. the containing do or prog is immediately exited, and the setqg never
happens. A return form may nol appear as an argument to a regular function, but only
at the top level of a prog or do, or within certain special forms such as conditionals

MCEMMANEDIT.0 95 2-JULE-81

Iteration 46 Lisp Machine Manual

which are within a prog or do. A return as an argument to a regular function would be
not only uscless but possibly meaningless. The compiler does not bother to know how to
compile it correctly in all cases. The same is true of go.

return can also be used with multiple arguments, to return multiple values from a prog
or do. For example,
(defun assqn (x table)
(do ((1 table (cdr 1))
(n 0 (1+ n)))
((null 1) nil)
(if (eq (caar 1) x)
(return (car 1) n))))
This function is like assq, but it rcturns an additional value which is the index in the
table of the entry it found.

However, if you use return with only one subform, then the prog or do will return all
of the values returned by that subform. That is, if you do

(prog ()

(return (foo 2)))
and the function foo returns many valucs, then the prog will return all of those values.
In fact, this means that
(return (values form! form2 form3))
is the same as
(return forml form2 form3)

It is legal to write simply (return), which will return from the prog without returning any
values.

See section 3.4, page 29 for more information.

return-from name value... Special Form
The value forms are evaluated, and then are returned from the innermost containing
prog-like special form whose name is name. See the description of do-named (page 41)
in which named dos and progs are explained.

return-1ist list
This function is like return cxcept that the prog returns all of the elements of list; if list
has more than one clement, the prog does a multiple-valuc return.

To direct the returned values to a prog or do-named of a specific name, use
(return-from name (values-list list)) .

Also sce defunp (page 140), a variant of defun that incorporates a prog into the function body.

MCTMMANFDITO9S 24-JUL -81

Lisp Machine Manual 47 Non-I.ocal Exits

4.3 Non-Local Exits

scatch g body... Special Form

*catch is a special form used with the *throw function to do non-local exits. First tag is
evaluated: the result is called the "tag" of the *catch. Then the body forms are
evaluated sequentially, and the value of the last form is returned. However, if, during
the evaluation of the body, the function *throw is called with the same tag as the (ag of
the *catch, then the evaluation of the body is aboited, and the *catch form immediately
returns the value that was the sccond argument to *throw without further evaluating the
current body form or the rest of the body.

The tag’s are used to match up *throw’s with *catch’s. (*catch ’foo form) will catch a
(*throw ’foo form) but not a (“throw ’bar form). It is an error if *throw is done when
there is no suitable *catch (or catch*all; sce below).

The values t and nil for fag are special: a *catch whose tag is onc of these values will
catch throws to any tag. These are only for intcrnal use by unwind-protect and catch-
all respectively. The only difference between t and nil is in the error checking; t implies
that after a "cleanup handler" 's executed control will be thrown again to the same tag,
therefore it is an error if a specific catch for this tag does not exist higher up in the stack.
With nil, the error check isn’t done.

*catch returns up to four values; trailing null values are not returned for reasons of
microcode simplicity, but the values not rcturned will default to nil if they are reccived
with the multiple-value or muitiple-value-bind special forms. If the catch completes
normally, the first value is the value of form and the second is nil. If a *throw occurs,
the first valuc is the second argument to *throw, and the sccond value is the first
argument to *throw, the tag tarown to. The third and fourth values are the third and
fourth arguments to *unwind-stack (sece page 48) if that was used in place of *throw;
otherwise diese values are nil. To summarize, the four values returned by *catch are the
value, the tag, the active-frame-count, and the action.
Example
(*catch ’'negative
(mapcar (function (lambda (x)
(cond ((minusp x)
(*throw ’'negative x))
(t (f x)))))
y))
which returns a list of f of each clement of y if they arc all positive, otherwise the first
negative member of y.

Note that *catch returns its own extra values, and so it does nor propagate multiple
values back from the last form.

MC:IMMAN:IFD.ELO 95 24-JUE-8])

Non-Local Exits 48 Lisp Machine Manual

*throw tag value

catch
throw

*throw is used with *catch as a structured non-local exit mechanism.

(*throw 7ag x) throws the value of x back to the most recent *catch labelled with lag or
t or nil. Other *catches are skipped over. Both x and tag are evaluated, unlike the
Maclisp throw function.

The values t, nil, and 0 for tag are reserved and used for internal purposes. nil may not
be used, because it would cause an ambiguity in the returned values of *catch. t may
only be used with *unwind-stack. 0 and nil are used internally when returning out of
an unwind-protect.

See the description of *catch for further details.

Jorm tag Macro

Jorm tag Macro

catch and throw are provided only for Maclisp compatibility. (catch Jorm tag) is the
same as (*catch 'tag form), and (throw form tag) is the same as (*throw 'tag form). The
forms of catch and throw without tags are not supported.

*unwind-stack rtag value active-frame-count action

This is a generalization of *throw provided for program-manipulating programs such as
the error handler.

tag and value are the same as the corresponding arguments to *throw.

A 1ag of t invokes a special feature whereby the entire stack is unwound, and then the
function action is called (see below). During this process unwind-protects receive control,
but catch-alls do not. This feature is provided for the bencfit of system programs which
want to unwind a stack completely.

active-frame-count, if non-nil, is the number of frames to be unwound. The definition of
a "frame" is implementation-dependent. If this counts down to zero before a suitable
*catch is found, the *unwind-stack terminates and that frame returns value to whoever
called it. This is similar to Maclisp’s freturn function. '

If action is non-nil, whenever the *unwind-stack would be ready to terminate (either due
to active-frame-count or duc to rag being caught as in *throw), instcad action is called
with onc argument, value. If tag is t, mecaning throw out the whole way, then the
function action is not allowed to return. Otherwise the function action may return and its
value will be returned instead of value from the *catch—or from an arbitrary function if
active-frame-count is in use. In this case the *catch does not return multiple values as it
normally docs when thrown to. Note that it is often useful for action to be a stack-group.

Note that if both active-frame-count and action arc nil, *unwind-stack is identical to
*throw.

MC:T MMAN:FD.EFLO 95 24-JU1 -81

Lisp Machine Manual 49 Non-Local Exits

unwind-protect protected-form cleanup-form... Special Form
Sometimes it is necessary to evaluate a form and make sure that certain side-effects take
place after the form is evaluated; a typical example is:
(progn

(turn-on-water-faucet)

(hairy-function 3 nil *foo)

(turn-off-water-faucet))
‘The non-local exit facility of Lisp creates a situation in which the above code won’t work,
however; if hairy-function should do a *throw to a *catch which is outside of the
progn form, then (turn-off-water-faucet) will never be evaluated (and the faucet will
presumably be left running). This is particularly likely if hairy-function gets an error and
the user tells the error-handler to give up and flush the computation.

In order to allow the above program to work, it can be rewritten using unwind-protect
as follows:
(unwind-protect
(progn (turn-on-water-faucet)
(hairy-function 3 nil 'foo))

(turn-off-water-faucet))
If hairy-function does a *throw which attempts to quit out of the evaluation of the
unwind-protect, the (turn-off-water-faucet) form will be evaluated in between the time
of the *throw and the time at which the *catch returns. If the progn returns normally,
then the (turn-off-water-faucet) is evaluated, and the unwind-protect returns the result
of the progn.

The general form of unwind-protect looks like
(unwind-protect protected-form
cleanup-forml
cleanup-form2

)

protected-form is evaluated, and when it returns or when it attempts to quit out of the
unwind-protect, the cleanup-forras are evaluated. The value of the unwind-protect is
the value of protected-form. Multple values returned by the protected-forn are propagated
back through the unwind-protect

catch-all body... Macro
(catch-all form) is like (*catch some-tag form) except that it will catch a *throw to any
tag at all. Since the tag thrown to is the second returned value, the caller of catch-all
may continue throwing to that tag if hc wants. The one thing that catch-all will not
catch is a *unwind-stack with a tag of t. catch-all is a macro which expands into
*catch with a ag of nil.

If you think you want this, most likely you are mistaken and you really want unwind-
protect.

MCITMMANIDEITO9S 24-3U0 -81

Mapping 50 Lisp Machine Manual

4.4 Mapping

map fcn &rest lists

mapc fcn &rest lists

maplist fcn &rest lists

mapcar fcn &rest lists

mapcon fcn &rest lists

mapcan fcn &rest [lists
Mapping is a type of iteration in which a function is successively applied to picces of a
list. There arc several options for the way in which the pieces of the list are chosen and
for what is done with the results returned by the applications of the function.

For example, mapcar operates on successive elements of the list. As it goes down the
list, it calls the function giving it an element of the list as its one argument: first the
car, then the cadr, then the caddr, ctc., continuing until the end of the list is reached.
The valuc returned by mapcar is a list of the results of the successive calls to the
function. An example of the use of mapcar would be mapcar’ing the function abs over
the list (1 -2 -4.5 6.0e15 -4.2), which would be written as (mapcar (function abs) (1
-2 -4.5 6.0e15 -4.2)). The result is (1 2 4.5 6.0e15 4.2).

In gencral, the mapping functions take any number of arguments. For example,

(mapcar f xI x2 ... xn)
In this case fmust be a function of n arguments. mapcar will proceed down the lists x/,
x2, .., xn in parallel. The first argument to f will come from x/, the second from x2,

ctc. The iteration stops as soon as any of the lists is cxhausted. (If there are no lists at
all, then there are no lists to be exhausted, so the function will be called repeatedly over
and over. This is an obscure way to write an infinite loop. It is supported for
consistency.)

There are five other mapping functions besides mapcar. maplist is like mapcar except
that the function is applicd to the list and successive cdr’s of that list rather than to
successive elements of the list. map and mapc are like maplist and mapcar respectively,
except that they don’t return any’ useful value. These functions are used when the
function is being called mercly for its side-cffects, rather than its returned values.
mapcan and mapcen are like mapcar and maplist respectively, except that they combine
the results of the function using nconc instead of list. That is, mapcon could have been
defined by
(defun mapcon (f x y)
(apply ’nconc (maplist f x y)))
Of course, this definition is less general than the real one.

Sometimes a do or a straightforward recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this increases the
clarity of the code.

Often f will be a lambda-expression, rather than a symbol; for example,

(mapcar (function (lambda (x) (cons x something)))
some-list)

MC:TMMANFDET.095 MU -81

Lisp Machine Manual 51 Mapping

The functional argument to a mapping function must be a function, acceptable to
apply—it cannot be a macro or the name of a special form.

Here is a table showing the relations between the six map functions.

applies function to

| successive | successive |

| sublists | elements |
---------------- e e
its own | | |
second | map | mapc]
argument | | |
--------------- B e L L LR
list of the | | |
returns function | maplist | mapcar |
results | | I
---------------- e T e
nconc of the | |]
function | mapcon | mapcan |
results | | |
--------------- B T e 4

There are also functions (mapaioms and mapatoms-all) for mapping over all symbols in
certain packages. Sce the explanation of packages (chapter 23, page 392).

You can also do what the mapping functions do in a different way by using loop. See
page 233.

MC:EMMANEFDILO 95 24-JU1.-81

Manipulating List Structure 52 Lisp Machine Manual

5. Manipulating List Structure

This chapter discusses functions that manipulate conses, and higher-level structures made up
of conses such as lists and trees. It also discusses hash tables and resources, which are related
facilities.

A cons is a primitive Lisp data object that is extremely simple: it knows about two other
objects, called its car and its cdr.

A list is recursively defined to be the symbol nil, or a cons whose cdr is a list. A typical list
is a chain of conses: the cdr of cach is the next cons in the chain, and the cdr of the last one is
the symbol nil. The cars of cach of thesc conscs are called the elements of the list. A list has
one element for cach cons; the empty list, nil, has no clements at all. Here are the printed
representations of some typical lists:

(foo bar) ;This 1list has two elements.

(a (b c d) e) ;This 1ist has three elements.
Note that the second list has three clements: a, (bcd), and e. The symbols b, ¢, and d are
not elements of the list itself. (They are elements of the list which is the second clement of the
original list.)

A "dotted list” is like a list except that the cdr of the last cons does not have to be nil. This
name comes from the printed representation, which includes a "dot" character. Here is an
example:

(ab . c)
This "dotted list" is made of two conses. The car of the first cons is the symbol a, and the cdr
of the first cons is the second cons. The car of the sccond cons is the symbol b, and the cdr of
the second cons is the symbol c.

A tree is any data structurc made up of conses whose cars and cdrs are other conses. The
following are all printed representations of trees:
(foo . bar)

((a . b) (c . d))
((a.b)(cdef (g.5)s)(7.4))

These definitions are not mutually exclusive. Consider a cons whose car is a and whose cdr is
(b (cd)e). Its printed representation is
(a b (c d) e)
It can be thought of and treated as a cons, or as a list of four elements, or as a tree containing
six conscs. You can even think of it as a "dotted list" whose last cons just happens to have nil
as a cdr. Thus, lists and "dotted lists" and trecs arc not fundamental data types; they are just
ways of thinking about structures of conses.

A circular list is like a list except that the cdr of the last cons, instcad of being nil, is the
first cons of the list. This means that the conses are all hooked together in a ring, with the cdr
of cach cons being the next cons in the ring. While these are perfectly good Lisp objects, and
there arc functions to decal with them, many other functions will have trouble with them.
IFunctions that expect lists as their arguments often iterate down the chain of conses waiting to sce
a nil. and when handed a circular list this can cause them o compute forever. ‘The printer (see

MC:ENMMANIFD.CON 139 24-3U1 -81

Lisp Machine Manual 53 Conses

page 335) is one of these functions; if you try to print a circular list the printer will never stop
producing text. You have to tge careful what you do with circular lists.

The Lisp Machine internally uses a storage scheme called "cdr coding” to represent conses.
This scheme is intended to reduce the amount of storage used in lists. The use of cdr-coding is
invisible to programs except in terms of storage efficiency; programs will work the same way
whether or not lists are cdr-coded or not. Several of the functions below mention how they deal
with cdr-coding. You can completely ignore all this if you want. However, if you are writing a
program that allocates a lot of conses and you are concerned with storage efficiency, you may
want to learn about the cdr-coded representation and how to control it. The cdr-coding scheme is
discussed in section 5.4, page 63.

5.1 Conses

car x
Returns the car of x.
Example:
(car '(a b c)) => a

cdr x
Returns the cdr of x.
Example:
(cdr "(a b c)) => (b c)

Officially car and cdr arc only applicable to conses and locatives. However, as a matter of
convenience, car and cdr of nil return nil.

Ceo . X
All of the compositions of up to four car’s and cdr’s are defined as functions in their

own right. The names of these functions begin with "c¢" and end with "r”, and in
between is a sequence of "a"™s and "d"s corresponding to the composition performed by
the function. '
Example:

(cddadr x) isthesameas (cdr (cdr (car (cdr x))))
The error checking for these functions is exactly the same as for car and cdr above.

cons x y
cons is the primitive function to create a new cons, whose car is x and whose cdr is y.
Examples:

(cons *a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c nil))) => (a b c)
(cons ’a ’(b c d)) => (a b c d)

MC:IMMAN:T'D.CON 139 24-JUIL.-81

Lists 54 Lisp Machine Manual

ncons x
(ncons x) is the same as (cons x nil). The name of the function is from "nil-cons"

XCONs x y
xcons ("exchanged cons") is like cons cxcept that the order of the arguments is reversed.
Example:
(xcons 'a 'b) => (b . a)

cons-in-area x y area-number ’
This function creates a cons in a specific area. (Areas are an advanced feature of storage
management, explained in chapter 15; if you aren’t interested in them, you can safely
skip all this stuff). The first two arguments are the same as the two arguments to cons,
and the third is the number of the arca in which to create the cons.
Example:
(cons-in-area 'a 'b my-area) => (a . b)

ncons-in-area x area-number
(ncons-in-area x area-number) = (cons-in-area x nil area-number)

xcons-in-area x y area-number
(xcons-in-area x y area-number) = (cons-in-area y x area-number)

The backquote reader macro facility is also generally useful for creating list structure,
especially mostly-constant list structure, or forms constructed by plugging variables into a template.
It is documented in the chapter on macros; sce chapter 17, page 208.

car-location cons
car-location returns a locative pointer to the cell containing the car of cons.

Note: there is no cdr-location function; it is difficult because of the cdr-coding scheme (see
section 5.4, page 63).

5.2 Lists

length IUist

length returns the length of fist. The length of a list is the number of elements in it.
Examples:

(length nil) => 0

(1ength *(a b c d)) => 4

(Tength '(a (b c¢) d)) => 3
length could have been defined by:

(defun length (x)

(cond {{(atom x) 0)
((1+ (length (cdr x))))))

or by:

MCTEMMAN:ID.CON 139 24-JUH 81

Lisp Machine Manual 55 Lists

first

(defun length (x)
(do ((n 0 (1+ n))
(y x (cdr y)))

((atom y) n)))
except that it is an error to take length of a non-nil atom.

list

second list

third

list

fourth list

fifth
sixth

list
list

seventh list

restl
rest2
rest3
rest4

nth n

These functions take a list as aa argument, and return the first, second, ectc. eclement of
the list. first is identical to car, second is identical to cadr, and so on. The reason
these names are provided is that they make more sense when you are thinking of the
argument as a list rather than just as a cons.

list

list

list

list

restn returns the rest of the elements of a list, starting with clement n (counting the first
clement as the zeroth). Thus rest1 is identical to cdr, rest2 is identical to cddr, and so
on. The reason thesc names are provided is that they make more sense when you are
thinking of the argument as a list rather than just as a cons.

list
(nth n list) returns the n’th element of list, where the zeroth element is the car of the
list.
Examples:
(nth 1 '(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => nil
If n is greater than the length of the list, nil is returned.

Note: this is not the same as the InterLisp function called nth, which is similar to but
not exactly the same as the Lisp Machine function nthedr. Also, some people have used
macros and functions called nth of their own in their Maclisp programs, which may not
work the same way; be careful.

nth could have been defined by:
(defun nth (n Tlisi)
(do ((i n (1- i})
(1 Tlist (cdr 1)))
((zerop i) (car 1))))

MC:IMMAN:IFD.CON 139 24-JUL 81

Lists 56 Lisp Machine Manual

nthcdr n list
(nthedr n list) cdrs list n times, and returns the result.
Examples:)
(nthcdr 0 *(a b c)) => (a b ¢)
(nthcdr 2 (a b c)) => (¢)
In other words, it returns the n’th cdr of the list. If n is greater than the length of the
list, nil is returned.

This is similar to InterLisp’s function nth, except that the InterLisp function is one-based
instecad of zero-based; sce the Interlisp manual for details. nthcdr could have been
defined by:
(defun nthecdr (n list)
(do ((i 0 (1+ i))
(list Tist (cdr Tist)))
((= 1 n) Tist))) ‘

last list

last returns the last cons of lisz. If Jist is nil, it returns nil. Note that last is
unfortunately not analogous to first (first returns the first clement of a list, but last
doesn’t return the last clement of a list); this is a historical artifact.
Example:

(setq x ’(a b c d))

(last x) => (d)

(rplacd (last x) '(e f))

x =>"(abcdef)
last could have been defined by:

(defun last (x)

(cond ((atom x) x)
((atom (cdr x)) x)

((last (cdr x)))))

Tist &rest args
list constructs and returns a list of its arguments.
Example:
(1list 3 4 ’a (car "(b . c)) (+ 6 -2)) => (3 4 a b 4)

list could have been defined by:
(defun list (&rest args)
(let ((1ist (make-list (length args))))
(do ((1 list (cdr 1))
(a args (cdr a)))
((null a) 1list)
(rplaca 1 (car a)))))

MC:TMMAN:EFD.CON 139 24-JU1 .-81

Lisp Machine Manual 57 Lists

1ist* &rest args
list* is like list except that the last cons of the constructed list is "dotted”. It must be
given at least one argument.
Example:
(1ist* 'a 'b ’'c ’d) => (a b ¢ . d)
This is like
(cons ’'a (cons b (cons 'c¢c 'd)))

More examples:
(1ist* 'a 'b) => (a . b)
(list* ’'a) => a

1ist-in-area area-humber &rest args
list-in-area is exactly thec same as list except that it takes an extra argument, an area
number, and creates the list in that area.

list®*-1in-area arec-number &rest args
list*-in-area is exactly the same as list* except that it takes an extra argument, an area
number, and creates the list in that area.

make-1ist Jlength &rest options
This creates and returns a list containing length clements. length should be a fixnum.
options are alternating keywords and values. The keywords may be cither of the
following:

:area The value specifies in which arca (sec chapter 15, page 192) the list
should be created. It should be cither an area number (a fixnum), or nil
to mean the default area.

iinitial-value The clements of the list will all be this value. It defaults to nil.

make-list always creates a cdr-coded list (sec section 5.4, page 63).
Examples:

(make-1ist 3) => (nil nil nil)

(make-1ist 4 ':initial-value 7) => (7 7 7 7)

When make-list was originally implemented, it took exactly two arguments: the area and
the length. This obsolete form is still supported so that old programs will continue to
work, but the new keyword-argument form is preferred.

circular-1ist &rest args
circular-list constructs a circular list whose clements are args, repeated infinitely.
circular-list is the same as list except that the list itself is used as the last cdr, instead of
nil. circular-list is especially useful with mapcar, as in the expression
(mapcar (function +) foo (circular-list 5))
which adds cach element of foo to 5.

MC:TMMANID.CON 139 241U -81

Lists

58 Lisp Machine Manual

circular-list could have been defined by:

(defun circular-1ist (&rest elements)
(setq elements (copylistx elements))
(rplacd (last elements) elements)
elements)

copylist list &optional area

Returns a list which is equal to /ist, but not eq. copylist does not copy any eclements of
the list: only the conses of the list itself. The returned list is fully cdr-coded (sce section
5.4, page 63) to minimize storage. If the list is "dotted”, that is, (cdr (last Iisr)) is a
non-nil atom, this will be true of the rcturned list also. You may optionally specify the
area in which to create the new copy.

copylist* lisz &optional area

This is the same as copylist except that the last cons of the resulting list is never cdr-
coded (sec section 5.4, page 63). This makes for increased efficiency if you nconc
something onto the list later.

copyalist list &optional area

copyalist is for copying association lists (see section 5.5, page 65). The list is copied, as
in copylist. In addition, cach clement of list which is a cons is replaced in the copy by a
new cons with the same car and cdr. You may optionally specify the area in which to
create the new copy.

copytree iree

copytree copies all the conses of a tree and makes a new tree with the same fringe.

reverse list

reverse creates a new list whose clements are the elements of [ist taken in reverse order.
reverse does not modify its argument, unlike nreverse which is faster but does modify
its argument. The list created by reverse is not cdr-coded.
Example:

(reverse '(a b (c d) e)) => (e (c d) b a)
reverse could have been defined by:

(defun reverse (x)

(do ((1 x (cdr 1)) ; scan down argument,
(r nil ; putting cach clement
(cons (car 1) r))) ;intolist, until
((null 1) r))) ; no more elements.

nreverse list

nreverse reverses its argument, which should be a list. The argument is destroyed by
rplacd’s all through the list (cf. reverse).
Example:
(nreverse '(a b c)) => (c b a)
nreverse could have been defined by:

MOCEMATANED.CON 139 24-JU -81

Lisp Machine Manual 59 Lists

(defun nreverse (x)
(cond ((null x) nil)
((nreversel x nil))))

(defun nreversel (x y) ; auxiliary function
(cond ((null (cdr x)) (rplacd x y))
((nreversel (cdr x) (rplacd x y)))))
. + this last call depends on order of argument cvaluation.

Currently, nreverse docs something inefficient with cdr-coded (sce section 5.4, page 63)
lists, because it just uses rplacd in the straightforward way. This may be fixed someday.
In the meantime reverse migh: be preferable in some cases.

append &rest lists
The arguments to append are lists. The result is a list which is the concatenation of the
arguments. The arguments are not changed (cf. nconc).
Example:

(append '(a b ¢) '(d e f) nil ’(g)) => (abcde f g)

append makes copies of the conses of all the lists it is given, except for the last one. So
the new list will share the conses of the last argument to append, but all of the other
conses will be newly created. Only the lists are copied, not the clements of the lists.

A version of append which only accepts two arguments could have been defined by:
(defun append2 (x y)
(cond ((null x) y)
((cons (car x) (append2 (cdr x) y)))))

The generalization to any number of arguments could then be made (relying on car of nil
being nil):
(defun append (&rest args)
(if (< (length args) 2) (car args)
(append2 (car args)
(epply (function append) (cdr args)))))

These definitions do not express the full functionality of append; the rcal definition
minimizes storage utilization by cdr-coding (see section 5.4, page 63) the list it produces,
using cdr-next except at the end where a full node is used to link to the last argument,
unless the last argument is nil in which case cdr-nil is used.

To copy a .st, use copylist (sec page 58); the old practice of using append to copy lists
is unclear and obsolcte.

nconc &rest lists

nconc takes lists as arguments. It returns a list which is the arguments concatenated
together. ‘The arguments are changed, rather than copied. (cf. append, page 59)

MCTMMAN:FD.CON 139 24-1U1-81

Lists 60 Lisp Machine Manual

Example:

{setqg x "(a b c))

(setqy ’(d e f))

(nconc x y) => (a b c de f)

X => (abcdef)
Note that the value of x is now different, since its last cons has been rplacd’d to the
value of y. If the nconc form is evaluated again, it would yicld a piece of "circular" list
structure, whose printed representation would be (@b cde fde fdef..), repeating
forever.

nconc could have been defined by:

(defun nconc (x y) ; for simplicity, this definition
(cond {(null x) y) ; only works for 2 arguments,
(t (rplacd (Tast x) y) ;hookyontox
x))) ;and return the modified x.

nreconc x y
(nreconc x y) is ecxactly the same as (nconc (nreverse x) y) except that it is more
cfficient. Both x and y should be lists.

nreconc could have been defined by:
(defun nreconc (x y)
(cond ((null x) y)
((nreversel x y))))
using the same nreversel as above.

butlast Uist
This creates and returns a list with the same elements as /ist, excepting the last element.
Examples:
(butlast '(a b c d)) => (a b c)
(butlast ’((a b) (c dJ)) => ((a b))
(butlast ’(a)) => nil
(butlast nil) => nil
The name is from the phrase "all elements but the last”

nbutlast /is
This is the destructive version of butlast; it changes the cdr of the second-to-last cons of
the list to nil. If there is no second-to-last cons (that is, if the list has fewer than two
clements) it returns nil.
Examples:
(setq foo '(a b ¢ d))
(nbutlast foo) => (a b c)
foo => (a b c)
(nbutlast '(a)) => nil

MC:TMMANFD.CON 139 24U -81

Lisp Machine Manual 61 Alteration of List Structure

firstn n list
firstn returns a list of length n, whose clements are the first n clements of list. If list is

fewer than n elements long, the remaining elements of the returned list will be nil.
Example:

(firstn 2 '(a b c d)) => (a b)

(firstn 0 ’(a b ¢ d)) => nil

(firstn 6 "(a b ¢ d)) => (a b ¢ d nil nil)

nleft n list &optional 1ail
Returns a "tail" of list, i.e. one of the conses that makes up /ist, or nil. (nleft n list)

returns the last n elements of list If n is too large, nleft will return Jist.

(nleft n list tail) takes cdr of lis: enough times that taking n more cdrs would yield tail,
and returns that. You can sce that when fail is nil this is the same as the two-argument
case. If rail is not eq to any tail of list, nleft will return nil.

1diff list sublist
list should be a list, and sublis’ should be one of the conses that make up /list. Idiff
(meaning "list difference") will return a new list, whose elements are those clements of list
that appear before sublist.
Examples:
(setq x '(a b c de€))
(setq y (cdddr x)) => (d e)
(1diff x y) => (a t c)
but
(1diff *(a b c d) '(c d)) => (a b ¢ d)
since the sublist was not eq to any part of the list.

5.3 Alteration of List Structure

The functions rplaca and rplacd are used to make alterations in already-existing list structure;
that is, to change the cars and cdrs of existing conses.

The structurc is not copicd but is physically altered; hence caution should be exercised when
using these functions, as strange side-effocts can occur if portions of list structure become shared
unbeknownst to the programmer. The nconc, nreverse, nreconc, and nbutlast functions
alrcady described, and the delq family described later, have the same property.

rplaca x y
(rplaca x y) changes the car of x to y and returns (the modified) x. x must be a cons

or a locative. y may be any l.isp objcct.
Example:)
(setqg g "(a b c))
(rplaca (cdr g) ’'d) => (d c)
Now g => (a d c)

MC:TIMMANFD.CON 139 24-JU1 81

Alteration of List Structure 62 Lisp Machine Manual

rplacd x y
(rplacd x y) changes the cdr of x to y and returns (the modified) x. x must be a cons
or a locative. y may be any Lisp object.
Example:
(setq x '(a b c))
(rplacd x ’d) => (a . d)
Now x => (a . d)

subst new old tree

(subst new old tree) substitutes new for all occurrences of old in tree, and returns the
modified copy of mree. The original ree is unchanged, as subst recursively copies all of
tree replacing elements equal to old as it goes.

Example:

(subst ’*Tempest ’'Hurricane
'(Shakespeare wrote (The Hurricane)))
=> (Shakespeare wrote (The Tempest))

subst could have been defined by:

(defun subst (new old tree)
(cond ((equal tree old) new) ;ifitem equal to old, replace.
((atom tree) tree) ;if no substructure, return arg.
((cons (subst new old (car tree)) ;otherwise recurse.
(subst new old (cdr tree))))))
Note that this function is not "destructive”; that is, it does not change the car or cdr of
any already-existing list structure.

To copy a tree, usc copytree (sce page 58); the old practice of using subst to copy trees
is unclear and obsolete.

Note: certain details of subst may be changed in the future. It may possibly be changed
to use eq rather than equal for the comparison, and possibly may substitute only in cars,
not in cdrs. This is still being discussed.

nsubst new old tree
nsubst is a destructive version of subst. The list structure of tree is altcred by replacing
cach occurrence of old with new. nsubst could have been defined as
(defun nsubst (new old tree)

(cond ((eq tree old) new) ; Ifitem eq to old, replace.
((atom tree) tree) ;If no substructure, return arg.
(t ; Otherwise, recurse.

(rplaca tree (nsubst new old (car tree)))
(rplacd tree (nsubst new old (cdr tree)))
tree)))

MC: T MMANFD.CON 139 2-JUT-81

Lisp Machine Manual 63 Cdr-Coding

sublis alist tree

sublis makes substitutions for symbols in a tree. The first argument to sublis is an
association list (see section 5.5, page 65). The sccond argument is the tree in which
substitutions are to be made. sublis looks at all symbols in the fringe of the tree; if a
symbol appears in the association list occurrences of it are replaced by the object it is
associated with. The argument is not modified; new conses are crcated where necessary
and only where necessary, so the newly created tree shares as much of its substructure as
possible with the old. For example, if no substitutions are made, the result is just the
old tree.

Example:

(sublis ’((x . 100) (z . zprime))
*(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

sublis could have been defined by:
(defun sublis (alist sexp)
(cond ((atom sexp)
(let ((tem (assq sexp alist)))
(if tem (cdr tem) sexp)))
((let ((car (sublis alist (car sexp)))
(cdr (sublis alist (cdr sexp))))
(if (and (eq (car sexp) car) (eq (cdr sexp) cdr))
sexp
(cons car cdr))))))

nsublis alist tree
nsublis is like sublis but changes the original tree instead of creating new.

nsublis could have been defined by:
(defun nsublis (alist tree)
(cond ((atom tree)
(let ((tem (assq tree alist)))
(if ter (cdr tem) tree)))
(t (rplaca tree (nsublis alist (car tree)))
(rplacd tree (nsublis alist (cdr tree)))
tree)))

5.4 Cdr-Coding

This section explains the internal data format used to store conses inside the Lisp Machine.
Casual users don’t have to worry about this; you can skip this section if you want. It is only
important to read this section if you require extra storage efficiency in your program.

The usual and obvious internal representation of conses in any implementation of Lisp is as a
pair of pointers, contiguous in memory. If we call the amount of storage that it takes to store a
Lisp pointer a "word", then conses normally occupy two words. Onc word (say it’s the first)
holds the car, and the other word (say it's the sccond) holds the cdr. To get the car or cdr of a
list, you just reference this memory location, and to change the car or cdr, you just store into

MC:I MMAN;FD.CON 139 24-JU1 -81

Cdr-Coding 64 Lisp Machine Manual

this memory location.

Very often, conses are used to store lists. If the above representation is used, a list of n
elements requires two times n words of memory: n to hold the pointers to the elements of the
list, and n to point to the next cons or to nil. To optimize this particular case of using conses,
the Lisp Machine uses a storage representation called "cdr coding” to store lists. The basic goal is
to allow a list of n clements to be stored in only n locations, while allowing conses that are not
parts of lists to be stored in the usual way.

The way it works is that there is an extra two-bit ficld in cvery word of memory, called the
"cdr-code” ficld. There are three meaningful values that this field can have, which are called cdr-
normal, cdr-next, and cdr-nil. The regular, non-compact way to store a cons is by two
contiguous words, the first of which holds the car and the second of which holds the cdr. In this
case, the cdr code of the first word is cdr-normal. (The cdr code of the second word doesn’t
matter; as we will see, it is never looked at.) The cons is represented by a pointer to the first of
the two words. When a list of n clements is stored in the most compact way, pointers to the n
elements occupy n contiguous memory locations. The cdr codes of all these locations are cdr-next,
except the last location whose cdr code is cdr-nil. The list is represented as a pointer to the first
of the n words.

Now, how are the basic opcrations on conses defined to work based on this data structure?
Finding the car is casy: you just rcad the contents of the location addressed by the pointer.
Finding the cdr is more complex. First you must rcad the contents of the location addressed by
the pointer, and inspect the cdr-code you find there. If the code is cdr-normal, then you add
one to the pointer, read the location it addresses, and rcturn the contents of that location; that is,
you read the sccond of the two words. If the code is cdr-next, you add one to the pointer, and
simply return that pointer without doing any more rcading; that is, you return a pointer to the
next word in the n-word block. If the code is cdr-nil, you simply return nil.

If you examine these rules, you will find that they work fine even if you mix the two kinds
of storage representation within the same list. There’s no problem with doing that.

How about changing the structure? like car, rplaca is very easy, you just store into the
location addressed by the pointer. To do an rplacd you must read the location addressed by the
pointer and examine the cdr code. If the code is cdr-normal, you just store into the location one
greater than that addressed by the pointer; that is, you store into the second word of the two
words. But if the cdr-code is cdr-next or cdr-nil, there is a problem: there is no memory cell
that is storing the cdr of the cons. That is the cell that has been optimized out; it just doesn’t
exist.

This problem is dealt with by the use of "invisible pointers”. An invisible pointer is a spccial
kind of pointer, recognized by its data type (Lisp Machine pointers include a data type field as
well as an address ficld). The way they work is that when the Lisp Machine reads a word from
memory, if that word is an invisible pointer then it proceeds to read the word pointed to by the
invisible pointer and use that word instead of the invisible pointer itself, Similarly, when it writes
to a location, it first reads the location. and if it contains an invisible pointer then it writes to the
location addressed by the invisible pointer instead. (This is a somewhat simplificd cxplanation;
actually there are several kinds of invisible pointer that are interpreted in ditllerent ways at
different times. used for things other than the ¢dr coding scheme,)

MC:IMMAN:FD.CON 139 24-JU1.-81

Lisp Machine Manual £S - Tables

Here’s how to do an rplacd when the cdr code is cdr-next or cdr-nil. Call the location
addressed by the first argument to rplazd /. First, you allocate two contiguous words (in the
same area that / points to). Then you store the old contents of / (the car of the cons) and the
second argument to rplacd (the new cdr of the cons) into these two words. You set the cdr-code
of the first of the two words to cdr-normal. Then you write an invisible pointer, pointing at the
first of the two words, into location /. (It doesn’t matter what the cdr-code of this word is, since
the invisible pointer data type is checked first, as we will see.)

Now, whenever any operation is dcne to the cons (car, cdr, rplaca, or rplacd), the initiat
reading of the word pointed to by the Lisp pointer that represents the cons will find an invisible
pointer in the addressed cell. When the invisible pointer is seen, the address it contains is used
in place of the original address. So the newly-allocated two-word cons will be used for any
operation donc on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything works the
same way whether or not compact representation is used, from the point of view of the semantics
of the language. That is, the only difference that any of this makes is a difference in efficiency.
The compact representation is more efficient in most cases. However, if the conses are going to
get rplacd’ed, then invisible pointers will be created, extra memory will be allocated, and the
compact representation will be seen to degrade storage efficiency rather than improve it. Also,
accesses that go through invisible pointers are somewhat slower, since more memory references are
needed. So if you care a lot about storege efficiency, you should be careful about which lists get
stored in which representations.

You should try to use the normal representation for those data structures that will be subject
to rplacding operations, including nconc and nreverse, and the compact representation for other
structures. The functions cons, xcong, ncons, and their area variants make conses in the
normal representation. The functions list, list*, list-in-area, make-list, and append use the
compact representation. The other list-creating functions, including read, currently make normal
lists, although this might get changed. Some functions, such as sort, take special care to operate
efficiently on compact lists (sort cffectively treats them as arrays). nreverse is rather slow on
compact lists, currently, since it simple-mindedly uses rplacd, but this will be changed.

(copylist x) is a suitable way o copy a list, converting it into compact form (see page 58).

5.5 Tables

Zetalisp includes functions which simplify the maintenance of tabular data structures of scveral
varicties. The simplest is a plain list of items, which models (approximately) the concept of & set.
There are functions to add (cons), rcmove (delete, delq, del, del-if, del-if-not, remove,
remq, rem, rem-if, rem-if-not), and scarch for-(member, memq, mem) items in a list. Set
union, intersection, and difference functions can be easily written using these.

Association lists are very commonly; used. An association list is a list of conses. The car of
cach cons is a "key" and the cdr is a "datum"”, or a list of associated data. The functions assoc,
assqg, ass, memass, and rassoc may be used to retrieve the data, given the key. IFor example,

((tweety . bird) (sylvester . cat))
is an association list with two clements. Given a symbol representing the name of an animal, it

MC:I MMAN:FD.CON 139 24-JUI.-81

Lists as Tables 66 Lisp Machine Manual

can retrieve what kind of animal this is.

Structured records can be stored as association lists or as stercotyped cons-structures where
each element of the structure has a certain car-cdr path associated with it. However, these are
better implemented using structure macros (sec chapter 19, page 257).

Simple list-structure is very convenient, but may not be efficient enough for large data bases
because it takes a long time to search a long list. Zetalisp includes hash table facilities for more
efficient but more complex tables (sce section 5.9, page 74), and a hashing function (sxhash) to
aid users in constructing their own facilities.

5.6 Lists as Tables

memq item list

(memq item list) returns nil if item is not one of the elements of list. Otherwise, it
returns the sublist of /ist beginning with the first occurrence of item; that is, it returns
the first cons of the list whose car is item. The comparison is made by eq. Because
memgq -returns nil if it doesn’t find anything, and somecthing non-nil if it finds something,
it is often used as a predicate.
Examples:

(memq 'a '(1 2 3 4)) => nil

(memg 'a '(g (x ay)cadeaf)) =>(adeatf)
Note that the value returned by memq is eq to the portion of the list beginning with a.
Thus rplaca on the result of memq may be used, if you first check to make sure memgq
did not return nil.

Example:
(let ((sublist (memq x z))) ; Search for x in the list z.
(if (not (null sublist)) ;If it is found,
(rplaca sublist y))) ; Replace it with y.

memq could have been defined by:
(defun memg (item 1ist)
(cond ((null tist) nil)
((eq item (car list)) Tist)
(t (memq item (cdr 1list)))))

memgq is hand-coded in microcode and therefore especially fast.

member item list
member is like memq, except equal is used for the comparison, instead of eq.

member could have been defined by:
(defun member (item 1list)
(cond ((null 1list) nil)
((equal item (car list)) list)
(t (member item (cdr list)))))

MC: I MMAN:FD.CON 139 24-1U1 .-81

Lisp Machine Manual 67 Lists as Tables

mem predicate item list
mem is the same as memq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instcad of eq. (mem ’'eq 2
b) is the same as (memq a b). (mem ’equal a b) is the same as (member a b).

mem is usually used with equality predicates other than eq and equal, such as =, char-
equal or string-equal. It can also be used with non-commutative predicates. The
predicate is called with item as its first argument and the element of list as its second
argument, SO

(mem #'< 4 list)
finds the first clement in list for which (€ 4 x) is true; that is, it finds the first element
greater than or equal to 4.

find-position-in-1ist item list
find-position-in-list looks down list for an clement which is eq to item, like memq.
However, it returns the numeric :ndex in the list at which it found the first occurence of
item, or nil if it did not find it at all. This function is sort of the complement of nth
(see page 55); like nth, it is zero-based.
Examples:
(find-position-in-list "a '(a b c)) 0
(find-position-in-list 'c *(a b c)) => 2
(find-position-in-list 'e ’(a b c)) n

find-position-in-1ist-equal irem list
find-position-in-list-equal is exactly the same as find-position -in-list, except that the
comparison is dene with equal instead of eq.

tailp sublist list
Returns t if swblist is a sublist of list (i.e. one of the conses that makes up Ilist).
Otherwise returns nil. Another way to look at this is that tailp returns t if (nthcdr n list)
is sublist, for some value of n. tailp could have been defined by:
(defun tailp (sublist list)
(do Tist list (cdr Tist) (null list)
(if (eq sublist list)
(return t))))

de1q item list &optional n
(delq item list) returns the list with all occurrences of item removed. eq is used for the
comparison. The argument /s is actually modified (rplacd’ed) when instarces of item are
spliced out. delg should be used for value, not for effect. That is, use
(setq a (delq b a))
rather than
(delq 'b a)
These two arc not equivalent when the first clement of the value of a is b.

(delq item list n) is like (delq item list) cxcept only the first n instances of item are

deleted. n is allowed to be zcro. If n is greater than or equal to ‘he number of
occurrences of item in the list, all occurrences of item in the list will be deleted.

MC:L.MMAN:FD.CON 139 24-JU1.-81

Lists as Tables 68 Lisp Machine Manual

Example: 4
(delq 'a (b ac (ab) dae)) =>(bc (ab)de)

delq could have been defined by:
(defun delq (item list &optional (n -1))
“cond ((or (atom list) (zerop n)) list)
((eq item (car 1list))
(delq item (cdr 1list) (1- n)))
(t (rplacd list (delq item (cdr list) n)))))
If the third argument (n) is not supplied, it defaults to -1 which is effectively infinity
since it can be decremented any number of times without reaching zero.

delete item list &optional n
delete is the same as delq cxcept that equal is used for the comparison instead of eq.

del predicate item list &optional n
del is the same as delq except that it takes an extra argument which shouid be a
predicate of two arguments, which is used for the comparison instead of eq. (del 'eq a
b) is the same as (delq a b). (cf. mem, page 67)

remq item list &optional n
remq is similar to' delq, except that the list is not altered; rather, a new list is returned.
Examples:
(setq x "(abcde f))
(remg 'b x) => (ac d e f)
X => (abcdef)
(remg b "(abcbab)2)=>(acahb)

remove item list &optional n
remove is the same as remq except that equal is used for the comparison instead of €q.

rem predicate item list &optional n
rem is the same as remq except ‘that jt takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instead of eq. (rem ’'eq a
b) is the same as (remq a b). (cf. mem, page 67)

subset predicate list

rem-1f-not predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of /ist and removing the ones for which the predicate returns nil.
One of this function’s names (rem-if-not) means "remove if this condition is not true";
i.e. it keeps the clements for which predicate is true. The other name (subset) refers to
the function’s action if Jist is considered to represent a mathematical set.

subset-not predicate list

rem-1f predicate list
predicate should be a function of one argument. A new list is made by applying predicate
to all of the clements of /ist and removing the ones for which the predicate returns non-
nil. One of this function’s names (rem-if) means "remove if this condition is truc”, The

MC:1.MMAN:FID.CON 139 24-JU11.-81

Lisp Machine Manual 69 Association Lists

other name (subset-not) refers to the function’s action if list is considered to represent a
mathematical set.

del1-1f predicate list
del-if is just like rem~if except that it modifies /ist rather than creating a new list.

del-1f-not predicate list
del-if-not is just like rem-if-rot cxcept that it modifies /ist rather than creating a new
list.

every list predicate &optional step-fuaction
every returns t if predicate returns non-nil when applied to every clement of /ist, or nil if
predicate returns nil for some element. If step-function is present, it replaces cdr as the
function used to get to the next element of the list; cddr is a typical function to use
here.

some [ist predicate &optional step-function
some returns a tail of /ist such that the car of the tail is the first clement that the
predicate returns non-nil when applied to, or nil if predicate returns nil for every clement.
If step-function is present, it replaces cdr as the function used to get to the next element
of the list; cddr is a typical function to use here.

5.7 Association Lists

assq ifem alist
(assq item alist) looks up item in the association list (list of conses) alist. The value is
the first cons whose car is eq to x, or nil if there is none such.
Examples:
(assq 'r "((a . b) (c . d) (r . x) (s . y) (r . z)))
=> (r . Xx)

(assq 'fooo "((foo . bar) (zoo . goo))) => nil
(assq b '((a b c) (bcd) (xyz))) =>(bc d)

It is okay to rplacd the result of assq as long as it is not nil, if your intention is to
"update” the "table” that was assq’s sccond argument.
Example:

(setq values '((x . 100) (y . 200) (z . 50)))

(assq 'y values) =» (y . 200)

(rplacd (assq 'y values) 201)

(assq 'y values) == (y . 201) now

A typical trick is to say (cdr (assg x y)). Since the cdr of nil is guaranteed to be nil,
this vields nil if no pair is found (or if a pair is found whose cdr is nil.)

assq could have been defined by:

MCIMMANED.CON 139 2L -81

Association Lists 70 Lisp Machine Manual

(defun assq (item list)
(cond ((null T1ist) nil)
({eq item (caar 1list)) (car 1list))
((assq item (cdr 1ist)))))

assoc item alist
assoc is like assq except that the comparison uses equal instead of eq.
Example:
(assoc "(a b) "((x . y) ((ab) . 7) ((c . d) .e)))
=> ((ab) . 7)
assoc could have been defined by:
(defun assoc (item 1list)
(cond ((null Tist) nil)
((equal item (caar 1list)) (car 1list))
((assoc item (cdr 1ist)))))

ass predicate item alist
ass is the same as assq except that it takes an extra argument which should be a
predicate of two arguments, which is used for the comparison instcad of eq. (ass ’'eq a
b) is the same as (assq a b). (cf. mem, page 67) As with mem, you may use non-
commutative predicates; the first argument to the predicate is irem and the sccond is the
key of the element of alist.

memass predicate item alist
memass scarches alist just like ass, but returns the portion of the list beginning with the
pair containing item, rather than the pair itself. (car (memass x y z)) = (ass x y z).
(cf. mem, page 67) As with mem, you may use non-commutative predicates; the first
argument to the predicate is ifem and the sccond is the key of the clement of alist.

rassq item alist
rassq means "reverse assq”. It is like assq, but it tries to find an clement of alist whose
cdr (not car) is eq to item. rassq could have been defined by:
(defun rassq (item in-1ist)
(do 1 in-Tist (cdr 1) (null 1)
(and (eq item (cdar 1))
(return (car 1)))))

rassoc item alist
rassoc is to rassq as assoc is to assq. That is, it finds an clement whose cdr is equal
to itein.

rass predicate item alist
rass is 10 rassq as ass is to assq. ‘That is, it takes a predicate to be used instead of eq.
(cf. mem. page 67) As with mem, you may usc non-commutative predicates; the first
argument to the predicate is item and the sccond is the cdr of the clement of alist.

MCTAMAMANED.CON 139 20U

Lisp Machine Manual 71 Property Lists

sassq item alist fon
(sassq item alist fcn) is like (assq item alist) cxcept that if ifem is not found in alist,
instcad of returning nil, sassq calls the function fen with no arguments. sassq could
have been defined by:
(defun sassq (item alist fcn)
(or (assq item alist)
(apply fcn nil)))

sassq and sassoc (see below) are of limited use. These arc primarily leftovers from Lisp
1.5.

sassoc item alist fen
(sassoc item alist fcn) is like (assoc item alist) except that if jrem is not found in alist,
instcad of returning nil, sassoc calls the function fen with no arguments. sassoc could
have been defined by:
(defun sassoc (item alist fcn)
(or (assoc item alist)

(apply fcn nil)))

pairlis cars cdrs
pairlis takes two lists and makes an association list which associates elements of the first
list with corresponding clements of the second list.
Example:
(pairlis ’(beef clams kitty) ’(roast fried yu-shiang))
=> ((beef . roast) (clams . fried) (kitty . yu-shiang))

5.8 Property Lists

From time immemorial, Lisp has had a kind of tabular data structure called a property list
(plist for short). A property list contains zero or more entrics; each entry associates from a
keyword symbol (called the indicator) to a lisp object (called the value or, sometimes, the
property). There are no duplications among the indicators; a property-list can only have one
property at a time with a given name.

This is very similar to an association list. The difference is that a property list is an object
with a unique identity; the opcrations for adding and removing property-list entries are side-
effecting operations which alter- the property-list rather than making a ncw one. An association list
with no entriecs would be the empty list {), i.e. the symbol nil. Therc is only one cmpty list, so
all empty association lists arc the same object. Each ecmpty property-list is a scparate and distinct
object.

The implementation of a property list is a memory cell containing a list with an cven number
(possibly zero) of clements. Fach pair »f clements constitutes a property; the first of the pair is
the indicator and the second is the value. The memory cell is there to give the property list a
unique identity and to provide for side-cffecting operations.

MCIMMANFD.CON 139 240000 -81

Property Lists 72 [Lisp Machinc Manual

The term "property list” is sometimes incorrectly used to refer to the list of entries inside the
property list, rather than the property list itself. This is regrettable and confusing.

How do we deal with "memory cells” in Lisp; i.c. what kind of Lisp object is a property list?
Rather than being a distinct primitive data type, a property list can exist in one of three forms:

1. A property list can be a cons whose cdr is the list of entries and whose car is not used
and available to the user to store something.

2. The system associates a property list with every symbol (sce section 6.3, page 88). A
symbol can be used wherc a property list is expected; the property-list primitives will
automatically find the symbol’s property list and use it.

3. A property list can be a memory cell in the middle of some data structure, such as a list,
an array, an instance, or a defstruct. An arbitrary memory cell of this kind is named by a
locative (see chapter 13, page 170). Such locatives are typically created with the loct special form
(sce page 230).

Property lists of the first kind are called "disembodied” property lists because they are not
associated with a symbol or other data structure. The way to create a disembodied property list is
(ncons nil), or (ncons data) to store data in the car of the property list.

Here is an example of the list of entrics inside the property list of a symbol named b1 which
is being used by a program which deals with blocks:
(color blue on b6 associated-with (b2 b3 b4d))

There are three properties. and so the list has six clements. The first property’s indicator is
the symbol color, and its value is the symbol blue. Onc says that "the value of b1’s color
property is blue”, or, informally, that "b1’s color property is blue." The program is probably
representing the information that the block represented by b1 is painted blue. Similarly, it is
probably representing in the rest of the preperty list that block b1 is on top of block b6, and
that b1 is associated with blocks b2, b3, and b4.

get plist indicator
get looks up plist’s indicator property. If it finds such a property, it returns the value;
otherwise, it returns nil. If plist is a symbol, the symbol's associated property list is used.
For example, if the property list of foo is (baz 3), then
(get 'foo ’baz) => 3
(get 'foo 'zoo) => nil

getl plist indicator-list
getl is like get. cxcept that the second argument is a list of indicators. getl scarches
down plist for any of the indicators in indicator-list, until it finds a property whose
indicator is onc of the clements of indicator-list. If plist is a symbol, the symbol's
associated property list is used.

getl returns the portion of the list inside plist beginning with the first such property that

it found. So the car of the returned list is an indicator. and the cadr is the property
value. 1t none of the indicators on indicator-list are on the property list. getl returns nil.

MO T MAMANTDLCON 139 24-JU1 -81

Lisp Machine Manual 73 Property Lists

For example, if the property list of foo were
(bar (1 2 3) baz (3 2 1) color blue height six-two)
then
(getl 'foo '(baz height))
=> (baz (3 2 1) color blue height six-two)

When more than one of the indicators in indicator-list is present in plist, which one getl
‘returns depends on the order cf the properties. This is the only thing that depends on
that order. The order maintained by putprop and defprop is not defined (their behavior
with respect to order is not guaranteced and may bc cuanged without notice).

putprop plist x indicator
This gives plist an indicator-prcperty of x. After this is done, (get plist indicator) will
return x. If plist is a symbol, the symbol’s associated property list is used.
Example:
(putprop 'Nixon ’'not ’crook)

defprop symbol x indicator Special Form
defprop is a form of putprop with "unevaluated arguments”, which is somectimes more
convenient for typing. Normally it doesn’t make sense to use a property list rather than a
symbol as the first (or plist) argument.
Example:
(defprop foo bar next-to)
is the same as '
(putprop 'foo ’bar 'next-to)

remprop plist indicator

This removes plist’s indicator pioperty, by splicing it out of the property list. It returns
that portion of the list inside piist of which the former indicator-property was the car.
car of what remprop rcturns is what get would have returned with the same arguments.
If plist is a symbol, the symbol’s associated property list is used. For example, if the
property list of foo was

(color blue height six-three near-to bar)
then

(remprop 'foo ’'height) => (six-three near-to bar)
and foo’s property list would be

(color blue near-to bar)
If plist has no indicator-property then remprop has no side-cffect and returns nil.

There is a mixin flavor, called si:property-list-mixin, that provides messages that do things

analogous to what the above functions do. [Currently, the above functions do not work on flavor
instances, but this will be fixed.]

MC:IMMAN:TD.CON 139 24-1U1 -81

Hash Tables 74 Lisp Machine Manual

5.9 Hash Tables

A hash table is a Lisp object that works something like a property list. Each hash table has a
set of entries, each of which associates a particular key with a particular value. The basic
functions that dcal with hash tables can create entries, dclete entrics, and find the value that is
associated with a given key. Finding the value is very fast even if there are many entries,
because hashing is used; this is an important advantage of hash tables over property lists.
Hashing is explained in section 5.9.4, page 78.

A given hash table can only associate one value with a given key; if you try to add a second
value it will replace the first.

Hash tables come in two kinds, the difference being whether the keys are compared using eq
or using equal. In other words, there are hash tables which hash on Lisp objects (using eq) and
there are hash tables which hash on trees (using equal). The following discussion refers to the eq
kind of hash table; the other kind is described later, and works analogously.

Hash tables of the first kind arc created with the function make-hash-table, which takes
various options. New entries are added to hash tables with the puthash function. To look up a
key and find the associated value, the gethash function is used. To remove an entry, use
remhash. Here is a simple example.

(setq a (make-hash-table))
(puthash 'color ’brown a)
(puthash ’name 'fred a)
(gethash ’color a) => brown

(gethash ’name a) => fred

In this example, the symbols color and name are being used as keys, and the symbols
brown and fred are being used as the associated values. The hash table has two items in it, one
of which associates from color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any Lisp object. Likewise values can be any
Lisp object. The Lisp function eq is used to compare keys, rather than equal. This means that
keys are really objects, but it means that it is not rcasonable to use numbers other than fixnums
as keys.

When a hash table is first created, it has a size, which is.the maximum number of entries it
can hold. Usually the actual capacity of the table is somewhat less, since the hashing is not
perfectly collision-free. With the maximum possible bad luck, the capacity could be very much
less, but this rarcly happens. If so many entries are added that the capacity is ¢xceeded, the hash
table will automatically grow, and the ecntrics will be rehashed (new hash values will be
rccomputed, and cverything will be rearranged so that the fast hash lookup still works). ‘This is
transparent to the caller; it all happens automatically.

MCTMMANID.CON 139 24-JUI-81

Lisp Machine Manual 75 Hash Tables

The describe function (see page 500) prints a variety of useful information when applied to a
hash table.

This hash table facility is similar to the hasharray facility of Interlisp, and some of the
function names are the same. However, it is not compatible. The exact details and the order of
arguments arc designed to be consistent with the rest of Zetalisp rather than with Interlisp. For
instance, the order of arguments to maphash is different, we do not have the Interlisp "system
hash table”, and we do not have the Interlisp restriction that keys and values may not be nil.
Note, however, that the order of arguments to gethash, puthash, and remhash is not consistent
with the Zetalisp’s get, putprop, and remprop, either. This is an unfortunate result of the
haphazard historical development of Lisg.

If the calling program is using multiprocessing, it must be careful to make sure that there are
never two processes both referencing the hash table at the same time. There is no locking built
into hash tables; if you have two processes that both want to reference the same hash table, you
must arrange mutual exclusion yourself by using a lock or some other means. Even two processes
just doing gethash on the same hash table must synchronize themselves, because gethash may be
forced by garbage collection to rchash the table. Don’t worry about this if you don’t use
multiprocessing; but if you do use multiprocessing, you will have a lot of trouble if you don’t
understand this.

Hash tables are implemented with a special kind of array. arrayp of a hash table will return
t. However, it is illegal to use normal array operations on a hash table, and in general they will
not work. Hash tables should be manipulated only with the functions described below.

5.9.1 Hashing on Eq

This section documents the functions for eq hash tables, which use objects as keys and
associate other objects with them.

make-hash-table &rest options
This creates a new hash table. Valid option keywords are:

size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). The actual size is rounded up from the size you specify to
the next size that is "good" for the hashing algorithm. You won’t
neccessarily be able to store this many entries into the table before it
overflows and bccomes bigger; but except in the case of extreme bad luck
you will be able to storc almost this many.

:area Specifies the area in which the hash table should be created. This is just
like the :area option to make-array (scc page 111). Defaults to nil (i.c.
default-cons-area).

:rehash-function
Specifies the function to be used for rehashing when the table becomes
full. Defaults to the internal rehashing function that doces the usual thing.
If you want to writc your own rchashing function, you will have to
understand all the internats of how hash tables work., ‘These internals are
not documented here. as the best way to learn them is to rcad the source

MC:EMMAN:FD.CON 139 24-JU1 -81

Hash Tables 76 Lisp Machine Manual

code.

rrehash-size Specifies how much to increasc the size of the hash table when it becomes
full. This can be a fixnum which is the number of entries to add, or it
can be a flonum which is the ratio of the new size to the old size. The
default is 1.3, which ca.ses the table to be made 30% bigger each time it
has to grow.

gethash key hash-table
Find the entry in hash-table whose key is key, and return the associated value. If there is
no such entry, return nil. Returns a second value, which is t if an entry was found or
nil if there is no entry for key in this table.

puthash key value hash-table
Create an entry associating key to value; if there is already an entry for key, then replace
the value of that entry with value. Returns value. The hash table automatically grows if
necessary.

remhash key hash-table
Remove any cntry for key in hash-table. Returns t if there was an entry or nil if there
was not.

swaphash key value hash-table
This does the same thing as puthash, but returns different values. If there was already
an entry in hash-table whose key was key, then it returns the old associated value as its
first returned value, and t as its second returned value. Otherwise it returns two values,
nil and nil.

maphash function hash-table
For cach entry in hash-table, call function on two arguments: the key of the entry and
the value of the entry.

clrhash hash-1able
Remove all the entrics from hash-table. Returns the hash table itself.

5.9.2 Hashing on Equal

This scction documents the functions for equal hash tables, which use trees as keys and
associate objects with them. The function to make onc is slightly different from make-hash-
table because the implementations of the two kinds of hash table differ, but analogous operations
are provided.

make-equal-hash-table &rest options
‘This creates a new hash table of the equal kind. Valid option keywords are:

'size Sets the initial size of the hash table, in entries, as a fixnum. The default
is 100 (octal). The actual size is rounded up from the size you specify to
the next "good" size. You won't necessarily be able to store this many
entrics into the table before it overflows and becomes bigger: but except
in the case of extreme bad luck you will be able to store almost this

MC:LMMANIID.CON 139 24-JUI-81

Lisp Machine Manual 77 Hash Tables

many.

:area Specifies the arez in which the hash table should be created. This is just
like the :area option to make-array (see page 111). Defaults to nil (ie.
default-cons-arza).

:rehash-threshold
Specifies how full the table can be before it must grow. This is typically
a flonum. The default is 0.8, i.e. 80%.

:growth -factor
Specifies how much to increase the size of the hash table when it becomes
full. This is a fonum which is the ratio of the new size to the old size.
The default is 1.3, which causes the table to be made 30% bigger cach
time it has to grow.

gethash-equal key hash-table
Find the entry in hash-table whose key is equal to key, and return the associated value.
If there is no such entry, rcturn nil. Returns a sccond value, which is t if an entry was
found or nil if there is no entry for key in this table.

puthash-equal key value hash-table
Create an entry associating key td value; if there is already an entry for key, then replace
the value of that entry with valze. Returns value. If adding an entry to the hash table
exceeds its rehash threshold, it is grown and rchashed so that searching docs not become
too slow.

remhash-equal key hash-table
Remove any entry for key in hash-table. Returns t if there was an entry or nil if there
was not.

swaphash-equal key value hash-table
This docs the same thing as puthash-equal, but rcturns different values. If there was
already an cntry in hash-table whose key was key, then it returns the old associated value
as its first returned value, and t as its second rcturned value. Otherwise it returns two
values, nil and nil.

maphash-equal function hash-iable
For cach cntry in hasig-table, call function on two arguments: the key of the entry and

the valuc of the entry.

clrhash-equal hash-table
Remove all the entries from hast-table. Returns the hash table itself.

MO MAMANTD.CON 139 REER RIS

Hash Tables 78 Lisp Machinc Manual

5.9.3 Hash Tables and the Garbage Collector

The eq type hash tables actually hash on the address of the representation of the object.
When the copying garbage collector changes the addresses of object, it lets the hash facility know
so that gethash will rchash the table based on the new object addresses.

There will eventually be an option to make-hash-table which tells it to make a "non-GC-
protecting” hash table. This is a special kind of hash table with the property that if one of its
keys becomes “garbage”, i.c. is an object not known about by anything other than the hash table,
then the entry for that key will be silently removed from the table. When these exist they will be
documented in this section.

5.9.4 Hash Primitive

Hashing is a technique used in algorithms to provide fast retrieval of data in large tables. A
“function, known as a "hash function”, is created, which takes an object that might be used as a
key, and produces a number associated with that key. This number, or some function of it, can
be used to specify where in a table to look for the datum associated with the key. It is always
possible for two different objects to "hash to the same value"; that is, for the hash function to
return the same number for two distinct objects. Good hash functions are designed to minimize
this by evenly distributing their results over the range of possible numbers. However, hash table
algorithms must still deal with this problem by providing a sccondary search, sometimes known as
a rehash. For more information, consult a textbook on computer algorithms.

sxhash rree
sxhash computes a hash code of a tree, and returns it as a fixnum. A property of
sxhash is that (equal x y) always implics (= (sxhash x) (sxhash y)). The number
returned by sxhash is always a non-negative fixnum, possibly a large one. sxhash tries
to compute its hash code in such a way that common permutations of an object, such as
interchanging two clements of a list or changing one character in a string, will always
change the hash code.

Here is an cxample of how to use sxhash in maintaining hash tables of trees:
(defun knownp (x &aux i bkt) :look up x in the table

(setq i (abs (remainder (sxhash x) 176)))
;The remainder should be reasonably randomized.

(setq bkt (aref table i))
;bkt is thus a Tist of all those expressions that
;hash into the same number as does x.

(memq x bkt))

To write an "intern” for trees, one could

NMCTAMANED.CON 139 2-JU -8

Lisp Machine Manual 19 Sorting

(defun sintern (x &aux bkt i tem)
(setq i (abs (remainder (sxhash x) 2n-1)))
;2n-1 stands for a power of 2 minus one.
;This is a good choice to randomize the
;result of the remainder operation.
(setq bkt (are® table i))
(cond ((setq tem (memg x bkt))
(car tem))
(t (aset (cons x bkt) table i)

x)))

sxhash provides what is called "haching on equal”; that is, two objects that are equal are
considered to be "the same” by sxhash. In particular, if two strings differ only in alphabetic
case, sxhash will return the same thing for both of them because they are equal. The value
returned by sxhash does not depend on the value of alphabetic-case-affects-string-
comparison (sce page 127).

Therefore, sxhash is uscful for retrieving data when two keys that are not the same object
but arc equal arc considered the same. If you consider two such keys to be different, then you
need "hashing on eq"”, where two different objects are always considered different. In some Lisp
implementations, there is an easy way to create a hash function that hashes on eq, namely, by
returning the virtual address of the storage associated with the object. But in other
implementations, of which Zetalisp is one, this doesn’t work, because the address associated with
an object can be changed by the relocating garbage collector. The hash tables created by make-
hash-table decal with this problem by using the appropriate subprimitives so that they interface
correctly with the garbage collector. If you need a hash table that hashes on eq, it is alrcady
provided: if you nced an eq hash function for some other reason, you must build it yourself,
cither using the provided eq hash table facility or carefully using subprimitives.

5.10 Sorting

Several functions are provided for sorting arrays and lists. These functions use algorithms
which always terminate no matter what sorting predicate is used, provided only that the predicate
always terminates. The main sorting functions are not stable; that is. cqual items may not stay in
their original order. 17 you want a stable sort, usc the stable versions. But if you don’t care
about stability, don’t use them since stable algorithms are significantly slower.

After sorting, the argument (be it list or array) has been rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by permuting the
clements of the array, while in the list case, the list is rcordered by rplacd’s in the same manner
as nreverse. Thus if the argument sheuld not be clobbered, the user must sort a copy of the
argument. obtainable by fillarray or copylist, as appropriate. Furthermore, sort of a list is like
delg in that it should not be used for cifect: the result is conceptually the same &s the argument
but in fact is a different Lisp object.

Should the comparison predicate caise an error. such as a wrong type argurnent crror, the

state of the Tist or array being sorted i undefined. However, if the error is corrected the sort
will, of course, proceed correctly.

MCTMMANTD.CON 139 20U -81

Sorting 80 Lisp Machine Manual

The sorting package is smart about compact lists; it sorts compact sublists as if they were
arrays. Sce section 5.4, page 63 for an cexplanation of compact lists, and A. 1. Memo 587 by
Guy L. Steele Jr. for an explanation of the sorting algorithm.

sort table predicate
The first argument to sort is an array or a list. The sccond is a predicate, which must be
applicable to all the objects in the array or list. The predicate should take two arguments,
and return non-nil if and only if the first argument is strictly less than the second (in
some appropriate sense).

The sort function procceds to sort the contents of the array or list under the ordering
imposed by the predicate, and rcturns the array or list modified into sorted order. Note
that since sorting requircs many comparisons, and thus many calls to the predicate,
sorting will be much faster if the predicate is a compiled function rather than interpreted.
Example:
(defun mostcar (x)
{cond ((symbolp x) x)
((mostcar (car x)))))

(sort ’fooarray
(function (lambda (x y)
(alphalessp (mostcar x) (mostcar y)))))
If fooarray containced these items before the sort:
(Tokens (The lion sleeps tonight))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
then after the sort fooarray would contain:
((Beach Boys) (I get around))
(Beatles (I want to hold your hand))
(Carpenters (Close to you))
((Rolling Stones) (Brown sugar))
(Tokens (The lion sleeps tonight))

When sort is given a list. it may change the order of the conses of the list (using
rplacd), and so it cannot be used merely for side-effect; only the returned value of sort
will be the sorted list. This will mess up the original list: if you need both the original
list and the sorted list, you must copy the original and sort the copy (sce copylist, page
58).

Sorting an array just moves the elements of the array into different places, and so sorting
an array for side-cffect only is all right.

NMCTNMAANTIDLCON 1YY 2000081

Lisp Machine Manual 81 Resources

sortcar x predicate
sortcar is the same as sort except that the predicate is applied to the cars of the elements
of x, instead of directly to the elements of x. Example:
(sortcar ’{(3 . dog) (1 . cat) (2 . bird)) #'<)
=> ((1 . cat) (2 . bird) (3 . dog))

Remember that sortcar, when given a list, may change the order of the conses of the list
(using rplacd), and so it cannot be used merely for side-effect; only the returned value of
sortcar will be the sorted list.

stable-sort x predicate
stable-sort is like sort, but if two elements of x are equal, i.e. predicate returns nil
when applied to them in either order, then those two elements will remain in their
original order.

stable-sortcar x predicate
stable-sortcar is like sortcar, but if two elements of x are equal, ie. predicate returns
nil when applied to their cars in either order, then those two elements will remain in
their original order.

sort-grouped-array array group-size predicate
sort-grouped-array considers its array argument to be composed of rccords of group-size
elements each. These records are considered as units, and are sorted with respect to one
another. The predicate is applied to the first eclement of each record; so the first elements
act as the keys on which the records are sorted.

sort-grouped-array-group-key a-ray group-size predicate
This is like sort-grouped-array exccpt that the predicate is applicd to four arguments:
an array, an index into that array, a sccond array, and an index into the second array.
predicate should consider each iadex as the subscript of the first element of a record in
the corresponding array, *and compare the two records. This is morc general than sort-
grouped-array since the functicn can get at all of the clements of the relevant records,
instead of only the first clement.

5.11 Resources

Storage allocation is handled differently by different computer systems. In many languages,
the programmer must spend a lot of time thinking about when variables and storage units are
allocated and deallocated. In Lisp, freeing of allocated storage is normally donc automatically by
the lisp system; when an object is no longer accessible to the lisp environment, it is garbage
collected. 'This relieves the programmer of a great burden, and makes writing programs much
casicr.

However, automatic frecing of storage incurs an cxpensc: more computer resources must be
devoted to the garbage collector. If a program is designed to allocate temporary storage, which is
then left as garbage, more of the comyputer must be devoted to the collection of garbage; this
expense can be high. In some cases, the programuner may decide that it is worth putting up with

MC:IMMAN:ID.CON 139 24-JU1 -8

Resources 82 Lisp Machine Manual

the inconvenience of having to free storage under program control, rather than letting the system
do it automatically, in order to prevent a great deal of overhead from the garbage collector.

It usually is not worth worrying about freeing of storage when the units of storage are very
small things such as conses or small arrays. Numbers are not a problem, either; fixnums and
small flonums do not occupy storage, and the system has a special way of garbage-collecting the
other kinds of numbers with low overhead. But when a program allocates and then gives up very
large objects at a high rate (or large objects at a very high rate), it can be very worthwhile to
keep track of that onc kind of object manually, Within the Lisp Machine system, there are
several programs that arc in this position. The Chaosnet softwarc allocates and frees "packets"”,
which are moderately large, at a very high rate. The window system allocates and frees certain
kinds of windows, which arc very large, modecrately often. Both of these programs manage their
objects manually, keeping track of when they are no longer used.

When we say that a program "manually frees” storage, it docs not really mean that the
storage is freced in the same sensc that the garbage collector frees storage. Instead, a list of
unused objects is kept. When a new object is desired, the program first looks on the list to see if
there is one around already, and if there is it uses it. Only if the list is empty does it actually
allocate a new onc. When the program is finished with the object, it returns it to this list.

The functions and special forms in this section perform the above function. The set of objects
forming cach such list is called a "resource”; for example, therc might be a Chaosnet packet
resource. defresource defines a new resource; allocate-resource allocates one of the objects;
deallocate-resource frees one of the objects (putting it back on the list); and using-resource
temporarily allocates an object and then frees it.

defresource Special Form
The defresource special form is used to define a new resource. The form looks like this:
(defresource name parameters
keyword value
keyword value

-)

name should be a symbol; it is the name of the resourcc and gets a defresource
property of the internal data structure representing the resource.

parameters is a lambda-list giving names and dcfault values (if &optional is used) of
parameters to an object of this type. For example, if onc had a resource of two-
dimensional arrays to be used as temporary storage in a calculation, the resource would
typically have two parameters, the number of rows and the number of columns. In the
simplest case parameters is ().

The keyword options control how the objects of the resource are made and kept track of.
The following keywords are allowed:

:constructor ~ The value is cither a form or the name of a function. It is responsible for
making an object, and will be used when somceone tries to allocate an
object from the resource and no suitable free objects exist. If the value is
a form, it may access the parameters as variables. I it is a function, it is
given the internal data structure for the resource and any supplied

MCEMMANRESOUR 14 24-JU1.-81

Lisp Machine Manual

sinitial -copies

finder

:matcher

:checker

83 Resources

parameters as its arguments; it will nced to default any unsupplied
optional parameters. This keyword is required.

The value is a number (or nil which means 0). This many objects will be
made as part of the cvaluation of the defresource; thus is useful to set
up a pool of frec objects during loading of a program. The default is to
make no initial copies.

If initial copies are made and there are parameters, all thc parameters
must be &optional and the initial copics will have the default values of
the parameters.

The value is a form or a function as with :constructor and secs the same
arguments. If this option is specified, the resource system does not keep
track of the objects. Instcad, the finder must do so. It will be called
inside a without-interrupts and must find a usable object somchow and
return it.

The value is a form or a function as with :constructor. In addition to
the parameters, a form here may access the variable object (in the current
package). A function gets the object as its sccond argument, after the
data structurc and before the parameters. The job of the matcher is to
make sure that the object matches the specified parameters. If no matcher
is supplied, the system will remember the values of the parameters
(including optional ones that defaulted) that were used to construct the
object, and will assume that it matches those particular values for all time.
The comparison is done with equal (not eq). The matcher is called inside
a without-interrupts.

The value is a form or a function, as above. In addition to the
parameters, a form here may access the variables object and in-use-p (in
the current package). A function receives these as its second and third
arguments, after the data structure and before the parameters. The job of
the checker is to determinc whether the object is safe to allocate. If no
checker is supplied, the default checker looks only at in-use-p; if the
object has been sllocated and not freed it is not safe to allocate, otherwise
it is. The checker is called inside a without-interrupts.

If these options are used with forms (rather than functions), the forms get compiled into
functions as part of the expansion of defresource. These functions are given names like
(:property resource-name si:resource-constructor); these names arc not guaranteed not to
change in the future.

Most of the options are not used in typical cases. Here is an example:
(defresource two-dimensional-array (rows columns)

:constructor (make-array (list rows columns)))

Suppose the array was usually geing to be 100 by 100, and you wanted to preallocate one
during loading of the program o that the first time you nceded an array you wouldn’t
have to spend the time to create one. You might simply put

MC:IEMMAN:RESOUR 14 24-JUH -81

Resources 84 Lisp Machine Manual

(using-resource (foo two-dimensional-array 100 100)
)
after your defresource, which would allocate a 100 by 100 array and then immediately
free it. Alternatively you could:
(defresource two-dimensional-array
(&optional (rows 100) (columns 100))
rconstructor (make-array (list rows columns))
:initial-copies 1)

Here is an example of how you might use the :matcher option. Suppose you wanted to
have a resource of two-dimensional arrays, as above, except that when you allocate one
you don’t care about the exact size, as long as it is big enough. Furthermore you realize
that you are going to have a lot of different sizes and if you always allocated one of
exactly the right size, you would allocate a lot of different arrays and would not reuse a
pre-existing array very often. So you might:
(defresource sloppy-two-dimensional-array (rows columns)
:constructor (make-array (Tist rows columns))
:matcher (and (2 (array-dimension-n 1 object) rows)
(2 (array-dimension-n 2 object) columns)))

allocate-resource name &rest paramelers
Allocate an object from the resource specified by name. The various forms and/or
functions given as options to defresource, together with any parameters given to
allocate-resource, control how a suitable object is found and whether a new one has to
be constructed or an old one can be rcused.

Note that the using-resource special form is usually what you want to use, rather than
allocate-resource itself; see below.

deallocate-resource name resource
Free the object resource, returning 1t to the frec-object list of the resource specified by
name.

using-resource (variable resource parameters...) Special Form
body...
The body forms are evaluated sequentially with variable bound to an object allocated from
the resource named resource, using the given parameters. The parameters (if any) are
evaluasted, but resource is not.

using-resource is often more convenient than calling allocate-resource and deallocate-

resource. Furthermore it is careful to free the object when the body is exited, whether it
returns normally or via *throw. This is done by using unwind-protect; see page 49.

MC:E MMAN:RESOUR 14 24-JU1.-81

Lisp Machine Manual 85 Resources

Here is an example of the use of resources:
(defresource huge-16b-array (&optional (size 1000))

:constructor (make-array size ’':type 'art-16b))

(defun do-complex-computation (x y)
(using-resource (temp-array huge-16b-array)
- :Within the body, the array can be used.
(aset 5 temp-array i)

)

;The array is returned at the end.

MCEMMANRESOUR 14 M-JU-81

Symbols 86 Lisp Machine Manual

6. Symbols

6.1 The Value Cell

Each symbol has associated with it a value cell, which refers to one Lisp object. This object
is called the symbol’s binding or value, since it is what you get when you evaluate the symbol.
The binding of symbols to values allows symbols to be used as the implementation of variables in
programs.,

The value cell can also be empty, referring to no Lisp object, in which case the symbol is
said to be wnbound. This is the initial state of a symbol when it is created. An attempt to
cvaluate an unbound symbol causes an error.

Symbols are often used as special variables. Variables and how they work are described in
section 3.1, page 14. The symbols nil and t are always bound to themselves; they may not be
assigned, bound, or otherwise used as variables. Attempting to change the value of nil or t
(usually) causes an error.

The functions described here work on symbols, not variables in general. This means that the
functions below won’t work if you try to use them on local variables.

set symbol value

set is the primitive for assignment of symbols. The symbol’s value is changed to value;
value may be any Lisp objcct. set returns value.
Example:

(set (cond ((eq a b) 'c)

(t 'd))
'foo)

will cither sct ¢ to foo or set d to foo.

symeval sym
symeval is the basic primitive for.retrieving a symbol’s value. (symeval sym) returns
sym’s current binding. This is the function called by eval when it is given a symbol to
evaluate. If the symbol is unbound, then symeval causes an error.

boundp sym
boundp returns t if sym is bound; otherwise, it returns nil.

makunbound sym
makunbound causes sym to become unbound.

Example:
(setq a 1)
a =>1

(makunbound ’a)
a => causcs an Crror.
makunbound returns its argument.

MC:TAMMANFD.SYM 70 24-JUI-8]

Lisp Machine Manual 87 The Function Cell

value-cell-location sym
value-cell-location returns a locative pointer to sym’s value cecll. Sece the section on
locatives (chapter 13, page 170). It is preferable to write
(locf (symeval sym))
instcad of calling this function explicitly.

This is actually the internal value cell; there can also be an external value cell. For
details, see the section on closurcs (chapter 11, page 158).

Note: the function value-cell-location works on symbols that get converted to local
variables (sce section 3.1, page 14); the compiler knows about it specially when its
argument is a quoted symbol which is the name of a local variable. It returns a pointer
to the cell that holds the value or the local variable.

6.2 The Function Cell

Every symbol also has associated with it a function cell. The function cell is similar to the
value cell; it refers to a Lisp object. When a function is referred to by name, that is, when a
symbol is applied or appears as the car of a form to be evaluated, that symbol’s function cell is
used to find its definition, the functioral object which is to be applied. For example, when
evaluating (+ 5 6), the evaluator looks in +’s function cell to find the definition of +, in this
case a I'LT containing a compiled program, to apply to 5 and 6.

Maclisp does not have function cells; instead, it looks for special properties on the property
list. This is one of the major incompatibilities between the two dialects.

Like the value cell, a function ccll can be empty, and it can be bound or assigned.
(However, to bind a function cell you must use the bind subprimitive; see page 183.) The
following functions are analogous to the value-cell-related functions in the previous section.

fsymeval sym
fsymeval returns sym’s definition, the contents of its function cell. If the function cell is
empty, fsymeval causes an error.

fset sym definition
fset stores defirnition, which may be any Lisp object, into sym’s function cell. It returns
definition.

fboundp sym
fooundp returns nil if sym’s function cell is empty, i.e. sym is undefined. Otherwise it
returns t.

fmakunbound sym

fmakunbound causes sym to be undefined, i.c. its function cell to be empty. It returns
sym.

MC:LMMAN:FD.SYM 70 24-JU11.-81

The Property List 88 Lisp Machine Manual

function-cell-1ocation sym
function-cell-location returns a locative pointer to sym’s function cell. Sce the section
on locatives (chapter 13, page 170). It is preferable to write
(locf (fsymeval sym))
rather than calling this function expiicitly.

Since functions arc the basic building block of Lisp programs, the system provides a variety
of facilities for dealing with functions. Refer to chapter 10 for details.

6.3 The Property List

Every symbol has an associated property list. See scction 5.8, page 71 for documentation of
property lists. When a symbol is created, its property list is initially empty.

The Lisp language itself does not use a symbol’s property list for anything. (This was not
truc in older Lisp implementations, where the print-name, value-cell, and function-cell of a
symbol were kept on its property list.) However, various system programs use the property list to
associate information with the symbol. For instance, the cditor uses the property list of a symbol
which is the name of a function to remember where it has the source code for that function, and
the compiler uscs the property list of a symbol which is the name of a special form to remember
how to compile that special form.

Because of the existence of print-name, value, function, and package cells, none of the
Maclisp system property names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former
times value and pname) exist in Zetalisp.

plist sym
This returns the list which represents the property list of sym. Note that this is not the
property list itsclf; you cannot do get on it.

setplist sym list
This sets the list which represents the property list of sym to list. setplist is to be used
with caution (or not at all), since property lists sometimes contain internal system
propertics, which are used by many uscful system functions. Also it is inadvisable to have
the property lists of two different symbols be eq, since the shared list structure will cause
unexpected cffects on one symbol if putprop or remprop is done to the other.

property-cell-location sym
This returns a locative pointer to the location of sym’s property-list cell. This locative
pointer is cqually valid as sym itself, as a handle on sym’s property list.

MCTNMAMAN:TD.SYM 70 24-JUT 81

Lisp Machine Manual 89 The Print Name

6.4 The Print Name

Every symbol has an associated string called the print-name, or pname for short. This string
is used as the external representation of the symbol: if the string is typed in to read, it is read
as a reference to that symbol (if it is interned), and if the symbol is printed, print types out the
print-name. For more information, see the sections on the reader (see scction 21.2.2, page 322)
and printer (see section 21.2.1, page 319).

get-pname sym
This returns the print-name of the symbol sym.
Example:
(get-pname ’'xyz) =» "xyz"

samepnamep syml sym2

This predicate returns t if the two symbols sym/ and sym2 have equal print-names; that
is, if their printed representatior is the same. Upper and lower case letters are normally
considered the same. If cither or both of the arguments is a string instcad of a symbol,
then that string is used in place of the print-name. samepnamep is useful for
determining if two symbols wouid be the same except that they are in different packages
(sec chapter 23, page 392).

Examples:

(samepnamep ’'xyz (maknam '(x y z)) => t

(samepnamep 'xyz (maknam '(w x y)) => nil

(samepnamep ’'xyz "xyz") => t

This is the same function as string-equal (sce page 128). samepnamep is provided
mainly so that you can writc programs that will work in Maclisp as well as Zetalisp; in
new programs, you should just use string-e;quaL‘

6.5 The Package Cell

Every symbol has a package cell which is used, for interned symbols, to point to the package
which the symbol belongs to. For an uninterned symbol, the package cell contains nil. For
information about packages in general, sce the chapter on packages, chapter 23, page 392. For
information about package cells, sce page 399.

MCTMMANEFD.SYM 70 -0 81

Creating Symbols 90 Lisp Machine Manual

6.6 Creating Symbols

The functions in this section are primitives for creating symbols. However, before discussing
them, it is important to point out that most symbols are crcated by a higher-level mechanism,
namely the reader and the intern function. Nearly all symbols in Lisp arc created by virtue of
the reader’s having scen a sequence of input characters that looked like the printed representation
of a symbol. When the reader sees such a p.r., it calls intern (sec page 399), which looks up the
sequence of characters in a big table and sces whether any symbol with this print-name already
exists. If it docs, read uses the alrcady-existing symbol. If it does not, then intern creates a new
symbol and puts it into the table, and read uses that new symbol.

A symbol that has been put into such a table is called an inferned symbol. Interned symbols
are normally created automatically; the first time someone (such as the reader) asks for a symbol
with a given print-name that symbol is automatically created.

These tables are called packages. In Zetalisp, interned symbols are the province of the
package system. Although interned symbols are the most commonly used, they will not be
discussed further here. For more information, turn to the chapter on packages (chapter 23, page
392).

An uninterned symbol is a symbol used simply as a data objcct, with no special cataloging.
An uninterned symbol prints the same as an interned symbol with the same print-name, but
cannot be read back in.

The following functions can be used to create uninterned symbols explicitly.

make-symbol pname &optional permanent-p

This crcates a new uninterned symbol, whose print-name is the string pname. The value
and function bindings will be unbound and the property list will be empty. If permanent-
p is specified, it is assumed that the symbol is going to be interned and probably kept
around forever; in this case it amd its pname will be put in the proper areas. If
permanent-p is nil (the default), the symbol goes in the default arca and the pname is not
copied. permanent-p is mostly for the usc of intern itself.
Examples:

(setq a (make-symbol "foo")) => foo

(symeval a) => ERROR!
Note that the symbol is not interned; it is simply created and returned.

copysymbol sym copy-props
This returns a new uninterned symbol with the same print-name as sym. If copy-props is
non-nil, then the value and function-definition of the new symbol will be the same as
those of sym, and the property list of the new symbol will be a copy of sym’s. If copy-
props is nil, then the new symbol will be unbound and undefined, and its property list
will be empty.

NCTAMANITDSYAN 70 24-JU1 81

Lisp Machine Manual 91 Creating Symbols

gensym &optional x
gensym invents a print-name, and creates a new symbol with that print-name. It returns
the new, uninterned symbol.

The invented print-name is a character prefix (the value of si:*gensym-prefix) followed
by the decimal representation of a number (the value of si:i*gensym-counter), c.g.
"g0001". The number is incrcased by one every time gensym is called.

If the argument x is present and is a fixnum, then si:*gensym-counter is sct to x. If x
is a string or a symbol, then si:*gensym-prefix is sct to the first character of the string
or of the symbol’s print-name. After handling the argument, gensym creates a symbol as
it would with no argument.

Examples:
if (gensym) => g0007
then (gensym 'foo) => f0008

(gensym 32.) => f0032
(gensym) => f0033

Note that the number is in decimal and always has four digits, and the prefix is always
one character.

gensym is usually used to create a symbol which should not normally be scen by the
user, and whose print-name is unimportant, cxcept to allow casy distinction by cye
between two such symbols. Tre optional argument is rarcly supplied. The name comes
from "generate symbol”, and the symbols produced by it are often called "gensyms™.

NMCTMMANIED.SYN 70 24-JU1 -81

Numbers 92 Lisp Machine Manual

7. Numbers

Zetalisp includes several types of numbers, with different characteristics. Most numeric
functions will accept any type of numbers as arguments and do the right thing. That is to say,
they are generic. In Maclisp, there are generic numeric functions (like plus) and there are
specific numeric functions (like +) which only operate on a certain type, and are much more
efficient. In Zetalisp, this distinction docs not exist; both function names exist for compatibility
but they are identical. The microprogrammed structure of the machine makes it possible to have
only the generic functions without loss of efficiency.

The types of numbers in Zetalisp are:

fixnum Fixnums are 24-bit 2's complement binary integers. These are the "preferred,
most efficient” type of number.

bignum Bignums are arbitrary-precision binary integers.

flonum Flonums are floating-point numbers. They have a mantissa of 32 bits and an

exponent of 11 bits, providing a precision of about 9 digits and a range of about
101300. Stable rounding is employed.

small-flonum Small flonums are another form of floating-point number, with a mantissa of 18
bits and an exponent of 7 bits, providing a precision of about 5 digits and a
range of about 10t19. Stable rounding is employed. Small flonums are useful
because, like fixnums, and unlike flonums, they don’t require any storage.
Computing with small flonums is more efficient than with rcgular flonums because
the operations are faster and consing overhead is eliminated.

Generally, Lisp objccts have a unique identity; cach exists, independent of any other, and
you can usc the eq predicate to determine whether two references are to the same object or not.
Numbers are the exception to this rule; they don’t work this way. The following function may
return either t or nil. lts bchavior is considered undefined, but as this manual is written it
returns t when interpreted but nil when compiled.

(defun foo ()
(let ((x (float 5)))
(eq x (car (cons x nil)))))
This is very strange from the point of view of Lisp’s usual object semantics, but the
implementation works this way, in order to gain efficiency, and on the grounds that identity
testing of numbers is not really an interesting thing to do. So, the rule is that the result of
applying eq to numbers is undefined, and may return cither t or nil at will. If you want to
compare the values of two numbers, use = (scc page 95).

Fixnums and small flonums are exceptions to this rule; some system code knows that eq
works on fixnums used to represent characters or small integers, and uses memq or assq on
them. eq works as well as = as an cquality test for fixnums. Small flonums that are = tend to
be eq also, but it is unwise to depend on this.

The distinction between fixnums and bignums is largely transparent to the user. The user

simply computes with integers, and the system represents some as fixnums and the rest (less
efticiently) as bignums. The systemi automatically converts back and forth between fixnums and

MCEMMANFFD.INUNM 77 24-JU1.-81

Lisp Machine Manual 93 Numbers

bignums based solely on the size of the integer. There are a few "low level” functions which
only work on fixnums; this fact is noted in their documentation. Also ‘when using eq on
numbers the user needs to be aware of the fixnum/bignum distinction.

Integer computations cannot "overflow"”, except for division by zero, since bignums can be of
arbitrary size. Floating-point computations can get exponent overflow or underflow, if the result is
too large or small to be represented. Exponent overflow always signals an error. Exponent
underflow normally signals an error, and assumes 0.0 as the answer if the user says to proceed
from the error. However, if the value of the variable zunderflow is non-nil, the error is skipped
and computation proceeds with 0.0 in place of the resuit that was too small.

When an arithmetic function of more than one argument is given arguments of different
numeric types, uniform coercion rules arz followed to convert the arguments to a common type,
which is also the type of the result (for functions which return a number). When an integer
meets a small flonum or a flonum, the result is a small flonum or a flonum (respectively). When
a small flonum meets a regular flonum, the result is a regular flonum.

Thus if the constants in a numerical algorithm are written as small flonums (assuming this
provides adequate precision), and if the input is a small flonum, the computation will be done in
small-flonum mode and the result will a small flonum, while if the input is a large flonum the
computations will be done in full precision and the result will be a flonum.

Zetalisp never automatically converts between flonums and small flonums, in the way it
automatically converts between fixnums and bignums, since this would lead either to inefficiency
or to unexpected numerical inaccuracies. (When a small flonum meets a flonum, the result is a
flonum, but if you usc only one type, all the results will be of the same type too.) This means
that a small-flonum computation can get an exponent overflow error even when the result could
have been represented as a large flonum.

Floating-point numbers retain only a certain number of bits of precision; therefore, the results
of computations are only approximate. l.arge flonums have 31 bits and small flonums have 17
bits, not counting the sign. The method of approximation is "stable rounding”. The result of an
arithmetic operation will be the flonum which is closest to the exact value. If the exact result falls
precisely halfway between two flonums, the result will be rounded down if the least-significant bit
is 0, or up if the least-significant bit is 1. This choice is arbitrary but insures that no systcmatic
bias is introduced.

Integer addition, subtraction, and multiplication always produce an exact result. Integer
division, on the other hand, returns an integer rather than the cxact rational-number result. The
quotient is truncated towards zero rather than rounded. The exact rule is that if A is divided by
B, yielding a quotient of C and a remawnder of D, then 4 = B * C + D exactly. D is cither
zero or the same sign as 4. Thus the absolute value of C is less than or cqual to the true
quotient of the absolute values of A4 and B. This is compatible with Maclisp and most computer
hardware. However, it has the scrious problem that it does nor obey the rule that if A divided
by B yiclds a quoticnt of C and a remainder of D, then dividing 4 + & * B by B will yicld a
quotient of C + k and a remainder of D for all integer k. The lack of this property sometimes
makes regular integer division hard to use. New functions that implement a different kind of
division, that obeys this rule, will be implemented in the future.

MCTMMANTD.INUNE 77 24-J0U1 81

Numeric Predicates 94 Lisp Machine Manual

Unlike Maclisp, Zetalisp does not have number declarations in the compiler. Note that
because fixnums and small flonums require no associated storage they are as efficient as declared
numbers in Maclisp. Bignums and (large) flonums are less efficient, however bignum and flonum
intermediate results are garbage collected in a special way that avoids the overhead of the full
garbage collector.

The different types of numbers can be distinguished by their printed representations. A

”"_ 1"

leading or embedded (but not trailing) decimal point, and/or an cxponent separated by "e",
indicates a flonum. If a number has an exponent separated by "s", it is a small flonum. Small
flonums require a special indicator so that naive users will not accidentally compute with the lesser
precision. Fixnums and bignums have similar printed representations since there is no numerical
value that has a choice of whether to be a fixnum or a bignum; an integer is a bignum if and
only if its magnitude too big for a fixnum. Sce the examples on page 323, in the description of

what the reader understands.

7.1 Numeric Predicates

zerop x
Returns t if x is zero. Otherwise it returns nil. If x is not a number, zerop causcs an
error. For flonums, this only returns t for exactly 0.0 or 0.0s0; there is no "fuzz".

plusp x
Returns t if its argument is a positive number, strictly greater than zero. Otherwise it
returns nil. If x is not a number, plusp causes an error.

minusp x
Returns t if its argument is a negative number, strictly less than zero. Otherwise it
returns nil. If x is not a number, minusp causes an error.

oddp number
Returns t if number is odd, otherwise nil. If number is not a fixnum or a bignum, oddp
Causes an error.

evenp number
Returns t if number is even, otherwise nil. If number is not a fixnum or a bignum,
evenp causes an error.

signp test x Special I'orm
signp is used to test the sign of a number. It is present only for Maclisp compatibility,
and is not rccommended for usc in new programs. signp returns t if x is a number
which satisfies the test, nil if it is not a number or does not meet the test. fest is not
cvaluated, but x is. fest can be one of the following:

I x<0
le x<0
e x=20
n x=0
ge x20

MO MMANED.NUM 77 24-JUiL-81

Lisp Machine Manual 95 Numeric Comparisons

g x>0

Examples:
(signp ge 12) => t
(signp le 12) => n1l
(signp n 0) => nil
(signp g 'foo) => nil

Sec also the data-type predicates fixp, flcatp, bigp, small-floatp, and numberp (page 9).

7.2 Numeric Comparisons

All of these functions require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp in which generally only the spelled-out names work for all kinds
of numbers).

= x y
Returns t if x and y are numerically equal. An integer can be = to a flonum.

greaterp x y &rest more-args
> x y &rest more-args
greaterp compares its arguments. from left to right. If any argument is not greater than
the next, greaterp returns nil. But if the arguments are monotonically strictly decreasing,
the result is t.
Examples:
(greaterp 4 3) => %
(greaterp 4 3 2 1 0) => t
(greaterp 4 3 1 2) => nil

>= x y &rest more-args

2 x y &rest more-args
> compares its arguments from left to right. If any argument is less than thc next, 2
returns nil. But if the arguments arc monotonically decreasing or equal, the result is t.

lessp x y &rest more-args

< x y &rest more-args
lessp compares its arguments fiom left to right. If any argument is not less than the
next, lessp returns nil. But if the arguments are monotonically strictly increasing, the

result is t.

Examples:;
(lessp 3 4) => t
(lessp 1 1) => nil
(lessp 01 2 3 4) => t
(lessp 0 1 3 2 4) => nil

MC:TMMANTD.INUM 77 24-JUL-81

Arithmetic 96 Lisp Machine Manual

{= x y &recst more-args

< x y &rest more-args
< compares its arguments from left to right. If any argument is greater than the next, <
returns nil. But if the arguments are monotonically increasing or equal, the result is t.

* X y
Returns t if x is not numerically equal to y, and nil otherwise.

max &rest args
max returns the largest of its arguments.
Example:
(max 1 3 2) => 3
max requires at least one argument,.

min &rest args
min returns the smallest of its arguments,
Example;
(min 1 3 2) => 1
min requires at least one argument.

7.3 Arithmetic

All of these functions require that their arguments be numbers, and signal an error if given a
non-number. They work on all types of numbers, automatically performing any required
coercions (as opposed to Maclisp, in which gencrally only the spelled-out versions work for all
kinds of numbers, and the "$" versions are needed for flonums).

plus &rest args

+ &rest args

+$ &rest args
Returns the sum of its arguments. If there are no arguments, it returns 0, which is the
identity for this operation.

difference arg &rest args A
Returns its first argument minus all of the rest of its arguments.

minus x
Returns the negative of x.
Examples:
(minus 1) => -1
(minus -3.0) => 3.0

- arg &rest args

-$ arg &rest args
With only one argument, - is the same as minus; it rcturns the negative of its argument.
With more than onc argument, - is the same as difference; it returns its first argument
minus all of the rest of its arguments.

MCTMMANFD.NUM 77 24-JUL.-81

Lisp Machine Manual 97 Arithmetic

abs x
Returns |x|, the absolute value of the number x. abs could have been defined by:
(defun abs (x)
(cond ((minusp x) (minus X))

(t x)))

times &rest args

* &rest args

*$ &rest args
Returns the product of its arguments. If there are no arguments, it returns 1, which is
the identity for this operation.

quotient arg &rest args
Returns the first argument divided by all of the rest of its arguments.

// arg &rest args
//$ arg &rest args
The name of this function is wr:itten // rather than / because / is the quoting character
in Lisp syntax and must be doubled. With more than one argument, // is the same as
quotient; it returns the first argument divided by all of the rest of its arguments. With
only one argument, (// x) is the samc as (// 1 x). The exact rules for the meaning of
the quotient and remainder of two integers are given on page 93; this cxplains why the
rules used for integer division ar¢ not correct for all applications.
Examples:
(/77 3 2) => 1 ;Fixnum division truncates.
(77 3 -2) => -1
(/7 -3 2) => -1
(/7 -3 -2) => 1
(/7 3 2.0) => 1.5
(/7 3 2.0s0) => 1.bs0
(/7 84 2) => 2
(/7 12. 2. 3.) => &
(/77 4.0) => .25

remainder x y
\ xy
Returns the remainder of x divided by y. x and y must be integers (fixnums or
bignums). The exact rules for the meaning of the quotient and remainder of two integers
are given on page 93.
(\ 32) =>1
(\ -3 2) => -1
(\ 3 -2) => 1
(\ -3 -2) => -1

MC:I MMANFD.INUM 77 24-JUI -8

Arithmetic 98 Lisp Machine Manual

addl x
1+ x
1+8 x
(add1 x) is the same as (plus x 1).
subl x
1- x
1-$ x

(sub1 x) is the same as (difference x 1). Note that the short name may be confusing:
(1- x) does not mean 1-x; rather, it means x-1.

gcd x y &rest args

\\ x y &rest args
Returns the greatest common divisor of all its arguments. The arguments must be integers
(fixnums or bignums).

expt x y

~xy

~$ xy
Returns x raised to the y’th power. The result is an integer if both arguments are
integers (even if y is negative!) and floating-point if cither x or y or both is floating-point.
If the exponent is an integer a repeated-squaring algorithm is used, while if the exponent
is floating the result is (exp (* y (log x))).

sqrt x
Returns the square root of x.

isqrt x
Integer squarc-root. x must be an integer; the result is the greatest integer less than or
cqual to the exact square root of x.

*dif x y

*plus x y

*quoc x y

*times x y
These are the internal micro-coded arithmetic functions. There is no reason why anyone
should need to write code with these explicitly, since the compiler knows how to generate
the appropriatc code for plus, +, ectc. These names are only here for Maclisp
compatibility.

MCOCTMMANIFDNUM 77 24001 -8

Lisp Machine Manual 99 Transcendental Functions

7.4 Transcendental Functions

These functions are only for floating point arguments; if given an integer they will convert it
to a flonum. If given a small-flonum, they will return a small-flonum [currently this is not true of
most of them, but it will be fixed in the future].

exp x
Returns e raised to the x’th powcr, where e is the base of natural logarithms.

log x
Returns the natural logarithm of x.

sin x
Returns the sin¢ of x, where x is expressed in radians.

sind x
Returns the sine of x, where x is expressed in degrees.

cos x
Returns the cosine of x, where » is expressed in radians.

cosd x
Returns the cosine of x, where » is expressed in degrees.

atan y x
Returns the angle, in radians, whose tangent is y/x. atan always returns a non-ncgative
number between zero and 2.

atan2 y x
Returns the angle, in radians, whose tangent is)/x. atan2 always returns a number

between -7 and .

7.5 Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be forced, when
desired.

fix x
Converts x from a flonum (or small-flonum) to an integer, truncating towards ncgative
infinity. The result is a fixnum or a bignum as appropriate. If x is already a fixnum or a
bignum, it is returncd unchangec.

fixr x
Converts x from a flonum (or small-flonum) to an integer, rounding to the ncarest intcger.

If x is exactly halfway between two integers, this rounds up (towards positive infinity).
fixr could have been defined by:
(defun fixr (x)
(if (fixp x) x (fix (+ x 0.5))))

MCTMMAN:I'D.NUM 77 24-JUI.-81

Logical Operations on Numbers 100 Lisp Machine Manual

float x
Converts any kind of number to a flonum.

small-float x
Converts any kind of number to a small flonum.

7.6 Logical Operations on Numbers

Except for Ish and rot, these functions operate on both fixnums and bignums. Ish and rot
have an inherent word-length limitation and hence only operatc on 24-bit fixnums. Negative
numbers are operated on in their 2’s-complement representation.

logior &rest args
Returns the bit-wise logical inclusive or of its arguments. At least one argument is
required.
Example:
(logior 4002 67) => 4067

Togxor &rest args
Returns the bit-wise logical exclusive or of its arguments. At least one argument is
required.
Example:
(logxor 2531 7777) => 5246

Togand &rest args
Returns the bit-wise logical and of its arguments. At least one argument is required.
Examples:
(Togand 3456 707) => 406
(logand 3456 -100) => 3400

lognot number
Returns the logical complement of number. This is the same as logxor'ing number with
-1.
Example:
(lognot 3456) => -3457

boole fn &rest args
boole is the generalization of logand, logior, and logxor. fi should be a fixnum
between 0 and 17 octal inclusive; it controls the function which is computed. If the
binary representation of fir is abed (a is the most significant bit, d the lcast) then the truth
table for the Boolean operation is as follows:

MC:LMMAN:I'DNUM 77 24-JU1-81

Lisp Machine Manual 101 Logical Operations on Numbers

y

| 01

0] a ¢
x |

1] b d

If boole has more than three arguments, it is associated left to right; thus,

(boole fn x y z) = (boole fn (boole fn x y) 2)
With two arguments, the result of boole is simply its second argument. At least two
arguments are required.

Examples:
(boole 1 x y)
(boole 6 x y)
(boole 2 x y)

(1ogand x y)
(Togxor x y)
(1ogand (lognot x) y)

logand, logior, and logxor are usually preferred over the equivalent forms of boole, to
avoid putting magic numbers in the program.

bit-test x y

1sh x

ash x

rot x

bit-test is a predicate which returns t if any of the bits designated by the I’s in x are 1’s
in y. bit-test is implemented as a macro which expands as follows:
(bit-test x y) ==> (not (zerop (logand x y)))

Yy
Returns x shifted left y bits if y is positive or zero, or x shifted right |y| bits if y is

negative. Zero bits are shifted in (at ecither end) to fill unused positions. x and y must
be fixnums. (In some applications you may find ash useful for shifting bignums; see
below.)
Examples:

(1sh 4 1) => 10 :(octal)

(1sh 14 -2) => 3

(1sh -1 1) => -2

Yy
Shifts x arithmetically left y bits if y is positive, or right -y bits if y is ncgative. Unused

positions are filled by zerocs from the right, and by copies of the sign bit from the left.
Thus, unlike Ish, the sign of the result is always the same as the sign of x. If x is a
fixnum or a bignum, this is a shifting operation. If x is a flonum, this docs scaling
(multiplication by a power of two), rather than actually shifting any bits.

y
Returns x rotated left y bits if y is positive or zero, or x rotated right |y| bits if y is

negative. ‘The rotation considers x as a 24-bit number (unlike Maclisp, which considers x
to be a 36-bit number in both :he pdp-10 and Multics implementations). x and y must
be fixnums. (There is no function for rotating bignums.)

MC:TMMANEFDNUN 77 24-JU0-81

Byte Manipulation Functions 102 Lisp Machine Manual

Examples:
(rot 1 2) =>4
(rot 1 -2) => 20000000
(rot -1 7) => -1
(rot 156 24.) => 15

haulong x
This returns the number of significant bits in |x|. x may be a fixnum or a bignum. Its
sign is ignored. The result is the least integer strictly greater than the base-2 logarithm of
|x|.
Examples:
(haulong 0) => 0
(haulong 3) => 2
(haulong -7) => 3

haipart x n
Returns the high n bits of the binary representation of |x|, or the low -n bits if n is
negative. x may be a fixnum or a bignum; its sign is ignored. haipart could have been
defined by:
(defun haipart (x n)
(setq x (abs x))
(if (minusp n)
(logand x (1- (ash 1 (- n))))
(ash x (min (- n (haulong x))

0))))

7.7 Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits
appearing anywhere in an integer (a fixnum or a bignum). Such a contiguous set of bits is called
a byte. Note that we are not using the term byfe to mcan eight bits, but rather any number of
bits within a number. These functions use numbers called byte specifiers to designate a specific
byte position within any word. Byte specifiers are fixnums whose two lowest octal digits represent
the size of the byte, and whose higher (usually two, but sometimes more) octal digits represent
the position of the byte within a number, counting from the right in bits. A position of zero
means that the byte is at the right end of the number. For example, the byte-specifier 0010 (i.e.
10 octal) refers to the lowest cight bits of a word, and the byte-specifier 1010 refers to the next
cight bits. These byte-specifiers will be stylized below as ppss. The maximum value of the ss
digits is 27 (octal), since a byte must fit in a fixnum although bytes can be loaded from and
deposited into bignums. (Bytes arc always positive numbers.) The format of byte-specifiers is
taken from the pdp-10 byte instructions.

1db ppss num
ppss specifies a byte of mum to be extracted. The ss bits of the byte starting at bit pp are
the lowest ss bits in the returned value, and the rest of the bits in the returned value are
zero. the name of the function, Idb, means "load byte". num may be a fixnum or a
bignum. The returned value is always a fixnum.

MC:IMMANFFD.NUM 77 24-JUT -81

Lisp Machine Manual 103 Byte Manipulation Functions

Example:
(1db 0306 4567) => 56

load-byte num position size
This is like Idb except that instead of using a byte specifier, the position and size are
passed as separate arguments. The argument order is not analogous to that of Idb so that
load-byte can be compatible with Maclisp.

1db-test ppss y
Idb-test is a predicate which returns t if any of the bits designated by the byte specifier
ppss are I's in y. That is, it returns t if the designated field is non-zero. Idb-test is
implemented as a macro which cxpands as follows:
(1db-test ppss y) ==> (not (zerop (1db ppss y)))

mask-field ppss num
This is similar to Idb; however, the specified byte of num is returned as a number in
position pp of the returned word, instead of position 0 as with Idb. num must be a
fixnum.
Example:
(mask-field 0306 4567) => 560

dpb byte ppss num
Returns a number which is the same as num except in the bits specified by ppss. The
low ss bits of hyte are placed in those bits. byte is interpreted as being right-justified, as
if it were the result of Idb. num may be a fixnum or a bignum. The name means
"deposit byte".
Example:
(dpb 23 0306 4567) => 4237

deposit-byte num position size byte
This is like dpb except that instead of using a byte specifier, the position and size are
passed as separate arguments. The argument order is not analogous to that of dpb so that
deposit-byte can be compatible with Maclisp.

deposit-field byte ppss num
This is like dpb, except that byre is not taken to be left-justified; the ppss bits of byte are
used for the ppss bits of the result, with the rest of the bits taken from num. num must
be a fixnum.
Example:
(deposit-field 230 0306 4567) => 4237

The behavior of the following two functions depends on the size of fixnums, and so functions

using them may not work the same way on future implementations of Zetalisp. Their names start
with "%" because they are more like machine-level subprimitives than the previous functions.

MC:I. MMAN;FD.NUM 77 24-JUIL.-81

Random Numbers 104 Lisp Machine Manual

%1og1db ppss fixnum
%logldb is like Idb cxcept that it only loads out of fixnums and allows a byte size of 30
(octal), i.e. all 24. bits of the fixnum including the sign bit.

#%#logdpb byte ppss fixnum
%logdpb is like dpb except that it only deposits into fixnums. Using this to change the
sign-bit will leave the result as a fixnum, while dpb would produce a bignum result for
arithmetic correctness. %logdpb is good for manipulating fixnum bit-masks such as are
used in some internal system tables and data-structures.

7.8 Random Numbers

The functions in this section provide a pscudo-random number generator facility. The basic
function you use is random, which returns a new pscudo-random number each time it is called.
Between calls, its state is saved in a data object called a random-array. Usually there is only one
random-array; however, if you want to create a reproducible series of pseudo-random numbers,
and be able to reset the state to control when the serics starts over, then you need some of the
other functions here.

random &optional arg random-array
(random) returns a random fixnum, positive or negative. If arg is present, a fixnum
between 0 and arg minus 1 inclusive is returned. If random-array is present, the given
array is used instcad of the default one (sce below). Otherwise, the default random-array
is used (and is created if it doesn’t already exist). The algorithm is executed inside a
without-interrupts (see page 430) so two processes can use the same random-array
without colliding.

A random-array consists of an array of numbers, and two pointers into the array. The
pointers circulate around the array; cach time a random number is requested, both pointers are
advanced by one, wrapping around at the end of the array. Thus, the distance forward from the
first pointer to the sccond pointer, allowing for wraparound, stays the same. Let the length of
the array be Jength and the distance between the pointers be offser. To generate a new random
number, cach pointer is set to its old value plus one, modulo length. ‘Then the two clements of
the array addressed by the pointers are added together; the sum is stored back into the array at
the location where the sccond pointer points, and is returned as the random number after being
normalized into the right range.

This algorithm produces well-distributed random numbers if length and offser arc chosen
carcfully, so that the polynomial xtlength+ xtoffset+1 is irreducible over the mod-2 integers.
The system uses 71. and 35.

The contents of the array of numbers should be initialized to anything moderatcly random, to
make the algorithm work. The contents get initialized by a simple random number generator,
based on a number called the seed. The initial value of the sced is set when the random-array is
created, and it can be changed. To have several different controllable resettable sources of
random numbers, you can create your own random-arrays. If you don’t care about reproducibility
of sequences, just use random without the random-array argument.

MCINMMANFD.NUM 77 24-JU1.-81

Lisp Machine Manual 105 24-Bit Numbers

si:random-create-array length offset seed &optional (area nil)
Creates, initializes, and returns a random-array. length is the length of the array. offser is
the distance between the pointers and should be an integer less than length. seed is the
initial value of the sced, and should be a fixnum. This calls si:random-initialize on the
random array before returning it.

si:random-initialize array &optional new-seed
array must be a random-array, such as is created by si:random-create-array. If new-
seed is provided, it should be 2 fixnum, and the sced is set to it. si:random-initialize
reinitializes the contents of the array from the seced (calling random changes the contents
of the array and the pointers, but not the seed).

7.9 24-Bit Numbers

Sometimes it is desirable to have a form of arithmetic which has no overflow checking (which
would produce bignums), and truncates results to the word size of the machine. In Zetalisp, this
is provided by the following set of funct.ons. Their answers are only correct modulo 2124,

These functions should not be used for "efficiency”; they are probably less cfficient than the
functions which do check for overflow. They are intended for algorithms which require this sort
of arithmetic, such as hash functions and pseudo-random number genecration,

%24-bit-plus x y
Returns the sum of x and y modulo 2124, Both arguments must be fixnums.

%24-bit-difference x y
Returns the difference of x and y modulo 2124, Both arguments must be fixnums.

%24-bit-times x y
Returns the product of x and y modulo 2t24. Both arguments must be fixnums.

7.10 Double-Precision Arithmetic

These peculiar functions are useful in programs that don’t want to use bignums for one reason
or another. They should usually be avoided, as they are difficult to use and understand, and they
depend on special numbers of bits and on the use of two's-complement notation.

%multiply-fractions numl num?
Returns bits 24 through 46 (the most significant half) of the product of numl and num?2.
If you call this and %24-bit-times on the samc arguments numl and num?2, regarding
them as integers, you can combine the results into a double-precision product. I numl
and num?2 arc regarded as two's-complement fractions, -1 < num < 1, %multiply-
fractions returns 172 of their correct product as a fraction. (The name of this function
isn't too great.)

MCT MMANFD.NUN 77 24U -8

Double-Precision Arithmetic 106 Lisp Machine Manual

%divide-double dividend(24:46] dividend[0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the single-precision quotient. Causes an error if division by zero or
if the quotient won't fit in single precision.

%remainder-double dividend(24:46] dividend[0:23] divisor
Divides the double-precision number given by the first two arguments by the third
argument, and returns the remainder. Causes an crror if division by zero.

%float-double high24 low24
high24 and low24, which must be fixnums, are concatenated to produce a 48-bit unsigned
positive integer. A flonum containing the same value is constructed and returned. Note
that only the 31 most-significant bits are retained (after removal of leading zeroes.) This
function is mainly for the benefit of read.

MCTEMMANITDNUM 77 24-JU1-81

Lisp Machine Manual 107 Arrays

8. Arrays

An array is a Lisp object that consists of a group of cells, each of which may contain an
object. The individual cells are selected by numerical subscripts.

The dimensionality of an array (or, the number of dimensions which the array has) is the
number of subscripts used to refer to one of the elements of the array. The dimensionality may
be any integer from one to seven, inclusively.

The lowest value for any subscript is zero; the highest value is a property of the array. Each
dimension has a size, which is the lowest number which is too great to be used as a subscript.
For example, in a onc-dimensional array of five elements, the size of the onc and only dimension
is five, and the acceptable values of the subscript are zero, one, two, three, and four.

The most basic primitive functions for handling arrays are: make-array, which is used for
the creation of arrays, aref, which is used for examining the contents of arrays, and aset, which
is used for storing into arrays.

An array is a regular Lisp object, and it is common for an array to be the binding of a
symbol, or the car or cdr of a cons, or, in fact, an element of an array. There are many
functions, described in this chapter, which take arrays as arguments and perform uscful operations
on them.

Another way of handling arrays, inherited from Maclisp, is to treat them as functions. In this
case cach array has a name, which is a symbol whose function definition is the array. Zetalisp
supports this style by allowing an array to be applied to arguments, as if it were a function. The
arguments are treated as subscripts and the array is referenced appropriately. The store special
form (sce page 125) is also supported. This kind of array referencing is considered to be obsolete,
and is slower than the usual kind. It should not be used in new programs.

There are many types of arrays. Scme types of arrays can hold Lisp objects of any type; the
other types of arrays can only hold fixwums or flonums. The array types are known by a set of
symbols whose names begin with "art-" (for ARray Type).

The most commonly used type is called art-q. An art-q array simply holds Lisp objects of
any type.

Similar to the art-q type is the art-q-list. Like the art-q, its clements may be any Lisp
object. The difference is that the art-qg-list array "doubles” as a list; the function g-I-p will
take an art-q-list array and return a list whose clements arce those of the array, and whose actual
substance is that of the array. If you rplaca elements of the list, the corresponding clement of
the array will change, and if you store into the array, the corresponding clement of the list will
change the same way. An attempt to rplacd the list will cause an error, sincc. arrays cannot
implement that operation.

There is a sct of types called art-1b, art-2b, art-4b, art-8b, and art-16b; these names are
short for "1 bit", "2 bits", and so on. Fach clement of an art-nb array is a non-ncgative
fixnum, and only the lecast significant i1 bits are remembered in the array; all of the others are

MC:EMMAN;TD.ARR 110 24-JUI-81

Arrays 108 Lisp Machine Manual

discarded. Thus art-1b arrays store only 0 and 1, and if you store a 5 into an art-2b array and
look at it later, you will find a 1 rather than a 5.

These arrays are used when it is known beforehand that the fixnums which will be stored are
non-negative and limited in size to a certain number of bits. Their advantage over the art-q
array is that they occupy less storage, because more than one element of the array is kept in a
single machine word. (For example, 32 elements of an art-1b array or 2 clements of an art-16b
array will fit into onc word).

There are also art-32b arrays which have 32 bits per element. Since fixnums only have 24
bits anyway, these are the same as art-q arrays except that they only hold fixnums. They do not
behave consistently with the other "bit" array types, and generally they should not be used.

Character strings are implemented by the art-string array type. This type acts similarly to the
art-8b; its clements must be fixnums, of which only the least significant eight bits are stored.
However, many important system functions, including read, print, and eval, trcat art-string
arrays very differently from the other kinds of arrays. These arrays arc usually called strings, and
chapter 9 of this manual deals with functions that manipulate them.

An art-fat-string array is a character string with wider characters, containing 16 bits rather
than 8 bits. The extra bits are ignored by string operations, such as comparison, on these strings;
typically they arc used to hold font information.

An art-half-fix array contains half-size fixnums. Each clement of the array is a signed 16-bit
integer; the range is from -32768 to 32767 inclusive.

The art-float array type is a special-purpose type whose clements arc flonums. When storing
into such an array the value (any kind of number) will be converted to a flonum, using the float
function (sce page 100). The advantage of storing flonums in an art-float array rather than an
art-q array is that the numbers in an art-float array arc not true lisp objects. Instead the array
remembers the numerical value, and when it is aref'ed creates a l.isp object (a flonum) to hold
the value. Because the system does special storage management for bignums and flonums that are
intermediate results, the use of art-float arrays can save a lot of work for the garbage-collector
and hence greatly increase performance. An intermediate result is a lLisp object passed as an
argument, stored in a local variable, or returned as the value of a function, but not stored into a
global variable, a non-art-float array, or list structurc. art-float arrays also provide a locality of
reference advantage over art-q arrays containing flonums, since the flonums are contained in the
array rather than being scparate obiccts probably on different pages of memory.

The art-fps-float array type is another special-purpose type whose clements are flonums. The
internal format of this array is compatible with the pdpll/VAX single-precision floating-point
format. 'The primary purposc of this array type is to interface with the FPS array processor,
which can transfer data directly in and out of such an array.

When storing into an art-fps-float array any kind of number may be stored. It will be
rounded off to the 24-bit precision of the pdpll. If the magnitude of the number is too large,
the Targest valid floating-point number will be stored. If the magnitude is too small, zero will be
stored.

MCEMMANED.ARR 110 24-JUL.-81

Lisp Machine Manual 109 Arrays

When reading from an art-fps-float array, a new flonum is created containing the value, just
as with an art-float array.

There are three types of arrays which exist only for the implementation of stack groups; these
types are called art-stack-group-head, art-special-pdl, and art-reg-pdl. Their elements may
be any Lisp object; their use is explaired in the scction on stack groups (see chapter 12, page
163).

Currently, multi-dimensional arrays are stored in column-major order rather than row-major
order as in Maclisp. Row-major order means that successive memory locations differ in the last
subscript, while column-major order means that successive memory locations differ in the first
subscript. This has an effect on paginz performance when using large arrays; if you want to
reference every element in a multi-diinensional array and move lincarly through memory to
improve locality of reference, you must vary the first subscript fastest rather than the last.

array-types Variable
The value of array-types is a list of all of the array type symbols such as art-q, art-4b,
art-string and so on. The valuss of thesec symbols are internal array type code numbers
for the corresponding type.

array-types array-type-code
Given an internal numeric array--ype code, returns the symbolic name of that type.

array-elements-per-q Variable
array-elements-per-q is an association list (see page 69) which associates cach array type
symbol with the number of array clements stored in one word, for an array of that type.
If the valuc is necgative, it is instead the number of words per array element, for arrays
whose elements arec more than one word long.

array-elements-per-q array-type-code
Given the internal array-type code number, returns the number of array clements stored
in one word, for an array of that type. If the value is negative, it is instecad the number
of words per array element, for arrays whose clements arc more than one word long.

array-bits-per-element Variable
The value of array-bits-per-element is an association list (seec page 69) which associates
each array type symbol with the number of bits of unsigned number it can hold, or nil if
it can hold Lisp objects. This can be used to tell whether an array can hold Lisp objects
or not.

array-bits-per-element array-type-code
Given the internal array-type code numbers, rcturns the number of bits per cell for
unsigned numecric arrays, or nil for a type of array that can contain Lisp objects.

array-element-size array
Given an array, returns the number of bits that fit in an clement of that array. For
arrays that can hold general Lisp objects, the result is 24., assuming you will be storing
unsigned fixnus in the array.

MC:TMMAN:FD.ARR 110 24-JU1-81

Extra Features of Arrays 110 Lisp Machine Manual

8.1 Extra Features of Arrays

Any array may have an array leader. An array leader is like a one-dimensional art-q array
which is attached to the main array. So an array which has a leader acts like two arrays joined
together. The leader can be stored into and examined by a special set of functions, different from
those used for the main array: array-leader and store-array-leader. The leader is always one-
dimensional, and always can hold any kind of Lisp object, regardless of the type or
dimensionality of the main part of the array.

Very often the main part of an array will be a homogeneous set of objects, while the leader
will be used to remember a few associated non-homogeneous pieces of data. In this case the
leader is not used like an array; each slot is used differently from the others. Explicit numeric
subscripts should not be used for the leader elements of such an array; instead the leader should
be described by a defstruct (sec page 259).

By convention, element 0 of the array leader of an array is used to hold the number of
elements in the array that are "active” in some sense. When the zeroth clement is used this way,
it is called a fill pointer. Many array-processing functions recognize the fill pointer. For instance,
if a string (an array of type art-string) has seven elements, but its fill pointer contains the value
five, then only eclements zero through four of the string are considered to be "active"; the string’s
printed representation will be five characters long, string-searching functions will stop after the
fifth element, etc.

The system does not provide a way to turn off the fill-pointer convention; any array that has
a leader must reserve clement 0 for the fill pointer or avoid using many of the array functions.

Leader element 1 is used in conjunction with the "named structure” feature to associate a
“data type" with the array; sce page 271. Element 1 is only treated specially if the array is
flagged as a named structure.

The following explanation of displaced arrays is probably not of interest to a beginner; the
section may be passed over without losing the continuity of the manual.

Normally, an array is represented as a small amount of header information, followed by the
contents of the array. However, sometimes it is desirable to have the header information removed
from the actual contents. One such occasion is when the contents of the array must be located in
a spccial part of the Lisp Machine’s address space, such as the area used for the control of
input/output devices, or the bitmap memory which gencrates the TV image. Displaced arrays are
also used to reference certain special system tables, which are at fixed addresses so the microcode
can access them easily.

If you give make-array a fixnum or a locative as the value of the :displaced-to option, it
will create a displaced array referring to that location of virtual memory and its successors.
References to clements of the displaced array will access that part of storage, and return the
contents; the regular aref and aset functions arc used. If the array is one whose clements are
Lisp objects, caution should be used: if the region of address space does not contain typed Lisp
objects, the integrity of the storage system and the garbage collector could be damaged. If the
array is onc whose clements are bytes (such as an art-4b type), then there is no problem. It is
important to know, in this case, that the clements of such arrays arc allocated from the right to

MC:T MMANFDARR 110 24-JuU1 -81

Lisp Machine Manual 111 Basic Array Functions

the left within the 32-bit words.

It is also possible to have an array whose contents, instead of being located at a fixed place
in virtual memory, are defined to be those of another array. Such an array is called an indirect
array, and is created by giving make-array an array as the valuc of the :displaced-to option.
The effects of this are simple if both arrays have the same type; the two arrays share all
elements. An object stored in a certain element of one can be retrieved from the corresponding
clement of the other. This, by itself, is not very useful. However, if the arrays have different
dimensionality, the manner of accessing the elements differs. Thus, by creating a one-dimensional
array of nine clements which was indirected to a second, two-dimensional array of threc elements
by three, then the clements could be accessed in either a one-dimensional or a two-dimensional
manner. Weird effects can be produced if the new array is of a different type than the old array;
this is not gencrally recommended. Indirecting an art-mb array to an art-nb array will do the
"obvious" thing. For instance, if m is 4 and n is 1, each element of the first array will contain
four bits from the second array, in right-to-left order.

It is also possible to create an indirect array in such a way that when an attempt is made to
reference it or store into it, a constant number is added to the subscript given. This number is
called the index-offset, and is specified at the time the indirect array is created, by giving a
fixnum to make-array as the value of the :displaced-index-offset option. Similarly, the length
of the indirect array nced not be the full length of the array it indirects to; it can be smaller.
The nsubstring function (see page 129) creates such arrays. When using index offsets with multi-
dimensional arrays, there is only one irdex offset; it is added in to the "linearized” subscript
which is the result of multiplying each subscript by an appropriate coefficient and adding them
together.

8.2 Basic Array Functions

make-array dimensions &rest options.
This is the primitive function for making arrays. dimensions should be a list of fixnums
which are the dimensions of the array; the length of the list will be the dimensionality of
the array. For convenience when making a onc-dimensional array, the single dimension
may be provided as a fixnum rather than a list of one fixnum.

options are alternating keywords and values. The keywords may be any of the following:

:area The value specifies in which arca (see chapter 15, page 192) the list
should be created. It should be cither an arca number (a fixnum), or nil
to mean the default area.

‘type The value should be a symbolic name of an array type; the most common
of these is art-q, which is the default. The clements of the array are
initialized according to the type: if the array is of a type whose elements
may only be fixnums or flonums, then every clement of the array will
initially be 0 or 0.0; otherwise, cvery clement will initiaily be nil. See
the description of array types on page 107. ‘The value of the option may
also be the valuc of a symbol which is an array type name (that is, an
internal numeric array type code).

MC:ILMMANFD.ARR 110 24-JU -81

Basic Array Functions

.displaced-to

sleader-length

leader-list

112 Lisp Machine Manual

If this is not nil, then the array will be a displaced array. If the value is
a fixnum or a locative, make-array will crcate a rcgular displaced array
which refers to the specified section of virtual address space. If the value
is an array, make-array will create an indirect array (sce page 111).

The value should be a fixnum. The array will have a leader with that
many clements. The elements of the lcader will be initialized to nil unless
the :leader-list option is given (sce below).

The value should be a list. Call the number of elements in the list 7.
The first n elements of the leader will be initialized from successive
elements of this list. If the :leader-length option is not specified, then
the length of the leader will be n. If the :leader-length option is given,
and its value is greater than n, then the nth and following leader
clements will be initialized to nil. If its valuc is less than n, an error is
signalled. The leader clements are filled in forward order; that is, the car
of the list will be stored in leader clement 0, the cadr in element 1, and
SO on.

:displaced-index - offset

If this is present, the value of the :displaced-to option should be an
array, and the value should be a non-negative fixnum; it is made to be
the index-offset of the crv ated indirect array. (Sec page 111.)

:named-structure -symbol

Examples:

If this is not nil, it is a symbol to be stored in the named-structure cell of
the array. The array will be tagged as a named structurc (sce page 271.)
If the array has a lcader, then this symbol will be stored in leader
clement 1 regardless of the value of the :leader-list option. If the array
does not have a lecader, then this symbol will be stored in array element
zero.

;; Create a one-dimensional array of five elements.

{make-

array 5)

;; Create a two-dimensional array,
;; three by four, with four-bit clements,

(make-

array '(3 4) ’:type ’'art-4b)

;; Create an array with a three-clement leader.

(make-

array 5 ':leader-length 3)

;» Create an array with a leader, providing
;; initial values for the lecader clements.

(setq

a (make-array 100 ’:type ’art-1b
':leader-list '(t nil)))

(array-leader a 0) => t
(array-leader a 1) => nil

MCEMMAN:FD.ARR 110 24-JU1 =81

Lisp Machine Manual 113 Basic Array Functions

aref

aset

as-1
as-2
as-3

;; Create a named-structure with five leader

;; elements, initializing sorne of them.

(setq b (make-array 20 ':leader-length 5
":leader-1list '(0 nil foo)
':named-structure-symbol ’'bar))

(array-leader b 0) => 0

(array-leader b 1) => bar
(array-leader b 2) => foo
(array-leader b 3) => nil
(array-leader b 4) => nil

make-array returns the newly-created array, and also returns, as a sccond value, the
number of words allocated in the process of creating the array, i.e. the %structure-total-
size of the array.

When make-array was originally implemented, it took its arguments in the following
fixed pattern:
(make-array area lype dimensions
&optional displaced-to leader

displaced-index-offset

named-structure-symbol)
leader was a combination of the :leader-length and :leader-list options, and the list was
in reverse order. This obsolete form is still supported so that old programs will continue
to work, but the new keyword-argument form is preferred.

array &rest subscripts
Returns the element of array se'ccted by the subscripts. The subscripts must be fixnums
and their number must match the dimensionality of array.

array i

array i j

array i j k

These are obsolete versions of aref that only work for one, two, or three dimensional
arrays, respectively. There is no reason cver to.use them.

x array &rest subscripts

Stores x into the eclement of array selected by the subscripts. The subscripts must be
fixnums and their number must match the dimensionality of array. The returned value is
X.

X array i

x array i j

x array 1 j k

These arc obsolete versions of aset that only work for one, two, or three dimensional
arrays, respectively. Therc is no rcason ever to usc them.

MCIMMANIDARR T10 24-JU1L -81

Getting Information About an Array 114 Lisp Machine Manual

aloc array &rest subscripts
Returns a locative pointer to the clement-cell of array selected by the subscripts. The
subscripts must be fixnums and their number must match the dimensionality of array. See
the explanation of locatives in chapter 13, page 170.

ap-1 array i

ap-2 array i j

ap-3 array i j k
These are obsolete versions of aloc that only work for one, two, or three dimensional
arrays, respectively. There is no reason ever to use them.

The compiler turns aref into ar-1, ar-2, etc. according to the number of subscripts specified,
turns aset into as-1, as-2, etc, and turns aloc into ap-1, ap-2, etc. For arrays with more
than 3 dimensions the compiler uses the slightly less efficient form since the special routines only
exist for 1, 2, and 3 dimensions. There is no reason for any program to call ar-1, as-1, ar-2,
etc. explicitly; they are documented because there used to be such a reason, and many old
programs use these functions. New programs should use aref, aset, and aloc.

A related function, provided only for Maclisp compatibility, is arraycall (page 125).

array-leader array i
array should be an array with a leader, and i should be a fixnum. This returns the i’th
element of array’s leader. This is analogous to aref.

store-array-leader x array i
array should be an array with a leader, and i should be a fixnum. x may be any object.
x is stored in the /’th element of array’s leader. store-array-leader returns x. This is
analogous to aset.

ap-leader array i
array should be an array with a leader, and i should be a fixnum. This returns a locative
pointer to the ’th element of array’s leader. Sece the explanation of locatives, chapter 13,
page 170. This is analogous to aloc.

8.3 Getting Information About an Array

array-type array
Returns the symbolic type of array.
Example:
(setq a (make-array '(3 5)))
(array-type a) => art-q

array-length array
array may be any array. This returns the total number of clements in array. For a one-
dimensional array, this is one greater than the maximum allowable subscript. (But if fill
pointers are being used, you may want to usc array-active-length.)

MO MMANIFDARR 110 24-JU1.-81

Lisp Machine Manual 115 Getting Information About an Array

Example:
(array-length (make-array 3)) => 3
(array-length (maks-array '(3 5)))
=> 17 ;octal, which is 15. decimal

array-active-length array
If array does not have a fill pointer, then this returns whatever (array-length array)
would have. If array does have a fill pointer, array-active-length returns it. See the
general explanation of the use of fill pointers, on page 110.

array-#-dims array
Returns the dimensionality of array. Note that the name of the function includes a "#",
which must be slashified if you want to be able to read your program in Maclisp. (It
doesn’t necd to be slashified for the Zetalisp reader, which is smarter.)
Example:
(array-#-dims (makae-array '(3 5))) => 2

array-dimension-n n array
array may be any kind of array, and n should be a fixnum. If n is between 1 and the
dimensionality of array, this returns the n’th dimension of array. If n is 0, this rcturns
the length of the leader of array; if array has no leader it returns nil. If n is any other
value, this returns nil.
Examples:
(setq a (make-array '(3 5) ':leader-length 7))
(array-dimension-n 1 a) => 3
(array-dimension-n 2 a) => 5
(array-dimension-n 3 a) => nil
(array-dimension-n 0 a) => 7

array-dimensions array
array-dimensicns returns a list whose elements are the dimensions of array.
Example:
(setq a (make-array '(3 5)))
(array-dimensions a) => (3 5)
Note: the list returned by (array-dimensions x) is equal to the cdr of the list returned
by (arraydims x).

arraydims array
array may be any array; it also may be a symbol whose function cell contains an array,

for Maclisp compatibility (see section 8.10, page 124). arraydims rcturns a list whose first
clement is the symbolic name of the type of array, and whose remaining elements are its
dimensions.
Example:

(setq a (make-array '(3 5)))

(arraydims a) => (art-q 3 5)

MC:IMMAN:FD.ARR T10 24-JU11 81

Changing the Size of an Array 116 Lisp Machine Manual

array-in-bounds-p array &rest subscripts
This function checks whether subscripts is a legal sct of subscripts for array, and returns t
if they are; otherwise it returns nil.

array-displaced-p array
array may be any kind of array. This predicate returns t if array is any kind of displaced
array (including an indirect array). Otherwise it returns nil.

array-indirect-p array
arraqy may be any kind of array. This predicate returns t if array is an indirect array.
Otherwise it returns nil.

array-indexed-p array
array may be any kind of array. This predicate returns t if array is an indirect array with
an index-offset. Otherwisc it returns nil.

array-has-leader-p array
array may be any array. This predicate returns t if array has a leader; otherwise it
returns nil,

array-leader-length array
array may be any array. This returns the length of array’s leader if it has one, or nil if
it does not.

8.4 Changing the Size of an Array

adjust-array-size array new-size
If array is a one-dimensional array, its size is changed to be new-size. If array has more
than one dimension, its size (array-length) is changed to new-size by changing only the
last dimension.

If array is made smaller, the extra elements are lost; if array is made bigger, the new
clements are initialized in the same fashion as make-array (sce page 111) would initialize
them: cither to nil or 0, depending on the type of array.
Example:

(setq a (make-array 5))

(aset "foo a 4)

(aref a 4) => foo

(adjust-array-size a 2)

(aref a 4) => ancrror occurs

If the size of the array is being increased, adjust-array-size may have to allocate a new
array somewhere. In that case, it alters array so that references to it will be made to the
new array instcad, by mecans of "invisible pointers” (sce structure-forward, page 175).
adjust-array-size will return this new array if it creates one, and otherwise it will return
array. Be carcful to be consistent about using the returned result of adjust-array -size,
because you may end up holding two arrays which arc not the same (i.c. not eq). but
which share the sume contents.

MC:TMMANIT'D.ARR 110 24-JUL.-81

Lisp Machine Manual 117 Arrays Overlaid With Lists

array-grow array &rest dimensions
array-grow creates a new array of the same type as array, with the specified dimensions.
Those elements of arrgy that are still in bounds are copied into the new array. The
elements of the new array that arc not in the bounds of array are initialized to nil or O as
appropriate. If array has a leader, the new array will have a copy of it. array-grow
returns the new array and also forwards array to it, like adjust-array-size.

Unlike adjust-array-size, array-grow always creates a new array rather than growing or
shrinking the array in place. But array-grow of a multi-dimensional array can change all
the subscripts and move the elements around in memory to keep each element at the
same logical place in the array.

return-array array
This peculiar function attempts to return array to free storage. If it is displaced, this
returns the displaced array itself, not the data that the array points to. Currently return-
array does nothing if the array is not at the end of its region, i.e. if it was not the most
recently allocated non-list object in its area. This will eventually be renamed to reclaim,
when it works for other objects than arrays.

If you still have any references to array anywhere in the Lisp world after this function
returns, the garbage collector can get a fatal error if it sees them. Since the form that
calls this function must get the array from somewhere, it may not be clear how to legally
call return-array. One of the only ways to do it is as follows:
(defun func ()
(let ((array (make-array 100)))

(return-array (progl array (setq array nil)))))
so that the variable array does not refer to the array when return-array is called. You
should only call this function if you know what you are doing; otherwise the garbage
collector can get fatal errors. Be careful.

8.5 Arrays Overlaid With Lists

These functions manipulate art-q-list arrays, which were introduced on page 107.

g-1-p array
array should be an art-q-list ar-ay. This rcturns a list which shares the storage of array.
Example:
(setq a (make-array 4 ’:type ’'art-q-list))
(aref a 0) => nil
(setq b (g-1-p a)) => (nil nil nil nil)
(rplaca b t)'
b => (t nil nil nil)
(aref a 0) => t
(aset 30 a 2)
b => (t nil 30 nil)

The following two functions work strangely, in the same way that store does, and should not be

MC:I MMANED.ARR 110 24-JU01-81

Adding to the End of an Array 118 Lisp Machine Manual

used in new programs.

get-list-pointer-into-array array-ref
The argument array-ref is ignored, but should be a reference to an art-q-list array by
applying the array to subscripts (rather than by aref). This returns a list object which is a
portion of the "list” of the array, beginning with the last element of the last array which
has been called as a function.

get-locative-pointer-into-array array-ref
get-locative-pointer-into-array is similar to get-list-pointer-into-array, except that it
returns a locative, and doesn’t require the array to be art-g-list. Use aloc instead of this
function in new programs.

8.6 Adding to the End of an Array

array-push array x

array must be a one-dimensional array which has a fill pointer, and x may be any object.
array-push attempts to store x in the clement of the array designated by the fill pointer,
and increase the fill pointer by one. If the fill pointer docs not designate an element of
the array (specifically, when it gets too big), it is unaffected and array-push returns nil;
otherwise, the two actions (storing and incrementing) happen uninterruptibly, and array-
push returns the former value of the fill pointer, i.c. the array index in which it stored x.
If the array is of type art-qg-list, an opcration similar to nconc has taken place, in that
the element has been added to the list by changing the cdr of the formerly last element.
The cdr coding is updated to ensure this,

array-push-extend array x &optional extension
array-push-extend is just like array-push except that if the fill pointer gets too large,
the array is grown to fit the new clement; i.e. it never "fails" the way array-push does,
and so never returns nil. extension is the number of elements to be added to the array if
it nceds to be grown. It defaults to something reasonable, based on the size of the array.

array-pop array
array must be a onc-dimensional array which has a fill pointer. The fill pointer is
decreased by one, and the array clement designated by the new value of the fill pointer is
returned. If the new value does not designate any element of the array (specifically, if it
had alrcady rcached zero), an ecrror is caused. The two operations (decrementing and
array referencing) happen uninterruptibly. If the array is of type art-qg-list, an operation
similar to nbutlast has taken place. The cdr coding is updated to cnsure this.

MC: T MMANFD.ARR 110 24-JU1.-81

Lisp Machine Manual 119 Copying an Array

8.7 Copying an Array

fillarray array x
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. There are two forms of this function, depending on the type of x.

If x is a list, then fillarray fills up array with the elements of lisz. If x is too short to fill
up all of array, then the last clement of x is used to fill the remaining clements of array.
If x is too long, the extra elements are ignored. If x is nil (the empty list), array is filled
with the default initial value for its array type (nil or 0).

If x is an array (or, for Maclisp compatibility, a symbol whose function cell contains an
array), then the elements of array are filled up from the elements of x. If x is too small,
then the extra elements of array ere not affected.

If array is multi-dimensional, the elements are accessed in row-major order: the last
subscript varies the most quickly. The same is true of x if it is an array.

fillarray returns array.

l1istarray array &optional limit
array may be any type of array, or, for Maclisp compatibility, a symbol whosc function
cell contains an array. listarray creates and returns a list whose elements are thosc of
array. If limit is present, it should be a fixnum, and only the first /imit (if there are
more than that many) clements of array are used, and so the maximum length of the
returned list is limit.

If array is multi-dimensional, the elements are accessed in row-major order: the last
subscript varies the most quickly.

1ist-array-leader array &optional [imit
array may be any type of array, or, for Maclisp compatibility, a symbol whose function
cell contains an array. list-array-leader creates and returns a list whose clements are
those of array’s leader. 1If limit is present, it should be a fixnum, and only the first limit
(if there are more than that many) elements of array’s leader are uscd, and so the
maximum length of the returned list is /imiz. If array has no leader, nil is returned.

copy-array-contents from to
from and fo must be arrays. The contents of from is copied into the contents of fo,
clement by element. If 1o is shorter than from, the rest of from is ignored. 1f from is
shorter than fo, the rest of fo s filled with nil if it is a g-typc array, or 0 if it is a
numeric array or a string, or 0.0 if it is a flonum array. This function always returns t.

Note that cven if from or fo has a leader, the whole array is used; the convention that
leader clement 0 is the "active” length of the array is not used by this function. The
leader itself is not copied.

copy-array-contents works on multi-dimensional arrays. from and fo arc "lincarized”

subscripts, and column-major order is used, iLe the first subscript varies fastest (opposite
Sfrom fillarray).

MC: T MMAN:FD.ARR 110 24-JUL.-81

Copying an Array 120 Lisp Machine Manual

copy-array-contents-and-leader from 1o
This is just likc copy-array-contents, but the leader of from (if any) is also copied into
{o. copy-array-contents copies only the main part of the array.

copy-array-portion fiom-array from-start from-end to-array to-start to-end

‘The portion of the array from-array with indices greater than or equal to from-start and
less than from-end is copied into the portion of the array fo-array with indices greater than
or cqual to fo-start and less than ro-end, clement by element. If there are more elements
in the selected portion of fo-array than in the sclected portion of from-array, the extra
clements are filled with the default value as by copy-array-contents. If there are more
elements in the sclected portion of from-array, the extra ones are ignored. Multi-
dimensional arrays are trcated the same way as copy-array-contents treats them. This
function always returns t.

bitb1t alu width height from-array from-x from-y to-array to-x fo-y
JSrom-array and to-array must be two-dimcnsional arrays of bits or bytes (art-1b, art-2b,
art-4b, art-8b, art-16b, or art-32b). bitblt copies a rectangular portion of from-array
into a rectangular portion of to-array. The value stored can be a Boolean function of the
new value and the value alrcady there, under the control of alu (sce below). This
function is most commonly used in connection with raster images for TV displays.

The top-left corner of the source rectangle is (aref from-array from-x from-y). The top-left
corner of the destination rectangle is (aref fo-array to-x to-y). width and height are the
dimensions of both rectangles. If width or height is zero, bitblt does nothing.

Sfrom-array and to-array are allowed to be the same array. bitblt normally traverses the
arrays in increasing order of x and y subscripts. If width is negative, then (abs width) is
used as the width, but the processing of the x direction is done backwards, starting with
the highest value of x and working down. If height is negative it is treated analogously.
When bitblt'ing an array to itself, when the two rectangles overlap, it may be necessary to
work backwards to achicve the desired effect, such as shifting the entire array upwards by
a certain number of rows. Note that negativity of width or height does not affect the (x,y)
coordinates specified by the arguments, which are still the top-left corner even if bitblt
starts at some other corner.

If the two arrays are of different types, bitblt works bit-wise and not element-wise. That
is, if you bitblt from an art-2b array into an art-4b array, then two elements of the
Jrom-array will correspond to one clement of the to-array.

If bitblt goes outside the bounds of the source array, it wraps around. This allows such
operations as the replication of a small stipple pattern through a large array. If bitbit £0¢es
outside the bounds of the destination array, it signals an error.

If src is an clement of the source rectangle, and dst is the corresponding element of the
destination rectangle, then bitblt changes the value of dst to (boole alu sre dst). Scc the
boole function (page 100). ‘There are symbolic names for some of the most useful alu
functions; they are tvialu-seta (plain copy), tv:alu-ior (inclusive or). tv:alu-xor
(exclusive or), and tvialu-andca (and with complement of source).

MC:TNMMANFD.ARR 110 24-JUL-81

Lisp Machine Manual 121 Matrices and Systems of Lincar Equations

bitblt is written in highly-optimized microcode and goes very much faster than the same
thing written with ordinary aref and aset operations would. Unfortunately this causes
bitblt to have a couple of strange restrictions. Wrap-around does not work correctly if
from-array is an indirect array with an irdex-offset. bitblt will signal an error if the first
dimensions of from-array and fc-array are not both integral multiples of the machine word
length, For art-1b arrays, the first dimension must be a multiple of 32, for art-2b
arrays it must be a multiple of 6., etc.

8.8 Matrices and Systems of Linear Equations

The functions in this section peiform some uscful matrix operations. The matrices are
represented as two-dimensional Lisp arrays. These functions are part of the mathematics package
rather than the kernel array system, hence the "math:” in the names.

math:multiply-matrices matrix-1 matrix-2 &optional matrix-3
Multiplies matirix-1 by matrix-2. If matrix-3 is supplied, multiply-matrices stores the
results into matrix-3 and returns matrix-3; otherwisc it crcates an array to contain the
answer and returns that. All matrices must be two-dimensional arrays, and the first
dimension of matrix-2 must equal the sccond dimension of matrix-1.

math:invert-matrix matrix &optional into-matrix
Computes the inverse of matri>. If into-matrix is supplied, stores the result into it and
returns it; otherwise it crcates an array to hold the result, and returns that. matrix must
be two-dimensional and square. The Gauss-Jordan algorithm with partial pivoting is used.
Note: if you want to solve a set of simultancous equations, you should not use this
function; use math:decompose and math:solve (sce below).

math:transpose-matrix mafrix &optional into-matrix
Transposes matrix. If into-marrix is supplied, stores the result into it and returns it;
otherwise it creates an array to hold the result, and returns that. matrix must be a two-
dimensional array. info-matrix, if provided, must be two-dimensional and have sufficient
dimensions to hold the transpose of matrix.

math:determinant matrix
Returns the determinant of mamix. matrix must be a two-dimensional square matrix.

The next two functions are used to solve sets of simultancous linear equations.
math:decompose takes a matrix holding the coeflicients of the equations and produces the LU
decomposition; this dccomposition can then be passed to math:solve along with a vector of right-
hand sides to get the values of the varables. If you want to solve the same cquations for many
different sets of right-hand side values, you only nced to call math:decompose once. In terms of
the argument names used below, these two functions exist to solve the vector cquation 4 x = b
for x. A is a matrix. b and x arc vectors.

MCIIAMAMANIFDARR TT0 24-JU01 81

Planes 122 Lisp Machine Manual

math:decompose a &optional lu ps

Computes the LU decomposition of matrix a. If lu is non-nil, stores the result into it
and returns it; otherwise it creates an array to hold the result, and returns that. The
lower triangle of /u, with ones added along the diagonal, is L, and the upper triangle of
lu is U, such that the product of L and U is a. Gaussian elimination with partial
pivoting is used. The /u array is permuted by rows according to the permutation array ps,
which is also produced by this function; if the argument ps is supplied, the permutation
array is stored into it; otherwise, an array is created to hold it. This function returns two
values: the LU decomposition and the permutation array.

math:solve u ps b &optional x
This function takes the 1.U decomposition and associated permutation array produced by
math:decompose, and solves the sct of simultancous cquations defined by the original
matrix a and the right-hand sides in the vector 5. If x is supplied, the solutions are
storcd into it and it is rcturned; otherwise, an array is created to hold the solutions and
that is returned. b must be a one-dimensional array.

math:11ist-2d-array array
Returns a list of lists containing the values in array, which must be a two-dimensional
array. There is one clement for cach row; each element is a list of the values in that
TOW.

math:fi11-2d-array array list
This is the opposite of math:list-2d-array. list should be a list of lists, with each
clement being a list corresponding to a row. array’s elements are stored from the list.
Unlike fillarray (sce page 119), if list is not long ecnough, mathfill-2d-array "wraps
around”, starting over at the beginning. The lists which are elements of list also work
this way.

8.9 Planes

A plane is an array whosc bounds, in each dimension, are plus-infinity and minus-infinity; all
intcgers are legal as indices. Planes are distinguished not by size and shape, but by number of
dimensions alonc. When a planc is created, a default value must be specified. At that moment,
every component of the plane has that value. As you can’t ever change more than a finite
number of components, only a finite region of the plane need actually be stored.

The regular array accessing functions don’t work on planes. You can use make-plane to
create a plane, plane-aref or plane-ref to get the value of a component, and plane-aset or
plane-store to store into a component. array- # -dims will work on a plane.

A planc is actually stored as an array with a leader. The array corresponds to a rectangular,
aligned region of the plane, containing all the components in which a plane-store has been done
(and others, in general, which have never been altered). The lowcest-coordinate corner of that
rectangular region is given by the plane-origin in the array leader. The highest coordinate corner
can be found by adding the plane-origin to the array-dimensions of the array. The plane-
default is the contents of all the clements of the plane which are not actually stored in the array.
The plane-extension is the amount to extend a plane by in any dircction when the plane needs

MCOCTNMANGSDARR 110 21-JUL-81

Lisp Machine Manual 123 Planes

to be extended. The default is 32.

If you never use any negative indices, then the plane-origin will be all zeroes and you can
use regular array functions, such as aref and aset, to access the portion of the plane which is
actually stored. This can be useful to «peed up certain algorithms. In this casc you can even use
the bitblt function on a two-dimensioral planc of bits or bytes, provided you don’t change the
plane-extension to a number that is not a multiple of 32.

make-plane rank &rest options
Creates and returns a plane. rank is the number of dimensions. options is a list of
alternating keyword symbols and values. The allowed keywords are:

‘type The array type symbol (e.g. art-1b) specifying the type of the array out of
which the plane is made.

:default-value The default component value as explained above.

:extension The amount by which to extend the plane, as explained above.
Example:

(make-plane 2 ’':type 'art-4b ’:default-value 3)
creates a two-dimensional plane of type art-4b, with default value 3.

plane-origin plane
A list of numbers, giving the lowest coordinate values actually stored.

plane-default plane
This is the contents of the infinite number of plane clements which are not actually

stored.

plane-extension plane
The amount to extend the plane by in any direction when plane-store is done outside of
the currently-stored portion.

plane-aref plane &rest subscripts

plane-ref plane subscripts
These two functions return the contents of a specified clement of a planc. They differ
only in the way they take their arguments; plane-aref wants the subscripts as arguments,
while plane-ref wants a list of subscripts.

plane-aset datum plane &rest subscripts

plane-store darum plane subscripts
These two functions store darum into the specified clement of a plane, extending it if
necessary, and return darum. They differ only in the way they take their arguments;
plane-aset wants the subscripts as arguments, while plane-store wants a list of
subscripts.

MC:TMMAN:EFD.ARR 110 24-JU1-81

Maclisp Array Compatibility 124 Lisp Machine Manual

8.10 Maclisp Array Compatibility

The functions in this section are provided only for Maclisp compatibility, and should not be
used in new programs.

Fixnum arrays do not cxist (however. sce Zetalisp’s small-positive-integer arrays). Flonum
arrays exist but you do not use them in the same way; no declarations are required or allowed.
"Un-garbage-collected” arrays do not exist. Readtables and obarrays are represented as arrays, but
unlike Maclisp special array types arc not used. Sec the descriptions of read (page 332) and
intern (page 399) for information about readtables and obarrays (packages). There are no "dead"
arrays, nor arc Multics "external” arrays provided.

The arraycall function exists for compatibility but should not be used (see aref, page 113.)

Subscripts are always checked for validity, regardless of the value of *rset and whether the
code is compiled or not. However, in a multi-dimensional array, an error is only caused if the
subscripts would have resulted in a reference to storage outside of the array. For example, if you
have a 2 by 7 array and refer to an element with subscripts 3 and 1, no error will be caused
despitc the fact that the reference is invalid; but if you refer to element 1 by 100, an error will
be caused. In other words, subscript errors will be caught if and only if they refer to storage
outside the array; some errors are undetected, but they will only clobber some other element of
the same array rather than clobbering something completely unpredictable.

Currently, multi-dimensional arrays are stored in column-major order rather than row-major
order as in Maclisp. Sce chapter 8, page 109 for further discussion of this issue.

loadarrays and dumparrays arc not provided. However, arrays can be put into "QFASL"
files; sce scction 16.8, page 206.

The *rearray function is not provided, since not all of its functionality is available in
Zetalisp. The most common uscs can be replaced by adjust-array-size.

In Maclisp, arrays arc usually kept on-.the array property of symbols, and the symbols are
used instcad of the arrays. In order to provide some degree of compatibility for this manner of
using arrays, the array, *array, and store functions are provided, and when arrays are applied
to arguments, the arguments arc treated as subscripts and apply returns the corresponding clement
of the array.

array "e symbol type &cval &rest dims
This creates an art-q type array in default-array-area with the given dimensions. (That
is, dims is given to make-array as its first argument.) fpe is ignored. If symbol is nil,
the array is returned; otherwise, the array is put in. the function cell of symbol, and
symbol is returned.

*array symbol type &rest dims
This is just like array, except that all of the arguments are evaluated.

MCEMMANED.ARR T10 24-JU1-81

Lisp Machine Manual 125 Maclisp Array Compatibility

store array-reference x Special Form
store stores x into the specificd array element. array-ref should be a form which
references an array by calling it as a function (aref forms are not acceptable). First x is
evaluated, then array-ref is evaluated, and then the value of x is stored into the array cell
last referenced by a function call. presumably the one in array-ref.

xstore x array-ref
This is just like store, but it is not a special form; this is because the arguments are in
the other order. This function only exists for the compiler to compile the store special
form into, and should never be used by programs.

arraycall ignored array &rest subscripts

(arraycall t array subl sub2..) is the same as (aref array subl sub2..). It exists for
Maclisp compatibility.

MCEMMANGDARR T10 24-JUL-81

Strings 126 Lisp Machine Manual

9. Strings

Strings are a type of array which represent a sequence of characters. The printed
representation of a string is its characters enclosed in quotation marks, for example "foo bar".
Strings are constants, that is, evaluating a string returns that string. Strings are the right data
type to use for text-processing.

Strings are arrays of type art-string, where each clement holds an eight-bit unsigned fixnum.
This is because characters are represented as fixnums, and for fundamental characters only eight
bits are used. A string can also be an array of type art-fat-string, where each element holds a
sixteen-bit unsigned fixnum; the extra bits allow for multiple fonts or an expanded character set.

The way characters work, including multiple fonts and the extra bits from the keyboard, is
explained in section 21.1, page 314. Note that you can type in the fixnums that represent
characters using "#/" and " #\"; for example, #/f reads in as the fixnum that represents the
character "f", and #\return reads in as the fixnum that represents the special "return” character.
See page 325 for details of this syntax.

The functions described in this scction provide a variety of useful operations on strings. In
place of a string, most of these functions will accept a symbol or a fixnum as an argument, and
will coerce it into a string. Given a symbol, its print name, which is a string, will be used.
Given a fixnum, a one-character string containing the character designated by that fixnum will be
used. Several of the functions actually work on any type of one-dimensional array and may be
useful for other than string processing; these are the functions such as substring and string-
length which do not depend on the clements of the string being characters.

Since strings are arrays, the usual array-referencing function aref is used to extract the
characters of the string as fixnums. For example,
(aref "frob" 1) => 162 ;lower-caser
Note that the character at the beginning of the string is element zero of the array (rather than
one); as usual in Zectalisp, everything is zero-based.

It is also legal to store into strings (using aset). As with rplaca on lists, this changes the
actual object; one must be careful to understand where side-effects will propagate to. When you
arc making strings that you intend to change later, you probably want to create an array with a
fill-pointer (see page 110) so that you can change the length of the string as well as the contents.
The length of a string is always computed using array-active-length, so that if a string has a
fill-pointer, its value will be uscd as the length.

MC:EMMAN:FD.STR 92 24-JU1 -81

Lisp Machine Manual 127 Characters

9.1 Characters

character x
character coerces x to a single character, represented as a fixnum. If x is a number, it
is recturned. If x is a string or an array, its first element is returned. If x is a symbol,
the first character of its pname is returned. Otherwise, an error occurs. The way
characters are represented as fixnums is explained in section 21.1, page 314.

char-equal chl ch’
This is the primitive for comparing characters for equality; many of the string functions
call it. chl and ch2 must be fixnums. The result is t if the characters are equal ignoring
case and font, otherwise nil. %%ch-char is the byte-specifier for the portion of a
character which excludes the font information.

char-lessp chl ch?
This is the primitive for compating characters for order; many of the string functions call
it. chl and ck2 must be fixnums. The result is t if ch/ comes before ch2 ignoring case
and font, otherwise nil. Details of the ordering of characters are in section 21.1, page
314,

9.2 Upper and Lower Case Letters

alphabetic-case-affects-string-comparison Variable
This variable is normally nil. If it is t, char-equal, char-lessp, and the string searching
and comparison functions will distinguish between upper-case and lower-case letters. If it
is nil, lower-casc characters behave as if they were the same character but in upper-case.
It is all right to bind this to t around a string operation, but changing its global value to
t will break many system functicns and user interfaces and so is not recommended.

char-upcase ch
If ch, which must be a fixnum, is a lower-case alphabetic character its upper-case form is
returned; otherwise, ch itself is rcturned. If font information is present it is preserved.

char-downcase ch
If ch, which must be a fixnum, is a upper-case alphabetic character its lower-case form is
returned; otherwise, ch itself is rcturned. If font information is present it is preserved.

string-upcase string
Returns a copy of string, with all lower case alphabetic characters replaced by the
corresponding upper case characiers.

string-downcase string

Returns a copy of string, wizh all upper case alphabetic characters replaced by the
corresponding lower case characters.

MC:I.MMAN:IFD.STR 92 24-JUL -81

Basic String Operations 128 Lisp Machine Manual

9.3 Basic String Operations

string x
string coerces x into a string. Most of the string functions apply this to their string
arguments. If x is a string (or any array), it is returned. If x is a symbol, its pname is
returned. If x is a non-negative fixnum less than 400 octal, a one-character-long string
containing it is crecated and rcturned. If x is a pathname (sec chapter 22, page 376), the
"string for printing" is returned. Otherwise, an error is signalled.

string-length string
string-length returns the number of characters in string. This is 1 if string is a number,
the array-active-length (see page 115) if string is an array, or the array-active-length
of the pname if string is a symbol.

string-equal swing! string? &optional (idxI 0) (idx20) liml Ilim2
string-equal compares two strings, returning t if they are equal and nil if they are not.
The comparison ignores the extra "font" bits in 16-bit strings and ignores alphabetic case.
equal calls string-equal if applied to two strings.

The optional arguments idx/ and idx2 are the starting indices into the strings. The
optional arguments /im/ and lim2 are the final indices; the comparison stops just before
the final index. /im/ and [/im2 default to the lengths of the strings. These arguments are
provided so that you can efficiently compare substrings.
Examples:

(string-equal "Foo" "foo") => t

(string-equal "foo" "bar") => nil

(string-equal "element" "select" 0 1 3 4) => t

%string-equal string! idxl string2 idx2 count
%string-equal is the microcode primitive which string-equal calls. It returns t if the
count characters of stringl starting "at idx/ are char-equal to the count characters of
string2 starting at idx2, or nil if the characters are not equal or if count runs off the
length of either array.

Instead of a fixnum, count may also be nil. In this case, %string-equal compares the
substring from idx] to (string-length stringl) against the substring from idx2 to (string-
length string?). 1f the lengths of these substrings differ, then they are not equal and nil
is returned.

Note that stringl and string2 must really be strings; the usual coercion of symbols and
fixnums to strings is not performed. This function is documented because certain
programs which require high efficiency and are willing to pay the price of less generality
may want to usc %string-equal in place of string-equal.

MC:LMMAN:FD.STR 92 24-JUIL.-81

Lisp Machine Manual 129 Basic String Operations

Examples:
To compare the two strings foo and bar:
(%string-equal foo 0 bar 0 nil)
To see if the string foo starts with the characters "bar":
(#string-equal foo 0 "bar" 0 3)

string-lessp stringl string?
‘string-lessp compares two strings using dictionary order (as defined by char-lessp). The
result is t if stringl is the lesser, or nil if they are equal or string? is the lesser.

substring string start &optional end area
This extracts a substring of string, starting at the character specified by starf and going up
to but not including the character specified by end. start and end are (-origin indices.
The length of the returned string is end minus start. If end is not specified it defaults to
the length of string. The area in which the result is to be consed may be optionally
specified.
Example:
(substring "Nebuchadnezzar" 4 8) => "chad"

nsubstring swring swart &optional end area
nsubstring is the same as substring except that the substring is not copied; instead an
indirect array (see page 111) is created which shares part of the argument string.
Modifying one string will modify the other.

Note that nsubstring does not necessarily use less storage than substring; an nsubstring
of any length uses at least as much storage as a substring 12 characters long. So you
shouldn’t use this just "for efficency”; it is intended for uses in which it is important to
have a substring which, if modified, will cause the original string to be modified too.

string-append &rest strings
Any number of strings are copied and concatenated into a single string. With a single
argument, string-append simply copies it. If the first argument is an array, the result
will be an array of the same type. Thus string-append can be used to copy and
concatenate any type of 1-dimensional array.
Example:)
(string-append #/! "foo" #/!) => "lfool"

string-nconc modified-string &rest strings

string-nconc is like string-append cxcept that instcad of making a new string containing
the concatenation of its arguments, string-nconc modifies its first argument. modified-
string must have a fill-pointer so that additional characters can be tacked onto it
Compare this with array-push-extend (page 118). The value of string-nconc is
modified-string or a new, longer copy of it; in the latter case the original copy is
forwarded to the new copy (sec adjust-array-size, page 116). Unlike nconc, string-
nconc with more than two arguments modifies only its first argument, not every argument
but the last.

MC:TMMANFD.STR 92 21-Ju1 81

Basic String Operations 130 Lisp Machine Manual

string-trim charset string
This returns a substring of string, with all characters in char-set stripped off of the
beginning and end. char-set is a set of characters, which can be represented as a list of
characters or a string of characters.
Example:
(string-trim '(#\sp) " Dr. No ") => "Dr. No"
(string-trim "ab" "abbafooabb") => "foo"

string-left-trim charset string
This returns a substring of string, with all characters in char-set stripped off of the
beginning. char-set is a set of characters, which can be represented as a list of characters
or a string of characters.

string-right-trim charset string
This returns a substring of string, with all characters in char-set stripped off of the end.
char-set is a set of characters, which can be represented as a list of characters or a string
of characters.

string-reverse string
Returns a copy of string with the order of characters reversed. This will reverse a 1-
dimensional array of any type.

string-nreverse string
Returns string with the order of characters reversed, smashing the original string, rather
than creating a new one. If string is a number, it is simply returned without consing up
a string. This will reverse a 1-dimensional array of any type.

string-pluralize string
string-pluralize returns a string containing the plural of the word in the argument string.
Any added characters go in the same case as the last character of string.
Example:
(string-pluralize "event") => "events"
(string-pluralize "Man") => "Men"
(string-pluralize "Can") => "Cans"
(string-pluratlize "key") => "keys"
(string-pluralize "TRY") => "TRIES"
For words with multiple plural forms depending on the meaning, string-pluralize cannot
always do the right thing.

MCEMMANFD.STR 92 24-JU1 .-81

Lisp Machine Manual 131 String Searching

9.4 String Searching

string-search-char char string &optional (from0) to
string-search-char searches through string starting at the index from, which defaults to
the beginning, and returns the index of the first character which is char-equal to char,
or nil if none is found. If the 10 argument is supplied, it is used in place of (string-
length string) to limit the extent of the search.
Example:
(string-search-char #/a "banana") => 1

%string-search-char char siring fiom to
%string-search-char is the microcode primitive which string-search-char and other
functions call. string must be an array and char, from, and fo must be fixnums. Except
for this lack of type-coercion, and the fact that none of the arguments is optional,
%string-search-char is the same as string-search-char. This function is documented
for the benefit of those who require the maximum possible efficiency in string searching.

string-search-not-char char string &optional (from0) to
string-search-not-char searches through string starting at the index from, which defaults
to the beginning, and rcturns the index of the first character which is not char-equal to
char, or nil if none is found. If the 1o argument is supplied, it is used in place of
(string-length string) to limit the cxtent of the search.
Example:
(string-search-not-char #/b "banana") => 1

string-search key string &optional (from0) to

string-search searches for the siring key in the string string. The scarch begins at from,
which defaults to the beginning of string. The value returned is the index of the first
character of the first instance of key, or nil if none is found. If the fo argument is
supplied, it is used in place of (string-length string) to limit the extent of the search.
Example:

(string-search "an" "banana") => 1

(string-search "an" "banana" 2) => 3

string-search-set charset string &optional (from0) to
string-search-set searches through string looking for a character which is in charset.
The scarch begins at the index from, which defaults to the beginning. It rcturns the
index of the first character which is char-equal to some element of char-set, or nil if
nonc is found. If the fo argument is supplied, it is used in place of (string-length
string) to limit the extent of the search. char-set is a set of characters, which can be
represented as a list of characters or a string of characters.
Example:
(string-search-set '(#/n #/0) "banana") => 2
(string-search-set "no" "banana") => 2

MC:ILMMAN;EFD.STR 92 24-JU1 .-81

String Searching 132 Lisp Machine Manual

string-search-not-set charset string &optional (from0) to

string-search-not-set scarches through string looking for a character which is not in
char-set. The search begins at the index from, which defaults to the beginning. It
returns the index of the first character which is not char-equal to any element of char
set, or nil if none is found. If the o argument is supplied, it is used in place of
(string-length string) to limit the cxtent of the search. char-set is a set of characters,
which can be represented as a list of characters or a string of characters.
Example:

{string-search-not-set '(#/a #/b) "banana") => 2

string-reverse-search-char char siring &optional from (io0)

string-reverse-search-char searches through string in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is char-equal to char, or nil if none is found. Note that the
index returned is from the beginning of the string, although the scarch starts from the
end. If the 10 argument is supplied, it limits the extent of the search.
Example:

(string-reverse-search-char #/n "banana") => 4

string-reverse-search-not-char char string &optional from (to0)
string-reverse-search-not-char searches through string in reverse order, starting from
the index one less than from, which defaults to the length of string, and returns the
index of the first character which is not char-equal to char, or nil if none is found.
Note that the index returned is from the beginning of the string, although the search
starts from the end. If the 70 argument is supplied, it limits the extent of the search.
Example:
(string-reverse-search-not-char #/a "banana") => 4

string-reverse-search key string &optional from (10 0)

string-reverse-search searches for the string key in the string string. The search
proceeds in reverse order, starting from the index onc less than from, which defaults to
the length of string, and rcturns the index of the first (leftmost) character of the first
instance found, or nil if none is found. Note that the index returned is from the
beginning of the string, although the scarch starts from the end. The from condition,
restated, is that the instance of key found is the rightmost one whose rightmost character
is before the from’th character of string. If the 10 argument is supplied, it limits the
extent of the search.

Example:

(string-reverse-search "na" "banana") => 4

string-reverse-search-set charset string &optional from (10 0)
string-reverse-search-set scarches. through string in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is char-equal to some eclement of char-set, or nil if none is
found. Notc that the index returned is from the beginning of the string, although the
scarch starts from the end. If the 0 argument is supplicd, it limits the extent of the
search. char-set is a sct of characters, which can be represented as a list of characters or
a string of characters.

MCEMMAN;EFD.STR 92 24-JU1 -81

Lisp Machine Manual 133 170 to Strings

(string-reverse-seiarch-set "ab" "banana") => 5

string-reverse-search-not-set charset string &optional from (to0)
string-reverse-search-not-set searches through string in reverse order, starting from the
index one less than from, which defaults to the length of string, and returns the index of
the first character which is not char-equal to any eclement of char-set, or nil if none is
found. Note that the index retirned is from the beginning of the string, although the
search starts from the end. If the (o argument is supplied, it limits the extent of the
search. char-set is a set of char:ccters, which can be represented as a list of characters or
a string of characters.
(string-reverse-search-not-set '(#/a #/n) "banana") => 0

See also intern (page 399), which given a string will return "the" symbol with that print
name.
9.5 170 to Strings

The special forms in this section allew you to create 1/0 streams which input from or output
to a string rather than a real 170 device. See section 21.5.1, page 338 for documentation of 1/0
streams.

with-input-from-string (var string [index] [limi{]) Special Form
body...
The form
(with-input-from-string (var string)
body)

evaluates the forms in body with the variable var bound to a stream which reads
characters from the string which is the value of the form string. The value of the special
form is the value of the last form in its body.

The stream is a function that only works inside the with-input-from-string special form,
so be careful what you do with it. You cannot usc it after control leaves the body, and
you cannot nest two with-input-from-string special forms and use both streams since the
special-variable bindings associatcd with the streams will conflict. It is done this way to
avoid any allocation of memory.

After string you may optionally specify two additional "arguments”. The first is index:
(with-input-from-string (var string index)
body)

uses index as the starting index into the string, and scts index to the index of the first
character not read when with-input-from-string returns. If the whole string is read, it
will be sct to the length of the string. Since index is updated it may not be a general
expression; it must be a variable or a setf-able reference. The index is not updated in
the cvent of an abnormal exit from the body, such as a *throw. The value of index is
not updated until with-input-from-string returns, so you can’t use its valuc within the
body to sce how far the rcading has gotten.

MC:TMMAN;FD.STR 92 24-JUI -8

1/0 to Strings 134 Lisp Machine Manual

Use of the index feature prevents multiple values from being returned out of the body,
currently.

(with-input-from-string (var string index limit)
body)
uses the value of the form /imit, if the value is not nil, in place of the length of the
string. If you want to specify a limit but not an index, write nil for index.

with-output-to-string (var [string] [index]) body... Special Form
This special form provides a variety of ways to send output to a string through an 170
stream.

(with-output-to-string (var)
body)
evaluates the forms in body with var bound to a stream which saves the characters output
to it in a string. The value of the special form is the string.

(with-output-to-string (var string)
body)

will append its output to the string which is the value of the form string. (This is like
the string-nconc function; sce page 129.) The value returned is the value of the last
form in the body, rather than the string. Multiple values are not returned. string must
have an array-leader; clement 0 of the array-leader will be used as the fill-pointer. If
string is too small to contain all the output, adjust-array-size will be used to make it
bigger.

(with-cutput-to-string (var string index)
body)
is similar to the above cxcept that index is a variable or setf-able reference which contains
the index of the next character to be stored into. It must be initialized outside the with-
output-to-string and will be updated upon normal exit. The value of index is not
updated until with-output-to-string returns, so you can’t use its value within the body
to sec how far the writing has gotten. 'The presence of index means that string is not
required to have a fill-pointer; if it does have one it will bc updated.

The stream is a "downward closure” simulated with special variables, so be careful what
you do with it. You cannot use it after control leaves the body, and you cannot nest two
with-output-to-string special forms and use both strcams since the special-variable
bindings associated with the streams will conflict. It is done this way to avoid any
allocation of memory.

It is OK to use a with-input-from-string and with-output-to-string nested within one
another, so long as there is only one of each.

Another way of doing output to a string is to use the format facility (see page 346).

MCTMMAN:ED.STR 92 24-JU1 -81

Lisp Machine Manual 135 Maclisp-Compatible Functions

9.6 Maclisp-Compatible Functions
The following functions are providec primarily for Maclisp compatibility.

alphalessp stringl string2
(alphalessp stringl string2) is equivalent to (string-lessp string! string?2).

getchar string index
Returns the index’th character ¢f string as a symbol. Note that 1l-origin indexing is used.
This function is mainly for Maclisp compatibility; aref should be used to index into
strings (however, aref will not coerce symbols or numbers into strings).

getcharn string index
Returns the index’th character of string as a fixnum. Note that l-origin indexing is used.
This function is mainly for Maclisp compatibility; aref should be used to index into
strings (however, aref will not coerce symbols or numbers into strings).

ascii x
ascii is like character, but returns a symbol whose printname is the character instcad of
returning a fixnum.
Examples:
(ascii 101) => A
(ascii 56) => /.
The symbol returned is interned in the current package (see chapter 23, page 392).

maknam char-list
maknam returns an uninterne¢ symbol whose print-name is a string made up of the
characters in char-list.
Example:
(maknam ’(a b #/0 d)) => ab0d

implode char-list
implode is like maknam except that the returned symbol is interned in the current
package.

The samepnamep function is also provided; see page 89.

MC:IMMAN:I-D.STR 92 24-JUL -81

Functions 136 Lisp Machine Manual

10. Functions

Functions are the basic building blocks of Lisp programs. This chapter describes the functions
in Zetalisp that are uscd to manipulate functions. It also explains how to manipulate special
forms and macros.

This chapter contains internal details intended for thosc writing programs to manipulate
programs as wcll as material suitable for the beginner. Feel free to skip sections that look
complicated or uninteresting when reading this for the first time.

10.1 What Is a Function?

There are many different kinds of functions in Zetalisp. Here are the printed representations

of examples of some of them:

foo

(lambda (x) (car (last x)))

(named-Tambda foo (x) (car (last (x))))

(subst (x) (car (last x)))

#<dtp-fef-pointer 1424771 append>

#<dtp-u-entry 270 last>

f#i<dtp-closure 1477464>
We will examine these and other types of functions in detail later in this chapter. There is one
thing they all have in common: a function is a Lisp object that can be applied to arguments. All
of the above objects may be applied to some arguments and will return a value. Functions are
Lisp objects and so can be manipulated in all the usual ways; you can pass them as arguments,
return them as values, and make other Lisp objects refer to them.

10.2 Function Specs

The name of a function does not have to be a symbol. Various kinds of lists describe other
places where a function can be found. A Lisp object which describes a place to find a function is
called a function spec. ("Spec™ is short for "specification”.) Here arc the printed representations of
some typical function specs:

foo
(:property foo bar)
:method tv:graphics-mixin- :draw-Tine)
:internal foo 1)
:within foo bar)
:location #<dtp-locative 7435216>)

e e e

Function specs have two purposes: they specify a place to remember a function, and they
serve o name functions. ‘The most common kind of function spec is a symbol, which specifies
that the function cell of the symbol is the place to remember the function. We will see all the
kinds of function spec, and what they mean, shortly. Function specs are not the same thing as
functions. You cannot, in general, apply a function spec to arguments. The time to use a
function spec is when you want to do something to the function, such as define it, look at its

MC:LMMAN;ID.FUN 58 24-JU1.-81

Lisp Machine Manual 137 Function Specs

definition, or compile it.

Some kinds of functions remember their own names, and some don’t. The "name"
remembered by a function can be any kind of function spec, although it is usually a symbol. In
the examples of functions in the previous section, the onc starting with the symbol named-
lambda, the one whose printed represcntation included dtp-fef-pointer, and the dtp-u-entry
remembered names (the function specs foo, append, and last respectively). The others didn’t
remember their names.

To define a function spec means to make that function spec remember a given function. This
is done with the fdefine function; you give fdefine a function spec and a function, and fdefine
remembers the function in the place specified by the function spec. The function associated with
a function spec is called the definition of the function spec. A single function can be the
definition of more than one function spec at the same time, or of no function specs.

To define a function means to create a new function, and define a given function spec as that
new function. This is what the defun special form does. Several other special forms, such as
defmethod (page 293) and defselect (page 147) do this too.

These special forms that define functions usually take a function spec, creatc a function whose
name is that function spec, and then define that function spec to be the newly-created function.
Most function definitions are done this way, and so usually if you go to a function spec and sce
what function is there, the function’s name will be the same as the function spec. However, if
you define a function named foo with defun, and then define the symbol bar to be this same
function, the name of the function is unaffected; both foo and bar are defined to be the same
function, and the name of that function s foo, not bar.

A function spec’s definition in 3eneral consists of a basic definition surrounded by
encapsulations. Both the basic definition and the encapsulations are functions, but of recognizably
different kinds. What defun creates is a basic definition, and usually that is all there is.
Encapsulations are made by function-altering functions such as trace and advise. When the
function is called, the entire definition, which includes the tracing and advice, is used. If the
function is "redefined” with defun, only the basic definition is changed; the encapsulations are
left in place. Sce the section on encapsulations, scction.10.10, page 153.

A function spec is a Lisp object of one of the following types:

a symbol
The function is remembered in the function cell of the symbol. Sce page 87 for an
explanation of function cells and the primitive functions to manipulate them,

(:property symbol property)
The function is remembered o1 the property list of the symbol: doing (get symbol
property) would return the funciion. Storing functions on property lists is a frequently-
used technique for dispatching (that is, deciding at run-time which function to call, on
the basis of input data).

(:method flavor-name message)

(:method flavor-name method-type message,
The function is remembered inside internal data structures of the favor system, and in the
flavor-method-symbol of the function. Sec the chapter on flavors (chapter 20, page 279)

MC:EMMAN:FDFUN 58 24-JU1.-81

Function Specs 138 Lisp Machine Manual

for details.

(:location pointer)
The function is stored in the cdr of pointer, which may be a locative or a list. This is
for pointing at an arbitrary place which there is no other way to describe. This form of
function spec isn’t useful in defun (and related special forms) because the reader has no
printed representation for locative pointers and always crcates new lists; these function
specs are intended for programs that manipulate functions (sce scction 10.8, page 149).

(:within within-function function-to-affect)
This refers to the meaning of the symbol function-1o-affect, but only where it occurs in
the text of the definition of within-function. 1f you define this function spec as anything
but the symbol function-to-affect itsclf, then that symbol is replaced throughout the
definition of within-function by a new symbol which is then defined as you specify. See
the section on function encapsulation (section 10.10, page 153) for more information.

(:internal finction-spec number)
Some Lisp functions contain internal functions, created by (function (lambda...)) forms.
These internal functions nced names when compiled, but they do not have symbols as
names; instead they arec named by :internal function-specs. function-spec is the containing
function. number is a scquence number; the first internal function the compiler comes
across in a given function will be numbered 0, the next 1, etw. Internal functions are
remembered inside the FEF of their containing function.

(symbol property)
If symbol is not recognized as onc of the keywords above, this function spec is the same
as (:property symbol property). This is provided for compatibility with Maclisp, which
allows this syntax in certain places. This form should be avoided since symbol might
conflict with some existing or future keyword,

Here is an example of the use of a function spec which is not a symbol:
(defun (:property foo bar-maker) (thing &optional kind)
(set-the ’'bar thing (make-bar 'foo thing kind)))
This puts a function on foo’s bar-maker property. Now you can say
(funcall (get 'foo ’'bar-maker) ’'baz)

Unlike the other kinds of function spec, a symbol can be used as a function. If you apply a
symbol to arguments, the symbol’s function definition is used instead. If the definition of the first
symbol is another symbol, the definition of the second symbol is used, and so on, any number of
times. But this is an exception; in gencral, you can’t apply function specs to arguments.

MCT MMANIDIUN 58 24-JUI.-81

Lisp Machine Manual 139 Simple Function Definitions

10.3 Simple Function Definitions

defun Special Form
defun is the usual way of defining a function which is part of a program. A defun form
looks like:

(defun name lambda-lit
body...)
name is the function spec you wish to define as a function. The lambda-list is a list of
the names to give to the arguments of the function. Actually, it is a little more general
than that; it can contain Jambda-list keywords such as &optional and &rest. (These
keywords are explained in section 3.2, page 20 and other keywords are cxplained in
section 10.7, page 148.) Sec page 145 for some addiuonal syntactic featurcs of defun.

defun creates a list which looks like

(named-1ambda name lambda-list body. . .)
and puts it in the function cell of name. name is now defined as a function and can be
called by other forms.

Examples:
(defun addone (x)

(1+ x))

(defurn foo (a &optional (b 5) c &rest e &aux j)
(setq j (+ (addone a) b))
(cond ((not (null c))
(cons j e))

(t 3)))

addone is a function which cxpccts a number as an argument, and returns a number one
larger. foo is a complicated function which takes one required argument, two optional
arguments, and any number of additional arguments which are given to the function as a
list named e.

A declaration (a list starting with declare) can appear as the first element of the body. It
is equivalent to a local-declare (sece page 201) surrounding the entire defun form. For
example,
(defun foo {x)
(declare (special x))
(bar)) ;bar uses x free.
is equivalent to and preferable to
{local-declare ((special x})
(defun foo (x)
(bar)))
(It is preferable because the editor expects the open parenthesis of a top-level function
definition to be the first character on a line, which isn’t possible in the sccond form
without incorrect indentation.)

MC:LMMAN:IFDIUN 58 24-JU11 -81

Simple Function Definitions 140 Lisp Machine Manual

A documentation string can also appear as the first clement of the body (following the
declaration, if there is one). (It shouldn’t be the only thing in the body; otherwise it is
the value returned by the function and so is not interpreted as documentation. A string
as an element of a body other than the last element is only evaluated for side-effect, and
since evaluation of strings has no side effects, they aren’t useful in this position to do any
computation, so they are interpreted as documentation.) This documentation string
becomes part of the function’s debugging info and can be obtained with the function
documentation (sce page 150). The first linc of the string should be a complete sentence
which makes sense read by itself, since there are two editor commands to get at the
documentation, one of which is "brief” and prints only the first line. Example:

(defun my-append (&rest Tists)

"Like append but copies all the lists.

This is Tike the Lisp function append, except that

append copies all lists except the last, whereas

this function copies all of its arguments

including the last one."

-)

defunp Macro
Usually when a function uses prog, the prog form is the entire body of the function; the
definition of such a function looks like (defun name arglist (prog varlist ...)). Although
the use of prog is generally discouraged, prog fans may want to use this special form.
For convenience, the defunp macro can be used to produce such definitions. A defunp
form such as
(defunp fctn (args)
forml
form2
formn)
expands into
(defun fctn (args)
(prog ()
forml
form2

&r.'c'aturn formn)))

You can think of defunp as being like defun except that you can return out of the
middle of the function’s body.

For more information on defining functions, and other ways of doing so, see section 10.6,
page 145.

MC:LMMAN:FD.FUN 58 24-JU1.-81

Lisp Machine Manual 141 Operations the User Can Perform on Functions

10.4 Operations the User Can Perform on Functions

Here is a list of the various things a ‘aser (as opposed to a program) is likely to want to do to
a function. In all cases, you specify a furction spec to say where to find the function.

To print out the definition of the function spec with indentation to make it legible, use
grindef (see page 360). This works only for interpreted functions. If the definition is a compiled
functioni, it can’t be printed out as Lisp code, but its compiled code can be printed by the
disassemble function (sce page 500).

To find out about how to call the function, you can ask to sec its documentation, or its
argument names. (The argument names are usually chosen to have mnemonic significance for the
caller). Use arglist (page 150) to see the argument names and documentation (page 150) to see
the documentation string. There are also editor commands for doing these things: the
CTRL/SHIFT/D and META/SHIFT/D commands are for looking at a function’s documentation,
and CTRL/SHIFT/A is for looking at an argument list. CTRL/SHIFT/A does not ask for the
function name; it acts on the function which is called by the innermost expression which the
cursor is inside. Usually this is the function which will be called by the form you are in the
process of writing,

You can see the function’s debugging info alist by means of the function debugging-info (see
page 150).

When you are debugging, you can use trace (sce page 457) to obtain a printout or a break
loop whenever the function is called. You can customize the dcfinition of the function, either
temporarily or permanently, using advise (see page 460).

10.5 Kinds of Functions

Therc are many kinds of functions in Zetalisp. This section briefly describes cach kind of
function. Notc that a function is also a picce of data and can be passed as an argument,
returned, put in a list, and so forth.

Before we start classifying the functions, we’ll first discuss something about how the evaluator
works. As we said in the basic description of evaluation on page 13, when the cvaluator is given
a list whose first clement is a symbol, the form may be a function form, a spccial form, or a
macro form. If the definition of the symbol is a function, then the function is just applied to the
result of evaluating the rest of the subforms. If the definition is a cons whose car is macro, then
it is a macro form; thesc are explained in chapter 17, page 208. What about spccial forms?

Conceptually, the evaluator knows specially about all special forms (that's why they’re called
that). However, the Zctalisp implementation actually uses the definition of symbols that name
special forms as places to hold picces of the cvaluator. The definitions of such symbols as prog,
do, and, and or actually hold Lisp objects, which we will call special functions. Each of these
functions is the part of the Lisp interpreter that knows how to deal with that special form.
Normally you don’t have to know about this; it’s just part of the hidden internals of how the
cvaluator works. However, if vou try to add cncapsulations to and or somecthing like that,
knowing this will help you understand the behavior you will get.

MC:TMNANIFDLEFUN 58 24-JUL.-81

Kinds of Functions 142 Lisp Machine Manual

Special functions are written like regular functions except that the keywords "e and
8eval (see scction 10.7, page 148) arc used to make some of the arguments be "quoted”
arguments. The evaluator looks at the pattern in which arguments to the special function are
"quoted” or not, and it calls the special function in a special way: for each regular argument, it
passes the result of evaluating the corresponding subform, but for cach "quoted” argument, it
passes the subform itself without evaluating it first. For cxample, cond works by having a special
function that takes a "quoted” &rest argument; when this function is called it is passed a list of
cond clauses as its argument,

If you apply or funcall a special function yourself, you have to understand what the special
form is going to do with its arguments; it is likely to call eval on parts of them. This is different
from applying a regular function, which is passed argument values rather than Lisp expressions.

Defining your own special form, by using "e yourself, can be done; it is a way to
extend the Lisp language. Macros are another way- of cxtending the Lisp language. It is
preferable to implement language extensions as macros rather than special forms, because macros
directly define a Lisp-to-Lisp translation and therefore can be understood by both the interpreter
and the compiler. Special forms, on the other hand, only extend the interpreter. The compiler
has to be modified in an ad hoc way to understand cach new special form so that code using it
can be compiled. Many of the functions documented as special forms in this manual are actually
macros, for this rcason. Since all real programs are cventually compiled, writing your own special
functions is strongly discouraged.

There are four kinds of functions, classified by how they work.

First, there are interpreted functions: you define them with defun, they are represented as
list structure, and they are interpreted by the Lisp evaluator.

Sccondly, there are compiled functions: they are defined by compile or by loading a qfasl
file, they are rcpresented by a special Lisp data type, and they arc exccuted directly by the
microcode. Similar to compiled functions are microcode functions, which are written in microcode
(either by hand or by the micro-compiler) and executed directly by the hardware.

Thirdly, there are various types of Lisp object which can be applied to arguments, but when
they are applied they dig up another function somewhere and apply it instead. These include
dtp-select-method, closures, instances, and entities.

Finally. there are various types of Lisp object which, when used as functions, do something
special related to the specific data type. These include arrays and stack-groups.

MC:LMMAN:IFD.FUN 58 M-JUT-81

Lisp Machine Manual 143 Kinds of Functions

10.5.1 Interpreted Functions

An interpreted function is a piece ¢f list structure which represents a program according to
the rules of the Lisp interpreter. Unlike other kinds of functions, an interpreted function can be
printed out and read back in (it has a printed representation that the reader understands), can be
pretty-printed (see page 360), and can te opened up and examined with the usual functions for
list-structure manipulation.

There are four kinds of interpretcd functions: lambdas, named-lambdas, substs, and

named-substs. A lambda function is the simplest kind. It is a list that looks like this:
(1ambda lambda-list forml form2...)

The symbol lambda identifies this list as a lambda function. lambda-list is a description of what
arguments the function takes; sec section 3.2, page 20 for details. The forms make up the body
of the function. When the function is called, the argument variables are bound to the values of
the arguments as described by lambda-list, and then the forms in the body are cvaluated, one by
one. The value of the function is the valuc of its last form.

A named-lambda is like a lambda but contains an extra element in which the system
remembers the function’s name, documentation, and other information. Having the function’s
name there allows the error handier and other tools to give the user more information. This is
the kind of function that defun creates. A named-lambda function looks like this:

(named-lambda name lambda-list body forms. . .)
If the name slot contains a symbol, it i the function’s name. Otherwise it is a list whose car is
the name and whose cdr is the function’s debugging information alist. See debugging-info, page
150. Note that the name neced not be a symbol; it can be any function spec. For example,

(defun (foo bar) (x)

(car (reverse x)))

will give foo a bar property whose value is

(named-lambda ((:property foo bar)) (x) (car (reverse x)))

A subst is just like a lambdA as far as the interpreter is concerned. It is a list that looks like

this:
(subst lambda-list forml form2...)

The differcnce between a subst and a lambda is the .way they are handled by the compiler. A
call to a normal function is compiled as a closed subroutine; the compiler gencrates code to
compute the values of the arguments and then apply the function to those values. A call to a
subst is compiled as an open subroutine; the compiler incorporates the body forms of the subst
into the function being compiled, substituting the argument forms for references to the variables
in the subst’s lambda-list. This is a simple-minded but useful facility for open or in-line coded
functions. It-is simple-minded because the argument forms can be evaluated multiple times or out
of order, and so the semantics of a subst may not be the same in the interpreter and the
compiler. substs are described more fully on page 215, with the cxplanation of defsubst.

A named-subst is the same as a suabst except that it has a name just as a named-lambda
docs. It looks like
(named-subst name lambda-list forml form2 ...)
where name is interpreted the same way as in a named-lambda.

MC:EMMANEFD.FUN 58 24-JU1-R1

Kinds of Functions 144 Lisp Machine Manual

10.5.2 Compiled Functions

There are two kinds of compiled functions: macrocoded functions and micrecoded functions.
The Lisp compiler converts lambda and named-lambda functions into macrocoded functions. A
macrocoded function’s printed representation looks like:

#<dtp-fef-pointer 1424771 append>
This type of Lisp object is also called a "Function Entry Frame", or "FEF" for short. Like "car"
and "cdr", the name is historical in origin and doesn’t really mean anything. The object contains
Lisp Machine machine code that does the computation expressed by the function: it also contains
a description of the arguments accepted, any constants required, the name, documentation, and
other things. Unlike Maclisp “subr-objects”, macrocoded functions are full-fledged objects and can
be passed as arguments, stored in data structure, and applicd to arguments.

The printed representation of a microcoded function looks like:
#<dtp-u-entry 270 last>
Most microcompiled functions are basic Lisp primitives or subprimitives written in Lisp Machine
microcode. You can also convert your own macrocode functions into microcode functions in some
circumstances, using the micro-compiler.

10.5.3 Other Kinds of Functions

A closure is a kind of function which contains another function and a set of special variable
bindings. When the closure is applied, it puts the bindings into effect and then applics the other
function. When that returns, the closure bindings are removed. Closures are made with the
function closure. See chapter 11, page 158 for more information. Entities are slightly different
from closures; see section 11.4, page 162.

A select-method (dtp-select-method) is an a-list of symbols and functions. When one is
called the first argument is looked up in the a-list to find the particular function to be called.
This function is applied to the rest of the arguments. The a-list may have a list of symbols in
place of a symbol, in which case the associated function is called if the first argument is any of
the symbols on the list. If cdr of last of the a-list is not nil, it is a default handler function,
which gets called if the message key is not found in the a-list. Select-methods can be created
with the defselect special form (see page 147).

An instance is a message-receiving object which has some state and a table of message-
handling functions (called methods). Refer to the chapter on flavors (chapter 20, page 279) for
further information.

An array can be used as a function. The arguments to the array are the indices and the value
is the contents of the clement of the array. This works this way for Maclisp compatibility and is
not recommended usage. Use aref (page 113) instead.

A stack group can be called as a function. This is one way to pass control to another stack
group. Scc chapter 12, page 163.

MC:EMMANFD.FUN 58 24-JUL.-81

Lisp Machine Manual 145 Function-Defining Special Forms

10.6 Function-Defining Special Forras

defun is a special form which is put in a program to define a function. defsubst and macro
are others. This section explains how these special forms work, how they relate to the different
kinds of functions, and how they interface to the rest of the function-manipulation system.

Function-defining special forms typically take as arguments a function spec and « description
of the function to be made, usually in the form of a list of argument names and some forms
which constitute the body of the function. They construct a function, give it the function spec as
itt name, and define the function spec to be the new function. Different special forms make
different kinds of functions. defun makes a named-lambda function, and defsubst makes a
named-subst function. macro makes a macro; though the macro definition is not really a
function, it is like a function as far as dcfinition handling is concerned.

These special forms are used in writing programs because the function names and bodics are
constants. Programs that define functions usually want to compute the functions and their names,
so they use fdefine. Scc page 149.

All of these function-defining special forms alter only the basic definition of the function spec.
Encapsulations are preserved. See section 10.10, page 133.

The special forms only create interpreted functions. There is no special way of defining a
compiled function. Compiled functions are made by compiling interpreted ones. The same special
form which defines the interpreted function, when processed by the compiler, yiclds the compiled
function. Sece chapter 15, page 197 for details.

Note that the editor understands these and other "defining” special forms (c.g. defmethod,
defvar, detmacro, defstruct, ctc.) to some extent, so that when you ask for the definition of
something, the editor can find it in its source file and show it to you. The general convention is
that anything which is used at top level (not inside a function) and starts with def should be a
special form for defining things and shouid be understood by the editor. defprop is an exception,

The defun special form (and the defunp macro which cxpands into a defun) arc used for
creating ordinary interpreted functions (sce page 139).

For Maclisp compatibility, a fype symbol may be inserted between name and lambda-list in
the defun form. The following types arc understood:

expr The same as no type.
fexpr "e and &rest are prefixed to the lambda list.
macro A macro is defined instecad of a normal function.

If lambda-list is a non-nil symbol instecad of a list, the function is rccognized as a Maclisp
Jexpr and it is converted in such a way that the arg, setarg. and listify functions can be used to
access its arguments (sce page 29).

The defsubst special form is used to create substitutible functions. 1t is used just like defun
but produces a list starling with named-subst instcad of one starting with named-lambda. The
named-subst function acts just like the corresponding named-lambda function when applied,

MC:I MMANFDI-UN 58 24-JUE-81

Function-Defining Special Forms 146 Lisp Machine Manual

but it can also be open-coded (incorporated into its callers) by the compiler. See page 215 for
full information.

The macro spccial form is the primitive means of creating a macro. It gives a function spec
a definition which is a macro definition rather than a actual function. A macro is not a function
because it cannot be applied, but it can appear as the car of a form to be evaluated. Most
macros are created with the more powerful defmacro special form. Sce chapter 17, page 208.

The defselect special form defines a select-method function. See page 147.

Unlike the above special forms, the next two (deff and def) do not create new functions. They
simply serve as hints to the cditor that a function is being stored into a function spec here, and
therefore if someone asks for the source code of the definition of that function spec, this is the
place to look for it.

dof Special Form
If a function is created in some strange way, wrapping a def special form around the
code that creates it informs the editor of the connection. The form
(def function-spec
Sforml form2...)
simply evaluates the forms forml, form2, etc. It is assumed that these forms will create
or obtain a function somechow, and make it the definition of finction-spec.

Alternatively, you could put (def function-spec) in front of or anywhere ncar the forms
which define the function. The editor only uses it to tell which line to put the cursor on.

deff function-spec definition-creator Special Form

deff is a simplified version of def. It evaluates the form definition-creator, which should
produce a function, and makes that function the definition of finction-spec, which is not
evaluated. deff is used for giving a function spec a definition which is not obtainable
with the specific defining forms such 'as defun and macro. For example,

(deff foo 'bar)
will make foo cquivalent to bar, with an indircction so that if bar changes foo will
likewise change;

(deff foo (function bar))
copics the definition of bar into foo with no indirection, so that further changes to bar
will have no cffect on foo.

@define Macro
This macro turns into nil, doing nothing. It cxists for the sake of the @ listing
generation program, which uses it to declarc names of special forms which define objects
(such as functions) that @ should cross-reference.

defun-compatibility x
This function is used by defun and the compiler to convert Maclisp-style lexpr, fexpr,
and macro defuns to Zctalisp definitions. x should be the cdr of a {detun ...) form.
defun-compatibility will return a corresponding (defun ..) or (macro ..) form, in the
usual Zetalisp format. You shouldn't ever need to call this yourself,

MCEMMANIEDEFUN 58 24-JUL-81

Lisp Machine Manual 147 Function-Defining Special Forms

defselect Special Form

defselect defines a function which is a select-method. This function contains a table of
subfunctions; when it is called, the first argument, a keyword symbol, is looked up in
the table to determine which subfunction to call. Each subfunction can take a different
number of arguments, and have a different pattern of &optional and &rest arguments.
defselect is useful for a variety of "dispatching” jobs. By analogy with the more general
message passing facilities described in chapter 20, page 279, the subfunctions are
sometimes called methods and the first argument is sometimes called a message.

The special form looks like
(defselect (function-spec default-handler no-which-operations)
(keyword (args...)
body...)
(keyword (args...)
body...)
L)

function-spec is the name of tre function to be defined. default-handler is optional; it
must be a symbol and is a function which gets called if the sclect-method is called with
an unknown message. If default-handler is unsupplied or nil, then an crror occurs if an
unknown message is sent. If no-which-operations is non-nil, the :which-operations
method which would normally be supplicd automatically is suppressed. The :which-
operations mcthod takes no arguments and returns a list of all the message keywords in
the defselect.

If function-spec is a symbol, and default-handler and no-which-operations arc not supplied,
then the first subform of the defselect may be just function-spec by itself, not enclosed in
a list.

The remaining subforms in a defselect define methods. keyword is the message keyword,
or a list of several keywords if several messages arc to be handled by the same
subfunction. args is a lambda-list; it should not include the first argument, which is the
message keyword. body is the body of the function.

A method subform can instcad ook like:

(keyword symbol)
In this case, symbol is the name of a function which is to be called when the keyword
message is received. It will bz called with the same arguments as the sclect-method,
including the message symbol itself.

MCTMMANEFD.FFUN 58 24-JUL-81

Lambda-List Keywords 148 Lisp Machine Manual

10.7 Lambda-List Keywords

This section documents all the keywords that may appear in the "lambda-list" (argument list)
(sse section 3.2, page 20) of a function, a macro, or a speccial form. Some of them are allowed
everywhere, while others arc only allowed in one of these contexts; those are so indicated.

lambda-1ist-keywords Variable
The value of this variable is a list of ail of the allowed "&" keywords. Some of these are
obsolete and don’t do anything; the remaining ones are listed below.

&optional

&rest

&aux

&special

&local

&functional

"e

&eval
&list-of
&body

Separates the required arguments of a function from the optional arguments. See
section 3.2, page 20.

Scparates the required and optional arguments of a function from the rest
argument. There may be only one rest argument. See page 21 for full
information about rest arguments. See section 3.2, page 20.

Scparates the arguments of a function from the auxiliary variables. Following
&aux you can put entrics of the form

(variable initial-value-form)
or just variable if you want it initialized to nil or don’t carc what the initial value
is.

Declares the following arguments and/or auxiliary variables to be special within
the scope of this function.

Turns off a preceding 8special for the variables which follow.

Preceding an argument, tells the compiler that the value of this argument will be
a function. When a caller of this function is compiled, if it passes a quoted
constant argument which looks like a function (a list beginning with the symbol
lambda) the compiler will know that it is intended to be a function rather than a
list that happens to start with that symbol, and will compile it.

Declares that the following arguments arc not to be evaluated. This is how you
create a special function. See the caveats about special forms, on page 142.

Turns off a preceding "e for the arguments which follow.
This is for macros defined by defmacro only. Refer to page 227.

This is for macros defined by defmacro only. It is similar to &rest, but declares
to grindef and the code-formatting module of the cditor that the body forms of a
special form follow and should be indented accordingly. Refer to page 227.

MC:IMMAN:IFDIFUN S8 24-JUIL.-81

Lisp Machine Manual 149 How Programs Manipulate Definitions

10.8 How Programs Manipulate Definitions

fdefine function-spec definiiion &optional (carefully nil) (no-query nil)

This is the primitive which defun and everything else in the system uses to change the
definition of a function spec. If carefully is non-nil, which it usually should be, then only
the basic definition is changed, the previous basic decfinition is saved if possible (see
undefun, page 150), and any encapsulations of the function such as tracing and advice
are carried over from the old definition to the new definition. carefilly also causes the
user to be queried if the function spec is being redefined by a file different from the one
that defined it originally, or if jiunction-spec belongs to a package other than the current
one. However, these warnings are suppressed if cither argument no-query is non-nil, or if
the global variable inhibit-fdefine-warnings is t.

If fdefine is called while a file is being loaded, it records what file the function definition
came from so that the editor can find the source code.

If function-spec is a symbol, and it was already defined as a function, and carefully is
non-nil, the symbol’s :previous-definition property is used to save the previous definition.
If the previous definition is an interpreted function, it is also saved on the :previous-
expr-definition property. These properties are used by the undefun function (page 150),
which restores the previous definition, and the uncompile function (page 197), which
restores the previous interpreted definition. These things are also done for :method
function specs, using the property list of the flavor-method-symbol (sce page 294).

defun and the other function-defining special forms all supply t for carefilly and nil or
nothing for no-query. Operations which construct encapsulations, such as trace, are the
only ones which use nil for carefidly.

inhibit-fdefine-warnings Variable
This variable is normally nil. Setting it to t prevents fdefine from warning you and
asking about questionable function definitions such as a function being redefined by a
different file than defined it originally, or a symbol that belongs to onc package being
defined by a file that belongs to a different package. Sectting it to :just-warn allows the
warnings to be printed out, but prevents the querics from happening; it assumes that
your answer is "yes", i.e. that it is all right to redefine the function.

sys:fdefine-file-pathname Variable
While loading a file, this is the gencric-pathname for the file. The rest of the time it is
nil. fdefine uses this to remember what file defines cach function.

fset-carefully symbol definition &optional force-flag
This function is obsolete. It is equivalent to
(fdefine symbol definition t force-flag)

fdefinedp function-spec
This returns t if function-spec has a definition, or nil if it does not.

MCEMAMAN:IDUN 58 24-JU1.-81

How Programs Examine Functions 150 Lisp Machine Manual

fdefinition function-spec
This returns function-spec’s definition. If it has none, an error occurs.

si:fdefinition-location function-spec
This returns a locative pointing at the cell which contains function-spec’s definition. For
some kinds of function specs, though not for symbols, this can cause data structure to be
created to hold a definition. For example, if function-spec is of the :property kind, then
an entry may have to be added to the property list if it isn’t already there. In practice,
you should write (locf (fdefinition function-spec)) instead of calling this function explicitly.

si:fdefinition-symbol-or-location function-spec

This attempts to return a symbol which is equivalent as a function spec to the one
supplied. The symbol is not created specially so that si:fdefinition~-symbol-or-location
can return it. Rather, some kinds of function specs are implemented in such a way that a
symbol is alrcady part of the data structure and used to hold the function. si:fdefinition-
symbol-or-location is the way to get that symbol. Supplying that symbol as a function
spec is cquivalent to supplying function-spec; in addition, the previous definitions of
function-spec are stored as propertics on that symbol.

For those types of function specs which do not use a symbol's function cell to point to
the definition, si:fdefinition-symbol-or-location returns a locative to the cell which is
used. Don’t do get or putprop on this!

undefun function-spec
If function-spec has a saved previous basic definition, this interchanges the current and
previous basic definitions, leaving the encapsulations alone. This undoes the effect of a
defun, compile, etc. Sce also uncompile (page 197).

10.9 How Programs Examine Functions

These functions take a function as argument and return information about that function.
Some also accept a function spec and operate on its definition. The others do not accept function
specs in general but do accept a symbol as standing for its definition. (Note that a symbol is a
function as well as a function spec). '

documentation function
Given a function or a function spec, this finds its documentation string, which is stored
in various different places depending on the kind of function. If there is no
documentation, nil is returned.

debugging-info function
This returns the debugging info alist of function, or nil if it has none.

arglist function &optional real-flag
arglist is given a function or a function spec, and returns its best guess at the nature of
the function’s lambda-list. It can also return a second value which is a list of descriptive
names for the values returned by the function.

MC:TNMMANFD.FUN 58 24-JU1 -81

Lisp Machine Manual 151 How Programs Examine Functions

If function is a symbol, arglist of its function definition is used.

If the function is an actual lambda-expression, its cadr, the lambda-list, is returned. But
if function is compiled, arglist attempts to reconstruct the lambda-list of the original
definition, using whatever debupging information was saved by the compiler. Sometimes
the actual names of the bound variables are not available, and arglist uses the symbol
si:*unknown* for these. Also, sometimes the initialization of an optional parameter is t0o
complicated for arglist to reconsiruct; for these it returns the symbol si:*hairy*.

Some functions’ real argument I:sts are not what would be most descriptive to a user. A
function may take a &rest argument for technical reasons even though there arc standard
meanings for the first element of that argument. For such cases, the definition of the
function can specify, with a local declaration, a value to be returncd when the user asks
about the argument list. Example:
(defun foo (&rest rest-arg)
(declare (arglist x y &rest z))

real-flag allows the caller of arglist to say that the real argument list should be used even
if a declared argument list exists. Note that while normally declares arc only for the
compiler’s benefit, this kind of declare affects all functions, including interpreted
functions.

arglist cannot be relied upon to return the exactly correct answer, since some of the
information may have been lost. Programs intercsted in how many and what kind of
arguments there are should use args-info instead. In general arglist is to be used for
documentation purposes, not for reconstructing the original source code of the function.

When a function returns multiple values, it is useful to give the values names so that the
caller can be reminded which value is which. By means of a return-list declaration in
the function’s definition, entircly analogous to the arglist declaration above, you can
specify a list of mnemonic names for the returned values. This list will be returned by
arglist as the second value.
(arglist ’'arglist)
=> (function &optional real-flag) and (arglist return-list)

args-info function
args-info returns a fixnum called the "numeric argument descriptor” of the function,
which describes the way the function takes arguments. This descriptor is used internally
by the microcode, the evaluator, and the compiler. function can be a function or a
function spec.

The information is stored in various bits and byte fields in the fixnum, which are
referenced by the symbolic namics shown below. By the usual Lisp Machine convention,
those starting with a single "%" arc bit-masks (meant to be logand’ed or bit-test'ed with
the number), and thosc starting with "%%" are byte descriptors (mecant to be used with
Idb or Idb-test).

MC: T MMAN:IFDLFUN 58 24-JU1.-81

How Programs Examine Functions 152 Lisp Machine Manual

Here are the fields:

%%arg-desc-min-args
This is the minimum number of arguments which may be passed to this function,
i.c. the number of "required” parameters.

%%arg-desc-max-args
This is the maximum number of arguments which may be passed to this function,
ie. the sum of the number of "required" paramecters and the number of
"optional” paramaters. If there is a rest argument, this is not really the maximum
number of arguments which may be passed; an arbitrarily-large number of
arguments is permitted, subject to limitations on the maximum size of a stack
frame (about 200 words).

%arg-desc-evaled-rest
If this bit is set, the function has a "rest” argument, and it is not "quoted”.

%arg-desc-quoted-rest
If this bit is set, the function has a "rest" argument; and it is "quoted”. Most
special forms have this bit.

%arg-desc-fef-quote-hair
If this bit is set, there are some quoted arguments other than the "rest” argument
(if any), and the pattern of quoting is too complicated to describe here. The
ADL (Argument Description List) in the FEF should be consulted. This is only
for special forms.

%arg-desc-interpreted
This function is not a compiled-code object, and a numeric argument descriptor
cannot be computed. Usually args-info will not return this bit, although %args-
info will.

%arg-desc -fef-bind - hair
There is argument initialization, or something else too complicated to describe
here. The ADL (Argument Description List) in the FEF should be consulted.

Note that %arg-desc-quoted-rest and %arg-desc-evaled-rest cannot both be set.
%args-1info function
This is an internal function; it is like args-info but does not work for interpreted

functions. Also, finction must be a function, not a function spec. It exists because it has
to be in the microcode anyway, for apply and the basic function-calling mechanism.

MC:TNMANFDFUN 58 24-JU1.-81

Lisp Machine Manual 153 Encapsulations

10.10 Encapsulations

The definition of a function spcc actually has two parts: the basic definition, and
encapsulations. The basic definition is what functions like defun create, and encapsulations are
additions made by trace or advise to the basic definition. The purpose of making the
encapsulation a separate object is to keep track of what was made by defun and what was made
by trace. If defun is done a second time, it replaces the old basic definition with a new one
while leaving the encapsulations alone.

Only advanced users should cver need to use encapsulations directly via the primitives
explained in this section. The most common things to do with encapsulations are provided as
higher-level, easier-to-use features: trace (see page 457) and advise (see page 460).

The way the basic definition and the cncapsulations are defined is that the actual definition of
the function spec is the outermost cncapsulation; this contains the next encapsulation, and so on.
The innermost encapsulation contains thke basic definition. The way this containing is done is as
follows. An encapsulation is actually a runction whose debugging info alist contains an element of
the form

(si:encapsulated-definition uninterned-symbol encapsulation-type)
The presence of such an element in the debugging info alist is how you recognize a function to
be an cncapsulation. An encapsulation is usually an interpreted function (a list starting with
named-lambda) but it can be a compiied function also, if the application which created it wants
to compile it.

uninterned-symbol’s function definiticn is the thing that the encapsulation contains, usually the
basic definition of the function spec. Or it can be another cncapsulation, which has in it another
debugging info item containing another uninterned symbol. Eventually you get to a function
which is not an cncapsulation; it daes not have the sort of debugging info item which
encapsulations all have. That function is the basic definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsulation, period.
The basic definition is not the definition. If you are asking for the definition of the function spec
because you want to apply it, the outermost encapsulation is cxactly what you want. But the
basic definition can bc found mechanically from the definition, by following the decbugging info
alists. So it makes sense to think of it as a part of the definition. In regard to the function-
defining special forms such as defun, it is convenient to think of the encapsulations as connccting
between the function spec and its basic dcfinition.

An cncapsulation is created with the macro si:encapsulate.

si:encapsulate Macro
A call to si:encapsulate looks like
(si:encapsulate fiurction-spec outer-function lype
body-form
extra-debugging-info)
All the subforms of this macco arc cvaluated. In fact, the macro could almost be
replaced with an ordinary function, except for the way body-form is handled.

MCEMMANTDUN S8 2-JUL -8

Encapsulations 154 Lisp Machine Manual

Sunction-spec evaluates to the function spec whose definition the new encapsulation should
become. outer-function is another function spec, which should often be the same -one. Its
only purpose is to be used in any error messages from si:encapsulate.

type cvaluates to a symbol which identifics the purpose of the encapsulation; it says what
the application is. For example, it could be advise or trace. The list of possible types is
defined by the system because encapsulations are supposed to be kept in an order
according to their type (see si:encapsulation-standard-order, page 155). ifype should
have an si:encapsulation-grind-function property which tells grindef what to do with an
encapsulation of this type.

body-form is a form which cvaluates to the body of the encapsulation-definition, the code
to be executed when it is called. Backquote is typically used for this expression; see
section 17.2.2, page 211. si:encapsulate is a macro because, while body is being
evaluated, the variable si:encapsulated-function is bound to a list of the form (function
uninterned-symbol), referring to the uninterned symbol used to hold the prior definition of
Junction-spec. 1f si:encapsulate were a function, body-form would just get evaluated
normally by the evaluator before si:encapsulate ever got invoked, and so there would be
no opportunity to bind si:encapsulated-function. The form body-form should contain
(apply ,si:encapsulated-function arglist) somewhere if the encapsulation is to live up to
its name and truly serve to cncapsulate the original definition. (The variable arglist is
bound by some of the code which the si:encapsulate macro produces automatically.
When the body of the encapsulation is run arglist’s value will be the list of the arguments
which the encapsulation received.)

extra-debugging-info evaluates to a list of extra items to put into the debugging info alist
of the encapsulation function (besides the one starting with si:encapsulated-definition
which every encapsulation must have). Some applications find this useful for recording
information about the encapsulation for their own later use.

When a special function is encapsulated. the encapsulation is itself a special function with
the samec argument quoting pattern. (Not all quoting patterns can be handled; if a
particular special form’s quoting pattern cannot be handled, si:encapsulate signals an
crror.) Therefore, when the outecrmost encapsulation is started, cach argument has been
cvaluated or not as appropriate. Becausc cach encapsulation calls the prior definition with
apply, no further cvaluation takes place, and the basic definition of the special form also
finds the arguments cvaluated or not as appropriate. The basic definition may call eval on
some of these arguments or parts of them; the encapsulations should not.

Macros cannot be encapsulated, but their expander functions can be; if the definition of
Sunction-spec is a macro, then si:encapsulate automatically cncapsulates the cxpander
function instecad. In this case, the definition of the uninterned symbol is the original
macro definition, not just the original expander function. It would not work for the
encapsitlation to apply the macro definition. So during the cvaluation of body-form,
si:encapsulated-function is bound to the form (cdr (function wninterned-symbol)), which
extracts the expander function from the prior definition of the macro.

MCEMMANFDUN 58 24-JU1 81

Lisp Machine Manual 155 Encapsulations

Because only the expander function is actually encapsulated, the encapsulation docs not
see the evaluation or compilation of the expansion itself. The value returned by the
encapsulation is the expansion of the macro call, not the value computed by the
expansion.

It is possible for one function to have multiple cncapsulations, created by different subsystems.
In this case, the order of encapsulations is independent of the order in which they were made. It
depends instead on their types. All possible encapsulation types have a total order and a new
encapsulation is put in the right place amnong the existing encapsulations according to its type and
their types.

si:encapsulation-standard-order Variable
The value of this variable is a list of the allowed encapsulation types, in the order that
the encapsulations are supposed 10 be kept in (innermost encapsulations first). If you want
to add new kinds of encapsulations, you should add another symbol to this list. Initially
its value is
(advise trace si:rename-within)

advise encapsulations are used to hold advice (sec page 460). trace encapsulations are
used for implementing tracing (see page 457). sirename-within encapsulations are used
to record the fact that function specs of the form (:within within-function altered-function)
have been defined. The encapsulation goes on within-function (see section 10.10.1, page
156 for more information).

Every symbol used as an encapsulation type must be on the list si:encapsulation-standard-
order. In addition, it should have an si:encapsulation-grind-function property whose valuc is a
function that grindef will call to process cncapsulations of that type. This function nced not take
care of printing the encapsulated function because grindef will do that itsclf. But it should print
any information about the encapsulation itself which the user ought to sce. Refer to the code for
the grind function for advise to sece how to write one.

To find the right place in the ordering to insert a new encapsulation, it iS necessary to parse
existing ones. This is done with the function si:unencapsulate-function-spec.

si:unencapsulate-function-spec function-spec &optional encapsulation-types
This takes one function spec and returns another. If the original function spec is
undefined, or has only a basic definition (that is, its definition is not an encapsulation),
then the original function spec is returned unchanged.

If the definition of function-spec is an encapsulation, then its debugging info is cxamined
to find the uninterned symbol which holds the encapsulated definition, and also the
encapsulation type. If the encapsulation is of a type which is to be skipped over, the
uninterned symbol replaces the original function spec and the process repeats.

The value returned is the uninterned symbol from inside the last encapsulation skipped.
This uninterned symbol is the first one which does not have a definition which is an
encapsulation that should be skipped. Or the value can be function-spec if function-spec’s
definition is not an encapsulation which should be skipped.

MC:EMMAN:FD.FUN 58 24-JU1 -81

Encapsulations 156 Lisp Machine Manual

The types of encapsulations to be skipped over are specified by encapsulation-types. This
can be a list of the types to be skipped, or nil meaning skip all encapsulations (this is the
default). Skipping all encapsulations means returning the uninterned symbol which holds
the basic definition of function-spec. That is, the definition of the function spec returned
is the basic definition of the function spec supplied. Thus,

(fdefinition (si:unencapsulate-function-spec ’foo))
returns the basic definition of foo, and

(fdefine (si:unencapsulate-function-spec 'foo) ’'bar)
scts the basic definition (just like using fdefine with carefully supplied as t).

encapsulation-types can also be a symbol, which should be an encapsulation type; then we
skip all types which are supposed to come outside of the specified type. For example, if
encapsulation-1ypes is trace, then we skip all types of encapsulations that come outside of
trace encapsulations, but we do not skip trace encapsulations themselves. The result is a
function spec which is where the trace encapsulation ought to be, if there is one. FEither
the definition of this function spec is a trace encapsulation, or there is no trace
encapsulation anywhere in the definition of function-spec, and this function spec is where
it would belong if there were one. For example,
(let ((tem (si:unencapsulate-function-spec spec 'trace)))
(and (eq tem (si:unencapsulate-function-spec tem ’(trace}))
(si:encapsulate tem spec 'trace ‘(...body...))))

finds the place where a trace encapsulation ought to go, and makes one unless there is
already onc there.

(let ((tem (si:unencapsulate-function-spec spec ’trace)))
(fdefine tem (fdefinition (si:unencapsulate-function-spec
tem ’(trace)))))
climinates any trace encapsulation by replacing it by whatever it encapsulates. (If there is
no trace encapsulation, this code changes nothing.)

These examples show how a subsysiem can insert its own type of encapsulation in the
proper sequence without knowing the names of any other types of encapsulations. Only
the variable si:encapsulation-standard-order, which is used by si:unencapsulate-
function-spec, knows the order.

10.10.1 Rename-Within Encapsulations

One special kind of encapsulation is the type sirrename-within. This encapsulation goes
around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within foo bar), then bar gets renamed to altered-bar-
within-foo wherever it is called from foo, and foo gets a si:rename-within cncapsulation to
record the fact. The purpose of the encapsulation is to cnable various parts of the system to do
what scems natural to the user. For example, grindef (sce page 360) notices the encapsulation,
and so knows to print bar instcad of altered-bar-within-foo. when grinding the definition of
foo.

MCEMMAN:FD.FUN 58 24-JUI -81

Lisp Machine Manual 157 Encapsulations

Also, if you redefine foo, or trace or advise it, the new definition gets the same renaming
done (bar replaced by altered-bar-within-foo). To makc this work, everyone who alters part of
a function definition should pass the new part of the definition through the function si:rename-
within-new -definition - maybe.

si:rename-within-new-definition-maybe function-spec new-structure
Given new-structure which is gcing to become a part of the definition of function-spec,
perform on it the replacements described by the si:rename-within encapsulation in the
definition of function-spec, if there is one. The altered (copied) list structure is returned.

It is not necessary to call this function yourself when you replace the basic definition
because fdefine with carefully supplied as t does it for you. si:encapsulate docs this to
the body of the new-encapsulation. So you only need to call si:rename-within-new-
definition-maybe yourself if you are rplac’ing part of the definition.

For proper results, function-spec must be the outer-level function spec. That is, the value
returned by si:unencapsulate-function-spec is not the right thing to use. It will have
had one or more encapsulations stripped off, including the si:rename-within encapsulation
if any, and so no renamings will be done.

MO MMANIDIUN S8 24-JU1-81

Closures 158 Lisp Machine Manual

11. Closures

A closure is a type of Lisp functional object useful for implementing certain advanced access
and control structures. Closures give you more explicit control over the environment, by allowing
you to save the environment created by the entering of a dynamic contour (i.e. a lambda, do,
prog, progv, let, or any of several other spccial forms), and then use that environment
elsewhere, even after the contour has been exited.

11.1 What a Closure Is

There is a view of lambda-binding which we will usc in this section because it makes it easier
to explain what closures do. In this view, when a variable is bound, a new value cell is created
for it. The old value cell is saved away somewhere and is inaccessible. Any references to the
variable will get the contents of the new value cell, and any setq’s will change the contents of
the new value cell. When the binding is undone, the new value cell goes away, and the old
value cell, along with its contents, is restored.

For cxample, consider the following scquence of Lisp forms:
(setq a 3)

(let ((a 10))
(print (+ a 6)))

(print a)

Initially there is a value cell for a, and the setq form makes the contents of that value cell be 3.
Then the lambda-combination is evaluated. a is bound to 10: the old value cell, which still
contains a 3, is saved away, and a new valuc cell is crecated with 10 as its contents. The
reference to a inside the lambda expression evaluates to the current binding of a, which is the
contents of its current value cell, namely 10. So 16 is printed. Then the binding is undone,
discarding the new value cell, and restoring the old value cell which still contains a 3. The final
print prints out a 3.

The form (closure var-list function), where varlist is a list of variables and function is any
function, creates and returns a closure. When this closure is applied to some arguments, all of
the value cells of the variables on var-list are saved away, and the value cells that those variables
had ar the time closure was called (that is, at the time the closurc was created) are made to be
the value cells of the symbols. ‘Then fuiction is applied to the argument. (This paragraph is
somewhat complex, but it completely describes the operation of closures; if you don’t understand
it, come back and read it again after reading the next two paragraphs.)

Here is another, lower level explanation. The closure object stores several things inside of it.
First, it saves the function. Sccondly, for cach variable in var-list, it remembers what that
variable’s value cell was when the closure was created. Then when the closure is called as a
function, it first temporarily restores the value cells it has remembered inside the closure, and
then applics function to the same arguments to which the closure itself was applicd. When the
function returns, the value cells are restored to be as they were before the closure was called.

MC:TMMAN:FD.CLO 30 24-JU11 -81

Lisp Machine Manual 159 What a Closure Is

Now, if we evaluate the form
(setq a
(let ((x 3))
(closure ’(x) ’'frob)))
what happens is that a new value cell is created for x, and its contents is a fixnum 3. Then a
closure is created, which remembers the function frob, the symbol x, and that value cell. Finally
the old value cell of x is restored, and the closurc is returned. Notice that the new value cell is
still around, because it is still known about by the closure. When the closure is applied, say by
doing (funcalla7), this value cell will be restored and the value of x will be 3 again. If frob
uses x as a free variable, it will see 3 as the value.

A closure can be made around any function, using any form which evaluates to a function.
The form could evaluate to a lambda expression, as in ‘(lambda () x), or to a compiled function,
as would (function (lambda () x)). In the example above, the form is 'frob and it cvaluates to
the symbol frob. A symbol is also a good function. It is usually better to close around a symbol
which is the name of the desired function, so that the closure points to the symbol. Then, if the
symbol is redefined, the closure will use the new definition. If you actually prefer that the
closure continue to use the old definition which was current when the closure was made, then
close around the definition of the symbol rather than the symbol itself. In the above example,
that would be done by :

(closure '(x) (function frob))

Because of the way closures are impolemented, the variables to be closed over must not get
turned into "local variables” by the ccmpiler. Therefore, all such variables must be declared
special. This can be done with an explcit declare (sce page 200), with a special form such as
defvar (page 19), or with let-closed (page 161). In simple cascs, a local-declare around the
binding will do the job. Usually the compiler can tell when a special declaration is missing, but
in the case of making a closurc the corapiler detects this after already acting on the assumption
that the variable is local, by which time it is too late to fix things. The compiler will warn you if
this happens.

In Zetalisp’s implementation of closures, lambda-binding never rcally allocates any storage to
create new value cells. Value cells are only created by the closure function itself, when they are
needed. Thus, implementors of large systems need net worry about storage allocation overhead
from this mechanism if they are not using closures.

Zetalisp closures are not closures in the true sense, as they do not save the whole variable-
binding environment; however, most of that cnvironment is irrelevant, and the cxplicit declaration
of which variables arc to be closed allows the implementation to have high efficiency. They also
allow the programmer to explicitly choose for each variable whether it is to be bound at the point
of call or bound at the point of definition (e.g. creation of the closure), a choice which is not
conveniently available in other languages. In addition the program is clearer because the intended
effect of the closure is made manifest by listing the variables to be affected.

The implementation of closures (which it not usually necessary for you to understand) involves
two kinds of value cells. Every symbol has an internal value cell, which is where its value is
normally stored. When a variable is closed over by a closure. the variable gets an external value
cell 10 hold its value. ‘I'he external value cells behave according to the lambda-binding model
used carlicr in this scction. The value in the external value cell is found through the usual access

MC:LMMAN:FD.CLO 30 ' 24-JU1.-81

Examples of the Use of Closures 160 Lisp Machine Manual

mechanisms (such as evaluating the symbol, calling symeval, etc.), because the internal value cell
is made to contain an invisible pointer to the external value cell currently in effect. A symbol
will use such an invisible pointer whenever its current value cell is a value cell that some closure
is remembering; at other times, there won't be an invisible pointer, and the value will just reside
in the internal value cell.

11.2 Examples of the Use of Closures

One thing we can do with closures is to implement a generator, which is a kind of function
which is called successively to obtain successive elements of a sequence. We will implement a
function make-list-generator, which takes a list, and rcturns a generator which will return
successive elements of the list. When it gets to the end it should return nil.

The problem is that in between calls to the generator, the gencrator must somehow remember
where it is up to in the list. Since all of its bindings are undone when it is exited, it cannot save
this information in a bound variable. It could save it in a global variable, but the problem is
that if we want to have more than one list generator at a time, they will all try to use the same
global variable and get in each other’s way.

Here is how we can use closures to solve the problem:
(defun make-list-generator (1)
{(declare (special 1))
(closure (1)
(function (lambda ()
(progl (car 1)
. (setq 1 (cdr 1)))))))

Now we can make as many list generators as we like; they won’t get in each other’s way because
cach has its own (external) value cell for I. Each of these value cells was crcated when the
make-list-generator function was entered, and the value cells are remembered by the closures.

The following form uses closures to creatc an advanced accessing environment:
(declare (special a b))

(defun foo ()
(setq a 5))

(defun bar ()
(cons a b))

(let ((a 1)
(b 1))

(setq x (closure '(a b) ’foo))

(setq y (closure '(a b) ’'bar)))
When the let is cntered, new value cells are created for the symbols a and b, and two closures
arc crcated that both point to those value cells. If we do (funcallx). the function foo will be
run, and it will change the contents of the remembered value cell of a to 5. If we then do
(funcally), the function bar will return (5.1). This shows that the value cell of a seen by the
closure y is the same value cell scen by the closure x. The top-level value cell of a is unaffected.

MC:EMMAN:EFD.CLO 30 24-JU1.-81

Lisp Machine Manual 161 Closure-Manipulating Functions

11.3 Closure-Manipulating Functions

closure varlist function
This creates and returns a closure of function over the variables in var-list. Note that all
variables on var-list must be declared special if the function is to compile correctly.

To test whether an object is a closure, use the closurep predicate (see page 10). The typep
function will return the symbol closure if given a closure. (typep x 'closure) is cquivalent to
(closurep x).

symeval-in-closure closure symbol
This returns the binding of symbol in the environment of closure; that is, it returns what
you would get if you restored the value cells known about by closure and then evaluated
symbol. This allows you to "lock around inside" a closure. If symbol is not closed over
by closure, this is just like symeval.

set-in-closure closure symbol x
This sets the binding of symbol 'n the environment of closure to x; that is, it does what
would happen if you restored the value cells known about by closure and then set symbol
to x. This allows you to change the contents of the value cells known about by a
closure. If symbol is not closed cver by closure, this is just like set.

locate-in-closure closure symbol
This returns the location of the place in closure where the saved value of symbol is stored.
An cquivalent form is (locf (symeval-in-closure closure symbol)).

closure-alist closure
Returns an alist of (symbol . value) pairs describing the bindings which the closure
performs when it is called. This list is not the same onc that is actually stored in the
closure; that one contains pointers to value cells rather than symbols, and closure-alist
translates them back to symbols s0 you can understand them. As a result, clobbering part
of this list will not change the closure.

closure-function closure
Returns the closed function from closure. This is the function which was the sccond
argument to closure when the closure was created.

let-closed ((variable value)..) function Special Form
When using closures, it is very common to bind a set of variables with initial values, and
then make a closure over those variables. Furthermore the variables must be declared as
"special” for the compiler. let-closed is a special form which does ail of this. It is best
described by example:

MCEMMAN:ED.CLO 30 24-JUI-81

Entities 162 Lisp Machine Manual

(1et-closed ((a 5) b (c 'x))
(function (lambda () ...)))

macro-expands into

(Tocal-declare ((special a b c))
(1et ((a b) b (¢ 'x))
(closure '(a b c¢)
(function (lambda () ...)))))

11.4 Entities

An entity is almost the same thing as a closure; the data type is nominally different but an
entity behaves just like a closure when applied. The difference is that some system functions,
such as print, operate on them differently. When print sees a closure, it prints the closure in a
standard way. When print secs an entity, it calls the entity to ask the entity to print itself.

To some degree, entities are made obsolete by flavors (sce chapter 20, page 279). The use of
entities as message-receiving objects is explained in section 20.14, page 311.

entity variable-list function
Returns a newly constructed entity. This function is just like the function closure except
that it returns an entity instcad of a closure.

To test whether an object is an entity, use the entityp predicate (see page 10). The functions
symeval-in-closure, closure-alist, closure-function, etc. also operatc on entitics.

MO MMANED.CLO 30 24-JUL-81

Lisp Machine Manual 163 Stack Groups

12. Stack Groups

A stack group (usually abbreviated "SG") is a type of Lisp object useful for implementaticn
of certain advanced control structurcs such as coroutines and generators. Processes, which are a
kind of coroutine, arc built on top of stack groups (sece chapter 25, page 428). A stack group
represents a computation and its internal state, including the Lisp stack.

At any time, the computation being performed by the Lisp Machine is associated with one
stack group, called the current or runring stack group. The operation of making some stack
group be the current stack group is called a resumption or a stack group switch; the previously
running stack group is said to have resumed the new stack group. The resume operation has two
parts: first, the state of the running ccmputation is saved away inside the current stack group,
and secondly the state saved in the new stack group is restored, and the new stack group is made
current. Then the computation of the new stack group resumes its course.

The stack group itself holds a great dcal of statc information. It contains the control stack, or
"regular PDL". The control stack is what you are shown by the backtracing commands of the
error handler (Control'B, Mecta-B, and Control-Meta-B); it remembers the function which is
running, its caller, its caller’s caller, etc., and the point of execution of cach function (the "return
addresses” of each function). A stack group also contains the ecnvironment stack, or "special
PDL". This contains all of the valucs saved by lambda-binding. The name "stack group” derives
from the existence of these two stacks. Finally, the stack group contains various internal state
information (contents of machine registers and so on).

When the state of the current stack group is saved away, all of its bindings are undone, and
when the state is restored, the bind'ngs are put back. Note that although bindings are
temporarily undone, unwind-protect handlers are not run by a stack-group switch (sec let-
globally, page 17).

Each stack group is a scparatc environment for purposes of function calling, throwing,
dynamic variable binding, and condition signalling. All stack groups run in the same address
space, thus they share the same Lisp data and the same global (not lambda-bound) variables.

When a new stack group is created, it is empty: it doen’t contain the state of any
computation, so it can’t be resumed. In order to get things going, the stack group must be set to
an initial state. This is done by "presatting” the stack group. To preset a stack group, you
supply a function and a sct of arguments. The stack group is placed in such a state that when it
is first resumed, this function will call those arguments. The function is called the “initial”
function of the stack group.

MC:T.MMAN:IFD.SG 51 24-1U1.-81

Resuming of Stack Groups 164 Lisp Machine Manual

12.1 Resuming of Stack Groups

The interesting thing that happens to stack groups is that they resume each other. When one
stack group resumes a sccond stack group, the current state of Lisp exccution is saved away in
the first stack group, and is restored from the second stack group. Resuming is also called
"switching stack groups”.

At any time, there is one stack group associated with the current computation; it is called the
current stack group. The computations associated with other stack groups have their states saved
away in memory, and they are not computing. So the only stack group that can do anything at
all, in particular resuming other stack groups, is the current one.

You can look at things from the point of view of one computation. Suppose it is running
along, and it resumes some stack group. Its state is saved away into the current stack group, and
the computation associated with the one it called starts up. The original computation lies dormant
in the original stack group, while other computations go around resuming each other, until finally
the original stack group is resumed by someone. Then the computation is restored from the stack
group and gets to run again.

There are several ways that the current stack group can resume other stack groups. This
section describes all of them.

Associated with each stack group is a resumer. The resumer is nil or another stack group.
Some forms of resuming examine and alter the resumer of some stack groups.

Resuming has another ability: it can transmit a Lisp object from the old stack group to the
new stack group. Each stack group specifies a value to transmit whenever it resumes another stack
group; whenever a stack group is resumed, it receives a value.

In the descriptions below, let ¢ stand for the current stack group, s stand for some other
stack group, and x stand for any arbitrary Lisp object.

Stack groups can be used as functions. They accept one argument. If ¢ calls s as a function
with one argument x, then s is resumed, and the object transmitted is x. When ¢ is resumed
(usually—but not necessarily—by s), the object transmitted by that resumption will be returned as
the value of the call to s. This is one of the simple ways to resume a stack group: call it as a
function. The value you transmit is the argument to the function, and the value you reccive is
the value returned from the function. Furthermore, this form of resuming sets s’s resumer to be
c.

Another way to resume a stack group is to use stack-group-return. Rather than allowing
you to specify which stack group to resume, this function always resumes the resumer of the
current stack group. Thus, this is a good way to resume whoever it was who resumed you,
assuming he did it by function-calling. stack-group-return takes onc argument which is the
object to transmit. It returns when someone resumes the current stack group, and returns one
valuc, the object that was transmitted by that resumption. stack-group-return docs not affect
the resumer of any stack group.

MC:TMMAN:IFD.SG 51 24-JU1.-81

Lisp Machine Manual 165 Stack Group States

The most fundamental way to do resuming is with stack-group-resume, which takes two
arguments: the stack group, and a velue to transmit. It returns when someone resumes the
current stack group, returning the value that was transmitted by that resumption, and does not
affect any stack group’s resumer.

If the initial function of ¢ attempts to return a value x, the regular kind of Lisp function
return cannot take place, since the function did not have any caller (it got there when the stack
group was initialized). So instcad of ncrmal function returning, a "stack group return” happens.
¢’s resumer is resumed, and the value transmitted is x. ¢ is left in a state ("exhausted") from
which it cannot be resumed again; any attempt to resume it will signal an crror. Presetting it will
make it work again.

Those are the "voluntary” forms of stack group switch; a resumption happens because the
computation said it should. There are also two "involuntary” forms, in which another stack group
is resumed without the explicit request of the running program.

If an error occurs, the current stack group resumes the ecrror handler stack group. The value
transmitted is partially descriptive of the error, and the error handler looks inside the saved state
of the erring stack group to get the rest of the information. The error handler recovers from the
error by changing the saved state of the erring stack group and then resuming it.

When certain events occur, typically a 1-second clock tick, a sequence break occurs. This
forces the current stack group to resume a special stack group called the scheduler (sec section
25.1, page 429). The scheduler implements processes by resuming, one after another, the stack
group of each process that is ready to run.

sys:%current-stack-group-previous-stack-group Variable
The binding of this variable is the resumer of the current stack group.

sys:%current-stack-group Variable
The value of sys:%current-stack-group is the stack group which is currently running. A
program can use this variable to get its hands on its own stack group.

12.2 Stack Group States

A stack group has a state, which controls what it will do when it is resumed. The code
number for the state is returncd by the function sys:sg-current-state. 'This number will be the
value of one of the following symbols. Only the states actually used by the current system are
documented here; some other codes are defined but not used.

sys:sg-state-active
The stack group :s the current one.

sys:sg-state -resumable
The stack group is waiting to be resumed, at which time it will pick up
its saved machinc state and continue doing what it was doing before.

sys:sg-state-awaiting-return
The stack group called some other stack group as a function. When it is
resumed, it will return from that function call,

MC:T MMAN:IFD.SG 51 24-JUT-8]

Stack Group Functions 166 Lisp Machine Manual

sys:sg-state -awaiting -initial-call
The stack group has becn preset (sec below) but has never been called.
When it is resumed, it will call its initial function with the preset
arguments.

sys:sg-state -exhausted
The stack group’s initial function has returned. It cannot be resumed.

sys:sg-state-awaiting-error-recovery
When a stack group gets an error it goes into this state, which prevents
anything from happening to it until the error handler has looked at it. In
the meantime it cannot be resumed.

sys:sg-state-invoke-call-on-return
When the stack group is resumed, it will call a function. The function
and arguments are alrcady set up on the stack. The dcbugger uses this to
force the stack group being debugged to do things.

12.3 Stack Group Functions

make-stack-group name- &optional options
This creates and returns a new stack group. name may be any symbol or string; it is
used in the stack group’s printed representation, options is a list of alternating keywords
and values. The options arc not too useful; most calls to make-stack-group don’t need
any options at all. The options are:

:sg-area The area in which to create the stack group structure itself. Defaults to
the default area (the value of default-cons-area).

:regular-pdl-area
The area in which to create the regular PDI.. Note that this may not be
any area; only certain areas will do, because regular PDLs are cached in
a hardware device called the pdl buffer. The default is sys:pdi-area.

:special-pdl-area
The area in which to create the special PDIL. Defaults to the default area
(the valuc of default-cons-area).

rregular-pdl-size
Length of the regular PDL to be created. Defaults to 3000.

:special-pdl-size
Length of the special PDL to be created. Defaults to 2000.

:swap-sv-on-call-out

:swap-sv-of-sg-that-calls-me
These flags default to 1. If these are 0, the system docs not maintain
separate binding environments for cach stack group. You do not want to
usc this feature.

trap-enable This determines what o do if a microcode error occurs. If it is 1 the
system tries to handle the error; if it is O the machine halts. Defaults to
1.

MCENMNANFD.SG 5] 24-1U1 -81

Lisp Machine Manual v 167 Input/Output in Stack Groups

:safe If this flag is 1 (the default), a strict call-return discipline among stack-
groups s enforced. If 0, no restriction on stack-group switching is
imposed.

stack-group-preset stack-group function &rest arguments
This sets up stack-group so that when it is resumed, function will be applied to arguments
within the stack group. Both stacks are made empty; all saved state in the stack group is
destroyed. stack-group-preset is typically used to initialize a stack group just after it is
made, but it may be done to any stack group at any time. Doing this to a stack group
which is not exhausted will destroy its present state without properly cleaning up by
running unwind-protects.

stack-group-resume s Xx
Resumes s, transmitting the value x. No stack group’s resumer is affected.

stack-group-return x
Resumes the current stack group’s resumer, transmitting the value x. No stack group’s

resumer is affected.

symeval-in-stack-group symbol sg
Evaluates the variable symbol in the binding environment of sg. If sg is the current stack
group, this is just symeval. Otherwisc it looks inside sg to see if symbol is bound there;
if so, the binding is returncd; if not, the global value is returned. If the variable has no
value this will get an unbound-variable error.

There are a large number of functions in the sys: and eh: packages for manipulating the
internal details of stack groups. These arc not documented here as they are not necessary for
most users or even system programmers to know about.

12.4 Input/Output in Stack Groups

Because each stack group has its own set of dynamic bindings, a stack group will not inherit
its creator’s value of terminal-io (scc page 343), nor its caller’s, unless you make spccial provision
for this. The terminal-io a stack group gets by default is a "background™ strcam which does not
normally expect to be used. If it is used, it will turn into a "background window" which will
request the user’s attention. Usually this is because an error printout is trying to be printed on
the stream. [This will all be explained in the window system documentation.]

If you write a program that uscs raultiple stack groups, and you want them all to do input
and output to the terminal, you should pass the valuc of terminal-io to the top-level function of
cach stack group as part of the stack-group-preset, and that function should bind the variable
terminal-io.

Another technique is to usc a closure as the top-level function of a stack group. This closure
can bind terminal-io and any other variables that arc desired to be shared between the stack

group and its creator.

MC:LMMAN:I'D.SG 51 24-JUI.-81

An Example of Stack Groups 168 Lisp Machine Manual

12.5 An Example of Stack Groups

The canonical coroutine example is the so-called samefringe problem: Given two trees,
determine whether they contain the same atoms in the same order, ignoring parenthesis structure.
A better way of saying this is, given two binary trees built out of conses, determine whether the
sequence of atoms on the fringes of the trees is the same, ignoring differences in the arrangement
of the internal skeletons of the two trecs. Following the usual rule for trees, nil in the cdr of a
cons is to be ignored.

One way of solving this problem is to use generator coroutines. We make a generator for
cach tree. Each time the generator is called it returns the next element of the fringe of its tree.
After the gencrator has cxamined the entire tree, it returns a special "exhausted” flag. The
gencrator is most naturally written as a recursive function. The use of coroutines, i.e. stack
groups, allows the two generators to recurse scparately on two different control stacks without
having to coordinate with cach other.

The program is very simple. Constructing it in the usual bottom-up style, we first write a
recursive function which takes a tree and stack-group-returns cach element of its fringe. The
stack-group-return is how the gencrator coroutine delivers its output. We could easily test this
function by changing stack-group-return to print and trying it on some examples.

(defun fringe (tree)
(cond ((atom tree) (stack-group-return tree))
(t (fringe (car tree))
(if (not (null (cdr tree)))
(fringe (cdr tree))))))

Now we package this function inside another, which takes care of returning the special
"exhausted" flag.
(defun fringel (tree exhausted)
(fringe tree)
exhausted)

The samefringe function takes the two trees as arguments and returns t or nil. It creates two
stack groups to act as the two generator coroutines, presets them to run the fringe1 function,
then goes into a loop comparing the two fringes. The value is nil if a difference is discovered, or
t if they are still the same when the end is reached.

(defun samefringe (treel tree?)
(let ((sgl (make-stack-group "samefringe1"))
(sg2 (make-stack-group "samefringe2"))
(exhausted (ncons nil)))
(stack-group-preset sgl #'fringel treel exhausted)
(stack-group-preset sg2 #'fringel tree2 exhausted)
(do ((v1) (v2)) (nil)
(setq vl (funcall sgl nil)
v2 (funcall sg2 nil))
(cond ((neq vl v2) (return nil))
((eq v1 exhausted) (return t))))))

MC: I MMAN:FD.SG S1 24-JUI1 .-81

Lisp Machine Manual 169 An Example of Stack Groups

Now we test it on a couple of examples.
(samefringe (a b c) (e (b c))) => t
(samefringe '(a b c) (¢ b c d)) => nil

The problem with this is that a stack group is quitc a large object, and we make two of them
every time we compare two fringes. 'This is a lot of unnccessary overhead. It can easily be
climinated with a modest amount of explicit storage allocation, using the resource facility (see
page 82). While were at it, we can avoid making the exhausted flag fresh each time; its only
important property is that it not be an atom.

(defresource samefringe-coroutine ()
:constructor (make-stack-group "for-samefringe"))

(defvar exhausted-flag (ncons nil))

(defun samefringe (treel tree2)
(using-resource (sgl samefringe-coroutine)

(using-resource (sgZ samefringe-coroutine)
(stack-group-preset sgl #'fringel treel exhausted-flag)
(stack-group-preset sg2 #'fringel tree2 exhausted-flag)
(do ((v1) (v2)) (ril)

(setq vl (funcall sgl nil)
v2 (funcall sg2 nil))
{(cond ((neq v1 v2) (return nil))
((eq vl exhausted-flag) (return t)))))))

Now we can compare the fringes of two trecs with no allocation of memory whatsocver.

MCTNMMANFDSG S 24-1UL-81

Locatives | 170 Lisp Machine Manual

13. Locatives

13.1 Cells and Locatives

A locative is a type of Lisp object used as a pointer to a cell. Locatives are inherently a
more "low level" construct than most Lisp objects; they require some knowledge of the nature of
the Lisp implementation. Most programmers will never need them.

A cell is a machine word which can hold a (pointer to a) Lisp object. For example, a
symbol has five cells: the print name cell, the value cell, the function cell, the property list cell,
and the package cell. The value cell holds (a pointer to) the binding of the symbol, and so on.
Also, an array leader of length n has n cells, and an art-q array of n clements has n cells.
(Numeric arrays do not have cells in this sense.) A locative is an object that points to a cell; it
lets you refer to a cell, so that you can examine or alter its contents.

There are a sct of functions which create locatives to cells; the functions are documented with
the kind of object to which they create a pointer. Sec ap-1, ap-leader, car-location, value-
cell-location, etc. The macro locf (see page 230) can be used to convert a form which accesses
a cell to onc which crecates a locative pointer to that cell: for example, '

(locf (fsymeval x)) ==> (function-cell-location x)
locf is very convenient because it saves the writer and reader of a program from having to
remember the names of all the functions that create locatives.

13.2 Functions Which Operate on Locatives

Fither of the functions car and cdr (secc page 53) may be given a locative, and will return
the contents of the cell at which the locative points.
For example,
(car (value-cell-location x))
is the same as
(symeval x)

Similarly, either of the functions rplaca and rplacd may be used to store an objecct into the
cell at which a locative points.
For example,
(rplaca (value-cell-location x) y)
is the same as
(set x y)

If you mix locatives and lists, then it matters whether you use car and rplaca or cdr and
rplacd, and carc is required. For example, the following function takes advantage of value-cell-
location to cons up a list in forward order without spccial-case code. ‘The first time through the
loop, the rplacd is equivalent to (setq res ...); on later times through the loop the rplacd tacks
an additional cons onto the end of the list.

MCENMMANIIDIOC 18 24-JU11.-81

Lisp Machine Manual 171 Functions Which Operate on Locatives

(defun simplified-version-of-mapcar (fcn 1Ist)
(do ((1st 1st (cdr 1st))
(res nil)
(loc (value-cell-location ’'res)))
({null 1st) res)
(rplacd loc

(setq loc (ncons (funcall fcn (car 1st)))))))
You might expect this not to work if it was compiled and res was not declared special, since
non-special compiled variables are not represented as symbols. However, the compiler arranges
for it to work anyway, by recognizing value-cell-location of the namec of a local variable, and
compiling it as something other than a call to the value-cell-location function.

MC:TMMANFDLOC 18 24-JU1.-81

Subprimitives 172 Lisp Machine Manual

14. Subprimitives

Subprimitives are functions which arc not intended to be used by the average program, only
by "system programs”. They allow one to manipulate the environment at a level lower than
normal Lisp. They arc described in this chapter. Subprimitives usually have names which start
with a % character. The "primitives” described in other sections of the manual typically use
subprimitives to accomplish their work. The subprimitives take the place of machine language in
other systems, to some extent. Subprimitives arc normally hand-coded in microcode.

There is plenty of stuff in this chapter that is not fully explained; there are terms that are
undefined, there are forward references, and so on. Furthermore, most of what is in here is
considered subject to change without notice. In fact, this chapter does not exactly belong in this
manual, but in some other more low-level manual. Since the latter manual does not exist, it is
here for the interim.

Subprimitives by their very nature cannot do full checking. Improper use of subprimitives can
destroy the environment. Subprimitives come in varying degrees of dangerousness. Those without
a % sign in their name cannot destroy the environment, but are dependent on "internal” details
of the Lisp implementation. The ones whose names start with a % sign can violate system
conventions if used improperly. The subprimitives are documented here since they need to be
documented somewhere, but this manual does not document all the things you need to know in
order to use them. Still other subprimitives are not documented here because they are very
specialized. Most of these are never used explicitly by a programmer; the compiler inserts them
into the program to perform operations which are expressed differently in the source code.

‘The most common problem you can cause using subprimitives, though by no means the only
one, is to create illegal pointers: pointers that are, for one rcason or another, according to
storage conventions, not allowed to exist. The storage conventions arc not documented; as we
said, you have to be an cxpert to correctly use a lot of the functions in this chapter. If you
create such an illegal pointer, it probably will not be detected immediately, but later on parts of
the system may sec it, notice that it is illegal, and (probably) halt the Lisp Machine.

In a certain sensc car, cdr, rplaca, and rplacd are subprimitives. If these are given a
locative instead of a list, they will access or modify the cell addressed by the locative without
regard to what object the cell is inside. Subprimitives can be used to create locatives to strange
places.

MC:EMAMAN:FD.SUB 49 24-JUI1.-81

Lisp Machine Manual 173 Data Types

14.1 Data Types

data-type arg

data-type returns a symbol which is the name for the internal data-type of the "pointer”
which represents arg. Note that some types as seen by the user are not distinguished
from each other at this level, and some user types may be represented by more than one
internal type. For example, dtp-extended-number is the symbol that data-type would
return for cither a flonum or a bignum, even though those two types are quite different.
The typep function (page 10) is a higher-level primitive which is more uscful in most
cases; normal programs should always use typep rather than data-type. Some of these
type codes are internal tag fields that are ncver used in pointers that represent Lisp
objects at all, but they are documented here anyway.

dtp-symbol
dtp-fix

dtp-small-flonum

dtp-extended-number

dtp-list
dtp-locative
dtp-array-pointer
dtp-fef-pointer
dtp-u-entry
dtp-closure
dtp-stack-group

dtp-instance

dtp-entity
dtp-select-method
dtp-header

dtp-array-header
dtp-symbol-header
dtp-instance-header

dtp-null

dtp-trap

MCEMMANID.SUB 49

The object is a symbol.

The object is a fixnum; the numeric value is contained in the
address ficld of the pointer.

The object is a small flonum; the numeric value is contained in
the address field of the pointer.

The object is a flonum or a bignum. This value will also be
used for future numeric types.

The object is a cons.
The
The
The
The
The
The

The obect is an instance of a flavor, i.e. an "active object”. Sce
chapter 20, page 279.

obiect is a locative pointer.

object is an array.

object is a compiled function.

object is a microcode entry.

object is a closure; see chapter 11, page 158.

obiect is a stack-group; sec chapter 12, page 163.

The ob:ect is an entity; sce section 11.4, page 162.
The ob:ect is a "select-method"”; see page 144.

An intcrnal type used to mark the first word of a multi-word
structure.

An internal type used in arrays.
An internal type used to mark the first word of a symbol.
An internal type used to mark the first word of an instance.

Nothing to do with nil. This is used in unbound value and

function cclls.

The zero data-type, which is not used. 'This hopes to detect

microccde bugs.

24-JUI -81

Forwarding 174 Lisp Machine Manual

dtp-free This type is used to fill frce storage, to catch wild references.

dtp-external-value-cell-pointer
An "invisible pointer” used for external value cells, which are
part of the closure mechanism (see chapter 11, page 158), and
used by compiled code to address value and function cells.

dtp-header-forward An "invisible pointer” used to indicate that the structure
containing it has been moved clsewhere. The "header word" of
the structure is replaced by one of these invisible pointers. See
the function structure-forward (page 175).

dtp-body-forward An invisible pointer" used to indicate that the structure
containing it has been moved clsewhere. This points to the word
containing the header-forward, which points to the new copy of
the structure.

dtp-one-q-forward An "invisible pointer” used to indicatc that the single cell
containing it has been moved elscwhere.

dtp-gc-forward This is used by the copying garbage collector to flag the obsolete
copy of an object; it points to the new copy.

q-data-types Variable
The value of g-data-types is a list of all of the symbolic names for data types described
above under data-type. Thesc arc the symbols whose print names begin with "dtp-".
The values of these symbols are the internal numeric data-type codes for the various types.

q-data-types {ype-code
Given the internal numeric data-type code, returns the corresponding symbolic name.
This "function"” is actually an array.

14.2 Forwarding

An invisible pointer is a kind of pointer that does not represent a Lisp object, but just resides
in memory. There are several kinds of invisible pointer, ard there are various rules about where
they may or may not appcar. The basic property of an invisible pointer is that if the Lisp
Machine reads a word of memory and finds an invisible pointer there, instead of sceing the
invisible pointer as the result of the read, it does a sccond read, at the location addressed by the
invisible pointer, and returns that as the result instcad. Writing bchaves in a similar fashion.
When the Lisp Machine writes a word of memory it first checks to sce if that word contains an
invisible pointer; if so it-goes to the location pointed to by the invisible pointer and trics to write
there instead. Many subprimitives that read and writc memory do not do this checking.

The simplest kind of invisible pointer has the data type code dtp-one-q-forward. It is used
to forward a single word of memory to someplace clse. ‘The invisible pointers with data types
dtp-header-forward and dtp-body-forward arc used for moving whole Lisp objects (such as
cons cells or arrays) somewhere clse. The dtp-external-value-celi-pointer is very similar to the
dtp-one-q-forward: the difference is that it is not "invisible™ to the operation of binding. 1f the
(internab) value cell of a symbol contains a dip-external-value-cell-pointer that points to some
other word (the external value cell). then symeval or set operations on the symbol will consider

MC:TMMAN:IFDSUB 49 ' 24-JU1 -81

Lisp Machine Manual 175 Forwarding

the pointer to be invisible and use the cxternal value cell, but binding the symbol will save away
the dtp-external-value-cell-pointer itself, and store the new value into the internal value cell of
the symbol. This is how closures are implemented.

dtp-gc-forward is not an invisible pointer at all; it only appears in "old space” and will
never be seen by any program other than the garbage collector. When an object is found not to
be garbage, and the garbage collector moves it from “"old space” to "new space”, a dtp-gc-
forward is left behind to point to the new copy of the object. This ensures that other references
to the same object get the same new copy.

structure-forward old-object new-object
This causes references to old-object to actually reference new-object, by storing invisible
pointers in old-object. It returns old-object.

An example of the use of structure-forward is adjust-array-size. If thc array is being
made bigger and cannot be expanded in place, a new array is allocated, the contents are
copied, and the old array is structure-forwarded to the new one. This forwarding ensures
that pointers to the old array, cr to cells within it, continue to work. When the garbage
collector goes to copy the old array, it notices the forwarding and uses the new array as
the copy; thus the overhead of forwarding disappears eventually if garbage collection is in
use.

follow-structure-forwarding object
Normally returns object, but if object has been structure-forward’ed, returns the object
at the end of the chain of forwardings. If object is not exactly an object, but a locative
to a cell in the middle of an object, a locative to the corresponding cell in the latest copy
of the object will be returned.

forward-value-cell from-symbol to-symbol
This alters from-symbol so that it always has the same value as fo-symbol, by sharing its
value cell. A dtp-one-q-forward invisible pointer is stored into from-symbol’s value cell.
Do not do this while from-symbol is lambda-bound, as the microcode does not bother to
check for that case and something bad will happen when from-symbol gets unbound. The
microcode check is omitted to speed up binding and unbinding.

To forward one arbitrary cell to another (rather than specifically one value cell to
another), given two locatives do
(%p-store-tag-and-pointer locativel dtp-one-q-forward locative?)

follow-cell1-forwarding loc evcpp
loc is a locative to a cell. Normally loc is returned, but if the cell has been forwarded,
this follows the chain of forwardings and returns a locative to the final cell. If the cell is
part of a structurc which has been forwarded, the chain of structure forwardings is
followed, too. If evep-p is t, external value cell pointers are followed; if it is nil they are
not.

MC:IL.MMAN:FD.SUB 49 24-JUL-81

Pointer Manipulation 176 Lisp Machine Manual

14.3 Pointer Manipulation

It should again be emphasized that improper use of these functions can damage or destroy the
Lisp environment. It is possible to create pointers with illegal data-type, pointers to non-existent
objects, and pointers to untyped storage which will completely confuse the garbage collector.

%data-type x
Returns the data-type ficld of x, as a fixnum.

%pointer x
Returns the pointer field of x, as a fixnum. For most types, this is dangerous since the
garbage collector can copy the object and change its address.

%make-pointer data-type pointer
This makes up a pointer, with data-type in the- data-type ficld and pointer in the pointer
field, and returns it. data-type should be an internal numeric data-type code; thesc are
the values of the symbols that start with dtp-. pointer may be any object; its pointer
field is used. This is most commonly used for changing the type of a pointer. Do not
usc this to make pointers which are not allowed to be in the machine, such as dtp-null,
invisible pointers, etc.

%make-pointer-offset data-type pointer offset
This returns a pointer with data-type in the data-type ficld, and pointer plus offset in the
pointer field. The data-type and pointer arguments are like thosc of %make-pointer;
offset may be any object but is usually a fixnum. The types of the arguments are not
checked: their pointer fields are simply added together. This is useful for constructing
locative pointers into the middle of an object. However, note that it is illegal to have a
pointer to untyped data, such as the inside of a FEF or a numeric array.

%pointer-difference pointer-1 pointer-2
Returns a fixnum which is pointer-1 minus pointer-2. No type checks are made. For the
result to be meaningful, the two pointers must point into the same object, so that their
difference cannot change as a result of garbage collection.

14.4 Analyzing Structures

%find-structure-header pointer
This subprimitive finds the structure into which pointer points, by searching backward for
a header. It is a basic low-level function used by such things as the garbage collector.
pointer is normally a locative, but its data-type is ignored. Note that it is illegal to point
into an "unboxed" portion of a structure, for instance the middle of a numeric array.

In structure space, the "containing structure” of a pointer is well-defined by system
storage conventions. In list space, it is considered to be the contiguous, cdr-coded
segment of list surrounding the location pointed to. If a cons of the list has been copied
out by rplacd, the contiguous list includes that pair and ends at that point.

MC:IMMAN:FD.SUB 49 24-JU1 -81

Lisp Machine Manual 177 Creating Objects

%find-structure-leader pointer
This is identical to %find-structure-header, except that if the structure is an array with
a leader, this returns a locative pointer to the leader-hecader, rather than returning the
array-pointer itself. Thus the result of %find-structure-leader is always the lowest
address in the structure. This is the one used internally by the garbage collector.

%structure-boxed-size object
Returns the number of "boxed (Q’s” in object. This is the number of words at the front
of the structure which contain normal Lisp objects. Some structures, for example FEFs
and numeric arrays, contain adcitional "unboxed Q’s" following their "boxed Q's". Note
that the boxed size of a PDL (either regular or special) does not include Qs above the
current top of the PDL. Those locations are boxed but their contents is considered
garbage, and is not protected by the garbage collector.

%structure-total-size object
Returns the total number of words occupied by the representation of object, including
boxed Q’s, unboxed Q’s, and garbage Q’s off the ends of PDLs.

14.5 Creating Objects

%allocate-and-initialize data-type header-type header second-word area size

This is the subprimitive for creating most structured-type objects. area is the area in
which it is to be created, as a fixnum or a symbol. size is the number of words to be
allocated. The value returned points to the first word allocated, and has data-type data-
type. Uninterruptibly, the worcs allocated are initialized so that storage conventions are
preserved at all times. The first word, the header, is initialized to have header-type in its
data-type field and header in its pointer ficld. The second word is initialized to second-
word. The remaining words are initialized to nil. The flag bits of all words are set to 0.
The cdr codes of all words except the last are sct to cdr-next; the cdr code of the last
word is sct to cdr-nil. It is probably a bad idea to rely on this.

The basic functions for creating list-type objects are cons and make-list; no special
subprimitive is needed. Closures, entitics, and select-methods are based on lists, but there is no
primitive for creating them. To create one, create a list and then use %make -pointer to change
the data type from dtp-list to the desired type.

%allocate-and-initialize-array header data-length leader-length area size

This is the subprimitive for crcating arrays, called only by make-array. It is different
from %allocate-and-initialize because arrays have a more complicated header structure.

MCTMMANIFD.SUB A9 24-JU-81

Locking Subprimitive 178 Lisp Machine Manual

14.6 Locking Subprimitive

%store-conditional pointer old new
This is the basic locking primitive. pointer is a locative to a cell which is uninterruptibly
read and written. If the contents of the cell is eq to old, then it is replaced by new and
t is returned. Otherwise, nil is returned and the contents of the cell is not changed.

14.7 170 Device Subprimitives

%unibus-read address)
Returns the contents of the register at the specified Unibus address, as a fixnum. You
must specify a full 18-bit address. This is guaranteed to read the location only once.
Since the Lisp Machine Unibus does not support byte operations, this always references a
16-bit word, and so address will normally be an even number.

%unibus-write address data
Writes the 16-bit number data at the specified Unibus address, exactly once.

%xbus-read io-offset
Returns the contents of the register at the specified Xbus address. io-offser is an offset
into the 170 portion of Xbus physical address space. This is guaranteced to read the
location exactly once. The rcturned value can be either a fixnum or a bignum.

%xbus-write io-offset data
Writes data, which can be a fixnum or a bignum, into the register at the specified Xbus
address. io-offset is an offset into the 1/0 portion of Xbus physical address space. This is
guaranteed to write the location exactly once.

sys:%xbus-write-sync w-loc wdata delay sync-loc sync-mask sync-value
Docs (%xbus-write w-loc w-data), but first synchronizes to within about one microsecond
of a certain condition. The synchronization is achicved by looping until
(= (logand (%xbus-read sync-loc) sync-mask) sync-value)
is falsc, then looping until it is true, then looping delay times. Thus the write happens a
specified delay after the leading edge of the synchronization condition. The number of
microseconds of delay is roughly one third of delay.

sys:%halt
Stops the machine.

MCTANANFD.SUB 49 24-1U1 .-81

Lisp Machine Manual _ 179 Special Memory Referencing

14.8 Special Memory Referencing

%p-contents-offset base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, it adds offSer to the resulting
forwarded base-pointer and returns the contents of that location.

There is no %p-contents, since car performs that operation.

%p-contents-as-locative pointer
Given a pointer to a memory location containing a pointer which isn’t allowed to be "in
the machine" (typically an invisible poioter) this function rcturns the contents of the
location as a dtp-locative. It changes the disallowed data type to dtp-locative so that
you can safely look at it and see what it points to.

%p-contents-as-locative-offset base-pointer offset

This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, it adds offser to the resulting
forwarded base-pointer, fetches the contents of that location, and returns it with the data
type changed to dtp-locative in case it was a type which isn’t allowed to be "in the
machine” (typically an invisible pointer). This can be used, for example, to analyze the
dtp-external-value-cell-pointer pointers in a FEF, which are used by the compiled
code to reference value cells and function cells of symbols.

%p-store-contents pointer value
value is stored into the data-type and pointer fields of the location addressed by pointer.
The cdr-code and flag-bit ficlds remain unchanged. value is returncd.

%p-store-contents-offset value base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structurc pointed to, it adds offser to the resulting
forwarded base-pointer, and stcres value into the data-type and pointer fields of that
Jocation. The cdr-code and flag-bit ficlds remain unchanged. value is returned.

%p-store-tag-and-pointer pointer miscfields pnirfield
Creates a Q by taking 8 bits from miscfields and 24 bits from pnirfield, and stores that
into the location addressed by pointer. The low 5 bits of miscfields become the data-type,
the next bit becomes the flag-bit, and the top two bits become the cdr-code. This is a
good way to store a forwarding pointer from onc structure to another (for cxample).

%p-1db ppss pointer
This is like Idb but gets a bytc from the -location addressed by pointer. Note that you
can load bytes out of the data type ctc. bits, not just the pointer ficld, and that the word
loaded out of need not be a fixnam. The result returned is always a fixnum.

MC:IMMAN:D.SUB 49 24-JUH -81

Special Memory Referencing 180 Lisp Machine Manual

%p-1db-offset ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structure pointed to, the byte specified by ppss is loaded
from the contents of the location addressed by the forwarded base-pointer plus offset, and
returned as a fixnum. This is the way to reference byte ficlds within a structure without
violating system storage conventions.

%p-dpb value ppss pointer
The value, a fixnum, is stored into the byte selected by ppss in the word addressed by
pointer. nil is returned. You can use this to alter data types, cdr codes, etc.

%p-dpb-offset value ppss base-pointer offset
This checks the cell pointed to by base-pointer for a forwarding pointer. Having followed
forwarding pointers to the real structurc pointed to, the value is stored into the byte
specified by ppss in the location addressed by the forwarded base-pointer plus offset. nil is
returned. This is the way to alter unboxed data within a structure without violating
system storage conventions.

%p-mask-field ppss pointer
This is similar to %p-Idb, cxcept that the selected byte is returned in its original position
within the word instead of right-aligned.

%p-mask-field-offset ppss basepointer offset
This is similar to %p-Ildb-offset, cxcept that the selected byte is returned in its original
position within the word instead of right-aligned.

%p-deposit-field value ppss pointer
This is similar to %p-dpb, except that the sclected byte is stored from the corresponding
bits of value rather than the right-aligned bits.

%p-deposit-field-offset value ppss base-pointer offset
This is similar to %p-dpb-offset, except that the sclected byte is stored from the
corresponding bits of value rather than the right-aligned bits.

%p-pointer pointer
Extracts the pointer field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-data-type pointer
Extracts the data-type field of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-cdr-code pointer

Extracts the cdr-code field of the contents of the location addressed by pointer and returns
it as a fixnum,

MC:EMMANED.SUB 49 24-JUI1.-81

Lisp Machine Manual 181 Storage Layout Definitions

%p-flag-bit pointer
Extracts the flag-bit ficld of the contents of the location addressed by pointer and returns
it as a fixnum.

%p-store-pointer pointer value
Clobbers the pointer ficld of the location addressed by pointer to value, and rcturns value.

%p-store-data-type pointer value
Clobbers the data-type field of the location addressed by pointer to value, and rcturns
value.

%p-store-cdr-code pointer value
Clobbers the cdr-code. ficld of the location addressed by pointer to value, and returns
value.

%p-store-flag-bit pointer value
Clobbers the flag-bit field of the location addressed by pointer to value, and rcturns value.

%stack-frame-pointer
Returns a locative pointer to its caller’s stack frame. This function is not defined in the
interpreted Lisp environment; it only works in compiled code. Since it turns into a
"misc" instruction, the "caller's stack frame" really means "the frame for the FEF that
executed the %stack -frame-pointer instruction".

14.9 Storage Layout Definitions

The following special variables have values which define the most important attributes of the
way Lisp data structures are laid out in storage. In addition to the variables documented here,
there are many others which are more specialized. They are not documented in this manual since
they arc in the system package rather than the global package. The variables whose names start
with %% arc byte spccifiers, intended to be used with subprimitives such as %p-Idb. If you
change the value of any of these variables, you will probably bring the machine to a crashing
halt.

%%q-cdr-code Variable
The ficld of a memory word which contains the cdr-code. Sec section 5.4, page 63.

%%q-flag-bit Variable
The field of a memory word which contains the flag-bit. In most data structurcs this bit
is not uscd by the system and is available for the user.

%%q-data-type Variable
The ficld of a memory word which contains the data-type code. Scc page 173.

MCTMMANFD.SUB 19 24-JU1 81

Function-Calling Subprimitives - 182 Lisp Machine Manual

%%q-pointer Variable
The field of a memory which contains the pointer address, or immediate data.

%%q-pointer-within-page Variable
The field of a memory word which contains the part of the address that lics within a
single page.

%%q-typed-pointer Variable
The concatenation of the %%q-data-type and %%q-pointer fields.

%%q-all-but-typed-pointer Variable
The field of a memory word which contains the tag fields, %%q-cdr-code and %%q-
flag-bit.

%%q-all-but-pointer Variable
The concatenation of all ficlds of a memory word except for %%q-pointer.

%%q-all-but-cdr-code Variable
‘The concatenation of all ficlds of a memory word except for %%q-cdr-code.

%%q-high-half Variable
%%q-1ow-half Variable
The two halves of a memory word. These fields are only used in storing compiled code.

cdr-normal Variable

cdr-next Variable

cdr-ni1l Variable

cdr-error Variable
The values of these four variables are the numeric values which go in the cdr-code field
of a memory word. See section 5.4, page 63 for the details of cdr-coding.

14.10 Function-Calling Subprimitives .

‘These subprimitives can be used (carefully!) to call a function with the number of arguments
variable at run time. They only work in compiled code and are not defined in the interpreted
Lisp environment. The preferred higher-level primitive is lexpr-funcall (page 24).

%open-call-block function n-adi-pairs destination
Starts a call to function. n-adi-pairs is the number of pairs of additional information
words alrcady %push’ed: normally this should be 0. destination is where to put the
result; the useful values arc O for the value to be ignored, 1 for the value to go onto the
stack, 3 for the value to be the last argument to the previous open call block, and 4 for
the valuc to be returned from this frame.

MCTNMMANFD.SUB 49 24-00 -8

Lisp Machine Manual 183 L.ambda-Binding Subprimitive

%push value
Pushes value cnto the stack. Use this to push the arguments.

%activate-open-call-block
Causes the call to happen.

%pop
Pops the top value off of the stack and returns it as its value. Usc this to recover the
result from a call made by %oren-call-block with a destination of 1.

%assure-pdl-room n-words
Call this before doing a sequence of %push’s or %open-call-blocks which will add n-
words to the current frame. This subprimitive checks that the frame will not cxceed the
maximum legal frame size, which is 255 words including all overhead. This limit is
dictated by the way stack frames arc linked together. If the frame is going to exceed the
legal limit, %assure-pdi-room will signal an error.

14.11 Lambda-Binding Subprimitive

bind Jlocative value
Binds the cell pointed to by locative to x, in the caller’s environment. This function is
not defined in the interpreted Lisp environment; it only works from compiled code. Since
it turns into an instruction, the "caller’s environment” rcally means "the binding block for
the stack frame that executed the bind instruction”. The preferred higher-level primitives
which wrn into this are let (page 16), let-if (page 17), and progv (page 18).
[This will be renamed to %bind in the future.]

14.12 The Paging System
[Someday this may discuss h(;w it works.]

si:wire-page address &optional (wire-pt)
If wire-p is t, the page containing address is wired-down; that is, it cannot be paged-out.
If wire-p is nil, the page ccascs to be wired-down.

si:unwire-page address
(si:unwire-page address) is the same as (si:wire-page address nil).

sys:page-in-structure object
Makes sure that the storage which represents object is in main memory. Any pages which
have been swapped out to disk are read in, using as few disk operations as possible.
Consccutive disk pages arc transferred together, taking advantage of the full speed of the
disk. If objeci is large, this will be much faster than bringing the pages in onc at a time
on demand. ‘The storage occupicd by object is defined by the %find-structure-leader
and %structure-total-size subprimitives.

MC:EMMAN:EFD.SUB 49 24-JU1.-81

The Paging System 184 Lisp Machine Manual

sys:page-in-array array &optional from to
This is a version of sys:page-in-structure which can bring in a portion of an array.
Srom and to are lists of subscripts; if they are shorter than the dimensionality of array,
the remaining subscripts are assumed to be zero.

sys:page-in-words address n-words
Any pages in the range of address spacc starting at address and continuing for n-words
which have been swapped out to disk are read in with as few disk operations as possible.

sys:page-in-area area-number
sys:page-in-region region-number
All swapped-out pages of the specified region or area are brought into main memory.

sys:page-out-structure object

sys:page-out-array array &optional from to

sys:page-out-words address n-words

sys:page-out-area area-number

sys:page-out-region region-number
These are similar to the above, except that take pages out of main memory rather than
bringing them in. Any modified pages arc written to disk, using as few disk operations as
possible. The pages arc then made flushable; if they are not touched again soon their
memory will be reclaimed for other pages. Use these operations when you are done with
a large object, to make the virtual memory system prefer reclaiming that object’s memory
over swapping something els¢ out.

sys:%change-page-status virtual-address swap-status access-status-and-meta-bits
The page hash table entry for the page containing virtual-address is found and altered as
specified. t is returned if it was found, nil if it was not (presumably the page is swapped
out.) swap-status and access-status-and-meta-bits can be nil if those fields are not to be
changed. This docsn’t make any error checks; you can really screw things up if you call
it with the wrong arguments.

sys:%compute-page-hash virtual-address
‘This makes the hashing function for the page hash table available to the user.

sys:%create-physical-page physical-address
This is used when adjusting the size of real memory available to the machine. It adds an
entry for the page frame at physical-address to the page hash table, with virtual address
-1, swap status flushable, and map status 120 (rcad only). This doesn’t make error
checks; you can really screw things up if you call it with the wrong arguments.

sys:%delete-physical-page physical-address
If there is a page in the page frame at physical-address, it is swapped out and its entry is
deleted from the page hash table, making that page frame unavailable for swapping in of
pages in the future. This doesn’t make error checks; you can really screw things up if
you call it with the wrong arguments.

MC:TMMANEFDSUR 49 24-1U01 -81

Lisp Machine Manual 185 Closure Subprimitives

sys:%disk-restore high-16-bits low-16-bits
Loads virtual memory from the partition named by the concatenation of the two 16-bit
arguments, and starts executing it. The name O refers to the default load (the one the
machine loads when it is started up). This is the primitive used by disk-restore (see
page 423).

sys:%disk-save physical-mem-size high-16-bits low-16-bits
Copies virtual memory into the partition named by the concatenation of the two 16-bit
arguments (0 means the default), then restarts the world, as if it had just been restored.
The physical-mem-size argument should come from %sys-com-memory-size in system-
communication-area. This is the primitive used by disk-save (sce page 424).

14.13 Closure Subprimitives

These functions deal with things like what closures deal with: the distinction between internal
and external value cells and control over how they work.

sys:%binding-1instances lis-of-symbols
This is the prirnitive that could be used by closure. First, if any of the symbols in list-
of*symbols has no external value cell, a new external value cell is created for it, with the
contents of the internal value cell. Then a list of locatives, twice as long as list-of
symbols, is created and returned. The elements are grouped in pairs: pointers to the
internal and external value cells, respectively, of each of the symbols. closure could have
been defined by:
(defun closure (variables function)
(#make-pointer dtp-closure
(cons function (sys:%binding-instances variables))))

sys:%using-binding-instances instance-list
This function is the primitive operation that invocation of closures could use. It takes a
list such as sys:%binding-instarnces returns, and for each pair of clements in the list, it
"adds" a binding to the current stack frame, in the same manner that the bind function
(which should be called %bind} does. These bindings remain in ecffect until the frame
returns or is unwound.

sys:%using-binding-instances checks for redundant bindings and ignores them. (A
binding is redundant if the symbol is alrcady bound to the desired external value cell).
This check avoids excessive growth of the special pdl in some cases and is also made by
the microcode which invokes closures, entitics, and instances.

sys:%internal-value-cell symbol
Returns the contents of the internal value cell of symbol. dtp-one-g-forward pointers
are considered invisible, as usual, but dtp-external-value-cell-pointers arc not; this
function can return a dtp-external-value-cell-pointer. Such pointers will be considercd
invisible as soon as they leave the “inside of the machine”, meaning internal registers and
the stack.

MC:EMMAN:I'D.SUB 49 2-JU -8

Microcode Variables 186 Lisp Machine Manual

14.14 Microcode Variables

The following variables’ values actually reside in the scratchpad memory of the processor.
They are put there by dtp-one-q-forward invisible pointers. The values of these variables are
used by the microcode. Many of these variables are highly internal and you shouldn’t expect to
understand them.

%microcode-version-number Variable
This is the version number of the currently-loaded microcode, obtained from the version
number of the microcode source file.

sys:%number-of-micro-entries Variable
Size of micro-code-entry-area and related areas.

default-cons-area is documented on page 193.

sys:number-cons-area Variable
The arca number of the arca where bignums and flonums are consed. Normally this
variable contains the value of sys:extra-pdl-area, which cenables the “temporary storage”
feature for numbers, saving garbage collection overhead.

sys:%current-stack-group and sys:%current-stack-group-previous -stack-group are
documented on page 165.

sys:%current-stack-group-state Variable
The sg-state of the currently-running stack group.

sys:%current-stack-group-calling-args-pointer Variable
The argument list of the currently-running stack group.

sys:%current-stack-group-calling-args-number Variable
‘The number of arguments to the currently-running stack group.

sys:%trap-micro-pc Variable
The microcode address of the most recent error trap.

sys:%initial-fef Variable
‘The function which is called when the machine starts up. Normally this is the definition
of si:lisp-top-level.

sys:%4initial-stack-group Variable
The stack group in which the machine starts up.

sys:%error-handler-stack-group Variable
The stack group which receives control when a microcode-detected error occurs. This
stack group cleans up, signals the appropriate condition, or assigns a stack group to run
the debugger on the crring stack group.

MO MMANIDSUB 49 24-JU1-81

Lisp Machine Manual 187 Microcode Variables

sys:%scheduler-stack-group Varicble
The stack group which receives control when a sequence break occurs.

sys:%chaos-csr-address Variable
A fixnum which is the virtual address which maps to the Unibus location of the Chaosnet
interface.

%mar-low Variablc
A fixnum which is the inclusive lower bound of the region of virtual memory subject to
the MAR feature (see section 26.7, page 467).

%mar-high Variable
A fixnum which is the inclusive upper bound of the region of virtual memory subject to
the MAR featurc (see section 26.7, page 467).

sys:%inhibit-read-only Variable
If non-nil, you can write into rezd-only areas. This is used by fasload.

self is documented on page 297.
inhibit-scheduling-flag is documented cn page 430.

inhibit-scavenging-flag Variable
If non-nil, the scavenger is turncd off. The scavenger is the quasi-asynchronous portion of
the garbage collector, which normally runs during consing opecrations.

sys:%region-cons-alarm Variable
Incremented whenever a new region is allocated.

sys:%page-cons-alarm Variable
Increments whenever a new page is allocated.

sys:%gc-f1ip-ready Variable
t while the scavenger is running, nil when there are no pointers to oldspace.

sys:%gc-generation-number Variable
A fixnum which is incremented whenever the garbage collector flips, converting one or
more regions from newspace to oldspace. If this number has changed, the %pointer of
an object may have changed.

sys:%4disk-run-1ight Variable
A fixnum which is the virtual address of the TV buffer location of the run-light which
lights up when the disk is active. This plus 2 is the address of the run-light for the
processor. This minus 2 is the address of the run-light for the garbage collector.

MC:LMMAN:IFD.SUB 49 24-JUL.-81

Meters 188 Lisp Machine Manual

sys:%loaded-band Variable
A fixnum which contains the high 24 bits of the name of the disk partition from which
virtual memory was booted. Used to create the greeting message.

sys:%disk-blocks-per-track Variable
sys:%disk-blocks-per-cylinder Variable
Configuration of the disk being used for paging. Don’t change these!

sys:%read-compare-enables Variable
A fixnum which controls extra disk error-checking. Bit 0 enables read-compare after a
rcad, bit 1 cnables read-compare after a write. Normally this is 0.

sys:currently-prepared-sheet Variable
Used for communication between the window system and the microcoded graphics
primitives.

The next four have te do with a metering system which is not yet documented in this manual.

sys:%meter-global-enable Variable
t if the metering system is turned on for all stack-groups.

sys:%meter-buffer-pointer Variable
A temporary buffer used by the metering system.

sys:%meter-disk-address Variable
Where the metering system writes its next block of results on the disk.

sys:%meter-disk-count Variable
The number of disk blocks remaining for recording of metering information.

sys:a-memory-location-names Variable
A list of all of the above symbols (and any others added after this documentation was
written).

14.15 Meters

read-meter name
Returns the contents of the microcode meter named name, which can be a fixnum or a

bignum. name must be onc the symbols listed below.

write-meter name value
Writes value, a fixnum or a bignum, into the microcode meter named name. name must
be one the symbols listed below.

The microcode meters are as follows:

MC:TMMAN:FD.SUB 49 24-JU1 -81

Lisp Machine Manual 189 Meters

sys

sys

sys

sys

sys

sys:

sys

sys

sys

sys:

sys

sys:

sys

:%count-chaos-transmit-aborts Meter

The number of times transmission on the Chaosnet was aborted, either by a collision or
because the receiver was busy.

:%count-cons-work Meter
:%count-scavenger-work Meter

Internal state of the garbage collection algorithm.

:%tv-clock-rate Meter

The number of TV frames per clock sequence break. The default value is 67 which
causes clock sequence breaks to happen about once per second.

:%count-first-level-map-relcads Meter

The number of times the first-level virtual-memory map was invalid and had to be
reloaded from the page hash table.

%count-second-level-map-reloads Meter
The number of times the sccond-level virtual-memory map was invalid and had to be
reloaded from the page hash table,

:%count-meta-bits-map-reloacds Meter

The number of times the virtual address map was reloaded to contain only "meta bits”,
not an actual physical address.

:%count-pd1-buffer-read-faults Meter

The number of read references to the pdl buffer which were virtual memory references
that trapped.

:%count-pdl-buffer-write-faults Meter

The number of write references to the pdl buffer which were virtual memory references
that trapped.

%count-pd1-buffer-memory-faults Meter
The number of virtual memory references which trapped in case they should have gone to
the pdl buffer, but turned out to be recal memory references after all (and therefore were
necedlessly slowed down.)

:%count-disk-page-reads Meter

The number of pages read from the disk.

%count-disk-page-writes Meter
The number of pages written to the disk.

:%count-fresh-pages Meter

The number of fresh (newly-consed) pages created in core, which would have otherwise
been read from the disk.

MC:TMAMANEFD.SUB 49 24-JU11 -81

Meters 190 Lisp Machine Manual

sys:%count-disk-page-read-operations Meter
The number of paging read operations; this can be smaller than the number of disk pages
rcad when more than one page at a time is read.

sys:%count-disk-page-write-operations Merer
The number of paging write operations; this can be smaller than the number of disk
pages written when more than one page at a time is written.

sys:%count-disk-prepages-used Meler
The number of times a page was used after being read in before it was needed.

sys:%count-disk-prepages-not-used Meter
The number of times a page was read in before it was needed, but got evicted before it
was ever used.

sys:%count-disk-page-write-waits AMerer
The number of times the machine waited for a page to finish being written out in order
to evict the page.

sys:%count-disk-page-write-busys Meter
The number of times the machine waited for a page to finish being written out in order
to do something else with the disk.

sys:%4disk-wait-time Meter
The time spent waiting for the disk, in microsecconds. This can be used to distinguish
paging time from running time when measuring and optimizing the' performance of
programs.

sys:%count-disk-errors AMeter
The number of recoverable disk errors.

sys:%count-disk-recalibrates AMeter
The number of times the disk scek mechanism was recalibrated, usually as part of ecrror
recovery. ’

sys:%count-disk-ecc-corrected-errors AMeter
The number of disk errors which were corrected through the error correcting code.

sys:%count-disk-read-compare-differences Meter
The number of times a read compare was done, no disk error occurred, but the data on
disk did not match the data in memory.

sys:%count-disk-read-compare-rereads Aeter
The number of times a disk rcad was done over because afler the read a read compare
was done and did not succeed (cither it got an crror or the data on disk did not match
the data in memory).

MO AMMANFDSUB 24-JU1 -81

Lisp Machine Manual 191 -Meters

sys:%count-disk-read-compare-rewrites Meter
The number of times a disk write was donc over because after the write a rcad compare
was done and did not succeed (either it got an error or the data on disk did not match
the data in memory).

sys:%disk-error-log-pointer Meer
Address of the next entry to be written in the disk error log. The function si:print-disk-
error-log (scc page 503) prints this log.

sys:%count-aged-pages Merer
The number of times the page ager set an age trap on a page, to determine whether it
was being referenced.

sys:%count-age-flushed-pages Meter
The number of times the page ager saw that a page still had an age trap and hence made
it "flushable”, a candidate for eviction from main memory.

sys:%aging-depth Meter
A number from 0 to 3 which controls how long a page must remain unreferenced before
it becomes a candidate for eviction from main memory.

sys:%count-findcore-steps Meter
The number of pages inspected by the page replacement algorithm.

sys:%count-findcore-emergencies Meter
The number of times no evictable page was found and extra aging had to be done.

sys:a-memory-countar-block-names Variable

A list of all of the above symbols (and any others added after this documentation was
written).

MC:ILMMAN:FFD.SUB 49 24-JU1-81

Areas 192 Lisp Machine Manual

15. Areas

Storage in the Lisp Machine is divided into areas. Each area contains related objects, of any
type. Areas arc intended to give the user control over the paging behavior of his program,
among other things. By putting related data together, locality can be greatly increased. Whenever
a ncw object is created the area to be used can optionally be specified. For example, instead of
using cons you can usc cons-in-area (sec page 54). Object-creating functions which take
keyword arguments generally accept a :area argument. You can also control which area is used
by binding default-cons-area (scc page 193); most functions that allocate storage use the value
of this variable, by default, to specify the arca to use.

There is a default Working Storage area which collects those objects which the user has not
chosen to control explicitly.

Arcas also give the user a handle to control the garbage collector. Some areas can be
declared to be "static”, which mecans that they change slowly and the garbage collector should not
attempt to reclaim any space in them. This can ecliminate a lot of uscless copying. A "static”
area can be explicitly garbage-collected at infrequent intervals when it is belicved that that might
be worthwhile.

Each area can potentially have a different storage discipline, a different paging algorithm, and
even a different data representation. The microcode will dispatch on an attribute of the area at
the appropriate times. The structure of the machine makes the performance cost of these features
negligible; information about areas is stored in cxtra bits in the memory mapping hardware where
it can be quickly dispatched on by the microcode; these dispatches usually have to be done
anyway to make the garbage collector work, and to implement invisible pointers. This feature is
not currently used by the system, except for the list/structure distinction described below.

Each arca has a name and a number. The name is a symbol whose value is the number.
The number is an index into various internal tables. Normally the name is treated as a special
variable, so the number is what is given as an argument to a function that takes an area as an
argument. Thus, arcas are not Lisp objects; you cannot pass an area itsclf as an argument to a
function; you just pass its number. There is a maximum number of arcas (set at cold-load
generation time); you can only have that many areas before the various internal tables overflow.
Currently (as this manual is written) the limit is 256. areas, of which 64. already exist when you
start.

The storage of an area consists of one or more regions. Each region is a contiguous section
of address space with certain homogeneous propertics. The most important of these is the data
representation fype. A given region can only store one type. The two types that cxist now are lis
and structure. A list is anything made out of conses (a closure for instance). A structure is
anything made out of a block of memory with a header at the front; symbols, strings, arrays,
instances, compiled functions, etc. Since lists and structures cannot be stored in the same region,
they cannot be on the same page. It is necessary to know about this when using areas to increase
locality of reference.

MC:T MMAN;AREAS 34 24-JU1 .-81

Lisp Machine Manual 193 Area Functions and Variables

When you create an area, one region is created initially. When you try to allocate memory to
hold an object in some arca, the system tries to find a region that has the right data
representation type to hold this object, and that has enough room for it to fit. If there isn’t any
such region, it makes a new one (or signals an error; sce the :size option to make-area, below).
The size of the new region is an attribute of the area (controllable by the :region-size option to
make-area). If regions are too large, memory may get taken up by a region and never used. If
regions are too small, the system may run out of regions because regions, like areas, are defined
by internal tables that have a fixed size (set at cold-load generation time). Currently (as this
manual is written) the limit is 256. regions, of which about 90. already exist when you start. (If
you’re wondering why the limit on regioas isn’t higher than the limit on arcas, as it clearly ought
to be, it’s just because both limits have to be multiples of 256. for internal reasons, and 256.
regions seem to be enough.)

15.1 Area Functions and Variables

default-cons-area Variable
The value of this variable is the number of the area in which objects arc crecated by
default. It is initially the number of working-storage-area. Giving nil where an area is
required uses the value of default-cons-area. Note that to put objects into an area
other than working-storage-area you can either bind this variable or use functions such
as cons-in-area (sec page 54) which take the area as an explicit argument.

make-area &rest keywords

Creates a new area, whose namc and attributes are specified by the keywords. You must
specify a symbol as a name; th2 symbol will be setq’ed to the arca-number of the new
arca, and that number will also be returned, so that you can use make-area as the
initialization of a defvar. The arguments are taken in pairs, the first being a keyword and
the second a "value" for that keyword. The last three keywords documented herein are in
the nature of subprimitives; like the stuff in chapter 14, their meaning is system-
dependent and is not documented here. The following keywords exist:

:name A symbol which will be the name of the area. This item is required.

‘size The maximum allowed size of the arca, in words. Defaults to infinite. If
the number of words allocated to the area reaches this size, attempting to
cons an object in the arca will signal an error.

rregion-size The approximate size, in words, for regions within this arca. The default
is the arca size if a :size argument was given, otherwise a suitable
medium size. Note that if you specify :size and not region-size, the
arca will have exactly one region. When making an arca which will be
very big. it is desirable to make the region size larger than the default
region size to avoid creating very many regions and possibly overflowing
the system’s fixec-size region tables.

‘representation
The type of otject to be contained in the arca’s initial region. The
argument to this keyword can be clist. structure. or a numeric code.
structure s the default. 1 vou are only going to cons lists in your area.
you should speciy :list so you don't get a useless structure region.

MO MMANAREAS 34 24-JU1-81

Area Functions and Variables - 194 Lisp Machine Manual

'gc

:read-only

:pdl

The type of garbage-collection to be employed. The choices are :dynamic
(which is the default) and :static. :static means that the arca will not be
copied by the garbage collector, and nothing in the arca or pointed to by
the area will ever be reclaimed, unless a garbage collection of this area is
manually requested.

With an argument of t, causes the arca to be made read-only. Defaults to
nil. If an area is read-only, then any attempt to change anything in it
(altering a data object in the area, or creating a new object in the area)
will signal an crror unless sys:%inhibit-read-only (sece page 187) is bound
t0 a non-nil value.

With an argument of t, makes the area suitable for storing regular-pdls of
stack-groups. This is a special attribute duc to the pdl-buffer hardware.
Defaults to nil. Arcas for which this is nil may nor be used to store
regular-pdls. Areas for which this is t are relatively slow to access; all
references to pages in the arca will take page faults to check whether the
referenced location is really in the pdl-buffer.

sys:%%region -map-bits

Lets you specify the map bits explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region-space-type

Lets you specify the space type explicitly, overriding the specification from
the other keywords. This is for special hacks only.

sys:%%region -scavenge-enable

.-room

Example:

Lets you override the scavenge-enable bit explicitly. This is an internal
flag related to the garbage collector. Don’t mess with this!

With an argument of t, adds this area to the list of arcas which are
displayed by default by the room function (see page S00).

(make-area ’':name ’'foo-area

describe-area area

‘:gc :dynamic
‘:representation ’:1ist)

area may bc the name or the number of an arca. Various attributes of the area are

printed.

area-l1ist Variable

The value of area-list is a list of the names of all existing arcas. This list shares storage
with the internal arca name table. so you should not change it.

MO MMANAREAS 34 2401 -81

Lisp Machine Manual 195 Interesting Arcas

%area-number pointer
Returns the number of the arca to which pointer points, or nil if it does not point within
any known area. The data-type of pointer is ignored.

%region-number pointer
Returns the number of the region to which pointer points, or nil if it does not point
within any known region. The data-type of pointer is ignored. (This information is
generally not very interesting to users; it is important only inside the system.)

area-name number
Given an area number, rcturns the name. This "function™ is actually an array.

See also cons-in-area (page 54), list-in-area (page 57), and room (page 500).

15.2 Interesting Areas

This scction lists the names of some of the arcas and tells what they are for. Only the ones
of the most interest to a user are listed; there are many others.

working-storage-area Variable
This is the normal value of default-cons-area. Most working data are consed in this

area.

permanent-storage-area Variable
This arca is to be used for "permanent” data, which will (almost) never become garbage.
Unlike working-storage-area, the contents of this arca are not continually copicd by the
garbage collector; it is a static aica.

sys:p-n-string Variable
Print-names of symbols arc stored in this area.

sys:nr-sym Variable
This arca contains most of the symbols in the Lisp world, cxcept t and nil, which are in
a different place for historical reasons.

sys:pkg-area Variable
This arca contains packages, principally the hash tables with which intern keeps track of

symbols.

macro-compiled-program Variable
FEFs (compiled functions) are put here by the compiler and by fasload.

sys:property-list-area Variable
This arca holds the property lists of symbols,

MCTMNMANAREAS 34 24-JU1.-81

Interesting Areas 196 Lisp Machine Manual

sys:init-11st-area Variable
sys:fasl-constants-area Variable
These two areas contain constants used by compiled programs.

MC:EMMANIAREAS 34 24-JUL.-81

Lisp Machine Manual 197 The Compiler

16. The Compiler

16.1 The Basic Operations of the Compiler

The purpose of the Lisp compiler is to convert Lisp functions into programs in the Lisp
Machiné’s instruction set, so that they will run more quickly and take up less storage. Compiled
functions are represented in Lisp by FEFs (Function Entry Frames), which contain machine code
as well as various other information. The printed representation of a FEF is

#<DTP-FEF-POINTER add