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Abstract

Replicating various components of a system is a common technique for providing highly avail-
able services in the presence of failures. A replication scheme is a mechanism for organizing
these replicas so that as a group they provide a service that has the same semantics as the original
unreplicated service. Viewstamped replication is a new replication scheme for providing high
availability.

This thesis describes an implementation of viewstamped replication in the context of the
Argus programming language and run-time system. The programmer writes an Argus program
to provide a service without worrying about availability. The run-time system automatically
replicates the service using the viewstamped replication scheme,and therefore makes the service
highly available. Performance measurements indicate that this method allows a program to be
made highly available without degradation of performance.

Keywords: Replication, Availability, Transactions, Nested transactions, Viewstamped replica-
tion, Primary copy replication, Commit protocols

This report is a minor revision of a Master’s thesis of the same title submitted to the Department
of Electrical Engineering and Computer Science on January 24, 1990, in partial fulfillment of
the requirements for the degree of Master of Science in Electrical Engineering and Computer
Science. The thesis was supervised by Professor Barbara H. Liskov.
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Chapter 1

Introduction

High availability is essential to many computer-based services. Consider an airline reservation

system that handles flight bookings for customers from all over the country. Suppose this

system resides on a single computer. A failure of this computer could cripple the airline

because customers could not make any reservations or get flight information for the duration

of the failure. This loss of service is highly undesirable; we would like to make the reservation

service remain available in spite of failures.

A common technique for achieving availability is to replicate the service. For example, if

there are copies of the reservation system on several computers, the failure of a single computer

could be tolerated because the other copies would remain available. This replication, however,

does not come for free. The replicas have to be organized so that as a group they provide a

service equivalent to the original unreplicated service. Various replication schemes that achieve

this organization are described in the literature: weighted voting [Gif79], quorum consensus

[Her86] and primary copy replication [AD76].

This thesis describe an implementation of viewstamped replication [Oki88], which is an

extension of primary copy replication. This implementation demonstrates that viewstamped

replication is an efficient technique for building highly available services. The replication

scheme has little impact on the performance of the service, but allows the service to remain

available in the presence of failures. Performance measurements that support this claim are

given in a later chapter.

This implementation is done in context of the Argus programming language and run-time

system [Lis88]. The Argus system has been designed as a tool for easy construction of long-

lived services. The Argus run-time system is modified to automatically make services written

using the Argus programming language highly available.

13



14 CHAPTER 1. INTRODUCTION

1.1 The Replication Scheme

In primary copy replication, the unit of replication is a module. A module is an encapsulation

of some resources together with the operations used to access these resources. Each module

is replaced by several copies. One of these copies is designated the primary; the others are

backups. All module operations are executed at the primary. The effects of these operations

are propagated to the backups in the background. If the primary ever fails, a backup takes over

and becomes the new primary.

Viewstamped replication extends the primary copy scheme to limit the impact of system

failures. Whenever a failure occurs, normal activity is suspended, the replicas are reorganized,

and a new primary is selected if the old one is now inaccessible. When this reorganization is

complete, normal activities are allowed to resume.

[Oki88] gives a comparison of the viewstamped replication scheme with several well-

known replication schemes and systems from the literature (Voting [Gif79], Virtual Partitions

[ESC85], Isis [Bir85], Circus [Coo85], Tandem’s NonStop System [Bar78, Bar81], and Auragen

[BBG83]).

1.2 System Model

The replication method operates in a distributed computer system that consists of many nodes

linked by a communication network. The communication network may have an arbitrary

topology — for example, many local area networks connected by a long haul network. Processes

residing on different nodes can communicate by sending messages over the network. We assume

that in the absence of failures, any node can send a message to any other node in the system.

Both the nodes and the communication network may fail. Nodes may crash, but we assume

that they are failstop [Sch83]; i.e., once a node fails in any manner, it stops all activity. Each

node has volatile storage that is lost in a crash. Nodes may also have disks that provide non-

volatile storage. Data stored on disks survives most node crashes, but some node crashes may

result in disk media failures that destroy this data. Each node also has a small amount of stable

storage. Stable storage is a memory device that preserves information written to it with a very

high probability [Lam81].

The communication network may drop messages, duplicate them, deliver them out of order,

or delay them. In addition, communication link failures might cause the network to partition

into isolated subnetworks that cannot communicate with each other. We assume that both node

and link failures are repaired.
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1.3 Overview

Chapter 2 presents the Argus model of computation which is based on transactions [Gra78],

and describes the portions relevant to this implementation.

Chapter 3 gives a general overview of the replication scheme. In particular, the terminology

used is presented, and then the replication scheme is described.

Chapter 4 covers my implementation of transactions. It describes the extra processing

needed at the clients and the servers to integrate transactions into the replication scheme.

Performance measurements of the replicated system are given, and compared with the corre-

sponding measurements for an unreplicated Argus system. A brief comparison of the replicated

system with the replicated transaction facility in Isis [Bir85] is also given.

Chapter 5 presents my implementation of the algorithm used to handle system failures.

This algorithm involves communication between the replicas to select a new primary. The

performance of this algorithm is discussed, and some future optimizations are presented.

Chapter 6 presents a summary of what has been accomplished and discusses some directions

for future research.





Chapter 2

The Argus System

Argus is an integrated programming language and run-time system [Lis88] for developing

distributed programs. It is intended to be used primarily to write programs that maintain on-

line data for long periods of times, such as banking systems, mail systems and airline reservation

systems. This on-line data is required to remain consistent in spite of failures and concurrent

access.

This chapter describes the Argus model of computation. The presentation focuses on

guardians and atomic actions.

2.1 Guardians

The logical nodes in an Argus system are called guardians. A guardian is a special object that

resides at a single physical node in a distributed system. Logically, a guardian is an abstract

data object that encapsulates its resources and provides operations to access these resources.

These operations, called handlers, can be used by other guardians to access and modify the

resources controlled by the guardian. For example, consider a guardian that models a bank

account (see Figure 2.1). It provides handlers to deposit and withdraw money, and to conduct

balance inquiries. Another guardian might maintain a database of bibliographic references for

a research group, and provide handlers to make queries and add new bibliographic entries.

Internally, a guardian contains data objects that represent the resources it is controlling.

These objects can be accessed only by invoking the guardian’s handlers using a remote procedure

call mechanism [Nel81]. The caller sends the name of the handler to be invoked, and some

arguments, to the guardian in a call message. When the handler invocation is finished, the

results are passed back to the caller in a return message (see Figure 2.2). The Argus run-time

17



18 CHAPTER 2. THE ARGUS SYSTEM

bank account = guardian
% Maintain a bank account
deposit = handler (amount: int)

% Deposit amount to the account
end deposit

withdraw = handler (amount: int) signals (insufficient funds)
% Withdraw amount from the account.
% Signal error if there are not enough funds in the account.
end withdraw

balance = handler () returns (int)
% Return account balance.
end balance

end bank account

Figure 2.1: Bank account guardian.

Caller Callee

Call Message

<Handler name, Arguments>

Return Message

<Results>

Figure 2.2: Decomposition of a handler call into a call message and a return message.

system takes care of all details of message construction and transmission inherent in the remote

call mechanism.

Inside a guardian, there are one or more processes (or threads of control) that execute

concurrently. Whenever a handler call comes in, a new process is created to execute the call.

When the call is finished, the process sends the results back to the caller, and then is destroyed.

In addition, there may be background processes that carry out tasks unrelated to a particular

handler call. For example, a guardian that represents a bank branch may have a process that

periodically audits all the accounts and reports any problems to the branch manager.
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2.1.1 Failure and Recovery

A guardian is resilient to node failures. After a physical node recovers from a crash, the

guardians that reside on the node can reconstruct their data objects by reading them from stable

storage. During normal operation, the guardian’s data objects are periodically copied to stable

storage to minimize the loss of information in case of a node failure. The exact point at which

these objects are written to stable storage is described in Section 2.3.1.

A crash destroys all processes and objects at a guardian. After the crash, the Argus run-time

system recovers the guardian’s objects from stable storage. The loss of processes is masked by

running computations as atomic actions [GLPT76], or actions for short. Actions also solve the

problems created by allowing concurrency within one guardian.

2.2 Atomic Actions

Two useful properties of atomic actions that help solve the problems created by concurrency

and failures are serializability and totality. The serializability property implies that the effect of

running a number of actions concurrently is the same as the effect of running them sequentially

in some unspecified order. Serializability permits concurrent execution yet ensures that the

concurrent actions do not interfere with each other. The totality of actions implies that an

action either completes entirely or has no visible effect on the system’s state. If an action

completes, it is said to commit; otherwise it is said to abort. The effects of committed actions

are made permanent by writing their changes to stable storage.

2.2.1 Atomic Objects

Atomic objects are used to implement atomic actions. Operations running on behalf of atomic

actions limit their access to atomic objects. Two key properties of atomic objects help control

this access to implement both serializability and totality of atomic actions.

Two Phase Locking

First, every operation carried out on any atomic object uses strict two-phase locking [GLPT76]

to implement serializability of concurrent actions. Every operation on an atomic object is

classified as either a reader or a writer. All operations that modify an object are called writers;

other operations are called readers. A read lock is acquired before a reader accesses an object,

and a write lock is acquired before a writer accesses an object. At any given time, at most one
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action can hold a write lock on an object. These locks are held until the action commits or

aborts, and do not need to be re-acquired if the action references the object again. This locking

scheme is called two-phase locking because the activity can be divided into two distinct phases.

In the first phase, all the locks are obtained as needed. In the second phase, at commit or abort

time, all the locks are released simultaneously.

Versions

Second, different versions of atomic objects are kept to implement totality. The state of an

atomic object is kept in a base version. Whenever an operation modifies the object on behalf

of an action, a tentative version is created to hold the modified state of the object. When the

modifying action commits, the tentative version replaces the base version, and the new state of

the object is written to stable storage. If the action aborts, the tentative version is thrown away.

2.2.2 Nested Actions

Atomic actions can be generalized to nested atomic actions by using subactions to build higher

level actions in a hierarchical fashion, thus forming trees of nested actions [Mos81]. An action

that is nested inside another is called a subaction. Non-nested actions are called topactions.

The standard tree terminology of parent, child, ancestor and descendant applies to action trees.

Nested actions have two desirable properties. First, since siblings in an action tree can run

concurrently, they allow concurrency within an action. Second, nested actions can be used as

a checkpointing mechanism. For example, each handler call in Argus runs as a subaction of its

caller. If a call fails for some reason, the run-time system simply aborts the call subaction and

allow the caller to try again. In this way, the effects of failures are limited.

2.2.3 Locking Rules

Subactions require extensions to locking and version management. The complete set of rules is

summarized in Figure 2.3. These rules ensure several things. First, a subaction is allowed to

obtain a read lock on an object only if all holders of write locks on that objects are its ancestors.

Similarly, a subaction can get a write lock on an object only if all holders of any sort of lock

on the object are its ancestors. This prevents improper concurrent access to an atomic object

because in the Argus model a child never runs concurrently with its parent.

Second, when a subaction aborts, its locks and versions are discarded and its parent action

can continue from the state at which the subaction started. When a subaction commits, its locks
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� Acquiring a read lock:

– All holders of write locks on X must be ancestors of S.

� Acquiring a write lock:

– All holders of read and write locks onX must be ancestors of S.

– If this is the first time S has acquired a write lock on X , push a copy of the object on top
of the version stack.

� Commit:

– S’s parent acquires S’s lock onX .

– If S holds a write lock onX , then S’s version (which is on the top of the version stack for
X) becomes S’s parent’s version.

� Abort:

– S’s lock and version, if any, are discarded.

Figure 2.3: Rules for locking and version management for object X by subaction S.

and versions are inherited by its parent. If the parent aborts later, all modifications made by the

subaction will be undone because the parent’s locks and versions will be discarded. A stack

of versions is used to implement this abort mechanism for nested actions. One version is kept

for each active action that is modifying the object. When a subaction needs a new version, the

version on top of the version stack is copied and the result is pushed on the stack.

2.2.4 Using Nested Actions

Subactions can be created in a number of ways.

� Every handler call runs as a subaction. This subaction is started on the caller’s side and

is called the call action. This extra action is used to ensure that handler calls have a

zero or one semantics. If the call is successful and the called guardian replies, the call

happens exactly once. If for some reason it is not possible to complete the call, the

run-time system aborts the call action. The totality of atomic actions thus guarantees that

effectively the call did not happen at all. Therefore running a remote procedure call as a

subaction ensures that the call has clean semantics.
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T

G1

G2

G3

G4

h1

h3

h2

Figure 2.4: Action spreading out due to nested handler calls.

� When a handler call message is received at a guardian, a subaction is created to process

it. This subaction is called the handler action. The handler action provides a separation

between the calling and the called guardian, and ensures that each individual action runs

at just one guardian.

� Explicit subactions can be created by the programmer to provide extra concurrency and

a checkpointing mechanism.

2.3 Committing and Aborting Actions

A distributed program in Argus consists of a collection of guardians spread over the nodes

of the network. A computation is initiated at some guardian by creating a topaction. This

computation spreads to other guardians in the system by means of handler calls.

For example, in Figure 2.4, topaction T starts out at guardian G1, makes a handler call

h1 to G2, which in turn makes handler call h2 to G4. When h1 is finished, T makes a final

handler call h3 from G1 to G3. In this manner, topaction T, which started at G1 manages to

spread to G2, G3 and G4. When T commits, all modifications made by T’s descendants are

written to stable storage using the standard two-phase commit protocol [Gra78]. The guardian

where the topaction started acts as the coordinator for the commit protocol; guardians visited

by descendants of the topaction are the participants. Information about the guardians visited

by the descendants of a topaction is collected in handler call reply messages. The coordinator

uses this information to compute the set of guardians that participated in the topaction. In the

preceding example, G1 will be the coordinator and G1, G2, G3 and G4 will be the participants.
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2.3.1 Two Phase Commit

Subaction commit and aborts are implemented using the rules in Figure 2.3. The two phase

commit protocol [Gra78] is used to implement topaction commits. In the first phase, the

coordinator sends out prepare messages to all the participants. When a participant receives a

prepare message for topaction T, it releases all read locks held by T and sends a reply back

to the coordinator. If the coordinator receives a reply from each participant, the second phase

is started and the coordinator sends out commit messages to all the participants. When a

participant receives a commit message for topaction T, it releases all write locks held on behalf

T, writes the tentative versions of the atomic objects modified by T to stable storage, and

installs these tentative versions as the new base versions. However, if in the first phase one of

the participant refuses to prepare, or due to a failure the coordinator does not receive a reply

from a participant, then the coordinator aborts the action and sends out abort messages to all

the participants. On receiving an abort message, a participant releases all locks held on behalf

of the action, and throws away all tentative versions of atomic objects modified by the action.

Information needs to be written to stable storage during this protocol to ensure that the

effects of the committed topaction survive crashes.

1. Before a participant agrees to prepare by replying to a prepare message, it writes a prepare

record to stable storage. This record contains the tentative versions of all atomic objects

modified by the topaction. The prepare record ensures that if the coordinator decides to

commit the topaction, all the modifications made by the topaction can be recovered from

stable storage after a participant crash.

2. In phase two, the coordinator sends commit messages to all the participants and waits for

acknowledgments. If the coordinator crashes while waiting for the acknowledgments,

some participants may receive the commit message, while others may not. To solve

this problem, the coordinator writes a committing record to stable storage before sending

the commit messages. When all the commit messages have been acknowledged, the

coordinator writes a done record to stable storage. On recovering from the crash, if there

is a committing record for the topaction, but no corresponding done record, the newly

recovered coordinator will resend the commit messages to all the participants and again

wait for acknowledgments.

3. When a participant is notified of the commit or abort of a topaction, it records this

notification on stable storage by writing either a commit or an abort record. These

records are used during recovery of the guardian’s state from stable storage after a crash.
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If there is a commit record for a topaction, the tentative versions in the corresponding

prepare record are installed as base versions. If there is an abort record for the topaction,

the tentative versions are thrown away.

Various optimizations are made for topactions that do not modify anything at some partic-

ipants. At such participants, no prepare record is written for topaction T. In addition, these

participants are omitted from phase two of the commit protocol because they have no write

locks that need to be released, or tentative versions that need to be installed. Therefore, if the

topaction is read-only at all participants, the entire second phase is omitted.



Chapter 3

Viewstamped Replication

The mechanisms presented in Chapter 2 allow a programmer to construct services which are

highly reliable; i.e., with a high probability, the service does not lose necessary information.

However, Argus does not provide any mechanisms to make services highly available. The

programmer must explicitly arrange for availability, perhaps by replicating the service onto

several guardians which communicate with one another to keep their state mutually consistent.

Viewstamped replication addresses this problem by automatically providing availability. Since

the programming model is not changed, the programmer writes programs as before, and the

run-time system is configured so that the services provided by these programs are highly

available.

This chapter gives an overview of the replication scheme as described in [Oki88]. The

replication scheme is then broken down into several different sections, and the implementation

of each is described separately in later chapters.

3.1 Overview

Each individual guardian is replicated to obtain a guardian group. Each guardian group

consists of several members called cohorts. This set of cohorts is called the guardian group’s

configuration. The configuration behaves as a single logical entity that provides the same

service as the original unreplicated guardian. Each cohort has a system-wide unique name

called its guardian identifier, or gid for short. Guardian groups have unique names called group

identifiers, or groupid for short. Each cohort knows its own gid as well as the configuration and

the groupid of the guardian group to which it belongs. It is assumed that a guardian group’s

configuration never changes — the set of cohorts that belong to the group is fixed at group

creation time.

25
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Figure 3.1: Normal operation of replicated guardian group G consisting of cohorts a, b, c, d
and e with primary a.

One member of the configuration is designated the primary; the other members are backups.

During normal operation, handler calls made to the guardian group are routed to the primary.

The primary executes all incoming handler calls and propagates information about these handler

calls to the backups in the background. If any cohort crashes or becomes inaccessible because

of network failures, the remaining cohorts undergo a reorganization. If the original primary is

no longer accessible, a new primary is selected during the reorganization.

Figure 3.1 illustrates the interaction between a guardian group and a client. G is a guardian

group consisting of the five cohorts a, b, c, d and e. Cohort a is the primary, and the rest are

backups. The five cohorts are grouped together in the picture to suggest that they form a single

logical entity G, even though physically they may be distributed over a network. The client C

communicates with G, and its requests are routed to the primary a. Cohort a carries out the

request and replies back to C; it also sends information about completed requests to the backups

in the background.

Suppose a failure causes a network to be partitioned as in Figure 3.2. In response to this

failure, G reorganizes itself automatically to remain available. This reorganization is called a

view change, and the algorithm that carries it out is called the view change algorithm. The

remaining cohorts select a new primary, b in this example, since the old primary a is no longer

accessible. After this reorganization, b is ready to receive new requests on behalf of G.

Consider what happens to transactions that are active during a view change. Suppose

transaction T1 had made some handler calls to the old primary a before the view change. T1

then decides to commit, and a prepare message is sent to the new primary b. What should
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Figure 3.2: Guardian group partitioned due to network failure with old primary a, and new
primary b.

b do on receiving this message? If all the activity carried out on behalf of T1 at a has been

propagated to b, then b can go ahead and let T1 commit. However, if some of this information

did not make it to b before the partition, b does not know about all the activity carried out at

G on behalf of T1, and has to abort T1. Viewstamped replication provides an inexpensive way

of determining what information is “known” at a guardian, and what information needs to be

known to allow a transaction to commit.

Toes rest of this chapter explains the various parts of the viewstamped replication scheme.

3.2 View Management

Each guardian group goes through a sequence of node and communication link failures and

recoveries. Since these failures can interfere with the semantics of the service provided by the

guardian group, a mechanism is needed to mask these failures from the outside world. The

concept of views provides this mechanism. A view exists for a period of time during which the

communication capability of the guardian group remains unchanged. It identifies the primary

and the set of cohorts that are active during this period of time.

In Figure 3.3, guardian group G starts out in view fa : b; c; d; eg; a is the primary, and b,

c, d and e are the backups. Because of a communication failure, which makes a unreachable

from the rest of the group, G then undergoes a view change and enters the new view fb : c; d; eg

with b as the new primary.
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Figure 3.3: View change in guardian group G due to partitioning of old primary a from the rest
of the cohorts.

Each view is named from a set of totally ordered viewids. The scheme used for generating

the viewids must guarantee that they are unique, and that viewids for later views should be

larger than viewids for earlier views.

When the communication capability of the guardian group changes, due to either failure

or recovery of a communication link or a node, a view change algorithm is initiated to form a

new view. A modification of the virtual partitions protocol proposed in [ESC85] is used for

this purpose. The algorithm creates a new view consisting of at least a majority of the cohorts

in the configuration. It also assigns a unique viewid to this new view.

In Figure 3.3, a partition in the network changes the communication capability of the

guardian group G. The view change algorithm discards the old view fa : b; c; d; eg and creates

the new view fb : c; d; eg with new primary b. It also assigns the unique viewid v2 to the new

view.

The view change algorithm also finds the most “up-to-date” state from the local states of all

the members of the old view that are accessible in the new view. Since each view consists of at

least a majority of the cohorts in the configuration, the intersection of the old and the new view

must be non-empty, and at least one such state is always available. This state is transmitted to

the new primary as part of the view change and is used as the initial state of the guardian in the

new view.
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3.3 Mechanisms for Running Transactions

The system makes several guarantees to correctly implement atomic transactions. First, if

a topaction commits in some view, its effects are guaranteed to survive all subsequent view

changes by waiting for these effects to reach at least a majority of the cohorts in the configuration

before allowing the topaction to commit. When the next view is formed, its initial state will

contain all the effects of the committed topaction. Since this initial state is propagated to at

least a majority of the cohorts at view change time, the effects of the committed topaction will

survive the next view change too. By induction, the effects of the committed topaction will be

known in all future views.

Second, if information about a committed subaction S is lost during a view change, then the

topaction T that is an ancestor of S must not be allowed to commit. This is done by allowing

T to prepare at G only if all effects of T’s descendants are “known” at G’s primary. If any of

these effects have been lost during intervening view changes, T must be aborted. Timestamps

are used to determine what is “known” at a given cohort.

3.3.1 Timestamps

Any activity at the primary which needs to be propagated to the backups is called an event.

Completion of handler calls, topaction commits and topaction aborts are examples of events.

Timestamps are assigned to each event; these timestamps must be unique within a view. The

timestamps should also form a totally ordered set within a view, with later events receiving

larger timestamps than earlier events.

The replication scheme requires that information about events be propagated to the backups

in timestamp order. This guarantees that if a cohort knows about an event, then it knows about

all earlier events in the same view.

3.3.2 Viewstamps

Timestamps are tagged with the viewid of the view they were generated in to form viewstamps.

Since viewids are unique across a guardian group, and timestamps are unique within a view, a

viewstamp uniquely names an event that happened at the guardian group. Therefore, we can

use a set of viewstamps S to describe what a cohort “knows”. This set is called the viewstamp

history of the cohort.

For example, suppose a cohort knows about events with timestamps 1 through 4 from view
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v1, and about events with timestamps 1 and 2 from view v2. Then, its viewstamp history is

fhv1:1i, hv1:2i, hv1:3i, hv1:4i, hv2:1i, hv2:2ig

Since viewids are totally ordered, and all timestamps within a view are totally ordered, a

total order can also be imposed on viewstamps. Viewstamps within the same view are ordered

by timestamps. Viewstamps in different views are ordered by viewids. More rigorously, we

can define a total order < on viewstamps such that hv1:t1i < hv2:t2i if

(v1 < v2) or ((v1 = v2) and (t1 < t2))

The next section describes how these mechanisms are used for topaction commits.

3.4 Transaction Processing

In a transaction processing system, clients make handler calls to servers, and act as two-phase

commit coordinators at commit time.

3.4.1 Handler Calls

Clients make handler calls to servers. They send their belief about about the server’s current

viewid along with other relevant information to the server primary in the call message. If the

viewid in the call message does not match the view the primary is in, the primary rejects the call

message since it may lack results from earlier calls done by T, and the client tries again with

another viewid. Otherwise, the handler call is processed at the primary. The primary generates

a new viewstamp for the handler call event. This viewstamp flows back on the reply message

to the client. For each topaction, the client keeps track of a set of viewstamps V SS(T; S) for

each server S that the topaction T visits.

In Figure 3.4, the client sends a call message to the server G, which is in view v2. When

G’s primary P receives the call message, it generates a new viewstamp hv2:4i for the handler

call event, does the processing required by the handler call, adds the new viewstamp to its

viewstamp history, and sends the viewstamp back to the client. The client adds hv2:4i to

V SS(T;G).

3.4.2 Two Phase Commit

As described above, the coordinator keeps a set of viewstamps V SS(T; S) for each server S

that participated in the topaction T . At commit time for topaction T , the coordinator sends a
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Figure 3.4: Handler call processing. Viewids flow from the client to the server, and viewstamps
flow from the server to the client.

prepare message to each participant. The prepare message sent to server S contains the list

of viewstamps V SS(T; S). The server primary now needs to decide if enough information

is known to allow the topaction to commit. Each cohort C’s viewstamp history V SH(C)

describes the events known by C; see Section 3.3.2. Therefore, the primary P knows enough

information to allow T to commit if

1. V SS(T; S) � V SH(P )

2. For all transactions X , if T depends on X then V SS(X;S) � V SH(P ).

The first condition is easy to check. A property of V SH(P ) removes the need for checking the

second condition. Let T depend on transaction X . The serializability property of transactions

guarantees that X has already committed. Since information about committed transactions

is guaranteed to survive into all subsequent views, V SS(X;S) � V SH(P ). Therefore, the

second condition is always guaranteed to hold and we do not need to check for it explicitly.



32 CHAPTER 3. VIEWSTAMPED REPLICATION

<v1.1...10><v2.1...9>

<v1.1...10><v2.1...6>

<v1.1...10><v2.1...6>P
prepare(<v1.3>,<v1.8>,<v2.7>)

Figure 3.5: Deciding whether a server should let a topaction commit.

In Figure 3.5, the client sends the viewstamp set fhv1:3i,hv1:8i,hv2:7ig to the server G.

Since the primary’s viewstamp history is a superset of this set, the primary knows that enough

information is available to allow the topaction to commit.

However, this is not sufficient. To make commits permanent, we must also ensure that a

majority of the cohorts have enough information. For example, suppose we allow the topaction

to commit after checking only that the primary has enough information. Right after the commit,

the primary could crash, and nobody in the resulting view would have all the information about

the topaction — even though it committed. Therefore, before the primary can allow the

topaction to commit, it has to ensure that a majority of the cohorts in the configuration know

about all the activity done on behalf of the topaction. It does this by waiting for the required

information to propagate to at least a sub-majority of the cohorts in the configuration, where a

sub-majority is one less than a simple majority; a sub-majority plus the primary constitutes a

majority.

Consider Figure 3.5 again. The primary has to wait until at least one of its backups hears

about the event with viewstamp hv2:7i, so that a majority of the cohorts in the configuration

will know everything done on behalf of the topaction. Waiting for the required information to

propagate to a sub-majority corresponds to writing the prepare record to stable storage in the

unreplicated transaction system.
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Transaction Implementation

This chapter describes my implementation of transactions for viewstamped replication. The

Argus implementation was used as the basis for this work. First, I give an overview of the

portion of the run-time system responsible for transaction processing. Then, in Section 4.2 the

implementation of nested actions is described. In Section 4.3 the mechanism for propagating

information from the primary to the backups is described. Section 4.4 describes the mechanism

for locating the current primary of a guardian group. Section 4.5 describes the implementation of

handler calls. Section 4.6 describes the two phase commit protocol used for topaction commits.

Section 4.7 presents some performance figures for transactions running under viewstamped

replication. Finally, Section 4.7.3 compares the performance of the replicated system with the

Isis replicated transaction facility [Bir85].

4.1 Overview

The organization of the transaction processing run-time system is given in Figure 4.1. The

primary executes incoming handler calls and participates in the two phase commit protocol

with primaries of other guardian groups. Both handler call processing, and the commit protocol

generate events that are propagated to the backups by several Sender processes. Each sender

process is responsible for sending event records to one backup; it communicates with the

Receiver process at that backup to achieve reliable and in-order transmission of the event

records.

33
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Figure 4.1: An overview of the transaction processing implementation.

4.2 Actions

This section describes the implementation of atomic actions for viewstamped replication.

Section 4.2.1 describes a useful method for visualizing nested actions and presents an example

that will be used in the rest of this section to illustrate different points. Section 4.2.2 describes

a mechanism for naming nested actions that simplifies the implementation of some operations

on nested actions. Section 4.2.3, Section 4.2.4 and Section 4.2.5 describe information about

nested actions that is collected and then used in the implementation of two phase commit.

4.2.1 Action Trees

Nested transactions can fan out to several guardian groups via handler calls. Actions trees

provide a useful way to visualize the state of a transaction that spans several guardian groups.

The tree is a simple model for the nested structure of a transaction. Each action in the transaction

maps to a node in the tree. The nodes in the tree can be marked one of three ways — active,
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active
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Figure 4.2: Action tree showing the location and status of topaction A.

aborted or committed — to show the state of the corresponding action. In addition, the location

at which an action runs is also marked on the action tree.

Consider Figure 4.2. Action A is active at guardian group G1. Subaction A.1 at G1

aborted. A.1’s children, A.1.1 at guardian group G3 and A.1.2 at guardian group G4 have both

committed; however, since their parent A.1 has aborted, both A.1.1 and A.1.2 are considered to

have aborted with respect to the topaction A. Subaction A.2 ran at guardian group G2 and has

committed. Two of its children, A.2.1 at G3 and A.2.2 at G5 have committed. The remaining

child, A.2.3, ran at G6 and has aborted.

Recall that a handler call creates two actions: a call action at the caller, and a handler action

at the callee. For simplicity, only handler actions are shown in this action tree. The real action

tree can be obtained by inserting appropriate call action nodes above the handler action nodes

in Figure 4.2.

4.2.2 Action Identifiers

An actions is named by an action identifier (aid for short). The aid for an action A is just

the aid for its parent action concatenated with an extra entry. This extra entry is of the form

huid, groupidi where groupid is the identifier of the guardian group where A ran, and uid is a

small tag to differentiate between siblings that run at the same guardian group. This naming

scheme is just a variation on the labels for the actions in Figure 4.2. Action A’s aid is [h1,G1i],

action A.1’s aid is [h1,G1i,h1,G1i] and action A.1.2’s aid is [h1,G1i,h1,G1i,h2,G4i].
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Given this representation for an aid, it is easy to implement the following operations on

action identifiers.

� check whether an action is an ancestor of another action.

� find an action’s parent.

� find the groupid of the guardian group where an action ran.

� find the least common ancestor of two actions.

4.2.3 Participant Set

At topaction commit time, the coordinator needs to know the guardian groups at which the

topaction ran. This is done by collecting a participant set up the action tree. When an action

starts running at a particular guardian group G, its participant set is initialized to fGg. If an

action commits, its participant set is merged into its parent’s participant set; if the action is a

handler action, the participant set is passed back to the parent call action by piggybacking it on

the reply message for the handler call. In Figure 4.2, A.2’s participant set is fG2, G3, G5g, and

A’s participant set is fG1, G2, G3, G5g. The locations of aborted subactions are not included in

the participant set. Therefore, G4 and G6 will not be involved in the topaction commit protocol

for A.

4.2.4 Aborts Set

The aborts set for an action X is the set of subactions of X that have aborted. For example, the

aborts set for action A in Figure 4.2 is

fA.1, A.1.1, A.1.2, A.2.3g

These sets are computed up the action tree just as the participant sets are. There is a more

compact representation for these sets. If an actionA is a member of the aborts set, then all proper

descendants of A are removed from the aborts set. This compaction is correct because A’s

membership in the aborts set implies the membership of all its descendants (descendants of an

aborted action are also considered aborted). The aborts set given above shrinks to fA.1, A.2.3g

after applying this compaction.
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4.2.5 Viewstamp Sets

As discussed in Section 3.4.2, the prepare message for topaction T sent to participantP contains

the viewstamp set V SS(T; P ). These sets are also computed up the action tree. If action A

has n participants, it will have n viewstamp sets, one per participant. It may seem expensive to

move these n sets around, but a simple optimization drastically reduces the size of these sets.

In Section 3.3.1, it was noted that if a cohort knows about an event with a particular

timestamp in view v, then it knows about all events in view v that have smaller timestamps.

More formally, if hv:yi is in V SH(C) and y > x then hv:xi is in V SH(C). Therefore, if

V SS(T; P ) contains more than one viewstamp for a particular view, than all but the largest

of these viewstamps can be safely discarded. Let us see why this is a correct optimization to

make. Let participant P ’s primary be X . Let hv:tsi be the largest viewstamp in V SS(T; P )

for view v. If hv:tsi 2 V SH(X), then all the discarded viewstamps will also be in V SH(X).

If hv:tsi =2 V SH(X), then V SS(T; P ) is not a subset of V SH(X). Therefore, the reduced

viewstamp set is a subset of V SH(X) iff the original viewstamp set V SS(T; P ) is a subset of

V SH(X), and the optimization is correct.

After making this optimization, there will be at most one viewstamp per view in this

participant’s viewstamp set. For example, let V SS(T; P ) for an action be

fhv1:3i, hv1:5i, hv1:6i, hv2:1i, hv2:8ig

The reduced viewstamp set will be just fhv1:6i, hv2:8ig. This optimization is performed as the

viewstamp sets are merged up the action tree. The optimization was first given in [Oki88], but

it was used directly, and not presented as a method for reducing the size of the viewstamp sets.

4.3 Event Log

When a backup joins a view, the primary may need to update the backup’s state so that it

corresponds to the primary’s state. One way to perform this update is to send the primary’s

whole state over the network. This method may be unnecessarily expensive if the differences

between the primary and the backups’ states is small. A more efficient method that transmits

just the differences between the two states exists. The key insight here is that a cohort’s state can

be represented by the sequence of events that it knows about. Therefore, if each cohort stores

the events it knows about in an event log, the primary can efficiently update a backup’s state by

sending the differences between the primary’s and the backup’s log. Log compaction techniques

can be used to prevent these logs from growing without bound. My implementation uses event
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Figure 4.3: Format of event records

logs to transfer information from the primary to the backups. However, the implementation

does not contain a log compaction scheme.

4.3.1 Event Types

There are six different kinds of events that can be stored in the event log. Their formats are

shown in Figure 4.3. Committing and done events are generated at the coordinator of a

committing action. A completed-call event is generated when a handler call completes at a

server. The format of completed-call event records is described later in Section 4.5. Committed

and aborted events are generated when a participant is notified of the status of a topaction.

New-view records are written to the log by the newly selected primary as part of the view change

process.

4.3.2 Viewstamp History

As described in Section 3.3.1, a cohort’s viewstamp history is the set of viewstamps that

describe what the cohort knows; i.e., a cohort’s viewstamp history is the set of viewstamps for

all the events in the cohort’s event log. The technique used to compress the viewstamp sets

generated during transaction processing, as described in Section 4.2.5, is also used to get a

compact representation of a cohort’s viewstamp history. If a cohort has an event from view v

in its event log, then it has all other events with smaller viewstamps from view v. This implies

that if hv:xi 2 V SH(C) and y < x then hv:yi 2 V SH(C). Therefore, the representation of a

cohort viewstamp history just records the largest viewstamp from each view about which view



4.3. EVENT LOG 39

extent[b]: viewstamp % Viewstamp of last event known to be in b’s log
flood to[b]: viewstamp % Viewstamp of event we want in b’s log

sender[b] = process
% Use streaming protocol to reliably send the portion of the event log between
% extent[b] and flood to[b] to b.
while true do

wait for extent[b] < flood to[b]
% Invoke streaming protocol
...
end

end sender[b]

Figure 4.4: Sending the event log to a backup

the cohort knows. For example, let a cohort’s viewstamp history be

fhv1:1i, : : : hv1:29i, hv2:1i, : : : hv2:11ig

This history is uniquely represented by the set fhv1:29i, hv2:11ig.

4.3.3 Primary to Backup Transmission

At several points, the primary must guarantee that some information has reached a majority of

the cohorts in the configuration. For example, when a participant primary receives a prepare

message for a topaction T, it needs to ensure that all the completed-call events for topaction T

have reached a majority of the cohorts in the configuration. This ensures that if T commits,

its effects will survive subsequent view changes. The primary guarantees that particular events

are known at a majority of the cohorts by sending portions of the event log to its backups.

The mechanism used to transmit a portion of the event log from the primary to a backup b

is illustrated in Figure 4.4. extent[b] is the viewstamp of the last event known by the primary

to be in b’s event log. flood-to[b] is the viewstamp of the most recent event in the portion

of the log that has to be sent to b. The process sender[b] waits until some event needs to be

sent to be b. It then uses a reliable message delivery system to send the portion of the event

log between extent[b] and flood-to[b] to b. The current implementation uses a sliding window

protocol [Tan81] for fast and efficient message delivery. This protocol updates extent[b] based

on the information present in acknowledgment messages received from b.

The interface to this transmission mechanism is provided by the procedure force-events

shown in Figure 4.5. Submajority(backups) returns a subset of the backups that forms a



40 CHAPTER 4. TRANSACTION IMPLEMENTATION

force�events = proc (events: set[event])
max vs: viewstamp := max fe.vs j e 2 eventsg
dests: set[cohort] := submajority(backups)
for b: cohort in dests do

flood to[b] := max fflood to[b];max vsg
end

% Wait until max vs reaches a submajority
wait for

V
b2dests(extent[b] � max vs)

end force�events

Figure 4.5: Forcing a set of events to a majority of the configuration

sub-majority of the configuration. The primary and a sub-majority together form a majority

in the configuration. Therefore, to guarantee that a set of events is known at a majority, the

primary sends the relevant portion of the event log to a sub-majority of its backups1 and waits

until it receives acknowledgments.

4.4 Locating Primaries

Handler call and prepare messages need to be sent to the destination guardian group’s primary.

These messages also need to contain the correct viewids so that old primaries safely ignore the

message. To achieve this, each guardian maintains a cache that maps guardian group identifiers

to viewids and primary identifiers. This cache may be out of date because of view changes

that the guardian has not heard about. When sending a handler call or a prepare message, the

primary identifier and viewid are looked up in this cache and the message is sent.

If the cohort that receives the message detects that the information retrieved from the cache

is out of date — the viewid in the message is not correct, or the cohort is not the current primary

— the cohort replies with a message containing the correct information. This information is

used to update the cache and the message is sent again.

4.5 Handler Calls

The client primary uses the mechanism described in Section 4.4 to send a handler call message

to the server primary. The server primary creates a handler action that runs the code associated

1In the current implementation, one sub-majority is picked at the start of a view and information is always
forced to this sub-majority for the duration of the view.
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% Type of completed call event record
type completed call record = record [

id: aid, % Action identifier
objects: array[obj info] % Locks and tentative versions
]

% Type of information kept for each accessed object
type obj info = oneof [

read lock: object id, % Read locked object’s id
write lock: write info % Write locked object info
]

% Type of information kept for write locked objects
type write info = record [

id: object id, % Object identifier
tentative: object % Tentative version
]

Figure 4.6: Format of completed call event record

with the handler specified in the handler call message. Running this code may involve nested

handler calls to other guardians; see Figure 2.4 for an example. After running this code, the

handler action generates a completed-call event record for this handler call.

The format for this event record is given in Figure 4.6. The completed call record contains

a list of all the locks acquired by the handler action. In addition, the record contains the tentative

versions of all objects modified by the handler action. The completed call record is appended

to the event log, and a new viewstamp is generated for it. This viewstamp is merged into

the viewstamp set collected for the handler action as described in Section 4.2.5. Finally, the

handler action commits by sending a reply message to the client. This reply message contains

the viewstamp, participant and aborts set collected for the handler action as well as the results

of executing the actual handler named in the handler call message sent by the client. If the

handler action aborts, a reply is sent back to the client indicating that the handler action aborted.

No other information is sent to the client in this case.

4.6 Two Phase Commit

Sections 4.6.1 and 4.6.2 describe the implementation of two phase commit in the replicated

transaction system. T refers to the topaction being committed. The primary of the guardian

group that created T is the commit coordinator.
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4.6.1 Phase One

The coordinator sends a prepare message to each participant’s primary The prepare message

sent to participant P ’s primary has three fields —

1. T ’s action identifier.

2. V SS(T; P ). The participant primary uses this set to determine whether or not T should

be allowed to commit.

3. List of action identifiers of aborted subactions of T . The participant primary releases

locks and discards tentative versions held on behalf of these aborted subactions.

All the information required to generate the prepare messages is collected by the mechanisms

described in Section 4.2. The coordinator waits for replies to all the prepare messages. If a

reply is not received from a participant in a certain amount of time, the coordinator re-sends the

prepare message. If no reply is received after the prepare message has been re-sent a certain

number of times, the participant is assumed to be unreachable, and the topaction is aborted. If

all the participants agree to prepare by sending a prepare-ok message as a reply, the coordinator

proceeds to phase two. If some participant refuses to prepare by sending a refuse-prepare

message, the topaction is aborted.

When participant P ’s primary X receives a prepare message, it extracts the viewstamp set

V SS(T; P ) from the message. If V SS(T; P ) is a subset of the primary’s viewstamp history

V SH(X), enough information is present to allow the topaction to commit; if not, the primary

sends a refuse-prepare message to the coordinator. If the topaction can commit, the primary

forces the set of events corresponding to the viewstamp set V SS(T; P ) to a sub-majority

using the procedure force-events described in Section 4.3.3. This forcing is analogous to

writing the prepare record to stable storage in the unreplicated transaction system. The write to

stable storage in an unreplicated system ensures that the modifications made by T will survive

subsequent crashes. The forcing of V SS(T; P ) to a sub-majority in the replicated system

ensures that the modifications made by T will survive subsequent view changes. Finally, X

sends a prepare ok message to the coordinator.

4.6.2 Phase Two

The coordinator appends a committing event record to the event log and then forces it to a

sub-majority. If the coordinator crashes during phase two, this record is used to determine

whether or not T committed. If the committing record survives into the new view, T is assumed
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to have committed; otherwise, T is aborted. The coordinator forces the committing event to

a sub-majority; when the force is finished, the committing event is guaranteed to survive into

subsequent views, and the topaction T is known to have committed. The coordinator then sends

commit messages to all the participant primaries. When these commit messages have all been

acknowledged, a done event record is appended to the log and lazily propagated to the backups.

The committing and done records serve the same purpose as the corresponding records written

to stable storage in the unreplicated system; see Section 2.3.1.

When the participant primary receives a commit message from the coordinator, a commit

event record is appended to the event log and forced to a sub-majority. When the force has

finished, an acknowledgment is sent to the coordinator.

4.6.3 Aborts

The coordinator may decide to abort the topaction (for example, if a participant refuses to

prepare or if a participant is unreachable). The coordinator then generates an aborted record

for the topaction and appends it to the event log. It also sends messages to all the participants

informing them of the topaction abort so that they may release locks held by descendants of

this topaction. The coordinator does not make sure that these messages reach the participants,

because if some other action wants to acquire a lock held by a descendant of this topaction, it

can always find out about the abort by contacting the coordinator.

4.6.4 Optimizations

Several simple optimizations were made to the two phase commit protocol to improve system

performance and decrease the latency of the commit protocol.

1. Since the coordinator is also a participant, the coordinator sends messages to itself. This

can be easily optimized so that instead of sending a message to itself, the coordinator just

performs the computation that would be done in response to the message.

2. The outcome of the topaction (commit vs. abort) is known once the committing record has

been forced to a sub-majority at the coordinator. Therefore, the user code can be allowed

to continue at this point, and the rest of phase two can be finished in the background by

the run-time system. This decreases the latency of the two phase commit protocol from

the point of view of user code.

3. The optimizations made in the unreplicated system for topactions that were read-only at

some participants can also be applied here.
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If T is read-only at participant P , then P is not included in phase two of the commit

protocol. When P ’s primary gets the prepare message in phase one, after forcing

V SS(T; P ) to a sub-majority, it appends a commit event record to the event log and

sends a reply to the coordinator indicating that it is prepared read-only. The participant

P does not need to be included in the rest of the commit protocol. If all the participants

are read-only, during phase two the coordinator does not generate either a committing or

a done record because there are no participants that need to be informed of T ’s commit.

In the unreplicated system, no prepare record was written to stable storage at a participant

where the topaction was read-only. In the replicated system, we still require the events

associated with V SS(T; P ) to be forced to a sub-majority during phase one. This is done

because some failure and recovery sequences can result in multiple concurrent primaries,

where the primary in the most recent view does not know all the completed call events

generated by T whereas some out of date primary has all these events in its log. If the

prepare message arrives at the out of date primary, the topaction should not be allowed

to commit because another action might have acquired conflicting locks at the other

primary. Attempting to force V SS(T; P ) to a sub-majority ensures that this condition is

detected, because at least a majority of the cohorts in the configuration will know that the

primary that received the prepare message is out of date. These cohorts will not accept

the portions of the event log that the primary sends to them. Therefore, the force will not

succeed, and the topaction will be aborted.

4.7 Performance

This section discusses the performance of the replicated transaction system and compares it with

the original unreplicated system. Both systems are very similar. In particular, the replicated

system was implemented by adding the replication scheme to the unreplicated Argus system.

If future technology speeds up the unreplicated system, the same increase in speed should show

up in the replicated system.

The performance figures were collected by repeating the experiments a large number of

times and dividing the elapsed time by the number of repetitions. This technique was mo-

tivated by the very large granularity (10 ms) of the system clock. All measurements were

obtained on MicroVAX II’s running the 4.3 BSD operating system and connected by a 10

megabits/second ethernet. For more detailed performance measurements of the unreplicated

system see [LCJS87].
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Handler Orig- Replicated
Call inal 1,1 1,3 3,1 3,3

Null 19 20 20 20 20
Read 23 24 24 24 25
Write 23 24 25 25 25

Table 4.1: The time (in milliseconds) required to make a handler call. Original refers to the
unreplicated system. a; b refers to a replicated system with a replicas for the client and b replicas
for the server.

4.7.1 Handler Calls

We measured the times for three different kinds of handler calls. Null handler calls have no user

code to execute. Read handler calls read a small object, thereby acquiring a read lock. Write

handler calls modify a small object, thereby acquiring a write lock and creating a tentative

version. These calls were run on both the original system, and the replicated system with

varying degrees of replication. The times for these calls are given in Table 4.1. The column

labeled “Original” gives handler call times on the unreplicated system. The other columns

give the times for the replicated system with different degrees of replication. For example,

the column labeled 1; 3 gives handler call performance figures for a system where the client

guardian group is composed of one cohort and the server guardian group is composed of three

cohorts.

In all of the cases covered, the difference between the unreplicated and the replicated handler

calls is at most two milliseconds. This difference is due to several factors:

1. Primary and viewid lookups at the caller.

2. Viewid checks at the callee.

3. The viewstamp sets flowing on the reply messages.

4. The generation of completed call records.

5. Contention for processing resources with the processes that send the event log to the

backups.
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Top- Orig- Replicated
action inal 1,1 1,3 3,1 3,3

Read 40 43 61 43 63
Write 127 50 62 70 82

Table 4.2: The time (in milliseconds) required to run a topaction consisting of one handler call.
Original refers to the unreplicated system. a; b refers to a replicated system with a replicas of
the client and b replicas of the server.

4.7.2 Top Actions

The read and write handler calls described in the previous section were also used to collect

performance measurements for topactions. Table 4.2 gives performance figures for topactions

that consist of one handler call each. A read topaction consists of one read handler call; a write

topaction consists of one write handler call. In the following discussion, O will refer to an

unreplicated system and R(a; b) will refer to a replicated system with a cohorts for the client

guardian group and b cohorts for the server guardian group.

Read Topactions

Let us examine the numbers for read topactions. In O, a read topaction consists of a read

handler call and phase one of the two phase commit protocol; the second phase is optimized

away. The handler call takes 23 ms, and the message round trip delay involved in sending a

prepare message and waiting for a reply from the participant accounts for the remaining 17 ms.

In R(1; 1) the handler call takes 24 ms. The remaining 19 ms are spent in phase one of the

two phase commit protocol. Phase one of the replicated system involves forcing a portion of

the event log to a sub-majority at the participant. However, in R(1; 1) a sub-majority has size

zero, so no extra time is spent forcing the event log. Therefore, a read topaction takes roughly

the same time in both O and R(1; 1).

In R(1; 3) however, a sub-majority has size one. Therefore, in R(1; 3) there is a message

round trip delay while the server primary forces a portion of the event log to a sub-majority

during phase one. This accounts for the extra 18 ms required when the server guardian group

is replicated.

InR(3; 1), the coordinator for two phase commit is replicated. However, the coordinator for

a read-only topaction does not force anything to a sub-majority. Therefore, no extra overhead

is involved in replicating the coordinator, and the time for R(3; 1) is the same as the time for



4.7. PERFORMANCE 47

R(1; 1). For the same reason, the difference between R(1; 3) and R(3; 3) is negligible for a

read topaction.

Write Topactions

In the original system O, the time required to run a write topaction is 127 ms, which is more

than three times as much as the time required to run a read topaction. This extra time is spent

writing different records to stable storage. However, the implementation of O for which these

performance measurements were collected does not use real stable storage. It fakes stable

storage by writing to a disk. In a system that uses stable storage, the time to run a write

topaction will be even greater.

In the replicated system, forcing to a sub-majority takes the place of writing to stable

storage. Since sending messages across the network is considerably faster than writing to

a conventional stable storage implementation, we expect write topactions to run faster in the

replicated system. Let us look at the costs of running a write topaction on a system with varying

degrees of replication.

In R(1; 1), a write topaction is just slightly more expensive than a read topaction. This

difference is caused by interference between consecutive write topactions. In particular, the

second phase of the commit protocol at a participant interferes with the processing of the next

write topaction at the participant. Since there is no phase two at a participant where a topaction

is read-only, this interference does not occur for read topactions.

In R(1; 3), write topactions take approximately the same time as read topactions. One

would expect the interference visible in R(1; 1) to show up in R(1; 3) too. However, when

the participant guardian group has three cohorts, the extra time needed to force event records

to a sub-majority masks the interference between consecutive write topactions. Therefore, in

R(1; 3), write topactions are only as expensive as read topactions.

Write topactions in R(3; 1) are 20 ms more expensive than write topactions in R(1; 1).

Forcing the committing record at the coordinator accounts for this difference in cost. In

R(1; 1), this force is very cheap because the coordinator has no backups. In R(3; 1), the

force is more expensive because the coordinator has two backups and the force has to go to a

sub-majority (one) of the backups. The same fact accounts for the 20 ms difference between

write topactions in R(1; 3) and R(3; 3).
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Top- Orig- Replicated
action inal 1,1 1,3 3,1 3,3

Read (10) 241 260 290 262 291
Write (10) 340 272 302 294 322

Read (100) 2266 2472 2543 2477 2554
Write (100) 2484 2500 2590 2500 2600

Table 4.3: The time (in milliseconds) required to run a topaction consisting of multiple handler
calls. Original refers to the unreplicated system. a; b refers to a replicated system with a

replicas of the client and b replicas of the server. The number in the leftmost column gives the
number of handler calls comprising a single topaction.

Multiple Handler Calls

Table 4.3 presents performance figures for topactions consisting of multiple handler calls.

These measurements are interesting because we can expect topactions to consist of multiple

handler calls. The cost of committing topactions with multiple handler calls is amortized over

the different handler calls. Therefore, the overall cost per handler call should decrease as the

number of handler calls per topaction is increased.

The measurements in Table 4.3 are what would be expected given the performance of

handler calls in Table 4.1 and single handler call topactions in Table 4.2. As the number of

handler calls per topaction increases, the time spent making handler calls begins to dominate

the time spent during two phase commit. Therefore, since handler calls in the replicated system

are slightly more expensive than handler calls in the unreplicated system, topactions consisting

of a large number of handler calls are more expensive in the replicated system. For example, in

R(3; 3) a topaction consisting of one hundred write handler calls takes 2600 ms, whereas the

same topaction in O takes 2484 ms. This translates into a difference of 1.6 ms per handler call,

which is reasonable, given the observed difference of 2 ms between handler calls in R(3; 3)

and O.

4.7.3 Comparison with Isis

This section compares the performance of the replicated transaction system with the Isis

replicated transaction facility [Bir85]. Each service in the Isis system is composed of several

replicas. Rather than designating one replica as the primary for the entire service, any replica

can act as the coordinator for a particular handler call. Since different handler calls can have
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different coordinators, the handler calls have to be synchronized with each other. Read handler

calls are handled locally by acquiring a read lock and returning the result to the caller. Write

handler calls are handled by first using an atomic broadcast protocol [BJ87] to acquire write

locks at all the replicas and then performing the modifications.

The following table gives the costs of looking up and inserting new entries into a directory

service consisting of three replicas.

Operation Isis VS

Lookup 100 28

Insert 158 30

These numbers measure the average cost per handler call (in milliseconds) of a transaction

containing 25 requests. The first column gives the performance of an Isis system [Bir85] running

on Sun 2/50 computers. The second column gives the numbers for a system with viewstamped

replication running on MicroVAX II computers. Both systems use a 10 megabit/second ethernet

for communication. The difference in performance arises mainly from the large costs of the

atomic broadcast protocols used in Isis. A newer version of the Isis system is supposed to have

significantly faster implementations of these protocols, but performance numbers for these new

protocols were not available in time for inclusion in this thesis.





Chapter 5

View Change Algorithm

This chapter describes the view change algorithm that is invoked in response to node and network

failures and subsequent recoveries. Section 5.1 gives an overview of the entire run-time system,

including the components that implement the view change algorithm. Section 5.2 describes the

strategy used to detect failures and recoveries. Section 5.3 presents the implementation of the

actual view management algorithm.

The pseudo-code fragments presented in this chapter make extensive use of communication

facilities and timeouts. Most of this usage should be self-explanatory. Appendix A describes

some of the less obvious features used in the code fragments.

5.1 System Overview

Figure 5.1 gives an overview of the replication scheme’s implementation. Normal processing

encompasses handler call executions and two phase commits at the primary. This activity is

described by a sequence of event records that are generated during normal processing. The

event records are transmitted to the backups by the Sender processes. Each sender process

communicates with a Receiver process at one of the backups. The receiver processes receive

event records from the primary and store them locally in the event log. Whenever a receiver

process receives an event record marking the start of a new view, it notifies the View manager

process, which makes the cohort a backup member of the new view.

The Prober process runs at each cohort; it detects failures and subsequent recoveries of

other cohorts in the guardian group by communicating with their prober processes. In response

to such a failure or recovery, the prober process notifies the view manager process, which

initiates a view change. This view change protocol is implemented by communication between

the view manager processes running at different cohorts.

51
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Figure 5.1: Implementation Overview.

5.2 Failure and Recovery Detection

Each cohort periodically sends I’m alive messages via its Prober process to all the other cohorts

in the configuration. If cohort A does not receive any such message from cohort B in a given

amount of time, then A assumes B has crashed. B may not have actually crashed; it may just

have been partitioned from A by a communication link failure.

Node and communication link failures are detected by the absence of I’m alive messages.

Node and communication link recoveries are detected by a cohort when it receives an I’m alive

message from a cohort that was previously assumed to have crashed. The rest of this section

describes the failure and recovery detection mechanism in more detail.

Each cohort A maintains some state information for failure and recovery detection (see

Figure 5.2). The set alive cohorts contains the guardian identifiers for the cohorts that A

considers alive. Last msg maps from each cohort B to the time when the most recent I’m alive

message from B was received by A; see Appendix A for an explanation of the map datatype.
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send delay: time delta % Interval to wait between sending messages
death timeout: time delta % Cohort dead if no msg in this much time
my id: gid % My guardian id
other cohorts: set[gid] % Guardian group configuration � f my id g
alive cohorts: set[gid] % Set of cohorts considered alive
last msg: map[gid,time] % Map from cohort id to time last msg received

Figure 5.2: State maintained at each cohort for failure and recovery detection.

probe sender = process
while true do

for cohort: gid in other cohorts do
send alive(my id) to cohort.probe receiver
end

wait until current time() + send delay
end

end probe sender

Figure 5.3: Process that periodically sends I’m alive messages to all other cohorts in the
configuration.

Three processes at each cohort provide failure and recovery detection. The Prober process

in Figure 5.1 is the composition of these three processes. The probe-sender process (see

Figure 5.3) sends I’m alive messages to all other cohorts every send delay time units.

The probe-receiver process (see Figure 5.4) receives I’m alive messages from sender pro-

cesses at other cohorts. It updates the state variables alive cohorts and last msg in response

to these messages. In addition, when a message is received from a cohort that is considered

crashed, i.e., it is not an element of the set alive cohorts, a view change is initiated.

The failure-detector process (see Figure 5.5) waits until it locates a cohort in the alive cohorts

set from which an I’m alive message has not been received for the last death timeout time units.

It removes this cohort from the alive cohorts set and initiates a view change. In other words, if

a message is not received from a cohort for death timeout time units, the cohort is assumed to

have crashed and a view change is initiated. Death timeout should be several times as large as

send delay so that lost I’m alive messages do not cause unnecessary view changes.

There are conflicting requirements that influence the choice of send delay and death time-

out. On the one hand, these values should be large so that the failure and recovery detection

mechanism is activated infrequently and does not interfere with transaction processing. On the

other hand, these values should be small so that failures are detected quickly. The correct choice
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probe receiver = process
while true do

receive
alive(cohort: gid):

% Update the time last message was received from cohort
last msg[cohort] := current time()

% I’m alive message from cohort
if cohort =2 alive cohorts then

% Dead cohort is now alive
alive cohorts := alive cohorts [ f cohort g
send start view change to my id.view manager
end

end
end probe receiver

Figure 5.4: Process that receives I’m alive messages and detects cohort recoveries.

failure detector = process
while true do

% Check if there is a cohort from which a message hasn’t been received recently
for cohort: gid in alive cohorts do

if (current time() � last msg[cohort]) � death timeout then
alive cohorts := alive cohorts � fcohortg
send start view change to my id.view manager
end

end
% Wait until time to check again
time of next death: time := min flast msg[c] j c 2 alive cohortsg + death timeout
wait until time of next death
end

end failure detector

Figure 5.5: Process that detects cohort failures.

of values for these two system parameters is an engineering decision that should be made after

careful consideration. In my implementation, send delay is five seconds and death timeout is

five times the value of send delay. Death timeout is made significantly larger than send delay

because some I’m alive messages may be lost because we use an unreliable message transport

mechanism.
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% State kept for view management
type status = oneof [

active, % Cohort is member of current view
view manager, % Cohort is view change manager
inactive % Cohort is none of the above
]

state: status % Current cohort state
cur view: view % Most recent view entered by this cohort
max viewid: viewid % Largest viewid seen at this cohort
crashed: bool % True if recovering from a crash

Figure 5.6: State information used by the view change algorithm.

5.3 The Algorithm

The view change algorithm is invoked by the failure and recovery detection mechanism as

described in the previous section. The cohort where the algorithm is initiated becomes the view

change manager. It sends out invitations to all the other cohorts in the group; the other cohorts

reply to the invitations with acceptance messages. When the manager has received acceptances

from enough cohorts, it forms a new view. The manager then sends a message to the new view’s

primary to inform it of the new view. A single failure or recovery may be detected by several

different cohorts, each of which may initiate a view change in response; the protocol correctly

handles multiple concurrent view changes.

5.3.1 State Information

Each cohort maintains state information that is needed by the view change algorithm (see

Figure 5.6). The cohort can be in one of three states. A cohort is active when it is either the

primary or a backup in some view. A cohort enters the view manager state when it detects a

failure or recovery and initiates a view change algorithm. A cohort is inactive when it is neither

active nor a view manager. Cur view records the most recent view of which the cohort was

a member. Cur view.vid is maintained on stable storage; every time the cohort enters a new

view, the modification to cur view.vid is recorded on stable storage. Max viewid is the largest

viewid ever seen by the cohort; it is also maintained on stable storage. Crashed is a boolean

variable that is true for any cohort that has not entered a view since it last crashed. Therefore,

if crashed is true at cohort A, then A’s event log has been lost in the crash and has not been

updated since. Crashed and cur view.vid are used during view formation to decide whether or
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not a new view can be formed without losing committed information.

A view management process runs at each cohort; it manages this state information, and

initiates and responds to view change messages (see Figure 5.7).

5.3.2 The Active State

An active view management process responds to two kinds of messages. If a start view change

message is received from the failure and recovery detection mechanism, the view management

process enters the view manager state. An active process also responds to invitations to join

new views by calling the procedure accept invite, which tries to accept the invitation; see

Figure 5.8. The invitation message contains the viewid of the new view being formed. If this

viewid is not greater than max viewid, the largest viewid seen at this cohort, the invitation is

ignored and the cohort remains in the active state. Otherwise, max viewid is updated and an

acceptance message is sent back to the view manager that sent the invitation. After sending the

acceptance message, the process enters the inactive state.

Several pieces of information are passed in this acceptance message. First, the boolean

variable crashed is part of the message, indicating whether or not the cohort responding to the

invitation has recovered from its last crash. Second, the cohort sends the most recent view it was

a part of. For cohorts that have not recovered from their last crash, only the viewid component

of this view is meaningful, as it is the only component stored on stable storage. Third, the

cohort sends the viewstamp of the most recent event in its event log. For cohorts that have

not recovered from their last crash, this viewstamp is the viewstamp for a special event that

is present at the beginning of each cohort’s event log. The viewstamps sent in the acceptance

messages are used by a newly selected primary to update the extent[b] variables maintained by

the sender processes; see Figure 4.4. The acceptance message also contains the identity of the

cohort that accepted the invitation, and the viewid of the view being formed. After sending the

acceptance message, the view management process enters the inactive state.

5.3.3 The Inactive State

An inactive view management process accepts four types of messages. If it receives an invitation

to join a new view, it calls the procedure accept invite to respond to the invitation; see Figure 5.8.

If it is notified of a failure or recovery by the failure and recovery detection mechanism, it enters

the view manager state and initiates a view change.

If the process receives a message from the manager of a successful view change that indicates

that it should become the primary in a new view, it calls the procedure turn into primary to join
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view manager = process
while true do

tagcase state
tag active:

receive
start view change:

state := view manager
invite(new viewid: viewid, manager: gid):

if accept invite(new viewid, manager) then
state := inactive
end

others:
% Ignore other kinds of messages

tag inactive:
% Remain inactive for next view manager repeat time units.
% Then try a view change
next attempt: time := current time() + view manager repeat
while state = inactive do

receive before next attempt
invite(new viewid: viewid, manager: gid):

if accept invite(new viewid, manager) then
% Accepted invitation from a view manager. Delay view
% mgmt. for another view manager repeat time units
next attempt := current time() + view manager repeat
end

become primary(nv: view, new extents: map[gid, viewstamp]):
state := active
turn into primary(nv, new extents)

start view change:
state := view manager

new view event record(nv: view, history: set[viewstamp]):
state := active
turn into backup(nv, history)

timeout:
% Have timed out. Try another view change
state := view manager

others:
% Ignore other messages

end
tag view manager:

do view change()
end

end
end view manager

Figure 5.7: The view management process run at every cohort.
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% Handle invitation message. Return true iff invitation accepted.
accept invite = proc (new viewid: viewid, manager: gid) returns (bool)

if new viewid � max viewid then
return false
else
max viewid := new viewid
write to stable storage(max viewid)
send accept(crashed, cur view, event log$max vs(), new viewid, my id)

to manager.view manager
return true
end

end accept invite

Figure 5.8: Accepting an invitation to join a new view.

turn into primary= proc (new view: view, backup extents: map[gid, viewstamp])
cur view := new view
write to stable storage(cur view.vid)
backups := cur view.backups
execute log()
vs: viewstamp := event log$append(new view record(cur view, vs history))
for backup: gid in backups do

extent[backup] := backup extents[backup]
end

% Send new view record to all and then become active
force to all(fvsg)
end turn into primary

turn into backup = proc (new view: view, primary history: set[viewstamp])
event log$trim to(primary history)
vs history := primary history
cur view := new view
write to stable storage(cur view.vid)
end turn into backup

Figure 5.9: Entering a new view.

the new view as a primary; see Figure 5.9. Turn into primary updates the extent[b] variables

maintained by the sending processes (see Figure 4.4) and generates a new view event record

containing the new view and the primary’s viewstamp history.

If the new primary was previously a backup, some of the event records in its event log may

not have been applied to its state. Therefore, the new primary invokes the procedure execute log

to update its state to correspond to the set of events in the event log. The procedure force to all
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is then called to send the contents of the entire event log to all the backups. Force to all is

the same force (see Figure 4.5), except that force to all forces the events to all of the backups

instead of just a sub-majority. Just like force, force to all sends a portion of the event log to a

backup only if the backup does not already have that portion.

If a receiving process (see Figure 5.1) receives a new view event record from the sender

process at a newly selected primary, it notifies the inactive view management process, which

in turn calls the procedure turn into backup to join the new view as a backup; see Figure 5.9.

The viewstamp history passed in the new view event record is used to update the cohort’s own

viewstamp history, and to trim portions of the cohort’s event log that are not present at the

primary. Both turn into backup and turn into primary update the variable cur view and write

cur view.vid to stable storage to record the cohort’s membership in the new view.

If the inactive view management process does not receive any of these messages within a

given interval of time, it times out and initiates a new view change by entering the view manager

state.

5.3.4 The View Manager State

The behavior of a view management process in the view manager state is shown in Figure 5.10.

The manager starts out by creating a new viewid new vid that is greater than all other viewids

seen by the manager. All viewids have two fields, a counter and a tag. The new viewid is

generated by incrementing max viewid.counter and tagging it with the manager’s guardian

identifier. The viewid is ordered lexicographically by these two fields; i.e., hc1.g1i < hc2.g2i if

c1 < c2 or (c1 = c2 and g1 < g2). The tag field guarantees that viewids generated at different

cohorts will be different. The counter field guarantees that the new viewid will be greater than

max viewid and therefore greater than all other viewids seen by the manager. Max viewid is

set to new vid and then written to stable storage. The manager then sends invitations to all

other cohorts in the group and waits for their replies. The replies are stored in responses, which

maps cohort guardian identifiers to the replies. The manager stops waiting for replies when a

reply has been received from each cohort. A timeout, accept wait, is built-in so that if a cohort

is unreachable due to a guardian or communication link failure, the manager does not wait too

long for it to respond. In the current implementation, accept wait is one second. In addition

to timing out, the manager stops waiting if it receives an invitation to join a view with a higher

viewid than new vid. An acceptance is sent back in response to this invitation and the view

manager process enters the inactive state.

After the responses have been collected, a new primary is selected from the set of responding

cohorts. The new primary should have more information than all other cohorts that responded
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% Information stored about acceptances in response to invitations
type response = record [ last view: view, max vs: viewstamp, crashed: bool ]

do view change = proc ()
new vid: viewid := make viewidfcounter: max viewid.counter + 1, tag: my idg
max viewid := new vid
write to stable storage(max viewid)
for cohort: gid in configuration � fmy gidg do

send invite(new vid, my gid) to cohort.view manager
end

responses: map[gid,response]
responses[my gid] := make response(cur view, event log$max vs(), crashed)

% Wait for acceptances that can be received in time acceptwait
finish waiting: time := current time() + accept wait
waiting: bool := true
while waiting do

receive before finish waiting
start view change: % Restart view management

return
accept(crash: bool, last view: view, max vs: viewstamp, vid: viewid, id: gid):

if vid = new vid then % Responding to current view change
responses[id] := make response(last view, max vs, crash)
if jresponsesj = jconfigurationj then

% Got responses from everybody � stop waiting
waiting := false
end

end
invite(new viewid: viewid, manager: gid):

if accept invite(new viewid, manager) then
state := inactive
return
end

timeout: % Stop waiting for acceptances
waiting := false

others: % Ignore other messages
end

primary: gid := find primary(responses)
if can form view(primary, responses) then

% Make view
v: view := make view(primary, vid, fc j c 2 responsesg � fprimaryg)
extents: map[gid, viewstamp] := fc ! vs j c 2 v.backups and vs = responses[c].max vsg
send become primary(v, extents) to primary.view manager

state := inactive
end

end do view change

Figure 5.10: The view management process at a view change manager.
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can form view = proc (primary: gid, responses: map[gid, response]) returns (bool)
last view: view := responses[primary].last view

1: if not is majority(fc j c 2 responsesg) then
return false
end

2: if not is majority(fc j responses[c].last view.vid � last view.vidg) then
return false
end

not crashed: set[gid] := fc j not responses[c].crashedg
old crashed: set[gid] := fc j responses[c].crashed and responses[c].max vs.vid < last view.vidg

3: if last view.primary 2 not crashed then
return true
end

4: if is majority(not crashed [ old crashed) then
return true
end

return false
end can form view

Figure 5.11: Deciding whether a new view can be formed.

to the invitation; i.e., the max vs field in its response message should not be smaller than

the max vs field of any other response to the invitation. This procedure will automatically

choose a non-crashed cohort over a crashed cohort because crashed cohorts return the smallest

viewstamp possible.

After the new primary has been selected, the collected responses are checked to see if

a new view can be formed; see Figure 5.11. The conditions checked for allowing a view

formation are described in Section 5.3.5. If these conditions are met, the new primary is notified

of the new view. If for some reason the new view cannot be formed, the view management

process becomes inactive. Inactive processes eventually timeout and initiate a new view change

protocol.

5.3.5 Forming a New View

There are two properties that must hold for all views. First, the view should contain at least

a majority of the cohorts in the configuration. Second, all previously committed information

should be present at the primary of the new view. The view formation conditions in Figure 5.11

ensure that the new view has the two required properties. These conditions are a relaxation of

the ones described in [Oki88] and were developed during a discussion with Robert E. Gruber.

The algorithm in Figure 5.11 checks that the new view has the first property in the obvious way.
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The rest of the algorithm ensures that all committed information is present at the new primary.

The variable last view is used in the rest of this discussion to refer to the last view of which the

new primary was a member.

We can divide committed information into three categories — committed in last, commit-

ted before last, and committed after last. Committed in last refers to information committed

during last view, committed before last refers to information committed before last view, and

committed after last refers to information committed after last view.

Since the new primary has not seen any views after last view, it does not have any com-

mitted after last information. Therefore, if there is a possibility that committed after last

information exists, the view formation cannot be allowed to succeed. No information can

have been committed after last view if a majority of the cohorts have not seen a view after

last view. Therefore, test number 2 in the algorithm allows the view formation to proceed only

if a majority of the cohorts have not seen a view after last view.

Consider committed before last information. If we assume that the view formation that

led to the formation of last view was correct, then last view.primary had all the commit-

ted before last information at the start of last view. As part of the view change protocol, this

committed information was made available to all of the members of last view, including the

new primary. Therefore, the new primary is guaranteed to have all the committed before last

information.

Consider the committed in last information. If last view.primary is a non-crashed member

of the new view, then it has all the committed in last information. Since the new primary

is supposed to have more information than all the other cohorts in the new view, the new

primary also has all the committed in last information. Therefore, test number 3 allows the

view formation to succeed if last view.primary is a non-crashed member of the new view.

If last view.primary has crashed since the formation of last view, some committed in last

information may have been lost because all the members of last view that had this committed

information may have crashed either during or after last view. However, if the non-crashed

cohorts and the cohorts that crashed before last view form a majority, then we know that the

cohorts that crashed during or after last view do not form a majority. Therefore, since all

committed information is written to a majority of the cohorts, at least one of the cohorts with all

the committed in last information is present in the new view. Since the new primary is supposed

to have more information than all the other cohorts in the new view, the new primary also has

all the committed in last information. Therefore, test number 4 allows the view formation to

succeed if the non-crashed cohorts and the cohorts that crashed before last view form a majority.
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5.4 Performance

This section describes the performance of the view change algorithm. There are several factors

that contribute to the overall cost of a view change.

1. The view change manager writes the new max viewid to stable storage and sends invita-

tions to all other cohorts.

2. The new max viewid is written to stable storage by the cohorts that decide to accept the

invitations.

3. The manager waits at most accept wait time units for acceptances from the other cohorts.

4. The manager send the new view information to the new primary.

5. The new primary updates its state by executing the portion of the event log that it has

received since the last time it was a primary.

6. The new primary writes cur view.vid to stable storage.

7. The new primary forces the contents of the event log to all the backups.

The main costs here are the writes to stable storage, the execution of the event log and the force

of the log to all the backups. Since the cost of writes to stable storage is fairly insignificant

compared to accept wait, stable storage writes can be ignored when discussing the cost of view

changes.

5.4.1 Executing the Event Log

The cost of executing the event log depends on the size of the portion that needs to be executed.

If the new primary was also the primary in the previous view then the entire event log will

already have been executed and this cost will be zero. However, in certain situations the new

primary will need to execute the entire event log. Since it takes approximately 18 seconds in the

current implementation to execute one megabyte of the log, view changes become very costly

as the log gets large. One possible way to avoid this cost is to execute event records as they are

inserted into the event log at a backup, instead of waiting for a view change before executing

the entire event log in one shot. The disadvantage of this method is that it increases the amount

of computation that needs to be performed by a backup in response to the receipt of an event

record from the primary. This method is not part of the current implementation.
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5.4.2 Forcing the Log to the Backups

The cost of forcing the event log to the backups depends on how out of date the backups’ event

logs are. If all the logs at the backups are fairly up-to-date with respect to the primary’s event

log, then the force does not take very long. On the other hand, a backup that has just recovered

from a crash does not have anything in its log and the primary’s entire event log has to be sent

to the backup. In a view with two backups, sending a megabyte of information to both backups

takes approximately 8 seconds. Therefore, it is quite costly to force the event log to backups

that are significantly out of date. One solution to this problem is to store the event log on

non-volatile storage. Event logs on non-volatile storage will survive normal node crashes and

newly recovered cohorts will not be completely out of date with respect to the primary’s event

log. If the event log on non-volatile storage is destroyed by a media failure, then the system can

fall back to the original method. It should be relatively straightforward to add this optimization

to the current implementation.

5.5 Optimizations

The cost of the protocols presented in this chapter can be reduced in several ways. First, the

failure detection scheme described in Section 5.2 involves sending a message from each cohort

to every other cohort in the configuration. Therefore, in a configuration with n cohorts, n(n�1)

failure detection messages are sent every send delay time units. Section 5.5.1 presents several

schemes to reduce this cost. Second, a single failure or recovery can be detected by many

cohorts. Therefore, multiple view change protocols can be started in response to a single failure

or recovery. Section 5.5.2 describes several schemes that try to minimize the number of view

change protocols started in response to a single failure or recovery. Third, view changes run

faster if we keep the log small. This is described in Section 5.5.3.

Since view changes are assumed to be rare — they only occur as a result of node or

communication failures — the cost of view changes is not as important as the impact of

the replication scheme on normal processing. Therefore, the implementation has been tuned

for efficient normal processing. The optimizations described in this section have not been

implemented.

5.5.1 Reducing the Cost of Failure Detection

There are several mechanisms that can be used to reduce the number of messages sent for

failure detection. Two are described below.
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1. I’m alive messages can be piggy-backed on other messages. Since a primary periodically

sends event records to the backups and receives acknowledgments, (see Figure 4.4), this

technique can significantly reduce the number of explicit I’m alive messages sent between

the primary and the backups. Since the I’m alive messages contain very little information,

the piggy-backing imposes very little extra cost on normal message transmission.

2. Backups try to detect just their primary’s failure. Primaries and inactive cohorts try to

detect failures and recoveries of all other cohorts. If all the cohorts are active and part

of the same view, this mechanism will cut down the number of I’m alive messages sent

each send delay time units to 2(n � 1) because the primary will send n � 1 messages

(one to each backup), and the n� 1 backups will each send a message to the primary.

5.5.2 Preventing Concurrent View Managers

The view change algorithm performs correctly in the presence of multiple concurrent view

change managers [Oki88]. However, it is desirable to minimize the number of concurrent view

changes initiated in response to a failure or recovery detection, as concurrent view changes can

interfere with each other and delay the formation of a new view. One way to achieve this is to

assign different values of death timeout to all the cohorts in the guardian group. For example,

consider the configuration fg1; g2; g3; : : :g. Let g1’s death timeout value be smaller than all

the other cohorts’ values. Suppose some cohort fails at time t. If g1 is alive, this failure will

probably be detected by g1 before it is detected by another cohort. Therefore g1 will initiate a

view change and notify the other cohorts of the failure before any of the other cohorts have a

chance to detect the failure first-hand and initiate a view change of their own.

The second scheme described in Section 5.5.1 also reduces the number of concurrent view

changes initiated in response to certain failures. If the failed cohort is a backup, the failure will

be detected by just the primary and only one view change will be initiated. However, failures

of inactive cohorts and the primary might still result in the initiation of multiple view changes.

5.5.3 Log Compaction

Since the costs of executing the event log and updating the event logs at the backups are

proportional to the log size, view changes can be made faster by keeping the log small. Standard

log compaction techniques can be used to achieve this. A log compaction technique involves the

periodic application of transformations that reduce the size of the log. For example, one useful

transformation discards the completed call event records for subactions of aborted topactions.
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Another transformation discards the effects of a handler call that have been superseded by later

handler calls. These transformations can keep the size of the log very close to the amount

of state being maintained by the guardian group. Since the log can be used to generate the

guardian group state, and therefore the size of the state is a lower bound on the log size, we

cannot hope to do better than this.
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Conclusions

This thesis presents an implementation of a replication scheme for constructing highly available

services. Each service is composed of several cohorts (or replicas). One of these cohorts is

designated the primary and the others are the backups. The primary handles all requests made

to the service and propagates information about these requests to the backups. If the primary

crashes, a backup takes over.

The replication scheme can be divided into two parts, normal processing and view changes.

During normal processing, the primary handles requests from clients. Servicing a request may

result in modifications being made to the service state. These modifications are recorded in

event records, which are propagated to the backups. Cohort and communication link failures

are handled by invoking a view change algorithm that results in the selection of a new primary

and a new active set of backups for this primary. Normal processing continues once the view

change is finished. The service remains available as long as a majority of the cohorts that

constitute the service are up and able to communicate with each other.

The thesis demonstrates that viewstamped replication is a feasible low-cost method for

constructing highly available nested transaction based services. Chapter 4 contains a detailed

discussion of the overhead of replication.

The implementation focuses on reducing the overhead imposed by the replication scheme

during normal processing. Normal processing consists of handler calls and topaction commits.

Handler call processing in the replicated system is as efficient as in the unreplicated system

(see Table 4.1). The slight overhead in the replicated system arises mainly from the creation

and transmission of event records. The other factors that contribute to the increased cost of

67
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replicated handler calls are given below.

� Before sending the handler call message, the client locates the server’s current primary

by using the mechanism described in Section 4.4.

� A viewstamp set is sent from the server primary to the client in the handler call reply

message.

� The client has to maintain a viewstamp set for each topaction that is currently active; this

set needs to be updated after every handler call.

The replication scheme must ensure that information about the handler calls made for a com-

mitting topaction is known at a majority of the cohorts. This information is transmitted to

the backups by sending the appropriate event records and waiting for acknowledgments. The

scheme used for the reliable transmission of these event records guarantees that usually the

acknowledgments will be received after a message round trip delay. In the unreplicated sys-

tem, since there are no backups, the information about handler calls made for the committing

topaction is stored reliably by writing it to stable storage. Since writes to stable storage are

generally more expensive than message round trip delays on a local area network, topaction

commits are cheaper in the replicated system.

The failure detection system and the view change protocol have been implemented and

thoroughly tested. However, their implementation has not been fully optimized. View changes

can be slow after the service has been up for some time; see Section 5.4 for an explanation.

Section 5.5.3 presents an optimization that can significantly speed up view changes.

In a guardian group withn replicas, the failure detection system can send as many as n(n�1)

messages during each failure detection interval. Section 5.5.1 presents two methods that can

reduce the number of these messages. The failure detection system can also start multiple view

changes at different cohorts in response to a single failure or recovery. Section 5.5.2 describes

two methods that alleviate this problem by decreasing the number of view changes started in

response to a single failure or recovery.

6.1 Contributions

This thesis demonstrates that viewstamped replication provides a low-cost method for con-

structing highly available nested transaction based services. This claim is supported by the

performance measurements and the comparison with an unreplicated transaction system given

in Section 4.7. The contributions of this work are:
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� Viewstamped replication is integrated into the Argus run-time system to automatically

provide high availability for transaction based services. The programmer designs a

service without worrying about availability; the run-time system automatically replicates

this service to make it highly available.

� The implementation of the replication scheme imposes little overhead on service oper-

ation. In particular, during normal processing the efficiency of the replicated service is

close to that of the unreplicated service.

� Several performance measurements of the replication scheme are given (see Section 4.7).

These measurements are analyzed and compared with corresponding measurements of

the performance of an unreplicated system.

� The conditions required for forming a new view as given in [Oki88] were more stringent

than required. The thesis relaxes these conditions (see Figure 5.11 and Section 5.3.5) and

allows view formations in cases where the original conditions would not have allowed a

view formation.

� A clean break-down of the replication scheme into different components is given (see

Figure 5.1).

� The original replication scheme would transfer the entire service state when sending in-

formation from a new primary to the backups [Oki88]. The thesis describes a mechanism

that solves this problem by transferring only the differences between the replica states.

This mechanism uses the event log and the sender and receiver processes.

� A location service for identifying the current primary of a replicated service is described

and implemented (Section 4.4).

6.2 Extensions

This section presents some extensions to the viewstamped replication scheme and suggests

some directions for future work.

Improving data resiliency. In the unreplicated system, all committed information is stored

on stable storage and is therefore highly resilient to failures. In the replicated system, there

are copies of all committed information at a majority of the replicas. If these replicas crash
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simultaneously, the committed information will be lost. This is a short-coming of the system,

and a mechanism for making the service state resilient to simultaneous failures is needed.

We can make the replicated service resilient to failures by attaching disks to the replicas, and

waiting for the necessary information to reach at least two disks before allowing a topaction to

commit. Since most stable storage implementations provide resiliency by writing information

to two disks, this implementation is as resilient to failures as the unreplicated transaction system

that uses stable storage.

The increased resiliency to failures does not come without a cost. Topaction commits have

to be delayed while the necessary information is written to disks. However, a slight modification

to the scheme can remove this extra cost. If we attach uninterruptible power supplies to all the

replicas, we do not have to delay the topaction commit until the necessary information reaches

the disks. The information can be written to the disks asynchronously. The uninterruptible

power supply guarantees that if some information reaches a replica, it will make it out to

disk before the replica crashes due to a power failure. Therefore, a topaction commit can be

allowed to complete as soon as the necessary information has reached at least two replicas with

uninterruptible power supplies and attached disks.

The cost of this mechanism lies in the uninterruptible power supplies and the disks required

for resiliency. The uninterruptible power supplies are optional, because we can get by with

synchronous writes to disk, as long as we are prepared to pay the extra cost of topaction

commits. However, it is not possible to use this mechanism on disk-less workstations. On

disk-less workstations, the service should probably use a network based stable storage service

to provide high resiliency to failures.

Using stable storage. [DST87, Coh89] describe highly available network-based stable storage

services. These services achieve high availability by replicating the stable storage servers and

using a voting scheme [Gif79] to access the replicas.

Such stable storage services can be used to provide highly available and reliable general

purpose services. Consider an unreplicated Argus guardian that uses a stable storage service

for resiliency. If this guardian fails, the service it provides is not available until the guardian

recovers and re-creates its state from stable storage. However, after the guardian fails, a new

guardian can be created at another location, and the old guardian’s state can be re-created at

the new guardian from stable storage. The new guardian now handles all service requests on

behalf of the old guardian. Therefore, the highly available stable storage service can be used to

create highly available general purpose services in a straightforward manner.

Details of how a new guardian takes over from an old one need to be worked out. In
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particular, some form of a view change algorithm is required to replace the original guardian

after it crashes. In addition, a location service [Hwa87] is needed to route requests to the new

guardian.

It would also be interesting to see if the voting scheme used for implementing the replicated

stable storage services should be replaced by a primary copy replication scheme. The relative

merits of the two schemes in this particular instance are not known.

Replicas without data. Both voting and viewstamped replication schemes require a minimum

of three replicas to provide higher availability than an unreplicated system. However, two copies

of data are enough to make it resilient to many failures (most stable storage implementations

use two disks to store each piece of data).

[P8̂6] proposes an extension to voting schemes where some replicas do not store the service

state; they just provide votes for operations. The replicas without service state are called

witnesses; the replicas with service state are copies. Under very general assumptions, the

reliability of a replicated service consisting of n copies and m witnesses is shown to be the

same as the reliability of a service consisting of n +m copies. Under most circumstances, the

availability of the system is also not significantly reduced when some copies are replaced with

witnesses.

[MHS89] and [GL89] adapt the witness scheme for primary copy replication. In primary

copy replication, witnesses participate only in primary elections (view changes); they do not

store any service state. Witnesses are an attractive extension to viewstamped replication because

they significantly decrease the amount of resources used by a service without significantly

affecting either its reliability or availability.

Using time to avoid communication. Section 4.6.4 describes why the optimization made in the

unreplicated system for the first phase of two phase commit for read-only transactions cannot

be applied in the replicated system. This optimization could not be made because the primary

could not be sure whether or not a new primary had been selected without its knowledge.

There is a simple solution to this problem [MHS89, Lis89]. Each backup periodically makes

a promise to the primary saying that it will not enter a new view for the next n seconds. This

information allows the primary to place a lower bound on the earliest time at which a new view

can be formed. If the current time is smaller than this lower bound, then the primary knows

that no new view has been formed yet. Therefore, it does not need to force the read topaction’s

event records to a majority before allowing the topaction to commit. This technique can make

read-only transaction commits as efficient as in the unreplicated system. However, it requires
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that the clocks at the different cohorts either be synchronized, or that they run at nearly identical

rates.



Appendix A

Pseudo-code Syntax

Code fragments presented in this thesis make extensive use of communication facilities and

several data-types that are not built-in to most languages. This appendix gives an informal

description of some of the non-standard features used in the pseudo-code presented in this

thesis.

A.1 Data Types

This thesis uses some data-types that deserve a detailed explanation.

Time related data types. Two time related data-types, time and time delta, are used in this

thesis.

� Values of type time represent absolute time in an unspecified time unit.

� The function current time() returns the current time.

� Values of type time delta represent the difference between two time values.

– Subtracting one time value from another gives a time delta value.

– Subtracting or adding a time delta value to a time value gives a time value.

� Addition and subtraction of two time delta values results in another time delta value.

� Multiplication and division of a time delta value by an integer or a real number results in

a time delta value.

� Values of type time form a totally ordered set, as do values of type time delta.
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� Special values of type time delta corresponding to seconds and other standard units of

time are available.

Maps. Values of type map provide a mapping from a subset of values of one type to values of

another type. For example, a value of type map[string,int] maps from strings to integers.

� Maps are usually created empty; i.e., they do not provide a mapping for any value.

� Initialized maps of type map[a,b] can be created by providing a set of bindings from

values of type a to values of type b. For example,

m: map[string,int] f(“a”! 1); (“b”! 2); (“c”! 3)g

� The 2 operation can be used to check whether a map provides a mapping for a certain

value. With the example shown above, “a” 2 m will be true; “x” 2 m will be false.

� New mappings can be inserted and old ones modified with an array assignment syntax.

For example,

m[“f”] 19

m[“a”] 7

� Mappings can be looked up with array lookup syntax; with map m initialized as shown

above, i: int m[“b”] assigns the value 2 to the variable i.

A.2 Waiting

Two features allow a process to wait for either a given condition, or until some time.

wait for condition. Delay the process until the boolean-valued expression condition becomes

true.

wait until time-value. Delay the process until the time specified by the expression time-value.

For example, “wait until current time() + second” delays the process for one second.
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A.3 Communication

Processes at a given cohort can send messages to specific processes at other cohorts. Processes

arrange to receive messages by waiting for them.

send hmessagei to hgidi : hpidi. Send hmessagei to the process named hpidi at cohort hgidi.

The message consists of a name and some values. For example,

employee number(“John F. Doe”, 12345)

is a legal message. The message transmission is unreliable; the message may be delayed,

duplicated or never delivered.

receive hmessage-handlersi. Wait until a message is available and then invoke the appropriate
handler from hmessage-handlersi based on the name of the message received. With the code
shown here, a receipt of the message shown above will insert the mapping (“John F. Doe” !
12345) in database.

receive

address(name: string, addr: string):

...

employee number(name: string, number: int):

database[name] number

others:

...

end

This code provides message handlers for employee number and address messages. Other

messages are handled by the others branch.

receive before htimei hmessage-handlersi. Waits until time htimei for a message. If a message

is received, the appropriate message handler in hmessage-handlersi handles it. A special

message handler named timeout is invoked when no message is received in the allotted time.
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