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ABSTRACT
We present and evaluate a new memory management technique for
eliminating memory leaks in programs with dynamic memory al-
location. This technique observes the execution of the program on
a sequence of training inputs to find � -bounded allocation sites,
which have the property that at any time during the execution of
the program, the program accesses at most only the last � objects
allocated at that site. The technique then transforms the program
to use cyclic memory allocation at that site: it preallocates a buffer
containing � objects of the type allocated at that site, with each
allocation returning the next object in the buffer. At the end of the
buffer the allocations wrap back around to the first object. Cyclic
allocation eliminates any memory leak at the allocation site — the
total amount of memory required to hold all of the objects ever
allocated at the site is simply � times the object size.

We evaluate our technique by applying it to several widely-used
open source programs. Our results show that it is able to success-
fully eliminate important memory leaks in these programs. A po-
tential concern is that the estimated bounds � may be too small,
causing the program to overlay live objects in memory. Our re-
sults indicate that our bounds estimation technique is quite accu-
rate in practice, providing incorrect results for only one of the 160

� -bounded sites that it identifies. To evaluate the potential im-
pact of overlaying live objects, we artificially reduce the bounds at

� -bounded sites and observe the resulting behavior. The resulting
overlaying of live objects often does not affect the functionality of
the program at all; even when it does impair part of the functional-
ity, the program does not fail and is still able to acceptably deliver
the remaining functionality.
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1. INTRODUCTION
A program that uses explicit allocation and deallocation has a

memory leak when it fails to free objects that it will no longer ac-
cess in the future. A program that uses garbage collection has a
memory leak when it retains references to objects that it will no
longer access in the future. Memory leaks are an issue since they
can cause the program to consume increasing amounts of memory
as it runs. Eventually the program may exhaust the available mem-
ory and fail. Memory leaks may therefore be especially problem-
atic for server programs that must execute for long (and in principle
unbounded) periods of time.

This paper presents a new memory management technique for
eliminating memory leaks. This technique applies to allocation
sites 1 that satisfy the following property:

DEFINITION 1 ( � -BOUNDED ACCESS PROPERTY). An allo-
cation site is � -bounded if, at any time during the execution of the
program, the program accesses at most only the last � objects al-
located at that site.

It is possible to use the following memory management scheme
for objects allocated at a given � -bounded allocation site:

� Preallocation: Preallocate a buffer containing � objects of
the type allocated at that site.

� Cyclic Allocation: Each allocation returns the next object in
the buffer, with the allocations cyclically wrapping around to
the first object in the buffer after returning the last object in
the buffer.

� No-op Deallocation: Convert all deallocations of objects al-
located at the site into no-ops.

This cyclic memory management scheme has several advantages:
� No Memory Leaks: This memory management scheme elim-

inates any memory leak at allocation sites that use cyclic
memory management — the total amount of memory re-
quired to hold all of the objects ever allocated at the site is
simply � times the object size.

� Simplicity: It is extremely simple both to implement and
to operate. Unlike many previously proposed static analysis
techniques [14, 9, 18, 16, 12, 23, 21, 20, 15], it does not
require the development of a heavyweight static analysis or
programmer annotations to detect and/or eliminate memory
leaks.

1An allocation site is a location in the program that allocates mem-
ory. Examples of allocation sites include calls to malloc in C
programs and locations that create new objects in Java or C++ pro-
grams.
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To use cyclic memory management, the memory manager must
somehow find � -bounded allocation sites and obtain a bound �

for each such site. Our implemented technique finds � -bounded
sites and estimates the bounds � empirically. Specifically, it runs
an instrumented version of the program on a sequence of sample in-
puts and records, for each allocation site and each input, the bound

� observed at that site for that input.2 If the sequence of observed
bounds stabilizes at a value � , we assume that the allocation site is

� -bounded and use cyclic allocation for that site.
One potential concern is that the bound � observed while pro-

cessing the sample inputs may, in fact, be too small: other execu-
tions may access more objects than the last � objects allocated at
the site site. In this case the program may overlay two different
live objects in the same memory, potentially causing the program
to generate unacceptable results or even fail.

To evaluate our technique, we implemented it and applied it
to several sizable programs drawn from the open-source software
community. We obtained the following results:

� Memory Leak Elimination: Several of our programs con-
tain memory leaks at � -bounded allocation sites. Moreover,
some of these memory leaks make the programs vulnera-
ble to denial of service attacks — certain carefully crafted
requests cause the program to leak memory every time is
processes the request. By presenting the program with a se-
quence of such requests, an attacker can cause the program
to exhaust its address space and fail. Our technique is able
to identify these sites, apply cyclic memory allocation, and
effectively eliminate the memory leak (and the denial of ser-
vice attack).

� Accuracy: We evaluate the accuracy of our empirical bounds
estimation approach by running the programs on two sets of
inputs: a training set (which is used to estimate the bounds)
and a larger validation set (which is used to determine if any
of the estimated bounds is too small). Our results show that
this approach is quite accurate: the validation runs agree with
the training runs on all but one of the 160 sites that the train-
ing runs identify as � -bounded.

� Reliability: We also performed a long-term test of the relia-
bility of two of our programs (Squid and Pine) by installing
them as part of our standard computing environment. In sev-
eral months of usage, we observed no deviations from the
correct behavior of the programs.

� Impact of Cyclic Memory Allocation: In all but one of the
programs, the bounds estimates agree with the values ob-
served in the validation runs and the use of cyclic memory
allocation has no effect on the observable behavior of the
program (other than eliminating memory leaks). Even for
the one program with a single bounds estimation error (and
as described further in Section 4.3.2), the resulting overlay-
ing of live objects has no effect on the externally observable
behavior of the program during our validation runs. More-
over, an analysis of the potential effect of the overlaying in-
dicates that it will never impair the overall functionality of
the program.

� Bounds Reduction Effect: To further explore the poten-
tial impact of an incorrect bounds estimation, we artificially

2In any single execution, every allocation site has a bound �

(which may be, for example, simply the number of objects allo-
cated at that site).

reduced the estimated bounds at each � -bounded site with
����� and observed the effect that this artificial reduction
had on the program’s behavior. In some cases the reduction
did not affect the observed behavior of the program at all;
in other cases it impaired some of the program’s functional-
ity. But the reductions never caused a program to fail and
in fact left the program able to execute code that accessed
the overlaid objects to continue on to acceptably deliver the
remaining functionality.

Our conclusion is that cyclic memory allocation with empirically
estimated bounds provides a simple, intriguing alternative to the
use of standard memory management approaches for � -bounded
sites. It eliminates the need for the programmer to either explic-
itly manage allocation and deallocation or to eliminate all refer-
ences to objects that the program will no longer access. Unlike
many previously proposed memory leak detection approaches [17,
13, 10, 14, 9, 18, 16, 12, 23], which simply identify leaks and
rely on the programmer to modify the program to eliminate any de-
tected memory leaks, it automatically eliminates the leak without
the need for any programmer intervention. It is access-based —
many previously proposed approaches analyze object reachability
to reason indirectly about memory leaks [17, 13, 14, 9, 18, 16, 12,
23]; our technique, in contrast, reasons about the accesses that the
program performs. It is therefore capable of recognizing and elim-
inating leaks even when the leaked object remains reachable and
is therefore appropriate for both garbage collected languages and
languages with explicit memory management. One particularly in-
teresting aspect of our results is the indication that it is possible, in
some circumstances, to overlay live objects without unacceptably
altering the behavior of the program.

1.1 Usage Scenarios
We anticipate that our technique will be prove to be most useful

for eliminating leaks in deployed programs, especially when the
original developers are not easily available or responsive. Because
it is automatic, the technique can successfully eliminate leaks with-
out requiring anyone to understand and modify the program. It is
also possible to apply the technique directly to stripped binaries,
making it possible to eliminate leaks even when there is no realistic
possibility of understanding the program or modifying its source.
In this kind of scenario, it is hard to imagine any technique that re-
quires programmer intervention successfully eliminating the leak.

During active development, programmers may prefer to use the
extracted memory access information to find leaks that they then
eliminate by modifying the program source. Or, if they convince
themselves that the bounds � are accurate, they can simply use
cyclic memory management at the corresponding allocation sites.
Note that this last alternative can significantly reduce the program-
ming burden — it eliminates the need for the programmer to ex-
plicitly deallocate objects allocated at � -bounded allocation sites
(if the program uses explicit allocation and deallocation) or to track
down and eliminate all references to objects that the program will
not access in the future (if the program uses garbage collection).

1.2 Risk/Reward Analysis for Unsound Trans-
formations

To take a broader perspective, the research suggests that the field
may well benefit from exploring a new class of program transfor-
mation techniques that trade off soundness in return for other ben-
efits (such as the elimination of memory leaks). In such cases, as
with any engineering tradeoff, one must perform a risk/reward anal-
ysis to determine if the reward outweighs the risks. Our results
indicate that the risks for cyclic memory allocation are apparently
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quite small. Specifically, they indicate that the bounds estimation
technique is quite accurate and that the consequences of overlay-
ing live data are usually not too serious. In contrast, the rewards
can be significant. Specifically, cyclic memory allocation can elim-
inate memory leaks that could otherwise limit the lifetime of the
program and leave it vulnerable to denial of service attacks. Our
expectation is that, over time, researchers will develop many other
unsound program transformations for which the rewards (poten-
tially far) outweigh the risks.

1.3 Contributions
This paper makes the following contributions:

� � -Bounded Allocation Sites: It identifies the concept of an
� -bounded allocation site.

� Cyclic Memory Allocation: It proposes the use of cyclic
memory allocation for � -bounded allocation sites as a mech-
anism for eliminating memory leaks at those sites.

� Empirical Bounds Estimation: It proposes a methodology
for empirically estimating the bounds at each allocation site.
This methodology consists of instrumenting the program to
record the observed bound for an individual execution, then
running the program on a range of training inputs to find al-
location sites for which the sequence of observed bounds is
the same.

� Experimental Results: It presents experimental results that
characterize how well the technique works on several sizable
programs drawn from the open-source software community.
The results show that cyclic memory allocation can elimi-
nate memory leaks in these programs and that the programs
can, in many cases, provide much if not all of the desired
functionality even when the bounds are artificially reduced
to half of the observed values. One intriguing aspect of these
results is the level of resilience that the programs exhibit in
the face of overlaid data.

� New Tradeoff: It introduces the concept of trading off sound-
ness in return for other benefits, in this case trading the pos-
sibility of overlaying live data in return for the elimination
of memory leaks. As researchers examine the risks and re-
wards of unsound program transformations more closely, we
expect the field to produce many other unsound but beneficial
transformations.

The remainder of the paper is structured as follows. Section 2
presents an example that illustrates our approach. Section 3 de-
scribes the implementation in detail. Section 4 presents our ex-
perimental evaluation of the technique. Section 5 discusses related
work. We conclude in Section 6.

2. EXAMPLE
Figure 1 presents a (simplified) section of code from the Squid

web proxy cache version 2.4.STABLE3 [4]. At line 8 the procedure
snmp parse allocates a buffer bufp to hold a Community iden-
tifier. At lines 18 and 19 the procedure snmpDecodePacket
writes a reference to the allocated buffer into a structure checklist
allocated on the stack; at line 25 it writes a reference to the buffer
into its parameter rq. The procedure snmpDecodePacketpasses
both checklist and rq on to other procedures. This pattern
repeats further down the (transitively) invoked sequence of proce-
dures.

1: u_char *
2: snmp_parse(struct snmp_session * session,
3: struct snmp_pdu * pdu,
4: u_char * data,
5: int length)
6: {
7: int CommunityLen = 128;
8: bufp = (u_char *)xmalloc(CommunityLen+1);
9: return (bufp);

10: }
11: static void
12: snmpDecodePacket(snmp_request_t * rq)
13: {
14: u_char *Community;
15: aclCheck_t checklist;
16: Community =
17: snmp_parse(&Session, PDU, buf, len);
18: checklist.snmp_community =
19: (char *) Community;
20: if (Community)
21: allow = aclCheckFast(
22: Config.accessList.snmp, &checklist);
23: if ((snmp_coexist_V2toV1(PDU))
24: && (Community) && (allow)) {
25: rq->community = Community;
26: snmpConstructReponse(rq);
27: }
28: }
29: void
30: snmpHandleUdp(int sock, void *not_used)
31: {
32: commSetSelect(sock, COMM_SELECT_READ,
33: snmpHandleUdp, NULL, 0);
34: if (len > 0) {
35: snmpDecodePacket(snmp_rq);
36: }
37: }

Figure 1: Memory leak from Squid

The procedure snmpDecodePacket is called by the proce-
dure snmpHandleUdp, which passes a pointer to itself as an ar-
gument to CommSetSelect, which then stores a reference to
snmpHandleUdp in a global table of structs indexed by socket
descriptor numbers. The program then uses the stored reference as
a callback.

Any analysis (either manual or automated) of the lifetime of the
bufp buffer allocated at line 9 in snmp parse would have to
track this complex interaction of procedures and data structures to
determine the lifetime of the buffer and either insert the appropri-
ate call to free or eliminate all the references to the buffer (if the
program is using garbage collection). Any such analysis would, at
least, need to perform an inter-procedural analysis of heap-aliased
references in the presence of procedure pointers. In this case the
programmer either was unable to or failed to perform this analysis.
The program uses explict allocation and deallocation, but (appar-
ently) never deallocates the buffers allocated at this site and there-
fore contains a memory leak [1].

When we run the instrumented version of Squid on a variety of
inputs, the results indicate that the allocation site at line 9 is an
� -bounded site with bound ��� � — in other words, the pro-
gram only accesses the last object allocated at that site. The use of
cyclic memory allocation for this site with a buffer size of 1 object
eliminates the memory leak and, to the best of our ability to deter-
mine, does not harm the correctness of the program. In particular,
we have used this version of Squid in our standard computational
environment as a proxy cache for the last several months without
a single observed problem. During this time Squid successfully
served more than 100,000 requests.
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3. IMPLEMENTATION
Our memory management technique contains two components.

The first component locates � -bounded allocation sites and ob-
tains the bound � for each site. The second component replaces,
at each � -bounded allocation site, the invocation of the standard al-
location procedure (malloc in our current implementation) with
an invocation to a procedure that implements cyclic memory man-
agement for that site. This component also replaces the standard
deallocation procedure (free in our current implementation) with
a modified version that operates correctly in the presence of cyclic
memory management by discarding attempts to explicitly deallo-
cate objects allocated in cyclic buffers. It also similarly replaces
the standard realloc and calloc procedures.

3.1 Finding � -Bounded Allocation Sites
Our technique finds � -bounded allocation sites by running an

instrumented version of the program on a sequence of training in-
puts of increasing size. As the program runs, the instrumentation
maintains the following values for each allocation site:

� The number of objects allocated at that site so far in the com-
putation.

� The number of objects allocated at that site that have been
deallocated so far in the computation.

� An observed bound � , which is a value such that 1) the com-
putation has, at some point, accessed an object allocated at
that site ��� � allocations before the most recent alloca-
tion, and 2) the computation has never accessed any object
allocated at that site more than ��� � allocations before the
most recently allocation.

The instrumentation also records the allocation site, address range,
and sequence number for each allocated object. The address range
consists of the beginning and ending addresses of the memory that
holds the object. The sequence number is the number of objects
allocated at that site prior to the allocation of the given object. So,
the first object allocated at a given site has sequence number 0, the
second sequence number 1, and so on.

The instrumentation uses the Valgrind addrcheck tool to ob-
tain the sequence of addresses that the program accesses as it ex-
ecutes [5]. It processes each accessed memory address and uses
the recorded address range information to determine the allocation
site and sequence number for the accessed object. It then compares
the sequence number of the accessed object with the number of ob-
jects allocated at the allocation site so far in the computation and,
if necessary, appropriately updates the observed bound � .

When the technique finishes running the program on all of the
training inputs, it compares the observed bounds � for each allo-
cation site. If all of these bounds are the same for all of the inputs,
it concludes that the site is � -bounded with bound � . In this case,
it generates a production version of the program that uses cyclic
allocation for that allocation site with a buffer size of � objects.

3.2 Finding Leaking Allocation Sites
Consider an allocation site with an observed bound � . If the

difference between the number of objects allocated at that site and
the number of deallocated objects allocated at that site is larger than

� , there may be a memory leak at that site. Note that our technique
collecte enough information to recognize such sites.

It would be possible to use cyclic memory allocation for only
such sites. Our current implementation, however, uses cyclic mem-
ory allocation for all sites with an observed bound � . We adopt

this strategy in part because it increases the number of objects al-
located in cyclic buffers (thereby simplifying the overall memory
management of the program) and in part because gives us a more
thorough evaluation of our technique (since it uses cyclic allocation
for more sites).

3.3 Cyclic Memory Management
We have implemented our cyclic memory management algorithm

for programs written in C that explicitly allocate and deallocate ob-
jects (in accordance with the C semantics, each object is simply a
block of memory). Each � -bounded allocation site is given a cyclic
buffer with enough space for � objects. The allocation procedure
simply increments through the buffer returning the next object in
line, wrapping back around to the beginning of the buffer after it
has allocated the last object in the buffer.

A key issue our implementation must solve is distinguishing ref-
erences to objects allocated in cyclic buffers from references to ob-
jects allocated via the normal allocation and deallocation mecha-
nism. The implementation performs this operation every time the
program deallocates an object — it must turn all explicit deallo-
cations of objects allocated at � -bounded allocation sites into no-
ops, while successfully deallocating objects allocated at other sites.
The implementation distinguishes these two kinds of references by
recording the starting and ending addresses of each buffer, then
comparing the reference in question to these addresses to see if it
is within any of the buffers. If so, it is a reference to an object
allocated at an � -bounded allocation site; otherwise it is not.

3.4 Variable-Sized Allocation Sites
Some allocation sites allocate objects of different sizes at differ-

ent times. We extend our technique to work with these kinds of
sites as follows. We first extend our instrumentation technique to
record the maximum size of each object allocated at each allocation
site. The initial size of the buffer is set to � times this maximum
size — the initial assumption is that the sizes observed in the train-
ing runs are representative of the sizes that will be observed during
the production runs.

At the start of each new allocation, the allocator has a certain
amount of memory remaining in the buffer. If the newly allocated
object fits in that remaining amount, the allocator places it in the re-
maining amount, with subsequently allocated objects placed after
the newly allocated object (if they fit). If the newly allocated ob-
ject does not fit in the remaining amount but does fit in the buffer,
the allocator places the allocated object at the start of the buffer.
Finally, if the newly allocated object does not fit in the buffer, the
allocator allocates a new buffer of size �������
	�� �������������� , where� is the size of the newly allocated object and � is the size of the
largest existing buffer for that site.

Note that although this extension may allocate new memory to
hold objects allocated at the site, the total amount of memory de-
voted to these objects is a linear function of the size of the largest
single object allocated at the site, not a function of the number of
objects allocated at the site.

3.5 Failure-Oblivious Computing
Overlaying live objects has the potential to introduce execution

anomalies such as out of bounds memory accesses, null pointer
dereferences, multiple deallocations of the same object, and infinite
loops. In standard program execution environments, such anoma-
lies can easily cause the program to fail.

Failure-oblivious compting [19] is a collection of techniques that
are designed to enable programs to execute through such anomalies
to continue to deliver acceptable service to their users. We have pre-
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viously applied failure-oblivious computing to several widely-used
open-source servers [19]. Our results show that failure-oblivious
computing 1) eliminates security vulnerabilities caused by buffer-
overflow errors in these servers and 2) enables these servers to exe-
cute successfully through attacks that trigger these buffer-overflow
errors. The servers can then continue on to correctly service subse-
quent requests [19].

We therefore apply failure-oblivious computing [19] as apropri-
ate to ameliorate (and in many cases even eliminate) any global
effect of any anomalies that overlaying live objects may introduce.
Specifically, we simply discard any writes via null or out of bounds
pointers and apply a technique to heuristically exit infinite loops.
This last technique simply bounds the maximum number of iter-
ations of each loop to be ������� , where � is the largest previously
observed number of iterations of the loop (when the loop exits nor-
mally and not because of the imposition of the ��� � � bound on the
number of iterations).3 We use training runs to obtain the initial ob-
served values � ; if a loop does not execute during the training runs,
we impose no bound on the number of iterations the first time the
loop executes. Subsequent executions of the loop use the largest
observed number of iterations � from previous executions to bound
the number of iterations to be at most ������� . Both techniques (dis-
carding out of bounds writes and heuristically exiting infinite loops)
preserve the default flow of control in that execution continues with
the next statement after the write or loop.

4. EVALUATION
We evaluate our technique by applying it to several sizable, widely-

used programs selected from the open-source software community.
These programs include:

� Squid: Squid is an open-source, full-featured Web proxy
cache [4]. It supports a variety of protocols including HTTP,
FTP, and, for management and administration, SNMP. We
performed our evaluation with Squid Version 2.4STABLE3,
which consists of 104,573 lines of C code.

� Freeciv: Freeciv is an interactive multi-player game [2]. It
has a server program that maintains the state of the game and
a client program that allows players to interact with the game
via a graphical user interface. We performed our evaluation
with Freeciv version 2.0.0beta1, which consists of 342,542
lines of C code.

� Pine: Pine is a widely used email client [3]. It allows users
to read mail, forward mail, store mail in different folders,
and perform other email related tasks. We performed our
evaluation with Pine version 4.61, which consists of 366,358
lines of C code.

� Xinetd: Xinetd provides access control, logging, protection
against denial of service attacks, and other management of
incoming connection requests. We performed our evaluation
with Xinetd version 2.3.10, which consists of 23,470 lines of
C code.

Note that all of these programs may execute, in principle, for an
unbounded amount of time. Squid and Xinetd, in particular, are
typically deployed as part of a standard computing environment
with no expectation that they should ever terminate. Memory leaks

3In some very small number of cases (typically the main event-
processing loop of the program), the developer may actually intend
a loop to execute forever. We allow the developer to identify such
loops and disable the loop exiting technique for these loops.

are especially problematic for these kinds of programs since they
can affect the ability of the program to execute successfully for long
periods of time.

Our evaluation focuses on two issues: the ability of our tech-
nique to eliminate memory leaks and on the potential impact of an
incorrect estimation of the bounds � at different allocation sites.
We perform the following experiments for each program:

� Training Runs: We select a sequence of training inputs of
increasing size and run the instrumented version of the pro-
gram on these inputs to find � -bounded allocation sites and
to obtain the estimated bounds � for these sites as described
in Section 3.1.

� Validation Runs: We select a validation input. This input
is different from and larger than the training inputs and is
intended to exercise strictly more of the functionality of the
program than the training inputs. We run the instrumented
version of the program (both with and without cyclic mem-
ory allocation applied at � -bounded sites) on this input. We
use the collected results to determine 1) the accuracy of the
estimated bounds from the training runs and 2) the effect of
any overlaying of live objects on the behavior of the program
(this overlaying would be caused by observed bounds � that
are too small).

� Conflict Runs: For each � -bounded allocation site with
��� 1, we construct a version of the program that uses the
bound � �	��	�
 at that site instead of the bound � . We then
run this version of the program on the validation input. We
use the collected results to evaluate the effect of the resulting
overlaying of live objects on the behavior of the program.

� Long-Term Usage: Squid and Pine are part of the stan-
dard computing environment of the first author of this pa-
per. This author replaced the standard versions of these pro-
grams with versions that use cyclic memory allocation for
all � -bounded sites identified during the training runs. He
then used the versions with cyclic memory management ex-
clusively for several months prior to the submission of this
paper.

Table 1 presents the percentage of executed allocation sites that
the training runs identify as � -bounded sites, the percentage of
memory allocated at these sites, and the percentage of invalidated
sites (sites for which the observed bound � was too small) for each
of our programs. In general, the training runs identify roughly half
of the executed sites as � -bounded sites, there is significant amount
of memory allocated at those sites, and there are almost no inval-
idated sites — the training runs deliver observed bounds that are
consistent with the bounds observed in the validation runs at all but
one of the 160 sites with observed bounds � in the entire set of
programs.

Program % � -bounded % memory % invalidated
Squid 62.5 43.3 0.0

Freeciv 50.0 75.2 0.0
Pine 60.0 15.0 1.5

Xinetd 64.7 94.8 0.0

Table 1: Memory Allocation Statistics

We next discuss the interaction of cyclic memory allocation with
each of our benchmark programs. To evaluate the impact of cyclic
memory allocation on any memory leaks, we compare the amount
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of memory that the original version of the program (the one with-
out cyclic memory allocation) consumes to the amount that the ver-
sions with cyclic memory allocation consume.

4.1 Squid
Our training inputs for Squid consist of a set of HTTP links that

we obtained from Google news, CNN, BBC, MSN, a set of FTP
links from the mirrors for Apache, OpenSSH, the ftp server at the
NUS School of Computing, and a set of SNMP queries that we
generated from a Python script that we developed for this purpose.
The training inputs have from 122 to 863 links and from 20 to 80
SNMP queries. The number of attributes queried ranges from 2 to
8. Our validation input consists of a larger set of links (3041) from
the same sites mentioned above and a larger set of SNMP queries
(110) from our Python script. The validation SNMP queries contain
more variables than the training queries.

4.1.1 Training and Validation Runs
Our training runs detected 41 � -bounded allocation sites out of

a total of 66 allocation sites that executed during the training runs;
43.3% of the memory allocated during the training runs was al-
located at � -bounded sites. Table 2 presents a histogram of the
observed bounds � for all of the � -bounded sites. This table in-
dicates that the vast majority of the observed bounds are small (a
pattern that is common across all of our programs).

m 1 2 3
# sites 38 2 1

Table 2: � distribution for Squid

4.1.2 Memory Leaks
Squid has a memory leak in the SNMP module; this memory

leak makes squid vulnerable to a denial of service attack [1]. Our
training runs indicate that the allocation site involved in the leak is
an � -bounded site with � =1. The use of cyclic allocation for this
site eliminates the leak. Figure 2 presents the effect of eliminating
the leak. This figure plots Squid’s memory consumption as a func-
tion of the number of SNMP requests that it processes with and
without cyclic memory allocation. As this graph demonstrates, the
memory leak causes the memory consumption of the original ver-
sion to increase linearly with the number of SNMP requests — this
version leaks memory every time it processes an SNMP request. In
contrast, the memory consumption line for the version with cyclic
memory allocation is flat, clearly indicating the elimination of the
memory leak.

4.1.3 Conflict Runs
For Squid, the training runs find a total of three � -bounded al-

location sites with � greater than one. We next discuss our results
from the conflict runs when we artificially reduce the sizes of the
observed bounds at these sites. These results provide additional
insight into the potential effect of overlaying live objects in this
program.

The first site we consider holds metadata for cached HTTP ob-
jects; the metadata and HTTP objects are stored separately. When
we reduce the bound � at this site from 3 to 2, the MD5 signature
of one of the cached objects is overwritten by the MD5 signature of
another cached object. When Squid is asked to return the original
cached object, it determines that the MD5 signature is incorrect and
refetches the object. The net effect is that some of the time Squid
fetches an object even though it has the object available locally; an
increased access time is the only potential effect.
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Figure 2: Squid memory consumption

The next site we consider holds the command field for the PDU
structure, which controls the action that Squid takes in response
to an SNMP query. When we reduce the bound � from 2 to 1,
the command field of the structure is overwritten to a value that
does not correspond to any valid SNMP query. The procedure that
processes the command determines that the command is not valid
and returns a null response. The net effect is that Squid is no longer
able to respond to any SNMP query at all. Squid still, however,
processes all other kinds of requests without any problems at all.

The next site we consider holds the values of some SNMP vari-
ables. When we reduce the bound � from 2 to 1, some of these
values are overwritten by other values. The net effect is that Squid
sometimes returns incorrect values in response to SNMP queries.
Squid’s ability to process other requests remains completely unim-
paired.

4.1.4 Long-Term Usage
During the long-term usage period, the version of Squid with

cyclic memory allocation served more than 100,000 requests with a
variety of content types (html, images, binaries, ...) and languages
(English and Vietnamese). We observed no problems, errors, or
anomalies.

4.2 Freeciv
Freeciv is designed to allow both human and AI (computer im-

plemented) players to compete in a civilization-building game. Our
training inputs for Freeciv consist of from 2 to 30 AI players. The
sizes of the game map range from size 4 to size 15 and the games
run from 100 to 200 game years. Our validation input consists of
30 AI players and a map size of 20. The game runs for 400 game
years.

4.2.1 Training and Validation Runs
Our training runs detected 42 � -bounded allocation sites out of

a total of 84 allocation sites that executed during the training runs;
75.2% of the memory allocated during the training runs was al-
located at � -bounded sites. Table 3 presents a histogram of the
observed bounds � for all of the � -bounded sites. As for the other
programs, the vast majority of the observed bounds are small. All
of the observed bounds in the validation run are consistent with the
observed bounds in the training runs; the use of cyclic memory al-
location therefore does not change the observable behavior of the
program.

4.2.2 Memory Leaks
It turns out that Freeciv has a memory leak associated with an

allocation site repeatedly invoked during the processing of each
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m 1 2
# sites 39 3

Table 3: � distribution for Freeciv

AI player. Specifically, this allocation site allocates an array of
boolean flags that store the presence or absence of threats from the
oceans. The training runs determine that this allocation site is an

� -bounded site with � =1. Cyclic memory allocation completely
eliminates this memory leak.

4.2.3 Conflict Runs
Freeciv has three � -bounded allocation sites with � greater than

1; all of these sites have � =2. All three of these sites are part
of the same data structure: a priority queue used to organize the
computation associated with path-finding for an AI player. Each
priority queue has a header, which in turn points to an array of
cells and a corresponding array of cell priorities. The training and
validation runs both indicate that, at all three of these sites, the
program accesses at most the last two objects allocated. Further
investigation reveals that (at any given time) there are at most two
live queues: one for cells that have yet to be explored and one for
cells that contain something considered to be dangerous. During its
execution, however, Freeciv allocates many of these queues.

The first allocation site we consider holds the queue header. Re-
ducing the bound for this site from 2 to 1 causes the size field in
the queue header to become inconsistent with the length of the cell
and priority arrays. The application of failure-oblivious computing
enables the program to execute successfully through the resulting
out of bounds array accesses. Reducing the bounds for the other
two sites causes either the cell arrays or the cell priorities to be-
come overlaid. In all three cases the program is able to execute
successfully without a problem. While the overlaying may affect
the actions of the AI players, it is difficult to see this as a serious
problem since it does not cause the AI players to violate the rules
of the game or visibly degrade the quality of their play.

4.3 Pine
Pine is a widely-used email program that allows users to read,

forward, and store email messages in folders. Our training inputs
have between 1 and 4 mail folders containing between 10 and 97
email messages. The number of attachments ranges from 0 to 4.
Our validation input has 24 mail folders that contain more than
2,500 mail messages.

4.3.1 Training and Validation Runs
Our training runs detected 66 � -bounded allocation sites out of

a total of 110 allocation sites that executed during the training runs;
15.0% of the memory allocated during the training runs was al-
located at � -bounded sites. Table 4 presents a histogram of the
observed bounds � for all of the � -bounded sites. As for the other
programs, the vast majority of the observed bounds are small. The
validation run determines that the observed bound � was too small
for 1 of the 66 � -bounded allocation sites. In this case we say that
the validation run invalidated this site.

m 1 3 8
# sites 64 1 1

Table 4: � distribution for Pine

4.3.2 Effect of Overlaying Live Objects
The objects allocated at the invalidated site implement a circu-

lar doubly-linked list of status messages for Pine to display on the
status line. Overlaying these objects causes Pine to dereference
a null pointer. The application of failure-oblivious computing en-
ables Pine to execute through these null pointer dereferences with
no visible negative effect on the behavior of the program. An anal-
ysis of the relevant code indicates that overlaying these objects may
have the potential to cause Pine to fail to display a status message.
We did not, however, observe any missing messages during either
our training or our validation runs.

4.3.3 Memory Leaks
Neither the training nor validation runs revealed a memory leak

in Pine.

4.3.4 Conflict Runs
Pine has two � -bounded allocation sites with � greater than 1.

The first site is the invalidated site discussed above in Section 4.3.2.
The training runs indicate that this site has an observed bound of
bound � =3, but the validation runs indicate that Pine may access as
many as the last 4 objects allocated at this site. Reducing the bound
� from 3 to 2 causes a write access via a null pointer. As discussed
above in Section 4.3.2, the application of failure-oblivious comput-
ing enables Pine to execute successfully through these null pointer
dereferences with no changes in the observable behavior of the pro-
gram.

The other site has a bound � =8. This site allocates nodes that
store content filters that Pine uses to convert special characters or
formatted input stream for display. These nodes are stored in a
singly-linked list. Reducing the bound � from 8 to 4 causes the
list to become cyclic. In the absence of our technique for exiting
infinite loops (see Section 3.5), this cyclicity would cause a loop
that processes this list to fail to exit. The application of our infinite
loop exiting technique causes the execution to proceed beyond this
loop, which enables Pine to process most messages without any
observable difference. For some messages that contain HTML tags,
however, Pine inserts some additional incorrect characters. Note
that the insertion of these characters does not substantially impair
the legibility of the message.

4.3.5 Long-Term Usage
During the long-term usage period, the version of Pine with cyclic

memory allocation processed over 2,500 mail messages stored in
11 mail folders. It successfully processed messages with a variety
of formats (text, html, attachments, single and multiple receivers).
It also successfully performed the full range of mail commands
(read messages, save attachments, reply to messages, move mes-
sages between folders, delete messages, ...). We observed no prob-
lems, errors, or anomalies.

4.4 Xinetd
Our training inputs for Xinetd consist of between 10 and 500

requests. Our validation input consists of 1000 requests. All of
these requests are generated by a Perl script we developed for this
purpose.

4.4.1 Training and Validation Runs
Our training runs detected 11 � -bounded allocation sites out of

a total of 17 allocation sites that executed during the training runs;
94.8% of the memory allocated during the training runs was al-
located at � -bounded sites. Table 5 presents a histogram of the
observed bounds � for all of the � -bounded sites. All of the ob-
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served bounds � are 1. All of the observed bounds in the validation
run are consistent with the observed bounds in the training runs; the
use of cyclic memory allocation therefore does not change the ob-
servable behavior of the program.

m 1
# sites 11

Table 5: � distribution for Xinetd

4.4.2 Memory Leaks
Xinetd has a leak in the connection-handling code — whenever

Xinetd rejects a connection (it is always possible for an attacker
to generate connection requests that Xinetd rejects), it leaks a con-
nection structure 144 bytes long. Our training runs indicate that the
allocation site involved in the leak is an � -bounded site with � =1.
The use of cyclic allocation for this site eliminates the leak. Fig-
ure 3 presents the effect of eliminating the leak. This figure plots
Xinetd’s memory consumption as a function of the number of re-
jected requests with and without cyclic memory allocation. As this
graph demonstrates, the memory leak causes the memory consump-
tion of the original version to increase linearly with the number of
rejected requests. In contrast, the memory consumption line for the
version with cyclic memory allocation is flat, clearly indicating the
elimination of the memory leak.

Note that because none of the � -bounded allocation sites in
Xinetd have � greater than one, we do not investigate the effect
of reducing the bounds.
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Figure 3: Xinetd memory consumption

4.5 Discussion
Memory leaks are an insidious problem — they are difficult to

find and (as the discussion in Section 2 illustrates) can be difficult
to eliminate even when the programmer is aware of their presence.
Our experience with our four programs underscores the difficulty
of eliminating memory leaks — despite the fact that all of these
programs are widely used, and in some cases, crucial, parts of open-
source computing environments, three of the four programs contain
memory leaks.

Our results indicate that cyclic memory allocation enabled by
empirically determined bounds � can play an important role in
eliminating memory leaks. Our results show that this technique
eliminates a memory leak in three of our four programs. If the
bounds � are accurate, there is simply no reason not to use this
technique — it is simple, easy to implement, and provides a hard
bound on the amount of memory required to store the objects allo-
cated at � -bounded sites. In this situation there are two key ques-

tions: 1) how accurate are the observed bounds, and 2) what are the
consequences if the observed bounds are wrong?

Our results indicate that the observed bounds are reasonably ac-
curate — the validation inputs invalidate only one of the 160 � -
bounded allocation sites. Moreover, our conflict runs indicate that
overlaying live data has a surprisingly small effect on the execu-
tion of the program. Of the 8 sites considered in the conflict runs,
none causes the program to fail when the bound is artificially re-
duced; for 6 of these 8 sites, the bounds reduction leaves the entire
functionality of the program intact! Even without failure-oblivious
computing, only 2 of the 8 sites cause the program to fail when the
bound is artificially reduced, with 4 of the 8 sites leaving the entire
functionality of the program completely intact.

One aspect of our implementation that tends to ameliorate the
negative effects of overlaying objects is the fact that different � -
bounded allocation sites have different cyclic allocation buffers.
The resulting memory management algorithm will typically pre-
serve basic type safety even when the system overlays live objects
— the objects sharing the memory will tend to have the same basic
data layout and types and satisfy the same invariants. This prop-
erty makes the program less likely to encounter a completely unex-
pected collection of data values when it accesses data from an over-
writing object instead of the expected object. This is especially true
for application data, in which the values for each conceptual data
unit tend to be stored in a single object, with the values in multiple
objects largely if not completely independent. Even if overlaying
the objects allocated at those sites causes the program to lose the
data required to implement the full functionality, it does not harm
the ability of the program to execute code that accesses the over-
laid objects. The program can therefore execute through this code
without failing, preserving its ability to deliver other functionality.

Core data structures, on the other hand, tend to have important
properties that cross object boundaries. Overlaying objects allo-
cated at these sites tends to cause the program to violate these
properties. In the absence of failure-oblivious computing, these
violations may leave the program vulnerable to failures or infinite
loops. In our experiments, however, failure-oblivious computing
enabled our programs to execute successfully through these anoma-
lies to deliver their full functionality to their users in spite of the
data structure inconsistencies. It may also be possible to use data
structure repair [7, 8] to eliminate any residual inconsistencies and
enable the program to continue to execute successfully.

Interestingly enough, in some of the cases in which bounds re-
duction has no effect on the observable behavior, the program is
actually set up to tolerate inconsistent values in objects. In one pro-
gram (Squid) the program anticipates the possibility of inconsistent
data and contains code to handle that case. In the other program
(Freeciv) the program is able to successfully execute with a range
of data values. These two examples suggest that many programs
may already have some built-in capacity to fully tolerate inconsis-
tent or unexpected data.

5. RELATED WORK
We discuss related work in dynamic memory leak detection, static

memory leak detection, and static memory leak elimination.

5.1 Dynamic Memory Leak Detection
Purify, Insure++, and other dynamic analysis tools [17, 13] pro-

vide dynamic memory leak detectors for programs with explicit
memory management. The basic approach is to track object reacha-
bility to provide a list of unreachable objects that the program failed
to deallocate. It is then the responsibility of the programmer to an-
alyze the program, find the root cause of the leak, and modify the
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program to eliminate the leak. Note that these techniques are not
designed to find memory leaks that involve reachable objects that
the program will never access in the future.

Our approach, in contrast, automatically applies a transformation
that eliminates the leak. The potential benefits include the elim-
ination of the need for a programmer to analyze the program to
find the leak, the elimination of the programming effort required to
fix the leak, and the elimination of the possibility of an incorrect
fix introducing additional errors into the program source. Because
our approach is based on how the program accesses data (rather
than reachability properties), it can detect and eliminate leaks even
when the leaked objects remain reachable. The drawback is the
possibility that our transformation may cause the program to over-
lay live data. Our results indicate that 1) the chance of overlaying
live data is apparently quite small because the observed bounds are
apparently quite accurate, and 2) the consequences of overlaying
live data do not appear to be that severe in practice.

Chilimbi and Hauswirth [10] present a dynamic approach that
tracks allocations and frees, then periodically samples the mem-
ory accesses of the program to find “stale” objects which have not
been freed and have not been accessed recently. It then identifies
such objects as comprising potential memory leaks. It is the pro-
grammer’s responsibility to determine if the identified objects, in
fact, comprise a memory leak and, if so, to modify the program to
eliminate the leak.

Note that it is possible to extend Chilimbi and Hauswirth’s ap-
proach to automatically eliminate leaks — simply deallocate the
stale objects which their technique identifies as comprising po-
tential memory leaks. With an appropriately tuned sampling and
leak identification policy and the application of techniques such as
failure-oblivious computing that ameliorate the negative effects of
internal errors, we expect that it should be possible to drive the false
positive rate down to a level where the rewards of eliminating the
memory leak would outweigh the risks of premature deallocation.

5.2 Static Memory Leak Detection
Evans [14], Bush, Pincus, and Sielaff [9], Heine and Lam [18],

Hackett and Rugina [16], Chou [12], and Xie and Aiken [23] have
all developed static analyses that discover memory leaks in pro-
grams with explicit memory management. All of the analyses check
that the program correctly frees allocated objects before the object
becomes unreachable. The analyses differ in the techniques they
use to track the referencing relationships in the program: Evans’
analysis tracks annotations that identify unique references to ob-
jects, Bush, Pincus and Sielaff’s analysis symbolically simulates
candidate execution traces, Hiene and Lam’s analysis tracks syn-
thesized ownership properties, Hackett and Rugina use an efficient
shape analysis, Chou’s analysis uses symbolic reference counting,
and Xie and Aiken’s analysis directly models references between
objects to reason about how objects escape procedure call contexts.
Note that all of these analyses are appropriate only for programs
that use explicit memory management — a garbage collector would
correctly reclaim all of the unreachable leaking objects that they
identify.

In comparison with dynamic techniques (such as those discussed
above and the technique that we present in this paper), the great
advantage of static techniques is the elimination of the need to ex-
ercise the program on an input that exposes the leak. It is even
possible to analyze incomplete programs or fragments of complete
programs. Disadvantages include the need to implement a heavy-
weight static analysis, the possibility that the analysis will not scale,
and the possibility that the inevitable analysis imprecisions may in-
troduce false positives or false negatives. Some analyses also re-

quire the developer to provide additional annotations [14, 23]. Be-
cause each static analysis is designed to recognize leaks that arise
because of an interaction between a specific kind of reachability
property and the memory management actions of the program, such
analyses will fail to recognize leaks that involve reachable objects
or objects with reachability properties that the analysis is not de-
signed to analyze.

We note that there is a tension between leak detection and leak
elimination, especially when the leak elimination technique is po-
tentially unsound (as ours is). During development there is usually
an ample supply of programmers who understand the program and
are readily able to modify it. Unless the leak elimination requires
the development of new data structures to more precisely track ob-
ject liveness, the costs of modifying the program to eliminate the
leak may be quite low. After the program is deployed, however,
the costs of modifying the program typically rise dramatically as
the supply of programmers who understand the program dwindles.
In this case automatic memory leak elimination via cyclic memory
allocation can be much more effective than attempting to modify
the program to eliminate the leak — it eliminates the need to invest
programmer time and effort to understand and modify the program
and eliminates the risk that the programmer may inadvertently in-
troduce new errors.

Another factor is the quality of the information that the leak de-
tector provides. Both Hiene and Lam’s analysis and Hackett and
Rugina’s analysis are sound and (because they are designed to rec-
ognize specific programming patterns that leak memory) are able
to identify the location in the program that discards the last refer-
ence to the leaked object. In this case the modification to eliminate
the leak is straightforward (and in fact, could be applied automat-
ically). Unsound techniques or techniques that provide less of an
indication why the leak occurred require much more programmer
effort and the modification runs a much larger risk of introducing
new errors.

5.3 Static Memory Leak Elimination
Shaham, Kolodner, and Sagiv present a static analysis designed

to recognize and eliminate memory leaks that occur in data struc-
tures that maintain arrays of references to objects [21]. The ba-
sic idea is to find array elements that will always be overwrit-
ten before they are next read, then set such references to NULL,
thereby potentially making the referenced object unreachable and
enabling the garbage collector to reclaim the object. Shaham, Ya-
hav, Kolodner, and Sagiv use a shape analysis to eliminate memory
leaks in garbage-collected Java programs. The basic idea is to find
and eliminate eliminate references that the program will no longer
use [20].

Gheorghioiu, Salcianu, and Rinard present a static analysis for
finding allocation sites that have the property that at most one ob-
ject allocated at that site is live during any point in the computa-
tion [15]. The compiler then applies a transformation that preallo-
cates a single block of memory to hold all objects allocated at that
site. Potential implications of the technique include the elimination
of any memory leaks at such sites, simpler memory management,
and a reduction in the difficulty of computing the amount of mem-
ory required to run the program.

Interestingly enough, these analyses all consider the future ref-
erencing behavior of the program to find objects that the program
will no longer access regardless of whether they are reachable or
not. These analyses are therefore (in principle) capable of elimi-
nating leaks regardless of whether the program uses explicit mem-
ory management or garbage collection. This is in contrast with the
static memory leak detection algorithms discussed above in Sec-
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tion 5.2. Because these analyses all find objects that become un-
reachable before they are deallocated, they are not appropriate for
programs that use garbage collection.

Researchers have used escape analysis to enable stack allocation
for objects that do not escape a given procedure call context [22, 6,
11]. Because these analyses were developed for programs that use
garbage collection, they would typically not eliminate any memory
leaks — the stack-allocated objects would become unreachable and
reclaimed when the enclosing procedure call context exits even if
they were allocated in the heap. But it should be possible to ap-
ply these analyses to programs with explicit memory allocation, in
which case the transformation could eliminate memory leaks. In
particular, stack allocation would eliminate memory leaks if the
untransformed original program failed to explicitly deallocate the
stack-allocated objects.

An advantage of all of these analyses is their soundness — the
analysis considers all possible executions and does not apply the
transformation unless the program will never allocate more than
one live object from the site. Drawbacks include the need to de-
velop a sophisticated static program analysis, the need to target
specific usage patterns that leak memory, and the possibility that
the analysis may not scale or may (because of the inevitable im-
precisions in any static analysis) fail to find an important leak. For
example, the Gheorghioiu, Salcianu, and Rinard analysis will elim-
inate a memory leak at a given allocation site only if at most one ob-
ject allocated at the site is live at any point during the computation
and if the program never stores a reference to an object allocated at
that site into the heap. In practice, these restrictions severely limit
its utility as a memory leak eliminator. In particular, this analysis
would eliminate none of the leaks described in this paper. Our dis-
satisfaction with the limitations of these kinds of analyses led us,
in part, to develop the approach we present in this paper.

6. CONCLUSION
Memory leaks are an important source of program failures, espe-

cially for programs such as servers that must execute for long peri-
ods of time. Our cyclic memory allocation technique observes the
execution of the program to find � -bounded allocation sites, which
have the useful property that the program accesses at most only the
last � objects allocated at that site. It then exploits this property
to preallocate a buffer of � objects and cyclically allocate objects
out of this buffer. This technique caps the total amount of mem-
ory required to store objects allocated at that site at � times the
size of the objects allocated at that site. Our results show that this
technique can eliminate important memory leaks in long-running
server programs.

One potential concern is the possibility of overlaying live objects
in the same memory. Our results show that the risk of overlaying
live objects is small, that the consequences of overlaying live ob-
jects are not severe (and that failure-oblivious computing can sig-
nificantly ameliorate any negative consequences), and that the re-
ward (eliminating important memory leaks) can be significant.

Since its inception, the field of automated program transforma-
tion has focused almost exclusively on sound transformations that
do not affect the semantics of the program. We believe that this
focus has led the field to ignore many potentially useful unsound
transformations (such as the memory leak elimination technique
that this paper presents). As the field matures, we expect to see re-
searchers increasingly develop and deploy viable transformations
that happen to be unsound. The deployment decision will turn on
whether an appropriate risk/reward analysis shows that the rewards
that the transformation delivers outweigh the risks associated with
the possibility that the transformation may introduce errors.
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