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Abstract

We describe an application of computer modeling to the study of the kinetics of virus capsid (protein shell)
assembly. We examine two proposed models of the source of nucleation-limited growth, an observed growth
pattern in which initiation of new capsids occurs signi�cantly more slowly than subunit addition onto initiated
capsids. We apply an abstract computer model of capsid assembly, based on the principle of local rules,
to support a theoretical argument for favoring a two-conformation model over a one-conformation model.
The theoretical analysis examines expected relative growth and nucleation rates and concludes that the two-
conformation model should be able to support faster growth following nucleation for any �xed nucleation
rate. Based on the theoretical argument, we develop predictions which are then supported by computer
simulation results on a model of T = 1 capsid assembly. In addition to strengthening the argument for a
two-conformation model, our results demonstrate the potential value of computer simulations in comparing
hypothetical models for observed biochemical behaviors.
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1 Introduction

The kinetics of icosahedral virus capsid assembly have proven di�cult to resolve. Icosahedral capsids have
traditionally been described by the quasi-equivalence theory of Caspar and Klug (1962). But while this
theory provides a description of the �nal assembled structure, it does not provide much direct insight into
the process of assembly. Although some questions about capsid assembly kinetics have been answered, other
key problems remain unresolved. Examples include constraints on the orders of assembly, the timing of
conformational switching, and the role of sca�olding proteins in enforcing size-determination. It is likely
that some aspects of assembly kinetics di�er from one virus to another. For example, the T=7 phage
HK47 appears to build pentamers and hexamers �rst, then assemble these completed capsomers to form a
capsid (Xie & Hendrix, 1995), while P22, another T=7 phage, appears to assemble its capsid directly from
individual coat proteins (Prevelige et al., 1993).

One important open question concerns the source of nucleation-limited growth in icosahedral capsids.
Nucleation-limited growth has been observed in P22 (Prevelige et al., 1993). However, it has not yet been
possible to establish the source of this behavior. A variation of the argument of Oosawa and Kasai (1962),
proposed to explain helical self-assembly, could provide one explanation for the source of nucleation-limited
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behavior in virus capsid assembly. Oosawa and Kasai noted that in a helix, a nucleation complex con-
sisting of an initial turn contains fewer binding interactions per subunit than larger assemblies; subunits
would therefore have more di�culty overcoming the con�gurational entropy penalty of binding when they
nucleate a new structure than when they add additional subunits to an existing structure, explaining why
nucleation would be relatively unfavorable compared to growth following nucleation. Caspar (1980) specif-
ically described how this argument might apply to helical viruses. A similar argument might also be used
to explain nucleation-limited behavior in icosahedral virus capsids; in the icosahedral case, the number of
binding interactions per subunit grows from only one when two initially unbound subunits �rst collide, to
three or more in a completely closed capsid, as each subunit contacts, at a minimum, its two neighbors in
its capsomer and a subunit in at least one neighboring capsomer. An alternative hypothesis, the autostery
model of Caspar (1980), involves a similar entropy penalty, but conjectures that it is produced in part by
conformational switching. In the autostery model, conformational switching occurs after binding. We discuss
a slightly di�erent two-conformation model in which proteins occupy binding and non-binding conformations
at various times when free in solution; binding of two free proteins is then unfavorable because both proteins
must happen to be in the binding conformation simultaneously, requiring two entropy penalties for a single
binding interaction, while completing a pentamer is more favorable because it requires �ve entropy penal-
ties for �ve binding interactions. Both one- and two-conformation theories could explain observed kinetic
behavior, and it has proven di�cult to decide between them. The �rst theory has the advantage of greater
simplicity, requiring no conformational shifting. However, it has been argued that con�gurational entropy
alone could not be su�cient to explain the magnitude of the entropy penalty that would be required to give
the observed behavior (Caspar, 1980). So far, it has not been possible to demonstrate the validity of either
theory experimentally.

Such questions often cannot be adequately addressed through current laboratory techniques; we have
therefore developed a computer simulator in the hopes of providing additional insight. The basis of the
simulator is the local rules model of Berger et al. (1994), which describes capsid assembly in terms of \local
rules" specifying binding patterns for di�erent conformations of coat proteins. Local rules models can o�er
some predictions about assembly kinetics without computer simulations, as demonstrated by Berger and Shor
(1995), although there are limits to the predictions that can be made directly from the theory. Our simulator
combines a molecular dynamics-like approach with the local rules model, allowing it to abstract away many
details of binding interactions, making the problem of capsid assembly computationally tractable (Schwartz
et al., 1998). The simulator is described in more detail in the methods section.

2 Theory

This section provides a theoretical argument for favoring the two-conformation model of nucleation-limited
behavior over the one-conformation model. The argument is based on relating entropy penalties due to
con�gurational speci�city of binding to entropy penalties due to conformational switching during both the
nucleation phase and the growth phase of capsid assembly. The argument here is described assuming pen-
tameric nucleation, however it applies qualitatively to nucleation complexes of any size greater than one
protein. In addition, the argument assumes that growth occurs by addition of individual coat proteins fol-
lowing nucleation, as as been observed for P22 (Prevelige et al., 1993), rather than through the addition
of larger pre-assembled structures, such as capsomers. The argument concludes that if nucleation-limited
growth is promoted by the existence of an entropy penalty to binding, then having a component of this
entropy penalty come from conformational switching should promote a greater ratio of growth rate to nucle-
ation rate compared to having an entropy penalty derived purely from con�gurational entropy. This implies
an advantage to the existence of a non-binding conformation in promoting rapid growth and a high yield of
correct, complete capsids.

We can propose some reasons why evolution might select for a high ratio of growth rate to nucleation
rate in virus capsid assembly. One potential advantage is that by limiting the frequency of nucleation events
and insuring that growth proceeds rapidly following nucleation, a virus avoids the possibility of exhausting
all available subunits while many partially formed capsids are being constructed. If nucleation occurred
too often or growth following nucleation were too slow, it might be that many capsids would nucleate,
absorbing many subunits, before more than a small fraction had completed, thus slowing the growth process

2



or reducing the overall yield. A secondary bene�t would be reducing the probability of collisions between
partially formed capsids, which might be less stable than fully formed capsids, thus possibly reducing the
incidence of malformations.

Both con�gurational speci�city and the existence of a non-binding conformation can provide large en-
tropy penalties, which could promote nucleation-limited growth. However, the two sources of entropy penalty
di�er in the ratio of the entropy penalty for nucleation to the entropy penalty for subunit additions following
nucleation. If it is assumed that viruses evolve to optimize some ratio of nucleation rate to growth rate
following nucleation, then the di�ering ratios provide an argument for favoring the existence of a confor-
mational component to any entropy penalty. The two ratios can be found by examining the number of
times the two types of entropy penalty, con�gurational and conformational, are incurred in nucleation and
in subsequent subunit additions.

The e�ect of a con�gurational entropy penalty is considered �rst. For nucleation to occur, it is necessary
for four coat protein subunits to converge in the correct con�guration relative to some initial subunit.
Suppose the entropy penalty implies some probability p1 that two proteins happen to be in the correct
relative con�gurations for binding. In order for nucleation to occur, four proteins must converge relative
to one protein of arbitrary initial con�guration, giving a contribution of (p1)

4 to the binding probability.
Following nucleation, each additional particle to be added must end up in the correct position relative to
the existing partial shell, giving a contribution of p1. This means that the contribution of con�gurational
entropy to the nucleation probability varies with the fourth power of the contribution to the probability of
incorporating a subunit after nucleation. It can be noted that this relationship is only approximate, since
the �ve subunits may be able to attach sequentially in a short window of time, rather then all converging at
precisely the same time. However, the �fth order dependence of nucleation rate on concentration observed
in P22 (Prevelige et al., 1993) suggests the approximation is reasonable.

A conformational entropy penalty would be expected to behave slightly di�erently. If it is assumed that
there is one binding conformation and one non-binding conformation, then the proportion of time spent in
the binding conformation determines some conformational entropy penalty of binding. This entropy penalty
can be interpreted as a probability, p2, that a protein happens to be in the binding conformation at any given
time. In order for nucleation to occur, it is necessary for all �ve coat protein subunits to be in the binding
conformation when they converge into the correct relative positions for binding. This implies that a total
conformational contribution of (p2)

5 to binding probability. Adding an additional subunit after nucleation
requires only that the new subunit be in the binding conformation, since all subunits already contained in the
partial capsid will already be �xed in the binding conformation. This implies a conformational contribution
of p2 to binding probability for each subunit addition following nucleation. Thus, the contribution of the
conformational entropy penalty to probability of nucleation varies approximately with the �fth power of the
contribution to the probabilities of subsequent subunit additions. The relationship is approximate for the
same reasons as with the con�gurational entropy penalty, but should likewise be reasonable given the data
on P22.

These two analyses suggest that conformational entropy should be more e�ective than con�gurational en-
tropy at producing nucleation-limited growth while allowing a maximum rate of growth following nucleation.
If there is some entropy-induced component of nucleation probability, p, required to insure nucleation-limited
growth, and it comes entirely from a con�gurational entropy of binding, then it will be approximately true
that subsequent subunit additions occur at a rate proportional to the fourth root of the nucleation rate. On
the other hand, if the entropy penalty derives entirely from a conformational entropy penalty of binding,
then subunit additions following nucleation will occur at a rate approximately proportional to the �fth root
of the nucleation rate. This implies an advantage to having a conformational component to the entropy
penalty: the more a required entropy penalty is dominated by conformational rather than con�gurational
entropy, the less e�ect this entropy penalty will have on slowing growth after nucleation has occurred. Thus,
evolving a non-binding conformation to create nucleation-limited behavior should provide an advantage in
assuring rapid growth.
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3 Methods

3.1 Computer Model

We conducted computer simulations using a molecular dynamics-like simulator incorporating the local rules
model. The simulator implements a \soup" of free-oating particles, representing individual coat proteins.
These particles are capable of forming and breaking bonds to other particles in accordance with a local
rules model. In addition, they have many adjustable parameters, allowing users to �ne-tune simulations to
particular tasks or models of growth.

The local rules model provides a means of abstracting away many aspects of inter-subunit binding in-
teractions, making a molecular dynamics-like model of capsid self-assembly computationally feasible. Under
this model, coat proteins are represented abstractly by subunits with user-speci�ed binding properties. These
binding properties determine to which other subunits a particular subunit may bind. In addition, they spec-
ify the activation energies for the association and dissociation reactions and the mechanical force the binding
interactions exert on bound particles. Potential binding interactions also have angle and distance tolerances
which enforce how close to their optimal relative positions two particles must be before they can bind to
each other. Under this model, particles can move freely throughout a simulated solution and assemble into
large structures without requiring a low-level model of the speci�c forces creating binding interactions in
actual viruses.

In addition to binding properties, there are many other user-speci�able properties of coat proteins and the
simulation environment. Coat proteins can have di�erent masses and radii as well as di�erent shapes, created
from unions of spheres. Furthermore, binding properties and other physical properties of coat proteins can
change probabilistically over time through a model of conformational switching, in which users can assign
di�erent potential energies to di�erent conformations, controlling the probability of subunits occupying each
conformation at a given time. In addition, users can specify parameters controlling some aspects of the
behavior of the simulated solution, such as temperature and viscosity.

Several forces act on particles over the course of a simulation. The forces particles exert on each other
through binding interactions are modeled through three springs: a translational spring, which pulls particles
towards their ideal translational o�sets; a bending spring, which straightens binding interactions that are
skewed; and a rotational spring, which limits rotations around binding interactions. In addition, forces are
exerted due to collisions between pairs of particles, or between particles and an arti�cial boundary created
around the simulated solution. Finally, forces are exerted due to a model of Brownian motion which combines
damping with small random perturbations to keep average kinetic energy close to a �xed value over time.
Integrating the equations of motion given these forces causes a simulation to evolve over time.

Combining these details creates a dynamic simulation of self-assembly kinetics. This simulation allows
for particles that can form into multiple clusters and allows such clusters to break apart or rearrange their
binding patterns over time. In addition, the model allows for malformations, as binding interactions can form
in non-ideal positions and can be stretched from those positions. For further details on the implementation
of the simulator, the reader is referred to Schwartz et al. (1998).

3.2 Experimental Design

We have created four simulations to compare the di�erent theories on the source of nucleation-limited capsid
assembly. All four involve T=1 capsids composed entirely of a single coat protein. We de�ne the four
simulations to be considered as follows:

� Simulation A: The coat protein takes on two conformations, one binding and one non-binding, with a
3:1 ratio of non-binding to binding proteins.

� Simulation B: Coat proteins have a single conformation, identical to the binding conformation of
simulation A, with concentration reduced by a factor of four.

� Simulation C: Coat proteins have a single conformation, identical to the binding conformation of
simulation A, except that binding tolerances are restricted to reduce the favorable con�guration space
of binding for one protein by a factor of four.
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� Simulation D: Coat proteins have a single conformation, identical to the binding conformation of
simulation A, except that binding tolerances are altered to reduce the favorable con�guration space of
binding for one protein by a factor of two.

The four simulations described above demonstrate di�erent aspects of these two models. Simulation A
represents the two-conformation model, in which nucleation-limited behavior derives from an entropy penalty
of conformational switching. Simulation B is used to show that the e�ect of the non-binding conformation
derives from more than just the reduced concentration of active subunits. Simulations C and D demonstrate
the one-conformation model, in which nucleation-limited behavior derives solely from an entropy penalty
from the con�gurational constraints of binding. Simulation A was conducted �rst, to measure how long it
required to grow one complete T=1 capsid from 120 particles randomly distributed throughout the simulated
solution, testing for completion at intervals of 1000 time steps. The mapping between these time steps and
actual time should not be interpreted other than qualitatively, as it has not been possible to measure how
reliably simulations capture crucial time-related simulation properties, such as the di�usion rate. However,
capsid parameters were biased to allow for rapid growth due to computational limits on running large
numbers of time steps, and the time period of formation of these capsids should therefore correspond to
a signi�cantly shorter time than the time required for the formation of an actual virus capsid. Once the
�rst simulation was completed, the other simulations were conducted, using the closure time in simulation
A as a base and examining the simulation states at multiples of this base. From the theoretical model it
can be predicted that simulation B should have approximately the same initial nucleation rate as simulation
A, while simulations C and D should have higher rates. After nucleation, capsids in simulation C should
grow at a similar rate to nucleated capsids in simulation A, given equal numbers of free monomers, while
nucleated capsids in simulation B should grow at a slower rate and those in D grow at a higher rate.

It is possible to quantify the predicted e�ects of the di�erent models in terms of the entropy penalty
implemented by conformational switching in simulation A, by concentration in simulation B, and by con-
�gurational entropy in simulations C and D. We will describe this in terms of the probability p that a free
protein in simulation A is in the binding conformation at any given point in time (chosen here to be .25). In
terms of p, the relative contributions of these entropy penalties to nucleation and growth rates for the four
simulations, and the ratios of the contributions, should be approximately:

nucleation growth nucleation/growth
A p5 p p4

B p5 p2 p3

C p4 p p3

D p2 p
1

2 p
3

2

Simulation A should therefore have the highest ratio of growth rate to nucleation rate of the four simulations.

4 Results

We now discuss the speci�c results of our simulation experiments. Our results show correct, complete, capsid
growth only in simulation A. The other simulations only produced partially formed or malformed capsids.

In simulation A, a completed capsid was �rst visible at 9000 time steps. The simulation at this point is
shown in �gure 1. In this picture, large spheres represent proteins in the binding conformation while small
spheres represent proteins in the non-binding conformation. The single completed capsid is visible. No other
nucleation can be seen.

Simulation B did not produce any completed capsids. The status of simulation B at four multiples of
9000 time steps is shown in �gure 2. One feature that stands out in contrast to simulation A is that multiple
nucleations have occurred independently. This becomes an obstacle to production of a completed capsid late
in the simulation, as the nucleated clusters each use a large fraction of the proteins, preventing any individual
cluster from gathering enough proteins to form a complete capsid. Another feature of this simulation is that
the partially formed capsids interact with each other producing malformed clusters of particles, such as that
visible near the center of �gure 2C.

Simulation C also produced no completed capsids. Simulation C is shown at four multiples of 9000
time steps in �gure 3. This simulation exhibits several of the same features as simulation B. It has multiple
nucleations by the �rst 9000 time steps, and again, this seems ultimately to prevent completed capsid growth
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Figure 1: Simulation A at 9000 time steps. This simulation implements the two-conformation model. The
�gure shows a single completed capsid in the lower-right corner. Other subunits are visible, although no
other nucleation events have occurred. The larger particles represent subunits in the binding conformation,
while the smaller particles represent subunits in the non-binding conformation.

by causing all free proteins to be absorbed into incomplete shells. By �gure 3C, one capsid is nearly complete,
but is unable to proceed further on the time scale examined due to the low numbers of free proteins. In
�gure 3B, it can be observed that two partially formed capsids have collided, producing malformed growth
as they interact. However, local rearrangements are able to correct the malformation and separate the two
partial capsids by �gure 3C.

Simulation D was characterized by the early production of an uncorrected malformation. The status of
simulation D at four multiples of 9000 time steps is shown in �gure 4. As of 9000 time steps, shown in
�gure 4A, simulation D seems similar to simulation C, although there are still some free proteins available in
simulation D, unlike in simulation C. By 27000 time steps, shown in �gure 4B, a malformed capsid has been
created by a collision between two partially formed capsids that became \stuck" to one another. Unlike the
malformation in simulation C, this malformation is never corrected by local rearrangements of the proteins.
This malformed capsid consists of two layers, each similar to a correctly formed partial capsid. Over the
course of the simulation, the malformed capsid gradually accumulates more of the free proteins.

5 Discussion

Overall, several predicted aspects of capsid behavior were observed. Parameters were chosen to promote
correct, rapid growth for simulation A, so it is not surprising that that was observed. In itself, simulation A
therefore tells us very little about the success of our model. Simulation B showed the predicted reduced rate
of post-nucleation growth compared to simulation A, and the resultant higher rate of nucleation relative to
capsid growth. Simulation C displayed the predicted higher nucleation rate, but was unable to complete any
capsids. Simulation D also displayed a higher nucleation rate than simulation A, as well as a growth rate that
appears to have been comparable to that of simulation A until free proteins were exhausted. The simulation
experiment thus results in the same conclusion as the theoretical argument: that the two-conformation model
can achieve a higher rate of growth for a given nucleation rate than the one-conformation model.

In some cases it was not possible to evaluate a predicted e�ect. In simulation C, capsid growth may have
been slowed by two competing factors: a lower attachment probability relative to simulation A, and the drop
in free protein concentration due to multiple nucleations. It cannot be de�nitively concluded that either of
these factors alone acted as predicted. Conversely, it cannot be determined with certainty if the multiple
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Figure 2: Simulation B at (A) 9000, (B) 18000, (C) 27000, and (D) 72000 time steps. This simulation
implements a one-conformation model in which concentration is reduced by increasing volume to produce
an e�ect similar to an additional entropy penalty of binding. The �gure shows many nucleation events early
in the simulation but no nucleated capsids growing fast enough after nucleation to form a completed capsid.
By time step 72000, all nucleated capsids are incomplete or malformed.

nucleations in simulation B by 9000 time steps reect a higher nucleation rate than A or if they reect the
greater number of free proteins available early in simulation B due to its slower growth rate. Furthermore,
because free proteins are rapidly exhausted in simulations B, C, and D, we cannot clearly evaluate whether
rates of assembly following nucleation are consistent with the theoretical predictions.

The nature of malformations observed may also be signi�cant in understanding why one model of nu-
cleation might be favored over another. The malformations arising from interactions of partially formed
capsids, which occurred in all simulations except A, can be interpreted to be indirectly due to the higher ra-
tio of growth rate to nucleation rate compared to simulation A; whereas simulation A had only one partially
formed capsid present during the simulation, the others all had multiple nucleated capsids coexisting, leaving
open the possibility of interactions. Extrapolating to larger solutions, it can be hypothesized that a correct
balance is needed between these two rates to nucleate capsids su�ciently fast to have a high overall yield
per unit time, while preventing the concentration of partially formed capsids from ever being su�ciently
high that malformations due to collisions begin to dominate the growth process. This implies a lower bound
on the ratio of growth rate to nucleation rate if a virus is to generate a large number of correctly formed
capsids. A similar lower bound on the ratio of growth rate to nucleation rate is created by the constraint
that nucleated capsids must have time to complete before too many others have nucleated; the consequence
of too many nucleations occurring too quickly relative to growth rate is seen in simulations B and C, in which
all free subunits are used up by partial capsids before any one capsid can complete. These lower bounds in
turn suggest an evolutionary advantage to the two-conformation model, which, according to the arguments
presented here, should be able to support a higher relative growth rate than the one-conformation model if
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Figure 3: Simulation C at (A) 9000, (B) 27000, (C) 36000, and (D) 72000 time steps. This simulation
implements a one-conformation model in which the binding tolerance, representing con�gurational entropy,
as been made one fourth as lenient.

the ratio between nucleation and growth rates is bounded by other evolutionary constraints.
While neither our theoretical argument nor our simulation results can de�nitively resolve the source

of nucleation-limited behavior, together they support the argument for the two-conformation model. The
theoretical argument provides a rationale for an evolutionary advantage to two-conformation growth. The
simulations demonstrate how the proposed rationale might lead to the predicted e�ects in practice. In
addition, they allow observation of other, unanticipated e�ects of the two models, which could form the
basis for new experiments or theoretical analyses that might aid in distinguishing between the two models.
These unanticipated e�ects include the observations on the nature of malformations described above.

This application also helps to demonstrate the value of simulation work as a tool for modeling and
evaluating theoretical predictions. In this case, computer simulation provides a means of comparing proposed
models that is not available through any other method. While laboratory work can provide a means for
testing hypotheses based on theoretical models, there are some cases in which it proves di�cult or impossible
to generate testable predictions that distinguish between even signi�cantly di�erent models. The nucleation-
limited growth problem studied in the present work is such an example, in which it has so far proven
impossible to decide between two proposed theoretical models on the basis of the available evidence. In
such cases, simulation work can provide a means for evaluating the behavior of the models and possibly
discovering unanticipated aspects of their behavior which could then be applied to distinguish the models in
the laboratory. In the present work, it could be argued that simulation was not strictly necessary, since it
was possible to develop a purely mathematical argument for favoring one proposed model over another. In
other cases, however, models may be so hard to analyze or important aspects of their behavior so di�cult
to predict that computer simulations may provide the only available means of comparison.
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Figure 4: Simulation D at (A) 9000, (B) 18000, (C) 27000, and (D) 72000 time steps. This simulation
implements a one-conformation model in which the binding tolerances have been made one half as lenient.
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