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Abstract

Caches have the potential to provide multiprocessors with an automatic mechanism
for reducing both network tra�c and average memory access latency. However, cache-
based systems must address the problem of cache coherence. This thesis presents the
results of the search for a cache coherence solution for Alewife, a large-scale multi-
processor being built at MIT. The research focuses on coherence protocols that use a
directory, a list of cached copies of data, to avoid the need for a system-wide broad-
cast mechanism. The structure and the implementation of a number of coherence
schemes are evaluated with coupled and decoupled simulation techniques. In addi-
tion to comparing the protocols in terms of hardware overhead and performance, the
thesis reports on the experience gained by implementing several di�erent schemes
in ASIM, the Alewife machine simulator. The protocol search reaches two major
conclusions: First, by using system-level optimizations, it is possible to use caches
to build large-scale shared-memory multiprocessors. Second, the Alewife machine
should use the integrated systems approach | handling common cases in hardware
and exceptional cases in software | to solve the cache coherence problem.

Keywords: cache coherence, multiprocessor system, directory, multiprocessor
simulation, shared-memory multiprocessor, interconnection network

Thesis Supervisor: Anant Agarwal
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Chapter 1

Introduction

A multiprocessor's shared-memory system provides a mechanism for programmers to

partition programs among many processors, and allows the processors to communi-

cate and to synchronize with each other. As processing speed increases relative to

the latency of interprocessor communication, the latency and the bandwidth of the

memory system limits the speed of computation. Small multiprocessors remove this

mismatch between processor and memory speeds by equipping each processor with a

fast, local memory, called a cache. By storing copies of frequently accessed data, a

cache can satisfy a large fraction of its processor's memory requests, thereby reducing

both the average memory latency and the processor's demand on the interprocessor

communication network.

However, caches in a multiprocessing environment introduce the cache coher-

ence problem. When multiple processors maintain locally cached copies of a unique

shared-memory location, any local modi�cation of the location can result in a glob-

ally inconsistent view of memory, violating the shared-memory abstraction. Cache-

coherence protocols prevent this problem by maintaining a uniform state for each

cached block of data. While it is possible to implement a cache coherence protocol

with a multiprocessor-wide broadcast, such a mechanism negates the bandwidth re-

duction that makes caches attractive in the �rst place. Furthermore, in large-scale

multiprocessors, broadcast mechanisms are either ine�cient or prohibitively expen-

sive to implement.
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Is it possible to use caches to build an e�cient shared-memory system for a large-

scale multiprocessor? The answer to this question depends on �nding a solution to

the cache coherence problem that relies only on scalable hardware mechanisms.

1.1 Cache Coherence for the Alewife Machine

This thesis describes the search for a cache coherence protocol for Alewife, a large-

scale multiprocessor being built at MIT. Not only does the Alewife project provide

concrete motivation for solving the cache coherence problem, but it also establishes

fundamental constraints on potential solutions to the problem. Since the Alewife

machine is intended to be both scalable and easily programmable, its memory system

must conform to both of these goals:

First, the memory system's cache coherence protocol must be scalable. That

is, the physical resources required to implement the cache coherence scheme must be

cost-e�ective, and independent of the number of processors in the system. An optimal

solution would require only a small, constant amount of overhead per processing node.

Given such a solution, the physical size of the memory system grows as �(N), where

N is the number of processors in the machine. More realistically, since the size of

a processor identi�er in a system grows as �(logN), it is reasonable to expect the

cache coherence overhead to grow logarithmically with the number of processors.

This design decision requires a cache coherence protocol that transmits all memory

transactions over a mesh network without a broadcast mechanism.

Second, to allow Alewife to be both scalable and easily programmable, not only

must the interprocessor communication system exploit locality to minimize the la-

tency needed to service processor requests, but it must also provide mechanisms for

automatic locality management. Caches allow the system to automatically move data

to processors, thereby increasing the locality of access within processing nodes, in a

manner that is completely transparent to the user. Furthermore, by distributing the

shared-memorymodules to the processing nodes and by using a packet-switchedmesh

network to interconnect the nodes, the memory system allows the software to take

14



advantage of communication locality between processing elements.

The protocols considered for the Alewife machine solve the cache coherence prob-

lem in the absence of a broadcast mechanism. Each coherence scheme allocates a

section of the multiprocessor's memory, called a directory, to store the locations of

the cached copies of each data block. Instead of broadcasting the fact that a processor

has modi�ed a data location, the memory system sends an individual message to each

cache that has a copy of the data. The protocol must also record the acknowledgment

of each of these messages to ensure that the global view of memory is actually con-

sistent. This message-based approach dramatically reduces the network bandwidth

needed to enforce coherence.

In order to determine whether such protocols meet the requirements of Alewife,

several di�erent simulation techniques are used. First, a hybrid decoupled simulation

methodology provides evidence that a cached-based shared-memory system is viable.

Then, coupled simulations of the Alewife machine allow a complete analysis of both

the implementation and the behavior of potential cache coherence schemes. In the

end, the choice of a protocol is based on the complexity and the performance of each

coherence scheme, as measured by memory overhead and processing speed for a range

of benchmark applications.

1.2 Cache Coherence as a General Problem

Although the Alewife project motivates the search for scalable solutions to the cache

coherence problem, both the results and the methodology of the search are applicable

to the more general task of designing large-scale shared-memorymultiprocessors. This

thesis contributes some of the �rst results for directory-based coherence protocols that

are implemented and evaluated on memory systems with interconnection networks

other than buses. The detailed implementation of various coherence schemes helps to

isolate the protocol features that strongly e�ect the performance of shared memory

from the components that have only a weak e�ect.

The results of the evaluation of di�erent cache coherence protocols emphasizes

15



Interface

Memory
Hardware

Processor
Software

Shared-Memory
Model

Figure 1-1: The implementation of a shared-memory model must be divided between
the processor and the memory system.

the importance of the integrated systems approach. In the case of a shared-memory

multiprocessor, the approach balances the size of a shared-memory system's hard-

ware with the complexity of a multiprocessor's software by handling common events

in hardware and exceptional situations in software. This philosophy helps to draw

the line between the subset of the memory model that is implemented in hardware

and the subset that is implemented in software. As depicted in Figure 1-1, the ar-

chitectural problem of implementing a shared-memory system is solved by specifying

the appropriate interface between the processor and the memory system.

The evaluation of coherence methods reveals a number of software optimizations

that increase the performance of a cache-based memory system. Dividing the respon-

sibility for implementing the memory model between hardware and software helps

to mitigate the e�ects of widely-shared data on the performance of cache coherence

schemes. In fact, the search for a coherence protocol culminates with the de�nition of

the scalable LimitLESS directory protocol, which uses a combination of hardware and

software methods to realize the performance of the best non-scalable directory proto-

col. Perhaps the largest contribution of the research lies in establishing the trade-o�s

between hardware and software that are necessary to achieve both scalability and
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high performance in a large shared-memory multiprocessor.

1.3 Organization of this Thesis

The rest of this thesis is organized as follows: Chapter 2 establishes the characteristics

of the cache coherence problem by discussing previous attempts to solve the problem.

Chapter 3 clari�es the constraints on coherence protocols for large-scale multiproces-

sors by describing the relevant features of the Alewife architecture. Chapter 3 also

de�nes the LimitLESS protocol in the context of the Alewife machine. Chapter 4

describes the simulation techniques that are used to evaluate the protocols. Finally,

Chapter 5 presents the results from the multiprocessor simulations and draws con-

clusions about the performance of large-scale shared-memory systems.
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Chapter 2

Background

2.1 Why Study Caches?

Multiprocessor caches promise to yield performance gains similar to the gains from

caches in uniprocessor applications, despite increased implementation complexity. It

is the promise of a high-bandwidth, low-latency path to memory that makes mul-

tiprocessor cache systems a useful and interesting topic of research. To understand

the bene�ts and problems of using caches in machines with many processors, it is

necessary to understand the place of caches in single processor systems.

2.1.1 Single Processor Caches

A cache is a data storage repository that provides fast access to a subset of data

from a larger, slower block of memory. Common examples of caches include memory

bu�ers for disk accesses and translation lookaside bu�ers (TLB) for paging tables

of virtual memory systems. In the context of a physical memory system, the term

cache refers to a chunk of fast | low latency | memory (typically implemented

as static random access memory, or SRAM) that provides a processor with a local

subset of data from main memory (typically implemented as dynamic random access

memory, or DRAM). The physical proximity of a cache to a processor permits a high-

bandwidth data path between the two. Processor caches have been implemented in
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applications from personal computers to supercomputers.

When a processor requests data from its cache, the data may already be located

in the cache (a hit), or the cache may have to fetch the data from main memory (a

miss). Uniprocessor caches work due to two principles of memory access patterns:

temporal locality and spatial locality. Temporal locality refers to the fact that if a

processor accesses a unit of memory (called a word), then it is likely to access the

same word in the near future. Spatial locality refers to the fact that if a processor

accesses a word of memory, then it is likely to access a nearby word in the future.

A processor's cache capitalizes on temporal locality by retaining copies of words of

memory that the processor accesses, and on spatial locality by fetching a block (a

number of consecutive memory words) at once.

The actual performance of a cache is measured by the average memory access

time, Ta, a metric that encapsulates the e�ects of both locality and the physical

parameters of the cache. Ta = hTh + mTm, where h is the hit rate in the cache,

m = 1 � h is the miss rate in the cache, Th is the time required to service a hit in

the cache, and Tm is the time required to service a miss in the cache. If the time to

service a hit in the cache is the same as the processor cycle time, the average access

time and miss access time can be normalized to the cycle time: Ta = h+mTm, where

Ta and Tm are given in terms of processor cycles. Perhaps a more intuitive metric

of cache performance is the processor utilization, de�ned as the fraction of time that

the processor is not waiting for memory and is therefore doing useful work. Processor

utilization, U , is given by:

U =
1

1 +mTm

The cache design parameters that a�ect the hit rate and access times for a cache

have been studied by simulating cache based memory systems on various memory

access patterns. These access patterns may be generated by statistical methods or

by traces of actual processor memory requests. The issues of cache implementation

in uniprocessor applications have been exhaustively studied, and in 1982, Alan Jay

Smith published a paper that is considered to be the authoritative work on the sub-
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ject [41].

It is important to realize that given any caching scheme, it is always possible to

write an application that \breaks" the scheme. Some programs simply do not exhibit

the proper temporal or spatial locality to utilize a cache. However, the vast majority

of uniprocessor programs pro�t from caches, and caching has proved to be a successful

strategy for memory system design.

2.1.2 Multiprocessor Caches

The argument for using caches in the implementation of a multiprocessor's shared-

memory system is even more compelling than the argument for single processor mem-

ory systems. In multiprocessors with shared memory, cache-based memory systems

automatically move data where it is needed. When a processor attempts to read

or write a unit of data, the memory system fetches the data from a remote memory

module into a cache that is located in the same physical node as the processor. Subse-

quent load and store accesses to the same data are satis�ed within the local processing

node. After the working-set of each processor migrates into its cache, the memory

system can perform a large percentage of processor requests without communicating

over the multiprocessor's interconnection network.

Satisfying most memory requests in a cache increases the performance of the

system in two ways: First, since typical cache access times are an order of magnitude

lower than interprocessor communication times, the memory access latency incurred

by each processor is lower than in a system that does not cache data. Second, when

most requests are performed within processing nodes, the absolute amount of tra�c

that the network must transport is lower than in a system without caches. For caches

to be e�ective in multiprocessors, parallel programs must display processor locality,

in addition to the usual temporal and spatial locality. Processor locality is de�ned

as the tendency of a processor to repeatedly access a block of data before the block

must be relinquished upon a request (typically a write) from another processor [4].
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Figure 2-1: Illustration of the cache coherence problem.

2.2 The Cache Coherence Problem

The fact that more than one processor can cache a single block of data leads to the

cache coherence problem, which is usually explained by an example such as the one

that follows: Suppose that processor A and processor B both try to add the integers

1 and 2, respectively, to the value stored in memory location X, which contains

the integer 5. (See Figure 2-1.) Both processors cache copies of X, and add their

respective values to the cached value. But what should be the �nal value stored in

memory location X?

The answer to this question depends on the shared memorymodel that is speci�ed

for the multiprocessor containing A, B, and X. A programmer's intuition would say

that one processor (eitherA orB) should see the original value (5), the other processor

should see the intermediate value (6 or 7), and the �nal value should be the integer

8, since 5 + 1 + 2 = 5 + 2 + 1 = 8. Leslie Lamport [33] captured this programmer's

intuition when he wrote that a multiprocessor's memory should obey the condition

of sequential consistency:

\: : : the result of any execution is the same as if the operations of all the

processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order speci�ed by

its program."

To guarantee sequential consistency (or any other shared-memory model) in a
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cache-based memory system, all transactions between caches and shared-memory

modules are conducted through a cache coherence protocol . A cache coherence pro-

tocol consists of the set of possible states in the caches, the states of the data in the

main memory, and the messages that must be transported through the processor in-

terconnect to keep memory consistent. In order to guarantee consistency, a coherence

scheme must sometimes force caches to evict data. Processor locality is determined

by the number of times that a processor accesses a cached block of data before the

coherence protocol causes the block to be evicted. Dubois, Scheurich, and Briggs have

described the various alternatives for maintaining cache coherence and have summa-

rized the methods implemented to date [18, 19]. Archibald's doctoral dissertation [7]

is a good reference on the implementation of a wide class of coherence protocols,

although the paper by Yen, Yen, and Fu [45] is easier to �nd in the literature.

While sequential consistency presents a tractable memory model to programmers,

it places strong constraints on the memory system. Enforcing sequential consistency

requires caches to stall processor write requests to ensure that only one write re-

quest is pending at any given time. Otherwise, individual processors may observe

write operations in di�erent orders, leading to a violation of the memory model.

Several memory system designers have identi�ed less stringent memory models that

allow write requests to be overlapped with other processor accesses to shared mem-

ory [1, 19, 21]. These weakly-ordered models permit the memory system to overlap

certain memory transactions by forbidding certain kinds of data sharing semantics.

For example, weakly-ordered systems do not guarantee the appropriate behavior in

the scenario depicted by Figure 2-1, unless the two processors synchronize between

accesses to location X. However, the ability to overlap a number of memory transac-

tions allows a processor to tolerate the latency of access to shared memory. Weakly

ordered systems also tend to improve performance by increasing processor locality.

The Alewife architecture takes a slightly di�erent approach to the problem of

shared-memory latency. As described in Chapter 3, Alewife's SPARCLE processor

overlaps memory transactions by switching between threads of control | which are

implemented as hardware contexts | when its cache needs to transmit a request to a
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remote shared-memory module. Thus, the memory system can overlap one memory

transaction per context, while still enforcing a sequentially consistent memory model

for each thread of control. Since this research focuses on �nding a cache coherence

protocol for Alewife, only implementations of sequentially consistent shared-memory

models are evaluated. Nevertheless, all of the general classes of protocols that are

considered can be implemented to enforce either sequential consistency or weak or-

dering. Although the main thrust of this research attempts to use caches to minimize

the remote latency through the use of caches, it also investigates the relative bene�ts

of weak ordering and multiple contexts.

2.2.1 Classes of Cache Coherence Protocols

The cache coherence problem has been solved adequately for multiprocessors with

a small number of processors. Systems of up to about sixteen processors may be

constructed by connecting each processor node (consisting of a processor, a cache,

and a bus interface) and the memory modules (often distributed with the processor

nodes) to a bus. Since each node transmits and receives all of its memory transac-

tions via this common communication resource, any processor node can observe the

memory transactions of all of the other nodes in the system. Protocols that take

advantage of this technique of covert observation are called snoopy cache coherence

protocols, because each processor node snoops on the bus transactions of the other

nodes. Snoopy protocols have been extensively studied, and have been implemented

in several systems [20, 22, 26, 27].

Unfortunately, the protocols used in small multiprocessing systems do not scale up

to systems with large numbers of processors, due to physical constraints on the pro-

cessor interconnect structure. Speci�cally, a bus simply does not have the bandwidth

to support a large number of high-speed processors. Furthermore, transmission prob-

lems in a multidrop environment cause the latency of bus transactions to rise with the

number of nodes connected to a bus. So, systems with large numbers of processing

elements must use point-to-point interconnection networks. But replacing a bus with

another type of interconnect removes the broadcast mechanism that is implicit in bus
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operation. While it is possible to implement a broadcast as a part of a multiprocessor

network, such a mechanism incurs a long latency or large hardware cost due to the

necessity for receiving acknowledgments from every node in the system. The lack of

a broadcast mechanism renders snoopy protocols infeasible for large multiprocessor

designs.

Some methods for solving the cache coherence problem in large multiprocessors

bypass the problem entirely. For example, the Denelcor HEP [25] avoids the use of

caches by hiding memory access latency with �ne grain multitasking. However, this

system requires an interconnection network with a very high bandwidth.

The NYU Ultracomputer [23] and the IBM RP3 [39] use caches, but avoid the

coherence problem by not caching shared data. Instead, caches are only allowed to

store copies of private data, shared data that is read-only, and instructions, while

accesses to shared data bypass the cache. These systems often try to overlap the

latency of write requests to shared data by allowing multiple outstanding writes.

When necessary, the multiprocessor software must enforce consistency by issuing fence

instructions, which stall a processor until all of its previous shared memory requests

have been satis�ed. While the experimentation with reduced cache use has led to

some interesting results in the relationship between program execution and software-

based coherence mechanisms [40], the e�orts in shared memory research have shifted

towards systems that have hardware mechanisms to enforce cache coherence.

This shift has occurred partially due to the fact that, in practice, shared variables

must be statically identi�ed to use this coherence scheme. Software systems that can

not use compiler or programmer analysis to di�erentiate between private and shared

variables are precluded from using this scheme. Nonetheless, the software-based co-

herence method is not rejected out-of-hand and is compared with the other protocols

for large-scale machines. In later analysis, this coherence method is designated by the

acronym OCPD, which stands for only cache private data. To facilitate the compar-

ison of this method with hardware-based coherence scheme, sequential consistency is

ensured by an implicit fence operation after every reference to a shared variable.

Hardware-based cache coherence protocols that do not use broadcasts store the
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locations of all cached copies of each block of shared data. This list of cached locations,

whether organized as a table or a linked-list, is called a directory. There is a directory

entry for each block of data containing a number of pointers to specify the locations of

copies of the block. Each directory entry also contains a dirty bit to specify whether

or not a unique cache has permission to write a given block of data.

2.3 Directory-Based Cache Coherence Protocols

The di�erent avors of directory protocols that have been devised previously fall un-

der three primary categories: full-map directories, limited directories, and chained

directories. Full-map directories [9] store enough state associated with each block in

global memory so that every cache in the system can simultaneously store a copy

of any block of data. That is, each directory entry contains N pointers, where N

is the number of processors in the system. Such directories can be optimized to

use a single bit pointer, and the directory can also be physically distributed along

with main memory, to allow the directory to match the bandwidth of main memory.

Due to bandwidth requirements, only distributed directory schemes are considered

for Alewife. Limited directories [6] di�er from full-map directories in that they have

a �xed number of pointers per entry, regardless of the number of processors in the

system. In order to avoid using a broadcast mechanism, limited directory schemes

only permit a small, �xed number of copies of any given block to be cached simul-

taneously. Chained directories [24] emulate the full-map schemes by building each

directory entry as a linked-list structure and by allocating one link to each cache in

the list.

Full-Map Directories

Full-map protocols were proposed by Tang [42] and Censier and Feautrier [9]. The

Censier and Feautrier protocol uses directory entries with one bit per processor and a

dirty bit. Each bit represents the status of the block in the corresponding processor's

cache (present or absent). If the dirty bit is set, then one and only one processor's bit
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is set, and that processor has permission to write into the block. A cache maintains

two bits of state per block: One bit indicates whether or not a block is valid; the

other bit indicates whether or not a valid block may be written. The cache coherence

protocol must keep the state bits in the memory directory and those in the caches

consistent.

Figure 2-2a illustrates three di�erent states of a full-map directory. In the �rst

state, location X is absent from all of the caches in the system. The second state

results from three caches (caches A, B, and C) requesting copies of location X : Three

pointers (processor bits) are set in the entry to indicate the caches that have copies of

the block of data. In the �rst two states, the dirty bit | on the left of the directory

entry | is set to clean (C), to indicate that no processor has permission to write to

the block of data. The third state results from cache C requesting write permission

for the block. In this �nal state, the dirty bit is set to dirty (D), and there is a single

pointer to the block of data in cache C .

It is worth examining the transition from the second to third states in more detail.

Once processor C issues the write to cache C, the following events transpire:

1. Cache C detects that the block containing location X is valid, but that the

processor does not have permission to write to the block as indicated by the

block's write-permission bit in the cache.

2. Cache C issues a write request to the memory module containing location X

and stalls processor C.

3. The memory module issues invalidate requests to caches A and B.

4. Cache A and cache B receive the invalidate requests, set the appropriate bit to

indicate that the block containing location X is invalid, and send acknowledg-

ments back to the memory module.

5. The memory module receives the acknowledgments, sets the dirty bit, clears

the pointers to caches A and B, and sends write permission to cache C.
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6. Cache C receives the write permission message, updates the state in the cache,

and reactivates processor C .

Note that the memory module waits to receive the acknowledgments before allowing

processor C to complete its write transaction. By waiting for acknowledgments, the

protocol guarantees that the memory system ensures sequential consistency.

The full-map protocol provides a useful upper bound for the performance of

directory-based cache coherence. However, it is not scalable with respect to memory

overhead: Assume that the amount of distributed shared memory increases linearly

with the number of processors N . Because the size of the directory entry that is

associated with each block of memory is proportional to the number of processors,

the memory consumed by the directory is proportional to the size of memory (�(N)),

multiplied by the size of the directory entry (�(N)). Thus, the total memory overhead

scales as the square of the number of processors (�(N2)).

Limited Directories

Limited directory protocols are designed to solve the directory size problem [6]. By

restricting the number of simultaneously cached copies of any particular block of data,

it is possible to limit the growth of the directory to a constant factor.

A directory protocol can be classi�ed as DiriX using the notation from [6]. The

symbol i stands for the number of pointers, and X is NB for a scheme with N o

Broadcast and B for one with Broadcast. A full-map scheme without broadcast is

represented as DirNNB. A limited directory protocol that uses i < N pointers is

denoted DiriNB. The limited directory protocol is similar to the full-map directory,

except in the case when more than i caches request read copies of a particular block

of data.

Figure 2-2b shows the situation when three caches request read copies in a memory

system with a Dir2NB protocol. In this case, the 2-pointer directory may be viewed

as a 2-way set-associative cache of pointers to shared copies. When cache C requests a

copy of location X, the memory module must invalidate the copy in either cache A or

cache B. This process of pointer replacement is sometimes called eviction. Since the
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directory acts as a set-associative cache, it must have a pointer replacement policy.

The protocols evaluated in this study use a pseudorandom eviction policy that is easy

to implement and requires no extra memory overhead. In Figure 2-2b, the pointer to

cache B is replaced by the pointer to cache C.

Why might limited directories be successful? If a parallel program exhibits the

worker-set property in the sense that in any given interval of time only a small subset

of all the processors access a given memory word, then a limited directory is su�cient

to capture this small \worker-set" of processors. It is important to recognize that in a

properly written multiprocessor program, there can not be an overwhelming number

of variables that are both widely-shared and frequently written. If a program utilizes

such variables, then the amount of tra�c needed to transmit the data associated with

the variables would surely exhaust the bandwidth of the interconnection network, no

matter what mechanism is used to ensure the shared-memory model.

Directory pointers in a DiriNB protocol encode binary processor identi�ers, so

each pointer requires i log2N bits of memory, where N is the number of processors

in the system. Given the same assumptions as for the full-map protocol, the memory

overhead of limited directory schemes grows as �(N logN). These protocols are

considered scalable with respect to memory overhead because the resources required

to implement them grow approximately linearly with the number of processors in the

system.

DiriB protocols allow more than i copies of each block of data to exist, but they

resort to a broadcast mechanism when more than i cached copies of a block need

to be invalidated. However, interconnection networks with point-to-point wires do

not provide an e�cient system-wide broadcast capability. In such networks, it is also

di�cult to determine the completion of a broadcast to ensure sequential consistency.

While it is possible to limit some DiriB broadcasts to a subset of the system (see [6]),

the evaluation of limited directories for Alewife is restricted to the DiriNB protocols.
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Chained Directories

Chained directories, the third option for cache coherence schemes that do not utilize a

broadcast mechanism, realize the scalability of limited directories without restricting

the number of shared copies of data blocks [24]. This type of cache coherence scheme is

called a chained scheme, because it keeps track of shared copies of data by maintaining

a linked-list of directory pointers.

Two di�erent chained directory schemes have been proposed. The simpler of the

two schemes implements a singly-linked chain, which is best described by example (see

Figure 2-2c.). Suppose there are no shared copies of location X. If processor A reads

location X, the memory sends a copy to cache A, along with a chain termination

(CT) pointer. The memory also keeps a pointer to cache A. Subsequently, when

processor B reads location X, the memory sends a copy to cache B, along with the

pointer to cache A. The memory then keeps a pointer to cache B. By repeating this

step, all of the caches can store a copy of location X. If processor C writes to location

X, it is necessary to send a data invalidation message down the chain. To ensure

sequential consistency, processor C is denied write permission by the memory module

until the processor with the chain termination pointer acknowledges the invalidation

of the chain. Perhaps this scheme should be called a gossip protocol (as opposed to a

snoopy protocol) because information is passed from individual to individual, rather

than being spread by covert observation!

Chained directory protocols are complicated by the possibility of cache block

replacement. Suppose that cache A1 through cache AN all have copies of location X,

and that location X and location Y map to the same (direct-mapped) cache line. If

processor Ai reads location Y, it must �rst evict location X from its cache. In this

situation, there are two possibilities: 1) Send a message down the chain to cache Ai�1

with a pointer to cache Ai+1 and splice Ai out of the chain, or 2) Invalidate location

X in cache Ai+1 through cache An.

Another solution to the replacement problem is to use a doubly-linked chain. This

scheme maintains forward and backward chain pointers for each cached copy so that

the protocol does not have to traverse the chain when there is a cache replacement.
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The doubly-linked directory optimizes the replacement condition at the cost of a larger

average message block size (due to the transmission of extra directory pointers), twice

the pointer memory in the caches, and a more complex coherence protocol.

Although the chained protocols are more complex than the limited directory proto-

cols, they are still scalable in terms of the amount of memory used for the directories.

The pointer sizes grow as the logarithm of the number of processors, and the number

of pointers per cache or memory block is independent of the number of processors.

2.4 Qualitative Evaluation of the Protocols

The abundance of protocols in the literature might lead to the belief that the cache

coherence problem has already been solved. However, each of the protocols described

in this chapter have defects in terms of scalability or performance. While the full-

map directory protocol allows unlimited data sharing, its hardware overhead becomes

costly for systems with hundreds of processors. Limited directory protocols solve this

problem, but they depend on the assumption that worker-set sizes for all memory

locations are small. The simulations described in Chapters 4 and 5 show that it

is possible to optimize software to reduce the sizes of worker-sets, thereby making

limited directory protocols a viable coherence method. However, the performance of

a shared-memory system based on a limited directory protocol is extremely sensitive

to the extent that multiprocessor software can manage data sharing.

Chained directory protocols su�er from a more subtle problem. Although chained

directories perform only slightly worse than full-map directories in simulations of

systems with up to 256 processors, the scalability of this class of protocols may be

hampered by the structure of the directory. Full-map and limited directory protocols

can service processor write requests by transmitting multiple invalidations through

the interconnection network at once. The latency of a write request is determined by

the rate at which invalidations can be formatted by a memorymodule, transmitted by

the network, and acknowledged by the caches. In contrast, chained directory protocols

must perform invalidations in the sequence determined by the linked-list representa-
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tion of directory entries. Since chained schemes do not bene�t from the parallelism

inherent in a multiprocessor, the latency of a write request depends strongly on the

number of caches in the system. As in the case of limited directories, if worker-set

sizes are small, then chained directories should work well even for large systems. How-

ever, the linked-list structure may cause extreme sensitivity to the worker-set sizes of

individual variables.

As de�ned, the directory schemes rely on the software to improve performance by

reducing the size of shared variables' worker-sets, but none of the protocols allow the

software to assume a subset of the memory system's functionality. This restriction

is reasonable for systems built with contemporary hardware technology. However,

as processor computation speed increases relative to interprocessor communication

latency, implementing cache coherence functionality in software will become more

and more attractive. The next chapter describes the Alewife architecture and its

support for a protocol that allows a more integrated approach to the cache coherence

problem.
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Chapter 3

Implementing Cache Coherence in

Alewife

Since the Alewife project serves as the platform for the analysis of cache coherence

protocols, it is important to understand how the the memory system interacts with

the rest of the Alewife architecture. This chapter begins by summarizing relevant

features of the Alewife multiprocessor, and then describes the implementation of

its cache-based memory system. The description emphasizes the reasoning behind

design decisions that a�ect the complexity and the performance of the shared-memory

system, rather than the minutia of the implementation of the coherence protocols.

As part of the discussion of cache coherence implementation, the speci�cation of

the LimitLESS protocol serves as a case study of applying the integrated systems

approach to shared memory systems.

3.1 Scalability and Programmability

The goal of the Alewife experiment is to demonstrate that a parallel computer sys-

tem can be both scalable and easily programmable. For the purposes of this thesis,

scalability implies that both the physical size of each processing node and the size of

the wires that connect the processors are constant with respect to the total number

of nodes in the system. This de�nition of scalability is the basis for the discussion in
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Chapter 2 that analyzes coherence protocols in terms of their memory overhead.

3.1.1 The Alewife Processing Node

The Alewife multiprocessor, as depicted in Figure 3-1, is designed to be physically

scalable. The system consists of a set of processing nodes that are connected by a

mesh network. This type of network is scalable, because the interconnection wire

lengths do not depend on the number of nodes in the system. Each node consists

of a network router, a SPARCLE processor, a oating-point unit, a cache, a cache-

memory controller, and a portion of globally-shared memory. The shared memory

is distributed to the processing nodes so that the system does not su�er from the

bandwidth bottleneck of a single, monolithic memory. Figure 3-1 shows that the

directory used by the cache coherence protocol is also distributed to the processing

nodes. The description of the structures within the directory is deferred until later

in this chapter.

Dividing the shared memory between the processing elements, rather than allocat-

ing it to specialized memory modules as in dance-hall architectures [23], has several

bene�ts: First, the multiprocessor contains only one kind of node. This homogeneity

makes the design of the system simpler, because only one type of circuit board needs

to be fabricated. Second, the processor can access its local block of shared-memory

without using the interconnection network. By allocating private data structures

in local memory, Alewife's software reduces the network bandwidth that it requires.

Third, the cache-memory controller, implemented as a single VLSI chip, incorporates

all of the mechanisms needed to enforce cache coherence for both the cache and the

local portion of shared memory. As is shown later in this chapter, the system also

pro�ts from the fact that each controller can interact closely with the local SPARCLE

processor.

Assuming a scalable cache coherence protocol, the system's processing node is

designed to be physically scalable. However, the Alewife architecture is intended

to be scalable in a more powerful sense. As the system grows in terms of size, it

should also scale in terms of performance. Although recent studies have attempted to
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characterize scalable architectures [36], the concept of performance scalability does

not have a widely-accepted de�nition. But from the point of view of the memory

system, it is su�cient to recognize that the time needed for processors to communicate

and synchronize with each other in a large system is the major obstacle to scalability.

If this is the case, then a scalable system somehow must counteract the e�ects of

interprocessor communication latency.

As described in [3], the Alewife architecture accomplishes the goal of scalability

by exploiting communication locality:

A program running on a parallel machine displays communication locality

if the probability of communication with various nodes decreases with

physical distance.

Unfortunately, it is either di�cult or tedious for programmers to have to create com-

munication locality in a system. To achieve both scalability and programmability,

the Alewife system presents the programmer with the abstraction of a monolithic,

sequentially-consistent memory, while managing locality automatically. Alewife uses

a combination of hardware and software techniques to avoid communication latency

by exploiting locality and to tolerate latency when it is unavoidable. The memory

system plays a key role in both of these strategies.

3.1.2 Latency Avoidance

Processor caches provide the �rst line of defense against communication latency. A

cache-based memory system automatically moves data into the processor nodes where

it is needed. In doing so, the caches take advantage of the principles of temporal,

spatial, and processor locality to increase the number of memory accesses that can be

performed within a processing node, thereby enhancing the communication locality

of multiprocessor programs.

However, the action of caches only enhances locality within processing nodes. The

Alewife software implements mechanisms that increase the locality of communication

between processing nodes. These software techniques partition multiprocess programs
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into fragments, called tasks, and attempt to schedule these task in a way that en-

hances communication locality. Such methods include a partitioning mechanism that

balances the size of tasks with the overhead of task creation, communication, and

synchronization; scheduling heuristics that assign related tasks to processors that are

physically near to one another; and compiler schemes that allocate tasks and their

data to maximize locality. These methods are crucial to the scalability of the system

as a whole, but they are beyond the scope of this thesis. The evaluation of coher-

ence protocols concentrates on the interplay between software and hardware that is

required to enhance locality within processing nodes.

3.1.3 Latency Tolerance

When the system can not avoid interprocessor communication, Alewife attempts to

tolerate the latency by switching between hardware contexts on the SPARCLE proces-

sor, an implementation of the APRIL processor architecture for multiprocessing [5].

Each of the four hardware contexts on SPARCLE can contain the state of an exe-

cutable task. When one task must be stalled due to internode communication caused

by accessing a variable in a remote portion of memory, the SPARCLE processor

rapidly switches to another task's context. (A context switch takes 11 cycles in the

current implementation of the processor.) Thus, the context-switch allows the pro-

cessor to overlap communication latency with useful execution of another part of the

program. A cache coherence scheme must assure that the memory requests from each

context are satis�ed e�ciently and correctly. Section 3.3.2 elaborates on the protocol

features that are required to support multiple contexts.

3.2 Implementing Directory Protocols

Due to the reasons explained in Chapter 2, all of the potential cache coherence schemes

for Alewife are directory-based protocols. For purposes of comparison, other types

of protocols have been analyzed during the search for a protocol for Alewife; how-

ever, the main thrust of the memory system experimentation involves the simulation
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and measurement of several di�erent directory-based protocols, including full-map,

limited, and chained varieties. This analysis helps determine the relationship be-

tween the implementation of a protocol's directory structure and the performance of

a shared-memory system.

The most dramatic di�erences in performance between protocols is caused by the

structure of the directory. For applications that use variables with small worker-sets,

all of the protocols perform similarly. On the other hand, applications with variables

that are shared by many processors exhibit behavior that correlates with the type

of directory used by the protocol. Except in anomalous situations, the full-map

directory performs better than any other directory-based protocol. This observation

should not be surprising, since the full-map protocol is also not scalable in terms of

memory overhead. By committing enough resources to cache coherence, it is possible

to achieve good performance.

Simulations show that limited directory protocols can perform as well as full-

mapped directory protocols, subject to optimization of the software running on a

system [11]. Although this result testi�es to the fact that scalable cache coherence is

possible, limited directories are extremely sensitive to the worker-sets of a program's

variables. Chapter 5 examines a case-study of a multiprocessor application that |

when properly modi�ed| runs approximately as fast with a limited directory as with

a full-map directory. However, when one variable in the program is widely shared,

limited directory protocols cause more than a 100% increase in time needed to �nish

executing the application. This sensitivity to worker-set sizes varies with the program

running on the system; but in general, the more variables that are shared among many

processors, the worse limited directories perform.

Since chained directory protocols maintain pointers in a linked-list structure, they

avoid the problems of limited directories by allowing an unlimited number of cached

copies of any given variable. This class of directory protocols performs slightly worse

than the full-map protocol, due to the latency of write transactions to shared vari-

ables. However, the fact that write latency di�erentiates the chained and full-map

protocols even in 64 processor systems should cause some trepidation. As system
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sizes grow, the e�ect of the linked-list structure becomes more pronounced.

3.2.1 The LimitLESS Directory Protocol

The LimitLESS directory protocol uses a di�erent approach to solve the problem of

�nding a scalable cache coherence problem. As do limited directory protocols, the

LimitLESS directory scheme capitalizes on the observation that only a few shared

memory data types are widely shared among processors. Many shared data structures

have a small worker-set, which is de�ned as the set of processors that concurrently

read a memory location. The worker-set of a memory block corresponds to the num-

ber of active pointers it would have in a full-map directory entry. The observation

that worker-sets are often small has led some memory-system designers to propose

the use of a hardware cache of pointers to augment the limited-directory for a few

widely-shared memory blocks [37]. However, when running properly optimized soft-

ware, a directory entry overow is an exceptional condition in the memory system.

The LimitLESS protocol handles such \protocol exceptions" in software. This is the

integrated systems approach | handling common cases in hardware and exceptional

cases in software.

The LimitLESS scheme implements a small number of hardware pointers for each

directory entry. If these pointers are not su�cient to store the locations of all of the

cached copies of a given block of memory, then the memory module will interrupt

the local processor. The processor will then emulate a full-map directory for the

block of memory that caused the interrupt. The structure of the Alewife machine

supports an e�cient implementation of this memory system extension. Since each

processing node in Alewife contains both a memory controller and a processor, it is a

straightforward modi�cation of the architecture to couple the responsibilities of these

two functional units. This scheme is called LimitLESS, to indicate that it employs

a Limited directory that is Locally Extended through Software Support. Figure 3-1,

an enlarged view of a node in the Alewife machine, depicts a set of directory pointers

that correspond to shared data block X , copies of which exist in several caches. In

the �gure, the software has extended the directory pointer array (which is shaded)
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into local memory.

Since Alewife's SPARCLE processor is designed with a fast trap mechanism, the

overhead of the LimitLESS interrupt is not prohibitive. The emulation of a full-map

directory in software prevents the LimitLESS protocol from exhibiting the sensitivity

to software optimization that is exhibited by limited directory schemes. But given

current technology, the delay needed to emulate a full-map directory completely in

software is signi�cant. Consequently, the LimitLESS protocol supports small worker-

sets of processors in its limited directory entries, implemented in hardware.

3.2.2 A Simple Model of the LimitLESS Protocol

Before discussing the details of the new coherence scheme, it is instructive to examine

a simple model of the relationship between the performance of a full-map directory

and the LimitLESS directory scheme. Let Th be the average remote memory access

latency for a full-map directory protocol. Th encapsulates factors such as the delay

in the cache and memory controllers, invalidation latencies, and network latency.

Given the hardware protocol latency, Th, it is possible to estimate the average remote

memory access latency for the LimitLESS protocol with the formula: Th +mTs, where

Ts (the software latency) is the average delay for the full-map directory emulation

interrupt, and m is the fraction of memory accesses that overow the small set of

pointers implemented in hardware.

For example, simulations of a Weather Forecasting program running on 64 node

Alewife memory system (see Chapter 5) indicate that Th � 35 cycles. If Ts = 100

cycles, then remote accesses with the LimitLESS scheme will be 10% slower (on

average) than with the full-map protocol when m � 3%. Since the Weather program

is, in fact, optimized such that 97% of accesses to remote data locations \hit" in the

limited directory, the full-map emulation will cause a 10% delay in servicing requests

for data.

LimitLESS directories are scalable, because their memory overhead grows as

�(N logN), and their performance approaches that of a full-map directory as system

size increases. Although in a 64 processor machine, Th and Ts are comparable, in
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much larger systems the internode communication latency will be much larger than

the processors' interrupt handling latency (Th � Ts). Furthermore, improving pro-

cessor technology will make Ts even less signi�cant. In such systems, the LimitLESS

protocol will perform about as well as the full-map protocol, even if m = 1. This ap-

proximation indicates that if both processor speeds and multiprocessor sizes increase,

handling cache coherence completely in software will become a viable option. In fact,

the LimitLESS protocol is the �rst step on the migration path towards interrupt-

driven cache coherence. Other systems [14] have also experimented with handling

cache misses entirely in software.

3.2.3 Background: Implementing a Full-Map Directory

Since the LimitLESS coherence scheme is a hybrid of the full-map and limited direc-

tory protocols, this new cache coherence scheme should be studied in the context of

its predecessors. In the case of a full-map directory, one pointer for every cache in

the multiprocessor is stored, along with the state of the associated memory block, in

a single directory entry. The directory entry, illustrated in Figure 3-2, is physically

located in the same node as the associated data. Since there is a one-to-one map-

ping between the caches and the pointers, the full-map protocol optimizes the size of

the pointer array by storing just one bit per cache. A pointer-bit indicates whether

or not the corresponding cache has a copy of the data. The implementation of the

protocol allows a memory block to be listed in one of four states, which are listed

in Table 3.1. These states are mirrored by the state of the block in the caches, also

listed in Table 3.1. It is the responsibility of the protocol to keep the states of the

memory and cache blocks coherent. For example, a block in the Read-Only state may

be shared by a number of caches (as indicated by the pointer array). Each of these

cached copies are marked with the Read-Only cache state to indicate that the local

processor may only read the data in the block.

Before any processor modi�es a block in an Invalid or Read-Only cache state,

it �rst requests permission from the memory module that contains the data. At

this point, the memory controller sends invalidations to each of the cached copies.
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State Cache ID Cache ID Cache ID Cache ID
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Full-Map Directory Entry

Limited Directory Entry

Read-Only

State 1 2 3 4 N

X X

Figure 3-2: Full-map and limited directory entries. The full-map pointer array is
optimized as a bit-vector. The limited directory entry has four pointers.

Component Name Meaning

Memory Read-Only Caches have read-only copies of the data.

Read-Write One cache has a read-write copy of the data.

Read-Transaction Holding read request, update is in progress.

Write-Transaction Holding write request, invalidation is in progress.

Cache Invalid Cache block may not be read or written.

Read-Only Cache block may be read, but not written.

Read-Write Cache block may be read or written.

Table 3.1: Directory states.

The caches then invalidate the copy (change the block's state from Read-Only to

Invalid), and send an acknowledgment message back to the memory. The memory

controller uses the Write-Transaction state to indicate that a memory location is

awaiting acknowledgments, and sets a pointer to designate the cache that initiated

the request. If the memory controller has a mechanism for counting the number of

invalidations sent and the number of acknowledgments received, then the invalidations

and acknowledgments may travel through the system's interconnection network in

parallel. By allowing only one outstanding transaction per memory module, it is

possible to avoid the extra memory overhead needed to store the Write-Transaction

state and the acknowledgment counter for each directory entry. However, such a

modi�cation reduces the overall bandwidth of the memory system and exacerbates

the e�ect of hot-spots, which may be caused by accesses to di�erent variables that

happen to be allocated in the same memory module. When the memory controller

receives the appropriate number of acknowledgments, it changes the state of the block

to Read-Write and sends a write permission message to the cache that originated the
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transaction. In a sense, the cache \owns" the block until another cache requests

access to the data.

Changing a block from the Read-Write to the Read-Only state involves an anal-

ogous (but slightly simpler) transaction. When a cache requests to read a block that

is currently in the Read-Write state, the memory controller sends an update request

to the cache that owns the data. The memory controller marks a block that is wait-

ing for data with the Read-Transaction state. As in the Write-Transaction state,

a pointer is set to indicate the cache that initiated the read transaction. When a

cache receives an update request, it invalidates its copy of the data, and replies to

the memory controller with an update message that contains the modi�ed data, so

that the original read request can be satis�ed.

The protocol might be modi�ed so that a cache changes a block from the Read-

Write to the Read-Only (instead of the Invalid) state upon receiving an update re-

quest. Such a modi�cation assumes that data that is written by one processor and

then read by another will be read by both processors after the write. While this mod-

i�cation optimizes the protocol for frequently-written and widely-shared variables, it

increases the latency of access to migratory or producer-consumer data types. The

dilemma of choosing between these two types of data raises an important question:

Should a cache coherence protocol optimize for frequently-written and widely-shared

data? This type of data requires excessive bandwidth from a multiprocessor's inter-

connection network, whether or not the system employs caches to reduce the average

memory access latency. Since the problems of frequently-written and widely-shared

data are independent of the coherence scheme, it seems futile to try to optimize ac-

cesses to this type of data, when the accesses to other data types can be expedited.

This decision forces the onus of eliminating the troublesome data type on the mul-

tiprocessor software designer. However, the decision seems reasonable in light of the

physical limitations of communication networks.

The basic protocol that is described above is somewhat complicated by the asso-

ciativity of cache lines. In a cache, more than one memory block can map to a single

block of storage, called a line. Depending on the memory access pattern of its pro-
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cessor, a cache may need to replace a block of memory with another block of memory

that must be stored in the same cache line. While the protocol must account for

the e�ect of replacements to ensure a coherent model of shared memory, in systems

with large caches, replacements are rare events except in pathological memory access

patterns. Several options for handling the replacement problem in various coherence

protocols have been explored. Simulations show that the di�erences between these

options do not contribute signi�cantly to the bottom-line performance of the coher-

ence schemes, so the �nal choice of replacement handling for the Alewife machine

should optimize for the simplicity of the protocol (in terms of cache states, memory

states, and the number of messages).

3.2.4 Speci�cation of the LimitLESS Scheme

The model in Section 3.2.2 assumes that the hardware latency (Th) is approximately

equal for the full-map and the LimitLESS directories, because the LimitLESS pro-

tocol has the same state transition diagram as the full-map protocol. The memory

controller side of this protocol is illustrated in Figure 3-3, which contains the memory

states listed in Table 3.1. Both the full-map and the LimitLESS protocols enforce

coherence by transmitting messages (listed in Table 3.3) between the cache/memory

controllers. Every message contains the address of a memory block, to indicate which

directory entry should be used when processing the message. Table 3.3 also indicates

whether a message contains the data associated with a memory block.

The state transition diagram in Figure 3-3 speci�es the states, the composition of

the pointer set (P), and the transitions between the states. This diagram speci�es a

simpli�ed version of the protocol implemented in ASIM, the Alewife system simulator,

which is described in Chapter 4. For the purposes of describing the implementation

of directory protocols, Figure 3-3 includes only the core of the full-map and Lim-

itLESS protocols. Unessential optimizations and other types of coherence schemes

have been omitted to emphasize the important features of the coherence schemes. See

Appendix B for a complete de�nition of the protocols implemented in ASIM.

Each transition in the diagram is labeled with a number that refers to its speci�ca-
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Figure 3-3: Directory state transition diagram for the full-map and LimitLESS co-
herence schemes.
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Input Precondition Directory Entry Output

# Message Change Message(s)

1 i! RREQ | P = P [ fig RDATA! i

2 i! WREQ P = fig | WDATA! i

i! WREQ P = fg P = fig WDATA! i

3 i! WREQ P = fk1; : : : ; kng ^ i 62 P P = fig, AckCtr = n 8kj INV ! kj
i! WREQ P = fk1; : : : ; kng ^ i 2 P P = fig, AckCtr = n� 1 8kj 6= i INV ! kj

4 j ! WREQ P = fig P = fjg INV ! i

5 j ! RREQ P = fig P = fjg INV ! i

6 i ! REPM P = fig P = fg |

7 j ! RREQ | | BUSY ! j

j ! WREQ | | BUSY ! j

j ! ACKC AckCtr 6= 1 AckCtr = AckCtr � 1 |

j ! REPM | | |

8 j ! ACKC AckCtr = 1, P = fig | WDATA! i

j ! UPDATE P = fig | WDATA! i

9 j ! RREQ | | BUSY ! j

j ! WREQ | | BUSY ! j

j ! REPM | | |

10 j ! UPDATE P = fig | RDATA! i

Table 3.2: Annotation of the state transition diagram.

tion in Table 3.2. This table annotates the transitions with the following information:

1. The input message from a cache that initiates the transaction and the identi�er

of the cache that sends it. 2. A precondition (if any) for executing the transition.

3. Any directory entry change that the transition may require. 4. The output mes-

sage or messages that are sent in response to the input message. Note that certain

transitions require the use of an acknowledgment counter (AckCtr), which is used to

ensure that cached copies are invalidated before allowing a write transaction to be

completed.

For example, Transition 2 from the Read-Only state to the Read-Write state is

taken when cache i requests write permission (WREQ) and the pointer set is empty

or contains just cache i (P = fg or P = fig). In this case, the pointer set is modi�ed

to contain i (if necessary) and the memory controller issues a message containing the

data of the block to be written (WDATA).

Following the notation in [6], both full-map and LimitLESS are members of the

DirNNB class of cache coherence protocols. Therefore, from the point of view of the

protocol speci�cation, the LimitLESS scheme does not di�er substantially from the

full-map protocol. In fact, the LimitLESS protocol is also speci�ed by Figure 3-3.
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Type Symbol Name Data?

Cache to Memory RREQ Read Request

WREQ Write Request

REPM Replace Modi�ed
p

UPDATE Update
p

ACKC Invalidate Acknowledge

Memory to Cache RDATA Read Data
p

WDATA Write Data
p

INV Invalidate

BUSY Busy Signal

Table 3.3: Cache coherence protocol messages.

The extra notation on the Read-Only ellipse (S : n > p) indicates that the state is

handled in software when the size of the pointer set (n) exceeds the size of the limited

directory entry (p). In this situation, the transitions with the shaded labels (1, 2,

and 3) are executed by the interrupt handler on the processor that is local to the

overowing directory. When the protocol changes from a software-handled state to

a hardware-handled state, the processor must modify the directory state so that the

memory controller can resume responsibility for the protocol transitions.

While the low-level implementation of the LimitLESS directory scheme is beyond

the scope of this thesis, the hardware mechanisms that are required to implement the

protocol are as follows:

1. A fast interrupt mechanism: A processor must be able to interrupt application

code and switch to LimitLESS protocol code rapidly. This ability makes the

overhead of emulating a full-map directory (Ts) small, and thus makes the

LimitLESS scheme competitive with schemes that are implemented completely

in hardware. The initial implementation of SPARCLE will be able to switch to

LimitLESS code in �ve to ten cycles.

2. Processor to network interface: In order to emulate the protocol functions nor-

mally performed by the cache/memory controller, the processor must be able

to send and to receive messages from the interconnection network.

3. Extra directory state: Each directory entry must hold the extra state necessary

to indicate whether the processor is holding overow pointers.
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In Alewife, none of these mechanisms exist exclusively to support the LimitLESS

protocol. The SPARCLE processor uses the same mechanism to execute an interrupt

quickly as it uses to provide a fast context-switch. The processor to network interface

is implemented through the interprocessor interrupt (IPI) mechanism, which is de-

signed to increase Alewife's I/O performance and to provide a generic message-passing

primitive. A small extension to the extra directory state required for the LimitLESS

protocol allows diverse coherence and synchronization data types to be constructed

in software. See [12, 31] for details of the implementation of these mechanisms.

3.2.5 Estimating LimitLESS Directory Performance

For the purpose of evaluating the potential bene�ts of the LimitLESS coherence

scheme, an approximation of the protocol was implemented in ASIM. The technique

assumes that the overhead of the LimitLESS full-map emulation interrupt is approx-

imately the same for all memory requests that overow a directory entry's pointer

array. This is the Ts parameter described in Section 3.2.2. During the simulations,

ASIM simulates an ordinary full-map protocol. When the simulator encounters a

pointer array overow, it stalls both the memory controller and the processor that

would handle the LimitLESS interrupt for Ts cycles. While this evaluation technique

only approximates the actual behavior of the fully-operational LimitLESS scheme, it

is a reasonable method for determining whether to expend the greater e�ort needed

to implement the complete protocol.

Initial estimates of the performance of the LimitLESS protocol are encouraging.

For applications that perform as well with a limited directory as with a full-map

directory, the LimitLESS directory causes little degradation in performance. When

limited directories perform signi�cantly worse than a full-map directory, the Limit-

LESS scheme tends to perform about as well as full-map, depending on the number of

widely-shared variables. If a program has just one or two widely-shared variables, a

LimitLESS protocol avoids hot-spot contention that tends to destroy the performance

of limited directories. Chapter 5 gives a case-study of such an application. On the

other hand, the performance of the LimitLESS protocol degrades when a program
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utilizes variables that are both widely-shared and frequently written. But as discussed

in previous sections, these types of variables tend to exhaust the bandwidth of the

interconnection network, no matter what coherence scheme is used by the memory

system.

In general, preliminary simulation results indicate that the LimitLESS scheme

approaches the performance of a full-mapped directory protocol with the memory

e�ciency of a limited directory protocol. The success of this new coherence protocol

emphasizes two key principles: First, the integrated systems approach can successfully

be applied to the design of a shared-memory system. Second, the implementation of a

protocol's directory structure correlates closely with the performance of the memory

system as a whole.

3.3 Implementation Issues in Alewife

The state transition diagram in Figure 3-3 speci�es a basic cache coherence protocol

that may be implemented on any multiprocessor with distributed memory. However,

there are some features of the Alewife architecture that allow optimizations of the

protocols or that require additional support from the protocols. This section speci-

�es protocol functionality that supports two special features of the Alewife machine;

namely, the distribution of shared memory to processing elements and the fast context

switch capability.

3.3.1 Alewife's Processor-Controller Interface

When a processor needs to perform a load or store access to shared memory, the

controller responds with one of the three signals listed in Table 3.4. The READY

response indicates that the access is complete. In the case of a load, the data is

available in the cache. In the case of a store, the coherence protocol has obtained

permission to write the data in the cache. The SWITCH response indicates that

a transaction with a remote node is necessary to service the processor's request.

Normally, this condition will cause the processor to switch contexts.
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Name Controller Response
READY Access complete at the end of the current cycle
SWITCH Context switch
WAIT Repeat the same access on the next cycle

Table 3.4: Controller Response Types

The Alewife controller uses the WAIT response, which is analogous to a unipro-

cessor memory wait state, to optimize requests from a processor to its local memory.

Since each ALEWIFE node contains a cache memory, a main memory, and a cache

controller (see Figure 3-1), it is possible that the controller may need to send a proto-

col message to itself. For example, the directory associated with a controller may have

to invalidate a block in the controller's cache. From the standpoint of the hardware, it

is wasteful (and perhaps impossible) to use the standard mechanism for transmitting

a message through the network when the message is directed from a node to itself.

When a processor needs to access a location in its local portion of shared memory

that is not present in its cache, the controller can sometimes satisfy the request in a

shorter amount of time than if the controller had to transmit a request through the

network. In this case, the controller causes the processor to WAIT until the data can

be read from local memory into the cache. While this mechanism is not an essential

part of the protocol, it demonstrates how a coherence protocol may take advantage

of its target architecture.

3.3.2 Support for Multiple Contexts

Alewife's memory system must provide for the context switching processor in two

ways: First, it is possible for a context to be switched (but not unloaded) when it

makes an unsuccessful data access, but to become active again before its initial request

is satis�ed. In the worst case, all of the contexts executing on a processor may be

waiting for outstanding memory transactions. If these contexts repeatedly transmit

their data requests, they can overload the network with redundant tra�c. Thus, the

protocol can allow only one outstanding request for any memory transaction.

Second, the protocol must ensure forward progress in all accesses to memory.
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Given an incorrect coherence protocol, the interference of cache accesses by di�erent

contexts can create cyclic thrashing situations, which prevent both contexts from

ever receiving data. While such situations may be rare, they are as fatal as any other

in�nite loop.

In this section, scenarios involving processor data requests are illustrated to clarify

the need for various protocol features. Each �gure consists of a number pairs of

\frames." A frame on the left-hand side of a �gure is the cause of a protocol transition,

and a frame on the right is the e�ect of the same transition. For example, in Figure 3-

4, Frame 1 depicts a write access from Context 1 of processor Processor A. Frame 2

shows the e�ect of the action in Frame 1: the cache controller sends a WREQ message

to a shared-memory module, and instructs the processor to SWITCH contexts. All

of the transitions in the �gure are derived from the protocol state transition diagrams

that are presented in Appendix B. The frames in each scenario are numbered in

chronological order.

Network Wait States

In a machine with processors that do not have a context-switching capability, the

memory system must sometimes stall processors that require access to remote data.

The network wait cache states generalize on the stall mechanism to solve the problem

of redundant data requests, described above. Table 3.5 lists the additional states,

which augment the states in Table 3.1.

The function of the network wait states is best illustrated by an example. Assume

that Context 1 and Context 2 on Processor A are both accessing X, a location in

memory. In Frame 1 of Figure 3-4, Context 1 attempts to modify the location. Since

the cache block containing X is in the Read Only state, Context 1 can not write to

the location. So in Frame 2, the controller switches the context on Processor A and

sends a write request over the network. At this point, the state of the cache block is

changed to Read Only Network Wait to indicate that the data in the cached location

is valid (although it may not be written) and that there is currently an outstanding

request for the cache line. Because the block is in the Read Only Network Wait state,
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Name Meaning

Invalid Network Wait Invalid, network request is pending for the block.

Read Only Network Wait Read Only, network request is pending for the block.

Read/Write Network Wait Read/Write, network request is pending for the block.

Table 3.5: Cache network wait states.

after Context 2 attempts to read X in the Frame 3, its request is satis�ed in Frame 4.

This reects an important optimization of the network wait states. It would be

possible to consolidate the three di�erent network wait states (in Table 3.5) into one

network wait state. However, a unique network wait state would disallow accesses

to a cache block while network requests associated with the block were pending.

Furthermore, when a cache receives a BUSY signal from a memory module, it can

restore the cache line to its state before the busied request was sent. With a unique

network wait state, a BUSY signal would force the cache line to become invalid. Thus,

separating the various network wait states improves the average latency of memory

accesses when di�erent contexts share the same cache.

Frames 5 and 6 of Figure 3-4 illustrate the other important property of the network

wait states. If Context 1 becomes active before its data request is completed, its

subsequent requests for the same data location will not create additional requests,

which could clog the network. Note that in Frame 2 (after the initial access), the

controller transmits a WREQ message; but in Frame 6 (after a subsequent request),

the controller does not transmit any messages.

Frames 7 through 10 of Figure 3-5 show the normal completion of the transaction:

In Frame 7, the response from the remote memorymodule arrives and causes the cache

block state to be changed to Read-Write in Frame 8. Finally, Context 1 requests the

data in Frame 9 and receives a READY signal in Frame 10.

Types of Thrashing

Ensuring forward progress (or preventing thrashing cycles) is a more subtle problem

than preventing multiple outstanding data requests. There are two forms of thrashing,

both of which are caused by the fact that a context may not be active when its data
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Figure 3-4: Scenario involving a network wait state. (Frames 1 through 6.)
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Figure 3-5: Scenario involving a network wait state. (Frames 7 through 10.)
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request is satis�ed. Replacement thrashing occurs when two contexts on the same

processor attempt to access two data blocks that map to the same cache line, and

invalidation thrashing occurs when contexts on two di�erent processors attempt to

access the same data block.

Figures 3-6 and 3-7 show an example of replacement thrashing. Context 1 on

Processor A attempts to write to Location X in memory, while Context 3 on the

same processor attempts to write to Location Y. Unfortunately, both X and Y map

to the same cache line, so the two memory locations cannot be stored in the cache

simultaneously. In Frame 1 of Figure 3-6, Context 1 encounters a normal write miss in

the cache. The controller sends out a WREQ message, changes the state of the cache

block to Read/Write Network Wait, and context switches the processor in Frame 2.

Frames 3 and 4 show the arrival of the data for Location X at Processor A when

Context 1 is not active. In Frame 5, Context 3 becomes active and �nds that its data

is not in the cache, and initiates a request to write Location Y in Frame 6. Frames 7

and 8 are symmetric to Frames 3 and 4: Data arrives for Context 3, but the context

is not active at the time. The loop is completed in Frames 9 and 10 when Context

1 repeats the cache miss that initiated the cycle. In this scenario, Context 2 and

Context 4 may make forward progress, but it is possible that these two contexts are

also trapped in a replacement thrashing loop. If this is the case, then the whole

system will eventually come to a grinding halt while it waits forever for the contexts

on Processor A to terminate.

Figures 3-8 and 3-9 illustrate a sequence of accesses that causes invalidation

thrashing. Context 1 on Processor A and Context 1 on Processor B are both attempt-

ing to write to X, a location in shared memory. The �rst two frames of Figure 3-8

show the initial request from Processor A and the resulting WREQ message that is

transmitted over the network. In Frames 3 and 4, the data corresponding to the re-

quest from Context 1 arrives at Processor A, but Context 1 is not active at the time.

While Context 1 on Processor A is inactive, Context 1 on Processor B also makes a

write request for X in Frames 5 and 6. In Frame 7, the invalidation message (INV)

caused by the write request from Processor B arrives at Processor A before Context
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Figure 3-6: Replacement thrashing scenario. (Frames 1 through 6.)
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Figure 3-7: Replacement thrashing scenario. (Frames 7 through 10.)
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Figure 3-8: Invalidation thrashing scenario. (Frames 1 through 6.)
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Figure 3-9: Invalidation thrashing scenario. (Frames 7 through 12.)
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1 gets the chance to complete its write transaction. The response to the invalidation

message, which is an UPDATE message, is transmitted in Frame 8. Frames 9 and 10

are symmetric to Frames 3 and 4, because Processor B receives the data correspond-

ing to a data request while Context 1 is still inactive. The vicious cycle is completed

in Frames 11 and 12 when Context 1 �nally becomes active and �nds that its data is

not in the cache. Context 1 then transmits a request that will eventually cause the

data to be invalidated from Processor B.

As this scenario is repeated, X will ping-pong from one cache to another, and

neither the context on Processor A nor the context on Processor B will ever actually

access X. In this situation, all of the other contexts in the system will eventually

have to wait for the contexts involved in the invalidation thrashing. From the user's

point of view, the system is \hung," due to a problem with the cache coherence

protocol. If invalidation thrashing is caused by contexts on di�erent processors, then

what does context switching have to do with this type of thrashing? The key events

in the invalidation thrashing scenario are shown in Frames 3 and 9. When each

context's data arrives at its cache, the context is not active. If there were only one

context per processor, the timing could be arranged so that a process waiting for

data would always be able to access data in its cache at least once before the data

could be invalidated. Thrashing problems arise when it is not possible to ensure that

a context can always access data before it is invalidated.

The Window of Vulnerability

The thrashing problems described in the previous section are caused by a window of

vulnerability between the time that data arrives in the cache and the time that the

processor accesses the data. During this period of time, it is possible for the data to be

evicted from the cache, thereby preventing forward progress. On a processor without

multiple contexts, the vulnerability period is typically only about one cycle long,

so it does not provide a signi�cant opportunity for thrashing scenarios to develop.

However, the window is much wider for systems with multiple contexts per processor.

Experience with ASIM shows that while individual data accesses do not have a
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high probability of thrashing, programs that run for long periods of time generally

encounter thrashing situations. In fact, all of the predicted thrashing scenarios have

been observed during simulations of the Alewife system. Isolating and eliminating

thrashing problems typically requires the cooperation of run-time system and memory

system designers and demands intricate reasoning about the interactions between

di�erent features of the Alewife architecture.

The Thrash Wait Method

An economical solution to the forward progress problem has been devised. There

are two components to this solution: First, the controller detects thrashing using

an algorithm described below. Second, once thrashing is detected, the controller

ensures forward progress by preventing the processor from switching contexts until

the currently loaded context completes at least one successful memory access. Given

the processor/controller interface speci�ed in Table 3.4, it is easy to stop context

switching by using the WAIT response type to stall the processor. Thus, this method

solves the forward progress problem by temporarily eliminating the problem's source

| context switching.

The algorithm that detects thrashing uses the cache block network wait states,

one extra variable per context (called tried once), and one extra variable per controller

(called thrash wait). The network wait states are the states speci�ed in Table 3.5.

Each context's tried once variable records whether or not the context has caused the

controller to transmit a request for a data block. A controller's thrash wait variable

indicates if some context is being held due to thrashing. When using the thrash wait

method, the pseudocode1 for the module that services processor to cache requests is

as follows:

1The pseudocode notation is borrowed from [17].
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Do Processor Request(Address, Context)
1 if (data is ready for Address)) cache hit
2 then clear tried once[Context]
3 clear thrash wait

4 return READY

5 if (data is in a network wait state) ) still waiting for transaction
6 then if (thrash wait is set)
7 then return WAIT

8 else return SWITCH

9 if (tried once[Context] is set) ) detected thrashing!
10 then send RREQ or WREQ

11 set thrash wait

12 return WAIT

13 ) normal cache miss
14 send RREQ or WREQ

15 set tried once[Context]
16 return SWITCH

The key to this algorithm is the conditional in line 9. If the data in the cache

is not ready, the block is not in a network wait state, and the tried once variable is

set for a context, then there are only two possibilities for the status of the data: 1)

The requested data arrived at the cache, but was subsequently replaced by data for

another context. That is, a thrashing situation exists. 2) The context's previous data

request received a BUSY signal. Conversely, if a replacement or invalidation thrashing

situation exists, or if a data request receives a BUSY signal, then the conditional

in line 9 will be true, and the thrash wait variable will be set. Thus, the above

algorithm will always detect a thrashing condition, when one exists. Furthermore,

since simulations show that BUSY signals are rarely transmitted, it is reasonable to

ignore the false thrashing detections that are caused by BUSY signals.

The thrash wait algorithm does not improve the performance of a system that

su�ers from excessive invalidation or replacement thrashing. The method merely en-

sures forward progress when thrashing exists. In a sense, it does not matter whether

or not the algorithm is optimal in terms of memory latency: If thrashing has a dom-

inant e�ect on a cache-based memory system, then the memory system is extremely

slow, regardless of the method that it uses for ensuring forward progress.
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As a �nal note, the thrash wait method for preventing thrashing assumes that it is

always correct to prevent the processor from switching contexts. This assumption has

curious rami�cations when examined in conjunction with the LimitLESS coherence

protocol. Since the LimitLESS protocol is actually an extension of the memory sys-

tem, to avoid protocol deadlocks, it is sometimes necessary to interrupt a processor in

thrash wait mode for the purpose of executing a LimitLESS protocol interrupt. In this

situation, replacement thrashing could result if the LimitLESS interrupt executes in

the same cache as the user code. To solve this problem, it is possible to mandate that

LimitLESS interrupts run without using the cache; however, Alewife will probably be

designed with a higher-performance solution to this problem.

Evaluation of Support for Multiple Contexts

The special features in the cache coherence protocol that are used to support multiple

contexts are the results of about 11
2
years of simulation experience. Although the pro-

grams that currently run on ASIM all run to completion and therefore have no cyclic

thrashing conditions, this experience is not a valid proof that the cache coherence

protocol actually ensures forward progress. Before binding a protocol into hardware,

it would be pro�table to to prove that a proposed protocol obeys the properties of

correctness and liveness.

Correctness refers to the fact that a protocol actually provides the shared memory

model (e.g. sequential consistency) speci�ed for the multiprocessor system. Liveness

refers to the fact that the protocol will guarantee forward progress in memory accesses.

Recent attempts to prove protocol correctness using the I/O Automata Model [2, 34]

or home-grown models [7, 16, 43] show that the subject is a di�cult one. This di�-

culty may indicate that correctness proofs for coherence protocols are truly complex

in nature, or that a better abstraction is needed between memorymodel speci�cations

and shared memory implementations.

A graph-based veri�cation method has proven itself useful for detecting problems

in �nite state systems, including hardware controllers [15], sequential circuits [8], and

cache coherence protocols [10]. While the veri�cation method is not a formal proof
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technique, it does use an automatic veri�cation algorithm to prove properties (stated

in temporal logic) about �nite state systems. Such an automatic veri�cation tool

may prove to be very useful for reasoning about the Alewife memory system, once

the protocol speci�cation has stabilized.

3.4 Second-Order Considerations

In addition to the protocol features that have a primary impact on the performance

of a cache coherence scheme, there are a number of secondary implementation details

that also contribute to the speed of the memory system. Examples of such details

include several protocol messages that are not essential for ensuring a memory model,

as well as the method used by a memory controller to count invalidation acknowledg-

ment (ACKC) messages from caches. While these features may be interesting from

the point of view of protocol design, they have only a small (but not insigni�cant)

e�ect on the system as a whole.

3.4.1 Protocol Messages

The messages that are used by the hardware coherence protocols to keep the cache and

the memory states consistent are listed in Table 3.3. The Data? column indicates the

four messages that contain the data of the shared memory block. Table 3.6 lists three

optional messages that are not essential to ensure cache coherence. Although the

messages have mnemonic names, it is worth explaining the meaning of each message:

The RREQ message is sent when a processor requests to read a block of data that

is not contained in its cache. The RDATA message is the response to RREQ, and

contains the data needed by the processor. The WREQ and WDATA messages are

the request/response pair for processor write requests. Since more than one memory

word is stored in a cache line, the WDATA message contains a copy of the data in

the memory module.

The MREQ and MODG messages are used to service processor write requests

when the cache contains a Read-Only copy of the data to be written. In this case,
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Type Symbol Name Data?
Cache to Memory MREQ Modify Request

REPU Replace Unmodi�ed
Memory to Cache MODG Modify Granted

Table 3.6: Optional protocol messages.

the processor does not need a copy of the data, so the MODG message does not

contain the block of data. MREQ and MODG are really just an optimization of the

WREQ and WDATA message combination for the limited directory protocol. This

message pair is not essential to a protocol, because it is always correct to send a

WDATA instead of a MODG message.

It is not obvious that the extra complications needed to implement the MODG

message are justi�ed by its performance bene�ts. The modify request and grant

message pair optimizes for data locations that are read by a processor and then

immediately written. This is especially important during cold-start periods when an

application's working set does not reside in its cache. However, it is not possible to

implement the MODG message in a chained protocol, because the memory module

can not prevent a cache from receiving an invalidation message between the time that

it sends a MREQ message and the time that it receives a MODG message. Full-map

and limited protocols do not have this problem, because the directory is stored in the

same node as the associated memory block. However, if the protocol needs to send an

invalidation message to a cache before completing the write transaction, it is necessary

for the directory to store a bit of state that indicates whether the initial request was

a WREQ or a MREQ. Due to the complications caused by these messages, they are

not included in the transition state diagrams, even though they are implemented in

ASIM.

The INV and ACKC message combination is used to purge Read-Only copies

of cached data. In the limited directory scheme, when a Read-Only memory block

receives a WREQ message, the memory controller sends one INV message to each

cache with a pointer in the directory. When a cache receives the INV message, it

invalidates the appropriate cache line (if the cache tag matches the message's address),
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and responds with an ACKC. In the full-map and limited protocols, the controller may

send one INV message on each cycle, so several INV messages with the same address

may be working their way through the network at the same time. To keep track of the

number of these parallel invalidations, the controller maintains an acknowledgment

counter. The controller increments the counter when it transmits an INV message

and decrements the counter when it receives an ACKC message. Thus, the counter

remembers the total number of ACKC messages that it expects to receive. The

counter waits for the acknowledgment counter to reach zero before responding to the

initial WREQ message to ensure sequential consistency. To limit the amount of state

that must be stored during a write transaction, the controller responds with a BUSY

signal to any RREQ or WREQ messages to the memory block while invalidations are

in progress for a memory block. If a controller accepts a RREQ or WREQ message,

then the protocol guarantees to eventually satisfy the request. However, if a cache

receives a BUSY signal, then it must retry the request.

Although the chained directory protocol does not perform invalidations due to a

WREQ message in parallel, it also uses the acknowledgment counter. The controller

increments the counter for each INV message and decrements it for every ACKC

message. So, even if the linked-list has been fragmented by cache replacements (see

below), the protocol can ensure sequential consistency by guaranteeing that no read

only cached copies of a block exist when the block is written.

The acknowledgment counter is also used in the case of a limited directory eviction.

When a directory entry does not have enough pointers to satisfy a RREQ message,

it needs to replace one of the occupied pointers with a pointer to the requesting

cache. Instead of locking the memory location while the eviction invalidation takes

place, the protocol increments the acknowledgment counter. At �rst, this use of the

acknowledgment counter may seem to be merely an optimization over locking the

memory location. However, using the counter to keep track of evictions guarantees

that a write transaction will never receive a BUSY signal due to a read transaction.

This guarantee is necessary to ensure forward progress for locations that incur severe

read-write tra�c.
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The INV and UPDATE messages are used to return modi�ed data to the memory

module. If a controller receives a RREQ message for a data block in the Read-Write

state, the controller sends an INV message to the cache that currently has permission

to write the data block. When this cache receives the INV message, it responds

with an UPDATE message containing the modi�ed data, rather than with an ACKC

message, because the cached block is in the Read-Write or the Read-Write Network

Wait state. At the same time, the cache invalidates the line that contains the data.

Since multiple addresses map to each cache line, a cache sometimes needs to

replace one cached block of data with another. If a replaced block is in the Read-

Write state, then the REPM message is used to send the modi�ed data back to

memory. Otherwise, the data is unmodi�ed, and the REPU message is used to notify

the directory about the replacement. In the case of the chained protocol, the REPU

message contains the directory pointer that was associated with the replaced data, so

that the directory can adjust the chain in one of three possible ways:

1. If the replaced copy of data was the �rst block in the chain, then the pointer in

the REPU message points to the new beginning of the chain.

2. If the replaced copy of data was the last block in the chain, then no invalidation

messages need to be sent through the network.

3. If the replaced copy of data was in the middle of the chain, then the directory

sends an invalidation to the tail of the chain that began with the replaced data.

This procedure correctly ensures sequential consistency, due to two features of the

chained protocol. First, the protocol correctly handles dangling chain pointers that

are created by replacement in the singly-linked chain. If the address contained in

an INV message does not match the tag in the cache, then the invalidation is ac-

knowledged without invalidating the currently cached data. Second, the directory

can monitor the number of breaks in the chain by incrementing the acknowledgment

counter for every INV message that is sent and by decrementing the counter for every

ACKC message that is received. As in the limited directory implementation, waiting
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for the acknowledgment counter to be decremented to zero before satisfying any write

requests maintains sequential consistency.

Although the REPU message is central to enforcing cache coherence in the chained

scheme, it is optional in the limited and full-map protocols. If a cache replaces a Read-

Only copy of data but does not notify the directory, then it may receive a spurious

INV message for the block at some point in the future. However, (as in the chained

protocol) the address in the INV will not match the tag in the cache, so the spurious

invalidation is acknowledged without invalidating the currently cached data. On the

other side of the memory system, if a directory receives a RREQ message from a cache

that already has a pointer, then it responds with a RDATA message. So, the REPU

message may save an INV message, or it may create unnecessary network tra�c. In

order to examine the e�ects of the REPU message, ASIM has been instrumented

with an option that determines whether or not the current coherence protocol uses

the message.

3.4.2 Counting Acknowledgments

The current ASIM protocols implement one acknowledgment counter for each block

in memory. This implementation allows one write transaction to be in progress for

each memory block per controller. However, the independence of transactions on dif-

ferent memory blocks comes at the cost of the additional memory space (equal to one

pointer per directory entry). It is also possible to implement one acknowledgment

counter per controller. Because a controller-level counter keeps track of the sum of

the outstanding acknowledgments for every block stored in the controller's memory,

such an acknowledgment counter has to be substantially larger than each of the inde-

pendent memory counters. Nevertheless, implementing the acknowledgment counter

in the controller saves the memory otherwise taken by acknowledgment counters in

each directory entry.

The savings in the directory size is o�set by losing the independence of trans-

actions on di�erent memory locations. That is, during a write transaction, it is

necessary to BUSY both read and write transactions to any address serviced by the
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controller for the following reasons: When a write transaction requires invalidations

to be completed, there may already be other invalidations (due to evictions or chain

fragmentation) en route in the network. So in order to complete the write transaction

when the counter is �nally decremented to zero, the controller must remember the

identi�er of the cache that initiated the transaction. To limit the amount of transac-

tion state that must be stored in the controller, it is necessary to limit the number of

simultaneous write transactions to only one per controller.

Furthermore, to ensure the eventual completion of a write transaction, it is nec-

essary to guarantee that the acknowledgment counter will eventually be decremented

to zero. Allowing read transactions to proceed during a suspended write transaction

may violate this guarantee, due to the possibility of an eviction cycle in a limited

directory protocol or a replacement cycle in a chained directory protocol. Thus, a

controller may not service read transactions while a write transaction is outstanding.

The trade-o� between directory size and simultaneous transactions per controller is

evaluated by implementing both counter schemes in ASIM.

3.4.3 Evaluation of Secondary Protocol Features

None of the protocol features discussed in this section exhibit more than a ten percent

variation in execution time on ASIM. This behavior is expected, because the unessen-

tial components of protocols tend to interact with relatively infrequent events, such

as cache line replacement or cold-start data accesses. Such low performance returns

suggest that issues of complexity and cost can be used to decide whether or not to

implement unessential protocol messages. Certain protocol messages may be rejected

out-of-hand. For example, the replace unmodi�ed (REPU) message sometimes de-

grades performance due to an increase in network tra�c. Thus, it is not worth the

extra complexity necessary to implement this message.

On the other hand, the modify request/grant (MREQ/MODG) message pair can

increase performance by over �ve percent. While this performance gain does not jus-

tify the extra directory state needed to store the modify request during invalidations,

it does imply that a simpli�ed version of the feature would be appropriate. For ex-
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ample, a memory controller could respond to a MREQ with a MODG only when no

invalidations need to be sent. This simpli�cation would eliminate most of the extra

cost of the modify grant optimization, while retaining the bene�ts of reduced latency

for simple memory transactions that consist of a read request followed by a write

request.

The acknowledgment counter implementation is driven by directory implementa-

tion considerations. Due to the current implementation of Alewife's directory struc-

ture, there will be enough space in each directory entry to implement one counter

per memory block. However, this decision is more an artifact of the design process

than a result of carefully considering simulation data. By analyzing simulations of

many applications, it might be possible to reach a more scienti�c conclusion about

the trade-o� between implementing an acknowledgment counter versus an extra di-

rectory pointer. However, the marginal di�erences between the two possible designs

do not justify an extensive investigation.
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Chapter 4

Evaluation Methodology

The methodology for evaluating cache coherence protocols centers around two related

means of analysis. A decoupled simulation technique, which incorporates trace-driven

simulations and analytical modeling, permits the study of a wide range of applica-

tions, protocols, and target architectures, but su�ers from inaccuracy due to the lack

of feedback between system components. Coupled simulation techniques o�er more

accurate analysis methods, but require more time to implement and to take measure-

ments. The trade-o� between these two di�erent simulation techniques suggests the

following sequence of analysis: First, take measurements using decoupled simulation

to establish the gross merits and problems of each of the protocols. Then, validate

and augment the �rst round of decoupled simulations with a second round of coupled

simulations.

4.1 Overview

Figure 4-1 shows the entire set of simulation systems used to analyze the protocols

described in this thesis. The raw input to the evaluation consists of multiprocessor

programs, written in the C, FORTRAN, and Mul-T programming languages. The

�gure depicts each step in the simulation process, from the raw application code to

the statistics that are used to evaluate the multiprocessor performance.

The left side of Figure 4-1 illustrates the decoupled simulation methodology. De-
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Figure 4-1: Simulation environments used to evaluate the performance of cache co-
herence protocols. The shaded rectangles represent ASIM.
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coupled simulation allows information to ow in only one direction, from the original

program to the statistical output. Multiprocessor address traces generated using three

tracing methods from IBM, Stanford, and MIT, are run on a memory system sim-

ulator that counts the occurrences of di�erent types of protocol transactions. Each

of these transaction types is assigned a cost in order to produce the average proces-

sor request rate, the average network message block size, and the average memory

latency per transaction. From these parameters, a packet-switched, pipelined, mul-

tistage interconnection network model calculates the average processor utilization,

which measures the contribution of the memory system to the time needed to run a

program on the system.

While it is possible to avoid the network model calculations by using a purely

trace-driven decoupled simulation technique, such a methodology does not result in a

true representation of multiprocessor performance. Consider a system that attaches

a network simulator to the back-end of a trace-driven memory system simulator.

Without the feedback between the network and the trace generation system, varying

memory access delays cause a skew between the sense of time as determined by the

execution of each processor's thread of control. In such a system, each simulated com-

ponent operates without synchronizing correctly with any other component. Thus, a

naive network simulator coupled with a trace-driven directory simulator will produce

an incorrect multiprocessor execution.

Furthermore, the skew in a purely trace-driven system causes problems with run-

ning a simulation to completion. For some applications, the di�erence between the

execution of di�erent processors can grow to more than 10% of the entire duration of

a trace. Not only does this skew cause the results of the simulation to be suspect, but

it also generates huge queues within an event-driven network simulator. Such queues

quickly thrash the virtual memory system of the machine running the trace-driven

simulations. Thus, the hybrid decoupled simulation technique must be used to avoid

the problems with a purely trace-driven methodology.

The coupled simulation technique, shown on the right side of Figure 4-1, models

a shared-memory multiprocessor even more accurately. Except for during the pro-
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gram compilation stage, this process allows bidirectional interfaces between all of the

components of the simulation engine. The shaded boxes represent the modules that

comprise ASIM, the Alewife system simulator; namely, the SPARCLE processor and

run-time system, the cache/memory controller, and the processor interconnection net-

work. The interfaces between these modules approximate the actual communication

boundaries between the hardware components of the Alewife machine. The memory-

system and network modules of ASIM also accept input from a dynamic version

of a trace-generation method, called post-mortem scheduling. This method uses a

trace with statically encoded synchronization information to simulate the interaction

between a processor and its memory system.

4.2 Decoupled Simulation

A hybrid of trace-driven simulation and analytical methods helps evaluate the perfor-

mance of cache coherence schemes for a variety of multiprocessor applications. There

are three primary phases of the decoupled simulation method: First, instrumented

multiprocessing systems or simulators generate traces of parallel programs. Second,

a program that simulates a multiprocessor's memory system processes the parallel

traces. Third, a model of an interconnection network re�nes raw statistics from the

memory-system simulation.

Recall from Section 2.1.1 that processor utilization (and therefore system speed-

up) is impacted by the frequency of memory references and the latency of the memory

system. If the probability of a memory request during any cycle is m, and the average

latency of the round-trip through the memory-network system is T , the processor

utilization U is given by:

U =
1

1 +mT

The latency of a round-trip through the network depends on several factors, including

the network topology and speed, the number of processors in the system, the frequency

and size of the messages, and the memory latency. The cache coherence protocol

determines the request rate, message size, and memory latency. Detailed models of
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Source Language Processors Application Length

VAX T-bit C 16 P-Thor 7.09

MP3D 7.38

LocusRoute 7.05

SA-TSP 7.11

Post-mortem FORTRAN 64 FFT 7.44

Scheduler Weather 31.76

Simple 27.03

T-Mul-T Mul-T 64 Speech 11.77

Table 4.1: Summary of Trace Statistics: Length values are in millions of references
to memory.

cache coherence protocols and interconnection networks must be used to calculate

processor utilization from these parameters. Note that the network model that is

used in conjunction with the decoupled evaluation does not account for the context-

switching capability of the SPARCLE processor. The hybrid decoupled methodology

is used to di�erentiate between coherence protocols, without complicating the issue

with mechanisms that are used to tolerate memory latency, such as multiple contexts

or weak ordering.

4.2.1 Getting Multiprocessor Address Trace Data

The address traces represent a wide range of parallel algorithms written in three

di�erent programming languages. The programs traced at Stanford were written

in `C', those from IBM were written in FORTRAN, and those produced at MIT

were written in Mul-T (a variant of Multilisp). The implementation for the trace

collector is di�erent for each of these programming systems; each tracing system can

theoretically obtain address traces for an arbitrary number of processors, enabling a

study of the behavior of cache-coherent machines much larger than any built to date.

Table 4.1 summarizes general characteristics of the traces.

The SA-TSP, MP3D, P-Thor, and LocusRoute traces were gathered by using the

Trap-Bit method, con�gured with 16 processors. SA-TSP uses simulated annealing

to solve the traveling salesman problem. MP3D is a 3-D particle simulator for rari�ed

ow. P-Thor is a parallel logic simulator, and LocusRoute is a global router for VLSI
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standard cells. A detailed description of the applications can be found in [44].

Trap-bit (T-bit) tracing for multiprocessors is an extension of single processor

trap-bit tracing. In the single processor implementation, the processor traps after

each instruction if the trap bit is set, allowing the interpretation of the trapped

instruction and emission of the corresponding memory addresses. Multiprocessor

T-bit tracing extends this method by scheduling a new process on every trapped

instruction. Once a process undergoes a trap, the trace mechanism performs several

tasks: it records the corresponding memory addresses, saves the processor state of

the trapped process, and schedules another process from its list of processes, typically

in a round-robin fashion.

The Weather, Simple, and FFT traces were generated with the post-mortem

scheduling method, developed at IBM [13]. The Weather application partitions the

atmosphere around the globe into a three dimensional grid and uses �nite-di�erence

methods to solve a set of partial di�erential equations describing the state of the

system. Simple models the behavior of uids and employs �nite di�erence methods

to solve equations describing hydrodynamic behavior. FFT is a radix-2 Fast Fourier

Transform.

Post-mortem scheduling is a technique that generates a parallel trace from a

uniprocessor execution trace of a parallel application. The uniprocessor trace is a

task trace with embedded synchronization information that can be scheduled, after

execution (post-mortem), into a parallel trace that obeys the synchronization con-

straints. This type of trace generation uses only one processor to produce the trace

and to perform the post-mortem scheduling. So, the number of processes is limited

only by the application's synchronization constraints and by the number of parallel

tasks in the single processor trace.

The Speech trace was generated by a compiler-aided tracing scheme. The appli-

cation comprises the lexical decoding stage of a phonetically-based spoken language

understanding system developed by the MIT Spoken Language Systems Group. The

Speech application uses a dictionary of about 300 words represented by a 3500 node

directed graph. The input to the lexical decoder is another directed graph represent-
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ing possible sequences of phonemes in the utterance to be recognized. The application

uses a modi�ed Viterbi search algorithm to �nd the best match between paths through

the two graphs.

In a compiler-based tracing scheme, code inserted into the instruction stream of a

program at compile time records the addresses of memory references as a side-e�ect of

normal execution. The compiler-aided scheme used to trace the Speech application is

called T-Mul-T. T-Mul-T is a modi�cation of the Mul-T programming environment

that can be used to generate memory address traces for programs running on an

arbitrary number of processors. Instructions are not currently traced in T-Mul-T, so

it is necessary to assume that all instructions hit in the cache, and for the purpose

of processor utilization computation, an instruction reference is associated with each

data reference. This assumption is made only for the Speech application, because the

other traces include instructions.

The trace gathering techniques also di�er in their treatment of private data lo-

cations, which must be identi�ed for the scheme that only caches private data. The

private references are identi�ed statically (at compile time) in the FORTRAN traces

and are identi�ed dynamically by post-processing the other traces. Since static meth-

ods must be more conservative than dynamic methods when partitioning private and

shared data, the performance that decoupled simulations predict for the private data

caching scheme on the C and Mul-T applications is slightly optimistic. In practice,

the implementation of schemes that cache only private data is made di�cult by the

non-trivial problem of static data partitioning.

The address traces from each of these generation techniques are re�ned into a

canonical format. Each entry in the trace speci�es the processor number, the type of

processor memory access, and the associated physical address.

4.2.2 Simulating a Cache Coherence Strategy

For each address reference in a trace, the directory simulator determines the e�ects

on the state of the corresponding block in the cache and the directory. This state

consists of the cache tags and directory pointers that are used to maintain cache
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coherence. In the simulation, there is no feedback from the network to the cache or

memory modules; all side e�ects from each memory transaction (entry in the trace)

are assumed to be stored simultaneously. While this simulation strategy does not

accurately model the state of the memory system on a transaction-by-transaction

basis, it does produce accurate counts of each type of protocol transaction over the

length of a trace. Such a simulation also corresponds to a correct multiprocessor

execution of the parallel program, because the order of the memory accesses in the

traces is maintained throughout the simulation.

A memory transaction consists of a processor-to-memory reference and its e�ect

on the state of the memory system. Any transaction that causes a message to be

sent out over the network contributes to the three parameters that determine the

contention in the memory system: average request rate, average message size, and

average memory latency. Table 4.2 lists all of these types of transactions and their

contributions to the e�ective latency su�ered by the processor. The Msgs column

gives the total number of messages needed to process the transaction. Invalidation

and acknowledgment messages do not incur the full memory delay, so the Mem.

Lat. column indicates the e�ective total memory latency for each transaction. The

Words column gives the sum of the number of 32-bit words transmitted for all of the

transaction messages (assuming 16-byte cache blocks).

Given a trace and a particular cache coherence protocol, the directory simulator

determines the percentage of each transaction type in the trace. This percentage,

multiplied by the cost of the transaction, gives the contribution of the transaction

to each of the three parameters: average request rate is derived from the number of

messages over the length of the trace; average memory latency is derived from the

memory delay per transaction; and average message size is determined from the total

number of words transmitted over the number of messages transmitted. Another set

of transaction types may be used to determine the performance of schemes that do

not cache shared variables. The transactions and costs used for schemes that only

cache private data are also listed in Table 4.2.

In addition to the cache coherence strategy, there are other parameters that a�ect

78



Coherence Transaction Type Msgs Mem. Words

Protocol Lat.

Directory instruction miss 2 6 6

read miss, block dirty in another cache 4 12 12

read miss, block clean in another cache 2 6 6

read miss, block not in any cache 2 6 6

write miss, block dirty in another cache 4 12 12

write miss, block clean in another cache 4 7 8

write miss, block not in any other cache 2 6 6

write hit, block clean in another cache 4 7 4

replaces to dirty shared objects 1 3 5.5

invalidations due to too few pointers 2 1 2

invalidations caused by a write 2 1 2

Only Cache instruction misses 2 6 6

Private shared references 2 6 3

Data private read misses 2 6 6

(OCPD) private write misses 2 6 6

Table 4.2: Transaction Types and Costs.

the performance of the memory system. These parameters are listed in Table 4.3

along with their default values. Since the decoupled analysis was performed in the

initial stages of development of the Alewife system, the method uses a model of an

Omega network, which is described in Section 4.2.3. The Alewife system actually

connects its processing nodes through a network with a mesh topology; however, the

di�erence between Omega and mesh networks does not change the conclusions from

the decoupled simulation technique.

4.2.3 The Interconnection Network Model

The cache coherence schemes that are considered for Alewife transmit messages over

an interconnection network to maintain cache coherence. In order to analyze such

a message-based memory system, the decoupled simulation technique uses a packet-

switched, bu�ered, multistage interconnection network that belongs to the general

class of Omega networks. The network switches are pipelined so a message header

can leave a switch even while the rest of the message is still being serviced. A protocol

message travels through n network switch stages to the destination node and takes

M cycles for the memory access. The network is bu�ered and guarantees sequenced
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Type of Parameter Name Default Value

Cache/Directory cache size 256 Kbytes

cache block size 16 bytes

cache associativity direct mapped

cache update policy write back

directory pointer replace policy random

Network topology Omega

network message header size 16 bits

network switch size 4 � 4

network channel width 16 bits

processor cycle time 2 � network switch cycle time

memory address size 32 bits

base memory access time 6 � network switch cycle time

Table 4.3: Simulation parameter defaults for the cache, directory, and network.

delivery of messages between any two nodes on the network.

Computation of the processor utilization is based on the analysis method used by

Patel [38]. The network model yields the average latency T of a protocol message

through the network with n stages, k � k size switches, and average memory delay

M . The processor utilization U is derived from a set of three equations:

U =
1

1 +mT

� = UmB

T = n+B +M � 1 +

0
@�B

�
1 � 1

k

�
2(1 � �)

1
An

where m is the probability a message is generated on a given processor cycle, with

corresponding network latency T . The channel utilization (�) is the product of the

e�ective network request rate (Um) and the average message size B. The latency

equation uses the packet-switched network model by Kruskal and Snir [30]. The �rst

term in the equation (n+B+M �1) gives the latency through an unloaded network,

and the second term gives the increase in latency due to network contention, which

is the product of the contention delay through one switch and the number of stages.

The above equations are solved to get a closed form solution for U :

U =
1

1 + m

2

�
n+M + 2B � 1� 1

m
+

r
(n+M � 1 + 1

m
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Table 4.3 shows the default network parameters used in the decoupled analysis.

While this evaluation technique was used to derive results for packet-switched mul-

tistage network, it is possible to derive results for other types of networks by varying

the network model used in the �nal stage of the analysis. The ability to use the

results from one set of directory simulations to derive statistics for a range of network

or bus types displays the power of this modeling method.

4.2.4 A Sample Computation of Processor Utilization

The following example illustrates the process of deriving the processor utilization for a

speci�c application and cache-coherence scheme. Several steps are used to determine

the processor utilization for the Weather application, a full-map directory scheme,

and the default simulation parameters:

1. Run the post-mortem scheduler on the annotated uniprocessor Weather appli-

cation trace. The output of the scheduler is a trace �le that is approximately

160Mbytes long, but can be compressed to about 75Mbytes.

2. Run the directory simulator on the scheduled Weather trace with cache size

256K bytes, cache block size 16 bytes, 64 processors, and a full-map directory

protocol.

3. Count the number of each transaction type that is listed in Table 4.2. For

example, the number of instruction misses was 22817.

4. Multiply the number of each transaction type by the costs given in Table 4.2:

The 22817 instruction misses generated 45634 network messages that consisted

of 136,902 bytes of data. These network messages incurred 136,902 cycles of

memory latency.

5. Sum the costs for all of the transactions in the trace, and average over the

total number of memory references in the trace. The average request rate into

the network for the trace was 0.097 messages per processor cycle. The average

message size was 2.74 32-bit words, and the average latency at memory was
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2.95 cycles. Halve the request rate to 0.0485 to simulate a network cycle that

is twice as fast as the processor cycle and double the message size to 5.48 to

simulate a network with 16-bit data paths.

6. Substitute the values calculated in the previous step into the network model

equations given in Section 4.2.3. The processor utilization for n = 3, k = 4,

m = 0:0485, B = 5:48, and M = 2:95 is U = 0:63.

4.2.5 Sources of Error in Decoupled Simulations

Although the decoupled simulation technique allows the evaluations of a range of mul-

tiprocessor applications and cache coherence schemes, it su�ers from the assumption

that all state changes caused by a memory transaction are stored simultaneously. In

combination with a network model, a decoupled evaluation methodology gives a good

approximation of a multiprocessor's performance, averaged over the entire execution

of an application. However, a model of average performance | as opposed to a cycle-

by-cycle simulation | neglects both the latency sequential protocol operations and

contention due to hot-spot contention.

For example, the linked-list representation of a chained directory entry causes

such a protocol to invalidate cached copies in sequence, while limited and full-map

directories can execute invalidations in parallel. The network model does not account

for the di�erence between sequential and parallel invalidation latencies, because the

tra�c from all protocol messages is averaged over the entire duration of a trace. Thus,

while the decoupled evaluation accounts for the bandwidth required by invalidations,

it does not properly model the latency caused by them.

Furthermore, the decoupled method does not properly model hot-spot access to a

memory module. Not only does the network model average network tra�c over the

entire duration of a program, but it also averages the tra�c over all of the nodes in

the multiprocessor. A hot-spot occurs when many processors simultaneously access

data in one memory module. Such a situation generally causes long latencies, due

to the contention in the interconnection and network and competition for the lim-
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ited processing power of the single memory module. In Section 4.4.2, the Weather

application is used to illustrate a hot-spot that is ignored by the decoupled analysis

method.

4.3 Coupled Simulation

Coupled simulations solve the problems inherent in the decoupled methodology by

modeling systems with feedback between all of the components in a multiprocessor. A

dynamic version of the post-mortem scheduler directly addresses the feedback problem

by coupling the trace generation module with the memory system simulator [32].

Complete system simulations such as ASIM go one step further: By modeling an

entire multiprocessor, it is possible to investigate a wide range of topics, including

all of the facets involved in programming and designing a parallel system. However,

building, running, and administering a complete system simulation requires a much

higher time investment than decoupled techniques.

4.3.1 Alewife System Simulator

ASIM, the Alewife System Simulator, is used to evaluate methods for designing the

hardware and software components of a large-scale multiprocessor. Figure 4-1 shows

the interfaces between the modules of ASIM. The simulator includes the Mul-T com-

piler, the Alewife run-time system, the SPARCLE simulator, the cache/memory con-

troller simulator, and the network simulator. Viewed as a whole, ASIM allows a

program to be compiled, linked, and run on an implementation of the Alewife ar-

chitecture. Table 4.4 shows the speci�cations of the system modeled for studying

coherence protocols.

When the system is con�gured with 64 processors and full statistics-gathering

capability, it runs about 300,000 times slower than a hardware implementation would

run. Nevertheless, since ASIM can generate measurements for a range of di�erent

hardware con�gurations, it is a powerful tool for analyzing trade-o�s in the design of

Alewife.
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Type of Parameter Name Default Value

Processor cycle time 2 � network cycle time

Cache/Directory cache size 64 Kbytes

cache block size 16 bytes

cache associativity direct mapped

cache update policy write back

directory pointer replace policy random

memory address size 32 bits

base memory access time 6 � network cycle time

directory access time 6 � network cycle time

Network topology Mesh

network channel width 16 bits

network message header size 32 bits

Table 4.4: Simulation parameter defaults for ASIM.

The ASIM Software

The Mul-T compiler is based on ORBIT [29], an optimizing compiler for a dialect

of Lisp. Mul-T [28], a variant of Multilisp, uses the future construct to allow a

programmer to explicitly designate tasks that can be executed in parallel. The com-

piler generates machine-language code that is compatible with Alewife's SPARCLE

processor.

Before running an application, ASIM links the program's object code with a run-

time system. Two run-time environments are currently available. One run-time

system assigns tasks to processors, based on explicit instructions from the program-

mer. This environment requires a statically partitioned and scheduled program. The

other run-time system dynamically partitions a program using a method called lazy

task creation [35]. This partitioning method attempts to balance the number of par-

allel tasks created with the available processing resources in a machine. A dynamic

scheduler performs the functions necessary to create tasks and to distribute them to

the system's processors.

Processor Simulator

The processor simulator models the behavior of the SPARCLE processor at the

register-transfer level. As the simulator runs the object code of a program and the
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run-time system, it gathers statistics that help evaluate both the software system

and the architectural features of the SPARCLE processor. These statistics include

the distribution of cycles between the boot sequence, the user code, and the sched-

uler's functions. The processor simulator also generates histograms that measure the

e�ects of synchronization and context switching on system performance.

The SPARCLE module of ASIM runs the code generated by the Mul-T compiler

and transmits data requests to the memory system using the processor-controller

interface described in Section 3.3.1. Although the processor simulator maintains its

own model of shared memory, it must receive permission from the cache/memory

controller before completing a read or write request. It is the responsibility of the

memory system simulator to ensure that the processor adheres to a valid shared-

memory model.

Cache/Memory Simulator

The cache/memory simulator provides the base for experimenting with the imple-

mentation of cache coherence schemes. In particular, the mechanisms that support

Alewife's context-switching processor were developed in this module of ASIM. The

cache/memory simulator implements a range of cache coherence methods, including

directory-based schemes, a scheme that only caches private data, and a software-

controlled caching scheme. (Appendix B speci�es the cache coherence protocols that

are implemented in the simulator.) In order to simulate a \real" implementation

of the Alewife architecture, the cache/memory module attempts to model a cache

controller that could actually be implemented as a VLSI system. The model of the

controller includes the interfaces to the processor and to the network, internal state

machines, and network queues. In addition to modeling the cache controller, the

cache/memory simulator also maintains the coherence state for all of the cache and

memory blocks referenced by a program.

To help understand the relative performance of di�erent coherence schemes, the

cache/memory simulator gathers statistics that track the performance of each com-

ponent of the memory system. There are three basic types of statistical output:
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event histograms, locality arrays, and state summaries. The event histograms are

graphs that display the number of times that certain events occur in the memory sys-

tem. Locality arrays summarize the types of data access patterns between processors

and memory controllers. The state summaries include basic statistics such as cache

hit/miss ratios.

Network Simulator

The network simulator models the processor interconnect, which transports all of the

cache coherence protocol messages. This module of ASIM is capable of simulating

both packet-switched and circuit-switched networks in several di�erent topologies, in-

cluding mesh and Omega con�gurations. In fact, the network simulator was used to

verify the network model used in conjunction with the decoupled simulation method-

ology. For the purposes of studying the Alewife architecture, the network simulator

is set to model a packet-switched, two-dimensional mesh, with no end-around con-

nections. The statistics available from the network module include average channel

utilizations, switch load pro�les, and a message delivery latency histogram.

4.3.2 Dynamic Post-Mortem Scheduling

As illustrated in Figure 4-1, the dynamic post-mortem scheduler receives the same

input as the static scheduler. While the original version of the scheduler produces

a static trace of processor requests to memory, the dynamic version of the scheduler

allows a new data access only after the previous access has �nished. By using the syn-

chronization information encoded in the input, the dynamic post-mortem scheduler

can correctly simulate the execution of a parallel program [32].

The dynamic post-mortem scheduler used in this study is compatible with the

processor-controller interface de�ned in ASIM. This compatibility provides the op-

portunity to test the performance of the Alewife memory system on large applications

such as Weather and Simple. All of the memory system statistics that are generated

by the standard version of ASIM are also generated by the simulator when con�gured
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with the scheduler. In addition, the scheduler records information such as the average

latency of access for di�erent types of variables.

4.3.3 Sources of Error in Coupled Simulations

Since ASIM is capable of simulating the entire Alewife machine, di�erent coherence

schemes can be compared in terms of absolute execution time. While processor utiliza-

tion (the metric derived from then decoupled methodology) gives an approximation of

the average performance of a parallel system, simulated execution time gives an exact

measure of the speed of a multiprocessor. The execution time metric emphasizes the

bottom line of high-performance system design; namely, the speed of computation.

However, a large-scale multiprocessor is, by nature, a complicated beast. When

a key feature of the memory system (such as the cache coherence protocol) is modi-

�ed, the e�ects cascade through the multiprocessor as a whole. Thus, when using a

coupled simulation technique to compare the relative performance of di�erent coher-

ence schemes, it is necessary to estimate the size of the e�ects due to artifacts of the

programming environment, versus the e�ects due the memory system. For example,

while it is easier to program with ASIM's dynamic run-time environment than with

the static one, the non-determinism inherent in the dynamic scheme creates substan-

tial di�erences between the behavior of a program running with di�erent coherence

protocols. Due to experimental problems in the current run-time system, numerical

results are reported only for the dynamic post-mortem scheduler system. Although

the simulations of the complete Alewife system are not used to generate quantita-

tive data, initial experience with the SPARCLE processor and run-time environment

con�rms the qualitative conclusions about coherence schemes that are discussed in

Chapter 5.

The analysis in this thesis also su�ers from the benchmark problem. A benchmark

is a program that is used to evaluate the performance of a computer system, because it

exhibits either an average or a representative processing load. While standard suites

of benchmarks have been developed for single-processor machines, no set of programs

has been devised to test the performance of multiprocessors. The lack of benchmarks,
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and the more general dearth of multiprocessor programs, testi�es to the youth of

multiprocessor research. All of the evaluation in this thesis is conducted on programs

that have both substantial size and interesting data access patterns; however, there

is no guarantee that these applications exhibit average or representative loads on a

multiprocessor memory system.

The slow speeds of simulation compound the benchmark problem. The fact that

ASIM runs approximately 300,000 times slower than a hardware implementation of

Alewife forces a trade-o� between application size and simulated system size. Pro-

grams with enough parallelism to execute well on a large machine take an inordinate

amount of time to simulate. This trade-o� was resolved by simulating a 64-processor

machine, which is large enough to require an interconnection network other than a

bus, and small enough to simulate e�ciently on the simulation engines available for

use. It is important to note that this decision was made for practical, rather than

theoretical, reasons.

Finally, the Alewife architecture has not been static during the evaluation of cache

coherence schemes. It is not necessarily true that results derived for one point in the

design space apply to other points. Thus, the numerical results presented in the next

chapter should not be interpreted as de�nitive predictions of the future performance

of the Alewife system. However, the major qualitative conclusions regarding the

interaction between a multiprocessor's software and its memory system should hold as

long as interprocessor communication latency remains an least an order of magnitude

more expensive than processor cycle time.

4.4 Validating Decoupled Simulation

The coupled evaluation technique con�rms the validity of the estimations of processor

utilization by the decoupled methodology. In general, the results of complete system

simulations verify the conclusions that may be drawn from the decoupled simulations.

However, there are di�erences between the two methodologies in terms of absolute

performance measurements that must be justi�ed before trusting the results of the
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Figure 4-2: Comparison of processor utilization measurements for the Weather appli-
cation, obtained from coupled and decoupled evaluation methodologies.

decoupled simulation technique.

Figure 4-2 shows the processor utilization results for the Weather application

that are derived from both the coupled and the decoupled simulation techniques.

The measurements from the di�erent evaluation methodologies agree, due to two

modi�cations that annul the di�erences between the simulation techniques: First, the

fundamental system parameters are adjusted to be the same for both the decoupled

and the coupled simulations. Section 4.4.1 discusses the parameter adjustment that is

needed to reconcile the coupled and decoupled simulation results. Second, a variable

in the Weather application that causes hot-spot access is optimized. Section 4.4.2

examines the e�ects of this variable.

In addition to validating the hybrid decoupled methodology, coupled simulations

help evaluate how well processor utilization measures the performance of a multipro-

cessor. Although the metric usually provides good intuition about the behavior of

some coherence schemes, it does not always accurately predict the actual behavior of

a system. Section 4.4.3 investigates some of the discrepancies between the predicted

and actual performance of the coherence scheme that only caches private data.
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Figure 4-3: Comparison of processor utilization measurements for Weather, before
adjusting the base memory access latency.

4.4.1 Parameter Adjustment

The coupled simulation technique models features of Alewife's cache/memory con-

troller, including �nite state machines, network bu�ers, and internal contention for

resources. Since the decoupled methodology does not perform such a detailed sim-

ulation, Alewife's cache/memory controller runs slower in the coupled simulations

than it does in the decoupled technique's network model. Figure 4-3 shows that the

results from the two simulation strategies do not correlate, even when the coupled

simulations are con�gured to match the parameters of the decoupled simulations, due

to di�erences in the way that the controller is modeled.

In order to reconcile the two evaluation techniques, the base memory access time

(listed in Table 4.3) may be adjusted. By showing the relationship between base

memory access time and processor utilization, Figure 4-4 extends the predictions

of the network model into the range of memory latency observed for the Weather

application with full-map and limited directory protocols. The curve on each of the

graphs in the �gure shows the prediction of the network model for a range of memory

latencies, given the average request rate and the average block size calculated from

the decoupled simulations. The square on each graph shows the prediction of the

90



model for the memory latency assumed in the decoupled technique. Since this point

is calculated from the network model, it sits on the prediction curve. The triangles

label the observed processor utilizations and average memory latencies in coupled

simulations of the Weather application.

The various memory latencies plotted for the coupled simulations do not corre-

spond exactly to the memory access time parameter that is used by the network

model. In the coupled simulations, di�erent latencies can be created by changing

parameters such as the time needed to read or write a directory entry. The reported

latency values are calculated by subtracting twice the average network latency from

the average total access latency of remote memory transactions. Thus, the reported

memory latency values include all of the delay needed to service a transaction (includ-

ing invalidations), except for the time needed to transport protocol messages through

the network.

Comparing the predictions of the decoupled simulations to the processor utiliza-

tions measured in coupled simulations reconciles the di�erences between the results

from two evaluation methodologies. When the base memory access time used in the

decoupled technique is adjusted to correspond to the memory latency observed by

coupled simulation, the di�erent analysis methods yield comparable processor uti-

lization measurements. The dependence of processor utilization on memory latency

emphasizes an important (but perhaps obvious) conclusion: No matter what co-

herence scheme is used to implement shared-memory, increasing the e�ciency of a

memory system's design improves the performance of the system as a whole.

4.4.2 The E�ect of Hot-Spot Contention

Although adjusting the base memory access time corrects for the absolute di�erence

between the predicted and observed processor utilizations, Figure 4-5 shows that the

adjustment does not completely reconcile the results of the coupled and decoupled

simulation techniques. Speci�cally, the decoupled simulations predict that the limited

directories perform almost as well as the full-map directory, but the coupled simu-

lations demonstrate that the limited directories provide lower processor utilizations
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Figure 4-4: Processor utilization versus memory latency. The curve indicates the
prediction of the network model. The individual points are data from simulations.
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Figure 4-5: Comparison of processor utilization measurements for Weather, after
adjusting the memory latency, but before eliminating the hot-spot.

than the full-map protocol.

The discrepancy between the predicted and the actual performance of limited

directory protocols is due to an inaccuracy in the decoupled simulation technique.

Recall that the decoupled evaluation technique averages the e�ects of data requests

over the entire duration of a trace and over all of the components in the simulated

multiprocessor. This methodology does not account for hot-spot contention, which

results from a concentration of requests impinging on a single component.

The Weather application uses a variable that belongs to the class of write-once

data. Section 5.2.3 explores the implications of this write-once variable on the bal-

ance between multiprocessor software and cache coherence schemes. For now, it is

su�cient to note that the combination of write-once data and a limited directory

protocol creates a constant ow of data requests from every processor in the system

to the memory module that contains the variable. The constant ow of protocol

messages causes hot-spot contention at the memory module. The decoupled method-

ology averages this hot-spot tra�c over the entire multiprocessor. But in the coupled

simulations, the one memory module that handles the write-once variable becomes

a bottleneck, due to the extraordinary number of protocol messages. In addition to

describing the semantics of the variable that causes the hot-spot phenomenon, Sec-
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Figure 4-6: Cache controller queue sizes with Dir4NB protocol.

tion 5.2.3 describes how to optimize multiprocessor software to eliminate this type of

data.

Figure 4-6 shows the e�ect of the hot-spot caused byWeather's write-once variable.

The graph shows a histogram of the size of the cache controller network queues for

coupled simulations with and without hot-spot contention. Since network queues

store protocol messages that memory modules need to transmit through the network,

the histogram gives a sense of the amount of time that data requests have to wait to

be serviced. The solid curve on the histogram shows the behavior of the system with

the hot-spot data accesses, and the dashed curve shows the performance once the

write-once variable has been optimized. Note that the vertical axis is in a logarithmic

scale. Figure 4-6 illustrates the fact that hot-spot contention causes thousands of

protocol messages to wait in long queues. However, optimizing for the write-once

location e�ectively removes the hot-spot.

After the hot-spot has been removed, the processor utilizations observed for the

limited directory schemes in ASIM conform to the prediction of the decoupled sim-

ulation technique. In fact, this is the last step necessary to reconcile the di�erences

between the two evaluation methodologies. Figure 4-2 shows the processor utiliza-

tions of the Weather program, with special code in the dynamic post-mortem sched-
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Figure 4-7: Comparison of coherence schemes using coupled simulations.

uler that marks the write-once data location. Although the results from the two

simulation techniques correlate well, the performance of the protocols in coupled sim-

ulations remains slightly below the predictions of the decoupled methodology, due to

the non-uniform distribution of requests to memory modules.

4.4.3 The Processor Utilization Metric

In general, processor utilization provides a good indication of the performance of a

multiprocessor. However, the processor utilization metric does not always accurately

indicate the performance of a program running on a multiprocessor. Figure 4-7 shows

the execution times that correspond to the processor utilizations reported in Fig-

ure 4-2. While the directory-based coherence schemes perform as predicted by the

decoupled simulations, the scheme that only caches private data (OCPD) performs

better, relative to the other schemes, than the decoupled method predicts.

The di�erence between the predicted and the actual performance of the OCPD

scheme is explained in [32] by examining the way that processor utilization is de�ned.

The utilization metric estimates the contribution of the memory system to the time

needed to run a program on the system, without actually measuring the forward

progress of an application. When shared data is cached, synchronization requests

from the processors are satis�ed in the cache and raise processor utilizations values,
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even if the synchronizations fail and do not contribute to making forward progress.

The processor utilization for the OCPD scheme does not pro�t from failed synchro-

nizations, so the metric gives a more realistic value for the absolute performance of

OCPD than it does for the other coherence schemes. Section 5.1.2 discusses other

factors that impact the behavior of the OCPD scheme.

Despite the problems with predicting the bottom-line performance of the OCPD

scheme, the hybrid decoupled simulation technique gives a good indication of the con-

tribution of a memory system to the overall performance of a multiprocessor. Coupled

simulations complement the decoupled simulations by supporting detailed analysis of

the implementation of a cache coherence scheme and the interaction between a mul-

tiprocessor's memory system and its software.
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Chapter 5

Analysis

The decoupled and coupled simulation techniques generate a plethora of raw statistics,

including invalidation histories, cache hit-miss pro�les, memory latency histograms,

and other records that describe the low-level behavior of cache coherence protocols.

Taken as a whole, this body of information demonstrates the interactions between a

multiprocessor's software and its shared memory implementation. In order to present

the key results of the simulations, the statistics are re�ned into two di�erent parame-

ters: processor utilization and execution time. Processor utilization, as derived from

the hybrid decoupled methodology, quanti�es the contribution of a memory system

to the time needed to run a program on a multiprocessor. Execution time, the total

number of cycles needed to run a program in a coupled simulation, directly measures

the speed of a system. When necessary, these metrics will be supplemented with other

statistics to present a complete analysis of the behavior of cache coherence protocols.

This chapter uses the decoupled and coupled simulation techniques to analyze

the behavior of various cache coherence protocols. Section 5.1 establishes the perfor-

mance of the coherence schemes. Section 5.2 discusses system-level techniques that

improve the performance of directory-based protocols, and Section 5.3 shows that

the scalable LimitLESS protocol achieves high performance by using the integrated

systems approach. Section 5.4 evaluates additional coherence protocol features that

can be used to improve the e�ciency of a shared memory system. Finally, Section 5.5

draws conclusions about the design of large-scale cache-coherent multiprocessors.
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5.1 Performance of Cache Coherence Schemes

Before engaging in discussing how to optimize directory-based cache coherence pro-

tocols, it is necessary to establish that this class of protocols is worth studying. Once

the simulations prove that directory protocols show potential for realizing a high-

performance shared-memory system, further e�ort is spent to show how to modify

multiprocessor software to interact well with coherent caches. Note that many of the

programs evaluated below are not written especially for cache-based shared memory

systems. Since this section shows that caches work well for most applications that

use no knowledge about the implementation of the memory system, it indicates that

programs that are optimized to take advantage of caches will perform even better.

5.1.1 Analysis of Directory Schemes

The data from decoupled simulations is presented in graphs that plot various combi-

nations of applications and cache coherence schemes on the vertical axis and processor

utilization on the horizontal axis. Since the data reference characteristics vary signif-

icantly between applications and trace gathering methods, results from the di�erent

traces are not averaged. The results that are presented here concentrate on the

Weather, Speech, and P-Thor applications. Other applications are discussed when

they exhibit signi�cantly di�erent behavior.

5.1.2 Are Caches Useful for Shared Data?

Figure 5-1 shows the processor utilizations realized for the Weather, Speech, and P-

Thor applications using each of the coherence schemes. The long bar at the bottom

of each graph gives the value for \no cache coherence." This number is derived by

considering all addresses in each trace to be non-shared. Processor utilization with

no cache coherence gives, in a sense, the e�ect of the native hit/miss rate for the

application. The number is arti�cial, because it does not represent the behavior of a

correctly operating system. However, the number does give an upper bound on the

performance of any coherence scheme and helps determine the component of processor
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utilization that is lost due to sharing between processors.

To assess the potential of shared data caching schemes in general, compare the

optimal (full-map) directory scheme to the scheme that only caches private data

(OCPD). For most applications (including the ones shown in Figure 5-1), the full-

map directory gives signi�cantly better processor utilization than the scheme that

only caches private data. Generally good performance of the full-map scheme in 16

and 64 processor machines implies that caches are useful for shared data, even when

applications are not written or compiled specially for a system with directory-based

cache coherence.

However, for two traces (FFT and MP3D), processor utilization for a full-map

directory is worse than the utilization for the private data cache scheme. Examining

the network model shows the reason why it is possible for private data caches to

perform better than full-map directories: Even though the private cache scheme has

a higher network message rate, it uses smaller message block sizes. In the model,

network latency is proportional to the square of the message block size, but is linearly

dependent on the message rate. The fact that for FFT and MP3D the private data

cache scheme performs better than the full-map directory scheme indicates that the

average time between writes by di�erent processors to each shared location is low.

For these traces, the full-map directory scheme does not perform signi�cantly better

than the limited directory schemes.

It is important to note that the coupled and decoupled simulation techniques incor-

porate two features that arti�cially improve the performance of the OCPD scheme,

relative the other protocols. First, the network model assumes a low overhead for

message transmission. A memory system that supports input/output and error cor-

rection mechanisms requires information to be wrapped around protocol messages.

Since the OCPD scheme transmits relatively short messages through the network, it

can not amortize the cost of the transmission overhead as well as the other coherence

schemes. Second, since the OCPD scheme treats every memory word as a separate

entity, it does not su�er when unrelated data objects are allocated to consecutive

addresses in memory. This type of data organization reduces the performance of the

99



|

0.00
|

0.20
|

0.40
|

0.60
|

0.80
|

1.00
 Processor Utilization

WeatherOnly Cache Private Data

Single Link Chain

Double Link Chain

Full Map (64 Pointers)

No Coherence

Dir1NB

Dir2NB

Dir4NB

|

0.00
|

0.20
|

0.40
|

0.60
|

0.80
|

1.00
 Processor Utilization

SpeechOnly Cache Private Data

Single Link Chain

Double Link Chain

Full Map (64 Pointers)

No Coherence

Dir1NB

Dir2NB

Dir4NB

|

0.00
|

0.20
|

0.40
|

0.60
|

0.80
|

1.00
 Processor Utilization

P-ThorOnly Cache Private Data

Single Link Chain

Double Link Chain

Full Map (16 Pointers)

No Coherence

Dir1NB

Dir2NB

Dir4NB

Figure 5-1: Comparison of coherence schemes.
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other cache coherence schemes, because allocating more than one shared data object

per cache block tends to reduce processor locality, thereby reducing the e�ectiveness

of caches.

Laying performance issues aside, there is a compelling reason to use hardware-

enforced cache coherence, rather than the OCPD scheme. In practice, OCPD requires

compile-time di�erentiation between private and shared data. In some programming

environments, it is di�cult (if not impossible) to accomplish the separation of shared

and private data at compile-time. In these cases, the directory protocols allows caches

to take advantage of locality, without requiring support from the the compiler or the

programmer.

5.1.3 Limited Directory Performance

How well do limited directories perform compared to the full-map directory scheme?

The answer depends on the amount of shared data, the number of processors that

access each shared data location, and the method of synchronization. The P-Thor

application was written to minimize the communication between processors by re-

ducing the number of synchronization points and the number of processors that read

each shared location. It is not surprising that all of the directory schemes perform

well for this application.

On the other hand, four traces show signi�cantly worse processor utilization for

limited directories than for a full-map directory due to naive synchronization tech-

niques (Weather, SIMPLE, and SA-TSP) or widespread sharing of a large read-only

data structure (Speech). Section 5.2 investigates methods for ameliorating the e�ects

of widespread sharing on limited directory protocols.

5.1.4 Chained Directory Performance

When applications use data structures that are widely shared and accessed frequently,

a limited directory performs signi�cantly worse than a full-map directory. However,

Figure 5-1 shows that both singly and doubly-linked directories perform almost as
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well as the full-map directory protocols. While the doubly-linked scheme always per-

forms slightly better than the singly-linked scheme, the small increase in performance

may not justify the additional resources needed for the doubly-linked scheme. The

di�erence between the schemes is small because the number of replacements as a

percentage of total memory accesses is very small, even though the memory system

uses direct-mapped caches.

In general, the decoupled simulation technique indicates that chained directory

schemes provide higher utilization than limited directory protocols. However, as dis-

cussed in Section 4.2.5, the decoupled methodology does not account for the di�erence

between the sequential invalidation patterns in chained directories and the parallel

invalidations of limited and full-map directories. Thus, chained directory protocols

have potentially longer write latency than limited directory protocols.

Coupled simulations provide evidence that the longer write latency impacts the

performance of chained directories. Table 5.1 shows the average latencies for various

data request types during the simulations of the Weather application. The chained

directory protocol performs worse than the full-map and limited directories, because

it su�ers from a higher average latency for write transactions to shared data than the

other protocols. Furthermore, the full-map and the limited directories can use the

modify request (MREQ) and modify grant (MODG) protocol messages to decrease

the average shared data write latency (see Section 3.4.1). The chained protocol can

not use the modify request/grant message pair, while the optimization reduces the

shared data write latency of both the full-map and limited directories to about 28

cycles.

The di�erence between the shared data write latencies explains why the full-map

and limited directory protocols perform better than the chained directory, assuming

the optimizations described in Section 5.2. Since the average directory chain length

grows with the number of processors in a system, the gap between the shared data

write latencies of chained directory protocols and other protocols becomes wider as

processors are added to the system. Thus, due to the latencies caused by the structure

of a chained directory, the coherence protocol does not scale as well as a the other
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Average Latency

Memory Request Type Chain Full-Map Dir4NB

All Data 3.42 3.03 3.09

Private Data 0.39 0.39 0.39

Shared Data 26.09 21.51 21.90

Shared Data Read 18.54 18.50 18.92

Shared Data Write 61.34 35.59 35.77

Table 5.1: Average latency statistics (in processor cycles) for the Weather application
with combining tree synchronization and write-once data optimization.

directory protocols.

5.2 Improving the Performance of Directories

The results presented in the previous section show that limited directory schemes

su�er from data types that are both widely shared and frequently referenced. The

Weather and Speech applications serve as case studies that demonstrate three meth-

ods for ameliorating the e�ects of this type of data. These methods are examples

of system-level optimizations, because they involve contributions from several compo-

nents of a multiprocessor system. In addition to improving the performance of limited

directory schemes, the methods also enhance the performance of the other coherence

schemes.

5.2.1 Optimizing Synchronization Variables

The Weather application uses barriers as the primary method of synchronization. In

the straightforward implementation of barriers, each processor increments a barrier

variable and then spin-locks on a barrier ag. The last processor to reach the syn-

chronization point increments the barrier variable to its �nal value N and writes into

the barrier ag, thereby releasing the spinning processors. The memory accesses from

many processors spin-locking on a single location cause pointer thrashing (repeated

evictions) in the limited directory.

A software solution, called a combining tree [46], can alleviate this problem in

directories. Instead of implementing barrier synchronizations with a single barrier
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variable and barrier ag, a balanced tree structure of nodes can be used for each. To

demonstrate the bene�ts of this barrier implementation, the post-mortem scheduler

was modi�ed to implement combining tree synchronization. The resulting trace was

virtually identical to the original trace, except with respect to the distribution of

synchronization address accesses. In the original trace, all of the synchronization

addresses were accessed by all of the processors; while in the combining tree trace,

almost all of the synchronization addresses were accessed primarily by one processor,

with just one access by one other processor.

The top graph in Figure 5-2 shows that the combining tree dramatically improves

the performance of the limited directory schemes. The darker colored bars show the

processor utilization of the application with linear barrier synchronization, and the

lighter bars show the enhanced utilization when using the combining tree structure.

The two and four pointer directories give nearly the same processor utilization as

the full-map scheme. The one pointer directory su�ers from sharing of other data

between processors. However, this data sharing must exist only between processor

pairs, because it does not a�ect the two pointer directory. Thus, combining tree

structures and limited directory schemes provide an e�cient implementation of barrier

synchronization.

5.2.2 Optimizing Read-Only Data

The Speech application provides an example of both a di�erent programming model

and a di�erent type of widely-shared data. There are two primary data structures in

the Speech application: an utterance (the sentence to be identi�ed) and a dictionary

(the algorithm's vocabulary). For the duration of the application, these data struc-

tures are only read, but they are shared by all the processors in the system. This

type of data reference pattern causes pointer thrashing in limited directories.

Given the nature of the Speech application, it is fair to assume that all the read-

only variables can be identi�ed by the programmer. To assess the potential bene�ts

of marking read-only data, the trace was post-processed to �nd all the data locations

that were only read for the duration of the trace. The read-only locations were
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Figure 5-2: System-level optimizations.

then marked as private to prevent the cache and directory simulator from executing

coherence transactions for this data. When these locations were identi�ed on a block-

by-block basis, the system showed moderate improvement for the limited directory

schemes. However, when the post-processor identi�ed the read-only locations on

a word-by-word basis and relocated the data to a special segment of memory, the

improvement was more pronounced. The bottom graph in Figure 5-2 demonstrates

the increase in processor utilization realized by specially processing read-only data.

The darkest bars show the unoptimized performance of the Speech application, the

lighter bars show the gains due to processing read-only data.

The boost in processor utilization due to read-only data detection on a word-by-

word basis can be explained by the reduction of sharing due to cache blocks that

contain unrelated data words that are accessed by di�erent processors. The Mul-T

runtime system ignores the boundary of cache blocks and allocates read-write data

words in the same cache blocks as read-only data words. This data allocation policy
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prevents the block-by-block post-processor from properly identifying read-only data

words and lowers processor utilization by creating unnecessary shared data tra�c in

the network.

5.2.3 Optimizing Write-Once Data

As discussed in Section 4.4.2, a write-once variable can cause performance degrada-

tion due to hot-spot contention at a memory module. In the case of the Weather

application, there is one variable that is initialized at the beginning of the program,

read frequently by all of the processors in the system, and not modi�ed for the dura-

tion of the application. Since all of the processors in the system frequently read the

memory location that stores the variable, the limited directory entry continuously

thrashes. That is, almost as soon as the memory module containing the location

transmits a read-only copy of the variable to a processor, the module transmits an

invalidation so that another processor can receive a copy.

The problems caused by this variable can be eliminated quite easily. Since the

variable is modi�ed only in an initial, sequential portion of the program, a programmer

can make a local copy of the data (perhaps in a stack segment) for each processor

in the system. To remove the e�ect of this variable, ASIM simulates a protocol

mechanism that handles write-once data. When a memory location is marked by

a compiler as write-once, indicating that it is initialized by one processor and then

only read by other processors, the protocol uses a special data fetch mechanism to

distribute the location without thrashing its limited directory entry.

The coupled simulation technique reveals the e�ects of the hot-spot contention

caused by Weather's write-once variable. Figure 5-3 shows the performance of the

Weather application with combining tree synchronization, before and after the vari-

able has been optimized. Since the �gure's horizontal axis measures the execution

time (as opposed to processor utilization) for each coherence protocol, the longer bars

are the simulations with the unoptimized variable, and the shorter bars show the in-

creased performance with special code in the dynamic post-mortem scheduler that

marks the write-once data location.
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Figure 5-3: Comparison of coherence schemes after write-once optimization.

Although the hot-spot contention caused by the write-once variable seriously de-

grades the performance of the limited directory protocols, after write-once data op-

timizations, the coherence schemes show the same relative behavior as in Figure 5-2.

Thus, the write-once variable in Weather provides yet another example of a system-

level optimization that makes limited directory protocols a viable alternative for im-

plementing scalable shared memory systems.

5.2.4 Implications of Directory Optimization Techniques

When multiprocessor algorithms and software are optimized for caches, large-scale

cache-coherent systems realize their execution potential. In the case of the Weather

and Speech applications, system-level optimizations resulted in processor utilizations

between 0.6 and 0.8 for scalable cache coherence protocols. Coordinating multipro-

cessor hardware and software requires some subset of programmer speci�cations, new

language primitives, special compile-time analysis, support in the runtime system,

specialization in the processor-to-cache interface, and additional states in the cache

coherence protocol. Combining tree synchronization, read-only data optimization,

and write-once data optimization are archetypes of system-wide e�orts to improve

multiprocessor performance.
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5.3 LimitLESS Directory Protocol Performance

The results in Figures 5-2 and 5-3 show that while it is possible for a limited directory

protocol to perform as well as a full-map directory protocol, limited directories are

extremely sensitive to the optimization of multiprocessor software. In order to sat-

isfy Alewife's programmability goal, the performance of a memory system should not

degrade so quickly when the worker-set of a single memory location overows its di-

rectory entry. The LimitLESS directory protocol, which is described in Section 3.2.1,

avoids the sensitivity of limited directories to software optimization. When a directory

entry overows, the associated memory module requests its local processor to handle

the exception in software. Preliminary results from ASIM con�rm this strategy.

As shown in Figure 5-4, the LimitLESS protocol avoids the sensitivity displayed

by limited directories. This �gure compares the performance of a full-map direc-

tory, a four-pointer limited directory (Dir4NB), and the four-pointer LimitLESS

(LimitLESS4) protocol with several values for the additional latency required by the

LimitLESS protocol's software (Ts = 25, 50, 100, and 150). The execution times

show that the LimitLESS protocol performs about as well as the full-map directory

protocol, even in a situation where a limited directory protocol does not perform

well. Furthermore, while the LimitLESS protocol's software should be as e�cient as

possible, the performance of the LimitLESS protocol is not strongly dependent on

the latency of the full-map directory emulation. The current estimate of this latency

in the Alewife machine is between 50 and 100 cycles.

Surprisingly, the LimitLESS protocol, with a 25 cycle emulation latency, actually

performs better than the full-map directory. This anomalous result is caused by the

participation of the processor in the coherence scheme. By interrupting the Weather

application software and slowing down certain processors, the LimitLESS protocol

produces a slight back-o� e�ect that reduces contention in the interconnection net-

work.

The number of pointers that a LimitLESS protocol implements in hardware inter-

acts with the worker-set size of data structures. Figure 5-5 compares the performance
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Figure 5-4: Weather, 64 Processors, LimitLESS with 25 to 150 cycle directory emu-
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Figure 5-5: Weather, 64 Processors, LimitLESS scheme with 1, 2, and 4 hardware
pointers.

of Weather with a full-map directory, a limited directory, and LimitLESS directories

with 50 cycle emulation latency and one (LimitLESS1), two (LimitLESS2), and four

(LimitLESS4) hardware pointers. The performance of the LimitLESS protocol de-

grades gracefully as the number of hardware pointers is reduced. The one-pointer

LimitLESS protocol is especially bad, because some of Weather's variables have a

worker-set that consists of exactly two processors.

This behavior indicates that multiprocessor software running on a system with

a LimitLESS protocol will require some of the optimizations that would be needed

on a system with a limited directory protocol. However, the LimitLESS protocol

is much less sensitive to programs that are not perfectly optimized. Moreover, the

software optimizations used with a LimitLESS protocol should not be viewed as
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extra overhead caused by the protocol itself. Rather, these optimizations might be

employed, regardless of the cache coherence mechanism, since they tend to reduce

hot-spot contention and to increase communication locality.

5.4 Implementation Issues

In addition to the issue of directory implementation, there are several other protocol

features that have the potential to signi�cantly a�ect the performance of a coherence

scheme. The coupled simulation technique yields performance results for some of

these features. Section 5.4.1 compares two methods that allow a processor to tolerate

memory access latency, and shows that both have signi�cant potential to improve

multiprocessor performance. Section 5.4.2 analyzes several protocol features that

have only a weak e�ect on the performance of a shared-memory system.

5.4.1 Weak Ordering versus Multiple Contexts

To con�rm the assumption that multiple contexts are a viable method for masking

the latency of shared-memory transactions, the performance of multiple contexts can

be compared with that of weak ordering, another method for hiding the latency of

memory transactions.

With multiple contexts per processor, it is possible to quickly switch between

threads of control when a memory request must be transmitted over the interconnec-

tion network. The ability to switch from a thread of control that needs to wait for a

response from a remote memory module allows a processor to overlap the latency of

any type of shared-memory transaction with useful execution cycles. Such a system

can overlap cache read misses, cache write misses, and attempts to write to read-only

cache blocks, while still providing sequential consistency (the strongest form of cache

coherence).

Proponents of weak ordering take a slightly di�erent approach to the problem of

shared-memory latency. Architectures that provide weak ordering assume that there

is a contract between the programmer and the memory system: The programmer
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agrees to obey strict synchronization semantics, and the memory system ensures only

that all transactions are complete at synchronization points. In other words, if the

programmer agrees to write multiprocessor code using critical sections, then the mem-

ory system will be able to overlap some types of shared-memory transactions and still

provide sequential consistency. However as discussed in Section 2.2, if the program-

mer violates the rules imposed by the memory system, then the system's behavior is

unde�ned and programs may not operate correctly or even deterministically.

Since the two schemes approach the memory latency issue by using di�erent ar-

chitectural mechanisms, they are not mutually exclusive. However, the comparison of

the performance of weak ordering and multiple contexts a�ords insight into methods

for masking the delay of shared memory latency.

In order to evaluate the two methods, ASIM is instrumented to determine an

upper bound on the performance of a system with weak ordering. ASIM collects

statistics about a weakly ordered memory system, while simulating a single-context

processor with a memory system that provides sequential consistency. The algorithm

records the latency of the memory transactions that may be overlapped with execu-

tion; namely, write misses and attempts to write to read-only cache blocks. At every

point in the simulation, the algorithm can determine the latest time that overlapped

transactions will be completed for each processor. So when a thread that is running

on a processor performs a synchronization, the algorithm is able to determine how

long a weakly ordered memory system would have to stall the processor to ensure

that all of the outstanding memory transactions were complete. ASIM calculates

the performance of weak ordering for each processor by subtracting overlapped cy-

cles from the strongly coherent execution time, and adding the extra wait time at

synchronization points. The performance of weak ordering for the entire system is

calculated by averaging the execution time over all of the processors.

It is important to emphasize that ASIM determines only an upper bound for the

performance of weak ordering (by determining a lower bound on the execution time

of a weakly ordered system). Two assumptions that are implicit in the analysis cause

the performance of weak ordering to appear better than it would be on an actual
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system:

� The software has not been written for a weakly ordered system. While the code

that is executed by ASIM probably does conform to the programmer/memory-

system contract described above, it is not required to do so. Recoding an algo-

rithm to run on a weakly ordered system means adding extra synchronization,

which would increase the overall execution time.

� The latency for remote accesses is assumed to be the same for both the single-

context system that provides sequential consistency and for the system that

provides weak ordering. In general, the latency of remote accesses will be longer

for the weakly ordered system, since the higher processor utilization a�orded

by weak ordering also causes more contention in the interconnection network

and at the cache controllers.

ASIM's upper bound is valid only for the original de�nition of weak ordering [19].

The approximation method does not properly simulate the behavior of other de�ni-

tions of weak ordering, such as the one proposed in [1]. Furthermore, ASIM does not

account for techniques that can improve the performance of weakly ordered systems.

For instance, a data prefetch mechanism could be used to allow a weakly ordered

system to reduce the e�ects of read misses. On the other hand, a data prefetch would

also improve the performance of a protocol that guarantees sequential consistency, so

such optimizations have been eliminated from the following performance analysis.

Table 5.2 shows that the 64 processor system with two contexts per processor

requires less execution time in processor cycles than the lower bound on the system

that provides weak ordering. This conclusion is independent of the cache coherence

protocol. Thus, even if the fast context-switch were useful for no other purpose, it

would be a good mechanism for masking the latency of shared-memory transactions.

As a �nal note, the Weather and Simple applications do very little synchroniza-

tion, so the weakly ordered system does not need to force its processors to wait at

synchronization points. Weak ordering would not perform as well for applications

that must synchronize more often than the applications used for the results above,
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Weather Application
Dir4NB Full-Map Chain

1 Context 1,356,447 620,874 769,518
2 Contexts 1,234,554 459,156 554,541
Weak Ordering 1,256,069 535,814 570,830

Simple Application
Dir4NB Full-Map Chain

1 Context 613,209 590,276 614,378
2 Contexts 385,564 388,496 408,035
Weak Ordering 453,166 426,769 440,509

Table 5.2: Comparison of Lower Bound on Weak Ordering and Exact Simulation of
Multiple Contexts. Units are in Processor Execution Cycles.

while multiple contexts may be used to overlap synchronization delays as well as

the latency of shared-memory transactions. However, the performance measurements

show that weak ordering and multiple contexts are both viable methods for tolerating

memory access latency.

5.4.2 Second-Order E�ects

The implementation of a cache coherence protocol contributes to the absolute per-

formance of the shared-memory system. Figure 5-6 shows the e�ect of several of the

implementation issues discussed in Section 3.4 on the performance of Weather running

with a limited (Dir4NB) and a full-map directory protocol. The graphs compare the

performance of the base protocols with the performance of the protocols modi�ed in

three di�erent ways.

The One Ack Counter bar indicates the execution time of the system with one

acknowledgment per controller, instead of one counter per directory entry. Using

only one counter per controller reduces the e�ective bandwidth of the memory sys-

tem, so the execution time is slightly higher for the full-map protocol. The counter

implementation interacts in an interesting way with the limited protocol hot-spot

contention (see Section 4.4.2). With only one counter per controller, the directory

(implemented in slow DRAM modules) does not need to be read to process acknowl-
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edgment messages, thereby reducing the time spent processing the eviction of pointers

from a limited directory. Since pointer eviction is the dominant e�ect in this partic-

ular application, the counter implementation actually increases the bandwidth of the

controller and decreases the execution time of the system. This anomalous interac-

tion further emphasizes the sensitivity of limited directory protocols to widely-shared

data locations.

The protocol with the REPU message noti�es the memory controller whenever a

Read-Only copy of data is replaced in a processor's cache. While this modi�cation

is intended to reduce the number of unnecessary invalidation messages, it actually

creates more network tra�c than it saves, thereby increasing the execution time. The

modify grant (MODG) message prevents memory modules from sending redundant

data to caches when processors write data soon after reading it. This is the most

bene�cial of the unessential protocol messages, and tends to decrease execution times.

The most signi�cant conclusion that can be made from the investigation into pro-

tocol implementation is that unessential messages and other implementation details

have a second-order e�ect compared to issues such as directory structure and software

optimizations. This relationship does not indicate that the implementation should be

haphazard; however, it does justify the time invested in examining the higher-level

issues.
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Figure 5-6: The e�ect of protocol implementation on the performance of Weather.
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5.5 Conclusions

The search for a cache coherence protocol for the Alewife machine has led to the

following conclusion: By balancing the responsibility for supporting a cache coher-

ence protocol between a system's hardware and software components, it is possible

to build a large-scale cache-coherent multiprocessor. Both coupled and decoupled

simulation methods reveal design strategies that help achieve such a balance. Two

basic strategies have been identi�ed; namely, optimizing a multiprocessor's software

for its memory system and following the integrated systems approach when designing

a cache coherence protocol. These two strategies address the problem of scalable

cache coherence protocol design by mitigating the e�ects of widely-shared data.

The software optimization method uses techniques such as distributed synchro-

nization structures and identi�cation of special data types to reduce the e�ects of

a program's widely-shared data. In doing so, the strategy permits limited directory

cache coherence schemes to be a viable option for implementing a scalable shared-

memory system. That is, an optimized program performs as well with a scalable

limited directory protocol as with a non-scalable full-map directory protocol. How-

ever, limited directories exhibit excessive sensitivity to the limitations of software

optimization. Chained directory protocols are also candidates for the basis of a scal-

able shared-memory system, but may incur excessive write latencies in very large

systems.

The integrated systems approach relies on the observation that once a multipro-

cessor's software has been modi�ed to reduce data sharing, accesses to shared vari-

ables are relatively rare in a cache-based system. By handling uncommon requests

for widely-shared data in software, the LimitLESS directory protocol approaches the

performance of a full-map directory protocol, with the memory e�ciency of a limited

directory protocol. Furthermore, the LimitLESS protocol provides a migration path

toward a future in which cache coherence is handled entirely in software.

While the analysis of cache coherence schemes lays the foundation for the Alewife

machine's shared-memory system, the protocol design e�ort is far from over. Once
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the details of the LimitLESS directory implementation are solidi�ed, it will be neces-

sary to verify the correctness and fairness properties of the protocol. Even after the

protocol is bound into hardware, �nding new design strategies that balance hardware

scalability and software complexity will be an ongoing topic of research.
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Appendix A

Tables of Statistics

The following tables contain numerical results from the simulations described in Chap-
ters 4 and 5.

A.1 Trace-Driven Simulation Results

Table A.1 lists the results for the FORTRAN application suite. Table A.2 lists the
results for the C and T-Mul-T suites. Table A.3 lists the results for the Weather
application with combining tree synchronization. Finally, Table A.4 lists the results
for the Speech application with read-only data processing. Section 4.2 discusses the
parameters listed in these tables.
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Coherence Block Request Memory Processor
Application Scheme Size Rate Latency Utilization
FFT Dir1NB 5.919 0.1420 2.968 0.3300

Dir2NB 4.825 0.1546 2.301 0.3554
Dir4NB 4.831 0.1354 2.448 0.3864
Full-Map 4.852 0.1318 2.468 0.3922
OCPD 3.093 0.1453 3.000 0.4281
No Coherence 6.000 0.0103 3.000 0.8939

Weather Dir1NB 4.507 0.2853 2.087 0.2337
Dir2NB 4.307 0.2162 2.003 0.2997
Dir4NB 4.337 0.2114 2.023 0.3033
Full-Map 5.491 0.0485 2.954 0.6301
Singly-Linked 4.731 0.0660 3.000 0.5733
Doubly-Linked 5.012 0.0593 3.000 0.5921
OCPD 3.037 0.1599 3.000 0.4059
No Coherence 6.000 0.0248 3.000 0.7683

Simple Dir1NB 4.701 0.3512 2.189 0.1902
Dir2NB 4.400 0.2632 2.019 0.2539
Dir4NB 4.608 0.2124 2.149 0.2905
Full-Map 5.532 0.0958 2.751 0.4479
OCPD 3.046 0.2066 3.000 0.3423
No Coherence 6.000 0.0645 3.000 0.5373

Table A.1: Simulation results for FORTRAN application suite.
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Coherence Block Request Memory Processor
Application Scheme Size Rate Latency Utilization
P-Thor Dir1NB 4.881 0.0760 2.396 0.5779

Dir2NB 4.347 0.0709 2.068 0.6251
Dir4NB 4.434 0.0606 2.141 0.6595
Full-Map 5.131 0.0240 2.770 0.8151
Singly-Linked 4.721 0.0303 3.000 0.7799
Doubly-Linked 4.999 0.0266 3.000 0.7970
OCPD 3.036 0.1498 3.000 0.4599
No Coherence 6.000 0.0129 3.000 0.8813

LocusRoute Dir1NB 4.786 0.0244 2.365 0.8255
Dir2NB 4.459 0.0155 2.239 0.8901
Dir4NB 4.869 0.0096 2.609 0.9229
Full-Map 5.087 0.0081 2.814 0.9317
OCPD 3.087 0.0511 3.000 0.7234
No Coherence 6.000 0.0051 3.000 0.9506

SA-TSP Dir1NB 5.768 0.3726 2.928 0.1707
Dir2NB 4.007 0.3857 1.824 0.2245
Dir4NB 4.006 0.3851 1.824 0.2248
Full-Map 4.031 0.0854 2.085 0.5898
OCPD 3.019 0.1950 3.000 0.3928
No Coherence 6.000 0.0013 3.000 0.9871

MP3D Dir1NB 4.863 0.2807 2.580 0.2462
Dir2NB 4.024 0.2628 2.075 0.2983
Dir4NB 4.027 0.2394 2.109 0.3189
Full-Map 4.051 0.1690 2.268 0.4007
OCPD 3.029 0.1761 3.000 0.4182
No Coherence 6.000 0.0132 3.000 0.8792

Speech Dir1NB 4.680 0.3770 2.279 0.1787
Dir2NB 4.031 0.3666 1.893 0.2053
Dir4NB 4.042 0.3229 1.919 0.2274
Full-Map 4.187 0.0979 2.337 0.5016
Singly-Linked 4.224 0.1082 3.000 0.4587
Doubly-Linked 4.623 0.0932 3.000 0.4838
OCPD 3.010 0.4010 3.000 0.2076
No Coherence 6.000 0.0074 3.000 0.9228

Table A.2: Simulation results for the C and Mul-T application suites.
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Coherence Block Request Memory Processor
Scheme Size Rate Latency Utilization

Dir1NB 5.007 0.1280 2.483 0.3939
Dir2NB 5.014 0.0599 2.664 0.5957
Dir4NB 5.179 0.0554 2.792 0.6087
Full-Map 5.328 0.0497 2.920 0.6294
Singly-Linked 4.597 0.0679 3.000 0.5704
Doubly-Linked 4.993 0.0583 3.000 0.5972
OCPD 3.035 0.1598 3.000 0.4062

Table A.3: Results for Weather with combining tree synchronization.

Read-Only Coherence Block Request Memory Processor
Data Unit Scheme Size Rate Latency Utilization

Cache Block Dir1NB 5.675 0.1584 3.042 0.3106
Dir2NB 4.111 0.1704 2.086 0.3629
Dir4NB 4.114 0.1585 2.113 0.3808
Full-Map 4.187 0.0979 2.337 0.5016

Memory Word Dir1NB 5.999 0.0274 3.096 0.7475
Dir2NB 5.392 0.0251 2.746 0.7825
Dir4NB 5.409 0.0247 2.757 0.7846
Full-Map 5.748 0.0208 2.994 0.8052
Singly-Linked 4.701 0.0318 3.000 0.7484
Doubly-Linked 4.744 0.0303 3.000 0.7570
OCPD 3.754 0.0465 3.000 0.6930

Table A.4: Results for Speech with read-only data processing.

121



A.2 Dynamic Post-Mortem Scheduler

The following two tables consolidate data from the dynamic post-mortem scheduler,
coupled with the ASIM memory system. Table A.5 lists the results for the Weather
application, and Table A.6 lists the results for the Simple application.

Coherence Scheme Protocol Options Execution Time
Full-Map None. 620874

without MODG 661573
with BUSY loop-back 619976
with REPU 637474
1 ack counter/module 627043
write-once optimized 621393

Single-Linked None. 769518
write-once optimized 765544

OCPD None. 617464
Dir4NB None. 1356447

without MODG 1383866
with BUSY loop-back 1359043
with REPU 1375051
1 ack counter/module 1096390
write-once optimized 629086

Dir2NB None. 1527552
write-once optimized 631953

Dir1NB None. 1575031
write-once optimized 656811

LimitLESS4 25 cycle latency 594716
50 cycle latency: : : 654444
without MODG 694706
with BUSY loop-back 653099
with REPU 659739
write-once optimized 653930
100 cycle latency 689113
150 cycle latency 703801

LimitLESS3 50 cycle latency 614585
LimitLESS2 50 cycle latency 669784
LimitLESS1 50 cycle latency 920283

Table A.5: Results for Weather with combining tree synchronization.
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Coherence Scheme Protocol Options Execution Time
Full-Map None. 202545

without MODG 202700
with BUSY loop-back
with REPU 204419
1 ack counter/module 205519

Single-Linked None. 205918
OCPD None. 241614
Dir4NB None. 212441
Dir2NB None. 220749
Dir1NB None. 233823
LimitLESS4 25 cycle latency 202697

50 cycle latency 203307
100 cycle latency 204440
150 cycle latency 205035

LimitLESS3 50 cycle latency 203974
LimitLESS2 50 cycle latency 229382
LimitLESS1 50 cycle latency 300598

Table A.6: Results for Simple with combining tree synchronization.
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Appendix B

Cache Coherence Protocol

Speci�cation for ASIM

This appendix speci�es the cache coherence protocol that is implemented in ASIM,
the Alewife System Simulator. The heart of the speci�cation is a series of proto-
col state transition diagrams, so the text presents enough information to make the
diagrams intelligible. Given these diagrams, it is possible to hand-simulate any se-
quence of memory transactions. Since the protocol is intended to be experimental,
it contains many features that will not be implemented in Alewife's hardware. The
purpose of documenting the protocol is to illustrate the di�erent options that have
been considered during the implementation of Alewife's shared memory system.

The cache coherence protocols that are speci�ed below either ensure sequential
consistency on a transaction-by-transaction basis or provide mechanisms for multipro-
cessor software to enforce cache coherence. A protocol that ensures cache coherence
on a transaction-by-transaction basis is called a hardware coherence protocol, because
the multiprocessor hardware presents a consistent model of shared memory to its
software. A protocol that provides mechanisms for software enforcement of cache co-
herence is called a software coherence protocol, because it relies on the programmer,
the compiler, and/or the runtime system to guarantee correct program behavior.

The communication between a coherence protocol and the multiprocessor software
is con�ned to the processor/controller interface. When a processor needs to perform
a load, store, or other memory access, it executes one of the hardware or software
coherent accesses listed in Table B.1. When the processor issues one of the above
access types, the cache/memory controller must respond with one of the three signals
listed in Table B.2. Section 3.3.1 describes the processor/controller interface.

B.1 The State Transition Diagrams

A cache coherence protocol consists of the set of possible states in the local caches,
the states in the shared memory, and the state transitions caused by the messages
that are transported through the interconnection network to keep memory coherent.
So, the protocols are speci�ed by state transition diagrams that illustrate cache or
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Coherence Type Name Unit of Access Processor Access Type
Hardware Read Word Load

Write Word Store
Software ReadSoft Word Load

WriteSoft Word Store
FlushSoft Block Flush block from cache
Fence Control Thread Wait until all ushes complete

Table B.1: Processor Request Types

Name Controller Response
READY Access complete at the end of the current cycle
SWITCH Context switch
WAIT Repeat the same access on the next cycle

Table B.2: Controller Response Types

memory states, transitions between the states, processor requests that cause tran-
sitions, protocols messages that cause transitions, controller to processor responses,
and protocol message transmissions.

Each diagram displays all of the possible cache or memory states for a block of
data. It is important to note that this state is stored on a block-by-block basis.
Every processor request (except Fence) and every protocol message contain a block
address, and a�ect only the block of data with the corresponding address. On any
given cycle, every block of data in the system has a protocol state that is de�ned by
the block's state in shared memory, the block's state in each processor's cache, the
protocol messages that contain the block's address, and the processor requests that
contain the block's address. Each cache or memory state is represented as an ellipse
with the name of the state in boldface type. Since the state transition diagrams
are complicated, they are split over several pages, which may be viewed as overlays.
That is, each page of a diagram shows all of the states but only a logical subset of
the possible transitions. The entire state transition diagram would be visible if all of
the individual pages were transparencies, and they were displayed simultaneously on
an overhead projector. Table B.3 gives the �gures that compose each of the complete
state transition diagrams.

On the diagrams, every transition is represented as an arrow with a label that
indicates the inputs, side-e�ects, and output that are associated with the transition.

Transition Figure Protocol Described
Diagram Numbers Software Limited Chained

Cache State B-1{B-8
p p p

Memory State B-9{B-13
p p

Memory State B-14{B-18
p p

Table B.3: Correspondence between Transition Diagrams and Figures.
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The cache state transitions have two possible label formats. The �rst format, used
in Figures B-1 through B-3, indicates transitions that are caused by the processor
requests:

Processor Access Type / Output Message (Controller Response)

The possible values for the Processor Access Type are listed in Table B.1 and
the Controller Response values are listed in Table B.2. The Output Message

is an optional �eld in the format that is used to specify a protocol message that the
controller may send over the interconnection network to satisfy the processor access.
The second format, used in Figures B-4 through B-8, indicates cache state transitions
that are caused by messages received from the interconnection network:

Input Message / Output Message

The Input Message is the protocol message that causes the state change, and the
Output Message is the response that the controller sends back through the network.
If no response is necessary, the Output Message �eld contains a tilde (e). The
memory state transitions in Figures B-9 through B-18 use a similar format:

processor id: Input Message / Side E�ects / Output Message

The processor id: is an optional �eld that speci�es the identi�er of the node that
sends the Input Message. If the transition is accompanied by changes to the direc-
tory, then they are speci�ed as Side E�ects, otherwise the �eld contains a tilde. As
in the cache state transition diagrams, if a response is necessary, it is speci�ed in the
Output Message �eld.

Any (processor access type, cache state) or (input message, state) combinations
that are not speci�ed by the transition diagrams are considered error conditions.
Such error conditions are caused by states that are disallowed by the protocols or by
interactions between hardware and software coherence (see Section B.4). If an illegal
combination is detected by ASIM, the protocol module terminates the simulation run
and reports the error condition.

Some local state changes are implicit in the state transitions, but may not be
obvious. For instance, when a controller responds with a READY signal to a pro-
cessor Write request, this implies that the controller has stored the data from the
data bus into the appropriate word in the cache. Or, when a controller processes an
UPDATE message, it stores the data block that is contained in the message into the
appropriate block of shared memory. To reduce the complexity of the state transition
diagrams, these types of implicit state changes are not speci�ed.
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Figure B-1: Cache state transitions for processor requests when the tag matches.
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Figure B-2: Cache state transitions for processor requests when the tag matches,
hardware/software coherence interaction.
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Figure B-3: Cache state transitions for processor requests when the tag does not
match.
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Figure B-4: Cache state transitions for messages: Non-network-wait states.
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Figure B-6: Cache state transitions for messages: Read Only Network Wait state.
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Figure B-7: Cache state transitions for messages: Read/Write Network Wait
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Figure B-8: Cache state transitions for messages: Invalid Network Wait state.
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Figure B-9: Memory state transitions for limited directory: Absent state.
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Figure B-10: Memory state transitions for limited directory: Read Only state.
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Figure B-14: Memory state transitions for chained directory: Absent state.
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Figure B-15: Memory state transitions for chained directory: Read Only state.
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Figure B-16: Memory state transitions for chained directory: Read/Write state.
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Figure B-17: Memory state transitions for chained directory: Read Transaction
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While the protocol diagrams show transitions for both hardware and software
coherence, the protocols may be separated to make them easier to understand. In
practice, each of the protocols was implemented as a separate ASIM module. How-
ever, the experimental implementation does not necessarily impact the �nal controller
design!

B.2 Hardware Coherence Protocols

Two classes of scalable hardware coherence protocols are operational: a limited direc-
tory protocol and a singly-linked chain directory protocol. The goal of both hardware
coherence protocols is to allow several processors to simultaneously read a block of
data, but to permit only one processor to access a block of data while it is being
modi�ed.

B.2.1 Protocol States

The basic states of a cache block (listed in Table B.4) are the same for both the limited
and the chained protocol. In addition to the basic state information, the chained
protocol Read Only and Read Only Network Wait states are augmented by a
directory pointer, which contains either a processor identi�er or a chain termination
symbol.

For both protocols, each cache block has an associated tag, which serves the same
purpose as a uniprocessor cache tag: Any shared memory address may be decomposed
into a cache block identi�er and a cache tag. If the data in a cache block is valid, then
the tag associated with the block speci�es the address that is being cached. Every
processor request and protocol message sent to a controller must contain a shared
memory address, because the response to the request or protocol message depends on
whether the address matches the tag associated with the cache block. On the cache
state diagrams, transitions that are executed in the case of a tag match are printed
in boldface type, while normal type is used to represent transitions that are executed
when an address does not match a cache tag. To emphasize the fact that the tag is
used only when the cached data is valid, transitions from the Invalid and Invalid

Network Wait states are printed in both boldface and normal type.
The Network Wait states ensure that a controller does not issue multiple re-

quests for a cache block, while allowing access to a cache line with an outstanding
request. For example, if a cache block is in the Read/Write Network Wait state,
then at least one context is attempting to replace the current data in the cache (which
is modi�able) with some other block of data that happens to map to the same cache
line. The �rst time that the context attempts to access the data, the controller injects
the appropriate request into the network and changes the cache block's state from
Read/Write to Read/Write Network Wait. Subsequent accesses by the context
do not cause the controller to ood the network with additional requests, since the
block is in a Network Wait state. However, it may be the case that some other
context is currently accessing the data in the block. This e�ect is called replacement
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Name Meaning
Invalid Cache block may not be read or written.
Read Only Cache block may be read, but not written.
Read/Write Cache block may be read or written.
Invalid Network Wait Invalid, network request is pending.
Read Only Network Wait Read Only, network request is pending.
Read/Write Network Wait Read/Write, network request is pending.

Table B.4: Cache states for hardware coherence.

Name Meaning
Absent No cache has a copy of the data.
Read Only Some number of caches have read-only copies of the data.
Read/Write Exactly one cache has a read-write copy of the data.
Read Transaction Holding read request, update is in progress.
Write Transaction Holding write request, invalidation is in progress.

Table B.5: Directory states for hardware coherence.

thrashing. For a more detailed example, see Section 3.3.2.
On the shared memory side, each block of data has a state that is stored in its

directory entry. Table B.5 lists the �ve basic memory block states, which are just
names for di�erent logical subsets of the possible states of a directory entry's pointers
and state bits. These are the same states used in Figure 3-3, except that Figure 3-3
combines the Absent and Read Only states.

The state transition diagrams use an implementation-independent notation to
model the set of directory pointers. That is, the protocol speci�cation is independent
of both the number of directory pointers, and how the pointers are actually imple-
mented. The meaning of the set of pointers (P) depends on the state of the memory
block. In the Absent state, P = ;, because no cache has a copy of the data. In
the Read Only state of the limited directory protocol, P = fk1; k2; : : : ; kng, where
n � p, and p is the maximum number of pointers. Note that the only di�erence
between the Absent and the Read Only states is in the size of P. In ASIM, the
limited protocol can be con�gured with directory entries that contain any number of
pointers (p). If p is equal to the number of processors in the system, then the limited
protocol becomes a full-map protocol. The Read Only state of the chained protocol
uses only one directory pointer (P = fig), and the rest of the pointers are distributed
to the caches with the data stored in the memory block. The Read/Write, Read
Transaction, andWrite Transaction states in both the chained and limited proto-
cols use only one directory pointer (P = fig). In the Read/Write state, the pointer
identi�es the cache that has permission to write the data block. In the Transaction
states, the pointer indicates the cache that is waiting to receive a response from the
memory module.
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Type Symbol Name Data? Pointer?
Cache to Memory RREQ Read Request

WREQ Write Request
MREQ Modify Request
REPU Replace Unmodi�ed

p
REPM Replace Modi�ed

p
UPDATE Update

p
ACKC Invalidate Acknowledge

Cache to Cache INV Chained Invalidation
Memory to Cache RDATA Read Data

p p
WDATA Write Data

p
MODG Modify Granted
INV Invalidate
BUSY Busy Signal

Table B.6: Protocol messages for hardware coherence.

Name Meaning
Invalid Cache block may not be read or written.
Valid Data is valid for software coherent accesses.
Dirty Data is valid and has been modi�ed.
Invalid Network Wait Invalid, network request is pending.
Valid, Network Wait Valid, network request is pending.
Dirty, Network Wait Dirty, network request is pending.

Table B.7: Cache states for software coherence.

B.2.2 Protocol Messages

The messages that are used by the hardware coherence protocols to keep the cache and
the memory states consistent are listed in Table B.6. TheData? column indicates the
four messages that contain the data of the shared memory block, and the Pointer?
column indicates the two messages that carry a directory pointer for the chained
protocol. See Section 3.4.1 for a description of the functions of each message.

B.3 Software Coherence Protocol

ASIM's software coherence protocol implements the processor access types speci�ed in
the bottom half of Table B.1. The protocol consists of six cache states (see Table B.7)
and four messages (see Table B.8). Since this coherence protocol only provides mech-
anisms for allowing the software to ensure sequential consistency, no directory states
are necessary for this protocol.

The ReadSoft and WriteSoft access types emulate the load and store functions
on a uniprocessor write back cache. When a cache block is Valid or Dirty, it may
be read or written. Writing to a Valid location using WriteSoft causes the block to
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Type Symbol Name Data?
Cache to Memory FETCH Fetch Data Request

FLUSH Flush Data
p

Memory to Cache FDATA Fetch Data Response
p

FACK Flush Acknowledgment

Table B.8: Protocol messages for software coherence.

become Dirty. Either a ReadSoft or a WriteSoft to an Invalid location causes a
miss in the cache. Upon a cache miss, the controller transmits a message to FETCH
the data into the cache. The FDATA response contains the data for the cache line.

The FlushSoft and Fence directives can be by the software to enforce sequential
consistency by forcing blocks to be removed, or ushed, from the cache. Studies such
as [40] propose methods for using a fence mechanism to guarantee correct execution
of parallel programs. If a cache block is Valid when it is ushed or replaced by
another block, then its cache line may be invalidated immediately. Otherwise, the
Dirty block must be written back to memory using the FLUSHmessage. The Fence
operation is used to ensure that all previous ush and replace operations have been
completed. A controller increments its fence counter for every FLUSH that it injects
into the network, and decrements the counter for every FACK that it receives from
the network. If a control thread issues a Fence, then it is not permitted to continue
until the fence counter reaches zero.

B.4 Interaction between Hardware and Software

Coherence

Although it is useful to study the hardware and software coherence protocols inde-
pendently, the protocol implemented in ASIM is actually a combination of both types
of protocol. Not only does the composite protocol allow each application to select its
own avor of coherence, but it enables the programmer to get the best of both worlds.
For example, a typical program sequence could perform the following accesses:

1. Use hardware coherent Read and Write operations on a synchronization vari-
able to enter a critical section of code.

2. Use software coherent ReadSoft and WriteSoft operations to read a data
structure, do some calculations, and write the data structure back to memory.

3. Flush all of the cache lines occupied by the data structure in the last step.

4. Fence to make sure that the data structure is no longer cached, and to make sure
that all changes made by the software coherent Write operations are written
back to shared memory.

5. Use hardware coherent Read and Write operations on a synchronization vari-
able to exit the critical section.
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This program sequence uses the hardware coherent protocol to synchronize proces-
sors, but relies on software coherence (enforced by critical sections) to guarantee the
correctness of the data structure. The combination of the Fence operation and hard-
ware coherent synchronization may be used to tolerate memory access latency and to
increase processor locality.

The above example uses hardware coherence for certain variables and software co-
herence for other variables. With a composite protocol, it is also possible to construct
data types by using both coherence types to access a single location. For example,
the ASIM programming environment implements write-once data by �rst perform-
ing a hardware coherent Write access, and then using software coherent ReadSoft
accesses. The protocol guarantees that on the �rst ReadSoft to a location, the pro-
cessor will receive the latest-and-greatest version of the data. However, the software
must make sure that the data is still valid for subsequent ReadSoft accesses by
assuring that the data is actually written only once.
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