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Abstract

The Air Travel Information Service (ATIS) is the designated common task of the
ARPA Spoken Language Systems Program.  The specified task is to build and evaluate a
system capable of handling continuous and spontaneous speech recognition as well as
natural language understanding in the ATIS domain.  The goal of this research is to develop
an effective natural language component for the complete system, to answer queries posed
through text input instead of speech.  We limit our scope to deal only with those sentences
which can be understood unambiguously out of context (the so-called "Class A" queries).
Specifically, we wish to use the training data to assign a probability distribution to the
reference interpretation, the NLParse, which will minimize the observed perplexity of our
test data.  The decoder component of the finished system will use the natural language
probabilities to select the most probable NLParse translations for a given English input.
The NLParse translation can then be unambiguously converted to SQL to find the correct
answer.

The first model we look at is a deleted interpolation trigram model on the NLParse,
which ties low count parameters together to deal with sparse trigram data.  Under the best
parameter bucketing scheme, we observed a 15.9 bit per item test perplexity, with an
average item length of 13.2 words.  Since the NLParse is highly structured, it seems
probable that models which use the information inherent in its structure will do better than
those built only on the surface form.  With this in mind, we have created a semantic tree
structure which attempts to capture relationships between words and phrases in the
NLParse.  These trees constitute the training data for a series of improved language
models, in which the probability of adding a node to a tree depends on the count of nodes
with similar features in the training data.  These models use a maximum entropy approach
to maximize the entropy while satisfying the constraints imposed by the frequency of
features in the training data.  The best model uses this approach, and exhibits an average
test perplexity of 14.1 bits per item.  This represents a significant 1.8 bit reduction in
perplexity over the trigram model benchmark.
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1 Introduction and Background

This thesis concerns the development of a critical component of a system currently

under development at IBM which, when complete, will be able to reply to spoken English

queries with appropriate responses from a relational database.  We have chosen to use the

Air Travel Information Service (ATIS) as our domain, in large part because there has been

a great deal of prior research in this area; it has been selected as the designated common

task for evaluation of progress within the ARPA Spoken Language Systems (SLS)

community [1].  The specified task is to build and evaluate a system capable of handling

continuous and spontaneous speech recognition as well as natural language understanding

in the ATIS domain, based on selected tables derived from the on-line Official Airline

Guide (OAG, 1990).  Users may ask questions about almost any issue which might arise

in planning an airline voyage, including: lists of flights departing from or arriving at

specified destinations, the fares for these flights, which meals will be served, the ground

transportation provided between an airport and a city, and numerous others.  This thesis

specifically focuses on the ATIS2 task, which includes airports and airlines associated with

10 different US cities.  Recently, the ATIS3 task has been defined to include more than 50

cities, with a corresponding increase in the number of airlines and airports.

As a consequence of the amount of research that has been done in the ATIS domain,

there exists a large corpus of transcribed utterances spoken by users as they have attempted

to solve particular scenarios within the domain.  A large subset of this corpus has also been

provided with annotated responses, including, most critical for our work, an NLParse

reference interpretation, which is essentially a paraphrase of the original query in a more

standardized form.  A further advantage afforded by the prior research effort is the
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existence of a benchmark performance with which to compare the performance of our

system, once it is fully functional.

The approach being adopted at IBM follows closely the statistical approach IBM has

successfully used in the past in several other applications, most notably, language

translation.  In the ATIS context, we view the problem of "understanding" an English

query as the need to translate from English to NLParse.  A system which can automatically

produce this translation will then be able to generate the SQL necessary to get an accurate

response from the OAG table.

Our goal is to see whether standard statistical language modelling techniques can be

applied successfully to the ATIS understanding task.  We feel that there are many potential

advantages to statistical language modelling.  Specifically, we are able to minimize the

domain specific aspects of the task, providing extensibility to broader problems; the entire

process can be automated, assuming the availability of specifically labeled training material

(e.g. the NLParse); and we avoid the need for human-generated templates and hand-written

heuristic rules, both of which are time consuming and prone to error.  However, it should

be noted that we have not yet addressed how to incorporate discourse context into our

framework.  As a consequence, for our initial system we will restrict ourselves to those

sentences which can be understood unambiguously out of context (the so-called "Class A"

ATIS2 queries [2]).

In this chapter, we will first briefly describe other approaches that have been used for

the ATIS domain.  We will then outline in more detail the framework for the IBM approach

to the ATIS task, stating clearly where the research of this thesis fits in.  Finally, we will

provide a brief review of other application areas in which statistical approaches have been

successful.
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1.1 Prior ATIS Efforts

The ATIS task touches on a wide range of issues, both in natural language and speech

recognition, and it is being used as a standard for comparison and evaluation of the

progress of the various groups involved.  Interested groups meet yearly for the ARPA

Speech and Natural Language Workshop, where progress is evaluated [3].  These groups

have considered numerous approaches, bringing to bear speech and natural language

techniques which have proven valuable in other applications.  As a result, they have been

able to demonstrate a query accuracy rate as high as ninety percent.  An overview of a few

of the various approaches follows.

CMU's spoken language understanding system, Phoenix, and its recent improvements

are described in [4, 5].  The Phoenix system has separate recognition and parsing stages.

The recognizer passes a single word string hypothesis to a frame-based parsing module,

which uses semantic grammars to produce a semantic representation of the input utterance.

The system attempts to divide the utterance into phrases which match word patterns

associated with different slots in a frame.  Frames are associated with various types of

actions that can be taken by the system.  The system is implemented as a top-down

Recursive Transition Network chart parser for slots.

In MIT's ATIS system [6], a segment-based speech recognition component

(SUMMIT) [7] produces a list of the top N sentence hypotheses, which are then filtered by

a probabilistic natural language component (TINA) [8].  The recognition component uses a

class n-gram language model to provide language constraints.  TINA employs a parsing

strategy which attempts to piece together parsable fragments.  As in CMU's system, it uses

a semantic frame representation to encode meaning, although in MIT's frame, syntactic

structure is also encoded.  The first step is to produce a parse tree for the input word
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stream.  A second-pass treewalk through the parse tree yields a semantic frame, which is

then passed to the back-end for interpretation.

AT&T's speech understanding system, Chronus [9], is based on the stochastic

modelling of a sentence as a sequence of elemental units that represent its meaning.  The

representation of the meaning of a sentence consists of a relational graph whose nodes

belong to some category of concepts and whose arcs represent relations between concepts

or linguistic cases.  A speech recognition component  passes the single best word string to

a conceptual decoder, which attempts to provide a conceptual segmentation.  A simple

pattern matching procedure then uses the conceptual segmentation to produce a

corresponding set of values aligned to the concepts.  Finally, the back-end translates the

meaning representation into a database query.

BBN's HARC [10] spoken language system consists of a speech recognition

component, BYBLOS, which interacts with their natural language processing component,

DELPHI, through an N-best interface.  DELPHI uses a definite clause grammar formalism,

and a parsing algorithm which uses a statistically trained agenda to produce a single best

parse for an input utterance.  SRI's Gemini system [11] takes a linguistic approach to

natural language understanding, in which a constituent parser applies syntactic, semantic,

and lexical rules to populate a chart with edges containing syntactic, semantic, and logical

form information.

1 .2 The IBM Approach

The effort at IBM has only recently begun, and the task has initially been divided into

five parts:
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• A speech recognizer, which converts spoken queries to text queries.

• A translation model, which assigns a probability to a proposed alignment

between an English query and an intermediate language query.

• A language model, which assigns a probability to a future event given a

history in the intermediate language.

• A decoder, which searches for the sentence in the intermediate language

which the language model and translation model together assign the highest

probability.

• A back end, which deterministically converts from the intermediate language

to SQL, to retrieve data from the OAG tables.

Here we focus on the natural language component, answering queries posed through

text input instead of speech, and limited in scope to deal only with those sentences which

can be understood unambiguously out of context.  Ultimately, we wish to assign a

probability distribution to the intermediate language (L), given an English query (E).  This

probability, Pr(L|E), can be rewritten using Bayes' rule as

Pr(L|E) =  
Pr(E| L) Pr(L)

Pr(E)
(Eq 1.1)

where Pr(L) is the a priori probability of the intermediate language sentence.  Typically, we

wish to find the intermediate language sentence which maximizes Pr(L|E).  Since Pr(E)

does not depend on L, it is sufficient to maximize Pr(E|L) Pr(L).  The task of the translation

model is to determine the probability distribution Pr(E|L), while it is the language model's

role to provide the distribution Pr(L).
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1 .3 Statistical Modelling Research

The statistical approach to language modelling has been used with varying success in

the past.  IBM's machine translation system, Candide [12], which provides automatic

translation from French text to English text, is designed in very much the same way as the

spoken language system for ATIS which will contain the language model presented in this

work.  Its principle components are: a language model, which produces a probability

distribution on the source language, English; a translation model, which produces the

probability of a French sentence given the English (i.e. the probability of a French–English

alignment); and a decoder, which searches for the French sentence that maximizes the

product of the probabilities given by the translation model and the language model.  Both

the language model and the translation model are built exclusively from statistics taken

directly from the training data.  Candide's language model uses n-gram statistics (which

will be explained in more depth shortly) in the same way in which we will use them.  While

each of these components is similar to the corresponding component in the ATIS system,

each must overcome difficulties specific to the translation task.

Another application in which a statistical approach has been used successfully is in

decision tree parsing.  In [13], Jelinek et al. discuss the use of statistical models in treebank

recognition, the task of automatically generating annotations for linguistic content on new

sentences.  Jelinek points out that there is no reason that a grammar needs to be used to

construct the probabilistic model necessary for parsing.  Instead, a method for constructing

a statistical model for the conditional distribution of trees given a sentence without a

grammar  is presented.

In a restricted subset of the ATIS domain, researchers at AT&T have shown how

statistical modelling can be used to train a translation model between a specified English
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grammar and an intermediate semantic language [14].  Using Equation 1.1, they have

separated the task of learning associations between grammars into the task of building input

and output language models, and of training a transducer for translation between the two.

Building the necessary language models was not addressed in much depth, and we feel that

the language models which we will present in this work could be used effectively in

conjunction with their techniques.

In this first chapter, we defined the ATIS understanding task, and discussed a number

of approaches which are currently being implemented.  We discussed IBM's approach, and

showed how it differs from those which are currently in use.  We presented a few of its

drawbacks, as well as some of its potential advantages.  Finally, we motivated our

statistical approach to the ATIS task by enumerating a few similar applications in which

statistical methods have proven successful.  In the next chapter, we will give a general

overview of how different statistical language models are built and trained.  In Chapter 3,

we will take a closer look at the data the models will be built from, and the steps necessary

to prepare the data for use.  Chapters 4 and 5 will present a number of different language

models as applied specifically to the ATIS task, and report on their effectiveness.  Chapter

6 will discuss a way to enhance our language models using a known peculiarity in the data,

and finally, Chapter 7 will summarize our findings, and suggest possible extensions to our

work.
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2 Statistical Language Modelling

In this chapter, we will give a general overview of how different statistical language

models are built and trained.  We will formulate a simple trigram model, built from

frequency statistics on the training data, and we will discuss ways to deal with the ever-

present difficulties with sparse data.  Since the entire system is not yet complete, we are

unable to see how the various language models work in tandem with the other finished

components of the system, so we will define perplexity as our criterion for success.  We

will then present an effective method for estimating the parameters of the trigram model,

realizing that some statistics are more reliable than others.  Finally, we will discuss the

maximum entropy framework for building language models, and present an algorithm for

training such models.

2.1 Trigram Language Models

The simplest language model assigns a uniform probability across all the words in the

source language (assuming a known vocabulary size), with the probability of the entire

sentence equal to the product of the probability of the words.  Under this model, each

sentence is assigned a probability which is exponential in its length.  A slightly more

intelligent language model might assign each word a probability proportional to its

observed frequency in a set of training data which is known to have similar characteristics

to the data on which the model will be used.  In general, a statistical language model uses

training data to estimate the true a priori probability of words in the source language, given

any information already known about their context.



A Statistical Approach to Language Modelling for the ATIS Problem 17

The probability of a sentence L = w1 w2 ... wn  is given by

Pr(L) =  Pr iw 0w 1w … i−1w( )
i=1

n+1

∏ (Eq 2.1)

where w0 and wn+1 are special boundary word tokens.  A language model can take as much

or as little information about the previously seen context (called the history) into account as

it wants.  Theoretically, the larger the history considered, the more accurate the model.  In

practice, little or no advantage has yet been gained by looking outside of a very local area.

The success of the trigram language model [15] is a testament to this fact.  The trigram

language model predicts the probability of a word only considering the last two words in

the history.  A simple trigram model would assign each trigram a probability proportional

to its frequency count in the training data:

Pr iw i−2w i−1w( ) =  
c i−2w i−1w iw( )

c i−2w i−1w( )
(Eq 2.2)

Given a large enough training set, this would be a very good approximation.  In practice,

there is rarely enough training data to ensure that each trigram is seen a significant number

of times.  It is a particularly bad idea to assign a probability of zero to any trigram.  This

problem of how to deal with sparse data proves to be a difficult one when building

language models.

A more sophisticated trigram model offers the solution of backing away from low

count trigrams by augmenting the estimate using bigram counts.  The possible existence of

rare bigrams suggests backing off even further, to the unigram and uniform distributions.

The deleted interpolation trigram model assigns a probability to each trigram which is the

linear interpolation of the simple trigram, bigram, unigram, and uniform models:
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Pr iw i−2w i−1w( ) =  3λ
c i−2w i−1w iw( )

c i−2w i−1w( )
 +  2λ

c i−1w iw( )
c i−1w( )

 +  1λ
c iw( )

N
 +  0λ

1
V

Eq 2.3

Here N is the number of words in the training corpus, V is the size of the vocabulary, and

the lambdas, the relative weights given to each of the models, must sum to 1.  A positive λ0

ensures that no trigram will be assigned a zero probability.

2.2 Perplexity as Performance Measure

It is useful to have a measure of the effectiveness of a language model which is

independent of the components of the system which will ultimately use it.  A frequently

used measure of a language model's performance is its perplexity [15] with respect to a test

corpus (T).  If P̃(T )  is the frequency distribution observed in the test corpus, and P(T) is

the probability distribution predicted by the language model, then the perplexity (PP) of the

language model with respect to T can be written in terms of the cross entropy (H) of P̃(T )

and P(T):

H P̃(T ),  P(T )( ) =  - P̃(x)
x∈T
∑ log P(x) (Eq 2.4)

PP(T ) =  H P̃(T ),  P(T )( )2 (Eq 2.5)

If a language model assigns a zero probability to any event which is seen in the test corpus,

the perpexity is infinite.  It should be noted that a lower perplexity does not necessarily

imply a lower error rate in the resulting system, though this is often the case.  In training

many of the models presented in this paper, we assume a correlation, and implement

algorithms which attempt to minimize the perplexity with respect to the training data.  In

fact, we use perplexity as our sole criterion for success.
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2.3 Parameter Estimation and Bucketing

With a large enough training corpus, λ3 in Equation 2.3 can be set very close to 1.

For sparse data, we need a more precise way to determine the best values for the lambdas

which are used to smooth the models.  We use the Estimation Maximization (EM)

algorithm proposed by Baum [16] to train the values of the lambdas to minimize the

perplexity of the deleted interpolation language model on the training data.  It assumes the

existence of a set of heldout data (H) independent of the training corpus used by the

individual models being smoothed together.  The EM algorithm is an iterative algorithm

which is guaranteed to decrease the model's perplexity on every iteration.  To calculate the

weight λi to be assigned to the probability distribution Pi:

1. Set the iteration variable, j = 0

2. Assign initial guesses to i
0λ , ensuring i

0λ
i

∑ = 1

3. For each model i to be smoothed, set  ic  =   i
jλ iP (e)

k
jλ iP (e)

k
∑e∈H

∑

4. Set i
j +1λ  =  ic

kc
k
∑

5. Set j = j + 1

6. Repeat from 3.

The algorithm might typically be iterated until the incremental decrease in perplexity drops

below a given threshold.

The trigram model in Equation 2.3 is still very simple; since the training count is an

estimator of the reliability of the statistic, those trigrams with large training counts should

have their own lambda, while small count trigrams can be grouped together.  If we gave all
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trigrams their own lambdas, the model would overtrain; it would do very well on the

heldout data, but not as well on other data.  We would like to leave some flexibility.  The

idea is that we put trigrams with similar reliability (i.e. the same training count) in the same

bucket, and assign a vector of lambdas to each bucket, to be trained independently with the

EM algorithm.  By defining a bucketing function b, parameterized over the bigram and

unigram counts, the model becomes:

Pr 3w 1w 2w( ) =  i λ (b(c( 2w ),c( 1w 2w ))) iP
i

∑ 3w 1w 2w( )
(Eq 2.6)

Typically, trigrams are added to a bucket until the number of training events which are

assigned to that bucket is greater than some constant number, and then a new bucket is

started.  We call this bucketing scheme "wall of bricks" bucketing:

c( 2w )

c( 1w  2w )

Figure 1.  "Wall of Bricks" Bucketing

1b 2b 3b

2.4 Maximum Entropy Models

A detailed treatment of the maximum entropy approach to natural language processing

can be found in Berger et al [17].  A maximum entropy model begins with an initial

distribution which represents everything that is known a priori about the source being

modelled, and a set of constraints representing the information to be modelled.  The

concept of maximum entropy is to find the distribution which has the smallest Kullback-
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Leibler distance from the initial distribution, and which satisfies the constraint set while

assuming no other knowledge about the source.  If Q is the initial distribution, P is a

distribution which satisfies the constraint set, and X is the space of futures to be predicted,

the Kullback-Leibler distance between P and Q is given by:

D(P Q) =  P(x) log
P(x)
Q(x)x∈X

∑ (Eq 2.7)

2.4.1 Feature Functions and Constraints

A feature function f(x, y) is a binary function over the set of histories x and futures y.

A feature function which has the value 1 for some history x = w1 w2 ... wm and some

future y = wm+1 is said to fire on event w1 w2 ... wm+1 .  If we observe that a feature fi fires

n times on the training data, we wish to impose the constraint that the language model will

predict that fi fires n times on the same data.  The maximum entropy framework allows us

to do this effectively.  If T is the training corpus, and Pr is the maximum entropy

probability distribution, then for each feature fi in the feature set, we add the constraint

iM  =   Pr(x, y) if (x, y) =  
1
T

 i f (x, y)
( x ,y)∈T

∑  =  id
x ,y
∑ (Eq 2.8)

Here we are equating the model expectation, M, with the desired expectation, d.  Given an

initial distribution Q, we can now define the maximum entropy distribution as follows:

Pr(y x) =  
Q(y x)

Z(x)
iλ if ( x ,y)

i
∑e (Eq 2.9)

Where Z is defined so that Pr(y x)
y

∑ = 1.  In order to normalize in this way, it is necessary

to know the set of all possible futures for any given history.  For the applications of

maximum entropy in this paper, the set of possible futures is always known; the

intermediate language is well defined.  For other applications, modelling speech for
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example, it is very difficult to sum over all possible futures, so the model must be

modified.  A complete treatment of the necessary modification is given in Lau [18].

All that is left is the decision of which feature functions to include, and an explanation

of how to train the model parameters λ i.  The set of feature functions is equivalent to the

power set of legal histories and futures, and hence, the space of feature functions is

phenomenally large.  It is not feasible to include all possible feature functions in our feature

set.  In addition, if we add too many features, we run the risk of overtraining the model on

the training data, resulting in an inability to generalize to new data.  One of the most

difficult tasks in designing a maximum entropy language model is deciding which features

to add.  Berger et al [17] discusses a greedy algorithm for automatic feature selection, in

which an attempt is made to incrementally add the feature which will decrease the model's

perplexity most.

2.4.2 Improved Iterative Scaling

How do we calculate the model parameters λ i  in Equation 2.9 to minimize the

Kullback-Leibler distance from the initial distribution?  While it is not possible in general to

find a closed form solution, Darroch and Ratcliff [19] have proposed a method of

generalized iterative scaling to determine the solution numerically. More recently, Della

Pietra [20] has developed an improved iterative scaling algorithm which allows feature

functions whose sum is any non-negative real-valued function.  This allowance has

significant practical performance implications.

 The improved iterative scaling algorithm presented below uses the following two

function definitions (assuming n is the number of features in the feature set):

k(x, y) =  i f (x, y)
i=1

n

∑ (Eq 2.10)
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 βp (y x) =  
Q(y x)

βZ (x)
if ( x ,y)

iβ
i=1

n

∏ (Eq 2.11)

As before, Z is defined as the normalization factor which allows pβ to sum to 1 over all

possible futures y.  Note that Equation 2.11 is just another way to write Equation 2.9.  The

improved iterative scaling algorithm can now be summarized as follows:

1. Initialize βi for 1 ≤ i ≤ n

2. Calculate the desired expectation from the training corpus T for each feature:

id  =  
1
T

 i f (x, y)
( x ,y)∈T

∑

3. For 1 ≤ i ≤ n, let δi be the solution to the following equation:

βp (y x) k ( x ,y)
iδ if (x, y) =  id

x ,y
∑

4. For 1 ≤ i ≤ n, update βi = δι · βi

5. Repeat from 3 until all βi converge, or until the change in perplexity is within a 

preset threshold.

6. For 1 ≤ i ≤ n, λ i  = ln βi

The solution to the polynomial in step 3 can be found numerically by using the well-

known Newton-Raphson method for root-finding.  This algorithm is guaranteed to

converge to the correct solution (i.e. it determines the values of λ i  which make Equation

2.9 the maximum entropy solution), assuming that a solution which satisfies all of the

constraints exists.  Unfortunately, there is no provable bound on the number of iterations
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necessary for the algorithm to converge, so a decrease in training perplexity is often used as

the stopping criteria.
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3 Data Preparation

Data collection and distribution for the ATIS task is described in [19, 20, 21].  The

data have been obtained through the National Institute of Standards and Technology

(NIST), which makes it available to interested sites through anonymous FTP.  The data

consist of a corpus of English queries, together with a reference interpretation (called the

NLParse), a reference SQL, and a reference answer.  The NLParse commands reflect

conventions on how to interpret an ATIS query, in a canonical form specified by an

established context-free grammar.  A sample English query and its corresponding NLParse

interpretation are given in Figure 2.  Software to convert from the NLParse to SQL capable

of obtaining the desired information from the OAG database has been completed and is in

use at IBM.

English: List all flights from Baltimore to Atlanta after noon Thursday nonstop.

NLParse: List flights from Baltimore and to Atlanta and flying on Thursdays and leaving

after 1200 and nonstop.

Figure 2.  Sample Query with NLParse Interpretation

A primary test corpus of 1800 items has been separated from the 5600 Class A items

obtained from NIST.  This test corpus is being held apart until the entire system is ready to

be tested as a whole.  It is from the remaining 3800 sentences that all of the training and
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testing of language models were done.  These 3800 items were further separated into three

categories: training (3000 items), heldout (400 items), and test (400 items).

3.1 Preprocessing

The NLParse interpretation set supplied by NIST was not originally meant for

distribution, and a large amount of human and automatic cleanup needed to be done to

remove ambiguity and ensure consistency between items.  To aid in language modelling,

we have written a tagger, which replaces numbers, cities, airlines, airports, codes, days,

and dates in the English and NLParse files with the tags NUM, CITY, AIR, ARP, CODE,

DAY, and DATE, respectively.  Using these categorizations allows statistics to be gathered

about groups of tokens which are used in the same syntactic positions, but which

individually are seen infrequently in the data.  For example, the date "7/12/91" may be seen

only once in the training data, but after tagging, the tag "DATE" may appear hundreds of

times.  Items with multiple tags of the same type have identifiers appended to permit easy

untagging.  Figure 3 shows an example English and NLParse item before and after

tagging.

English: What time does Continental depart from Boston to San Francisco?

Tagged English: what time does AIR_1 depart from CITY_1 to CITY_2

NLParse: List departure time of Continental flights from Boston and to San Francisco

Tagged NLParse: list departure_time of AIR_1 flights from CITY_1 and to CITY_2

Figure 3.  Tagged Items
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A language model can be more confident of its statistics about the tags than about the

original items.  In the final system, a component will be added to the back end which

replaces tags with canonical spellings of the corresponding words from the English.  At

present, a finite state machine searches for all conceivable ways of writing instances of each

tag type, but it is not infallible, and it will be replaced by a probabilistic tagger in the near

future.

3.2 Semantic Trees for NLParse

At first, we thought that it might be possible to statistically generate an SQL query

from the English input.  This idea was quickly discarded for numerous reasons (e.g., the

average length of an SQL query is much greater than the English which corresponds to it,

making it difficult to build an effective translation model).  Thus the first pass language

models will be built using the NLParse as an intermediate language.

Since the NLParse is highly structured (it is defined by a set, if complicated, context-

free grammar), it seems probable that models which use the information inherent in its

structure will do better than those built only on the surface form.  With this in mind, we

have created an information tree structure which attempts to capture relationships between

words and phrases in the NLParse.  Rather than force the language models to learn the

complicated grammar which specifies the NLParse, the trees are structured to conform to

the more general grammar given in Figure 4.  The tree structure is defined by the grammar;

every production is equivalent to a parent-child link in the tree.  The label of each node is

the unique string on the RHS of the production.  The children of each node are each of the

non-terminals on the RHS, in the order specified.  To resolve any ambiguity in ordering of

children (for example, in the ordering of modifiers), the node with the higher parent-child
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bigram frequency is placed first.  Finally, homonyms in the NLParse have been relabeled

in the node labels.  For a complete list of the label vocabularies used, see Appendix A.

Note that since the non-terminal Table appears on the RHS of the Modifier production,

the NLParse, and hence the trees, can be arbitrarily complex.  Also, the grammar given

allows an arbitrary number of tables to be accessed using "along-with," even though the

current specification of the ATIS problem allows cross-referencing of only two tables at the

same time.  This is provided for extensibility to future ATIS versions.

Figures 5 and 6 show a simple and more complicated example tree.  We have written

code to automatically transform a surface NLParse item into a semantic tree item, and back

again.  Ultimately, both the language and translation models will be built from the

information trees, and the decoder's output trees will be deterministically converted into

NLParse, and then to SQL.
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<Along-With> ::  ( "Along-With" <Column-Table> + ) ?  <Column-Table>

<Column-Table> ::  <Grouped-By>  |  "Extract"  <Grouped-By>  <Features>

<Features> :: "Features"  <Feat-Op> +

<Feat-Op> :: feature_op  <Terminal> +

<Grouped-By> :: <Table>  |  "Grouped-By"  <Table>  <Terminal>

<Table> :: table_name  ( <And-Phrase> | <Or-Phrase> ) ?

<And-Phrase> :: "and"   (  <Or-Phrase> | <Modifier> ) +

<Or-Phrase> :: "or"    ( <And-Phrase> | <Modifier> ) +

 <Modifier> :: terminal_op  <Not> ?  <Terminal> + |

terminal_op  <Not> ?  <Table> |

compare_op  <Not> ?  <Terminal>  <Terminal> + |

compare_op  <Not> ?  <Terminal>  <Feat-Op>  <Table>

<Not> :: "Not"

<Terminal> :: terminal_name

Where each of the following denotes a string from a set vocabulary:

table_name from flights, fares, ...

compare_op from less-than, equal-to, between, ...

feature_op from the-maximum, the-minimum, the-number-of, any, all

terminal_op from cheapest, from, arriving, ...

terminal_name from CITY_1, DATE_1, arrival_time, departure_time, ...

Figure 4.  Complete NLParse Semantic Tree Grammar
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fares

and

equal-to
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English: How much does the American Airlines flight seven one from Dallas to San Francisco cost?

AIR_1 CITY_1

Tagged English: how much does the AIR_1 flight NUM_1 from CITY_1 and to CITY_2 cost

NLParse: List American fares from Dallas and to San Francisco and whose flight number is 71

Tagged NLParse: list AIR_1 fares from CITY_1 and to CITY_2 and whose flight_number is NUM_1

Figure 5.  Simple NLParse Semantic Tree
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4 Trigram Language Models

Each of the language models we build will be trained on the training set, smoothed

with the heldout set (if necessary), and tested on the test set.  If smoothing isn't necessary,

the heldout data will also be used to train.  For each model, the average per item entropy for

each data set will be reported; it is this that we use as a gauge to determine how effective the

model is.  The model with the lowest test entropy will eventually be used in the final

system.

4.1 Surface Trigram Models

The first language model we've built is a deleted interpolation trigram model on the

tagged surface NLParse, using the "wall of bricks" scheme for bucketing lambdas.  The

results for this model (and the other two models described in this section) are presented in

Figure 7.  Due to the relative success of the trigram model in other applications, we used

this model as the benchmark for comparison with the other models we have built.  In

particular, we hoped to improve upon the test entropy of 15.9 bits per item.  Since the

average sentence length of the surface NLParse is 11.0 words, the decoder will have an

average of 2.7 weighted options for each word.

The surface trigram model has some serious deficiencies for this particular application.

First and foremost, it does not explicitly use any of the information which is know a priori

about the source language, the NLParse.  As a result, the model allows (i.e. assigns

positive probabilities to) items which do not conform to the NLParse grammar, and hence

are not valid NLParse items.  A more intelligent model would realize this, and assign these
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items zero probability (allowing normalization over the smaller remaining space).  To test

just how deficient this model is, we have randomly generated NLParse sentences from the

trigram probability distribution, and found that only 58% of the resulting sentences were in

a valid NLParse format.

One of the reasons that this model is so poor at generating valid NLParse is that

important words are frequently more than two words back in the history, and thus outside

of the trigram model's scope.  One example of this problem is parentheses, which are used

to remove ambiguity in the cleaned version of the NLParse.  The trigram model has

extreme difficulty predicting a close parenthesis, since the matching open parenthesis is

almost always more than two words earlier.  Another word which is often more than two

words back in the history is the table which needs to be referenced in the database.  The

table is the most important part of any query, and each table has its own set of modifiers

and features associated with it.  It doesn't make sense, for example, to ask about the

"meal_description" from the "flights" table, yet the trigram model gives a non-zero

probability to "meal_description" even when "flights" is nowhere in the sentence.  In later

models, we are sure to allow the models to ask questions about the table whose scope is

currently active.

Training Heldout Test

Items 3000 392 376

Surface NLParse 12.6800 13.4784 15.9474

Flat tree, with parens 18.9160 18.7158 20.3842

Flat tree, without parens 11.5749 12.6873 15.6387

Figure 7.  Trigram model per item entropy
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All subsequent language models will be built on the semantic tree form of the training

and heldout data.  The models generate a probability distribution on the space of semantic

parse trees, which can be mapped onto the NLParse space (i.e. there is a surjective function

from the semantic trees to the NLParse).  The next language model we consider is a trigram

model on the prefix traversals of the information trees, with parentheses added where

necessary to ensure that the trees can be recreated from the flattened string.  This model has

as a benefit that more important information (the table, for example) is generally higher up

in the tree, and therefore will appear before the less important details below it.  As can be

seen in Figure 7, this model fails miserably in comparison with the trigram model.  It still

suffers from the problem that trigram models cannot learn to balance parentheses, and a

significant number of parentheses need to be added to disambiguate the traversals.

It would be nice to know the entropy of the previous trigram model without having

to worry about the problems presented by the parentheses.  The last surface language

model we have built, therefore, was trained on the prefix traversal of the semantic trees

without adding the parentheses needed to prevent ambiguity.  The result is a lower

perplexity than even the trigram language model, though only barely.  Unfortunately there

is no corresponding language model in the semantic tree space, so this model would leave it

up to the decoder to decide which interpretation of the traversal is the most probable.  Still,

that such a simple use of the semantic trees is able to beat the trigram model is encouraging.

4.2 Tree-based Interpolation Models

The first tree-based language model we present is a generative deleted interpolation

model on the semantic parse trees, where the probability of adding a node depends on the

count of nodes with similar features in the training data.  The nodes are generated in the
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same order as a prefix traversal of the tree.  We considered different kinds of features, all

of which involve only very local information.  One of the problems with all the previous

models is their inability to use statistics about important words which may appear further

back in the history.  Rather than using the previous two words from the prefix traversal, in

this model a node's probability is related to the training frequency of its parent, and of the

table in whose scope the node exists.  Both of these pieces of information are always

generated before the node being predicted, so their training statistics are available to the

model.  If n[i] denotes the ith child of n, and T is a function which returns the table under

whose scope its argument exists, then the probability Ps of generating a subtree beneath

node n is given by the recursive function:

sP (n) =  Pr(n[i]T(n),n) sP (n[i])
i

∏     Pr(stop T(n),n) (Eq 4.1)

Here Pr(n|T, P) is the probability the model assigns to node n in the presence of table T and

parent P.  The product is taken over each of the children of n.  Note that the model must

predict a special stop child before continuing on to the next node.  This is used as an

alternative to first predicting the number of children each node has.  The probability of a

tree item is now simply Pr(root | none, none)Ps(root).

Our first attempt at a trigram model using only the table and parent as context was to

specialize Equation 2.3:

Pr(n|T, P) =  3λ
c T P n( )
c T P( )

 +  2λ
c P n( )
c P( )

 +  1λ
c n( )
N

 +  0λ
1

V
(Eq 4.2)

The results of using this model, however, were abysmal, primarily because of its

incompetent handling of the stop node.  We need to allow the model to look at the number

of siblings already predicted, to more effectively determine when to predict stop.  Equation

4.1 was updated accordingly.
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Another significant improvement was found by reconsidering the normalization factors

of the component models.  These factors can be made more accurate by incorporating

information which we know a priori about the NLParse grammar, but which isn't reflected

in the semantic tree grammar in Figure 4.  Unfortunately, this involves encoding

information specific to the current ATIS task, something which we had wished to avoid to

allow easier application to future natural language understanding problems1.  By

implementing a function L, which maps a context to the set of futures permissible in that

context, Equation 4.2 becomes:

Pr(n|T, P) =  
P ′r (n|T, P, L(T, P)) for n ∈ L(T, P)

0 otherwise




(Eq 4.3)

  

P ′r (n|T, P,L ) =  3λ
c T P n( )

c T P ′n( )
′n ∈L
∑

 +  2λ
c P n( )

c P ′n( )
′n ∈L
∑

 +  1λ
c n( )

c ′n( )
′n ∈L
∑

 +  0λ
1
L

Eq 4.4

The results of training this model with only one bucket of lambdas is given in Figure 8

(along with the previous figures for convenience).  These results are still very bad.  Upon

examination of the resulting distribution, we discovered that this model does not respect the

canonical child ordering imposed upon the semantic trees.  For example, the modifier

"from:city" always precedes the modifier "to:city", when both are present in a tree (this

stems from the fact that the bigram "and, from" is seen more frequently than "and, to" in

the training data).  But the model assigns a non-zero probability to the tree containing these

modifiers in the reverse order.  To fix this situation, we modify L, and smooth in another

1 This is one of only two parts of the language model component which are specific to the ATIS 2 task.
The other one is the tagger.
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distribution, the 4-gram distribution using as context the parent, table, and left-sibling (S).

The new model is given by Equations 4.5 and 4.6.

Pr(n|T, P,S) =  
P ′′r (n|T, P,S, L(T, P,S)) for n ∈L(T, P,S)

0 otherwise




(Eq 4.5)

  

P ′′r (n|T, P,S,L ) =  4λ
c T P S n( )

c T P S ′n( )
′n ∈L
∑

 +  P ′r (n|T, P,L ) (Eq 4.6)

As can be seen by the results in Figure 8, even using only one bucket for the lambdas,

this model beats the NLParse trigram model on the test corpus by almost one bit, reducing

the perplexity by half.  The addition of the follow set L was instrumental to this

improvement.  It is this model which we will use as the initial distribution for the maximum

entropy model presented in the next section2.

Training Heldout Test

Items 3000 392 376

Surface NLParse 12.6800 13.4784 15.9474

Flat tree, with parens 18.9160 18.7158 20.3842

Flat tree, without parens 11.5749 12.6873 15.6387

Tree Context Trigram 19.2082 20.1576 21.4704

Tree Context 4-gram 11.7567 13.5918 15.0037

Figure 8.  Entropy of Deleted Interpolation Models

2 It was thought that the maximum entropy approach would be much more effective for smoothing than
any complicated bucketing scheme, so we did not implement the full "wall of bricks" bucketing for this
model.



A Statistical Approach to Language Modelling for the ATIS Problem 38

5 Maximum Entropy Models

In this chapter we will modify the maximum entropy framework presented in Section

2.4 to allow us to generate maximum entropy models on semantic trees.  Throughout this

chapter, Q will refer to the initial distribution needed as a starting point for the maximum

entropy approach.  Frequently, maximum entropy models are built using a uniform

distribution as the initial distribution.  We will instead use one of the tree-based

interpolation models derived in the previous Chapter as our starting point.

This is especially useful because it allows us to incorporate knowledge of the NLParse

grammar which does not appear in the more general semantic tree grammar in Figure 4.

This knowledge is embodied in the L function, which allows us to assign zero probability

to certain futures in certain contexts.  By assigning a zero probability to certain events in the

initial distribution, Equation 2.9 guarantees that those events will also have zero probability

in the maximum entropy distribution.  If we had instead used a uniform distribution as the

initial distribution, the maximum entropy model would assign non-zero probabilities to

events that could not possibly occur.

5.1 Event Dumping

We have already shown how a generative language model can be built for the semantic

parse trees by starting at the root and predicting each node in a prefix ordering (Equation

4.1).  The maximum entropy model will be designed in the same way; each node will be

considered separately, appearing in the future position exactly once.  A single feature
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function may fire multiple times on any one tree, but only once for each event.  An event is

a history-future pair, so a feature is a binary function on events.  Looked at from this

perspective, the training corpus is just a set of events, and the tree to which an event

belongs has no real significance to the language model.  The first step in building our

maximum entropy model is dumping the events of each of the data sets.  An example tree

and the events it generates are given in Figure 9.

flights

and

AIR_1 cheapest

Tree

Events

Figure 9.  Sample event dump

flights flights

and

flights

and

AIR_1

flights

and

AIR_1

flights

and

AIR_1 cheapest

flights

and

AIR_1 cheapest

flights

and

AIR_1 cheapest

flights

and

AIR_1 cheapest

stop

stop

stop

stop

The future is always the bottom rightmost node (in bold), and the history is the rest.

Stop nodes are again treated differently, indicating that the given node has no more
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children.  We must be sure to include features in our feature set which will allow the model

to accurately predict the stop node.

5.2 Feature Selection

We now come to the most difficult part of building a maximum entropy model —

selecting the salient features.  We certainly want to include features which reinforce the n-

gram statistics used to create our initial distribution.  We also need to include features on

the number of children different nodes have in different contexts, to accurately predict the

stop node.  Yet if we include only these features, we will not be using the most powerful

aspect of the maximum entropy framework: its ability to incorporate many different kinds

of information simultaneously.  In particular, one nice feature of the maximum entropy

training algorithm is that it does not require that features be disjoint;  i.e., one feature may

be a generalization of another feature.

Before selecting the features, we need to specify a language in which feature functions

can be described.  At first glance, it is not so clear how to implement a function whose

domain is a set of trees along with some rules on where to look for "important" information

(like the table scope).  In the next section, we present a feature specification language built

around the semantic parse tree formalism.  Even given a specification language, however, it

is not feasible to specify all of the features we will need by hand.  For example, we will

need a separate feature for each trigram which is seen a nontrivial number of times in the

training data.  Rather than listing what amounts to hundreds of features, we need a method

to automatically collect relevant features.  Section 5.2.2 describes a feature pattern
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language, which will allow us to specify higher level ideas about what kind of features to

include3.

5.2.1 Feature Specification Language

We need to create a specification language which is rich enough to allow us to describe

features to test any pertinent characteristic of an event, but which will allow us to efficiently

decide which events the feature will fire on.  To this end, we decided that a feature must

contain two items: a subtree describing information recently seen in the history (those

nodes spatially local to the future node), and a flat context which would describe

information that might be much further away.  For our purposes, the context is just the

table whose scope is currently active, but features could easily be specified which describe

different non-local characteristics.  A feature's table field may either contain a table name,

in which case the feature will fire only for events with a future in that table's scope, or the

special any value (which we denote with a question mark), which will cause the feature to

disregard table information.

Subtree matching is slightly more complicated.  Basically, a feature's subtree

component will match if it can be overlayed onto an event, starting at the future node (the

bottom rightmost one).  Aligned nodes match if they have the same label, or if the feature's

node has the any label.  Subtree matching can be most easily understood through example.

Figure 10 gives three sample features, and shows which events from Figure 9 cause the

feature to fire.  In the first example, the event matches even though it has a node labeled

"cheapest".  Our features currently can only be used to specify which nodes must appear,

3 We use the feature pattern method as an alternative to the incremental feature selection method presented
in Berger et al [9].  The latter is very computationally intensive, and it is not clear how to generalize it for
use with tree based feature functions.
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Figure 10.  Sample features I
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Figure 11.  Sample features II
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not which nodes cannot appear.  In the second example, notice which events do not match.

The any label will match any single node, but it will not match if no node exists.  The third

example shows that only the root node has none as it's table.

As described, the specification language allows us to effectively ask questions about

tables and parents but not, for example, about siblings in specific positions.  The

interpolation models presented in Section 4.2 show that it would be useful to collect

statistics about the sibling immediately to the left of the future node, but so far this isn't

possible in our language.  To allow this, we add the ability to "staple" nodes in the feature

subtree to one side or the other.  Stapling to the left side (denoted by the presence of 'L',

the left anchor), forces nodes to appear exactly as specified on the left, with no additions.

Since children are ordered by frequency, it may be useful to ask questions about the first

few siblings.  Similarly, nodes can be stapled to the right side (denoted by the presence of

'R', the right anchor), which is primarily useful in specifying immediate siblings of the

future node.  The future node is implicitly stapled to the right side.  Figure 11 contains two

examples of stapling.  Notice that the feature in the first example will only fire for events

where the parent of the future has exactly one child.  We allow the use of the '#' character

as alternate syntax for this idea (e.g. '#1' would denote one child).  This syntax will

become more important when we discuss feature patterns, below.

Our feature specification language has a number of shortcomings.  One is its inability

to specify negation, as noted earlier.  Another is that there is no way to specify a feature

which contains a disjunction of different characteristics.  Extending the feature language is

one candidate for possible improvement of our maximum entropy model.  However, we

feel that the language is versatile enough to allow the model to incorporate statistics about a

sufficiently wide spectrum of event characteristics.
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5.2.2 Feature Patterns

Going through all of the training data by hand to decide which features to include

would be very tedious and imprecise.  Instead, we would like to be able to specify the

different kinds of features we want to have present, and then accumulate those features

automatically.  We would also like to have a mechanism which will allow us to filter out

those feature which do not fire frequently on the training data; we don't want to include

constraints in which we are not very confident.  Finally, we want to make sure that no two

features are very close to one another, since this has the effect of adding new low-count

constraints.

To do this, we have specified a feature pattern language.  The feature pattern language

is identical to the feature specification language, with the addition of a pattern marker

(denoted by the '*' character).  After deciding on the feature patterns, they are matched

against the training events, generating a set of features in which each pattern marker is

replaced by a node label.  Each element of the resulting set of features is guaranteed to fire

on the training data more than a preset number of times.  A single feature pattern may

generate multiple features in the presence of a single event4.  An example of this is given in

Figure 12 below.  A full list of the patterns we used in the final maximum entropy model is

presented in Figure 13.

4 Making sure that all appropriate features are generated was very tricky.  In one instance, a single pattern
generated eight features from one event.



A Statistical Approach to Language Modelling for the ATIS Problem 45

Figure 12.  Feature pattern example
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 The bigram and trigram patterns reinforce the bigram and trigram constraints in the

initial distribution.  The sibling and table-sibling patterns are used to collect statistics on the

sibling immediately to the left of the future node.  This sibling is frequently the node

predicted immediately prior to the future node.  The first sibling patterns are useful because

the leftmost child of a node often has special significance.  The parse tree grammar tells us

that the first node is often either "not", or the most frequently seen label for the current

context.   The children patterns use the '#' syntax to collect statistics about the number of

children of each node.  This is necessary to accurately predict the stop node.  Finally, the

cousins pattern is used to relate the first child of a node to its cousins.  The addition of this

pattern significantly improved performance, because tagged nodes were difficult to predict

accurately.  For example, deciding on how probable the label "CITY_2" is depends on

whether a node with label "CITY_1" has already been predicted.  These labels are often in

cousin positions.

5.2.3 Similar Feature Elimination

We have already discussed the need to filter out those features which fire too few times

on the training data.  We do not want to enforce constraints on our model without first

considering the certainty with which the constraints are known.  Unfortunately, it is not

adequate to use the number of times a feature fires in the training data as the sole criterion

for deciding whether or not to keep it.  Even if every constraint is derived from a feature

that has been observed many times in the data, the interplay between these constraints

might implicitly impose additional constraints corresponding to features that are not

observed sufficiently [15].

Specifically, if we include two features which fire on exactly the same events with a

single exception,  we are implicitly including a feature which fires only on that exception.
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Even if the original features are seen very frequently, the feature which corresponds to their

difference will not be seen frequently enough.  Our solution to this problem is

straightforward.  We consider all pairs of features, and compare the set of events which

cause each to fire.  If the sets differ by less than the preset minimum number, we remove

the feature which fires less often.  This greedy approach will ensure that every constraint—

even those included implicitly — will be observed an adequate number of times in the

training data.  Unfortunately, this method may throw away more features than is strictly

necessary.

5.3 Experimental Results

The feature patterns in Figure 13 generated 1015 features in the feature set, after

removing features which fired less than five times in the training data, and eliminating

overlapping features.  The training data for the maximum entropy model consisted of the

same training and heldout data used for the initial distribution.  Ideally, this should be yet

another unused set of data, but the shortage of complete class A data items (including the

NLParse interpretation) has caused us to reuse the data.  The training and heldout data

together resulted in 63,532 events, while the test data had 7160 events.  Using the 4-gram

tree-based deleted interpolation model presented in section 4.2 as the initial distribution, the

maximum entropy training algorithm was run for 100 iterations, at which point the training

entropy was decreasing by only one percent of one percent.  The resulting test entropy was

14.1.

Seeing a one bit drop in entropy over the initial distribution was nice, but a little

disappointing.  At this point we thought that perhaps our initial distribution was just very

good.  To see the true value of the maximum entropy approach, we reran the experiment
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using the tree-based trigram deleted interpolation model, instead of the 4-gram.  The results

are given in Figure 14.  The relative result was considerably more impressive; the test

entropy drops from 21.5 to 14.1.  The maximum entropy smoothing brings the entropy

down to the same place, regardless of which of the two initial distributions is used.

It is interesting to see the relative progress of the maximum entropy training algorithm.

The training entropy  reaches half of its eventual improvement in the first two iterations,

and ninety percent within the first twenty.  Figure 15 is a graph of training entropy versus

iterations for the first 25 iterations of the training algorithm for each initial distribution.
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Training Heldout Test

Surface NLParse 12.6800 13.4784 15.9474

Flat tree, with parens 18.9160 18.7158 20.3842

Flat tree, without parens 11.5749 12.6873 15.6387

Tree Context Trigram 19.2082 20.1576 21.4704

Tree Context 4-gram 11.7567 13.5918 15.0037

Events 63532 7160

ME, Trigram Initial 11.8296 14.1056

ME, 4-gram Initial 10.8628 14.0814

Figure 14.  Comparative Entropies of Different Models
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As another way to compare the maximum entropy model with the NLParse trigram

model (the first model we built), we randomly generated a set of parse trees from the

maximum entropy distribution.  90% of the items generated were valid semantic trees (they

could be converted to valid NLParse items), as compared with the 58% of those generated

with the trigram model on surface NLParse.  In addition, half of the randomly generated

items could be found in the original training data.

After doing the original experiment, we experimented with a wide variety of different

feature sets (derived from adding or removing feature patterns), and the test entropy did not

vary significantly.  Lowering the threshold on minimum firing frequency significantly

increased the number of features, and resulted in a slight decrease in training entropy, but a

marked increase in test entropy.  This increase can be attributed to overtraining, causing an

inability to generalize to new data.  If we had another training set, we could have fine-tuned

the feature set, but to do so on the test data would invalidate the experiment.  By noticing

after the fact that changing the features does not significantly affect the model's

performance on the test data, we justify using all the training data for training the model,

rather than training the features.
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6 Frequency Model

After working with the training corpus for a while, we noticed a few peculiarities in

the ATIS data.  While 874 distinct trees can be found in the 3392 training items, the top

thirty most frequently occurring trees account for more than half of the training data!

Further, the top seven trees account for a third of the training data, and the top one tree

accounts for almost 15% — 491 out of 3392 items correspond to the some variation of the

question "what are all flights from CITY_1 to CITY_2 ?".  These facts weren't so obvious

before tagging and putting the data into semantic parse tree form, because the NLParse

does not include any kind of canonical ordering.  A list of the top seven most frequently

seen trees is given in appendix B.

None of the models presented so far explicitly takes the frequencies of entire trees into

account.  In fact, it seems probable that a language model which assigns every tree

observed in the training data a probability proportional to its observed frequency, and every

other tree some uniform probability, would do very well indeed.  An even better idea

would be to smooth the observed training distribution with the maximum entropy

distribution found in the previous section.  When T is the set of semantic parse trees in the

training data, and Ev is a function which maps trees to events, Equations 6.1, 6.2, and 6.3

define a model P on semantic parse trees.

F(t) =  
c(t)
|T |

(Eq 6.1)

M(t) =  
Q(x)
Z(x)

iλ if ( x )
i
∑e

x∈Ev(t )
∏ (Eq 6.2)
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P(t) =  λF(t) +  (1 − λ )M(t) (Eq 6.3)

6.1 Frequency Model Entropy

Since we already know a great deal about our training set, and about the maximum

entropy distribution, we can predict how well the smoothed model defined by Equation 6.3

is going to do, and use our prediction to test that our implementation is working correctly.

First, let R be the training set for F, S be the test set, and define

X = S ∩  R  Y = S – R n = |X| + |Y|

Next, define EF to be the average (per item) entropy of the training corpus with respect to

the distribution F, EP to be the average entropy of the test corpus with respect to P, and EM

to be the average entropy of Y with respect to M.  Note in particular that EM is taken with

respect to the difficult (new) items of the test set.  We now define EP as follows:

PE  =  − 1
n

log P(t)
t∈S
∑  =  − 1

n
log λF(t) +  (1- λ )M(t)[ ]

t∈S
∑

By separating S into two parts, those items which appear in both the training and test data,

and those items which are only seen in the test data (the test items which F will assign a

zero probability), we can continue as follows:

PE  =  − 1
n

log λF(t) +  (1- λ )M(t)[ ]
t∈X
∑  +  − 1

n
log (1- λ )M(t)[ ]

t∈Y
∑

At this point we notice that on the items which can be found in the training data, F will

predict a much higher probability than M, so we state the (close) inequality:

PE  ≤  − 1
n

log λF(t)[ ]
t∈X
∑  +  − 1

n
log (1- λ )M(t)[ ]

t∈Y
∑
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PE  ≤  − X

n
logλ +  

1
X

log F(t)
t∈X
∑









 +  − Y

n
log(1 − λ ) +  

1
Y

log M(t)
t∈Y
∑











By using the definitions  EM and EF, we  finally arrive at

PE  ≤  − X

n
logλ + FE[ ] +  − Y

n
log(1 − λ ) + ME[ ] (Eq 6.4)

6.2 Experimental Results

Again, due to lack of available data, we were forced to  train both the frequency model

and the maximum entropy model on the same data.  The frequency model was built from

3166 items, and the two distributions were smoothed together on the remaining 226

heldout items, using the Estimation Maximization algorithm.  Ideally we should be able to

smooth the two distributions using different heldout data than that which was used to

smooth the ME model's initial distribution.

The entropy of the training data is very low; only 7.7 bits per item.  This, coupled with

the fact that the training data's coverage of the heldout data is high (86%), led us to believe

that we would see a dramatic decrease in test entropy using the new model.  We hoped that

the frequency model component would allow the smoothed model to make accurate

predictions on a large percentage of the test data, and that the maximum entropy model

would do acceptably on those items not already seen.

The results were surprising: the test entropy had decreased, but by less than half of a

bit (as opposed to the two or three bits we expected), to 13.7.  Part of the reason was that

the training data's coverage of the test data was somewhat lower than expected — only

76% of the 376 test items had been seen in the training data.  The main implication,
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however, was that the maximum entropy model did very poorly on items which had never

been seen in the training data.  In fact, we were able to use Equation 6.4 to get a lower

bound on just how poorly the ME model did.  Using the experimentally determined values

of  λ  = .507,  n = 376,  |X | = 286,  |Y| = 90,  EF = 7.27, and  EP = 13.7, we find that

EM ≥ 30.0 bits!

When we went back and experimentally determined the entropy of the unseen test

items with respect to the maximum entropy distribution, we found that EM = 32.1 bits.  All

experimentally determined values are given in Figure 16.

Training Heldout Test

Items 3166 226 376

Unseen Items 0 31 90

M on unseen items 31.8182 32.0785

F on seen items 7.67379 6.28285 7.26727

P Entropy 8.11984 10.0565 13.6900

Figure 16.  Entropy Statistics of the Frequency Model
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7 Conclusions and Future Directions

7.1 Summary and Conclusions

Statistical models have been used successfully in numerous computer applications,

including translation, speech recognition, and parsing.  Our goal was to see whether

standard statistical techniques can be applied effectively to the ATIS task.  To that end, we

divided the task into five main parts, each of which can be attacked with statistical methods.

Figure 17 shows how the parts fit together in the final system.  The speech recognition

component attempts to generate a ranked list of best text transcriptions for a spoken input.

The language model and translation model components are for use by the decoder to decide

which intermediate language item is the most probable.  Theoretically, the decoder must

search through all possible intermediate language sentences to decide which is best.  In

practice, it uses a variation on the well-known stack decoding algorithm [22] from speech-

recognition to prune the search.

The translation model gives the probability of an English text sentence, given any

NLParse sentence supplied by the decoder.  The language model component produces a

probability distribution exclusively on the intermediate language.  The "tree-parser" and

"tree-unparser" sub-components deterministically translate the NLParse to and from a

semantic parse tree format, for use in the language model.  In this work, we have explored

various statistical language models and analyzed their performance on the ATIS2 task.  We

have concluded that performance (as measured by perplexity) can be improved by building

a language model using semantic parse trees built from the NLParse.
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Figure 17.  Complete IBM ATIS System

We started by building a deleted interpolation trigram model on the NLParse

translations of the English queries.  We used a "wall of bricks" bucketing scheme to tie

together model parameters associated with low certainty constraints.  The test entropy of

the NLParse deleted interpolation model was used as the benchmark for comparing the

other models built.

After deciding on a general structure for parsing the surface NLParse into semantic

trees, we evaluated two trigram models built from the prefix traversal of these trees.  The

first, which we forced to be able to predict a tree's structure in addition to its content, had a

test perplexity which was orders of magnitude worse than the surface NLParse trigram
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model.  The second, which we required only to assign a probability distribution to a tree's

content, beat the benchmark perplexity by just 19%.  It was clear that a model which

understood more about the source language was needed.

The next model we built was a generative deleted interpolation model on the semantic

parse trees, with a derivational order corresponding to a prefix traversal of the tree.  This

one was more clever about where to look for useful statistics on which to train.  The

context it considered contained the parent of each node, and the table in whose scope that

node existed.  The model was given considerably more a priori knowledge about which

trees it could assign zero probability to, allowing it to normalize over a much smaller set.

This model's performance was also very poor, which led us to believe that it needed to

look at more context for each node.  By adding each node's immediate sibling to the

available history, the test perplexity was reduced significantly — a 48% decrease from the

benchmark.

Next, we introduced the maximum entropy framework for building statistical language

models.  For the initial distribution of the maximum entropy models, we used the model

with the best test performance so far, the four-gram deleted interpolation model on the

semantic parse trees.  We included features which impose constraints on relevant statistics

which can be believed with a reasonable degree of certainty.  These include the four-gram,

trigram, and bigram constraints used in the initial distribution, in addition to several others

which we experimentally determined decrease the training perplexity.  The test entropy of

this model represented a 72% decrease from the benchmark perplexity, and a 47% decrease

from the initial distribution.

We then reran the experiment using the tree-based trigram model as the initial

distribution.  We discovered that after the same number of iterations of the maximum
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entropy training algorithm, the test entropy was the same as when the four-gram initial

distribution was used.  Apparently, the maximum entropy model has a lot of tolerance for

wide variations in its initial distribution.  We suspect, however, that it would not be

sufficient to use a uniform initial distribution, because both distributions we did use

allowed the maximum entropy model to predict a zero probability for certain events.  A

uniform initial distribution would force the model to predict a non-zero probability for

every possible event.

Finally, we realized that half of the training data is covered by less than thirty trees.

This suggested that if we had a model which was very good at predicting exactly the items

in the training data, the chances were good it would do very well on test data.  We therefore

built a model which assigned an entire item a probability based on its frequency in the

training data.  Smoothing this model with the maximum entropy model produced a 22%

decrease in perplexity over the maximum entropy model alone, which corresponds to a

79% reduction from the benchmark.

As a side product of this experiment, we discovered that the maximum entropy model

does terribly on items which it has never seen before.  Part of the reason for this is that

many of the items exclusive to the test set epitomize the idiosyncrasies of the NLParse

grammar.  It would be very, very difficult to build a language model which does well on

these items.  It looks as if this is yet another example of the 80-20 rule; 20% of the effort is

spent in achieving 80% of the goal, while 80% of the effort is necessary to go the rest of

the way.  A comprehensive table containing the performance of all of the language models

built in this paper is given in Figure 18.
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Training Heldout Test

Items 3000 392 376

Surface NLParse 12.6800 13.4784 15.9474

Flat tree, with parens 18.9160 18.7158 20.3842

Flat tree, without parens 11.5749 12.6873 15.6387

Tree Context Trigram 19.2082 20.1576 21.4704

Tree Context 4-gram 11.7567 13.5918 15.0037

Events 63532 7160

ME, Trigram Initial 11.8296 14.1056

ME, 4-gram Initial 10.8628 14.0814

Items 3166 226 376

Frequency Smoothed 8.11984 10.0565 13.6900

Figure 18.  Entropy of All Language Models

7.2 Future Directions

While the maximum entropy framework is very powerful, and it allows us to include a

wide variety of information known about a source language, there is a problem with the

immense amount of computational power necessary to run either the Generalized Iterative

Scaling algorithm [19] or the Improved Iterative Scaling algorithm [20].  More progress

needs to be made toward finding fast training algorithms for maximum entropy modelling.
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A number of things can be tried to improve the performance of the language models

presented in this paper.  Enhancing and expanding the feature language might allow the

inclusion of important constraints which we did not consider.  Allowing the disjunction and

conjunction of the current features to create new features is one possible enhancement.

Implementing the incremental feature selection proposed by Berger et al [15] would

probably be a better way of guaranteeing that only good constraints are included in the

model.  At present, our method of eliminating overlapping features seems a little

haphazard.

Another direction for potential improvement is by experimenting with different

derivational orders.  For example, if we predict how many children a node in the parse tree

has before we predict the children themselves (as opposed to predicting the stop node at the

end), then the model would be able to use that piece of information when predicting the

children.  It might also be useful to predict all of the children together, rather than one at a

time.  By predicting all of the children in tandem, a small amount of right context can be

used.

Rather than smoothing in the frequency model after training the maximum entropy

model, it would be more powerful to incorporate constraints from the frequency model into

the feature set itself.  For example, we could collect statistics on the occurrence of subtrees

in the training data, and use them in predicting new trees.  This might be especially helpful

in bringing down the model's entropy on trees which are only seen in the test data.  Even if

the entire tree has never been seen before, certain parts of the tree may very well have.

Other parts of the overall system might be enhanced by allowing them access to the

semantic parse tree format.  The system could be rearranged as shown in Figure 19, with

the decoder building semantic trees instead of flat NLParse.  The translation model could
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then be modified to report the probability of an alignment between the English and an entire

parse tree.  The translation model could then more easily take the NLParse structure

imposed by its grammar into consideration.

English

Speech

Speech

Recognition Decoder
English

Text

Semantic
Trees

Translation

Model

Tree
Unparser

Language

Model
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Trees

Back End
SQL

Figure 19.  Future IBM ATIS System
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Appendix

A Grammar Vocabularies

The following vocabularies are used as the node labels in the semantic parse tree grammar

presented in Figure 4.

Feature Operators

all any the-maximum the-minimum the-number-of

Comparison Operators

equal-to greater-than greater-than-or-equal-to between:comp
contains less-than less-than-or-equal-to

Table Names

aircraft
airlines
airport-services
airports
cities
class-of-services
code-descriptions

column-tables
compartment-classes
date-days
days
dual-carriers
equipment-sequences
fare-bases

fares
flight-fares
flight-legs
flight-stops
flights
food-services
ground-services

intervals
months
restrictions
states
table-tables
time-zones

Terminal Operators

NULL
abbreviated
arriving
associated-with:class
associated-with:

class-of-services
associated-with:

fare-bases
available-for:fare-bases
available-for:fares
available-on
available-on:days
belonging-to
charged-for

containing
containing:airport
containing:airports
containing:cities
containing:city
departing
equipped-with
equipping
flying-on
flying-on:days
for
for:flight-stops
for:flights
found-in

from
from:airport
from:airports
from:cities
from:city
having
having-prices-of
in:airport
in:airports
in:cities
in:city
leaving
leaving-in
located-in
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named
named:airline
named:city
named-a-string-

containing
numbered
of:class
offered-by
offering
offering:class
on
primarily-served-by
provided-by:airport
provided-by:airports
provided-for:airport
provided-for:airports
provided-for:cities
provided-for:city

provided-with:
airport-services

provided-with:
ground-services

providing
scheduled-for:

flight-stops
scheduled-for:flights
secondarily-served-by
served-by:airport
served-by:airlines
served-by:airports
served-on
serving:cities
serving:city
serving:flights
serving:food-services
serving:meal

stopping-in:airport
stopping-in:airports
stopping-in:cities
stopping-in:city
that-are-legs-for
that-are-stops-for
to
to:airport
to:airports
to:cities
to:city
with-arrivals-on
with-arriving:fares
with-arriving:flights
with-departing:fares
with-departing:flights
with-legs-that-are
with-scheduled

Terminal Names

advance_purchase
aircraft_code
aircraft_code_sequenc
aircraft_description
airline_code
airline_flight
airline_name
airport_code
airport_location
airport_name
application
arrival_airline
arrival_flight_number
arrival_time
basic_type
basis_days
begin_time
booking_class
capacity
city_code
city_name
class_description
class_type
code
column_description
column_name
compartment
connections
country_name

cruising_speed
day_name
day_number
days_code
departure_airline
departure_flight_num
departure_time
description
direction
discounted
dual_airline
dual_carrier
economy
end_time
engines
fare_airline
fare_basis_code
fare_id
features
flight_days
flight_id
flight_number
from_airport
ground_fare
heading
high_flight_number
hours_from_gmt
leg_flight
leg_number

length
low_flight_number
main_airline
manufacturer
maximum_stay
meal_code
meal_description
meal_number
miles_distant
min_connect_time
minimum_stay
minutes_distant
month_name
month_number
no_discounts
note
one_direction_cost
pay_load
period
premium
pressurized
propulsion
range_miles
rank
restriction_code
round_trip_cost
round_trip_required
saturday_stay_requird
season

service_name
state_code
state_name
stop_airport
stop_days
stop_number
stop_time
stopovers
table_description
table_name
time_elapsed
time_zone_code
time_zone_name
to_airport
transport_type
unit
weight
wide_body
wing_span
year
AIR_1
AIR_2
AIR_3
AIR_4
AIR_5
ARP_1
ARP_2
ARP_3
ARP_4
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ARP_5
CITY_1
CITY_2
CITY_3
CITY_4
CITY_5
CODE_1
CODE_2
CODE_3
CODE_4
CODE_5
DATE_1
DATE_2
DATE_3
DATE_4
DATE_5
DAY_1
DAY_2
DAY_3
DAY_4
DAY_5
MON_1
MON_2
MON_3
MON_4
MON_5
NUM_1
NUM_2
NUM_3
NUM_4
NUM_5
today-6
today-5
today-4
today-3
today-2
today-1
today+0
today+1
today+2
today+3
today+4
today+5
today+6
a
after

afternoon
airport
am
are
around
associated
at
available
bases
basis
before
belonging
between
breakfast
business_class
by
carriers
charged
cheap
cheapest
class
classes
coach
coach-class
coach-economy_class
code_descriptions
codes
column
columns
compartment_classes
connecting
cost
daily
date
day
dayses
descriptions
dinner
direct
dual
earliest
earliest-arriving
earliest-departing
early
early_afternoon
early_morning

early_evening
economy_class
entries
equipment
equipped
evening
examples
expensive
fare
first
first-class
flight
flight_legs
flying
food
found
ground
help
is
is-a-string
is-between
just
known
largest
late
late_afternoon
late_morning
late_evening
latest
latest-arriving
latest-departing
legs
located
lunch
maximum
mid_afternoon
mid_evening
mid_morning
midday
minimum
minimum_conct_time
modifiers
morning
most
most-expensive
named-a-string

night
no
nonstop
number
number-of
of
offered
one_direction
one_way
overnight
pm
prices
primarily
provided
query
round
round-trip
scheduled
secondarily
sequences
served
service
services
shortest
smallest
snack
stopping
stops
stopses
string
table
tables
than
that
thrift
thrift-class
thrift-economy_class
time
trip
unknown
whose
yes
zones



A Statistical Approach to Language Modelling for the ATIS Problem 69

B Top 7 Most Frequent Trees

from:city

CITY_1

and

to:city

CITY_2

flights

NULL

AIR_1

NLParse:  list American flights from Boston and to Denver 

English:  Please tell me which American flights fly to Denver 
               from Boston

and

from:city to:city

CITY_1 CITY_2

flights

flying-on

DAY_1

NLParse:  list flights from Boston and to Denver and flying on 
                 Monday

English:  Give me flights that leave on Monday for Denver 
                from Boston.

and

from:city to:city

CITY_1 CITY_2

flights
NLParse:  list flights from Boston and to Denver

English:  What are all flights from Boston to Denver ?
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and

from:city to:city

CITY_1 CITY_2

flights

stopping-in:city

CITY_3

NLParse:  list flights from Boston and to San Francisco and
                 stopping in Denver

English:  Can I see flights going from Boston to San Francisco
                with a stop in Denver?

and

provided-for:city

CITY_1

ground-services
NLParse:  list ground services provided for Washington

English:  Show me ground transportation in Washington.

from:city

CITY_1

and

to:city

CITY_2

flights

flying-on

DATE_1

NLParse:  list flights from Boston and to Dallas and flying
                 on  7/12/91

English:  I'd like to fly from Boston to Dallas on August
                twelfth

provided-for:city

CITY_1

and

ground-services

provided-for:airport

ARP_1

NLParse:  list ground services provided for BWI and
                 provided for Washington

English:  I'm interested in ground transportation between
               BWI and downtown Washington.
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