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Abstract

Nested transactions, a generalization of atomic transactions, provide a uniform mechanism

for coping with failures and obtaining concurrency within an action. Execution of a nested

action is synchronized with its creating action by halting the creator until the execution of its

nested action terminates.

This thesis proposes a new kind of a nested action called a Disconnected Action (DA, for

short) that runs asynchronously with its creating action. Disconnected actions allow additional

work to be done in parallel with the rest of the work in a nested atomic action system. Work

done by a DA improves the performance of its creating action, but is not needed for the

correctness of this action.

This thesis describes how DAs semantics are achieved; existing mechanisms, such as the

two-phase commit, are modi�ed, and serial behavior of DAs is ensured by a mechanism that

uses timestamps to enforce static creation order, and tables to monitor and control dynamic

serialization order of concurrent DAs. The thesis also proposes a technique that allows an

action using DAs to commit in spite of some failures.
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Chapter 1

Introduction

The main challenge facing the design of reliable distributed computing systems is maintaining

data integrity in the presence of concurrency and failures. Atomic transactions, or actions, are

a widely accepted solution to these two problems; they are serializable and recoverable, thus

hiding concurrency and failures.

Nested transactions ([Reed 1978, Moss 1981, Liskov & Scheier 1983]) are a generalization

of the model of atomic transactions. Nested transactions, or subactions, provide a uniform

mechanism for coping with failures and obtaining concurrency within an action. Execution of

actions in a nested action model is synchronized in a manner analogous to making procedure

calls in a programming language; an action that created a subaction (or a group of concurrent

subactions) halts until the execution of its subaction terminated.

This thesis proposes a new kind of a nested action called a Disconnected Action (DA, for

short) that, unlike a regular subaction, runs asynchronously with its creating action. Discon-

nected actions allow additional work to be done in parallel with the rest of the work in a nested

atomic action system. Work done by a DA improves the performance of its parent action, but

is not needed for the correctness of this action.

Disconnected actions can be used to perform benevolent side e�ects within the scope of

their action. They can be used to update caches or improve representation of abstract data

objects. For example, consider an object representing a rational number (a fraction), with a

pair of numbers as its internal representation, for numerator and denominator. An action may

create a subaction to update the object, followed by a DA to bring the fraction into canonical
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form.

The rest of this chapter is organized as follows: A motivating example for the use of discon-

nected actions, a replicated �le, is presented in detail below. Section 1.2 overviews some basic

work in the �eld of nested atomic actions. The chapter concludes with an overview of the rest

of the thesis.

1.1 Replicated File System { an example

Assume a replicated �le system that employs a simple voting scheme (like those in [Thomas 1979,

Gi�ord 1979]). There are N sites, each containing a replica of the �le and a version number. A

�le is updated by assembling a write quorum of W sites, and read by a read quorum of R sites.

In order to ensure one copy serializability1, the quorums should satisfy two constraints:

W +R > N and 2W > N

that is, the read quorum and write quorum should include at least one common site to ensure

that a read operation will see e�ects of previous write operations, and having at least one

common site for every two write quorums ensures serial order of write operations.

SITEA

FILE
Version # 1

(20ms) SITEB

FILE
Version # 2

(60ms) SITEC

FILE
Version # 2

(80ms) SITED

FILE
Version # 2

(80ms) SITEE

FILE
Version # 1

(80ms)

Read Quorum

Write Quorum

Figure 1-1: An example for a voting scheme.

Figure 1-1 shows an example for a replicated �le system using the voting scheme described

above, with �ve sites and read or write quorums of three sites (i.e., N = 5;W = 3; R = 3).

1Meaning: the user should not be able to observe the replication. The replicated �le should behave like a

single copy.
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Each site has its copy of the �le and a version number. The up-to-date copies have the highest

version numbers. The �gures in parenthesis indicate the latency from the reader's site.

Since �les usually are large in size, a �le is read in two phases. First, a read quorum is

assembled, and the version numbers of the �les in this quorum are read. The reader can tell,

based on these numbers, which sites in its quorum have up-to-date replicas of the �le. In the

second phase, the �le itself is read from one of these up-to-date sites, preferably from a site

that has the lowest latency (the local copy, for example).

Though the reader is guaranteed to get the current version of the �le, its choice in selecting

a site to read from may be limited, and its preferred site may not have an up-to-date version.

In the above example, assume that all the sites started with a consistent copy of the �le with

version number 1, and a write operation updated the �les of a quorum of sites B, C and D,

incrementing their version numbers to 2. A following read operation, using a quorum of sites A,

B and C, �nds the current version in sites B and C only. Site A, which has the lowest latency,

can not be used since its version is not up-to-date.

We would like to have the writer write to all sites, but not be delayed longer than necessary.

This can be accomplished by having the writer write to some write quorum, and then continue

and have the rest of the replicas updated \in the background". The work done in the \back-

ground" should be consistent with the semantics of transactions. That is, the e�ects of the

\background" updates should disappear if the updating action or one of its ancestors aborts,

and become permanent when the topaction commits.

Disconnected actions can serve this purpose. A writer trying to update a replicated object

can write to a write quorum using regular subactions, and after they commit create disconnected

actions to write to the rest of the replicas (those not in the write quorum). The writer continues

to run immediately after creating those DAs; their fate has no e�ect on the correctness of the

update operation.

Better performance of the write operation is also expected in the scheme above, because

replicas are more likely to be up-to-date in the scheme that uses DAs without additional time

cost. In a scheme without DAs, which updates only a write quorum, some replicas may be far

behind. With large �les, when a write operation that modi�es part of the �le (e.g., an append

operation) �nds such an archaic replica in its quorum, it has to do more work: it has to read
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more records from an up-to-date replica and write those records to the archaic one.

1.2 Related work

The idea of nested atomic actions was initially proposed, as spheres of control, in [Davies 1973,

Bjork 1973]. The �rst detailed design for a model that uses nested atomic actions was developed

by Reed ([Reed 1978]). Reed proposed a multi-version, timestamp-based algorithm to ensure

serialization of concurrent actions. A locking-based model of a nested atomic action system

was developed by Moss ([Moss 1981]).

Several research projects have designed and implemented a nested atomic action system: Ar-

gus ([Liskov & Scheier 1983]) uses Moss's model with small modi�cations (e.g., no distinction

between lock-holding and lock-retaining). The Camelot project ([Spector, et al. 1987]) uses a

model of nested actions similar to Argus', but with several di�erences (e.g., a remote calls does

not require creating a new subaction). And the Clouds project ([Allchin & McKendry 1983])

also uses a similar model with some variations (e.g., using a top-level commit protocol to com-

mit subactions at any level, hence subactions are not as \cheap" as in Argus). Clouds also uses

di�erent levels of object locking, and leaves the choice of level to the programmer.

Our work has some similarities to other works that enhanced the nested action model in

some ways. In [Walker 1984], Walker proposed algorithms that piggybacked information on

existing messages in order to detect orphaned computations. In [Perl 1987], Perl also uses

similar techniques to reduce the need for lock query messages by propagating commit and

abort information with existing messages (she calls it eager di�usion).

There are two basic techniques for serializing concurrent actions: timestamping ([Reed 1978,

Aspnes, et al. 1988]) and two-phase locking ([Eswaran, et al. 1976]). Our technique of adding

timestamps to the locking-based model can be considered as a hybrid serialization technique.

Hybrid protocols are discussed in [Bernstein & Goodman 1981]; their protocols are general

methods of synchronization that handle each of the read-write or write-write conicts with

separate two-phase locking or timestamp techniques. Another hybrid technique is discussed in

[Weihl 1984]; it proposes the use of (static) creation-order timestamps for read-only activities

and (dynamic) commit-order timestamps for update activities.

Our technique of explicit control of serialization (using constraint tables) relates to the
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idea of conict graphs, also discussed in [Bernstein & Goodman 1981]. However, the conict

graphs there are used only as a helping tool for a scheduler to improve performance of a certain

timestamp technique. Our notion of similarity between deadlock detection and serializability

of concurrent actions has also been noted in [Zhao & Ramamritham 1985].

Much work has been done on the design of commit protocols for top-level actions. [Gray 1978]

describes the classic two-phase commit protocol, and some variations like \nested two phase

commit protocol", where the participants are ordered and every one communicates with the next

one. Other variations include non-blocking protocols ([Skeen 1981]) and three-phase protocols

(like two-phase, but with an initial phase that tells the participant to \prepare for prepare").

Our work proposes a model that tries to commit the transaction in spite of failures. In

[Gi�ord & Donahue 1985], a di�erent way is tried to avoid aborting a long-lived atomic trans-

action due to failures. They propose breaking the atomic transaction into independent atomic

actions; thus a failure causes only a few of the actions to abort, and they could be retried.

1.3 Road map

The reminder of this thesis is organized as follows:

� Chapter 2: Describes the current model of computation and de�nes terminology and

notation.

� Chapter 3: Describes how disconnected actions �t into the current model.

� Chapter 4: Describes how concurrency control is handled in a system using DAs. Two

mechanisms are described, timestamping and conict tables, that ensure serialization of

DAs.

� Chapter 5: Describes how the two phase commit protocol should be modi�ed to handle

a system that uses DAs.

� Chapter 6: Proposes methods to enable transactions to commit in spite of failures by

taking advantage of the semantics of DAs.

� Chapter 7: Summarizes the work and proposes future additions.
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Chapter 2

The System Model and De�nitions

In this chapter we describe our model of computation, which is basically the high-level model

employed by the Argus programming language and system ([Liskov 1984, Liskov, et al. 1987b]).

2.1 The underlying system

We view the low-level system as a distributed collection of nodes (i.e. computers) connected by

a communication network. The nodes communicate only by sending messages over the network.

A node is typically a processor with some fast volatile memory memory and slower, non-volatile,

stable1 storage.

Any component of the system may fail, but the likelihood of multiple simultaneous failures

is small. Messages sent over the network may be lost, corrupted or duplicated. We assume

that an underlying Datagram protocol (e.g., [Postel 1980, Boggs, et al. 1979]) ensures delivery

of uncorrupted messages. When that Datagram protocol fails (i.e., network partition), the

high-level system has to be noti�ed.

Nodes may fail, but we assume that they eventually recover. When a node fails (i.e.,

crashes), the contents of its fast volatile memory are lost, but its stable storage remains intact.

We assume fail-stop processors ([Schlichting & Schneider 1983]) in the nodes; that is, a failed

processor does not send random messages or write arbitrarily to its storage.

1Some researchers make a distinction between non-volatile storage (e.g., single local disk) and stable storage

(e.g., double-disk scheme ( [Lampson & Sturgis 1976] ), but in this thesis we shall treat the two as one.
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2.2 The current model

This section describes the model of computation that is used currently by the Argus system

([Liskov, et al. 1987b]), without any changes or optimizations (e.g., as suggested in [Perl 1987]).

Some small modi�cations are introduced, however, both to the current implementation and

the terminology to make it easier to extand the model to support our new algorithms and

protocols. When the algorithms are not straightforward , we describe them using a Clu-like

notation ([Liskov & Guttag 1986]).

2.2.1 Sites

A site, or guardian in Argus, is an abstraction for a node2. The high-level system is a collection

of sites, each encapsulating several resources. The site keeps its state in internal data objects,

not accessible from the outside; the only way to manipulate these objects from the outside (e.g.,

by other sites) is through handler calls, similar to the way operations manipulate the internal

representation of an abstract data object.

Processes (threads) are created inside the site to carry out handler calls and background

activity. Threads may share and manipulate the site's data objects directly. Each thread has

its own execution stack, but compound data objects are allocated from a heap. All threads are

lost when their site crashes.

A site has two kinds of objects: stable objects and volatile objects. Stable objects are written

to stable storage after being modi�ed by top-level actions (see below); therefore stable objects

survive site crashes with high probability. Volatile objects are lost when their site crashes;

they are used for recording redundant information (e.g., indices) or information that can be

discarded after a site crash (e.g., internal state of a thread). Objects are handled internally at

site; no reference to an object can be sent to another site (at the system level).

2.2.2 Actions

Atomic actions are a mechanism for maintaining data consistency in the presence of concurrency

and failures. An atomic action transfers the state of the system from one consistent state (i.e.,

2Though several sites may exist at a single node.
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a state that satis�es some invariants) to another consistent state. Atomic actions (actions, for

short) were originally used in centralized systems, but are particularly important in distributed

systems, where concurrency is real3 and failures may be partial. Distributed programs may run

simultaneously, each at several sites, share data objects and have to cope with failures such as

site crash and network partition. Actions are the basic programming tool to build distributed

programs that cope with concurrency and failures.

Actions are serializable and recoverable (total). Serializability means that when actions are

executed concurrently, the e�ect is as if they were run sequentially in some order. This feature

allows programmers using actions to ignore concurrency to a great extent4. Recoverability

means that an action either completes successfully or is guaranteed to have no e�ect (i.e., \all

or nothing" semantics). An actions that completes is said to commit; otherwise, the action

aborts. (Terminate is a general term for either commit or abort.) The recoverability feature

serves as an automatic checkpoint mechanism for programmers, saving the trouble of writing a

\rollback" code to undo work of a program that can not complete due to failures.

Atomicity is implemented in our model with the use of atomic objects. This mechanism

synchronizes accesses of actions to shared objects to provide serializability, and provides a way

to recover the old state of any objects modi�ed by an action that aborts.

2.2.3 Nested Actions

Our model generalizes atomic actions to be nested. A nested action is an action that is started

inside another action, and may itself start more nested actions, forming an action tree of arbi-

trary levels. Nested actions provide action semantics within an action; they act as a checkpoint

mechanism within an action, and also provide concurrency within an action.

We use the following terminology for actions in our model: a subaction is a nested action.

A topaction is an action that may have subactions, but is not itself a subaction (i.e., the top of

the action tree). An action is any single action (i.e., either subaction or topaction). The term

transaction, commonly used in systems without nested actions instead of the term action, is

used here to refer to the \whole action tree", instead of a speci�c action in the tree. For example,

3Unlike timesharing centralized systems that use global data for synchronization.
4Some concurrency related problems, such as deadlocks, may still need a programmer's consideration.
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we may talk about an object modi�cation done by the transaction, instead of specifying exactly

which subaction (or topaction) did it.

Tree terminology is used to refer to relations between actions. An action A creating a nested

action B is a parent, while B is a child. We also use the term descendant, meaning any of the

action itself, its children, their children, and so on. For example, A, B and any child C of B

are all descendants of A. Similarly the term ancestor is used in the other direction (e.g., A,B

and C are all C's ancestors). The pre�x proper is used to exclude the action itself. For example,

only B and C are A's proper descendants, and only A and B are C's proper ancestors. The

term relative5 is used to relate one action to another; both must be from the same transaction.

The term least common ancestor (or LCA) of two actions, A and B, refers to the lowest action

in the tree that is an ancestor of both A and B.

An action may create one nested action at a time, or a set of subactions that run concur-

rently. In both cases the action is synchronized with its children by being blocked until the

active children terminate. Children created by the same action are related to each other as

siblings.

Subactions that belong to the same set of concurrent subactions are related to one another

as concurrent siblings. Subactions from di�erent sets (of the same parent) are not concurrent

siblings. We use the term relation to refer to one of these two subaction creation orderings,

serial or concurrent. Unlike some previous works, this thesis does not regard concurrency as

an inherent feature of the action but as its (ordering) relation to another relative action6.

Furthermore, we found it useful to think about (the implementation of) a set of concurrent

actions as a single special subaction (concurrent-set action) that does no real work (like the

call-action described below), but only creates a set of subactions that run concurrently and

commits after all the concurrent subactions in its set have terminated.

Siblings that are not concurrent are referred to as serial (or sequential) siblings. When

discussing serial siblings, we may use the terms later or earlier (prior) to refer to the order in

which they were created (and ran). We use the terms serially related and concurrently related

for relative actions A and B to note the relation between their ancestors, A0 and B0, that are

5Think about relative actions as \cousins".
6The distinction is not important in the current model, which does not allow descendants of subactions in

di�erent sets of concurrent subactions (of the same parent) to be active simultaneously.
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serial or concurrent siblings.

The commit of a subaction is always relative to its parent. When an action aborts, all the

e�ects created by its (committed) descendants are undone. When a subaction S and all its

ancestors up to the topaction committ, we say that S has committed to the top.

Handler Calls

An action runs at a single site only. When an action A wants to invoke a handler call to

another site, another action H has to run there. This way A is isolated from failures of H 's site

or the network. In our model, when A at site GA tries to use a handler on site GH , a special

subaction C called a call-action is created at GA to carry out the call to GH , where a handler

call subaction (H) is created. The call-action C does no real work, but enables A to abort its

handler call H by aborting C locally, with no need to delay until H 's site is noti�ed; such a

delay can be very long when the network partitions. Note that C always commits to A, even

if H aborted. For simplicity, we often ignore call-actions in the rest of this thesis when their

existence has no e�ect on our algorithms.

Nested Topactions

Our model also includes nested topactions. As their name suggests, these are topactions created

inside actions. Unlike a normal subaction, the commit of a nested topaction is independent of

the commit of its parent (and the parent's transaction); e�ects created by a nested topaction

become permanent upon its commit. The only di�erence between a nested topaction and a

non-nested one is that the former was started from within some action. Nested topactions

are used to perform benevolent side-e�ects, such as rearranging data objects to exhibit better

performance (e.g., sort a list), without changing their observed values.

Action Identi�ers

Action identi�ers (AIDs) are used to name actions. The AID is a data structure that contains

all the information describing the action's location in its action tree and its site. The AID

used in this thesis is slightly di�erent from the original one, including a change to observe

the distinction between concurrent siblings and siblings of di�erent concurrent sets (discussed
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above) and accommodating new features (like marking an action as disconnected). Given the

AIDs of two actions of the same transaction, we can determine whether they are serially or

concurrently related.

Our AID is implemented as a list of tagged numerators; a possible implementation is given

in Appendix A. The list describes the action's ancestry; an action's AID is basically its parent's

AID concatenated with a tagged numerator. The tag identi�es the action (e.g., S for subaction,

G for a new site (handler call), C for concurrent-set action and T for topaction), and the

numerator di�erentiates among similar siblings and indicates serial ordering relation between

serial siblings (except for handler calls, where the numerator indicates the site, and uniqueness

and serial ordering is provided by the call-action's numerator).

Actions in examples in this thesis are given names with a format similar to their AID. For

example, G5:T84:S3:C2:T3:S1:G6 is the name of a handler call made to site 6 by the call-

action 1 of the nested topaction G5:T84:S3:C2:T3, which belongs to the concurrent set 2 of

the third subaction of topaction 84, within site 5. For simplicity, we often use a simple short

form, ignoring call-actions and new sites. For example, A:2 marks the second subaction of the

action named A, or A:C3:5 marks the �fth subaction in the third concurrent set of A, created

serially after A:2 (subactions and concurrent-set actions use the same counter to generate their

numerators).

Implementation of actions

An action is implemented inside a site as a data structure (AINFO) that hold information about

the action. This information includes the action's AID, list of objects used by the action, list

of aborted descendants of the action (alist) and a list of sites used by the action's descendants

(plist).

The site keeps two lists of actions, ACTIVE and COMMITTED . The ACTIVE list contains

AINFOs of all local actions that are currently active. When an active action A terminates, its

entry is removed from ACTIVE . If A aborted, its entry is discarded (and A's AID is added to

its parent's alist). If A committed, there are three cases:

� A was a topaction: See Section 2.2.7 below.

� A was a handler call: A's entry is placed in COMMITTED.
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� If none of the above then A must have a parent P in ACTIVE : A's alist, plist and the

list of objects are merged into P 's.

Both ACTIVE and COMMITTED are volatile objects. When a site crashes, the contents

of both lists are lost, which has the e�ect of aborting the actions (that belong to active trans-

actions) that ran at that site.

2.2.4 Atomic Objects

The use of atomic objects by a set of actions ensures their atomic semantics; these actions would

be serializable and recoverable. While our model allows for non-atomic objects to exist7, we

restrict this thesis to atomic objects only; therefore whenever objects are mentioned, we mean

atomic objects.

In our model, atomic objects synchronize the actions that access them by the use of locks.

Every operation on an object is classi�ed as a read or write, and an appropriate lock (read-lock

or write-lock) must be obtained (automatically, by our system) before the operation can take

place8. Strict two-phase locking ([Gray, et al. 1976]) is employed; locks are held until their

action commits or aborts.

The rules for acquiring locks are derived from conicts between operations: A write oper-

ation conicts with any other write or read operation. Without nesting, the rules are simple:

many concurrent readers are allowed, but when an action holds a write-lock on an object, no

other lock can be granted on that object. With nesting, the rules are extended: An action A

can acquire a read-lock if and only if all holders of write-lock are A's ancestors, and can acquire

a write-lock if and only if all holders of read or write locks are A's ancestors.

We implement the locks on an object as an ordered stack of write-locks, and unordered

set of read-locks9. The way the lock acquisition rules are applied is described in Figure 2-1

for a read-lock request, and in Figure 2-2 for a write-lock request10. Note that we introduce

additional requirements into the current model:

7For example, non-atomic objects are needed in order to build user-de�ned atomic types (see [Weihl 1984]).
8Note that models exist where locking takes place on a higher level, like the type-speci�c locking in

[Schwarz 1984].
9The current implementation of Argus keeps all locks together, which is a semantically confusing.
10Note that a can not have lock reply implies that a query (explained below) has to be sent.
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check locks for read = proc(Reader:ainfo, OBJ:object) returns(reply)
% Called at a site to check whether Reader can get a READ lock on OBJ
if versions stack$non empty(OBJ.write stack) then

top write lock : lock := versions stack$top lock(OBJ.write stack)
if aid$non descendant(Reader.aid,top write lock.aid) then

return(can not have lock(Reader,OBJ,top write lock.aid))
end

end
% Reader is a descendant of the top write locker (if any)
if lock set$member(Reader.aid,OBJ.read set) then

return(already has lock(Reader,OBJ))
else

return(can have lock(Reader,OBJ))
end

end check locks for read

Figure 2-1: The lock acquisition rules applied for a reader

� The lock acquisition rules should be satis�ed on every access of an action to an object,

regardless if the action already has the lock. This is a result of allowing a parent to run

concurrently with its descendants in our new model, enabling descendants to \snatch"

locks from objects used by their active ancestors ([Xu & Liskov 1988]).

� A read-lock is required for reading even if the action has a write-lock. The reason has to

do with updating timestamps (see Section 4.2).

Atomic objects enable a site to undo modi�cations done by an action (when the action is

aborted) by using versions. The state of an unlocked object is stored in a base-version, and

new versions are kept in a stack fashion. When an action A acquires a write-lock, a new version

is created for A with an initial value of the previous top version (or the base-version if no other

version exists). The action modi�es its version only, and if the action aborts, its version is

discarded. Note that write-locks and versions are tightly coupled; hence we may use those two

terms interchangeably11.

Note again that versions on an object are kept as a stack with the following invariant holding:

Actions holding versions on some object below some version V are all proper ancestors of the

11Write-lock and its corresponding version are also implemented as one object.
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check locks for write = proc(Writer:ainfo, OBJ:object) returns(reply)
% Called at a site to check whether Writer can get a WRITE lock on OBJ
for read lock:lock in lock set$elements(OBJ.read set) do

if aid$non descendant(Writer.aid,read lock.aid) then
return(can not have lock(Writer,OBJ,read lock.aid))
end

end
if versions stack$non empty(OBJ.write stack) then

top write lock : lock := versions stack$top lock(OBJ.write stack)
if aid$non descendant(Writer.aid,top write lock.aid) then

return(can not have lock(Writer,OBJ,top write lock.aid))
elseif Writer.aid = top write lock.aid then

return(already has lock(Writer,OBJ))
end

end
% Writer is a descendant of the top write locker (if any)
return(can have lock(Writer,OBJ))
end check locks for write

Figure 2-2: The lock acquisition rules applied for a writer

holder of V . Actions holding versions below the top version can not access the object (they are

blocked, in the current model), and the action holding the top-version (and its descendants)

get the top-version's value whenever they read the object.

When a subaction commits, its locks and versions are propagated to its parent. The commit

of a topaction is handled di�erently as described in Section 2.2.7 below. Propagation means

that the action's locks and versions become the parent's, and if the parent had locks or versions

(on the same objects) before, they are replaced with the new ones. All the versions in the stack

above the parent's new version are discarded (so the parent's version becomes the top one).

When a subaction (or topaction) aborts, its locks and versions are discarded.

While base-versions are kept in stable storage, locks and versions are volatile. Therefore

when a site crashes, not only are all the actions that exist there (of active transactions) aborted,

but all their locks and versions are lost.

Lock and version propagation is done in a \lazy" fashion when the parent of the committing

action lives on another site. Locks and versions of a handler call H are not modi�ed to become

the parent's when H commits. Also when an action is aborted, abort messages are not guar-
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anteed to arrive at all the sites used by the action's descendants; therefore some objects may

appear locally to be locked even though their current holder has aborted. Only when another

action A tries to acquire a lock on some object O, locked in conicting mode by H (e.g., A

tries to write O, which is read-locked by H), then a series of queries is initiated in an e�ort

to propagate the lock up the action tree to the LCA of A and H . Once the lock becomes the

LCA's, A can acquire it.

Queries are implemented as follows: The object O's site (GO) sends repeated messages to

the site of the LCA of A and H (GLCA). GLCA can tell (by examining GLCA's ACTIVE and

COMMITTED lists) whether:

1. H has committed up to the LCA.

2. Some ancestor of H has aborted.

3. Some ancestor of H is (possibly) still active elsewhere.

In the �rst two cases, GO can do the local processing needed to grant a lock on O to A (provided

no other conicting locks exist on O). In the third case, GO has to repeat querying GLCA. A

possible optimization in this case is to query sites of ancestors of H that are descendants of the

LCA; if one of these aborts then GO needs not wait for a reply from GLCA.

2.2.5 Graphic Representation

We often use graphic representations of action trees in examples given in this thesis. Figure 2-3

demonstrates such an action tree. The following conventions are used:

� Ovals represent sites (e.g., GA).

� Ellipsis represent actions (e.g., A:1).

� Rectangular stacks represent objects (e.g., O1) with their versions (e.g., A:1's version).

� Direct arrows mark the relation parent �! child.

� A curved arrow marks serial order between sibling subactions.

� A pair of parallel curves marks concurrent sibling subactions.
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Figure 2-3: An example for an action tree.

� Absence of any of the two previous marks means that the relation between the siblings is

not speci�ed.

For simplicity, we often ignore some irrelevant details in our pictures. For example, call-

actions are often ignored and sometimes guardians or objects are not drawn when we focus on

things like the relation (serial or concurrent) between actions in the action tree.

2.2.6 Orphans

An orphan is a computation that is active even though its results are no longer needed. For

example, suppose an action (e.g., A in Figure 2-3) aborts its handler call (e.g., A:2) due to a

network partition. The handler call and its descendants may still be active after being aborted

since the abort message has not arrived at their site (GA:2 in our example). We call such an

action (A:2) or any of its descendants abort orphan, since it is a result of an abort.
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Another kind of orphan is the crash orphan. A crash orphan is an action that depends on

the volatile state of a site that was lost when that site crashed. For example, suppose that A:1

(in Figure 2-3) created a handler call A:1:1, within the site GC and committed back to A:1. If

GC crashes while A:1 is still active, then A:1's results would become invalid12. If GC crashes

after A:1 had committed, but with A still not committed, then A and all its descendants are

considered crash orphans.

Orphans are undesirable because they waste resources (taking processor time and prevent-

ing other actions from using objects locked by the orphans) and may observe inconsistent

information, possibly resulting in unpredictable behavior.

Algorithms to detect both kinds of orphans ([Liskov, et al. 1987a]) exist in the current

model. The method to detect abort orphans works by keeping track of all aborted actions that

may had active descendants. It is implemented by keeping the AIDs of aborted actions in a data

structure called done at each site G (as G:done). Updates (i.e., newly aborted actions) are prop-

agated to other sites by piggybacking the local done on (almost) every message M as M:done.

Sites abort all descendants of actions in their done. A proof exists that the algorithm to detect

abort orphans prevents these orphans from seeing inconsistent states ([Herlihy, et al. 1987]).

Crash orphans are detected by maintaining, at each site, a crashcounter that is incremented

each time a site recovered from a crash, and a map that reects the site's current knowledge

about the values of the crashcounts of other sites. Each action A maintains a data structure

called the dlist, which contains the names of all the sites on which A depends, i.e., whose crash

would make A a crash orphan. The algorithm works by having messages propagate information

(M:map) to sites, and \catching" orphans, when a messageM arrives at a site G, in one of two

ways:

� If M is a call or reply, and its dlist contains a site C such that G:map(C) > M:map(C),

then if the message is a call, the caller is an orphan (and no handler action is created),

else the action replied to is an orphan (since it depends on its handler call) and is aborted.

� If some site C has to be updated in G:map (i.e., G:map(C) < M:map(C)), then any local

action that depends on C is aborted.

12More precisely, this requires A:1:1 to have locks in GC or to have made handler calls to other sites (and

acquire locks there) and so on before GC crashed, but this is most often the case.
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Actions' dlists are managed as follows: A topaction's dlist initially contains the local site

only. A subaction's dlist is initially its parent's dlist plus its own site. When a subaction aborts,

its dlist is discarded; when it commits, its dlist is merged (as mathematical set union) into its

parent's dlist. Finally, when a descendant inherits a lock from an ancestor, the ancestor's dlist

(as of the time the ancestor acquired the lock) is merged into the descendant's.

The reason for adding ancestors' dlists to the dlist of the action that inherited a lock

is concurrency. Without concurrency, only a single point is active in the action tree at any

time (before the topaction commits), and this point traverses the tree in a depth �rst order,

so passing the dlist at creation and commit times is enough to ensure that an active action

always has a correct dlist. With concurrency, a concurrent subaction S2 may acquire a lock

on an object that was modi�ed by a concurrent sibling S1, thus making S2 depend on S1's

commit, and requiring adding S1's dlist to S2's. The implementation simpli�es the process

by taking, instead of S1's dlist, the dlist of LCA(S1; S2), which includes the dlist of S1 plus

possibly dlists of other committed concurrent siblings. The implementation is as follows13:

When a site propagates write-locks of some subaction S to some ancestor P of S, P 's current

dlist is associated with each propagated version. When P is not local, a query is sent and the

reply \S committed up to P" must be received before that propagation happens. That reply

message contains P 's current dlist. Independently from the query and propagation process,

when an action acquires a lock on an object that was modi�ed by its transaction, all the dlists

associated with the versions on that object must be merged into the action's dlist. Note that

associating dlists with versions allows us to remove dlists when actions abort and their versions

are discarded.

2.2.7 Committing Transactions

Topactions commit in our model by executing a top-level commit protocol known as Two Phase

Commit ([Gray 1978]). This protocol ensures that the transaction either commits everywhere or

aborts everywhere. The participants in the protocol are the sites in the committing topaction's

plist (see Section 2.2.3 above); the coordinator is the topaction's site14.

13This process is not clearly de�ned in [Walker 1984, Liskov, et al. 1987a, Nguyen 1988]. The description here

is our understanding of the way it should be done.
14Note that the topaction's site is also a participant.
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Figure 2-4: A time-space diagram of the current Two Phase Commit protocol.

The protocol is depicted in the time-space diagram in Figure 2-4; time elapses from left

to right, and separate sites have separate horizontal lines; the slanted arrows show messages

sent between the coordinator and a participant. Though only one participant is shown in

the diagram, all the participants receive and send similar messages in the same time interval.

Note that our diagram shows only the case where the protocol succeeds; the case where the

transaction is aborted is explained below.

The coordinator begins the �rst phase by sending a PREPARE message to all the partici-

pants. The message is accompanied by the committing topaction's alist. Each participant that

received the PREPARE message prepares locally by recording on stable storage a tentative

version for every object that was modi�ed by the transaction. The participant is considered

prepared after all the versions have been recorded and a PREPARE record have been written to

stable storage, since this allows it to recover from a subsequent crash and continue participating.

Since our model propagates locks in a lazy fashion, a preparing participant may �nd several

versions stacked on an object to be prepared. The participant can determine the correct version

to record by using the alist that came with the PREPARE message. The correct version to

prepare is the top-most version whose owning action A is not in the alist (i.e., A committed to

the top).

The participant that prepared successfully replies with OK to the coordinator; a participant
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that is unable to prepare (e.g., because it has crashed and lost all the relevant information)

replies with REFUSED . After replying, the (prepared) participant can release all the read-locks

held by the transaction.

The coordinator decides on the transaction's fate based on the replies from the participants.

If all replied with OK , the coordinator commits the transaction by writing a COMMITTED

record to its stable storage. If some participant responded with REFUSED , or did not respond

within a predetermined period (timeout), the coordinator has to abort the transaction.

In the second phase, the coordinator noti�es the participants of its decision. If it decided

to commit, it sends a COMMIT message to the participants, which record the commit on

stable storage, replace the base versions of the transaction's objects with the tentative versions,

release the remaining locks of the transaction and reply with DONE . If the coordinator decides

to abort the transaction, it sends an ABORT message, and the participants discard all the

transaction's locks and tentative versions.

A participant P that did not receive the coordinator's decision (e.g., because P crashed

before the second phase) may query the coordinator later for its decision, which must be kept

by the coordinator's site (unless all the participants replied with DONE).
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Chapter 3

Disconnected Actions

The purpose of this thesis is to extend our current model of computation for a nested atomic

action system, as presented in Chapter 2, to accommodate disconnected actions. This chapter

describes how DAs �t into the model, as opposed to regular (i.e. not disconnected) subactions.

This chapter is organized as follows: We begin by describing DAs and the role that they �ll

in a nested action system and their semantics. Next we describe the design, terminology and

implementation of DAs in our model. And the last two sections describe the necessary changes

to the query and orphan detection mechanisms to support DAs.

3.1 What are disconnected actions?

Nested actions enable programs that use atomic actions to exploit parallelism by providing a

tool to performs several tasks concurrently within an action. However, there are cases where

nested actions can not take advantage of potential parallelism, and independent tasks have to

be done sequentially. For example, many abstract data objects provide operations that perform

some abstract modi�cation to the object; the implementation of these operations often needs

to do more work internally on the object's representation to save some work for the subsequent

operations. The additional improvement work can be done in parallel with the work that the

caller (i.e., the action that called the operation) does after the operation. Doing these two tasks

in parallel is not possible in our current model of nested actions.

Take the Fibonacci Heap ([Fredman & Tarjan 1984]) as an example for an abstract data
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object. With n elements in the heap, the common operation of extract minimum takes a time

of O(lgn), while read minimum is brief (O(1)). The di�erence in time results from the work

that has to be done to rearrange the heap after extraction of the minimum. A program that has

to extract the minimum can be speeded-up by reading the minimum �rst (and marking it as

obsolete), and doing the extraction work \in the background", in parallel with the continuing

program. To use such a speed-up technique in the current model, the program needs to do the

following:

begin topaction % A
begin action % A.1

min := bonacci heap$read min and mark it()
coenter % create a set of concurrent subactions

action bonacci heap$nish extracting minimum()
action do rest of work % of A.1
end

end % A.1
do rest % of A
end % A

The above method has the following drawbacks: Violation of abstraction (the caller needs to

know about the two operations), awkward programming (squeezing the real body of the action

A:1 into a concurrent subaction), and limited scope (the operation nish extracting minimum

can not run in parallel with the rest of the transaction, i.e., A).

Cases that require \background" work, as described above, can be better handled when

the current model is extended to have Disconnected Actions (DAs). A DA is a subaction that

executes in parallel with the rest of the transaction, and performs benevolent side-e�ects within

the parent action. An action A that creates a DA D need not be blocked until D terminates (as

is the case with creating regular subactions); A continues to run in parallel with its disconnected

child D. The disconnected action D is executed as a subaction, but asynchronously with its

transaction; that is, its creator A can run and commit (assuming A is not a topaction) to

A's creator, and so on, without any e�ect on D. The only event that synchronizes D with

its transaction is the termination of D's topaction; no (non-orphan) DA is left active after its

topaction terminates.

With the use of DAs, the previous example can result in a cleaner program and the imple-

mentation of the abstract operation can hide the \background" work:
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extract min = handler () returns (element)
min : element := bonacci heap$read min and mark it()
disconnected action bonacci heap$nish extracting minimum()
return (min)
end

and the program can use the operation in a simple manner:

begin topaction % A
begin action % A.1

min := bonacci heap$extract min()
do rest of work % of A.1
end % A.1

do rest % of A. (Note that the DA may still be active!)
end % A (including the DA)

3.1.1 Kinds of Disconnected actions

A disconnected action can be used by a programmer as a single operation that creates some

benevolent side-e�ects (like improving the representation of an object, as described above).

Another use of DAs by programmers is for quorum-sets that perform successfully at least a

quorum M of operations out of a set of N (such that M � N). For example, quorum-sets can

be used to update replicated objects, as described in Section 1.1. The programmer has to use

a statement like:

do M of fOP1,OP2,. . .,OPNg

and handle an exception when fewer than M actions (operations) can commit.

3.1.2 Semantics of Disconnected Actions

The commit of a disconnected action, like that of any subaction, is relative to its parent; if the

parent (or any of its ancestors) aborts, all the e�ects done by the DA are undone.

The DA is terminated by the time its topaction terminates. Since DAs run asynchronously

with the rest of the transaction, the commit protocol of the topaction must be modi�ed to

ensure termination of DAs of that transaction. These changes are discussed in Chapter 5.

The fate (i.e., commit or abort) of a DA does not e�ect the commit decision of any of its

proper ancestors (except the case of quorum-set DAs discussed below). Therefore, DAs can not
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be used for doing \real" work, only for benevolent side-e�ects.

Disconnected actions must have the same termination semantics as regular subactions; a

disconnected action must appear, to the rest of the transaction, to be terminated as soon as its

creator resumes its execution. Since DAs are active after their creator continues (unlike regular

subactions), changes must be made to the current model to ensure serialization of DAs; these

changes are discussed in the Chapter 4.

3.2 Adding Disconnected Actions to the Current Model

This section describes issues related to design, terminology and implementation of our system

model with disconnected actions.

A goal in the design of the new model was to minimize the change to the design of the current

model and its performance. This goal was achieved; when DAs are not used, the new model

does not send any extra messages, does very little additional local processing, and requires little

additional storage.

The term top DA is used for a disconnected action that was created by a regular action1.

A top DA can run and create subactions like any other action. The term disconnected action

(DA) is used in this thesis to refer to any of the top DA or its descendants.

Our model of disconnected actions can be generalized to have nested disconnected actions;

that is, disconnected actions created by disconnected actions. Allowing disconnected actions

to be created recursively can be useful, for example, when DAs are used to implement abstract

services, which in turn may be used by DAs.

Most of the work in this thesis is concerned with non-nested DAs. Nested DAs are discussed

in various level of detail; in most cases they seem to require only a straightforward extension

of the work for non-nested DAs.

All the quorum operations are run as DAs2. The creator of the set of (N) concurrent

operations is blocked until at least a quorum of (M) disconnected subactions commit. This

way there is no need to specify a priori which operations are in the quorum, and the rest get an

1The term top DA is also used for a nested DA created by a DA and so on.
2Unlike the simplistic description in Section 1.1, where the quorum was achieved by regular subactions �rst,

and DAs were then made to �nish up.
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Figure 3-1: An example of a Disconnected Action

early start. Note that since the creator is blocked while those DAs in the quorum are active,

their chance of success is equivalent to that of regular subactions as they do not conict with

later activity (see Chapter 4).

3.2.1 Graphic Representation of DAs

Figure 3-1 shows an example of an action A that created a disconnected action A:D1. We

use a dashed oval to represent a disconnected action and a dashed arrow to mark the relation

parent action � � ! child top DA. The DA (A:D1) can create subactions like any other

action, therefore we use the continuous arrows to mark relations between a disconnected action

and its children (e.g. between A:D1 and A:D1:1). Dashed arrows are used only for marking the

\disconnected branch" in the action tree. Though the \disconnection" always happens inside

a site, we may simplify some descriptions and draw dashed arrows across site boundaries (e.g.,

in Figure 6-1).
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3.2.2 Implementation of Disconnected Actions

The top disconnected action is implemented as two actions, a parent and a child. The parent

does no real work (similar to a call-action or a concurrent-set action); it only creates a child

and commits after the child terminated. The child does the work like any regular subaction.

The reason for breaking the top DA in two is that some record must be kept at the site when

the top DA aborts; since the parent always commits, it will be entered in COMMITTED , and

its child will be in its alist if the child aborts.

Putting the DA's entry in COMMITTED provides a simple way to keep separately infor-

mation about that DA, including its plist (needed by the algorithm in Chapter 6), its dlist

(needed by the modi�ed orphan detection scheme in Section 3.4) and its alist (needed by the

modi�ed Two Phase Commit protocol in Chapter 5).

Concurrent-set actions, of only explanatory value in the current model, need to be imple-

mented in the model with DAs. They should be stored in COMMITTED after committing

when they are used for quorum sets because they maintain data structures that are used by

active quorum DAs and needed for our fault-tolerant commit method (described in Chapter 6).

Like call-actions, concurrent-set actions and the distinction between parent and child for

top DAs are often ignored in our examples and discussions.

Quorum sets are implemented as follows: The concurrent-set action C, which creates a

set of concurrent quorum DAs, maintains a data structure to monitor the current state of its

quorum DAs. C's parent blocks when C is created, then C creates its concurrent set of N DAs

and blocks until a minimal quorum of Q DAs has committed, at which point C commits and its

parent continues. If a quorum can not be achieved (i.e., at least N �M + 1 DAs aborted), C

aborts. Whether C is active or committed, its site keeps monitoring the state of its DAs until

they all terminate; this information, kept with C's entry (in COMMITTED), is needed later

by the Fault Tolerant Two Phase Commit method (see Chapter 6).

3.3 Queries

To use disconnected actions, the current lock query mechanism must be changed. In the current

model, when some action S needs a lock on an object that is locked in a conicting mode by an
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action L, queries must be sent to the site of LCA(S; L) to �nd out if L committed all the way

to the LCA. Queries can be sent to sites of ancestors of L (that are descendants of the LCA)

as an optimization to detect a possible abort of an ancestor of L earlier.

When a lock holder is a disconnected action, queries to the LCA are not su�cient to

determine that the lock holder committed to the LCA. An ancestor P , disconnected from the

locker L, may commit to the LCA while L is still active. Only when the top DA ancestor of L

commits (and P also commits to the LCA(S; L)) can L's site propagate L's locks and versions

to LCA(S; L). To generalize for the case of nested DAs, lock propagation from a DA L to an

ancestor A requires that all top DAs between L and the A commit, in addition to the current

requirement that an ancestor of L that is a child of A must commit. As before, if any ancestor

of L was found to be aborted, L's locks and versions are discarded.

To grant a lock on an object locked (in conicting mode) by a DA D, queries must be sent

to the LCA and to all the sites where top DAs, ancestors of D that are descendants of the

LCA, were created. Figure 3-2 depicts an example of an action A:2 that tries to get a lock on

the object O that is (write) locked by the nested DA G1:A:G2:G3:D1:G4:G5:D1:G6:GO. The

thick arrows mark the queries that GO must send. GO deduces from the locker's AID that it

has to send queries to G1, the site of A (LCA of A:2 and the locker), to G3, the site of the top

DA G1:A:G2:G3:D1 and to G5, the site of the nested top DA G1:A:G2:G3:D1:G4:G5:D1. All

the queried sites must reply that the relevant action committed before GO can grant the lock

(and the top version) on O to A:2; if some site informs that the relevant action aborted, the

locker's locks and versions should be discarded.

The implementation of the modi�ed query mechanism uses the locker's AID to deduce

the list of sites and ancestors (of the locker) for the queries (the needed operation, \loca-

tions of disconnected ancestors", is described in Appendix A). The site that initiates the

queries traverses the AID of the disconnected locker in a bottom-up order, propagating the

ownership of locks and versions up the tree; only when a reply contains information about the

commit of a top DA D can the the ownership pass to D's parent.
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Figure 3-2: An example for a site making queries about the fate of a lock owner.
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3.4 Interaction with the Orphan Detection mechanism

The orphan detection algorithms are distributed algorithms that propagate knowledge among

sites piggybacked on messages sent by the transactions. The crash orphan detection algorithm

also associates information with the actions themselves.

The only di�erence between the system model that uses DAs and the current one, from

orphan detection point of view, is that some information is not passed from a committing top

DA to its parent, unlike the case between any other action and its parent.

The abort orphan detection algorithm associates no knowledge with speci�c actions and

does not pass any information from a committed action to its parent. Therefore this algorithm

should work in a system model with DAs as before.

The crash orphan detection algorithm propagates knowledge among sites in a manner similar

to the algorithm for abort orphans, but in addition associates dlists with actions. Updates to

dlists travel along branches of the action tree (with subaction's creation and commit) and with

(\committed") replies to lock queries to the LCA.

In a model with DAs, the dlist of a top DA D is not merged into the dlist of its parent

when D commits (because the parent, and several other ancestors, may have committed by

that time). This poses no problem for an ancestor P of a DA D that does not belong to a

quorum, because P can commit even if some participant ofD crashes, as explained in Chapter 6.

However, when some relative R of D observes D's e�ects, it becomes dependent on D's commit

(and dlist). If R is a regular subaction and later commits to P , P would also depend then on

D's dlist.

An action observing e�ects of a relative DA can get the DA's dlist using the extended query

mechanism (Section 3.3). Basically replies to queries sent to sites of top DA should also include

the committed top DA's dlist. As can be seen in the example of Figure 3-2, the site with the

object (GO) sends queries to G3 and G5, in addition to the LCA's site G1. The combination

of the dlists of the three replies would cover the dlist of the version holder that committed to

the LCA.

A problem does exist with DAs that are used for quorum sets. An ancestor of a quorum

set depends on the commit of at least a quorum of its descendant DAs. Three solutions are

proposed here:
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� Do nothing. Some crash orphans may not be detected.

� Pass the dlists of the DAs that committed as part of the quorum to the concurrent-set

action. Some non-orphans may be detected as crash orphans.

� Pass more information with the dlists of committed DAs to the concurrent-set action.

When an action is detected as an orphan because some site used by a DA of the quorum

crashed, the site that created the concurrent-set action must be queried to know if the

quorum minimum was violated.

The last solution is too complex, and requires a change to the orphan detection algorithm.

With the use of the fault tolerant commit algorithm discussed in Chapter 6, quorums sets done

using DAs are likely to survive crashes, so the �rst solution is favored; without that algorithm,

the second solution can be used.
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Chapter 4

Serialization of Disconnected

Actions

In this chapter we describe the way our new model, which supports disconnected actions, is

extended to ensure serialization of atomic actions. In the current model, actions were serialized

by obeying a strict two-phase locking protocol; disconnected actions, which run asynchronously

with their parents, may violate that protocol. This chapter presents additional rules and mech-

anisms that enforce serial behavior in our new model.

One atomic action is serialized after another if they access atomic objects in conicting

mode; that is, at least one of the two updates the object. In this chapter, whenever we talk

about an access to an object, we mean access in conicting mode.

An important point in our serialization mechanism is the ordering relation between the two

relative actions (i.e., of the same transaction) that access an atomic object, the one that got a

lock on the object and the other that tries to get a conicting lock. The two can be serially

related, which means that their LCA created their ancestors to run in a predetermined order, or

concurrent relatives that run concurrently and get serialized by the use of atomic objects. We

distinguish between the case of \serial DAs", which are DAs related serially to other actions,

and \concurrent DAs", which are concurrently related to other actions, as we describe our

solutions that handle the two cases separately .

We devised two serialization mechanisms, one for each ordering relation. In the serial case,
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where predetermined information about the order of the related action exists, we use a simple

timestamp mechanism to enforce this order. For the concurrent case, where the ordering is set

dynamically in various locations, we use a mechanism of constraint tables to centrally monitor

the ordering and prevent disconnected actions from violating this order. The constraint tables

mechanism also requires introduction of a new kind of lock, the �ngerprint lock, to maintain

information about access history to objects.

We give only intuitive reasoning for the correct functionality of our new rules and mecha-

nisms; no formal correctness proof is given. Our belief in the correctness of the new mechanisms

is also supported by a successful simulation we did of the new model.

The chapter is organized as follows: Section 4.1 presents an example for a non-serializable

execution as a result of using DAs. Section 4.2 handles only the case of serial DAs by introducing

the timestamp mechanism and additional lock acquisition rules that use timestamps. Section 4.3

completes the work by introducing the constraint tables mechanism to handle concurrent DAs

and presenting the full scheme for lock propagation and acquisition in our new model. We

conclude in Section 4.4.

4.1 The serialization problem

The following simpli�ed example demonstrates the serialization consistency problem. Suppose

we have a replicated counter C, composed of three replicas C1; C2 and C3 (represented as

(V alue1; V alue2; V alue3) ). Read and write operations are performed on the counter using a

simple majority scheme, similar to our initial example (Section 1.1): Read from two replicas;

write to two replicas. The write operation is augmented by a disconnected action that updates

the third replica.

Figure 4-1 shows the action tree1 of an action A that tries to increment the replicated

counter C twice. For each increment operation A creates a subaction that reads the counter,

calculates the new value, writes the new value to two replicas and leaves a DA behind to write

to the third replica after the subaction commits.

Note that the ordering relation between the two increment subactions, A:1 and A:2, was

1Sites, call-actions, etc., are ignored for simplicity.
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Figure 4-1: An action tree for the action A that updated the counter C twice.

not speci�ed. The non-serializable scenario, describe below, can take place when the two

subactions are either concurrent or serial siblings. The relationship between the siblings becomes

important, however, for the design of the solution.

The non-serializable execution is shown in the time-space diagram in Figure 4-2. The thick

line is the thread of execution, with the time passing from left to right. The dashed line marks

execution of DAs. The vertical axis shows separate locations (i.e., actions). Read and write

operations are given above the thread line. The states of the counter C are shown on the

bottom of the �gure.

The execution is as follows: The counter's value is (6; 6; 6) when A begins and creates A:12.

A:1 reads the value 6 from the counter, writes 7 to replicas C1 and C2, creates a DA (A:1:D1)

to write 7 to C3 and commits to A. Next A:2 reads the value 7 from the counter, writes 8 to

replicas C2 and C3, creates a DA (A:2:D1) to write 8 to C1 and commits to A. Next the latter

DA, A:2:D1, aborts and does not a�ect C1. The �rst DA, A:1:D1, runs in parallel with the rest

of the transaction and manages to write 7 to replica C3 and commit just before A commits.

2Though both the thread graph and the AIDs show A:1 and A:2 as serial siblings, the same execution can
take place with the two running concurrently.
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Figure 4-2: The thread of execution of the action A with disconnected actions that led to an

inconsistent state of the counter C

The result is a non-serializable execution! Starting with the consistent state C = (6; 6; 6) ,

the action A performed successfully two increment operations and yielded an inconsistent state.

Actions following A may read the counter as either (7; ?; 7) = 7 or (7; 8; ?) = 8 . The

current lock inheritance and acquisition rules were not violated: A inherited the locks of its

committing descendants, and each of them acquired locks that were either free or held by A;

yet the execution of the two subactions is not serializable because no order exists such that

performing the two subactions serially in that order would produce the same e�ects.

The problem was caused by the Write(C3  7) operation of the disconnected action

A:1:D1. Because it wrote to the replica C3 after A:2 has also written to it, A:1:D1 and all

its ancestors up to the least common ancestor A (i.e., A:1) ought to come after A:2 in any

equivalent serial execution, while the writing order to C2 in our example forces the opposite

order. The DA A:1:D1 violated the basic rule of two-phase locking; it acquired a lock (on C3)

after its ancestor begun releasing locks (on C2).

The problem could have been solved if knowledge about the serialization order existed at

the site of C3 to prevent A:1:D1 from writing to C3 after A:2 did so. In this particular example

such knowledge did exist, but at the application level, in the form of replica version numbers;
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replica C3 with value 8 has a higher version number than the one to be written by A:1:D1. We

would like to have a general mechanism to provide similar knowledge at the system level.

4.2 Using Timestamps to Serialize Serial DAs

The serialization problem can be solved for lock conicts between serially related (disconnected)

actions with the use of timestamps. The timestamp mechanism proposed below enforces cre-

ation order on DAs; therefore it can have no e�ect when the conict is between concurrent

(disconnected) relatives. Section 4.3 proposes another mechanism, constraint tables, that han-

dles concurrent DAs. Though constraint tables can be extended to handle conicts between

serial relatives as well, their implementation is expensive. The timestamp mechanism is very

e�cient (e.g., no extra messages needed) and handles most of the lock conicts; therefore both

mechanisms are implemented, and the decision about granting a lock to a disconnected action

is made based on the ordering relation between that DA and the owner of the conicting lock.

The timestamp mechanism proposed here enables a disconnected action D to tell that an

object O was used by some future action (e.g., later serial sibling), thus preventing D from

acquiring a conicting lock on O. The use of timestamps divides the execution into intervals of

pseudo-time; a new interval begins immediately after an action A creates a (top) disconnected

action D (or a concurrent set of DAs), before A continues. Everything that A and its ancestors

do after D's creation belong to later intervals of pseudo-time, and D can only observe e�ects

that were created in its interval or previous ones, and change them if no other later action has

yet observed these e�ects.

The implementation maintains a timestamp with every action and every lock. Actions'

timestamps are increased monotonically during the execution of the transaction; locks' times-

tamps are updated when actions access objects. Thus enough information exists at a site to

decide whether a DA requesting a lock can get it or must abort.

The use of timestamps can solve the serialization problem of Section 4.1 for serial siblings.

Figure 4-3 shows again the action tree for A that created serial subactions. The actions'

timestamps are shown (boxed) for an execution that traverses the tree in a depth-�rst, left

to right manner. A starts with a zero timestamp and creates A:1 with the same timestamp.

A:1 creates a DA A:1:D1, which is also given its parents' timestamp, and A:1's timestamp is
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Figure 4-3: An action tree, with timestamps, for the action A that updated the counter C twice

using serial subactions.
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Figure 4-4: The thread of execution of the action A with disconnected actions that uses times-

tamps to maintain a consistent state of the counter C
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incremented to 1 before it continues. When A:1 commits to A, A's timestamp is updated to

match A:1's, and a similar scenario takes place for A:2, which commits to A with a timestamp

of 2.

Figure 4-4 shows the thread of execution and the states of the object, with their correspond-

ing timestamps (� marks an initial value). As seen, every modi�ed replica has the timestamp

that the action that modi�ed it had at the time of the modi�cation. When the DA A:1:D1

tries to modify C3, the timestamp there has the value 1 reecting A:2's access to C3. Since

A:1:D1's timestamp is only 0, it should not be allowed to read or write C3, which has a later

value, and must be aborted.

This rest of this section describes �rst how new locking rules must be added to the cur-

rent ones to ensure serialization of serial DAs by using the timestamp mechanism. Next the

implementation is described, followed by extension of the mechanism for nested DAs.

4.2.1 Additional locking rules

The new additional lock acquisition rules are summarized in Figure 4-5; they apply only if the

action D that requests a lock is disconnected. The new rules prevent D from observing or

a�ecting a state that was created by a later ordered (serial) relative. Failure to satisfy the new

rules implies that D should be aborted. Note that

� Acquiring a write lock

{ D's timestamp must be no smaller than the timestamp of any lock holder

on X .

� Acquiring a read lock

{ D's timestamp must be no smaller than the timestamp of any write lock

holder on X .

Figure 4-5: Additional lock acquisition rules for a DA D on an object X

The new rules are applied only after the current rules approved granting a lock to a DA

D; this way the new rules are applied only to conicting locks held by ancestors of D. Note
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that unnecessary aborts of DAs are prevented; a DA requesting a lock on an object need not

abort when a later sibling is found to hold a conicting lock because timestamps are checked

only after that sibling commits to a common ancestor or aborts. For example, the DA A:1:D1

(in Figure 4-1) need not be aborted if A:2, which has a higher (i.e., later) timestamp, is holding

a lock on C3 at the time A:1:D1 requested a lock. It is possible that A:2 would later abort,

its locks would be discarded and A:1:D1 would be able to acquire a lock on C3. A:1:D1 has to

wait until A:2 either commits to A or aborts.

check locks for read = proc(Reader:ainfo, OBJ:object) returns(reply) signals(abort DA(aid))
% Called at a site to check whether Reader can get a READ lock on OBJ
if versions stack$non empty(OBJ.write stack) then

top write lock : lock := versions stack$top lock(OBJ.write stack)
if aid$non descendant(Reader.aid,top write lock.aid) then

return(can not have lock(Reader,OBJ,top write lock.aid))
y elseif aid$disconnected(Reader.aid) cand Reader.ts < top write lock.ts
then
y signal abort DA(Reader.aid)

end
end

% Reader is a descendant of the top write locker (if any)
if lock set$member(Reader.aid,OBJ.read set) then

return(already has lock(Reader,OBJ))
else

return(can have lock(Reader,OBJ))
end

end check locks for read

Figure 4-6: The lock acquisition rules and the additional rules applied for a (possibly discon-

nected) reader

Figure 4-6 and Figure 4-7 extend the algorithms presented in Figure 2-1 and Figure 2-2 to

apply the new additional rules as well. The added lines are marked with a \y". Every conicting

lock is �rst checked by the current rules, and if it does not conict with the request, then by

the new ones. Note that only the top write lock is checked; due to the ancestry order of the

write lock stack, all those below the top belong to ancestors, whose timestamps are no greater

than the one of the top lock.
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check locks for write = proc(Writer:ainfo, OBJ:object) returns(reply) signals(abort DA(aid))
% Called at a site to check whether Writer can get a WRITE lock on OBJ
for read lock:lock in lock set$elements(OBJ.read set) do

if aid$non descendant(Writer.aid,read lock.aid) then
return(can not have lock(Writer,OBJ,read lock.aid))

y elseif aid$disconnected(Writer.aid) cand Writer.ts < read lock.ts then
y signal abort DA(Writer.aid)

end
end

if versions stack$non empty(OBJ.write stack) then
top write lock : lock := versions stack$top lock(OBJ.write stack)
if aid$non descendant(Writer.aid,top write lock.aid) then

return(can not have lock(Writer,OBJ,top write lock.aid))
elseif Writer.aid = top write lock.aid then

return(already has lock(Writer,OBJ))
y elseif aid$disconnected(Writer.aid) cand Writer.ts < top write lock.ts
then
y signal abort DA(Writer.aid)

end
end

% Writer is a descendant of the top write locker (if any)
return(can have lock(Writer,OBJ))
end check locks for write

Figure 4-7: The lock acquisition rules and the additional rules applied for a (possibly discon-

nected) writer

4.2.2 Implementation of the Timestamp Mechanism

Timestamps are implemented as part of the local action (i.e., AINFO.ts) and as part of every

lock. A possible implementation of timestamps is given in Appendix B. Messages sent for

creating a handler call or committing it need also to carry the timestamp of the action (the one

on the sending side).

Management of actions' timestamps

Figure 4-8 outlines the way our model is extended to maintain timestamps on actions. When

any action is created, it inherits its parent's timestamp or zero if it is a topaction. The action's

timestamp is incremented immediately after creating a (top) DA or a concurrent set that in-

cludes (top) DAs, hence giving an active action a timestamp higher than that of its disconnected
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children. When a subaction commits, if its timestamp is bigger than its parent's timestamp

(i.e., it or its descendants created DAs), then the parent's timestamp must be modi�ed to equal

that of the committing subaction; thus non-blocked active actions always have a timestamp

larger than the timestamp of any disconnected descendant.

� When A is created

if aid$topaction(A.aid) then
A.ts := timestamp$new()

else
A.ts := parent(A).ts

end

� When any subaction S commits to A

A.ts := timestamp$max(A.ts,S.ts)

� Immediately after A creates a DA a set of DAs and before continuing

A.ts := timestamp$increment(A.ts)

Figure 4-8: Timestamp management rules for any action A

Note how the case of concurrent siblings that created DAs is treated: The parent action

(concurrent-set action), which is blocked until all its concurrent subactions terminate, gets the

maximal timestamp from the committed subactions before it continues. This way the parent's

timestamp will be larger than that of any DA that was created by its concurrent subactions.

Management of timestamps on locks

The rule for managing timestamps on locks is simple: Whenever an action A (whose current

timestamp is A:ts) accesses an object O, on which A has the appropriate lock L, do:

L.ts := A.ts

Note that the rule applies in two di�erent cases: When A �rst acquires the lock L, and in

each of A's subsequent accesses to O3. The rule has to apply to actions that have already gotten

3This is the reason for making the distinction between \can have lock" and the reply \already has lock" in

our code.
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the lock because actions' timestamps can increase during their lifetime. The cost of updating

timestamps on every access is negligible since the appropriate lock is checked on every access

anyhow (see the requirements on page 24).

Separation of read and write accesses, and the requirement to have the appropriate lock

for each4, prevent some unnecessary aborts of DAs. For example, suppose some action A

with timestamp 1 writes to an object O, and later reads O when its timestamp is 3. A's

disconnected child A:D5 with a timestamp 2 should be able to read O at this point, but not

modify it. Unless A has separate locks, one for each operation, A:D5 may be denied a read-lock

on O if the timestamp on A's write lock reects A's read access (with timestamp 3).

inherit read lock = proc (Ancestor, Locker: aid, OBJ:object)
% Requires: Locker descendant of Ancestor, Locker has a read-lock on OBJ
% Modies: OBJ.read set and Locker’s read lock there
% Eects: Ancestor inherits Locker’s read-lock on OBJ
locker lock : lock := lock set$nd(Locker,OBJ.read set)
locker lock.aid := Ancestor
ancestor lock : lock := lock set$nd(Ancestor,OBJ.read set)

except when not found: return end
locker lock.ts := timestamp$max(ancestor lock.ts,locker lock.ts)
lock set$remove(Ancestor,OBJ.read set)
end inherit read lock

Figure 4-9: Ancestor inherits Locker's read-lock on OBJ

When the locks of an action are inherited by an ancestor, the timestamps on the locks are

not a�ected by the ancestor's current Timestamp (i.e., AINFO.ts). The timestamp is a part of

the lock (like the version), and only the lock's owner is replaced. Figure 4-9 describes how a

read-lock is inherited by an ancestor. Basically the lock owner is replaced, and if the ancestor

already has a read-lock, it is discarded. The maximal timestamp of the two locks prevails; this

way the latest read access on behalf of the ancestor is reected.

Figure 4-10 describes how a write-lock is inherited by an ancestor. The inherited lock, with

its version and timestamp, replaces all the locks below in the stack up to (and including) the

ancestor's lock. Note that the timestamp on the write-lock reects the time its version was last

modi�ed, regardless of the ancestor's (possibly higher) timestamp at the time of the inheritance.

4I.e., a read-lock is needed before reading even if the action already has a write-lock there, see page 24.
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inherit write lock = proc (Ancestor, Locker: aid, OBJ:object)
% Requires: Locker descendant of Ancestor.
% Locker has the top write-lock in OBJ.write stack
% Modies: OBJ.write stack
% Eects: Ancestor inherits Locker’s write-lock (with version) on OBJ
locker lock : lock := versions stack$top(OBJ.write stack)
top aid : aid := locker lock.aid
while aid$descendant(top aid,Ancestor) do

versions stack$pop(OBJ.write stack)
top aid := versions stack$top(OBJ.write stack).aid
end

locker lock.aid := Ancestor
versions stack$push(OBJ.write stack,locker lock)
end inherit write lock

Figure 4-10: Ancestor inherits Locker's write-lock on OBJ

4.2.3 Timestamps for Nested DAs

Our timestamp mechanism can be extended to handle the case of more than one level of

disconnection (i.e. nested DAs). Such a case is shown in Figure 4-11; the disconnected action

A:2:D2 created another DA, A:2:D2:D1. The di�erence between this case and the case of a

single disconnection level is that a nested DA like A:2:D2:D1 has to be synchronized with an

ancestor that is itself disconnected. A timestamp represented as a single numerator does not

su�ce here, and has to be extended to a multi-part timestamp. The new lock acquisition rules,

on the other hand, are basically the same.

The extended timestamp mechanism employs a separate timestamp for every level of dis-

connection. A disconnected action D at some level k of disconnection (i.e., there are k discon-

nections on the tree path between D and the root topaction) keeps a list of k + 1 timestamps.

For example, when the DA A:2:D2 (in Figure 4-11) is created, it gets its parent's timestamp

of 1 with a new level (initially 0) added, represented as 1.0 . Two (Multi-level) timestamps are

compared by matching them level by level, left to right; the �rst level with non-equal values de-

termines the order (a short timestamp is padded with zeroes on its right side). (Disconnected)

actions update only the right-most part of their timestamp when they create DAs. For exam-

ple, A:2:D2's timestamp is changed from 1.0 to 1.1 after creating a DA. The additional part in

53



+ s?

	
?

R

?

A

A:1 A:2 A:3

A:2:D1 A:2:D2 A:2:D3

A:2:D2:D1

0 3

0 3

0 3

1 2

0.0 1.0 1.1 2.0

1.0.0

Figure 4-11: An example for serializing nested DAs using timestamps

54



the timestamp has no e�ect on the way committing children update their parents' timestamps

because the di�erence in the number of parts occurs only between parents and top DA children,

who do not commit normally anyhow.

The timestamp rules and implementation presented in this chapter apply to nested DAs as

well. The multi-part details are encapsulated inside the abstraction for timestamps (see the

implementation in Appendix B). Timestamp operations like increment, max, equal, etc.,

handle the appropriate parts of the representation internally as needed.

4.3 Concurrent DAs

Disconnected actions that were created by concurrent subactions (concurrent DAs) pose prob-

lems that can not be solved by a mechanism like timestamps. The timestamp mechanism

proposed above enforces the static creation order of the serial subactions upon their discon-

nected actions. Concurrent subactions, on the other hand, are serialized dynamically. They are

created simultaneously, run concurrently and should behave as though they were run in some

serial order. This order reects the order in which the subactions accessed shared atomic data

and is determined dynamically as the actions run.

Execution of an action that uses concurrent DAs may result in an inconsistent state. The

scenario described in Section 4.1 can take place when the two subactions, A:1 and A:2, are

created simultaneously as concurrent siblings (and have initially the same timestamp). The

locking rules presented above do not prevent the non-serializable execution; A:1 updates C1

and C2, commits and A inherits its locks, and A:2 acquires the locks held by A, does its work

and commits to A. The DA A:1:D1 can acquire the lock on C3 because A inherited it from

A:2 . Timestamps are not su�cient in this case, and no information exists at C3's site (assume

that the other actions run at other sites) to tell whether A:1:D1 can get a lock on C3 or not.

By acquiring the lock on C3, A:1:D1 serializes its concurrent parent A:1 after its sibling A:2

that a�ected C3 before, resulting in a non-serializable execution of A:1 and A:2 since C2 was

accessed in the opposite order. Note that the serialization order is determined by the order in

which locks were passed from one relative (A:1) to another (A:2) via the LCA (A); our solution

takes advantage of this fact to monitor the serialization of concurrent subactions serially at the

site of the LCA.
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In a model without DAs, the commit order of concurrent subactions is a possible serial order

of the subactions; the exact serialization order is usually only a partial order consistent with the

commit order. When DAs are used, the actual commit order of the concurrent subactions may

not be consistent with the way they get serialized; a disconnected descendant of a concurrent

subaction S may be active after S's commit and force serialization constraints on S by acquiring

locks on objects that were accessed by other concurrent siblings of S.

This chapter proposes a new mechanism that uses Constraint Tables and Fingerprint Locks

to control access of disconnected actions to objects locked in conicting mode by a concurrent

relative. The new mechanism monitors the serialization order of the concurrent subaction,

and keeps an explicit record of it (as a Constraint Table); this record is consulted as needed

whenever a DA tries to acquire a lock.

The idea behind the new mechanism is to have centralized control over the serialization

of concurrent subactions. Our problem is analogous to the deadlock detection problem in

distributed systems. A deadlock implies a cycle of blocked concurrent activities, each waiting

for the next one; a non-serializable execution of concurrent atomic actions can happen if, by

creating serialization constraints (by accessing shared objects and using DAs), a cycle of actions

is created where each action is serialized after the next. Our solution is similar in principle to

the deadlock detection algorithm that uses a centralized wait-for graph ([Gray 1978]) to monitor

wait-for relations and prevent a cycle.

The new mechanism does have a signi�cant performance cost, but it is a very permissive

mechanism that ensures serial behavior. Other mechanisms can be devised that have a lower

cost, but they may abort many DAs unnecessarily. For example, another mechanism can be

designed to totally prevent DAs from acquiring conicting locks on objects that were used by

concurrent relatives; such a mechanism need not track serialization order, but is too restrictive.

The rest of this section is organized as follows: We begin the description of the new mech-

anism by presenting a simpli�ed version of our solution, and continue by describing how we

make the simpli�ed solution practical. Next we give details of the way our solution can be

implemented, and end with discussion of several issues that were ignored in our solution.
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4.3.1 A simpli�ed solution

The simpli�ed solution, presented below, to the problem of serializing concurrent subactions

that create DAs, ignores costs (i.e., extra messages, time and space) and failures (i.e., crashes

and aborts); it focuses on the basic method to monitor serialization of concurrent subactions

and control access of concurrent DAs to objects.

Sites maintain a Constraint Table (CT) for every concurrent-set action created locally. The

CT can be represented by an n�n matrix, where n is the total number of concurrent subactions

in the set, and an entry CT (i; j) describes the serialization order between subactions i and j

(\before", \after" or has some initial value). The CT represents a directed graph in which

each vertex is a concurrent subaction, and each edge is a serialization constraint. A cycle in

the constraint graph is equivalent to a non-serializable execution of the concurrent subactions

([Eswaran, et al. 1976]).

We assume that every atomic object remembers its history. For example, an object O that

was modi�ed by a subaction S1 remembers S1, enabling O's site to know that a subsequent

access of a subaction S2 to O (in conicting mode) implies the serialization constraint \S2

ordered after S1".

Whenever any subaction S2 tries to acquire a lock on an object that was previously accessed

by a (committed) concurrent relative S1 (in conicting mode), a special query message, CT-

query, has to be sent from the object's site (GO) to GLCA, the site of (the concurrent-set action)

LCA(S1; S2), specifying the possible constraint \S2 ordered after S1". When GLCA receives

the CTquery, it adds the serialization constraint to the CT of LCA(S1; S2) and acknowledges

with a CTreply message. Hence the CT maintains explicitly the partial serialization order of

its concurrent subactions.

A CTquery on behalf of a regular subaction S2 is only used for monitoring serialization; for

a DA D the CTquery message and its acknowledgment are also used to control the DA's access

to objects. When an access by D is found to create a cycle in the constraint graph, the CT's

site does not update the CT and uses the CTreply message to inform the D's site that access

should be denied (i.e., \abort D"), otherwise the CT is updated and the CTreply approves of

D's access.

Figure 4-12 illustrates the simpli�ed solution. When a subaction S tries to access an object

57



GA

GO

Constraint
Table

for A:C1

i

j A

A:C1:i A:C1:j

	 R

S

?

O

Accessed by

A:C1:i
S tries to access the object O

C
T

q
u

er
y(

 A
.C

1.
j =

> 
A

.C
1.

i )

C
T

re
p

ly

Figure 4-12:

58



O at site GO, O if found to have been used before by a concurrent relative of S. A CTquery

message is sent from GO to the site GA of LCA(S;A:C1:i), describing the new constraint

\A:C1:j must be serialized after A:C1:i". The constraint table at GA is updated and a CTreply

is returned. If S had been a disconnected action, then the CT would be checked �rst, and the

CTreply would return the decision.

4.3.2 Making the solution practical

The simpli�ed solution proposed above works, but several e�ciency issues must be dealt with

to make this solution practical. In the following we discuss the major issues: How to reduce

the number of messages, how to avoid the overhead when DAs are not used and how to ensure

that objects would have their relevant access history available when locks are acquired.

Reducing the number of messages

Our simpli�ed mechanism requires exchange of messages for every access of an action to an

object that was used by a concurrent relative. We propose here to reduce the number of

messages by caching previous replies locally and using other existing messages to carry some of

the data needed by our mechanism.

The use of CTquery messages is parallel in many cases to the use of regular query messages

(to the LCA). Basically all that is needed to make a regular query message into a CTquery

message is the name (AID) of the action that tries to access the object. Our solution uni�es the

two kinds into one. Though this conversion of regular queries (and replies) seems to come with

no cost, we do lose a possible optimization: Regular queries are not sent on behalf of speci�c

actions accessing speci�c objects; therefore one query may be sent on behalf of several actions

trying to use several objects. We can still use this optimization when a CTquery is not needed.

Some CTqueries can not \catch a ride" on existing queries. In some cases a regular query is

not needed, but giving a lock still implies the creation of serialization constraint (see Fingerprint

Locks below). We send more (modi�ed regular) queries in these cases, but may refer to them

as CTqueries to stress their purpose.

Local caching can help avoid some messages. The idea is: The site replying with CTreplywill

add the relevant CT to the reply, and the site receiving the reply will cache that CT locally,
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possibly replacing an older copy. This way, if the local copy is consulted �rst, the message

exchange can be avoided when the order is known locally.

Enable the mechanism only when DAs are used

As stated before, one of our design goals is to have the new model perform similarly to the

current one when DAs are not in use. Having a constraint table for every concurrent set of

subactions and sending CT messages does not contribute to this goal. We would like the CT

mechanism to be triggered only when it is needed, i.e., after some concurrent subaction created

DAs. The problem is that the site of the concurrent-set action C has no a priori knowledge

about C's intention to create DAs; we need a way to detect it dynamically.

We choose the triggering event to be the commit of the �rst concurrent subaction S with a

timestamp bigger than its ancestor's, the concurrent-set action C. This event implies at least

one concurrent subaction (S) created DAs, and our mechanism is needed (except when S is

the last concurrent subaction to commit to C). Triggering the CT mechanism means not only

creating a new CT, but also notifying sites that make relevant queries that CT caching has to

be done and that lock propagation must be handled di�erently (see below).

When S commits and triggers the mechanism for C, a new constraint table is allocated

at C's site for C. This CT needs not handle those concurrent subactions of C that already

committed5, with the exception of S, which also gets an entry in the CT.

Once the mechanism has been triggered (for C), the \committed to LCA" reply to every

query regarding C's subactions (replied from C's site) must be tagged with the tag make FP

and carry a recent copy of the CT. A site receiving a tagged reply would cache the CT copy

locally and handle lock propagation di�erently (as described below).

Note that C's site may notice that DAs were created on C's behalf before S commits by

receiving a query from (or about) some DA, descendant of C. The mechanism need not be

triggered at this point because non-serializable execution of concurrent subactions using DAs

must include a commit of some subaction using DAs6.

5Because they created no DAs.
6The execution is serializable prior to the commit of the �rst concurrent subaction that created DAs because

no concurrent subaction has yet violated the rule of strict two-phase locking; i.e., acquired a lock (by a descendant
DA) after releasing another.

60



Identify the last action(s) to access an object

The simpli�ed solution required that the history of each object be kept, so the last (concurrent)

action to access the object in conicting mode can be known. Our model does keep this

information with each object in the form of locks, but once locks are inherited, the identity

of the real accessor is no longer known. More speci�cally, after a lock that was held by a

descendant of a concurrent subaction S is inherited by (an ancestor of) the concurrent-set

action C, it is impossible to tell which of C's concurrent subactions had it. We need a way to

remember the last (concurrent) subaction that modi�ed some object, and possibly several that

read the object (and are serialized after that writer).

Our solution is to both keep that inherited lock and inherit it. This can be done as follows:

Inherit locks as before, but once a lock is propagated to the level of the concurrent-set action,

a copy of the old lock is kept as a Fingerprint Lock (FPL). This way, when a subaction tries to

get a lock on an object previously used by some concurrent relative, it would be known with

whom it conicts. The FPL is a regular (read or write) lock, but is tagged with the boolean

ag fp. The FPL is transparent to operations that do not need it (e.g., lock query by a later

serial relative or commit of the transaction7), and is used only by our mechanism.

Our solution actually requires a FPL to exist on an object before granting a conicting

lock; that is, �rst queries are sent, and their replies cause such conicting locks to propagate

and also become FPLs, next checks are done to ensure the correct serialization. This leads to a

simple (and uniform) additional lock granting rule (and implementation): \The local CT must

approve the ordering constraint with every conicting FPL before the lock is granted".

We could generate FPLs whenever a lock is inherited (as explained above) and keep it

until the transaction commits, but this may take a performance toll. Our implementation

begins generating FPLs only after the CT mechanism has been triggered (for the appropriate

concurrent set of subactions); that is, FPLs would be created only if the reply is tagged with

make FP. FPLs are also discarded once they are no longer needed; we describe below how

obsolete write FPLs are discarded, as a part of maintaining the write stack, and ignore for now

the need to discard read FPLs, as obsolete read FPLs only slow our algorithm, but do not

7We ignore FPLs in the description of the commit mechanism (Chapter 5) as they have no e�ect there.
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Figure 4-13: An example of multiple levels of concurrent subactions.

change its behavior.

Note that propagation of a lock from a holder H to an ancestor A can generate more than

one FPL; when there are several concurrent-set actions between H and A (including A), the

\arm" (concurrent subaction) in each must be remembered. This applies to both read and

write locks.

Such a case is illustrated in Figure 4-13. The subaction A:1:1:2 created DAs and caused

A:1:1's CT to be triggered. Cascaded triggering occurs when A:1:1 commits to A:1 and later

to A. After that, if the subaction A:2 tries to get a (conicting) lock on some object O that is

locked by A:1:1:1, the query sent to A's site indicates that with \A:1 committed up to A", and

tagged with make FP.

Creating a FPL on O for A:1 alone is not enough, because A:2 may abort after that and
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a DA D created by A:1:1:2 may try later to get a lock, but no trace of A:1:1:1's access would

then be found on O. The solution is to create a FPL for every concurrent subaction between

the lock holder and the LCA. In our example, when the tagged reply arrives, three FPLs are

needed: for A:1, A:1:1 and A:1:1:1 .

Once a read FP lock is created, it is put in the unordered set of read-locks. Multiple read

FPLs (of the same concurrent level) may exist on an object because readers do not enforce

serialization constraints among themselves. For simplicity, our implementation assumes that

read FPLs are not discarded unless some ancestor aborted or their transaction committed.

When a write FP lock is created, it is put on top of the write stack; when several FPLs

are created, they are left on the stack in ancestry order. See Figure 4-14 for the state of the

stack in the case of the previous example. When an action like A:2 acquires a write lock,

it will be positioned above the FPLs in the stack, so if A:2 aborts, its lock is discarded and

other actions (e.g., concurrent siblings of A:1 and A:2) can still use the FPLs. If A:2 commits

and A inherits its write lock, then the three FPLs (shown in Figure 4-14) become obsolete,

and are discarded, but a new FPL is created for A:2 . Note that our implementation of

‘‘inherit write lock’’ (page 53) already discards all these locks since it discards all write-locks (of

any kind) between the inherited lock (e.g., A:2's lock on the top) to the position of the ancestor

(A).

In general, the sequence of real locks on the write stack will be interleaved with some

subsequences of FPLs. The real locks represent the current path P in the action tree, while

the subsequences of FPLs represent previous paths branching away from P that may become

useful if actions with locks above them abort. When the top lock is a real lock, regular work is

done with it, ignoring possible FPLs below. But when several actions abort, the FPLs below

may get exposed.

4.3.3 Implementation

Below we describe the �ne details needed to implement our mechanism. We assume that sites

keep CTs and manage them, updating copies as tagged replies arrive and discarding them when

the transaction terminates8. Queries are assumed to contain the AID of the action A requesting

8CTs can be kept in a data structure similar to ACTIVE or COMMITTED.
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Figure 4-14: The state of the write stack with FP locks (boxed).

the lock, and are sent whenever A can not get a lock due to a conicting one.

When a concurrent subaction S commits to its concurrent-set action C (which must happen

locally), if S.ts is bigger than C.ts then a new CT is created for C locally (if not yet so done)

to map all C's subactions that are still active, including S. The implementation must be able

to tell at any time which of C's subactions have not yet terminated.

When a lock query arrives at C site, GC , specifying that a descendant of a concurrent

subaction S2 requests a lock held by S1 (such that C = LCA(S1; S2)), then if S1 has committed

to C, and C has a CT, then that CT is updated if necessary, unless the update creates a cycle.

Then GC replies, tagging its \committed to C" reply with make FP and adding a copy of the

CT to it.

When a tagged reply arrives, implying that the locks of a locker S are to be propagated

to an ancestor A, the locks are propagated to A, but FPLs are created for every concurrent

subaction on the path between S and A (S included, A excluded). Figure 4-15 describes the

routine to be called when a tagged reply arrived (for a non-tagged reply, the one in Figure 4-9

is used), and Figure 4-16 gives the routine for write locks (the one in Figure 4-10 is used when
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non-tagged replies arrive).

make FP read = proc (Ancestor, Locker: aid, OBJ:object)
% Called when the reply is tagged, instead of ‘‘inherit read lock’’
% Requires: Locker descendant of Ancestor, Locker has a read-lock on OBJ
% Modies: OBJ.read set
% Eects: Ancestor inherits Locker’s read-lock on OBJ, and FPLs are
% created for all the concurrent subactions between them.
locker lock : lock := lock$copy( % inherit read lock modies the original

lock set$nd(Locker,OBJ.read set)) % return a reference to that lock
inherit read lock(Ancestor,Locker,OBJ)
for conc sub:aid in aid$concurrent subactions between(Ancestor,Locker) do

FPL : lock := lock$copy(locker lock)
FPL.aid := conc sub
FPL.fp := true
lock set$insert(FPL,OBJ.read set)
end

end make FP read

Figure 4-15: Ancestor inherits read-locks and creates read FPLs.

make FP write = proc (Ancestor, Locker: aid, OBJ:object)
% Requires: Locker descendant of Ancestor.
% Locker has the top write-lock in OBJ.write stack
% Modies: OBJ.write stack
% Eects: Ancestor inherits Locker’s write-lock (with version) on OBJ,
% and FPLs are created for all concurrent subactions between them.
locker lock : lock := versions stack$top(OBJ.write stack)
inherit write lock(Ancestor,Locker,OBJ)
for conc sub:aid in aid$concurrent subactions between(Ancestor,Locker) do

FPL : lock := lock$copy(locker lock)
FPL.aid := conc sub
FPL.fp := true
versions stack$push(OBJ.write stack,FPL)
end

end make FP write

Figure 4-16: Ancestor inherits write-locks and creates write FPLs.

The algorithm for deciding on lock grant becomes simple due to the �ngerprint scheme

shown above; when an action tries to acquire a lock on an object, conicting locks of concurrent

relatives are replaced (if our mechanism was triggered) with FP locks, and the serialization
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constraint can be known locally. If by that time relevant information has already arrived at the

local CT, the lock granting process can continue, else an extra query is needed.

serialized after = proc (S,locker:aid) returns(bool) signals(abort DA(aid))
% Called when subaction S accesses an object with an FP lock of locker.
% Makes a decision based on the relevant CT.
% Eects: Returns true if S is serialized after locker in the relevant
% local CT or if the two are not concurrent relatives.
% MEANING: S can ignore this FPL.
% Returns false if no order exist in the CT or CT not found.
% MEANING: A CTquery need to be sent to nd the order.
% Signals abort da if S is serialized before locker in the CT.
% MEANING: S must be a DA out of serial order.
if aid$not concurrent relatives(S,locker) then return(true) end
relevant ct : ct := nd relevant ct(aid$LCA(S,locker))

except when not found: return(false) end
if ct$after(S,locker) then return(true)

else signal abort DA(S)
end except when no order: return(false) end

end
end serialized after

Figure 4-17: Check local Constraint Table when a lock check �nds an FP lock

Figure 4-17 presents an abstraction that decides for an action A �nding a conicting FP lock

held by B, based on local CT information, which of the three cases applies: \Ignore this FPL"

when the ordering constraint conforms to the CT data (or when A and B are not concurrently

related), \CTquery is required" when ordering information does not exist locally, and \abort

this DA" when A is (a DA) out of order.

The routine serialized after is used by our lock checking procedures, presented in Figures 4-

18 and 4-19. These procedures do the complete checking process, combining the current lock

acquisition rules, the additional rules that use timestamps, and the rules that use FPs. Note

that these are the procedures presented before (in Figures 4-6 and 4-7) with additional lines

(marked with \z") that do the work of checking FP locks.

Whenever one of the two procedures replies with \can not have lock", a query is sent to

the site of the LCA, regarding the conict between the action A that tries to access the object

and the conicting lock owner. The reply to the query, if tagged with make FP, calls the lock
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check locks for read = proc(Reader:ainfo, OBJ:object) returns(reply) signals(abort DA(aid))
% Called at a site to check whether Reader can get a READ lock on OBJ
if versions stack$non empty(OBJ.write stack) then

top write lock : lock := versions stack$top lock(OBJ.write stack)
z while top write lock.fp do % scan FPLs top down
z if serialized after(Reader.aid,top write lock.aid) then
z top write lock := top write lock.next below
z else return(can not have lock(Reader,OBJ,top write lock.aid))
z end resignal abort DA
z end

if aid$non descendant(Reader.aid,top write lock.aid) then
return(can not have lock(Reader,OBJ,top write lock.aid))

y elseif aid$disconnected(Reader.aid) cand Reader.ts < top write lock.ts
then
y signal abort DA(Reader.aid)

end
end

% Reader is a descendant of the top write locker (if any)
if lock set$member(Reader.aid,OBJ.read set) then

return(already has lock(Reader,OBJ))
else

return(can have lock(Reader,OBJ))
end

end check locks for read

Figure 4-18: The complete modi�ed lock acquisition rules applied when a (possibly discon-

nected) action requests a read lock on the object OBJ.
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check locks for write = proc(Writer:ainfo, OBJ:object) returns(reply) signals(abort DA(aid))
% Called at a site to check whether Writer can get a WRITE lock on OBJ
for read lock:lock in lock set$elements(OBJ.read set) do

if aid$non descendant(Writer.aid,read lock.aid) then
z if read lock.fp then
z if serialized after(Writer.aid,read lock.aid) then continue
z else return(can not have lock(Writer,OBJ,read lock.aid))
z end resignal abort DA
z else % this lock is not FPL

return(can not have lock(Writer,OBJ,read lock.aid))
z end
y elseif aid$disconnected(Writer.aid) cand Writer.ts < read lock.ts then
y signal abort DA(Writer.aid)

end
end

if versions stack$non empty(OBJ.write stack) then
top write lock : lock := versions stack$top lock(OBJ.write stack)

z while top write lock.fp do % scan FPLs top down
z if serialized after(Writer.aid,top write lock.aid) then
z top write lock := top write lock.next below
z else return(can not have lock(Writer,OBJ,top write lock.aid))
z end resignal abort DA
z end

if aid$non descendant(Writer.aid,top write lock.aid) then
return(can not have lock(Writer,OBJ,top write lock.aid))

elseif Writer.aid = top write lock.aid then
return(already has lock(Writer,OBJ))

y elseif aid$disconnected(Writer.aid) cand Writer.ts < top write lock.ts
then
y signal abort DA(Writer.aid)

end
end

% Writer is a descendant of the top write locker (if any)
return(can have lock(Writer,OBJ))
end check locks for write

Figure 4-19: The complete modi�ed lock acquisition rules applied when a (possibly discon-

nected) action requests a write lock on the object OBJ.
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propagation routines described above. When A later tries again9, another query may need to

be generated.

4.3.4 Discussion

Below we discuss some of the remaining issues, most of which were ignored previously to

maintain comprehensibility.

Discarding obsolete FP read-locks

As described above, once a FP read lock is added to an object, it remains there until its

transaction terminates (or some ancestor aborts). Some FP read-locks may become obsolete

later in the execution; lock requests would not be denied due to obsolete FP read-locks, but

they would need to be checked on every write access and also consume space.

A FP read-lock L becomes obsolete if any lock holder H (read or write), serialized after

L, commits to an ancestor of L. The reason is simple: Later write accesses would have to

be serialized after H , thus after L's holder anyway. In summary, a FP read-lock L held by a

subaction S on an object O, can be discarded when

� Any write-lock on O is inherited by an ancestor of S.

� Another read-lock on O, held by a later serial relative of S is inherited by an ancestor

of S.

� S's transaction commits.

� Some ancestor of S aborts.

Not delaying a regular subaction that created a constraint

In our mechanism, when a regular subaction S �nds a conicting FP lock held by a concurrent

relative R, and the ordering constraint \S after R" is not found in the local CT, a query

(actually CTquery) has to be sent to the site of LCA(S;R) to register that constraint.

9The implementation can use either busy-waiting or put A in a waiting queue and reactivate it after locks
propagate.
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S need not be delayed until the CTreply comes; S is a regular action and the current locking

rules already ensure its serialization. However, the following rare scenario may take place if S

is not delayed: S requests a lock that conicts with a FP lock held by the concurrent relative

R and a query is sent, then S �nishes quickly and commits to the concurrent-set action, before

the query message had gotten there. Next a disconnected descendant of R may request one of

S's locks and get it because the ordering constraint has not yet reached the CT.

A solution to the problem that prevents the delay of S is to piggyback the constraints with

the regular action that created them, and check the CT of the concurrent-set action C when S

commits up to C.

Handling failures

Our mechanism need not care about site crashes; when a site that was visited by descendants

of a concurrent-set action C that committed to C crashes (before C's transaction prepares), C

becomes an orphan. Subactions that abort, however, do pose a problem.

When some subaction A, a proper descendant of a concurrent subaction S of C, creates a

serialization constraint in C's CT (by requesting a lock someplace) and aborts, its constraint

may become invalid. Such erroneous constraints can cause unnecessary aborts of DAs that try

to violate the erroneous order. Note, however, that an abort of a concurrent subaction like S

causes no harm; while S was active, no other sibling could have been serialized after S.

The solution presented above ignores the possibility of an abort of a subaction A that

created a constraint in the CT. (The price to be paid is potential unnecessary aborts of DAs

when subactions like A abort). In the following we outline a way to handle aborts; it was not

implemented to avoid additional complexities in the presentation of the mechanism.

The idea behind handling aborts is keeping an accurate record of every serialization conict

created, and discarding this record when the action that created that conict (or one of its

ancestors) abort.

Our simpli�ed mechanism (without caching of CTs) can implement the above idea by im-

plementing the CT entries as counters. Every constraint created is reported to the central CT

by a CTquery message; if the CTreply approves the order, the appropriate counter would be

incremented. The new lock that is acquired after the reply is received is marked to refer to
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that CT. When a subaction A is aborted, and its locks are released, then for any marked lock

A had, a special message would be sent to the appropriate CT and the appropriate counter

would be decremented. This way, when a counter reaches its initial value again, the serialization

conict would be gone. More work is needed, however, to adapt this scheme to our optimized

mechanism (which uses caching, etc.).

4.4 Conclusion

The lock acquisition and propagation scheme presented above ensures serial behavior of nested

atomic actions systems that use disconnected actions. The above algorithms were simulated

successfully, but no performance measurements were taken. The performance is expected to

depend heavily on the various optimizations, some of which were mentioned above, which were

not implemented.

The above scheme acquires the requested lock by checking all the conicts with existing

locks and applying the serial or concurrent rules, depends on the ordering relation in each

conict. Our choice of using two mechanisms was derived by considering costs; the timestamps

mechanism is almost free, in comparison to the CT/FP scheme that carries a considerable price.

Using the CT mechanism alone to handle both cases is possible but too expensive.

The case of nested DAs was elaborated for the serial DAs. It should make no di�erence for

concurrent DAs because the point is to �nd the serialization constraint between the concurrent

subactions, regardless of the level of disconnection.

Note also that the case of concurrent subactions, all or some disconnected, (e.g., in Figure 6-

1) is handled correctly by using timestamps alone; DAs running concurrently still obey the strict

two-phase locking protocol. However, if any of the concurrent siblings (DAs) creates (nested)

DAs, the CT mechanism has to be used.
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Chapter 5

Commit with Disconnected Actions.

This chapter discusses how a nested atomic action system using disconnected actions would

commit its transactions. Disconnected actions, which were introduced into our model to exploit

concurrency and improve performance, violate some of the preconditions required by the commit

mechanism: Some (disconnected) actions may still be active, and information needed by the

coordinator of the commit protocol may be scattered around the system.

This chapter describes a modi�ed mechanism that ensures that a system using DAs would

have the desired commit semantics. The new commit mechanism aborts active (disconnected)

actions, collects the missing information and makes the e�ects of the non-aborted topaction

and all its non-aborted descendants permanent.

We shall start by discussing how to modify the existing Two Phase Commit protocol to

handle the various situations that may occur when disconnected actions are used, and examine

(in Section 5.2) in detail how atomic objects at a site that participated in the transaction are

to be handled during the execution of the commit protocol.

5.1 The modi�ed Two Phase Commit Protocol

The design of the Two Phase Commit protocol, presented in Chapter 2, assumes that the

site where the topaction runs received all the necessary information by the time the topaction

decided to commit. This information includes the names of all the sites that participated in that

transaction, with whom the topaction's site (the coordinator) is to perform the protocol, and
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Figure 5-1: A time-space diagram of the modi�ed Two Phase Commit protocol.

the names of all the subactions that aborted, required by the participating sites for determining

the correct states of their objects.

For a nested atomic action system with disconnected actions the previous assumption may

not hold. When a topaction decides to commit it may still have active disconnected descendants

that are visiting new sites or producing new aborted subactions, unknown to the topaction at

that time. Quiescing all the activity on behalf of the topaction before it commits can solve this

problem, but the imminent cost of communication, roughly the same as needed for the Two

Phase Commit protocol1, voids such a solution. A better approach is to quiesce the remaining

active (disconnected) actions and catch up on the missing information while carrying out the

Two Phase Commit protocol, taking advantage of the existing message ow.

The current Two Phase Commit protocol [Liskov, et al. 1987b] has to be modi�ed to take

into consideration the (disconnected) actions that are still active and the fact that not all the

participants are known when the protocol commences.

1It would take several rounds of messages from the coordinator to the known participants until all the par-
ticipants are found and active DAs aborted.
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The time-space diagram in Figure 5-1 depicts the modi�ed Two Phase Commit protocol2.

The details are given in Figure 5-2 for the coordinator and for the participants in Figures 5-3

and 5-4. The new protocol uses the �rst phase to quiesce active subactions and collect the

missing names of participants and aborted (disconnected) actions. The second phase is similar

to the second phase of the original, except that the list of missing aborted subactions has to be

carried along.

The new protocol is as follows: The coordinator begins as before by sending a PREPARE

message to all its known participants, accompanied by the accumulated list of known aborted

subactions (alist). Each participant receiving the PREPARE message would also behave as in

the original protocol, unless it participated in some disconnected subaction of the committing

topaction.

A participant receiving a PREPARE message will do the following: Quiesce (i.e., abort)

all the local active (disconnected) subactions of that topaction, including both top DAs and

handler calls made by (descendants of) DAs. Prepare the local atomic objects (see Section 5.2)

and forward the PREPARE message received from the coordinator to the participants of its

committed local DAs. This way the message will get to all the participants. Some participants

may get more than one PREPARE message, but they can simply ignore all but the �rst since

the messages are identical.

All the participants that prepared successfully (see details in Section 5.2) reply with an OK

message to the coordinator. A participant that is unable to prepare (e.g., because it crashed)

replies with REFUSED as in the original protocol. The OK message is accompanied by two

lists:

� plistd { the list of participants of committed DAs, created by combining the plists of all

the committed local top DAs.

� alistd { the list of aborted DAs, composed of those local top DAs that were aborted

during preparation and all those in the alists of the committed local top DAs.

The coordinator that receives OK messages from all the participants, including those in the

2See the original protocol in Figure 2-4 on page 30
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% Simple version of the coordinator. No optimizations.
% Some straightforward type specs are missing.
coordinator = proc (topaction:action, alist: action list, plist: site list) returns (commit or abort)

% Called by the topaction to perform Two Phase Commit
% Begin phase I.
for participant:site in site list$elements(plist) do

send to(participant,‘‘PREPARE’’,topaction,alist)
end

alist rest : action list := action list$new()
msg : message
for participant:site in site list$elements(plist) do

msg := receive from(participant)
except when timeout, aborted:

write to stable storage(‘‘ABORT’’,topaction,plist)
for participant:site in site list$elements(plist) do

send to(participant,‘‘ABORT’’,topaction)
end

return(abort)
end

y site list$add to(plist,msg.plist d)
action list$add to(alist rest,msg.alist d)
end

% End of phase I. Coordinator decides to commit.
write to stable storage(‘‘COMMIT’’,topaction,plist,alist rest)
% Begin phase II.
for participant:site in site list$elements(plist) do

send to(participant,‘‘COMMIT’’,topaction,alist rest)
end

for participant:site in site list$elements(plist) do receive DONE(participant) end
write to stable storage(‘‘DONE’’,topaction)
% End phase II.
return(commit)
end coordinator

Figure 5-2: Modi�ed Two Phase Commit { The coordinator part
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participant phase I = proc (topaction:action, alist:action list, cc:crash count)
% Called at a site when a ‘‘PREPARE’’ message is received.
% PREPARED list of topactions that are locally prepared. (Atomic object !)
% ACTIVE, COMMITTED see Chapter 2 for detail.
if action list$is in(topaction,PREPARED) then return end % Already received

‘‘PREPARE’’
if cc > Local Crash Count then % Participant has crashed since visited

send to(topaction,‘‘ABORT’’)
return
end

action list$insert(PREPARED,topaction)
alist d : action list := action list$new()
plist d : site list := site list$new()
for active action:action in active list$elements(ACTIVE) do

if aid$disconnected(active action) cand
aid$descendant(active action,topaction) then
% Found an active DA, abort it.
action list$remove(ACTIVE,active action)
if aid$top DA(active action) then

action list$insert(alist d,active action)
end

end
end

for committed action:action in committed list$elements(COMMITTED) do
if action list$ancestor is in(alist,committed action) then

committed list$remove(COMMITTED,committed action)
continue
end

if aid$disconnected(committed action) cand
aid$descendant(committed action,topaction) then
% Found a committed top DA, get its alist and plist
action list$add to(alist d,get alist(COMMITTED,committed action))
site list$add to(plist d,get plist(COMMITTED,committed action))
end

end
prepare(topaction,alist) % see Section 5.2
% Forward to participants of committed DAs
for participant:site in site list$elements(plist d) do

send to(participant,‘‘PREPARE’’,topaction,alist)
end

send to(topaction,‘‘OK’’,plist d,alist d)
end participant phase I

Figure 5-3: Modi�ed Two Phase Commit { The participant part, phase I
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plistds
3 , can decide to commit the topaction. (In Chapter 6 we explore the possibility of doing

so before all the participants have replied, or even if some refused.) The coordinator knows, at

this point, about all the participants and all the aborted subactions. It has to process the lists

returned with the OK replies: Add those new unknown participants to its plist, and merge the

lists of aborted (disconnected) subactions (i.e. alistd) into a new alist, alistrest.

After making its decision, the coordinator can start the second commit phase. As in the

original protocol, a COMMIT (or ABORT) message is sent to all the participants. Since the

original alist, which was sent with the PREPARE message, lacked the aborted disconnected

actions, the missing actions must be passed to the participants during the second phase. The

participants that receive the COMMITmessage with the new alistrest have at this point enough

information to make the transaction's modi�cations permanent. They reply with DONE once

done.

Note that the recursive case (i.e., nested DAs) is handled correctly by our scheme. Par-

ticipants receiving forwarded PREPARE messages can forward them again. The PREPARE

message would propagate to all the participants and they would all become known to the

coordinator before it has to decide about the transaction's fate.

participant phase II = proc (fate:string, topaction:action, alist rest:action list)
% Called at a site when a ‘‘COMMIT’’/‘‘ABORT’’ message is received.
if fate = ‘‘COMMITTED’’ then

commit prepared(topaction,alist rest) % see Section 5.2
send to(topaction,‘‘DONE’’)

else % fate = ‘‘ABORT’’
abort prepared(topaction) % see Section 5.2
end

action list$remove(PREPARED,topaction)
end participant phase II

Figure 5-4: Modi�ed Two Phase Commit { The participant part, phase II

3Note the iteration semantics (in Figure 5-2, line marked with \y" ) : New sites from plistd, added to plist

in this iteration, would be yielded as participants in the following iterations.
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5.1.1 Optimizations and variations

The modi�ed Two Phase Commit protocol proposed above can be further optimized for better

performance:

� The coordinator can add its plist to the PREPARE message. This way a participant may

save on forwarding the message to some of the participants of the disconnected actions as

they are already known by the coordinator, and return a smaller plistd to the coordinator.

� A participant may delay aborting some DAs after a PREPARE message is received to

give them a chance to commit. The delay period has to be set empirically or be given by

the programmer.

� A participant may add its alistd to the alist of the PREPARE message it forwards to

the participants in its plistd. This way those participants would have to write less to

stable storage (see Section 5.2), but would have to monitor all the incoming PREPARE

messages for di�erent alists.

5.2 Preparing an atomic object at a site

Preparing an atomic object that was modi�ed by disconnected actions is di�erent from the

regular case: The object's site may not have enough information about the actions that modi�ed

the object during the �rst commit phase, and therefore it has to defer some decisions to the

second phase.

An atomic object that was modi�ed by an atomic transaction has an (stack) ordered list of

potential versions. In a model without DAs, a participant receives enough information by the

time it has to prepare to �nd the topmost version that belongs to a non-aborted descendant

of the topaction. The participant prepares by writing that version to stable storage4; all the

other versions can be discarded. The decision to abort or commit the topaction will determine

which version will prevail { that top one or the base version.

4Writing a version to stable storage includes also non-stable objects that are accessible from this version. See

[Oki, Liskov & Scheier 1985] and [Kolodner 89].
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Figure 5-5: An example showing versions of an object to be prepared

When DAs are used and the above modi�ed Two Phase Commit protocol is obeyed, a more

complex scheme has to be used to ensure that the topmost committed version of an atomic

object will be available when and if the topaction decides to commit. A participant may not

have all the information it needs by the time it has to prepare to determine the topmost version

of a committed subaction.

Figure 5-5 shows an example of an object at a site at the time when a PREPARE message

was received. Note that since the locking rules enforce strict ancestry order among the versions,

an object modi�ed by DAs must have DAs' versions above the regular versions. Therefore if

none of the actions holding versions on the object have an ancestor in the PREPARE alist, any

of the topmost regular version or the DAs' versions could be the �nal one. In the example, if no

ancestor of A:2:3 was in the PREPARE alist, the preparing participant can not tell which of

A:2:3, A:2:3:D1 or A:2:3:D1:5's versions will replace the base version if the coordinator decides
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%
prepare = proc (topaction:action, alist:action list)

% called by participant phase I
%
prepared objects : object list := object list$new()
for obj:object in committed list$all objects(COMMITTED,topaction) do

for ver:version in object$versions top to bottom(obj) do
if action list$ancestor is in(alist,ver.aid) then

object$discard version(obj,ver)
elseif aid$not disconnected(ver.aid) then

object$discard versions below version(obj,ver)
break
end

end
if object$have no versions(obj) then % Read only object

object$release all locks(obj)
else

object list$add object(prepared objects,obj)
% write remaining versions to stable storage
object$save versions(obj)
end

save record(‘‘PREPARED’’,topaction,prepared objects)
end prepare

Figure 5-6: Preparing objects at the participant's site

to commit.

Preparing an object with DAs' versions requires writing all these versions to stable storage,

in addition to the topmost regular version, unless some ancestor is known to be aborted. Fig-

ure 5-6 speci�es the steps to be taken: When a PREPARE message is received, the versions on

each of the topaction's object are scanned top to bottom. Versions of aborted subactions are

discarded, and the remaining DAs' versions and the topmost regular version, if any exist, are

written to stable storage. All the regular versions except the topmost one are discarded.

After all the topaction's objects have been prepared successfully, a record is written to stable

storage to mark that fact. From this point on the site is committed to keeping all the prepared

objects until noti�ed about the coordinator's �nal decision.

The participant's work can be �nished after the coordinator decision is received. As in the

original protocol, when the decision is to abort the transaction, all the prepared versions and
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%
abort prepared = proc (topaction:action)

% called by participant phase II
%
prepared objects : object list := get record(‘‘PREPARED’’,topaction)
for obj:object in object list$elements(prepared objects) do

discard prepared material(obj)
object$release all locks(obj)
end

end abort prepared

Figure 5-7: Abort: Discarding prepared modi�cations at a participating site.

%
commit prepared = proc (topaction:action, alist rest:action list)

% called by participant phase II
%
prepared objects : object list := get record(‘‘PREPARED’’,topaction)
for obj:object in object list$elements(prepared objects) do

for ver:version in object$versions top to bottom(obj) do
if action list$ancestor is NOT in(alist rest,ver.aid) then

object$replace base version with ver(obj,ver)
break
end

end
discard prepared material(obj)
object$release all locks(obj)
end

end commit prepared

Figure 5-8: Commit: Making prepared modi�cations permanent at a participating site.
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locks are discarded (Figure 5-7). When the coordinator decides to commit, the participant has

to �nish the work from the �rst phase (i.e., identify versions of aborted subactions) before it can

replace the base version with the correct new version. As detailed in Figure 5-8, the participant

scans, for every object, the prepared versions top to bottom. A version found to belong to an

aborted (disconnected) subaction is skipped; the �rst to belong to non-aborted subaction (if

any) replaces the base version.
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Chapter 6

Fault tolerant Two Phase Commit

In this chapter we explore the possibility of successfully committing a transaction in spite of

some failures. That is, we want the Two Phase Commit coordinator to be able to ignore several

participants that failed and commit the transaction without them.

The ability to ignore some participants gives more fault tolerance to our model. In the

current Two Phase Commit protocol ([Gray 1978]), a failure of any participant either causes

the transaction to abort or delays its commit.

The basic idea behind this chapter is that some DAonly participants, those that were used

only by DAs1, are dispensable. Since the e�ects created by Disconnected Actions are not

essential to their creators' success, the transaction can commit without some of its DAonly

participants.

A simple example is the replication application from Section 1.1, depicted in Figure 6-1.

The topaction A ran at GA and created �ve DAs (A:D1; ::;A:D5) to update the object O that

is replicated at GD1; ::; GD5. After a majority of the DAs (i.e., three) committed, A continued

running until it decided to commit. Meantime the remaining (two) DAs also committed to A.

The transaction A had not modi�ed any objects besides the replicas O1; ::; O5.

The coordinator of A's Two Phase Commit can commit A even if one or two of the par-

ticipants (GD1; ::; GD5) failed to reply in time to the PREPARE message or replied with RE-

FUSED ! All the coordinator has to guarantee is that at least a majority of the participants did

1Note that these are exactly those participants of the plistds that are not in the coordinator's initial plist.
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Figure 6-1: The replication example: Up to 2 sites can be ignored during Two Phase Commit.

manage to prepare, hence ensuring consistency of the replicated object.

The general case is not as straightforward as the previous example. In Section 6.1 we

study the implications of ignoring DAonly participants. In Sections 6.2 and 6.3 we propose two

solutions: introduction of a Disconnected Nested Topaction and modi�cation of the existing

model. In Section 6.4 we summarize and evaluate the merits of the ability to ignore participants.

6.1 Problems with Ignoring Disconnected Participants

Though in some special cases ignoring a participant has the e�ect of aborting a DA, the general

case is far more complicated. Figure 6-2 demonstrates two possible problems: A DA a�ecting

more than one site and a subaction depending on a DA.
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Figure 6-2: Problems with ignoring DAonly participants.
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The problem of a DA creating e�ects at several participants is that ignoring one failed site

is not equivalent to aborting the DAs that ran there. The problem is not trivial because the

coordinator does not necessarily know which DAs ran at a certain site. Had it known, it could

have added those DAs to its alistrest, e�ectively aborting those DAs.

For example, assume that the DA A:1:D1 has modi�ed two objects, O1 at site G1 and O2 at

GD1, preserving some invariant between the two objects (e.g. value equality). An inconsistent

state will be created if the coordinator ignores GD1 (e.g., because GD1 crashed) and decides

to commit A, making A's e�ects permanent at all the other participants. Had the coordinator

known that the DA A:1:D1:1 ran at GD1, it could have aborted A:1:D1:1 by adding it to its

alistrest, preventing the problem of possible inconsistent state.

With the modi�ed Two Phase Commit protocol, discussed in Chapter 5, the coordinator can

not tell which DAs ran at a particular ( DAonly ) participant2. This information is distributed

among the participants where the DAs were created, and is discarded by the end of the �rst

commit phase.

The second problem concerns the dependency of other subactions on a commit of a DA.

Aborting this DA would nullify these subactions and necessitate aborting them, which may not

be possible when the dependent subactions are not disconnected.

For example, subaction A:3 in Figure 6-2 has read the object O3 at site G3, which was

modi�ed by A:2:D1:1 that committed. Ignoring GD2, which implies aborting A:2:D1, would

force the whole transaction to abort since the e�ects of A:3, a regular subaction, can not be

undone. In the case where a subaction like A:3 is disconnected, cascading aborts can take place

and allow the transaction to commit, but the coordinator has to know about the dependency.

6.2 First solution: Disconnected Nested Topactions

The two problems mentioned above can be avoided with a relatively simple mechanism: The

Disconnected nested topaction. This new feature is basically a nested topaction that executes

asynchronously with its creator, just like a DA, but unlike a nested topaction, the discon-

nected nested topaction (DNTA) can commit only if the topaction of its creator (i.e. the main

2Assume that, in our example, other DAs were also created at GD1.
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topaction) commits and none of its ancestors abort.

The DNTA solves the problem of other subactions that observe its e�ects by simply prevent-

ing it. Like a regular nested topaction, the DNTA is not considered a descendant of its creator

for the purpose of lock inheritance or acquisition. The DNTA can not get a write-lock on an

object locked by a descendant of the main topaction, or read an object that has a write-lock

on behalf of the main topaction, and the same applies in the other direction.

The problem of a DA a�ecting several sites is solved by having centralized control over the

whole DNTA at its coordinator. The DNTA's coordinator isolates the main coordinator from

the DNTA's Two Phase Commit; it knows of all the DNTA's participants and when one has to

be ignored, it can abort the whole DNTA.

6.2.1 Implementation of the DNTA

The Disconnected Nested Topaction starts as a DA, runs as a nested topaction and ends up

like a DA again. This way a minimal change to the existing implementation is required. The

DNTA is a nested topaction when needed to cope with the previous two problems, and is a DA

for the purpose of committing it as part of the main topaction.

The implementation of the DNTA is as follows:

� The DNTA is created as a top DA3, and is added to the list of active local actions.

� For lock propagation purposes the DNTA is considered a nested topaction.

� The nested topaction of the DNTA runs and commits as usual until it �nishes phase one

of its Two Phase Commit (see Figure 5-2). If its coordinator decided to commit, it does

not write to stable storage or send any messages, but instead commits like a top DA and

keeps (in its COMMITTED entry) its plist (and its alistrest if it had nested DAs); there

is no need to keep the list of objects since they are all prepared at their sites (those in

the plist).

Note that getting to this point means that none of the DNTA's participants aborted, and

they are all at the \prepared" state. Had any participant failed, the coordinator of the

3The DTNA would need a special tag in its AID if DTNAs and DAs are to coexist in the system.
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nested topaction would have had to abort it, notify its participants and remove all traces

of it from the local site. Note that a crash of the local site (before preparing for the main

topaction) would have the same e�ect as aborting except that messages are not sent to

the participants. In this case the participants would have to initiate queries to �nd that

their DNTA aborted.

� The modi�ed Two Phase Commit (described in Chapter 5) of the main topaction would

�nish up the DNTAs' work correctly. In the prepare phase, those DNTAs with aborted

ancestors would be aborted (see Figure 5-34), and the plists (and alists in the recursive

case) of the committed DNTAs would be added to the local plistd (and alistd). This way

the second phase of the DNTA's commit would be handled by the second commit phase

of the main topaction.

A small semantic change is needed, though, in the second commit phase. The coordina-

tor's decision message should apply not only to its transaction but to its (separately kept)

DNTAs at the participants. The algorithms in Chapter 5 need not be changed, except

that the \get record" operation, used in Figures 5-8 and 5-7, should be speci�ed to also

retrieve the records of the transaction's DNTAs.

6.2.2 Evaluation of DNTAs

The main advantage of the Disconnected Nested Topaction is its simple implementation. As

seen above, only three minor changes have to be made to our model in order to have DNTAs

in it.

The main disadvantage of DNTAs is their restricted functionality. They can not inherit

(or release) locks from (or to) their creators. Programmers have to be very careful to avoid

deadlocks with the use of DNTAs. For example, a transaction trying to read an object that

was modi�ed by one of its DNTAs would wait forever.

Quorum-sets can be done with DNTAs instead of DAs. They would take longer to run

because a prepare phase is involved, but any committed DNTA is guaranteed to survive crashes

of its participants (except its coordinator's site).

4At that stage we can add sending abort messages to the participants of the aborted DNTAs.
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2=3

8><
>:

DA1 fparticipant1; participant5g

DA2 fparticipant1; participant6g

DA3 fparticipant1; participant7g

1 DA4 fparticipant2; participant3; participant4g

3=5

8>>>>><
>>>>>:

DA5 fparticipant3; participant5; participant1g

DA6 fparticipant4g

DA7 fparticipant5; participant7g

DA8 fparticipant6; participant9; participant11; participant12g

DA9 fparticipant7; participant10g

Figure 6-3: An abstract view of a possible maplist

Note that, though restricting lock exchange, the DNTA releases its read-locks after �nishing

its �rst commit phase, therefore enabling its main topaction to get write locks on objects that

were only read by DNTAs.

6.3 Second solution: Modify the commit mechanism

Site ignoring can also be achieved by some modi�cations to the commit mechanism. The

modi�ed mechanism enables the coordinator to deduce which DAs ran at a certain site and on

which (DAonly) sites committed regular subactions depend.

To provide the coordinator with the mapping from a site to the names of the DAs that ran

there, the participants have to send this information to the coordinator. Each participant has

the participants lists for the committed top DAs. I.e., the mapping F :

8 DA 2 COMMITTED; F : DA �! fparticipant1; participant2; . . .g

By combining all the maps it receives, the coordinator has the inverse mapping F�1:

8 Participant 2 plist; F�1 : Participant �! fDA1; DA2; . . .g

and can abort all the DAs that ran at the sites it ignored by adding them to its alistrest.

The implementation is simple; each participant has to replace its plistd, returned with its

OK reply, with amaplist, a list of committed local top DAs, each DA with its plist. An example

for an abstract maplist is given in Figure 6-3. The size of the maplist will be proportional to

the number of DAs, but can be reduced if we use the optimization of adding the coordinator
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plist to the PREPARE message; a DA that has all its participants in the PREPARE plist need

not be reported since none of its participants can be ignored.

Another problem to handle is DAs of quorum-sets. Suppose some action created a set of

n DAs, required that at least q commit and m eventually did (q � m � n). The coordinator

should not be allowed to violate this requirement. The participant should pass this information

in the maplist with its OK reply, and the coordinator should check that the minimum for each

set is not violated by ignoring some participants5. The example in Figure 6-3 shows two such

sets; at least two DAs out of fDA1; DA2; DA3g and three out of fDA5; . . . ; DA9g must commit.

Another way to abort DAs that ran at an ignored site is by letting the participants abort

DAs. The coordinator will decide on ignoring a participant and tell the other participants about

it. Each participant will use its local mapping to deduce which DAs should be aborted, and

notify the sites in their plists. This way less information has to be sent to the coordinator, but

handling DAs of quorum sets would be more complicated.

The problem of a regular subaction S that depends on the commit of a DA D can be solved

by letting the coordinator know about S's dependency on D's DAonly participants, hence

preventing the coordinator from ignoring DAonly participants upon which committed regular

subactions depend. This knowledge can be easily obtained from the mechanism that detects

Crash Orphans ([Liskov, et al. 1987a]). If such detection mechanism is not implemented, a

simpler mechanism can be devised (see Section 6.3.1) to acquire the dependency information.

The Crash Orphans mechanism works by maintaining, for every action, a list of sites on

which the action depends (dlist). Besides regular sites, the dlist contains (possibly DAonly)

sites that were used by DAs upon whom the action depends, as described in Section 3.4. In

the above example, when A:3 tries to get the lock on O3, the query to G2 regarding A:2:D1's

fate would return with A:2:D1's dlist (if it committed), which would be merged to A:3's dlist.

If (some ancestor of) A:3 aborted, the dlist would be discarded and not propagated up to the

topaction.

All that has to be done to prevent the dependency problem is to give the topaction's dlist

to the coordinator. The coordinator is not allowed to ignore any member of this dlist. This

5The participant can �nd this information in the entry of the concurrent-set action in COMMITTED (see
Section 3.2.2)
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solution is correct because all the DAonly sites upon which a regular action depends must be in

its dlist, and when that action commits those sites are inserted into its ancestor's dlist. (Note

that dlists of aborted subactions are discarded.) To reduce the expected size of the maplists

that accompany OK replies, the coordinator can add the topaction's dlist to its PREPARE

message (replacing the plist in the optimization mentioned above).

6.3.1 A new dependency detection mechanism

If the system does not use the Crash Orphan Detection mechanism, a smaller mechanism can

be devised to serve our need. The new dependency detection mechanism is basically a subset

of the Crash Orphan Detection mechanism, though much simpler because it does not need to

catch crash orphans \on the y", hence maps of crashcount need not be maintained and sent

with every message. Another simpli�cation comes from not using dlists; we need not keep a

total dependency relation, only dependency on sites used by DAs, and can use the actions'

plists to convey this information to the coordinator.

The idea behind the new mechanism is that when any action A acquires a lock on an object

O, where committed DAs had versions (i.e., write locks), the plists of those DAs are to be

merged into A's plist. This way the coordinator would end up with some DAonly participants

in it initial plist, which are those DAonly participants upon which committed regular subactions

depend, and would not consider them as DAonly (i.e., ignorable).

This new use of the plist may change its semantics a bit, since it may contain sites that

were not visited by its action's descendants, but will cause no problem because those semantics

are only required from the plistfinal, the plist that the coordinator has by the time it has to

make the commit decision, and the following invariant holds (for a topaction T ):

8action 2 Descendants(T ) : plist(action) � newplist(action) � dlist(action) � plistfinal(T )

That is, the new plist may have more sites than the original, but no more than the dlist that is

used when the Crash Orphan Detection mechanism is used, and no foreign sites are introduced

into the coordinator's plist.

For completeness, the details of the new mechanism are given below (with references to the

example in Figure 6-2 for clarity). Note that this is basically the same algorithm as was given

in Section 3.4, only the plist is used instead of the dlist.
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� When a query about a committed top DA is replied with \committed", the DA's plist

accompanies the reply. (Such a query must be sent from G3 to G2 before A:3 can have a

conicting lock on O3.)

� An (initially empty) plist is associated with every object version.

� A site receiving a query reply with a DA's plist would do the lock propagation as usual,

but when a version is being inherited (e.g. A:2:D1:1's �! A), the plist received is merged

into the version's plist. If the inheritor (A) already had a version, the other two plists

(A:2:D1:1's and the one received) are merged into its (A's) plist.

� When an action gets a (read or write) lock on an object, all the plists on the version read

are merged into the action's plist.

6.3.2 Evaluation

Unlike the DNTA solution, the one above is transparent to programmers; it puts no program-

ming restrictions. When fault tolerance during the Two Phase Commit process is important,

dependencies among subactions (such as a regular subaction reading the e�ects of many DAs)

should be avoided.

This solution also improves the performance of the Two Phase Commit somewhat by making

more participants known to the coordinator before it begins the �rst phase.

The disadvantage of this solution is its performance cost. The maps that are sent with the

OK reply may be large, and the Orphan Detection mechanism is expensive (see [Nguyen 1988]).

Without Orphan Detection, our new dependency detection mechanism, which also has some

cost, has to be implemented.

6.4 Summary

In this chapter we presented the idea of completing the Two Phase Commit process successfully

in spite of failures. This new ability is derived from the semantics of disconnected actions,

namely doing work that is not necessary for the correctness of their creators.
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In applications like replication using majorities, the semantics of a DA may change as it

commits and becomes part of the quorum, thus doing essential work like any other regular

subaction. Nevertheless, its old semantics can be applied again during the Two Phase Commit

process to tolerate failures if more than the minimal quorum has eventually committed.

The ability to ignore several participants can be very useful in large scale distributed sys-

tems. A system like The ClearingHouse ([Oppen & Dalal 1981]) maintains a naming database

over more than a thousand sites, and the likelihood of a failure occurring during the lifetime

of a transaction can not be overlooked. The ClearingHouse solved this problem by not using

atomic transactions. With the scheme presented here, atomic transactions can be used in large

scale distributed systems.

Another bene�t from the new ability is shorter timeout periods. In the original model,

timeouts were used by the Two Phase Commit protocol to decide that aborting the transaction

(and possibly retrying) is more practical than waiting for a (failed) participant. Those timeout

periods had to take into account the worst possible case: Longest message round trip time,

longest processing time and longest disk write time. Practical timeout periods are order of

magnitudes longer than the average case. With the ability to ignore participants, shorter

timeout periods can be used as a failed participant does not necessarily means an aborted

transaction.

A point that was hardly mentioned in the above chapter is recursively created DAs. It seem

to us that all the work presented here can be generalized in a straightforward manner to include

nested DAs; DTNAs can be nested, and in the second solution, the coordinator's handling of

nested DAs is similar to handling non-nested ones.

Two possible implementations were proposed: Disconnected Nested Topaction and a modi-

�ed commit mechanism. The trade-o� is between simplicity of implementation and functional-

ity. We tend to prefer the second solution as we do not trust the skills of programmers, who can

easily misuse DNTAs. The second solution is also not di�cult to implement when the system

uses the Crash Orphan Detection mechanism.
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Chapter 7

Conclusion

Below we summarize our work and propose directions for further research.

7.1 Summary

The ability to perform work on behalf of a nested action in parallel with its transaction can

enhance a nested atomic action system to better exploit potential parallelism. The disconnected

action, proposed in this thesis, provides a methodical way to perform such an activity.

Disconnected actions (DAs) can be used to perform benevolent side-e�ects within the action.

Unlike a nested topaction, which creates side-e�ects independent of its creator, modi�cations

made by DAs live within the scope of their creator; when an action aborts, all the modi�cations

made by its disconnected (and regular) descendants are undone. Also, unlike a nested topaction,

the DA can observe e�ects that were created by its transaction (prior to the creation on that

DA) and execute in parallel with its transaction.

We described the current model of computation that is used by the Argus system; this

model was the basis to our work. We made some small changes to the current model that

helped us reason about our work. We separated the implementation of locks into an unordered

set of read-locks and a stack of write-locks (versions) ordered in ancestry order, we redesigned

the structure of the action identi�er (AID) to reect accurately the action's position in its

transaction's action-tree, we introduced the concurrent-set action to help with problems special

to concurrent subactions, and we stated clearly the way dependency lists (dlists) should be

94



handled for orphan detection.

In Chapter 3 we described the role, use and implementation of DAs in our new model. We

showed how the lock query mechanism and the orphan detection mechanism can be modi�ed

to work correctly when DAs are used.

We proposed, in Chapter 4, a technique to serialize disconnected actions. For serial DAs,

we used timestamps, carried with each action and left on every lock, to tell a DA which e�ects

were created prior to its creation and which are not; in this way we prevent non-serializable

executions. Timestamps can not serialize DAs that were created by concurrent subactions,

however, since they get serialized dynamically; therefore we introduced a new mechanism of

conict tables (CTs) for them. The CT mechanism keeps a table at the concurrent-set action's

site to monitor the serialization of the concurrent subactions explicitly. We also introduced

�ngerprint locks to help retain access information at the object.

Our serialization technique is an ad hoc serialization method, a hybrid of timestamping-

based protocol ([Reed 1978, Reed 1983]), locking-based protocol for nested atomic actions

([Moss 1981]) and an explicit serialization control method.

In Chapter 5 we described in detail how the two-phase commit protocol, which is used by

the current model to commit the top-level action, is modi�ed to cope with problems introduced

by DAs: DAs may still be active when their topaction commits, and the sites they used and

the subactions they aborted may not be known to the protocol's coordinator when it begins.

In Chapter 6 we introduced a novel idea of committing transactions in spite of some failures.

The idea derives from the semantics of DAs; DAs basically do functionally redundant work. We

proposed two ways in which some sites that were used only by DAs can be ignored, if necessary,

during the commit process.

We feel that we achieved our design goals: minimizing the change to the design of the

current model and its performance, and ensuring that disconnected actions have a fair chance

of success. When DAs are not used, the new model does not send any extra messages, does

very little additional local processing, and requires little additional storage; when DAs are used,

they are almost as likely to succeed as regular subactions.
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7.2 Future work

Below we present several directions in which more work can be done:

7.2.1 Use of an Explicit Approach to provide Atomicity

Though disconnected actions were initially introduced into the current model in order to per-

form functionally redundant work, they can also be used to do work that is essential to their

transaction. One example is their use for quorum-sets, which is described in the thesis. An-

other potential \non-redundant" use of DAs can be achieved if the model is enhanced to provide

programmers with explicit tools for implementing atomic types, as described in [Weihl 1984].

As an example for the use of the explicit approach, consider an operation OP on some

abstract object that is implemented, as described earlier in this thesis, as two operations: the

�rst (OP1) does the real work (reads or modi�es), and the second (OPDA) runs as a DA and

improves the representation of the object. As DAs were described in our model, they are not

guaranteed to succeed; therefore a subsequent use of OP1 may �nd that the previous OPDA is

yet not done, and OP1 would do the necessary work itself, probably causing OPDA to abort.

The implementation can be improved if, using the explicit approach, the second use of OP1

could tell that the prior OPDA is not yet done, thus requiring a delay of the second OP1 for a

short period until the �rst OPDA commits. This would result in a better performance than of

aborting the �rst OPDA and starting its work all over again.

7.2.2 Use a Reed-like method for serial DAs

Our use of timestamps for serializing DAs was only a simple addition to the existing locking-

based mechanism; DAs found to access the object out of order were aborted, except for the

case of multiple readers. In Reed's scheme ([Reed 1978]), many versions are kept for an object,

ordered in their timestamps order; thus the conicts of multiple writers, or a reader that

reads after a later writer wrote, can be sorted out without aborting by accessing an earlier

version, rather than the most recent one. A small improvement to Reed's scheme is proposed

in [Aspnes, et al. 1988]; it keeps all the read-timestamps, not only the maximal as does Reed,

and subsequent aborts allow for a reduction in the value of the maximal read-timestamp.
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We can have a di�erent scheme for serial DAs, which is similar to Reed's. Note that our

locks (and versions) resemble Reed's multiple-version scheme. It seems that the cases of multiple

writers and a late reader could be sometimes solved without the need to abort.

7.2.3 Use other Deadlock Detection methods for Concurrent DAs

As stated before, we �nd the problem of deadlock detection and serialization analogous; a cycle

in the wait-for graph means a deadlock, and a cycle in our serialized-after conict table means

non-serializable execution.

Most deadlock detection methods for distributed systems build some variation of a wait-for

graph in either a centralized or distributed manner. The centralized ones (including hierar-

chical methods, see [Menasce & Muntz 1979]) resemble our constraint table method; they use

a distinguished node in which the wait-for graph is built. The distributed protocols (e.g.,

[Menasce & Muntz 1979, Moss 1981, Obermarck 1982]) create the wait-for graph, whole or in

part, at some node where a local transaction suspects that it is deadlocked. The distributed

protocols are also known as edge-chasing ones because they try to detect a cycle by following

the graph's edges, often requiring messages to be sent between nodes that have transactions

along the wait-for path.

We have chosen a centralized method to prevent non-serializable execution of concurrent

subactions that use DAs because it was simpler and seemed to require less additional messages.

We believe that a distributed method, similar to some distributed deadlock detection protocol,

can also be devised.

7.2.4 Optimistic Model

Work can be done on using disconnected actions in a model that uses optimistic concurrency

control, like the one in [Gruber 1989]. The optimistic approach allows atomic action to execute

without synchronization (e.g., block when another action uses a needed object), and rely on

commit-time validation to ensure serialization of the actions. Optimistic methods are useful

when things are not likely to \go wrong", since they pay a higher penalty (than pessimistic

ones) if things do go wrong.
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A quasi-optimistic1 method can be combined with our pessimistic one to handle the case of

quorum-sets. Our technique of starting up some N DAs concurrently, while only a quorum of

M (M < N) needs to commit, has a high success probability. This technique can be speeded

up with an optimistic model, since it is unlikely to fail; the creator of the quorum-set need not

be blocked until the quorum commits, but can continue, and be undone if less than the quorum

committed.

7.2.5 Claiming DAs

DAs, as presented in our work, are synchronized with their transaction only when the latter

commits. Therefore DAs can not return replies to their transaction like handler calls do. A

linguistic support for asynchronous work was proposed in [Liskov & Shrira 1988] with the intro-

duction of promises into the language. A promise is returned to the caller when an asynchronous

activity begins, and can be used by the program to reclaim the results of that activity later.

More work can be done to try and combine the two methods; a promise can be supported

by our model by creating a DA to perform the asynchronous activity, and maintaining enough

information in the implementation of the promise (e.g., the DA's AID) to track the relevant

DA and �nd out about its fate and its promised reply.

7.2.6 Other Ideas

Some work can be done to �nish up working out the details of the points we ignored in the

description of the conict table mechanism: the handling of aborts, discarding of obsolete

read FP locks and not delaying regular actions. The details of extending our algorithms and

protocols to handle nested DAs need to be �lled in. Similar to the extension of timestamping,

the rest of the work is likely to require only straightforward extension.

1This method is not fully optimistic because locking is still used.
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Appendix A

New implementation of the AID

The following possible implementation of an AID is compatible with its use in this thesis:

% Structure:
% AID > NEW GUARD<num>TOP ACTION<num><body>
% <body> > <aid tag><num><body> j epsilon
%
aid = cluster is new, make subaction, make nestedtop, make hcall, make DA, LCA,

make concurrent set action, descendant, non descendant, proper descendant,
not concurrent relatives, disconnected, not disconnected, topaction, top DA,
concurrent set action, hcall, get parent, get location, get topaction,
subaction, concurrent subactions between, locations of disconnected ancestors,
lt, gt, equal, copy

%%
%% Denitions
%%

%% Tags for the levels in an AID

aid tag =
oneof[TOP ACTION,SUB ACTION,NEW GUARD,CONC SET ACTION,DISC ACTION:null]
TOP ACTION = aid tag$make TOP ACTION(nil)
SUB ACTION = aid tag$make SUB ACTION(nil)
NEW GUARD = aid tag$make NEW GUARD(nil)
CONC SET ACTION = aid tag$make CONC SET ACTION(nil)
DISC ACTION = aid tag$make DISC ACTION(nil)

aid level = struct[tg : aid tag, nm : int]
site = int

rep = sequence[aid level]

own TopActionID : int := 0 %%% ID generator for TopActions
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%%
%% Make AIDs
%%

new = proc (GID:int) returns (cvt)
% RETURNS an aid for a non-nested top action at guardian # GID
TopActionID := TopActionID + 1 % increment ID generator
return(rep$[aid level$ftg: NEW GUARD, nm: GIDg,

aid level$ftg:TOP ACTION, nm:TopActionIDg])
end new

make subaction = proc (Parent: cvt, Step: int) returns (cvt)
% Requires: Step bigger than the Step given previously by the same action
% Eects: Returns an aid for a local sub action as the Parent’s child
% (Enumerated with Step)
return(rep$addh(Parent,aid level$ftg:SUB ACTION, nm:stepg))
end make subaction

make concurrent set action = proc (Parent: cvt, Step: int) returns (cvt)
% Requires: Step bigger than the Step given previously by the same action
% Eects: Returns an aid for a concurrent-set action as a child of Parent
return(rep$addh(Parent,aid level$ftg:CONC SET ACTION, nm:stepg))
end make concurrent set action

make nestedtop = proc (Parent: cvt, Step: int) returns (cvt)
% Requires: Step bigger than the Step given previously by the same action
% Eects: Returns an aid for a nested top action as a child of Parent
return(rep$addh(Parent,aid level$ftg:TOP ACTION, nm:stepg))
end make nestedtop

make DA = proc (Parent: cvt, step: int) returns (cvt)
% Requires: Step bigger than the Step given previously by the same action
% Eects: Returns an aid for a top disconnected action as a child of Parent
return(rep$addh(Parent,aid level$ftg:DISC ACTION, nm:stepg))
end make DA

make hcall = proc (Parent: cvt, GID: int) returns (cvt)
% Requires: Step bigger than the Step given previously by the same action
% Requires: Parent is a call-action
% Eects: Returns an aid for a handler call (at site GID) as a child of Parent

return(rep$addh(Parent,aid level$ftg:NEW GUARD, nm:GIDg))
end make hcall
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%%
%% Check relations between AIDs
%%

any descendant = proc (Child, Parent: rep) returns (bool)
% Eects: Returns true i Child is a descendant of Parent (or Child = Parent)
if rep$size(Parent) > rep$size(Child) then return(false) end
possible parent : rep := rep$subseq(Child,1,rep$size(Parent))
return(rep$similar(possible parent,Parent))
end any descendant

nested topaction between = proc (Child, Parent: rep) returns (bool)
% Requires: Child is a descendant of Parent
% Eects: returns true i Child belongs to some nested topaction that
% was created by a descendant of Parent.
for index:int in int$from to(rep$size(Parent)+1,rep$size(Child)) do

if Child[index].tg = TOP ACTION then return(true) end
end

return(false)
end nested topaction between

descendant = proc (Child, Parent: cvt) returns (bool)
% Eects: Returns true i Child is a descendant of Parent. However, if
% there is a nested topaction that is an ancestor of Child and a
% proper descendant of Parent, returns false.
return(any descendant(Child,Parent) cand ~nested topaction between(Child,Parent))
end descendant

non descendant = proc (Child, Parent: cvt) returns (bool)
% Eects: Returns false i Child is a descendant of Parent. However, if
% there is a nested topaction that is an ancestor of Child and a
% proper descendant of Parent, returns true.
return(~descendant(up(Child),up(Parent)))
end non descendant

proper descendant = proc (Child, Parent: cvt) returns (bool)
% Eects: Returns true i Child is a proper descendant of Parent.
% (And there is no nested topaction between the two).
return(descendant(up(Child),up(Parent)) cand ~rep$similar(Child,Parent))
end proper descendant

not concurrent relatives = proc (A1,A2:cvt) returns (bool)
% Eects: Returns true i A1 and A2 are not concurrent relatives
the LCA : rep := down(LCA(up(A1),up(A2)))

except when not related: return(true) end
return( rep$top(the LCA).tg ~= CONC SET ACTION )
end not concurrent relatives
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%%
%% Check the type of an AID
%%

disconnected = proc (A:cvt) returns (bool)
% Eects: Returns true i A is disconnected (i.e., descendant of top DA)
for level: aid level in rep$elements(A) do

if level.tg = DISC ACTION then return(true) end
end

return(false)
end disconnected

not disconnected = proc (A:cvt) returns (bool)
% Eects: Returns false i A is disconnected (i.e., descendant of top DA)
return(~disconnected(up(A)))
end not disconnected

topaction = proc (A: cvt) returns (bool)
% Eects: Returns true i A is a [nested] top action
return(rep$top(A).tg = TOP ACTION)
end topaction

top DA = proc (A: cvt) returns (bool)
% Eects: Returns true i A is a top disconnected action
return(rep$top(A).tg = DISC ACTION)
end top DA

concurrent set action = proc (A:cvt) returns(bool)
% Eects: Returns true i A is a concurrent-set action
return(rep$top(A).tg = CONC SET ACTION)
end concurrent set action

subaction = proc (A:cvt) returns(bool)
% Eects: Returns true if A is a regular subaction (and nothing else)
return(rep$top(A).tg = SUB ACTION)
end subaction

hcall = proc (A:cvt) returns(bool)
% Eects: Returns true i A is a handler call
return(rep$top(A).tg = NEW GUARD)
end hcall
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%%
%% Miscellaneous
%%

concurrent subactions between = iter (Parent, Child:cvt) yields (cvt)
% Requires: Parent is an ancestor of Child
% Eects: Yields every child A of a concurrent-set action such that A
% is an ancestor of Child and a proper descendant of Parent
for index: int in int$from to(rep$size(Parent)+1,rep$size(Child)) do

if Child[index-1].tg = CONC SET ACTION then
yield(rep$subseq(Child,1,index))
end

end
end concurrent subactions between

get parent = proc (A:cvt) returns(cvt)
% Eects: Returns A’s parent (or A if A is a (non-nested) topaction)
if rep$size(A) = 2 then return(A) end
return(rep$remh(A))
end get parent

LCA = proc(A1, A2:cvt) returns (cvt) signals (not related)
% Eects: Returns the AID of LCA(A1,A2), signals not related if needed
if A1[1] ~= A2[1] cor A1[2] ~= A2[2] then signal not related end
short : rep
if rep$size(A1) > rep$size(A2) then short := A2 else short := A1 end
for index:int in int$from to(2,rep$size(short)) do

if A1[index] ~= A2[index] then return(rep$subseq(A1,1,index-1)) end
end

return(short)
end LCA

get location = proc (A: cvt) returns (site)
% Eects: Returns the site of action A
for index:int in int$from to by(rep$size(A),1,-1) do

if A[index].tg = NEW GUARD then return(A[index].nm) end
end % for

end get location

get topaction = proc (A: cvt) returns (cvt)
% Eects: returns the immediate (possibly nested) topaction of A
for index:int in int$from to(rep$size(A),2) do

if A[index].tg = TOP ACTION then return(rep$subseq(A,1,index)) end
end

end get topaction
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locations of disconnected ancestors = iter(A: cvt) yields (site,cvt)
% Eects: Yields pairs of top disconnected ancestors of A and their sites
for index: int in int$from to(1,rep$size(A)) do

if A[index].tg = DISC ACTION then
temp aid : rep := rep$subseq(A,1,index)
yield(get location(up(temp aid)),temp aid)
end

end
end locations of disconnected ancestors

equal = proc (A1, A2: cvt) returns (bool)
% Eects: Returns true i A1 and A2 denote the same action
return( A1 = A2 )
end equal

lt = proc (A1, A2: cvt) returns (bool)
% Requires: A1 and A2 belong to same transaction
% Eects: Creates a total order based on AIDs enumeration. (A1 < A2)
% (Returns true if A1 was created before A2, meaningless if A1 and
% A2 are concurrent siblings)
return(gt(up(A2),up(A1)))
end lt

gt = proc (A1, A2: cvt) returns (bool)
% Requires: A1 and A2 belong to same transaction
% Eects: Creates a total order based on AIDs enumeration. (A1 > A2)
% (Returns true if A1 was created after A2, meaningless if A1 and
% A2 are concurrent siblings)
point of di : int := rep$size(down(LCA(up(A1),up(A2)))) + 1
min size : int := int$min(rep$size(A1),rep$size(A2))
if point of di = min size + 1 then

return( rep$size(A1) > min size )
else

return( A1[point of di].nm > A2[point of di].nm )
end

end gt

copy = proc (A:cvt) returns (cvt)
return(rep$copy(A))
end copy

end aid
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Appendix B

Implementation of Timestamps

The following possible implementation of a timestamp is compatible with its use in this thesis:

% Structure:
% timestamp -> <num>timestamp j <num>
%
timestamp = cluster is new, increment, nest, equal, similar, lt, gt, max

rep = sequence[int]

new = proc() returns(cvt)
% Eects: Create and return a new (zero) timestamp
return(rep$[0])
end new

increment = proc (t:cvt) returns(cvt)
% Eects: Increments the current level by 1
return(rep$addh(rep$remh(t),rep$top(t) + 1))
end increment

nest = proc (t:cvt) returns(cvt)
% Eects: Adds a new level, initially 0
return(rep$addh(t,0))
end nest

equal = proc (t1,t2:cvt) returns (bool)
% Eects: Returns true i two timestamps are one
return(t1 = t2)
end equal

similar = proc (t1,t2:cvt) returns (bool)
% Eects: Returns true i two timestamps have the same value
return(rep$similar(t1,t2))
end similar
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lt = proc (t1,t2:cvt) returns (bool)
% Eects: Returns true i t1 < t2
for index:int in rep$indexes(t1) do

if t1[index] > t2[index] then return(false)
elseif t1[index] < t2[index] then return(true)

end except when bounds: return(false) end
end % for

return(false)
end lt

gt = proc (t1,t2:cvt) returns (bool)
% Eects: returns true i t1 > t2
return(~lt(Rp(t1),up(t2)) cand ~equal(up(t1),up(t2)))
end gt

max = proc (t1,t2:cvt) returns(cvt)
% Eects: Returns the larger of two timestamps
if lt(up(t1),up(t2)) then return(t2) else return(t1) end
end max

end timestamp
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