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Abstract

We demonstrate an equivalence between the rank 2 fragments of the
polymorphic lambda calculus (System F) and the intersection type dis-
cipline: exactly the same terms are typable in each system. An imme-
diate consequence is that typability in the rank 2 intersection system
is DEXPTIME-complete. We introduce a rank 2 system combining
intersections and polymorphism, and prove that it types exactly the
same terms as the other rank 2 systems. The combined system sug-
gests a new rule for typing recursive de�nitions. The result is a rank 2
type system with decidable type inference that can type many exam-
ples of polymorphic recursion. Finally, we discuss some applications of
the type system in data representation optimizations such as unboxing
and overloading.

Keywords: Rank 2 types, intersection types, polymorphic recursion,
boxing/unboxing, overloading.

1 Introduction

In the past decade, Milner's type inference algorithm for ML has become
phenomenally successful. As the basis of popular programming languages
like Standard ML and Haskell, Milner's algorithm is the preferred method
of type inference among language implementors. And in the theoretical

�Revised August 24, 1995.
y545 Technology Square, Cambridge, MA 02139, trevor@theory.lcs.mit.edu. Supported

by NSF grants CCR{9113196 and CCR{9417382.

1



community, the literature on type inference is dominated by extensions of
ML's let-polymorphism.

In this paper we examine some alternatives to ML that have attracted
surprisingly little attention: the systems of rank 2 types introduced by
Leivant [21]. These systems are slightly more powerful than ML|strictly
more terms can be assigned types|and the increased power comes for free|
the complexity of typability is identical. But the unique feature of the rank 2
systems that justi�es further study is that, in sharp contrast to other exten-
sions of ML, they abandon let-polymorphism.

We use the expression (�x:xx) to illustrate the limitations of let-poly-
morphism. It is well known that this expression cannot be typed in ML:
the only way for ML to type the self-application xx is by assigning a poly-
morphic type to x, and ML does not allow abstraction over variables with
polymorphic type. In ML, the only mechanism for introducing variables of
polymorphic type is the let-expression:

let x = (�y:y)
in xx

This let-expression binds x to the identity function (�y:y), which has the
polymorphic type 8t:t! t in ML. By ML's let-polymorphism, x is assigned
the type 8t:t! t, which is su�cient to type xx.

The problem with this is that we cannot typecheck the uses of x (the
application xx) separately from its de�nition (the function (�y:y)). So ML
must be extended with a module language in order to support programming
in the large, where it is impractical to require every polymorphic de�nition
to appear in the same source �le as every use.

In contrast, (�x:xx) is typable in all of the rank 2 systems we consider.
Here are two rank 2 typings:

(�x:xx) : (8t:t! t)! (8s:s! s);

(�x:xx) : (t! t) ^ ((t! t)! (t! t))! (t! t):

The �rst typing says that (�x:xx) is a function that, when given an argument
with type t! t for any type t, produces a result with type s! s, for any s.
The identity function is an appropriate argument.

The second typing says that (�x:xx) is a function that, when given an
argument having both the types (t ! t) and (t ! t) ! (t ! t), produces
a result of type (t ! t). Once again, the identity (�y:y) is an appropriate
argument.
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The rank 2 systems we consider are subsystems of two widely studied
type systems, System F and the system of intersection types. System F,
introduced independently by Girard [7] and by Reynolds [28], predates ML
and can type many more terms. A recent result of Wells [34], however, shows
that typability in the system is undecidable, putting type inference out of
reach.

The system of intersection types, introduced independently by Coppo
and Dezani [5] and by Sall�e [29], can type even more terms than System F:
it types all (and only) the strongly normalizing terms.1 The equivalence of
typability and strong normalization implies that type inference, just as with
System F, is unattainable.

With the goal of type inference in mind, we seek decidable restrictions of
these type systems. Restrictions based on the rank of types were suggested
by Leivant [21]. The rank of a type can be easily determined by examining it
in tree form. A type is of rank k if no path from the root of the type to a type
constructor of interest (either type intersection `^' or type quanti�cation `8')
passes to the left of k arrows. The types shown in Figure 1 are rank 2 types,
because no path from root to ^ or 8 passes to the left of two arrows. But
the types shown in Figure 2 go beyond rank 2 (they are rank 3 types). The
types given above for (�x:xx) are rank 2 types.
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Figure 1: Examples of rank 2 types

Ranks 0 and 1 of Leivant's systems are equivalent to the simply typed

1Without the type constant !.
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Figure 2: Types that go beyond rank 2

lambda calculus, which can type fewer terms than ML. But starting with
rank 2, the systems can type more terms than ML.

Rank 2 of System F, which we call �2, has received the most study. Mc-
Cracken [23] proposed a type inference algorithm for �2 based on Leivant's
ideas. This algorithm is incorrect. Kfoury and Tiuryn [12] show that the
complexity of typability in �2 is identical to that of ML. Kfoury and
Wells [16, 17] give a correct type inference algorithm, and show that ranks 3
and higher in System F are undecidable.

Leivant's original paper is almost the only work on rank 2 of the inter-
section type discipline, which we call I2. Leivant sketched a type inference
algorithm for I2, but the algorithm was not formalized and proved correct
until recently [33]. Leivant also conjectured the undecidability of ranks 3
and higher in the intersection system; to our knowledge the details of his
proof idea have never been veri�ed.

I2 has a signi�cant advantage over �2: it has principal typings. This
means that for any term M , if M is typable in I2, then there is an I2 typing
judgment

A `M : �

that represents all of the possible typing judgments for M . Other typings
for M can be obtained from the principal typing by simple operations (sub-
stitution and subsumption).

4



Contributions of the paper

Since I2 has principal typings, and �2 does not, we believe I2 deserves
more study. The �rst contribution of this paper is to develop some of the
basic properties of I2. We establish the following equivalence: a term is
typable in I2 if and only if it is typable in �2.

2 An immediate corollary
is that typability in I2 is DEXPTIME-complete, identical to typability in
�2 and ML. We also consider some variants of I2, and show they are all
equivalent in terms of typability.

The second contribution of this paper is to introduce a new type system,
P2, that combines rank 2 intersection types and top-level quanti�cation of
type variables, as in ML. P2 has principal typings, so it clearly improves on
�2. Its advantage over I2 is more subtle. The addition of quanti�ers makes
types more expressive: the quanti�ers identify generic type variables, that is,
type variables which can safely be instantiated with any type. This permits
a simpler de�nition of the type inference algorithm, and suggests a novel
type inference algorithm for recursive de�nitions.

A recursive de�nition is written in the form (�xM), and is meant to
denote a program x such that

x = M;

whereM may contain some uses of x. The standard rule for typing recursive
de�nitions looks like

A [ fx : �g `M : �

A ` (�xM) : �

Most type inference algorithms restrict the type � in this rule to be a simple
type. The rule of polymorphic recursion relaxes this restriction by allowing
� to be an ML type scheme. This gives a useful increase in typing power|
it can type some natural programs that cannot be typed by the simple
recursion rule. However, polymorphic recursion makes type inference unde-
cidable [14].

We suggest another way of typing recursive de�nitions:

A [ fx : �g `M : �

A ` (�xM) : �
(where � � �)

The rule says that as long as the type � of M is more general than the
assumption � on x needed to type M , we can deduce � as the type of the
recursive de�nition.

2The equivalence between the rank 2 fragments of System F and the intersection type
discipline has been shown independently by Yokouchi [35].
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We extend P2 to type recursive de�nitions in this way. The resulting
system can type many (but not all) of the examples that seem to require
polymorphic recursion. Moreover, the system has principal types and de-
cidable type inference.

Organization of the paper

In x2, we introduce Is2, a syntax-directed version of I2, and �
s
2, a syntax-

directed version of �2. The main result is that a term is typable in one
system if and only if it is typable in the other. An immediate corollary is
that typability in Is2 is DEXPTIME-complete, the same complexity as in
ML and �s

2. In x3, we present the type inference algorithm for Is2. In x4, we
discuss some other de�nitions of rank 2 intersection type systems, and show
their equivalence with I2. In x5, we de�ne P2, show that it has principal
typings, and give a type inference algorithm. In x6, we discuss various ways
of typing recursive de�nitions, and we propose an extension of P2 that can
type many examples of polymorphic recursion. We discuss applications of
P2 to compilation in x7, and we summarize our results in x8.

2 Rank 2 type systems

2.1 Preliminaries

We will be de�ning a number of type systems; here we develop machinery
that will be useful in all of them.

We use x; y; : : : to range over a countable set of variables, and t; s to
range over a countable set, Tv, of type variables. The terms and types of
the systems will vary, but in all cases we use �; �; : : : to range over types,
and M;N; P; : : : to range over terms.

The terms of the (pure) lambda calculus are de�ned by the following
grammar:

M ::= x j (M1M2) j (�xM):

Unless stated otherwise, terms are considered syntactically equal modulo
renaming of bound variables. We adopt the usual conventions that allow us
to omit parentheses: application associates to the left, and the scope of an
abstraction `�' extends to the right as far as possible. We write �x1 � � �xn:M
for (�x1(� � �(�xnM) � � �)).

The types of our systems will all be subsets of the types with quanti�-
cation and intersection:

� ::= t j (�1 ! �2) j (8t�) j (�1 ^ �2):

6



By convention, `!' associates to the right, so that, e.g., (t ! (t! t)) may
be written more compactly as t ! t ! t, and `^' binds more tightly than
`!', e.g., �^ � ! t means (�^ �)! t. The scope of a quanti�er `8' extends
as far to the right as possible. We write (8~t�) for the type

(8t1(8t2(: : : (8tn�) : : :)));

where ~t = t1; t2; : : : ; tn and n � 0.

The set of simple types, T0, is de�ned by the following inductive equa-
tion:

T0 = f t j t is a type variable g [ f (� ! �) j �; � 2 T0 g:

A type environment is a �nite set fx1 : �1; : : : ; xn : �ng of (variable, type)
pairs, where the variables x1; : : : ; xn are distinct. We use A to range over
type environments. We write A(x) for the type paired with x in A, dom(A)
for the set fx j 9�:(x : �) 2 Ag, and Ax for the type environment A with
any pair for the variable x removed. We write A1 [A2 for the union of two
type environments; by convention we assume that dom(A1) and dom(A2)
are disjoint. For any set T of types, we say A is a T type environment if
A(x) 2 T for all x 2 dom(A).

The notion of free type variable is de�ned as usual. We write FTV(�) for
the free type variables of a type �, and FTV(A) for the free type variables
of all types appearing in A. We write Gen(A; �) for the 8-closure of � by
the type variables FTV(�)� FTV(A).

A judgment is a relation between type environments, terms, and types,
written A ` M : �. A term M is typable if A ` M : � for some A and �.
A pair hA; �i of a type environment and a type is called simply a pair .
Two pairs hA1; �1i and hA2; �2i are disjoint if their free type variables are
disjoint. An acceptable pair of a term M in a type system is a pair hA; �i
such that the judgment A ` M : � holds in the type system. We write
APD(M) for the set of acceptable pairs of M in a type system D.

A substitution is a mapping from type variables to simple types which is
the identity on all but a �nite number of type variables. We use S;R;Q; U
to range over substitutions. The domain and range of a substitution S are
de�ned

dom(S) = ft j St 6= tg;

rng(S) =
[

t2dom(S)

FTV(St):
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If dom(S) = ft1; t2; : : : ; tng and Sti = �i for all i, then S can be written in
the form ft1 := �1; : : : ; tn := �ng.

The application of substitutions is extended to types, type environments,
and pairs in the usual way. The composition of substitutions is denoted
by juxtaposition, so that SRt = (SR)t = S(R(t)). We say S1 and S2 are
disjoint if dom(S1) and dom(S2) are disjoint sets. If S1 and S2 are disjoint,
then the substitution S1 [ S2 is de�ned as follows:

(S1 [ S2)(t) =

8><
>:

S1(t) if t 2 dom(S1);
S2(t) if t 2 dom(S2);
t otherwise.

Note that we have made a severe restriction on substitutions: they map
type variables only to simple types, and not types in general.

2.2 The rank 2 intersection type system

There are many di�erent formulations of intersection type systems; see van
Bakel [33] for a survey. We will present a very restricted intersection type
system here, the system of rank 2 intersection types. Our system is a slight
generalization of van Bakel's version (see x4.1).

The terms of the intersection type system are just the terms of the
lambda calculus. The sets T1 and T2 are de�ned to be the smallest sets
satisfying the following equations:

T1 = T0 [ f(� ^ �) j �; � 2 T1g;

T2 = T0 [ f(� ! �) j � 2 T1; � 2 T2g:

The set T1 of rank 1 types consists of �nite, nonempty intersections of simple
types. T2 is the set of rank 2 intersection types: these are types possibly
containing intersections, but only to the left of a single arrow. Note that
T0 = T1 \T2, and for i 2 f0; 1; 2g, if � 2 Ti, then S� 2 Ti.

In order to simplify subsequent de�nitions, we adopt the following syn-
tactic convention: we consider `^' to be an associative, commutative, and
idempotent operator, so that any T1 type may be considered a �nite, non-
empty set of simple types, written in the form (

V
i2I �i), where each �i 2 T0.

De�nition 1 For i 2 f1; 2g, we de�ne the relation �i as the least partial
order on Ti closed under the following rules:

i) If f�j j j 2 Jg � f�i j i 2 Ig, then (
V
i2I �i) �1 (

V
j2J �j).
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(var) Ax [ fx : (
V
i2I �i)g ` x : �i0 (where i0 2 I)

(abs)
Ax [ fx : �g `M : �

A ` (�xM) : � ! �

(app)
A `M : (

V
i2I �i)! �; (8i 2 I) A ` N : �i

A ` (MN) : �

Figure 3: Typing rules of Is2. Types in type environments are in T1, and
derived types are in T2.

ii) If �1 �1 �1 and �2 �2 �2, then (�1 ! �2) �2 (�1 ! �2).

The �rst rule says that �1 expresses the natural ordering on intersection
types, and the second rule says that �2 obeys the usual antimonotonic
ordering on function types, restricted to rank 2.

Some useful properties of the orderings �1 and �2 are summarized in
the following lemma.

Lemma 2
i) If � 2 T0 and � 2 T1, then � �1 � i� � = � .

ii) If � 2 T2 and � 2 T0, then � �2 � i� � = � .

iii) (
V
i2I �i) �1 (

V
j2J �j) i� for all j 2 J there exists an i 2 I such that

�j = �i.

iv) (
V
j2J �j) ! � �2 (

V
i2I �i) ! � i� � �2 �, and for all j 2 J there

exists an i 2 I such that �j = �i.

v) For i 2 f1; 2g, if � �i � , then S� �i S� .

Judgments in our rank 2 system are de�ned inductively by the rules of
Figure 3. We write Is2 . A ` M : � if the judgment A ` M : � follows by
these rules, with types appearing in type environments restricted to T1, and
derived types restricted to T2. The superscript `s' in Is2 indicates that the
system is syntax-directed, in contrast with a later variant (see x4).

If A1 and A2 are T1 type environments, we de�ne A1 + A2 , a T1 type
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environment, as follows: for each x 2 dom(A1)[ dom(A2),

(A1 +A2)(x) =

8><
>:

A1(x) if x 62 dom(A2);
A2(x) if x 62 dom(A1);
A1(x) ^A2(x) otherwise.

Lemma 3 (Weakening) If Is2 . A ` M : �, then Is2 . A + A0 `M : � for
any T1 type environment A0.

Proof: An easy induction on typing derivations. 2

Lemma 4 (Substitutivity) If Is2 . A `M : �, then Is2 . SA `M : S� for
any substitution S.

Proof: By induction on the structure of M .

i) If M = x, then A(x) = (
V
i2I �i) and � = �i0 for some i0 2 I . Then

SA(x) = (
V
i2I S�i), I

s
2 . SA ` x : S�i0, and S� = S�i0 .

ii) If M = �xN then � must be of the form �1 ! �2, and Is2 . Ax [ fx :
�1g ` N : �2. Then by induction, I

s
2 . S(Ax[fx : �1g) ` N : S�2, so by

rule (abs), Is2 . SAx ` N : S�1 ! S�2, or I
s
2 . SAx ` N : S(�1 ! �2).

Then by weakening, Is2 . SA ` N : S(�1 ! �2).

iii) If M = M1M2, then for some (
V
i2I �i) 2 T1 we have Is2 . A ` M1 :

(
V
i2I �i) ! � and Is2 . A ` M2 : �i for all i 2 I . By induction we

have Is2 . SA `M1 : (
V
i2I S�i)! S� and Is2 . SA `M2 : S�i, and by

rule (app), we have Is2 . SA `M1M2 : S�, as desired.

2

2.3 System F

The terms of System F are exactly the terms of the lambda calculus. The
types of System F are de�ned by the following grammar:

� ::= t j (�1 ! �2) j (8t�):

We consider System F types to be syntactically equal modulo renaming of
bound type variables, reordering of adjacent quanti�ers, and elimination of
unnecessary quanti�ers.
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The types of System F can be organized into a hierarchy as follows.
First, de�ne R(0) = T0. Then for n � 0, the set R(n + 1) is de�ned to be
the least set satisfying

R(n+ 1) = R(n) [ f(� ! �) j � 2 R(n); � 2 R(n+ 1)g

[ f(8t�) j � 2 R(n + 1)g:

It will be useful to restrict types so that quanti�ers do not appear to the
immediate right of arrows. Therefore we de�ne the sets

S = S0 [ f(8t�) j � 2 Sg;

S0 = T0 [ f(� ! �) j � 2 S; � 2 S0)g:

We write S(n) for S \ R(n) and S0(n) for S0 \ R(n). Note that the S(1)
types are exactly the ML type schemes.

De�nition 5 Suppose � = 8t1 � � � tn:� 2 S(1), and �; � 0 2 T0. We say � 0 is
an instance of �, written � � � 0, if and only if for some �1; : : : ; �n 2 T0, we
have � 0 = ft1 := �1; : : : ; tn := �ng� . We write � � (8s1 � � �sm�

0) if and only
if s1; : : : ; sm are not free in � and � � � 0.

Note that the sense of `�' is opposite to that of our other subtyping relations:
both \� �2 �" and \� � �" may be read, \� is more general than � ." We
make an exception in the case of `�' to be consistent with its use in ML [24].

We now de�ne �s
2, our version of the rank 2 fragment of System F. The

superscript `s' in �s
2 indicates that the system is syntax-directed. See Kfoury

and Tiuryn [12] for a de�nition of �2, the non-syntax-directed version.
The judgments of the system are de�ned by the rules of Figure 4. We

write �s
2 . A `M : � if A `M : � is derivable from these rules, where types

in type environments are restricted to S(1), and derived types are restricted
to S0(2).

�s
2 is closely related to the system ��2 studied by Kfoury et al. [12, 17]:

Theorem 6

i) If �s
2 . A `M : �, then ��2 . A `M : �.

ii) If ��2 . A `M : �, then � is of the form 8t1 � � � tn�
0, where �0 2 S0(2),

and �s
2 . A `M : �0.

This equivalence follows immediately from results of Kfoury and Wells [17].
It implies the following useful result:

Lemma 7 If �s
2 . A `M : � and Gen(A; �) � �0, then �s

2 . A `M : �0.
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(var) Ax [ fx : �g ` x : � (where � � �)

(abs)
Ax [ fx : �1g `M : �2
A ` (�xM) : �1 ! �2

(app)
A `M : (8~t�1)! �2; A ` N : �1

A ` (MN) : �2
(each ti 62 FTV(A))

Figure 4: Typing rules of �s
2. Types in type environments are in S(1), and

derived types are in S0(2).

2.4 ML

Many di�erent formulations of the ML type system have been studied; we
choose to present a syntax-directed version here, as in Clement et al. [4] or
Tofte [32].

The types of ML are the types T0, and the ML type schemes are the
types S(1). The terms of ML are the terms of the lambda calculus extended
with let-expressions :

M ::= x j (M1M2) j (�xM) j (let x = M1 inM2):

The judgments of ML are de�ned inductively by the rules of Figure 5. We
write ML . A `M : � if A `M : � is derivable from these rules, where types
in type environments are restricted to S(1), and derived types are restricted
to T0.

De�nition 8 An ML type � is a principal type for M in A if and only
if ML . A ` M : � , and for all ML types � 0, if ML . A ` M : � 0, then
Gen(A; �) � � 0.

Theorem 9 (Principal types for ML) If M is typable by A, then there
exists a principal type for M in A.

Lemma 10 If ML . A `M : � , and Gen(A; �) � � 0, then ML . A `M : � 0.

2.5 Relationship of �s
2 and Is2

We now show that a term is typable in �s
2 if and only if it is typable in Is2.

The left to right implication is developed �rst.
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(var) Ax [ fx : �g ` x : � (where � � �)

(app)
A `M : �1 ! �2; A ` N : �1

A ` (MN) : �2

(abs)
Ax [ fx : �1g `M : �2
A ` (�xM) : �1 ! �2

(let)
A `M1 : �1; Ax [ fx : Gen(A; �1)g `M2 : �2

A ` (let x = M1 inM2) : �2

Figure 5: Typing rules of ML. Types in type environments are in S(1), and
derived types are in T0.

De�nition 11
i) We de�ne a relation �1 between S(1) and T1 as follows. Suppose

� 2 S(1) and �1; : : : ; �n 2 T0 (n � 1). Then � �1 (
V
i2I �i) if and

only if � � �i for all i 2 I .

ii) We de�ne the relation �2 between S0(2) and T2 inductively:

a) For any type variable t, t �2 t.

b) If � �1 �
0 and � �2 �

0, then (� ! �) �2 (� 0 ! �0).

Note that the relation �2 is monotonic in the argument of function types, in
contrast to the relation �2. We extend the relation �1 to type environments
as follows: A �1 A

0 if and only if x 2 dom(A) and A(x) �1 A
0(x) whenever

x 2 dom(A0).

Theorem 12 If �s
2 . A `M : � , then Is2 . A

0 `M : � 0, where A �1 A
0 and

� �2 �
0.

Proof: By induction on derivations.

i) M = x and �s
2 . A ` x : � follows by the �s

2 rule (var). Then we
must have A(x) � � .

Let A0 = fx : �g. Clearly Is2 . A
0 `M : � , A �1 A

0, and � �2 � .

ii) M = �xN , � = � ! �1, and �s
2 . A ` �xN : � ! �1 follows by the �s

2

rule (abs).
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Then we must have

�s
2 . A [ fx : �g ` N : �1:

By induction, we have

Is2 . A
0 [ fx : �0g ` N : � 01;

where A �1 A
0, � �1 �

0, and �1 �2 �
0
1. So by the Is2 rule (abs), we

have
Is2 . A

0 ` N : �0 ! � 01;

where A �1 A
0, and (� ! �1) �2 (�

0 ! � 01), as desired.

iii) M = M1M2 and �s
2 . A ` M1M2 : � follows by the �s

2 rule (app).
Then we must have, for some �0 2 T0,

�s
2 . A `M1 : (8~t:�0)! �;

�s
2 . A `M2 : �0;

where the type variables ~t do not appear in FTV(A). Then by induc-
tion we have

Is2 . A
0
0 `M1 : (

^
i2I

�i)! � 0;

where A �1 A
0
0, � �2 �

0, and (8~t:�0) �1 (
V
i2I �i).

Then each �i is an instance of (8~t:�0), and therefore by Lemma 7,
�s
2 . A `M2 : �i for all i 2 I .

By induction we have for all i 2 I , Is2 . A
0
i ` M2 : �i, where A �1 A

0
i.

So if A0 = A0
0 +�i2IA

0
i, then A �1 A

0, and by weakening,

Is2 . A
0 `M1 : (

V
i2I �i)! � 0;

Is2 . A
0 `M2 : �i (8i 2 I):

Then by the Is2 rule (app) we have

Is2 . A
0 `M1M2 : �

0;

as desired.

2

We now show the other direction of the equivalence: any term typable
in Is2 is typable in �s

2.
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Convention 13 In the remainder of this section we do not consider terms
to be identical modulo �-conversion, and we will assume the following con-
vention regarding the names of bound and free variables:

i) No variable is bound more than once.

ii) The bound and free variables are disjoint.

This convention is necessary to make the following function well-de�ned:

De�nition 14 Let � denote the empty sequence. The function, act, that
maps terms to sequences of variables, is de�ned inductively by the following
rules.3

i) act(x) = �.

ii) If act(M) = x1; : : : ; xn then act(�yM) = y; x1; : : : ; xn.

iii) If act(M) = y; x1; : : : ; xn (n � 0) then act(MN) = x1; : : : ; xn.

iv) If act(M) = � then act(MN) = �.

De�nition 15
i)  is the rule

(�x(�yM))N ! �y((�xM)N):

ii) ! is the compatible closure of .

iii) A -redex is any term matching the left-hand side of the rule . We
say M is a -normal form, or -nf, if no subterm of M is a -redex.

Note that by our convention on the distinct naming of variables, there is no
capture of variables in the  rule. We use the name \" in accordance with
Kfoury and Wells [18]. See Barendregt [2] for a de�nition of \compatible."

Lemma 16

i) ! is strongly normalizing.

ii) ! satis�es the diamond property.

iii) -nf's are unique.

3Our de�nition is identical to the de�nition of [12], but di�ers from [11].
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Proof:

i) The proof is similar to the proof of Lemma 5.5 from Kfoury and
Wells [17]:

Let appl(M) be the set of subterms of M that are applications, and
let

�(M) =
X

(M1M2)2appl(M)

max(0; jact(M1)j � 1):

If M ! N , then �(M) = �(N)+1. Since for any M we have �(M) �
0, we can conclude that! is strongly normalizing. In fact, �(M) > 0
i� M contains a -redex, and M normalizes in exactly �(M) steps.

If jM j is the size (number of subterms) ofM , then clearly jappl(M)j �
jM j and jact(M)j � jM j. Thus �(M) � jM j2. Therefore normaliza-
tion of a term M takes O(jM j2) steps.

ii) This is a simple case analysis.

iii) This follows from (ii).

2

Lemma 16 justi�es the following de�nition:

De�nition 17 We write -nf(M) for the -nf of M .

Lemma 18 For D 2 fIs2;�
s
2g, the following hold:

i) D . A ` (�x(�yM))N : � i� D . A ` �y((�xM)N) : �.

ii) If M ! N , then D . A `M : � i� D . A ` N : �.

iii) D . A `M : � i� D . A ` -nf(M) : �.

Proof:

i) Simple case analysis.

ii) Use (i) and induction on the de�nition of compatible.

iii) Use (ii) and induction on the length of rewriting.

2
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Lemma 19 If act(M) = x1; : : : ; xn and Is2 . A ` M : �, then � is of the
form �1 ! � � � ! �n ! � , where � 2 T0.

Proof: By induction on the structure of M .

i) If M = x, then n = 0 by the de�nition of act, and � 2 T0 by rule
(var).

ii) IfM = �x1N , then Is2 . A `M : � follows by rule (abs), and therefore
� is of the form �1 ! �0, where �1 2 T1.

Also we must have act(N) = x2; : : : ; xn (n � 1) and Is2 . A [ fx1 :
�1g ` N : �0. By induction �0 must be of the form �2 ! � � � ! �n ! � ,
where �2; : : : ; �n 2 T1 and � 2 T0.

iii) If M = M1M2, then Is2 . A ` M : � follows by rule (app), and
therefore we have Is2 . A `M1 : �0 ! �, where �0 2 T1.

We consider two cases. If act(M1) = y; x1; : : : ; xn for some variable
y, then by induction, � is of the form �1 ! � � � ! �n ! � , where
�1; : : : ; �n 2 T1 and � 2 T0.

Otherwise act(M1) = �, and therefore act(M) = �, so we only need
prove � 2 T0. And by induction, we have (�0 ! �) 2 T0, so � 2 T0.

2

Note 20 A similar lemma holds for �s
2, c.f. Kfoury et al. [12], Lemma 15.

Lemma 21 Suppose M is a -nf. Then

act(M) 6= � i� M = �yN for some y;N:

Proof: By induction on the structure of M . The cases M = x and M =
�yN are trivial, so assume M = M1M2. We must show act(M) = �.

By way of contradiction, assume that act(M) = x1; : : : ; xn (n � 1). By
the de�nition of act, we must have act(M1) = y; x1; : : : ; xn for some y.
Then act(M1) 6= �, so by induction we have M1 = �yM 0

1, and act(M
0
1) =

x1; : : : ; xn. Since n � 1, act(M 0
1) 6= �, and by induction M 0

1 = �x1M
00
1 . But

then M is a -redex, contradiction. 2

De�nition 22 We de�ne a mapping, ml, from terms to ML terms:

i) ml(x) = x.

ii) ml(�xM) = (�xml(M)).
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iii) ml(M1M2) =

(
(let x =ml(M2) in ml(N)) if M1 = �xN ,
(ml(M1)ml(M2)) otherwise.

De�nition 23

i) A generalization of a set T of simple types is a type � 2 S(1) such that
� � � for every � 2 T. A generalization � of T is the least common
generalization of T if �0 � � for any other generalization �0 of T.

ii) If (
V
i2I �i) 2 T1, we de�ne lcg(

V
i2I �i) to be the least common gen-

eralization of f�i j i 2 Ig. If �1, . . . , �n 2 T1 and � 2 T0, then

lcg(�1 ! � � � ! �n ! �) = lcg(�1)! � � � ! lcg(�n)! �:

The function lcg is extended to type environments in the usual way.

The use of \least" in the name \least common generalization" is consistent
with the relation `�'. Recall that the sense of `�' is opposite to that of our
other subtyping relations, so that \least" for `�' means \greatest" for the
other relations.

The concept of least common generalizations was developed by Plotkin
[26] and Reynolds [27]. They showed that any �nite nonempty set of simple
types has a least common generalization, and they gave an algorithm to
compute it.

Lemma 24 If M is a -nf and � 2 T0, then

i) Is2 . A `M : � implies ML . lcg(A) `ml(M) : �; and

ii) �s
2 . A `M : � if and only if ML . A `ml(M) : �.

Proof:

i) By induction on the structure of M .

a) The case M = x is trivial.

b) If M = �yN , then Is2 . A `M : � follows by the Is2 rule (abs), so
� must be of the form � ! �0 where �; �0 2 T0, and I

s
2 . A[ fy :

�g ` N : �0. Note that N is a -nf, so we can apply the induction
hypothesis to get

ML . lcg(A [ fy : �g) `ml(N) : �0:

Now � 2 T0, so lcg(A [ fy : �g) = lcg(A) [ fy : �g. Therefore
ML . lcg(A) [ fy : �g ` ml(N) : �0, so by the ML rule (abs),
ML . lcg(A) `ml(�yN) : � ! �0, as desired.
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c) If M = (�yM1)M2, then our judgment must follow by Is2 rules
(abs) and (app). Thus we have

Is2 . A [ fy : (
V
i2I �i)g `M1 : �;

(8i 2 I) Is2 . A `M2 : �i:

Let 8~t� = lcg(
V
i2I �i), where � 2 T0, and no ti appears in A.

By induction, we have

ML . lcg(A) [ fy : 8~t�g `ml(M1) : �;
(8i 2 I) ML . lcg(A) `ml(M2) : �i:

By the principal type property of ML, we have

ML . lcg(A) `ml(M2) : �:

Then since ml(M) = (let y =ml(M2) in ml(M1)), we have

ML . lcg(A) `ml(M) : �

by the ML rule (let).

d) If M = M1M2, where M1 is not an abstraction, then by the Is2
rule (app), we have for some �0,

Is2 . A `M1 : �
0 ! �;

Is2 . A `M2 : �
0:

M1 is a -nf and is not an abstraction, so by Lemma 21, we have
act(M1) = �. Then by Lemma 19, �0 ! � 2 T0, and therefore
�0 2 T0. M2 is also a -nf, so we may apply the induction
hypothesis to both judgments above, to get

ML . lcg(A) `ml(M1) : �0 ! �;

ML . lcg(A) `ml(M2) : �
0:

Then by the ML rule (app), we have

ML . lcg(A) `ml(M1M2) : �;

as desired.

ii) Similar, but easier.

2
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Note 25 The converse of Lemma 24(i) does not hold. For instance, if � =
t3 and A = fx : t1 ^ t2g, then lcg(A) = fx : 8t:tg, ml(xx) = xx, and
ML . fx : 8t:tg ` xx : t3, but the judgment fx : t1 ^ t2g ` xx : t3 cannot be
derived in Is2.

Theorem 26 If Is2 . A `M : �, then �s
2 . lcg(A) `M : lcg(�).

Proof: Suppose act(M) = x1; : : : ; xn. Then by Lemma 19, � is of the form
�1 ! � � � ! �n ! � , where � 2 T0, and by Lemma 21, the -nf of M is of
the form �x1 � � ��xnN , where N is a -nf. By Lemma 18(iii),

Is2 . A ` �x1 � � ��xnN : �:

This judgment must follow by n uses of the Is2 rule (abs), so we have

Is2 . A [ fx1 : �1; : : : ; xn : �ng ` N : �:

Then by Lemma 24, we have

�s
2 . lcg(A [ fx1 : �1; : : : ; xn : �ng) ` N : �:

By n uses of the �s
2 rule (abs), we have

�s
2 . lcg(A) ` �x1 � � ��xnN : lcg(�);

and by Lemma 18(iii), we have

�s
2 . lcg(A) `M : lcg(�):

2

Theorem 27 If M is a term of the pure lambda calculus, then M is typable
in Is2 if and only if M is typable in �s

2.

Therefore, typability in Is2 is DEXPTIME-complete.

Proof: The equivalence of Is2 and �s
2 typability follows from Theorems 12

and 26.

Kfoury and Tiuryn [12] show that �s
2 typability is polynomial time

equivalent to ML typability. ML typability was shown to be DEXPTIME-
complete independently by Kfoury et al. [15] and by Mairson [22]. 2

This equivalence has been shown independently by Yokouchi [35].
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3 Type inference for Is2

We present the type inference algorithm for Is2 and a proof that it infers prin-
cipal pairs. The algorithm is not new: it was described briey in Leivant's
original paper [21], and was de�ned rigorously by van Bakel in his disser-
tation [33]. We include it here because the algorithm provides a way to
compare a variety of type systems based on rank 2 intersection types.

The algorithm takes as input a termM , and produces a pair hA; �i such
that Is2 . A ` M : �. Moreover, the pair hA; �i is principal in the sense
that any other acceptable pair of M can be obtained from hA; �i by some
well-understood operations.

De�nition 28

i) We write A �1 A0 if x 2 dom(A) and A(x) �1 A0(x) for all x 2
dom(A0).

ii) The ordering � on (T1 type environment, T2 type) pairs is de�ned as
follows:

hA; �i � hA0; �0i if and only if A0 �1 A and � �2 �
0.

iii) A pair hA; �i is a principal pair for M if hA; �i 2 APIs
2
(M), and for

any other pair hA0; �0i 2 APIs
2
(M), there is a substitution S such that

ShA; �i � hA0; �0i.

Note that �1 and � are transitive, and A + A0 �1 A for all T1 type envi-
ronments A;A0.

3.1 Subtype satisfaction

In this section we give a decision procedure for one of our subtyping relations,
and show how to solve a more general problem, subtype satisfaction, that
we use in our type inference algorithm.

Up until now, we have relied on some syntactic conventions to simplify
our presentation, namely, that `^' is an associative, commutative, and idem-
potent operator. Part of the problem we are addressing here is how to decide
whether two types are equivalent under these assumptions. Therefore, in this
section, we do not rely on the syntactic conventions in any way.

Subtype satisfaction is a generalization of the well-known problem of
uni�cation, and the techniques we use here are based on those used to solve
uni�cation. For more details, consult a survey on uni�cation [19, 20, 30, 10,
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6, 31, 1]. One di�erence between uni�cation and our satisfaction problems is
that we work with types that go beyond simple types, but our substitutions
involve only simple types. This is not the typical case with uni�cation, and
it makes our problem easier to solve.

If S1; S2 are substitutions and V is a set of type variables, we say S1
and S2 are equivalent on V , written S1 =V S2, if S1t = S2t for every t 2 V .
We say S1 is more general than S2 on V , written S1 �V S2, if there is a
substitution S3 such that S2 =V S3S1. The relation �V is a partial order
modulo =V . We omit V when V = Tv. A substitution S is idempotent if
S = SS, or, equivalently, if dom(S)\ rng(S) = ;.

We de�ne the relation �2;1 between T2 and T1 as the least relation
closed under the rule:

� If � �2 �i for all i 2 I , then � �2;1 (
V
i2I �i).

A �2;1-satisfaction problem is a pair 9~s:P , where P is a �nite set whose every
element is either: 1) an equality between simple types; or 2) an inequality
between a T2 type and a T1 type. When ~s is empty 9~s may be omitted.
We use � to range over �2;1-satisfaction problems.

A substitution S is a solution to 9~s:P if there is a substitution S0 such
that S(t) = S0(t) for all t 62 ~s, S0� �2;1 S

0� for all inequalities (� � �) 2 P ,
and S0� = S0� for all equalities (� = �) 2 P . The (possibly empty) set of
solutions to a problem � is written Solutions(�). Two problems �1 and �2
are equivalent if Solutions(�1) = Solutions(�2).

De�nition 29

i) A substitution U is a most general solution to � if it satis�es the
following conditions.

a) U 2 Solutions(�).

b) If S 2 Solutions(�) then U �FTV(�) S.

c) U is idempotent.

d) dom(U) � FTV(�).

ii) We write MGS(�) for the (possibly empty) set of most general solu-
tions to a �2;1-satisfaction problem �.

We require the last two conditions on most general solutions for technical
convenience only. We could relax the de�nition by eliminating those condi-
tions; but any � has a solution under the relaxed de�nition if and only if it
has a solution under our de�nition.
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Sometimes it is useful to ensure that a most general solution does not
interfere with a set of \protected" variables. For any setW of type variables,
we say U is a most general solution to � away from W if U 2MGS(�) and
W \ rng(U) = ;, and we write MGS(�)[W ] for the (possibly empty) set of
most general solutions to � away from W .

Lemma 30 If U 2MGS(�)[W ] and S 2 Solutions(�), then U �W[FTV(�)

S.

Proof: Since U �FTV(�) S, there is some R such that RU =FTV(�) S.
De�ne

R0(t) =

(
R(t) if t 2 rng(U);
S(t) otherwise:

If t 2 FTV(�), then R0(U(t)) = R(U(t)) = S(t). And if t 2 W � FTV(�),
then t 62 (dom(�)[ rng(�)), so R0(U(t)) = R0(t) = S(t). 2

A uni�cation problem is a subtype satisfaction problem involving only
equalities. Algorithms for solving uni�cation problems are well known; in
particular, we have the following theorem.

Theorem 31 Let � be a uni�cation problem and W be a �nite set of type
variables.

i) Solutions(�) = ; i� MGS(�) = ; i� MGS(�)[W ] = ;.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].

Proof: See for example Snyder [31], Lemma 3.3.11. 2

Theorem 32 Every �2;1-satisfaction problem is equivalent to a uni�cation
problem, and moreover, there is an algorithm that transforms every �2;1-
satisfaction problem into an equivalent uni�cation problem.

Corollary 33 Let � be a �2;1-satisfaction problem and W be a �nite set of
type variables.

i) Solutions(�) = ; i� MGS(�) = ; i� MGS(�)[W ] = ;.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].
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(�1 ! �2) � t ) 9t1; t2:ft1 � �1; �2 � t2; t = t1 ! t2g
if t1; t2 are fresh

(�1 ! �2) � (�1 ! �2) ) f�1 � �1; �2 � �2g

� � (�1 ^ �2) ) f� � �1; � � �2g

t � � ) ft = �g
if � is a simple type

Figure 6: Transformational rules for �2;1-satisfaction problems

We will prove Theorem 32 by giving an algorithm that transforms any
�2;1-satisfaction problem into an equivalent uni�cation problem. Corol-
lary 33 follows by combining the transformation with any uni�cation algo-
rithm.

Our transformation is de�ned by rules of the form

� � � ) 9~t:P:

The rules may need to introduce fresh type variables, that is, type variables
that do not appear on the left-hand side. These variables will appear in
the variables ~t of the right-hand side (but they are not the only source of
variables in ~t).

The rules are used to de�ne a rewrite relation on problems:

� � � ) 9~t:P

9~s:P 0 ] f� � �g ) 9~s ] ~t:P 0 [ P

The operator `]' is disjoint union; on the right of the consequent, it means
that the variables ~t must be fresh (this can always be achieved by renaming).

The rules for transforming a �2;1-satisfaction problem into a uni�cation
problem are given in Figure 6.

Proof of Theorem 32: We show that the rules of Figure 6 constitute an
algorithm for converting any �2;1-satisfaction problem into an equivalent
uni�cation problem.

First, note that every rule transforms a �2;1-satisfaction problem into
another �2;1-satisfaction problem (equalities are between simple types, in-
equalities are between T2 and T1 types).
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Second, note that each rule preserves the set of solutions, so that each
application of a rule transforms a problem into an equivalent problem.

Third, note that repeated application of these rules must halt: every
rule reduces the number of type constructors (`!' or `^') in inequalities or
reduces the number of inequalities.

Finally, note that a normal form contains no inequalities, and is therefore
a uni�cation problem. 2

Theorem 34 The subtyping relation �2;1 is decidable.

Proof: To see whether � �2;1 � , compute U 2 MGS(f� � �g) and check
to see whether U is the identity substitution. 2

Decision procedures for the other subtyping relations can be obtained in
a similar way.

Because we so often want to ensure that U 2MGS(�) is chosen \away"
from a set of type variables, we adopt the following convention.

Convention 35 Whenever U 2MGS(�) occurs in any mathematical con-
text, we assume that U is chosen so that it does not interfere with \current"
type variables, that is, U 2 MGS(�)[W ] where W [ FTV(�) is the set of
type variables present in the context.

3.2 Type inference

De�nition 36 For any term M , we de�ne the set PPIs
2
(M) of pairs by

induction:

i) If M = x, then for any type variable t, hfx : tg; ti 2 PPIs
2
(x).

ii) If M = �xN , and hA; �i 2 PPIs
2
(N), then:

a) If x 62 dom(A), and t is a type variable not appearing in hA; �i,
then hA; t! �i 2 PPIs

2
(�xN).

b) If x 2 dom(A), then hAx; A(x)! �i 2 PPIs
2
(�xN).

iii) If M = M1M2, then:

a) If hA1; ti 2 PPIs
2
(M1) and hA2; �2i 2 PPIs

2
(M2) are disjoint, and

U 2MGS(ft = t1 ! t2; �2 � t1g) where t1; t2 are fresh, then

UhA1 +A2; t2i 2 PPIs
2
(M1M2):

25



b) If hA1; (
V
i2I �i)! �1i 2 PPIs

2
(M1), and hAi; �ii 2 PPIs

2
(M2) for

all i 2 I , where all pairs are chosen disjoint, and U 2MGS(f�i �
�i j i 2 Ig), then

UhA1 + �i2IAi; �1i 2 PPIs
2
(M1M2):

The following lemma establishes that the elements of PPIs
2
(M) are just

trivial variants of each other. Therefore, the requirement of disjointness
used in the de�nition of PPIs

2
is easily satis�ed, and De�nition 36 can be

adapted to a type inference algorithm.

Lemma 37
i) If hA; �i 2 PPIs

2
(M), then x 2 dom(A) if and only if x is free in M .

ii) Suppose hA1; �1i 2 PPIs
2
(M). Then hA2; �2i 2 PPIs

2
(M) if and only if

there is a bijection R of type variables such that RhA1; �1i = hA2; �2i.

Proof: An easy induction on De�nition 36. 2

Theorem 38 There is an algorithm that decides, for any M , whether the
set PPIs

2
(M) is empty; and furthermore, if PPIs

2
(M) is not empty, it pro-

duces a member of PPIs
2
(M).

Proof: Just follow the rules of De�nition 36, generating \fresh" type vari-
ables as necessary, and use the algorithm of Corollary 33 to computeMGS.
2

Example 39 We show how the algorithm �nds the type of (�x:xx).

i) PPIs
2
(x) produces a pair hfx : t1g; t1i.

ii) PPIs
2
(x) (again) produces a pair hfx : t2g; t2i.

iii) To calculate PPIs
2
(xx), we �nd a most general solution to

ft2 � t3; t1 = t3 ! t4g;

such as ft2 := t3; t1 := t3 ! t4g. Then hfx : t3 ^ (t3 ! t4)g; t4i 2
PPIs

2
(xx).

iv) Finally, PPIs
2
(�x:xx) produces h;; 8t3; t4:t3 ^ (t3 ! t4)! t4i.

We now establish the soundness of PPIs
2
.
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Theorem 40 If hA; �i 2 PPIs
2
(M), then hA; �i 2 APIs

2
(M).

Proof: By induction on the de�nition of PPIs
2
(M).

i) If M = x, then hA; �i = hfx : tg; ti, and we have hA; �i 2 APIs
2
(x) by

rule (var).

ii) If M = �xN , then by Lemma 37(i) we have the following two cases:

a) x is not free in N , and � = t! �0, where hA; �0i 2 PPIs
2
(N).

By induction and weakening, hA [ fx : tg; �0i 2 APIs
2
(N) (note

that A [ fx : tg is well-formed by Lemma 37(i)).

So by rule (abs), hA; t! �0i = hA; �i 2 APIs
2
(�xN).

b) x is free in N and hA; �i = hA0
x; A

0(x)! �0i, where hA0; �0i 2
PPIs

2
(N).

By induction hA0; �0i 2 APIs
2
(N), so hA; �i 2 APIs

2
(�xN) by

rule (abs).

iii) If M = M1M2, then one of the following cases holds:

a) hA; �i = UhA1 +A2; t2i, where hA1; ti 2 PPIs
2
(M1), hA2; �2i 2

PPIs
2
(M2), and U 2MGS(ft = t1 ! t2; �2 � t1g).

Then by induction, weakening, and substitutivity,

UhA1 +A2; ti 2 APIs
2
(M1);

UhA2 +A2; �2i 2 APIs
2
(M2):

Since U�2 �2 Ut1, by Lemma 2(ii) we have U�2 = Ut1. And
Ut = (Ut1)! (Ut2), so by rule (app) we have UhA1 +A2; t2i 2
APIs

2
(M).

b) hA; �i = UhA1 + �i2IAi; �1i, where hAi; �ii 2 PPIs
2
(M2) for all

i 2 I , hA1; (
V
i2I �i)! �1i 2 PPIs

2
(M1), and U 2 MGS(f�i �

�i j i 2 Ig).

Then by induction, weakening, and substitutivity,

UhA1 + �i2IAi; (
V
i2I �i)! �1i 2 APIs

2
(M1);

UhA1 +�i2IAi; �ii 2 APIs
2
(M2) (8i 2 I):

By Lemma 2(ii) and the fact that U�i �2 U�i, we have U�i =
U�i. Then by rule (app) we have UhA1 + �i2IAi; �1i 2 APIs

2
(M).

2
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Theorem 41 (Principal pairs for Is2) If hA; �i 2 APIs
2
(M), then there is

a pair hA0; �0i 2 PPIs
2
(M) and a substitution S such that ShA0; �0i � hA; �i.

Proof: By cases on the structure of M .

i) IfM = x, then hA; �i 2 APIs
2
(M) by rule (var), and therefore, A(x) =

(
V
i2I �i) and � = �i0 2 T0 for some i0 2 I .

For any t, hfx : tg; ti 2 PPIs
2
(M). Then ft := �g is a well-formed

substitution and

ft := �ghfx : tg; ti = hfx : �g; �i � hA; �i:

ii) If M = �xN , then by the de�nition of Is2, � must be of the form
�1 ! �2, and hAx [ fx : �1g; �2i 2 APIs

2
(N). By induction, there is a

substitution S and pair hA0; �02i 2 PPIs
2
(N) such that

ShA0; �02i � hAx [ fx : �1g; �2i: (1)

We consider two cases.

a) If x 62 dom(A0), then for any fresh type variable t, hA0; t! �02i 2
PPIs

2
(�xN).

Note that �1 is of the form (
V
i2I �i), and therefore, we can pick

�01 2 T0 such that �1 �1 �
0
1 (choose any �i). Then let S 0 = ft :=

�01g [ S. By (1) and the de�nition of �,

S0hA0; t! �02i = hSA0; �01 ! S�02i � hAx; �1 ! �2i:

Since A �1 Ax, we have S0hA0; t! �02i � hA; �1 ! �2i, as de-
sired.

b) If x 2 dom(A0), then hA0
x; A

0(x)! �02i 2 PPIs
2
(�xN). Then

by (1) and the de�nition of �,

ShA0
x; A

0(x)! �02i � hAx; �1 ! �2i;

and since A �1 Ax, we have ShA
0
x; A

0(x)! �02i � hA; �1 ! �2i,
as desired.

iii) If M = M1M2, then by the de�nition of Is2, hA; (
V
i2I �i)! �i 2

APIs
2
(M1) and hA; �ii 2 APIs

2
(M2) for all i 2 I .

By induction, PPIs
2
(M1) is nonempty, and by Lemma 37(ii), it is suf-

�cient to consider the following cases on the structure of pairs in
PPIs

2
(M1).
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a) hA1; ti 2 PPIs
2
(M1). By induction, there is a substitution S1 such

that

S1hA1; ti � hA; (
^
i2I

�i)! �i:

By the de�nition of �2, S1t = �i ! �0 for some i 2 I and �0 2 T0.

Then by induction and Lemma 37(ii), there is a disjoint pair
hA2; �i 2 PPIs

2
(M2) and substitution S2 such that

S2hA2; �i � hA; �ii:

Let � = ft = t1 ! t2; � � t1g, where t1; t2 are fresh. Then
S = S1 [ S2 [ ft1 := �i; t2 := �0g is a solution to �.

Pick U 2MGS(�). Then UhA1 +A2; t2i 2 PPIs
2
(M1M2).

By Convention 35, there exists an R such that RUhA1 +A2; t2i =
ShA1 + A2; t2i. And

ShA1 +A2; t2i = hS1A1 + S2A2; �
0i � hA; �i;

as desired.

b) hA1; (
V
j2J �

0
j)! �0i 2 PPIs

2
(M1).

By induction there is a substitution S1 such that

S1hA1; (
^
j2J

�0j)! �0i � hA; (
^
i2I

�i)! �i:

By the de�nition of �2, fS1�0j j j 2 Jg � f�i j i 2 Ig, so without
loss of generality we assume J � I and S1�

0
j = �j for all j 2 J .

By induction and Lemma 37(ii), for all j 2 J there are disjoint
pairs hAj ; �ji 2 PPIs

2
(M2) and substitutions Sj such that

SjhAj ; �ji � hA; �ji:

Let � = f�j � �0j j j 2 Jg. Then S = S1 [ (
S
j2J Sj) is a solution

to �: S�j = Sj�j �2 �j = S1�
0
j = S�0j .

Pick U 2MGS(�). Then

UhA1 + �j2JAj ; �
0i 2 PPIs

2
(M1M2):

By Convention 35, there exists an R such that

RUhA1 +�j2JAj ; �
0i = ShA1 +�j2JAj ; �

0i:
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And

ShA1 + �j2JAj ; �
0i = hS1A1 +�j2JSjAj ; S1�

0i � hA; �i;

as desired.

2

4 Other systems of rank 2 intersection types

4.1 A restriction of Is2

Van Bakel [33] de�ned a rank 2 intersection type system that is a slight
restriction of our system Is2. A version of his rules is presented below.

(var) fx : �g ` x : � (where � 2 T0)

(abs)
Ax [ fx : �1g `M : �2
Ax ` (�xM) : �1 ! �2

(app)
A `M : (

V
i2I �i)! �; (8i 2 I) Ai ` N : �i
A+ �i2IAi ` (MN) : �

We write Ivb2 . A ` M : � if the judgment A ` M : � follows by these
rules, under the following restrictions: environment types are in T1; derived
types are in T2; and in every judgment A `M : � , the type environment A
contains only assumptions actually used in the derivation of A ` M : � .
For example, the rule (var) has been intentionally restricted to rule out a
judgment such as

fx : �1 ^ �2g ` x : �1;

in which the type �2 assumed for x is not used. Similarly, fx : �1; y : �2g `
x : �1 is not derivable because the assumption y : �2 is not used. The exact
relation between Ivb2 and Is2 is summed up in the following lemma.

Lemma 42 (Comparison of Ivb2 and Is2)

i) If Ivb2 . A `M : �, then Is2 . A `M : �. The converse does not hold.

ii) A term M is typable in Ivb2 if and only if it is typable in Is2.

Proof:

i) Just note that the Ivb2 rule (var) is a special case of the Is2 rule (var),
that the Ivb2 rule (abs) is identical to the Is2 rule (abs), and that the
Ivb2 rule (app) follows from the Is2 rule (abs) and weakening.
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The examples above show that the converse does not hold.

ii) This follows because the de�nition of principal pair in van Bakel's
system is identical to our own.

2

4.2 An extension of Is2

A natural extension of Is2 is obtained by adding the following rule to the
rules of Is2:

(sub)
A `M : �

A `M : �
(where � �2 �)

We write I2 . A ` M : � if the judgment A ` M : � follows by the rules of
Is2 plus (sub), with types appearing in type environments restricted to T1,
and derived types restricted to T2.

Clearly, every judgment of Is2 is a judgment of I2. The converse does not
hold; for example, the judgment

fx : � ! �g ` x : (� ^ �0)! �

is derivable in I2 for any � 6= �0 2 T0, but is not derivable in I
s
2.

I2 has principal pairs, and indeed, they are identical to the principal
pairs of Is2 (the proof is a simple extension of the proof of Theorem 41). An
immediate consequence is that the terms typable in I2 are exactly the same
as the terms typable in Is2.

In summary:

Lemma 43 (Comparison of I2 and Is2)
i) If Is2 . A `M : �, then I2 . A `M : �. The converse does not hold.

ii) A term M is typable in I2 if and only if it is typable in Is2.

Although it does not type any more terms than Is2, I2 has other advantages
over Is2.

Example 44 The acceptable pairs of Is2 are not closed under the opera-
tion �:

Is2 . fx : s! tg ` x : s! t;

and

hfx : s! tg; s! ti � hfx : s! tg; (s^ t)! ti;
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but the judgment

fx : s! tg ` x : (s ^ t)! t

is not derivable in Is2.

On the other hand, I2 is closed under �:

Lemma 45 (Weakening for I2) If I2 . A ` M : � and hA; �i � hA0; �0i,
then I2 . A

0 `M : �0.

For this reason, we prefer I2 to either I
vb
2 or Is2. However, it was still useful

to develop Is2. In particular, the example above shows that Lemma 19 does
not hold for I2; it was convenient to have Lemma 19 for the proof of the
equivalence of typability with �s

2.

5 Combining intersections and quanti�cation

5.1 The system P2

We now describe a type system that combines aspects of rank 2 intersection
types and rank 2 polymorphic types. The system is called P2, as it is the
rank 2 subset of a type system P (described elsewhere).

The types of the system are the rank 2 intersection types extended with
top-level quanti�ers:

T82 = T2 [ f(8t�) j � 2 T82g:

In order to simplify the de�nition of subtyping, we consider T82 types
syntactically equal modulo renaming of bound type variables, reordering of
adjacent quanti�ers, and elimination of unnecessary quanti�ers. When a
T82 type is written in the form 8~s�, we assume � 2 T2.

De�nition 46

i) The relation �82 is the least partial order on T82 closed under the
following rules:

a) If � �2 � , then � �82 � .

b) If � 2 T0, then (8t�) �82 ft := �g�.

c) If � �82 � and t is not free in �, then � �82 (8t�).

ii) The relation �82;1 between T82 and T1 is the least relation closed
under the rule:
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a) If � �82 �i for all i 2 I , then � �82;1 (
V
i2I �i).

The rules for �82 express the intuition that a type is a subtype of its in-
stances. They are equivalent to the following rule, similar to ML's notion of
generic instance:

� If f~s := ~�g� �2 � , where ~� is a vector of simple types, and the type
variables ~t are not free in (8~s�), then 8~s� �82 8~t� .

Note that we only allow instantiation of simple types. This ensures that
instantiation does not take us beyond rank 2. It also has less desirable
implications, e.g., (8t:t) is not a least type in the ordering �82: (8t:t) 6�82

(s1 ^ (s1 ! s2))! s2.
The relation �82;1 is not a partial order; it is not even reexive. This is

because it relates types \across rank." Note that in a comparison

(8t�) �82;1 (
^
i2I

�i);

the variable t may be instantiated di�erently for each �i.

Some basic properties of �82 and �82;1 are summarized in the following
lemma.

Lemma 47
i) If �; � 2 T0, then � �82 � i� � �82;1 � i� � = � .

ii) If �; � 2 T2, then � �82 � i� � �2 � .

iii) If � �82 � , then (8t�) �82 (8t�).

iv) If � 2 T2 and � 2 T0, then 8~t� �82 � i� for some substitution S with

dom(S) � ~t, we have S� = � .

v) For any substitution S and types �; � 2 T82, if S� �82 � , then

S(8t�) �82 � .

vi) For any substitution S, types �; � 2 T82, and type environment A, if

S� �82 � , then S(Gen(A; �))�82 � .

vii) If �1 �82 �2 �82;1 �3 �1 �4, then �1 �82;1 �4.

The typing rules of the system are presented in Figure 7. We write
P2 . A ` M : � if the judgment A ` M : � follows by these rules, with
types appearing in type environments restricted to T1, and derived types
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(var) Ax [ fx : (
V
i2I �i)g ` x : �i0 (where i0 2 I)

(abs)
Ax [ fx : �g `M : �

A ` (�xM) : � ! �

(app)
A `M : �0 ! � A ` N : �

A ` (MN) : �
(where � �82;1 �

0)

(sub)
A `M : �

A `M : �
(where Gen(A; �) �82 �)

Figure 7: Typing rules of P2. Types in type environments are in T1, and
derived types are in T82.

restricted to T82. Note that the familiar rules (inst) and (gen) are special
cases of the rule (sub):

(inst)
A `M : 8t�

A `M : ft := �g�
(where � 2 T0)

(gen)
A `M : �

A `M : 8t�
(where t is not free in A)

The ordering � of De�nition 28 is extended to pairs with T82 types as
follows:

hA; �i � hA0; �0i if and only if A0 �1 A and � �82 �
0.

Lemma 48 (Weakening for P2) If P2 . A `M : � and hA; �i � hA0; �0i,
then P2 . A

0 `M : �0.

Lemma 49 (Substitutivity for P2) If P2 . A ` M : �, then P2 . SA `
M : S� for any substitution S.

5.2 Extending subtype satisfaction

In order to perform type inference for P2, we will need to solve problems
that generalize the �2;1-satisfaction problems of x3.1.

A �82;1-satisfaction problem � is a pair 9~s:P , where P is a �nite set
whose every element is either: 1) an equality between simple types; or 2)
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an inequality between a T82 type and a T1 type. A substitution S is a
solution to 9~s:P if there is a substitution S0 such that S(t) = S0(t) for all
t 62 ~s, S0� �82;1 S

0� for all inequalities (� � �) 2 P , and S0� = S0� for all
equalities (� = �) 2 P .

Note that any �2;1-satisfaction problem is a �82;1-satisfaction problem
with the same set of solutions. Therefore we abuse notation and write
Solutions(�), MGS(�), and MGS(�)[W ] for the solutions, most general
solutions, and most general solutions away from W of a �82;1-satisfaction
problem �.

Similarly, �82;1-satisfaction problems can be solved by extending the
transformational algorithm of Figure 6 by the following rule:

(8t�) � � ) 9tf� � �g
if � is not a ^-type, and t is not free in �

Theorem 50 Every �82;1-satisfaction problem is equivalent to a uni�cation
problem, and moreover, there is an algorithm that transforms every �82;1-
satisfaction problem into an equivalent uni�cation problem.

Proof: We show that the rules of Figure 6, augmented by the rule above,
constitute an algorithm for converting any �82;1-satisfaction problem into
an equivalent uni�cation problem (equalities are between simple types, in-
equalities are between T82 and T1 types).

First, note that every rule transforms a �82;1-satisfaction problem into
another �82;1-satisfaction problem.

Second, note that each rule preserves the set of solutions, so that each
application of a rule transforms a problem into an equivalent problem.

Third, note that repeated application of these rules must halt: every rule
reduces the number of type constructors (`!', `^', or `8') in inequalities or
reduces the number of inequalities.

Finally, note that a normal form contains no inequalities, and is therefore
a uni�cation problem. 2

Corollary 51 Let � be a �82;1-satisfaction problem and W be a �nite set
of type variables.

i) Solutions(�) = ; i� MGS(�) = ; i� MGS(�)[W ] = ;.

ii) There is an algorithm that decides whether � has a solution, and, if
so, returns an element of MGS(�)[W ].

Theorem 52 The subtyping relation �82;1 is decidable.
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Proof: To see whether � �82;1 � , compute U 2MGS(f� � �g) and check
to see whether U is the identity substitution. 2

5.3 Type inference for P2

De�nition 53 For any term M , we de�ne the set PPP2
(M) by induction

on M .

i) If M = x, then for any type variable t, hfx : tg; ti 2 PPP2
(x).

ii) If M = �xN , and hA; 8~s�i 2 PPP2
(N), where the type variables ~s are

distinct from all other type variables, then:

a) If x 62 dom(A), and t is a type variable not appearing in hA; 8~s�i,
then hA; 8t~s(t! �)i 2 PPP2

(�xN).

b) If x 2 dom(A), then hAx;Gen(Ax; A(x)! �)i 2 PPP2
(�xN).

iii) If M = M1M2, the pairs hA1; 8~s�1i 2 PPP2
(M1) and hA2; �2i 2

PPP2
(M2) are disjoint, and the type variables ~s are distinct from all

other type variables, then:

a) If �1 is a type variable t, t1 and t2 are fresh type variables, U 2
MGS(f�2 � t1; t = t1 ! t2g), and A = U(A1 + A2), then

hA;Gen(A;Ut2)i 2 PPP2
(M):

b) If �1 = �1 ! �2, U 2 MGS(f�2 � �1g), and A = U(A1 + A2),
then

hA;Gen(A;U�2)i 2 PPP2
(M):

Just as with Is2, the elements of PPP2
(M) are trivial variants of each

other, so De�nition 53 can easily be adapted to a type inference algorithm.

Lemma 54

i) If hA; �i 2 PPP2
(M), then x 2 dom(A) if and only if x is free in M .

ii) Suppose hA1; �1i 2 PPP2
(M). Then hA2; �2i 2 PPP2

(M) if and only if

there is a bijection R of type variables such that RhA1; �1i = hA2; �2i.

Proof: An easy induction on De�nition 53. 2

Theorem 55 There is an algorithm that decides, for any M , whether the
set PPP2

(M) is empty; and furthermore, if PPP2
(M) is not empty, it pro-

duces a member of PPP2
(M).
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Proof: Just follow the rules of De�nition 53, generating \fresh" type vari-
ables as necessary, and use the algorithm of Corollary 51 to computeMGS.
2

We now establish the soundness of PPP2
.

Theorem 56 If hA; �i 2 PPP2
(M), then hA; �i 2 APP2

(M).

Proof: By induction on the de�nition of PPP2
(M).

i) If M = x, then hA; �i = hfx : tg; ti for some type variable t.

Then we have hA; �i 2 APP2
(x) by rule (var).

ii) If M = �xN , then by Lemma 54(i) we have the following two cases:

a) x is not free in N , hA; 8~s�0i 2 PPP2
(N) for some �0, and � =

8t~s(t! �0) for some fresh type variable t.

By induction, hA; 8~s�0i 2 APP2
(N), and by weakening,

hA[ fx : tg; �0i 2 APP2
(N)

(note that A [ fx : tg is well-formed by Lemma 54(i)).

So by rule (abs), hA; t! �0i 2 APP2
(�xN), and by then by

rule (sub),

hA; 8t~s(t! �0)i = hA; �i 2 APP2
(�xN):

b) x is free in N and hA; �i = hA0
x;Gen(A

0
x; A

0(x)! �0)i, where
hA0; 8~s�0i 2 PPP2

(N).

By induction and rule (sub), hA0; �0i 2 APP2
(N), so by rule (abs),

hA0
x; A

0(x)! �0i 2 APP2
(�xN). Then by rule (sub),

hA0
x;Gen(A

0
x; A

0(x)! �0)i = hA; �i 2 APP2
(�xN):

iii) If M = M1M2, then we have disjoint pairs hA1; 8~s�1i 2 PPP2
(M1)

and hA2; �2i 2 PPP2
(M2). By induction, hA1; 8~s�1i 2 APP2

(M1) and
hA2; �2i 2 APP2

(M2). By rule (sub), we have hA1; �1i 2 APP2
(M1).

We now consider two cases.

a) If �1 is a type variable t, then we must have A = U(A1+A2) and
� = Gen(A;Ut2), where U 2 MGS(f�2 � t1; t = t1 ! t2g) for
fresh type variables t1 and t2.
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By substitutivity we have

UhA1; �1i = hUA1; (Ut1)! (Ut2)i 2 APP2
(M1)

and
UhA2; �2i = hUA2; U�2i 2 APP2

(M2):

By weakening,

hUA1 + UA2; (Ut1)! (Ut2)i 2 APP2
(M1)

and
hUA1 + UA2; U�2i 2 APP2

(M2):

Then since U�2 �82;1 Ut1, by rule (app) we have

hUA1 + UA2; Ut2i = hA;Ut2i 2 APP2
(M1M2):

Then by rule (sub),

hA;Gen(A;Ut2)i = hA; �i 2 APP2
(M1M2):

b) The case �1 = �1 ! �2 is almost identical to the last.

2

Theorem 57 (Principal pairs for P2) If hA; �i 2 APP2
(M), then there

is a pair hA0; �0i 2 PPP2
(M) and a substitution S such that ShA0; �0i �

hA; �i.

Proof: By induction on the de�nition of APP2
(M).

i) If hA; �i 2 APP2
(M) by rule (var), then M = x for some variable x,

A(x) = (
V
i2I �i), and � = �i0 2 T0 for some i0 2 I .

By the de�nition of PPP2
, hfx : tg; ti 2 PPP2

(M), where t is a fresh
type variable.

Then ft := �g is a well-formed substitution and

ft := �ghfx : tg; ti = hfx : �g; �i � hA; �i:

ii) If hA; �i 2 APP2
(M) by rule (abs), then M = �xN , � is of the form

�1 ! �2, and hAx [ fx : �1g; �2i 2 APP2
(N).

By induction, there is a substitution S0 and pair hA0; 8~s�02i 2 PPP2
(N)

such that
S0hA0; 8~s�02i � hAx [ fx : �1g; �2i: (2)

We consider two cases.
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a) If x 62 dom(A0), then for any fresh type variable t,

hA0; 8t~s(t! �02)i 2 PPP2
(�xN):

It remains to show that there is a substitution S such that

ShA0; 8t~s(t! �02)i � hA; �i:

Just let S = S0. By (2), we have A �1 Ax �1 S
0A0, so we only

need show

S0(8t~s(t! �02)) �82 �1 ! �2:

We can assume t; ~s are fresh, so that

S0(8t~s(t! �02)) = 8t~s(t! S0�02):

And by (2),

ft := �1g8~s(t! S0�02) = 8~s(�1 ! S0�02) �82 �1 ! �2;

so by the de�nition of �82, S
0(8t~s(t ! �02)) �82 �1 ! �2 as

desired.

b) If x 2 dom(A0), then hA0
x;Gen(A

0
x; A

0(x)! �02)i 2 PPP2
(�xN).

Then by (2) and the de�nition of �,

S0hA0
x;Gen(A

0
x; A

0(x)! �02)i � hAx; �1 ! �2i;

and since A �1 Ax, we have S0hA0
x;Gen(A

0
x; A

0(x)! �02)i �
hA; �1 ! �2i, as desired.

iii) If hA; �i 2 APP2
(M) by rule (app), then M = M1M2, hA; �1 ! �i 2

APP2
(M1), hA; �i 2 APP2

(M2), and � �82;1 �1.

By induction, we have substitutions S1 and S2, and disjoint pairs
hA1; 8~s�i 2 PPP2

(M1) and hA2; �
0i 2 PPP2

(M2), such that

S1hA1; 8~s�i � hA; �1 ! �i; (3)

S2hA2; �
0i � hA; �i: (4)

We may assume without loss of generality that dom(S1), dom(S2),
and ~s are disjoint.

We now consider two subcases.
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a) � is a type variable t.

Let t1; t2 be fresh type variables, and let � = f� 0 � t1; t = t1 !
t2g.

By (3), we have
S1(8~s:t) �82 �1 ! �;

and therefore, (S1 [ S
0
1)t �82 �1 ! � for some S01 with domain ~s.

By the de�nition of �82, we must have

(S1 [ S01)t = � 01 ! �0;

�1 �1 � 01;

�0 �82 �;

for some � 01; �
0 2 T0. And by (4),

S2�
0 �82 � �82;1 �1:

Therefore, S = (S1 [ S01 [ S2 [ ft1 := � 01; t2 := �0g) is a solution
to �.

Pick U 2MGS(�), and let A0 = U(A1 + A2). Then

hA0;Gen(A0; Ut2)i 2 PPP2
(M):

By Convention 35, there exists an R such that RA0 = RU(A1 +
A2) = S(A1 +A2) and RUt2 = St2.

Since RA0 = S(A1 +A2) = S1A1 + S2A2, we have A �1 RA
0.

And RUt2 = St2 = �0 �82 �, so by Lemma 47(vi), we have
R(Gen(A0; Ut2) �82 �.

Therefore,
RhA0;Gen(A0; Ut2)i � hA; �i;

as desired.

b) � = �1 ! �2.

By (3), we have

S1(8~s:�1 ! �2) �82 �1 ! �;

and therefore,

(S1 [ S01)�2 �82 �;

�1 �1 (S1 [ S01)�1;
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for some S01 with domain ~s. And by (4),

S2�
0 �82 � �82;1 �1:

Therefore, S = (S1 [ S01 [ S2) is a solution to the problem � =
f� 0 � �1g.

Pick U 2MGS(�), and let A0 = U(A1 +A2). Then

hA0;Gen(A0; U�2)i 2 PPP2
(M):

By Convention 35, there exists an R such that RA0 = RU(A1 +
A2) = S(A1 + A2) and RU�2 = S�2.

By (3) and (4),

RA0 = S(A1 +A2) = S1A1 + S2A2 �1 A:

And since RU�2 = S�2 = (S1 [ S01)�2 �82 �, by Lemma 47(vi)
we have R(Gen(A0; U�2) �82 �.

Therefore,
RhA0;Gen(A0; U�2)i � hA; �i;

as desired.

iv) If hA; �i 2 APP2
(M) by rule (sub), then for some �0, we have a shorter

derivation of hA; �0i 2 APP2
(M), and Gen(A; �0) �82 �.

By induction there is a pair hA0; �00i 2 PPP2
(M) and a substitution S

such that ShA0; �00i � hA; �0i.

We now show that if t 62 FTV(A), then t 62 FTV(S�00). Since S�00 �82

�0, this implies S�00 �82 Gen(A; �0), and therefore by transitivity,
S�00 �82 �.

Assume by way of contradiction that t 62 FTV(A) and t 2 FTV(S�00).
Since A �1 SA0, FTV(SA0) � FTV(A). Therefore, t 62 FTV(A) )
t 62 FTV(SA0).

Since t 62 FTV(SA0) and t 2 FTV(S�00), there must be some u 2
FTV(�00) � FTV(A0) such that t 2 FTV(Su). However, it is easily
checked that hA0; �00i 2 PPP2

(M)) FTV(�00) � FTV(A0) = ;, so we
have reached a contradiction.

2

The next result shows the strong connection between the systems I2 and
P2: a term is typable in one system if and only if it is typable in the other.
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Theorem 58 For any M , P2 . A ` M : 8~t� for some ~t if and only if
I2 . A `M : �.

Proof: Each direction can be proved by induction on derivations.

� I2 ) P2: The rules (var), (abs), and (sub) are trivial, so assume
M = M1M2 and I2 . A ` M1M2 : � follows by rule (app). Then we
must have

I2 . A `M1 : (
^
i2I

�i)! �

and
(8i 2 I) I2 . A `M2 : �i:

By induction we have

P2 . A `M1 : (
^
i2I

�i)! �

and
(8i 2 I) P2 . A `M2 : �i:

By the principal typing property of P2, there is a pair hA0; �0i and
substitution S such that

P2 . SA
0 `M2 : S�

0;

A �1 SA
0, and S�0 �82 �i for all i 2 I . By weakening,

P2 . A `M2 : S�
0:

Then by the P2 rule (app),

I2 . A `M1M2 : �:

� P2 ) I2: The rules (var) and (abs) are trivial.

If P2 . A `M : 8~t� follows by rule (sub), then we must have a shorter
derivation of

P2 . A `M : 8~s�;

and Gen(A; 8~s�) = (8~u�) �82 (8~t�). We must show

I2 . A `M : �:

By induction,
I2 . A `M : �:
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Furthermore, by the de�nition of �82, for some sequence ~� of sim-
ple types, we have f~u := ~�g� �2 �. We may assume that the type
variables ~u do not appear in A. Then by substitutivity,

I2 . A `M : f~u := ~�g�;

and by the I2 rule (sub), we have I2 . A `M : �, as desired.

Otherwise, M = M1M2 and P2 . A `M1M2 : � follows by rule (app).
Then

P2 . A `M1 : �
0 ! �

and

P2 . A `M2 : 8~s�;

where 8~s� �82;1 �
0. By induction we have

I2 . A `M2 : �:

If �0 =
V
i2I �i, then by the de�nition of �82;1 and by substitutivity,

I2 . A `M2 : �i

for all i 2 I . Then by the I2 rule (app),

P2 . A `M1M2 : �:

2

6 Recursive de�nitions

We now consider ways of typing recursive de�nitions. We extend the gram-
mar of our language to include terms of the form (�xM). Such a term is
meant to represent the program x such that x = M , where M may contain
occurrences of x.

In ML, recursive de�nitions are typed by the following rule:

(rec-simple)
Ax [ fx : �g `M : �

A ` (�xM) : �
(where � 2 T0)
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6.1 Recursive de�nitions in �2

In �2 and ML, the rule (rec-simple) seems overly restrictive. Both systems
allow ML type schemes to appear in type environments and as derived types,
suggesting the rule of polymorphic recursion:

(rec-poly)
Ax [ fx : �g `M : �

A ` (�xM) : �
(where � 2 S(1))

Example 59 When extended by (rec-poly), both ML and �2 can type
the following terms:

(�w:(�xyz:z)(w 3)(w true)) : 8t:t! t;

(�x:xx) : 8t:t:

Neither is typable with the rule (rec-simple). Other examples are given
by Mycroft [25] and Kfoury et al. [13, 15], who introduced (rec-poly)
independently.

Unfortunately, type inference for �2 or ML extended by (rec-poly) is un-
decidable [14, 9], so (rec-simple) is used in practice.

6.2 Recursive de�nitions in I2

The rule (rec-simple) is one way of typing recursive de�nitions in intersec-
tion type systems. However, as with ML and �2, it seems overly restrictive.
The rule (rec-poly) involves S(1) types, so it is not appropriate for the
intersection type systems. Instead, we might consider a rule like the follow-
ing:

Ax [ fx : �)g `M : �

A ` (�xM) : �
(where � 2 T1)

Note that the full power of the rule is achieved only by allowing T1 derived
types, so the rule is not compatible with the rank 2 intersection type systems
that we have de�ned so far. However, the rule can be adapted to our systems
as follows:

(rec-int)
(8i 2 I) Ax [ fx : (

V
j2I �j)g `M : �i

A ` (�xM) : �i0
(where i0 2 I)

44



The system I2 + (rec-int) can type the following terms:

(�w:(�xyz:z)(w 3)(w true)) : � ! �;

(�w:(�xy:y)(ww)) : � ! �;

where � is any simple type. Neither term is typable in I2 + (rec-simple).
The close connection between I2 and �2 casts some doubt on the de-

cidability of the system I2 + (rec-int). However, I2 + (rec-int) cannot
type all of the terms that can be typed by �2 + (rec-poly). For example,
the term (�x:xx) cannot be typed in I2 + (rec-int). The decidability of
I2 + (rec-int) is an open question.

6.3 Recursive de�nitions in P2

The system P2 could be extended to type recursive de�nitions with either
the rule (rec-simple) or the rule (rec-int) (the rule (rec-poly) is not
appropriate since it requires S(1) types to appear in type environments).
Surprisingly, however, we can do better: we now propose two rules, (rec)
and (rec-vac), for typing recursive de�nitions in P2. The rules will allow
use to type more terms than (rec-simple), and we retain principal typings
and decidable type inference. We will also give a typing rule for mutually
recursive de�nitions, of the form

(letrec x1 = M1; � � � ; xn = Mn in M);

where the variables xi are distinct.
The typing rules are de�ned below.

(rec)
Ax [ fx : �g `M : �

A ` (�xM) : �
(where � �82;1 �)

(rec-vac)
Ax `M : �

A ` (�xM) : �
(where x is not free in M)

(letrec)

Ax1���xn [ fx1 : �1; : : : ; xn : �ng `M : �
(8i � n) Ax1���xn [ fx1 : �1; : : : ; xn : �ng ` (�xiMi) : �i

A ` (letrec x1 = M1; : : : ; xn = Mn inM) : �
(where 8i � n; �i �82;1 �i)

We write PR
2 . A `M : � if the judgment A `M : � follows by the rules

of P2 and the rules (rec), (rec-vac), and (letrec), with types appearing
in type environments restricted to T1, and derived types restricted to T82.
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The rule (rec-vac) is necessary to type terms like

(�w(�x:xx)) : 8s; t:s ^ (s! t)! t:

In order to use the rule (rec) in this case, we would need a type � 2 T1

such that 8s; t:(s ^ (s ! t)) ! t �82;1 � . There is no such type, because s
and s! t cannot be uni�ed.

Note in the hypothesis of the rule (letrec), we are careful to type each
de�nition Mi as a recursive but not mutually recursive de�nition. Thus at
�rst, each Mi needs to satisfy only the constraints on xi implied by the
occurrences of xi in Mi itself; constraints implied by occurrences in M or
otherMj are satis�ed second. In between, the type ofMi can be generalized.

Example 60
i) The following terms are typable in PR

2 , but not in P2+(rec-simple):

(�w:(�xyz:z)(w 3)(w true)) : 8t:t! t:

(�w:(�xy:y)(ww)) : 8t:t! t:

ii) The term (�x:xx) is not typable in PR
2 . It has type (8t:t) in ML+(rec-

poly) and �2+(rec-poly).

De�nition 61 The set PPPR

2

(M) of principal pairs for a term M is de�ned
just as PPP2

, with the addition of the following clauses:

iv) If M = (�xN) and hA; �i 2 PPPR

2

(N), then:

a) If x 62 dom(A), then hA; �i 2 PPPR

2

(M).

b) If x 2 dom(A) and U 2MGS(� � A(x)),

then hUAx;Gen(UAx; U�)i 2 PPPR

2

(M).

v) If M = (letrec x1 = M1; : : : ; xn = Mn inM0),

and hAi; �ii 2 PPPR

2

(�xiMi) for 1 � i � n,

hA0; �0i 2 PPPR

2

(M0),

A0 = A0 + �1�i�nAi,
U 2MGS(f�i � A0(xi) j 1 � i � n; xi 2 dom(A0)g),
and A00 = A0

x1 ;:::;xn
,

then hUA00;Gen(UA00; U�0)i 2 PP(M).
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Theorem 62 If hA; �i 2 PPPR

2

(M), then hA; �i 2 APPR

2

(M).

Proof: By induction on the de�nition of PPPR

2

(M). For the rules of P2,
see the proof of Theorem 56. We only need to consider the following cases.

iv) If M = (�xN), we consider two cases.

a) If x is not free in N , then hA; �i 2 PPPR

2

(N). By induction,

hA; �i 2 APPR

2

(N), and by rule (rec-vac), hA; �i 2 APPR

2

(�xN).

b) If x is free in N , then for some hA0; �0i 2 PPPR

2

(N) and U 2

MGS(�0 � A0(x)), we have

hA; �i = hUA0
x;Gen(UA

0
x; U�

0)i:

By induction, hA0; �0i 2 APPR

2

(N). Then hUA0; U�0i 2 APPR

2

(N)

by substitutivity. Since U�0 �82;1 UA
0(x), by rule (rec) we have

hUA0
x; U�

0i 2 APPR

2

(�xN). Finally by rule (sub),

hUA0
x;Gen(UA

0
x; U�

0)i 2 APPR

2

(�xN):

v) If M = (letrec x1 = M1; : : : ; xn = Mn in M0),

then hA; �i = hUA00;Gen(UA00; U�0)i, where

hAi; �ii 2 PPPR

2

(�xiMi) for 1 � i � n,

hA0; �0i 2 PPPR

2

(M0),

A0 = A0 + �1�i�nAi,
U 2MGS(f�i � A0(xi) j 1 � i � n; xi 2 dom(A0)g),
and A00 = A0

x1;:::;xn
.

By induction, hAi; �ii 2 APPR

2

(�xiMi) for 1 � i � n, and hA0; �0i 2

APPR

2

(M0).

By weakening and substitutivity, hUA0; U�ii 2 APPR

2

(�xiMi) for 1 �

i � n, and hUA0; U�0i 2 APPR

2

(M0).

Then by rule (letrec), hUA00; U�0i 2 APPR

2

(M), and by (sub),

hA; �i = hUA00;Gen(UA00; U�0)i 2 APPR

2

(M).

2

Theorem 63 (Principal pairs for PR
2 ) If hA; �i 2 APPR

2

(M), then there

is a pair hA0; �0i 2 PPPR

2

(M) and a substitution S such that ShA0; �0i �

hA; �i.
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Proof: By induction on the de�nition of APPR

2

(M). For the rules of P2,
see the proof of Theorem 57. We only need to consider the following cases.

v) If hA; �i 2 APPR

2

(M) by rule (rec-vac), then M = (�xN), x is not

free in N , and hAx; �i 2 APPR

2

(N).

By induction, we have a pair hA0; �0i 2 PPPR

2

(N) and a substitution S

such that ShA0; �0i � hAx; �i � hA; �i.

By Lemma 54(i), x 62 dom(A0), so hA0; �0i 2 PPPR

2

(�xN) as desired.

vi) If hA; �i 2 APPR

2

(M) by rule (rec), then M = (�xN), and for some

� 2 T1, we have hAx [ fx : �g; �i 2 APPR

2

(N) and � �82;1 � .

By induction, we have a pair hA0; �0i 2 PPPR

2

(N) and a substitution S
such that

ShA0; �0i � hAx [ fx : �g; �i: (5)

We consider two cases.

a) If x 62 dom(A0), then hA0; �0i 2 PPPR

2

(�xN), and by (5), A �1

Ax �1 SA
0 and S�0 �82 �, as desired.

b) If x 2 dom(A0), and � 0 = A0(x), then by (5), S�0 �82 � �82;1

� �1 S�
0, so S is a solution to � = f�0 � � 0g.

Then pick U 2MGS(�), so that

hUA0
x;Gen(UA

0
x; U�

0)i 2 PPPR

2

(�xN):

By Convention 35, there exists an R such that RUA0
x = SA0

x and
RU�0 = S�0. By (5), A �1 SA

0
x and by (5) and Lemma 47(vi),

R(Gen(UA0; U�0)) �82 �. Therefore

RhUA0
x;Gen(UA

0
x; U�

0)i � hA; �i;

as desired.

vii) If hA; �i 2 APPR

2

(M) by rule (letrec), then for some ~x; ~N;~� of

length n, M = (letrec ~x = ~N in N0), hA~x [ f~x : ~�g; �i 2 APPR

2

(N0),

and hA~x [ f~x : ~�g; �ii 2 APPR

2

(�xiNi) and �i �82;1 �i for all i � n.

By induction, we have pairs hA0; �
0
0i 2 PPPR

2

(N0), and hAi; �
0
ii 2

PPPR

2

(�xiNi), and substitutions S0; S1; : : : ; Sn such that

S0hA0; �
0
0i � hA~x [ f~x : ~�g; �i; (6)

SihAi; �
0
ii � hA~x [ f~x : ~�g; �ii (7)
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for all i � n.

Let A0 = A0+�1�i�nAi, S = S0[S1[� � �[Sn, and � = f�0i � A0(xi) j
1 � i � n; xi 2 dom(A0)g).

By (7), if xi 2 dom(A0), then

Si�
0
i �82 �i �82;1 �i �1 A

0(xi):

Therefore S is a solution to �.

Pick U 2MGS(�) and let A00 = A0
x1;:::;xn

. Then

hUA00;Gen(UA00; U�00i 2 PPPR

2

(M):

By Convention 35, there exists an R such that RUA00 = SA00 and
RU�00 = S�00.

Then by (6) and (7), A �1 SA
00, and S�00 �82 �, as desired.

2

Theorem 64

i) If I2 + (rec-int) . A `M : �, then PR
2 . A `M : �.

ii) If P2 + (rec-int) . A `M : �, then PR
2 . A `M : �.

Proof:

i) By induction on derivations. The cases for all the rules except (rec-
int) are just as for Theorem 58, so assume that I2+ (rec-int) . A `
(�xM) : � holds by rule (rec-int). We must have

(8i 2 I) I2 . Ax [ fx :
V
j2I �jg `M : �i

and � = �i0 for some i0 2 I . By induction,

(8i 2 I) PR
2 . Ax [ fx :

V
j2I �jg `M : �i:

By the principal pair property of PR
2 , there is a pair hA

0; �0i and sub-
stitution S such that

PR
2 . SA0 `M : S�0;

Ax[fx :
V
j2I �jg �1 SA

0, and S�0 �82 �i for all i 2 I . By weakening,

PR
2 . Ax [ fx :

^
j2I

�jg `M : S�0:
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Then by rule (rec),

PR
2 . A ` (�xM) : S�0;

and by rule (sub),
PR
2 . A ` (�xM) : �i0 :

ii) Identical to the last case.

2

7 Compiling with rank 2 intersection types

We briey discuss some applications of rank 2 intersections in compilation.
Polymorphism allows a function F of type 8t:t ! t to be applied to

arguments of any type. Unfortunately, it also requires that the data rep-
resentation of its arguments be reduced to a lowest common denominator:
the machine code for F cannot handle both a 32-bit integer in a general
purpose register and a 64-bit oating point number in a oat register. In
practice, arguments are \boxed," or represented as a pointer to the actual
data value stored in main memory. Boxing and unboxing coercions slow
program execution.

These overheads can be reduced when more is known about the uses of
the polymorphic function. For example, consider the program

M = (�f:(f 3; f true))F:

A naive implementation would insert instructions to box the arguments 3
and true before passing them to F . A more clever implementation would
recognize that the only arguments of F are integers and booleans, both of
which can be represented in a single 32-bit register; so F could be compiled
to expect an unboxed value as its argument.

This can easily be achieved in P2. To compile M , we �rst calculate the
principal typings of the operator and operand:

(�f:(f 3; f true)) : 8s; u:(int! s) ^ (bool! u)! s� u;

F : 8t:t ! t:

The type of the operator indicates that F will only be applied to integers
and booleans, and the compiler can take advantage of this in generating the
machine code for F . Note that this improves on Bj�rner's minimal typing
derivations [3], which would require the arguments to be boxed.
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P2 also supports other data representation strategies. For example, in
compiling the program (�f:(f 3; f 2:4))F , we will calculate the principal
typing

(�f:(f 3; f 2:4)) : 8s; u:(int! s) ^ (oat! u)! s� u:

If oating point numbers are 64-bit values, we can't just compile F to expect
its argument in a 32-bit register, as before. Boxing is one solution. But
another solution is possible: specialization [8]. We can generate two versions
of F , one expecting an unboxed integer in a 32-bit register, and one expecting
an unboxed oat in a 64-bit register. We are essentially overloading the
variable f , so the application (f 3) invokes the integer-expecting F , and
(f 2:4) invokes the oat-expecting F .

8 Conclusion

We discussed a variety of rank 2 type systems: �2, the rank 2 fragment
of System F; I2, Is2, and Ivb2 , all variants of the rank 2 intersection type
discipline; and P2, which adds ML-style, top-level quanti�cation of type
variables to I2. We showed that all of the systems are equivalent in terms
of typability|a term is typable in one system if and only if it is typable in
another. An immediate corollary is that typability in all of these systems is
DEXPTIME-complete. We have also determined that the sequence Ivb2 , Is2,
I2, P2 is in order of increasing \expressiveness." For example, a judgment
of Ivb2 is a judgment of P2, but not vice versa.

We proposed a new rule for typing recursive de�nitions that can type
many examples of polymorphic recursion. The extension of P2 by this rule
results in a system with principal typings and decidable type inference.

Finally, we discussed some applications of intersections in compilation.
The �nite polymorphism of intersections expresses data representation con-
straints more accurately than polymorphism by quanti�cation. The accu-
rate expression of these constraints leads to data representations that require
fewer boxing and unboxing coercions at runtime.
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