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Abstract

It has been recently proved that the redundancy r of any discrete memo-
ryless source satis�es r � 1 � H(p

N
), where p

N
is the least likely source letter

probability. This bound is achieved only by sources consisting of two letters.
We prove a sharper bound if the number of source letters is greater than two.
Also provided is a new upper bound on r, as function of the two least likely
source letter probabilities which improve on previous results.
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1 Introduction

Let S = fa1; a2; :::; aNg be a discrete source with N letters and let pk denote the
probability of letter ak, 1 � k � N . We assume, without loss of generality, that
p1 � p2 � : : : � p

N
. Let C = fx1; x2; : : : ; xNg be a code for source S and let

n1 � n2 � : : : � n
N
be the codeword lengths. Codeword xi encodes the letter ai,

for i = 1; 2; : : : ; N . The length vector of a code C is the vector (n1; n2; : : : ; nN ). The
Hu�man encoding algorithm [6] provides an optimal pre�x code C for the source S.
The encoding is optimal in the sense that codeword lengths minimize the redundancy
r, de�ned as the di�erence between the average codeword length L and the entropy
H(p1; p2; : : : ; pN ) of the source:

r = L �H(p1; p2; : : : ; pN ) =
NX
i=1

pini +
NX
i=1

pi log pi

where log denotes the logarithm to base 2. It is well known that the redundancy of an
optimal code satis�es 0 � r < 1. These bounds can be improved if one knows partial
information on the source. Gallager [4], Johnsen [7], Capocelli et al. [3], Capocelli
and De Santis [1], and Manstetten [10] considered the problem of upper bounding r
when p1 is known.

Reza [9] and Horibe [5] considered the problem of upper bounding the redundancy
when the least likely source letter probability p

N
is known. Their bound has been

recently improved by Capocelli and De Santis [2] who proved that, as function of p
N
,

the redundancy r of Hu�man codes is upper bounded by

r � 1 �H(p
N
); (1)

where H is the binary entropy function H(p) = �p log p� (1 � p) log(1 � p):
Recently, Yeung [13] introduced the notion of local redundancy and, by exploit-

ing it, he derived the following bound as function of two least likely source letter
probabilities:

r � 1 �H(p
N�1

) + (p
N�1

+ p
N
)

"
1 �H

 
p
N

p
N�1

+ p
N

!#
: (2)

Bound (1) is clearly the best possible upper bound on r as function of only p
N
.

Indeed, any binary source (1� p
N
; p

N
) satis�es (1) with equality. If the source is not

binary, the bound (1) is no more the best possible.
In this paper we derive upper bounds on r as function of p

N
when additional

information on the total number of source letters is known.
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We prove that for N � 3 the following bound, as function of the least likely source
letter probability, holds:

r �

(
1 �H(2p

N
); if 0 < p

N
� �

0:5 + 1:5p
N
�H(p

N
); if � < p

N
� 1=3

(3)

where � ' 0:1525. This bound is the best possible expressed only as function of p
N

for every p
N
> 0 and N � 3.

We also present three tight upper bounds as function of the least likely source
letter probability, when it is known that there are exactly three, four and �ve source
letters.

Finally, we use (3) to obtain an upper bound as function of the two least likely
source letter probabilities which improves Yeung's bound (2).

This paper is organized as follows. In Section 2 we present some de�nitions and
results. In Section 3 we provide tight upper bounds as function of p

N
for the special

cases N = 3; 4; 5. By using these bounds, in Section 4 we prove (3). Finally, in
Section 5 we prove the upper bound on r, as function of p

N�1
and p

N
.

2 Preliminaries

In this section we present some de�nitions and results, that will be useful in the rest
of the paper.

An Hu�man code can be represented as a rooted tree in which each source letter
corresponds to a leaf on the tree and where the associated codeword is the sequence
of labels on the path from root to leaf. The code tree is generated by the Hu�man
algorithm. Each internal node in the code tree has a probability de�ned as the sum of
the probabilities of his two children. The external nodes have the probability of the
corresponding source letter. Gallager [4] proved that an Hu�man code tree has the
sibling property, i.e. each node, except the root, has a sibling and all nodes can be
listed in order of decreasing probability with each node being adjacent to its sibling.
We number all the nodes, except the root, using the sibling property, so that for each
k; k = 1; : : : ; N � 1, nodes 2k � 1 and 2k are siblings, and the probability of a node
i is greater than the probability of node i+ 1, for each i = 1; : : : ; 2N � 3. Let qi be
the probability of node i; i = 1; : : : ; 2N � 2. The list (q1; : : : ; q2N�3; q2N�2) is called
the sibling list [4].

Let u be a node at level l in the Hu�man code tree, and v a node at level l + 1.
Then

qu � qv: (4)
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Lemma 1 The redundancy r of a source, whose most and least likely source letter
probabilities are respectively p1 and p

N
, is upper bounded by:

r � p1 + 0:086 � p
N

for 0 < p1 � 1=6 (5)

r � 2� 1:3219(1 � p1)�H(p1) � p
N

for 1=6 < p1 � 0:1971 (6)

r � 4 � 18:6096p1 �H(5p1)� p
N

for 0:1971 < p1 � 0:2 (7)

r � 2� 1:25(1 � p1)�H(p1)� p
N

for 0:2 < p1 � 0:3138 (8)

r � 3� (3 + 3 log 3)p1 �H(3p1)� p
N

for 0:3138 < p1 � 1=3 (9)

r � 1 + 0:5(1 � p1)�H(p1) � 2p
N

for 1=3 < p1 � 0:4505; and N � 6 (10)

Proof. Bound (5) is provided by Capocelli et al. [3].
Bounds (6) and (7) follow from Manstetten's work [10]. Manstetten proved that for
p1 2 [1=(j + 1); 1=j] the redundancy can be written as

r = s+
mX
k=v

q0k �H(q01; : : : ; q
0
m) +

N�1X
k=m

(q2k�1 + q2k)[1�H(q2k=(q2k�1 + q2k))];

where s is the integer such that 2s � 1 � j � 2s+1 � 1, and q01; : : : ; q
0
m are the entries

qj; : : : ; q2j, in the sibling list so that m = j +1, and q0i = qi+j�1 for i = 1; : : : ;m, and,
�nally, v = 2s+1 � j. The above expression of r can be upper bounded by

r � s+
mX
k=v

q0k �H(q01; : : : ; q
0
m) + q0m � p

N
:

Manstetten provided upper bounds on s+
Pm

k=v q
0
k �H(q01; : : : ; q

0
m) + q0m, as function

of p1. From these bounds we can obtain bounds on r as function of p1 and p
N
. In

particular for j = 5; 6, one obtains (6), (7) and (8).
Bound (9) are due to Capocelli and De Santis [1]. Bound (10) has been obtained by
Capocelli et al. (see Theorem 5 and subsequent remark in [3]).

A useful result due to Montgomery and Kumar [12] is the following:

Lemma 2 Let S be a discrete memoryless source whose most likely source letter
probability is p1. If for some integer m

2

2m+1 + 1
< p1 <

1

2m � 1
;

then an optimal code for S must have the minimum codeword length n1 = m. Fur-
thermore, if

1

2m+1 � 1
� p1 <

2

2m+1 + 1
;

then an optimal code for S must have the minimum codeword length either n1 = m
or n1 = m+ 1.
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3 Upper bounds on r as function of p
N
, for �xed N

In this section we provide three upper bounds on r, as function of p
N
when we know

that the source has exactly 3; 4; 5 letters. More precisely, in subsections 2.1, 2.2, 2.3
we consider the cases N = 3; 4; 5, respectively.

These three upper bounds will be useful to determine the general upper bound
(3) on r as function of p

N
, when N � 3.

3.1 An upper bound when N = 3

In this section we derive the upper bound as function of the least likely source letter
probability, for ternary sources.

Theorem 1 Let S = (p1; p2; p3) be a discrete source and p3 = p
N

be its least likely
source letter probability. The redundancy of the corresponding Hu�man code is upper
bounded by:

r �

(
1 �H(2p

N
); if 0 < p

N
� �

0:5 + 1:5p
N
�H(p

N
); if � < p

N
� 1=3

(11)

where � ' 0:1525 is the unique zero of the function 0:5� 1:5x�H(2x) +H(x) in the
interval [0; 0:3]. The bound is tight.

Proof. The Hu�man code for S has length vector (1; 2; 2), and its redundancy is

r = 1 + p2 + p3 �H(p1; p2; p3):

Maximizing over all possible values for p1 and p2, given that p3 = p
N
, it follows

r � 1 + p
N
+ max

(y1;y2 ;pN )"Q
fy2 �H(y1; y2; pN )g

where Q is the set of all source of three letters whose least likely source letter proba-
bility is p3 = p

N
, i.e. Q = f(y1; y2; pN )jy1 � y2 � p

N
; y1 + y2 + p

N
= 1g. Alternatively,

the set Q can be written as Q = f(1 � x � p
N
; x; p

N
)jp

N
� x � (1 � p

N
)=2g: Since

the function x�H(1� x� p
N
; x; p

N
) is a convex [ function of x the maximum value

must occur at an extreme point of x's interval of variation. The extreme points of this
interval are p

N
and (1�p

N
)=2. If x = p

N
then r � 1�H(2p

N
) whereas if x = (1�p

N
)=2

then r � 0:5 + 1:5p
N
�H(p

N
). Hence, we have

r � maxf1�H(2p
N
); 0:5 + 1:5p

N
�H(p

N
)g

that leads us to (11).
The bound is reached by the source (1 � 2p

N
; p

N
; p

N
), if 0 < p

N
� �, and by the

source (
1�p

N

2 ;
1�p

N

2 ; p
N
), if � < p

N
� 1=3.
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De�ne the function �(p
N
) as follows

�(p
N
) =

(
1�H(2x) if 0 < p

N
� �

0:5 + 1:5 �H(x) if � < p
N
� 1=3

that is, the function � represent the bound on r given by (11).
The function 1�H(2x) is a decreasing function of x, for x 2 [0; �]. The function

0:5 + 1:5x � H(x) is a convex [ function of x with a minimum at � ' 0:26, the
unique zero of the �rst derivate of 0:5 + 1:5�H(x) in [�; 1=3]. Thus, the bound (11)
is a decreasing function of p

N
for p

N
� � and it is an increasing function of p

N
for

� < p
N
� 1=3. Hence the following lemma holds.

Lemma 3 The function �(p
N
) is a decreasing function of p

N
, for p

N
2 [0; �], � '

0:26, whereas for p
N
2 [�; 1=3], �(p

N
) is an increasing function of p

N
.

Observe that, since �(�) > �(1=3), Lemma 3 implies that if p 2]0; �] one has
�(p) > �(x) for all x 2]p; 1=3].

Bound (11) is depicted in Figure 1.

3.2 An upper bound when N=4

In this section we derive an upper bound as function of p
N
, for all sources consisting

of four source letters.

Theorem 2 Let S = (p1; p2; p3; p4) be a discrete source and p4 = p
N

be its least likely
source letter probability. The redundancy of the corresponding Hu�man code is upper
bounded by:

r �

8>>>>>><
>>>>>>:

1 + 5p
N
�H(1� 3p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=9

2 �H(1=3; 1=3; 1=3 � p
N
; p

N
) if 1=9 < p

N
� 1=6

2 �H(2p
N
; 1� 4p

N
; p

N
; p

N
) if 1=6 < p

N
� �1

2 �H(
1+p

N

3
;
1�2p

N

3
;
1�2p

N

3
; p

N
) if �1 < p

N
� 1=5

2 �H(1� 3p
N
; p

N
; p

N
; p

N
) if 1=5 < p

N
� 1=4

(12)

where �1 ' 0:1708 is the unique point in the interval [1=6; 1=5[ for which the function
H(2x; 1 � 4x; x; x) is equal to the function H(1+x

3 ; 1�2x3 ; 1�2x3 ; x). The bound is tight.

Proof. The Hu�man code for S has length vector (2,2,2,2) or (1,2,3,3). It is easy to
see that if the length vector is (2,2,2,2) one has p1 � p3 + p4, otherwise p1 � p3 + p4.
If p1 = p3 + p4 then there are two Hu�man codes with the two length vectors. Now
we distinguish between the two cases:
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Figure 1: The upper bound on the redundancy r as function of p
N
for sources with

N = 3 letters

A) p1 < p3 + p
N

B) p1 � p3 + p
N
:

CASE A: p1 < p3 + p
N
. The expected codeword length is 2 and the redundancy is

r = 2 � H(p1; p2; p3; p4). For a �xed value of p4 = p
N
and considering all possible

values for p1; p2; p3 we obtain that

r � 2� min
(y1 ;y2;y3;pN )"Q

H(y1; y2; y3; pN )

where Q = f(y1; y2; y3; pN )jy1 � y2 � y3 � p
N
; y1 + y2 + y3 + p

N
= 1; y1 < y3 + p

N
g is

the set of sources with four letters whose least likely source letter has probability p
N

and that satis�es y1 < y3 + p
N
. Now we compute the minimum value of the entropy.

The computation is based on the convexity of the function H. First note that the
minimum over Q satis�es y2 = y3. Indeed, since y1 < y3+pN if y2 > y3 then the point
y01 = y1 + �; y02 = y2 � �; y03 = y3 would satisfy H(y01; y

0
2; y

0
3; pN ) < H(y1; y2; y3; pN ), for

small � > 0. Hence y2 = y3.
It is easy to see that the function to minimize, H(1 � 2y3 � p

N
; y3; y3; pN ), is an
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increasing function of y3. Thus it assume the minimum value in the leftmost point
in its interval of variation. From the conditions y3 � p

N
and y1 < y3 + p

N
one has

maxfp
N
; (1 � 2p

N
)=3g � y3. The maximum between p

N
and (1 � 2p

N
)=3 is p

N
if

p
N
> 1=5 and (1 � 2p

N
)=3 otherwise. Hence

r �

(
2 �H(1� 3p

N
; p

N
; p

N
; p

N
) if 1=5 < p

N
� 1=4

2 �H(
1+p

N

3 ;
1�2p

N

3 ;
1�2p

N

3 ; p
N
) if 0 < p

N
� 1=5:

(13)

CASE B: p1 � p3+ p
N
. Notice that p

N
� 1=5. Indeed if p

N
> 1=5 then p1 < p3+ p

N
.

The expected codeword length is 1 + p2+2p3 +2p4. For a �xed value of p4 = p
N
and

considering all possible values for p1; p2; p3 we obtain that

r � 1 + 2p
N
+ max

(y1;y2;y3;pN )"Q
fy2 + 2y3 �H(y1; y2; y3; pN )g

where Q = f(y1; y2; y3; pN )jy1 � y2 � y3 � p
N
; y1 + y2 + y3 + p

N
= 1; y1 � y3 + p

N
g

is the set of sources with four letters whose least likely source letter has probability
p
N
and that satis�es y1 > y3 + p

N
. The function to maximize, y2 + 2y3 �H(1 � y2 �

y3 � p
N
; y2; y3; pN ), is a convex [ function of y2. Therefore it assumes the maximum

at an extreme point of the variation interval of y2. From conditions y1 � y2 � y3 and
y1 � y3 + p

N
we get y3 � y2 � minf1 � 2y3 � 2p

N
; (1� y3 � p

N
)=2g. It is easy to see

that 1� 2y3� 2p
N
� (1� y3� pN )=2 i� y3 � 1=3� p

N
. We distinguish the three cases

B.1) y2 = 1� 2y3 � 2p
N
and y3 � 1=3 � p

N

B.2) y2 = (1� y3 � p
N
)=2 and y3 � 1=3 � p

N

B.3) y2 = y3:

case B.1: y1 � y3+pN ,y2 = 1�2y3�2pN and y3 � 1=3�p
N
. The function to maximize

is 1�2p
N
�H(y3+pN ; 1�2p

N
�2y3; y3; pN ). This function is a convex [ function of y3

and thus it assumes the maximum value at an extreme point of its variation interval.
From conditions y1 � y2 � y3 � p

N
one has maxfp

N
; 1=3 � p

N
g � y3 � (1 � 2p

N
)=3.

The maximum between p
N
and 1=3 � p

N
is p

N
i� p

N
� 1=6.

If y3 assume the value of the leftmost point of its variation interval we get:

r �

(
2�H(2p

N
; 1� 4p

N
; p

N
; p

N
) if 1=6 < p

N
� 1=5

2�H(1=3; 1=3; 1=3 � p
N
; p

N
) if 0 < p

N
� 1=6:

(14)

If y3 = (1� 2p
N
)=3 then (13) holds.

case B.2: y1 � y3 + p
N
,y2 = (1 � y3 � p

N
)=2 and y3 � 1=3 � p

N
. Observe that

1=3 � p
N
� y3 � p

N
implies that p

N
� 1=6. The function to maximize, (1 � y3 �

p
N
)=2+ 2y3�H((1� y3� pN )=2; (1� y3� pN )=2; y3; pN ), is a convex [ function of y3,

and thus it assumes the maximum at an extreme point of its variation interval. From
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conditions y2 � y3 � p
N
and y1 � y3 + p

N
we get p

N
� y3 � (1� 3p

N
)=3.

If y3 = p
N
we get

r � 1:5 + 3p
N
�H((1 � 2p

N
)=2; (1 � 2p

N
)=2; p

N
; p

N
) if 0 < p

N
� 1=6: (15)

If y3 = (1� 3p
N
)=3 then (14) holds.

case B.3: y1 � y3 + p
N
and y2 = y3. The function to maximize, y3 + 2y3 �H(1 �

2y3�pN ; y3; y3; pN ), is a convex [ function of y3, and thus it assumes the maximum at
an extreme point of its variation interval. From conditions y3 � p

N
and y1 � y3+ p

N
,

one has p
N
� y3 � (1 � 2p

N
)=3.

If y3 = (1� 2p
N
)=3 then (15) holds, otherwise

r � 1 + 5p
N
�H(1 � 3p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=5: (16)

Now, comparing (13)-(16) and taking the maximum we get (12).

The bound is reached by the following sources:8>>>>>><
>>>>>>:

(1� 3p
N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=9

(1=3; 1=3; 1=3 � p
N
; p

N
) if 1=9 < p

N
� 1=6

(2p
N
; 1� 4p

N
; p

N
; p

N
) if 1=6 < p

N
� �1

(
1+p

N

3 ;
1�2p

N

3 ;
1�2p

N

3 ; p
N
) if �1 < p

N
� 1=5

(1� 3p
N
; p

N
; p

N
; p

N
) if 1=5 < p

N
� 1=4:

This concludes the proof.

Bound (12) is depicted in Figure 2.

3.3 An upper bound when N=5

In this section we consider sources consisting of �ve source letters and derive an upper
bound as function of the least likely source letter probability.

Theorem 3 Let S = (p1; p2; p3; p4; p5) be a discrete source and p5 = p
N

be its least
likely source letter probability. The redundancy of the corresponding Hu�man code is
upper bounded by:

r �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1 + 8p
N
�H(1 � 4p

N
; p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� �2

13=6 + p
N
=2 �H(13;

1
3 ;

1�3p
N

6 ;
1�3p

N

6 ; p
N
) if �2 < p

N
� 1=9

2 + 2p
N
�H(3p

N
; 1 � 6p

N
; p

N
; p

N
; p

N
) if 1=9 < p

N
� 1=8

2 + 2p
N
�H(

1�2p
N

2
;
1�4p

N

2
; p

N
; p

N
; p

N
) if 1=8 < p

N
� �3

11=5 + 4p
N
=5 �H(

2(1�p
N
)

5 ;
1�p

N

5 ;
1�p

N

5 ;
1�p

N

5 ; p
N
) if �3 < p

N
� 1=6

2 + 2p
N
�H(1 � 4p

N
; p

N
; p

N
; p

N
; p

N
) if 1=6 < p

N
� �4

9=4 + 3p
N
=4 �H(

1�p
N

4 ;
1�p

N

4 ;
1�p

N

4 ;
1�p

N

4 ; p
N
) if �4 < p

N
� 1=5

(17)
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Figure 2: The upper bound on the redundancy r as function of p
N
for sources with

N = 4 letters

where �2 ' 0:078184 is the unique point in ]0; 1=9[ for which the function 1 + 8x �
H(1 � 4x; x; x; x; x) is equal to the function 13=6 + x=2�H(1

3 ;
1
3;

1�3x
6 ; 1�3x6 ; x);

�3 ' 0:143815 is the unique point in ]1=8; 1=6[ for which the function 2 + 2x �

H(1�2x2 ; 1�4x2 ; x; x; x) is equal to the function 6=5 +4x=5�H(2(1�x)5 ; 1�x5 ; 1�x5 ; 1�x5 ; x);
�4 ' 0:179669 is the unique point in ]1=6; 1=5[ for which the function 2 + 2x�H(1�
4x; x; x; x; x) is equal to the function 5=4 + 3x=4 �H(1�x4 ; 1�x4 ; 1�x4 ; 1�x4 ; x).
The bound is tight.

Proof. We distinguish between four possible cases:
A) p2 � p4 + p5 and p1 < p2 + p3
B) p2 � p4 + p5 and p1 � p2 + p3
C) p2 > p4 + p5 and p1 < p3 + p4 + p5
D) p2 > p4 + p5 and p1 � p3 + p4 + p5:

CASE A: p2 � p4+ p5 and p1 < p2+ p3. It is easy to see that the Hu�man code has
length vector (2,2,2,3,3) and the expected codeword length is 2+p4+p5. Maximizing

9



the redundancy over all possible values of p1; p2; p3; p4, given that p5 = p
N
, we get

r � 2 + p
N
+ max

(y1;y2;y3;y4;pN )"Q
fy4 �H(y1; y2; y3; y4; pN )g

where Q = f(y1; y2; y3; y4; pN )jy1 � y2 � y3 � y4 � p
N
; y1+ y2+ y3+ y4+ p

N
= 1; y2 �

y4+ p
N
; y1 < y2+ y3g is the set of sources with �ve letters whose probabilities satisfy

the constraints of case A.
Observe that the maximum satis�es y2 = y3. Indeed, since y1 < y2+y3, if y2 > y3 the
point y02 = y2 + �; y03 = y3 � �; y0i = yi; i = 1; 4; 5 would satisfy H(y01; y

0
2; y

0
3; y4; pN ) <

H(y1; y2; y3; y4; pN ), for small � > 0. Following a similar reasoning we have that
y3 = y4. Hence, the function to maximize is y4 �H(1 � 3y4 � p

N
; y4; y4; y4; pN ). This

is a convex [ function of y4, and thus it assumes the maximum at an extreme point
of y4's variation interval. The conditions y1 � y2; y4 � p

N
and y1 < y2+y3 imply that

maxfp
N
; (1� p

N
)=5g � y4 � (1� p

N
)=4. The maximum between p

N
and (1� p

N
)=5 is

p
N
if p

N
� 1=6 and (1� p

N
)=5 otherwise. Hence

r �

(
11=5 + 4p

N
=5�H(2

1�p
N

5 ;
1�p

N

5 ;
1�p

N

5 ;
1�p

N

5 ; p
N
) if 0 < p

N
� 1=6

2 + 2p
N
�H(1 � 4p

N
; p

N
; p

N
; p

N
; p

N
) if 1=6 < p

N
� 1=5:

(18)

If y4 = (1� p
N
)=4 we get

r � 9=4 + 3p
N
=4 �H

�
1� p

N

4
;
1 � p

N

4
;
1 � p

N

4
;
1� p

N

4
; p

N

�
if 0 < p

N
� 1=5 (19)

CASE B: p2 � p4 + p5 and p1 � p2 + p3. Notice that pN � 1=6. Indeed, if p
N
> 1=6

one would has
P
pi > 1. The Hu�man code has length vector (1,3,3,3,3) and expected

codeword length 3�2p1. Fixed p5 = p
N
, maximizing the redundancy over all possible

values of pi; i = 1; 2; 3; 4 one has:

r � 3 � min
(y1;y2;y3;y4 ;pN )"Q

f2y1 +H(y1; y2; y3; y4; pN )g

where Q = f(y1; y2; y3; y4; pN )jy1 � y2 � y3 � y4 � p
N
; y1+ y2+ y3+ y4+ p

N
= 1; y2 �

y4+pN ; y1 � y2+y3g is the set of sources with �ve letters whose probabilities satis�es
the constraints of case B.
The minimum satis�es y4 = p

N
or y2 = y3. Indeed, if y4 > p

N
and y2 > y3 the

point y03 = y3 + �; y04 = y4 � �; y0i = yi; i = 1; 2; 5 would have a smaller entropy. We
distinguish between the two cases
B.1) y4 = p

N

B.2) y2 = y3:

case B.1 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3 and y4 = p
N
).

A point of minimum satis�es y3 = y4 or y2 = 2p
N
. Indeed, if y3 > y4 and y2 > 2p

N

10



the point y03 = y3 + �; y04 = y4 � �; y0i = yi; i = 1; 2; 5 would have a smaller entropy.
We distinguish between the cases
B.1.1) y3 = y4
B.1.2) y2 = 2p

N

case B.1.1 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3, y4 = p
N
,

y3 = y4). The function to minimize, 2(1 � y2 � 3p
N
) +H(1� y2 � 3p

N
; y2; pN ; pN ; pN ),

is a convex \ function of y2 and it assumes the maximum at an extreme point of its
variation interval. From the conditions y2 � y3, y2 � y4 + p

N
and y1 � y2 + y3 one

has p
N
� y2 � minf2p

N
; (1� 4p

N
)=2g. The minimum between 2p

N
and (1� 4p

N
)=2 is

2p
N
i� p

N
� 1=8. Hence

r �

(
1 + 10p

N
�H(1 � 5p

N
; 2p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=8

2 + 2p
N
�H(

1�2p
N

2 ;
1�4p

N

2 ; p
N
; p

N
; p

N
) if 1=8 < p

N
� 1=6:

(20)

If y4 = p
N
we get

r � 1 + 8p
N
�H(1� 4p

N
; p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=6: (21)

case B.1.2 (The following inequalities hold: y2 � y4+y5, y1 � y2+y3, y4 = p
N
, y2 =

2p
N
). Notice that p

N
� 1=8. Indeed if p

N
1=8 one would have

P
pi > 1. The function

to minimize, 2(1�4p
N
�y3)+H(1�4p

N
�y3; 2pN ; y3; pN ; pN ), is a convex \ function of

y3 and it assumes the maximum at an extreme point of y3's variation interval. From
the conditions y1 � y2 + y3; y2 � y3 � y4 we get p

N
� y3 � minf2p

N
; (1 � 6p

N
)=2g.

The minimum between 2p
N
and (1� 6p

N
)=2 is 2p

N
i� p

N
� 1=10. Hence

r �

(
1 + 6p

N
�H(1 � 6p

N
; 2p

N
; 2p

N
; p

N
; p

N
) if 0 < p

N
� 1=10

2 + 2p
N
�H(

1�2p
N

2
; 2p

N
;
1�6p

N

2
; p

N
; p

N
) if 1=10 < p

N
� 1=8:

(22)

If y3 = p
N
(20) holds.

case B.2 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3 and y2 = y3).

The function to minimize, 2y1 + H(y1;
1�y1�y4�pN

2
;
1�y1�y4�pN

2
; y4; pN ), is a convex \

function of y4. Thus, it assumes the maximum value at an extreme point of y4's
variation interval. From conditions y1 � y2; y3 � y4 � p

N
, and y2 � y4 + p

N
one

has maxfp
N
; (1 � y1 � 3p

N
)=3g � y4 � 1 � 2y1 � p

N
. The maximum between p

N
and

(1� y1 � 3p
N
)=3 is p

N
i� p

N
� (1� y1)=6. We distinguish between the three cases

B.2.1) y4 = 1� 2y1 � p
N

B.2.2) y4 = p
N
and p

N
� (1 � y1)=6

B.2.3) y4 = (1� y1 � 3p
N
)=3 and p

N
< (1 � y1)=6:

case B.2.1 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3, y2 = y3,
y4 = 1�2y1�pN ). The function to minimize, 2y1+H(y1; y1=2; y1=2; 1�2y1�pN ; pN ),
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is a convex \ function of y1 and, thus, it assumes the maximum value at an extreme
point of y1's variation interval. From condition y1 � y2 + y3; y3 � y4 � p

N
and

y2 � y4 + y5 one has 2(1 � p
N
)=5 � y1 � minf(1 � 2p

N
)=2; 2=5g. The minimum

between (1 � 2p
N
)=2 and 2=5 is 2=5 i� p

N
� 1=10. Hence

r �

(
11=5 �H(2=5; 1=5; 1=5; 1=5 � p

N
; p

N
) if 0 < p

N
� 1=10

2 + 2p
N
�H(

1�2p
N

2 ;
1�2p

N

4 ;
1�2p

N

4 ; p
N
; p

N
) if 1=10 < p

N
� 1=6:

(23)

If y1 =
2(1�p

N
)

5
then (18) holds.

case B.2.2 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3, y2 = y3,
y4 = p

N
and p

N
� (1�y1)=6). The function to minimize 2(1�2y3�2p

N
)+H(1�2y3�

2p
N
; y3; y3; pN ; pN ) is a convex \ function of y3 and thus, assumes the maximum at an

extreme point of its variation interval. From condition y1 � y2 + y3; y3 � y4; y2 �
y4 + p

N
and p

N
� (1 � y1)=6 one gets p

N
� y3 � minf2p

N
; (1 � 2p

N
)=4g. One has

2p
N
� (1 � 2p

N
)=4 i� p

N
� 1=10. If y3 = 2p

N
we get

r � 1 + 12p
N
�H(1 � 6p

N
; 2p

N
; 2p

N
; p

N
; p

N
) if 0 < p

N
� 1=10:

(24)

If y3 = p
N
or y3 = (1 � 2p

N
)=4 then respectively (21),(23) hold.

case B.2.3 (The following inequalities hold: y2 � y4 + y5, y1 � y2 + y3, y2 = y3,
y4 = (1�y1�3p

N
)=3 and p

N
< (1�y1)=6). The function to minimize, 2y1+H(y1; (1�

y1)=3; (1 � y1)=3; (1 � y1 � 3p
N
)=3; p

N
), is a convex \ function of y1. From condition

y1 � y2 + y3; y4 � p
N
and p

N
< (1 � y1)=6 one gets 2=5 � y1 � 1 � 6p

N
. In these

extreme points (23) and (24) hold.

CASE C: p2 > p4 + p5 and p1 < p3 + p4 + p5. Notice that p
N
� 1=7. Indeed, if

p
N
> 1=7 one would have

P
pi > 1. The Hu�man code has length vector (2,2,2,3,3)

and the expected codeword length is 2 + p4 + p5. Like previous cases we �x the least
probability p5 = p

N
, and consider all possible values of pi; i = 1; 2; 3; 4, obtaining an

upper bound for the redundancy.

r � 2 + p
N
+ max

(y1;y2;y3;y4;pN )"Q
fy4 �H(y1; y2; y3; y4; pN )g

where Q = f(y1; y2; y3; y4; pN )jy1 � y2 � y3 � y4 � p
N
; y1+ y2+ y3+ y4+ p

N
= 1; y2 >

y4 + p
N
; y1 < y3 + y4 + p

N
g is the set of sources with �ve letters whose probabilities

satis�es the constraints of this case.
Observe that a point of maximum satis�es y1 = y2 or y3 = y4. Indeed, if y1 > y2
and y3 > y4 then point y02 = y2 + �; y03 = y3 � �; y0i = yi; i = 1; 4; 5 would satisfy
H(y01; y

0
2; y

0
3; y

0
4; pN ) < H(y1; y2; y3; y4; pN ), for small � > 0. We distinguish between the
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two cases
C.1) y1 = y2
C.2) y3 = y4:

case C.1 (The following inequalities hold: y2 > y4 + p
N
, y1 < y3 + y4 + p

N
and

y1 = y2). The function to maximize, y4 � H(
1�y3�y4�pN

2
;
1�y3�y4�pN

2
; y3; y4; pN ), is

a decreasing function of y3, and assumes the maximum value at leftmost point of
y3's variation interval. From conditions y3 � y4 and y1 < y3 + y4 + p

N
one has

maxfy4; 1=3�y4�pNg � y3. It is easy to see that y4 � 1=3�y4�pN i� y4 � (1�3p
N
)=6.

We distinguish between the two cases
C.1.1) y3 = y4 and y4 � (1� 3p

N
)=6

C.1.2) y3 = 1=3 � y4 � p
N
and y4 < (1� 3p

N
)=6:

case C.1.1 (The following inequalities hold: y2 > y4+pN , y1 < y3+y4+pN , y1 = y2,

y3 = y4 and y4 � (1�3p
N
)=6). The function to maximize, y4�H(

1�2y4�pN
2

;
1�2y4�pN

2
; y4; y4; pN ),

is a convex [ function of y4, thus assumes the maximum at an extreme point of its
interval of variation. From conditions y4 � p

N
; y2 > y4 + p

N
; y1 < y3 + y4 + p

N
and

y4 � (1 � 3p
N
)=6 one gets maxfp

N
; (1 � 3p

N
)=6g � y4 � (1 � 3p

N
)=4. p

N
is greater

than (1� 3p
N
)=6 i� p

N
� 1=9. Hence

r �

(
13=6 + p

N
=2 �H(1

3 ;
1
3 ;

1�3p
N

6 ;
1�3p

N

6 ; p
N
) if 0 < p

N
� 1=9

2 + 2p
N
�H(

1�3p
N

2 ;
1�3p

N

2 ; p
N
; p

N
; p

N
) if 1=9 < p

N
� 1=7:

(25)

If y4 = (1� 3p
N
)=4 then

r � 9=4 + p
N
=4 �H(

1 + p
N

4
;
1 + p

N

4
;
1� 3p

N

4
;
1� 3p

N

4
; p

N
) if 0 < p

N
� 1=7: (26)

case C.1.2 (The following inequalities hold: y4 + p
N
, y1 < y3 + y4 + p

N
, y1 = y2,

y3 = 1=3 � y4 � p
N
and y4 � (1 � 3p

N
)=6). Observe that p

N
� y4 � (1 � 3p

N
)=6

implies p
N
� 1=9. The function to maximize, y4 �H(1=3; 1=3; 1=3 � y4 � p

N
; y4; pN ),

is a convex [ function of y4, and assumes the greatest value at an extreme point of
its variation interval. From conditions y3 � y4 � p

N
one gets p

N
� y4 � (1 � 3p

N
)=6.

Hence

r � 2 + 2p
N
�H(1=3; 1=3; (1 � 6p)=3; p

N
; p

N
) if 0 < p

N
� 1=9: (27)

If y4 = (1� 3p
N
)=6 then (25) holds.

case C.2 (The following inequalities hold: y2 > y4 + p
N
, y1 < y3 + y4 + p

N
and

y3 = y4). Since y1 < y3 + y4 + p
N
and y2 > y4 + p

N
a point in this case can not be

of maximum. Indeed the point y01 = y1 + �; y02 = y2 � �; y0i = yi; i = 3; 4, would have
smaller entropy.

13



CASE D: p2 > p4 + p5 and p1 � p3 + p4 + p
N
. Notice that p

N
� 1=8. Indeed if

p
N
> 1=8 one would has

P
pi > 1. The Hu�man code has length vector (1,2,3,4,4).

Like the previous cases we upper bound the redundancy by

r � 1 + 3p
N
+ max

(y1;y2;y3;y4;pN )"Q
fy2 + 2y3 + 3y4 �H(y1; y2; y3; y4; pN )g

where Q = f(y1; y2; y3; y4; pN )jy1 � y2 � y3 � y4 � p
N
; y1+ y2+ y3+ y4+ p

N
= 1; y2 >

y4 + p
N
; y1 � y3 + y4 + p

N
g is the set of sources with �ve letters whose probabilities

satis�es the constraints of case D.
The function to maximize, y2 + 2y3 + 3y4 � H(1 � y2 � y3 � y4 � p

N
; y2; y3; y4; pN ),

is a convex [ function of y2 and thus assumes the maximum at an extreme point of
y2's variation interval. From conditions y1 � y2 > y2 + p

N
, y1 � y3 + y4 + p

N
we

get y4 + p
N
� y2 � minf

1�y3�y4�pN
2 ; 1 � 2y3 � 2y4 � 2p

N
g. Moreover

1�y3�y4�pN
2 �

1� 2y3 � 2y4 � 2p
N
i� y3 + y4 + p

N
� 1=3. We distinguish between the three cases

D.1) y2 = y4 + p
N

D.2) y2 =
1�y3�y4�pN

2 and y3 + y4 + p
N
� 1=3

D.3) y2 = 1� 2y3 � 2y4 � 2p
N
and y3 + y4 + p

N
> 1=3.

case D.1 (The following inequalities hold: y2 > y4+y5, y1 � y3+y4+pN , y2 = y4+pN ).
The function to maximize, (y4+pN )+2y3+3y4�H(1�y3�2y4�2pN ; y4+pN ; y3; y4; pN ),
is a convex [ function of y3 and assumes the greatest value at an extreme point of
y3's variation interval. From conditions y1 � y3 + y4 + p

N
, y2 � y3 � y4 one gets

y4 � y3 � minfy4+pN ;
1�3y4�3pN

2 g. Furthermore y4+pN �
1�3y4�3pN

2 i� y4+pN � 1=5.
We distinguish the cases
D.1.1) y3 = y4
D.1.2) y3 = y4 + p

N
� 1=5

D.1.3) y3 =
1�3y4�3pN

2
and y4 + p

N
> 1=5.

case D.1.1 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

y4+pN , y3 = y4). The function to maximize, y4+pN +2y4+3y4�H(1�3y4�2p
N
; y4+

p
N
; y4; y4; pN ), is a convex [ function of y4 and assumes the maximum at an extreme

point of its variation interval. By conditions y1 � y2 > y4 + p
N
and y1 � y3 + y4+ p

N

one gets p
N
� y4 � (1� 3p

N
)=5. Hence

r � 1 + 10p
N
�H(1 � 5p

N
; 2p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� 1=8 (28)

r � 11=5 + 2p
N
=5 �H(

2�p
N

5 ;
1+2p

N

5 ;
1�3p

N

5 ;
1�3p

N

5 ; p
N
) if 0 < p

N
� 1=8: (29)

case D.1.2 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

y4 + p
N
, y3 = y4 + p

N
� 1=5). The condition y4 + p

N
� 1=5 together p

N
� y4 implies

that p
N
� 1=10. The function to maximize, y4+ p

N
+2(y4 + p

N
) + 3y4�H(1� 3y4�
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3p
N
; y4+pN ; y4+pN ; y4; pN ), is a convex [ function of y4 and assume the maximumat an

extreme point of its variation interval. From conditions p
N
� y4 and y1 � y3+y4+pN

one gets p
N
� y4 � (1� 5p

N
)=5. If y4 = p

N
then (24) holds. If y4 = (1� 5p

N
)=5 then

(23) holds.

case D.1.3 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

y4 + p
N
, y3 =

1�3y4�3pN
2

and y4 + p
N
> 1=5). The function to maximize, y4 + p

N
+

1 � 3y4 � 3p
N
+ 3p

N
� H(

1�y4�pN
2

; y4 + p
N
;
1�3y4�3pN

2
; y4; pN ), is a convex [ function

of y4 and assumes the maximum at an extreme point of its variation interval. By
conditions y2 � y3 � y4 � p

N
one gets maxfp

N
; (1 � 5p

N
)=5g � y4 � (1 � 3p

N
)=5.

Moreover, p
N
is greater than (1� 5p

N
)=5 i� p

N
� 1=10. If y4 = (1� 5p

N
)=5 then (23)

holds, if y4 = (1� 3p
N
)=5 then (29) holds, and if y4 = p

N
then (22) holds.

case D.2 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1�y3�y4�pN
2 and y3+y4+pN � 1=3). Observe that, since y3+y4+pN � 1=3 one has p

N
�

1=9. The function to maximize,
1�y3�y4�pN

2 +2y3+3y4�H(
1�y3�y4�pN

2 ;
1�y3�y4�pN

2 ; y3; y4; pN ),
is a convex [ function of y3 and assumes the maximum at an extreme point of
its variation interval. From conditions y3 � y4 and y1 � y3 + y4 + p

N
one gets

y4 � y3 � 1=3 � y4 � p
N
. We distinguish the two cases

D.2.1) y3 = y4
D.2.2) y3 = 1=3 � y4 � p

N
.

case D.2.1 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1�y3�y4�pN
2

,y3 + y4 + p
N
� 1=3 and y3 = y4). The function to maximize,

1�2y4�pN
2

+
2y4 + 3y4 � H((1 � 2y4 � p

N
)=2; (1 � 2y4 � p

N
)=2; y4; y4; pN ), is a convex [ function

of y4 and assumes the maximum at an extreme point of its variation interval. By
conditions y4 � p

N
and y1 � y3 + y4 + p

N
we have p

N
� y4 � (1 � 3p

N
)=6. Hence, if

y4 = p
N
then

r � 3=2 + 13p
N
=2�H

�
1 � 3p

N

2
;
1 � 3p

N

2
; p

N
; p

N
; p

N

�
if 0 < p

N
� 1=9: (30)

If y4 = (1� 3p
N
)=6 then

r � 2 + 2p
N
�H(1=3; 1=3; (1 � 3p

N
)=6; (1 � 3p

N
)=6; p

N
) if 0 < p

N
� 1=9: (31)

case D.2.2 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1�y3�y4�pN
2 ,y3 + y4 + p

N
� 1=3 and y3 = 1=3 � y4 � p

N
). The function to maximize,

1=3 + 2
3(1 � 3y4 � 3p

N
) + 3y4 �H(1=3; 1=3;

1�3y4�3pN
3 ; y4; pN ), is a convex [ function

of y4 and assumes the maximum at an extreme point of its variation interval. By
conditions y3 � y4 � p

N
one gets p

N
� y4 � (1 � 3p

N
)=6. Hence If y4 = (1 � 3p

N
)=6

then (31) holds and if y4 = p
N
then

r � 2 + 2p
N
�H(1=3; 1=3; (1 � 6p

N
)=3; p

N
; p

N
) if 0 < p

N
� 1=9: (32)
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case D.3 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1 � 2y3 � 2y4 � 2p
N
and y3 + y4 + p

N
> 1=3). The function to maximize, (1 � 2y3 �

2y4) + 2y3 + 3y4 � H(y3 + y4 + p
N
; 1 � 2y3 � 2y4; y3; y4; pN ), is a convex [ function

of y3 and assumes the maximum at an extreme point of its variation interval. From
conditions y1 � y2 � y3 � y4 and y2 > y4 + p

N
one has that maxf

1�3y4�3pN
3

; y4g �

y4 � minf
1�2y4�2pN

3
;
1�3y4�3pN

2
g. It easy to see that

1�3y4�3pN
3

� y4 i� y4 � (1�3p
N
)=6

and
1�2y4�2pN

3
�

1�3y4�3pN
2

i� y4 � (1 � 5p
N
)=5. We distinguish among the four cases

D.3.1) y3 =
1�3y4�3pN

3
and y4 � (1 � 3p

N
)=6

D.3.2) y3 = y4 and y4 > (1 � 3p
N
)=6

D.3.3) y3 =
1�2y4�2pN

3
and y4 � (1 � 5p

N
)=5

D.3.4) y3 =
1�3y4�3pN

2
and y4 > (1� 5p

N
)=5:

case D.3.1 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1 � 2y3 � 2y4 � 2p
N
, y3 + y4 + p

N
> 1=3, y3 =

1�3y4�3pN
3 and y4 � (1 � 3p

N
)=6). By

condition p
N
� y4 � (1 � 3p

N
)=6 one has p

N
� 1=9. The function to maximize ,

1=3 + 2
3(1 � 3y4 � 3p

N
) + 3y4 �H(1=3; 1=3;

1�3y4�3pN
3 ; y4; pN ), is a convex [ function

of y4 and assumes the maximum at an extreme point of its variation interval. From
conditions of this case we get p

N
� y4 � (1� 3p

N
)=6. In both extreme point a bound

already obtained holds. Precisely (31) and (32) hold.

case D.3.2 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1�2y3�2y4�2p
N
, y3+y4+pN > 1=3, y3 = y4 and y4 > (1�3p

N
)=6). The function to

maximize, (1�4y4�2pN )+2y4+3y4�H(2y4+pN ; 1�4y4�2pN ; y4; y4; pN ), is a convex [
function of y4 and assumes the maximum at an extreme point of its variation interval.
From conditions of this case we get maxfp

N
; (1 � 3p

N
)=6g � y4 � (1 � 3p

N
)=5. The

maximum between p
N
and (1� 3p

N
)=6 is p

N
i� p

N
� 1=9. Hence

r � 2 + 2p �H(3p
N
; 1� 6p

N
; p

N
; p

N
; p

N
) if 1=9 < p

N
� 1=8: (33)

Whereas if y4 = (1�3p
N
)=6 or y4 = (1�3p

N
)=5 then (31) and (29) respectively holds.

case D.3.3 (The following inequalities hold: y2 > y4 + y5, y1 � y3 + y4 + p
N
, y2 =

1 � 2y3 � 2y4 � 2p
N
, y3 + y4 + p

N
> 1=3, y3 =

1�2y4�2pN
3 and y4 � (1 � 5p

N
)=5). The

condition p
N
� y4 � (1 � 5p

N
)=5 implies that p

N
� 1=10. The function to maximize,

1�2y4�2pN
3

+
2(1�2y4�2pN )

3
+3y4�H(

1+y4+pN
3

;
1�2y4�2pN

3
;
1�2y4�2pN

3
; y4; pN ), is a convex [

function of y4 and assumes the maximum at an extreme point of its variation interval.
From conditions of this case we get p

N
� y4 � (1 � 5p

N
)=5. Hence

r � 2 + 2p
N
�H

 
1 + 2p

NN

3
;
1� 4p

N

3
;
1� 4p

N

3
; p

N
; p

N

!
if 1=9 < p

N
� 1=10: (34)

If y4 = (1� 5p
N
)=5 then (23) holds.
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case D.3.4 (The following inequalities hold: y2 > y4+y5, y1 � y3+y4+pN , y2 = 1�

2y3�2y4�2p
N
, y3+y4+pN > 1=3, y3 =

1�3y4�3pN
2

and y4 > (1�5p
N
)=5). The function

to maximize , y4+pN +1�3y4�3p
N
+3y4�H(

1�y4�pN
2

; y4+pN ;
1�3y4�3pN

2
; y4; pN ), is a

convex [ function of y4 and assumes the maximumat an extreme point of its variation
interval. From conditions of this case we get maxfp

N
; (1�5p

N
)=5g � y4 � (1�3p

N
)=5.

Moreover p
N
� (1 � 5p

N
)=5 i� p

N
� 1=10. If y4 = p

N
; (1 � 5p

N
)=5; (1 � 3p

N
)=5 then

respectively (22),(23),(31) holds.

Comparing (18)-(34) and taking the maximum we get (17).
The bound is reached by the following sources:

8>>>>>>>>>><
>>>>>>>>>>:

(1� 4p
N
; p

N
; p

N
; p

N
; p

N
) if 0 < p

N
� �1

(1=3; 1=3; (1 � 3p
N
)=6; (1 � 3p

N
)=6; p

N
) if �1 < p

N
� 1=9

(3p
N
; 1� 6p

N
; p

N
; p

N
; p

N
) if 1=9 < p

N
� 1=8

((1� 2p
N
)=2; (1 � 4p

N
)=2; p

N
; p

N
; p

N
) if 1=8 < p

N
� �2

(2(1 � p
N
)=5; (1 � p

N
)=5; (1 � p

N
)=5; (1 � p

N
)=5; p

N
) if �2 < p

N
� 1=6

(1� 4p
N
; p

N
; p

N
; p

N
; p

N
) if 1=6 < p

N
� �3

((1� p
N
)=4; (1 � p

N
)=4; (1 � p

N
)=4; (1 � p

N
)=4; p

N
) if �3 < p

N
� 1=5:

This concludes the proof.

Bound (17) is depicted in Figure 3.
A simple but tedious calculus shows that the functions that represents the bound

decreases as N increases, for N � 5 and for any �xed value of the least likely source
letter probability. More formally, we have the following

Lemma 4 Let �(p
N
); �(p

N
) and (p

N
) be the functions that represent the bounds (11),

(12), and (17) respectively, i.e. the bounds for N = 3; 4; 5. Then,

�(p
N
) � �(p

N
) for 0 < p

N
� 1=4

�(p
N
) � (p

N
) for 0 < p

N
� 1=5:

Figure 4 shows bounds (1), (11), (12), and (17).

4 An upper bound when only p
N
is known and N �

3

The bound r � 1 � H(p
N
) is achieved by sources of two letters. In this section we

prove that whenever N � 3 a sharper bound holds. More precisely, we prove that
bound (3) holds whenever N � 3.
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Figure 3: The upper bound on the redundancy r as function of p
N
for sources with

N = 5 letters

Theorem 4 Let S be a source with N � 3 letters and p
N

its least likely source letter.
The redundancy of the corresponding Hu�man code is upper bounded by:

r �

(
1 �H(2p

N
); if 0 < p

N
� �

0:5 + 1:5p
N
�H(p

N
); if � < p

N
� 1=3

(35)

where � ' 0:1525 is the unique zero of the function 0:5� 1:5x�H(2x) +H(x) in the
interval [0; 0:3]. The bound is tight.

Proof. By Lemma 4 the redundancy satis�es (35), for N = 3; 4; 5. Hence we assume
N � 6 and thus p

N
� 1=6.

We distinguish between the two cases p
N
� 1=7 and 1=7 < p

N
� 1=6.

CASE A: p
N
� 1=7. We have to prove that r � 1 � H(2p

N
). Now we distin-

guish among few possible cases according to the value of the most likely source letter
probability p1.

case A.1: 0 < p1 � 1=6. From (5) we have r � p1 + 0:0860 � p
N

which is �
1=6 + 0:0860 � p

N
< 0:253 � p

N
< 1�H(2p

N
).

18



0 0.05 0.1 0.15 0.2 0.25 0.3
p

0.2

0.4

0.6

0.8

1
r

Figure 4: Upper bounds on the redundancy r as functions of p
N
for sources with

N = 2; 3; 4; 5 letters

case A.2: 1=6 < p1 � 0:1971. From (6) we have that r � 2 � 1:3219(1 � p1) �
H(p1) � p

N
. The right-hand side is a decreasing function of p1, and thus r � 2 �

1:3219(1 � 1=6) �H(1=6) � p
N
< 0:249 � p

N
< 1�H(2p

N
).

case A.3: 0:1971 < p1 � 0:2. From (7) we have that r � 4�18:6096p1�H(5p1)�pN .
The right-hand side is a decreasing function of p1, and thus r � 4� (18:6096)(0:2) �
H(1) � p

N
< 0:278 � p

N
< 1�H(2p

N
).

case A.4: 0:2 < p1 � 0:3138. From (8) we have that r � 2�1:25(1�p1)�H(p1)�pN .
The right-hand side is an increasing function of p1, and thus r � 2� 1:25(1 � 0:2)�
H(0:2) � p

N
< 0:278 � p

N
< 1�H(2p

N
).

case A.5: 0:3138 < p1 < 1=3. From (9) we have that r � 3 � 3(1 + log 3)p1 �
H(3p1) � p

N
. The right-hand side is a decreasing function of p1, and thus r � 3 �

3(1+log 3)(1=3)�H(1)�p
N
< 0:415�p

N
. It is easy to see that 0:415�p

N
< 1�H(2p

N
)

for p
N
� 0:0884. Now assume p

N
> 0:0884. Let t be the number of leaves at level 2

in the Hu�man code tree for the source S = (p1; : : : ; pN ). Since N � 6 then t � 3.
As stated in [3] (see Theorem 3, equation (35)), the redundancy can be upper bounded
by r � l �H(q001 ; : : : ; q

00
2l) + q2m�1 � p

N
, where l is a level for which the code tree is
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complete, and m is the smallest integer such that node 2m � 1 with probability
q2m�1 in the sibling list is at level l + 1, and q00i ; i = 1; : : : ; 2l are the entries in the
sibling list at level l. We consider the case l = 2. For t = 1; 2 ,Capocelli and De
Santis [2] proved that 2 � H(q001 ; : : : ; q

00
2l) + q2m�1 � 0:75 + 1:25p1 � H(p1). Hence

r � 0:75 + 1:25p1 �H(p1)� p
N
< 0:278 � p

N
< 1 �H(2p

N
) for p

N
� 1=7.

Suppose t = 3. Since N � 6, p
N
> 0:0884 and 0:3138 < p1 < 1=3, recalling

(4), one has that an optimal code for S must have length vector (2,2,2,3,4,4). Let
S = (p1; : : : ; p6) be a source of 6 letters. There are two possible situations in which
Hu�man procedure generates a code whose length vector is (2,2,2,3,4,4):
(a) p3 � p5 + p6, p2 � p4 + p5 + p6, and p1 � p3 + p4 + p5 + p6
(b) p3 � p5 + p6, p2 � p4 + p5 + p6, and p1 � p2 + p3.
Case (a) is not possible: indeed, since p6 > 0:0884 and p1 � 0:3138, we would haveP
pi � p1+(p4+p5+p6)+(p5+p6)+p4+p5+p6 � p1+8p6 > 0:3138+8(0:0884) > 1.

In case (b), nodes with probabilities p2 and p3 are merged at level 2 of the code tree.
Observe that p2 + p3 � 2p3 � 2(p5 + p6) � 4p6 > 1=3, and since p1 < 1=3 then
p1 < p2 + p3. The redundancy is r = 2 + p4 + 2p5 + 2p6 � H(p1; p2; p3; p4; p5; p6). It
is well known that H(p1 + �; p2 � �; p3; p4; p5; p6) > H(p1; p2; p3; p4; p5; p6) for small
� (that is, for � < minfp2 � p3; 1 � p1g). Since p1 < p2 + p3, if p2 > p3 then the
source (p1 + �; p2 � �; p3; p4; p5; p6) would have a redundancy greater than that of the
source (p1; p2; p3; p4; p5; p6). Thus the maximum redundancy, for all sources satisfying
p3 � p5 + p6, p2 � p4 + p5 + p6, and p1 < p2 + p3, for a �xed value of p6, is reached
when p2 = p3. On other hand, if p2 = p3 it is easy to see that the redundancy r of S
is equal to the redundancy r0 of the source of �ve letters (p2+ p3; p1; p2; p3; p4). From
Theorem 3 and Lemma 4 we have r0 � 1�H(2p

N
).

case A.6: 1=3 < p1 � 0:4505. From (10) we have that r � 1+0:5(1� p1)�H(p1)�
2p

N
. The right-hand side is a decreasing function of p1, and thus r � 1 + 0:5(1 �

1=3) �H(1=3) � 2p
N
< 0:415 � 2p

N
< 1�H(2p

N
) for p

N
� 1=7.

case A.7: 0:4505 < p1. Let B be the source obtained by deleting the �rst letter in S
and normalizing the remaining probabilities, i.e. B = (p2=(1 � p1); : : : ; pN=(1 � p1)).
Let L and LB be the expected codeword lengths of sources S and B, and H and HB

their entropies. It is well known that

H = H(p1) + (1 � p1)HB

and
L = 1 + (1 � p1)LB:

Using bound (1), we have

r = L�H

= 1�H(p1) + (1� p1)rB
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� 1�H(p1) + (1� p1)

"
1�H

 
p
N

1� p1

!#

= 2� p1 �H(p1)� (1� p1)H

 
p
N

1� p1

!

= 2� p1 �H(p1; 1 � p1 � p
N
; p

N
)

The function 2 � x � H(x; 1 � x � p
N
; p

N
) is a convex [ function of x and thus it

assumes the maximum value at an extreme point of x's variation interval. Since
N � 6 one has 0:4505 � x � 1 � 5p

N
� 1 � 2p

N
. If x = 1 � 2p

N
we have that

2� (1 � 2p
N
)�H(1 � 2p

N
; p

N
; p

N
) � 1�H(2p

N
). If x = 0:4505 we have

r � 2 � 0:4505 �H(0:4505) � (0:5495)H
�

p
N

0:5495

�

which by a simple calculus is less than 1 �H(2p
N
) for p

N
� 1=7.

CASE B: 1=7 < p
N
� 1=6. Since p

N
> 1=7 and N � 6 then N = 6. Thus

1=6 � p1 � 1 � 5p
N
= 0:28. By Lemma 2, we have that, for 1=6 � p1 � 0:28, the

minimum codeword length of the Hu�man code satis�es either n1 = 2 or n1 = 3.
If n1 = 3 then N would be � 8, therefore n1 = 2. Recalling (4) we have that the
Hu�man code has length vector (2,2,3,3,3,3). Observe that if p1 = p2 or p3 = p4 then
the redundancy of source S is equal to the redundancy of a source of �ve letters.
From Theorem 3 and Lemma 4, (35) holds. Hence assume p1 > p2 and p3 > p4. The
redundancy is equal to r = 2 + p3 + p4 + p5 + p6 �H(p1; p2; p3; p4; p5; p6). It is well
known that H(p1; p2; p3; p4 + �; p5 � �; p6) > H(p1; p2; p3; p4; p5; p6), for small � > 0.
Since p3 > p4, if p5 > p6 then the source (p1; p2; p3; p4 + �; p5 � �; p6) would have a
redundancy r0 greater than the redundancy r of the source S. Thus a source with
maximum redundancy, among all sources satisfying the constraints of this case, for
a �xed value of the least likely source letter probability p6, has p5 = p6. Hence the
maximum redundancy is equal to the redundancy of a source consisting of �ve letters
whose least likely source letter probability is p4. From Lemma 4 the redundancy of a
source of �ve letters whose least likely source letter probability is p4, is less than the
redundancy of a source of three letters whose least likely source letter probability is
p4. On the other hand p4 � (1 � p5 � p6)=4 � (1 � 2=7)=4 � 0:18. Thus, recalling
that p

N
� p4, from Lemma 3 we have that �(p

N
) > �(p4) > r.

5 An upper bound as function of p
N�1

and p
N

In this section, exploiting the bound provided in Theorem 4, we obtain an upper
bound as function of p

N�1
and p

N
which improve Yeung's bound (2).
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Theorem 4 tells us that r � �(p
N
) where, recalling the de�nition of �,

�(p
N
) =

(
�(p

N
) if 0 < p

N
� �

 (p
N
) if � < p

N
� 1=3

and �(x) = 1�H(2x) and  (x) = 0:5 + 1:5�H(x).
The two special cases N = 2 and N = 3 are trivial since we know all probabilities of
the source, and we can compute the exact value of the redundancy. We have

r = 1 �H(p
N�1

) = 1 �H(p
N
) if N = 2

r = 1 + p
N�1

+ p
N
�H(1 � p

N�1
� p

N
; p

N�1
; p

N
) if N = 3

Thus, we suppose that N � 4. Let A = (p1; : : : ; pN�1 ; pN ) be a source with N letters
and letB the source obtained merging p

N�1
and p

N
, i.e. with source letter probabilities

fp1; : : : ; pN�2; pN�1 +pN g. The redundancies r and rB of sources A and B respectively,
satisfy

r = rB + l(p
N�1

; p
N
) (36)

where l(p
N�1

; p
N
) = (p

N�1
+ p

N
) +

�
1 �H

�
p
N

p
N
+p

N�1

��
is the contribute to the redun-

dancy due to p
N�1

and p
N
. Since A has at least four letters, B has at least three

letters and thus we can upper bound rB using Theorem 4. We distinguish between
the two cases p

N�1
+ p

N
� p

N�2
and p

N�1
+ p

N
> p

N�2
.

Consider the case p
N�1

+ p
N
� p

N�2
. The least likely source letter probability of B

is p
N�1

+p
N
. Since B has at least three letters, we have p

N�1
+p

N
� 1=3. By Theorem

4, rB is upper bounded by

rB �

(
�(p

N
+ p

N�1
); if 0 < p

N
+ p

N�1
� �

 (p
N
+ p

N�1
); if � < p

N
+ p

N�1
� 1=3

(37)

Consider the case p
N�1

+ p
N
> p

N�2
. The least likely source letter probability of B

is p
N�2

and it satis�es

p
N�1

� p
N�2

� minf1=3; p
N�1

+ p
N
g:

By Theorem 4 we have that

rB � max
p
N�1

�x�minf1=3;p
N�1

+p
N
g
�(x):

By Lemma 3, if p
N�1

� � then �(p
N�1

) is the maximumof �(x) in [p
N�1

;minf1=3; p
N�1

+
p
N
g] and thus

rB � �(p
N�1

) if p
N�1

� �: (38)
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Assume p
N�1

> �.We distinguish the two cases p
N�1

+ p
N
� 1=3 and p

N�1
+ p

N
> 1=3.

In the case p
N�1

+ p
N
� 1=3, by the convexity of  we have

rB � maxf (p
N
+ p

N�1
);  (p

N�1
)g if p

N�1
> � and p

N�1
+ p

N
� 1=3 (39)

whereas, in the case p
N�1

+ p
N
> 1=3 we have

rB � maxf (1=3);  (p
N�1

)g if p
N�1

> � and p
N�1

+ p
N
> 1=3: (40)

Observe that p
N�1

+ p
N
> 1=3 implies p

N�1
> �.

Comparing (37)-(40) and taking the maximum we obtain the following upper
bound on rB,

rB �

8>>><
>>>:
maxf�(p

N
+ p

N�1
); �(p

N�1
)g if p

N�1
+ p

N
� �

maxf (p
N
+ p

N�1
); �(p

N�1
)g if p

N�1
+ p

N
> �; p

N�1
� �

maxf (p
N
+ p

N�1
);  (p

N�1
)g if p

N�1
> �; p

N�1
+ p

N
� 1=3

maxf (p
N�1

); �(1=3)g if p
N�1

+ p
N
> 1=3

Substituting above bound in (36), and observing that maxf�(p
N
+ p

N�1
); �(p

N�1
)g =

�(p
N�1

), we have
r � !(p

N�1
; p

N
) (41)

where

!(p
N�1

; p
N
) =

8>>><
>>>:

�(p
N�1

) + l(p
N�1

; p
N
) if p

N�1
+ p

N
� �

maxf (p
N
+ p

N�1
); �(p

N�1
)g+ l(p

N�1
; p

N
) if p

N�1
+ p

N
> �; p

N�1
� �

maxf (p
N
+ p

N�1
);  (p

N�1
)g+ l(p

N�1
; p

N
) if p

N�1
> �; p

N�1
+ p

N
� 1=3

maxf (p
N�1

); �(1=3)g + l(p
N�1

; p
N
) if p

N�1
+ p

N
> 1=3

The above results can be summarized in the following theorem

Theorem 5 Let S = (p1; : : : ; pN�1 ; pN ) be a discrete source. The redundancy of the
corresponding Hu�man code is upper bounded by:

r � 1�H(p
N
) if p

N�1
+ p

N
= 1 (42)

r � 1+ p
N�1

+ p
N
�H(1� p

N�1
� p

N
; p

N�1
; p

N
) if (1� p

N
)=4 < p

N�1
� (1� p

N
)=3 (43)

r � maxf1 + p
N�1

+ p
N
�H(1� p

N�1
� p

N
; p

N�1
; p

N
); !(p

N�1
; p

N
)g if p

N�1
� (1� p

N
)=4
(44)

Notice that if p
N�1

+ p
N
< 1 then p

N�1
� (1 � p

N
)=3.

Figure 5 shows bound (44).

Following a similar reasoning but using 1�H(p
N
) for upper bounding rB instead

of (3) we get the bound provided by Yeung. Therefore it is clear that the bound (41)
is sharper than the bound of Yeung, since bound (3) is sharper than 1�H(p

N
).
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