The Relativized Relationship between Probabilistically Checkable Debate Systems, IP and PSPACE

Alexander Russell*
Department of Mathematics

Ravi Sundaram ${ }^{\dagger}$
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139
September 3, 1993

Abstract

In 1990, PSPACE was shown to be identical to IP, the class of languages with interactive proofs [18, 20]. Recently, PSPACE was again recharacterized, this time in terms of (Random) Probabilistically Checkable Debate Systems [7, 8]. In particular, it was shown that PSPACE = $\operatorname{PCDS}[\log n, 1]=\operatorname{RPCDS}[\log n, 1]$. We study the relativized behaviour of the classes defined by these debate systems in comparison with the classes IP and PSPACE. For the relationships between (\mathbf{R})PCDS $[r(n), a(n)]$ and IP and (R)PCDS $[r(n), a(n)]$ and PSPACE we determine a natural boundary (in terms of the parameters $r(n)$ and $a(n)$) separating direct-simulability and inequality (with probability 1). In addition, we show that if $\exists O, \mathbf{E X P}^{O}=\mathbf{P C D S}^{O}[\log n, \log n]$ then $\mathbf{P} \neq \mathbf{P S P A C E}$.

Keywords: Computational complexity; interactive proofs; oracles

1 Introduction and Definitions

The notion of relativization was introduced by Baker Γ GillP and Solovay [4] in an attempt to explain the difficulty of the famous $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$ question. The attachment of oracles to different classes of machines Γ in general Γ is a method for exaggerating (perhaps small) differences in the computational ability of these classes. One way to lend credence to a conjectured relationship between two complexity classes is to exhibit an oracle relative to which the conjecture holds. Thus the presentation of contradictory relativizations of a relationship between two complexity classes has been a standard tool for arguing the difficulty of precisely determining that relationship. The notion of relativization was strengthened by the consideration of random oracles [5]. In the words of Bennett and Gill:

[^0]... random oracles Γ by their very structurelessness Γ appear more benign and less likely to distort the relations among complexity classes than the other oracles used in complexity theory and recursive function theory Γ which are usually designed expressly to help or frustrate some class of computations.

This led them to formulate the random oracle hypothesis [5]: the relationship between two natural complexity classes is preserved with probability 1 under relativization by a random oracle. In this new framework a conjectured relationship may be supported by showing that it holds with probability 1 relative to a random oracle. Clearly「this framework precludes the existence of contradictory (probability 1) relativizations.

Counter-examples to the random oracle hypothesis have been demonstrated and discussed in [12 Г13Г14Г17Г19]. Recently the random oracle hypothesis suffered a particularly crippling blow: the classes IP and PSPACE were shown to be equal [18Г20] despite separation with probability 1 [10Г6]. This proof that IP $=$ PSPACE relies heavily on algebraic techniques Γ the cause of this nonrelativizing behavior. The class PSPACE has recently been given a new characterization in terms of Probabilistically Checkable Debate Systems [758] also using such algebraic techniques. We examine the relativized behaviour of IP and PSPACE in comparison with the classes defined by these debate systems. We determine a natural boundary (in terms of certain parameters of the debate systems) separating direct-simulability and inequality (with probability 1). In addition to offering more evidence that these algebraic techniques do not relativize Γ these boundaries indicate that this new characterization of PSPACE is essentially stronger than the characterization of PSPACE by interactive proof systems-i.e. Гunder relativization by a random oracleГthe class of languages recognized by these debate systems is strictly smaller than that recognized by interactive proof systems. Finally「in the same vein as [9] Гwe show that if $\exists O, \mathbf{E X P}^{O}=\mathbf{P C D S}^{O}[\log n, \log n]$ then $\mathbf{P} \neq$ PSPACE.

Oracles are attached to given enumerations of machines. When we speak of \mathcal{C}° where \mathcal{C} is a complexity (language) class and O an oracle Γ we will mean $\left\{\mathcal{L} \mid \mathcal{L}=L\left(M_{i}^{O}\right)\right\}$ where $\left\{M_{i}\right\}$ is an enumeration of machines such that $\left\{L\left(M_{i}\right)\right\}=\mathcal{C}$.

Fix an alphabet Σ. Let Λ denote the empty word of Σ^{*}. 1^{k} denotes the concatenation of k 1's. The result of running a probabilistic Turing machine M on input x with random string R is denoted by $M[x ; R]$. We reserve the variable n for $|x| \Gamma$ the length of the input in question.

Definition 1.1 (IP) Let \mathcal{P} be the class of interactive Turing machines ([11]). Define IP to be the class of languages \mathcal{L} for which there exists a polynomial-time probabilistic interactive Turing machine V so that

- $x \in \mathcal{L} \Rightarrow \exists P \in \mathcal{P}, \operatorname{Pr}_{R \in \text { coins }}[(V \leftrightarrow P)[x ; R]$ accepts $]=1$
- $x \notin \mathcal{L} \Rightarrow \forall P \in \mathcal{P}, \operatorname{Pr}_{R \in \text { coins }}[(V \leftrightarrow P)[x ; R]$ accepts $]<\frac{1}{3}$
where $(V \leftrightarrow P)[x ; R]$ denotes the interaction of verifier V with prover P on input x and random coins R.

After the definition of this class Γ it was shown that
Theorem 1.2 ([10]) $\exists O$, coNP $^{O} \nsubseteq \mathrm{IP}^{O}$ (which implies that $\operatorname{PSPACE}{ }^{O} \neq \mathrm{IP}^{O}$).
and thatГin factГthe above is a probability 1 result ([6]). ThenГin a remarkable breakthrough $i t$ was actually shown that

Theorem 1.3 ([18, 20]) IP = PSPACE.
Recently「using the machinery of [1] ГCondon et. al. gave a new characterization of PSPACE in terms of Probabilistically Checkable Debate Systems Ddefined below.

Definition 1.4 For a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, let $f\langle x\rangle \stackrel{\text { def }}{=} f(x) \cdot x$. A k-player is a function $P: \Sigma^{*} \rightarrow \Sigma^{k}$. Two k-players, P_{1} and P_{2}, define an l-debate $D_{l}\left(P_{1}, P_{2}\right) \stackrel{\text { def }}{=} \overbrace{P_{1}\left\langle P_{2}\left\langle P_{1} \ldots\langle\Lambda\rangle\right.\right.}^{l} \ldots\rangle\rangle$.

Definition $1.5([7,8])$ Define $\operatorname{PCDS}[r(n), a(n)]$ to be the class of languages \mathcal{L} for which there exists a probabilistic polynomial time Turing machine V and polynomials q and l so that

- $x \in \mathcal{L} \Rightarrow \exists P_{1}, \forall P_{2}, \operatorname{Pr}_{R \in \text { coins }}\left[V^{D\left(P_{1}, P_{2}\right)}[x ; R]\right.$ accepts $]=1$
- $x \notin \mathcal{L} \Rightarrow \forall P_{1}, \exists P_{2}, \operatorname{Pr}_{R \in \text { coins }}\left[V^{D\left(P_{1}, P_{2}\right)}[x ; R]\right.$ accepts $]<\frac{1}{3}$
where P_{1} and P_{2} are $q(n)$-players, $D\left(P_{1}, P_{2}\right)=D_{l(n)}\left(P_{1}, P_{2}\right)$ and, in either case, the verifier V uses at most $O(r(n))$ random bits and examines at most $O(a(n))$ bits of $D\left(P_{1}, P_{2}\right)$, the debate generated by the two players P_{1} and P_{2}. If we change the reject criteria so that the second player acts randomly, that is
- $x \notin \mathcal{L} \Rightarrow \forall P_{1}, \operatorname{Pr}_{R \in c o i n s, P_{2}}\left[V^{D\left(P_{1}, P_{2}\right)}[x ; R]\right.$ accepts $]<\frac{1}{3}$
then we obtain the class of languages with Random Probabilistically Checkable Debate Systems [8] which we denote $\operatorname{RPCDS}[r(n), a(n)]$.

As mentioned above Γ we have the following two theorems relating these debate systems and PSPACE.

Theorem 1.6 ([7]) PSPACE $=\operatorname{PCDS}[$ poly n, poly $n]=\operatorname{PCDS}[\log n, 1]$.
Theorem 1.7 ([8]) PSPACE $=\operatorname{RPCDS}[$ poly n, poly $n]=\operatorname{RPCDS}[\log n, 1]$.

2 Relativization Results

We concentrate on the behaviour of these classes with respect to a random oracle $O \in \Omega=2^{\Sigma *}$. The probability measure μ on Ω is defined by independently placing each string in the oracle with probability $\frac{1}{2}$. We begin by considering the relationship between PCDS $[r(n), a(n)]$ and PSPACE.

2.1 The Relationship between $\operatorname{PCDS}[r(n), a(n)]$ and PSPACE

Since we are comparing PSPACE with smaller classes we consider PSPACE to be provided with the weak oracle-access mechanismГthat is the oracle tape is a work tape.

Theorem 2.1 $\forall O \subseteq \Sigma^{*}, \operatorname{PCDS}^{O}[0$, poly $n]=\operatorname{PSPACE}^{O}$.
Proof: By simulation.

Theorem 2.2 $\forall k, \operatorname{Pr}_{O \in \Omega}\left[\operatorname{PSPACE}^{O}=\operatorname{PCDS}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right]\right]=0$.

Proof: We prove in the lemma below that with probability $1 \Gamma \mathrm{NP}^{\circ}$ is not even contained in $\operatorname{PCDS}^{\circ}\left[\right.$ poly $\left.n, n^{k}\right]$. Since $\forall O, \mathbf{N P}^{O} \subseteq \operatorname{PSPACE}^{O} \Gamma$ this shows that Γ with probability 1Γ $\mathbf{P C D S}^{O}\left[\right.$ poly $\left.n, n^{k}\right]$ and $\operatorname{PSPACE}{ }^{O}$ are different.

Lemma 2.3 $\forall k, \operatorname{Pr}_{O \in \Omega}\left[\mathbf{N P}^{O} \subseteq \operatorname{PCDS}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right]\right]=0$.
Proof: For an oracle OFdefine

$$
\hat{O}=\left\{x \mid \forall t \in\{0, \ldots,|x|-1\}, x 10^{t} \in O\right\} .
$$

A polynomial-time machine with access to O can efficiently sample from \hat{O}. If O is a random oracle Γ then $\forall x \operatorname{\Gamma Pr}_{O \in \Omega}[x \in \hat{O}]=\frac{1}{2^{x x \mid}}$ so that $\forall n \Gamma \operatorname{Exp}_{O \in \Omega}\left[\left|\hat{O} \cap \Sigma^{n}\right|\right]=1$. For an oracle $A \Gamma$ define

$$
\mathcal{L}_{\exists}(A)=\left\{1^{n} \mid \exists y \in \Sigma^{n^{2 k}} \cap A\right\} .
$$

Clearly $\Gamma \forall O, \mathcal{L}_{\exists}(\hat{O}) \in \mathbf{N P}^{O}$. We show that $\operatorname{Pr}_{O \in \Omega}\left[\mathcal{L}_{\exists}(\hat{O}) \in \mathbf{P C D S}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right]\right]=0$. Fix an enumeration of PCDS^{O} [poly n, n^{k}] verifiers $\left\{V_{i} \mid i \in \mathbb{N}\right\}$. Let V_{i} be a verifier of this collection which Γ for $n \geq n_{0} \Gamma$ takes at most n^{i} time Γ queries at most $c n^{k}$ debate bits and uses some fixed polynomial $\Gamma r(n) \Gamma$ amount of randomness. For $m, i \in \mathbb{N} \Gamma$ define

$$
\Omega_{m}^{(s)}=\left\{O \in \Omega| | \hat{O} \cap \Sigma^{m} \mid=s\right\} .
$$

Then $\mu\left(\Omega_{m}^{(0)}\right)=\left(1-\frac{1}{2^{m}}\right)^{2^{m}} \approx \frac{1}{e}$. Let n_{1} be large enough so that $\frac{2 \cdot n_{1}^{i} \cdot 2^{c n_{1}^{k}}}{2_{1}^{n_{1}^{2 k}}}<\frac{2}{3}$. Let $n>\tilde{n} \stackrel{\text { def }}{=}$ $\max \left(n_{0}, n_{1}\right)$ and consider the behaviour of V_{i}^{O} on 1^{n} with an oracle O selected from $\Omega_{n^{2 k}}^{(0)}$. One of the following three cases applies:

1. If $\operatorname{Pr}_{O \in \Omega_{n^{2 k}}^{(0)}}\left[\exists P_{1}, \forall P_{2}, \operatorname{Pr}_{R \in \text { coins }}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right]\right.\right.$ accepts $\left.]=1\right] \geq \frac{1}{4} \Gamma$ then

$$
\begin{align*}
\operatorname{Pr}_{O \in \Omega}\left[\exists P_{1}, \forall P_{2}, \operatorname{Pr}_{R \in \mathrm{coins}}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right] \text { accepts }\right]=1 \wedge 1^{n} \notin \mathcal{L}_{\exists}(\hat{O})\right] & \geq \\
\frac{1}{4} \operatorname{Pr}_{O \in \Omega}\left[O \in \Omega_{n^{2 k}}^{(0)}\right] & \approx \frac{1}{4 e} . \tag{1}
\end{align*}
$$

(Recall that $\mu\left(\Omega_{n^{2 k}}^{(0)}\right) \approx \frac{1}{e}$. .
2. If

$$
\begin{equation*}
\operatorname{Pr}_{O \in \Omega_{n^{2 k}}^{(0)}}\left[\exists P_{1}, \forall P_{2}, \operatorname{Pr}_{R \in \mathrm{coins}}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right] \text { accepts }\right] \in\left[\frac{1}{3}, 1\right)\right] \geq \frac{1}{4 e} \tag{2}
\end{equation*}
$$

then V_{i} is behaving improperly Гand evidently does not accept $L_{\exists}(\hat{O})$ for this $\frac{1}{4 e}$ fraction of oracles.
3. If $\operatorname{Pr} O \in \Omega_{n^{2 k}}^{(0)}\left[\forall P_{1}, \exists P_{2}, \operatorname{Pr}_{R \in \text { coins }}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right]\right.\right.$ accepts $\left.]<\frac{1}{3}\right] \geq 1-\frac{1}{2 e}$ [then we show that this set of oracles on which V_{i} is successful induces a set of oracles on which V_{i} errs. To begin with Cwe show that for any oracle $O \Gamma$ most questions that V_{i} asks of O are asked on very few random strings. Fix an oracle O. Let us consider the behaviour of V_{i} on a particular random
string R. Considering all of the possible $2^{c n^{k}}$ responses to V_{i} 's $c n^{k}$ queries ${ }^{1}$ to $D\left(P_{1}, P_{2}\right)$ and noting that on any one path V_{i} may only query n^{i} strings of O Fwe have that on R there are a total of at most $n^{i} \cdot 2^{c n^{k}}$ strings of O that V_{i} might query. We then have that

$$
\operatorname{Pr}_{q \in \Sigma^{n^{2 k}}}\left[V_{i}^{O}\left[1^{n} ; R\right] \text { queries } q\right] \leq \frac{n^{i} \cdot 2^{c n^{k}}}{2^{n^{2 k}}} .
$$

Define

$$
\left.\mathcal{R}(Q, O) \stackrel{\text { def }}{=}\left\{R \in\{0,1\}^{r(n)} \mid \exists q \in Q, \exists D \subseteq \Sigma^{*}, V_{i}^{O, D}\left[1^{n} ; R\right]\right) \text { queries } q\right\} .
$$

Then

$$
\operatorname{Exp}_{q \in \Sigma^{n^{2 k}}}[|\mathcal{R}(\{q\}, O)|] \leq \frac{n^{i} \cdot 2^{r(n)} \cdot 2^{c n^{k}}}{2^{n^{2 k}}}
$$

Invoking Markov's inequality yields

$$
\forall O, \operatorname{Pr}_{q \in \Sigma^{n^{2 k}}}\left[|\mathcal{R}(\{q\}, O)| \geq \frac{2 \cdot n^{i} \cdot 2^{r(n)} \cdot 2^{c n^{k}}}{2^{n^{2 k}}}\right] \leq \frac{1}{2}
$$

Define $S_{q} \stackrel{\text { def }}{=}\left\{q 1, q 10, \ldots, q 10^{|q|}\right\}$. Then Γ because $\forall q_{1} \neq q_{2} \in \Sigma^{2 c n^{k}}, S_{q_{1}} \cap S_{q_{2}}=\emptyset$ we have that

$$
\forall O, \operatorname{Pr}_{q \in \Sigma^{n^{2 k}}}\left[\left|\mathcal{R}\left(S_{q}, O\right)\right|>\frac{2 \cdot n^{i} \cdot 2^{r(n)} 2^{c n^{k}}}{2^{n^{2 k}}}\right] \leq \frac{1}{2}
$$

NowTdefine $\Omega_{m}^{(1)} \stackrel{\text { def }}{=}\left\{O \in \Omega| | \hat{O} \cap \Sigma^{m} \mid=1\right\}$. Then $\mu\left(\Omega_{m}^{(1)}\right) \approx \frac{1}{e}$. Let $E(O)$ be the event that $\forall P_{1}, \exists P_{2}, \operatorname{Pr}_{R \in \text { coins }}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right]\right.$ accepts $]<\frac{1}{3}$. Then we may compute

$$
\begin{aligned}
& \operatorname{Pr}_{O \in \Omega_{n^{2 k}}^{(0)}, q \in \Sigma^{n^{2 k}}}^{\operatorname{Pr}}\left[E(O) \bigwedge\left|\mathcal{R}\left(S_{q}, O\right)\right|<\frac{2 \cdot n^{i} \cdot 2^{r(n)} \cdot 2^{c n^{k}}}{2^{n^{2 k}}}\right] \geq \\
& \operatorname{Pr}_{O \in \Omega_{n^{2 k}}^{(0)}}[E(O)]+\underset{O \in \Omega_{n^{2 k}}^{(0)}, q \in \Sigma^{n^{2 k}}}{ } \operatorname{Pr}
\end{aligned}\left|\mathcal{R}\left(S_{q}, O\right)\right|<\frac{\left.2 \cdot n^{i} \cdot 2^{r(n)} \cdot 2^{c n^{k}}\right]-1}{\left.2^{n^{2 k}}\right]-} \begin{aligned}
\left(1-\frac{1}{2 e}\right)+\left(1-\frac{1}{2}\right)-1 \geq \\
\frac{1}{4} .
\end{aligned}
$$

When the two above events occur we can conclude that

$$
\forall P_{1}, \exists P_{2}, \operatorname{Pr}_{R \in \mathrm{coins}}\left[V_{i}^{O \cup S_{q}, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right] \text { accepts }\right]<\frac{1}{3}+\frac{2 \cdot n^{i} \cdot 2^{c n^{k}}}{2^{n^{2 k}}} .
$$

Notice that if O and q are chosen uniformly from $\Omega_{m}^{(0)}$ and $\Sigma^{m} \Gamma$ respectively Γ then $O \cup S_{q}$ is uniform on $\Omega_{m}^{(1)}$. ThereforeTfor $n>\tilde{n} \Gamma$

$$
\operatorname{Pr}_{O \in \Omega_{n^{2 k}}^{(1)}}\left[\forall P_{1}, \exists P_{2}, \operatorname{Pr}_{R \in \operatorname{coins}}\left[V_{i}^{O \cup S_{q}, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right] \text { accepts }\right]<1\right] \geq \frac{1}{4} .
$$

[^1]Since $O \in \Omega_{m}^{(1)}$ implies $1^{n} \in \mathcal{L}_{\exists}(\hat{O}) \Gamma$

$$
\begin{equation*}
\operatorname{Pr}_{O \in \Omega}\left[\forall P_{1}, \exists P_{2} \operatorname{Pr}_{R \in \operatorname{coins}}\left[V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n} ; R\right] \text { accepts }\right] \neq 1 \wedge 1^{n} \in \mathcal{L}_{\exists}(\hat{O})\right] \geq \frac{1}{4} \cdot \frac{1}{e} \tag{3}
\end{equation*}
$$

Let Γ_{n} be the event that $\exists P_{1}, \forall P_{2}, V_{i}^{O, D\left(P_{1}, P_{2}\right)}\left[1^{n}\right]$ accepts $\Longleftrightarrow 1^{n} \in \mathcal{L}_{\exists}(\hat{O})$. From (1) $\Gamma(2)$ and (3) it follows that for $n>\tilde{n} \Gamma$

$$
\operatorname{Pr}_{O \in \Omega}\left[\Gamma_{n}\right]<1-\frac{1}{4 e} .
$$

Furthermore Γ for $m>n^{i} \Gamma \Gamma_{n}$ and Γ_{m} are independent (or use Lemma 1 of [5]). HenceГfor any $V_{i} \Gamma$

$$
\begin{aligned}
\operatorname{Pr}_{O \in \Omega}\left[L\left(V_{i}^{O}\right)=\mathcal{L}_{\exists}(\hat{O})\right] & \leq \\
\prod_{j=\tilde{n}}^{\infty} \operatorname{Pr}_{O \in \Omega}\left[\Gamma_{2^{l^{j}}}\right] & =0 .
\end{aligned}
$$

Finally「

$$
\operatorname{Pr}_{O \in \Omega}\left[\exists V_{i}^{O}, L\left(V_{i}^{O}\right)=\mathcal{L}_{\exists}(\hat{O})\right] \leq \sum_{i} \operatorname{Pr}_{O \in \Omega}\left[L\left(V_{i}^{O}\right)=\mathcal{L}_{\exists}(\hat{O})\right]=0
$$

so that

$$
\operatorname{Pr}_{O \in \Omega}\left[\mathbf{N P}^{O} \subseteq \operatorname{PCDS}^{O}\left[\text { poly } n, n^{k}\right]\right]=0
$$

Reiterating 5 from the fact that $\forall O, \mathbf{N P}^{O} \subseteq \operatorname{PSPACE}^{O}$ and the above lemma we have the desired theorem.

2.2 The Relationship between $\operatorname{PCDS}[r(n), a(n)]$ and IP

Theorem 2.4 Consider the two classes IP and $\operatorname{PCDS}\left[p o l y n, n^{k}\right]$. We have

1. $\operatorname{Pr}_{O \in \Omega}\left[\mathbf{I P}^{O} \subseteq \operatorname{PCDS}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right]\right]=0$,
2. $\operatorname{Pr}_{O \in \Omega}\left[\operatorname{PCDS}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right] \subseteq \mathbf{I P}^{O}\right]=0$.

Proof:

1. Using Lemma 2.3 and the fact that $\forall O \in \Omega, \mathbf{N P}^{O} \subseteq \mathbf{I P}^{O}$ we have the desired statement.
2. This follows from [6] and the fact that $\forall O, \operatorname{coNTIME}^{O}[n] \subseteq \mathrm{IP}^{O} \Rightarrow \operatorname{coNP}^{O} \subseteq \mathrm{IP}^{O}$.

2.3 The Relativized Relationship between $\operatorname{RPCDS}[r(n), a(n)]$ and IP, $\operatorname{PCDS}[r(n), a(n)]$

Theorem $2.5 \forall O, \mathbf{I P}^{O}=\operatorname{RPCDS}^{O}[$ poly n, poly $n]=\operatorname{RPCDS}^{O}[0$, poly $n]$.
Proof: By simulation.
Consider the classes RPCDS[poly $\left.n, n^{k}\right]$ and IP.

$$
\begin{aligned}
& \operatorname{PSPACE}{ }^{\mathrm{O}}=\operatorname{PCDS}^{[0, \text { poly } n]} \\
& =\mathrm{PCDS}^{\mathrm{O}} \text { [poly n, poly n] } \\
& C x \\
& \mathrm{IP}^{\mathrm{O}}=\operatorname{RPCDS}^{\mathrm{O}}[0, \text { poly } \mathrm{n}] \\
& =\operatorname{RPCDS}^{\mathrm{O}} \text { [poly } \mathrm{n} \text {, poly } \mathrm{n} \text {] } \\
& \neq \quad \operatorname{PCDS}^{\left[\text {poly } n, n^{k}\right]}
\end{aligned}
$$

Figure 1: The Relativized World.

Theorem 2.6 $\forall k, \operatorname{Pr}_{O \in \Omega}\left[\operatorname{RPCDS}^{O}\left[\right.\right.$ poly $\left.\left.n, n^{k}\right]=\mathbf{I P}^{O}\right]=0$.
Proof: We have that $\forall O, \mathbf{R P C D S}^{O}\left[\right.$ poly $\left.n, n^{k}\right] \subseteq \mathbf{P C D S}^{O}\left[\right.$ poly, $\left.n^{k}\right]$ so that Lemma 2.3 yields the desired result.

Theorem 2.7 For $a(n)=\omega(\log n)$,

$$
\operatorname{Pr}_{O \in \Omega}\left[\operatorname{PCDS}^{O}[r(n), a(n)] \subseteq \operatorname{RPCDS}^{O}[\text { poly } n, \text { poly } n]\right]=0
$$

Proof: $\forall O, \boldsymbol{c o N T I M E}^{O}[a(n)] \subseteq \operatorname{PCDS}^{O}[r(n), a(n)]$ but Γ by argument similar to that of Lemma 2.3Tone may show that

$$
\operatorname{Pr}_{O \in \Omega}\left[\exists \mathcal{L} \in \operatorname{coNTIME}^{\bigcirc}[a(n)]-\operatorname{RPCDS}^{\bigcirc}[\text { poly } n, \text { poly } n]\right]=1
$$

Figure 1 shows the probability 1 relationships between these classes.

2.4 The Relationship between PCDS $[r(n), a(n)]$ and EXPTIME

An oracle equating NP and EXP has been discovered by Heller [16].
Theorem 2.8 ([16]) $\exists O \subseteq \Sigma^{*}$ so that $\mathbf{E X P}^{O}=\mathrm{NP}^{O}$.
Fortnow [9] has shown the following theorem relating the existence of an oracle equating $\mathbf{P C P}[\log n, 1]$ (see [1]) and EXP to the $\mathbf{P} \stackrel{?}{=}$ NP question.

Theorem 2.9 ([9]) If $\exists O \subseteq \Sigma^{*}$ so that $\mathbf{P C P}^{O}[\log n, 1]=\mathbf{E X P}^{O}$ then $\mathbf{P} \neq \mathbf{N P}$.
We prove a similar result for the class $\operatorname{PCDS}[\log n, \log n]$.
Theorem 2.10 If $\exists O \subseteq \Sigma^{*}$ so that $\mathbf{P C D S}^{O}[\log n, \log n]=\mathbf{E X P}^{O}$ then $\mathbf{P} \neq \mathbf{P S P A C E}$.

Proof: Let O be an oracle so that $\mathbf{P C D S}^{O}[\log n, \log n]=\mathbf{E X P}^{\circ}$. Assume Γ for contradiction that $\mathbf{P}=\mathbf{P S P A C E}$. Let \mathcal{L} be a \leq_{p}-complete language for $\mathbf{E X P}^{\circ}$. We show that $\mathcal{L} \in \mathbf{P}^{O}$ and conclude that $\mathbf{P}^{O}=\operatorname{EXP}^{\circ} \Gamma$ which contradicts the time hierarchy theorem [15]. Let V be a $\operatorname{PCDS}^{O}[\log n, \log n]$ verifier for \mathcal{L}. We construct $D^{O} \Gamma$ a deterministic polynomial time machine so that $L\left(D^{O}\right)=\mathcal{L} . D^{O}$ Tgiven input w Twrites down the entire computation tree \mathfrak{T} of $V[w]$ Tanswering $V[w]$'s questions to O by actual questions to O and branching at those nodes where $V[w]$ receives debate tape answers. Notice that choice of a pair $\left(P_{1}, P_{2}\right)$ determines a path in \mathfrak{T}. This path is satisified if $V[w]$ accepts with these responses. Because $V[w]$ uses $O(\log n)$ random bits and receives $O(\log n)$ bits back from the debate tape Γ the total size of \mathfrak{T} is polynomial in $|w|$. \mathfrak{T} contains no queries to O. D^{O} would now like to determine if $\exists P_{1}, \forall P_{2} \Gamma$ the induced path in \mathfrak{T} is satisfied. Fortunately「this is a PSPACE decision problem Which can be solved in polynomial time because $\mathbf{P}=\mathbf{P S P A C E}$. Hence $\Gamma \mathcal{L} \in \mathbf{P}^{O}$ and $\mathbf{E X P}{ }^{O}=\mathbf{P}^{O} \Gamma$ contradicting the time hierarchy theorem.

3 Direction for Future Research

The discovery of simulation techniques which do not relativize (with probability 1) is astonishing. This leads us to question the meaning of relativization in general. One would like to distill the essential non-relativizing ingredient of these algebraic techniques. This may be done by presentation of (perhaps contrived) complexity classes with a somehow simpler (algebraic) proof of equality which exhibit this behaviour. Alternatively「this may be done by presentation of a new framework (perhaps just a new oracle-access mechanism [9]) Γ analogous to relativization Γ in which these techniques behave well.

4 Acknowledgements

We would like to thank Joan Feigenbaum and Lance Fortnow for helpful discussions. We would also like to thank the anonymous referees Γ who gave an improved proof of Theorem 2.4(2) and improved the general presentation.

References

[1] S. AroraГC. LundГR. MotwaniГM. SudanГand M. Szegedy. Proof verification and the hardness of approximation problems. In Proceedings of the Thirty Third Symposium on Foundations of Computer ScienceГpages 14-23. IEEEГ1992.
[2] L. Babai. Trading group theory for randomness. In Proceedings of the Seventeenth ACM Symposium on the Theory of ComputingГpages 421-429. АСМГ1985.
[3] L. Babai and S. Moran. Arthur-merlin games: a randomized proof systemFand a hierarchy of complexity classes. Journal of Computer and System Sciencesए36(2):254-276Г1988.
[4] T. Baker[J. GillГand R. Solovay. Relativizations of the $\mathrm{P}=$ NP question. SIAM Journal on Computing Г4(4):431-442Г1975.
[5] C. Bennett and J. Gill. Relative to a random oracle $\mathrm{A} \mathrm{\Gamma P}^{A} \neq \mathrm{NP}^{A} \neq \mathrm{co}-\mathrm{NP}^{A}$ with probability 1. SIA M Journal on ComputingГ10(1):96-113Г1981.
[6] B. ChorГO. GoldreichГand J. Håstad. The random oracle hypothesis is false. Manuscript.
［7］A．CondonTJ．FeigenbaumTC．LundГand P．Shor．Probabilistically checkable debate systems and approximation algorithms for PSPACE－hard functions．In Proceedings of the Twenty－Fifth ACM Symposium on Theory of ComputingГpages 305－314．АСМГ1993．
［8］A．Condon T J．Feigenbaum Г C．Lund［ and P．Shor．Random debators and the hardness of approximating stochastic functions．DIMACS Technical Report 93－79Г Rutgers University PiscatawayГNJГ1993．
［9］L．Fortnow．OraclesГproofs「and checking．Unpublished ManuscriptГJuly 1993.
［10］L．Fortnow and M．Sipser．Are there interactive proofs for co－NP languages？Information Processing LettersГ28：249－251Г1988．
［11］S．GoldwasserT S．Micaliए and C．Rackoff．The knowledge complexity of interactive proof systems．SIAM Journal of ComputingГ18（1）：186－208Г1989．
［12］J．Hartmanis．Solvable problems with conflicting relativizations．Bulletin of the EATCST27ए 1985.
［13］J．HartmanisTR．ChangTS．ChariГD．RanjanTand P．Rohatgi．Relativization：A revisionistic retrospective．Bulletin of the EATCST47Г1992．
［14］J．HartmanisT R．ChangT J．KadinГ and Mitchell．Some observations about relativization of space bounded computations．Bulletin of the EATCST35Г1988．
［15］J．Hartmanis and R．E．Stearns．On the computational complexity of algorithms．Transactions of the American Mathematical SocietyГ117：285－306Г1965．
［16］H．Heller．Relativized Polynomial Hierarchy Extending Two Levels．PhD thesisए Universität München「1981．
［17］S．Kurtz．On the random oracle hypothesis．Information and Control「57（1）：40－47TApril 1983.
［18］C．Lund L．Fortnow F H．Karloff C and N．Nisan．Algebraic methods for interactive proof systems．Journal of the АСМГ39（4）：859－868Г1992．
［19］M．O．Rabin and D．Scott．Finite automata and their decision problems．In E．F．MooreГ editorГSequential Machines：Selected PapersГpages 63－91．Addison－WesleyГ1964．
［20］A．Shamir．IP $=$ PSPACE．Journal of the АСМГ39（4）：869－877Г1992．

[^0]: ${ }^{*}$ E-mail address: acrotheory.lcs.mit.edu. Supported by an NSF Graduate Fellowship and grants NSF 92-12184, AFOSR F49620-92-J-0125, and DARPA N00014-92-1799
 ${ }^{\dagger}$ E-mail address: koods@theory.lcs.mit.edu. Supported by grants NSF 92-12184, AFOSR F49620-92-J-0125, and DARPA N00014-92-J-1799

[^1]: ${ }^{1}$ There are at most $2^{c n^{k}}$ responses to V_{i} 's queries even if V_{i} is adaptive (so that the $i+1$ st query may depend on the answer to the i th query).

