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Abstract. Performance assertion checking is an approach to describing

and monitoring the performance of complex software systems. The idea is

simple: system implementors write assertions that capture their expecta-

tions for performance, the system is instrumented to collect performance

data, and then the assertions are checked automatically against the data

to detect violations signifying potential performance bugs. Because perfor-

mance assertions provide a means of �ltering data based on expectations,

they form a good basis for tools. Data indicating that a system is performing

as expected can be discarded automatically, while data indicating potential

problems can be brought to the attention of a person.

Performance assertions are useful for performance regression testing, con-

tinuous system monitoring, and performance debugging. Also, the act of

writing precise performance assertions helps designers and implementors to

understand better their own expectations for performance, and the guaran-

tees they can make about their systems.

PSpec is a language and a set of tools that embodies the idea of per-

formance assertion checking. A PSpec user writes performance assertions

in the PSpec language. These are input, along with a monitoring log, to a

checker tool that reports which assertions fail to hold for the log. Another

tool called the solver helps to �ll in constants in assertions using data in a

monitoring log. PSpec has been used to �nd performance bugs in the run-

time system of a new parallel programming language, providing evidence of

its utility.
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mance debugging, performance monitoring, performance speci�cation, re-
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Chapter 1

Introduction

Is it not strange that desire should so many years

outlive performance?

|William Shakespeare, Henry IV, Part II

Systems often do not perform as well as we would like or expect. De-

signing for good performance ahead of time and then debugging and testing

performance once a system is implemented are di�cult tasks. One problem

is that systems often develop performance bugs that go unidenti�ed for long

periods of time. By performance I mean any measure of resource usage, for

example, elapsed time, throughput or utilization. Designers and implemen-

tors have|or should have|expectations for how their systems will perform.

A performance bug is a failure of the system to meet those expectations.

Performance bugs may develop because of changes in the software (perhaps

enhancements or bug �xes), changes in the hardware platform, or changes

in the workload presented by users. Workload changes in particular may

invalidate assumptions that the implementation relies upon to achieve good

performance.

Performance bugs go unidenti�ed for several reasons. One is that the

users of a system may not know what performance to expect, and so they

cannot tell that performance is worse than it should be. Another reason

is that the gross e�ects of a performance bug may initially be small and

so the presence of the bug is not immediately obvious. A third reason is

that, while everyone may be aware that something is wrong with a system's

performance, the cause may be low-level and di�cult to track down.

13



14 CHAPTER 1. INTRODUCTION

1.1 The Idea

The main idea behind this research is that performance assertions can help

to detect performance bugs early on. The idea is simple: system implemen-

tors write assertions that capture their expectations for performance, the

system is instrumented to collect performance data, and then the assertions

are checked automatically against the data to detect violations signifying

potential performance bugs.

Performance assertions are useful for:

� Performance regression testing: once the performance of a program is

understood, it can be captured with a set of performance assertions.

When the program is changed, the assertions can be rechecked to

ensure that the performance still meets expectations.

� Continuous system monitoring: performance assertions can be checked

routinely during normal system use to determine whether performance

is meeting expectations and whether workloads satisfy the assumptions

that were made during system design.

� Performance debugging: successively more detailed performance as-

sertions may be helpful for pinpointing the location of performance

problems in the system.

� Clarifying expectations: the act of writing precise performance asser-

tions helps designers and implementors to understand better their own

expectations for performance, and what they can or cannot guarantee

about their systems.

Performance testing and debugging often involve processing vast quanti-

ties of data. One reason why these activities receive inadequate attention is

the dearth of good tools for dealing with the voluminous data. Performance

assertions provide a means of �ltering data based on expectations, and so

provide a good basis for tools. Data indicating that a system is performing

as expected can be discarded automatically, while data indicating potential

problems can be recognized and brought to the attention of a person.

1.2 The Approach

PSpec is a language and a set of tools that embodies the idea of performance

assertion checking. It is intended to be useful in concurrent systems, ranging
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Log

Program +
Monitoring

Solver Perf.
Spec.

Checker

assertion
  failures

Figure 1.1: The PSpec approach

from multitasking uniprocessor systems to small-to-medium scale multipro-

cessors to distributed systems. It may be applicable to highly parallel sys-

tems as well, but no particular consideration was given to the requirements

of such systems during the design.

The PSpec approach is illustrated in Figure 1.1. The components of the

approach are:

� Monitoring logs: A monitoring log is an abstraction of a program's

execution that contains everything that is relevant about its perfor-

mance for the purpose of assertion checking. The user supplies an

augmented version of a program that generates a monitoring log for

each run. The mechanism for generating monitoring logs is not part

of PSpec. Instead, PSpec de�nes a simple, general log interface that

can be implemented on top of many available monitoring systems.

� Performance speci�cations: These are documents containing perfor-

mance assertions, supplied by the user and written in the PSpec lan-

guage. The language is a notation for expressing predicates about
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monitoring logs. The language can express assertions about many

common kinds of performance metrics such as elapsed time, through-

put, utilization, and workload characteristics, given the appropriate

kinds of events in logs.

� The checker: Provided with a performance speci�cation and a moni-

toring log, the checker reports which assertions fail to hold for the run

represented by the log.

� The solver: The solver helps a speci�cation writer to �ll in constants

in assertions using data in a monitoring log. The idea is that speci�-

cations will sometimes contain numeric constants whose values must

be determined in part by measuring the system being speci�ed. The

solver can take a speci�cation with \unknown" symbolic constants

and, in particular situations, estimate values for those constants using

the data in a log. In essence, the solver packages up simple equation

solving capabilities and a linear regression solver in a form that is

convenient to use with speci�cations and monitoring logs.

The initial versions of the PSpec tools were implemented and tested in

the context of a multiprocessor simulator that provided a convenient testbed

for the research. Future plans call for applying the PSpec approach to real

(non-simulated) systems.

1.3 Relation to Other Work

The literature on computer systems performance is vast and varied. To put

PSpec in context, there are two classes of related work on performance that

I will discuss briey. The �rst class, supporting performance work, provides

the necessary foundation for PSpec. The second class, complementary per-

formance work, either has di�erent goals than the PSpec work, or takes a

di�erent and complementary approach to the same problem. Before talk-

ing about the relation to other performance work, it is worth mentioning

the connection to work on functional assertion checking, which provided the

initial inspiration for the PSpec work.

1.3.1 Assertion Checking

Performance assertions are somewhat analogous to functional assertions.

Several programming languages (including Euclid [22] and ANSI C [19]) pro-

vide constructs that allow users to write assertions that are checked during
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program execution. Such assertion checks are generally used to test simple

invariants about the state of a computation. To write a functional assertion,

typically, a programmer annotates code with an assert statement that tests

a predicate about the state of the computation and terminates the program

if the predicate evaluates to false. Although terminating the program might

seem rather drastic, the failure of a functional assertion generally indicates

a serious bug that would invalidate the remainder of the computation.

Performance assertions are like functional assertions in that they express

predicates about a program that can be checked for an execution. They di�er

from functional assertions in two ways. First, performance assertions may

apply to a series of program states rather than to a single state (for example,

to express something about the elapsed time for a computation). Second,

we probably do not want their failure to result in a crash; the computation

can complete correctly|it just might be slower or consume more resources

than expected.1

1.3.2 Supporting Performance Work

Supporting performance work falls into two categories: monitoring, and

performance characterization.

Monitoring, as I use the term, encompasses data observation (event

recognition) and collection (log production) facilities.2 As mentioned above,

monitoring is a necessary but separable component of PSpec. I have as-

sumed that a monitoring facility would be available, or could be built, to

produce event logs against which performance speci�cations can be checked.

Monitoring is useful for much more than performance assertion checking|

for example, it is used for tracing, timing, tuning, coverage analysis, and

performance characterization. Consequently, there is much active research

on mechanisms for e�cient monitoring in all kinds of systems. The PSpec

notion of a log is general enough to �t many existing monitoring systems

with little work. For examples of recent work on monitoring, see [3, 12, 20,

24, 28, 32, 33, 38, 43]. General discussions of monitor design may be found

in [11] and [18], and in other textbooks on performance measurement.

Performance characterization includes work on de�ning performance met-

rics, on characterizing workloads, and on techniques for determining values

1In a system with hard or soft real-time constraints a performance assertion failure

may indeed have consequences as serious as a functional assertion failure. This research

has not focused on such systems.
2Some authors de�ne monitoring to include data analysis and presentation.
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of metrics. Work in this area can provide guidance to speci�cation writ-

ers in developing and expressing expectations about performance. Work on

linear regression analysis has formed the basis for the design of the solver

and can help speci�cation writers to understand how to set up experiments

to obtain useful results from the solver. Many textbooks on performance

include discussions of performance characterization or linear regression, for

example, [10, 11, 18, 23].

1.3.3 Complementary Performance Work

PSpec is an approach to performance testing and debugging based on auto-

matically checking expectations captured in performance assertions. Other

work in performance testing and debugging has taken di�erent approaches.

Pro�ling tools, such as gprof [14], pixie [9], or Quartz [2], provide breakdowns

of where time is spent in programs. Such tools are useful for performance

debugging because the information they provide can be examined by some-

one who has an idea of where the time should go to determine whether

things are as expected. In some sense, using pro�ler output is like doing

manual performance assertion checking. Visualization tools provide picto-

rial displays of performance data|either static (e.g., graphs) or dynamic

(e.g., animations) [5, 13, 16, 25, 27]. They are useful because pictures can

clearly convey e�ects that may be hidden in a mass of numbers. Visualiza-

tion tools can help the user to discover the existence of bugs where he or

she did not expect them. As with pro�ling tools, a person must examine

the output to �nd problems|the process is not automated. For this reason

such tools cannot help with continuous monitoring.

Performance tuning involves �nding and eliminating bottlenecks in or-

der to improve performance. The pro�ling tools mentioned above are also

useful for tuning in addition to debugging. PSpec does not o�er any help

with tuning. In the tuning process the user does not necessarily have any

expectations about performance. In fact, tuning a program based on expec-

tations of where the bottlenecks are is generally a bad idea|programmers'

predictions are often wrong (e.g., see [31]). The tuning process would most

likely precede the writing of performance assertions.

PSpec also does not o�er any help with performance prediction. Perfor-

mance prediction usually involves either analysis or simulation|often before

a system has been implemented|and, again, is aimed at developing expec-

tations about performance rather than checking them. Some work in this

area is reported in [1, 8, 36, 37]. Once performance predictions have been



1.4. ROAD MAP 19

made they can be captured in performance assertions so that they can be

checked against actual performance.

Finally, work on verifying timing properties of programs has similar high-

level goals to PSpec but is a completely di�erent approach with di�erent

capabilities. It is similar in the sense that the goal is to discover whether

a system performs as expected or required. However, veri�cation work is

aimed at proving that a program or system meets time constraints, usu-

ally by analyzing its source code. Generally, the properties that are proved

are bounds, and the technique is used when meeting performance bounds

is critical rather than just preferable. Considerations of real-time systems

have motivated much of this work. Because predictable performance is so

crucial, such systems often rule out implementation techniques (such as

virtual memory) common in non-real-time systems. Building the systems

for predictable performance makes it easier to verify bounds; many non-

real-time systems do not have provable time bounds. Proving performance

properties that are not bounds (for example, distributions) is much more

di�cult. Even for proving bounds in real-time systems, veri�cation is gen-

erally di�cult and expensive. Though it would be nice to be able to prove

performance properties of programs|thus avoiding the overhead of check-

ing during operation|it is not a practical approach at this time for non-

real-time systems of any complexity. Some work on proving performance

properties includes [4, 15, 26, 35, 34, 40].

1.4 Road Map

The remainder of this dissertation is divided into six chapters and one ap-

pendix. Chapter 2 presents the model underlying the PSpec language, show-

ing how it allows a variety of performance properties to be captured, and

also discussing its shortcomings. Chapter 3 presents the PSpec language

through examples, and discusses how the choices and tradeo�s made in de-

signing the language a�ect design goals such as expressiveness, readability,

and e�ciency. Chapter 4 describes the checker and solver tools that have

been designed and implemented, and considers some other tools that might

be useful. The discussion includes a description of the tools' functionality, as

well as interesting aspects of their implementation. Chapter 5 describes my

experience using PSpec to �nd performance bugs in the runtime system of

a new parallel programming language. Chapter 6 describes possible short-

term extensions to the work to explore further the usefulness of the PSpec

approach, and to correct some of the remaining problems with the language.
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The chapter also includes a discussion of a direction for longer-term future

research. Chapter 7 concludes by summarizing the contributions of the work

and mentioning additional avenues for future research. The appendix con-

tains the reference manual for the language.



Chapter 2

Performance Assertion Model

In this chapter we examine the model underlying the PSpec language. The

model is basically an abstraction built on top of monitoring logs that helps

us to capture performance properties of interest for writing performance

assertions. These properties include elapsed times for computations (e.g.,

the elapsed time for a read operation in a �le system), throughputs (e.g.,

the number of bytes per second that can be read from �les), measures of

utilization (e.g., the percentage of time that a processor is idle), and work-

load characteristics (e.g., the frequency of read requests). After describing

the model, I will discuss each of these kinds of properties in detail and give

examples of how they are expressed using the model and informal mathe-

matical expressions. The chapter concludes with an evaluation of the model,

discussing the one shortcoming that has become apparent from working with

examples.

The discussion in this chapter is entirely in terms of the model, which

is more abstract and more general than the PSpec language. The language

imposes certain restrictions on the model, both to enable assertions to be

checked e�ciently and to keep the language simple. The next chapter de-

scribes the PSpec language and discusses the motivation for the restrictions

and their e�ect.

2.1 Concepts

To begin, we need a way to talk about the execution of a program whose per-

formance is of interest. As mentioned in the previous chapter, a monitoring

log is an abstraction of a program's execution that captures the information

that is relevant for expressing performance assertions.

21
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StartRead (tid = 102, ts = 1)

InterruptsO� (pid = 1, tid = 105, ts = 2)

InterruptsOn (pid = 1, ts = 3)

InterruptsO� (pid = 2, tid = 120, ts = 4)

CacheHit (tid = 102)

StartRead (tid = 104, ts = 5)

EndRead (tid = 102, ts = 6)

InterruptsOn (pid = 2, ts = 7)

EndRead (tid = 104, ts = 8)

StartRead (tid = 104, ts = 9)

CacheHit (tid = 104)

EndRead (tid = 104, ts = 10)

Figure 2.1: Sample monitoring log

A log is a sequence of typed events. An event type is a list of named

attributes. Event types are unique (branded by a name). An event supplies

a value for each attribute of its type. For example, we could have an event

type InterruptsO� with the attributes pid, tid, and ts. Events of this type

correspond to the disabling of interrupts for a processor, with values of the

attributes identifying the processor, the thread that caused interrupts to be

disabled, and the time at which the event occurred. Similarly, we could have

another event type InterruptsOn with pid and ts attributes, corresponding

to reenabling interrupts on the processor identi�ed by pid at time ts.

Figure 2.1 shows a representation of a sample log, containing events of

types InterruptsO� and InterruptsOn, as well as some other events with

suggestive type names. StartRead and EndRead events correspond to the

initiation and completion of read requests to a �le system. CacheHit events

appear between StartRead and EndRead events for a read request whenever

the request can be satis�ed from the �le system cache. In this example, all

of the event types except CacheHit have timestamps. All events are ordered

in the log, whether or not they have timestamps.

Events record useful information by themselves, but as suggested by the

interrupt and read cases, sometimes we are interested in subsequences of

the log between two events. For example, we might be interested in the

time that elapses between an InterruptsO� event and the corresponding

InterruptsOn event, or we might be interested in whether a CacheHit event
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appears between a StartRead for a request and its corresponding EndRead .

For this reason we introduce the notion of an interval.

An interval consists of all events in a log between a designated start

event and an end event. Like events, all intervals are of some named in-

terval type. Just as an event type has named attributes, an interval type

has named metrics that record values of interest for intervals of the type.

Metrics are computed from the events that comprise an interval. For ex-

ample, we could have an InterruptsDisabled interval type for intervals that

start at some InterruptsO� event and continue through the corresponding

InterruptsOn event, with a metric called time whose value is the di�erence

of the timestamps of the start and end events for the interval.

An interval is ordered with respect to other intervals and events by its

end event.1 Two intervals with the same end events, or an interval and its

own end event, are not ordered with respect to each other. Thus, given a

set of interval type de�nitions, a log can be viewed as a partially ordered

set of intervals and events.

Intervals are the primary abstraction used in writing performance asser-

tions. The typical modus operandi for writing assertions is to �gure out

what is to be asserted about the performance of a program, de�ne interval

types that capture the metrics needed for the assertions, and then write

predicates that apply over the set of intervals of the de�ned types.

2.2 Expressing Performance Assertions

Why should you believe that this model with logs, events, and intervals is a

good basis for writing performance assertions? In this section I will attempt

to persuade you that it is by showing how it allows a variety of di�erent

kinds of performance properties to be expressed.

2.2.1 Example: A Simple File System

In the following discussion I will primarily use a single setting for the ex-

amples to illustrate performance metrics. The setting is a unix-style �le

system, simpli�ed for our current purpose. The �le system provides opera-

tions to create, open, and close �les, to read and write sequences of bytes,

to reposition the �le pointer (seek) for the next read or write operation, and

to truncate �les to a given length. The interface is shown in Figure 2.2.

1This de�nition permits e�cient recognition of intervals in a log, as will become ap-
parent in Chapter 4.
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Create (fname): �d

Create a new �le with name fname. Returns �le identi�er �d.

Open (fname): �d

Open existing �le with name fname. Returns �le identi�er �d.

Read (�d, buf, size)

Read the next size bytes from �le �d, placing the data in buf.

Write (�d, buf, size)

Write the size bytes from buf to the current position in �le �d.

Close (�d)

Close �le �d.

Seek (�d, pos)

Change the current position in �le �d to position pos.

Truncate (�d, len)

Truncate �le �d to len bytes.

Figure 2.2: File system interface

In terms of implementation, �les are stored on a disk and cached in

memory to improve the performance of Read and Write operations. Writes

put the data in the cache and a background thread ushes new data to disk

periodically. Reads check the cache before going to disk for data.

In discussing the performance metrics for the �le system, we take the

point of view of one of its implementors. Thus we have knowledge of the

inner workings and the ability to instrument whatever parts of it we like

in order to collect event logs for performance assertion checking. Some of

the metrics we de�ne will be \interface level" (such as elapsed times for

operations) while others will be \implementation level" (such as the cache

hit rate).

The events that we log include calls and returns for each of the �le

system operations and hits in the cache during Read operations (they are

listed, with their attributes, in Figure 2.3). Other events will be introduced

as needed.

2.2.2 Response Time

The elapsed time for a computation is the amount of real time between

the initiation of the computation and its completion. As we saw above, we
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StartCreate (tid, ts), EndCreate (tid, ts),

StartOpen (tid, ts), EndOpen (tid, ts),

StartRead (tid, size, ts), EndRead (tid, ts),

StartWrite (tid, size, ts), EndWrite (tid, ts),

StartClose (tid, ts), EndClose (tid, ts),

StartSeek (tid, pos, ts), EndSeek (tid, ts),

StartTrunc (tid, len, ts), EndTrunc (tid, ts)

CacheHit (tid)

Figure 2.3: Events logged for the �le system

can express an elapsed time metric in the PSpec model by introducing an

interval type with a time metric. For example, we can compute the elapsed

time for �le system Read operations by de�ning such an interval type, Read,

demarcated by StartRead and EndRead events for the same thread. Then

we can express assertions on the bounds for elapsed times of Read intervals

or statistical assertions about the elapsed times. A bounds assertion might

be:

For all Read intervals r, r.time is at most one second.2

Some examples of statistical assertions are:

Over all Read intervals r, the average value of r.time is at most twenty

milliseconds,

and

The fraction of Read intervals in a log whose elapsed time is more

than ten milliseconds is at most 0.5.

We can only expect these statistical assertions to hold for logs that have

a su�cient number of Read intervals. To avoid spurious reports of assertion

failures we could ensure that we only check the assertions against logs that

contain enough data. Alternatively, we could modify the assertions to ex-

press the condition. If we determine that the statistical results should hold

when there are at least thirty Read intervals, we can rewrite the assertion

about averages above to say:

2I use the dot notation, as in r.time, to refer to a metric of an interval or an attribute
of an event.
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If there are at least thirty Read intervals, then over all Read intervals

r, the average value of r.time is at most twenty milliseconds.

Sometimes instead of writing elapsed time assertions for entire opera-

tions, we would like to write assertions about the elapsed time for subcom-

putations in an operation. For example, suppose that the implementation

of a Read operation involves obtaining a lock internal to the �le system.

We might like to assert that the wait times for the lock during Reads are

short in most cases (say, that the wait is at most one millisecond for ninety

percent of the operations). We can do this by adding another metric to the

Read interval type, lockwait, that records the amount of time spent waiting

for the lock during an interval.3 Using the lockwait metric we can write the

assertion:

The fraction of Read intervals whose lockwait metric is less than one

millisecond is at least 0.9.

Another kind of elapsed time assertion gives a model of the elapsed time

for an operation in terms of parameters of the operation, constants, and

times for subcomputations that comprise the operation. For example, if we

believe that the elapsed time for a Read that hits entirely in the cache is a

particular function of the size of the Read and the time spent waiting for

the lock, then it would be useful to write and check such an assertion to

discover whether our mental model is correct.

First, we add another metric to the Read interval type, hit, that indi-

cates whether a Read operation hit in the cache. This metric will be true

for intervals that contain a CacheHit event. We also add a metric size to

record the size of the Read; this value can be obtained from the StartRead

event. Then we can write an assertion about the model for the elapsed time.

Assuming that PerByteTime and Overhead are constants whose values are

known4, we can assert:

For all Read intervals r where r.hit is true, r.time is at most

PerByteTime� r.size+Overhead + r.lockwait:

3To do this we introduce event types corresponding to the requesting and granting of

the lock, and de�ne an interval type, LockWait, starting and ending at these event types.
Then we can compute the value of lockwait for a Read interval by adding up the elapsed

times of all LockWait subintervals within the Read interval.
4These constants can be determined in a number of di�erent ways; we will discuss this

when we talk about the solver in Chapter 4.
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2.2.3 Throughput

Throughput is a measure of the number of units of work that can be ac-

complished in a given time interval. For example, we might talk about the

�le system throughput in terms of the number of bytes of data that can be

read or written per second. In a transaction processing system throughput

might be the number of transactions completed per second. In a network,

throughput might be the number of bytes transferred per second.

Suppose we would like to write an assertion for the �le system about

the average Read throughput (in bytes per second) per thread that reads

data over the lifetime of a log.5 This is equal to the total number of bytes

read over the lifetime of the log, divided by the time spanned by the log,

and divided again by the number of di�erent threads that read data. Such

an assertion could be used for regression testing purposes; the test program

would be carefully constructed to set up an appropriate number of threads

reading data from specially constructed �les.

To write the assertion we must compute each of the three quantities.

The total number of bytes read over the lifetime of the log can be obtained

by summing, over all Read intervals r, the value of r.size. The time spanned

by the log can be computed by de�ning an interval type with a time metric

that starts with the �rst event in the log and ends with the last. Finally, the

number of di�erent threads that read data can be computed by adding a tid

metric to Read intervals (obtaining the value from the StartRead event) and

creating a set whose elements are the values of the tid metrics in all Read

intervals in a log. The size of this set is the number of di�erent threads that

read data.

Sometimes in talking about throughput we would like to take averages

over intervals of time smaller than the time spanned by the entire log. For

example, we might like to talk about average throughput per active thread

over ten-minute intervals or ten-second intervals. A thread is considered

active in an interval if it initiates any �le system activity in that interval.

We might expect a ten-minute average to reect the steady state throughput

per user, while a ten-second average would reect bursts of activity, if indeed

the usage is bursty.

Computing averages over �xed-size intervals (e.g., ten minutes or ten

seconds) is straightforward. For example, let us consider how we could

express an assertion about the average Read throughput per active thread

5The examples in this section are loosely based on a characterization of throughput
properties for a real �le system [30].
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over ten-minute intervals. First, we de�ne an interval type, TenMinutes,

corresponding to ten-minute intervals. These intervals can be identi�ed

either by using the timestamps on events, or by introducing explicit events

that are generated in the log every ten minutes. Then for each such ten-

minute interval we can compute the average number of bytes read per active

thread by adding up the sizes for all Reads requested in the interval and

dividing this by the number of active threads in the interval. (We can

compute the number of active threads as before|by creating a set of thread

identi�ers and computing its size.) Finally we can compute the average over

all ten-minute intervals of the average number of bytes read per thread in

each interval, obtaining the desired metric for use in an assertion.

2.2.4 Utilization

Utilization is a measure of how much capacity of a resource is actually used

at a given time or over a given time interval. For example, a measure of

utilization for a processor might be the percentage of time in a second that

the processor is not idle. A measure of utilization for a network might be the

percentage of available bandwidth that is in use over a given time interval.

Suppose that we would like to express an assertion about the utilization

of the disk in our �lesystem|perhaps that the disk never gets too full,

since performance could degrade signi�cantly in that case. In order to write

the assertion we need information about disk utilization in the log. One

way to get this is to generate events that report the disk utilization every

time it changes (any time new disk blocks are allocated or freed). If this

is too expensive in terms of logging cost we could instead generate events

periodically that report the amount of free disk space. Periodic reports

would probably give a close enough approximation to be useful. Assuming

that we have events of type DiskSpace with attribute freekbytes recording

the free disk space, it is a simple matter to write an assertion that says that

the available disk space is always above some minimum (say, ten percent of

the quantity DiskCapacity, which can also be recorded in an event). The

assertion is:

For all DiskSpace events d, d:freekbytes� 0.1 �DiskCapacity .

Another interesting utilization metric for the �le system might be the

average processor utilization caused by �le system activity. In order to

determine this we need information in the log about the processor time

expended on �le system requests, and also about processor time expended



2.2. EXPRESSING PERFORMANCE ASSERTIONS 29

for background �le system activity (e.g., the background thread that ushes

the cache to disk). Timestamps in events typically give us information about

real time, not processor time, so processor time events must be generated

explicitly.

Each time a thread initiates or completes a �le system request we could

generate an event to record the cumulative amount of processor time used

by the thread at that point; call these event types StartFSCPU and EndF-

SCPU. Also, for all background threads in the �le system, we could generate

events of these types each time one of those threads starts or stops comput-

ing. Then we could de�ne an interval corresponding to processor time used

on behalf of the �le system, demarcated by StartFSCPU and EndFSCPU

events for the same thread, and with a metric, cputime, whose value is the

di�erence of the cumulative processor times at the start and end of an in-

terval. Adding up the cputime metrics from all such intervals gives us the

processor time taken by all �le system operations in a log, and dividing by

the elapsed time spanned by the log then gives us the average processor

utilization caused by the �le system.

2.2.5 Workload Properties

Implementors often make assumptions about the way their systems will be

used in order to optimize their code for the common case. If such assump-

tions are incorrect, or become incorrect over time as the usage patterns of

the system change, performance will degrade. Often such assumptions are

not clearly documented, and the implementors themselves may forget their

assumptions as time passes. As a result, when the system fails to perform

well it is not obvious what the cause is or how to �x it. Also, because

of the failure to document these assumptions, clients may use the system

in non-optimal ways. If clients had documentation about how to use the

system to achieve good performance, or at least received a warning when

their usage patterns failed to match the implementors' assumptions, causes

of poor performance might be found and �xed earlier than they would be

otherwise.

Assertions about workload properties fall into two categories: those that

are easy to express purely in terms of the requests at the interface to the

system, and those that are not. Often the latter case is due not to limitations

of the PSpec model, but rather to the di�culty of describing precisely in any

model how to recognize workloads that lead to good (or bad) performance.

This is particularly true when the history of requests to a system, by a�ecting
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the system's state, also a�ects the performance of future requests. This

happens, for example, in �le systems that have caches or that do read-

ahead.6 One of the strengths of the PSpec assertion checking approach is

that we can write either interface-level or implementation-level assertions,

depending upon which is more convenient for the properties we want to

express.

An example of a workload property that can be expressed in interface-

level terms is the rate of Read requests to the �le system, either overall

or on a per-thread basis. To write the assertion that the average overall

Read request rate is at most ten requests per second (or equivalently, that

the average time between requests is at least 0.1 seconds), we can de�ne an

interval type, ReadRequestInt , corresponding to the intervals between Read

requests (starting and ending with StartRead events). These intervals will

have a time metric as usual. The assertion is then:

Over all ReadRequestInt intervals r, the average value of r.time is at

least 0.1 seconds.

If we want to talk about the average Read request rate per thread, we

can de�ne ReadRequestInt intervals for each thread, matching start and end

events using tid attributes. Then we can compute, for each di�erent thread

identi�er appearing in a Read request interval, the average elapsed time for

Read request intervals for that thread, and write the assertion to apply over

all such thread identi�ers.

An example of a property that is not easy to express in interface-level

terms is that �les are accessed in such a way as to make the cache an e�ective

implementation strategy. In a sense, an assertion about the expected cache

hit rate expresses a property of the workload; for example, if clients only read

�les that they have not read before, or if they read too many new �les before

reading old ones, then the hit rate will be poor. This workload property is

expressed in terms of an implementation-level concept, the cache.

To write an assertion about the cache hit rate for �le system Reads, we

need to measure the percentage of Read operations that can avoid going to

disk because the required data is in the �le system cache. Alternatively,

we could de�ne the Read cache hit rate to be the percentage of bytes that

are read from the cache rather than from disk instead of the percentage of

operations. Either of these metrics is easily expressed in the model. We will

use the �rst de�nition for illustration.

6Read-ahead involves initiating Reads for data that the client might be expected to
request in the future based on past requests.
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In our �le system setting, a CacheHit event is generated during a Read

operation whenever the Read can be satis�ed entirely out of the cache,

without going to disk. Earlier, in our discussion of models for elapsed times

of Read operations that hit in the cache, we used this fact to de�ne the Read

interval type with a boolean metric hit that is true for Reads that hit in

the cache. We can use this interval de�nition for writing an assertion about

cache hit rates. For example, we can assert that:

The fraction of Read intervals whose hit metric is true is at least 0.75.

Another example of a workload property is the amount of concurrency

present in requests. For example, the elapsed time for a �le system op-

eration that involves obtaining a lock is a�ected by the presence of other

concurrent operations also vying for the lock. We might want to write an

assertion about the elapsed time for such an operation under the condition

that there are no concurrent requests. Another assertion might say that

the level of concurrency is usually low (and thus, even when operations in-

clude lock waiting times they are not very long). We can imagine writing

such assertions in interface-level terms (identifying operations that overlap

in the log) or in implementation-level terms (the amount of contention for

the lock). In the PSpec model, these interface-level assertions are di�cult to

express, while the implementation-level assertions are straightforward. We

will look at examples to see why this is true.

An interface-level assertion for �le system Reads might be something

like: \the elapsed time for a Read operation that is not concurrent with any

Write operations is at most PerByteTime� size+Overhead." The question

then is, how can we identify Read operations that are not concurrent with

Write operations? Three approaches that initially come to mind.

One approach is to write the interface-level assertion with a double quan-

ti�cation over all Read and Write intervals. Assuming that we have de�ned

a Write interval type similar to the Read interval type we have been using,

we can add metrics to Read and Write intervals that record the timestamps

of their start and end events, say startts and endts. Then we can write:

For all Read intervals r,

if for all Write intervals w , w.endts < r.startts or

w.startts > r.endts then

r.time � PerByteTime� r.size+Overhead:

This assertion �ts with the model, but as we will see in the next chapter, it

is ruled out of the PSpec language for e�ciency reasons.
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A second approach is to introduce a boolean metric for Read intervals

that will be true whenever there are no overlapping Write intervals, and

then to write the assertion to apply to all Read intervals for which this

metric is true. This idea will not work, however, because there is no way

to compute the value of this metric in the PSpec model given just the start

and end events for Reads and Writes. The problem is that the value for

a metric of an interval must be computed using only the events contained

inside the interval. So, we can write an expression to compute whether any

Write intervals start or end inside a Read interval, but we cannot compute

from a Read interval whether there are Write intervals that start before the

Read and end after it. Possible changes to the PSpec model to enable the

metric to be computed are discussed in Chapter 6.

A third approach is to generate an event in the log for each Read interval

indicating whether there are any Writes concurrent with the Read; this

requires keeping track of concurrency in the �le system itself. This would

enable us to write the assertion, but it is not a very satisfactory solution

because of its cost in terms of additional time and complexity in monitoring.

On the other hand, we can express implementation-level assertions, such

as \the elapsed time for a Read operation where there is no contention

for the �le system lock is . . . ." This would involve generating an event

in the log corresponding to each lock request, indicating whether the lock

was immediately available. Such an event is easy to generate, and does

not involve introducing new state into the �le system as would be required

to keep track of concurrency. If we wanted to avoid generating this extra

event, we could simply examine the elapsed time for the lock acquisition

(using LockWait intervals as before) and check whether it was bounded by

a small constant. This would accomplish the same purpose, which is to give

a model for the elapsed time of a Read in terms of the size of the Read for

the case when there is no chance of large variability in the elapsed time due

to lock contention.

Some other examples of potentially interesting assertions about the work-

load for the �le system include:

� Many �les have short lifetimes.

� Many �les accessed are small.

� Many �les accessed are read in their entirety.

� Many �les accessed are read sequentially.
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� Many �le opens are for �les in the current directory.

Of course, \many," \small," and other such qualitative terms must be made

quantitative in order to write the actual assertions. Given that, all of the

above assertions can be expressed in PSpec (perhaps by adding some addi-

tional events over those already de�ned).

2.3 Evaluation of the Model

One major shortcoming of the PSpec model has emerged from the examples

that I have studied. We just saw an instance of it when we tried to express

interface-level assertions about concurrency of Reads and Writes in the �le

system. The troublesome aspect of the model is that metric values can be

computed only from the events or subintervals within an interval, but there

are cases where we would like to compute a metric's value using events

outside the interval. In particular, it is easy to construct examples where

we want to use all of the events from the beginning of the log up to some

point in an interval to compute one of its metrics. The reason for this is

that we want to compute some aspect of the state of the program execution

at a given point based on the information in the log. In the example above,

the state of interest is whether there is a Write operation pending when a

Read starts (or vice versa). In Chapter 5 we will see another example where

the ability to compute state is desirable.

Lacking the ability to compute state, the alternative is to record an event

containing the state information at the point in the log where it is needed.

This solution works, but it is inelegant and potentially expensive, because we

have to generate additional events in the log and, perhaps, keep additional

state around in the program being monitored. The current notion of an

interval as a self-contained unit is appealingly simple, but the model should

probably be changed to allow more exibility in using information that is,

after all, already present in a log. Chapter 6 describes how we might �x the

model and the e�ect that this would have on the PSpec language.

Aside from this one shortcoming, the model has proved general and

exible enough to express many common kinds of performance properties of

interest to system implementors and users. We have seen examples of how to

express assertions about response time, throughput, resource utilization, and

workload characteristics. In each of these cases, we can express assertions

about bounds and properties of distributions (such as means, variances,

and percentages). In addition to being expressive, the model is simple and
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applicable to many di�erent kinds of systems, at many di�erent levels of

abstraction.



Chapter 3

The PSpec Language

The performance assertions we saw in the previous chapter were written

using informal mathematical expressions and the notion of logs with events

and intervals de�ned in the PSpec model. The PSpec language, which is

based on the model, is a notation for writing performance assertions precisely

so that they can be checked automatically and e�ciently by machine. These

assertions, contained in performance speci�cations, are input along with a

monitoring log to the checker and solver tools, as described in Chapter 1.

Several questions had to be answered in designing the language:

� How are event types declared?

� How are interval types declared? In particular, how are the start and

end events for an interval type identi�ed and how are metrics de�ned?

� How are assertions written?

This chapter answers these questions, presenting the features of the language

through a series of examples. A complete reference manual for the language

appears in Appendix A.

As mentioned in the previous chapter, the PSpec language imposes re-

strictions on the model and on the allowable assertions to keep the language

e�ciently checkable and relatively simple. This chapter concludes with a

discussion of the e�ects of the restrictions on the kinds of performance prop-

erties that can be expressed in the language.

3.1 Why a Special-Purpose Language?

Before considering the particulars of the PSpec language de�nition, it is

reasonable to ask why a special-purpose speci�cation language based on a

35
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particular model of logs need be designed at all. After all, one can write

programs to process logs in any general purpose programming language.

There are at least three reasons why having a special-purpose language is

a good idea. First, it is easier to write speci�cations. Programmers have

had the ability to write log processing programs all along, and yet they do

not do it very often. This is because the programs are tedious to write and

without an established framework for log formats and log processing tools,

the ad hoc log processing programs tend to get out of date with respect to the

system. This means that they will not be used on a regular basis throughout

the lifetime of the system, and they will not necessarily be understood by

anyone but their implementors.

Second, speci�cations written in a special-purpose language will be eas-

ier to read. With severe discipline, one could perhaps write a C program

in which it is clear what assertions are being made about the contents of

a log. More likely, the C program would be much more di�cult to read

than a PSpec speci�cation. This is because C, or any other general purpose

programming language, has many concepts that are unnecessary for perfor-

mance speci�cation or are not really geared to the purpose. The reader gets

bogged down in unnecessary details.

Third, for research purposes, it is easier to discover what concepts are

useful for performance assertion checking if we can limit the concepts avail-

able to a speci�cation writer. With a special-purpose speci�cation language

we are much more likely to learn what concepts work and what is really miss-

ing or incorrect than we would if the speci�cation writer could just code up

new abstractions or modify old ones using a general purpose language.

3.2 Overview

Here is a quick preview of how the questions posed in the introduction to

this chapter have been answered.

An event type declaration gives the name of the event type, the names

of its attributes, and indicates whether or not events of the type are timed

(have implicit timestamp attributes). Timestamps are implicit so that the

language can provide special functions that track measurement error. Events

are restricted to have numeric-valued attributes.1

An interval type declaration gives the name of the interval type, indicates

1This is not a fundamental restriction, but rather was made for convenience in the
current language design.
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how to recognize instances of the type in a log, gives the names of its metrics,

and says how to compute their values. Interval start and end events are

identi�ed primarily by their event type, and secondarily by a predicate on

the values of the attributes of the event. There are two di�erent kinds

of interval declarations, to accommodate intervals generated recursively or

non-recursively. Metric values are de�ned by expressions in the language

that can use the start and end events for an interval, and that can iterate

in restricted ways over the events and subintervals within the interval.

Assertions are predicates (boolean-valued expressions) in the language;

they can include expressions that iterate in a restricted way over the events

and intervals in a log, as well as expressions written using a variety of built-in

operators.

A performance speci�cation collects together a set of event and interval

declarations and assertions, to be evaluated and checked against a monitor-

ing log.

3.3 Language Description

We are now ready to see the features of the PSpec language in more detail.

The examples used for illustration are based on the simpli�ed �le system de-

scribed in the previous chapter. Along the way we will see how several of the

assertions that were described informally in that chapter can be expressed

precisely in the PSpec language.

3.3.1 Simple Declarations and Assertions

The simplest way to identify an interval type is to give the types of its start

and end events, and the simplest kind of metric de�nition is one that uses

only the values of the start and end event attributes. Suppose we want

to de�ne a simple Read interval type, corresponding to a �le system Read

operation, with a time metric whose value is the elapsed time for an interval

of the type. We will ignore for the moment the need to match up StartRead

and EndRead events for the same thread.

We start by declaring the event types of interest:

timed event StartRead ();

EndRead ().

These declarations de�ne StartRead and EndRead to be timed event types

with no attributes.
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Now, we can de�ne the interval type:

interval Read =

s: StartRead,

e: EndRead

metrics

time = timestamp(e) � timestamp(s)

end Read.

This declares an interval of type Read to start with an event of type Start-

Read and to end with the next event of type EndRead after the start event.

s and e are names for the start and end events for an interval of the type.

Each interval of the type is declared to have a metric, time, whose value is

obtained by subtracting the timestamp of its start event from the timestamp

of its end event. (timestamp is a built-in function on timed events).

One simple kind of assertion is a predicate that applies to all events or

intervals in a log. For example, given the Read interval type declaration, we

can write an assertion about all intervals in the log of this type. Suppose we

would like to say that \the elapsed time for any Read operation is at most

ten milliseconds." We can do this with the following assertion:

assert f& r : Read : r.time � 10 msg.

This assertion can be read as: \for all intervals r of type Read , the value of

r 's time metric is at most ten milliseconds."

An assertion is simply a predicate in the language. The assertion above

consists of a type of expression called an aggregate expression (it includes

the braces and everything between them). An aggregate expression pro-

vides a way to generate a sequence of values and then combine them with

an operator. In the aggregate expression above we generate a sequence of

intervals by iterating over all intervals in the log of a speci�ed type, Read,

binding each in turn to the dummy variable r. The sequence of values to

be combined with the operator & is the sequence of booleans resulting from

evaluating the expression r.time � 10 ms for each value bound to r.

The value expression in an aggregate expression (the expression that

appears after the second colon) may itself contain aggregate expressions,

within limits. The rule is that an aggregate expression that iterates over

events or intervals in a log, called a log-aggregate expression, may not refer

to the dummy variables of outer aggregate expressions.2

2The quali�cation of \iterating over events or intervals in a log" is added because later
we will see another kind of aggregate expression for which this rule does not apply.
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Another simple kind of assertion computes a value using all events or

intervals in a log and then asserts something about the value. For example,

suppose that we would like to assert that \on average Reads take at most

�ve milliseconds." The following assertion expresses this:

assert fmean r : Read : r.timeg � 5 ms.

This assertion contains an aggregate expression that uses the mean aggre-

gate operator to compute the average value of the time metric for all intervals

of type Read. It then checks that this mean is at most �ve milliseconds.

It is also worth mentioning here what the expressions 5 ms means. The

timestamps for events are values in some internal time unit. The expression

5 ms means the number of internal time units equivalent to 5 milliseconds.

Thus, ms is an operator that scales a number so that it is comparable to

another number of internal time units. Other time unit operators are cyc, us,

sec, and min, for cycles, microseconds, seconds, and minutes, respectively.

3.3.2 More on Identifying Intervals

So far, we can identify intervals that start with a particular type of event

and end with the next event in the log of a particular type. Because this

is not always expressive enough, the PSpec language gives a speci�cation

writer two additional ways of controlling interval identi�cation. One is to

allow start and end events to be constrained with a predicate in addition

to a type. The other is to provide a variation on interval declarations that

works for intervals corresponding to recursive computations.

Predicates on events. Predicates on start and end events give more con-

trol over how events are matched up to form intervals. For example, if

multiple threads are doing Read operations, we need to match up StartRead

and EndRead events for the same thread to form Read intervals. We can

modify the interval type declaration to express this.

First, we add a tid (thread identi�er) attribute to our events (also taking

this opportunity to add a size attribute to StartRead events for later use):

timed event StartRead (tid, size);

EndRead (tid).

Given these de�nitions, we can alter the interval type declaration to

specify that the thread identi�ers of the start and end events of an interval

must match:
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interval Read =

s: StartRead,

e: EndRead where e.tid = s.tid

metrics

time = timestamp(e) � timestamp(s),

size = s.size

end Read.

Here we have added a where clause following the declaration of the end event

type. The \where" clause contains a predicate that restricts the end event

for a Read interval to have the same thread identi�er as the start event for

the interval. Using this declaration, an interval of type Read starts with an

event of type StartRead and extends through the next event of type EndRead

with the same tid as the start event.

In general, the predicate for a \where" clause following an end event may

be any boolean-valued expression and may refer to the start and end events

for the interval. The only restriction is that the predicate may not contain

an aggregate expression.3 A \where" clause may also be attached to a start

event, in which case it can refer to the start event but not the end event.

\Where" clauses on start events do not appear to be as useful as \where"

clauses on end events, though one could imagine some uses. For example, if

we wanted to de�ne an interval type corresponding to Reads of a �xed size

(say 8192 bytes), we could add a \where" clause to the start event:

s: StartRead where s.size = 8192.

Note that the start and end event types in an interval declaration may

be the same. For example, if we wanted to write a workload assertion about

the rate of Read requests from any thread (as in the previous chapter), we

could de�ne an interval:

interval ReadRequestInt =

s: StartRead,

e: StartRead where e.tid = s.tid

metrics

time = timestamp(e) � timestamp(s)

end ReadRequestInt.

3It is not clear what an aggregate expression in a \where" clause for a start or end
event should mean if it were permitted.
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An interval of type ReadRequestInt starts at an event of type StartRead and

extends to the next event of type StartRead with the same thread identi�er.

Thus a StartRead event can both start one interval and end another interval.

However, there is no possibility that an event could start and end the same

interval, since by de�nition the end event of an interval always follows the

start event in the log. The last StartRead event in the log does not start a

ReadRequestInt interval because there is no matching end event.

Recursively generated intervals. An interval has been de�ned thus far

to have its end event be the next event in the log after its start event that has

the speci�ed type and that satis�es the \where" clause (if one is present).

Consider though what would happen if we were generating start and end

events for intervals corresponding to recursive procedures. The �rst end

event generated for the innermost recursive call would be taken as the end

event to match all previous unmatched start events for intervals of the type.

This is clearly not what is intended. To handle this case, there is a variant of

an interval type declaration called a nested interval type. A nested interval

type is de�ned by including the keyword nested before the declaration. The

end event for a nested interval i is de�ned be the next event in the log after

i's start event that is of the speci�ed type and that satis�es the \where"

clause (if one is present), and in addition, that is not also the end event for

another interval of the same type that started after i.

For example, suppose we wanted to de�ne intervals corresponding to

calls of a recursive depth-�rst search procedure. The declaration might be:

timed event StartDFS (); EndDFS ();

nested interval DFS =

s: StartDFS, e: EndDFS;

end DFS.

If we invoked the depth-�rst search procedure on a tree with a root and two

leaf nodes, we would end up with three DFS intervals, one corresponding to

the call on the root and one for each of the two leaves. The only di�erence

between nested and non-nested interval declarations is how the end event is

identi�ed.

3.3.3 More on Expressing Assertions

We have seen how aggregate expressions allow us to compute functions over

all events or intervals of a speci�ed type in a log. Sometimes, however,
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we would like to compute over a subset of events or intervals of a type.

For example, suppose that instead of writing an assertion about all Read

intervals, we would like to assert that \Reads of no more than 4096 bytes

take at most ten milliseconds." We can express this assertion as follows:

assert f& r : Read where r.size � 4096 : r.time � 10 msg.

We are again using an aggregate expression, but this time we have added a

\where" clause to restrict the range of the aggregation. Now, rather than

checking the time bound for every interval of type Read, we only check those

intervals where the size of the Read is at most 4096 bytes.

The \where" clause here is similar to the \where" clause that can fol-

low interval start and end events. It contains a predicate that may refer to

the dummy variable for the aggregate expression (r in this example). The

\where" clause in an aggregate expression may itself contain aggregate ex-

pressions, though any contained log-aggregate expressions may not refer to

the dummy variable.

3.3.4 More on De�ning Metrics

Thus far, we have seen how to de�ne a �xed number of metrics for an inter-

val and to compute their values using the start and end events. Additional

features in the language allow us to compute metric values using all of the

events or subintervals within an interval, and to declare a collection of met-

rics whose number depends on the contents of the log.

Extending metric de�nitions. To allow metrics to be computed using

all of the events or subintervals within an interval, the notion of aggregate

expressions is extended and aggregates are allowed to appear in metric def-

initions. To illustrate, suppose that we would like to add a hit metric for

Read intervals that is true whenever a Read hits entirely in the cache. As

described in the previous chapter, we detect this case by the presence of a

CacheHit event between the start and end events for a Read interval. Then

we could, for example, use the metric to assert that the cache hit rate is at

least seventy-�ve percent.

First, we declare the CacheHit event type, which can be untimed:

event CacheHit (tid).

Then we de�ne the hit metric for Read intervals (which would be added to

the earlier Read interval declaration):
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hit = fcount c : CacheHit where c.tid = s.tidg 6= 0.

The de�nition of hit uses aggregate expressions in a new way. Implicitly,

when an aggregate expression appears in an assertion or other \top-level"

expression in a speci�cation, it ranges over all events or intervals in the log.

We saw this type of aggregate expression in the previous examples. When

an aggregate expression appears in a metric de�nition, however, it is de�ned

to range over just the events or intervals that occur between the start and

end events of the interval for which the metric is de�ned. Thus for each

Read interval, the value of its hit metric will be based just on the CacheHit

events between the StartRead and EndRead events for the interval. Also,

this de�nition of hit uses the special aggregate operator count to count the

number of CacheHit events in the interval with the same thread identi�er as

the start event. Count is special because it does not have a value expression

after the range speci�cation. It is really just a convenient shorthand for the

expression f+ c : CacheHit . . . : 1g

We can now express the assertion about the cache hit rate for Reads:

assert fcount r : Read where r.hitg / fcount r : Readg � 0.75.

The expression in this assertion counts the number of Read intervals in the

log for which hit is true, divides by the total number of Read intervals, and

then checks whether the result is at least 0.75.

As mentioned above, aggregate expressions in metric de�nitions, like

aggregate expressions in assertions, can range over intervals as well as events.

What does this mean? An interval i is contained within another interval j

if i's start and end events occur between j's start and end events. In this

case we call i a subinterval of j. As an example of how subintervals can

be useful, consider the example from the previous chapter of an assertion

about the lock waiting time during a Read operation. Let us see how we

can express the assertion that \the lock wait time during Read operations

is less than one millisecond in at least ninety percent of the cases."

We de�ne a LockWait interval that starts with a lock request event, ends

with a lock granted event, and has a time metric giving the elapsed time for

the interval:

timed event LockRequest (tid);

LockGrant (tid);

interval LockWait =

s: LockRequest,
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e: LockGrant where e.tid = s.tid

metrics

time = timestamp(e) � timestamp(s)

end LockWait.

Then we can add a metric to the Read interval type that adds up the total

time spent waiting for the lock during a Read:

lockwait = f+ l : LockWait where l.tid = s.tid : l.timeg.

Finally, we can write the assertion:

assert fcount r : Read where r.lockwait < 1 msg /

fcount r : Readg � 0.9.

Aggregate expressions appearing inside interval type declarations (in

metric de�nitions) may not contain nested aggregate expressions, either in

the \where" clause or in the value expression|an important di�erence from

aggregate expressions in assertions.

Dynamic numbers of metrics. The number of di�erent named met-

rics for an interval is statically determined when a speci�cation is written.

Sometimes, though, we need a dynamic number of metrics. For example,

we might want a metric per processor, or per thread, where the number of

processors or threads is determined when a program runs rather than when

the speci�cation is written. A data type called a mapping gives us the abil-

ity to de�ne a dynamic number of metrics. A mapping is a partial function

from integers to values. The domain of a mapping is a set of integer values.

A mapping associates each of its domain values with a range value of some

type, not necessarily integer.

As an example of how mappings can be useful, let us consider a work-

load property discussed in the previous chapter|the average rate of Read

requests to the �le system on a per-thread basis. Suppose we would like to

say that \the average Read request rate per thread is at most �ve requests

per second." This translates to an average time between requests from a

given thread of at least 0.2 seconds. Our plan is to use the ReadRequestInt

interval type de�ned earlier to compute a metric whose value is a mapping

from integer thread identi�ers for threads that make Read requests to the

average time between requests for the threads. Then we can write the de-

sired assertion that applies over all elements of the mapping, using a new

form of aggregate expression. The interval for which the metric is being
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de�ned is, in fact, the whole log. The PSpec language has a special way

to de�ne metrics for the whole log without introducing an explicit interval

type; a def statement introduces a name and binds it to the value of an

expression.

Figure 3.1 summarizes the operations for manipulating mappings. The

constructor, !, forms a single element mapping whose single domain value

is the value of its left argument (which must be an integer). This domain

value is mapped to the value of the right argument. The indexing operation,

m(i), for mapping m and domain value i, returns the value to which i is

mapped by m. It is an error if i is not in m's domain. The operation

mapped(m,i) returns true if integer i is in m's domain, and false otherwise.

Operations are also provided for combining mappings. These are useful

for building multi-element mappings from single-element mappings and for

combining multi-element mappings. The result of applying a built-in op-

eration op to a sequence of mappings is a new mapping whose domain is

the union of the domains of the component mappings and whose value at

a domain element i is the result of applying op to the values to which i is

mapped in those component mappings that have i in their domains. For

example, Figure 3.2 shows the result of combining two mappings, m1 and

m2 , with the mean operator to produce a new mapping.

The de�nition of mapping combination is motivated by the intended use

of mappings to represent a dynamic number of metrics. A domain value

can be viewed as an identi�er for a metric and the value to which it is

mapped is the metric's value. Thus, combining mappings with di�erent

metric identi�ers (disjoint domains) results in a new mapping containing

all of the metrics of the component mappings. Combining mappings that

share a metric identi�er (domain value) results in a new mapping where

that metric identi�er is mapped to the combined values of the component

metrics.

Getting back to our assertion, we can de�ne the desired mapping from

thread identi�ers to the average time between Read requests for the threads

as follows:

def RMap = fmean r : ReadRequestInt : r.tid ! r.timeg.

This statement binds the identi�er RMap to the mapping constructed by the

given aggregate expression. The aggregate expression constructs a sequence

of single-element mappings, one per ReadRequestInt interval, each mapping

the thread identi�er for the interval to the elapsed time for the interval.

These single element mappings are then combined with the mean operator,
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e1 ! e2: construct a mapping

m(e1): return e1 's mapped value

mapped(m, e1): test whether m maps e1

op(m1, m2): combine mappings m1 and m2

Figure 3.1: Mapping operations. e1 and e2 are expressions, and m is a

mapping.

Let:

m1 = (1 ! 100, 2 ! 200)

m2 = (1 ! 200, 3 ! 100)

Then:

mean(m1, m2) = (1 ! 150, 2 ! 200, 3 ! 100)

Figure 3.2: Example of combining mappings. m1 and m2 are mappings.

mean is a built-in operator de�ned on mappings.

to produce a mapping whose domain is the set of thread identi�ers appearing

in ReadRequestInt intervals and whose value for a given thread identi�er is

the mean of the times of ReadRequestInt intervals for that thread.

Given this mapping, we can express the desired assertion using a special

form of aggregate expression that iterates over the domain of a mapping

rather than over a sequence of intervals or events.

assert f& t in domain(RMap) : RMap(t) � 0.2 secg.

The range of iteration in this aggregate expression is the domain of the

mapping bound to RMap. For each domain value t, the assertion checks

that RMap(t) is at least 0.2 seconds.

3.3.5 Speci�cations

A performance speci�cation is a document that pulls together a set of per-

formance assertions with their accompanying declarations. A speci�cation

has the form:
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perfspec specid

statements

end specid

where specid is an identi�er that names the speci�cation and statements is

a list of event type declarations, interval type declarations, de�nitions, and

assertions of the kind we have seen throughout this chapter. The speci�-

cation name can be used to distinguish the event type names declared in

one speci�cation from those declared in another, if desired. (The connection

between event type names in speci�cations and event types in logs is not

prescribed by the PSpec language de�nition.)

3.3.6 Measurement Error

We have now discussed all of the important PSpec language features except

one that does not directly have to do with the model. The one additional

feature is a data type, called a triple, that is provided to help track measure-

ment error resulting from quantization e�ects in the clocks used to generate

timestamps.

Measurement error can occur when timestamps are recorded as a number

of clock ticks, where the clock tick time is larger than the cycle time of the

machine.4 Typically, we measure the elapsed time to execute a piece of code

by reading the number of clock ticks at the beginning and end, and taking

the di�erence. This gives us only an approximation to the elapsed time: it is

somewhere between one clock tick more than the di�erence of the readings

and one less than the di�erence (assuming the measured time is non-zero),

depending upon where in the tick interval we happened to read the clock.

If we compute an elapsed time for some computation of interest by adding

up a collection of measurements, the potential error in the result must be

taken into account if the data is to be interpreted properly. This is partic-

ularly important when the elapsed times being measured are only a small

number of clock ticks in duration, because then the error is quite large rel-

ative to the measured time. An example of a consequence of ignoring mea-

surement error when writing performance speci�cations is that a response

time bounds assertion might fail because the measured time appears to be

longer or shorter than expected, when in fact it is within the expected range

to within measurement certainty.

4It is not unusual for currently available workstation systems to have clock tick intervals

lasting as long as 10 milliseconds, whereas their cycle times are usually measured in
nanoseconds.
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The PSpec language provides triples as a way of keeping track of bounds

on measurement error due to clock quantization e�ects. A triple contains a

measured time interval and its associated error bounds, plus and minus. For

example, the triple [5,1,1] represents a measurement of �ve ticks with errors

of at most one tick in either direction. The triple [0,1,0] represents a mea-

surement of zero ticks with a possible error of plus one tick; the error in the

minus direction is zero, since we assume that the measured interval cannot

have a negative duration. The language provides operators that construct

triples and that compute with triples, described in detail in Appendix A.

One very useful operator is the elapsed function on intervals, which returns

a triple representing the elapsed time for an interval, computed from its

start and end event timestamps.

One might argue, justi�ably, that bounds on measurement error are not

good enough. Intuitively, it seems that when we measure an elapsed time

of t by di�erencing timestamps, not all values between t � 1 and t + 1 are

equally likely values for the elapsed time; rather there is some non-uniform

distribution of probability that the duration was between t � 1 and t + 1,

with the most likely value being t. Under suitable assumptions about the

independence of the clock phase and measurement points, we can carry out

an analysis that shows this intuition is correct and determines the distri-

bution. However, the assumptions are not clearly justi�ed in practice and,

even if they were, computing with distributions is not easy, while computing

with bounds is. Lacking a better solution I chose to include triples in PSpec

in preference to ignoring measurement error altogether. It is not yet clear

whether the potential looseness of the bounds will be a problem in practice.

3.3.7 Summary of Features

To summarize, the features of the PSpec language are:

� Event type declarations: Events are the primitive components of logs.

Event type declarations set up the connection between a log and a

performance speci�cation, giving the names of the event types in a log

and the names of their associated attributes.

� Interval type declarations: Intervals are identi�ed by giving the types

of their start and end events and, optionally, predicates that must hold

for the events. Metrics can be computed using all of the events and

subintervals contained within an interval.
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� Data types: The data types in the language are numbers, booleans,

events, intervals, mappings and triples. Mappings provide the means

for de�ning a dynamic number of metrics. Triples are three-tuples that

are used to track bounds on measurement error resulting from clock

quantization e�ects.

� Expressions: the language provides a set of built-in arithmetic, log-

ical, and relational operators (+, �, �, =, div, mod, abs, min, max,

log, power, &, j, !, ), >, �, <, �, =, 6=). Aggregate expressions

are used for writing assertions and de�ning metrics. They provide a

way of generating and combining sequences of values by iterating over

events or intervals in a log, or over domains of mappings. A set of

built-in aggregate operators is provided (+, �, &, j, count, mean, var,

stdev, min, max, the, last, �rst). Other types of expressions include

constructors and operators for mappings and triples.

3.4 Language Design Choices and Tradeo�s

The guiding philosophy of the PSpec design has been to keep the language

small, including only features that are reasonably general and for which I

saw a clear need in the examples I studied. The language and model evolved

together over a period of about two years, going through two major versions.

Some, but not all, of the examples discussed in this and the previous chap-

ter had been examined at the time that the second versions were developed.

New examples have motivated further ideas for language changes and model

changes that have not yet been ironed out and incorporated into new ver-

sions. These ideas are discussed in detail in Chapter 6. The discussion for

now will focus on the current versions of the language and model.

In addition to the high-level goal of producing a language for writing

performance speci�cations based on the PSpec model, I had several sub-

goals in mind while designing the PSpec language:

� Most speci�cations should be e�ciently check-able|check-ing them

should take time linear in the length of the log, and the space required

should be independent of the length of the log. For the cases where

this is not true, the cost of language features should be transparent

to a speci�cation writer, who can then decide whether to pay for the

added expressiveness.
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� The language should be capable of expressing a wide variety of per-

formance properties for many di�erent kinds of systems.

� The speci�cations should be readable, so that they can serve as docu-

mentation, in addition to being checked.

� E�cient monitoring should be possible|the language should not ne-

cessitate putting redundant information in the monitoring log.

As usual, there are tensions among these goals, and tradeo�s must be

made to arrive at a reasonable design. For example, e�ciency of check-

ing speci�cations must be traded o� against expressive power. There are

many predicates one could imagine that are not checkable in time linear in

the number of events in a log|for example, some predicates of the form

8i : 8j : P (i; j), where i and j are events and P is a predicate. As another

example, expressive power can also conict with readability. A general pur-

pose programming language provides the power to process a log any way

that we like, but it may not be readily apparent from reading the resulting

program what performance assertions are being checked.

Given the general design goals, some of the important, speci�c language

design issues were:

� The form of interval type declarations, in particular restricting inter-

val starts and ends each to be identi�ed by a single event type with

subsidiary predicates;

� The design of aggregate expressions and their use for describing iter-

ative computations;

� The facilities for describing how metric values are computed;

� The decision to make the language non-extensible.

I will discuss each of these issues in turn, explaining the impact of the choices

on the success in meeting the design goals.

3.4.1 Intervals

The PSpec model de�nes an interval as a subsequence of a log|it starts

at some point in the log, ends at a later point, and includes all events in

between. The model does not say how these subsequences are identi�ed|

one could imagine many possibilities. A signi�cant choice made in the PSpec
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design was to identify intervals primarily by naming a single event type each

for the start and end events. \Where" clauses then give some additional

control over whether a candidate event (one of the correct type) is actually

the start or end event for an interval.

There are at least two kinds of examples I have come across where the

language restrictions on the form of interval type de�nitions make it di�cult

to write the assertions that we might want to write. The two cases are:

identifying the start or end events for an interval type using a disjunction

of event types, and identifying �xed-time intervals.

An example of where event type disjunction might be useful is an asser-

tion about the lifetimes of �les in the �le system. Suppose we would like to

assert that many �les have short lifetimes, that is, they are either deleted

or overwritten shortly after being created. We could imagine de�ning an

interval type that corresponds to the time between when a �le is created

and when it is deleted or overwritten. Then we could write the assertion in

terms of the elapsed times for all intervals of the type. But can we de�ne

such an interval type? The problem is that we must specify a single end

event type when de�ning an interval type. Thus, we need an event type

corresponding to a �le being either overwritten or deleted. If we have events

for each of these cases separately, there is no way to specify the end event

type as the disjunction of these two types. It is not di�cult to generate

events for the \overwritten or deleted" case, but it means logging additional

events that would not be needed if the language were more powerful.

An example of identifying �xed-time intervals was discussed in Chap-

ter 2. We wanted to write assertions about average Read throughput over

ten-minute intervals and the suggestion was to identify a TenMinute inter-

val type either by using the existing timestamps on events or by generating

explicit events in the log that mark o� ten-minute intervals. Given the fa-

cilities provided by the PSpec language, only the latter option is available

because there is no way to specify the interval type using just the event

timestamps. Generating the extra events when timestamps already contain

enough information means that the monitoring is less e�cient than it could

be. Also generating the events is inconvenient since we might want to change

the duration of the interval in the speci�cation without having to regenerate

a log. Some means of identifying �xed-time intervals in the language would

probably be a worthwhile addition.

There are other possible variations on interval identi�cation that we can

imagine but that have not yet seemed necessary based on experience. For ex-

ample, we could imagine identifying intervals by predicates on the attributes
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of the start and end events without having to specify a particular event type.

Another possibility is to identify intervals by patterns of events rather than

just by their endpoints. It is not clear whether either of these ideas could

be implemented e�ciently enough, and both would add complexity to the

language. Following the design philosophy, I would not advocate adding

them unless there was a clear need.

3.4.2 Aggregate Expressions

The PSpec language is assignment-free, a choice motivated by readability

considerations and manifested primarily in the use of aggregate expressions

to perform computations over sequences of events and intervals and over

domain values of mappings. One alternative would have been to allow a

speci�cation writer to introduce state variables and to say how they are up-

dated as each event is read from a log. Looking at a speci�cation written in

that style, it is often much less obvious what property is being computed for

a log. Aggregate expressions are concise, readable, and reasonably powerful.

Aggregate expressions are restricted in two ways for e�ciency reasons.

All scalar aggregate operators use only an amount of space that is inde-

pendent of the length of the log.5 This space restriction rules out exact

percentile operators, for example. So, we cannot express the assertion that

the median time for Read operations is at most ten milliseconds. However,

we can say that at least �fty percent of Read operations take less than

ten milliseconds.6 This restriction is not fundamental|aggregate operators

that use more space could easily be added to the language. The user would

be warned of the potential cost, which would be incurred only when an

expensive operator is used.

The other restriction is that nested log-aggregate expressions cannot

refer to dummy variables of outer aggregate expressions, because otherwise

the checker might require time quadratic or greater in the length of the

log. So we cannot write an assertion that doubly iterates over all events or

intervals in the log directly (although we could produce this computation

indirectly, using mappings). We saw an example where such double iteration

might have been useful (on page 31), but other solutions were possible and

even preferable in that situation.

5A speci�cation writer can, however, write an aggregate expression that produces a

mapping with size proportional to the length of the log.
6It would also be possible to provide an approximate percentile operator that divides

the data into a �xed number of bins and thus uses constant space.
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3.4.3 Metric De�nitions

Metric de�nitions are restricted in two ways so that the checker can recognize

intervals in a log using a single pass over the log �le and a reasonable amount

of space. One of the restrictions is that expressions in metric de�nitions

may not contain nested aggregates, even if the aggregates obey the rules

about referencing outside dummy variables. The other restriction is that

aggregate expressions in metric de�nitions may not refer to the end event

for an interval. The reasons for these restrictions should be more intelligible

after reading the description of the implementation strategy in Chapter 4.

In terms of expressiveness, these restrictions on metric de�nitions have not

posed any di�culties in the examples that I have studied to date.

3.4.4 Non-extensibility

The set of operators in the language is limited to the built-in operators.

This choice was made for two reasons. One is that the focus of the research

was on performance assertion checking, not programming language design.

The design of a mechanism for user-de�ned operators would not have shed

any light on how to write or use performance speci�cations. The second

reason relates to the reason for designing a special-purpose language in the

�rst place|that it is easier to discover whether a feature is necessary by

leaving it out to begin with. It is not clear how important extensibility is in

this context. If it proves to be important it could be added without serious

impact on the rest of the language.

One example of where lambda abstraction would probably be useful is

for complicated expressions involving events or intervals. For example, when

working with elapsed time models for Read operations in Chapter 2 we had

the expression:

PerByteTime � r.size + Overhead + r.wait.

Our assertions might be more readable if we could write them having de�ned

a function expected(r) that is parameterized on an interval of type Read

and returns the value of the above expression when applied to an interval.

Perhaps we could write something like:

def expected(r: Read) = PerByteTime � r.size

+ Overhead + r.wait;

assert f& r : Read : r.time � expected(r)g.

Such an extension to the language would probably be worthwhile.
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Chapter 4

Tools

This chapter describes the functionality and implementation of the tools

provided for performance assertion checking. The checker takes a perfor-

mance speci�cation and a monitoring log and reports which assertions in

the speci�cation fail to hold for the log. The solver takes a performance

speci�cation with unknown constants and a monitoring log and estimates

values for the constants. Both of these tools must read a performance spec-

i�cation, recognize the intervals de�ned for a log, and evaluate expressions

relative to a log. After describing the functionality of the checker and solver

I describe the implementation of the speci�cation parsing and evaluation

library common to both tools, and analyze the time and space required for

evaluation. The analysis clari�es the conditions under which e�cient speci-

�cation evaluation is possible. The chapter concludes with a brief discussion

of ideas for several other tools that could be useful for performance assertion

checking; these other tools have not been designed.

4.1 Checker

It is the checker's job to report when the predicates occurring in assert state-

ments in a performance speci�cation, evaluated relative to a given monitor-

ing log, are false. The current checker works o�-line. The system being

monitored is run for as long as necessary to gather a complete log against

which a speci�cation can be checked. Then the log can be checked at any

time. This design works well for the setting in which the checker has been

used thus far (described in Chapter 5). One could imagine checking speci-

�cations on-line, as data is generated from a running system. Such designs

are possible, but have not yet been explored in detail. Chapter 6 discusses

some of the issues.

55
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The checker outputs two forms of information: messages reporting which

assertions failed, and debugging information that can help as a �rst step in

tracking down the causes of the failures.

There are two basic forms of assertion failure messages. One simply re-

ports that an assertion failed and gives the line number in the speci�cation

identifying which assertion it was. The other form reports the line number

and, in addition, the number and identity of the events or intervals in the log

that cause the assertion to be false. This second form is used for assertions

whose outermost expressions are log-aggregates using the conjunction oper-

ator. In such cases, the particular intervals or events for which the predicate

inside the aggregate expression evaluates to false are identi�ed as causing

the assertion failure.

For example, suppose we are checking the assertion:

assert f& r : Read : r.time � 1 secg.

If there were Read intervals that had elapsed times of greater than one

second, a message would be produced indicating that the assertion failed

and identifying the o�ending intervals. The intervals are identi�ed with

reference to the debugging information also produced by the checker. An

example of an assertion for which it is not possible to identify particular

intervals that cause a failure is:

assert fmean r : Read : r.timeg � 500 ms.

The debugging information produced by the checker consists of an entry

for each interval in the log. An entry contains: a unique identi�er for the

interval that is used to refer to the interval in assertion failure messages,

the interval type, the location of the interval's start and end events in the

log and their timestamps (if any), and the values for the interval's metrics.

This information can be examined with a text editor or other text processing

program.

This form of output is somewhat crude, but provides a rudimentary ca-

pability to begin tracking down the causes of assertion failures. Examining

the values of metrics may give clues as to what was going on in the system

when the performance was not as expected, and which parts of the system

may be responsible. Chapter 5 describes the experience I had using the

checker to track down performance bugs. Better tools are needed for ex-

amining logs and relating them to program code. Some ideas for these are

discussed in Section 4.4.
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4.2 Solver

The solver helps to answer the question of how to �ll in values of constants

in performance speci�cations. For example, in Chapter 2, in discussing as-

sertions about models for elapsed times of Read operations we had two con-

stants, PerByteTime and Overhead, whose values would have to be supplied

in order to check the speci�cation. Sometimes a speci�cation writer knows

the values for constants a priori, perhaps because they reect particular per-

formance goals. Often though, the implementors of a system will tune the

system's performance as well as possible and then conduct experiments to

determine the values of performance constants. These experiments typically

involve measuring the system, computing metrics, and performing other cal-

culations such as curve-�tting. Measurement and metric computation are

activities that are also associated with performance assertion checking. The

solver provides equation-solving capabilities in the PSpec framework.

4.2.1 Overview

The input to the solver is a monitoring log and a performance speci�cation

containing unknowns and solve declarations (in addition to the usual event

and interval type declarations, de�nitions, and assertions). An unknown is a

symbolic constant (such as PerByteTime) whose value is left undetermined

by the user. A solve declaration is a directive to the solver describing how

to estimate values for unknowns.

The output of the solver is the revised speci�cation, with unknowns

instantiated with their estimates. This speci�cation can then either be used

as is, or modi�ed by a speci�cation writer, to check against other monitoring

logs. Typically, the monitoring log given to the solver would be from a run

specially designed to produce good estimates for the unknowns.

An unknown is identi�ed using an alternative form of def statement in

a speci�cation. The statement:

def id = ?

declares id to be an unknown.

Solve declarations come in two forms. The simple form contains an

equation that is linear in one unknown. The equation can include expressions

that must be evaluated relative to a monitoring log. The solver simply

computes the value of the unknown using algebra. The second form of solve

declaration describes how to compute a set of data points and gives an
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equation for use in a linear regression analysis that produces estimates of

values for the unknowns.

The two examples below should give a feel for how the solver is used in

the two situations. These examples are based on the simpli�ed �le system

from the preceding chapters. In particular, we will look at models for the

elapsed time of Read operations. Earlier we hypothesized that the elapsed

time for a Read operation r that hits in the cache is given by the formula:

r.time = PerByteTime� r.size+ Overhead+ r.wait:

For simplicity, we will assume that the lock waiting time, r.wait, is zero

here. (If it were non-zero, we could simply subtract it from r.time to solve

the equation.)

4.2.2 Easy Example

We begin by considering how we can use the solver to �nd the value of an

unknown appearing in an equation linear in that unknown. Suppose that

we would like to estimate the mean elapsed time for a �le system Read

operation of a �xed size (say 8 kilobytes) that hits in the cache. Since our

model hypothesizes that the elapsed time varies only with the size of the

Read, which we have �xed for now, the model predicts that all 8-kilobyte

Reads should have the same elapsed time. In fact, our model is probably not

entirely accurate, and there will be some slight variation in the time for 8-

kilobyte Reads, but we expect this variation to be small. It therefore makes

sense to compute the mean time for 8-kilobyte Reads and write an assertion

saying that the actual time for an 8-kilobyte Read is in some reasonable

range of the computed mean.

We can instruct the solver to compute the mean elapsed time for 8-

kilobyte Reads as follows. First, we introduce an unknown for this elapsed

time:

def Mean8kRead = ?.

Then we write a solve declaration containing an equation that uses the

unknown, indicating how to estimate its value.

solve Mean8kRead =

fmean r : Read where r.size = 8192 & r.hit : r.timeg.
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Recall that the aggregate expression in braces is read as: \the mean, over

all Read intervals r for which r.size is 8192 and r.hit is true, of the values

of r.time."

Given, in addition, a log containing many 8-kilobyte Read operations,

the solver can compute the value of the right-hand side of the equation to

obtain the estimate for Mean8kRead.

Once we have the estimated value for Mean8kRead we can, for example,

write an assertion to check that the mean in any new log is within a reason-

able range of Mean8kRead. To check that the computed mean is within �ve

percent of Mean8kRead we could write:

def Mean8kReadLow = Mean8kRead � 0.95;

Mean8kReadHigh = Mean8kRead � 1.05;

assert Mean8kReadLow

� fmean r : Read where r.size = 8192 & r.hit : r.timeg

� Mean8kReadHigh.

4.2.3 Harder Example

Suppose now that we would like to estimate values for the constants Per-

ByteTime and Overhead in the elapsed time model for Reads of any size

that hit in the cache. One way to estimate these values is to conduct an

experiment where we perform a set of Read operations of various di�erent

sizes and measure the elapsed time for each one. For each Read we get

one data point consisting of the size and the measured elapsed time. Then,

because our elapsed time model is an equation for a line, we can �t a line

to these data points to get estimates for the unknowns; the slope of the line

gives an estimate for the per-byte time and the y-intercept gives an estimate

for the overhead (as illustrated in Figure 4.1).

To instruct the solver to do line-�tting, another form of solve declaration

is used. First, we must declare the unknowns:

def PerByteTime = ?; Overhead = ?.

Then the solve declaration tells the solver how to generate the data points

and gives the equation to be solved. For this example, the solve declaration

would be:

solve data r : Read where r.hit :

r.time = PerByteTime � r.size + Overhead.
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r.size

r.time

Overhead

slope = PerByteTime

Figure 4.1: Estimating PerByteTime and Overhead by line-�tting

The �rst part, following the keyword data and ending with the second

colon, tells the solver how to generate the data points. It is much like the

range speci�cation for an aggregate expression; it has a dummy variable,

and a speci�cation of a sequence of events or intervals in the log.1 In this

example, we are instructing the solver to iterate over all Read intervals

whose hit metrics have the value true. Following this range expression is

the equation to solve. The equation includes terms that refer to the dummy

variable and to the two unknowns. For each event or interval in the range,

the terms containing the dummy variable are evaluated to produce one data

point.

The process used by the solver to �t a line to data is called linear re-

gression. As noted earlier, the elapsed time model for Read operations is

not exact. We expect some variation in actual measured elapsed times for

Reads of any given size. A linear regression analysis makes certain assump-

tions about this variation. In particular, the assumption is that the model

actually has the form:

r.time = PerByteTime� r.size+ Overhead+ �

where � is an error term that accounts for any unexplained variation in the

elapsed time due to the inaccuracies of the model. � is assumed to have

a normal distribution with a mean of zero and some unknown variance V .

Because for any Read operation r, r.size is constant, and PerByteTime and

1Range speci�cations that use the domains of mappings rather than events or intervals
are also permitted, as for aggregate expressions.
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Overhead are assumed to be constants, r.time is also normally distributed,

with mean PerByteTime� r.size+ Overhead and variance V .

In addition to producing estimates for the unknowns in an equation, lin-

ear regression analysis also produces an estimate for the unknown variance,

V , and for a quantity called the coe�cient of correlation of regression, which

is a measure of how well the data �ts a linear model. The user can obtain

these quantities using additional clauses in the solve declaration.

Given these estimates, we can proceed to write assertions about the

elapsed time for Reads. For example, we could assert that over all Read

intervals in a log, the mean of the di�erences between the measured elapsed

time for each operation and the time predicted by the model is close to zero

(say, within one millisecond). We could also assert that the variance of that

quantity is close to V .

assert �1 ms �

fmean r : Read : r.time � PerByteTime � r.size + Overheadg

� 1 ms;

assert V� 1 ms �

fvar r : Read : r.time � PerByteTime � r.size + Overheadg

� V+ 1 ms;

4.2.4 Using the Solver Intelligently

As with many tools, the solver is only an aid if the user has a good under-

standing of its capabilities and limitations. The clich�e \garbage in, garbage

out" has particular relevance here. In order to get good estimates for un-

knowns out of the solver, the user must provide a log that contains data

appropriate for producing those estimates and a speci�cation that instructs

the solver to compute the estimates in a reasonable way. This is not dif-

�cult if care is taken to understand how the solver uses speci�cations to

compute estimates, and if the data and resulting estimates are examined for

plausibility. In particular the user should:

� ensure that there are enough data points for averages to be meaningful;

� ensure that the range of supplied values for variables in the equations

(such as the size of Reads in our example above) reects the range

expected in the logs against which the speci�cation will be checked;

� check the coe�cient of correlation to see whether a linear model is in

fact appropriate for the data. Using additional techniques to check



62 CHAPTER 4. TOOLS

the appropriateness of the model (such as plotting the data) is also a

good idea.

The solver does not save the user the job of thinking|it simply mechanizes

some tasks that might otherwise be tedious.

The linear regression capabilities of the solver will be most useful to

someone who understands something about the uses and limitations of the

technique. Most introductory statistics texts include a discussion of simple

linear regression that should be helpful (see, e.g., [17]). Another commonly

available reference is [39], which has some discussion of simple linear re-

gression and multiple regression, including the formulas used to carry out a

regression analysis and compute the coe�cient of correlation (unfortunately

it includes almost no motivation for the technique).

While this is not the place for a full discussion of linear regression, it

is worth noting that the linear equation for the regression analysis need

only be linear in the unknowns. For example, if we have an interval whose

elapsed time is an unknown constant multiplied by the logarithm of one of

the interval's metrics, this is still linear in the unknown and thus amenable

to solution by the solver. Also, sometimes it is easy to transform an equation

that is not linear in an unknown into one that is. For example, the equation

\y = xa", where a is an unknown, is not linear in a. However, \log y =

a log x" is linear in a. Thus the solver can handle many more cases than

might immediately be obvious.2 But the solver does not perform these

transformations automatically|the user must do it.

Even when the solver is being used for simple algebra the user should

ensure that the data in the log is meaningful. For example, we wrote a

solve declaration earlier to determine the mean elapsed time of �xed-size

Reads, expecting that the elapsed times for individual Reads would not

vary by much. It would also be worthwhile in that situation to compute

the variance of the elapsed times and check that it is relatively small as

expected. If it is not, that would indicate a aw in our model.

4.3 Implementation

We now turn to the implementation of the tools, with a description of the

implementation techniques employed for the speci�cation parsing and eval-

2But the variance and coe�cient of correlation computed by the solver would apply to

the transformed equation, not to the original equation, so caution is required in interpret-
ing the output.
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uation library shared by the checker and solver.

4.3.1 Parsing and Type Checking

The �rst phase of interpreting a speci�cation involves parsing, type infer-

encing, and type checking. Type inferencing involves choosing instances of

overloaded operators based on the types of their arguments and inferring

the types of expressions based on the types of the operators and constituent

expressions. Type checking ensures that arguments to operators have the

appropriate types and that expressions have boolean values where necessary

(e.g., in \where" clauses and assert statements). All of this is accomplished

in one pass through the speci�cation. The result is a parse tree representing

the speci�cation that can be used in the evaluation phase.

4.3.2 Evaluation

The set of interval type de�nitions in a speci�cation induces a partially-

ordered set of intervals and events on a log of events.3 Using this partial

order, we can interpret a log as a sequence of events and intervals, mak-

ing arbitrary ordering choices where the partial order does not determine

the result. This abstraction of a log is called an interval log, whereas the

primitive log is called an event log. The interval log abstraction is helpful

for evaluating aggregate expressions in a speci�cation (recall that aggregate

expressions are the only kinds of expressions that depend upon the contents

of a log). Once the aggregate expressions in a speci�cation are evaluated,

the other expressions (not dependent upon the log) can be evaluated.

Interval Log Stream. An event or interval in an interval log is a record

containing a set of named �elds with values (the attributes of an event, or

the metrics of an interval). An event has, in addition, an index into the un-

derlying event log and, possibly, a timestamp. An interval has indices for its

start and end events in the underlying event log, and possibly, timestamps

for those events. A sequence of events and intervals induced by a speci�ca-

tion on an event log can be produced in a single sequential pass through the

event log.

The data structures used to implement the interval log abstraction are:

3Recall that an interval is ordered relative to other intervals based on its end event.

An interval is unordered with respect to its own end event and any other intervals with
the same end event.
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� inttypes: the set of interval type de�nitions in a speci�cation; obtained

from a speci�cation and �xed for the algorithm;

� openints: the set of open intervals (potential intervals whose start

events have been encountered but whose end events have not been|

and may never be|found); initially empty;

� logaggrs: the set of log-aggregate expressions4 in metric de�nitions

of all open intervals in openints, along with storage for incrementally

evaluating these expressions; initially empty;

� newlyclosed: the set of intervals closed by an event; initially empty.

Figure 4.2 sketches an algorithm that uses these data structures to pro-

duce a sequence of events and intervals in an interval log corresponding to a

given speci�cation and event log. The statement yield x in the description

indicates that event or interval x in the interval log stream is produced at

that point. The algorithm loops through the sequence of events in the event

log, yielding each event as it occurs, and also checking whether the event

opens any new intervals, closes any open intervals, or applies to any aggre-

gate expressions in metric de�nitions of open intervals. Each time an open

interval is closed by an event it is also yielded as an element of the interval

log stream, and it is applied to aggregate expressions for open intervals.

An event e closes an open interval o if e's type is the end event type

named in o's type de�nition, and if e satis�es the end \where" clause (if

there is one). Furthermore, if o has a nested interval type then e only closes

o if o has a greater start event index than any other open interval of its type

for which e satis�es the end \where" clause. e opens an interval of type t if

e's type is the start event type named in t and if e satis�es the start \where"

clause (if any).

An event or interval ei can be applied to a log-aggregate expression if it

has the type named in the range clause of the aggregate expression and if it

satis�es the \where" clause in the expression (if any). In addition, if ei is

an interval, it only applies to an aggregate expression in a metric de�nition

if ei's start event index is greater than the start event index for the interval

containing the metric.

4Recall that a log-aggregate expression is an aggregate expression whose range is events

or intervals in a log. These are distinguished from mapping aggregates, which range over
the domains of mappings.
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Algorithm for generating events and intervals in an interval log stream:

1. While there is a next event e in the event log do

2. Yield e

3. newlyclosed := fg

4. For each open interval o in openints do

5. If e closes o then

6. Finish evaluating expressions in o's metrics

7. Remove o from openints

8. Remove o's log-aggregate expressions from logaggrs

9. Add interval for o to newlyclosed

10. Yield interval for o

11. End

12. End

13. For each log-aggregate expression a in logaggrs do

14. Apply e to a

15. For each interval i in newlyclosed do

16. Apply i to a

17. End

18. End

19. For each interval type t in inttypes do

20. If e starts an interval of type t then

21. Create an open interval o and add it to openints

22. Add o's log-aggregate expressions to logaggrs

23. End

24. End

25. End

Figure 4.2: Algorithm for generating interval log stream from an event log

stream and a speci�cation with interval type de�nitions.
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Because log-aggregate expressions in metric de�nitions cannot them-

selves contain log-aggregate expressions, they can be evaluated incremen-

tally in a single pass through the log. When a new open interval is created,

storage is allocated for the incremental evaluation of the log-aggregate ex-

pressions appearing in the interval's metric de�nitions. During the scan of

the log, whenever an event or interval applies to one of the log-aggregate

expressions of an open interval, the value-expression of the aggregate is eval-

uated and the result is incorporated into the accumulated value stored with

the open interval.

Now let us consider the execution time and space for the algorithm in

Figure 4.2. The analysis ignores mappings. Let:

v = maxe2 event logfnumber of intervals that contain eg

p = size of speci�cation

n = number of events in the event log

m = number of intervals in the interval log.

v is a measure of the maximum overlap among intervals in the interval log

(the maximum number of open intervals in openints). p is a loose upper

bound for a number of measures, such as the maximum number of log-

aggregate expressions in any interval de�nition, the number of interval type

de�nitions in a speci�cation, and the maximum number of operators in an

expression.5 It will serve our purposes for this analysis since it is independent

of both the number of events in the event log and the maximum overlap.

The space taken by the algorithm is O(vp), obtained as follows. The

number of elements in each of the sets openints and newlyclosed is O(v),

and each element takes space O(p), so these sets require space O(vp). The

set logaggrs also requires space O(vp) because the log-aggregate expressions

for each open interval take space O(p) and there are O(v) open intervals.

The set inttypes requires space O(p). Thus the total space required is O(vp).

The time taken by the algorithm is O(vp2(m+ n)), obtained as follows.

The time to execute lines 5{10 is O(p), and they are executed O(v) times

for each of the n events. Thus lines 5 through 10 take time O(vpn). Line 16

takes time O(p), and is executed O(vpm) times for the entire algorithm, for

a total of O(vp2m). Line 14 takes time O(p) and is executed O(vp) times

for each of the n events, giving a total time of O(vp2n). Lines 20{22 take

O(p) time and are executed O(p) times for each of the n events, for a total

of O(p2n). Adding this all up, we get we get O(vp2(m+ n)).

5Thus, the time to evaluate an expression or to apply an event or interval to an aggre-
gate expression is O(p).
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Evaluating Top-Level Expressions.Given the interval log, the rest of the

evaluation process involves evaluating expressions in de�nitions and either in

assertions or in solve declarations (depending upon whether the evaluation is

being done by the checker or the solver). Any of these statements can contain

log-aggregate expressions that must be evaluated relative to a log, as well

as other expressions that can be evaluated once all contained log-aggregate

expressions have been evaluated. Log-aggregate expressions contained in

any of the types of statements listed above are called top-level, meaning

that they range over the entire log. A top-level log-aggregate expression

may still be nested within other top-level log-aggregates.

The strategy for evaluating expressions in def, assert, and solve state-

ments is to evaluate all log-aggregate expressions and def statements as soon

as possible, and then to evaluate all other expressions. A log-aggregate ex-

pression can be evaluated as soon as all contained log-aggregate expressions

have been evaluated. Because of language restrictions on log-aggregates (in

particular, that a log-aggregate expression cannot reference dummy vari-

ables of outer aggregate expressions) it is always possible to evaluate an

inner log-aggregate expression before evaluating any expressions that con-

tain it.

We say that a log-aggregate expression has depth 1 if it contains no log-

aggregate expressions. A log-aggregate whose contained log-aggregates have

at most depth 1 has depth 2, and so on. We also classify def statements into

depths according to the maximum depth of their contained log-aggregate

expressions. Defs with no contained log-aggregates have depth 0, defs with

depth-1 log-aggregates have depth 1, etc. The algorithm for evaluating spec-

i�cations, using the interval log abstraction described earlier, and assuming

that the log-aggregate expressions in def, solve, and assert statements have

depth at most r, is sketched in Figure 4.3.

A solve declaration that uses linear regression is treated as a special

kind of log-aggregate expression (with depth one greater than the depth of

its contained log-aggregates) during the iteration through the interval log

shown in Figure 4.3.

The space taken by the speci�cation evaluation algorithm in Figure 4.3

is O(vp) as for the interval log generation algorithm since the additional

space needed for evaluating top-level log-aggregates and other expressions

is O(p).

The time to execute the entire evaluation algorithm (including recog-

nizing intervals) is O((r+ v)p2(m+ n)), computed as follows. The time to

execute the loop bodies at lines 11 and 14 is O(p). These loops (at lines
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Algorithm for evaluating speci�cations:

1. For each depth-0 def statement d do

2. Evaluate d

3. End

4. For i := 1 to r do

5. For each event or interval ei in the interval log do

6. For each depth-i log-aggregate a do

7. Apply ei to a

8. End

9. End

10. For each depth-i log-aggregate a do

11. Finish evaluating a

12. End

13. For each depth-i def statement d do

14. Evaluate d

15. End

16. End

17. For each assertion or solve statement s do

18. Evaluate s

19. End

Figure 4.3: Algorithm for evaluating speci�cations. r is the maximum

depth of nesting for log-aggregates in def, assert, and solve statements.
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10 and 13) each run for O(p) iterations, for each of the r values of i. Thus

the total time to execute these loops is O(rp2). The loops at lines 1 and

17 each execute for O(p) iterations, with time O(p) for each of the bodies,

giving a total time of O(p2). The loop at line 6 again takes time O(p2), and

is executed O(r(m+ n)) times, for a total time of O(rp2(m+ n)). Also, as

determined earlier, it takes O(vp2(m+n)) time to generate all the values for

ei on line 5 for each of the r values of i. The total is thus O((r+v)p2(m+n))

for the entire evaluation.

Now let us consider the implications of a running time of O((r+v)p2(m+

n)). The total number of intervals m is O(np) because the number of inter-

vals started by each event is at most the number of interval type de�nitions.

Also, r is O(p). Thus the running time can be expressed as O(vp3n+ p4n).

p is independent of, and likely very much smaller than, n. Also, recall that

p is a very loose upper bound on the actual parameters of interest for the

analysis. So the factors of p3 and p4 are not particularly worrisome. If v

is independent of, and much smaller than, n, we have an algorithm whose

running time is nearly linear in the length of the log (depending also on v

and p, but dominated by n). In the worst case, however, v can be O(n),

making the algorithm quadratic in the length of the log. This could happen,

for example, if every event starts an interval that ends with the last event

in the log. It could also happen in a program that is deeply recursive (e.g.,

a recursive traversal of a list). For very long logs, a checker that takes time

quadratic in the length of the log will have intolerable performance. The

speci�cation writer must take this into account when de�ning interval types

for a program, and try to arrange that v is not too large.

As mentioned earlier, the analysis ignores mappings. This is reected in

the assumption that expressions can be evaluated in time O(p), as well as in

the space analysis. A mapping could have size proportional to the length of

the log, causing the evaluation of an aggregate expression over the mapping

to take time O(np). In this case, the evaluation algorithm could take time

quadratic or greater in the length of the log. The speci�cation writer must

also be aware of this possibility and use mappings judiciously.

4.4 Other Tools: Wish List

In addition to the checker and solver, there are a variety of other tools that

one can imagine, both to provide better support for performance assertion

checking and to provide additional functionality within the performance

speci�cation framework.
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Evaluator. An evaluator tool would take as input a performance speci�-

cation and a log. It would provide an interactive read-eval-print loop for

evaluating expressions relative to the log, using the events and intervals

declared in the speci�cation. Such a tool would be useful for helping to

understand assertion failures for a log, as well as for gaining understand-

ing about the performance of a system before writing assertions in the �rst

place. Perhaps the tool would also allow the user to declare new interval

types interactively.

Visual display. Another kind of tool that would be useful both for un-

derstanding assertion failures and for understanding system performance in

general would create graphs or other visual displays of data, taking a log

and speci�cation as input. Graphs could be de�ned in terms of intervals

and metrics from the speci�cation, interpreted relative to the log.

Log debugging. Generating correct monitoring logs is not always easy to

do, as anyone who has tried probably knows. Even assuming that the code

implementing the mechanics of event logging is not buggy, it is still very

easy to end up with missing events because the person doing the instrumen-

tation forgot to put logging calls into the source in some places. For this

reason, some sorts of log debugging tools will be required. At a minimum,

it is probably necessary to be able to get a human-readable dump of the

log events, so that the speci�cation writer can see the log contents. Tools

that give additional assistance in examining a log|perhaps by �ltering it in

various ways so that subsequences can be examined|will be very valuable.

In addition to getting the monitoring right, the task of de�ning intervals

on logs for use in speci�cations introduces additional opportunity for error.

Intervals are a dynamic notion (they depend upon the execution path taken

by the program) and it is easy for a speci�cation writer to have a misun-

derstanding about what the sequence of events in the log will actually look

like. For example, if a speci�cation writer forgot to use thread identi�ers to

match interval start and end events in a case where there are in fact mul-

tiple threads generating the same event types to the log, then the intervals

recognized by the checker based on the speci�cation would not correspond

to what the speci�cation writer intended. Log debugging tools could also

help to locate problems of this kind by helping the speci�cation writer to

understand what is in the log.



Chapter 5

Experience

From its inception this research has been motivated and guided by expe-

rience with the performance of actual systems. The ideas for the PSpec

language came from studying the question of what kinds of performance

properties were both useful for describing performance expectations and

amenable to checking against monitoring data. This chapter describes an

experiment using the initial version of the PSpec language and tools to write

and check performance speci�cations for the runtime system of Prelude, a

new parallel programming language [41, 42]. The experiment had two ben-

e�cial results. One was that some of the examples exposed shortcomings

of the PSpec language and produced insights about how to generalize it.

The other outcome was the discovery of performance bugs in the Prelude

runtime as a result of using the PSpec tools.

After describing the Prelude experiments and evaluating the PSpec ap-

proach based on that experience, I will discuss the general methodology of

the PSpec approach and how the intended use of the tools a�ects the kinds

of performance speci�cations written.

5.1 Testbed

Prelude, a language for writing portable and modular parallel programs, is

being developed by the Large-Scale Parallel Software Group at MIT. Prelude

provides a programmer with a computational model based on objects and

threads that abstracts away from the underlying architecture of the machine.

High-level directives (pragmas) that specify the mapping of a program onto a

particular architecture are added on top of the computational model to give

a programmer control over the program's performance. E�ciently mapping

a parallel program onto a machine involves choosing grain sizes of tasks,

71



72 CHAPTER 5. EXPERIENCE

determining where to place tasks and data, determining when and where to

migrate tasks and data, scheduling tasks, managing communication among

tasks, and determining how to cache, replicate, and partition data. Prelude

takes the approach of allowing the programmer to provide directives to the

compiler and runtime system, which then is responsible for the details of

data structure layout and task decomposition.

At the time that I conducted the experiments, an initial version of Pre-

lude had been designed and mostly implemented on top of Proteus, a high-

performance simulator for MIMD architectures [6, 7]. Proteus executes pro-

grams written in a superset of C that has special facilities for handling

shared-memory accesses, thread management, message passing, and syn-

chronization. When the Prelude implementation is complete, Proteus will

also be able to execute Prelude programs. Proteus provides a particularly

nice environment for developing parallel software. Features include non-

intrusive debugging (debugging or monitoring code usually can be added

without a�ecting the timing of a simulation), repeatability, and integrated

tools for data collection and display.

The Prelude/Proteus environment provided a good testbed for my per-

formance speci�cation experiments for several reasons. First, the people

who designed and implemented the language were available and cooperative.

The speci�cations were written based on the implementors' descriptions of

their performance expectations. I served as the expert on the PSpec tools,

explaining what could and could not be expressed in the language, trans-

lating their English descriptions of performance expectations into PSpec,

and annotating the code to produce monitoring logs suitable for use by the

checker.

Second, good performance in Prelude is necessary for its success. For

the most part, the complexity of writing parallel programs is justi�ed only

by the improved performance they can deliver compared to sequential pro-

grams. The implementors tried to pay careful attention to performance

(within the constraints of completing a prototype implementation in a timely

fashion). They had de�nite performance expectations and were interested

to see whether their expectations were met.

Third, it was easy to put the instrumentation into place to produce

monitoring logs. Proteus already had a facility for generating event logs so

it was merely a matter of producing some simple tools to connect names in

PSpec speci�cations to names in logs and to provide some macros for use in

annotating the runtime code to produce suitable events.

Finally, working on top of a simulator allowed me to avoid issues related



5.2. PRELUDE PERFORMANCE SPECIFICATIONS 73

to e�cient monitoring (since monitoring can be zero-cost in Proteus) and

focus the research on the content of speci�cations and the form of the spec-

i�cation language. Monitoring issues are important and must be studied in

order for the PSpec approach to be useful for non-simulated systems, but

are separable from questions of what properties ought to be expressible in

performance speci�cations.

5.2 Prelude Performance Speci�cations

With the help of the Prelude implementors I wrote performance speci�ca-

tions for several pieces of the Prelude runtime system. For a few of the

speci�cations we also constructed test programs to exercise the correspond-

ing pieces of the system, generated monitoring data, and checked the spec-

i�cations. The others were not checked for two reasons. One is that not

all pieces of the system for which we wrote performance speci�cations had

been implemented at that time. The other reason is that I had begun to

redesign the language, and continuing to check speci�cations written in the

old language would not have yielded further insight (although it might have

caught more Prelude performance bugs).

Most of the speci�cations we wrote for Prelude express bounds on re-

sponse times for various runtime operations. There were also two speci�ca-

tions about bounds on the percentage of operations with particular prop-

erties, capturing properties of the workload. Another speci�cation that we

tried to write (but failed because of de�ciencies in the earlier PSpec model

and language) expressed fairness properties of the thread scheduler.

All of the speci�cations were written using an earlier version of the PSpec

language than the one presented in Chapter 3. The capabilities of the old

language are still present in the new language, although they are now more

general. Thus, the same performance bugs would have been discovered had

the speci�cations been written in the new language. Below, the speci�-

cations are presented in the new language. The failed attempt to write

the scheduler speci�cation in the old language prompted the redesign. The

scheduler speci�cation can now be expressed, although as we will see, it is

still not as elegant as it might be.

5.2.1 Response Time Speci�cations

One of the response time speci�cations, shown in Figure 5.1, expresses

bounds on the durations for which interrupts are disabled on processors.
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timed event InterruptsO� (pid); InterruptsOn (pid);

interval IntDisabled =

s: InterruptsO�,

e: InterruptsOn where e.pid = s.pid

metrics

time = timestamp(e) � timestamp(s),

pid = s.pid

end IntDisabled;

assert fcount i : IntDisabled where i.time > 75 cycg � 1

Figure 5.1: A response time speci�cation for disabling of interrupts

In this speci�cation we de�ne the IntDisabled interval type. These intervals

start when interrupts are turned o� on a processor and end when interrupts

are turned on again. The bound is expressed in the assertion, which says

that interrupts are disabled for more than 75 cycles in at most one interval

of that type (the long interval represents a startup transient).

The other response time speci�cations are all similar to the interrupts

speci�cation. They each declare event types to mark the start and end of

the code path to be timed, declare an interval type that is demarcated by

those event types, and assert a bound on elapsed times for all intervals of

the type. The speci�cations we wrote were for:

� queueing messages (when necessary) during sends;

� execution on the short path for creating new messages;

� initializing some kinds of data structures;

� allocating reply codes;

� allocating object identi�ers;

� performing null remote procedure calls;

� execution time of threads spawned to process incoming messages.

All of the speci�cations except the last one express upper bounds. The last

speci�cation (about threads created for processing messages) expresses a

lower bound on the time that the threads run. If a thread does not run for
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timed event StartSend (tid); EndSend (tid);

event MultiPacket (tid);

interval Send =

s: StartSend,

e: EndSend where e.tid = s.tid

metrics

multi = fcount m : MultiPacket where m.tid = s.tidg 6= 0

end Send;

assert fcount s : Send where s.multig = fcount s : Sendg � 0.05

Figure 5.2: A workload speci�cation: interprocessor sends for multi-packet

messages

at least some minimum length of time then it would be more e�cient to do

the work in-line rather than by creating a new thread.

5.2.2 Workload Speci�cations

One of the workload speci�cations, shown in Figure 5.2, expresses bounds

on the percentage of inter-processor messages that require multiple packets.

The percentage of multi-packet messages is a workload metric in the sense

that the runtime system provides a set of services including message sending,

and Prelude programs present a workload on the runtime system.

Another workload speci�cation, expressed in implementation-level terms,

concerns the percentage of messages received that get forwarded. Messages

may need to be forwarded because objects in Prelude can move from one

processor to another (migrate). The runtime system attempts to keep up-

to-date information about the location of objects but may get behind if

objects move too frequently. This again is a workload property in the sense

that it depends upon the Prelude programs that are run (it also depends

on the implementation of migration, of course). The speci�cation de�nes

event types corresponding to messages being received and messages being

forwarded. The assertion then counts the number of forwarded messages,

divides by the number of received messages to get the fraction of messages

forwarded, and asserts that this fraction is less than 0.05.
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5.2.3 Scheduler Speci�cation

The Prelude runtime includes an experimental scheduler called a priority

ow scheduler. Each thread on a processor has a priority, which is a non-

negative number. The idea is that a thread should get an amount of proces-

sor time proportional to its priority divided by the sum of the priorities of

all threads vying for the processor. Since threads get created and destroyed

and can change their priorities, this priority sum is not a constant over long

periods of time. The scheduler is considered to be fair if over a long enough

period of time a thread gets its expected share of processor time, where

the expectation is computed for each constant-priority interval. We want to

write a speci�cation asserting that threads get close to their fair shares.

The PSpec speci�cation for the scheduler appears in Figure 5.3. Events

are generated as follows. A ChangePriority event is generated any time

the priority sum changes (e.g., when a new thread is created). After each

ChangePriority event, a sequence of RecPriority events is generated, one

per active thread, recording each thread's current priority (the priority for

a thread is recorded as zero if the thread is not eligible to run in an in-

terval). The timed events SchedThread and DeschedThread are generated

whenever a thread gets scheduled or descheduled. Finally, CreateThread

and DestroyThread events are generated whenever a thread gets created or

destroyed.

We de�ne three interval types. TimeSlice intervals cover the time dur-

ing which some thread runs (the point at which the thread gets scheduled

to the point when it is next descheduled). The elapsed times for these in-

tervals give us the processor time that each thread receives. SchedInterval

intervals cover the time over which the priority sum remains constant. For

such intervals we compute the total priority sum, the total processor time

for all threads scheduled during that interval, and a mapping from thread

identi�ers to thread priorities during that interval. A ThreadStats interval

covers the lifetime of a thread. We compute metrics for the total processor

time actually taken by the thread, using the TimeSlice subintervals, and

for the processor time that the thread was expected to receive based on its

priority percentage in each SchedInterval subinterval.

We can then assert that the actual processor time taken by a thread is

close to its expected processor time. If the thread is receiving less than its

fair share of the processor, then the expected time will be larger than the

actual time because the thread will exist over more SchedInterval intervals

than it should have, accumulating expected time that was never received.
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perfspec Scheduler;

event ChangePriority ();

CreateThread (tid);

DestroyThread (tid);

RecPriority (tid, pri);

timed event SchedThread (tid);

DeschedThread (tid);

interval TimeSlice =

s: SchedThread,

e: DeschedThread where e.tid = s.tid

metrics

time = timestamp(e) � timestamp(s),

tid = s.tid

end TimeSlice;

interval SchedInterval =

s: ChangePriority, e: ChangePriority

metrics

totrt = f+ i : TimeSlice : i.timeg,

totpri = f+ i : RecPriority : i.prig,

threadp = fthe i : RecPriority : i.tid ! i.prig

end SchedInterval;

interval ThreadStats =

s: CreateThread,

e: DestroyThread where e.tid = s.tid

metrics

rt = f+ i : TimeSlice where i.tid = s.tid : i.timeg,

et = f+ i : SchedInterval : i.threadp(s.tid)/i.totpri � i.totrtg

end ThreadStats;

assert f& i : ThreadStats : i.et � 1 ms � i.rt � i.et + 1 msg;

end Scheduler

Figure 5.3: Scheduler speci�cation
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Having to generate a sequence of RecPriority events after each Change-

Priority event is the \inelegance" alluded to earlier. It would be preferable

simply to generate an event recording the priority of a thread when it is

created or destroyed or when its priority changes; we could then use these

events to demarcate constant priority intervals and to adjust the current

priority sum. The problem is that in the PSpec language there is no way

to compute the priority sum or the thread priority mapping for constant

priority intervals de�ned in this way because it would require information

in events occurring before the start of the interval. As we have seen before,

it is not possible in the current PSpec language to compute metrics for

an interval that involve events outside the interval. Recording RecPriority

events for each constant priority interval solves the problem but is somewhat

ine�cient and inconvenient. The ideas presented in Chapter 6 for changes

to the PSpec model would permit a more elegant scheduler speci�cation.

5.3 Prelude Performance Bugs

As a result of checking some of the Prelude performance speci�cations we

found four performance bugs in the Prelude runtime system. Three of the

bugs were found by checking the interrupt speci�cation, and the other was

found through the assertion about time to allocate object identi�ers.

We started by checking the speci�cation about interrupts being disabled

for less than 75 cycles in all but one interval, using a monitoring log gener-

ated by running a test program that used the Prelude runtime. The checker

reported assertion failure. We then examined the interval dump produced

by the checker to look at the intervals that lasted for more than 75 cycles.

We found that some intervals lasted thousands of cycles, while others were

more reasonable but still high (about 85-90 cycles).

The intervals lasting thousands of cycles were particularly mysterious

so we tracked those down �rst. To �nd the cause of the problem we took

advantage of the fact that the program was running on a simulator. We

were able to look at the start timestamp of an overly long interval in the

checker's output and determine when in the simulation that event was gener-

ated. We could then rerun the simulation, stop it during one of these overly

long intervals, and examine the call stack to see what code was running

at the time. The cause of the problem was obvious once we looked at the

code: a thread suspended itself after having disabled interrupts without �rst

reenabling them. This resulted from a misunderstanding on the part of the

person who wrote the code about the interaction between thread suspension
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and the interrupt ags; he thought that interrupts would automatically be

reenabled when a thread suspended itself. In fact, interrupts �nally did get

reenabled through some other mechanism but the result was that they were

disabled for much longer periods of time than intended.

The causes of the other long intervals with interrupts disabled were

tracked down in the same way. One was due to heap allocation occur-

ring while interrupts were o�. This was simply careless coding; there was no

particular reason why the allocation had to be done while interrupts were

disabled. The other cause was a miscalculation on the implementors' part

about how long message bu�er deallocation would take. As a result of our

�nding, they redesigned the bu�er allocation strategy for messages to make

deallocation faster.

The fourth bug that we found, excessively long times for object identi�er

allocation, was also a problem with a bu�er allocation strategy. In that case

a bu�er pool was too small and bu�er allocation ended up reverting to

memory allocation, which is too slow. The bu�er pool size was increased as

a result of our �nding.

5.4 Evaluation

It is reasonable to ask how signi�cant it is that we found these bugs. If the

code we were testing had just been implemented the previous day, it would

not have been surprising that there were performance problems. In fact, the

code had been implemented several months prior to these experiments. The

implementors had paid attention to performance as they were coding, and

had done some tuning of the system to improve performance where it was

critical. They were surprised at the discovery of these performance bugs|

particularly the one that caused interrupts to be disabled for thousands of

cycles. On the other hand, the pieces of the Prelude runtime that were

completed had not yet seen extensive use by clients. Only simple test pro-

grams had been run. It is possible that these problems would have shown

up eventually when the system was under heavier use. The problem with

interrupts may not have been easy to identify, however, if the only visible

e�ect was Prelude programs that ran more slowly than expected.

It was encouraging to see con�rmation of our hypothesis that simple per-

formance assertions are useful for identifying performance bugs. Any imple-

mentor is capable of writing the kinds of assertions we wrote|no advanced

performance analysis skills are required. Although I wrote the performance

assertions and did the system instrumentation, the implementors working
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with me understood PSpec well enough to be able to propose speci�cations.

Had the tools, language, and documentation been in a less experimental

state, they could easily have carried out the experiments without my assis-

tance.

It is safe to conclude that these experiments provide good preliminary

support for the PSpec approach.

5.5 Methodology

Based on the experience using PSpec with Prelude and on other smaller ex-

amples it is possible to abstract a general methodology for using the PSpec

tools to do performance testing and debugging. There are also some gen-

erally useful hints for writing performance speci�cations depending upon

whether the intended use of a speci�cation is regression testing, continuous

monitoring, or performance debugging.

5.5.1 Process

The �rst step in using the PSpec tools is to decide what performance metrics

are relevant for a program, and what assertions can be made about those

metrics. For guidance in this step, the discussion in Chapter 2 might be help-

ful in providing ideas about useful metrics, or the many books that have been

written about performance evaluation and measurement might help (e.g.,

[10, 11, 18]). Obvious metrics to consider are response time, throughput, re-

source utilization, and workload properties (particularly where assumptions

have been made in the implementation). Also, analysis, simulation, and

measurement tools that provide insight into the performance of a program

and help a designer or implementor to develop performance expectations

can be employed here if they are available.

The next step is to express the performance metrics and assertions in the

PSpec language. This involves declaring events and intervals that are needed

to de�ne the metrics, and then writing assertions using those declarations.

Unknown constants can be included as symbols. The speci�cation writer

should have a rough idea of how the events can be logged from the program,

but need not actually add the logging code during this step.

These �rst two steps can (and probably should) be performed even be-

fore a system is implemented. It is well-known folk wisdom that designing

performance into a program from the start produces better results than try-

ing to add it in after the fact. Writing performance speci�cations can help
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to focus and clarify a designer's or implementor's performance expectations.

It is particularly useful for implementors to capture any assumptions they

make about the workload on a system or about resource availability. These

are the types of decisions that are easily forgotten later on if they are not

documented, and their failure to hold is frequently a cause of performance

bugs. Of course, these steps can also be performed at any later stage in the

development cycle.

The next step is to annotate the program code to generate monitoring

logs. This step, obviously, must be performed during or after the implemen-

tation. If the program is to be simulated before the actual implementation

is done then the simulator can also be instrumented to produce monitoring

logs for the checker. The simulated version is just a di�erent implemen-

tation of the program. The speci�cations could be checked �rst for the

simulated version and then later for the real version. If the speci�cation is

to be used for regression testing, the driver programs must also be written

and annotated as necessary.

Before a speci�cation can be checked, values for any unknown constants

must be determined. This can be done using the solver, or any other avail-

able method. As described in Chapter 4, using the solver generally involves

running the program under conditions that produce monitoring logs suitable

for estimating the unknowns.

Once the constants are �lled in, the program can be run to generate

monitoring logs to be input to the checker along with the speci�cation.

The setup for this will depend upon whether the speci�cation is intended

for regression testing, for continuous monitoring, or for debugging, and the

details will be speci�c to the particular system being used. For Proteus,

it is merely a question of whether a speci�cation is checked after every

simulation run (in e�ect, continuous monitoring) or only after designated

runs (regression testing or debugging). In non-simulated systems, the setup

will probably be more complicated.

The �nal step is to track down the causes of any assertion failures re-

ported by the checker. Again, how this is done depends upon the facilities

available in the particular system. For the simulator, it is generally a matter

of examining the output of the checker and rerunning the simulation, stop-

ping it at points to examine the state. The process will probably be more

di�cult in non-simulated systems, particularly when the executions are not

easily reproduced. Tracking down the cause of assertion failures may also in-

volve writing more speci�cations and going through the whole process again.

Like program development, using performance assertion checking to debug
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and test the performance of programs is a cycle rather than a straight-line

process.

5.5.2 Hints for Writing Performance Speci�cations

During the �rst two steps described above|deciding upon assertions and

metrics and translating them into PSpec|it is worthwhile to think about

the uses to which the speci�cations will be put. The intended use a�ects

the amount of logging overhead that can be tolerated and the assumptions

that can be made about workloads.

For regression testing, a high monitoring overhead is more easily toler-

ated, both because the tests will not be run that often, and because they

will not be run as part of normal operation. Therefore, more and lower-level

details can be gathered about performance. For example, our interrupt spec-

i�cation is probably one we would want to check during regression testing

and not during continuous operation.

Also, during regression testing we have a fair degree of control over the

workload on the system. We can use this knowledge when writing assertions;

sometimes it may be easier to write assertions knowing that the system will

have a particular workload, while it is not easy to write an assertion that

detects that workload.

For speci�cations that are checked continuously during normal system

operation, we will probably have to ensure that the overhead of generating

logs is reasonably low. This means that the assertions will have to be less

detailed than is possible when doing regression testing. For example, we

might be able to check the speci�cation about the percentage of send oper-

ations that are multi-packet, or about cache hit ratios in a �le system. If

those speci�cations as written still result in too high an overhead for log-

ging, we could perhaps change them so that fewer events are logged to give

approximately the same data. For example, in the case of sends, rather than

logging an event for each send we could keep counters in the program that

counted all sends and all multi-packet sends. The value of these counters

could be output to the log periodically. This would leave us with less infor-

mation if we then had to track down the cause of an assertion failure, but

the tradeo� might be worthwhile.

During continuous monitoring, we also have less control over the work-

load on the system. This means that the assertions will have to apply over

a broad range of workloads, either by asserting performance properties that

hold for all workloads, or by identifying applicable workloads in the asser-
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tions. It is also particularly useful to check implementation assumptions

about workloads during continuous monitoring.

Performance debugging involves tracking down the cause of a known per-

formance problem. During debugging we will probably be writing assertions

for various levels of abstraction in a system, going to lower levels and more

detail as we trace a problem. Repeatability helps immensely here since it

is usually impossible to predict before running a program and examining

its monitoring output all of the information that will be needed to locate

a bug. A simulator is a particularly good environment for tracking down

performance bugs because executions are repeatable and it is possible to

stop the program to examine what is going on without a�ecting the out-

come of the execution. Performance debugging in non-simulated systems is

much more di�cult, and we do not yet have any experience using PSpec for

debugging in that situation.
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Chapter 6

Extensions and Future Directions

This chapter is a speculative discussion about future work. The �rst two

sections deal with what could be called \immediate future work," while the

third section discusses a longer-term direction. The �rst section covers issues

related to using the PSpec language and tools in non-simulated systems. The

discussion contains many more questions than answers because of a lack of

experience using the tools for such systems. The second section presents

ideas for how the language could be changed or extended to solve some

of the expressiveness problems we encountered in earlier chapters. None

of these ideas have been worked out to the point where they are ready to

be incorporated into the language. The third section discusses the use of

performance speci�cations as interface documentation.

6.1 \Real" Systems

The PSpec language and tools were intended from the start to be useful

in \real" (non-simulated) systems. The Proteus simulator certainly is real

in the sense that people use it for their real work, and not just for toy

problems; the programs developed on the simulator are also executed on

parallel machines. However, the simulator environment provides certain

amenities that are not available in non-simulated systems, such as the ability

to replay executions and to do zero-cost monitoring. Since performance

speci�cations ought to be checked throughout the lifetime of a program, it

is important that they can be checked in production environments as well

as on simulators. Also, we will want to employ the tools in environments

for which no simulator exists.

One of the �rst questions is: will the monitoring overhead be tolerable?

Overhead includes both the time to generate the log data, and the space

85
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to store it. There is good reason to believe that monitoring overhead will

not be the downfall of this approach. One way to bring monitoring over-

head under control is to adjust the level of detail at which speci�cations are

written. For the purposes of continuous monitoring, speci�cations can be

written to detect gross performance problems, and to monitor gross char-

acteristics of workloads. Regression tests could use more detail because the

higher monitoring overhead would be more tolerable (except when the mon-

itoring actually changes the behavior of the system). Also, as mentioned

in the previous chapter, by keeping small amounts of additional state in

the program being monitored, in the form of counters and timers, one can

reduce the number and frequency of events written to a log.

Being able to discard log data once the assertions pertaining to it have

been checked should help with space problems. This is one of the advantages

of having performance speci�cations|they help to identify the interesting

data corresponding to the failure of the system to meet expectations. In the

end, it will be a question of whether the bene�t of performance assertion

checking justi�es the cost of monitoring. Monitoring will always have some

cost, but if performance problems can be detected and corrected early, the

extra cost can be justi�ed. Without monitoring, we are once again without

a solution to the problem of �nding performance bugs.

To make the PSpec tools work in real systems, several questions relating

to continuous monitoring must be addressed. What is the mechanism for

setting it up? What do aggregate expressions in speci�cations mean in that

case? What happens when assertions fail? How do we �gure out what

information can be discarded and what should be saved? Must we restrict

speci�cations to use a subset of the PSpec language that can be checked in a

single pass through a log? Perhaps what we really want is \periodic" rather

than \continuous" monitoring, where logging is turned on and speci�cations

are checked periodically rather than all the time.

There are several possibilities for handling aggregate expressions during

continuous monitoring. First we have to decide what the meaning of an

aggregate expression should be. For example, what does it mean to write an

assertion about an average that is checked continuously? Probably, what we

want is averages over particular periods of time|maybe ten-second averages

or ten-minute averages or day-long averages. The current PSpec language

de�nition says that a top-level aggregate expression ranges over the entire

log against which the speci�cation is checked. One obvious solution is to

break up logs into lengths covering whatever period of time is desired and

feed those to the checker. Another possibility is to write explicit assertions
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that apply over the desired �xed-length periods. We considered such speci�-

cations in Chapter 2 where we looked at assertions about ten-second average

throughputs. As we saw, such speci�cations are not di�cult to write, pro-

viding time markers can be generated in logs.

The questions of what to do when assertions fail and what informa-

tion can be discarded during continuous monitoring remain to be answered.

Probably for assertion failures we will want some mechanism for logging the

failure so that a person will eventually see it, or to otherwise bring it to

someone's attention. When assertions fail we probably want to save more

data than just the data for which the assertions failed. We might like to save

portions of a log for periods before and after the failure to provide context

for tracking down its cause. In order to know the right answer here we need

more experience using the tools in these situations.

The question of how to track down causes of assertion failures is also an

issue for regression testing and, of course, for performance debugging. De-

bugging a program interactively, as we did to �nd the Prelude performance

bugs, is helpful if it is possible. Depending upon the system for which the

speci�cation is being checked, this may not be possible to the same extent

that it was with the simulator. Again, more experience is required to know

what tools and techniques will work.

Finally, in real systems, logs may be generated in several di�erent pieces

that need to be merged before they are given to the checker. Work on

monitoring in distributed and parallel systems has addressed this problem.

One solution involves using timestamps and synchronized clocks. Another

solution is based on Lamport's \logical clock" concept [21]. Other system-

speci�c solutions are also possible (e.g., see [31]).

Doubtless there are other problems that will have to be solved to make

the PSpec tools useful in real systems. Experience will tell.

6.2 Language Extensions

We now turn to ideas for extensions to the PSpec model and language that

could help solve some of the problems with expressive power that we en-

countered earlier.

6.2.1 Computing State From a Log

In Chapter 2 we saw an example where we wanted to compute a boolean

metric for a Read interval that would be true if there were any concurrent
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Write intervals. We had di�culty because, while it is easy to detect whether

any Write intervals start or end during a Read interval, it is not easy to

detect whether there are any Write intervals that start before the Read

and are still open during the Read. The problem, in essence, is that a

metric expression in an interval declaration cannot refer to events outside

the interval (and in particular, before the interval). This prevents us from

computing a metric whose value is the state of the computation at some point

in an interval using events from the beginning of the log up to that point.

We saw another example where we wanted to compute state in Chapter 5

with the Prelude scheduler; there we wanted to compute the current priority

sum and the mapping of threads to priorities in constant priority intervals.

This problem of not being able to compute state is perhaps the most serious

defect in the PSpec model and language.

One obvious solution is to change the model so that metric values may

be computed from events preceding an interval as well as within an interval.

The question would then be how to reect this in the language. There are

two possible solutions that I have considered, neither of which is entirely

acceptable. It is worth recording them here because one or the other may

be a step towards a good solution. The solution that seems most promising

involves modifying the de�nition of aggregate expressions to allow aggregates

in a metric de�nition to range from the beginning of the log to some point

in the interval containing the metric. The less attractive solution involves

adding a notion of \state variable" to the language. I will describe each of

these and show how they could be used to express the scheduler speci�cation.

(The original scheduler speci�cation appears on page 77.)

First let us consider the solution involving aggregate expressions. In

the current design, the range of an aggregate expression is implicit from

its context; aggregate expressions appearing at top-level (in assertions, def

statements, or solve declarations) range over the entire log, while aggregate

expressions in metric de�nitions range over the events and sub-intervals of

the interval for which the metric is de�ned. The proposal is to add a third

possibility, which is an aggregate expression that ranges from the beginning

of the log up to some point in the log (through some event); it is not clear

how much exibility should be allowed in specifying the termination point

for the aggregate.

Suppose the scheduler speci�cation is modi�ed so that instead of Change-

Priority and RecPriority events, we have an event type:

event ChangeThreadPri (tid, newpri).
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An event of this type is generated every time a thread is created or de-

stroyed, or when its priority changes, and records the thread identi�er and

the thread's new priority. (When a thread is destroyed its new priority is

recorded as zero.)

We then de�ne SchedInterval intervals to start and end with events of

type ChangeThreadPri. To compute the threadp mapping metric for these

intervals, we could write one of our new aggregate expressions. Assuming

that we can somehow indicate that the following aggregate expression ranges

from the beginning of the log through the ChangeThreadPri event that starts

an interval, we could write:

threadp = flast c : ChangeThreadPri : c.tid ! c.newprig.

This expression constructs a mapping from thread identi�ers to the last

priority value recorded for that thread identi�er. The priority sum for an

interval of type SchedInterval can then be computed by summing the prior-

ities in the range of the threadp mapping.

The problem here is how to specify the range of the new kinds of aggre-

gate expressions. Aggregate expressions are concise now because the range

is implicit, but it would probably have to be made explicit in the new pro-

posal. Also, in this example we needed the aggregate to range through the

�rst event of the interval, but in other examples, we might want the aggre-

gate to range up to but not including the �rst event, or even up to some

other event contained in the interval. It is not clear how this could be ex-

pressed cleanly. The appeal of this approach is that the language remains

assignment-free and it uses an existing feature of the language with some

modi�cations rather than introducing an entirely new concept.

The second proposal for computing state in speci�cations is to add state

variables. We (logically) augment a log by adding a state after each event.

A state is a mapping from state variable names to values. A variable name

can be mapped to di�erent values in di�erent states. A speci�cation writer

introduces a state variable by giving its initial value and specifying how its

value at any point in the log is altered by each kind of event. There also

must be a way to refer to the value of a state variable before or after any

given event.

For the scheduler example, we could introduce a state variable called

curPriorities that holds the mapping from thread identi�ers to thread pri-

orities. The mapping is initially empty. A ChangeThreadPri event c either

replaces the priority value mapped to c.tid if there is one, or adds c.tid

to the domain of curPriorities, mapping it to c.newpri. The value of the
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threadp metric for a SchedInterval interval is then the value of curPriorities

in the state following the start event of the interval. The speci�cation might

look something like the following:

event ChangeThreadPri (tid, newpri);
...

var curPriorities

init empty,

mod c: ChangeThreadPri ) curPriorities(c.tid) := c.newpri;
...

interval SchedInterval =

s: ChangeThreadPri, e: ChangeThreadPri

metrics

threadp = s^curPriorities
...

end SchedInterval;
...

The notation s^v is intended to mean the value of state variable v following

event s . The var statement declares the state variable curPriorities , gives its

initial value, and speci�es how the value is modi�ed by ChangeThreadPri

events. Implicitly, the state variable's value is not changed by any other

types of events.

State variables might work, but they seem less appealing than a solution

that extends the notion of aggregates. One of the reasons is that speci�ca-

tions become harder to read; to understand what the value of a state variable

will be at any point the reader has to reason about how the value can change

throughout the log up to that point. Also, state variables provide some ca-

pabilities already provided by aggregate expressions. It seems unnecessary

to have both mechanisms in the language. We could consider removing ag-

gregates and using only state variables, perhaps allowing state variables that

are local to intervals for computing metrics. However, in my opinion, this

makes speci�cations even less readable because more operational reasoning

is required.

6.2.2 Virtual Events

Another idea for an extension to the PSpec language is to add a notion

of virtual events. A virtual event would be like a real log event, sequenced
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with real events, and having named attributes. The di�erence is that virtual

events would be fabricated by the checker based on a speci�cation and would

not actually be contained in a log. Having virtual events in the language

might save us from having to log extra events from a monitored program, or

from having to preprocess a log to add events before giving it to the checker.

We have already seen several examples in previous chapters where virtual

events could be useful. In one example we needed events that marked o�

�xed intervals of time in a log. If all events in a log have timestamps,

such interval markers could be added in a post-processing phase rather than

having to be generated while the monitored program is running. Providing

a way to de�ne these as virtual events would allow the post-processing to

happen along with speci�cation checking.

Another example where virtual events would have helped was mentioned

in Chapter 3, where I discussed de�ning an interval that starts when a �le

is created and ends when it is either deleted or overwritten. The problem is

that we need to identify the end event for an interval type using a disjunction

of event types, where the language allows only a single event type. We could

have generated additional events during monitoring that corresponded to

the case of \either deleted or overwritten" but this information is already

present in the log so it seems wasteful to generate extra events at the time

when the overhead is least tolerable. We also could have post-processed the

log to add these events. The ability to de�ne virtual events would eliminate

the need for post-processing. Instead, we could imagine de�ning a virtual

event corresponding to the \deleted or overwritten" case that is generated

after each delete or overwrite event. We could then use the virtual event

type to identify intervals.

Virtual events could also be useful for turning intervals into events, in

e�ect. We could imagine de�ning a virtual event type corresponding to

intervals of a speci�ed type. Whenever an interval of the type occurred in

the log (at the point where its end event occurred) the virtual event would

occur. Then these virtual events could be used to demarcate other intervals.

This gives us the capability of de�ning intervals that are demarcated by

intervals rather than just events. We have not yet run across any examples

where this capability is required, but it might be useful.

6.3 Performance Speci�cations as Interface Documentation

Ideally, performance speci�cations ought to serve an analogous role to func-

tional speci�cations. A functional speci�cation abstracts from a computa-
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tion by describing its intended e�ect, namely, the input-to-output relation

that it computes. Any number of di�erent implementations may satisfy the

same functional speci�cation, computing the input-output relation in di�er-

ent ways. A functional speci�cation hides the details of an implementation

that are deemed irrelevant for proving the correctness of a program that

uses the implementation. In systems without hard real-time constraints,

program correctness is not usually tied to performance, and so functional

speci�cations often do not include information about performance.

A performance speci�cation ought to be a document that accompanies

a functional speci�cation, and similarly, abstracts from the details of an

implementation. It should describe the values of interesting performance

metrics that the client of the implementation can expect to see under var-

ious operating conditions. Many di�erent performance speci�cations could

accompany the same functional speci�cation; a performance speci�cation

could be viewed as a further constraint on implementations.

Such performance speci�cations could help in building programs that

perform well. In order to choose implementation strategies that result in

good program performance, a programmer must know what performance to

expect from the subsystems used by the program, and how the performance

of the various subsystems will a�ect the performance of the program as a

whole. Performance speci�cations could help with the former problem by

documenting the expected performance of subsystems. They would not,

however, help the programmer to determine what operating conditions will

prevail when a subsystem is used (information that will be needed in order to

interpret the speci�cation), nor how to determine the resulting performance

of a program when many subsystems are used together.

Once a program is implemented, interface-level performance speci�ca-

tions could aid in assigning blame during performance debugging. A speci�-

cation is a contract for a service to be provided by a subsystem to its client.

If a subsystem fails to meet its speci�cation, either the subsystem has a bug

or the speci�cation is wrong. In either case, the implementor of the client

is justi�ed in complaining to the subsystem's implementors. If a program

does not perform as well as the programmer expects but the subsystem sus-

pected of causing the problem is actually meeting its speci�cation, there are

a number of possibilities. It could be that conditions in the system are dif-

ferent than the programmer expected, and so the subsystem is operating in

a di�erent performance range than expected. Some other subsystem may be

failing to meet its speci�cation and so may be at fault. Another possibility

is that all subsystems are meeting their speci�cations and the programmer's
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performance expectations are simply unreasonable.

The signi�cant di�erence between the interface-level performance speci-

�cations that I have in mind and the PSpec performance speci�cations that

we saw earlier is that interface-level speci�cations are contracts. They would

allow programmers to debug the performance of application programs with-

out understanding the implementations of all the subsystems used by the

program. As soon as it is determined that a subsystem failed to meet its

performance speci�cation, the programmer would know who to complain to

and the responsibility then belongs to the implementor of the subsystem.

There are (at least) several reasons why writing interface-level perfor-

mance speci�cations is di�cult. One was mentioned in Chapter 2: it is

not always easy to characterize performance in interface-level terms. Per-

formance of a subsystem may depend upon the history of its use, which is

not easy to describe in terms of the requests at its interface. This was the

reason that we wrote elapsed time assertions for �le system Read operations

in terms of a metric that indicated whether there was a cache hit, rather

than characterizing the performance of a Read operation that was preceded

by a particular pattern of �le system requests. A solution for this problem

may be to introduce concepts like \cache" at the interface level for the pur-

poses of writing performance speci�cations for clients. In this case though,

it would be di�cult to describe in precise terms to the client how to use the

�le system to obtain good cache behavior. A related problem is that the

performance of a subsystem may depend upon lower-level subsystems that

it uses. It is hard to see how to include this information in an interface-level

speci�cation.

Another reason why interface-level performance speci�cations are di�-

cult to write is that it is not as easy to get modularity with performance as

it is with functionality. If a performance speci�cation can identify all the

possibly important input performance variables for a subsystem, then an

implementation change in another subsystem will not invalidate the speci-

�cation. The \if" is emphasized because this condition can be di�cult to

satisfy for two reasons. First, identifying all the variables that a�ect perfor-

mance may be di�cult because some of them have only small e�ects or are

masked entirely by other performance variables in a given implementation.

If there is no way to detect these hidden performance variables, a change

in one subsystem could invalidate the speci�cation for another by causing

a previously unimportant input variable to become important. Second, it

is probably not a good idea to try to express the performance contribution

of all input variables with small performance e�ects in a speci�cation; the
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speci�cation is intended to serve as documentation for users and as input to

a checker and cluttering the speci�cation with relatively unimportant details

may obscure more important information.

A third factor working against interface-level speci�cations is that the

performance of a subsystem depends upon the entire workload presented by

all its clients. In general, it is not possible to characterize the performance

that one client will see based on that client's workload alone. Even knowing

the entire workload, it may only be feasible to specify characteristics of the

performance delivered to all the clients and not speci�cally to one client.

Consequently, to make use of a speci�cation, clients of a subsystem will

need information about other clients that use the subsystem. This is a

failure of modularity in another form. All hope is not lost however, since a

monitoring system that gathers information to check whether a subsystem is

meeting its performance speci�cation could also make the information about

the entire workload available to each client.

Despite these di�culties, the idea of interface-level performance speci�-

cations is worth pursuing because the payo� could be large. It is possible

that the PSpec language, perhaps with some modi�cations, could provide a

�ne vehicle for expressing such speci�cations. The �rst problem though is

to �gure out what the content of the speci�cations should be, and then we

can consider the notation.



Chapter 7

Conclusion

Never promise more than you can perform.

|Publilius Syrus, Maxim 528

We have now seen all of the components of the PSpec approach along

with examples and evidence of how it can be used for performance debugging

and testing. This chapter concludes by summarizing the contributions of the

research and mentioning the directions for future research that are likely to

be most critical to the success of performance assertion checking in the long

run.

7.1 Summary of Contributions

The main idea underlying this research is that explicit and precise perfor-

mance assertions can help to automate performance regression testing and

continuous monitoring of systems, and thereby help to �nd performance

bugs. The PSpec language and tools are a realization of this idea.

The PSpec language is a notation for describing predicates on monitoring

logs. Its design is geared towards expressing performance assertions, but in

fact, the language is more general than that. For example, it can also express

(to a limited extent) well-formedness properties on logs. A monitoring log

provides a simple interface between the assertion language and the program

whose performance is being described. It abstracts away the idiosyncrasies of

the system being monitored to capture those facts about executions that are

relevant for performance assertions. The existence of this interface permits a

single implementation of a set of tools for processing performance assertions;

the tools can be used with monitoring logs from a wide range of systems.
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The PSpec checker and solver are two tools that are geared speci�cally

towards writing and checking performance assertions. As discussed in Chap-

ter 4, other tools could also be designed to �t into the performance assertion

framework and augment the capabilities of the checker and solver. For this

research, not much attention has been given to integrating the PSpec tools

with existing performance tools but that would be a useful next step.

One advantage of the PSpec approach is that it has a low startup cost.

Performance assertions can be written for any piece of a system that can

be monitored, at any level of abstraction. There is no requirement that

performance speci�cations be complete, or that they be provided for all

modules in a system, or that they be written in interface-level terms for a

module. An implementor can write whatever assertions may help to locate

problems, incrementally adding more assertions and more monitoring as

necessary.

PSpec provides a systematic approach to performance testing that can

replace current ad hoc approaches in many situations. Implementors have

always had the ability to generate monitoring logs and process them to

check properties of executions, but they seldom do this because it is time-

consuming to write the log processing programs and to set up the mon-

itoring. Also, when such special-purpose instrumentation is produced for

the performance testing phase of program development, it tends to become

obsolete over time. Part of the idea behind PSpec is that the performance

testing phase should continue throughout a system's lifetime; providing a

general-purpose set of tools that can be maintained and understood by ev-

eryone can help to make this happen.

I began with the hypothesis that relatively simple performance asser-

tions would be useful for �nding performance bugs. One of the reasons

that so many systems perform badly is that no attempt is made to study

performance, or only initial performance studies are conducted just prior

to releasing a system and no followup studies are done to track changes in

performance over time. Tools that take advantage of the knowledge that

programmers already have and that facilitate and encourage simple perfor-

mance studies that continue throughout the lifetime of a system would thus

be valuable. Preliminary experience with PSpec has borne out the hypoth-

esis; the assertions that we used to �nd the Prelude performance bugs were

simple and obvious. This observation, along with the fact that the PSpec

approach is more structured and general than ad hoc approaches, bodes well

for the prospect of programmers actually using the PSpec tools and thereby

producing systems with better performance than we see today.



7.2. DIRECTIONS FOR FUTURE RESEARCH 97

7.2 Directions for Future Research

If performance assertion checking is to become a ubiquitous component of

the programmer's toolkit, additional issues beyond the scope of this disser-

tation must be addressed. Chapter 6 discussed some questions related to

making the PSpec tools work for non-simulated systems. Some additional

questions are:

� How do heterogeneity and portability a�ect performance speci�ca-

tions? How do we write checkable speci�cations for distributed sys-

tems with components that have di�erent performance characteristics

(particularly where the software masks the di�erences from a func-

tional standpoint)? Can we parameterize speci�cations so that mini-

mal changes are required when a system is ported to a new architecture

or con�guration? (The solver should help here.)

� How does fault-tolerance a�ect the kinds of performance assertions we

write? Because fault-tolerant systems try to provide graceful degra-

dation, component failures often result in performance degradation

rather than system failure. What kinds of performance assertions will

be useful for such systems?

� The presentation here has focused on writing performance assertions

for single runs of programs, but in fact, the same techniques can be

used to write assertions about multiple runs. Are any changes required

to the PSpec language or tools to support the checking of multiple

program runs?

� A common cause of poor performance is high contention for base sys-

tem resources such as memory pages, processor time, or network band-

width. When such resources are in high demand, performance tends

to degrade for the entire system, rather than just for individual pro-

grams. How should we write performance speci�cations to identify

performance problems due to base resource contention? Can we build

tools that help to automate the production of such speci�cations?

� How can we make the solver more helpful?

All of these questions are fruitful directions for future research.
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Appendix A

PSpec Language Reference Manual

A.1 Introduction and De�nitions

PSpec is a language for writing performance speci�cations. We assume that

there is some facility for generating monitoring logs from programs for which

we want to write speci�cations. A speci�cation describes a set of assertions

(a predicate) expected to hold for monitoring logs of interest.

A monitoring log is a sequence of primitive components called events.

Each event has a type and a sequence of named, numeric-valued attributes.

An event type in the PSpec language corresponds to an event type in a

monitoring log. The mechanism for establishing this correspondence is

implementation-dependent.

An interval corresponds to a subsequence of a log starting at some start

event, ending at some end event, and including all events in the log between

the start and end events. An interval has associated metrics, which are

named and have values (not necessarily numeric). Intervals may be disjoint,

may overlap, or may nest. An interval i is nested inside another interval j

if i's start and end events are between j's start and end events in the log.

Values are mathematical entities with types. Some examples of values

are events, intervals, numbers, and booleans.

An expression speci�es a computation that produces a value.

An identi�er is a symbol declared as a name for a value. The region

of a speci�cation over which a declaration applies is called the scope of the

declaration. The outermost or top-level scope of a speci�cation is called

the global scope. Event and interval type names and declared constants

are all in the global scope. In addition, interval declarations and aggregate

expressions (to be described later) introduce local scopes. Scopes nest, with

names in the global scope accessible from all enclosed scopes (though there
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are certain restrictions, described later). Identi�ers must be declared before

they are used in expressions.

A.2 Types

Every value in a speci�cation has a type that dictates how the value may

be interpreted. With the exception of event and interval types, types are

never named explicitly in speci�cations. However, the type of any value or

expression can always be inferred statically.

The base types are number and boolean. From these base types, triple

and mapping types can be constructed.

A triple consists of three numbers and represents a measurement with

associated error (or it may represent a combination of measurements). The

triple [t; p;m] represents a number in the range [t�m; t+ p], where t is the

measured or \favored" value. p and m are always non-negative.

A mapping is a partial function from integers to values.

In addition to the above types, speci�cation writers can declare event

and interval types. The declarations for these types are described in the

next section. Event and interval types have names that uniquely identify

the types (i.e., two types are the same if they have the same name).

A.3 Declarations

A declaration introduces a name for a constant, event type, or interval type

into the global scope. The name is available in all expressions that follow

the declaration. An interval type name is not available in metric de�nitions

for the interval type (thus, interval declarations are not recursive). It is an

error to redeclare a name in the same scope (but a name may be redeclared

in a nested scope).

A.3.1 Constants

If id is an identi�er and e is an expression, then:

def id = e

declares id as a constant bound to the value of e. e is evaluated in the

global scope. The declaration def id = ? declares id to be an unknown.

Unknowns are recognized by the solver.
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A.3.2 Event Types

If id is an identi�er and alist is a comma-separated list of identi�ers, then:

event id (alist)

and

timed event id (alist)

declare id as an event type. Events of the type have attributes named in

alist. The second form of declaration also indicates that events of type id

have an implicit timestamp attribute, which is used by the elapsed function

on intervals and can be accessed by the timestamp function on events.

A.3.3 Interval Types

Interval type declarations serve two purposes: they introduce new interval

types and they also identify the set of intervals in a log. An interval decla-

ration provides predicates for determining whether an event in the log is the

start or end event for an interval of the type, and expressions for computing

the metric values for an interval of the type.

If id, s, and e are identi�ers, stype and etype are event type names, and

spred and epred are boolean-valued expressions, then:

interval id =

s: stype where spred,

e: etype where epred

metrics

mlist

end id

declares an interval with type name id. mlist is a comma-separated list of

metric de�nitions of the form

m = expr

where m is an identi�er and expr is an expression.

The declaration de�nes an interval of type id to be one that has a start

event s of type stype for which spred is true, and an end event e that is the

next event in the log of type etype following the start event for which epred

is true.
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The de�nition of intervals may be modi�ed slightly by inserting the

keyword nested before interval. A nested interval type has the further

condition that the end event e is not also an end event for any other interval

of type id that starts after s. Thus, without the nested restriction, multiple

intervals of the type may share the same end event. With the restriction,

all intervals of the type will have di�erent end events. It is always the case

that multiple intervals of di�erent types may share end events.

For each interval of type id in the log, its metrics are computed as fol-

lows. A new scope is introduced with s and e bound to the start and end

events for the interval. The metric expressions are evaluated in this scope

and their values are bound to the metric names for the interval. Metric

de�nitions are, in e�ect, simultaneous|they may not reference each other.

Also, because of an implementation e�ciency consideration, metric expres-

sions that aggregate over events or intervals may not refer to e (the end

event).

The where clause for the start or end event may be omitted, in which

case it defaults to true. The metrics mlist clause may be omitted, in

which case the interval has no metrics (but the elapsed function may still

be applicable for the interval).

The identi�er s is available in spred and epred . The identi�er e is avail-

able in epred . Both identi�ers are available in the metric expressions, as

explained above. The identi�er id cannot be referenced inside mlist. There

is also the restriction that expressions in mlist cannot reference identi�ers

that are de�ned to have values computed using aggregate expressions.

A.4 Assertions

An assertion is a predicate (boolean-valued expression) that is expected to

be true when a speci�cation is checked against a log. If e is a predicate,

then

assert e

is an assertion that e should evaluate to true. e is evaluated in the global

scope.

A.5 Solve Declarations

A tool called the solver accepts speci�cations with constants declared as

unknowns and estimates values for the constants. Solve declarations provide
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guidance to the solver.

If id is an identi�er, idtype is an event or interval type, v and c are

constants declared as unknowns, pred and e are expressions, and m is a

mapping-valued expression then:

solve e

and

solve data id : idtype where pred : e, var v, cor c

and

solve data id in domain(m) where pred : e, var v, cor c

are solve declarations. See the solver documentation for more information

about how solve declarations are used.

A.6 Speci�cations

If id is an identi�er and stmts is a semi-colon separated list of declarations,

assertions, and solve statements, then:

perfspec id

stmts

end id

is a speci�cation. id must be di�erent from any top-level identi�er in stmts.

A.7 Expressions

An expression speci�es a computation that produces a value. Expressions

are either operands (identi�ers or literals), operators applied to arguments

that are themselves expressions, triple constructors, or aggregate expres-

sions.

The operators that have special syntax are classi�ed and listed in de-

creasing precedence order in Figure A.1. All in�x operators are left associa-

tive. Parentheses can be used to override precedence rules.
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f(x) function or mapping application

i.f, n us,n ms, etc. in�x dot for �eld access, numeric

literals with time units

� unary minus

� = div mod in�x arithmetics

+ � in�x arithmetics

= != < <= >= > in�x relations

! pre�x \not"

& in�x \and"

j in�x \or"

=> in�x \implies"

�> in�x mapping constructor

Figure A.1: Operator precedence

A.7.1 Literals

There are two kinds of literals: numeric and boolean. The boolean literals

are true and false. Numeric literals denote non-negative numbers and use

the Modula-3 syntax for integer, real, and longreal literals [29]. All numbers

are converted into longreal internally, but we can still check when necessary

whether a number has an integral value.

A.7.2 Triple Constructors

If e, p, and m are numeric-valued expressions, then [e; p;m] is the triple

whose components are the values of e, p, and m, in that order. Such a triple

represents the range [e�m; e+ p] with e being the measured or \preferred"

value. Both p and m must be non-negative.

A.7.3 Mappings

If i is an integral number-valued expression and v is any expression then

i �> v is the single-element mapping with the value of i mapped to the

value of v.

If m is a mapping and i is an integral number-valued expression, then

m(i) evaluates to the value to which m maps i. i must be in m's domain.



A.7. EXPRESSIONS 111

The expression mapped(m, i) evaluates to true if and only if i is in m's

domain.

Some of the arithmetic and logical operators are overloaded to work on

mappings. These operators provide various ways of combining mappings.

In particular, +, �, &, j, min, and max can take mappings as arguments.

The result of combining a sequence of mappings m1; . . . ; mn with one of the

above operators op is a new mapping r whose domain is the union of the

domains of m1 through mn. For any number i in r's domain, r(i) is the

value obtained by applying op to the sequence of values mk(i) for all mk

that have i in their domains.

A.7.4 Field Access

If id is an identi�er bound to an event or interval and f is one of its �eld

names (a metric or an attribute) then id.f evaluates to the value of the �eld.

A.7.5 Time Units

Numeric values are unitless. Times computed using the elapsed function

are also unitless as values, but they represent a time value in some time

unit speci�c to the implementation. In order that a speci�cation writer

may use these time values in a sensible way (e.g., compare them to literals)

operators are provided to convert literals in speci�ed time units to their

equivalent values in internal time units. If n is a numeric literal, then any

of the following operators can follow n in an expression:

us = microseconds

ms = milliseconds

sec = seconds

min = minutes

cyc = cycles

For example, 10 ms evaluates to the real number of internal time units equal

to 10 milliseconds.

A.7.6 Arithmetic Operations

Some arithmetic operations are overloaded to work with triples and map-

pings as well as numbers. The operations on numbers and triples are de-

scribed here. The section on mapping expressions describes operations on

mappings.
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Numeric operations. The numeric operations are: � (unary), � (in�x),

+, �, =, div, mod, max, min, log, power, abs, and trunc. The �rst �ve of

these are de�ned as in Modula-3.

div and mod are in�x operations whose arguments must be integral val-

ues. They produce integral results and are de�ned as in Modula-3.

min and max are invoked as functions, each taking two numeric argu-

ments and returning a number. min returns the minimum of its arguments

and max returns the maximum.

If a and b are numeric expressions, then the logarithm to the base a of b

is written log(a,b), and a raised to the b power is written power(a,b). Both

of these operations return numbers.

If n is a numeric expression, then abs(n) is the absolute value of n.

trunc(n) returns the greatest integral number that is at most n for n positive,

and the smallest integral number that is at least n for n negative.

Operations on triples. In what follows let t and u be triples of the form

[v; p;m]. The notations t.v, t.p, and t.m refer to the components of triple t.

Note that a number n can be represented as the triple [n; 0; 0]. Arithmetic

for mixed triples and numbers (except for the log and power operations) is

de�ned �rst to convert the numbers into the corresponding triples, and then

to use triple arithmetic.

The arithmetic operations on triples are de�ned in Figure A.2. The

de�nitions are derived using the notion of a triple as a representation of a

range of values with a \preferred" value. The v component of the result is

the operation applied to the v components of the operand triples. The p

component of the result is de�ned so that v+p for the result is the maximum

possible value that could result from applying the operation to values in the

ranges of the operands. Similarly, the m component is de�ned so that v�m

for the result is the minimum possible value for the operation, treating the

operands as ranges.

A.7.7 Relational Operations

The relational operations are: <, <=, >, >=, =, and != (not equal). These

are de�ned both on numbers and on triples, and the result is a boolean.

Their de�nitions for numbers are as expected. An expression of the form \a

op b op c," where op is a relational operator, is equivalent to the expression

\a op b & b op c." The de�nitions on triples, assuming t and u are triples,

are as follows:
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t + u = [t:v + u:v; t:p+ u:p; t:m+ u:m]

�t = [�t:v; t:m; t:p]

t � u = t+ (�u)

t � u = [t:v � u:v;maxi2t;j2ufi � jg � t:v � u:v;

t:v � u:v � (mini2t;j2ufi � jg)]

1=t = if 0 2 t then error

else [1=t:v;maxf1=(t:v + t:p); 1=(t:v� t:m)g � 1=t:v;

1=t:v �minf1=(t:v+ t:p); 1=(t:v� t:m)g]

t=u = t � 1=u

min(t; u) = [min(t:v; u:v);

min(t:v + t:p; u:v+ u:p)�min(t:v; u:v);

min(t:v; u:v)�min(t:v � t:m; u:v� u:m)]

max (t; u) = [max(t:v; u:v);

max (t:v + t:p; u:v + u:p)�max(t:v; u:v);

max (t:v; u:v)�max(t:v � t:m; u:v � u:m)]

log(b; t) = [log(b; t:v); log(b; t:v+ t:p)� log(b; t:v);

log(b; t:v)� log(b; t:v � t:m)]

power(b; t) = [power(b; t:v); power(b; t:v+ t:p)� power (b; t:v);

power(b; t:v)� power(b; t:v� t:m)]

power(t; b) = [power(t:v; b); power(t:v + t:p; b)� power (t:v; b);

power(t:v; b)� power(t:v � t:m; b)]

Figure A.2: Arithmetic operations on triples. t and u are triples. b is

a number. For log and power , (t:v � t:m) must be greater than 0. The

notation i 2 t means t:v � t:m � i � t:v + t:p.
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t = u � (t:v � t:m � u:v + u:p)^ (t:v + t:p � u:v � u:m)

t != u � !(t = u)

t > u � t:v � t:m > u:v + u:p

t < u � t:v + t:p < u:v � u:m

A.7.8 Logical Operations

The logical operations are: & (and), j (or), ! (not), and => (implication).

They have their usual meanings applied to boolean-valued arguments. &

and j evaluate all of their arguments.

As described in the section on mappings, & and j are overloaded to work

for mappings as well.

A.7.9 Operations on Intervals

If i is an interval whose start and end events are both timed, then elapsed(i)

returns a triple representing the elapsed time for interval i. The p and m

components of the triple are determined based on the units in which the

timestamps are measured. If the units are cycles, the p and m components

are zero. For any other units, they are one if the t component is non-zero.

If the t component is zero, the p component is one and the m component

is zero. If either the start or end event of i is not timed, it is an error to

evaluate elapsed(i).

A.7.10 Operations on Events

If e is a timed event, then timestamp(e) returns the value of e's timestamp,

which is a number. If e is not timed, evaluating timestamp(e) is an error.

A.7.11 Aggregates

An aggregate expression describes the combination of a sequence of values to

produce a result value. The sequence of values is produced by introducing

a new identi�er that gets bound to a series of values in a speci�ed range

and evaluating a speci�ed expression (which may use the identi�er) for each

binding. The sequence resulting from evaluating the expression for each

binding is then combined using a speci�ed aggregate operator.

The range may be speci�ed in two ways: it may be a sequence of events

or intervals of a speci�ed type and satisfying a speci�ed predicate, or it may

be the values in the domain of a mapping that satisfy a speci�ed predicate.
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We de�ne an implicit component of a scope, called the current log se-

quence, that is used in evaluating aggregate expressions that range over

events and intervals. In the global scope, the current log sequence is all

events and intervals in the log. Within the scope of an interval declaration,

it is all events and intervals wholly contained between (and not including)

the start and end events of the interval being declared. For the purpose of

de�ning the current log sequence for intervals, intervals are ordered by their

end events. If two intervals have the same end event, they can appear in

either order in an interval sequence.

The �rst form of aggregate expression (ranging over the current log se-

quence) is written:

fop id : idtype where epred : exprg

where op is an aggregate operator, id is an identi�er, idtype is an event

or interval type name, pred is a boolean-valued expression, and expr is an

expression. pred and expr may use id but may not reference any identi�ers

bound by outer aggregate expressions. The where clause may be omitted.

The values bound to id are those events or intervals in the current log

sequence that have type idtype and for which pred is true.

The second form of aggregate expression (ranging over the domain of a

mapping) is written:

fop id in domain(m) where pred : exprg

where op, id, idtype, pred, and expr are as above, and m is a mapping-valued

expression. The where clause may be omitted. The values bound to id are

those values in the domain of m for which pred is true. The domain values

are produced in an arbitrary order.

The aggregate operators are:

+ � & j min max mean stdev var the last �rst count

count is special|the : expr is omitted from the aggregate expression, and

the result is the number of di�erent values to which id gets bound. (count is

provided for convenience and readability. The same result is produced using

the + operator and letting expr be the constant 1.) The other aggregate

operators are de�ned to work on mapping-valued expressions as well as on

non-mapping values.

For non-mapping values, the operators are de�ned as follows. The de�-

nitions of the �rst six operators (+,�,&,j,min,max) are simply extensions of
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op empty seq. single element v

+ 0 v

� 1 v

& true v

j false v

the,min,max,last,�rst,mean error v

var,stdev error error

count 0 1

Figure A.3: Boundary case results for aggregate operators

their de�nitions for two arguments. If a1; . . . ; an is a sequence of values and

op is one of the operators then (a1 op (a2 op (. . . op an))) is the result of

combining the sequence values with the operator. (In other words, these six

operators are reduction operators.) The result when the sequence is empty

or has only one element is de�ned in Figure A.3.

The operators mean, stdev, and var compute the arithmetic mean, stan-

dard deviation, and variance, respectively, of the sequence values. For a

sequence a1; . . . ; an of numbers these are de�ned as:

mean(a1; . . . ; an) =
1

n

Pn
i=1

ai

var(a1; . . . ; an) =
1

n�1

Pn
i=1

(ai � a)2

where a = mean(a1; . . . ; an)

stdev(a1; . . . ; an) =
p
(var(a1; . . . ; an)

(The variance formula is what statisticians would call a modi�ed sample

variance or unbiased estimate of the variance). The result of applying one

of these operators to a sequence of triples is a triple whose components are

computed using the above formulas.

The operators �rst and last evaluate to the �rst and last values in the

sequence, respectively.

The operator the applied to a single-element sequence returns the single

value. It is an error to apply the to a multi-element sequence.

Finally, when the sequence values are mappings, the aggregate operator

de�nes how to combine the mappings. The result of combining a sequence of
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mapping values with an aggregate operator is a new mapping whose domain

is the union of the domains of the mapping values. The value to which the

new mapping maps a domain element i is the result of combining the values

to which i is mapped by the mappings in the sequence using the aggregate

operator as described above.

A.8 Grammar

In the grammar that follows, italicized words are non-terminals, term,+

means one or more occurrences of term, separated by commas, and term,*

means zero or more occurrences of term, separated by commas. (term;+

and term;* are de�ned similarly). Comments are preceded by % and extend

to the end of the line.

spec ::= perfspec id stmt ;+ end id

stmt ::= def constdef ;+

j solve solvedecl ;+

j [ timed ] event eventdef ;+

j [ nested ] interval intervaldef ;+

j assert expr ;+

constdef ::= id = expr j id = ?

solvedecl ::= [ data varrange : ] expr [, var id [ , cor id ] ]

eventdef ::= id ( id,* )

intervaldef ::= id = intervalhead [ metrics metricdef ,+ ] end id

intervalhead ::= varrange , varrange

metricdef ::= id = expr

expr ::= expr op expr

j - expr

j [ expr , expr , expr ]

j expr -> expr

j expr ( expr ,* )

j aggrexpr

j ( expr )

j const

j id

j expr . id

aggrexpr ::= { aggrop varrange [ : [ expr ] ] }

varrange ::= id varset [ where expr ]

varset ::= : id j in expr
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aggrop ::= + j * j & j | j count j mean j stdev

j var j max j min j the j last j first

op ::= arithop j relop j boolop

arithop ::= + j - j * j / j div j mod

relop ::= < j <= j > j >= j = j !=

boolop ::= & j | j ! j =>

const ::= num j num timeunit j true j false

timeunit ::= us j ms j sec j min j cyc


