
Availability Study of Dynamic Voting Algorithms

Kyle Ingols� and Idit Keidar

MIT Lab for Computer Science,

545 Technology Square, NE43-367, Cambridge, MA 02139, U.S.A.

Abstract

Fault tolerant distributed systems often select a primary component to allow a subset of

the processes to function when failures occur. The dynamic voting paradigm de�nes rules for

selecting the primary component adaptively: when a partition occurs, if a majority of the

previous primary component is connected, a new and possibly smaller primary is chosen.

Several studies have shown that dynamic voting leads to more available solutions than other

paradigms for maintaining a primary component. However, these studies have assumed that

every attempt made by the algorithm to form a new primary component terminates successfully.

Unfortunately, in real systems, this is not always the case: a change in connectivity can interrupt

the algorithm while it is still attempting to form a new primary component; in such cases,

algorithms typically block until processes can resolve the outcome of the interrupted attempt.

This paper uses simulations to evaluate the e�ect of interruptions on the availability of

dynamic voting algorithms. We study four dynamic voting algorithms, and identify two impor-

tant characteristics that impact an algorithm's availability in runs with frequent connectivity

changes. First, we show that the number of communication rounds exchanged in an algorithm

plays a signi�cant role in the availability achieved, especially in the degradation of availability

as connectivity changes become more frequent. Second, we show that the number of processes

that need to be present in order to resolve past attempts impacts the availability, especially

during long runs with numerous connectivity changes.

�Kyle Ingols' current address is: Oracle Corporation, 200 Fifth Avenue, Waltham, MA 02451.

1 Introduction

Distributed systems typically consist of a group of processes working on a common task. Processes
in the group multicast messages to each other. Problems arise when connectivity changes occur,
and processes are partitioned into multiple disjoint network components1. In many distributed
systems, at most one component is permitted to make progress in order to avoid inconsistencies.

Many fault tolerant distributed systems use the primary component paradigm to allow a subset
of the processes to function when failures and partitions occur. Examples of such systems include
group-based toolkits for building distributed applications, such as ISIS [BvR94], Phoenix [MS95],
and xAMp [RV92]; algorithms supporting state-machine replication, such as [Lam98, KD96]; and
replicated database systems like [EAT89]. Typically, a majority (or quorum) of the processes is
chosen to be the primary component. However, in highly dynamic and unreliable networks this
is problematic: repeated failures along with processes voluntarily leaving the system may cause
majorities to further split up, leaving the system without a primary component. To overcome this
problem, the dynamic voting paradigm was suggested.

The dynamic voting paradigm de�nes rules for selecting the primary component adaptively:
when a partition occurs, if a majority of the previous primary component is connected, a new and
possibly smaller primary is chosen. Thus, each newly formed primary component must contain a
majority of the previous one, but not necessarily a majority of the processes.

An important bene�t of the dynamic voting paradigm is its exibility to support a dynamically
changing set of processes. With emerging world-wide communication technology, new applications
wish to allow users to freely join and leave. Using dynamic voting, such systems can dynamically
account for the changes in the set of participants.

The availability of algorithms that use dynamic voting has been extensively studied. Analyses
of stochastic models [JM90, CW96], simulations [PL88], and empirical results [AW96] have been
used to show that dynamic voting is more available than other paradigms for maintaining a primary
component. Speci�cally, these studies have shown that algorithms that use dynamic voting lead to
a primary component being formed more often than algorithms that use a regular quorum-based
rule for choosing the primary component.

All of these studies have assumed that every attempt made by an algorithm to form a new
primary component terminates successfully. Unfortunately, in a distributed system, this cannot
be guaranteed to always be the case: a change in connectivity can interrupt the dynamic voting
algorithm while an attempt to form a primary component is in progress. In such cases, dynamic
voting algorithms typically block until they can resolve the outcome of the interrupted attempt.
The analyses of the availability of dynamic voting mentioned above did not take the possibility of
blocking into consideration, and therefore, the actual system availability is lower than analyzed.

In this paper, we use simulations to study the availability of dynamic voting algorithms, without
neglecting the e�ect of interruptions and blocking. We examine cases in which a sequence of closely
clustered changes in connectivity occur in the network, and then the network stabilizes to reach
a quiescent state. Connectivity changes can be either network partitions or merging of previously
disconnected components. We vary the number and frequency of the connectivity changes. We
study how gracefully di�erent dynamic voting algorithms degrade when the number and frequency
of such changes increase.

The realistic simulation of network connectivity changes is still a subject of much debate and
research. The tests were therefore run under a wide variety of conditions, in an e�ort to cover

1A component is sometimes called a partition. In our terminology, a partition splits the network into several
components.

1

most eventualities. However, we did not study cases with only a single network partition. In such
a scenario, simply choosing the component with a majority will always succeed. The dynamic
voting algorithms come into play in the event of multiple network connectivity changes. Closely
clustered connectivity changes mirror the often sporadic nature of network changes. This could
simulate situations as simple as a router failing and then returning to service, or any other transient
turbulence in the network.

When interrupted, dynamic voting algorithms di�er in their resilience: some of the suggested
algorithms (e.g., [JM90, Ami95]) may block until all the members of the last attempt to form
a primary component become reconnected. Others (e.g., [MS95, YLKD97, DPFLS98, Lam98])
can make progress whenever a majority of the members of the last attempt to form a primary
component are present. Algorithms also di�er in how long it takes them to resolve the outcome
of interrupted attempts to form a primary component, and in their ability or inability to pipeline
multiple such attempts.

We study four dynamic voting algorithms: The �rst algorithm is due to Yeger Lotem et
al. [YLKD97]. The second is a variation on the �rst, due to De Prisco et al. [DPFLS98]. The third
is based on the idea of two phase commit, similarly to the algorithms suggested in [JM90, Ami95].
The fourth resembles three phase commit, similar to ideas presented in [Lam98, MS95]. As a con-
trol, we also compare the algorithm with the simple (non-dynamic) majority rule for selecting a
primary component.

The set of algorithms we study is representative, but not comprehensive; it is not the goal of
this work to study every algorithm ever suggested. Rather, our work illustrates the importance of
considering the e�ect of interruptions when studying the availability of dynamic voting algorithms.
Our study points out two parameters that a�ect availability while there are interruptions. We invite
other researchers to use our framework2 in order to study additional algorithms and to compare
them with those studied here.

Our results show that the blocking period has a signi�cant e�ect on the availability of dy-
namic voting algorithms in the face of multiple subsequent connectivity changes. We point out two
parameters that signi�cantly a�ect the degradation of availability as the number of connectivity
changes rises, and as these changes become more frequent: (1) the number of message rounds con-
ducted by an algorithm; and (2) the number of processes that need be contacted in order to resolve
past attempts. We observed poor degradation for algorithms that require many communication
rounds, and algorithms that sometimes require a process to hear from all the members of a previous
attempt before progress can be made. In contrast, algorithms that use few message rounds and
allow progress whenever a majority of the members of the previous attempt reconnects, degrade
gracefully as the number of connectivity changes increases, even during lengthy executions with
thousands of connectivity changes.

The results emphasize the importance of considering the e�ect interruptions have on the avail-
ability of these algorithms. Previous studies have overlooked the e�ects of interruptions on the
algorithms' availability. We show that interruptions have a tangible e�ect on the algorithms' avail-
ability, and that resilient algorithms with few message rounds will therefore have an edge that has
not been previously acknowledged. The insights gained in this work may lead to studies of the
availability of other algorithms, for example, atomic commit algorithms, in the face of frequent
interruptions.

2Our testing framework code is publicly available from http://theory.lcs.mit.edu/�idish/test-env.html.

2

� The system consists of �ve processes: a; b; c; d and e. The system partitions into two compo-
nents: a; b; c and d; e.

� a; b and c attempt to form a new primary component. To this end, they exchange messages.

� a and b form the primary component fa; b; cg, assuming that process c does so too. However,
c detaches before receiving the last message, and therefore is not aware of this primary
component. a and b remain connected, while c connects with d and e.

� a and b notice that c detached and form a new primary fa; bg (a majority of fa; b; cg).

� Concurrently, c, d and e form the primary component fc; d; eg (a majority of fa; b; c; d; eg).

� The system now contains two live primary components, which may lead to inconsistencies.

Figure 1: Scenario illustrating inconsistencies in the naive approach.

2 The Studied Algorithms

In this section, we overview the algorithms studied in the paper, and highlight the di�erences
between them. Due to space limitations, we do not include detailed algorithm descriptions here;
the interested reader is referred to [YLKD97, DPFLS98, Ing00].

We study four algorithms that use dynamic linear voting [JM90] to determine when a set
of processes can become the next primary component in the system. Dynamic voting allows a
majority of the previous primary component to form a new primary component. Dynamic linear
voting also admits a group of processes containing exactly half of the members of the previous
primary component if the group contains a designated member of the previous primary (the one
with the lowest process-identi�er).

In order to form a new primary component, processes need to agree to form it. Lacking such
agreement, subsequent failures may lead to concurrent existence of two disjoint primary compo-
nents, as demonstrated by the scenario shown in Figure 1.

In order to avoid such inconsistencies, dynamic voting algorithms have the processes agree on
the primary component being formed. If connectivity changes occur while the algorithm is trying to
reach such agreement, some dynamic voting algorithms (e.g., [JM90, Ami95]) may block until they
hear from all the members of the last attempt to form a primary component, and do not attempt
to form new primary components in the mean time. Others, (e.g., [MS95, YLKD97, DPFLS98]),
can make progress whenever a majority of the members of the last attempt to form a primary
component are present.

In this paper, we study four algorithms based on the dynamic voting principle. In addition, we
implemented and tested the simple majority algorithm which declares a primary component when-
ever a majority of the original processes are present. We now describe the �ve studied algorithms.

2.1 YKD

The �rst algorithm we study is due to Yeger Lotem et al. [YLKD97], henceforward YKD. The
YKD algorithm overcomes the diÆculty demonstrated in the scenario in Figure 1 by keeping track
of pending attempts to form new primaries. In the example above, the YKD algorithm guarantees
that if a and b succeed in forming fa; b; cg, then c is aware of this possibility. From c's point of
view, the primary component fa; b; cg is ambiguous: it might have or might have not been formed

3

by a and b. While there are pending attempts, the YKD algorithm may initiate further attempts to
form primary components. Thus, there can be multiple pending attempts that a process attempted
to form but detached before actually forming them. Every process records, along with the last
primary component it successfully formed, later primary components that it attempted to form.
These ambiguous attempts are taken into account in later attempts to form a primary component.
Once a primary component is successfully formed, all ambiguous attempts are deleted.

In addition, the YKD algorithm employs an optimization that reduces the number of ambiguous
attempts that processes store and send to each other. The optimization reduces the worst-case
number of attempts from exponential in the number of processes to linear. In practice, however,
the number of attempts retained is very small: In experiments presented in [Ing00] we observe that
very few ambiguous attempts are actually retained. Even in highly unstable runs, with up to 64
processes participating, the number of ambiguous attempts retained by the YKD algorithm was
dominantly zero. In fact, the highest observed number in over 600,000 64-process runs was four,
and it occurred only twice. The optimization does not a�ect the availability of the algorithm, only
the amount of storage utilized and the size of exchanged messages.

The YKD algorithm works as follows: Whenever a connectivity change occurs, the algorithm is
invoked to try to make the new connected component the primary one. To this end, the processes
conduct two message rounds. In the �rst round, the processes exchange state { sending each other
their ambiguous attempts, last primary components, and so on. Based on this state, each process
checks if the new component can become a primary one, by checking if it contains a majority of
the members of the last formed primary component, and also of all ambiguous attempts retained
after it. If the component passes these checks, the processes then attempt to make it a primary;
they record it as a pending attempt and exchange a second round of messages. If this second round
is successfully received by all processes, then the primary component is completed. If the second
round is not received (due to another connectivity change), then the attempted primary remains
ambiguous.

2.2 DFLS: unoptimized YKD with an extra round

The second studied algorithm is a variation on YKD due to De Prisco et al. [DPFLS98], hencefor-
ward called DFLS. The DFLS algorithm was introduced in order to simplify the correctness proof
of YKD. It is a variation on the YKD algorithm that does not implement the optimization, and
also does not delete ambiguous attempts immediately when a new primary is formed. Instead, it
waits for another message exchange round to complete in the new formed primary before deleting
them. This delay in deleting ambiguous attempts may limit the system availability, since these
attempts act as constraints that limit future primary component choices.

2.3 1-pending: one ambiguous attempt only

We also study an algorithm which does not attempt to form a new primary component while there
is a pending attempt. We call this algorithm 1-pending. Whenever there is a pending ambiguous
attempt, 1-pending tries to resolve the pending ambiguous attempt before attempting to form a new
primary. 1-pending resolves a pending attempt by learning the outcome of that attempt from other
processes. In the worst case, a process needs to hear from all the members of the pending attempt
in order to resolve its outcome. If it cannot resolve the attempt, 1-pending blocks. In comparison,
YKD is sometimes able to make process even if it cannot resolve the previous ambiguous attempt at
the time. 1-pending is very similar to two phase commit based algorithms such as those suggested
in [JM90, Ami95].

4

2.4 MR1p: majority-resilient 1-pending

As mentioned above, 1-pending may need to hear from every process in an ambiguous attempt
before the attempt can be resolved. Dynamic voting algorithms that employ three phase commit

like mechanisms (for example, those suggested in [Lam98, MS95]), are always able to resolve an
ambiguous attempt when hearing from a majority of the attempt's members. We have implemented
such an algorithm; we refer to this algorithm as Majority-Resilient 1-pending, or MR1p. Like 1-
pending, it can retain at most one ambiguous attempt. However, it is able to resolve its ambiguous
attempt in more cases than 1-pending can.

When there are no pending ambiguous attempts, MR1p forms a primary component using two
message rounds, similar to those of YKD. When there is a pending ambiguous attempt, MR1p
�rst runs three message rounds to resolve the status of the pending attempt. Once the attempt
is resolved, two additional rounds are then run to attempt to form a new primary. The algorithm
used by MR1p to form and resolve primary component is very similar to the Consensus algorithm
of [Lam98], and to three phase commit [KD98]. For more details on our implementation of MR1p,
please see [Ing00].

2.5 Simple majority

Additionally, as a control, we tested a simple majority-based primary component algorithm which
does not involve message exchange. This algorithm declares a primary whenever a majority of the
processes are present. It also declares a primary for a group containing half the processes if that
group contains a designated member (the one with the lowest process-identi�er). In this respect,
the algorithm can be seen as a static version of linear voting. This majority rule is the most
available static quorum system [PW95].

This simple algorithm requires almost no state other than process-identi�ers, sends no messages,
and is very fast. The dynamic voting principle and algorithms based on it were created in an e�ort
to improve upon this simple idea in highly failure-prone networks.

2.6 Comparison of the dynamic voting algorithms

The studied algorithms di�er in two important ways: First, they di�er in the number of message
rounds they execute. Second, they di�er in their resilience, that is, in the number of members of a
failed attempt that need be contacted in order to resolve the attempt.

The number of message rounds each algorithm requires to run is of critical importance. Algo-
rithms which require many message rounds are more likely to be interrupted by further connectivity
changes. YKD and 1-pending require only two message rounds. DFLS requires three rounds | two
to form a primary component, and a third before it deletes ambiguous attempts. MR1p requires
only two rounds when no pending view is present, but requires �ve rounds if a pending view must
also be resolved.

While there are no pending ambiguous attempts, all the dynamic voting algorithms attempt
to form a new primary if a majority of the members of the previously formed primary component
are present. When there are ambiguous attempts, YKD, DFLS, and MR1p can make progress
whenever a majority of the members of all ambiguous attempts are present (with MR1p there is
at most one such attempt). 1-pending is the least resilient of the studied algorithms; it requires
hearing from all the members of a pending attempt in order to make progress.

5

3 The Testing Framework

The dynamic voting algorithms are implemented as C++ classes with a set of call-back routines and
no inherent communication abilities. Programs using a dynamic voting algorithm are expected to
call the algorithm's call-back routines with every message received, every message about to be sent,
and every connectivity change. The call-back routines return with messages that need to be sent
to other processes, to be in turn handled by the appropriate call-back handlers at the recipients.
The call-back routines declare a primary component when the algorithm successfully terminates.

Because the algorithms are individual classes with no dependencies on any given communication
system, the testing system easily simulates an arbitrary number of processes by creating multiple
instances of the algorithm. The testing environment consists of a driver loop implemented in C++.
The driver loop routes all messages among the multiple instances of the algorithm without using
the network or any communication system. It does this by polling individual processes for messages
to send, and then immediately delivering those messages to the other processes. The driver loop
also supports fault injection and statistics gathering during the simulation.

The user speci�es two simulation parameters: the number of connectivity changes to inject in
each run, and the frequency of these changes. The frequency of changes is speci�ed as the mean
number of message rounds which are successfully executed between two subsequent connectivity
changes. The mean is obtained using an appropriate probability p, so that a connectivity change
is injected at each step with probability p.

The testing system begins each simulation with all the processes mutually connected. The
processes are then allowed to exchange messages. The driver loop chooses whether to inject a
connectivity change at each step, according to the failure probability. Once the desired number of
changes have been introduced, the driver loop allows the processes to exchange messages without
further interruptions until the system reaches a stable state. The driver loop then prints out �nal
statistics, the most relevant of which is the presence or absence of a primary component.

A connectivity change is either a network partition, where processes in one network component
are divided into two smaller components, or a merge, where two components are uni�ed to produce
one. The driver loop has an equal likelihood of generating either of these changes3. The components
to be partitioned or merged are chosen at random. Partitions do not necessarily happen evenly {
the percentage of processes which are moved to the new component is determined at random each
time.

4 Primary Component Availability Measurements

We compare the availability of �ve algorithms: YKD, DFLS, 1-pending, MR1p, and simple majority,
as explained in Section 2. We also ran the tests for an unoptimized version of YKD, that is,
YKD without the optimization that reduces the number of ambiguous attempts retained. The
availability of the unoptimized YKD was identical to that of YKD, (with the optimization), as
expected. Therefore, we do not plot the availability of the unoptimized YKD separately.

We chose to simulate 64 processes. We also ran the same tests with 32 and 48 processes to see
if the availability is a�ected by scaling the number of processes. The results obtained with 32 and
48 processes were almost identical to those obtained with 64. Therefore, we do not present them
here.

3Given that such a change is possible, of course { one cannot perform a merge unless there are at least two
components present, and one cannot perform a partition unless there is a component with at least two processes.

6

We simulated three di�erent numbers of network connectivity changes per run: two, six, and
twelve. For each of these, we ran each of the algorithms with connectivity change rates varying
from nearly zero to twelve mean message rounds between changes.

Each case (speci�ed by the algorithm, the number of connectivity changes and the rate), was
simulated in 1000 runs. The runs were di�erent due to the use of randomization. The same random
sequence was used to test each of the algorithms. The results for each case were then summarized
as a percentage, showing how many of the runs resulted in the successful formation of a primary
component at the end of the run.

We ran two types of tests: \fresh start" tests, where each run begins from the same initial state,
and \cascading" tests, where each run starts in the state at which the previous run ends. The fresh
start tests capture the e�ect of interruptions on a single invocation of an algorithm. The cascading
tests capture the build-up that can occur during a lengthy execution, where earlier invocations
can leave the algorithm in a blocking state. The cascading tests reect the algorithms' expected
behavior in realistic long-term executions. Therefore, algorithms that exhibit lower availability in
these tests will be less available in practice.

The results for all �ve algorithms, for two, six, and twelve connectivity changes are presented
in Figures 2, 3, and 4, respectively. The x-axis represents the average number of communication
rounds that occur between a pair of injected connectivity changes, derived from the appropriate
failure probability. The y-axis depicts the percentage of the 1000 simulated runs for this failure
probability that resulted in successful formation of a primary component.

0 2 4 6 8 10 12
40

50

60

70

80

90

100

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

System Availability −− 2 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(a) \Fresh Start".

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 2 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(b) \Cascading".

Figure 2: System availability with 2 connectivity changes.

On the extreme left side of the graphs, the connectivity changes are so tightly spaced the
algorithms are often unable to exchange any additional information. On the extreme right side of
the graphs, the connectivity changes are so widely spaced that the algorithms are rarely interrupted.
As expected, the availability improves as the conditions become more stable.

In all cases, the algorithms are shown to be about as available as the simple majority algorithm
when the connectivity changes occur rapidly. This is simply due to the fact that rapid changes do
not allow the algorithms any time to exchange information between connectivity changes, and they
have no additional knowledge with which to decide on a primary component.

For a moderate to high mean time between changes, YKD and DFLS are most available, with
YKD being slightly more available than DFLS; in approximately 3% of the runs, YKD succeeds

7

0 2 4 6 8 10 12
40

50

60

70

80

90

100
S

ys
te

m
 A

va
ila

bi
lit

y
pe

rc
en

ta
ge

s
System Availability −− 6 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(a) \Fresh Start".

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 6 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(b) \Cascading".

Figure 3: System availability with 6 connectivity changes.

0 2 4 6 8 10 12
40

50

60

70

80

90

100

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

System Availability −− 12 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(a) \Fresh Start".

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 12 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple Majority

(b) \Cascading".

Figure 4: System availability with 12 connectivity changes.

in forming a primary whereas DFLS does not. This di�erence stems from the additional round
of messages required by DFLS before an attempt can be deleted. As long as the attempt is not
deleted, it imposes extra constraints which limit the system's choice of future primary components.
Both algorithms { YKD and DFLS { degrade gracefully as the number of connectivity changes
increases, that is, their availability is almost una�ected.

The 1-pending and MR1p algorithms are signi�cantly less available than YKD and DFLS.
Furthermore, their availability degrades drastically as the number of connectivity changes increases.
This degradation is due to the fact that these algorithms cannot make any progress whenever they
cannot resolve an ambiguous attempt. In the worst case, 1-pending requires hearing the outcome
of its ambiguous attempt from all of its members. Thus, permanent absence of some member of the
latest ambiguous attempt may cause eternal blocking. Although MR1p requires only a majority, it
requires �ve message rounds to complete, making it more prone to interruption. This emphasizes
the value of YKD's ability to make progress even when some of the algorithm's prior ambiguous
attempts cannot be resolved.

8

In the \fresh start" tests with two connectivity changes, we observe that MR1p is almost as
available as YKD. This is due to the fact that there can be at most one ambiguous attempt to
resolve between the two connectivity changes, and that YKD and MR1p are equally powerful at
resolving a single ambiguous attempt. However, as the connectivity changes increase in number
and frequency, MR1p is less available than all other algorithms studied. Although it is able to
resolve ambiguous attempts more often than 1-pending, it requires a very large number of message
rounds to execute. The algorithm is therefore interrupted so frequently compared to the others
that it is unable to readily make progress.

YKD and DFLS provide almost identical availability in tests with cascading failures as in tests
with a fresh start. These results indicate that even if the algorithms are run for extensive periods of
time, their availability does not degrade. Note that for the two, six and twelve connectivity change
cases, the results are computed over a running period with 2,000, 6,000, and 12,000 connectivity
changes, respectively.

In contrast, the availability of the 1-pending algorithm shows major degradation in the cascading
situation. In cases with numerous frequent connectivity changes, the algorithm is often even less
available than the simple majority. This shows that if the 1-pending algorithm is run for extensive
periods of time, its availability continues to decrease. This makes the algorithm inappropriate for
use in systems with lengthy life periods.

The MR1p algorithm has further diÆculties when the failures are allowed to cascade. Although
it is able to resolve its single ambiguous attempt more quickly than 1-pending can, it is still
hampered by the large number of message rounds it requires in order to form a primary. In
addition, YKD is sometimes able to make progress even when one or more ambiguous attempts are
present. MR1p does not have this luxury.

5 Conclusions

We have compared the availability of four dynamic voting algorithms in the face of frequent connec-
tivity changes. Our measurements show that interruptions have a signi�cant e�ect on the availabil-
ity of dynamic voting algorithms in the face of multiple subsequent connectivity changes. This e�ect
was overlooked by previous availability analyses of such algorithms (e.g., [JM90, PL88, CW96]).

We have shown that the number of processes that need be contacted in order to resolve past am-
biguous attempts signi�cantly a�ects the availability, especially in long executions with numerous
connectivity changes. A two phase commit like algorithm, 1-pending, experiences major degrada-
tion as the number and frequency of connectivity changes increase. In highly unstable runs with
cascading connectivity changes, 1-pending is even less available than the simple majority algorithm.
This is due to the fact that 1-pending sometimes requires a process to hear from all the members
of the previous primary component before progress can be made.

We have also observed that the number of message rounds executed by an algorithm has a
major e�ect on availability, especially the degradation of availability as there are more connectivity
changes, and as these changes become more frequent. A three phase commit like algorithm, MR1p,
was shown to degrade drastically as the number and frequency of connectivity changes increase.
This degradation is because the MR1p algorithm is highly vulnerable to interruptions, due to the
large number of message rounds it executes.

In contrast, an algorithm that uses few communication rounds and also makes progress whenever
a majority of the members of pending attempts are present degrades gracefully as the number and
frequency of connectivity changes increase. The YKD [YLKD97] and DFLS [DPFLS98] algorithms
are nearly as available in runs with cascading connectivity changes as they are in runs with a fresh

9

start. This feature makes the algorithms highly appropriate for deployment in real systems with
extensive life spans.

We hope that the insights gained in this work will lead to similar studies of the availability
of other algorithms in the face of frequent interruptions. For example, it may be interesting to
study the availability of di�erent atomic commit algorithms when there are multiple connectivity
changes.

Acknowledgments

We thank Alan Fekete and Alex Shvartsman for many helpful suggestions.

References

[Ami95] Y. Amir. Replication Using Group Communication Over a Partitioned Network. PhD
thesis, Institute of Computer Science, Hebrew University, Jerusalem, Israel, 1995.

[AW96] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In IEEE Fault-

Tolerant Computing Symposium (FTCS), pages 26{35, June 1996.

[BvR94] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, 1994.

[CW96] I. R. Chen and C. Wang, D. Analyzing dynamic voting using petri nets. In IEEE

International Symposium on Reliable Distributed Systems (SRDS), 1996.

[DPFLS98] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-oriented
group communication service. In 17th ACM Symposium on Principles of Distributed

Computing (PODC), pages 227{236, June 1998.

[EAT89] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated databases.
ACM Transactions on Database Systems, 14(2):264{290, June 1989.

[Ing00] Kyle W. Ingols. Availability Study of Dynamic Voting Algorithms. Master's thesis,
MIT, May 2000. Master of Engineering. Available at:
http://theory.lcs.mit.edu/ idish/Abstracts/ingols-thesis.html.

[JM90] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining the consistency
of a replicated database. ACM Transactions on Database Systems, 15(2):230{280, 1990.

[KD96] I. Keidar and D. Dolev. EÆcient message ordering in dynamic networks. In 15th ACM

Symposium on Principles of Distributed Computing (PODC), pages 68{76, May 1996.

[KD98] I. Keidar and D. Dolev. Increasing the resilience of distributed and replicated database
systems. Journal of Computer and System Sciences special issue with selected papers

from ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS)

1995, 57(3):309{324, December 1998.

[Lam98] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133{169, May 1998. Also Research Report 49, Digital Equipment Corporation
Systems Research Center, Palo Alto, CA, September 1989.

10

[MS95] C. Malloth and A. Schiper. View synchronous communication in large scale networks.
In 2nd Open Workshop of the ESPRIT project BROADCAST (Number 6360), July
1995.

[PL88] J.F. Paris and D.D.E. Long. EÆcient dynamic voting algorithms. In 13th International
Conference on Very Large Data Bases (VLDB), pages 268{275, 1988.

[PW95] D. Peleg and A. Wool. Availability of quorum systems. Inform. Comput., 123(2):210{
223, 1995.

[RV92] L. Rodrigues and P. Verissimo. xAMp, a protocol suite for group communication. RT
/43-92, INESC, January 1992.

[YLKD97] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primary com-
ponents. In 16th ACM Symposium on Principles of Distributed Computing (PODC),
pages 63{71, August 1997.

11

