
Reducing Synchronization Overhead in

Parallel Simulation

by

Ulana Legedza

Technical Report MIT/LCS/TR-655

May 1995

c Massachusetts Institute of Technology 1995

This work was supported in part by the Advanced Research Projects Agency under Contract

N00014-94-1-0985, by grants from IBM and AT&T, and by an equipment grant from DEC.

Ulana Legedza was supported by a National Science Foundation Graduate Fellowship.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts 02139

Reducing Synchronization Overhead in Parallel Simulation

by

Ulana Legedza

Technical Report MIT/LCS/TR-655

Abstract

Synchronization is often the dominant cost in conservative parallel simulation, particu-

larly in simulations of parallel computers, in which low-latency simulated communication

requires frequent synchronization. This thesis presents local barriers and predictive

barrier scheduling, two techniques for reducing synchronization overhead in the simulation

of message-passing multicomputers. Local barriers use nearest-neighbor synchronization to re-

duce waiting time at synchronization points. Predictive barrier scheduling, a novel technique

which schedules synchronizations using both compile-time and runtime analysis, reduces the

frequency of synchronization operations. These techniques were evaluated by comparing their

performance to that of periodic global synchronization. Experiments show that local barriers

improve performance by up to 24% for communication-bound applications, while predictive bar-

rier scheduling improves performance by up to 65% for applications with long local computation

phases. Because the two techniques are complementary, I advocate a combined approach. This

work was done in the context of Parallel Proteus, a new parallel simulator of message-passing

multicomputers.

Keywords: parallel simulation, multiprocessor simulation, synchronization overhead.

This thesis was submitted to the Department of Electrical Engineering and Computer Sci-

ence in partial ful�llment of the requirements for the degree of Master of Science in Electrical

Engineering and Computer Science on May 1, 1995. This thesis was supervised by Professor

William E: Weihl.

Acknowledgments

I thank my advisor, Bill Weihl, for supervising my research. His enthusiasm for my work was

evident in the invaluable suggestions and insights he gave me. I also appreciate his careful and

thorough reading of my thesis drafts.

Special thanks to Andrew Myers, with whom I spent countless hours discussing synchro-

nization and parallel simulation. His questions and comments forced me to think harder about

my work, and improved the quality of my research as a result. His picky comments on my

thesis drafts were also very helpful.

I thank my sister, Anna Legedza, for taking time out from her own graduate studies to type

parts of my thesis. She also provided helpful comments on my writing style.

A number of other people deserve thanks for their help with this thesis: Eric Brewer's tech-

nical expertise, numerous ideas, and encouragement helped my thesis work progress smoothly.

He also provided Proteus, the simulator on which my work is based. Wilson Hsieh and Anthony

Joseph were very helpful in the early stages of my project. They patiently answered all of my

questions, and helped me sort through the confusion of running Proteus on itself. Pearl Tsai put

up with Parallel Proteus bugs, and discussed various parallel simulation issues with me. Steve

Keckler provided useful feedback on computer architecture and allowed me to use his computer

for experiments. Jose Robles helped me come up with an analytical performance model and

helped me understand and eliminate unsightly spikes in experimental speedup graphs.

I am grateful to all the members of the Parallel Software Group, including Kavita Bala, Carl

Waldspurger, Patrick Sobalvarro, Pearl Tsai, Anthony Joseph, and Wilson Hsieh, for creating

an enjoyable and intellectually stimulating environment in which to work.

Greg Klanderman has been a true friend to me throughout the last three years. I thank

him for his sense of humor, his willingness to listen, and lots of delicious dinners.

I thank my mother, Wira Legedza, for the love, support, and encouragement she has given

me throughout my academic career. Her wisdom and strength are a continual source of inspi-

ration for me.

Most of all, I am thankful for the abundant blessings God has given me.

5

6

Contents

1 Introduction 9

2 Parallel simulation overview 11

2.1 De�nitions : 11

2.2 Synchronization : 12

2.3 Performance Considerations : 13

3 Parallel Proteus Overview 15

3.1 Characteristics of the Simulated System : 15

3.2 Simulation Techniques : 16

3.2.1 Event-driven approach : 16

3.2.2 Direct Execution : 17

3.2.3 Thread Simulation : 17

3.2.4 Network Simulation : 18

3.2.5 Synchronization : 19

3.3 Applications : 20

3.3.1 SOR : 20

3.3.2 Radix Sort : 21

3.3.3 Simple : 22

3.4 Performance : 22

3.4.1 Large simulations : 23

3.4.2 Less accurate network simulation : 24

3.4.3 Accurate network simulation : 25

3.4.4 Discussion : 32

7

4 Description of synchronization techniques 35

4.1 Nearest Neighbor Synchronization : 35

4.1.1 Local Barrier : 35

4.1.2 Fine-grained Local Barrier : 36

4.2 Improving Lookahead : 37

4.2.1 Barrier Collapsing : 37

4.2.2 Predictive Barrier Scheduling : 38

5 Implementation of synchronization techniques 39

5.1 Local Barrier : 39

5.2 Barrier Collapsing : 40

5.3 Predictive Barrier Scheduling : 42

5.3.1 Computing Estimates : 42

5.3.2 Searching the Event Queue : 45

5.3.3 Summary : 46

6 Experiments and evaluation of synchronization techniques 47

6.1 Barrier Scheduling : 47

6.1.1 Overhead : 48

6.1.2 Barriers eliminated : 49

6.1.3 Performance Improvement : 51

6.2 Local Barriers : 53

6.2.1 Overhead : 53

6.2.2 Performance Improvement : 54

6.3 Discussion : 56

7 Related Work 58

7.1 Parallel Simulation Techniques : 58

7.2 Nearest Neighbor Synchronization : 59

7.3 Improving Lookahead : 60

7.4 Other Parallel Simulators of Parallel Computers : : : : : : : : : : : : : : : : : : 61

7.4.1 Wisconsin Wind Tunnel : 61

7.4.2 Parallel Tango Lite : 61

8

7.4.3 PSIMUL : 62

7.4.4 NWO-P : 62

7.5 Discussion : 62

8 Conclusions 64

A Accurate thread simulation in Parallel Proteus 66

9

Chapter 1

Introduction

Simulation technology is useful to both scientists and engineers. Natural scientists use simu-

lators to study the behavior of biological and physical systems. Engineers use simulators to

evaluate programs and designs. Traditionally, sequential simulators have been used for this

purpose. While they have the advantage of running on an individual's personal workstation,

sequential simulators tend to be slow and inadequate for detailed simulation of large systems.

First of all, many simulations are compute-intensive, either because the simulated system is

being modeled in a very detailed way or because the simulated system is very large. Second,

memory limitations of sequential computers limit the size of systems that can be simulated by

sequential simulators: a sequential computer can hold only a limited amount of low-latency

main memory.

Parallelism can be used to overcome the limitations of sequential simulation. The larger

computational resources and memory capacity it provides makes fast, detailed simulation of

large systems possible. However, despite its bene�ts, parallel simulation introduces some new

costs. The foremost of these is the overhead cost of synchronization. Synchronization is neces-

sary to ensure correctness in parallel simulation and must be performed at regular intervals. It

can often dominate simulator execution time. The problem of synchronization overhead is the

subject of this thesis.

Parallel simulation is particularly useful in the �eld of parallel computing. Because hard-

ware prototypes of parallel computer architectures are time-consuming to build and di�cult

to modify, software simulators are useful tools both in architecture design and in application

development. Parallelism is needed in simulation of multiprocessors in order to accommodate

10

large data requirements of simulated applications, large numbers of simulated processors, and

detailed simulation of the processors, memory system and network. Synchronization is a par-

ticular problem in such simulators because accurate simulation of the fast networks found in

parallel systems requires frequent synchronization. This requirement can be relaxed somewhat

by decreasing the accuracy of the simulation, but this is not always desirable or appropriate.

For example, accuracy is needed when modeling network contention, which, in turn, is useful in

algorithm development. Also, accuracy in network simulation is needed when using simulation

to test and evaluate the network or network interface.

This thesis describes local barriers and predictive barrier scheduling, two techniques for

reducing synchronization overhead in the simulation of message-passing multicomputers while

maintaining high accuracy in network simulation. Local barriers use nearest-neighbor synchro-

nization to reduce waiting time at synchronization points. Predictive barrier scheduling, a novel

technique which schedules synchronizations using both compile-time and runtime analysis, re-

duces the frequency of synchronization operations.

This thesis also reports on the design and implementation of Parallel Proteus, a parallel

simulator of message-passing multicomputers. It is based on the fast sequential simulator,

Proteus [BDCW91]. Like all sequential simulators, sequential Proteus is time- and space-

limited. It is adequate for simulating small and short applications running on machines not

larger than 512 nodes (more memory would help capacity but not speed). Large simulations

either take too long or run out of memory. Parallel Proteus overcomes these limitations but

encounters the problem of synchronization overhead mentioned above. This thesis describes

how local barriers and predictive barrier scheduling were incorporated into Parallel Proteus

and how e�ective they are in reducing synchronization overhead.

The following chapter overviews parallel simulation concepts and terminology, and discusses

the problem of synchronization overhead in more detail. Later chapters describe the design and

performance of Parallel Proteus, present and evaluate the local barrier and predictive barrier

scheduling techniques, and discuss related work.

11

Chapter 2

Parallel simulation overview

This chapter overviews parallel simulation concepts, explains the need for synchronization, and

discusses the factors that a�ect the performance of parallel simulators.

2.1 De�nitions

The research presented in this thesis focuses on discrete event simulation. This model assumes

that the system being simulated changes state only as a result of discrete, timestamped events.

An event's timestamp corresponds to the time at which it occurs in the simulated system

(simulated time). Sequential simulators hold pending events in a queue and execute them in

non-decreasing timestamp order.

In parallel discrete event simulation (PDES), the simulated system is divided into entities.

The simulator consists of many logical processes (LP's), each of which simulates one or more

entities using the discrete event model. The LP's are distributed among the host processors

executing the simulator. Each LP processes the events relating to the entities it is simulating

in non-decreasing timestamp order. An LP is said to be at simulated time t when it is about

to process an event with timestamp t. The LP's do not share any global data structures,

but communicate via timestamped event transfer messages. Because of communication or

connections between components of the simulated system, LP's can generate events that need

to be executed by other LP's. These events are transferred from one LP to another via event

transfer messages.

In Parallel Proteus, each processor of the simulated or target computer is an entity. Each

processor of the host machine (CM5) runs an LP that simulates one or more of these target

12

processors. When one target processor sends a message to another target processor, the LP

simulating the �rst processor sends an event to the LP simulating the second processor.

2.2 Synchronization

The main problem in PDES is handling causality errors. A causality error occurs when one

entity tries to a�ect another entity's past. For example, one LP can simulate a processor that

sends a message at simulated time t to another target processor (simulated by a second LP).

In the simulated system, this message is scheduled to arrive at the destination target processor

at time t + q. This message causes an event with timestamp t + q to be sent from the �rst

LP to the second. A causality error occurs if simulated time on the second LP has exceeded t

+ q when it receives this event.

In optimistic PDES, the problem of causality errors is ignored until one occurs. These

errors are detected, and rollback is used to correct them. In conservative PDES, causality

errors are avoided. Synchronization is used to ensure that when an LP processes an event with

timestamp t, it will never receive an event with timestamp smaller than t from another LP.

The overhead cost of synchronization is one reason for the development of optimistic simulation;

however, optimistic systems incur large overhead costs for checkpointing and rollbacks. This

work focuses on conservative PDES.

How often synchronization is needed depends on the simulated system. If the minimum

time for a message to travel between two simulated entities A and B is equal to q cycles, then

the two LP's simulating them on host processors X and Y, respectively, must synchronize at

least every q cycles of simulated time. Thus, the simulated time on X will always stay within q

cycles of simulated time on Y and no causality errors will occur. The minimum value of q for

the entire system is called the synchronization time quantum Q. The term quantum also signi�es

the period of time between synchronizations during which simulation work is done.

Periodic Global Barriers

The simplest way to perform the necessary synchronization is with a global barrier executed

every Q cycles. This technique requires that, upon reaching a synchronization point, each

host processor wait for all others to reach the synchronization point and for all event transfer

messages to arrive at their destinations before continuing with the simulation. Some parallel

13

machines (such as the Thinking Machines' CM5 and Cray's T3D) provide hardware support for

global barrier synchronization. This makes the periodic global barrier approach fairly e�cient

and easy to implement. However, this method su�ers from a potential load imbalance problem.

At the end of each quantum, all host processors are forced to wait for the processor doing the

most work to simulate that quantum. This waiting time may add non-negligible overhead to

each synchronization.

2.3 Performance Considerations

The goal of using parallelism in simulation is twofold. First, the larger amount of memory

on a parallel machine makes it possible to simulate very large systems with large memory

requirements. Second, the numerous processors of a parallel machine promise a substantial

improvement in performance over sequential simulation. However, as in all parallel programs,

there are several types of overhead that can limit the speedup. The following equation for

speedup illustrates this fact (Ph equals the number of host processors):

Speedup =
runtime of sequential simulator (= Rs)

runtime of parallel simulator

=
Rs

Rs

Ph
+ event transfer time + synchronization time

:

One such type of overhead is event transfer overhead, the time required to transfer events from

one host processor to another. In general, event transfer overhead is proportional to the amount

of communication in the simulated system. It cannot be avoided because event transfer messages

are needed to simulate communication in the simulated system. Systems which perform an

inordinate amount of communication generate a large amount of event transfer overhead which

may outweigh the bene�ts of parallelism. Clearly, such systems are better suited for sequential

simulation.

The second type is synchronization overhead. The percentage of simulation runtime spent

on synchronization depends on two synchronization-related factors (frequency and duration)

and on two simulation-related factors (amount of detail and number of simulated entities).

The frequency of synchronizations is controlled by the synchronization time quantum Q. The

duration of a synchronization depends on the time it takes to execute the synchronization

operation and on the time spent waiting at the synchronization point. Clearly, the lengthier

14

and/or more frequent the synchronizations, the larger the synchronization overhead. However,

if the simulation is very detailed, then the time spent synchronizing may be very small compared

to the amount of simulation work done, even if the synchronizations are very frequent. In this

case, synchronization overhead is not much of a problem. Another situation in which simulation

work outweighs synchronization overhead occurs when the simulated system consists of a large

number of entities. This happens because each host processor (LP) is responsible for a larger

number of entities, and so must do more work between synchronizations. In general, given a

�xed number of host processors, speedup increases with the number of simulated entities.

Synchronization overhead is often a problem in simulators of parallel computers with fast

networks. Accurate network simulation usually requires the value of Q to be very small and,

consequently, synchronization to be very frequent. Low overhead techniques for simulating

the behavior of each target processor cause synchronization overhead to outweigh the time

spent doing simulation work. Large memory requirements for each target processor prevent

the simulation of a large number of target processors by each host processor. Consequently,

synchronization overhead dominates simulation time. Parallel Proteus is such a simulator.

It simulates message-passing multicomputers in parallel. Its level of detail and Q are small

enough so that synchronization overhead becomes the dominant cost in simulations. Q could be

increased (frequency decreased) by decreasing accuracy, but this is undesirable. Instead, this

work focuses on how to reduce the synchronization overhead while maintaining a high degree

of accuracy.

The following chapter describes Parallel Proteus in greater detail and documents its syn-

chronization overhead. Later chapters present and evaluate techniques which I have developed

to improve performance both by reducing the frequency of synchronization and by speeding up

each synchronization operation.

15

Chapter 3

Parallel Proteus Overview

This research focuses on simulation of large-scale multiprocessors. Such simulation technology

is useful to hardware designers, algorithm developers, and network interface designers. Paral-

lelism allows accurate simulation of realistic data sizes, long computations, fast networks, and

machines with thousands of processors.

This chapter describes the parallel simulator I developed, Parallel Proteus. The follow-

ing sections outline the characteristics of the machines it simulates, techniques used by the

simulator, applications used in experiments, and initial performance results.

3.1 Characteristics of the Simulated System

Parallel Proteus simulates message-passing MIMD multiprocessors which are made up of in-

dependent processor nodes connected by an interconnection network. Each processor node

consists of a processor, memory, and a network chip. The network chip provides the processor

with access to the network, and acts as a router in the network. Each processor runs one or

more application threads which communicate with threads on other processors via active mes-

sages [vECGS92] (or inter-processor interrupts). An active message is a packet of data which

travels through the network and causes an asynchronous interrupt upon reception at the target

processor. The interrupt triggers the execution of a message handler routine in the context of

the thread that was executing on the target processor when the message arrived. The e�ects of

incoming messages can be delayed by temporarily disabling interrupt/message handling on a

processor. Applications, which are written in C, call library routines in order to send messages,

check for interrupts, turn interrupts on and o�, spin on synchronization variables, and manage

16

threads.

3.2 Simulation Techniques

Parallel Proteus is a conservative parallel discrete event simulator. As its name suggests, it is a

parallel version of Proteus, the sequential simulator developed at MIT by Brewer and Dellarocas

[BDCW91]. Parallel Proteus runs on a Thinking Machines' CM5. This section describes some

of the techniques used in Parallel Proteus to provide accurate simulation. Some of these are

very similar to or the same as those in sequential Proteus, while others are unique to the parallel

version. The similarities and di�erences will be noted.

3.2.1 Event-driven approach

While sequential Proteus runs on a single processor and has a single event queue, Parallel

Proteus runs on an arbitrary number of host processors. Each of these processors manages an

event queue for the target processors assigned to it. Each event is marked with a timestamp

indicating the time in the simulated system (simulated time) at which the event takes place. The

events on each queue are sorted according to timestamp and are processed in non-decreasing

timestamp order.

Events are of the following types: thread execution, network, synchronization, and comple-

tion checking. Thread execution events involve simulating the execution of application code

on the simulated machine. Network events are created when application code sends messages.

Processing a network event usually involves scheduling another network event on a di�erent

host processor, one that is responsible for a part of the simulated network through which the

message must travel. When this happens, this network event is sent over to the other host pro-

cessor via an event transfer message (implemented using the CMMD/CMAML block transfer

mechanism). There, it is inserted into that processor's event queue. Synchronization events

ensure that such network events arrive on time.

The simulation ends when all of the event queues on all host processors are empty at the

same time and no event transfer messages are in transit. Completion checking events are

scheduled in order to help each individual host processor detect this condition. Completion

checks synchronize all of the LP's (with a Strata CM5 global OR reduction) to determine the

status of each event queue: empty or not empty. If all LP's have run out of events to process,

17

the simulation ends. Otherwise, the simulation continues. Completion checking events are

scheduled every 2000 cycles of simulated time. This is not often enough to cause a performance

problem.

3.2.2 Direct Execution

Like Proteus, Parallel Proteus uses direct execution to provide low overhead simulation of most

application instructions. Application instructions are of two types: local and non-local. Local

instructions are those that a�ect only data local to the simulated processor on which they

are executed. Non-local operations are those that potentially interact with other parts of the

simulated system. Examples include message sends, checks for interrupts, and access to data

shared by application threads and message handlers. Synchronization variables are an example

of such shared data.

Special routines simulate the functionality and concomitant cost of non-local operations.

Local instructions, which usually account for most of the instructions in application code,

are executed directly. In order to correctly account for execution time of local instructions,

application code is augmented with cycle-counting instructions. This is done with the Proteus

utility augment [Bre92]. Augment reads the assembly language version of the application, divides

it into basic blocks, and generates augmented assembly language code. Then, the augmented

code is compiled into the simulator and run when thread events are processed.

3.2.3 Thread Simulation

Like Proteus, Parallel Proteus simulates a thread executing on a simulated processor at time t

by allowing the thread to execute up to 1000 local instructions at once without interruption.

This 1000 cycle limit is called the simulator quantum. While this technique allows target

processors to drift apart in time by more than the value of the synchronization time quantum

Q, it does not necessarily introduce any inaccuracy into the simulation.1 The reason is that

local instructions can be performed at any time and in any order as long as non-local operations

are performed at the correct time and in the correct order. To ensure the correct timing and

ordering of non-local operations, a thread is interrupted as soon as it encounters a non-local

operation. Control then returns to the simulator and the non-local operation is delayed until

1Actually, the 1000 cycle simulator quantum does produce inaccuracy in sequential Proteus, but this has been
�xed in Parallel Proteus.

18

the simulator has processed all earlier non-local events. This technique allows the simulator

to achieve good performance without sacri�cing accuracy. (See appendix A for a detailed

discussion of the accuracy of thread simulation in Parallel Proteus).

3.2.4 Network Simulation

Parallel Proteus supports both accurate and less accurate network simulation. The accurate

version simulates the progress of each packet through the interconnection network (a k-ary

n-cube network in this work) hop by hop. At each hop on its path through the simulated

network, a packet incurs a minimum delay of two cycles of simulated time (1 cycle for wire

delay, 1 cycle for switch delay). When necessary, additional delay is incurred for channel

contention. Packets are routed using virtual cut-through routing with in�nite bu�ers. This

technique allows simulation of network contention, including hot spots.

When packets move from node to node in the simulated network, the network state of each

node in the packet's path must be checked. Because these nodes are likely to be simulated

on other host processors, network events must travel from node to node in the host machine

as well. In accurate simulation, a network event on host processor A with timestamp t can

generate a network event for host processor B with timestamp t + 2 (due to the two cycle

minimum network delay). Therefore, the synchronization time quantum Q is equal to two

cycles of simulated time. Between synchronizations, then, the simulator does only two simulated

cycles of work per target processor { a certain performance hit. My research aims to reduce

the overhead cost of this synchronization while maintaining the same degree of accuracy.

As an alternative to accurate simulation, Parallel Proteus also provides very fast, but less

accurate, network simulation using the constant delay model. All packets, regardless of source,

destination, or network tra�c on the simulated network, incur a total network delay of 100

cycles. This model, therefore, does not account for network contention. It avoids checking the

network state of all intermediate nodes and increases the synchronization time quantum Q up to

100 cycles of simulated time. As a result, less accurate simulation in Parallel Proteus requires

50 times fewer synchronizations than the hop by hop model. This technique is also used by the

Wisconsin Wind Tunnel parallel simulator [RHL+93].

19

3.2.5 Synchronization

To avoid causality errors in Parallel Proteus, host processors are synchronized with periodic

global barriers. Each global barrier ensures that all host processors have reached the same

point in simulated time and that all event transfer messages generated in the last quantum

have been received by their destination processors. To this end, global barrier synchronization

events are scheduled on each processor at identical points in simulated time. Upon reaching a

synchronization event, a processor enters into a global reduction operation, which returns only

after all other host processors have entered into it as well. However, all of the host processors

may reach the barrier before all of the event transfer messages have arrived at their destinations.

To ensure that these messages have been received by the end of a barrier, each host processor

keeps track of the total messages it has sent and received during the last quantum. Each

processor then computes the di�erence between these two values, and contributes this di�erence

to a global addition. If this global addition returns any value other than zero, then the network

is not yet empty. Each processor repeatedly polls the network and enters global additions until

a value of zero is returned. At that point, the network is empty, all host processors have reached

the barrier, all event transfer messages have arrived. Then, all processors can safely move on to

simulate the next quantum. The following pseudocode illustrates how periodic global barriers

are implemented in Parallel Proteus:

DO

Poll Network;

di�erence = msgs sent - msgs received;

result = Strata Global Add(di�erence);

WHILE (result != 0);

Implemented using Strata CM5 control network reduction functions [BB94], each global

synchronization takes 150 cycles (1 cycle = 30 nanoseconds) for each global reduction performed

(usually 1 or 2), plus waiting time.

As in described in the previous section, the synchronization time quantum Q for the networks

Parallel Proteus simulates is equal to two cycles of simulated time. Therefore, synchronization

events are scheduled every two cycles. When the less accurate network simulation module is

20

used, synchronizations are scheduled only every one hundred cycles.

3.3 Applications

The applications considered in this study are SOR (successive over-relaxation), parallel radix

sort, and simple (a synthetic application).

3.3.1 SOR

SOR is a classic iterative method for solving systems of linear equations of the form

Ax = b. For systems of linear equations where A is a dense matrix, this algorithm is inher-

ently sequential and therefore does not parallelize well.

However, when the matrix A is obtained from the discretization of a partial di�erential

equation, it is sparse in such a way as to make SOR parallelize quite well. In particular, each

iteration of the algorithm involves updating each point in a grid of points by performing a

relaxation function on each point. The relaxation function requires only the value of the point

to be updated and the values of the points adjacent to it in the grid. Subblocks of this grid are

distributed among the processors of the parallel machine. During each iteration each processor

performs the relaxation function on the grid points assigned to it. For points on the boundaries

of subblocks, this requires a processor to obtain the values of some grid points assigned to other

processors. Communication is needed for this. Each iteration of the algorithm requires each

processor to perform the following steps:

1. send border values to processors that need them

2. compute relaxation function on interior grid points

3. wait until all necessary border values have been received from other processors

4. compute relaxation function on border points.

A more detailed description can be found in [BT].

I used grid sizes of 211 entries to 220 entries, and up to 625 target processors. I set the

algorithm to perform 10 iterations. This application alternates between long communication

phases and long computation phases.

21

3.3.2 Radix Sort

The second application I used is a parallel radix sort that uses a counting sort as the intermediate

stable sort. This algorithm sorts d-digit radix r numbers in d passes of the counting sort. Pass

i sorts the numbers on digit i. The numbers to be sorted are distributed evenly among the

processors. Each pass (on digit i) consists of 3 phases: a counting phase, a scanning phase, and

a routing phase.

The counting phase involves local computation only. Each processor executes the following

algorithm (for pass i):

FOR j = 0 to r-1

count[j] = 0

END

FOREACH number n in processor's data set

x = ith digit of n

count[x] = count[x] + 1

ENDFOR

This algorithm generates counts for every possible value of a digit (x ranges from 0 to r - 1).

Next, in the scanning phase, each processor enters into r parallel pre�x addition scans,

contributing count[j] to the jth scan. Scan j returns to processor k the position in the global

array of data of the �rst number in processor k's array of data whose ith digit equals j. From

this information, processor k can �gure out the position of its other numbers whose ith digit

equals j; they come in order right after the �rst one (because it's a stable sort). From a position

in the global array a processor can easily determine which processor and in which position on

that processor each data point belongs.

In the routing phase, each processor sends its data points to their new locations (just

determined by the scanning phase).

This application has a short local computation phase in the count phase, and then does

a great deal of communication in the scanning and routing phases. I used 2-digit radix-64

numbers, requiring 2 passes and 64 scans per pass. 8192 numbers were assigned to each target

processor and 64 to 1024 processors were simulated.

22

3.3.3 Simple

For some experiments, I used a synthetic application called simple. This application has char-

acteristics similar to those of parallel iterative algorithms like SOR. Simple computes for 10

iterations, each involving a computation phase and a communication phase. In the computa-

tion phase, each target processor computes for 30000 cycles. In the communication phase, each

target processor sends and receives 10 messages.

Because of its minimal memory requirements and desirable scaling properties, this applica-

tion is invaluable for demonstrating the performance of Parallel Proteus. In order to observe a

full range of performance data, it is necessary to measure the speedup of Parallel Proteus in the

case of a large number of target processors. This requires sequential Proteus performance data.

However, the memory requirements of radix and SOR limit the number of processors that can

be simulated on sequential Proteus. It was possible to simulate simple running on many target

processors because it takes up very little memory. Therefore, speedup could be measured for

the case of many target processors.

3.4 Performance

In order to evaluate the performance of Parallel Proteus, I ran experiments on 32 and 128-node

CM5 partitions. Each CM5 node is a 33 MHz Sparc processor with 32 megabytes of RAM and

no virtual memory. Speedup was measured by comparing the performance of Parallel Proteus

with that of sequential Proteus running on a 36 MHz Sparc10-30 processor with 64 megabytes

of RAM. By running a series of di�erent sequential programs both on the Sparc10 and on

individual CM5 nodes, I determined that programs ran approximately twice as fast on the

Sparc10 as on a CM5 node. Therefore, in order to make a fair comparison of the performance

of Parallel Proteus with sequential Proteus, I scaled the runtimes obtained on the Sparc10 by

a factor of two.

The memory limitations of the Sparc10 prevented me from obtaining measurements of the

sequential runtimes of large simulations (those involving a large number of target processors

and/or a large data set). Therefore, some of the sequential runtimes used for speedup com-

putations were obtained by extrapolating from the sequential runtimes of smaller simulations

of the same application. The extrapolated values are very conservative estimates of the actual

sequential runtimes of these large simulations because they do not account for the amount of

23

time that would be spent in paging activity.

In order to get accurate timings and decrease variability, CM5 experiments were run in

\dedicated" mode. This means that timesharing is turned o�, and each application runs to

completion without being interrupted to run other applications. The only source of variability,

therefore, is in the routing of messages through the CM5 host network. In practice, this

variability was very small. Each CM5 experiment was run 3 times. The data presented in

this chapter (and in chapter 6) are averages (X) of three timings obtained in these runs. The

standard deviations (�) were also computed. For all of the experiments, �=X was � 4%.

The following sections describe three aspects of Parallel Proteus performance:

1. e�ective simulation of realistic problem sizes;

2. performance under the less accurate network model; and

3. performance under the accurate network model.

Because the question of interest is how to provide fast, accurate simulation, emphasis will be

placed on the performance of the accurate model.

3.4.1 Large simulations

The purpose of using parallelism in simulation is not only to speed up simulation but also to

simulate larger systems and data sizes than can be done on uniprocessors. A uniprocessor,

after all, can hold only a limited amount of main memory. While this limit can be large and

is growing, there will always be problem sizes which require more memory than is available.

Also, in most general-purpose computing environments, it is often more cost-e�ective to spread

a large amount of memory over many processors than to put a very large amount of memory

on one processor. In both these cases of uniprocessor memory limitations, parallelism can be

used to accommodate large memory requirements; a parallel system with P processors can

have P times more memory than a uniprocessor. In this section, I compare the capacity of

the present CM5 implementation of Parallel Proteus with that of sequential Proteus running

on a Sparc 10. While both the Sparc 10 uniprocessor and the CM5 processors were equipped

with only relatively small amounts of main memory, the comparison demonstrates the bene�t

of scalability that parallel simulation provides.

The following comparison is not completely fair to Parallel Proteus because the uniprocessor

running sequential Proteus has 64 megabytes of RAM and virtual memory support, while each

24

0 500 1000 1500 2000 2500

Number of target processors

0

5

10

15

Sp
ee

du
p

Figure 3-1: Less accurate network simulation. Speedup under constant delay network

model (delay = 100 cycles) for simple, 32 host nodes.

processor of the CM5 has but 32 megabytes of RAM and no virtual memory support. Despite

these limitations, however, Parallel Proteus is indeed able to simulate larger systems (without

running out of memory) than can sequential Proteus. (While sequential Proteus runs extremely

slowly when simulating large systems and data sets because of virtual memory thrashing, I still

consider it \able" to simulate these sizes as long as it does not completely run out of memory).

The Sparc 10 processor used for sequential experiments can simulate up to 1600 target

processors running simple, and up to 512 target processors running SOR on a 1024 x 1024 grid

(but with a lot of paging activity). Parallel Proteus does much better. Running on 32 host

processors, Parallel Proteus can simulate up to 8192 target processors running simple and up

to 625 target processors running SOR on a 1024 x 1024 grid. Also, Parallel Proteus running

on 32 host processors can comfortably simulate 64 target processors running SOR on a 2048 x

2048 grid, a con�guration too large for sequential Proteus. Virtual memory support and more

RAM on each node would increase the capacity of Parallel Proteus.

3.4.2 Less accurate network simulation

This section presents performance results for Parallel Proteus using the constant delay

25

0 200 400 600

Number of target processors

0

5

10

15

Sp
ee

du
p

Figure 3-2: Less accurate network simulation. Speedup under constant delay network

model (delay = 100 cycles) for SOR, 64 x 64 grid size, 32 host nodes.

network model and periodic global barrier synchronization. The performance metric used is

speedup, which indicates how much better Parallel Proteus performs compared to sequential

Proteus. The graphs in �gures 3-1 and 3-2 illustrate that speedup increases very quickly with the

number of processors being simulated. The speedup is greater than 15 for 625 target processors

in simple and for 100 target processors in SOR. (SOR's speedup curve is not as smooth as

simple's because the simulation work required for SOR does not scale as well with the number

of target processors). In these applications, synchronization overhead accounted for 5% to 65%

of total simulator runtime. As will be shown in the next section, this is small compared to the

synchronization overhead (70% to 90%) observed under accurate network simulation, where

synchronization is more frequent. This di�erence in synchronization overhead is the reason

why the simulator performs better under the less accurate, constant delay network model.

3.4.3 Accurate network simulation

This section describes the performance of Parallel Proteus using the exact network model and

periodic global barrier synchronization. Speedup, simulation slowdown, and synchronization

26

0 2000 4000 6000

Number of target processors

0

5

10

15

Sp
ee

du
p

Figure 3-3: Accurate network simulation. Speedup vs. number of target processors for

simple, 32 host nodes.

overhead were measured. The data show that performance is much worse than that for inac-

curate simulation due to the very frequent synchronization required for accurate simulation.

Although the synchronization overhead can be amortized over many target processors, realistic

data sizes often preclude the simulation of a large number of target processors.

Speedup

The data show Parallel Proteus achieves greater speedups when simulating a large number

of target processors, as expected. With a large number of simulated processors, more work

is done between synchronization operations and synchronization thus accounts for a smaller

percentage of overall runtime. This results in better performance. Overall, however, speedup

under accurate network simulation is much worse than the speedup achieved under less accurate

network simulation.

Figures 3-3 and 3-4 show speedup curves for simple for 32 and 128 host processors, re-

spectively. Both graphs show speedups increase with the number of target processors being

simulated, with the highest speedup achieved when each host processor simulates about 128

target processors. In both graphs, the highest achieved speedup is about 50% of the maximum

27

0 5000 10000 15000

Number of target processors

0

20

40

60

Sp
ee

du
p

Figure 3-4: Accurate network simulation. Speedup vs. number of target processors for

simple, 128 host nodes.

possible speedup (maximum speedup = number of host processors).

The failure to achieve more than 50% of the maximum speedup is primarily due to the

cost of enqueueing events. This cost is higher in Parallel Proteus than in sequential Proteus

because the parallel simulator must do more work to achieve determinism and repeatability.

Parallel Proteus carefully orders events with identical timestamps in order to overcome the non-

determinism introduced by the host machine's network. The time it takes to do this depends

partly on the number of events in the queue. When there are more target processors, the

number of events in each host processor's queue increases. Consequently, the time to enqueue

an event increases, as does the percentage of total runtime spent enqueueing events. This

increase in enqueueing cost limits the speedup that can be achieved with a large number of

target processors. However, this speedup remains high compared to the speedup for a small

number of target processors.

The di�erence between the performance achieved under accurate network simulation and

that achieved under less accurate network simulation can be observed by comparing �gures 3-1

and 3-3. Figure 3-3 shows that in the case of 32 host processors simple running on 625 target

processors only achieves a speedup of 6. This is small compared to 16, the speedup achieved in

the same case under the constant delay model. In accurate network simulation, speedup does

28

0 50 100 150 200 250

Number of target processors

0

2

4

6

Sp
ee

du
p

Figure 3-5: Accurate network simulation. Speedup vs. number of target processors for

SOR, 1024 x 1024 grid size, 32 host nodes.

not reach 15 until 6400 target processors are simulated.

The speedup graphs for SOR and radix can be seen in �gures 3-5 and 3-6. These graphs

also show speedup increasing with the number of target processors, but the speedups achieved

are not nearly as high as those in simple. This is due to two factors. The �rst factor is large

memory requirements. Both SOR and radix consume a signi�cant amount of memory in order

to store their large data sets. Radix also requires a large amount of memory in order to store

the state associated with its numerous threads. Because these large memory requirements

preclude the simulation of a large number of target processors, synchronization overhead still

dominates overall runtime. The second factor is the larger percentage of total runtime spent

transporting the event transfer messages caused by the large amounts of communication in

radix (in particular) and SOR.

Again, as in simple, speedup under accurate network simulation is not as high as it is under

the constant delay model. Although the data are for di�erent grid sizes, comparing �gures

3-5 and 3-2 shows that under less accurate network simulation, SOR on 256 target processors

achieves a speedup of 15, while under accurate network simulation, it achieves a speedup of

only 6.

29

0 100 200 300 400 500

Number of target processors

0

1

2

3

Sp
ee

du
p

Figure 3-6: Accurate network simulation. Speedup vs. number of target processors for

radix, 8192 numbers per target processor, 32 host nodes.

Slowdown

Simulation slowdown measures how much slower the simulator is than the simulated system.

It quanti�es the e�ciency of the simulator - the lower the slowdown, the higher the e�ciency.

There are several ways to measure slowdown.

The �rst measure is absolute slowdown, the ratio of the time it takes to run a program on

the simulator to the time it takes to run on a real machine:

absolute slowdown =
runtime of Parallel Proteus in cycles

number of simulated cycles
:

While absolute slowdown indicates how much slower the simulator is than the simulated system,

it does not take into account the discrepancy between the number of host and target processors.

Therefore, it is not a fair measure of the e�ciency of the simulator.

Host node slowdown per target processor is a better measure of parallel simulator e�ciency,

taking into account both the number of simulated entities and the number of host processors.

It measures the e�ciency of each individual host processor in a parallel simulator. It depends

not only on the number of simulated processors or on the number of host processors, but on

the load assigned to a host processor (the number of target processors per host processor). As

seen in the previous section, Parallel Proteus performs better with larger loads. The slowdown

30

0
2000

4000
6000

8000

N
um

ber of target processors

0

100

200

300

400

500

Host node slowdown per target processor

F
ig
u
re

3
-7
:
S
lo
w
d
o
w
n
.
H
o
st

n
o
d
e
slow

d
ow

n
p
er

ta
rg
et

p
ro
cesso

r
v
s.

n
u
m
b
er

o
f
ta
rg
et

p
ro
-

cesso
rs

fo
r
sim

p
le,

3
2
h
o
st

n
o
d
es.

0
200

400
600

N
um

ber of target processors

0

100

200

300

400

500

Host node slowdown per target processor

F
ig
u
re

3
-8
:
S
lo
w
d
o
w
n
.
H
o
st

n
o
d
e
slow

d
ow

n
p
er

ta
rg
et

p
ro
cesso

r
v
s.

n
u
m
b
er

o
f
ta
rg
et

p
ro
-

cesso
rs

fo
r
S
O
R
,
1
0
2
4
x
1
0
2
4
g
rid

size,
3
2
h
o
st

n
o
d
es.

3
1

0
100

200
300

400
500

N
um

ber of target processors

0

500

1000

1500

2000

2500

Host node slowdown per target processor

F
ig
u
re

3
-9
:
S
lo
w
d
o
w
n
.
H
o
st

n
o
d
e
slow

d
ow

n
p
er

ta
rg
et

p
ro
cesso

r
v
s.

n
u
m
b
er

o
f
ta
rg
et

p
ro
-

cesso
rs

fo
r
ra
d
ix,

8
1
9
2
n
u
m
b
ers

p
er

ta
rg
et

p
ro
cesso

r,
3
2
h
o
st

n
o
d
es.

is
ex
p
ected

,
th
erefo

re,
to

b
e
low

er
fo
r
la
rg
er

lo
a
d
s.

H
o
st

n
o
d
e
slo

w
d
o
w
n
p
e
r
ta
rg
e
t
p
ro
ce
sso

r
is

ca
lcu

la
ted

a
s
fo
llow

s:

h
o
st
n
o
d
e
slo

w
d
o
w
n
p
e
r
sim

p
ro
ce
sso

r
=

ru
n
tim

e
o
f
P
a
ra
lle
l
P
ro
te
u
s
in

c
y
c
le
s

n
u
m
be
r
o
f
sim

u
la
ted

c
y
c
le
s
�

n
u
m
be
r
o
f
s
im

u
la
ted

p
ro
ce
s
s
o
r
s

n
u
m
be
r
o
f
h
o
s
t
p
ro
ce
s
s
o
r
s

:

F
ig
u
re

3
-7

sh
ow

s
th
e
h
o
st
n
o
d
e
slow

d
ow

n
p
er

ta
rg
et

p
ro
cesso

r
fo
r
sim

p
le.

A
s
ex
p
ected

,
th
e

slow
d
ow

n
d
ecrea

ses
a
s
th
e
n
u
m
b
er

o
f
ta
rg
et

p
ro
cesso

rs
in
crea

ses.
A
g
a
in
,
th
is
h
a
p
p
en
s
b
eca

u
se

th
e
sy
n
ch
ro
n
iza

tio
n
ov
erh

ea
d
is
a
m
o
rtized

aw
ay.

S
O
R
a
n
d
ra
d
ix

ex
h
ib
it
sim

ila
r
b
eh
av
io
r
(see

�
g
u
res

3
-8
a
n
d
3
-9
).
S
in
ce

th
e
n
ecessa

ry
sim

u
la
tio

n
w
o
rk

d
o
es

n
o
t
sca

le
a
s
w
ell

w
ith

th
e
n
u
m
b
er

o
f
ta
rg
et
p
ro
cesso

rs
a
s
it
d
o
es

in
sim

p
le,

th
ese

g
ra
p
h
s
a
re

less
sm

o
o
th
.
R
a
d
ix
slow

d
ow

n
rem

a
in
s

la
rg
e
ev
en

fo
r
5
1
2
ta
rg
et

p
ro
cesso

rs.
T
h
is
is
d
u
e
to

th
e
la
rg
e
ov
erh

ea
d
o
f
tra

n
sp
o
rtin

g
ev
en
t

tra
n
sfer

m
essa

g
es

w
h
ich

a
re

n
eed

ed
to

sim
u
la
te

h
ea
v
y
co
m
m
u
n
ica

tio
n
tra

�
c
in

ra
d
ix.

S
y
n
c
h
r
o
n
iz
a
tio

n
o
v
e
r
h
e
a
d

T
h
is
sectio

n
p
resen

ts
m
ea
su
rem

en
ts
o
f
sy
n
ch
ro
n
iza

tio
n
o
v
erh

ea
d
a
s
a
p
ercen

ta
g
e
o
f
to
ta
l
sim

u
-

la
to
r
ru
n
tim

e.
F
ig
u
res

3
-1
0
,
3
-1
1
,
a
n
d
3
-1
2
g
ra
p
h
sy
n
ch
ro
n
iza

tio
n
o
v
erh

ea
d
(a
s
a
p
ercen

ta
g
e
o
f

to
ta
l
ru
n
tim

e)
fo
r
sim

p
le,

S
O
R
,
a
n
d
ra
d
ix.

S
in
ce

sim
p
le
h
a
s
m
in
im
a
l
m
em

o
ry

req
u
irem

en
ts,

it

a
llow

s
m
a
n
y
ta
rg
et
p
ro
cesso

rs
to

b
e
sim

u
la
ted

o
n
ea
ch

h
o
st
n
o
d
e,
w
h
ich

ca
u
ses

sy
n
ch
ro
n
iza

tio
n

ov
erh

ea
d
to

b
eco

m
e
o
n
ly

a
sm

a
ll
p
ercen

ta
g
e
o
f
o
v
era

ll
ru
n
tim

e.
S
O
R
a
n
d
ra
d
ix,

o
n
th
e
o
th
er

3
2

0
2000

4000
6000

8000

N
um

ber of target processors

0 20 40 60 80

100

Barrier time as percentage of total runtime

F
ig
u
re

3
-1
0
:
S
y
n
c
h
r
o
n
iz
a
tio

n
o
v
e
r
h
e
a
d
v
s.

n
u
m
b
er

o
f
ta
rg
et

p
ro
cesso

rs
fo
r
sim

p
le,

3
2
h
o
st

n
o
d
es.

h
a
n
d
,
h
av
e
la
rg
e
m
em

o
ry

req
u
irem

en
ts.

T
h
erefo

re,
few

er
ta
rg
et
p
ro
cesso

rs
ca
n
b
e
sim

u
la
ted

o
n

ea
ch

h
o
st

n
o
d
e
a
n
d
sy
n
ch
ro
n
iza

tio
n
ov
erh

ea
d
rem

a
in
s
a
v
ery

la
rg
e
p
ercen

ta
g
e
(8
0
%
)
o
f
to
ta
l

ru
n
tim

e.

3
.4
.4

D
isc
u
ssio

n

In
g
en
era

l,
sy
n
ch
ro
n
iza

tio
n
ov
erh

ea
d
is
th
e
d
o
m
in
a
n
t
co
st
in
a
ccu

ra
te
sim

u
la
tio

n
o
f
m
u
ltip

ro
ces-

so
rs
d
u
e
to

th
e
h
ig
h
freq

u
en
cy

w
ith

w
h
ich

it
m
u
st
b
e
p
erfo

rm
ed
.
D
a
ta

p
resen

ted
in
th
e
p
rev

io
u
s

sectio
n
s
sh
ow

th
is
is
p
a
rticu

la
rly

ev
id
en
t
in

P
a
ra
llel

P
ro
teu

s.
A
s
seen

in
sim

p
le,

th
is
sy
n
ch
ro
-

n
iza

tio
n
ov
erh

ea
d
ca
n
b
e
a
m
o
rtized

aw
ay

w
h
en

sim
u
la
tin

g
a
la
rg
e
n
u
m
b
er

o
f
ta
rg
et

p
ro
cesso

rs.

H
ow

ev
er,

it
is
n
o
t
a
lw
ay
s
p
o
ssib

le
to

d
o
so

in
a
n
a
p
p
lica

tio
n
w
ith

rea
listic

d
a
ta

sizes.
F
o
r
ex
-

a
m
p
le,

in
ra
d
ix
a
n
d
S
O
R
,
a
la
rg
e
n
u
m
b
er

o
f
ta
rg
et

p
ro
cesso

rs
ca
n
n
o
t
�
t
o
n
ea
ch

h
o
st
p
ro
cesso

r

d
u
e
to

m
em

o
ry

sh
o
rta

g
e.

S
y
n
ch
ro
n
iza

tio
n
o
v
erh

ea
d
,
th
erefo

re,
rem

a
in
s
a
la
rg
e
p
ercen

ta
g
e
o
f

to
ta
l
ru
n
tim

e.
W
h
ile

m
em

o
ry

sh
o
rta

g
e
ca
n
b
e
a
llev

ia
ted

b
y
eq
u
ip
p
in
g
h
o
st

n
o
d
es

w
ith

v
irtu

a
l

m
em

o
ry

a
n
d
m
o
re

R
A
M
,
th
ere

w
ill

a
lw
ay
s
b
e
a
p
p
lica

tio
n
s
w
h
ich

u
se

u
p
th
is
m
em

o
ry

fo
r
m
o
re

d
a
ta

ra
th
er

th
a
n
fo
r
m
o
re

ta
rg
et

p
ro
cesso

rs.

In
th
e
fo
llow

in
g
ch
a
p
ters,

I
w
ill

p
resen

t
tech

n
iq
u
es

fo
r
red

u
cin

g
th
is
sy
n
ch
ro
n
iza

tio
n
ov
er-

h
ea
d
in

a
ccu

ra
te

sim
u
la
tio

n
s.

T
h
e
�
rst

tech
n
iq
u
e
w
ill

sp
eed

u
p
sy
n
ch
ro
n
iza

tio
n
s
b
y
red

u
cin

g

3
3

0 200 400 600

Number of target processors

0

20

40

60

80

100

B
ar

ri
er

 t
im

e
as

 p
er

ce
nt

ag
e

of
 t

ot
al

 r
un

ti
m

e

Figure 3-11: Synchronization overhead vs. number of target processors for SOR, 1024 x

1024 grid size, 32 host nodes.

0 100 200 300 400 500

Number of target processors

0

20

40

60

80

100

B
ar

ri
er

 t
im

e
as

 a
 p

er
ce

nt
ag

e
of

 t
ot

al
 r

un
ti

m
e

Figure 3-12: Synchronization overhead vs. number of target processors for radix, 8192

numbers per target processor, 32 host nodes.

34

the waiting time at each synchronization operation. The second will improve simulation per-

formance by reducing the number of synchronizations performed.

35

Chapter 4

Description of synchronization

techniques

This chapter describes several alternatives to periodic global barriers: local barriers, �ne-grained

local barriers, predictive barrier scheduling, and barrier collapsing. Local barriers use nearest-

neighbor synchronization to reduce waiting time at synchronization points, while predictive

barrier scheduling and barrier collapsing reduce the frequency of synchronization operations.

4.1 Nearest Neighbor Synchronization

In many simulations, a host processor must keep within Q cycles of the simulated time of

only several other processors - its nearest neighbors. The following two techniques use nearest-

neighbor synchronization in an attempt to reduce synchronization overhead by reducing waiting

times at barriers.

4.1.1 Local Barrier

In a local barrier, the nearest neighbors of host processor X are those host processors that

simulate entities that, in the simulated system, are directly connected to any of the entities

simulated on processor X. Each host processor participates in a barrier with these nearest

neighbors. Once a host processor and its nearest neighbors have reached the barrier, the host

processor can move on to simulate the next quantum. 1 However, its nearest neighbors may still

1A processor's nearest neighbors are not necessarily the processors closest to it on the host machine; they

depend on the system being simulated and its layout on the host machine.

36

be left waiting for their own nearest neighbors to reach the synchronization point. Therefore,

some host processors may be done with a barrier while others are still waiting.

Loosely synchronizing the processors in this way (as opposed to keeping them tightly syn-

chronized as in periodic global barriers) will shorten barrier waiting times in the situation where

the simulation work is not equally distributed among the host processors during a quantum.

Only a few processors will have to wait for each slow (heavily loaded) processor. Therefore,

unless the same processor is heavily loaded during every quantum, the simulation will not be

forced to be as slow as the most heavily loaded processor in each quantum. Instead, some

lightly loaded processors will be allowed to go ahead to the next quantum while heavily loaded

processors are still working on the previous quantum; the heavily loaded processors will catch

up in a future quantum when they have less simulation work to do.

While this technique may alleviate the problem of waiting, it introduces a new problem of

software and communication overhead involved in performing local barriers in the absence of

hardware support.

4.1.2 Fine-grained Local Barrier

When a large number of entities of a simulated system are mapped to one host processor, the

processor may end up having a large number of nearest neighbors, again raising the problem of

processors idling while waiting for others to arrive at a barrier. A �ne-grained local barrier, in

which a host processor continues processing events of some entities while waiting on synchro-

nizations for others, may alleviate this problem. A �ne-grained local barrier involves separately

synchronizing each entity. For example, one host processor simulating 20 entities can be viewed

as having 20 LP's, each simulating one entity. Each LP participates in its own local barriers,

which now involve a smaller number of neighbors (some or all of these neighbors may be other

LP's on the same host processor). Since some of a host processor's LP's can do work while

others are waiting on a barrier, it is less likely that a host processor will ever be idle. However,

this technique may result in prohibitive simulation overhead for scheduling and synchronizing

the virtual LP's.

37

4.2 Improving Lookahead

With a small synchronization time quantum Q, synchronizations must be performed frequently.

Therefore, the total time to perform synchronization operations will be a large percentage of

total simulation time no matter what synchronization scheme is used. However, during periods

of the simulation when the simulated entities do not communicate, these synchronization opera-

tions are unnecessary. It is only necessary to synchronize when communication is taking place,

to make sure it happens correctly. Therefore, it may be useful to eliminate synchronization

altogether during local computation periods. This requires that all host processors be able to

predict when communication is going to occur in the simulated system and then agree on a

time at which to perform the synchronizations.

The ability to predict the future behavior of the simulated system is called lookahead.

A simulator is said to have lookahead L if at simulated time t it can predict all events it

will generate up to simulated time t + L [Fuj90]. This ability to predict future events and

event transfer messages makes lookahead useful in determining how long simulator LP's can

run between synchronizations. A large amount of lookahead enables a simulator to avoid

synchronizing during long periods of simulated time during which the simulated entities are

not communicating. Therefore, a simulation with a large amount of lookahead is more likely to

achieve good performance than one with poor lookahead.

In Parallel Proteus, the lookahead L is equal to Q. I have developed two synchronization

techniques which improve the lookahead in Parallel Proteus and, consequently, reduce the

number of unnecessary synchronization operations. These techniques are barrier collapsing and

predictive barrier scheduling. They attempt to improve performance by reducing the frequency

of synchronization operations rather than by making each synchronization operation faster.

4.2.1 Barrier Collapsing

Barrier collapsing schedules global barrier synchronizations at runtime rather than statically at

compile-time as in periodic global barriers. After each barrier, the host processors decide when

to execute the next barrier. This scheduling decision is made based on information about the

timestamps of the events in the queue. If, during a barrier synchronization at time t, none of

the host processors has any event in its queue with timestamp less than t + x, then no event

transfer messages will be generated before time t + x, and the timestamps of these remote

38

events will be at least t + x. Therefore, no synchronization is needed until time MAX(t + Q,

t + x). In order to determine the value of t + x, the minimum timestamp of all events in the

simulator at time t, each host processor �rst determines the minimum timestamp of all the

events in its queue locally. Then, a global minimum reduction is performed to �nd the global

minimum timestamp, t + x. The next global synchronization is scheduled for MAX(t + Q, t

+ x). If x > Q, this technique eliminates x�Q
Q

synchronizations.

4.2.2 Predictive Barrier Scheduling

Like barrier collapsing, predictive barrier scheduling schedules barriers at runtime based on

information about the timestamps of events in the queue. However, predictive barrier scheduling

also takes into account the communication behavior of each event in the queue { i.e., how long

until each event generates a remote event, one that needs to be processed on another host

processor. For example, say that one host processor has two thread execution events in its

queue: thread A, at time t, and thread B, at time t + 20. Thread A will execute only local

operations until time t + 100, at which point it will send out a message to a processor simulated

on another host processor, and B will execute local instructions until time t + 50, at which

time it also sends a message. In this situation, barrier collapsing determines that the earliest

timestamp in the queue is t, and keeps that as an estimate of the minimum time until an event

on a particular host processor generates a non-local event. Predictive Barrier Scheduling, on

the other hand, generates a better estimate of the earliest time an event on the queue will

generate a remote event: no non-local operations will be executed before t + 50. As in barrier

collapsing, each processor computes this estimate locally, and then enters a global minimum

operation with the other host processors to compute the global estimate of the minimum time

until next non-local event, and the next barrier is scheduled for this time. Since each individual

processor is able to make a better estimate, the global estimate is likely to be higher, and more

barriers will be eliminated.

Predictive barrier scheduling seems especially promising for applications that have long

phases of local computation, alternating with communication phases. The synchronization

during the communication phases would remain frequent, while the synchronization during

computation phases would be eliminated.

39

Chapter 5

Implementation of synchronization

techniques

This chapter describes how the synchronization techniques presented in chapter 4 were imple-

mented and incorporated into Parallel Proteus. The �ne-grained local barrier approach has not

yet been implemented.

5.1 Local Barrier

In the local barrier approach, each host processor synchronizes only with its nearest neighbors.

In Parallel Proteus, the nearest neighbors of each CM5 host processor are determined at the

beginning of each simulation. Each host processor, using information about the simulated

network, �gures out which target processors are adjacent (one hop away on the simulated

network) to the target processors it is responsible for simulating. The host processors that are

responsible for simulating these adjacent target processors are the nearest neighbors.

As in the periodic global barrier technique, each host processor schedules a synchronization

every Q cycles. Between synchronizations, each host processor keeps track of how many event

transfer messages it has sent to (and how many it has received from) each of its nearest neighbors

during the current quantum. Upon reaching a barrier, a host processor X sends to each of its

nearest neighbors Yi a count of the event messages that were sent from X to Yi in the previous

quantum. Processor X then waits until it receives similar information from each of its nearest

neighbors. It polls the network until it receives and enqueues all of the incoming events it was

told to expect, then goes on to simulate the next quantum.

40

In this approach, the host processors are only loosely synchronized (i.e., some processors

may �nish synchronizing and move on to the next quantum while others are still waiting).

Consequently, a processor may receive event transfer messages generated in the next quantum

while still waiting on synchronization ending the last quantum. In order to distinguish event

messages from di�erent quanta, successive quanta are labeled RED and BLACK. Each event

transfer message is sent with a quantum identi�er (RED or BLACK). In this way, when a

processor is still waiting to receive some event messages from the last quantum (RED), it will not

be confused by event messages one of its neighbors has sent from the next quantum (BLACK).

Only two colors are needed because nearest neighbors will always be within one quantum of

each other (and a processor only receives event messages from its nearest neighbors).

The local barrier technique requires each host processor to do more work during each syn-

chronization than is needed to do hardware-supported global synchronization. Instead of issuing

just one synchronization operation as in a global barrier, each processor sends, waits for, and

receives a number of messages. Therefore, the bene�ts of this scheme may be outweighed by

the overhead of sending and receiving messages and waiting for the messages to travel through

the host network.

5.2 Barrier Collapsing

In the barrier collapsing approach, each global barrier involves three steps: synchronizing all of

the processors, determining the timestamp of the earliest event in each host processor's queue,

and then �nding the global minimum timestamp using the local values. The next barrier is

scheduled for this time.

The �rst step, synchronization, is performed exactly as in periodic global barriers, with a

Strata CM5 control network reduction function [BB94]. This step includes synchronizing all

host processors as well as waiting for the host network to drain.

The second step involves searching the event queue. In Parallel Proteus, as in sequential

Proteus, the event queue is implemented as an array. Each array entry i is a \bucket" which

contains events whose timestamps have least signi�cant bits equal to i. When the events in each

bucket are kept unsorted, insertions into the queue are very fast.1 An event is inserted into the

1In Parallel Proteus, the events in each bucket can be maintained either in sorted order or unsorted order. (In
sequential Proteus, they are always unsorted). Keeping them unsorted produces a correct, but not necessarily

repeatable, simulation run. In order to provide repeatability of simulations, the events in each bucket must be

41

queue by �rst determining j, the value of the least signi�cant bits of its timestamp, and then

placing the event into the jth bucket. To dequeue an event, the simulator �rst examines bucket

k, where k equals the value of the least signi�cant bits of the current simulated time. If an event

whose timestamp is equal to the current simulated time is found in bucket k, then it is removed

from the bucket and then processed. If no such event is found, the simulator increments the

current simulated time and examines bucket k + 1. Successive buckets are examined until the

next event is found. When the events in the queue are close together in time, this procedure is

fast because it involves examining only very few buckets.

The event queue can be searched for its earliest timestamp in two ways. First, a host

processor can �nd the timestamp of its earliest event in the same way that it does when it

actually wishes to dequeue an event { by starting at the bucket corresponding to the current

simulated time and searching sequentially through the array until the next event is found. The

advantage of this technique is that not all of the events in the queue have to be examined in

order to �nd the minimum. However, if there are not very many events in the queue and they

are far apart in the array, this search takes a long time because it involves examining many

empty buckets. An alternative is to maintain a doubly linked, unsorted list of all the events in

the queue (in addition to the array) and simply examine all of them to determine the minimum

timestamp. This technique is very slow when there are many events in the queue.

Parallel Proteus combines the advantages of both techniques and avoids the disadvantages

by using an adaptive technique. A doubly linked, unsorted list of pending events is maintained

as events enter and leave the queue. When there are many events in the queue (above a certain

threshold), the sequential search through the array is used to �nd the minimum timestamp.

When there are few events in the queue (below the threshold), the linked list is traversed.

After all of the local minima are computed using the adaptive method, the global minimum

timestamp is computed (the third step) with a Strata global minimum reduction operation.

Barrier collapsing takes advantage of lookahead already exposed by Parallel Proteus. The

simulator allows local computations to run ahead of simulated time for up to 1000 cycles at a

time without interruption. This exposes the short-term future communication behavior of the

sorted according to timestamp and unique identi�cation number. This ensures that events on a particular host

node with identical timestamps are processed in the same order in every run of the simulation, even though the

host network may deliver them in di�erent orders in di�erent runs. Sorting the events in each bucket in this way

makes insertion into the queue slower, but dequeuing faster (because the earliest events in each bucket are easily

accessed).

42

application. If the application is in a local computation phase, no communication events will be

generated and thread execution events will be scheduled at 1000-cycle intervals with no other

events in between. In the periodic global barriers technique, such a situation results in the

execution of many useless barriers. In situations where Q = 2, �ve hundred consecutive barriers

are performed in the 1000-cycle interval during which the simulator catches up with the thread.

All of these barriers are useless because no work is done between them. Barrier collapsing

collapses all such useless consecutive barriers into one, thereby decreasing the total number of

barriers executed. This technique will clearly be most useful for simulating applications that

have local computation phases of considerable length.

5.3 Predictive Barrier Scheduling

Predictive barrier scheduling is similar to barrier collapsing in that it also involves a global

barrier followed by a computation of a local minimum on each processor followed by scheduling

the next barrier at the global minimum of these local values. The di�erence is that the values

being minimized in predictive barrier scheduling are not the timestamps of the events in the

queue, but rather lower bound estimates on the time until these events generate remote events

(those that need to be sent over to other host processors).

Two extensions to the barrier collapsing implementation are required in order to implement

predictive barrier scheduling. The �rst one is a method of determining and associating with

each event a lower bound estimate on the time until it generates a remote event. The second

is a way of examining several of the earliest events in the event queue (as opposed to just the

one earliest event) in order to compute a lower bound estimate of the earliest time any event

in the queue will generate a remote event. (Note: it is not necessarily the earliest event in

the queue which will generate the earliest remote event). This section describes how Parallel

Proteus accomplishes these two tasks.

5.3.1 Computing Estimates

In order to understand how Parallel Proteus determines when events will generate remote

events, let us examine the di�erent types of simulator events that can be in a host processor's

event queue during a synchronization operation: thread execution events, network events, and

completion checking events. Completion checking events never generate any remote events, so

43

they can be assigned arbitrarily large estimates of minimum time until remote event.

Network events involve either sending, receiving, or routing packets in the simulated net-

work. Send events launch packets into the simulated network. A receive event occurs at each

node in a packet's path through the network. A receive event at an intermediate node generates

a route event that will send the packet through its next hop. A receive event at the packet's

�nal destination node spawns a message handling routine. Using the architectural parameters

of the simulated network speci�ed at compile-time, it is straightforward to �gure out the earliest

time each network event may generate a remote event. Route packet events with timestamp t

generate receive events to be processed on remote processors at t + Q; send events and receive

events with timestamp t generate route packet events with timestamp t which then generate

receive events to be processed on remote processors at t + Q. A receive event with timestamp

t can also generate an interrupt which causes a handler to be run at simulated time t. If

the �rst thing the handler does is to send a message, a send event at time t results, and this

leads to another receive event to be processed on a remote processor at t + Q. Therefore, the

lower bound estimate on the time until a network event generates a remote event is Q simulated

cycles.2 When a network event with timestamp t is enqueued, the simulator knows that it will

not generate a remote event until at least time t + Q, and associates this value with the event.

Thread events are more complicated. They involve resuming an application thread at the

location in the application code where the thread was last interrupted. It is not straightforward

to determine how long a thread will run before generating a remote event.

Parallel Proteus computes lower bound estimates of the time until threads generate remote

events in the following way. First, dataow analysis of the application code is done at compile-

time to determine the minimum distance (in cycles) to a non-local operation from each point

in the application code (remote events result only from the execution of non-local operations).

Then, the code is instrumented with instructions which make these minimum distances acces-

sible to the simulator at runtime. When the application thread is executing, the code added

in the instrumentation phase updates a variable which holds the value of the current minimum

time (in simulated cycles) until the thread executes a non-local instruction. Every time con-

trol passes from the thread back to the simulator, the simulator examines this variable and

2Actually, if a message passes through several hops of the simulated network which are simulated on the same

host node before traveling to those simulated on other host nodes, an estimate larger than Q can be computed.

This technique has not been implemented in Parallel Proteus, however.

44

associates its value with the thread execution event that gets enqueued in order to continue

execution of the thread at a later time.

Compile-time Analysis

At compile-time, dataow analysis is performed on the basic block graph of the application

code that is constructed by the Proteus utility augment. Each basic block consists of sequence

of local, non-branching instructions followed by a branch instruction or a procedure call. Each

basic block is labeled with its execution length in cycles, and has one or two pointers leaving

it which indicate where control ows after leaving the block. This graph is used to calculate

a conservative estimate of the minimum distance (in cycles) to a non-local operation from the

beginning of each basic block. Because of the way augment instruments the code, a thread

never gets interrupted in the middle of a basic block. Therefore, estimates are only needed

for the beginning of basic blocks. I chose not to implement inter-procedural analysis; instead,

every procedure call is assumed to lead to a non-local operation.

Because no non-local operations occur in the beginning or middle of a basic block, a �rst

estimate of the minimum distance from the beginning of a basic block to a non-local operation

is the size of the basic block. If the block ends with a procedure call (which is either a non-local

operation or assumed to immediately lead to one), then the estimate is done. However, if the

block ends with a branch statement (a local operation), the following is added to its current

estimate: the estimate for the basic block following it or, if it ends in a conditional branch, the

minimum of the two estimates for the two blocks following the �rst block. In order to compute

the estimates for the blocks following the �rst one, the same operations have to be performed

on them. In order to compute all the minimum distances to non-local operations from all the

basic blocks in the graph, the following iterative dataow algorithm (based on algorithm 10.2

in [ASU86]) is used:

FOREACH basic block B in graph

estimate(B) = sizeof(B)

ENDFOR

DO

change = false

FOREACH basic block B in graph

45

old estimate = estimate(B)

if (B ends in procedure call) then estimate(B) = sizeof(B)

else if (B has 1 successor) then estimate(B) = sizeof(B) + estimate(successor(B))

else estimate(B) = sizeof(B) + MIN (estimate (left succ(B)), estimate(right succ(B)))

if (estimate(B) != old estimate) then change = TRUE

ENDFOR

UNTIL change == false

Code Instrumentation

After the minimum distance to remote operation has been determined for each block, each block

is instrumented not only with code that increments a counter with the number of cycles spent

in that block every time the block is executed (which was the original purpose of augment), but

also with code that records away the value of the minimum distance to remote operation for

the beginning and end of the block. In this way, when the thread gets interrupted or makes a

procedure call which causes control to go back to the simulator and the thread to be enqueued

as a thread event to be continued later, the thread's minimum time until remote operation can

be accessed in the variable where it was stored immediately before the thread was suspended.

This value is then associated with the new thread event in the queue.

5.3.2 Searching the Event Queue

This section describes how Parallel Proteus calculates the minimum time until remote event of

all the events in the queue, given the minimum times until remote event for each event in its

queue. As in barrier collapsing, there are two ways in which this minimum can be computed.

First, the event queue can be searched sequentially, in increasing timestamp order, starting

with the earliest event and continuing until the timestamps exceed the minimum value already

computed (the minimum value until remote event for each event is greater than or equal to its

timestamp). As in barrier collapsing, this sequential search through the queue may take a long

time if the events are few and far between. Its performance is likely to be better when there

are many events in the queue, when it is more likely that the events are close together, because

fewer events will be examined before the minimum is found. Fortunately, in the case where

there are few events in the queue, a linked list containing all of the events in the queue can

46

be searched quickly. So, as in barrier collapsing, an adaptive scheme is used. When there are

many events in the queue, the �rst, sequential search algorithm is used; if there are few events,

a search through the linked list of all the events is used.

5.3.3 Summary

Predictive barrier scheduling consists of three parts. First, compile-time analysis is used to

instrument code with instructions which store information about each thread's future commu-

nication behavior. Second, when being enqueued, each event has associated to it a minimum

time until it generates a remote event (for which synchronization would be needed). For net-

work events, this value is determined by the network parameters of the simulated network. For

thread events, this value is determined by the place in the application code where the thread

left o�, and the instrumentation code makes that value available at the time the thread event

is enqueued. Third, during each barrier synchronization, each host processor inspects its own

event queue to �gure out the earliest time any one of its events will generate a remote event.

It does this by calculating the minimum time until remote event of all the events in the queue.

Each processor contributes its local minimum to a global minimum operation to determine the

global minimum of the time of the next remote event, and the next barrier synchronization is

scheduled for this time.

This technique adds quite a bit of overhead to each synchronization operation. The hope is

that it will eliminate so many of the synchronization operations that it will improve performance

over periodic global barriers even with a higher overhead cost per synchronization.

47

Chapter 6

Experiments and evaluation of

synchronization techniques

This chapter presents and discusses performance results for the local barrier and barrier schedul-

ing synchronization techniques. As in chapter 3, the data presented here are averages of 3 runs,

with �=X � 4%.

6.1 Barrier Scheduling

Barrier collapsing and predictive barrier scheduling are two barrier scheduling techniques whose

purpose is to improve the performance of Parallel Proteus by reducing the number of synchro-

nization operations. Barrier collapsing is a runtime technique which allows application threads

to run ahead of simulated time. An improved approach, predictive barrier scheduling couples

barrier collapsing with compile-time analysis. These techniques will be evaluated against the

baseline periodic global barrier approach by examining three criteria: overhead, percentage of

barriers eliminated, and overall performance improvement.

As expected, experiments show that predictive barrier scheduling always performs better

than barrier collapsing alone since the former incorporates the latter. Although predictive

barrier scheduling eliminates more barriers, barrier collapsing is in fact responsible for the

overwhelming majority of that amount. Predictive barrier scheduling improves upon barrier

collapsing alone by eliminating an additional 4% to 26% of the barriers executed under the

baseline periodic global barrier approach. I will focus on the results for predictive barrier

scheduling because of its superior performance.

48

6.1.1 Overhead

Predictive barrier scheduling adds overhead in four areas:

� compilation,

� application code execution,

� barrier scheduling, and

� barrier waiting time.

At compile time, application code is analyzed to determine its communication behavior.

This analysis adds little noticeable overhead to compilation because it operates on data struc-

tures previously constructed by augment (the program that adds cycle-counting instructions to

the application code). However, more overhead would be incurred by simulators that are not

direct-execution-based, because more work would have to be done to generate the basic block

graph necessary for this analysis.

During code instrumentation, predictive barrier scheduling adds 6 instructions to each basic

block of the application. These instructions store the estimates of the time until a thread

executes a non-local operation that were generated by the compile-time analysis. These are

in addition to the 17 instructions already added in order to implement direct execution (for

cycle counting and stack overow checking). These 6 instructions do not signi�cantly increase

simulation time because only a small percent of total runtime is spent executing them. The

overhead due to these added instructions is clearly negligible compared to synchronization

overhead, which accounts for a full 80% of simulation time (see chapter 3).

During each barrier synchronization, host processors schedule the next barrier. This entails

computation of local estimates of the time until a host processor generates an event transfer

message, and an additional global reduction operation in order to obtain the global minimum

of these values. The extra global reduction takes 150 cycles (4.5 microseconds), and the extra

computation takes anywhere from 5 to 50 cycles, depending on the number of events in the

queue. The more target processors, the more events in the queue, the longer the computation.

Predictive barrier scheduling reduces the frequency of synchronizations and, therefore, in-

creases the amount of simulation work between synchronizations. This, in turn, increases the

waiting time at each barrier, because there is a larger di�erence in the amounts of simulation

work done by each processor in each quantum. Thus, each barrier time increases. Experiments

49

 6 26 104 419 1677

Granularity

0.0

0.2

0.4

0.6

0.8

1.0

 B
ar

ri
er

 C
ou

nt

global
predictive

Figure 6-1: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized barrier count vs. granularity for SOR, 625 target processors, 32 host nodes, varying

grid size.

show that in my applications, each barrier (which is typically 20 to 600 microseconds long)

becomes 20% to 1400% longer. The less frequent the synchronizations, the longer they are.

6.1.2 Barriers eliminated

The purpose of predictive barrier scheduling is to eliminate unnecessary barriers which occur

during long computation phases. The data presented in �gures 6-1, 6-2, and 6-3 show that this

method does, in fact, reduce the number of barriers executed by 12% to 95%. As expected,

the number of barriers eliminated is greater in the simulation of applications with long periods

of local computation between communication phases. To illustrate this feature, I graph the

number of barriers executed versus granularity. Granularity is a measure of the length of local

phases of computation relative to the length of communication phases. Applications with large

granularity have long local computation phases. Those with small granularity are dominated

by communication and short computation phases.

Granularity is measured di�erently in each application because the length of local computa-

tion phases depends on application-speci�c parameters. In SOR, for example, local computation

phases lengthen when more data are assigned to each target processor. Therefore, I de�ne gran-

50

 1677 4096 7281 16384 65536

Granularity

0.0

0.2

0.4

0.6

0.8

1.0

 B
ar

ri
er

 C
ou

nt

global
predictive

Figure 6-2: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized barrier count vs. granularity for SOR, 1024 x 1024 grid size, 32 host nodes, varying

number of target processors.

 0.001 0.002 0.003 0.007 0.015 0.062

Granularity

0.0

0.2

0.4

0.6

0.8

1.0

 B
ar

ri
er

 C
ou

nt

global
predictive

Figure 6-3: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized barrier count vs. granularity for radix, 8192 numbers per target processor, 32 host

nodes, varying number of target processors.

51

 6 26 104 419 1677

Granularity

0.0

0.5

1.0

 R
un

ti
m

e

global
predictive

Figure 6-4: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized simulator runtime vs. granularity for SOR, 625 target processors, 32 host nodes,

varying grid size.

ularity for SOR to be equal to the number of data points assigned to each target processor. In

radix, on the other hand, the length of communication phases relative to the length of com-

putation phases increases with the number of target processors, even if the target processors

are assigned the same amount of data in all cases. Therefore, I de�ne granularity for radix to

be equal to the inverse of the number of target processors, making granularity decrease when

the number of target processors increases. (In radix, the number of data points on each target

processor is constant in all experiments). Figures 6-1, 6-2, and 6-3 show how the number of

barriers eliminated increases with granularity in SOR and radix.

6.1.3 Performance Improvement

This section describes the overall performance improvement achieved by predictive barrier

scheduling. Experiments indicate that performance improvement over the periodic global bar-

rier approach ranges from -5% to +65%. Because predictive barrier scheduling lengthens each

barrier, no performance improvement is achieved when few barriers are eliminated. Results

show that, in general, about 30-40% of the barriers (otherwise executed under the periodic

global barrier approach) have to be eliminated in order to achieve any performance improve-

52

 1677 4096 7281 16384 65536

Granularity

0.0

0.2

0.4

0.6

0.8

1.0

 R
un

ti
m

e

global
predictive

Figure 6-5: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized simulator runtime vs. granularity for SOR, 1024 x 1024 grid size, 32 host nodes,

varying number of target processors.

 0.001 0.002 0.003 0.007 0.015 0.062

Granularity

0.0

0.5

1.0

 R
un

ti
m

e

global
predictive

Figure 6-6: Predictive Barrier Scheduling vs. Periodic Global Barriers.

Normalized simulator runtime vs. granularity for radix, 8192 numbers per target processors, 32

host nodes, varying number of target processors.

53

ment. As expected, performance improvement increases with granularity, just as demonstrated

in the previous section. This is evident in the graphs of normalized simulator runtime for SOR

and radix, �gures 6-4, 6-5, and 6-6. In general, the computation phases in radix are much shorter

than those in SOR. Therefore, little improvement (only up to 10%) is seen in radix. SOR with

large data sizes has large granularity and, therefore, achieves large performance improvements

(up to 65%). Clearly, the predictive barrier scheduling method is only useful for applications

with reasonably long local computation phases.

6.2 Local Barriers

The purpose of the local barrier approach is to improve the performance of simulators like

Parallel Proteus by reducing the waiting time at synchronization points. Results show that this

approach is e�ective in many cases. However, local barriers cannot always improve upon the

global barrier approach. When waiting time at periodic global barriers is short, local barriers

do not perform well because they cannot improve waiting time. In fact, they add time to the

non-waiting period at the synchronization point.

6.2.1 Overhead

The local barrier approach adds overhead to each synchronization because it requires each host

processor to send, receive, and await the individual messages of each of its nearest neighbors.

The greater the number of nearest neighbors, the greater the overhead. In contrast to the single

hardware-supported synchronization operation in the periodic global barrier approach, there is

no hardware support on the CM5 for the pairwise synchronizations required for local barriers.

In the best case, when all processors are already synchronized, a global barrier (on the CM5)

takes 150 cycles (4.5 microseconds). Under the same conditions, a local barrier takes anywhere

from 800 to 1300 cycles (24 to 39 microseconds), depending on the number of nearest neighbors

each host processor has. Consequently, the local barrier method is expected to do better only

when the periodic global barrier approach has long waiting times at each synchronization. In

that case, local barriers can improve performance by decreasing the waiting times, even though

they add some overhead to the execution of each synchronization. In the case where the periodic

global barrier approach has very short waiting times, the local barrier approach will be unable

to improve performance.

54

 6 26 104 419 1677

Granularity

0.0

0.5

1.0
 R

un
ti

m
e

global
predictive
local

Figure 6-7: Local Barriers. Normalized simulator runtime vs. granularity for SOR, 625 target

processors, 32 host nodes, varying grid size.

6.2.2 Performance Improvement

As expected, experiments show that the local barrier approach improves performance by

decreasing barrier waiting time in situations where the periodic global barrier approach su�ers

from long waiting times. This occurs in applications of small granularity, where communication

is frequent and computation phases are short. In large granularity applications, on the other

hand, Parallel Proteus (using periodic global barriers) executes the long computation phases

1000 cycles at a time (see chapter 3 and appendix A). This leads to the execution of many

(unnecessary) barriers in a row, with no simulation work in between. The waiting time at most

of the barriers, then, is very short.

Local barriers shorten synchronizations in small granularity applications by up to 25%.

In large granularity applications where barriers are already short, the local barrier approach

lengthens barrier time by up to 192%.

Graphs of normalized simulator runtime (�gures 6-8, 6-7, and 6-9) show that the behavior

of the local barrier approach complements that of predictive barrier scheduling. Predictive

barrier scheduling improves performance for applications with large granularity, while local

barriers improve performance for applications with small granularity. Local barriers improve

55

 1677 4096 7281 16384 65536

Granularity

0.0

0.5

1.0

1.5

 R
un

ti
m

e

global
predictive
local

Figure 6-8: Local Barriers. Normalized simulator runtime vs. granularity for SOR, 1024 x

1024 grid size, 32 host nodes, varying number of target processors.

 0.001 0.002 0.003 0.007 0.015 0.062

Granularity

0.0

0.5

1.0

 R
un

ti
m

e

global
predictive
local

Figure 6-9: Local Barriers. Normalized simulator runtime vs. granularity for radix, 8192

numbers per target processor, 32 host nodes, varying number of target processors.

56

performance (reduce runtime) most in radix (up to 24%) and in small granularity SOR.

6.3 Discussion

The previous sections showed that both nearest-neighbor synchronization and lookahead-increasing

techniques are e�ective ways of reducing synchronization overhead in the parallel simulation

of message-passing multiprocessors. While neither technique is successful all of the time, each

complements the other by improving performance in situations where the other fails to do so.

This complementary relationship between predictive barrier scheduling and the local barrier

approach suggests that one might combine the two techniques in the hope of achieving more

consistent performance improvement. One way to do this is to use each technique in the

situation where it does better: the local barrier approach during communication phases and

predictive barrier scheduling during computation phases. In this way, unnecessary barriers in

the computation phases will be eliminated by predictive barrier scheduling. However, the extra

overhead required will not be incurred in the communication phases. For its part, the local

barrier approach will shorten the waiting times in communication phases.

The di�culty lies in determining when to switch from one technique to the other. This

could be determined at compile time by examining the program to see when it calls communi-

cation operations. However, a better approach may be to switch adaptively at runtime. Under

predictive barrier scheduling, the simulator can monitor application communication by count-

ing event transfer messages at runtime. If the simulator detects frequent communication, it

will switch to the local barrier approach. However, switching from local barriers to predictive

barrier scheduling is more complicated, because a global decision must be made to switch, but

processors are doing local synchronization. To remedy this, each processor can continue to

monitor event transfer tra�c while synchronizing locally every Q cycles, but global synchro-

nizations will be performed every 100*Q cycles to facilitate a global decision. If there has been

little communication tra�c, signifying a computation phase, the simulator will switch back to

predictive barrier scheduling. I have not experimented yet with this combined technique, but

it is clearly worth doing so.

While the local barrier approach and predictive barrier scheduling have been evaluated in the

context of a direct-execution simulator, they are certainly also applicable to simulators which

simulate application code execution in a di�erent way (e.g., Bedichek's threaded code simulator

57

[Bed95]). First, local barriers do not depend on direct execution in any way. Second, while

my implementation of predictive barrier scheduling does rely on Parallel Proteus's support

for direct execution, this is not essential to the technique. All that is needed to implement

predictive barrier scheduling is a way of associating with each value of an application's program

counter, an estimate of the time until the application will next communicate. The necessary

analysis can be done at compile-time as in Parallel Proteus, but instead of instrumenting code,

the information generated at compile-time can be stored in a table. As each instruction is

simulated, information about future communication behavior can be looked up in the table.

Therefore, the applicability of local barriers and predictive barrier scheduling extends to more

simulators than just the one described here.

58

Chapter 7

Related Work

This chapter discusses the evolution of parallel simulation techniques, the use of nearest neigh-

bor synchronization and lookahead in other parallel simulators, and the techniques used in other

parallel simulators of parallel computers.

7.1 Parallel Simulation Techniques

Bryant, Chandy, and Misra developed the �rst conservative PDES algorithms [Bry77] [CM79]

[CM81] . In both the Bryant and Chandy-Misra approaches to conservative PDES, LP's do

not synchronize regularly, but only during the transmission of event transfer messages called

for by communication in the simulated system. LP's are required to wait on their neighbors,

not knowing if or when a message will be sent. This can lead to deadlock. The Chandy-

Misra approach involves detecting and recovering from deadlock. Bryant's method involves

sending additional timing messages in order to avoid deadlock. It is similar to the idea of local

barriers, but in some cases it involves the transmission of many more messages than a local

barrier requires. Chandy and Misra consider a similar deadlock avoidance technique (NULL

messages), but dismiss it as being too expensive in the number of messages produced.

Synchronous simulation algorithms, such as the one used in Parallel Proteus, evolved out

of the Bryant and Chandy-Misra (BCM) approaches. These involve iteratively determining

which events are safe to process before executing them. Barrier synchronizations are used to

separate iterations, while operation is asynchronous between barriers. These algorithms avoid

deadlock and guarantee the same semantics and correctness as the BCM approaches. Examples

of synchronous algorithms can be found in [Lub88] [Aya89] [AR92] [CS89] [SBW88] [Ste91] (plus

59

one more reference: yawns).

7.2 Nearest Neighbor Synchronization

Synchronous techniques often su�er in performance because of long waiting times at global

synchronizations. As described previously, nearest neighbor synchronization can be useful in

alleviating this problem. This section describes the use of nearest neighbor synchronization (in

e�ect, a move back towards the asynchronous nature of the original BCM algorithms) in two

simulators and one other parallel application.

Cheriton et al: have looked into the problem of long barrier waiting times in their particle-

based wind tunnel simulation which runs on a shared memory multiprocessor [CGHM93]. They

observed better performance with nearest-neighbor (local barrier) synchronization for this ap-

plication.

Lubachevsky improved the performance of an Ising spin model simulation with a technique

similar to local barriers [Lub89a]. His algorithm involves several steps. First, the minimum

simulation time over all the nodes is computed and broadcast. Second, each node examines

the simulated time of a group of neighboring nodes in order to compute an estimate of the

minimum time at which it could be a�ected by other nodes. Events with timestamps less than

this minimum time are then processed. Simulated time on all nodes is kept within a certain

number B units of each other. The value of B determines how many neighboring nodes have to

be examined in the checking phase described above. A small value for B can greatly reduce the

number of nodes that have to be checked, which improves the simulation performance. However,

there are explicit global synchronizations within the algorithm which seem to counteract any

gains made. The algorithm runs well on the SIMD CM-2, where global synchronization is

almost free because the nodes run in lock-step. However, on most other computers, where

nodes run asynchronously, this synchronization will be very expensive. A local barrier is very

similar to this algorithm (when B is chosen to equal time quantum Q), except that it involves

no global synchronization.

Nearest neighbor synchronization can be viewed as a form of �ne grain synchronization.

Yeung and Agarwal report a signi�cant performance improvement for preconditioned conjugate

gradient when using �ne grain synchronization instead of global synchronization. They attribute

this improvement in part to the elimination of unnecessary waiting [YA93].

60

7.3 Improving Lookahead

Lookahead, the ability to predict the future communication behavior of a simulated system,

can be quite useful in reducing synchronization overhead in conservative parallel simulators.

This has been documented by [Nic91] and [LL89]. Fujimoto also demonstrated the importance

of lookahead in achieving good performance with experiments on synthetic workloads using the

Chandy-Misra deadlock avoidance algorithm [Fuj88].

The following are two examples of conservative parallel simulators whose good performance

is due to improved lookahead.

Lubachevsky's opaque periods improve the performance of his Ising spin model simulator

by increasing the number of safe events found at each iteration of his algorithm [Lub89a].

Because all events are non-local in this simulation, each host processor determines the length

of each opaque period by calculating the minimum of the times of the next events on each of

its neighbors.

LAPSE is a conservative parallel simulator of the message-passing Intel Paragon [DHN94]. It

achieves good performance by exploiting two sources of lookahead. First, like barrier collapsing,

LAPSE lets some application code execute in advance of the simulation of its timing. LAPSE

also exploits the lookahead provided by simulating the large software overhead required to

send a message on the Paragon. (If the software overhead to send a message on the simulated

architecture is always � x cycles, then there will always be at least an x-cycle gap between

communication operations on each simulated node). LAPSE is di�erent from Parallel Proteus

in that it does not model network contention while Parallel Proteus does. It is not clear whether

the techniques used in LAPSE will work as well when the network is simulated more accurately,

since synchronization will be needed much more frequently.

61

7.4 Other Parallel Simulators of Parallel Computers

This section describes several other parallel simulators of multicomputers (in addition to LAPSE).

7.4.1 Wisconsin Wind Tunnel

The Wisconsin Wind Tunnel is a parallel simulator of shared memory architectures which runs

on the CM5 [RHL+93]. It uses a synchronous conservative PDES algorithm with periodic global

barriers and a synchronization time quantum of 100 cycles. WWT achieves good performance

in part because of this large time quantum (a consequence of a very simple network simulation

model).

In more recent work on the Wisconsin Wind Tunnel, several more accurate network simu-

lation modules have been added [BW95]. The most accurate ones (Approximate and Baseline)

exploit lookahead proportional to the minimum message size in the simulated system. The

�rst scheme (Approximate) distributes network simulation among the processors of the host

machine (as does the hop-by-hop model in Parallel Proteus), and models contention and mes-

sage delivery times approximately. The synchronization time quantum takes on a value of 15

cycles. In the second scheme (Baseline), network simulation is accurate but centralized; it takes

place on only one node of the host machine. (This scheme is slightly more accurate than the

distributed scheme used in Parallel Proteus because it models �nite bu�ers at routers while

Parallel Proteus assumes in�nite bu�ering). They report on the increased slowdowns seen with

the more accurate network simulation techniques, as well as on the magnitude of the inaccura-

cies observed with the less accurate techniques. They contend that fast approximate simulators

are more valuable than slow accurate ones.

7.4.2 Parallel Tango Lite

Parallel Tango Lite is a parallel simulator of shared memory architectures which runs on the

DASH machine [Gol93]. It uses the same simple network model and conservative PDES al-

gorithm as the Wisconsin Wind Tunnel, also synchronizing every 100 timesteps. Experiments

were done using small workloads (24 target processors) on small host machine con�gurations

(up to 12 host processors). It achieved a maximum speedup of 4.4 on 8 host processors. The

developers report that the performance of the simulator is limited by barrier synchronization

time (because of their choice of host machine, they were not able to take advantage of the fast

62

global synchronization operations available on the CM5, as were the designers of the WWT).

Load imbalance contributed to the large cost of the barrier synchronizations. Another obstacle

to speedup is the global data structure needed to simulate the single thread queue of the target

machines. The performance of the simulator improved slightly when multiple target processors

were simulated on each host processor.

7.4.3 PSIMUL

PSIMUL is a parallel simulator of shared memory architectures which runs on the 2-CPU IBM

System 3081 [SDRG+86]. It is used to collect memory traces of parallel programs. It achieves

good speedup because no synchronization is performed during the simulation process; instead,

synchronization markers are inserted into the trace �les and later used to correctly order the

memory references listed in the traces.

7.4.4 NWO-P

NWO-P is the parallel version of NWO, a detailed sequential simulator of the MIT Alewife

distributed-memory multiprocessor [JCM93]. NWO-P operates in lock-step, synchronizing ev-

ery cycle of simulated time. Because NWO-P simulates each cycle of Alewife in a great amount

of detail, the overhead for simulating each cycle is very high and far outweighs the synchroniza-

tion overhead [Joh95].

7.5 Discussion

Of all the work described in this chapter, the Wisconsin Wind Tunnel (WWT), Parallel Tango

Lite (PTL), and LAPSE are the most closely related to Parallel Proteus. In this section, I

discuss how simulating shared memory (as WWT and PTL do) limits the lookahead that can

be exploited. Then I compare network simulation in Parallel Proteus and WWT, and conclude

with a discussion of the lookahead-improving techniques in Parallel Proteus and LAPSE.

WWT, PTL, and LAPSE are similar to Parallel Proteus in that they are also parallel,

direct execution simulators of parallel architectures. The fact that direct execution is a common

feature indicates that all four simulators incur similar overhead for simulating operations local

to each target processor. However, they di�er in the simulation of remote operations. WWT

and PTL simulate shared memory architectures, while Parallel Proteus and LAPSE simulate

63

message-passing architectures. Consequently, WWT and PTL cannot exploit lookahead in the

same way as Parallel Proteus and LAPSE can. Communication can potentially happen on

every memory reference in shared memory systems, so it is di�cult to identify ahead of time

periods of computation during which it is certain that no communication will take place. Also,

all accesses to shared data (whether requiring communication or not) potentially a�ect other

target processors, so it is not correct to let application threads run ahead until a communication

operation is encountered. Instead, WWT and PTL achieve good performance by sacri�cing

some accuracy in the simulation of the network.

WWT currently supports a range of network simulation modules (from very accurate to not

very accurate), all of which could be easily incorporated into Parallel Proteus and used along

with the synchronization techniques described in this work. (Parallel Proteus now supports a

fairly accurate hop-by-hop model which simulates contention, as well as a much less accurate

100-cycle delay model (exactly like the one in WWT)).

LAPSE and Parallel Proteus both improve lookahead by letting application threads run

ahead of simulated time. However, Parallel Proteus improves on this technique by also doing

compile-time analysis of the application code in order to increase lookahead (predictive barrier

scheduling). Unlike LAPSE, Parallel Proteus does not rely on less accurate network simulation

nor on any particular simulated system's large software overhead for sending messages in order

to obtain lookahead.

64

Chapter 8

Conclusions

Parallelism is necessary for fast, detailed simulation of large multicomputers. Synchronization

overhead, however, often severely limits the performance of conservative parallel simulators.

This occurs because low-latency communication in simulated networks requires frequent syn-

chronization of simulator processes. One way to reduce synchronization overhead is to sacri�ce

accuracy in the simulation of the network. Focusing on local barriers and predictive barrier

scheduling, this thesis demonstrates that for simulations of message-passing parallel comput-

ers, nearest neighbor synchronization and application-speci�c optimization can improve perfor-

mance by reducing synchronization overhead without sacri�cing accuracy in network simulation.

Local barriers use nearest-neighbor synchronization to reduce waiting time at synchroniza-

tion points. Under local barriers, the host processors are only loosely synchronized; each host

processor only waits for several others at each synchronization point. While this technique does

add some overhead to the execution of each synchronization, it often produces an overall perfor-

mance improvement (compared to periodic global barriers) because it signi�cantly shortens the

time spent waiting at each synchronization point. The largest performance improvements (up

to 24% in my experiments) are achieved in simulations of communication-bound applications,

where waiting times under periodic global barriers are high. In simulations of computation-

bound applications, local barriers slow down simulations by up to 75%.

Predictive barrier scheduling uses both compile-time and runtime analysis to reduce the

frequency of synchronization operations. Applications to be run on the simulated machine are

analyzed at compile-time in order to determine their future communication behavior. More

information about communication behavior is produced at runtime, when application threads

65

are allowed to run ahead of simulated time. Using the information about communication be-

havior generated at compile-time and runtime, the simulator tries to schedule synchronizations

only when they are absolutely necessary { during communication phases. Experiments show

that under predictive barrier scheduling, simulations perform 10% to 95% fewer synchroniza-

tions than under periodic global barriers, achieving overall performance improvements in the

range of -5% to +65%. The largest performance improvements occur in computation-bound

applications (complementing the behavior of the local barrier approach).

The local barrier approach is a general-purpose technique. It can be (and has been) used in

many di�erent types of parallel simulators because it does not depend on the speci�c charac-

teristics of multicomputer simulation. Predictive barrier scheduling, on the other hand, is very

speci�c to the simulation of message-passing parallel computers. Because it depends on the

ability to easily identify communication operations, it cannot be easily adapted for simulators

of shared-memory parallel computers. Predictive barrier scheduling does not, however, depend

on any speci�c simulation technique (such as direct execution). It can be used in any type of

simulator of message-passing multicomputers.

It may be possible to improve the performance of the two techniques. The following are

several suggestions on how to accomplish this. First, a �ne-grained implementation of local bar-

riers (as described in 4.1.2) may increase the bene�ts of loose synchronization already observed

in my experiments. Second, in predictive barrier scheduling, simple inter-procedural analysis

(perhaps identifying procedures where no communication occurs at all) may improve estimates

of computation phase lengths, and eliminate more synchronizations as a result. A third way

of improving performance is to combine both techniques into an adaptive approach where each

technique is used in the situation where it can improve performance the most. Synchronization

during communication phases would be performed using local barriers, but during long com-

putation phases, predictive barrier scheduling would be used. In this way, the bene�ts of both

techniques can be observed in every simulation.

66

Appendix A

Accurate thread simulation in

Parallel Proteus

Like Proteus, Parallel Proteus simulates an application thread executing on a target processor

at time t by letting the thread execute for a maximum of 1000 simulated cycles without inter-

ruption. In e�ect, threads are allowed to run ahead of simulated time. While this technique

allows the simulator to avoid numerous context switches and facilitates the barrier collapsing

and predictive barrier scheduling techniques, there is a danger of executing local operations1

too early and message handlers too late. This appendix explains how thread simulation remains

accurate in the Parallel Proteus experiments described in this thesis, and describes a design for

maintaining thread simulation accuracy in all situations.

Threads are allowed to execute up to 1000 local instructions without interruption. If a

thread encounters (but does not yet execute) a non-local operation (such as a message send

or synchronization variable access) after x cycles of local instructions, control returns to the

simulator immediately. The simulator notes that the thread performed x cycles of work and

then goes back to processing events from simulated time t forward. This includes handling all

messages that, in the simulated system, arrive before the non-local operation occurs. After all

of these have been handled, and this handling took x' cycles of simulated time, the non-local

operation is performed at the correct time, t + x + x'. Although in the simulated system, the

1As described in section 3.2.2, local operations are those that a�ect only the data local to the simulated

processor on which they are executed. Non-local operations are those that potentially interact with other parts

of the simulated system. Examples of non-local operations are message sends, checks for interrupts, and access

to data shared by application threads and message handlers.

67

x cycles of local operations and x' cycles of message handling would have been interleaved and

here they are not, the simulation is still accurate. The local instructions do not access any of

the same data accessed by the message handlers (and vice versa) (by de�nition, any access of

data common to the thread and the message handler is a non-local instruction), so the two sets

of instructions can be interleaved in an arbitrary way, as long as both sets execute before the

non-local instruction. (This is actually more accurate than sequential Proteus, where non-local

operations are executed early).

If, on the other hand, the application thread issues no non-local operations during its allotted

1000 cycles, then after executing the 1000 cycles of local instructions, control goes back to

the simulator. The simulator notes the 1000 cycles of work done by the thread, handles any

outstanding messages (which take a total of x'' simulated cycles of work), and schedules a

thread execution event to continue the thread at simulated time t + 1000 + x''. When an

application executes thousands of local instructions at a time, message handling gets caught

up every 1000 simulated cycles. Message handling gets caught up completely when a non-local

operation is issued. Because message handlers do not share any data with local instructions,

it does not matter that message handlers and local instructions are not always executed in the

correct order with respect to each other.

The technique as described so far ensures that non-local operations issued by a particular

simulated processor occur at the correct time (it takes into account time spent in message

handlers) and that message handlers and non-local operations on every simulated processor are

ordered as they would be in the simulated system. However, message handlers are not always

executed at the correct time. For example, because an application in a long local computation

phase only executes message handlers every 1000 cycles, a message handler scheduled to run at

time t may not execute until time t + 1000.

Let's explore the e�ects of this inaccuracy. There are several di�erent types of operations

a message handler can perform that could potentially be a�ected by this inaccuracy: accessing

synchronization variables that other threads will also access, creating and starting a thread,

sending a message. If a \late" message handler writes synchronization variables that other

threads on the processor will read, then no inaccuracy exists. The reading of these synchro-

nization variables by threads is by de�nition a non-local event and involves handling all pending

messages before being performed. Even though the message handler will not execute at exactly

the correct simulated time, it will execute in the correct order with respect to the read of the

68

synchronization variable by the thread and no inaccuracy will be seen.

If a message handler executed at the wrong time starts a thread on the processor, the thread

will be late in being submitted to the processor's thread scheduler. However, since the thread

scheduling quantum is 10,000 cycles, and the message handler execution is only o� by � 1000

cycles, it will not have much e�ect on when the new thread is run.

However, if a message handler which is executed late sends a message to the network, this

message will be sent out to the network late, and this lateness could have cascaded e�ects at

the other processors. For example, consider a message handler scheduled to execute on target

processor A at time t, which sends a synchronization message to target processor B, and this

synchronization message would have arrived at B at time t + 10. If the message handler on A

is instead executed at time t + 1000, the synchronization message will not arrive at B until t

+ 1010, 1000 cycles late. If B was spin-waiting for this synchronization message, the simulated

time computed for this application will be o� by 1000 cycles. This inaccuracy is not observed

in the work reported here because none of the applications I use have message handlers that

send out reply messages. Nevertheless, this inaccuracy could be corrected by saving the amount

of extra local computation a thread performed without advancing the simulation clock by the

entire amount, and then executing the message handlers at the exact simulated time they should

be run, and adding in the local computation time later. This would eliminate the inaccuracy.

However, this correction has not yet been implemented.

69

Bibliography

[AR92] Rassul Ayani and Hassan Rajaei. Parallel simulation using conservative time win-

dows. In Proceedings of the 1992 Winter Simulation Conference, December 1992.

[ASU86] Alfred A. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, 1986.

[Aya89] Rassul Ayani. A parallel simulation scheme based on distances between objects. In

Proceedings of the 1989 SCS Multiconference on Distributed Simulation, January

1989.

[BB94] Eric A. Brewer and Robert Blumofe. Strata: A multi-layer communications library,

version 2.0 beta, February 1994.

[BD92] Eric A. Brewer and Chrysanthos N. Dellarocas. Proteus user documentation, ver-

sion 0.5, December 1992.

[BDCW91] Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E.

Weihl. Proteus: A high-performance parallel architecture simulator. MIT/LCS

516, Massachusetts Institute of Technology, September 1991.

[Bed95] Robert C. Bedichek. Talisman: fast and accurate multicomputer simulation. In

Proceedings of SIGMETRICS '95, 1995.

[Bre92] Eric A. Brewer. Aspects of a parallel-architecture simulator. MIT/LCS 527, Mas-

sachusetts Institute of Technology, February 1992.

[Bry77] R. E. Bryant. Simulation of packet communication architecture computer systems.

MIT/LCS 188, Massachusetts Institute of Technology, November 1977.

[BT] Bertsekas and Tsitsikus. Parallel and Distributed Computing Numerical Methods.

70

[BW95] Douglas C. Burger and David A. Wood. Accuracy vs. performance in parallel

simulation of interconnection networks. In Proceedings of the 9th International

Parallel Processing Symposium, April 1995.

[CGHM93] David R. Cheriton, Hendrik A. Goosen, Hugh Holbrook, and Philip Machanick.

Restructuring a parallel simulation to improve behavior in a shared-memory multi-

processor: The value of distributed synchronization. In Proceedings of the Seventh

Workshop on Parallel and Distributed Simulation, pages 159{162, May 1993.

[CM79] K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in

design and veri�cation of distributed programs. IEEE Transactions on Software

Engineering, SE-5(5):440{452, September 1979.

[CM81] K. Mani Chandy and Jayadev Misra. Asynchronous distributed simulation via a

sequence of parallel computations. Communications of the ACM, 24(11):198{206,

April 1981.

[Cor92] Thinking Machines Corporation. CM-5 Technical Summary. 1992.

[CS89] K. M. Chandy and R. Sherman. The conditional event approach to distributed

simulation. In Proceedings of the 1989 SCS Multiconference on Distributed Simu-

lation, January 1989.

[DHN94] Philip M. Dickens, Philip Heidelberger, and David M. Nicol. Parallelized direct

execution simulation of message-passing parallel programs. Technical Report 94-50,

ICASE, June 1994.

[Fuj88] Richard M. Fujimoto. Performance measurements of distributed simulation. In

Proceedings of the SCS Multiconference on Distributed Simulation, pages 14{20,

February 1988.

[Fuj90] Richard M Fujimoto. Parallel discrete event simulation. Communiations of the

ACM, 33(10):30{53, October 1990.

[Gol93] Stephen R. Goldschmidt. Simulation of Multiprocessors: Accuracy and Perfor-

mance. PhD thesis, Stanford University, June 1993.

71

[JCM93] Kirk Johnson, David Chaiken, and Alan Mainwaring. Nwo-p: Parallel simulation

of the alewife machine. In Proceedings of the 1993 MIT Student Workshop on

Supercomputing Technologies, August 1993.

[Joh95] Kirk Johnson. Personal communication. March 1995.

[LL89] Yi-Bing Lin and Edward D. Lazowska. Exploiting lookahead in parallel simulation.

Technical Report 89-10-06, University of Washington Department of Computer

Science and Engineering, October 1989.

[Lub88] Boris D. Lubachevsky. Bounded lag distributed discrete event simulation. In

Proceedings of the SCS Multiconference on Distributed Simulation, pages 183{191,

January 1988.

[Lub89a] Boris D. Lubachevsky. E�cient distributed event-driven simulations of multiple-

loop networks. Communications of the ACM, 32(1):111{123, January 1989.

[Lub89b] Boris D. Lubachevsky. Scalability of the bounded lag distributed discrete event

simulation. In Proceedings of the SCS Multiconference on Distributed Simulation,

pages 100{107, March 1989.

[Nic91] David M. Nicol. Performance bounds on parallel self-initiating discrete-event sim-

ulations. ACM Transactions on Modeling and Computer Simulations, 1(1):24{50,

1991.

[RHL+93] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James

C.Lewis, and David A. Wood. The wisconsin wind tunnel: Virtual prototyping

of parallel compuers. In Proceedings of the 1993 ACM SIGMETRICS Conference,

May 1993.

[SBW88] Lisa M. Sokol, Duke P. Briscoe, and Alexis P. Wieland. Mtw: A strategy for

scheduling discrete simulation events for concurrent execution. In Proceedings of

the 1988 SCS multiconference on distributed simulation, January 1988.

[SDRG+86] K. So, F. Darema-Rogers, D.A. George, V.A. Norton, and G.F. P�ster. Psimul -

a system for parallel simulation of the execution of parallel programs. RC 11674,

IBM T.J. Watson Research Center, January 1986.

72

[Ste91] J. Steinman. Speedes: synchronous parallel environment for emulation and discrete

event simulation. Proceedings of the SCS western multiconference on advances in

parallel and distributed simulation, 23(1):95{103, 1991.

[vECGS92] T. von Eiken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active messages:

a mechanism for integrated communication and computation. In Proceedings of

the 19th International Symposium on Computer Architecture, pages 256{266, May

1992.

[YA93] Donald Yeung and Anant Agarwal. Experience with �ne-grain synchronization in

mimd machines for preconditioned conjugate gradient. In Proceedings of the 4th

Symposium on principles and practice of parallel programming, May 1993.

73

