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Abstract

We present a stream algorithm for the Singular-Value Decomposition (SVD) of an
M×N matrix A. Our algorithm trades speed of numerical convergence for parallelism,
and derives from a one-sided, cyclic-by-rows Hestenes SVD. Experimental results show
that we can create O(M) parallelism, at the expense of increasing the computational
work by less than a factor of about 2. Our algorithm qualifies as a stream algorithm
in that it requires no more than a small, bounded amount of local storage per proces-
sor and its compute efficiency approaches an optimal 100% asymptotically for large
numbers of processors and appropriate problem sizes.

1 Background

We have designed stream algorithms as a particular class of parallel algorithms that offer
a good match for the technological constraints of future single-chip microarchitectures. An
introduction to our notion of stream algorithms can be found in [12]. In short, stream
algorithms emphasize computational efficiency in space and time, and were developed in
conjunction with a decoupled systolic architecture that we call stream architecture. Pro-
cessing elements of our stream architecture are assumed to have a small yet fast amount of
local storage, and mass memory is available on the periphery of a two-dimensional grid of
processing elements with fast networks connecting next neighbors only.

We characterize stream algorithms by means of three key features. First, stream al-
gorithms achieve an optimal 100% compute efficiency asymptotically for large numbers of
processors. Second, stream algorithms use no more than a small, bounded amount of stor-
age on each processing element. Third, data are streamed through the compute fabric from
and to peripheral memories. The number of these memories is asymptotically insignificant
compared to the number of compute processors, so that the work performed by the memory
modules represents an insignificant portion of the total amount of consumed energy.

The stream algorithms we presented in [12] tackle problems whose algorithmic solutions
are independent of the data values and are determined by problem size, that is the amount
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of data only. These problems include a convolution, a matrix multiplication, a triangular
solver, an LU and a QR factorization. In this paper, we tackle the data-dependent problem of
computing singular values of a matrix. The data dependency manifests itself in an iterative
algorithm whose termination depends on the explicit computation of a convergence criterion.

In the following, we review the singular-value decomposition. We discuss various algo-
rithms and computational aspects, and develop the basic insights leading up to our stream
algorithm. Our stream SVD is presented in Section 4. Finally, we shed some light on the
convergence behavior by reporting experimental results in Section 5.

2 Singular-Value Decomposition

We consider the singular-value decomposition (SVD) of a dense M × N matrix A. The
singular-value decomposition of A is

A = UΣV T , (1)

where U is an orthogonal1 M ×M matrix, and V is an orthogonal N × N matrix, that is
UTU = IM and V TV = IN , and the M×N matrix Σ is a diagonal matrix diag(σ0, . . . , σN−1)
on top of M − N rows of zeros. The σi are the singular values of A. Matrix U contains N
left singular vectors, and matrix V consists of N right singular vectors. The singular values
and singular (column) vectors of U and V form the relations

Avi = σiui and ATui = σivi.

The SVD is closely related to the eigen-decomposition of M ×M matrix AAT and N × N
matrix ATA, because

ATAvi = σ2
i vi and AATui = σ2

i ui.

In fact, the σi are the square roots of the eigenvalues and the vi are the eigenvectors of A
TA.

Furthermore, the σi are the square roots of the eigenvalues and the ui are the eigenvectors
of AAT . For M > N , at least M −N singular values will be zero. If A has rank r < N , r of
the singular values will be non-zero, because U and V are rotations.

Most algorithms for the SVD are based on diagonalizing rotations. Rotations are the
simplest form of orthogonal transformations that preserve angles and lengths, and also the
eigenvalues and eigenvectors as well as singular values and singular vectors of a matrix. We
apply a sequence of rotations to matrix A = A(0) to produce sequence A(k) which approaches

diagonal matrix Σ, that is limk→∞ A(k) = Σ. Using the Frobenius norm ||A|| =
√

∑

i,j a
2
ij, we

can prove convergence properties. The Frobenius norm also allows us to derive termination
criteria based on measuring the magnitude of the off-diagonal elements of matrix A(k), either
in terms of absolute values or relative to the machine epsilon or to the norm of the diagonal
elements. The Frobenius norm of the A(k) remains unchanged under orthogonal rotations.

1We discuss the SVD as well as the stream SVD in terms of real-valued numbers. All statements and
results generalize directly to the complex domain.
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Convergence of the sequence A(k) occurs due to a decreasing Frobenius norm of the off-
diagonal elements.

Since computing the SVD of a matrix is an inherently iterative process, assessing the
efficiency requires a more elaborate analysis than for data-oblivious stream algorithms [12].
The number of iterations enters the picture as an additional degree of freedom, and depends
on the choice and order in which we compute and apply diagonalizing rotations. Some
choices and orders expose parallelism while others do not. Due to the data-dependency, we
can merely identify methods that use a reasonably small number of rotations for matrices
of interest, rather than the minimum number for all matrices. Thus, any design of a stream
algorithm will involve the trade-off between the number of rotations performed until conver-
gence and the efficiency of processing. To qualify as a stream algorithm, our goal is to find
a type of rotation that achieves 100% compute efficiency even at the cost of a (negligible)
deterioration of the convergence behavior.

2.1 Jacobi Rotations

In the context of the SVD we are concerned with Jacobi rotations [13]. The original Jacobi
rotation has been used in the 19th century by Jacobi to solve systems of linear equations
derived with the least squares method by hand. This rotation is also called Givens rotation,
or can be interpreted as a 2-by-2 Schur decomposition [7]. We introduce the Jacobi rotation
J(i, j, θ) for an index pair (i, j) and a rotation angle θ as a square matrix that is equal to
the identity matrix I plus four additional entries at the intersections of rows and columns i
and j:

i j

J(i, j, θ) =
i

j































1
. . .

c s
. . .

−s c
. . .
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where c = cos θ and s = sin θ. It is straightforward to verify that J(i, j, θ)TJ(i, j, θ) = I
for all angles θ. Thus, the Jacobi rotation is an orthogonal matrix. In the classical Jacobi
rotation [13], the rotation angle is chosen such that the off-diagonal elements aij = aji
of a symmetric matrix A become zero when applying J to A as an orthogonal similarity
transformation Â = JTAJ , that is by premultiplying and postmultiplying A with JT and J .
This similarity transformation is a plane rotation, because due to J ’s structure, only rows
and columns i and j of A are modified. Considering a 2-by-2 example, we may construct J
such that it annihilates the off-diagonal elements w:

(

x̂ 0
0 ŷ

)

=

(

c s
−s c

)T (

x w
w y

)(

c s
−s c

)

. (2)
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There are various ways for computing the sine s and cosine c of the rotation angle θ
without computing θ explicitly or evaluating any trigonometric functions. To solve the
quadratic equation

(c2 − s2)w + cs(x− y) = 0, (3)

Rutishauser [18] proposed the following formulas, which are in use since because they dimin-
ish the accumulation of rounding errors:

α =
y − x

2w
, τ =

sign(α)

|α|+
√
1 + α2

, (4)

then c =
1√

1 + τ 2
, s = τc.

This solution results from picking the smaller angle |θ| ≤ π/4.2

Even if A is not symmetric, we may still annihilate both off-diagonal elements. This
requires two rotations, however. Forsythe and Henrici [5, 2] proposed a rotation that diago-
nalizes an arbitrary matrix A by means of two transformations: (1) a symmetrizing rotation,
and (2) a diagonalizing rotation. The symmetrizing rotation is a one-sided orthogonal trans-
formation:

(

ũ w
w ṽ

)

=

(

c1 s1

−s1 c1

)T (

u x
y v

)

,

which is followed by a two-sided orthogonal transformation for diagonalization:
(

û 0
0 v̂

)

=

(

c2 s2

−s2 c2

)T (

ũ w
w ṽ

)(

c2 s2

−s2 c2

)

.

With a little arithmetic, we find the following solution for c1 and s1. Let

τ =
u+ v

x− y
,

then s1 =
sign(τ)√
1 + τ 2

, c1 = τs1.

The computation of c2 and s2 proceeds according to Equation 4.
Hestenes [11] discovered a connection between the orthogonalization of two vectors and

the Jacobi rotation for annihilating matrix elements. Given two (column) vectors u and v
we may arrive at orthogonal vectors û and v̂ by means of the orthogonal transformation:

(

ûT

v̂T

)

=

(

c s
−s c

)T (

uT

vT

)

, such that ûT v̂ = 0. (5)

2The solutions of Equation 3 can be derived by rewriting Equation 3 as

α ≡ c2 − s2

2cs
=

y − x

2w
.

Now, recall that τ = tan θ = s/c solves the quadratic equation τ 2 + 2ατ − 1 = 0 in τ , yielding the solutions
τ = −α±

√
1 + α2.
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One of the two possible solutions for c and s is

α =
vTv − uTu

2uTv
, τ =

sign(α)

|α|+
√
1 + α2

, (6)

then c =
1√

1 + τ 2
, s = τc.

Comparing these formulas with those in Equation 4 reveals that the only difference is in the
computation of α and the fact that the orthogonalization problem is solved solely with a
premultiplication whereas an annihilation by means of a Jacobi rotation requires both pre-
multiplication and postmultiplication. The former is therefore called a one-sided and the
latter a two-sided transformation. Hestenes showed that the two transformations are equiv-
alent [11]. We call the one-sided transformation of Equation 5 a Hestenes transformation
to distinguish it from the original two-sided Jacobi transformation of Equation 2.

2.2 Existing SVD Algorithms

In the following, we discuss four relevant algorithms for computing the SVD. A number of
additional algorithms exist, but are not discussed here because they appear to be less suited
for parallelization in our judgment. We are not aware of a clear winner among parallel
SVD algorithms that would provide the single best trade-off between numerical stability,
algorithmic complexity, parallelizability, efficiency, and ease of programming across a large
number of machines.

Golub-Kahan-Reinsch SVD

The SVD due to Golub, Kahan, and Reinsch [6, 8] has become the standard method on
sequential and vector computers. It consists of two phases, bidiagonalization and subsequent
diagonalization. Bidiagonalization can be achieved by means of alternating QR and QL
factorizations to annihilate column and row blocks or Householder bidiagonalization [7].
Annihilating the remaining subdiagonal is known as chasing bulges, and is an inherently
sequential process.

We could apply our stream QR algorithm [12], which factorizes an N × N matrix in
time O(N) on a two dimensional processor array of O(N 2) processors. Unfortunately, the
iterative diagonalization of the bidiagonal matrix would require time O(N) as well, forming a
dominating critical path that appears to render the Golub-Kahan-Reinsch SVD infeasible as
a candidate for a stream algorithm. Nevertheless, the Golub-Kahan-Reinsch SVD requires
O(logN) less work than our stream SVD, and may be competitive in terms of execution
times.

Classical Jacobi Method

The classical Jacobi method [13, 14, 7] applies to symmetric matrices. It transforms a
symmetric N ×N matrix A into a diagonal matrix by means of a sequence of Jacobi trans-
formations

A(k+1) = JTA(k)J,
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where A(0) = A and
lim
k→∞

A(k) = Σ.

Each of the Jacobi transformations is chosen so as to annihilate the off-diagonal elements
a

(k)
ij = a

(k)
ji of largest absolute value. The classical Jacobi method exhibits high numerical

stability and quadratic convergence [10, 5, 21]. To annihilate matrix elements aij = aji
(independent of iteration count k) with Jacobi rotation J(i, j, θ), the choice of α in Equation 4
becomes

α =
ajj − aii
2aij

.

The proof of convergence is based on the observation that the off-diagonal Frobenius

norm off(A) =
√

∑

i6=j a
2
ij decreases due to a Jacobi transformation, while the Frobenius norm

itself remains constant under orthogonal transformations such as the Jacobi transformation.
A Jacobi transformation that annihilates the off-diagonal elements, increases the norm of
the diagonal elements and decreases the off-diagonal Frobenius norm. Thus, each Jacobi
transformation brings A closer to diagonal form [7, 5].

Cyclic Jacobi Methods

The main disadvantage of the classical Jacobi method is the computational effort required
to determine the largest off-diagonal element of A(k). Rather than searching for the largest
element, a computationally cheaper approach has prevailed which applies Jacobi transfor-
mations in a data-independent fashion. The key insight is to organize the computation in
sweeps within which each matrix element is annihilated once. For a symmetric N × N
matrix, one sweep consists of N(N − 1)/2 Jacobi transformations, which is the number of
matrix elements above or below the diagonal. Since the elements annihilated by one Ja-
cobi transformation may be filled with non-zeros by a subsequent Jacobi transformation, the
cyclic Jacobi method consists of an iteration of sweeps.

Figure 1 illustrates one sweep of Jacobi transformations. For N = 4, each sweep con-
sists of 6 transformations. We may write this sweep as the sequence of right-associative
transformations T (i, j)A = J(i, j, θ)TAJ(i, j, θ):

T (3, 2)T (3, 1)T (2, 1)T (3, 0)T (2, 0)T (1, 0)A.

Each transformation annihilates the highlighted matrix elements. Figure 2 shows the rows
and columns that are modified by one Jacobi transformation.

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

0 1 2 3
0
1
2
3

(1,0) (2,0) (3,0) (2,1) (3,1) (3,2)

Figure 1: Sweep of Jacobi transformations for a symmetric 4× 4 matrix. We use the index
pair (i, j) as a shorthand for the notation J(i, j, θ).
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Note that, in general, transformation (2, 0) in Figure 1 will fill the zero elements created
by transformation (1, 0) with non-zero elements, (3, 0) will fill those created by (2, 0), and so
on. The Jacobi method guarantees, however, that the magnitude of the off-diagonal elements
decreases from sweep to sweep [5, 10, 21].

J(i,j) AJ(i,j) J(i,j)T AJ(i,j)TA

j i j i

j

i

j

i

Figure 2: Jacobi transformation J(i, j) modifies rows and columns i and j of matrix A.
Premultiplication J(i, j)TA effects rows i and j, and postmultiplication AJ(i, j) columns i
and j.

The primary problem with the cyclic Jacobi method is the two-sidedness of the Jacobi
rotation. Matrices are stored either in row-major or column-major format. As obvious from
Figure 2, the two-sided Jacobi method traverses both. Thus, one of the two traversals will
be less efficient on conventional memory architectures. This problem effects the classical
Jacobi method as well, but is of secondary concern only.

Concerning parallelization, the cyclic Jacobi method is superior to the classical method,
which is inherently sequential if applied as is. Since the premultiplication and postmulti-
plication of the cyclic Jacobi method modify two rows and columns only, we may actually
perform n/2 Jacobi updates simultaneously. However, some care is required due to data
dependencies involving the eight black elements in Figure 3 that are modified by two oth-
erwise independent updates. In fact, we may compute the Jacobi rotations J(i1, j1) and
J(i2, j2) independently, but the application of the corresponding transformations T (i1, j1)
and T (i2, j2) is not commutative:

T (i1, j1)T (i2, j2)A 6= T (i2, j2)T (i1, j1)A,

as simple algebraic rewriting shows for the eight black elements in Figure 3. However, as
long as we do not intermingle the two transformations, the order is immaterial indeed.

Several variations of the cyclic Jacobi method have been proposed in the past. They
center around two aspects: (1) the type of orthogonalizing rotation, and (2) the order in
which the rotations are applied. In the following, we point to some of the prominent varia-
tions. Forsythe and Henrici [5] extended Jacobi’s method for the SVD of complex matrices.
The order of the Jacobi transformation has generated quite some interest. Eberlein [4] ap-
pears to be one of the first to propose orderings for arbitrary matrices, although they turn
out to be numerically unstable. Stewart [20] proposes improved versions for the ordering
of transformations. The parallel ordering proposed by Brent, Luk, and Van Loan [2] pro-
vides the shortest distance between mutual rotations. They use the order for computing the
SVD on a systolic array. The efficiency of their array is just 30% in steady state, however.
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i1

j1

j2

i2

j1 i1 j2 i2

Figure 3: Two Jacobi transformations J(i1, j1) and J(i2, j2) are nearly independent with the
exception of the eight black elements that are modified by both Jacobi updates.

Schreiber [19] proposes a block Jacobi method. Luk [16] published yet a another variant
of the cyclic Jacobi method that has gained popularity for parallel machines. Luk assumes
that A is an upper triangular matrix, possibly computed by means of a QR factorization, and
introduces an odd-even ordering for the sequence of rotations, which preserves the triangular
structure of the matrix.

Hestenes-Jacobi Method

Hestenes [11] introduced the one-sided Jacobi method by discovering the equivalence between
orthogonalizing two vectors and annihilating a matrix element by means of orthogonal plane
rotations. We will call the one-sided Jacobi method Hestenes-Jacobi method in the following.

The Hestenes-Jacobi method generates an orthogonal matrix U as a product of plane
rotations. Premultiplying A with U yields a matrix B

UA = B,

whose rows are orthogonal, that is

bTi bj = 0 for i 6= j.

Note that B is not a diagonal matrix as obtained from a two-sided Jacobi method. However,
we may normalize matrix B by computing the square of the row norms si = bTi bi, and writing
B as B = SS−1B = SV , where V is computed from B by dividing row bi by si = bTi bi,
and S is a diagonal matrix diag(s0, . . . , sM−1). The resulting matrix V is orthonormal, and
the si are the non-negative squares of the singular values. Of course, care must be exercised
with zero-valued singular values. As a consequence of this normalization, and because U is
orthogonal, we may write:

UA = SV ⇔ A = UTSV.

Interpreting U and V as transposed forms, this equation equals Equation 1 which defines
the SVD.

The difference in both functional effect and computational effort between a two-sided
and a one-sided Jacobi rotation is one polynomial degree. A two-sided rotation uses Θ(n)
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operations to annihilate Θ(1) elements, and the one-sided rotation employs Θ(n) operations
to orthogonalize two rows consisting of Θ(n) elements. However, while a two-sided rotation
modifies both two rows and two columns of a matrix, the one-sided rotation modifies two
rows only. This is a major advantage of the one-sided rotation, that we will exploit below.
Not only are the matrix rows the smallest unit of computation, but also, two plane rotations
involving distinct row pairs are truly independent.

Chartres [3], perhaps unaware of Hestenes work, derived a very similar variant of Jacobi’s
method. He observed that the classical Jacobi method requires access to two rows and
two columns for each Jacobi update, and realized the poor match for machines with small
random access memories, which store matrices either in row major or in column major form
on a backup tape. Chartres also introduced the notion of the one-sided transformation
A(k+1) = JTA(k) as an alternative to the two-sided transformation A(k+1) = JTA(k)J of
the classical Jacobi method. In fact, Chartres uses the row-orthogonalizing formulation
that we use above, while Hestenes’ original discussion is based on the equivalent column
orthogonalization AV = B. The Hestenes-Jacobi method became popular in the 1970’s.
Nash [17] derived the plane rotation from a maximization problem. Luk [15] implemented the
one-sided Hestenes-Jacobi method on the ILLIAC IV, a SIMD array computer. Interestingly,
when Chartres published his work twenty years earlier, he appeared to be engrossed in
implementing eigenvalue computations on the SILLIAC, the Sydney University version of
the first ILLIAC at Urbana Champaign.

3 Parallelism in the Hestenes-Jacobi Method

We are aware of two ways for harvesting parallelism from the Hestenes-Jacobi method. We
discuss the second method below. The first method has been realized by Chartres [3] and
Luk [15] already, and is based on the reordering of the sequence of Hestenes transformations.
Since two Hestenes transformations with distinct row pairs are independent, up to M/2 plane
rotations can be performed in parallel. However, not every sequence of Hestenes transfor-
mations constitutes a sweep that leads to convergence. This problem has been discussed by
Hansen [9] already. We may interpret it as limiting the available parallelism.

Observe that the quadratic convergence of the sequential cyclic-by-rows scheme can be
viewed intuitively as being due to a bidirectional information flow through Hestenes trans-
formations. Consider the example M = 3 of a matrix A with three rows. A sweep consists
of three Hestenes transformations, that is pairs of rows to be rotated. In general, a sweep in
the Hestenes-Jacobi method may be viewed as a combinatorial task of pairing each row with
every other row. From elementary combinatorics we know that there are

(

M

2

)

= M(M−1)/2
such rotations. In the cyclic-by-rows ordering we choose the sequence [(0, 1), (0, 2), (1, 2)] of
transformations for each sweep. The first transformation (0, 1) deposits information about
row 0 in row 1 and vice versa. Thus, when computing the second transformation (0, 2), in-
formation about row 2 propagates via row 1 to row 2. Therefore, after two transformations,
information about all three rows has propagated across the whole matrix. The sequence
of transformations is inherently sequential for M = 3, because there exist no two pairs of
distinct rows.
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Now, consider the case M = 4 of a matrix A with four rows. There are
(

4
2

)

= 6 pairs of
rows to be rotated. With the cyclic-by-rows order, the sequence of a sweep is

[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]. (7)

Another possible sequence for a sweep groups independent pairs and executes them in par-
allel. Here is an example

[{(0, 1), (2, 3)}, {(0, 3), (1, 2)}, {(0, 2), (1, 3)}], (8)

where the pairs in curly brackets are independent. The convergence behavior of these two
sequences appears to be similar in practice. This is not obvious, however, because the
Hestenes transformations do not commute in general, and the two sequences 7 and 8 do not
produce identical results. Let us investigate the commutativity of Hestenes transformations
in more detail to understand why the order of the transformations is important.

Lemma 1 (Rotation Commutativity)
Given a matrix A and two Jacobi rotations J(i, j, θ) and J(p, q, ζ) corresponding to Hestenes

transformations of rows aT
i , a

T
j and aTp , a

T
q of A. Then, the following statements hold:

1. J(i, j, θ)TJ(p, q, ζ)TA = J(p, q, ζ)TJ(i, j, θ)TA for i 6= p, q and j 6= p, q, that is

rotations involving distinct pairs of rows commute, and

2. J(i, j, θ)TJ(j, k, ζ)TA 6= J(j, k, ζ)TJ(i, j, θ)TA, that is two rotations that share at least

one row do not commute.

The proof is straightforward. For case 1, we can show that

(

cθ −sθ
sθ cθ

)(

cζ −sζ
sζ cζ

)

=

(

cζ −sζ
sζ cζ

)(

cθ −sθ
sθ cθ

)

,

and for case 2, we show that there exist angles θ and ζ such that







cθ −sθ 0
sθ cθ 0
0 0 1













1 0 0
0 cζ −sζ
0 sζ cζ





 6=







1 0 0
0 cζ −sζ
0 sζ cζ













cθ −sθ 0
sθ cθ 0
0 0 1





 .

Thus, the two sequences 7 and 8 above are not identical, for example because transfor-
mation (0, 2) is applied before (0, 3) in the strictly sequential sequence 7, whereas (0, 2) is
applied after (0, 3) in the parallel sequence 8. Brent and Luk [1] presented a parallel imple-
mentation of the parallel ordering scheme on a linear array of up to M/2 processors that is
also referred to as ring procedure [7, Section 8.5.10]. In this implementation each processor
receives two rows, performs the Hestenes transformation and sends the transformed rows to
its left and right neighbors. Since each processor receives different rows, however, there is
no temporal locality to be exploited by streaming data. In short, the linear array scheme is
not a candidate for a stream algorithm.
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The second form of parallelism inherent in the Hestenes-Jacobi method reveals itself by
splitting the computation of the rotation from the transformation, that is the application of
the rotation. If we are willing to sacrifice a hopefully insignificant percentage of the quadratic
convergence behavior, we can create parallelism in a different way.3 Figure 4 shows the basic
idea for a 2× 2 array of compute processors. In a stream architecture [12], the array would
be supplemented by memory processors at the periphery. The computation proceeds in two
phases. First, we compute the plane rotations by streaming rows 0 through 3 into the array,
forming the inner products (0, 2), (1, 2), (0, 3) and (1, 3) on the processors where the rows
cross, and storing the sines and cosines of the rotations locally. In the second phase, we
stream row 0 through 3 through the array once more, this time to apply the rotations. Each
processor receives a value of a row from the top and the left, applies the transformation, and
outputs the result at the bottom and the right, respectively. In effect, each row entering
from the left is transformed twice before exiting the array on the right. Analogously, each
row entering at the top is transformed twice before exiting the array at the bottom.

(0,2)

0

2 (1,2)

1

(1,3)(0,3)3

2

3

0 1 (1,2)(0,3)

(1,3)

(0,2)

(b) apply rotations (c) dependencies(a) compute rotations

(0,3)3

0’’

(0,2)2

0

3’’(1,3)

1’’

2’’(1,2)

1

2’

3’

1’0’

Figure 4: A block transformation of our parallel Hestenes-Jacobi method. In a first phase
(a) we compute the rotations (0, 2), (1, 2), (0, 3), and (1, 3), and store them locally. During
the second phase (b) rows 0 to 3 are streamed into the array once again, this time in order
to apply the rotations.

Note that the computation of the four rotations in Figure 4(a) occurs in parallel, while the
transformations are computed in an ordered fashion in Figure 4(b). With respect to commu-
tativity, the rotations (0, 2) and (1, 3) as well as (1, 2) and (0, 3) are mutually independent,
while (0, 3) and (0, 2) are not, and (1, 2) and (1, 3) are neither. The dependencies are illus-
trated in Figure 4(c). Our parallel computation differs from the sequential cyclic-by-rows
order, because it computes all rotations before computing the transformations. However,
the order of the transformations matches that of the dependency graph.

Let us emphasize the fact that we compute multiple rotations independently and apply all
transformations thereafter, rather than computing and applying each rotation sequentially
as done in the conventional cyclic-by-rows order. Formally, we replace the sequence A(k) of

3The second way of creating parallelism was motivated by the design goal of achieving 100% compute
efficiency on a stream architecture [12]. In fact, we postulated the structure of the data streams before
analyzing the resulting numerical behavior.
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the conventional transformation

A(k+1) = J(i, j, θ)A(k) with A(k+1) = J(ir, jr, θr) . . . J(i1, j1, θ1)A
(k),

where r denotes the number of rotations computed from the values of A(k). Informally, we
distribute information about individual matrix elements across the matrix without exploit-
ing the full potential for orthogonalization that the strictly sequential scheme offers. To
distinguish our transformation from the conventional cyclic-by-rows sequence of rotations,
we call it a block transformation.

1
0

10

1
0

32

1
0

54

1
0

76

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0

3

32

3
2

54

3
2

76

2

5
4

54

5
4

76

7
6

76

(a) row grouping (b) block transformations

Figure 5: One block sweep of our stream Hestenes algorithm. The numbers identify entire
rows of matrix A. The grouping of rows into blocks is shown on the left, and the corre-
sponding block transformations on the right. The group of rows marked by the left bracket
is paired with all groups marked by the brackets on the right. One column or row groupings
in (a) corresponds to one column of block transformations in (b).

We may use a sequence of block transformations to form a block sweep. Figure 5 shows
a block sweep for a block size of 2×2 and a matrix A with M = 8 rows. For a block size of 1,
this algorithm is a standard cyclic-by-rows Hestenes-Jacobi method. During the first four
block transformations in the leftmost column of Figure 5(b), which correspond to the row
groupings in the leftmost column of Figure 5(a), we perform the sequence of block Hestenes
transformations

A(1) = J(0, 1)TA(0),

A(2) = J(1, 3)TJ(1, 2)TJ(0, 3)TJ(0, 2)TA(1),

A(3) = J(1, 5)TJ(1, 4)TJ(0, 5)TJ(0, 4)TA(2),

A(4) = J(1, 7)TJ(1, 6)TJ(0, 7)TJ(0, 6)TA(3).

Note that transformations J(0, 0) and J(1, 1) are undefined, and J(1, 0) is identical to J(0, 1)
by symmetry of the Hestenes transformation. Hence, block transformations of a row group
with itself perform fewer Hestenes transformations than distinct row groups. Only the shaded
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squares in Figure 5(b) represent processors performing Hestenes transformations. In general,
only the processors above (or, equivalently, below) the diagonal perform transformations
when a row group is paired with itself.

Now, we wish to increase the block size from a 2× 2 array to an arbitrarily large R×R
array. The larger the network size R, the more operations we can execute concurrently. In
doing so, we also increase the number of dependency violations compared to the execution
order of the strictly sequential cyclic-by-rows scheme, however. We may view these violations
as missed opportunities for propagating information across the matrix. Let us assess the
magnitude of this problem. Consider one block transformation on an R × R array with
distinct row blocks. This block transformation involves 2R rows of matrix A. Ideally, a
sequential order such as the cyclic-by-rows scheme would pair all rows with each other for
orthogonalization, resulting in

(

2R
2

)

transformations. In contrast, using our square array

of R2 processors, we compute only R2 transformations, one per processor. Thus, we miss
out on

(

2R
2

)

−R2 = (2R2−R)−R2 opportunities for propagating information via Hestenes
transformations. Nevertheless, even for large processor arrays with network size R, our
parallel scheme is no more than a factor of two off the sequential cyclic-by-rows scheme:

lim
R→∞

(

2R
2

)

R2
= lim

R→∞

2R2 −R

R2
= 2.

Encouraged by this plausibility argument, we now present our stream SVD algorithm.

4 The Stream SVD Algorithm

Our stream SVD algorithm is based on the Hestenes-Jacobi method and on the ideas de-
veloped in Section 3. The key idea is to sacrifice speed of convergence for parallelism.
Since Hestenes transformations are orthogonal transformations which leave singular values
unchanged, it does not matter in principle how many we apply. There is the issue of a po-
tential loss of numerical accuracy, however. Since even the cyclic-by-rows Hestenes method
sacrifices convergence behavior compared to the classical Jacobi method, we may push the
envelope even further by sacrificing convergence behavior in favor of parallelism.

Algorithm 1 shows the pseudocode of the sequential version of our Hestenes-Jacobi
method for computing the singular values of an M × N matrix A, christened Stream
Hestenes SVD or just Stream SVD for short. The algorithm receives as arguments
array A in row-major layout, array S for storing the squares of the row norms, and array P
for storing R×R sines and cosines representing R2 Jacobi rotations. The singular values are
stored in array σ in lines 31 and 32. We discuss the organization of the data flow through a
parallel stream architecture as well as the computation of U and V below.

The body of the repeat loop constitutes one block sweep. During each block sweep,
we orthogonalize all

(

M

2

)

pairs of rows of matrix A. The outer for loops (lines 6 and 8)
implement the block sweep. In lines 10–13, we compute the square of the norms of the rows
within the block. These two inner products can be saved in favor of a computationally
less expensive update, as explained below. Block phase 1 consists of lines 14–23. Here we
compute the Jacobi rotations for one block, and store the rotations in array P . Thereafter,
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Algorithm 1 Stream Hestenes SVD (row-major arrays: A[M ][N ], S[M ], P [R][R])

1: for i = 0 to M do

2: S[i] = A[i]TA[i]
3: δ = ε ·∑M−1

i=0 S[i]
4: repeat

5: converged← true
6: for lbi = 0 to M by R do
7: ubi ← min(lbi +R,M)
8: for lbj = lbi to M by R do
9: ubj ← min(lbj +R,M)
10: for i = lbi to ubi do
11: S[i]← A[i]TA[i]
12: for j = lbj to ubj do
13: S[j]← A[j]TA[j]
14: for i = lbi to ubi do
15: for j = lbj to ubj do
16: if i < j then
17: g ← A[i]TA[j]
18: if |g| > δ then
19: converged← false
20: if |g| > ε then
21: P [imod R][j mod R].c, P [imod R][j mod R].s← jacobi(S[i], S[j], g)
22: else

23: P [imod R][j mod R].c, P [imod R][j mod R].s← 1, 0
24: for i = lbi to ubi do
25: for j = lbj to ubj do
26: if i < j then
27: c, s← P [imod R][j mod R].c, P [imod R][j mod R].s
28: for k = 0 to N do
29: A[i][k], A[j][k]← cA[i][k]− sA[j][k], sA[i][k] + cA[j][k]
30: until converged = true
31: for i = 0 to M do

32: σ[i]←
√

A[i]TA[i]

14



during block phase 2, we perform the Hestenes transformations in lines 24–30. The guard
i < j in lines 16 and 26 selects the upper triangular set of pairs in row block [lbi, ubi]×[lbi, ubi],
cf. Figure 5(b).

Procedure jacobi is called in line 21 of Algorithm 1, and computes the Jacobi rotation
associated with the Hestenes transformation. Note that a division by zero is prevented in
line 1 of Procedure 2 by the guard in line 20 of Algorithm 1.

Procedure 2 c, s = jacobi(a, b, g)

1: w ← (b− a)/2g

2: t← sign(w)/
(

|w|+
√
1 + w2

)

3: c← 1/
√
1 + t2

4: s← t c

Our convergence criterion accounts for the condition of matrix A. Value δ, computed in
lines 1–3, is the sum of the inner products A[i]TA[i] of the rows i of A, scaled by a small

number ε, which may be as small as the machine epsilon. Our iteration terminates if all
(

M

2

)

pairs of rows are sufficiently orthogonal, that is if |A[i]TA[j]| ≤ δ for all i 6= j.

Accumulating the Row Norm

In the Hestenes-Jacobi method, we do not need to recompute the square of the row norms ai
Tai

at the beginning of each block sweep in lines 10–13 of Algorithm 1. Instead, we may update
the norm on demand, that is after applying Hestenes transformation J(i, j) to rows i and j.
Then, the square of the norms can be updated by means of the sine s and cosine c of the
Jacobi rotation as follows:

||a(k+1)
i ||2 = c2||a(k)

i ||2 + s2||a(k)
j ||2 − 2csa

(k)
i

T
a

(k)
j ,

||a(k+1)
j ||2 = s2||a(k)

i ||2 + c2||a(k)
j ||2 + 2csa

(k)
i

T
a

(k)
j .

The drawback of the computational savings may be a loss of accuracy. In fact, for numerical
stability, we may have to compute the row norms periodically rather than update them only.
However, we have not experienced any such problems with our experiments thus far.

In principle, we could also update the value of the inner product

a
(k+1)
i

T
a

(k+1)
j = (c2 − s2)a

(k)
i

T
a

(k)
j + cs(||a(k)

i ||2 − ||a(k)
j ||2).

However, this update requires (M − 1)2/2 storage and would require updating all memoized

inner products a
(k+1)
i

T
a

(k+1)
j for j 6= i rather than for row j only. Thus, recomputing the

inner product aT
i aj is clearly the preferred alternative.

Computing U and V

In the following, we discuss the computation of the orthogonal matrices U and V within
the context of the Hestenes-Jacobi method. We compute U T by applying each Hestenes
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transformation that we apply to A to UT as well:

U (k+1)T = JTU (k)T ,

where U (0) = IM .
Since, the premultiplications with JT are orthogonal transformations, UT = limk→∞ U (k)T

is orthonormal. Now, we construct matrix U TA = B with Algorithm 1. Matrix B consists
of mutually orthogonal rows by construction, and since U TA = ΣV T , we can compute the
singular values and the orthonormal matrix V from the computed matrix B row by row:

σi = ||Bi|| and vTi =
Bi

||Bi||
.

We normalize the rows of B, transforming the matrix of mutually orthogonal rows into an
orthonormal matrix. Since, B = ΣV T , the singular values are nothing but the row norms
of B. If we maintain the rows norms by updating them as described above, we can also save
the inner products within the square root in line 32 of Algorithm 1.

Data Flows through Stream Architecture

In this section we present an efficient implementation of the stream SVD on our stream
architecture [12]. We assume that the machine consists of an array of R × R compute
processors, augmented with 4R memory processors at the periphery. The stream SVD
partitions the M × N matrix A into block transformations (see Figure 4), each of which
consists of two phases, rotation computation and rotation application. Lines 14–23
of Algorithm 1 specify the computation of rotations for a pair of row blocks (ri, rj), where
ri = {ai | lbi ≤ i < ubi} and rj = {aj | lbj ≤ j < ubj}. Lines 24–30 specify the application of
the rotations computed in lines 14–23. As a boundary case, we must compute and apply the
rotations to row blocks ri and rj with i = j, that is rotating the rows within row block ri.
This boundary case applies to the blocks on the diagonal of Figure 5(b).

Our stream SVD is based on four systolic algorithms for an R × R array of compute
processors: (1) rotation computation of row blocks ri and rj with i < j (see Figure 6), (2)
rotation application to row blocks ri and rj with i < j (see Figure 7), and the analgous
computations for the boundary case: (3) rotation computation of row block ri with itself
(see Figure 8), and (4) rotation application within row block ri (see Figure 9). These four
systolic algorithms form the core of the stream SVD. There are two additional computations,
that we will not discuss in detail, because they are not critical for high efficiency. First, the
computation of the square of the row norm ||ai||2 = aTi ai in lines 10–13 of Algorithm 1 can
be accomplished on the memory processors while streaming row ai into the array of compute
processors. The square of the norm will be available after the entire row has been streamed
into the array. Second, there is the computation of the convergence criterion based on the
Boolean variable converged in Algorithm 1. During a block sweep, each compute processor
maintains a local copy of this variable. At the end of each block sweep, we perform a
global Boolean and -operation and scatter the resulting value to all processors, including the
memory processors.
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In the following, we assume that each row block contains R rows and N columns. Thus,
row blocks are R ×N matrices. A block transformation of two distinct row blocks requires
R2 rotations. During the systolic rotation computation illustrated in Figure 6, we use R2

processors to compute and store these rotations in form of a sine and cosine value locally.
Then, we execute the systolic rotation application, illustrated in Figure 7, to perform R2

Hestenes transformations. These systolic algorithms implement the dataflows shown in Fig-
ures 4(a) and 4(b), respectively, except that the horizontal data streams are directed from
right to left rather than from left to right in order to facilitate composition. Processors in the
figures are marked grey at a time step if they compute and produce the bold faced values.

The systolic rotation computation in Figure 6 consists of computing gij = aTi aj for the
cross product of rows i ∈ ri and j ∈ rj in a streamed fashion. Once gij is available and
the row norms ||ai||2 and ||aj||2 have been received as the last items of their respective row
streams, each processor computes the rotation values sij and cij according to Procedure 2.
In the example of Figure 6, we show R = 3 rows per row block, and N = 4 columns per
row. The row block streamed horizontally from right to left consists of rows 0–2 and the row
block streamed from top to bottom consists of rows 3–5. The processor that receives row i
from the right and row j from the top computes sij and cij.

The systolic rotation application shown in Figure 7 succeeds the rotation computation of
Figure 6. With the rotation values in place, row blocks 0–2 and 3–5 are streamed into the
array once again. Processor pij is responsible for rotating row i, received from the right and
row j received from the top by executing the loop in lines 28–29 of Algorithm 1, where loop
index k corresponds to the element position in the row streams. For example, processor p03

in the top right corner of the array receives values a00 and a30 during step (0). During

step (1), it computes a
(1)
00 = c03a00− s03a30 and passes the result to the left. During step (2),

processor p03 computes a
(1)
30 = s03a00 + c03a30 and passes the value to the bottom neighbor.

The rotated rows 0–2 exit the array on the left and the rotated rows 3–5 exit the array at
the bottom.

In the following, we briefly discuss the boundary case involving row blocks on the main
diagonal of Figure 5(b). Figure 8 shows the systolic algorithm for computing the rotations
within row block 0–2. Since there are R(R− 1)/2 rotations within a row block, we use only
the upper triangular portion of the processor array. We stream the rows top to bottom
into the array until the streams arrive at the main diagonal. There, we turn the streams
to the right to generate the pattern of crossing rows used in Figure 6. Figure 8 shows the
computation of the rotation on the three upper triangular processors of the array for R = 3
and N = 4. The corresponding systolic algorithm for the rotation application is shown in
Figure 9. As for the rotation computation, we stream the rows from top to bottom into the
array. When the stream enters the processor on the main diagonal, we turn it to the right.
The rotated row streams exit the array on the right.

Our stream SVD is a composition of the four systolic algorithms shown in Figures 6–9.
The composition in Figure 10 illustrates one block sweep of the stream SVD for R = 2,
M = 6, and arbitrary N . The 2 × 2 processor array is shown at the center of each of
the computational steps. The staggered organization of the rows indicates the temporal
order of rows streaming through the array. This illustration does not include the details
about the computation of the row norms on the memory processors and the scattering of
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Figure 6: Systolic rotation computation for two R ×N row blocks with R = 3 and N = 4.

Values gij = aTi aj, wij = ||ai||2||aj||2/gij, and tij = sign(wij)/
(

|wij|+
√

1 + w2
ij

)

are the
intermediate values of Procedure 2 used to compute the rotation cij and sij of rows i and j.
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Figure 7: Systolic rotation application following the rotation computation of Figure 9.
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Figure 8: Boundary case for rotation computation; cf. Figure 6.
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Figure 9: Boundary case for rotation application; cf. Figure 7.
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the convergence criterion at the very end of the block sweep.
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Figure 10: One block sweep of a stream SVD of M × N matrix A on an R × R array of
compute processors with R = 2 and M = 6. Matrix A is partitioned into three row blocks
{0, 1}, {2, 3}, and {4, 5}. Even numbered phases denote rotation computations, and odd
numbered phases rotation applications. Grey shaded areas hold newly computed values.

The key to an efficient composition is the data distribution of the matrix rows. As
shown in Figure 10(0), we use a snaked row distribution. From this initial distribution, we
can apply our systolic algorithms using merely spatial rotations and reflections in order to
match computation and data streams without redundant data movements. During phase (0),
we compute the rotations within block {0, 1}, and apply these rotations during phase (1).
As a result, we produce the rotated rows 0(1) and 1(1) on the right-hand side of the processor
array. During phases (2) and (3), we compute and apply the rotations of block {0, 1} with
block {2, 3} as illustrated in detail in Figures 6 and 7. Analogously, we compute and apply
the rotations of block {0, 1} with block {4, 5} during phases (4) and (5). However, the
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systolic algorithm is reflected over a vertical line, because the rows 0(2) and 1(2) stream
from left to right through the array. During phases (6) and (7), we compute and apply
the rotations within row block {2, 3}. Compared to our illustration in Figures 8 and 9, the
systolic algorithm is rotated by 180◦ around the center of the processor array.

Efficiency Analysis

Since the primary goal of stream algorithms is to provide optimally efficient computations
asympotically for large numbers of processors, we offer an efficiency analysis of our stream
SVD. We analyze the efficiency of one block sweep over an M × N matrix A on an R × R
array of compute processors with 4R memory processors on the periphery. We introduce the
ratios σM = M/R and σN = N/R that have proven their usefulness in [12] already.

We count the number of operations performed during one block sweep in units of floating-
point multiply-and-add operations, because they constitute the majority of operations and
dominate the time complexity. When immaterial for the overall count, we resort to conve-
nient approximations. For example, we approximate the computations of the four assign-
ments within the Jacobi Procedure 2 as four multiply-and-add operations. In contrast, the
inner products for the rotation computation and the rotation applications are counted ex-
actly. It is obvious from Figure 5 that one block sweep comprises M(M − 1)/2 Hestenes
transformations. Each transformation consists of the rotation computation and the rotation
application. The rotation computation requires three inner products of length N plus exe-
cuting Jacobi Procedure 2. This amounts to N +4 multiply-and-add operations per rotation
computation, for a total of (N + 4) · M(M − 1)/2 operations. The subsequent rotation
application requires two multiply-and-add operations per matrix element, resulting in 2N
operations per row and 4N ·M(M − 1)/2 operations total. Therefore, the total number of
multiply-and-add operations during one block sweep is

C(M,N) = (5N + 4) ·M(M − 1)/2.

For large M , we approximate the operation count, and express it as a function of σM , σN

and R:

C(σM , σN , R) ≈ (5σNR + 4)σ2
MR2/2.

Next, we determine the number of time steps in units of multiply-and-add operations. To
that end, we analyze block transformations. There are σM(σM − 1)/2 block transformations
per block sweep, σM of which correspond to the boundary case that rotates the rows within
a block. Each block transformation includes a rotation computation and its subsequent
application. With the aid of Figures 6 and 7, we determine the number of timesteps of a
regular block transformation as follows. The rotation computation of two R×N row blocks
on an R × R processor array requires N + 2R + 2 time steps. N time steps are required to
compute the first inner product g on the processor in the top-right corner, plus four more
to execute Jacobi Procedure 2. Due to the staggering of the streams, the processor in the
bottom-left corner of the array will begin and complete its computation 2(R− 1) time steps
later, yielding a total of N + 2R + 2 time steps.
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The rotation application of a regular block transformation is more time consuming, be-
cause each update involves two multiply-and-add operations on two matrix elements. In
Figure 7, we have merged two multiply-and-add operations into one step. Thus, the number
of time steps in units of multiply-and-add operations is almost twice of that suggested by
counting time steps in Figure 7, which is 2(N + R) + 1 between the first element entering
the top-right processor and the last element exiting the bottom-left processor. Doubling
this count with the exception of one time step needed for the last element to exit the array
results in a total of 4(N +R) + 1 time steps.

The time steps for the boundary case can be determined using Figures 8 and 9. The
number of time steps is N+2R+2 for the rotation computation and 4(N+R) for the rotation
application. Now, recall that one block sweep consists of σM(σM−1)/2 block transformations
with σM(σM − 3)/2 regular transformations and σM boundary cases. Therefore, the total
number of time steps for one block sweep in units of multiply-and-add operations is

T (σM , N,R) = (5N + 6R + 3)σM(σM − 3)/2 + (5N + 6R + 2)σM

= (5N + 6R + 3)σ2
M/2− (5N + 6R + 5)σM/2.

We approximate this count and express the number of time steps as a function of σM , σN ,
and R:

T (σM , σN , R) = (5σN + 6)σM(σM − 1)R/2 + σM(3σM − 5)/2

≈ σ2
M(5σNR + 6R + 3)/2.

The efficiency of one block sweep is the number of operations C(σM , σN , R) divided by the
product of the number of time steps T (σM , σN , R) and the number of processors, including
memory processors, R2 + 4R:

E(σM , σN , R) =
C(σM , σN , R)

T (σM , σN , R)(R2 + 4R)

≈ (5σNR + 4)σ2
MR2

σ2
M(5σNR + 6R + 3)(R2 + 4R)

≈ σN

σN + 6/5
· R

R + 4
. (9)

Equation 9 shows that our stream SVD achieves an optimal 100% efficiency if both σN

and R approach infinity. The σN -term of Equation 9 assumes value 0.9 for σN ≈ 10 and
0.99 for σN ≈ 100, that is for problem sizes N about 10 and 100 times the network size R,
respectively. The R-term of Equation 9 assumes value 0.9 for network size R = 36 and
value 0.99 for network size R = 396. Consequently, we can expect to achieve nearly 100%
efficiency even for relatively small network and problem sizes in practice. Equation 9 shows
furthermore that the efficiency of the stream SVD is independent of M . This fact should
not be misinterpreted, however, because the amount of parallelism available to our stream
SVD depends directly on M .
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5 Experimental Results

We have applied our stream SVD to various matrices in order to analyze numerical stability
and convergence behavior. In particular, we were interested in the increase of the number of
Hestenes transformations due to an increase in parallelism. In this section, we present the
results from three matrices: (1) uniformly random generated square matrices, (2) Golub-
Kahan’s numerically ill-conditioned square matrix [6], and (3) tall M × N matrices with
uniformly random generated elements that mimic the common use of the SVD for solving
least squares problems. The summary of our results is that (a) our stream SVD is numerically
stable, and (b) the number of Hestenes transformations increases insignificantly for R ≤

√
M

while generating compute-efficient parallelism for R2 processors.
We report the number of Hestenes transformations until convergence, using double-

precision arithmetic and a value of ε = 10−15. The number of Hestenes transformations
is independent of whether only singular values are desired or whether matrices U and V are
computed as well, because the latter does not change the convergence behavior. Table 1
shows the number of Hestenes transformations for uniformly random generated square ma-
trices. Each column corresponds to a problem size N , and each row to a network size R. As
expected, the number of transformations increases with R. The step line through the table
marks the boundary R =

√
N . We observe that the number of transformations increases by

up to about 20% for R ≈
√
N compared to the sequential cyclic-by-rows Hestenes-Jacobi

method for R = 1. Since we may use up to R2 processors compute-efficiently, we can boost
the performance of a 16× 16 SVD with 16 processors (R = 4) by a factor of nearly 16, mod-
ulo a 10% increase of work from 960 to 1, 080 transformations. If we use 1, 024 processors
(R = 32) for a 2, 048 × 2, 048 SVD, the speedup will be very close to 1, 024 at the expense
of increasing the number of transformations by 12.5%.

R\N 16 32 64 128 256 512 1,024 2,048

1 960 4,464 20,160 97,536 391,680 1,700,608 7,332,864 33,538,048
2 960 4,464 20,160 97,536 391,680 1,831,424 7,856,640 33,538,048
4 1,080 4,960 22,176 97,536 424,320 1,962,240 7,856,640 33,538,048
8 1,440 5,456 24,192 121,920 456,960 1,831,424 7,856,640 33,538,048
16 2,040 8,928 30,240 113,792 489,600 2,093,056 8,904,192 35,634,176
32 28,768 88,704 243,840 750,720 2,485,504 9,427,968 37,730,304
64 395,136 1,853,184 5,940,480 15,305,472 47,663,616 127,863,808
128 35,259,264 84,178,560 490,167,552 2,817,914,880 14,306,073,600

Table 1: Number of Hestenes transformations for uniformly random generated N × N ma-
trices, and varying N and network size R. The step line marks R =

√
N .

Lacking a conclusive model for the convergence behavior, we observe that the number of
Hestenes transformations grows linearly with R up to R =

√
N for a fixed problem size N .

For R >
√
N , the number of transformations grows exponentially. This behavior is analogous

to the transfer time of packets in a network, where congestion leads to an exponential increase
in the transfer time beyond a certain traffic threshold. In case of the SVD, it appears to
be the case that for larger values of R, the additional transformations do not transfer any
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information relevant to the orthogonalization process across the matrix. Thus, for R >
√
N

the majority of Hestenes transformations is redundant.

R\N 16 32 64 128 256 512 1,024 2,048

1 960 4,464 20,160 81,280 391,680 1,962,240 8,380,416 39,826,432
2 960 4,960 24,192 105,664 456,960 2,093,056 9,427,968 37,730,304
4 1,080 4,960 24,192 105,664 456,960 2,093,056 9,427,968 37,730,304
8 1,560 5,952 26,208 113,792 522,240 2,223,872 9,951,744 41,922,560
16 1,800 8,432 34,272 121,920 554,880 2,616,320 9,951,744 44,018,688
32 17,856 70,560 203,200 685,440 2,485,504 10,475,520 48,210,940
64 233,856 609,600 2,023,680 5,232,640 12,046,848 54,499,328
128 2,787,904 11,554,560 43,823,360 142,990,848 146,728,960

Table 2: Number of Hestenes transformations for N ×N Golub-Kahan matrices, and vary-
ing N and network size R. The step line marks R =

√
N .

Table 2 shows the number of Hestenes transformations for numerically ill-conditioned
matrices. The Golub-Kahan matrix is an upper triangular N ×N matrix [6, p. 206], which
stresses the numerical accuracy of an SVD algorithm, because it has one exceptionally small
and a couple of very large singular values. Furthermore, the condition deteriorates as N
increases. The Golub-Kahan matrix is defined as

(aij) =











1, i = j
−1, i < j
0, i > j.

Our stream Hestenes algorithm produces the singular values with reasonable accuracy (com-
pared to various other SVD implementations), including the exceptionally small singular
value. We observe that the convergence behavior resembles that of Table 1. The number of
Hestenes transformations appears to be slightly larger for each of the experiments than for
the numerically better behaved random generated matrices.

R\M 128 256 512 1,024 2,048 4,096 8,192 16,384

1 0.098 0.326 1.3 5.3 21.0 83.9 335.5 1,342.1
2 0.098 0.457 1.4 5.8 25.2 92.3 369.1 1,342.1
4 0.098 0.490 1.4 6.8 23.1 100.6 402.6 1,610.5
8 0.122 0.620 2.2 7.9 31.4 109.0 503.3 2,013.1
16 0.114 0.849 2.3 8.9 37.7 134.2 671.0 2,147.4
32 0.243 1.240 2.9 11.0 39.8 151.0 536.8 2,818.4
64 1.853 2.056 3.9 12.0 41.9 151.0 469.7 2,013.1
128 35.259 8.617 9.5 17.8 52.4 176.1 536.8 2,415.8

Table 3: Number of Hestenes transformations (in millions) for uniformly random generated
M × N matrices with N = 128, and varying M and network size R. The step line marks
R =

√
M .
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Table 3 shows the number of Hestenes transformations for M × N matrices with vary-
ing M and fixed N = 128. We observe that the exponential increase of rotations vanishes
when M becomes large relative to N . However, we also notice that the number of Hestenes
transformations increases by up to about 100% for R =

√
M compared to a 10% increase for

square matrices. This observation is consistent with our earlier interpretation that a number
of Hestenes transformations within a single block transformation are redundant because they
do not propagate relevant information.

Finally, we note that our stream SVD exhibits a different behavior than the data-oblivious
stream algorithms that we have designed earlier [12]. Those stream algorithms are compute
efficient, that is approach 100% floating-point efficiency asymptotically for large numbers
of processors, if R > cM . Typically, a value of c > 0.2 suffices to amortize the startup
cost of the systolic pipelines. In contrast, experimental evidence suggests that our stream
SVD is only efficient for R >

√
M since the number of Hestenes transformations increases

significantly otherwise.
Using asymptotic notation, we may characterize the relationship between the network

size R and problem size N as follows. The stream algorithms designed in [12] are compute
efficient if R = O(N), that is if R has an asymptotic upper bound directly proportional to N .
For the stream SVD we find that R = O(

√
N), that is R has an upper bound proportional

to
√
N . As a different perspective on the relationship between network and problem size, we

may compare the number of processors P with the problem size N . For the SVD, we may
use up to P = R2 = O(N) processors efficiently. In contrast, other stream algorithms suited
for use on a two-dimensional array, including matrix multiplication, triangular solver, LU
and QR decomposition may use up to P = R2 = O(N 2) processors efficiently. Therefore,
the amount of parallelism exhibited by our stream SVD is one polynomial degree smaller
than that of the other applications. This raises the question whether we can find a stream
algorithm for the Jacobi method, for example, that creates parallelism on the order R =
O(N) rather than R = O(

√
N).
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vorkommenden Gleichungen numerisch aufzulösen. Journal für die Reine und Ange-
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