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Abstract

The Input/Output Automata formalism of Lynch and Tuttle is a widely used framework for

the speci�cation and veri�cation of concurrent algorithms. Unfortunately, it has never been

provided with an algebraic characterization, a formalization which has been fundamental for

the success of theories like CSP, CCS and ACP. We present a many-sorted algebra for I/O

Automata that takes into account notions such as interface, input enabling, and local control. It

is su�ciently expressive for representing all �nitely branching transition systems, hence all I/O

automata with a �nitely branching transition relation. Our presentation includes a complete

axiomatization of the quiescent preorder relation over recursion free processes with input and

output. Finally, we give some example speci�cations and use them to show the methodology

of veri�cation based on our algebraic approach.
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Chapter 1

Introduction

The Input/Output Automata [LT87, Sta84, Jon85, Jon87] is a widely used and deeply inves-

tigated formalism for specifying and verifying concurrent systems. Unfortunately, it has never

been provided with an algebraic characterization, a mathematical formalization that has been

fundamental for the success of theories like CSP, CCS and ACP [Hoa85, Mil89, Hen88, BW90].

The goal of this thesis is to improve our understanding of the intricacies of I/O automata by

describing them as a process algebraic theory. This will permit algebraic manipulation and pro-

vide an alternative to the commonly used veri�cation method based on possibilities mapping.

We start by designing an algebra that incorporates the fundamental features of I/O au-

tomata of Lynch and Tuttle [LT87] and captures the essential role of concurrent composition,

hiding and renaming of I/O automata. Our design aims at maintaining minimality of operators

and universal expressivity with respect to the I/O automata we can represent. We base our

characterization on the following basic features of I/O automata:

1. explicit interfacing: a transition-invariant interface is associated with each process;

2. input/output distinction: a clear distinction is made between output actions that are

locally controlled and input actions that are globally controlled;

3. input enabling: input actions are enabled in every state;

4. local control: each action is under the control of at most one process.
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Clearly this list is not exhaustive, and for the sake of simplicity we choose at this stage to avoid

considering important issues such as fairness.

The operators in our calculus associate distinct sets of input and output actions (interfaces)

with each process. This captures a critical aspect of I/O automata, namely the distinction

between input and output actions. To associate an interface to a process we use many-sorted

algebras: each sort stands for an interface. This permits dealing with partial operators in a

clean way. As an example consider the parallel composition operator. To comply with the

requirement that each action is under the control of at most one process, two processes that

have common output actions cannot be composed in parallel. Many-sorted algebras permit

capturing this restriction by de�ning the parallel operator as a family of sorted operators, one

for each pair of compatible interfaces.

Our research continues a line of investigation initiated by Vaandrager in [Vaa91]. That

investigation was deliberately done in a simple setting where no explicit interface is associated

to processes, and in which input enabling is obtained by means of self loops. No axiomatization

was proposed in [Vaa91]. Indeed, the behavioral relation we use for comparing systems is the

quiescent preorder of [Vaa91] (de�nition 2.2.4 of chapter 2). The main idea of the quiescent

preorder is that a quiescent trace leads system to a state from which only input actions are

enabled. Moreover the preorder is given by external and quiescent trace inclusion. The quiescent

preorder is a restriction to �nite traces of the fair preorder of [LT87], and we see it as a stepping

stone toward the study of fairness sensitive semantics.

An important property we require of our calculus is substitutivity of the quiescent preorder.

One of our guides for achieving substitutivity is again [Vaa91] where, in the style of [De 84,

De 85b, GV89, BIM90], restrictions to the inference rules of a generic Structured Operational

Semantics [Plo81] are investigated to guarantee substitutivity of the quiescent and fair preorders.

Our calculus, however, does not completely �t Vaandrager's format and thus new congruence

proofs are needed.

A key issue in de�ning our I/0 calculus is the way input enabling is enforced. We present

our choice with the support of an example. Consider process P = a:e, which is able to perform

an action a and then behave like e. If the system is input enabled, the above process must be

able to perform any other input action di�erent from a. We considered two di�erent possible
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choices,

1. Angelic: Unexpected inputs are ignored and give rise to self-loops. For example, system

P = a:e, after accepting any input b di�erent from a, behaves as before, and is ready to

accept the a-action.

2. Demonic: Unexpected inputs are considered as catastrophic; after any unexpected input

a system moves to a special state 
 from which any behavior is possible. Thus, P = a:e,

after any b-action di�erent from a, moves to 
.

The Angelic choice was made by Vaandrager in [Vaa91]; here, we support the Demonic one. In

our view, the pre�xing operator speci�es the behavior of P only for action a and says nothing

about input actions di�erent from it. By interpreting this in the �eld of I/O automata we

have that an implementation of P should be correct independently of the behavior it exhibits

when provided with any input action di�erent from a. Since the relation we use to compare

processes is the quiescent preorder, moving to a special state 
 from which any behavior is

possible makes the above interpretation possible. Due to this basic choice, our calculus will be

called the Demonic calculus of I/O Automata (DIOA).

This demonic approach has been partially inuenced by the Receptive Process Theory (RPT)

of Mark Josephs [Jos92]. However, the semantics of RPT provided by Mark Josephs is deno-

tational, and like CSP, is described by means of sets of failures, traces and divergencies. The

handling of underspeci�cation is even more demonic than ours; underspeci�cation is propagated

backward, i.e., if a process P can perform an output action o and move to the equivalent of an


 state, then the whole P is equivalent to 
.

For DIOA, we propose a set of sound algebraic laws that are complete with respect to the

quiescent preorder for recursion-free processes. The completeness result is achieved through

reduction to a special normal form in which the parallel operator is used in a restricted way.

Particularly important for our result is an operator representing internal choice. It does not �t

Vaandrager's general format and forces us to prove substitutivity of our preorder explicitly.

We give a dual view of the algebraic laws: from one point of view a law is a theorem about

I/O automata; from the other point of view a law is a statement about the relationship between

two syntactic entities. The dual view of the laws has the advantage of separating the properties
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of the model chosen for DIOA (I/O automata) from the properties based on the syntactic

structure of the expressions. The main di�erence between the two points of view lies in the way

that side conditions are de�ned, i.e., in the way in which the conditions for the validity of a law

are expressed: according to the �rst point of view a side condition is de�ned in terms of the

semantics associated with an expression; according to the second point of view a side condition

is de�ned in terms of the syntactic structure of an expression.

Finally, we present two simple example speci�cations and implementations within DIOA in

which the quiescent preorder is used as an implementation relation and we outline a method-

ology for veri�cation based on our algebraic laws. The examples suggest an alternative to the

commonly used veri�cation method based on possibilities mapping and show that, in some

cases, algebraic reasoning might be simpler than directly searching for a mapping between

states of processes.

The rest of the thesis is organized as follows: Chapter 2 contains some preliminary de�ni-

tions; Chapter 3 presents the Demonic Calculus of I/O Automata; Chapter 4 presents a set

of algebraic theorems for DIOA, corresponding to the �rst point of view of the algebraic laws;

Chapter 5 provides an axiomatization of the quiescent preorder over DIOA expressions that is

complete for recursion-free processes; Chapter 6 presents some example speci�cations; Chapter

7 presents some concluding remarks and some suggestions for further work. The end of the

thesis contains an appendix with the formal de�nition of DIOA and the complete list of the

axioms that are introduced in chapters 4 and 5.
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Chapter 2

Preliminaries

In this chapter we give a general introduction to the formalisms we are comparing. Section

2.1 formally introduces I/O automata giving their de�nition together with some of the main

features and some of the commonly used preorder relations. Section 2.2 introduces process

algebras and other new preorder relations. The preorder relations of Section 2.2 are the process

algebraic version of the relations presented in Section 2.1.

2.1 I/O automata

In this section we formally introduce I/O automata whose complete formal de�nition is given

in [LT87]. One of the basic concepts is the notion of action signature. Basically an action

signature represents the interface of an automaton with the external environment.

De�nition 2.1.1 (action signature) Given three disjoint sets in, out and int we refer to the

triple (in; out; int) as an action signature S. The sets in, out and int are respectively denoted

by in(S), out(S) and int(S). The entire set of actions in[ out[ int is denoted by acts(S). The

set of external actions in[out is denoted by ext(S). Finally the set of locally controlled actions

int [ out is denoted by local(S).

We can now formally de�ne an I/O automaton.

De�nition 2.1.2 (input-output automaton) An input-output automaton A is a tuple A =

(Q;Q0; S; t; P ) where
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� Q is a set of states and is referred to as states(A),

� Q0 � Q is the set of start states and is referred to as start(A),

� S is an action signature and is referred to as sig(A),

� t � Q� acts(S)�Q with the property that 8q 2 Q; a 2 in(S) 9q0 2 Q : (q; a; q0) 2 t. It is

referred to as steps(A), and

� P is a partition of local(S) and is referred to as part(A).

A step (q; a; q0) 2 steps(A) is conventionally denoted by q
a
�! q0.

The di�erence between classical automata and I/O automata is essentially in the di�eren-

tiation of the actions given by the action signature, the constraint that the transition relation

is always de�ned for input actions, and the presence of the partition P of the locally controlled

actions. We will discuss the role of P when introducing the notion of fair execution. For the

moment we concentrate on executions.

De�nition 2.1.3 (executions and schedules) Given an automaton A, an execution frag-

ment is a �nite sequence q0a0q1 � � �akqk or in�nite sequence q0a0q1a1q2 � � � of alternating states

and actions such that (qi; ai; qi+1) 2 steps(A) for every i. An execution is an execution frag-

ment beginning with a start state (i.e., q0 2 start(A)). The schedule of an execution x is the

subsequence of actions appearing in x. It is denoted by sched(x). The executions and schedules

of an automaton A are denoted respectively by execs(A) and scheds(A).

Usually it is necessary to deal with subsets of an automaton's executions or schedules. For

this reason we de�ne the notion of execution module and schedule module. The basic idea

is that an execution module simply represents a set of executions while a schedule module

represents a set of schedules.

De�nition 2.1.4 (execution and schedule modules) An execution module E is a triple

E = (Q; S; e) where Q is a set of states, S is an action signature and e is a set of executions

with actions in acts(S) and states in Q. They are referred to as states(E), sig(E) and execs(E).

A schedule module C is a pair C = (S; c) where S is an action signature and c is a set of

schedules with actions in acts(S). They are referred to as sig(C) and scheds(C).
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Given an automaton A there is a natural execution module Execs(A) associated with it.

Execs(A) = (states(A); sig(A); execs(A)):

Given an execution module E there is a natural schedule module Scheds(E) associated with it.

Scheds(E) = (sig(E); scheds(E)):

I/O automata, execution modules and schedule modules are collectively referred to as objects

and denoted by O.

As a last step, we restrict the observation of an automaton to its external actions.

De�nition 2.1.5 (external schedule module) An external action signature is an action sig-

nature consisting only of external actions. An external schedule module is a schedule module

with an external action signature.

The external action signature of a signature S is (in(S); out(S); ;), i.e., S without internal

actions; given a sequence y of actions and a set of actions X we denote by ydX the subsequence

of y consisting only of actions of X .

The external schedule module of an object O, denoted by External(O), is the external

schedule module with the external action signature of O and the schedules fydext(O) : y 2

Scheds(O)g.

We can now de�ne the �rst notion of equivalence for I/O automata.

De�nition 2.1.6 (unfair equivalence) The unfair behavior of an object O, which is denoted

by Ubeh(O), is the external schedule module External(O). Two objects O and P are said to

be unfairly equivalent, O �U P , i� Ubeh(O) = Ubeh(P ).

This relation is an equivalence relation and turns out to be a congruence for the operators

de�ned over objects. There are three operations de�ned over objects: hiding, renaming and

parallel composition.

De�nition 2.1.7 (hiding) Given an object O and a set of actions I : I \ in(O) = ;, we de�ne

the object HideI(O) to be the object di�ering from O in that
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� out(HideI(O)) = out(O)nI , and

� int(HideI(O)) = int(O)[ (acts(O)\ I).

The e�ect of the hiding operator is to hide some locally controlled actions to the external

environment. The only di�erence from the argument of the operator and its resulting object

is that the signature is changed. Executions and schedules are exactly the same. Clearly

external schedules change. The de�nition of the hiding operator of [LT87] does not contain the

restriction that I \ in(O) = ;, but it is immediate to observe that the operator is not closed for

I/O automata if we allow to hide input actions: part(A) would not be a partition of local(A)

any more.

De�nition 2.1.8 (renaming) An injective mapping f is applicable to an objectO if acts(O) �

dom(f). Given an automaton A and a mapping f applicable to A we de�ne f(A) to be

(Q;Q0; S; t; P ) where

� Q = states(A), Q0 = start(A),

� in(S) = f(in(A)), out(S) = f(out(A)), int(S) = f(int(A)),

� t = f(q; f(a); q0) : (q; a; q0) 2 steps(A)g, and

� P = f(f(a); f(a0)) : (a; a0) 2 part(A)g.

The de�nition above can be easily reformulated for execution modules and schedule modules.

The e�ect of the renaming operator is simply to rename actions.

De�nition 2.1.9 (composition of I/O automata) A set of action signatures fSi : i 2 Ig

is called compatible i� for all i; j 2 I we have

1. out(Si) \ out(Sj) = ;, and

2. int(Si) \ acts(Sj) = ;.
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In general the objects fOi : i 2 Og are compatible i� their action signatures are compatible.

The composition S =
Q

i2I Si of compatible action signatures fSi : i 2 Ig is de�ned to be the

action signature with

1. in(S) =
[
i2I

in(Si)�
[
i2I

out(Si),

2. out(S) =
[
i2I

out(Si), and

3. int(S) =
[
i2I

int(Si).

The composition A =
Q

i2I Ai of compatible automata fAi : i 2 Ig is de�ned to be the

automaton with

1. states(A) =
Y
i2I

states(Ai),

2. start(A) =
Y
i2I

start(Ai),

3. sig(A) =
Y
i2I

sig(ai),

4. part(A) =
[
i2I

part(Ai),

5. steps(A) = f((qi)i2I ; a; (q
0

i)i2I) : 8i 2 I

(a) a 2 acts(Ai) =) (qi; a; q
0

i) 2 steps(Ai)

(b) a 62 acts(Ai) =) qi = q0i g.

Composition of automata is of fundamental importance because it exactly characterizes the

way I/O automata communicate. The compatibility conditions state that internal actions can

not interact and that every action can be controlled by at most one process. The transition

function states that all processes must synchronize on common actions. The following two

de�nitions extend the composition operator to execution modules and schedule modules.

De�nition 2.1.10 (composition of execution modules) The composition E =
Q

i2I Ei of

compatible execution modules fEi : i 2 Ig is de�ned as follows:
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� states(E) =
Y
i2I

states(Ei),

� sig(E) =
Y
i2I

sig(Ei).

Given a state s = (si)i2I of the composition, we de�ne sdEi = si. Given a sequence x =

q0a0q1 � � � of states and actions of E, we de�ne xdEi to be the sequence obtained from x by

removing all ajqj if aj 62 acts(Ei) and replacing the remaining sj by sjdEi.

� execs(E) = fx = q0a0q1 � � � : 8i 2 I xdEi 2 execs(Ei) ^ (aj 62 acts(Ei) =) sjdEi =

sj+1dEi)g.

De�nition 2.1.11 (composition of schedule modules) The composition C =
Q

i2I Ci of

schedule modules fCi : i 2 Ig is de�ned as follows:

� sig(C) =
Y
i2I

sig(Ci),

� scheds(C) = fy : 8i 2 I ydCi 2 scheds(Si)g.

The following facts hold for I/O automata and show that the de�nitions above are well

given. The interested reader may refer to [LT87] for the proofs.

Proposition 2.1.12 Let fAi : i 2 Ig; A be compatible automata, fEi : i 2 Ig; E be compatible

execution modules, fCi : i 2 Ig; C be compatible schedule modules and fOi : i 2 Ig be objects.

Then

1. Execs(
Y
i2I

Ai) =
Y
i2I

Execs(Ai),

2. Scheds(
Y
i2I

Ei) =
Y
i2I

Scheds(Ei),

3. External(
Y
i2I

Ci) =
Y
i2I

External(Ci),

4. Ubeh(
Y
i2I

Oi) =
Y
i2I

Ubeh(Oi),
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5. Execs(HideJ (A)) = HideJ(Execs(A)),

6. Scheds(HideJ (E)) = HideJ(Scheds(E)),

7. External(HideJ(C)) = External(HideJ(External(C))),

8. Execs(f(a)) = f(Execs(A)),

9. Scheds(f(e)) = f(Scheds(e)),

10. External(f(C)) = f(External(C)).

A side e�ect of input enabling consists of the possible prevention of a system from performing

locally controlled actions by means of an in�nite sequence of input actions. This case is avoided

by restricting the observations to fair executions. In the following de�nition we use the partitions

of the locally controlled actions for the �rst time.

De�nition 2.1.13 (fair executions) A fair execution of an automaton A is an execution x

such that for all X 2 part(A)

� If x is �nite then no action of X is enabled from the �nal state of x

� If x is in�nite then either actions from X appear in�nitely often in x or states from which

no action of X is enabled appear in�nitely often in x

A �nite fair execution is also said to be quiescent.

The notion of fairness de�ned above recalls weak fairness [Fra86], but the two concepts are

di�erent. In [Fra86] fairness is considered for each action, while in I/O automata fairness is

considered for locally controlled actions only. Moreover, instead of considering single actions,

fairness is de�ned in terms of sets of actions within I/O automata. The idea behind the partition

of locally controlled actions is that every element of the partition represents the actions under

the control of a component of the global system. In this way the notion of fair turn is expressed,

i.e., each component that is continuously willing to perform a locally controlled action will

eventually do so. The following two propositions are proven in [LT87].
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Proposition 2.1.14 If x is a �nite execution of an automaton A, then x can be extended to a

fair execution xa1q1 � � � of A in which every ai is a locally controlled action of A.

Proposition 2.1.15 For all compatible automata fAi : i 2 Ig, Fair(
Y
i2I

Ai) =
Y
i2I

Fair(Ai)

where Fair(Ai) is the execution module having fair(Ai) as its set of executions and fair(Ai) is

the set of fair executions of Ai.

We can now de�ne the fair behaviors of an automaton as Fbeh(A) = External(Fair(A))

and give a new equivalence relation that turns out to be a weak congruence for the automata's

operators, i.e., a relation that is substitutive for the I/O automata operators whenever these

operators are de�ned for all the considered expressions.

De�nition 2.1.16 (fair equivalence) Two objects O; P are fair equivalent (O �F P ) i�

Fbeh(O) = Fbeh(P ).

With the concept of fair trace it is possible to introduce the notion of implementation. An

object O1 implements an object O2 if they both have the same action signature and Fbeh(O1) �

Fbeh(O2). Trivial implementations are avoided by input enabling and fairness. These two

concepts, in fact, state that a process must accept all stimuli from the external environment

and must perform its output actions whenever it has the possibility to do so, i.e., it must give

an answer when requested.

On the base of the previous discussion we can de�ne three main relations between I/O

automata that will be used throughout the rest of the thesis.

De�nition 2.1.17 (preorder relations) Given an object O, let Quiescent(O) be the set of

quiescent executions of O and let Qbeh(O) = External(Quiescent(O)). Finally, let FinUbeh(O)

be the set of �nite unfair behaviors of O.

The external trace preorder on objects is de�ned as follows: O vET P i�

1. O and P have the same external action signature and

2. FinUbeh(O) � FinUbeh(P ):

The quiescent preorder on objects is de�ned as follows: O vQ P i�

17



1. O vET P and

2. Qbeh(O) � Qbeh(P ):

The fair preorder on objects is de�ned as follows: O vF P i�

1. O and P have the same external action signature and

2. Fbeh(O) � Fbeh(P ):

The kernels of vET ;vQ and vF are respectively called external trace equivalence, quiescent

equivalence and fair equivalence.

� O �ET P i� O vET P and P vET O,

� O �Q P i� O vQ P and P vQ O,

� O �F P i� O vF P and P vF O.

A method to prove that an object O1 implements another object O2 makes use of the notion

of a possibilities mapping. The main idea of a possibilities mapping is to map every reachable

state s of O1 onto a set of states h(s) of O2 in such a way that every step s1
a
�! s2 of O1 can be

performed from any state of h(s1). The steps of O2 must end in a state of h(s2). For a formal

de�nition of possibilities mapping and its use the reader is referred to [LT87].

2.2 Process Algebras

The main idea of Process Algebras is the existence of some basic processes and some funda-

mental operators modeling operations such as sequential composition, parallel composition,

nondeterministic composition and synchronization. A process is represented by an expression

which is built inductively from the basic processes and the fundamental operators. The seman-

tics of each expression is given in terms of an underlying model which may vary from algebra

to algebra.
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Particularly important is the way in which processes are identi�ed in the underlying model.

The equivalence (preorder) relations de�ned on the underlying models induce equivalence (pre-

order) relations on the interpreted expressions. The next step is then to de�ne a sound and

possibly complete proof system over the expressions with the result that the relationship be-

tween expressions can be proven by means of pure algebraic analysis.

One of the �rst process algebras was the calculus of Communicating Sequential Processes

(CSP) [Hoa85]. CSP has a large amount of operators and its semantics is given in terms of

traces (sequences of actions a process can perform) and refusal sets (sets of actions that a

process may refuse to perform). An action represents a visible move of a system.

Another algebra is the Calculus of Communicating Systems (CCS) [Mil89]. The underlying

model of CCS is given by labeled transition systems (LTS), which are state machines with

a labeled transition relation. A LTS is associated with a CCS expression by means of an

operational semantics as described in [Plo81]. The standard notion of equivalence for CCS is

bisimulation [Par81].

In this thesis we concentrate on the LTS approach by using I/O automata as underlying

model and we analyze a particular preorder relation which is connected to the fair preorder of

I/O automata. For a better understanding of other di�erent existing relations the interested

reader is referred to [De 87] and [Gla90].

We now introduce the main notions for the de�nition of a process algebra based on the LTS

approach. We start with the notion of signature.

De�nition 2.2.1 (signatures and terms) Let S be a set of sorts ranged over by s; s1; s2; : : :

A signature element is a triple (f; s1s2 � � �sn; s) consisting of a function symbol f , a sequence of

sorts s1 � � �sn : si 2 S; i = 1; : : : ; n, and a single sort s 2 S. s is called the sort of the signature

element and n is its arity. In a signature element (c; �; s), c is often referred to as a constant

symbol of sort s. A signature is a pair � = (S;O) consisting of a set of sorts S and a set of

signature elements O. We denote sort and function symbols of a signature � by sorts(�) and

op(�). The set of terms over �, is denoted by T (�). The set of terms of a particular sort s 2 S

are denoted by T (�)s.

A signature represents the basic processes (constants) and the operators that are considered

as fundamental ((f; s1s2 � � �sn; s) is an operator taking n processes respectively of sort s1 � � �sn
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as arguments and giving back a process of sort s. Well known calculi like CCS are one-sorted.

We presented the more general many-sorted de�nition because we use sorts to model interfaces

associated with processes.

The following de�nition introduces the notions of substitutive relation.

De�nition 2.2.2 (substitutivity) Let � be a signature and let R be a relation over T (�)�

T (�). R is substitutive i� for each signature element (f; s1s2 � � �sn; s) of � and each ti; t
0

i of sort

si,

t1 R t01; : : : ; tn R t0n =) f(t1; : : : ; tn) R f(t01; : : : t
0

n):

We proceed by formally de�ning a calculus.

De�nition 2.2.3 (calculi) Let A be a given set of labels and let � be a signature. A transition

rule has the form

t1
a1�! t01; : : : ; tn

an�! t0n

t
a
�! t0

where ti; t
0

i 2 T (�), t; t0 2 T (�), ai 2 A and a 2 A. The elements ti
ai�! t0i are called the

premises and t
a
�! t0 is called the conclusion. The interpretation of a rule is that, whenever the

transitions of the premises are possible, the transition of the conclusion is possible. Transition

rules can be parameterized using variables in their terms. A calculus, is a triple P = (�; A; R)

where � is a signature, A is a set of labels and R is a set of transition rules.

We extend the transitions to sequences of labels in the obvious way by saying that t
a1���an
�! t0

i� 9t1; : : : ; tn�1 : t
a1
�! t1 �! � � � �! tn�1

an
�! t0.

We �nally adapt two of the preorder relations of section 2.1 to the process algebraic frame-

work. Fairness is not considered at this stage. The de�nition of the quiescent preorder is an

adaptation to the many-sorted framework of the de�nition of [Vaa91]. In particular we identify

sorts with action signatures; i.e., we assume the existence of a bijective mapping from sorts to

action signatures. We use the same relation symbols we used in section 2.1 to emphasize the

fact that we are expressing the same notions in di�erent formalisms. We also abuse notation by

writing ext(e) when we mean ext(S) where S is the action signature associated with the sort

of e.
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De�nition 2.2.4 (preorder relations) Given a many-sorted calculus with input and output

actions, the set of enabled actions from an expression e is de�ned as

faj9e0 : e
a
�! e0g:

An expression e is quiescent if it only enables input actions.

The set of (�nite) external traces of an expression e of sort S is de�ned as

etraces(e) = fhdext(S)j9e0 : e
h
�! e0g

where h denotes a sequence of actions and hdA is the projection of h on A.

The set of quiescent traces of an expression e of sort S is de�ned as

qtraces(e) = fhdext(S)j9e0 : e
h
�! e0; quiescent(e0)g:

The external trace preorder vET is de�ned as follows: e1 vET e2 i�

1. e1 and e2 have the same external action signature and

2. etraces(e1) � etraces(e2).

The quiescent preorder vQ is de�ned as follows: e1 vQ e2 i�

1. e1 vET e2 and

2. qtraces(e1) � qtraces(e2).

The kernels of vET and vQ are respectively called external trace equivalence and quiescent

equivalence.

� e1 �ET e2 i� e1 vET e2 and e2 vET e1,

� e1 �Q e2 i� e1 vQ e2 and e2 vQ e1.
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Chapter 3

A Calculus of Demonic I/O

Automata

This chapter introduces a calculus for I/O automata following the demonic approach. The

calculus is many sorted and each sort represents an action signature consisting of input and

output actions and a single internal action � . In the I/O automatonmodel action signatures may

have more than one internal action, and the reason for that is to have exibility in expressing

fairness with respect to di�erent internal tasks. Since we do not address the issue of fairness in

this thesis, we present only the simple calculus with a single internal action. At the end of this

chapter we give an idea of how to extend the calculus to handle multiple internal actions.

The rest of the chapter is organized as follows: Section 3.1 presents the de�nition of DIOA

and discusses its operators; Section 3.2 presents I/O automata de�nitions of the operators

of DIOA; Section 3.3 presents a construction associating an I/O automaton with each DIOA

expression; Section 3.4 presents an I/O automata interpretation of recursion, a tool that is used

for the de�nition of DIOA; Section 3.5 discusses the problem of introducing multiple internal

actions.

3.1 The de�nition of DIOA

In this section we present the calculus of Demonic I/O automata (DIOA); it permits representing

any �nitely branching I/O automaton [LT87]. Moreover, the operational semantics of the
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Name Op. Domain Range Restrictions

quiescent nilS � S

omega 
S � S

pre�xing a:S S S a 2 ext(S)

ichoice �S S; S S

echoice I+
S
J S; S S I; J � in(S)

parallel S1kS2 S1; S2 S3 out(S1)\ out(S2) = ;

out(S3) = out(S1)[ out(S2)

in(S3) = (in(S1) [ in(S2))nout(S3)

hiding �SI S S0 I � out(S); S0 = (in(S); out(S)nI)

renaming �S S S0 for each injective � : acts(S) �! acts(S0)

S0 = (�(in(S)); �(out(S)))

process XS � S XS 2 XS

Table 3.1: The signature of DIOA

operators of DIOA speci�es the same transition trees as of the corresponding operators for I/O

automata.

Table 3.1 presents the signature for DIOA. The sort symbols associated with the opera-

tors range over all possible action signatures with a single internal action � if no additional

restrictions are mentioned. Thus, rather than a single operator (e.g. parallel, renaming, etc.)

we actually have a family of operators parameterized on the sorts of the operands. To avoid

heavy notation we will drop the sort indexes from the operators whenever the sorts are evident.

Indeed all non-constant operators are uniquely determined by the sorts of their operands. As

additional simpli�cation we will represent action signatures as pairs (in; out) since the set of

internal actions is �xed to be f�g. In choosing the operators we had in mind two major goals:

representing the three main operators of I/O automata (i.e., parallel, hiding and renaming) and

expressing a su�cient number of transition trees. The second goal is achieved through pre�x-

ing, external choice and recursion; the internal choice operator will turn out to be useful for

proving completeness of axioms. Recursion is obtained in a De Simone style [De 84, De 85b].
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We assume the existence of a countable set XS of process variables for each sort S and the

existence of a declaration mapping E associating a guarded expression of sort S to each process

variable of XS . An expression e is guarded if each process variable occurs in the scope of a

pre�xing operator.

Table 3.2 presents the transition rules for DIOA; some comments follow:

� quiescent expression \nilS":

This expression models a quiescent automaton, where no output actions are enabled. It

has a transition to 
S for each input action of sort S. Each input action of S, in fact, is

unspeci�ed in nilS. No output is permitted.

� omega expression \
S":

This expression models the unspeci�ed process, for which everything is possible. It has

a self-loop for each action of S with the consequence that any trace with actions from S

is an external trace of 
S . An additional transition to nilS (rule ome2) makes any trace

a quiescent trace of 
S . Note that the use of rule ome2 is the only way to move 
 to a

quiescent state.

� pre�xing operator \a:":

In our interpretation a : e speci�es the behavior of a process only when it �rst performs

action a. For all other input actions there is a transition to 
, meaning that every choice

of implementation is correct.

� internal choice operator \�":

The expression e � f can move either to e or f with an internal action (rules ich1;2

resembling the � of [DH87]) or behave like e or f (rules ich3;4 resembling the CCS +).

Rules ich3;4 are necessary for input enabledness. This is an additional di�erence from

IOC of Vaandrager [Vaa91] since the internal choice operator of IOC has self loops for

any input action. The choice of using rules ich3;4 implies that the external and quiescent

traces of e1 � e2 are obtained by unioning those of e1 and those of e2. Note that none of

the four rules can be eliminated; elimination of ich3;4 would cause loss of input enabling,
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nil nilS
a
�! 
S 8a 2 in(S)

ome1 
S
a
�! 
S a 2 ext(S) ome2 
S

�
�! nilS

pre1 a :S e
a
�! e pre2 a :S e

b
�! 
S 8b 2 in(S)nfag

ich1 e1 �S e2
�
�! e1 ich2 e1 �S e2

�
�! e2

ich3

e1
a
�! e01

e1 �S e2
a
�! e01

8a 2 in(S) ich4

e2
a
�! e02

e1 �S e2
a
�! e02

8a 2 in(S)

ech1

e1
a
�! e01

e1 I+
S
J e2

a
�! e01

8a 2 I [ out(S)

ech2

e2
a
�! e02

e1 I+
S
J e2

a
�! e02

8a 2 J [ out(S)

ech3 e1 I+
S
J e2

a
�! 
S 8a 2 in(S)n(I [ J)

ech4

e1
�
�! e01

e1 I+
S
J e2

�
�! e01 I+

S
J e2

ech5

e2
�
�! e02

e1 I+
S
J e2

�
�! e01 I+

S
J e

0
2

tau1

e
a
�! e0

�SI (e)
a
�! �SI (e

0)
a 62 I tau2

e
a
�! e0

�SI (e)
�
�! �SI (e

0)
a 2 I

rho
e

a
�! e0

�S(e)
�(a)
�! �S(e0)

par1
e1

a
�! e01 e2

a
�! e02

e1 S1kS2 e2
a
�! e01 S1kS2 e

0
2

par2
e1

a
�! e01

e1 S1kS2 e2
a
�! e01 S1kS2 e2

a 2 acts(S1)next(S2)

par3
e2

a
�! e02

e1 S1kS2 e2
a
�! e1 S1kS2 e

0
2

a 2 acts(S2)next(S1)

rec
e

a
�! e0

X
a
�! e0

if X
def
= e

Table 3.2: The transition rules for DIOA
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while elimination of ich1;2 could give rise to problems whenever � is a quiescent trace of

one argument but not of the other one.

� choice operator \I+J":

The arguments of I+J can perform an input action a only if a is in the corresponding

parameter I or J (rules ech1;2). For input actions not in I [ J there is a transition to 


(rule ech3). The choice context is not resolved with internal actions (rules ech4;5). This

is essentially Vaandrager's choice operator. It would have been nice to de�ne a CCS-

like external choice operator without parameters, however our attempts have failed in

the sense that we have not been able to achieve substitutivity for the quiescent preorder

without using I and J . See Remark 3.1.8 for an example.

� hiding, renaming and parallel operators \�I ; �; k":

They are in direct correspondence with the operators of I/O automata. In particular,

the constraints on the sorts for the parallel operator guarantee that actions are under the

control of at most one process. The transition rules for the parallel operator state that

all processes synchronize on common actions and evolve independently on the others.

Note that, although processes synchronize on common actions, the communication is

asynchronous since at most one process has the control of each action. The restrictions on

hiding and renaming are directly inherited from I/O automata. Injectivity of � is required

to guarantee distributivity and the restriction on hiding is kept to avoid unnecessary

complications.

Below, a few basic properties of DIOA are listed.

De�nition 3.1.1 (sort consistency) A many-sorted calculus is sort consistent if the sort of

every expression is invariant under transition.

Proposition 3.1.2 DIOA is sort consistent.

De�nition 3.1.3 (input enabledness) An expression e is input enabled if 8e0j9h2acts(e)�e
h
�!

e0; in(e) � enabled(e0). A many-sorted calculus with interfaces associated with expressions is

input enabled if each expression is input enabled.
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Proposition 3.1.4 DIOA is input enabled.

Theorem 3.1.5 (substitutivity) External trace preorder and quiescent preorder are substi-

tutive for DIOA.

The proofs of the above results are standard and can be done by cases analysis. For the

substitutivity theorem we cannot use Vaandrager's results [Vaa91] since the internal choice

operator does not �t Vaandrager's general format.

Remark 3.1.6 It is possible to characterize each DIOA expression in terms of the external

and quiescent traces it exhibits. The inductive de�nition is as follows:

� etraces(
S) = qtraces(
S) = ext(S)�,

� etraces(nilS) = qtraces(nilS) = f�g [ fatja 2 in(S); t 2 ext(S)�g,

� etraces(a : e) = f�g [ fatjt 2 etraces(e)g [ fbtjb 2 in(S)nfag; t 2 ext(e)�g,

qtraces(a : e) =

8><
>:
f�g [ fatjt 2 qtraces(e)g [ fbtjb 2 in(S)nfag; t 2 ext(e)�g if a 2 in(e);

fatjt 2 qtraces(e)g [ fbtjb 2 in(S)nfag; t 2 ext(e)�g if a 62 in(e);

� etraces(e� f) = etraces(e) [ etraces(f),

qtraces(e� f) = qtraces(e) [ qtraces(f),

� etraces(e I+J f) = f�g [fatja 2 I [ out(e); at 2 etraces(e)g

[fatja 2 J [ out(f); at 2 etraces(f)g

[fatja 2 in(S)n(I [ J); t 2 ext(e)�g,

qtraces(e I+J f) =

8>>>>>>><
>>>>>>>:

(f�g \ qtraces(e) \ qtraces(f))[

fatja 2 I [ out(e); at 2 qtraces(e)g[

fatja 2 J [ out(f); at 2 qtraces(f)g[

fatja 2 in(S)n(I [ J); t 2 ext(e)�g

� etraces(�I(e)) = ftd(ext(e)nI)jt 2 etraces(e)g,

qtraces(�I(e)) = ftd(ext(e)nI)jt 2 qtraces(e)g,

� etraces(�(e)) = f�(t)jt 2 etraces(e)g,

qtraces(�(e)) = f�(t)jt 2 qtraces(e)g,

27



� etraces(ekf) = ft 2 ext(ekf)�jtdext(e) 2 etraces(e); tdext(f) 2 etraces(f)g,

qtraces(ekf) = ft 2 ext(ekf)�jtdext(e) 2 qtraces(e); tdext(f) 2 qtraces(f)g.

Remark 3.1.7 The main di�erence between internal and external choice can be seen by means

of an external observer. Consider processes

P1

def
= a : b : nil fag+; nil and

P2
def
= a : b : nil � nil

where a is an input action and b is an output action. Consider an external observerO performing

an output action a for then waiting for an input action b. If O is interacting with P1 it will

always receive the b-signal after performing the a-action since the choice context of P1 is resolved

when O provides a; if O is interacting with P2 then the system could send any signal to O since

P2, while receiving a, can either move according to a : b : nil or nil. In other words P2 has

decided internally how accepting action a.

The reader might think that e � f is equivalent to e A+A f where A = in(e). This fact,

unfortunately, is false since there are possibilities of discrepancies when considering the quies-

cence of �. The di�erence can be noted by letting O interact respectively with a : (b :nil ;+;nil)

and a : (b : nil� nil). In the �rst case O will always receive the b� signal while, in the second

case, the interacting process may internally decide not to perform the b-move.

Remark 3.1.8 There are some immediate questions about the de�nition we have given for the

choice operators:

(a) why did we choose only to allow internal and external choice of expressions with the same

action signature?

(b) why did we choose to use two parameters I; J for the external choice operator?

The answer to question (a) is strictly related to sort consistency. Suppose we allowed the sum

(external choice) of expressions with di�erent signatures and consider

P1 � a:nil(;;fag) ;+; b:nil(;;fbg)
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P2 � a:nil(;;fa;bg) ;+; b:nil(;;fa;bg)

where every pair associated with nil represents its action signature (recall that the pair (in; out)

represents an action signature having input actions in, output actions out and internal action

�). It is reasonable to say that the output actions of P1 are fa; bg, hence traces(P1) = f�; a; bg=

traces(P2). Consider now

P3 � nil(fag;;)

It is immediate to see that in(P1 k P3) = in(P2 k P3) = ; and that traces(P2 k P3) = f�; a; bg.

On the other hand P1 \loses" the output action a after performing action b because there is

no reason to consider a an output action of nil(;;fbg). In particular a becomes an input action

if P1 is composed with P3, hence traces(P1 k P3) = f�; a; b; ba; baa; bab; : : :g and trace preorder

is not substitutive. By means of some changes on the external signature it might be possible

to de�ne a calculus with dynamic signatures (i.e., a calculus that is not sort consistent) that is

substitutive for trace preorders, but this topic goes beyond the scope of this thesis.

For point (b) one might like to de�ne an unparameterized choice operator and implicitly

treat transitions to 
. Consider for example the expression a : e1 + b : e2 where a; b are input

actions and consider another input action c of e1. When provided with a the system should

evolve to e1 since the behavior for a is speci�ed by a : e1; when provided with b the system

should evolve to e2 since the behavior for b is speci�ed by b:e2; when provided with c the system

should move to 
 since the behavior for c is not speci�ed neither by a : e1 nor by b : e2. It is

easy to see that external and quiescent trace preorders are not substitutive for +. Consider for

example the signature S = (fag; fbg). We can easily check that

nil �Q a : 


since nil moves to 
 with action a, but

a : nil+ nil 6�Q a : nil+ a :


since ab is a quiescent trace of the right process but not of the left one. Process nil, in fact, does

not specify the behavior for action a, hence a : nil + nil, when provided with a, should move
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to nil from which action b is not enables; on the other hand the behavior for a is speci�ed by

a :
, hence a : nil+a :
 can move to 
 with action a and then perform action b before moving

to nil. Unfortunately we have not been able to �nd an unparameterized choice operator for

which the quiescent preorder is substitutive.

3.2 DIOA operators for I/O automata

In the previous section we have de�ned the transition rules for the renaming, hiding and parallel

operators of DIOA in such a way that they behave in the same way as the correspondent

operators of I/O automata with a single internal action. We also have de�ned another set of

operators (pre�xing, internal choice, external choice) and a set of basic expressions (nil and 
)

in order to have a su�cient expressive power.

In this section we de�ne a new set of operators for I/O automata with one internal action

in such a way that they have the same behavior as of the pre�xing, internal choice and external

choice operators of DIOA. We analyze each single operator: let A = (QA; Q
0
A; SA; tA; PA) and

B = (QB ; Q
0
B; SB; tB; PB).

� pre�xing operator \a:":

The automaton a : A, where a 2 acts(SA), is de�ned to be

(QA [ fqg [Q
; fqg; SA; t
0; PA)

where Q
 is the set of states of the unspeci�ed automaton and

t0 = t

[ f(q; a; qA)jqA 2 q0Ag

[ f(q; b; q0
) : b 2 in(SA)nfagg

[ t


where q0
 is the initial state of the unspeci�ed automaton and t
 is the transition relation

for the unspeci�ed automaton. The unspeci�ed automaton is formally de�ned in the next

section. Here we just assume that it can be de�ned.
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� internal choice operator \�"

The automaton A� B, where SA = SB, is de�ned to be

(QA [QB [ fqg; fqg; SA; tA [ tB [ t
0; PA)

where

t0 = f(q; �; qA)jqA 2 Q0
Ag

[ f(q; �; qB)jqB 2 Q0
Bg

[ f(q; a; q0A)ja 2 in(SA) and 9qA 2 Q0
A : (qA; a; q

0

A) 2 tAg

[ f(q; a; q0B)ja 2 in(SB) and 9qB 2 Q0
B : (qB ; a; q

0

B) 2 tBg

� external choice operator \I+J"

The automaton A I+J B, where SA = SB and I; J � in(SA), is de�ned to be

(QA [QB [QA � QB [Q
; Q
0
A �Q0

B ; SA; t
0; PA)

where

t0 = tA

[ tB

[ t


[ f(qA � qB ; a; q
0

A)j(qA; a; q
0

A) 2 tA; a 2 I [ out(SA); qB 2 QBg

[ f(qA � qB ; a; q
0

B)j(qB; a; q
0

B) 2 tB ; a 2 J [ out(SB); qA 2 QAg

[ f(qA � qB ; a; q
0

)ja 2 in(SA)n(I [ J); qA 2 QA; qB 2 QBg

[ f(qA � qB ; �; q
0

A � qB)j(qA; �; q
0

A) 2 tA; qB 2 QBg

[ f(qA � qB ; �; qA � q0B)j(qB; �; q
0

B) 2 tA; qA 2 QAg

Note that the above de�nition might contain many unreachable states.

The substitutivity result of Theorem 3.1.5 and the compositionality results of Remark 3.1.6

are trivially valid also for the new operators de�ned over I/O automata.
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We can also de�ne a transition relation directly over I/O automata as follows:

(QA; Q
0
A; SA; tA; PA)

a
�! (QA; fqg; SA; tA; PA)

i� 9qA 2 Q0
A : (qA; a; q) 2 tA. Finally we can de�ne the notion of quiescent automaton as

follows: (QA; Q
0
A; SA; tA; PA) is quiescent i� 9q 2 Q0

Ajq is quiescent. The main result, relating

the DIOA operators with the I/O automata operators, is then the following:

Proposition 3.2.1 (transition rules for I/O automata) For every I/O automata opera-

tor op of arity n, the transition relation of the composition of n automata A1; : : : ; An is com-

pletely determined in terms of the transition relations of A1; : : : ; An by using the transition rules

for DIOA. More precisely, if 9Ajop(A1; : : : ; An)
a
�! A according to the transition relation de-

�ned on I/O automata, then 9A0 �Q Ajop(A1; : : : ; An)
a
�! A0 according to the transition rules

of DIOA and vice versa.

Proof. Simple cases analysis for each operator.

The above proposition says that we can use the transition rules for DIOA in order to

determine the behavior of the composition of simpler automata. Moreover it con�rms the fact

that the de�nitions of the operators for I/O automata are consistent with the de�nitions of the

corresponding operators of DIOA.

3.3 DIOA expressions and I/O automata

In this section we de�ne what it means for an expression to represent an I/O automaton by

explicitly constructing the automaton associated with it.

De�nition 3.3.1 Given an expression e of sort s, the automaton Aut(e) associated with e is

de�ned to be Aut(e) = (S;Q; q0; t; P ) where S is the action signature associated with sort s, Q

is the set of reachable states from e, q0 is e, t is the transition relation associated with e, and

P = flocal(S)g.

The fact that Aut(e) is an I/O automaton is a direct consequence of the input enabling

and sort consistency properties of DIOA expressions. The de�nition of the partition P of the

locally controlled actions of S is arbitrary since we do not deal with fairness.
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We now state two important propositions showing the consistency of the de�nitions we have

given in this chapter.

Proposition 3.3.2 Given a DIOA expression e,

1. etraces(e) = Ubeh(Aut(e)) and

2. qtraces(e) = Qbeh(Aut(e)).

Proof. Direct consequence of De�nition 3.3.1.

Proposition 3.3.3 Aut is a morphism from DIOA expressions to I/O automata.

Proof. We prove the proposition for the internal choice operator. The proof for the other

operators is similar.

Ubeh(Aut(e� f)) = by Proposition 3.3.2

etraces(e � f) = by Remark 3.1.6

etraces(e) [ etraces(f) = by Proposition 3.3.2

Ubeh(Aut(e)) [Ubeh(Aut(f)) = by Remark 3.1.6 applied to I/O automata

Ubeh(Aut(e)� Aut(f)):

The case for the quiescent behaviors is similar.

Proposition 3.3.3 says that DIOA operators are preserved by the mapping Aut. For example

Aut(e � f) �Q Aut(e)� Aut(f)

where the left � is the internal choice operator of DIOA and the right � is the internal choice

operator of I/O automata.

3.4 Recursion and I/O automata

How can recursion be interpreted within I/O automata? A de�nition of the form X
def
= E(X)

can be interpreted as an equation between I/O automata meaning that the automaton X and

the automaton E(X) have to be quiescent trace equivalent. In other words the automaton
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X has to be a �xpoint of the equation X �Q E(X). It could be the case, however, that the

equation has more than one �xpoint, therefore we need a method for choosing a particular

�xpoint of an equation.

A natural �xpoint that can be considered is Aut(X) where X and E(X) are viewed as

DIOA expressions. In Chapter 4 we provide a theorem about the uniqueness of the �xpoint for

a set of equations.

3.5 Dealing with multiple internal actions

DIOA does not completely capture the features of the I/O automaton model since it is de�ned

on signatures with one only internal action. The choice of this restricted set of action signatures

is due to the fact that we do not address the problem of fairness within this thesis.

It is not di�cult to expand DIOA in such a way that it deals with multiple internal actions.

Two main consequences must be kept into consideration: the preorder relations will be de�ned

between expressions with di�erent sorts (all sorts with the same external action signature) and

substitutivity will be no longer valid (if P � Q it might happen that there is a process C such

that PkC is legal while QkC is not legal). The new property that is valid is weak substitutivity,

i.e., two equivalent processes cannot be distinguished in any context in which they can both be

inserted.

The problem of de�ning calculi with multiple internal actions is completely addressed in

[Seg91] where Vaandrager's work [Vaa91] is extended to the many-sorted setting. In [Seg91]

there is also the extended version of an angelic calculus of I/O automata (called IOA).
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Chapter 4

Algebraic theorems for the

Quiescent Preorder

This chapter presents a set of theorems about I/O automata and the operators de�ned in

Chapter 3. A theorem is a statement about the relationship between two automata where each

automaton is represented by expressions with free variables. Each variable is meant to represent

an I/O automaton. An example of a theorem is

e �Q e� e (4.1)

stating that an automaton e is equivalent to the internal choice composition of e with itself. In

other words � is idempotent.

Not all theorems, however, can be just expressed as a relationship between two expressions.

For example, it is not true in general that the automaton e is equivalent to the automaton

e I+J e. The above equivalence is valid only if a particular property P (e) is valid for the set of

external and quiescent traces of e. The statement of the theorem is then

e �Q e I+J e if P (e) (4.2)

meaning \if the automaton e satis�es the property P then e �Q e I+J e". The condition

expressed by the property P is called side condition.
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From the algebraic point of view, however, the above theorems have to be interpreted

as assertions about DIOA expressions meaning, for example, that the DIOA expression e is

equivalent to the DIOA expression e � e. In the case of DIOA a theorem is called axiom, and

an axiom is said to be sound for the I/O automaton model if it is stating a true property of

the automata associated with the related expressions.

An additional property of axioms is that they have to be model independent, i.e., they

have to be stated purely in terms of the syntactic structure of an expression without using any

semantical reasoning. In particular theorem (4.2) cannot be directly interpreted as an axiom

since its side condition is not expressed in terms of the syntactic structure of e, rather in terms

of the semantics associated with e.

To view theorem (4.2) as an axiom we need a syntactic characterization p of P or a sound

proof system for P . In this thesis we pursue the approach of the syntactic characterization p

of P . It might not be the case that a syntactic property p equivalent to P can be de�ned,

therefore in general we introduce a property p such that p(e) implies P (e) and we write a real

axiom

e �Q e I+J e if p(e): (4.3)

In this thesis we want to keep a clear distinction between theorems and axioms. Theorems

are helpful for people working with I/O automata only since they provide a set of manipulation

rules for I/O automata; axioms, on the other side, are useful for algebraists since they permit

to capture the essence of the quiescent preorder just by means of syntactical analysis.

In accordance to the dual view theorems/axioms, this chapter deals with theorems only by

providing their statements based on semantic side conditions. The next chapter, instead, pro-

vides the axiomatic view of the theorems of this chapter by providing syntactic approximations

of the side conditions used in this chapter.

The rest of this chapter is organized as follows: Section 4.1 presents some auxiliary semantic

functions which are used for the formulation of the side conditions for the theorems; Section

4.2 presents general theorems concerning I/O automata where the auxiliary functions are those

of Section 4.1. The theorems of Section 4.2 will be converted into axioms in the next chapter;

Section 4.3 presents some tools for dealing with recursively de�ned automata. Since the sound-

ness proofs of the theorems are standard, we just provide the actual soundness proofs of some
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of them.

4.1 Auxiliary functions

In this section we introduce and justify some auxiliary functions that are useful for the formu-

lation of the theorems for I/O automata. The auxiliary functions are de�ned in terms of the

external and quiescent traces an automaton (or an expression) exhibits. In Chapter 5 we will

provide related de�nitions in terms of the syntactic structure of the expressions.

We start by de�ning the set of Weakly Speci�ed Input actions of an automaton:

Wsi(e) = fa 2 in(e)j9t 2 ext(e)� : at 62 qtraces(e)g:

The idea behind the de�nition of Wsi is the following: if a speci�cation of a device speci�es

something about the behavior of the device in the presence of an input action a, then not all

choices of implementation should be correct when dealing with action a, i.e., some sequences of

actions should not be allowed after performing action a. The word Weakly emphasizes the fact

that we are abstracting from internal actions.

Another useful set is the set of Weakly Speci�ed Output actions of an automaton:

Wso(e) = fa 2 out(e)ja 2 etraces(e)g:

Wso(e) is the set of output actions that could become enabled according to the speci�cation

e. The word Weakly emphasizes the fact that we are considering output enabled actions up to

internal transitions. In other words, as for Wsi , we are abstracting from internal actions. The

usefulness of Wso is clear when stating distributivity of hiding over external choice. It is not

true in general that �I(eH+K f) �Q �I(e)H+K �I(f) since performing an action from I resolves

the choice context in the left automaton but does not resolve it in the right one. The condition

for the above equivalence to hold turns out to be Wso(e) \ I = Wso(f)\ I = ;.
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Other useful functions are

Localen(e) = fa 2 local(e)j9e0; e
a
�! e0g;

Inten(e) = true i� � 2 Localen(e) and

Quiet(e) = true i� Localen(e) = ;:

4.2 General theorems

In this subsection we present some general theorems that are sound for the quiescent preorder

over I/O automata. We call them \theorems" since they are viewed as properties of I/O

automata. Each expression stands for an I/O automaton and the operators are those of I/O

automata. Moreover, the auxiliary functions are de�ned in terms of the external and quiescent

traces of the considered automata. In the next chapter we will de�ne some other syntactic

functions to be substituted for the semantic ones and the theorems of this section will be

called \axioms" by viewing the expressions as actual DIOA expressions and the operators as

DIOA operators. Note that by the word \sound" we mean that the given theorems state valid

properties of I/O automata. When dealing with axioms, instead, the word \sound" means

that the relationship between two syntactic expressions stated by an axiom is valid in the

Input/Output automaton model.

The �rst group of theorems concern the relationship between 
 and the other operators. In

particular theorem M states that any automaton is an implementation of 
.

Proposition 4.2.1 (omega theorems) Let e be an I/O automaton. The following theorems

are sound.

R �(
S) �Q 
�(S)

M e vQ 


I �I(
S) �Q 
S0 where S
0 = (in(S); out(S)nI)

P 
S1k
S2 �Q 
S3 where S3 is the composition of S1 and S2
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The following theorems concern the renaming operator, which is distributive over every

other operator.

Proposition 4.2.2 (renaming theorems) Let e; f be I/O automata. The following theorems

are sound.

R1 �(nil) �Q nil

R2 �(a : e) �Q �(a) : �(e)

R3 �(e� f) �Q �(e)� �(f)

R4 �(e I+J f) �Q �(e) �(I)+�(J) �(f)

R5 �1(�2(e)) �Q �1 � �2(e)

R6 �(�I(e)) �Q ��0(I)(�
0(e)) if �0 extends �

R7 �(ekf) �Q �(e)k�(f)

The following theorems concern the parallel operator. This operator is commutative and

associative, but does not have a neutral element. In fact in general eknil 6�Q e. The problem is

that nil may have the control of some actions (essentially its output actions) which disappears

by only considering e. However a weaker property is valid saying that two automata 
 can be

collapsed (see theorem P). Theorem P3 describes the properties of the parallel composition of

an 
 automaton with a nil automaton.

Proposition 4.2.3 (parallel theorems) Let e; f and g be I/O automata. The following the-

orems are sound.

P1 ekf �Q fke

P2 (ekf)kg �Q ek(fkg)

P3 
S1knilS2 vQ 
S3knilS4 if (out(S1) � out(S3))^ ((in(S2) � in(S4))_ out(S4) = ;)
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The following theorems concern the internal choice operator. Theorems Ic1;2;3 state com-

mutativity, associativity and idempotence. Theorems Ic4;5;6;7 state the distributivity of all the

operators of I/O automata (DIOA) over �. Theorem Ic8 is immediate.

Proposition 4.2.4 (internal choice theorems) Let e; f; g be I/O automata. The following

theorems are sound.

Ic1 e� f �Q f � e

Ic2 (e� f)� g �Q e� (f � g)

Ic3 e �Q e� e

Ic4 a : (e� f) �Q a : e � a : f

Ic5 (e� f) I+J g �Q (e I+J g)� (f I+J g)

Ic6 �I(e� f) �Q �I(e)� �I(f)

Ic7 (e� f)kg �Q (ekg)� (fkg)

Ic8 e vQ e� f

The following theorems concern the external choice operator. This is the most complicated

operator of DIOA. The �rst two theorems state a sort of commutative and associative property.

In fact they are not really commutative and associative properties since the operator changes.

Theorem Ec3 states a sort of idempotence property. This property is not valid in general since,

as noted in the introduction, the parameters of the choice operator play an important role.

Theorem Ec4 permits duplicating an automaton e inside a choice context. Theorem Ec4 is

di�erent from theorem Ec3 in that the presence of parameter I does not require any condition

on Wsi(e).

Theorems Ec5;6;7;8 deal with the possibilities of adding or removing automata from a choice

context. Their combinations give rise to theorems Ec15;16. Theorem Ec7 is particularly inter-

esting since it expresses the main idea of our demonic approach: if e is not specifying anything
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about the occurrence of an input action a then any choice of implementation in the presence of

a is correct.

Theorem Ec9 is a direct consequence of the de�nition of function Wsi . Its use, associated

with theorems Ec5;7, gives rise to theorem Ec14. Theorem Ec14 permits to minimize the

cardinality of the parameters of the external choice operator. Finally, theorems Ec10;11;12;13

state some relationships between the internal and external choice operators.

Proposition 4.2.5 (external choice theorems) Let e; f; g be I/O automata. The following

theorems are sound.

Ec1 e I+J f �Q f J+I e

Ec2 (e I+J f) I[J+K g �Q e I+J[K (f J+K g)

Ec3 e �Q e I+J e if Wsi(e) � I [ J

Ec4 e I+J f �Q (e H+K e) I+J f if I � H [K

Ec5
(not(Quiet(e)) ^ not(Inten(e)))_ Quiet(f)

e vQ e I+J f
if J \Wsi(f) � I

Ec6
(not(Quiet(e)) ^ not(Inten(e)))_ Quiet(f)

e I+J g vQ (e H+K f) I+J g
if K \Wsi(f) \ I � H

Ec7
Quiet(f)

e I+J f vQ e
if Wsi(e) � I and Wsi(e) \ J = ;

Ec8
Quiet(f)

(e H+K f) I+J g vQ e I+J g
if Wsi(e) \ I � H and K \Wsi(e)\ I = ;

Ec9 e �Q e I+J a :
 if Wsi(e) � I and Wsi(e) \ J = ;

Ec10 a : e I+J a : f �Q a : (e� f) if a 2 out(e) [ (I \ J)

Ec11 e I+J f vQ e� f where Wsi(e)\Wsi(f) � I [ J

Ec12
Quiet(e)() Quiet(f) ^ not(Inten(e))^ not(Inten(f))

e I+J f �Q e � f
if Wsi(e) [Wsi(f) � I \ J

Ec13
a 2 in(e) _ (not(Quiet(q))^ not(Inten(q)))_ Quiet(f)

(a : e I+J f)� g �Q (a : e I+J f)� (a : e I+K g)
if

Wsi(g) � K; and

fag \ I � fag \K
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The following theorems are derived from the theorems above:

Ec14 e I+J f �Q e Infag+Jnfag f if a 2 InWsi(e).

Ec15
Quiet(f)

e �Q e I+; f
where Wsi(e) � I

Ec16
Quiet(f)

e I+J g �Q (e I+K f) I+J g
if K \ I = ;

Proof. We prove only theoremEc3. Other examples of proofs are given for the hiding theorems.

Due to Proposition 3.2.1 of chapter 3, the proof can be given by using the transition rules for

DIOA. We also use a new notation e
a

=) e0 meaning that there are two automata f; f 0 and two

integers i; j such that e
�i

�! f
a
�! f 0

�j

�! e0.

Let t be an external (quiescent) trace of e. If t = � and t is quiescent, then, by de�nition

of quiescent trace, there is a quiescent automaton e0 such that e
�

=) e0. From rules ech4;5

e I+J e
�

=) e0 I+J e
0 which is quiescent. Therefore, � is an external (quiescent) trace of e I+J e.

If t 6= � then t = at0 for some external action a. In particular there is an automaton e0 such

that e
a

=) e0 and t0 is an external (quiescent) trace of e0. If a 2 I [ J [ out(e), then, from

rules ech1;2, e I+J e
a

=) e0, hence at0 is an external (quiescent) trace of e I+J e. concluded; if

a 62 I [ J [ out(e) then, from rule ech3, e I+J e
a
�! 
 and t is trivially an external (quiescent)

trace of e I+J e since any trace is a quiescent trace of 
.

Conversely let t be an external (quiescent) trace of e I+J e. If t = � and t is quiescent, then,

by de�nition of quiescent trace, there are two quiescent automata e0; e00 such that e I+J e
�

=)

e0 I+J e
00 where e

�
=) e0 and e

�
=) e00. The fact that � is a quiescent trace of e is immediate

from the hypothesis above. If t 6= � then t = at0 for some action a. If a 2 I [ J [ out(e), then,

from rules ech1;2, there is an automaton e0 such that e I+J e
a

=) e0 where e
a

=) e0 and t0 is an

external (quiescent) trace of e0. The conclusion is immediate once again. If a 62 I [ J [ out(e),

then a is an input action and a 62Wsi(e) since Wsi(e) � I [ J . From the de�nition of Wsi , at0

is an external (quiescent) trace of e, hence the proof is concluded.

The following theorems concern the hiding operator. The �rst seven theorems show the

relations between the hiding operator and the other ones. In particular theorem I4 establishes

the distributivity of hiding over choice (this is the place where function Wso is used); theorem

I7 is simply a way of saying that internal actions can be renamed. Theorems I8;9 state some
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ways of dealing with the hiding operator when it does not distribute over pre�xing or external

choice.

The rest of the theorems permit eliminating/adding internal actions from automata. Theo-

rem I10 essentially says that �I(e) is an implementation of �I(�1:e). In fact the second automaton

can move to the unspeci�ed state with every input action before performing action �1 while the

�rst process may not. The condition for which the two automata can be considered equivalent

is when also �I(e) can perform any trace after any input action. A su�cient condition is then

Wsi(e) = ; and this is what is stated in theorem I11.

Theorems I12;13 permit eliminating explicit internal actions, possibly by transforming an

external choice into an internal one. Theorems I14;15 permit eliminating the hiding operator

from particular classes of I/O automata that are expressible through DIOA expressions. These

theorems are particular important in their axiom version to achieve completeness.

Theorems I16;17 are derived from the above theorems and are useful for the applications.

Theorem I16 eliminates internal actions interleaved with an external one. Note that, by using

the external choice theorems together with theorems I11;12;13, the statement of theorem I16 can

be generalized to the case in which there is any number of hidden actions interleaved with a.

Theorem I17 says that, if the e�ect of a pre�x with an internal action is simply to temporary

block a process that can perform only locally controlled actions, then the pre�x can be removed

and the automaton can be simpli�ed. It is a consequence of theorems I13 and Ec1;2;4.

Proposition 4.2.6 (hiding theorems) Let e; f; g be I/O automata and let i 2 I. The fol-

lowing theorems are sound.

I1 �;(e) �Q e

I2 �I(nil) �Q nil

I3 �I(a : e) �Q a : �I(e) if a 62 I

I4 �I(e H+K f) �Q �I(e) H+K �I(f) if Wso(e) \ I = Wso(f)\ I = ;

I5 �I(�J(e)) �Q �I[J (e)

I6 �I(e)k�J(f) �Q �I[J (ekf) if I \ acts(f) = J \ acts(e) = ;

43



I7 e �Q �(e) if � is the identity function

I8
�I(e) vQ �I(f)

�I(a : e) vQ �I(a : f)

I9
�I(e) vQ �I(g)

�I(e H+K f) vQ �I(g H+K f)

I10 �I(e) vQ �I(i : e H+K f)

I11 �I(i : e) �Q �I(e) if Wsi(e) = ;

I12
not(Quiet(e))^ not(Inten(e))

�I(e H+; i : f) �Q �I(e� f)
if Wsi(e) � H

I13
Quiet(e)

�I(e H+; i : f) �Q �I(e K+K f)
if Wsi(e) � H and Wsi(e) � K

I14 �I((
S0knilS1k � � �knilSn)ke) �Q �I(
ke) if 81�j�n(out(S0) \ in(Sj) \ I)nin(e) 6= ;

I15 �I(
S0knilS1k � � �knilSn) �Q 
S0nIknilS1nIk � � �knilSnnI if 81�i�nout(S0) \ in(Si) \ I = ;

The following theorems are derived from the theorems above:

I16 �I(a : i : e fag\in(e)+; i : a : e) �Q �I(a : e) if Wsi(e) = ;

I17 �I(i : (e ;+J f) ;+J f) �Q �I(e ;+J f) if Quiet(f) and Wsi(f) � J

Proof. We only prove theorems I12;13;14;15. The other theorems are proven in the same way.

I12 Let t be an external (quiescent) trace of �I(eH+;i:f). By the transition rules for �I and the

de�nition of external trace, there is a trace t0 of eH+;i:f such that t
0dext(�I(eH+;i:f)) = t

and t0 leads the system to a quiescent state if t is quiescent. Note that, since �I(eH+; i :f)

is not quiescent, t0 6= � if t = � and t is quiescent. Since no internal actions are enabled

from e then the �rst action of t0 is not � and rules ech4;5 are not used for the �rst transition

of t0. We distinguish the following cases:

(a) rule ech1 is used for the �rst transition of t0

In this case e H+; i : f
a
�! e0 for some action a where e

a
�! e0. By rule ich1

e� f
�
�! e

a
�! e0, hence t is trivially an external (quiescent) trace of �I(e� f).
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(b) rule ech2 is used for the �rst transition of t0

In this case e H+; i : f
i

�! f and �I(e H+; i : f)
�
�! �I(f). By rules ich1 and tau1

�I(e� f)
�
�! �I(f) and the conclusion is immediate again.

(c) rule ech3 is used for the �rst transition of t0

In this case e H+; i : f
a
�! 
 for some input action a 62 H . In particular t = at00 for

some trace t00 and, since H � Wsi(e), a 62 Wsi(e). From the de�nition of Wsi we

have that at00 is an external (quiescent) trace of e, hence at00 is an external (quiescent)

trace of �I(e� f).

A similar and simpler argument shows the converse trace inclusion.

I13 Let t be an external (quiescent) trace of �I(e H+; i : f). If t = � and t is a quiescent

trace, then, since e is quiescent and i : f is not quiescent, it must be �I(e H+; i : f)
�
�!

�I(f)
�
=) �I(f

0) where f 0 is quiescent. On the other side �I(e K+K f)
�
=) �I(g) where

either g � e K+K f 0 or g � f 0 depending on the trace leading to f 0. Since e is quiescent,

then in both cases g is quiescent and � is a quiescent trace of �I(e K+K f). Suppose now

that t 6= �. By the transition rules for �I and the de�nition of external trace, there is a

trace t0 of e H+; i : f such that t0dext(�I(e H+; i : f)) = t and t0 leads the system to a

quiescent state if t is quiescent. Since no internal actions are enabled from e, then the

�rst action of t0 is not � and rules ech4;5 are not used for the �rst transition of t0. We

distinguish the following cases:

(a) rule ech1 is used for the �rst transition

In this case eH+; i : f
a
�! e0 for some action a where e

a
�! e0 and a 2 H [ out(e). If

a 2 K [ out(e) then rule ech1 is applicable to e K+K f leading the right automaton

to �I(e
0). The conclusion is then immediate. If a 62 K [ out(e) then rule ech3 is

applicable to e K+K f leading the system to 
. The conclusion is immediate again.

(b) rule ech2 is used for the �rst transition

In this case e H+; i : f
i
�! f and �I(e H+; i : f)

�
�! �I(f). Let t0 = i�nbt00. Since

�nbt00 is a trace of f , we have that 9f 0; f 00jf
�n�1

�! f 0
b
�! f 00 where t00 is a trace of f 00

leading the system to a quiescent state if t is quiescent. By the transition rules for
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the external choice operator, e K+K f
�n

�! e K+K f 0
b
�! g where g is either f 00 or 


depending on the rule used for the b-transition (ech2 or ech3). In both the cases t00

is a trace of g leading the system to a quiescent state if t is quiescent. The conclusion

is then immediate.

(c) rule ech3 is used for the �rst transition

In this case e H+; i : f
a
�! 
 for some input action a. In particular a 62 Wsi(e),

hence rule ech3 is also applicable to eK+K f leading the right automaton to 
. The

conclusion is then immediate.

A similar and simpler argument shows the converse trace inclusion.

I14 For each 1 � i � n choose ai 2 (out(S0) \ in(Sj)\ I)nin(e). Then

(
S0knilS1k � � �knilSn)ke
a1���an
�! (
S0k
S1k � � �k
Sn)ke and

�I((
S0knilS1k � � �knilSn)ke)
�
=) �I((
S0k
S1k � � �k
Sn)ke)

which, by axiom P , is equivalent to �I(
ke), hence

�I(
ke) vQ �I((
S0knilS1k � � �knilSn)ke):

The other inclusion is trivial since each process is less than 
 (use theorem M and the

substitutivity rules).

I15 Let t be an external (quiescent) trace of �I(
S0knilS1k � � �knilSn). We show by induction

on the length of t that t is an external (quiescent) trace of 
S0nIknilS1nIk � � �knilSnnI . If

t = � then the result is immediate since � is a quiescent trace of any automaton of the

form 
knilk � � �knil. If t 6= � then t = at0 for some external action a. By the de�nition of

external trace and the transition rules for �I , we have that 
S0knilS1k � � �knilSn
t1
�! e

a
�!

e0 for some e; e0; t1 where t1 has actions in I [ f�g. Since 81�i�nout(S0) \ in(Si) \ I = ;,

then e � fknilS1k � � �knilSn where f is either 
S0 or nilS0 . In the case f is nilS0 we have
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that 
S0nIknilS1nIk � � �knilSnnI
�
�! nilS0nIknilS1nIk � � �knilSnnI using rule ome2. Let

g =

8><
>:


S0nIknilS1nIk � � �knilSnnI if f � 
S0

nilS0nIknilS1nIk � � �knilSnnI if f � nilS0

In the transition e
a
�! e0 there is a set of automata fnilSij : j 2 Jg of fknilS1k � � �knilSn ,

having a is an input action, that will move to 
. The set of automata fnilSijnI : j 2 Jg

also move to 
 with action a on g since they all have action a as an input action. To

conclude it is enough to collapse all 
 automata by repeatedly applying axiom P , and

successively apply the induction hypothesis.

The inverse trace inclusion is easier to prove since each trace of 
S0nIknilS1nIk � � �knilSnnI

has no actions from I .

4.3 Theorems for recursively de�ned processes

In this subsection we present some tools to deal with recursion by stating some properties about

recursive de�nitions. We �rst �nd a class of recursive DIOA equations having unique solutions

up to quiescent trace equivalence, i.e., a unique �xpoint; then, on the same class of equations,

we state some properties of their pre and post �xpoints.

We consider the class of equations given by means of strongly guarded expressions (see

De�nition 4.3.2), i.e., expressions in which each process variable occurs within the scope of

some not hidden pre�x. For this class we can assure that every set of mutually recursive

equations has a unique �xpoint. It is immediate to see that this property is not valid if we

consider non-strongly guarded equations. Consider for example

X
def
= �fag(a : (Xknil))

where nil has a single output action a and a 62 acts(X). Then every automaton with the same

action signature as X is a solution of the equation.

Since recursion is expressed through DIOA expressions, we can interchangeably talk of
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expressions or talk of represented automata. Moreover we can interchangeably talk of transition

rules applied to expressions or transition rules applied to automata. The only point in which

it is not possible to talk about expressions is when some automata are substituted for the

variables of a set of equations. We �rst introduce some notational conventions. We indicate

with ~E a set of expressions fE1; : : : ; Eng. The same convention is valid for process variables

and for automata. With the notation E[ ~P= ~X] we mean the automaton obtained from E by

simultaneously substituting all its occurrences of Xi with Pi for every i. With the notation

~E[ ~P= ~X] we mean the substitution above repeated for every expression Ei of ~E.

We now introduce the notion of strongly guarded expression, which is then generalized to a

set of equations.

De�nition 4.3.1 (strong guardedness) Given a set of actions A,

� nil is strongly guarded with respect to A,

� a : e is strongly guarded with respect to A i� a 62 A or e is strongly guarded with respect

to A,

� e1� e2 is strongly guarded with respect to A i� both e1 and e2 are strongly guarded with

respect to A,

� e1 I+J e2 is strongly guarded with respect to A i� both e1 and e2 are strongly guarded

with respect to A,

� �I(e) is strongly guarded with respect to A i� e is strongly guarded with respect to A[ I ,

� �(e) is strongly guarded with respect to A i� e is strongly guarded with respect to ��1(A),

and

� e1ke2 is strongly guarded with respect to A i� both e1 and e2 are strongly guarded with

respect to A.

A DIOA expression e is strongly guarded i� it is strongly guarded with respect to ;.

Informally a DIOA expression e is strongly guarded with respect to a set of actions A i�

every process variable of e occurs in a subexpression of the form b : e0 of e where b is an external
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action of e0 that is transformed (renamed) into an external action of e not belonging to A. The

use of parameter A is due to the presence of the hiding operator. The intuitive idea behind

a strongly guarded expression e is that no process variable a�ects any transition from e. The

following de�nition extends the concept of strong guardedness to a generic set of equations.

De�nition 4.3.2 (strongly guarded equations) Given a set of equations ~X
def
= ~E( ~X), an

equation Xk
def
= Ek( ~X) is strongly guarded with respect to A if 9A1; : : : ; An such that

1. 8iEi( ~X) is strongly guarded with respect to Ai,

2. A � Ak and

3. for each Xj occurring within Ei, Ai [ A0 � Aj where A
0 is the set of actions of Xj that

are hidden within Ei.

~X
def
= ~E( ~X) is strongly guarded if, for each i, Xi

def
= Ei( ~X) is strongly guarded with respect to

;.

We can now state the main theorem of this section. As a corollary we have uniqueness of

�xpoint for strongly guarded equations.

Theorem 4.3.3 (recursive substitutivity) Let ~X
def
= ~E( ~X) be a strongly guarded set of

equations and let ~P be a set of I/O automata. Then the following facts hold:

1. if ~P vQ
~E[ ~P= ~X] then ~P vQ

~Aut( ~X);

2. if ~E[ ~P= ~X] vQ
~P then ~Aut( ~X) vQ

~P .

Corollary 4.3.4 (unique solution of equations) Let ~X
def
= ~E( ~X) be a strongly guarded set

of equations and let ~P �Q
~E[ ~P= ~X] where ~P is a set of automata.. Then ~P �Q

~Aut( ~X).

Proof. Direct consequence of theorem 4.3.3.

The rest of this section is dedicated to the proof of theorem 4.3.3. The main idea of the

proof is that, by unfolding a set of equations n times, every trace of length at most n can
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be generated independently of the automata substituted for the variables ~X. The �rst lemma

formally introduces the unfoldings of the equations and proves some properties that will be

fundamental to allow the above idea to work.

Lemma 4.3.5 (unfoldings) Given a set of process variables ~X consider the corresponding

de�ning expressions ~E( ~X). Let ~E0 = ~E( ~X) and, for each n � 1, ~En = ~E[ ~En�1= ~X]. Let ~P be

a set of I/O automata. Then the following holds:

1. ~X �Q
~En for each n.

2. ~P vQ
~E[ ~P= ~X] =) ~P vQ

~En[ ~P= ~X] for each n.

3. ~E[ ~P= ~X] vQ
~P =) ~En[ ~P= ~X] vQ

~P for each n.

Proof.

1. By induction on n. If n = 0 then the result is immediate from the fact that X �Q E(X)

for each process variable X . Suppose by induction that ~X �Q
~En. By substitutivity,

~E[ ~X= ~X] �Q
~E[ ~En= ~X]. Since, by the base case, ~E[ ~X= ~X] �Q

~X and since, by de�nition,

~E[ ~En= ~X] is ~En+1, we can conclude that ~X �Q
~En+1.

2. By induction on n. If n = 0 then the assertion is true by de�nition. Suppose by induction

that ~P vQ
~En[ ~P= ~X]. By substitutivity, ~E[ ~P= ~X] vQ

~E[ ~En[ ~P= ~X]= ~X]. Since by hypothesis

~P vQ
~E[ ~P= ~X] and since, by de�nition, ~E[ ~En[ ~P= ~X]= ~X] is ~En+1[ ~P= ~X], we can conclude

that ~P vQ
~En+1[ ~P= ~X].

3. By induction on n. If n = 0 then the assertion is true by de�nition. Suppose by induction

that ~En[ ~P= ~X] vQ
~P . By substitutivity, ~E[ ~En[ ~P= ~X]= ~X] vQ

~E[ ~P= ~X]. Since by hypothesis

~E[ ~P= ~X] vQ
~P and since, by de�nition, ~E[ ~En[ ~P= ~X]= ~X] is ~En+1[ ~P= ~X], we can conclude

that ~En+1[ ~P= ~X] vQ
~P .

The following lemmas essentially state the independence of the traces of length at most n

from the automata substituted for the variables of ~En.

Lemma 4.3.6 Let E( ~X) be strongly guarded and let E( ~X)
�
�! E0( ~X). Then

50



1. E0( ~X) is strongly guarded and

2. for each set of automata ~P , E[ ~P= ~X]
�
�! E0[ ~P= ~X].

Proof. We prove a more general result: Let E( ~X) be strongly guarded with respect to A and

let E( ~X)
�
�! E0( ~X) where � 2 A [ f�g. Then

1. E0( ~X) is strongly guarded with respect to A and

2. for each set of automata ~P , E[ ~P= ~X]
�
�! E0[ ~P= ~X].

The lemma follows by taking A = ;. We proceed by induction on the structure of E. If E � nil

or E � 
 then the result is trivial since no variables are contained in E. The result is trivial

also when E is a process variable since E is not strongly guarded. For the induction step we

consider cases depending on the most external operator.

Case 1 pre�xing

Let E � a : E1. If � 6= a then the result is trivial since the only admitted transitions with

action � from E move the system to 
. If � = a then the transition is a : E1

a
�! E1 and,

since a 2 A, E1 is strongly guarded with respect to A. Moreover a:E0[ ~P= ~X]
a
�! E1[ ~P= ~X]

for each set of automata ~P .

Case 2 choice

Let E � E1 I+J E2. By de�nition of strong guardedness both E1 and E2 are strongly

guarded with respect to A. For transitions to 
 the result is immediate; for transitions

involving E1 or E2 the result follows directly from the induction hypothesis.

Case 3 hiding

Let E � �I(E1). By de�nition of strong guardedness E1 is strongly guarded with respect

to A[ I . If �I(E1)
�
�! �I(E

0) where � 2 A[ f�g then, by the transition rules, E1

�
�! E0

where � 2 A [ I [ f�g. By induction E0 is strongly guarded with respect to A [ I

and E1[ ~P= ~X]
�
�! E0[ ~P= ~X] for each set of automata ~P . In particular �I(E

0) is strongly

guarded with respect to A and �I(E1[ ~P= ~X])
�
�! �I(E

0[ ~P= ~X]).
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Case 4 renaming

Let E � �(E1). By de�nition of strong guardedness E1 is strongly guarded with respect

to ��1(A). If �(E1)
�
�! �(E0) where a 2 A[f�g then, by the transition rules, E1

��1
(�)

�! E0

where ��1(�) 2 ��1(A)[f�g. By induction E0 is strongly guarded with respect to ��1(A)

and E1[ ~P= ~X]
��1(�)
�! E0[ ~P= ~X] for each set of automata ~P . In particular �(E0) is strongly

guarded with respect to A and �(E1[ ~P= ~X])
�
�! �(E0[ ~P= ~X]).

Case 5 parallel

Let E � E1kE2. By de�nition of strong guardedness both E1 and E2 are strongly guarded

with respect toA. It is enough to apply the induction hypothesis toE1 and E2 to conclude.

Lemma 4.3.7 Let E( ~X) be strongly guarded and let E( ~X)
�n

�! E0( ~X). Then

1. E0( ~X) is strongly guarded and

2. for each set of automata ~P , E[ ~P= ~X]
�n

�! E0[ ~P= ~X].

Proof. By induction on n. If n = 0 then the result is trivial. Suppose now that the fact is

valid for n and let E( ~X)
��n

�! E0( ~X). By means of Lemma 4.3.6 we perform the �rst step and,

by induction, we perform the remaining n steps.

To state the following lemmas we need a de�nition.

De�nition 4.3.8 (transitional equivalence between I/O automata) Two I/O automata

A;B are transitional equivalent (A � B) i� their transition trees are isomorphic, i.e., there is

an isomorphism h from the reachable states of A to the reachable states of B such that for each

reachable q 2 states(A), q
a
�! q0 i� h(q)

a
�! h(q0).

In the following lemmas we use the transition rules for DIOA in order to derive the transi-

tions of an automaton.

Lemma 4.3.9 Let E( ~X) be strongly guarded and let ~P be a set of automata. Let E[ ~P= ~X]
�n

�!

O. Then 9E00 : E( ~X)
h
�! E00( ~X) and O � E00[ ~P= ~X].
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Proof. The proof method is exactly the same as the one used in lemmas 4.3.6 and 4.3.7. Note

that the lemma is valid also when ~P are expressions.

Lemma 4.3.10 Let E( ~X) be strongly guarded and let E( ~X)
a
�! E0( ~X). Then, for each set of

automata ~P , E[ ~P= ~X]
a
�! E0[ ~P= ~X].

Proof. The proof method is exactly the same as in Lemma 4.3.6.

Lemma 4.3.11 Let E( ~X) be strongly guarded and let ~P be a set of automata. Let E[ ~P= ~X]
a
�!

O. Then 9E00 : E( ~X)
a
�! E00( ~X) and O � E00[ ~P= ~X].

Proof. The proof method is exactly the same as in Lemma 4.3.6. Note that the lemma is valid

also when ~P are expressions.

Lemma 4.3.12 Let E( ~X) be strongly guarded. Then � 2 qtraces(E[ ~P= ~X]) i� � 2 qtraces(E).

Proof. Suppose � 2 qtraces(E[ ~P= ~X]). By de�nition E[ ~P= ~X]
�n

�! O for some n � 0 where O

is quiescent. By Lemma 4.3.9 9E00 : E( ~X)
�n

�! E00( ~X) and E0 � E00[ ~P= ~X]. Suppose E00 not

to be quiescent. Then E00[ ~X]
o
�! E000 for some local action o. By Lemmas 4.3.10 and 4.3.11

there is a transition from O with action o. This gives a contradiction, hence E00 is quiescent

and � 2 qtraces(E). The converse is analogous.

Before stating the main lemma we need a new de�nition.

De�nition 4.3.13 Let F ( ~Y ) be a DIOA expression with k variables, and ~X
def
= E( ~X) be

a strongly guarded set of k equations. F is said strongly compatible with ~E if, for each Yi

occurring within F , Xi
def
= Ei( ~X) is strongly guarded with respect to A where A is the set of

actions of Yi that are hidden in F from the considered occurrence of Yi.

Lemma 4.3.14 Let F ( ~Y ) be a DIOA expression with k variables, and let ~X
def
= E( ~X) be a

strongly guarded set of k equations where F is strongly compatible with ~E. Then

1. F [ ~E= ~Y ] is strongly guarded;

2. if F is strongly guarded and F [ ~X]
�
�! F 0 (where � could be �), then F 0 is strongly

compatible with ~E.
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Proof. Item 1 follows from the de�nitions of strong guardedness and strong compatibility; the

proof of item 2 is by induction and follows the same lines of Lemma 4.3.6.

We can now prove the main lemma which relates the automata ~X to the automata sub-

stituted for the variables. Note that lemma 4.3.5 plays an essential role in this proof. The

introduction of F is necessary to set up an inductive process.

Lemma 4.3.15 Let F ( ~Y ) be an expression with k variables, ~P be a set of k automata, and

~X
def
= E( ~X) be a strongly guarded set of k equations where F is strongly compatible with ~E and

the variables of ~X are disjoint from those of ~Y . Let h be a trace of length n. Then h is an

external (quiescent) trace of F [ ~En[ ~P= ~X]= ~Y ] i� h is an external (quiescent) trace of F [ ~En= ~Y ].

Proof. We prove both directions by induction on n. We also use the following syntactical

identities:

1. F [ ~E[ ~P= ~X]= ~Y ] = F [ ~E= ~Y ][ ~P= ~X].

2. F [ ~En+1[ ~P= ~X]= ~Y ] = F [ ~E= ~Y ][ ~En[ ~P= ~X]= ~X].

()) Suppose that � is an external (quiescent) trace of F [ ~E[ ~P= ~X]= ~Y ]. From identity 1, � is

an external (quiescent) trace of F [ ~E= ~Y ][ ~P= ~X]. By Lemma 4.3.14, F [ ~E= ~Y ] is strongly

guarded and, by Lemma 4.3.12, � is an external (quiescent) trace of F [ ~E= ~Y ].

For the induction step suppose that ah is an external (quiescent) trace of F [ ~En+1[ ~P= ~X]= ~Y ]

where jhj = n. From identity 2, ah is an external (quiescent) trace of F [ ~E= ~Y ][ ~En[ ~P= ~X]= ~X]

and, by Lemma 4.3.14, F [ ~E= ~Y ] is strongly guarded. From the de�nition of external trace

and Lemmas 4.3.9 and 4.3.11 9F1; F2 such that

F [ ~E= ~Y ][ ~En[ ~P= ~X]= ~X]
�k

�! F1[ ~E
n[ ~P= ~X]= ~X]

a
�! F2[ ~E

n[ ~P= ~X]= ~X]

where

F [ ~E= ~Y ]
�k

�! F1[ ~X]
a
�! F2[ ~X]

and h is an external (quiescent) trace of F2[ ~E
n[ ~P= ~X]= ~X]. By Lemma 4.3.14 and a simple
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induction argument F2 is strongly compatible with ~E. By Lemmas 4.3.7 and 4.3.10

F [ ~E= ~Y ][ ~En= ~X]
�k

�! F1[ ~E
n= ~X]

a
�! F2[ ~E

n= ~X]:

By induction h is an external (quiescent) trace of F2[ ~E
n= ~X]. Therefore, since by identity

2 F [ ~En+1= ~Y ] = F [ ~E= ~Y ][ ~En= ~X], ah is an external (quiescent) trace of F [ ~En+1= ~Y ].

(() Suppose that � is an external (quiescent) trace of F [ ~E= ~Y ]. By Lemma 4.3.14, F [ ~E= ~Y ] is

strongly guarded and, by Lemma 4.3.12, � is an external (quiescent) trace of F [ ~E= ~Y ][ ~P= ~X].

From identity 1, � is an external (quiescent) trace of F [ ~E[ ~P= ~X]= ~Y ].

For the induction step suppose that ah is an external (quiescent) trace of F [ ~En+1= ~Y ] and

suppose jhj = n. From identity 2, ah is an external (quiescent) trace of F [ ~E= ~Y ][ ~En= ~X]

and, by Lemma 4.3.14, F [ ~E= ~Y ] is strongly guarded. From the de�nition of external trace

and Lemmas 4.3.9 and 4.3.11, 9F1; F2 such that

F [ ~E= ~Y ][ ~En= ~X]
�k

�! F1[ ~E
n= ~X]

a
�! F2[ ~E

n= ~X]

where

F [ ~E= ~Y ]
�k

�! F1[ ~X]
a
�! F2[ ~X]

and h is an external (quiescent) trace of F2[ ~E
n= ~X]. By Lemma 4.3.14 and a simple

induction argument F2 is strongly compatible with ~E. By Lemmas 4.3.7 and 4.3.10

F [ ~E= ~Y ][ ~En[ ~P= ~X]= ~X]
�k

�! F1[ ~E
n[ ~P= ~X]= ~X]

a
�! F2[ ~E

n[ ~P= ~X]= ~X]:

By induction h is an external (quiescent) trace of F2[ ~E
n[ ~P= ~X]= ~X]. Therefore, since by

identity 2 F [ ~En+1[ ~P= ~X]= ~Y ] = F [ ~E= ~Y ][ ~En[ ~P= ~X]= ~X], ah is an external (quiescent) trace

of F [ ~En+1[ ~P= ~X]= ~Y ].

We can �nally prove Theorem 4.3.3.

Proof of Theorem 4.3.3 (recursive substitutivity)

1. Let h be an external (quiescent) trace of Pi and let jhj = n. By Lemma 4.3.5 part 2,
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h is an external (quiescent) trace of F [ ~En[ ~P= ~X]= ~Y ] where F � Yi. By Lemma 4.3.15,

h is an external (quiescent) trace of F [En( ~X)= ~Y ] and, by Lemma 4.3.5 part 1, h is an

external (quiescent) trace of F [ ~X= ~Y ]. Therefore h is an external (quiescent) trace of Xi

and Aut(Xi).

2. Let h be an external (quiescent) trace of Aut(Xi), therefore an external (quiescent) trace

of Xi, and let jhj = n. Xi can be expressed as F [ ~X= ~Y ] where F � Yi. By Lemma 4.3.5

part 1, h is an external (quiescent) trace of F [En( ~X)= ~Y ] and, by Lemma 4.3.15, h is an

external (quiescent) trace of F [ ~En[ ~P= ~X]= ~Y ]. Finally, by Lemma 4.3.5 part 3, h is an

external (quiescent) trace of Pi.
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Chapter 5

An Axiomatization for the Quiescent

Preorder

In this chapter we present the syntactic view of the theorems of Chapter 4 and we prove a

completeness result for recursion-free expressions.

The �rst step consists in converting the theorems of Chapter 4 into actual axioms by giving

syntactic approximations of the semantic auxiliary functions; then the completeness result can

be stated and proved.

The completeness result is achieved through a special notion of normal form where the

parallel operator is present. In general (see [ABV92]) the normal form contains only a 0

process, a pre�xing operator and a nondeterministic choice operator. In DIOA the parallel

operator cannot be eliminated in general from expressions of the form 
knil. The transition

rules of DIOA, in fact, do not �t the format of [ABV92].

Once the normal form is identi�ed, the completeness result is proven just for expressions

in normal form and it is extended to general expressions by showing that each recursion-free

expression with a �nite interface has a provably equivalent one in normal form.

The rest of the chapter is organized as follows: Section 5.1 presents approximations for the

auxiliary functions of Chapter 4 given in terms of the syntactic structure of the expressions.

By substituting the new auxiliary functions in the theorems of Chapter 4 we obtain actual

axioms; Section 5.2 presents some classes of expressions that are used for the completeness
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results; Section 5.3 presents other three axioms that can be easily stated using the notation of

Section 5.2; Section 5.4 presents and proves the completeness result.

5.1 Syntactic de�nition of auxiliary functions

In this section we give an approximation of functions Wsi , Wso, Localen, Quiet and Inten

that is based on the syntactic structure of an expression. The new functions we de�ne can be

substituted for the auxiliary functions used in Chapter 4 giving a set of actual axioms.

By looking at the way in which function Wsi is used in the theorems of Chapter 4, it is

immediate to see that the approximation we need is an upper approximation of Wsi , i.e., we

need a new function wsi , de�ned in terms of the syntactic structure of an expression e, such

that, for every e, Wsi(Aut(e)) � wsi(e). One speci�c property of wsi to guarantee the above

relation is the following:

if a 2 in(e) and a 62 wsi(e) then 9e0 �Q 
 : e
a

=) e0:

Table 5.1 contains the actual de�nition of wsi based on the property above. The de�nition of

wsi is a bit complicated due to the presence of the two parameters A and B which are necessary

for dealing with hiding and external choice operators. When dealing with the hiding operator

it is not su�cient to look at the set wsi of its argument to establish the set wsi of the global

expression: in fact all the hidden output actions must be considered internal. For this reason it

is necessary to introduce an additional parameter A saying which actions should be considered

internal in the evaluation of wsi . On the other hand, when dealing with an external choice

context, not all traces with elements in A can be performed because some of them may be

forbidden by the operator itself (for example e cannot perform the input action a in e ;+I f).

For the reason above it is necessary to introduce a second parameter B saying how the traces

to consider should begin. Notice, however, that parameters A and B could be eliminated: the

result is given by a coarser approximation ofWsi with the e�ect of a weaker set of axioms. The

following lemma is characterizes the relationship between Wsi and wsi .

Lemma 5.1.1 For each DIOA expression e, Wsi(Aut(e)) � wsi(e).
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wsiA;B(nil) = ;

wsiA;B(
) = ;

wsiA;B(a : e) =

(
fag if a 2 in(e)nA

; if a 2 out(e) [ A

wsiA;B(e1 � e2) = wsiA;B(e1) \ wsiA;B(e2)

wsiA;B(e1 I+J e2) =

8><
>:
; if B \A \ (in(e1)n(I [ J)) 6= ;

(I \ wsiA;B\(I[out(e1))(e1))[ (J \ wsiA;B\(J[out(e2))(e2))

otherwise

wsiA;B(�I(e)) = wsiA[I;B(e)

wsiA;B(�(e)) = �(wsi��1(A);��1(B)(e))

wsiA;B(e1ke2) = wsi;;;(e1) [ wsi;;;(e2)

wsiA;B(X) = wsiA;B(E(X))

Table 5.1: De�nition of wsi for DIOA. wsi(e)
def
= wsi;;;(e)

Proof. The lemma is a direct consequence of the assertion

if a 2 in(e) and a 62 wsi(e) then 9e0 �Q 
 : e
a

=) e0:

The assertion above is implied by the following one when choosing A = ;:

if a 2 in(e)nA and a 62 wsiA;B(e) and B � ext(e)

then 9e0 �Q 
 and h 2 A�; (h = � or first(h) 2 B); and e
ha
=) e0:

We show the last assertion by induction on the complexity of a guarded expression e. For

unguarded expressions it is enough to substitute E(X) for each unguarded occurrence of a

process variable X .

The cases for nil and 
 are trivial since, for any input action, they both have only transitions

to 
. For the other operators we have the following cases:

Case 1 pre�xing:
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Let e � a : e0 and suppose b 62 wsiA;B(e) where b 2 in(e)nA. By de�nition of wsi , b 6= a,

hence the result is trivial since a : e
b
�! 
 for any input action b di�erent from a.

Case 2 internal choice:

Let e � e1 � e2 and suppose a 62 wsi(e) where a 2 in(e)nA. By de�nition of wsi either

a 62 wsi(e1) or a 62 wsi(e2). Suppose without loss of generality that a 62 wsi(e1). By

induction there is e01 � 
 and h 2 A� such that h = � or first(h) 2 B, and e1
ha
=) e01. By

�rst using rule ich1 we have e1 � e2
�
�! e1

ha
=) e01.

Case 3 external choice:

Let e � e1I+Je2 and suppose a 62 wsiA;B(e) where a 2 in(e)nA. If B\A\(in(e1)n(I[J)) 6=

; then the result is trivial since e1 I+J e2
b
�! 


a
�! 
 where b 2 B \A\ (in(e1)n(I [J)).

If B \A \ (in(e1)n(I [ J)) = ; then one of the following cases holds:

1. a 62 I [ J

This case is trivial since e1 I+J e2
a
�! 
.

2. a 2 I [ J and a 62 (J [ wsiA;B\(I[out(e1))(e1))

In this case we apply the induction hypothesis to e1. Let e
0

1; h such that e01 � 
 and

e1
ha
=) e01. If h = � then rule ech1 can be used to derive e1 I+J e2

a
=) e01 since a 2 I ;

if h 6= � then, by induction, first(h) 2 I [ out(e1), hence rule ech1 can be used

again.

3. a 2 I [ J and a 62 (I [ wsiA;B\(J[out(e2))(e2))

Similar to the previous case.

4. a 2 I [ J and a 62 wsiA;B\(I[out(e1))(e1) [ wsiA;B\(J[out(e2))(e2)

In this case a 2 I or a 2 J . Suppose without loss of generality that a 2 I . The

analysis is then the same as for item 2.

Case 4 hiding:

Let e � �I(e
0) and let a 62 wsiA;B(e) where a 2 in(e)nA. By de�nition wsiA;B(�I(e

0)) =

wsiA[I;B(e
0). By induction there exists e00 �Q 
 and h0 2 (A [ I)� such that h0 = �

or first(h0) 2 B, and e0
h0a
=) e00. From the transition rules �I(e

0)
ha
=) �I(e

00) where
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h = h0dext(e). Notice that, if h0 6= �, then first(h) 2 B since B � ext(e). In particular

�I(e
00) �Q 
 and h = � or first(h) 2 B.

Case 5 renaming:

Let e � �(e0) and suppose a 62 wsiA;B(e) where a 2 in(e)nA. By de�nition wsiA;B(�(e
0)) =

�(wsi��1(A);��1(B)(e
0)), hence ��1(a) 62 wsi��1(A);��1(B)(e

0) and ��1(a) 2 in(e0)n��1(A). By

induction there exists e00 �Q 
 and h0 2 ��1(A)� such that h0 = � or first(h0) 2 ��1(B),

and e0
h0��1(a)
=) e00. From the transition rules �(e0)

ha
=) �(e00) where h = �(h0). In particular

�(e00) �Q 
 and h = � or first(h) 2 B.

Case 6 parallel:

Let e � e1ke2 and suppose a 62 wsiA;B(e) where a 2 in(e)nA. The conclusion follows

directly by applying the induction hypothesis to both e1 and e2.

For function Wso we de�ne an approximating function that satis�es the following property

for each expression e:

if a 2 out(e) and 9e0je
a

=) e0 then a 2 wso(e):

Table 5.2 contains the actual de�nition of function wso. Unfortunately wso is not well de�ned

for all DIOA expressions. Consider for example the process

X
def
= �fag(a : (Xknil))

where a is an output action of nil but not an action of X . The application of the de�nition of

wso gives wso(X) = wso(X). The problem is essentially due to the third case in the expression

of wsoA;B(a : e) where the pre�x a is skipped and expression e is considered. One way to avoid

the problem is to replace wsoA;A(e) with out(e)nA in the expression for wsoA;B(a : e); another

way is to consider only those expressions for which wso is well de�ned, i.e., strongly guarded

expressions as de�ned in De�nition 4.3.1 of Chapter 4. On strongly guarded expressions the

third case of the expression for wsoA;B(a:e) does not cause any problem since a process variable

will never be reached.
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wsoA;B(nil) =

(
; if A \ B \ in(nil) = ;

out(nil)nA otherwise

wso(
) = out(
)nA

wsoA;B(a : e) =

8>>><
>>>:

out(e)nA if B \A \ fag 6= ;

fag \ out(e) if B \A \ fag = ; and a 62 A

wsoA;A(e) if B \A \ fag = ; and a 2 A \B

; if B \A \ fag = ; and a 2 AnB

wsoA;B(e1 � e2) = wsoA;B(e1) [ wsoA;B(e2)

wsoA;B(e1 I+J e2) =

(
wsoA;B\(I[out(e1))(e1)[ wsoA;B\(J[out(e2))(e2) if B \ A \ I [ J = ;

out(e1)nA otherwise

wsoA;B(�I(e)) = wsoA[I;B[I (e)

wsoA;B(�(e)) = �(wso��1(A);��1(B)(e))

wsoA;B(e1ke2) =

8><
>:

wsoA;A(e1) [ wsoA;A(e2) if 9a 2 B \ A : a 2 acts(e1)next(e2)

or a 2 acts(e2)next(e1)

wsoA;B(e1) [ wsoA;B(e2) otherwise

wsoA;B(X) = wsoA;B(E(X))

Table 5.2: De�nition of wso for DIOA wso(e)
def
= wso;;;(e)

The relationship between Wso and wso is then the following:

Lemma 5.1.2 For every strongly guarded DIOA expression e, Wso(Aut(e)) � wso(e).

Proof. The lemma is a consequence of the assertion

if 9e0 : e
a

=) e0 for a 2 out(e), then a 2 wso(e):

The assertion above is implied by the following one when choosing A = ;: if e is strongly

guarded with respect to A and 9e0; h such that h 2 A�, h = � or first(h) 2 B, and e
ha
=) e0

where a 2 out(e)nA, then a 2 wsoA;B(e). The lemma then follows by choosing A = ;.

We show the last assertion by induction on the complexity of an expression e and we analyze

each single operator. Clearly, since e is strongly guarded, e is not be a process variable.
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Case 1 nil:

Let e � nil and suppose 9e0; h 2 A� such that h = � or first(h) 2 B, and e
ha
=) e0 where

a 2 out(e)nA. Since the only transitions for nil are labelled with input actions, it must

be h 6= �, first(h) 2 in(e) and first(h) 2 B. This implies that A \ B \ in(e) 6= ;. By

de�nition, wsoA;B(e) = out(e)nA, hence a 2 wsoA;B(e).

Case 2 omega:

This case is trivial since wsoA;B(
) = out(
)nA.

Case 3 pre�xing:

Let e � a : e0 and suppose 9e00; h 2 A� such that h = � or first(h) 2 B, and e
hb
=) e0

where b 2 out(e)nA. We distinguish four cases:

1. B \ A \ fag 6= ;

This case is trivial since, by de�nition, wsoA;B(e) = out(e)nA.

2. B \ A \ fag = ; and a 62 A

In this case h = �, hence a must be an output action and b = a. By de�nition

wsoA;B(e) = fag, hence b 2 wsoA;B(e).

3. B \ A \ fag = ; and a 2 A \B

In this case h = ah0 where h0 2 A�. In particular a : e0
a
�! e0, hence, by induction,

b 2 wsoA;A(e
0). Notice, in fact, that e0 is strongly guarded with respect to A. By

de�nition wsoA;B(e) = wsoA;A(e
0), hence b 2 wsoA;B(e).

4. B \ A \ fag = ; and a 2 AnB

In this case h = �. Moreover, since a 2 A, b cannot exist.

Case 4 internal choice:

This case is a simple application of the induction hypothesis after observing that ha must

be an external trace of one of the arguments of �.

Case 5 external choice:

Let e � e1 I+J e2 and suppose e1 I+J e2
ha
=) e0 where h 2 A�, h = � or first(h) 2 B, and

a 2 out(e)nA. We distinguish two cases:
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1. B \ A \ I [ J = ;

In this case rule ech3 cannot be used for generating h, hence the only way to per-

form an output action is by �rst choosing between e1 and e2 using rules ech1;2. In

particular the �rst external transition yielding ha is obtained by applying rule ech1

or ech2. Suppose without loss of generality that the applyed rule is ech1. In this

case we have that e1
ha
=) e0 and h = � or first(h) 2 I [ out(e1). By induction, then,

a 2 wsoA;B\(I[out(e1))(e1). A symmetric argument holds if the applied rule is ech2.

2. B \ A \ I [ J 6= ;

This case is trivial since, by de�nition, wso(e) = out(e)nA.

Case 6 hiding:

Let e � �I(e
0) and suppose �I(e

0)
ha
=) �I(e

00) where h 2 A�, h = � or first(h) 2 B,

and a 2 out(e)nA. By de�nition 9h0 2 (A [ I)� such that h0dA = h and e0
h0a
=) e00.

Clearly, if h0 6= �, first(h0) 2 B [ I , hence, by induction, a 2 wsoA[I;B[I(e
0) giving

a 2 wsoA;B(�I(e
0)).

Case 7 renaming:

Let e � �(e0) and suppose �(e0)
ha
=) �(e00) where h 2 A�, h = � or first(h) 2 B, and

a 2 out(e)nA. By the transition rules e0
��1

(ha)
=) e00. Clearly, ��1(h) 2 ��1(A)� and, if

��1(h) 6= �, first(��1(h)) 2 ��1(B), hence, by induction, ��1(a) 2 wso��1(A);��1(B)(e
0)

giving a 2 wsoA;B(�(e
0)).

Case 8 parallel:

Let e � e1ke2. By de�nition

wso
A;B

(e1ke2) =

8>>>><
>>>>:

wsoA;A(e1) [ wsoA;A(e2) if 9a 2 B : a 2 acts(e1)next(e2)

or a 2 acts(e2)next(e1)

wsoA;B(e1) [ wsoA;B(e2) otherwise

Suppose e1ke2
ha
=) e0 where h 2 A�, h = � or first(h) 2 B, and a 2 out(e)nA. Suppose a

is an output action of e1 (the case for e2 is analogous). By the transition rules it is a simple

induction argument to see that, if e01 is the left component of e0, then e1
(hdacts(e1))a

=) e01. If
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localen(nil) = ;

localen(a:e) = fag \ out(e)

localen(e1 � e2) = localen(e1)[ localen(e2) [ f�g

localen(e1 I+J e2) = localen(e1) [ localen(e2)

localen(�I(e)) = localen(e)

localen(�(e)) = �(localen(e))

localen(e1ke2) = localen(e1) [ localen(e2)

localen(X) = localen(E(X))

inten(e) = true i� f�g 2 localen(e)

quiet(e) = true i� localen(e) = ;

Table 5.3: De�nition of localen, inten and quiet

h = � then, by induction, we immediately have that a 2 wsoA;B(e1) and a 2 wsoA;A(e1).

If first(h) 2 acts(e1) then again a 2 wsoA;B(e1) and a 2 wsoA;A(e1). If first(h) 2

acts(e2)nacts(e1) then we can only conclude that hdacts(e1) = � or first(hdacts(e1)) 2 A,

hence a 2 wsoA;A(e1). In all the cases the conclusion is that a 2 wsoA;B(e1ke2).

Remark 5.1.3 Functions wsi and wso could have been de�ned in several di�erent ways. In

this section we have just presented some arbitrary de�nition that, in our judgement, permit

capturing the relationship between a large amount of expressions by means of the axioms of

Section 4.2.

Functions Localen, Inten and Quiet can be easily de�ned in terms of the syntactic structure

of an expression. Their de�nition is in table 5.3.

Lemma 5.1.4 Given a DIOA expression e,

1. localen(e) = Localen(Aut(e)),

2. inten(e) = Inten(Aut(e)) and

3. quiet(e) = Quiet(Aut(e)).

The following theorem is then straightforward.
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Theorem 5.1.5 The omega, renaming, pre�xing, internal choice, external choice and hiding

theorems for I/O automata are sound axioms for DIOA when expressions are interpreted as

DIOA expressions and the syntactic auxiliary functions are substituted for the semantic auxiliary

functions.

5.2 Pre�x forms

In this section we present some special classes of expressions called normal forms. The presen-

tation also includes a de�nition of an unparameterized external choice operator which is useful

for simplifying the notation.

De�nition 5.2.1 (normal forms) A DIOA expression e is in pre�x normal form if one of the

following conditions holds.

1. e � 
knilk � � �knil (atomic expression)

2. e � a : e0 where e0 is in pre�x normal form

3. e � e1 wsi(e1)+wsi(e2) e2 where e1 and e2 are in pre�x normal form but not atomic.

A DIOA expression e is in internal pre�x form if e � e1 � � � � � en where each ei is in pre�x

normal form. We abbreviate e1 � � � � � en with �
P

ei.

The reason for the complexity of item 1 is that in general the parallel operator cannot be

eliminated from an atomic expression.

When dealing with expressions in pre�x normal form it is possible to drop the parameters

from the external choice operator; moreover, when e is not an atomic expression di�erent from

nil, it is possible to use the notation e �
P

i2I ai : ei where I = ; means e � nil.

The above idea also suggests the use of an unparameterized choice operator + to simplify

the notation for expressions when possible: e+ f is de�ned to be e
wsi(e)+wsi(f) f .

5.3 Other axioms

In this section we present other three important axioms which can be easily stated using the

pre�x normal form. The �rst two axioms are the expansion axioms, giving the possibility to
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convert a parallel composition of n expressions into a nondeterministic composition of expres-

sions.

Proposition 5.3.1 (expansion axioms) The following axioms are sound:

E1 Let e � 
S0knilS1k � � �knilSn be of sort S. For each a 2 out(S0)[in(S) let ea be the unique

state that e reaches with action a. Then e �Q (
P

a2out(S0)[in(S)
a : ea)� (

P
a2in(S) a : ea).

E2 Let e � e1ke2k � � �ken where each ei is of the form
P

j ai j : ei j. For each action a 2 ext(e)

let

Ei
a =

8><
>:
fei j jai j = ag if a 2 acts(ei)

feig otherwise

Let out(a) be the index j such that a is an output action of j (0 otherwise) and let

Ea =

8><
>:
; if out(a) 6= 0 and Eout(a)

a = ;

ff1k � � �kfn : fi 2 Ei
a _ (Ei

a = ; ^ fi � 
)g otherwise

Then e �Q

P
a2ext(e)(

P
f2Ea

a:f).

The third axiom concerns atomic expressions. We also prove that the axiom below com-

pletely characterizes the quiescent preorder for internal choice compositions of atomic expres-

sions.

Proposition 5.3.2 (completeness axiom) The following assertion is valid:

Cp1 Let ei; 0 � i � n be atomic expressions and, for each action a, let fai be the state that ei

reaches with action a (� if no state exists). Then e0 vQ�
P

1�i�n ei i�, for each action a,

either

1. fai � ei; 0 � i � n or

2. fa0 � � or

3. fa0 vQ�
P

fa
i
6��

fai .
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Proof.

Soundness

Suppose, for each action a, one of the conditions 1, 2 or 3 to be valid. Let t be an external

(quiescent) trace of e0. The case for t = � is trivial since � is a quiescent trace of any atomic

expression. Let t = t1t2 where t1 is the longest pre�x of t such that each ei
t1�! ei by means

of self loop transitions. If t2 = � then trivially t is an external (quiescent) trace of (�
P

1�i�n ei)

using the same argument as for �. Suppose t2 = at3 for some action a and let e0
a
�! fa0 .

t3 is then an external (quiescent) trace of fa0 and, by hypothesis and the de�nition of t2,

t3 is an external (quiescent) trace of (�
P

fa
i
6��

fai ) and ffai 6� �g 6= ; (in fact conditions 1

and 2 are false). This implies that 9j : t3 is an external (quiescent) trace of faj . Moreover

(�
P

1�i�n ei)
�
=) ej

t1�! ej
a
�! faj , hence t is an external (quiescent) trace of (�

P
1�i�n ei).

Completeness

Let e0 vQ (�
P

1�i�n ei) and suppose conditions 1, 2 and 3 to be false for some action a.

Since, by condition 2, fa0 6� �, we have that e0
a
�! fa0 . Since condition 3 is false, then either

ffai 6� �g = ; or fa0 6vQ (�
P

fa
i
6��

fai ). The �rst case cannot hold, for which otherwise a is an

external trace of e0 but not an external trace of (�
P

1�i�n ei). Let t = at0 where t0 is an external

(quiescent) trace of fa0 but not an external (quiescent) trace of (�
P

fa
i
6��

fai ). We show that t is

not an external (quiescent) trace of (�
P

1�i�n ei). Suppose the contrary. By Lemma 5.4.3, t is an

external (quiescent) trace of ei for some i > 0. In particular ei
a
�! fai , hence t

0 is an external

(quiescent) trace of fai , i.e., t
0 is an external (quiescent) trace of �

P
fa
i
6��

fai , absurdum.

5.4 Completeness results

In this section we prove the completeness result for recursion-free expressions. It is achieved

through the following steps:

1. the completeness result is shown for expressions in internal pre�x form.

2. each recursion-free expression is shown to have a provably equivalent expression in internal

pre�x form;

The main theorem is then the following:
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Theorem 5.4.1 (completeness) Let e; f be recursion-free DIOA expressions with a �nite

interface. If e vQ f then A ` e vQ f where A is the set of all axioms presented in this thesis.

The completeness result for expressions in internal pre�x form is shown through an addi-

tional axiom. We prove its soundness by using the axiom version of the theorems of Chapter

4. We �rst state some simple lemmas.

Lemma 5.4.2 Let e �
P

i2I ai : ei. Then

wsi(e) = fai : i 2 Ig \ in(e) and

wso(e) = fai : i 2 Ig \ out(e):

Proof. Direct application of the de�nitions of wsi and wso.

Lemma 5.4.3 Let e ��
P

i2I ei. Then

1. etraces(e) = [i2I etraces(ei) and

2. qtraces(e) = [i2I qtraces(ei).

Proof. Simple consequence of the transition rules for �.

Proposition 5.4.4 (completeness axiom) The following assertion is valid:

Cp2 Let e �
P

i ai : ei and f ��
P

j fj where fj �
P

k bj k : fj k. For each a; j let

gaj �

8><
>:
�
P

bj k=a
fj k if fkjbj k = ag 6= ;

� otherwise

Then e vQ f i� the following three conditions hold:

(a) quiescent(e) =) 9j : quiescent(fj)

(b) 8i
�
ei vQ�

P
g
ai
j
6��

gaij and 9j : gaij 6� �
�
or
�
ai 2 in(e) and 9j : gaij � �

�
(c) 8a 2

T
(wsi(fj))nwsi(e) 
 vQ�

P
j g

a
j
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Proof.

Soundness

Suppose conditions 1, 2 and 3 to be valid. We perform the following quiescent equivalence

preserving transformations on e and f :

1. Using axiom Ec9 add a : 
 to each expression fj such that a 62 wsi(fj) and a 2 wsi(e) [

wsi(f). Do the same on e.

2. Using axiom Ec13 replicate on all the fjs each summand a : f 0k of each fk where a is an

input action. For example (a : f 01 + f 001 ) � f2 � � � � � fn becomes (a : f 01 + f 001 ) � (a : f 01 +

f2)� � � � � (a : f 01 + fn)

3. Repeat the operation of 2 for summands a : f 0k where a is an output action. Only non

quiescent expressions can be considered.

4. Using axiom Ec13 group all expressions with a common pre�x in each expression fj.

5. Reduce to a : 
 each summand of the form a : (
 � � � �) of each fj . This step is possible

since it is immediate to prove e �Q e� 
 by using axioms M and Ic8.

6. Merge equal expressions on the f -side using axiom Ic3.

The new expressions e0 �Q e and f 0 �Q f coming out from the above manipulations are

e0 � e+
X

a2wsi(f)nwsi(e)

a :


and

f 0 � (f 00 +
X
a2A

a : f 00a )� f 00

where A is a set of output actions,

f 00 � (
X

a2wsi(e)[wsi(f)

a : f 00a );
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and each f 00a is

f 00a �

8><
>:
P

ga
j
6��
gaj if a 2 out(e) or (a 2 in(e) and 6 9jjgaj � �)


 if a 2 in(e) and 9jjgaj � �)

Notice that the right expression f 0 appears only if there is at least a quiescent fj . We now

distinguish two cases:

1. e is quiescent

In this case e0 is also quiescent and, by hypothesis there is a quiescent fj . We prove

that e0 vQ f 0. Axiom Ic8 is then su�cient to conclude. We show in particular that, for

each summand a : e00 of e0, e00 vQ f 0a. Axiom Ec3 and substitutivity are then su�cient to

conclude. If 9jjgaj � � then f 0a � 
 and axiom M is su�cient to conclude; if otherwise,

then f 0a �
P

ga
j
6��
gaj . If a:e

00 is a summand of e then the conclusion follows from hypothesis;

if otherwise then the conclusion follows from hypothesis again after observing that a 2T
(wsi(fj))nwsi(e).

2. e is not quiescent

In this case we prove that e0 vQ f 0 +
P

a2A a : f
0

a. The method is exactly the same we

used in the �rst case. For any summand a : e00 of e0, in fact, there is a summand f : f 0a of

f 0+
P

a2A a : f
0

a. Additional summands a : f 0a of the right expression that do not have any

correspondent summand in e0 can be added using axiom Ec5.

Completeness

Let e vQ f . We show that conditions 1,2 and 3 are satis�ed.

1. Suppose e to be quiescent. By de�nition of quiescent trace, � is a quiescent trace of e,

hence, by hypothesis, � is a quiescent trace of f . By Lemma 5.4.3, � is a quiescent trace

of fj for some j, hence, since fj does not enable any internal action, fj is quiescent.

2. Suppose condition 2 to be false and let i be one of the indexes for which the condition is

false. We distinguish the following cases:

(a) ai is an output action
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In this case the left side of condition 2 must be false. If 8j : gaij � �, then no external

trace with ai as �rst action is an external trace for f , while ai is an external trace

of e. This gives a contradiction, hence 9j : gaij 6� �. Since condition 2 is false,

it must be ei 6vQ (�
P

g
ai
j
6��

gaij ). Let t0 be an external (quiescent) trace of ei but

not of �
P

g
ai
j
6��

gaij . Clearly t = ait
0 is an external (quiescent) trace of e. We show

that t is not an external (quiescent) trace of f obtaining a contradiction. Suppose

f
a

=) f 0 where t0 is an external (quiescent) trace of f 0. From the transition rules,

9j; k : f 0 � fj k and aj k = ai. By de�nition, fj k is a summand of gaij , hence t
0 is an

external (quiescent) trace of �
P

g
ai
j
6��

gaij . This gives a contradiction.

(b) ai is an input action

Since the right part of condition 2 must be false, then 8j : gaij 6� �. It is then enough

to repeat the argument of the previous case to conclude.

3. Suppose condition 3 to be false. Then 9a 2
T
(wsi(fj))nwsi(e) : 
 6vQ (�

P
j g

a
j ). Let t

0 be

an external (quiescent) trace of 
 but not of �
P

j g
a
j , and consider t = at0. Clearly, since

from the transition rules and Lemma 5.4.2 e
a
�! 
, t is an external (quiescent) trace of

e. By using the same argument as in case (b) of the proof for condition 2 we obtain that

t is an external (quiescent) trace of �
P

j g
a
j . This gives a contradiction.

The following de�nition is fundamental for setting up the opportune inductive proofs.

De�nition 5.4.5 (complexities) The atomic complexity A of an atomic expression e is the

number of nil subexpressions appearing in e.

The pre�x complexity P of an expression e in pre�x normal form is de�ned as

P(e) =

8>>>><
>>>>:

0 if e is atomic

1 + P(e1) if e � a : e1 for some action a

max(P(e1);P(e2)) if e � e1 + e2

The complexity C of an expression e in internal pre�x form is the maximum pre�x complexity

of its summands.
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We �rst prove the completeness result for atomic expressions.

Lemma 5.4.6 Let e be an atomic expression. If e
a
�! f for some external action a where

e 6� f , then there is an atomic expression f 0 such that A(f) < A(e) and ` f �Q f 0.

Proof. From the transition rules a process 
 only has self loops for external actions. If e 6� f ,

then the only processes that can have changed are nil. A process nil can either have a self loop

or a transition to 
. This implies that at least one of the nil subterms of e has became 
 in

f . From axiom P all 
 subexpressions of f can be collapsed into a single 
 expression. The

resulting expression (f 0) is atomic and is such that A(f) < A(e).

Lemma 5.4.7

e1 � � � � � en vQ f i� 81�i�nei vQ f:

Proof. Direct consequence of Lemma 5.4.3.

Lemma 5.4.8 (completeness for atomic expressions) Let e; f be internal sums of atomic

expressions. If e vQ f then ` e vQ f .

Proof. From Lemma 5.4.7 and axiom Ic3 it is su�cient to analyze the case in which e is

atomic. We show the result by induction on the sum n of the atomic complexities of e and the

summands of f . If n = 0 then e = 
 and each summand of f is 
. By axiom Ic3, ` f �Q 
,

hence, by reexivity and transitivity of vQ, ` e vQ f . Let n > 0. Since e vQ f , by Lemma

5.3.2 the premises of axiom Cp1 are satis�ed. For each action a condition 1 and 2 are easily

checkable. Suppose conditions 1 and 2 to be false. Then condition 3 is true. By Lemma 5.4.6

and the non validity of condition 1, the sum of the atomic complexities of the expressions to

compare on condition 3 is less than n. It is then enough to apply the induction hypothesis and

use axiom Cp1 to conclude.

We can now prove the completeness result for expressions in pre�x normal form.

Proposition 5.4.9 (completeness for expressions in internal pre�x form) Let e and f

be expressions in internal pre�x form. If e vQ f then ` e vQ f .
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Proof. From Lemma 5.4.7 and axiom Ic3 it is su�cient to analyze the case in which e is in

pre�x normal form. We show the result by induction on the maximum complexity n of e and f .

If n = 0 then e and the summands of f are atomic expressions and the result is given by Lemma

5.4.8. If n > 0 then, by using axiom E1, there are two expressions e0; f 0 such that ` e �Q e0,

` f �Q f 0, the maximum complexity of e0 and f 0 is n, and no summands of e0 and f 0 are atomic

expressions. We can again assume e0 to be in pre�x normal form. By applying axiom Cp2 to

e0 and f 0 we have that, for each condition involving the comparison of some expressions, one

level of pre�xing is eliminated, hence the complexity of the expressions to prove in relation is

less than n. By applying the induction hypothesis and successively axiom Cp2, the proof is

concluded.

To prove that every recursion-free expression has a provably equivalent one in internal pre�x

form we show that the class of expressions in internal pre�x form is closed under all the operators

of DIOA.

Lemma 5.4.10 (closure under internal choice) The internal pre�x form is closed under

internal choice.

Proof. Immediate from the de�nition of internal pre�x form and the associativity of the

internal choice operator.

Lemma 5.4.11 (closure under pre�xing) Let e be an expression in internal pre�x form.

Then there is an expression g in internal pre�x form such that ` a : e �Q g.

Proof. Direct consequence of the distributivity of a: over � (axiom Ic4).

Lemma 5.4.12 (closure under external choice) Let e; f be expressions in internal pre�x

form. Then there is an expression g in internal pre�x form such that ` e I+J f �Q g.

Proof. By repeatedly using axiom Ic5 (distributivity of I+J over �) the problem is reduced to

the case in which e and f are in pre�x normal form. If e or f are atomic expressions, then we

use axiom E1 to transform them into non atomic expressions e0; f 0 in pre�x normal form. By

means of axiom Ec14 the operator I+J is replaced by K+K where K = wsi(e0) \ wsi(f 0). By

repeatedly applying axiom Ec16 (and axiom Ec2) we obtain ` e0 K+K f 0 �Q e00 K+K f 00 where

one of the following conditions hold:

74



1. wsi(e00) = wsi(f 00) = K

In this case we already have our expression g.

2. wsi(e00) = K, f 00 � a : f 000, a is an input action and a 62 K

In this case axiom Ec15 is su�cient to conclude.

3. wsi(f 00) = K, e00 � a : e000, a is an input action and a 62 K

In this case axioms Ec2;15 are su�cient to conclude.

4. e00 � a : e000, f 00 � b : f 000, a; b are input actions and a; b 62 K

In this case K = ;, hence we use axioms Ec2;15;16 to show the following:

e00 ;+; f
00 �Q (e00 ;+; nil) ;+; f

00 �Q (nil ;+; e
00) ;+; f

00 �Q nil ;+; f
00 �Q nil:

The assertion on the complexity is then trivial.

This concludes the proof.

Lemma 5.4.13 (closure under hiding) Let e be an expression in internal pre�x form. Then

there is an expression g in internal pre�x form such that ` �I(e) �Q g.

Proof. By repeatedly using axiom Ic6 (distributivity of �I over �) the problem is reduced to

the case in which e is in pre�x normal form. The proof is by induction on the pre�x complexity

of e. If e is atomic then, by repeatedly using axiom I14 and the substitutivity property, we

obtain an expression e0 such that ` �I(e) �Q �I(e
0) and �I(e

0) satis�es the conditions for axiom

I15. The application of axiom I15 yields the desired expression g. Notice that the complexity

of g is 0. Suppose now the pre�x complexity of e to be n > 0, i.e. e � (
P

J aj : ej) where the

pre�x complexity of each ej is less than n. We distinguish the following cases:

1. 8jaj 62 I

By using axioms I3;4 we have ` �I(�
P

J aj : ej) �Q (�
P

J aj : �I(ej)). By induction each

�I(ej) has a provably equivalent expression gj in internal pre�x form. By Lemma 5.4.11

each aj : gj has a provably equivalent expression g0j in internal pre�x form. The desired

expression g is then (�
P

J g
0

j). The condition on the complexity is trivially satis�ed.
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2. e � e0 + an : en where e0 is quiescent and an 2 I

From axiom I13, ` �I(e) �Q �I(e
0
wsi(e0)+wsi(e0) en). From case 1, ` �I(e

0) = e00 for

some e00 in internal pre�x form. By induction ` �I(en) �Q e0n for some e0n in internal

pre�x form. By using axiom E1 we can force e00 and e0n not to have atomic summands.

From axioms I15;3;4 and Ic5 there are two expressions e000 and e00n, di�ering only in the

signatures of the operators, such that ` e00 �Q �I(e
000) and ` e0n �Q �I(e

00

n). In particular

e000 and e00n do not enable actions from I . From axioms I9;4 ` �I(e
0
wsi(e0)+wsi(e0) en) �Q

�I(e
000

wsi(e0)+wsi(e0) e
00

n) �Q �I(e
000)

wsi(e0)+wsi(e0) �I(e
00

n) �Q e00
wsi(e0)+wsi(e0) e

0

n. The closure

under external choice is then su�cient to conclude.

3. e � a1 : e1 where a1 2 I

By induction ` �I(e1) �Q e01 for some e01 in internal pre�x form. By using axiom E1 we

can force e01 not to have atomic summands. Moreover, from the internal choice axioms,

we can assume without loss of generality that e01 is in pre�x normal form. From axioms

I15;3;4 and Ic5 there is an expressions e001 , di�ering only in the signatures of the operators,

such that ` e01 �Q �I(e
00

1). In particular e001 does not enable actions from I . From axiom

I8, ` �I(a1 : e1) �Q �I(a1 : e
00

1). From axiom Ec15, ` a1 : e
00

1 �Q nil + a1 : e
00

1 . From axiom

I13, ` �I(nil+a1 : e
00

1) = �I(nil ;+; e
00

1). By using axiom Ec16 all input pre�xed summands

of e001 can be eliminated obtaining ` �I(nil ;+; e
00

1) �Q �I(nil ;+; e
000

1 ) where wsi(e
000

1 ) = ;.

From axiom Ec5 ` �I(nil ;+; e
000

1 ) �Q �I(e
000

1 ). The application of axioms I15;3;4 is then

su�cient to conclude.

4. e � e0 + an : en where e0 is not quiescent and an 2 I

From axioms I12 and Ic6, ` �I(e) �Q �I(e
0 � en) �Q �I(e

0) � �I(en). The expression

�I(en) can be reduced by induction. For the expression �I(e
0) we observe that e0 has

one summand less than e. We then repeatedly apply case 4 to �I(e
0) and to its derived

expressions until case 4 does not apply (and we know that case 4 will not apply at a

certain point since at least two summands are needed). When case 4 does not apply, we

use the applicable case between 1,2 and 3 and the proof is concluded.
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Lemma 5.4.14 (closure under renaming) Let e be an expression in internal pre�x form.

Then there is an expression f in internal pre�x form such that ` �(e) �Q f .

Proof. Since the renaming operator is distributive over all other DIOA operators, it can be

pushed down to the lowest level and then be completely eliminated from any DIOA expression.

Lemma 5.4.15 (closure under parallel composition) Let e; f be expressions in internal

pre�x form with a �nite interface. Then there is an expression g in internal pre�x form such

that ` ekf �Q g.

Proof. By repeatedly using axiom Ic7 (distributivity of k over �) the problem is reduced to

the case in which e and f are in pre�x normal form. We proceed by induction on the pre�x

complexities of e and f . If both e and f are atomic then the result is immediate. Suppose now

the maximum complexity of e and f to be n > 0. If e or f are atomic expressions, then we use

axiom E1 to transform them into expressions e0; f 0 in internal pre�x form that have no atomic

summands without a�ecting the maximum complexity of e and f . After reducing again the

problem to the case in which all expressions are in pre�x normal form, we apply the expansion

axiom E2 obtaining a new equivalent expression e0 �
P

j2J aj : fj where each fj � f1j kf
2
j and

the maximum complexity of f1j and f2j is less than n. It is then enough to apply the induction

hypothesis and use axioms Ic4;5 to conclude.

Lemma 5.4.16 (reduction to internal pre�x form) Let e be a recursion-free DIOA ex-

pression with a �nite interface. Then there is an expression g in internal pre�x form such that

` e �Q g.

Proof. The proof proceeds by structural induction of the given expression e. The basic cases

nil and 
 are trivial since they are atomic expressions. For all other operators we �rst reduce

their arguments using the induction hypothesis, then we eliminate the new operator by means

of the closure lemmas 5.4.10, 5.4.11, 5.4.12, 5.4.13, 5.4.14 and 5.4.15.

We can �nally prove the main theorem.

Theorem 5.4.17 (completeness) Let e; f be recursion-free DIOA expressions with a �nite

interface. If e vQ f then A ` e vQ f where A is the set of all axioms presented in this thesis.
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Proof. By means of Lemma 5.4.16 the problem is reduced to the case in which e and f are in

internal pre�x form. The completeness result is then stated by Proposition 5.4.9.
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Chapter 6

Example Speci�cations and

Veri�cations

In this chapter we show some example speci�cations and veri�cations within DIOA. We specify

a simple circuit that is reported in [Jos92] and a more complicated one that is reported in

[BV88]. The examples are preceded by a discussion about the use of the quiescent preorder as

an implementation relation.

6.1 Quiescent preorder as an implementation relation

The intuitive idea of implementation at the base of the semantics of I/O automata is that

an implementation must respond to a sequence of external stimuli with some output actions

whenever the speci�cation must too. The way in which the above idea is captured is by means

of fair trace inclusion.

Can the quiescent preorder be used for capturing the same idea of implementation? In this

section we just want to give an informal understanding of this question without pretending to

be formal. With this discussion we want to point out some of the problems of chosing a relation

as an implementation relation.

The answer to the given question is \no" in general. The absence of the notion of fairness,
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in fact, causes several problems. Consider for example

A
def
= �fig(a : X)

and

B
def
= a : b : nil

where X
def
= i : X , a is an input action and b is an output action. It is immediate to verify

that A vQ B, but we do not want to consider A to be an implementation of B since A refuses

to perform action b after receiving the input a while B must perform the output action b.

The problem is essentially in the internal looping of A since we cannot observe it by means of

external and quiescent traces. In I/O automata the distinction between A and B is given by

fair traces: in fact a is a fair trace of A but not a fair trace of B according to the I/O automata

semantics. Also in receptive process theory [Jos92] the problem is solved since a is a divergence

of A but not a divergence of B. The use of divergences, however, leads to A 6v B + a : nil while

the quiescent and fair preorders lead to A v B+a:nil. We would like to consider A v B+a:nil

since, although the implementation A refuses to perform action b after a, the speci�cation may

too.

In order to use the quiescent preorder we have to be sure that situations like the one

presented above do not arise, i.e., we can deal only with processes that, whenever they present

an internal divergence, they can reach a quiescent state with a �nite number of internal moves.

This is the only way the quiescent preorder has to detect a possibility of refusing the performance

of output actions due to an internal divergence. In the restricted case above the notion of

implementation is represented by the quiescent trace preorder as follows: the condition on the

quiescent traces makes sure that, after some stimuli, some output actions will eventually be

enabled; the condition on the external traces makes sure that only the desired output actions

will be enabled.

The notion above, however, presents some subtle properties. Consider for example

A � a : b : nil
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and

B � a : b : nil + a : nil

where a is an input action and b is an output action. We do not want to consider B as an

implementation of A, and the quiescent trace preorder detects the deadlock problem since a is

a quiescent trace of B but not a quiescent trace of A. Consider now

C
def
= c : C

where c is an output action. The result is that

CkB �Q CkA:

Why does the above result hold? The idea is that, from the point of view of the output

actions, the quiescent preorder makes no distinction between the actions of C and those of A.

In particular, an output action (c) is always enabled. With the use of the fair preorder the

output actions of C are separated from those of A since they constitute two separate classes in

the partition of the locally controlled actions of CkA. In the quiescent preorder the partition is

constituted by a single class. Notice that the example above is valid also for Receptive Process

Theory since C is divergent and the parallel composition of a divergent process with any other

process is the divergent process. In other words RPT and the quiescent preorder do not deal

with the parallel structure of a system while the fair preorder does.

A new question now arises: Does the quiescent preorder imply the fair preorder in the

restricted conditions described above? The answer is \no". Let X
def
= a : X + b : X + i : a : B,

B
def
= a:B+b :B, P

def
= a:P 0+b :P 0 and P 0 def= a:P 0 where a is an input action and b; i are output

actions. Then P vQ �fig(X) but P 6vF �fig(X) since a1 is a fair trace of P but not a fair trace

of �fig(X). With this example we can also give an example of an intuitive property that is

not detected by the quiescent preorder: if the output action b is blocked after n occurrences of

action a, then a is not blocked after n+1 occurrences of a. The same problem holds also within

Receptive Process Theory and within the fair preorder relation. For Receptive Process Theory

it is enough to use the same example as above; for the fair preorder it is enough to change the
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de�nition of B to B
def
= a : X + b : B to have the same problem as above with P vF �fig(X).

The last example presented above is the consequence of a problem that seems general within

the �eld of speci�cation and veri�cation, e.g., the understanding of the actual properties that

can be detected by a particular notion of implementation. This topic could be the subject of

further research.

6.2 A simple circuit

In this section we use DIOA and the quiescent preorder to specify and verify a simple circuit

that is reported in [Jos92]. We start by specifying some simple devices.

A majority element is a device having three input ports and an output one. The voltage

level of the output port is that of the majority of the inputs. Every action in the speci�cation

represents a change of voltage level in the correspondent port. The process variableM represents

the majority element when the voltage levels of its input ports are the same as the voltage level

of its output port. The process variables containing subscripts represent the majority element

when only the voltage levels of the input ports not appearing as subscripts are the same as

the voltage level of the output port. Note that the equation for Mab speci�es that no inputs

causing a variation in the output voltage level can occur when the output voltage level already

has to change. If such inputs occur then the system moves to an unspeci�ed state. Real

implementations might actually present glitches on their output ports when such abnormal

input sequences occur.

Speci�cation 6.2.1 (majority element) A majority element is speci�ed by the following

equations

M
def
= a : Ma + b : Mb + c : Mc

Ma
def
= a : M + b : Mab + c : Mac

Mab
def
= m :Mc + c : Mabc

Mabc
def
= m :M + a : Mbc + b : Mac + c : Mab

where a; b; c are input actions and m is an output action. The equations for Mb;Mc;Mac and

Mbc are similar to the equations above and can be easily derived.

A wire is simply a device that waits for a change of level in its input port and communicates
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the change of level through its output port. Input and output actions must be interleaved.

If two consecutive inputs are not interleaved with an output then the system moves to the

unspeci�ed state.

Speci�cation 6.2.2 (wire) A wire is speci�ed by the following equation:

W
def
= m : c : W

where m is an input action and c is an output action.

A Muller element has two inputs and a single output. It waits for a change of level of

both its input ports before changing the level of its output port. The subscripts in the process

variables represent the input ports that have changed voltage level. When both the inputs have

changed (state Cab) the output voltage level is changed.

Speci�cation 6.2.3 (Muller element) A Muller element is speci�ed as follows:

C
def
= a : Ca + b : Cb

Ca
def
= a : C + b : Cab

Cb
def
= a : Cab + b : C

Cab
def
= c : C

where a; b are input actions and c is an output action.

To give a simple example we formally prove that a Muller element can be implemented

using a majority element and a wire.

Proposition 6.2.4 A Muller element C can be implemented using a majority element and a

wire, i.e., �fmg(MkW ) vQ C.

Proof. We show that �fmg(MkW ) vQ C. For doing that we consider a family of processes

I; Ia; Ib; Iab where I
def
= �fmg(MkW ) and show that they satisfy the equations of C with vQ. It

is then enough to use the recursive substitutivity axiom to conclude.
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By applying the expansion axiom and the hiding axioms we obtain

I �Q �fmg(MkW ) by expanding the process variables

�Q �fmg((a : Ma + b : Mb + c :Mc)k(m : c : W )) by axiom E2

�Q �fmg(a : (Mak(m : c :W )) + b : (Mbk(m : c : W ))) by substituting W for E(W )

�Q �fmg(a : (MakW ) + b : (MbkW )) by axiom I4

�Q �fmg(a : (MakW )) + �fmg(b : (MbkW )) by axiom I3

�Q a : �fmg(MakW ) + b : �fmg(MbkW ) by de�nition of Ia and Ib

�Q a : Ia + b : Ib

where we de�ne

Ia
def
= �fmg(MakW )

Ib
def
= �fmg(MbkW )

With the same method we have

Ia �Q �fmg(MakW ) �Q a : �fmg(MkW ) + b : �fmg(MabkW ) �Q a : I + b : Iab

and

Ib �Q �fmg(MbkW ) �Q a : �fmg(MabkW ) + b : �fmg(MkW ) �Q a : Iab + b : I

where we de�ne

Iab
def
= �fmg(MabkW )

We now proceed with the analysis of Iab. Step by step comments are below.

Iab �Q �fmg(MabkW )

�Q �fmg(a : (
kW ) + b : (
kW ) +m : (Mckc : W ))

vQ �fmg(m : (Mckc : W ))

�Q �fmg(m : (a : (Mackc : W ) + b : (Mbckc : W ) + c : (MkW )))

vQ �fmg(m : c : (MkW ))

�Q c : �fmg(MkW )

�Q c : I
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The �rst step follows the lines of the previous derivations by expanding process variables,

applying the expansion theorem, and reconverting untouched expanded expressions to their

correspondent process variable; the second step is an application of axiom Ec7 where inputs

a and b are eliminated. According to the speci�cation of Ca;b, in fact, no input should occur

before output c occurs. The expression on the second line speci�es an implementation choice

in the presence of inputs a and b while the expression on the third line does not specify any

implementation choice. The third step is similar to the �rst one while the fourth step consists

of successive applications of the hiding axioms. Action m is eliminated through axiom I11 and

action c is brought outside the scope of the hiding operator through axiom I3. The last step is

a direct consequence of the de�nition of I .

We can now apply the recursive substitutivity axiom and conclude.

6.3 Handshaking protocol

In this section we use DIOA to specify and verify a circuit realizing the handshaking protocol.

The circuit is derived from Kaldewaij [Kal87] and was already speci�ed and veri�ed by means

of ACP by Baeten and Vaandrager [BV88]. The main problem encountered in [BV88] is the

absence of a distinction between input and output actions in a process. They had to introduce

an operator � to describe the \no output blocking" property of I/O automata and another

operator r to limit the traces of a process. In DIOA the \no output blocking" property is

granted by the calculus itself, moreover we do not have to restrict the set of traces to consider

because the result of giving unespected input actions moves the system to the state 
 from

which every trace is admitted. In this way 
 represents the unspeci�ed process, i.e., if the

speci�cation of a device moves to 
 for a particular action, then the implementation is correct

for whatever behavior it exhibits after performing the same action.

We now give the speci�cations of some electronic components. A digital component is

characterized by a set of input ports and a set of output ports. Each port accepts (or generates)

two di�erent signals: HI or LOW. In the rest of this section we will use actions to represent

a change of voltage level (from HI to LOW or vice versa) in the signals. In this way, instead

of having a pair of actions for each port (a "; a #) as in [BV88], we have a single action a

corresponding to a change of voltage level. We start by specifying an AND port.
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Speci�cation 6.3.1 (AND port) The following set of equations specify an AND port.

A00
xyz

def
= x : A10

xyz + y : A01
xyz

A10
xyz

def
= x : A00

xyz + y : z : A11
xyz

A01
xyz

def
= x : z : A11

xyz + y : A00
xyz

A11
xyz

def
= x : z : A01

xyz + y : z : A10
xyz

where x; y are input ports and z is an output port. The initial state of the port is A00
�xyz

corresponding to both inputs to the low level.

The speci�cation above contains four process variables, each one corresponding to a par-

ticular state of the inputs. At each step the port is able to accept an input and consequently

change its state. When the output level has to change it is not permitted sending other input

until the output level is changed. An input action sent while the system is changing its output

state will move the system to an unspeci�ed state. The next speci�cation introduces an AND

port with a negated input. The line under x speci�es that port x is negated.

Speci�cation 6.3.2 (AND port with a negated input) The following equations specify

an AND port with a negated input.

A00
xyz

def
= x : A10

xyz + y : A01
xyz

A10
xyz

def
= x : A00

xyz + y : z : A11
xyz

A01
xyz

def
= x : z : A11

xyz + y : A00
xyz

A11
xyz

def
= x : z : A01

xyz + y : z : A10
xyz

where x; y are input actions and z is an output action. The initial state of the port is A10
�xyz

corresponding to both inputs to the low level.

The AND port with a negated input is identical to the AND port with the di�erence that the

output signal changes in di�erent points (in the above speci�cation the initial state is di�erent

from the initial state of speci�cation 6.3.1). Note that, by opportunely renaming the process

variables, we can obtain the speci�cation of the AND port. Another interesting observation is

that, after giving the speci�cation of an inverter (a component giving as output the opposite of

its input), the AND port with a negated input can not be implemented using a normal AND
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Figure 6-1: Symbolic representation of AND ports

port with an inverter. In fact its correctness strictly depends on time assumptions about the

occurrences of new inputs and the speed of the components. The two kinds of AND ports

we have just introduced are represented in �gure 6-1. We proceed by specifying a Muller C

element. The speci�cation below is similar to the one given in the previous section: it gives more

restrictions to the occurrences of input actions. A Muller C element is essentially a component

that waits for the change of both its input levels and then changes its output. Every input port

can not be changed more then once between one change in the output and the successive one.

Speci�cation 6.3.3 (Muller C element) The following equations specify a Muller element.

C0
xyz

def
= x : y : z : C1

xyz + y : x : z : C1
xyz

C1
xyz

def
= x : y : z : C0

xyz + y : x : z : C0
xyz

where x; y are input actions and z is an output action. The initial state of the process is C0
xyz

corresponding to all the interfaces to the low level.

The following speci�cation introduces a Muller C element with a negated input. It is

immediate to observe that the only di�erence from the normal Muller element is in the initial

state. This is because we use actions to represent only changes of level and not the kind of

variation itself.

Speci�cation 6.3.4 (Muller element with a negated input) The following equations spec-

ify a Muller element with a negated input.

C0
xyz

def
= x : y : z : C1

xyz + y : x : z : C1
xyz

C1
xyz

def
= x : y : z : C0

xyz + y : x : z : C0
xyz
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Figure 6-2: Symbolic representation of Muller elements

where x; y are input actions and z is an output action. The initial state of the process is

y : z : C1
xyz corresponding to all the interfaces to the low level.

Figure 6-2 represents the two kinds of Muller elements introduced above.

We are now ready to specify the handshaking bit protocol. This protocol is often used to

avoid interference between circuits. The circuit has two input wires a; b and two output wires

�a;�b. It has to follow the four-phase handshaking protocol for the pairs a; �a and b;�b where a; �a

is the input side. This means that on the input side an external process will change the level

of a and wait for a change of �a and then repeat the same process; on the other side the output

process waits for a change in action �b and changes the level of b. It then repeats this pair of

actions. No other kinds of interactions are admitted for the protocol. For example changing

the level of a twice without waiting for the change of �a will move the system to an unspeci�ed

state.

Speci�cation 6.3.5 (handshaking protocol) The following equations specify the handshak-

ing protocol.

S
def
= a : S�

S�
def
= �a : a : �a : S�1

S�1
def
= �b : S�2 + a : �b : b : �b : b : S�

S�2
def
= b : S�3 + a : b : �b : b : S�

S�3
def
= �b : S�4 + a : �b : b : S�

S�4
def
= b : S + a : b : S�
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Figure 6-3: Implementation of the handshaking protocol

where a; b are input actions and �a;�b are output actions. The initial state is S.

We now propose an implementation in which we assume instantaneous communication be-

tween the components. This is a simpli�cation of the implementation given in [BV88]. The

implementation is the following process M .

M
def
= �fc;dg(a : d : C

1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b)

In the following we will let H = fc; dg. It is immediate to verify that M can not diverge

since every component having the control of an internal action must perform an external action

before completing a cycle. Figure 6-3 represents process M . We proceed by giving the proof of

correctness.

Proposition 6.3.6 (correctness of M) The implementation of the bu�er is correct. In other

words M vQ S.

Proof. To prove the correctness of the implementation we �nd a set of expressions

~M = fM;M�;M�

1 ;M
�

2 ;M
�

3 ;M
�

4g

that satis�es ~M vQ
~E( ~S)[ ~M= ~S]. In this way we can apply the recursive substitutivity axiom

to conclude. To prove the equations we continuously perform steps by means of the expansion

axiom and then eliminate (if possible) undesired actions. We start by considering process M .
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M �Q �H(a : (d : C
1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
) + b : (a : d : C1

cadkA
00
bd�ak
kA

10
�ac�b
))

vQ �H(a : (d : C
1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))

�Q a : �H(d : C
1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)

�Q a : �H(d : (C
1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
) + a : (
kA10

bd�ak�a : c : C
1
b�ackA

10
�ac�b
)+

b : (d : C1
cadkA

00
bd�ak
kA

10
�ac�b
))

vQ a : �H(d : (C
1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))

In the �rst step we have applied the expansion axiom together with the substitutivity

axiom for the hiding operator. To obtain the expression above we implicitly assume that the

application of the expansion axiom proceeds as follows: unfold process variables that are not

pre�xed, apply the expansion axiom, fold unchanged unfolded expressions. Since we are not

interested in the e�ects of action b (the equation for S does not consider action b) we use axiom

Ec7 in the second step to eliminate the summand pre�xed by b. In the third step we use axiom

I3 to move the pre�x a outside the hiding operator. We then apply the expansion axiom again

and eliminate the undesired input actions with axiom Ec7 in the following two steps. Note that

we choose the input actions to eliminate by looking at the speci�cation 6.3.5. It is clear, in

fact, that at this stage we do not have to wait for any input action until action �a is performed.

If an input action occurs before action �a is performed then any behavior is admissible.

In the last step we have an internal action d. In order to eliminate this action we have to

substitute its pre�xed expression with an expression for which axiom I11 is appliable. For this

reason let

M 0 def= C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b

By using the expansion axiom for the �rst step and axiom Ec7 to eliminate undesired inputs

we have

M' �Q �a : (C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
) + b : (C1

cadk
k
kA
10
�ac�b
)+

a : (c : d : C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)

vQ �a : (C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)

By substituting this last expression in the last expression obtained from M we have

M vQ a : �H(d : �a : (C
1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
))
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�Q a : �H(�a : (C
1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
))

where the last expression is obtained by means of axiom I11. Note in fact that wsi(�a :

(C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)) = ;. Let

M� def
= �H(�a : (C

1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b))

We have just shown that

M vQ a : M�

We now proceed on the analysis of M�. Since we often have to eliminate undesired input

actions we use the convention of not writing expressions that have to be eliminated in subsequent

steps. This convention is immediately clear from the following steps.

M� �Q �a : �H(C
1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)

�Q �a : �H(a : (c : d : C
0
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
) + b : (: : :)+

c : (a : d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
))

vQ �a : �H(a : (c : d : C
0
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
) + c : (a : d : C0

cadkA
11
bd�akC

1
b�ackA

01
�ac�b
))

In the previous steps we again used the expansion axiom together with axiom Ec7. At this

point we can not proceed without solving the most internal expressions because there is an

internal action as pre�x. We then simplify the internal expressions as follows:

c : d : C0
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b

�Q c : (d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
) + a : (: : :) + b : (: : :)

vQ c : (d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
)

a : d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b

�Q a : (d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
) + b : (: : :)

vQ a : (d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
)

where we have again used the expansion axiom and axiom Ec7. By combining the last two

inequalities with the last expression obtained for M� we have
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M� vQ �a : �H(a : (c : d : C
0
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
) + c : (a : d : C0

cadkA
11
bd�akC

1
b�ackA

01
�ac�b
))

vQ �a : �H(a : c : (d : C
0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b
) + c : a : (d : C0

cadkA
11
bd�akC

1
b�ackA

01
�ac�b
)

We now have to apply axiom I16, but we �rst have to simplify the internal expression in order

to satisfy the condition for axiom I16.

d : C0
cadkA

11
bd�akC

1
b�ackA

01
�ac�b

�Q d : (C0
cadk�a : A

10
bd�akC

1
b�ackA

01
�ac�b
) + a : (: : :) + b : (: : :)

vQ d : (C0
cadk�a : A

10
bd�akC

1
b�ackA

01
�ac�b
)

By substituting in the last expression for M�

M� vQ �a : �H(a : c : d : (C
0
cadk�a : A

10
bd�akC

1
b�ackA

01
�ac�b
) + c : a : d : (C0

cadk�a : A
10
bd�akC

1
b�ackA

01
�ac�b
))

�Q �a : �H(a : d : (C
0
cadk�a : A

10
bd�akC

1
b�ackA

01
�ac�b
))

�Q �a : a : �H(d : (C
0
cadk�a : A

10
bd�akC

1
b�ackA

01
�ac�b
))

�Q �a : a : �H(d : (�a : (C
0
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
) + a : (: : :) + b : (: : :)))

vQ �a : a : �H(d : �a : (C
0
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
))

�Q �a : a : �H(�a : (C
0
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
))

�Q �a : a : �a : �H(C
0
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
)

In the �rst step we used axiom I16. The rest of the steps are obtained by using the expansion

axiom together with axiom Ec7 (an the substitutivity rules of course). The last but one step is

obtained using axiom I11. We can now de�ne the new process

M�

1

def
= �H(C

0
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b)

What we have just shown is

M� vQ �a : a : �a : M�

1

The following simpli�cations are new only for the third step. In this case we use axiom I4

followed by axiom I3.

M�

1 �Q �H(�b : (C
0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + b : (: : :)+

a : (c : C1
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
))
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vQ �H(�b : (C
0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + a : (c : C1

cadkA
10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
))

�Q
�b : �H(C

0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + a : �H(c : d : C

1
cadkA

10
bd�akb : c : C

0
b�ack

�b : A11
�ac�b
)

�Q
�b : �H(C

0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
)+

a : �H(�b : (c : d : C
1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + a : (: : :) + b : (: : :))

vQ
�b : �H(C

0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + a : �H(�b : (c : d : C

1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
))

�Q
�b : �H(C

0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + a : �b : �H(c : d : C

1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
)

We now de�ne two new processes:

M�

2

def
= �H(C

0
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b)

M1

def
= �H(c : d : C

1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b)

What we have just shown is

M�

1 vQ
�b :M�

2 + a : �b :M1

We start by analyzing M1.

M1 �Q �H(a : (: : :) + b : (c : d : C1
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b
))

vQ �H(b : (c : d : C
1
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b
))

�Q b : �H(c : d : C
1
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b
)

�Q b : �H(c : (d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
)+

a : (: : :) + b : (: : :))

vQ b : �H(c : (d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
))

The steps above are again the application of the expansion axiom and axioms Ec7 and I3.

However it is not possible for the moment to eliminate the internal pre�x c because we �rst

have to simplify its pre�xed expression. We then de�ne

M2

def
= �H(d : C

1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b)

simplify M2, and then substitute the result in the last expression for M1 by means of axiom

I11.
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M2 �Q �H(d : (C
1
cadkA

01
bd�akC

0
b�ack

�b : A10
�ac�b

+ a : (: : :)+

�b : (d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
) + b : (: : :))

vQ �H(d : (C
1
cadkA

01
bd�akC

0
b�ack

�b : A10
�ac�b

+ �b : (d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))

�Q �H(d : (�b : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + a : (: : :) + b : (: : :))+

�b : (d : (C1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + a : (: : :) + b : (d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)))

vQ �H(d : �b : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
)+

�b : (d : (C1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + b : (d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)))

The steps above are again standard. Note however that in the third step we have to accept the

input action b in the expression pre�xed by b. This follows from the speci�cation of S�1 . We

will show later that failing to accept action b will generate an error. To proceed we �rst have

to simplify the internal expressions.

C1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b

�Q a : (: : :) + b : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)

vQ b : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)

d : C1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b

�Q d : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

00
�ac�b
) + a : (: : :) + b : (: : :)

vQ d : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

00
�ac�b
)

C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

00
�ac�b

�Q �a : (C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
) + a : (: : :) + b : (: : :)

vQ �a : (C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)

Let

F
def
= �a : (C1

cadkA
11
bd�akc : C

1
b�ackA

00
�ac�b)

By substituting the results above in the last expression for M2 we have

M2 vQ �H(d : �b : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
)+

�b : (d : (C1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + b : (d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)))

vQ �H(d : �b : b : F + �b : (d : b : F + b : d : F ))
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�Q �H(d : �b : b : F + �b : b : F )

�Q �H(�b : b : F )

The third step is obtained using axiom I16 together with axioms I8;9 for the substitutions. This

step would not have been possible without accepting the input action b mentioned above. The

fourth step is the application of axiom I2. This gives two results:

M1 vQ b : �H(c : (d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
))

vQ b : �H(c : �b : b : F )

�Q b : �b : b : M�

M2 vQ �H(�b : b : F )

�Q
�b : b : M�

where the only interesting case is the second step for M1 in which we used axiom I8. The

process M� comes from the fact that �H(F ) �M�. The result of the argument above is

M2 vQ
�b : b : M�

M1 vQ b : �b : b : M�

In particular, by substituting in the last expression for M�

1 ,

M�

1 vQ b : M�

2 + a : �b : b : �b : b : M�

We can now analyze M�

2 . The treatment is standard and the substitution of M1 derives

from syntactical equivalence.

M�

2 �Q �H(a : (c : d : C
1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + b : (C0

cadkA
00
bd�akc : C

0
b�ac : A

11
�ac�b
))

vQ a : �H(c : d : C
1
cadkA

10
bd�akb : c : C

0
b�ackA

11
�ac�b
) + b : �H(C

0
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b
)

�Q a : M1 + b : �H(C
0
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b
)

Let

M�

3

def
= �H(C

0
cadkA

00
bd�akc : C

0
b�ackA

11
�ac�b)
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We have just shown that

M�

2 vQ b :M�

3 + a : b : �b : b : M�

M�

3�Q �H(c : (a : d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
) + a : (c : d : C1

cadkA
00
bd�akc : C

0
b�ackA

11
�ac�b
)+

b : (: : :))

vQ �H(c : (a : d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
) + a : (c : d : C1

cadkA
00
bd�akc : C

0
b�ackA

11
�ac�b
))

�Q �H(c : (a : (d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
) + �b : (a : d : C1

cadkA
00
bd�akC

0
b�ackA

10
�ac�b
)+

b : (� � �))+

a : (c : (d : C1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
) + a : (: : :) + b : (: : :)))

vQ �H(c : (a : (d : C
1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
) + �b : (a : d : C1

cadkA
00
bd�akC

0
b�ackA

10
�ac�b
))+

a : (c : (d : C1
cadkA

00
bd�akC

0
b�ack

�b : A10
�ac�b
)))

vQ �H(c : (a : �b : b : F + �b : (a : d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))+

a : c : �b : b : F )

The steps above are standard. The problem is that we have to eliminate internal actions. In

the steps below we �rst eliminate the internal action from the rightmost term a : c : �b : b : F by

means of axioms I8;9;11, then we apply axiom I17 obtaining the third expression. The rest is

simple application of axioms I3;4.

M�

3vQ �H(c : (a : �b : b : F + �b : (a : d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))+

a : c : �b : b : F )

�Q �H(c : (a : �b : b : F + �b : (a : d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))+

a : �b : b : F )

�Q �H(a : �b : b : F + �b : (a : d : C1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))

�Q �H(a : �b : b : F ) + �H(�b : (a : d : C
1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
))

�Q a : �b : b : M� +�b : �H(a : d : C
1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
)

Let

M�

4

def
= �H(a : d : C

1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b)

We have just shown that

M�

3 vQ
�b :M�

4 + a : �b : b : M�
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M�

4 �Q �H(a : (d : C
1
cadkA

00
bd�akC

0
b�ackA

10
�ac�b
) + b : (a : d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))

�Q �H(a : (d : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + a : (: : :)+

b : (d : C1
cadkA

10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))) + b :M

vQ �H(a : (d : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + b : (d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)) + b : M

The steps above are standard. We now simplify the left expression.

�H(a : (d : (C
1
cadkA

01
bd�akC

0
b�ackA

10
�ac�b
) + b : (d : C1

cadkA
10
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))

�Q �H(a : (d : (a : (: : :) + b : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
))+

b : (d : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
) + a : (: : :) + b : (: : :))))

vQ �H(a : (d : b : (C
1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)+

b : d : (C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b
)))

vQ �H(a : (d : b : �a : (C
1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)+

b : d : �a : (C1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
)))

�Q �H(a : b : �a : (C
1
cadkA

11
bd�akc : C

1
b�ackA

00
�ac�b
))

�Q a : b : M�

The fourth step above is justi�ed from the fact that C1
cadk�a : A

11
bd�ak�a : c : C

1
b�ackA

10
�ac�b

is M 0 and

the inequality derived at the beginning of this proof. The successive step is the application of

axiom I16.

By substituting in the last expression obtained for M�

4 we have

M�

4 vQ b : M + a : b : M�

We can now apply the recursive substitutivity axiom obtaining our conclusion, i.e.,M vQ S.
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Chapter 7

Conclusion

We have presented a process algebra (DIOA) with the following features: explicit interfaces

associated with each expression, clear distinction between locally and globally controlled actions,

input enabling, and actions under the control of at most one process. DIOA is directly related to

I/O automata of Lynch and Tuttle [LT87], which have been successfully used for the veri�cation

of algorithms in distributed environments.

We have found a set of sound laws for the quiescent preorder over DIOA that are complete

for recursion-free processes.

We have investigated the possibilities of using the quiescent preorder as an implementation

relation and we have provided an intuitive understanding of its use. As a side e�ect we have

found an intuitive property that could be required of a system and is not detected by the

quiescent and fair preorders.

We have given two simple example speci�cations to show how axioms can be used to prove

correctness of implementations. The use of axioms, as can be seen in the given examples, seems

sometimes simpler than the method based on possibilities mappings, that is characteristic for

I/O automata, in the sense that the speci�cation itself helps the veri�er in understanding the

axioms that need to be applied.

The above results, however, make clear that there are still many open problems. Some of the

problems are understanding when algebraic reasoning is really simpler than the method based

on possibilities mappings, whether it is possible to use algebraic reasoning on very complex

systems, whether it is possible to integrate algebraic reasoning with simulation techniques in
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order to simplify correctness proofs. For the last topic a useful fact is that most of the presented

axioms are still valid if the underlying model deals with in�nite traces or with fair traces.

An advantage of the algebraic method we have presented is that it seems easy to be mecha-

nized. A proposal of research could involve an understanding of how such a mechanized system

could work. The tools could deal both with algebraic and mapping based methods and could

be a sort of interactive environment where the user is helped in providing correctness proofs or

discovering errors.

A third open problem is �nding general formalisms capturing the essence of I/O automata

without being necessarily input enabled. Input enabling, in fact, is one of the most discussed

features of the I/O automaton model since many reasonable concurrent tasks cannot be de-

scribed at a su�cient abstract level using I/O automata. In this thesis we have investigated the

implications of input enabling on the algebraic laws of a generic process algebra; the successive

step is verifying how the notion of input enabling could be embedded into a generic process

algebra without the input enabling condition. In doing so, we obtain a more expressive model

having all the features of I/O automata when a process meets the input enabling condition.

Moreover, we can understand the essence of the commonly used implementation relations by

viewing them through the process algebraic framework and by comparing them with the rela-

tions that are commonly used within process algebras. Some relations that seem very closed to

the preorder relations of I/O automata and that deserve further investigation are the testing

preorders of De Nicola and Hennessy [DH84, De 85a, Hen88].

Although the above topics are quite important, we believe that one of the most important

topics is to give a strong foundation to the commonly used veri�cation methods. For example,

in Chapter 6 we have given an informal description of how and when the quiescent preorder

could be thought as an implementation relation; in [LT87] Nancy Lynch and Mark Tuttle give

an informal understanding of how the fair preorder can be used as an implementation relation;

in Chapter 6 we have given an example of a property that could be required of a system and is

not detected by the fair preorder. The questions are then straightforward: What do we require

to an implementation relation? What are the properties we are interested in? What properties

does a particular relation guarantee to be preserved? What is a property? Trying to give an

answer to the questions above is de�nitely worth doing and should be one of the main topics
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for a long term plan of further research.
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Appendix A

Tables

Name Op. Domain Range Restrictions

quiescent nilS � S

omega 
S � S

pre�xing a:S S S a 2 ext(S)

ichoice �S S; S S

echoice I+
S
J S; S S I; J � in(S)

parallel S1kS2 S1; S2 S3 out(S1)\ out(S2) = ;

out(S3) = out(S1)[ out(S2)

in(S3) = (in(S1) [ in(S2))nout(S3)

hiding �SI S S0 I � out(S); S0 = (in(S); out(S)nI)

renaming �S S S0 for each injective � : acts(S) �! acts(S0)

S0 = (�(in(S)); �(out(S)))

process XS � S XS 2 XS

Table A.1: The signature of DIOA
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nil nilS
a
�! 
S 8a 2 in(S)

ome1 
S
a
�! 
S a 2 ext(S) ome2 
S

�
�! nilS

pre1 a :S e
a
�! e pre2 a :S e

b
�! 
S 8b 2 in(S)nfag

ich1 e1 �S e2
�
�! e1 ich2 e1 �S e2

�
�! e2

ich3

e1
a
�! e01

e1 �S e2
a
�! e01

8a 2 in(S) ich4

e2
a
�! e02

e1 �S e2
a
�! e02

8a 2 in(S)

ech1

e1
a
�! e01

e1 I+
S
J e2

a
�! e01

8a 2 I [ out(S)

ech2

e2
a
�! e02

e1 I+
S
J e2

a
�! e02

8a 2 J [ out(S)

ech3 e1 I+
S
J e2

a
�! 
S 8a 2 in(S)n(I [ J)

ech4

e1
�
�! e01

e1 I+
S
J e2

�
�! e01 I+

S
J e2

ech5

e2
�
�! e02

e1 I+
S
J e2

�
�! e01 I+

S
J e

0
2

tau1

e
a
�! e0

�SI (e)
a
�! �SI (e

0)
a 62 I tau2

e
a
�! e0

�SI (e)
�
�! �SI (e

0)
a 2 I

rho
e

a
�! e0

�S(e)
�(a)
�! �S(e0)

par1
e1

a
�! e01 e2

a
�! e02

e1 S1kS2 e2
a
�! e01 S1kS2 e

0
2

par2
e1

a
�! e01

e1 S1kS2 e2
a
�! e01 S1kS2 e2

a 2 acts(S1)next(S2)

par3
e2

a
�! e02

e1 S1kS2 e2
a
�! e1 S1kS2 e

0
2

a 2 acts(S2)next(S1)

rec
e

a
�! e0

X
a
�! e0

if X
def
= e

Table A.2: The transition rules for DIOA
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wsiA;B(nil) = ;

wsiA;B(
) = ;

wsiA;B(a : e) =

(
fag if a 2 in(e)nA

; if a 2 out(e) [ A

wsiA;B(e1 � e2) = wsiA;B(e1) \ wsiA;B(e2)

wsiA;B(e1 I+J e2) =

8><
>:
; if B \A \ (in(e1)n(I [ J)) 6= ;

(I \ wsiA;B\(I[out(e1))(e1))[ (J \ wsiA;B\(J[out(e2))(e2))

otherwise

wsiA;B(�I(e)) = wsiA[I;B(e)

wsiA;B(�(e)) = �(wsi��1(A);��1(B)(e))

wsiA;B(e1ke2) = wsi;;;(e1) [ wsi;;;(e2)

wsiA;B(X) = wsiA;B(E(X))

Table A.3: De�nition of wsi for DIOA. wsi(e)
def
= wsi;;;(e)
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wsoA;B(nil) =

(
; if A \ B \ in(nil) = ;

out(nil)nA otherwise

wso(
) = out(
)nA

wsoA;B(a : e) =

8>>><
>>>:

out(e)nA if B \A \ fag 6= ;

fag \ out(e) if B \A \ fag = ; and a 62 A

wsoA;A(e) if B \A \ fag = ; and a 2 A \B

; if B \A \ fag = ; and a 2 AnB

wsoA;B(e1 � e2) = wsoA;B(e1) [ wsoA;B(e2)

wsoA;B(e1 I+J e2) =

(
wsoA;B\(I[out(e1))(e1)[ wsoA;B\(J[out(e2))(e2) if B \ A \ I [ J = ;

out(e1)nA otherwise

wsoA;B(�I(e)) = wsoA[I;B[I (e)

wsoA;B(�(e)) = �(wso��1(A);��1(B)(e))

wsoA;B(e1ke2) =

8><
>:

wsoA;A(e1) [ wsoA;A(e2) if 9a 2 B \ A : a 2 acts(e1)next(e2)

or a 2 acts(e2)next(e1)

wsoA;B(e1) [ wsoA;B(e2) otherwise

wsoA;B(X) = wsoA;B(E(X))

Table A.4: De�nition of wso for DIOA wso(e)
def
= wso;;;(e)

localen(nil) = ;

localen(a:e) = fag \ out(e)

localen(e1 � e2) = localen(e1)[ localen(e2) [ f�g

localen(e1 I+J e2) = localen(e1) [ localen(e2)

localen(�I(e)) = localen(e)

localen(�(e)) = �(localen(e))

localen(e1ke2) = localen(e1) [ localen(e2)

localen(X) = localen(E(X))

inten(e) = true i� f�g 2 localen(e)

quiet(e) = true i� localen(e) = ;

Table A.5: De�nition of localen, inten and quiet
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renaming axioms

R1 �(nil) �Q nil

R2 �(a : e) �Q �(a) : �(e)

R3 �(e� f) �Q �(e)� �(f)

R3 �(e I+J f) �Q �(e) �(I)+�(J) �(f)

R4 �1(�2(e)) �Q �1 � �2(e)

R5 �(�I(e)) �Q ��0(I)(�
0(e)) if �0 extends �

R6 �(ekf) �Q �(e)k�(f)

parallel axioms

P1 ekf �Q fke

P2 (ekf)kg �Q ek(fkg)

P3 
S1knilS2 vQ 
S3knilS4 if (out(S1) � out(S3)) ^ ((in(S2) � in(S4)) _ out(S4) = ;)

external choice axioms

Ec1 e I+J f �Q f J+I e

Ec2 (e I+J f) I[J+K g �Q e I+J[K (f J+K g)

Ec3 e �Q e I+J e if Wsi(e) � I [ J

Ec4 e I+J f �Q (e H+K e) I+J f if I � H [K

Ec5
(not(quiet(e)) ^ not(inten(e)))_ quiet(f)

e vQ e I+J f
if J \Wsi(f) � I

Ec6
(not(quiet(e)) ^ not(inten(e)))_ quiet(f)

e I+J g vQ (e H+K f) I+J g
if K \Wsi(f) \ I � H

Ec7
quiet(f)

e I+J f vQ e
if Wsi(e) � I and Wsi(e) \ J = ;

Ec8
quiet(f)

(e H+K f) I+J g vQ e I+J g
if Wsi(e) \ I � H and K \Wsi(e) \ I = ;

Ec9 e �Q e I+J a : 
 if Wsi(e) � I and Wsi(e)\ J = ;

Ec10 a : e I+J a : f �Q a : (e� f) if a 2 out(e) [ (I \ J)

Ec11 e I+J f vQ e� f where Wsi(e)\Wsi(f) � I [ J

Table A.6: The axioms for DIOA.
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Ec12
quiet(e)() quiet(f) ^ not(inten(e)) ^ not(inten(f))

e I+J f �Q e� f
if Wsi(e)[Wsi(f) � I \ J

Ec13
a 2 in(e) _ (not(quiet(q))^ not(inten(q)))_ quiet(f)

(a : e I+J f)� g �Q (a : e I+J f)� (a : e I+K g)
if

Wsi(g) � K; and

fag \ I � fag \K

Ec14 e I+J f �Q e Infag+Jnfag f if a 2 InWsi(e).

Ec15
quiet(f)

e �Q e I+; f
where Wsi(e) � I

Ec16
quiet(f)

e I+J g �Q (e I+K f) I+J g
if K \ I = ;

internal choice axioms

Ic1 e� f �Q f � e

Ic2 (e� f)� g �Q e� (f � g)

Ic3 e �Q e� e

Ic4 a : (e� f) �Q a : e� a : f

Ic5 (e� f) I+J g �Q (e I+J g)� (f I+J g)

Ic6 �I(e� f) �Q �I(e)� �I(f)

Ic7 (e� f)kg �Q (ekg)� (fkg)

Ic8 e vQ e� f

hiding axioms

I1 �;(e) �Q e

I2 �I(nil) �Q nil

I3 �I(a : e) �Q a : �I(e) if a 62 I

I4 �I(e H+K f) �Q �I(e) H+K �I(f) if Wso(e) \ I = Wso(f) \ I = ;

I5 �I(�J(e)) �Q �I[J (e)

I6 �I(e)k�J(f) �Q �I[J (ekf) if I \ acts(f) = J \ acts(e) = ;

I7 e �Q �(e) if � is the identity function

I8
�I(e) vQ �I(f)

�I(a : e) vQ �I(a : f)

Table A.7: The axioms for DIOA: actions of the form �i belong to I .
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I9
�I(e) vQ �I(g)

�I(e H+K f) vQ �I(g H+K f)

I10 �I(e) vQ �I(i : e H+K f)

I11 �I(i : e) �Q �I(e) if Wsi(e) = ;

I12
not(quiet(e)) not(inten(e))

�I(e H+; i : f) �Q �I(e� f)
if Wsi(e) � H

I13
quiet(e)

�I(e H+; i : f) �Q �I(e K+K f)
if Wsi(e) � H and Wsi(e) � K

I14 �I((
S0knilS1k � � �knilSn)ke) �Q �I(
ke) if 81�j�n(out(S0) \ in(Sj) \ I)nin(e) 6= ;

I15 �I(
S0knilS1k � � �knilSn) �Q 
S0nIknilS1nIk � � �knilSnnI if 81�i�nout(S0) \ in(Si) \ I = ;

I16 �I(a : i : e fag\in(e)+; i : a : e) �Q �I(a : e) if Wsi(e) = ;

I17 �I(i : (e ;+J f) ;+J f) �Q �I(e ;+J f) if quiet(f) and Wsi(f) � J

omega axioms

R �(
S) �Q 
�(S) M e vQ 


I �I(
S) �Q 
S0 where S
0 = (in(S); out(S)nI)

P 
S1k
S2 �Q 
S3 where S3 is the composition of S1 and S2

expansion axioms

E1 Let e � 
S0knils1k � � �knilSn be of sort S. For each a 2 out(S0)[ in(S) let ea be the state

that e reaches with action a. Then e �Q (
P

a2out(S0)[in(S)
a : ea)� (

P
a2in(S) a : ea).

E2 Let e � e1ke2k � � �ken where each ei is of the form
P

j ai j : ei j. For each action a 2 ext(e)

let

Ei
a =

(
fei jjai j = ag if a 2 acts(ei)

feig otherwise

Let out(a) be the index j s.t. a is an output action of j (0 otherwise) and let

Ea =

(
; if out(a) 6= 0 and Eout(a)

a = ;

ff1k � � �kfn : fi 2 Ei
a _ (Ei

a = ; ^ fi � 
)g otherwise

Then e �Q

P
a2ext(e)(

P
f2Ea

a:f).

Cp1 Let ei; 0 � i � n be atomic expressions and, for each action a, let fai be the state that ei
reaches with action a (� if no state exists). Then e0 vQ�

P
1�i�n ei i�, for each action a,

either fai � ei; 0 � i � n or fa0 � � or fa0 vQ�
P

fa
i
6��

fai .

Table A.8: The axioms for DIOA.
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