
545 TECHNOLOGY SQUARE; CAMBRIDGE, MASSACHUSETTS 02139   (617) 253-5851

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

MIT LCS TM-553

Parameterized Types and Java

Joseph A. Bank Barbara Liskov Andrew C. Myers

(alphabetically)

Programming Methodology Group

May 1996

This technical memorandum (TM) has been made
available free of charge from the MIT Laboratory
for Computer Science, at www.lcs.mit.edu.





Parameterized Types and Java

Joseph A. Bank Barbara Liskov

(alphabetically)

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square, Cambridge, MA 02139
fjbank,liskov,andrug@lcs.mit.edu

Andrew C. Myers

Abstract

Java offers the real possibility that most programs can be
written in a type-safe language. However, for Java to
be broadly useful, it needs additional expressive power.
This paper extends Java in one area where more power is
needed: support for parametric polymorphism, which allows
the definition and implementation of generic abstractions.
The paper discusses both the rationale for our design
decisions and the impact of the extension on other parts
of Java, including arrays and the class library. It also
describes an implementation of the mechanism, including
extensions to the Java virtual machine, and designs for the
bytecode verifier and interpreter. The bytecode interpreter
has been implemented; it provides good performance for
parameterized code in both execution speed and code
size, and does not slow down programs that do not use
parameterized code.

1 Introduction

Java [Sun95a] is an interesting programming language
because of its potential for WWW applications.
It is additionally interesting because it is a type-
safe object-oriented language. We believe that it
would be extremely helpful to our profession if most
programming were done in such a language. For the
first time, we have a chance of having this happen.
Because of the widespread interest in Java, its similarity
to C and C++, and its industrial support, many
organizations may switch to Java from their current
language of choice for implementing most applications.

Java is also interesting because of its heteroge-
nous target architecture, the Java Virtual Machine
(JVM) [Sun95b]. The virtual machine executes typed

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N00014-91-J-4136, and in
part by a grant from Sun Microsystems.

bytecodes that can be checked by a bytecode verifier
before they are run. Verification of compiled Java code
is a key reason why Java is attractive for web applica-
tions. Because the JVM bytecodes can be statically type
checked, Java programs from untrusted sources can be
used without fear that they will violate type security
to access private information or disrupt the execution
of the interpreter. Typed bytecodes may also help in
compiling to efficient machine code.

Java as currently defined is explicitly a first version
that is intended to be extended later. This paper
addresses one of the areas where extension is needed,
namely, support for generic code in the form of
parametric polymorphism. In Java, it is possible to
define a new type, such as a set of integers, but it is not
possible to capture a set abstraction where the elements
of a particular set are homogeneous, but the element
type can differ from one set to another. Current Java
programs adapt to the lack of parametric abstraction by
using runtime type discrimination. For example, the
standard hash table interface maps keys of type Object
to values of type Object. Any values returned from a
hash table must be explicitly cast down to the expected
type, which is onerous for the programmer, and requires
relatively expensive work at runtime to ensure that the
cast is safe.

This paper extends Java with parametric polymor-
phism, a mechanism for writing generic interfaces and
implementations. It provides a complete design of this
extension and shows how to efficiently implement this
design by extending the Java Virtual Machine byte-
codes, the bytecode verifier and the interpreter. These
extensions are not strictly necessary but lead to better
performance. The paper presents results from a work-
ing prototype of the extended JVM interpreter that show

1



our technique adds little space or time overhead. The
paper also discusses the interaction of parametric poly-
morphism with other Java features and identifies a few
useful modifications to Java.

An explicit goal of our work was to be very
conservative. For the language extensions we took a
mechanism that works and adapted it to Java with as
few changes as possible. Our approach was guided by
the desire to support the Java philosphy of providing
separate compilation with complete inter-module type
checking; this seemed important both for pragmatic
reasons, and because it is consistent with the approach
in Java.

For the implementation, our concern was to achieve
good performance for generic code in both execution
speed and code size. An explicit goal was to use the
same code for all instances of a generic abstraction, in
order to avoid code blowup. In addition, our changes to
the Java bytecode interpreter are simple and resulted in
little additional overhead. Typechecking parameterized
code in the Java bytecode verifier is also efficient: the
code of a parametric class need only be verified once,
like that of an ordinary class. All our extensions are
upward compatible with the current JVM and have little
impact on the performance of non-parameterized code.
Finally, we achieve performance improvements along
with simpler Java code. For a simple collection class,
avoiding the runtime casts from Object reduced run
times by up to 16% in our prototype interpreter.

We used the Theta mechanism [DGLM95, LCD+94]
as the basis of our language design. Theta was a
good starting point because it uses declared rather
than structural subtyping, as does Java, and be-
cause it supports complete inter-module type check-
ing. We do not discuss in detail why this mecha-
nism was chosen because this discussion has been pre-
sented elsewhere [DGLM95]. We rejected the C++
template mechanism [ES90] and Modula-3 [Nel91]
generic module mechanism because they do not sup-
port our type-checking goal. These mechanisms do not
support separate compilation because a generic module
must be type-checked separately for every distinct use.
Furthermore, the most natural implementation of these
mechanisms (and the one that is actually in use in these
systems) treats the code as a kind of macro, so that code
is typically duplicated for different actual parameters,
even when the code is almost entirely identical.

The remainder of the paper is organized as follows.
Section 2 provides an informal description of our
extensions to the Java language. Section 3 shows
how these extensions are converted into our extended
bytecode specification and how the extended bytecodes
are verified and run. It also presents some performance
results. Section 4 discusses ways that other aspects of
Java could be changed to take advantage of parametric
polymorphism. We conclude in Section 5 with a
discussion of what we have accomplished.

2 Language Extensions

This section provides an informal description of our
extensions to the Java language, illustrated with exam-
ples. It describes extensions to allow parameterized
interfaces and implementations, and discusses several
important design issues. Appendix A gives the syntax
of the extension.

2.1 Java Overview

We do not assume any great familiarity with Java on
the part of the reader, and therefore we need to say a
few words about Java before we start. Java is similar
to C++ with the unsafe features eliminated. The most
fundamental difference is that most Java objects are in
the heap, which is managed automatically by a garbage
collector, and variables directly denote heap objects.

Java allows new types to be defined by both interfaces
and classes. An interface just contains the names and
signatures of methods (but no implementations). A
class contains methods and constructors, as well as
fields and implementations.

An interface can extend one or more other interfaces,
which means the types defined by those interfaces are
supertypes of the one being declared. Similarly, a
class can extend another class (but just one), meaning
that it defines a subtype of the other class and also
inherits the implementation. Thus, Java allows multiple
supertypes, but only single inheritance. In addition, a
class can implement one or more interfaces; this means
that (in conjunction with the code inherited from its
superclass, if any) it implements all the methods of the
interfaces. Java supports the usual rules for assignment.
For example, the code

C x = : : :;
D y = : : :;
x = y;

2



is legal provided D is a subtype of C (there are some
oddities here but they do not affect the discussion in this
paper).

Now we will move on to discuss our extensions to
Java that support parameterized types.

2.2 Parameterized Definitions

Interface and class definitions can be parameterized,
allowing them to define a group of related types that
have similar behavior but that differ in the types of
elements they contain. All parameters are types; the
definition indicates the number of parameters, and
provides formal names for them.1 For example, the
interface

interface SortedList [T] ... f g

might define sorted list types, which differ in the type
of element stored in the list (e.g., SortedList[int] stores
ints, while SortedList[String] stores strings), but which
all provide sorted access to the elements. As a second
example,

interface Map [Key, Value] ... f g

defines map types, such as Map[String,SortedList[int]],
that map from keys to values.

In general, a parameterized definition places certain
requirements on its parameters. For example, a
SortedList must be able to sort its elements; this means
that the actual element type must provide an ordering on
its elements. Similarly a Map must be able to compare
keys to see if they are equal. The parameterized
definition states such requirements explicitly by giving
where clauses, which identify methods and constructors
that the actual parameter type must have, and also state
their signatures. We will not discuss other mechanisms
for constraining parameters, because the merits of
where clauses are covered elsewhere [DGLM95].

Here are the above definitions with their where
clauses:

1It is possible to allow other kinds of parameters than types (for
example this is done in CLU [LSAS77]), but we have found them
to not be very important; in fact they just duplicate the ordinary
parameter passing mechanism. If other kinds of parameters are
allowed, their objects must be immutable and the actual parameter
values must be known at compile time; thus arrays could not be
parameters because they are mutable.

interface SortedList[T] where T fboolean lt (T t);g f
// overview: A SortedList is a mutable, ordered set where
// ordering is determined by the lt method of the element type.

void insert (T x);
// modifies: this
// effects: adds x to this

T first ( ) throws empty;
// effects: if this is empty, throws empty,
// else returns the smallest element of this

void rest ( ) throws empty;
// modifies: this
// effects: if this is empty, throws empty,
// else removes the smallest element of this

boolean empty ( );
// effects: if this is empty, returns true,
// else returns false.

g

Figure 1: The sorted list interface

interface SortedList [T]
where T f boolean lt (T t); g ... f g

interface Map [Key, Value]
where Key f boolean equals (Key k); g ... f g

In the first definition, the where clause indicates that
a legal actual parameter must have a method named lt
that takes a T argument and returns a boolean. The
second definition states that a legal actual parameter for
Key must have a method named equals that takes a Key
as an argument and returns a boolean. Note that Map
does not impose any constraints on the Value type, and
therefore any type can be used for that parameter.

The body of a parameterized definition uses the type
parameters to stand for the actual types that will be
provided when the definitions are used. For example,
Figure 1 gives the sorted list interface. Note the use
of the parameter T to stand for the element type in the
headers of the methods. Thus the insert method takes
in an argument of type T, and the first method returns a
result of type T.

2.3 Instantiation

A parameterized definition is used by providing
actual types for each of its parameters; we call this

3



instantiation. The result of instantiation is a type; it has
the constructors and methods listed in the definition,
with signatures obtained from those in the definition
by replacing occurrences of formal parameters with the
corresponding actuals. For example, the instantiation
SortedList[int] has the following methods:

void insert (int);
int first ( ) throws empty;
void rest ( ) throws empty;
boolean empty ( );

When processing an instantiation, the compiler
makes sure that each actual parameter type satisfies
the where clause for the associated parameter. This
means that it has all the constructors listed with the
required signatures, and it has methods with the given
names and signatures (actually, the signatures need to
be compatible, as discussed below.) Furthermore, if
the where clause requires a static method, the actual
must have a corresponding static method. In the case of
built-in types like int and char, Java does not define any
methods; instead, these objects have infix operators,
e.g., == and +. Therefore, we assume an extension to
Java: built-in types have the obvious methods, which
can be used for matching in instantiations, even if
the language does not allow them to be used in calls.
Thus int has methods called lt and equals, and these
correspond to the code that runs when the related infix
notation is used.

On the other hand, an instantiation is not legal, and
is rejected by the compiler, if the actual parameter does
not satisfy the constraints given in the where clause.
For example, SortedList[SortedList[int]] is not a legal
instantiation because the argument, SortedList[int], does
not have an lt method.

The information in the where clause serves to isolate
the implementation of a parameterized definition from
its uses (i.e., instantiations). Thus the correctness of
an instantiation of SortedList can be checked without
having access to a class that implements SortedList, and
in fact there could be many such classes. Within such a
class, code is allowed to use the methods/constructors
listed in the where clause for that parameter, and only
those routines. Furthermore, it must use the routines in
accordance with the signature information given in the
where clause. The compiler enforces these restrictions
when it compiles the class; the checking is done just
once, no matter how many times the class is instantiated.

Since an instantiation is legal only if it provides the
needed routines, we can be sure they will be available to
the code when it runs. Thus, the where clauses provide
separate compilation of implementations and uses of
parameterized definitions. (Furthermore, it is the lack
of something like where clauses that makes separate
compilation with complete inter-module type checking
impossible in C++ and Modula 3.)

An instantiation can be legal even if the signatures
of constructors and methods of the actual type do
not match exactly with those listed in the constraints.
Instead we require only compatibility. The intuition
here is that when code implementing the parameterized
definition calls methods/constructors listed in the where
clause, the call will actually go to a method/constructor
provided as part of the instantiation, and that call
must be type correct at runtime. Therefore, the
argument types of the method/constructor provided by
the instantiation can be supertypes of what is stated in
the where clause, the result type of a provided method
can be a subtype of what is stated in the where clause,
and any exceptions thrown by the provided method
must be subtypes of the exceptions given for that
method in the where clause. (These are the standard
contra/covariance rules for routine matching [Car84]
except that we have extended them to work for Java
exceptions.) For example, suppose BigNum is a class
with method

boolean lt (Num);

where Num is a superclass of BigNum. Then
SortedList[BigNum] is a legal instantiation because the
signature of BigNum’s lt method is compatible with
boolean lt (BigNum t), which is the where clause of
SortedList with BigNum substituted for T.

A legal instantiation must set up a binding between
a method/constructor of the actual type, and the
corresponding where-routine, the code actually called
at runtime; we will discuss how this is done in Section
3. Because Java (like C++) allows overloading, there
can sometimes be more than one method/constructor
of the actual type that matches a particular constraint.
In this case the closest match is selected; if there is no
uniquely best match, a compile-time error results. This
is the same rule that is used in Java to decide which
method/constructor to use in a call. (It matters which
method/constructor is selected because this is the one
that will actually be called when the implementation

4



runs.) For example, suppose BigNum has two lt
methods:

boolean lt (BigNum);
boolean lt (Num);

and consider the call x.lt(y) where x and y are declared to
be of type BigNum. Java will select the first definition,
and we will likewise select the first definition for the
instantiation SortedList[BigNum].

The same reasoning governs when protected and
private methods be used as where-routines: if a call
can be made in some environment using arguments
of the types specified by the where clause, then a
corresponding instantiation is legal, and the method
used for the call is bound to the where clause. For
example, a where clause can be satisfied by a protected
method if the instantiation takes place in the code of a
subclass, where the protected method is accessible.

So far we have considered only instantiations in
which the actual parameter is a “known” type such
as int or SortedList[int]. However, the actual in an
instantiation can also be a formal type parameter. In
this case the where clause of that parameter is used
to determine whether the instantiation is legal, and
the where-routine of that parameter is then bound to
the corresponding where-routine for the formal. An
example of such an instantiation will be given in the
next section.

Finally, we need to state the rules for determining
type equality for types produced by instantiation. These
rules are straightforward: Two instantiations define the
same type iff they instantiate the same parameterized
definition, and their arguments are pairwise equal.

2.4 Extending Interfaces

A parameterized definition can indicate its place in
the hierarchy (just as is done in a non-parameterized
definition). For example, the interface given in Figure
2 extends SortedList by providing a membership test
via the member method. Note that the where clause
for this interface is more restrictive than SortedList’s:
the notion of membership requires an equality test,
and in addition SortedList Member objects contain their
elements in sorted order.

The header of SortedList Member states that it
extends SortedList[T]. First, note that this is a legal
instantiation: T satisfies the constraint for SortedList
since SortedList Member requires an lt method for

interface SortedList Member [T]
where T fboolean lt (T); boolean equals (T);g
extends SortedList[T] f

// overview: SortedList Members are sorted lists
// with a membership test.

boolean member (T x);
// effects: returns true if x is in this else returns false.

g

Figure 2: Extending a parameterized interface

it. Second, the meaning of the extends clause is the
following:

For all types t where SortedList [ t ] is a legal
instantiation, SortedList Member [ t ] extends
SortedList [ t ]

Thus, SortedList Member[int] extends SortedList[int],
etc. If SortedList Member[t] is legal, then we can be
sure that SortedList[t] is also legal because of the type
checking of the instantiation SortedList[T] when the
SortedList Member interface was compiled.

The extends clause need not use all the parameters
of the interface being defined. Here are two examples:

interface A[T] extends B
interface Map[T, S] extends Set[T]

In the first case, the declaration states that for any actual
t, A[t] extends B. In other words, anywhere that a B
is allowed, an A[t] can be used with any t (provided
the instantiation is legal). In the second case, the
declaration states that for any actual types t and s,
Map[t,s] extends Set[t]. Probably such definitions do
not occur very often, but they are useful occasionally.
For example, we might want to define a hierarchy of
interfaces with a top element, top, a type with some
standard methods that many objects share. Then we will
be able to say that all instantiations of a parameterized
interface extend top.

All subtype relations for the types obtained from pa-
rameterized interfaces must be explicitly declared. This
same rule holds for classes as well, except that Object
is automatically a supertype of all class types. Fur-
thermore, we do not allow for subtype relations be-

5



tween different instantiations of the same parameter-
ized class. covariant-parameter subtypes. Thus Sort-
edList[BigNum] is not a subtype of SortedList[Num],
even if BigNum is a subtype of Num. We discuss this
avoidance of covariant-parameter subtyping in Section
4, when we compare our rule with the rule for Java
arrays.

2.5 Implementations

A Java class can implement one or more interfaces.
For example, Figure 3 shows part of HashMap, a class
that implements Map using a hash table. Note that
the class requires equals and therefore the instantiation
Map[Key,Value] is legal. The implementation of lookup
uses both where-routines: hashcode is used to hash the
input k to find the bucket for that key, and equals is
used to find the entry for the key, if any. These calls are
legal because of the information in the where clause for
Key, and they will go to the where-routines provided for
the particular instantiation being used when the lookup
method is called (as discussed in Section 3).

Objects are obtained in Java by calling constructors.
For example, in our extension

Map[String,Num] m =

new HashMap[String,Num](1000);

creates a new HashMap object and assigns it to m,
a variable of type Map[String,Num]; the assignment
is legal because HashMap[String,Num] implements
Map[String,Num]. The main point to note here is that it
is clear what instantiation an object belongs to when it is
created; this is important because the implementation
relies on it to find the where-routines when methods
are called on the object. Another point is that the use
of the HashMap constructor is legal because of our
assumption that built-in types all have certain common
methods; we assume hashcode is such a method since
all Java objects inherit it from Object.

A parameterized class might have static variables,
e.g., HashMap might have a static variable count that
keeps track of the number of HashMaps that have
been created. Each distinct instantiation of HashMap
would have its own copy of this variable. For exam-
ple, HashMap[String,Num] and HashMap[String,String]
would have separate count variables, but all instantia-
tions HashMap[String,Num] would share one static vari-
able. Like static initializers of ordinary classes, which
are run when the class is first used, static initializers of

public class HashMap[Key,Value]
where Key f

boolean equals(Key k);
int hashcode();
g

implements Map[Key,Value] f

HashBucket[Key,Value] buckets[ ]; // the hash table
int sz; // size of the table

public HashMap[Key,Value] (int sz) f . . . g
// effects: makes this be a new,
// empty table of size sz.

public Value lookup (Key k) throws not in f
HashBucket[Key, Value] b =

buckets[k.hashcode() % sz];
while((b != null) && (!b.key.equals(k)))

b = b.next;
if (b == null)

throw new not in();
else return b.value;

g

// other methods go here
g

Figure 3: Partial implementation of Map

an instantiation are run when the instantiation is first
used. In some cases, one might want a static variable
that is shared by all instantiations of a class. This func-
tionality can be achieved by placing the static variable
in a separate unparameterized class in the same module.

A class need not implement an entire parameterized
type; instead it can implement just some of the
instantiations. For example, we might have

class BigMap[Value] implements Map[long,Value]
class SortedList char implements SortedList[char]

Such specialized implementations can be more efficient
than general ones. For example, SortedList char might
map characters to elements of a fixed-size array of
integers, where each integer counts the number of
occurrences of that character in the sorted list.

2.6 Optional Methods

In addition to where clauses that apply to an entire
interface or class, it is possible to attach where clauses
directly to individual methods, a feature originally

6



interface SortedList[T]
where T f boolean lt (T t); g

f
. . .
void output(OutputStream s)

where T f void output (OutputStream s); g
// effects: Send a textual representation of this to s.

g

Figure 4: An optional method

provided by CLU [LSAS77]. Any where clause from
the header of the class still applies, but additional
methods can be required of the parameter type. A
method that has additional where clauses is called an
optional method, because it can be called only when the
actual parameter has the method described by the where
clause. If the parameter does not have the required
method, neither does the instantiation. This condition
can always be checked by the compiler; no extra runtime
work is needed.

Optional methods are handy for constructing generic
collection interfaces and classes. For example, a
collection might have an output method that is present
only if the elements have one too, as shown in Figure 4.
The implementation of SortedList.output would use the
output method of T to perform its job. The instantiation
SortedList[Num] would be legal regardless of whether
Num has an output method; however, it would have an
output method only if Num had the method.

3 Virtual Machine Extensions

In this section we discuss the implementation is-
sues that arise in adding parameterized types to Java.
We largely ignore the issue of compiling the ex-
tended Java language described in Section 2, since
there are many languages with parametric polymor-
phism [MTH90, LCD+94, SCW85]; compilers for lan-
guages with parametric polymorphism are reasonably
well-understood and nothing new arises from the fact
that the compiler generates bytecodes rather than ma-
chine instructions. Instead we focus on what is new:
extensions to the bytecodes of the Java Virtual Machine
(JVM) that are needed to express parametric polymor-
phism, and the effect of these extensions both on the
bytecode verifier, and on the bytecode interpreter.

Extensions to the JVM are not absolutely required.

The compiler could generate bytecodes for parameter-
ized classes as though all parameters were the class
Object. When compiling code that used a parameter-
ized class, the compiler would generate runtime casts
as appropriate. However, these runtime casts have an
associated performance penalty, since the a dynamic
type check must be performed. The relative cost of
this type check can be expected to increase as more
sophisticated bytecode execution technology is used.
Therefore, it made sense to extend the bytecode format
to be able to express parameterized types.

The Java compiler generates .class files, containing
code in a bytecode format, along with other information
needed to interpret and verify the code. The
format of a .class file is described by the JVM
specification [Sun95b]. We extended the JVM in a
backwards-compatible way, as described in Section 3.1.
The extended virtual machine supports not only the
extended Java described in Section 2, but also could be
used as a target architecture for other languages with
subtyping or parametric polymorphism.

We show how to verify the extended bytecodes in
Section 3.2 and how to interpret them in Section 3.3.
Our implementation technique requires little duplica-
tion of information for each instantiation; in particular,
bytecodes and global constants are not duplicated.

The extended bytecode interpreter has been imple-
mented, showing that parametric polymorphism can be
easily added to Java with little performance penalty
compared to the original interpreter, and without sac-
rificing safety. Some preliminary performance results
are given in Section 3.4.

As with the rest of our design, few changes
are required; our extended specification is backward
compatible, allowing existing binaries (.class files) to
run without modification (a minor version check is
required).

3.1 Bytecode Extensions

The most visible change to the virtual machine is
the addition of two new opcodes (named invokewhere
and invokestaticwhere) that support invocation of the
methods that correspond to the where clauses. They
provide invocation of normal and static methods,
respectively. Constructors are treated as normal
methods although they do not involve a method
dispatch. For example, the expression b.key.equals(k)
in Figure 3 is implemented using invokewhere, as

7



aload 2 // push b on stack
getfield <Field HashBucket[Key,Value].key Key>
aload 3 // push k on stack
invokewhere <Where Key.equals(#0;)Z> // call equals

Figure 5: Calling b.key.equals(k)

shown in Figure 5.
Other minor changes were made to the format of a

.class file. We extended the encoding of type signatures
to capture instantiation and formal parameter types, and
added information to describe the parameters and where
clauses of the class. Figure 5 shows one example of
the extended type signatures: the signature for equals
includes a “#0;”, which represents the first formal
parameter type (Key) of the current class. (The Z
indicates that the return type of equals is boolean.)
Full details of the extensions to the JVM are provided
in the appendix.

3.2 Verifier Extensions

The Java Virtual Machine bytecodes are an instruction
set that can be statically type-checked. For example,
bytecodes that invoke methods explicitly declare the
expected argument and result types. The state in the
execution model is stored in a set of local variables
and on a stack. The types of each storage location can
be determined by straightforward dataflow analysis that
infers types for each stack entry and each local variable
slot, at each point in the program.

The popularity of Java and suitability for WWW use
derives partly from the ability to statically type-check
compiled code, and it is important that the extensions
for parameterized types not remove this ability. The
standard Java bytecode verifier works by verifying one
class at a time [Yel95]. A call to a method of another
class is checked using a declaration of the signature of
that method, which is inserted in the .class file by the
compiler. When the other class is loaded dynamically,
these declarations are checked to ensure that they match
the actual class signature.

Our extensions to the JVM preserve this efficient
model of verification. The code of a parameterized
or non-parameterized class needs to be verified only
once. It is verified in isolation from other classes,
thus verifying it for all legal instantiations of the code.
An instantiation of a class or interface can be checked

for legality by examining only signature information in
the .class file for the class or interface; examining the
bytecodes in the .class file is unnecessary.

Typechecking the bytecodes is similar to the check-
ing performed by the compiler. If the class is parameter-
ized, the formal parameter types are treated as ordinary
types during verification, although they are really place-
holders for the actual parameters. A few operations
can be performed on values of these parameter types:
calling operations described by the where clauses, and
runtime type discrimination, i.e., casting. Parameter-
ized code may use instantiations of other parameterized
types, and these types may be instantiated either on the
parameters of the current class or on ordinary types.
For example, the code of HashMap[Key, Value] might
mention HashBucket[K, V]. When the verifier obtains
the signature of HashBucket methods, it must substi-
tute K! Key, V! Value.

The important difference between the compiler and
the verifier is that compiler variables have declared
types, but the types of stack locations and local variable
slots must be inferred. The verifier must assign types
to stack locations and local variable slots which are
specific enough that an instruction can be type-checked
(e.g., if it invokes a method, the object must have that
method). The assigned types must also be general
enough that they include all possible results of the
preceding instructions. For each instruction, the verifier
records a type with this property, if possible. It uses
standard iterative dataflow analysis techniques either to
assign types to all stack locations for all instructions, or
to detect that the program does not type-check.

Because the bytecodes include branch instructions,
different instructions may precede the execution of a
particular instruction X. For type safety, the possible
types of values placed on the stack by the preceding
instructions must all be subtypes of the types expected
by X. The core of the verifier is a procedure to merge a
set of types, producing the most specific supertype. The
dataflow analysis propagates this common supertype
through X and sends its results on to the succeeding
instruction(s). The analysis terminates when the types
of all stack locations and local variable slots are stably
assigned.

For example, consider the following Java code,which
places values from two different classes in the variable
x. The expression e is a boolean expression that is not
of interest.

8



x = new A();
while (e) f

x.m ();
x = new B();

g

Assume that m is a method of class C (the bytecode that
invokes the method indicates the class). Whether this
code type-checks depends on what the types A, B, and
C are. The .class file does not say what the types of
local variable slots are, so the verifier must infer them.
For example, the local variable slot containing variable
x has an unknown type. When the method m is invoked,
the stack contains the contents of x, which is either an
A or a B, so the verifier finds the lowest supertype of
A and B in the hierarchy. For the invocation to type-
check, the lowest supertype S must be a subtype of
C . Considering types as sets of legal values, S is a
conservative approximation to the union of the types A
and B, i.e., A [ B � S. If S is a subtype of C , then
S � C . Transitively, all possible values for x must also
be legal values of type C .

The primary change to the verifier for parameterized
types is a modification to this merge procedure,
which must now be able to merge instantiations of
parameterized classes and interfaces. This merging
requires a simple extension of the obvious non-
parameterized algorithm, which finds the lowest class
in the hierarchy that is a superclass of all arguments.

To find the lowest common class in the hierarchy,
one walks up the hierarchy from all the classes to
be merged, but applying the parameter substitutions
that are described by the extends clause of the class
declaration. When a common class is reached in the
hierarchy, the actual parameters of the class must be
unified for all the merged classes, which requires that
the actual parameters be equal. If we allowed within-
the-bracket subtyping, then the unification rule would
be relaxed.

Consider the class and interface hierarchy shown
in Figure 6, with the corresponding extends clauses.
The union of B[X] and C[X;Y ] can be conservatively
approximated as follows, successively moving up
the tree to find a common node while substituting
parameters:

B[X] [ C[X;Y ] � A[X] [A[X] = A[X]

Object

A[T]

B[U] C[K,V] D

E[T]

A[T ] extends Object
B[U ] extends A[U ]

C[K;V ] extends A[K]
D extends A[B[int]]
E[T ] extends Object

Figure 6: A parameterized class hierarchy

So these two types are merged to produce A[X].
Similarly, for B[X] and C[Y;X] we have

B[X] [ C[Y;X] � A[X] [A[Y ] � Object

In this case, the merge result is Object. Note that unlike
in the non-parameterized verifier, the lowest common
superclass node is not always sufficient for the merge
result, since it may be instantiated differently by the
merged types. Finally, consider merging B[B[int]] and
D, which demonstrates that parameterized and non-
parameterized classes can be merged:

B[B[int]] [ D � A[B[int]]

The previous discussion had considered only parame-
terized classes. In the presence of interfaces, the lowest
common supertype may be ill-defined, since nodes in
the hierarchy may have multiple parents. However, the
current Java verifier avoids this problem by deferring all
checking of interface method calls until runtime, and
we have also followed this approach.

3.3 Runtime Extensions

The Java runtime implements the JVM, providing a
bytecode interpreter and a dynamic loader for Java
classes. We have produced a working prototype
interpreter for our extensions to the JVM. Our design is
based upon the Java runtime implementation provided
by Sun Microsystems. Our goal in designing the

9



runtime was to avoid duplication of information by
the instantiations of a single class, while making the
code run quickly. Parameterized code runs about as
fast as non-parameterized code, without penalizing
non-parameterized code. Sun’s Java interpreter makes
extensive use of self-modifying code to speed up
execution and perform dynamic linking lazily; we
extend this technique for parameterized types.

3.3.1 Instantiation Pool

Classes are represented in the Java runtime by class
objects. Each class points to its constant pool, which
stores auxiliary constant values that are used by the Java
bytecodes. These constant values include class names,
field and method names and signatures. In this paper,
constant pool entries are denoted by angle brackets.
Figure 5 contains some examples of this notation, such
as the field signature<Field HashBucket[Key,Value].key
Key>.

For a parameterized class, some constants differ
among the instantiations. For example, the code
that is used by the where-clause operations differs
among instantiations, and therefore cannot be placed
in the constant pool. To resolve this problem, we
create a new class object for each instantiation. Each
instantiation class object stores instantiation-specific
information in its instantiation pool (ipool). Values
that are constant for all instantiations are still placed
in the constant pool. Ipool indices are constant across
all instantiations, but the contents of the corresponding
slots differ. An instantiation object is created by cloning
the parameterized class object and then installing a fresh
ipool.

For example, the HashMap method lookup from
Figure 3 uses the equals operation of Key, so a pointer
to the correct implementation of equals is placed in
the ipool of each instantiation. Other examples of
values in the ipool include references to classes that
are instantiations that use the parameters, addresses of
static (class) variables, and pointers to ipools of other
instantiations.

This design allows us to duplicate very little data.
All instantiations share the code of the class, the class
method tables, and the constant pool. Only the data that
is genuinely different for the instantiations is placed in
the ipool, and there is exactly one class object for each
instantiation being used in the running system.

Constant Pool

"String"

0

1

2

3

String

Figure 7: Resolving a constant pool entry

3.3.2 Quick Instructions

The Sun implementation of the JVM includes an
optimization that dynamically modifies the code the
first time an instruction is executed, replacing some
ordinary bytecodes with quick equivalents that do less
work [Sun95b]. These quick instructions are not part
of the bytecode specification and are not visible outside
of the implementation. The non-quick version of
these instructions performs a one-time initialization,
including dynamic type checking, and then turns itself
into the quick version. Our implementation makes
extensive use of this self-modifying code technique in
order to improve performance.

A typical method invocation makes use of the
constant pool to find the correct method to invoke, as
shown in Figure 7. The figure shows some actions
of the instruction new <String>, which creates a new
object of class String. Suppose this instruction stores
its argument at constant-pool index 3, so it is really
the new 3 opcode with a constant-pool index 3 as its
argument. When first executed, the instruction looks
in the contents of slot 3 of the constant pool to find
the name of the class, stored as a string. The name
is resolved to the corresponding class object (possibly
dynamically loading the class), which is then stored
directly into slot 3 of the constant pool. Finally, the
opcode is changed to new quick 3, a quick instruction
that will assume the constant pool entry is already
resolved.

10



This technique will not work for parameterized
classes. Consider using new with the class HashMap[T,
String], in code that is parameterized on T. Each
instantiation of the code has a different T, so the new
should do different work for each. Our technique,
shown in Figure 8, is to place this instantiation-
dependent data into the ipool when the instruction (e.g.,
new 6) is first encountered for a particular instantiation.

In the figure, constant-pool entry 6 holds the string
“HashMap[T, String]”, which is shared among all
instantiations. To execute this instruction, we look at
the constant-pool slot to see whether it contains the
index of an ipool slot. The ipool index, 2 in this
example, is assigned when the first instantiation of
class HashMap is created; all instantiations use the
same ipool slot index, but store different data in the
slot. We look at the ipool of the instantiation running
at the moment to see whether it has been initialized;
if not, we fill in the entire ipool for this instantiation.
Resolving ipool slot 2 will require that the instantiated
value of the parameter T is substituted into the class
name (producing “HashMap[Thread, String]”). The
new string is resolved into an instantiation class object,
which is stored in ipool slot 2. The opcode new 6
is changed to new pquick 2, which knows to load the
class from ipool slot 2. To fill in their ipools, other
instantiations will need the value of the string stored at
constant pool slot 6, so both the forwarding pointer and
the original value are kept in that slot.2

In general, code that does not need the ipool is
transformed using the usual quick bytecodes. The non-
quick versions of certain instructions not only do a one-
time initialization, but also modify the code according
to whether the parameter pool must be used. This
technique creates only a small one-time penalty for
code that does not make use of parameterization, adding
negligible overhead.

The presence of subclasses makes ipools substan-
tially more complicated than implementing parametric
polymorphism for non-object-oriented languages like
CLU or ML [MTH90]. Consider a method call: the
compiler and dynamic linker cannot tell which piece of
code is run, so they cannot determine the corresponding
ipool to use, either. The proper ipool to use for the call

2For some constants, storing the forwarding pointer requires
an additional constant pool slot. This is discussed more fully in
Appendix B.

Constant Pool

0

1

2

3

Object

4

5

6 2 "HashMap[T, String]"

Instantiation Pool (T = Thread)

0

1

2

HashMap[Thread, String]

Figure 8: Resolving an ipool entry

is not known until the actual call, and must be deter-
mined from the object on which the method is being
invoked (the method receiver). The object has a pointer
to its instantiation class object, which contains the ipool
for the methods of that class. However, the ipool to use
for the call is not necessarily the ipool of the receiver’s
class, since the method may be inherited from another
class. An additional indirection is required to obtain
the correct ipool, but this is not too expensive.

Our implementation technique resembles an earlier
approach [DGLM95], but also provides support for
static methods, static variables, and dynamic type
discrimination. It is applicable to compiled machine
code as well as the JVM bytecodes.

3.3.3 Primitive Types

Primitive types such as integers can be used as
parameter types under the implementation technique
described here. Most of the primitive types take up
the same space in an object as an object reference.
That they are not full-fledged objects is not a problem
for invoking where-routines, since where-routines are
accessed through the ipool rather than through the
object. Large primitive types such as long and double,

11



Original interpreter: 8.5
Extended interpreter: 8.7

Figure 9: Java Compiler Speed

Parameterized: 13.3
Hard-Wired Types: 12.8
Using Object: 15.5

Figure 10: Collection Class Results

which typically take up more space than object pointers,
can be handled in several ways. The most efficient
technique is probably for the class loader to instantiate
the parameterized class for those particular types by
rewriting bytecodes. If a parameterized class has an
instance variable of type T, and is instantiated with T
= long, the field offsets of other instance variables may
change for that instantiation, since the long will take up
more space than other parameter types. This technique
does duplicate code, however.

3.4 Performance Results

We performed a few simple benchmarks to investigate
the performance of our extended interpreter. These
results must be considered preliminary, since we have
not tuned our interpreter performance. The results of
our benchmarks are shown in Figures 9 and 10. All run
times are in seconds.

First, we confirmed that our extended interpreter
did not significantly slow the execution of ordinary
unparameterized code, by running the Java compiler
javac (itself a large Java program) on both interpreters.
As shown in Figure 9, the extended interpreter runs
only 4% slower than the original interpreter on non-
parameterized code.

We also ran some small benchmarks to compare the
speed of parameterized and non-parameterized code,
using a simple parameterized collection class and some
non-parameterized equivalents. In these comparisons,
the code was almost identical, except for changes in
type declarations and a dynamic cast.

invokewhere 22.8
invokevirtual 21.9
invokeinterface 23.3

Figure 11: Invocation Speed

In the first micro-benchmark, we compared the
parameterized collection class to the same collection
class where the types of the components are hard-wired.
We would expect that the hard-wired class, though less
generally useful, would run faster. As Figure 10 shows,
there is only a 4% penalty for running parameterized
code.

In the second micro-benchmark, we compared the
parameterized collection to the same collection class
where the types of the components are all Object. This
version of the collection class gives up some static type
checking, and also requires that the programmer write
an explicit type cast when extracting values from the
collection. The existing Java utility classes mostly
follow this philosophy. In our benchmark, this approach
is 17% slower than using parameterized types.

In the third micro-benchmark, we compared the
speed of invoking where-routines (with the invokewhere
bytecode), ordinary methods (with invokevirtual), and
interface methods (with invokeinterface). Our test
program intensively called these respective bytecodes.
The results are shown in Figure 11. This experiment
represented a best case for invokeinterface, where its
inline caching worked perfectly. In our results, all three
method invocation paths are approximately the same
speed.

4 Interaction of Parameterization with Java

This section discusses some ways in which the addition
of parameterization to Java interacts with Java features.

4.1 Primitive Types

We have already mentioned in Section 2 that in order
for primitive types such as int to be used in conjunction
with parameterization (or at least to satisfy where
clauses), it is necessary for them to have methods.
Therefore, we have assumed that they do indeed
have methods that correspond to the abilities provided
by the infix notation. Thus, integers have all the
common comparison and arithmetic methods, etc. As
mentioned, this does not mean that these methods can
be called directly (instead of using infix notation) in
non-parameterized code, although in fact we think it
would be a good idea to allow this. Also, the fact that
the methods exist does not rule out the use of efficient
implementations, e.g., x + y can still be implemented
with the iadd bytecode (and if x.add(y) were allowed,

12



it also could be implemented with this bytecode). Of
course, inside a parameterized class, t1.add(t2), where
the type of t1 and t2 is the parameter type T, a call to
the where-routine must be made (except that one could
macro-expand a particular instantiation, e.g., when the
parameter is int, and replace the call with iadd.)

In addition, it is important to use common naming
conventions for the methods of the primitive types.
For example, at present Java strings have a compare
method (which does a three-way comparison of its
argument with this). A method like this is fine, but
either all primitive types should have such a method, or
all primitive types should have the various comparison
methods (lt, equals, etc.). The reason for this
requirement is that matching in where clauses is based
on method names, and standard naming conventions
make more matches possible.

4.2 Renaming

More complicated instantiation mechanisms have been
proposed that would eliminate the dependance on
names discussed above. In Argus [LDH+87] the
instantiation can select the routine to bind to the where-
routine, e.g., you could say SortedList[Numfp for ltg]
to substitute some routine p for the lt method. Such
a mechanism provides more expressive power but is
more complex and difficult to explain than what we
propose here. Also, it becomes difficult to decide
what the right definition of type equality ought to be.
For example, is SortedList[Num] = SortedList[Numfp
for ltg]? Presumably the answer should be yes if p
behaves the same as lt but not otherwise. Since this
is not a question that a compiler can answer, Argus
takes the conservative approach of considering the types
equal only if p and int.lt are the very same code. This
provides a bit more expressive power than our where
clauses, but in a language like Java where code is loaded
dynamically it means that more type checking must be
deferred until runtime. Therefore we have not provided
this ability.

Another possible approach is to avoid where clauses
and instead pass the needed routines in explicitly when
objects are created (as arguments to constructors — and
the procedures would be stored in instance variables so
that they would be accessible to the methods). This
requires first-class procedures, which can be passed as
arguments and results, and stored in data structures.
Java does not have first-class procedures at present

(although we assume this shortcoming will be addressed
shortly). Furthermore, there must be a way to associate
procedures with methods (so that the equivalent of int.lt
could be passed).

However, even assuming such mechanisms exist,
passing procedures to constructors is not a good
solution. The problem is that it doesn’t properly reflect
the semantics. For example, the meaning of a map
depends very directly on the equality test used for
Key. Two Map[Foo,Bar] objects would behave very
differently if different equality tests were used inside
them. Our approach prevents such objects from being
considered as belonging to the same type, by making it
impossible to have more than one Map[Foo,Bar] type.
(Renaming would also keep the types separate, but
would allow there to be more than one Map[Foo,Bar]
type. This feature would require of runtime type
checking.)

4.3 Java Arrays

While the current Java language does not support
parameterization of classes or interfaces, there is
support for parameterized arrays. Unfortunately,
the subtyping rule for Java arrays is different from
the subtyping rule we propose in Section 2 for
parameterized classes and interfaces.

The subtyping rule for Java arrays does allow
subtyping covariant in the parameter types. Thus, if S
is a subtype of T, an array of S (written S[ ]) is a subtype
of an array of T (T[ ]). This rule has the consequence
that array stores require a runtime type check, and this
check is in fact made by the Java runtime. For example,
consider the following code:

T x = ...;
� T [ ] z = new S [ ] (...);

...;
�� z[i] = x;

The assignment (*) is legal because S is a subtype of T
and therefore S [ ] is a subtype of T [ ]. The assignment
(**) is also legal (at compile time) because it is legal
to store a T object into a T [ ]. However, if this store
were allowed to happen, the result would be that an S
[ ] contains an element whose type is not a subtype of
S. Therefore the store cannot be permitted, and Java
prevents it by checking at runtime that the actual type
of the object being stored is a subtype of the element

13



type of the array.3

The motivation for the Java subtyping rule seems to
come from the idea that it is better to check stores at
runtime than to copy the entire array when a conversion
from S[ ] to T[ ] is desired. This may be true for
some programs, although it is not difficult to imagine
programs in which stores are a dominant costs; for
general parameterized types it is even easier to imagine
costly situations, since every method that takes an
argument of a parameter type must have the check.

Furthermore, the semantics of the Java approach are
unfortunate from a methodological point of view. A
subtype’s objects ought to behave like those of the
supertype so that people writing programs in terms of
the supertype can reason about their behavior using the
supertype specification [LW94]. Java arrays violate this
rule.

Therefore, we believe that for general parameteriza-
tion of classes and interfaces it is better to not allow
covariant-parameter subtyping. It would be possible to
allow such subtyping if no methods of the supertype
take arguments of the parameter type, but such types
are rare. (A more complete discussion of these is-
sues is available [DGLM95].) Furthermore, covariant-
parameter subtyping creates implementation difficulties
for efficient dispatch mechanisms [Str87, Mye95].

We believe that it would be good if the Java rule for
arrays were changed so that all parameterized types had
the same rule. However, our design does not require
this; different rules could be used for arrays and for
other parameterized types.

4.4 The Java Type Library

Java is being augmented with a library of interfaces
and classes. Already there are several abstractions
in the library that would be much more useful if
parameterization had been available.

For example, consider the type Vector, which is an
extensible array. Because of the lack of parameteriza-
tion, all elements in a Vector must considered to be of
type Object, even in a context where their type is much
more narrow. This has two unfortunate consequences:

3The check can be avoided if the compiler can figure out what
is going on at compile time. Also, the check is only needed when
T has subtypes. Both primitive types and final classes satisfy this
property, but Sun’s current Java interpreter only removes the type
check for the primitive type case.

interface Enumeration[T] f

bool hasMoreElements ( );
// effects: returns true if there are more
// elements to yield in this

T nextElement( ) throws NoSuchElementException;
// effects: if there are more elements to yield,
// yields one and records the yield,
// else throws NoSuchElementException

g

Figure 12: Specification of parameterized Enumera-
tion type

1. When new elements are added to a vector, or are
stored in the vector, if they are of a primitive type
such as int then it is necessary to use class wrappers
to objectify them.

2. Whenever an object is fetched from a vector, it must
be cast to the expected type.

Note that both wrapping and casting have a runtime
cost; in addition they are ugly and make code less
convenient to write.

The problems can be completely eliminated if Vector
is parameterized. Then a Vector[int] is known to contain
ints and there is no need to either wrap the int going in or
cast it coming out. Furthermore, note that you can also
have Vector[Object] in the case where what you want is
a heterogeneous vector, so parameterized vectors have
all the necessary expressive power.

Another example is the Enumeration interface,
which attempts to capture the notion of a generator
that provides a sequence of values. Like vectors,
enumerations are heterogeneous, so that the elements
produced must be cast to the expected type before
use. A much better interface can be achieved by using
parameters; such an interface is shown in Figure 12.

Every type that provides an ability to enumerate over
its elements simply provides an implementation this
interface, or of a specific instantiation of this interface.
For example, SortedList might have the method shown
in Figure 13.

However, the elements method in a class that imple-
ments SortedList[int] would return Enumeration[int] as
shown in Figure 14. (Both classes in the figure are in

14



Enumeration[T] elements ( );
// effects: returns an enumeration object that
// can be used to obtain the elements
// of this in sorted order

Figure 13: The elements iterator

class Intlist implements SortedList[int] f

int [ ] els; // keep elements in a sorted array
...

Enumeration[int] elements ( ) f
return IntlistGen(this);

g
g

class IntlistGen implements Enumeration[int] f

Intlist li; // the list
int pos; // position of last element yielded

IntlistGen(Intlist x) f
li = x;
pos = �1;

g

int nextElement( )
throws NoSuchElementException f

if (pos � els.high)
throw new NoSuchElementException();

pos++;
return els[pos];

g

g

Figure 14: Using parameterized enumerations

the same module, and therefore the IntlistGen class has
access to the representation of Intlist objects.)

5 Conclusions

Java offers for the first time the real possibility that
most programs can be written in a type-safe language.
However, for Java to be broadly useful, it needs to have
more expressive power than it does at present.

This paper addresses one of the areas where more
power is needed. It extends Java with a mechanism for

parametric polymorphism, which allows the definition
and implementation of generic abstractions. The paper
gives a complete design for the extended language. The
proposed extension is small and conservative and the
paper discusses the rationale for many of our decisions.
The extension does have some impact on other parts of
Java, especially Java arrays, and the Java class library,
as discussed in Section 4.

The paper also explains how to implement the
extensions. The implementation has three main goals:
to allow all instantiations to share the same bytecodes
(thus avoiding code blowup), to have good performance
when using parameterized code, and to have little
impact on the performance of code that does not use
parameterization. The implementation discussed in
Section 3 meets these goals. That section describes
a few new bytecodes that are needed to support
parameterized abstractions; it also described the designs
of the bytecode verifier and interpreter, and the runtime
structures they rely on.

Our bytecode interpreter has been implemented
(except for static variables in parameterized classes).
Our preliminary performance results, in Section 3.4,
show that we have roughly a 4% penalty for the presence
of parameterized code, but that some common code is
sped up by 16% because parameterized code can avoid
some runtime type checks. We expect that some simple
performance tuning can improve these results.

Parameterized abstractions are not the only extension
needed to make Java into a convenient general purpose
programming language. Another needed extension is
first-class procedures; we discussed them briefly in
Section 4.2. This paper is not concerned with providing
a full analysis of missing features, but we would
like to close with a plea for iterators. Enumeration
over elements of collections can be provided using
generators, as discussed in Section 4.4, but it is
much more convenient to use iterators. Iterators were
first introduced in CLU; they are routines similar to
procedures, except that they yield a sequence of results,
one at a time; see [LSAS77, LG86] for discussion
and examples. For example, the elements method in
Figure 14 becomes:

int iter elements ( ) f
for (int i = 0; i < els.high; i++) yield els[i];

g

This is much simpler than writing the generator; rather

15



than needing to provide a class for each enumeration,
all that is needed is just a simple routine. And the
difference is even more pronounced when the data
structures are more complex (e.g., recursive structures
such as trees and graphs).

A Java Grammar Extensions

This appendix presents the full syntax for our extension
to Java, and discusses some issues of the semantics that
were not discussed earlier. Appendix B provides the
details of the extensions to the Java Virtual Machine
that support parametric polymorphism.

In the syntax below, we use the brackets [ and ]
when zero or one occurrence of the construct is allowed
(i.e., when the construct is optional). We have not
attempted to give a full syntax for Java, but rather we
just focus on the parts that are affected by the addition
of parameterization. Capitalized non-terminals are
defined by the Java language grammar [Sun95a] and
are not repeated here.

A.1 Interfaces

An interface definition can be parameterized by using
the following syntax:

interface !
h

InterfaceModifiers
i

interface idnh
[ params ]

i h
where

i
h

ExtendsInterfaces
i

InterfaceBody

params ! idn
h

, idn
i
*

where ! where constraint
h

, constraint
i
*

constraint ! idn f
h

whereDecl ;
i
* g

whereDecl ! methodSig
�� constructorSig

methodSig !
h

static
i

ResultType

MethodDeclarator
h

Throws
i

constructorSig ! ConstructorDeclarator
h

Throws
i

The params clause lists one or more formal
parameter names, each of which stands for a type
in the parameterized definition. The where clause
lists constraints on the parameters. Each constraint
identifies the parameter being constrained; the idn
in the constraint must be one of those listed in the

params. It then identifies the methods/constructors that
that parameter must have. For a method it gives the
name, and the types of its arguments and results; it also
indicates whether the method is static or not. For a
constructor, it lists the types of the arguments. The type
names introduced in the params clause can be used as
types in the remainder of the interface, including the
ExtendsInterfaces clause.

A.2 Instantiation

The form of an instantiation is

instantiationType ! idn [ actualParams ]

where

actualParams ! Type
h

, Type
i
*

The idn in the instantiation must name a parame-
terized class or interface. The number of actualParams
must match the number given in that parameterized def-
inition, and each Type must satisfy the constraints for
the corresponding formal parameter of that definition.

Satisfying a constraint means: (1) if the constraint
indicates a constructor is required, the actual type must
have a constructor with a signature that is compatible
with that given in the constraint; (2) if the constraint
indicates that a method is required, the actual type
must have a method of that name with a signature that
is compatible with that given in the constraint; if the
constraint indicates the method is static, the matching
method in the actual type must also be static, and
otherwise it must not be static.

A.3 Classes

A class definition can be parameterized by using the
following syntax:

ClassDeclaration !
h

ClassModifiers
i

class idnh
[ params ]

i h
where

i h
Super

i
h

Interfaces
i

ClassBody

As was the case for interfaces, the params of the
class can be used as types within the class. Also, code
in the ClassBody can call the routines introduced in the
where clause. Such a call is legal provided the routine
being called is introduced in the where clause and has

16



a signature that matches the use. The syntax of the call
depends on what kind of routine is being called: for an
ordinary method, the syntax x.m( ) is used to call the
method; for a constructor, the syntax new T( ) is used;
and for a static method the syntax T.m( ) is used.

A.4 Methods

Methods can have where clauses of their own:

MethodDeclaration !
h

MethodModifiers
i

ResultType

MethodDeclarator
h

Throws
i

h
where

i
MethodBody

The where clause can constrain one of the type
parameters of the containing interface or type. Calls to
methods or constructors of formal parameter types are
legal within the method body if they match constraints
for the parameter that are given either in the where
clauses of the containing class or interface, or in the
where clauses of the method.

B JVM Extensions

This appendix describes the extensions to the Java
Virtual Machine that support parametric polymorphism.
In the following specification, we include section
numbers from the original JVM specification [Sun95b]
to indicate where changes are being made.

(1.4) Objects whose type is statically understood to be
a parameter type are always stored as 32-bit quantities
on the stack and in local variables. The types double
and long cannot be used as type parameters at the
VM level. The Java compiler will automatically wrap
these data into Double and Long objects respectively,
or automatically instantiate such classes, rewriting the
code appropriately. The only exception to this rule is
arrays, where longs and doubles are stored in packed
form.

(2.1) The class file format is extended to contain the
following additional field:

parameter info parameters;

where parameter info is defined as follows:

parameter info f
u2 parameters count;
u2 parameter names[parameters count];

u2 where count;
u2 where clauses[where count];

g

The array parameter names contains constant pool
indices for the names of the formal parameters. These
name are provided for debugging and disassembly
purposes, as in Figure 5.

The field where clauses contains constant pool
indices for entries of type CONSTANT WhereRef,
which describe one where clause of a indicated
parameter as specified below. Its signature may mention
the parameter types.

(2.2) Signature specifications include the following
additional options:

M<fullclassname>[<fieldtype>...]

This signature denotes the instantiation of the
parameterized class or interface using the types inside
the brackets. The number of parameters much match
the number of parameters in the class, and the parameter
types must have the required methods.

#<parameterindex>;

This signature denotes one of the parameter types of
the current class or method. The parameter index is
written as an integer in ASCII form.

Note that these new grammar productions inductively
preserve the property that the end of a typespec can be
determined as you read the characters from left to right.

(2.3.1) For example, the string “MMutex[[I]” represents
the type Mutex[int[]], and inside a class Set[Object],
the string “[#0;” represents an array of Object and
“MHashMap[#0;I]” represents a HashMap[Object, int].

(2.3.2) The new constant pool entries CONSTANT Large-
Methodref and CONSTANT LargeFieldRef are simi-
lar to CONSTANT Methodref and CONSTANT FieldRef
except that that they take up two constant pool entries.
Their format in the class file is exactly the same as
CONSTANT Methodref. They are used to refer to static
methods and fields of parameterized classes.

A LargeMethodref must be used if a method is
used by a static or non-virtual method call, and the
actual implementation of the method is defined in a
parameterized class. This condition can be checked

17



by the compiler. For example, if the class signature
described by constant pool[class index] is an entry of
type CONSTANT Class that describes an instantiation,
and the method is static, then a LargeMethodref must
be used. However, a LargeMethodref is required even
when constant pool[class index] is not an instantiation,
but it inherits its implementation of the method from a
parameterized class. The extra constant-pool entry is
used to find the correct ipool for the static method code.

A LargeFieldref must be used for all accesses to a
static field of a parameterized class. The extra constant-
pool entry contains an ipool index; at that index, the
ipool contains a pointer to the static variable storage.
This mechanism allows each distinct instantiation of a
parameterized class to have its own copy of the static
variable.

(2.3.8) CONSTANT WhereRef is a new kind of constant
pool entry, used to denote an operation of a parameter
type. It corresponds to a where clause.

CONSTANT WhereRef f
u1 tag;
u2 param index;
u2 name and type index;
u2 access flags;

g

The tag will have the value CONSTANT WhereRef.
The param index is the index of the parameter type in
the class or the method that calls this parameter op-
eration. The name and type index describes the sig-
nature and name of the operation, as described in the
where clause. It must match the signature in parame-
ters[param index].where clauses[k].methods, above.

The access flags field may only have ACC STATIC
set of the various possible flags.

(2.5) The structure method info, which describes one
method of the current class, is extended to contain the
following field:

parameter info parameters;

which describes any new parameters that apply within
the scope of the method and where clauses on both
these parameters and on any existing parameters. The
parameters and where clauses of the class also apply to
the method. New parameters are indexed sequentially
following the indices of the class parameters, so

different methods that have their own additional type
parameters may use the same indices. However, there is
no ambiguity in any given scope about which parameter
corresponds to an index. The current prototype does not
implement additional method parameters.

(3.15) Two new bytecodes are added to the virtual
machine:

invokewhere

Invoke an operation of a parameter type.

Syntax:

invokewhere = 186
indexbyte1
indexbyte2

Stack: ..., objectref, [arg1, [arg2 ...]] ) ...

The index bytes are used to form an index
into the constant pool, which must be an entry
of type CONSTANT WhereRef. This entry is
used to determine which code to run for the
method, using information in the current object
to determine what the parameter type is.

invokestaticwhere

Invoke a static operation of a parameter type.

Syntax:

invokestaticwhere = 187
indexbyte1
indexbyte2

Stack: ..., objectref, [arg1, [arg2 ...]] ) ...

The index bytes are used to form an index
into the constant pool, which must be an entry
of type CONSTANT WhereRef. This entry is
used to determine which code to run for the
method, using information in the current object
to determine what the parameter type is.

References
[Car84] Luca Cardelli. A semantics of multiple inheritance.

In Semantics of Data Types, LNCS 173, pages 51–68.
Springer-Verlag, 1984.

[DGLM95] M. Day, R. Gruber, B. Liskov, and A. C. My-
ers. Subtypes vs. where clauses: Constrain-
ing parametric polymorphism. In Proceedings of
OOPSLA ’95, Austin TX, October 1995. Also
available at ftp://ftp.pmg.lcs.mit.edu/pub/thor/where-
clauses.ps.gz.

18



[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Anno-
tated C++ Reference Manual. Addison-Wesley, 1990.

[LCD+94] Barbara Liskov, Dorothy Curtis, Mark Day, San-
jay Ghemawat, Robert Gruber, Paul Johnson,
and Andrew C. Myers. Theta Reference Man-
ual. Programming Methodology Group Memo 88,
MIT Laboratory for Computer Science, Cam-
bridge, MA, February 1994. Also available at
http://www.pmg.lcs.mit.edu/papers/thetaref/.

[LDH+87] Barbara Liskov, Mark Day, Maurice Herlihy, Paul
Johnson, Gary Leavens, Robert Scheifler, and William
Weihl. Argus Reference Manual. Technical Report
400, MIT Laboratory for Computer Science, Novem-
ber 1987.

[LG86] Barbara Liskov and John Guttag. Abstraction and
Specification in Program Development. MIT Press,
1986.

[LSAS77] Barbara Liskov, Alan Snyder, Russell Atkinson, and
Craig Schaffert. Abstraction mechanisms in CLU.
CACM, 20(8):564–576, August 1977.

[LW94] Barbara Liskov and Jeannette M. Wing. A behavioral
notion of subtyping. ACM TOPLAS, 16(6):1811–
1841, November 1994.

[MTH90] Robin Milner, Mads Tofte, and R. Harper. The
Definition of Standard ML. MIT Press, Cambridge,
MA, 1990.

[Mye95] Andrew C. Myers. Bidirectional object layout for
separate compilation. In OOPSLA ’95 Conference
Proceedings, Austin, TX, October 1995. Also
available at ftp://ftp.pmg/pub/thor/bidirectional.ps.gz.

[Nel91] Greg Nelson, editor. Systems Programming with
Modula-3. Prentice-Hall, 1991.

[SCW85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt.
Trellis Object-Based Environment, Language Refer-
ence Manual. Technical Report DEC-TR-372, Digital
Equipment Corporation, November 1985. Published
as SIGPLAN Notices 21(11), November, 1986.

[Str87] Bjarne Stroustrup. Multiple inheritance for C++. In
Proceedings of the Spring ’87 European Unix Systems
Users’s Group Conference, Helsinki, May 1987.

[Sun95a] Sun Microsystems. Java Language Specification,
version 1.0 beta edition, October 1995. Available at
http://ftp.javasoft.com/docs/vmspec.ps.Z.

[Sun95b] Sun Microsystems. The Java Virtual Machine Specifi-
cation, release 1.0 beta edition, August 1995. Available
at http://ftp.javasoft.com/docs/javaspec.ps.tar.Z.

[Yel95] Frank Yellin. Low-level security in Java, December
1995. Presented at the Fourth International World Wide
Web Conference, Dec. 1995.

19


