
High-Performance All-Software
Distributed Shared Memory

Kirk L. Johnson
Laboratory for Computer Science

Massachusetts Institute of Technology
545 Technology Square

Cambridge, MA 02139, U.S.A.

MIT Laboratory for Computer Science
Technical Report MIT/LCS/TR-674

18 December 1995

High-Performance All-Software
Distributed Shared Memory

by

Kirk Lauritz Johnson
S.B., Massachusetts Institute of Technology (1989)
S.M., Massachusetts Institute of Technology (1989)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1996

cMassachusetts Institute of Technology 1996. All rights reserved.

Author :

Department of Electrical Engineering and Computer Science
18 December 1995

Certified by :

Anant Agarwal
Associate Professor of Computer Science and Engineering

Thesis Supervisor

Certified by :

M. Frans Kaashoek
Assistant Professor of Computer Science and Engineering

Thesis Supervisor

Accepted by :

Frederic R. Morgenthaler
Chairman, Departmental Committee on Graduate Students

2

High-Performance All-Software
Distributed Shared Memory

by
Kirk Lauritz Johnson

Submitted to the Department of Electrical Engineering and Computer Science on
18 December 1995 in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

The C Region Library (CRL) is a new all-software distributed shared memory (DSM) system.
CRL requires no special compiler, hardware, or operating system support beyond the ability to
send and receive messages between processing nodes. It provides a simple, portable, region-based
shared address space programming model that is capable of delivering good performance on a
wide range of multiprocessor and distributed system architectures. Each region is an arbitrarily
sized, contiguous area of memory. The programmer defines regions and delimits accesses to them
using annotations.

CRL implementations have been developed for two platforms: the Thinking Machines CM-
5, a commercial multicomputer, and the MIT Alewife machine, an experimental multiprocessor
offering efficient hardware support for both message passing and shared memory. Results are
presented for up to 128 processors on the CM-5 and up to 32 processors on Alewife.

Using Alewife as a vehicle, this thesis presents results from the first completely controlled
comparison of scalable hardware and software DSM systems. These results indicate that CRL is
capable of delivering performance that is competitive with hardware DSM systems: CRL achieves
speedups within 15% of those provided by Alewife’s native hardware-supported shared memory,
even for challenging applications (e.g., Barnes-Hut) and small problem sizes.

A second set of experimental results provides insight into the sensitivity of CRL’s performance
to increased communication costs (both higher latency and lower bandwidth). These results
demonstrate that even for relatively challenging applications, CRL should be capable of delivering
reasonable performance on current-generation distributed systems.

Taken together, these results indicate the substantial promise of CRL and other all-software
approaches to providing shared memory functionality and suggest that in many cases special-
purpose hardware support for shared memory may not be necessary.

Thesis Supervisor: Anant Agarwal
Title: Associate Professor of Computer Science and Engineering

Thesis Supervisor: M. Frans Kaashoek
Title: Assistant Professor of Computer Science and Engineering

3

Acknowledgments

This thesis marks the culmination of my six-and-a-half year career as a graduate student
at MIT. During that time, I was extremely fortunate to work in a stimulating, vibrant
environment populated with wonderful people. This thesis reflects their influence in many
ways, both directly and indirectly.

I am especially indebted to Anant Agarwal, my advisor. Anant’s keen insight, bound-
less enthusiasm, and quick wit helped foster an ideal environment in which to take one’s
first steps in Science. What I learned from working with Anant will undoubtedly continue
to influence my thinking for the rest of my life.

Frans Kaashoek arrived at MIT roughly halfway through my tenure as a graduate
student. We began to work together almost immediately, a fact for which I will always be
grateful. Frans’s supervision, encouragement, and friendship had unmeasurable impact
on both this work and my time as a graduate student. His willingness to wade through
endless drafts of papers (and this thesis) and provide careful commentary each and every
time never ceased to amaze me.

I would also like to thank the third member of my thesis committee, Barbara Liskov.
Her careful reading of the thesis document and “outside” perspective on this research
helped improve the presentation greatly.

David Chaiken, David Kranz, John Kubiatowicz, Beng-Hong Lim, Anne McCarthy,
Ken MacKenzie, Dan Nussbaum, and Donald Yeung were my nearly constant companions
and good friends over the past six years. Without their tireless efforts to make Alewife
a reality and provide a first-rate research environment, much of this and other interesting
research would not have been possible. I feel privileged to have had the opportunity to
work with such fine people for such a prolonged period of time; it is with some sadness
that I part ways with them.

Debby Wallach, Wilson Hsieh, Sandeep Gupta, and Joey Adler were the first guinea
pigs subjected to CRL. Their assistance in porting applications, finding and fixing bugs,
and producing a version of CRL that was fit for public consumption was invaluable. CRL
also benefited greatly in its early stages from feedback and commentary from John Guttag,
Kevin Lew, Margo Seltzer, Dan Scales, Bill Weihl, and Willy Zwaenepoel.

Playing ice hockey with other students and several faculty members once a week (year
’round, Tuesdays from 11pm to midnight) provided a welcome break from tooling and
helped keep me sane. People particularly worthy of mention in this context are Mike
Noakes, who provided the encouragement and opportunity to start playing, John Buck,
who loaned me his equipment until I bought my own, and Ken MacKenzie, my defensive
partner for the past several years.

Numerous other residents of the sixth floor provided camaraderie and conversation
during my time at MIT, including Rajeev Barua, Robert Bedichek, Ricardo Bianchini,
Fred Chong, Stuart Fiske, Matt Frank, Steve Keckler, Kathy Knobe, Rich Lethin, Sramana
Mitra, Mike Noakes, and Ravi Soundararajan. For those that have already left MIT, I wish
them luck in their future endeavors. For those that have not, I wish them godspeed.

Chris Metcalf shared an office with me for almost my entire time as a graduate student;
David Goddeau and Ed Hurley shared the office with us during parts of that time. Chris,

4

David, and Ed deserve a special thanks for putting up with my loud music and sometimes
unusual habits.

My first few semesters as a graduate student were supported by Victor Zue and the
Spoken Language Systems group at MIT. I was fortunate both as a recipient of said
support and for the opportunity it provided me to further the knowledge of speech and
signal processing I had developed while working on my Master’s Thesis.

Finally, without Heather’s constant love, support, and tolerance of my rather unusual
work schedule, none of this would have been possible. This thesis is dedicated to her.

A condensed version of parts of this work appears in Proceedings of the Fifteenth Symposium on Operating
Systems Principles, December 1995 [34].

This research was supported in part by the Advanced Research Projects Agency under contract N00014-94-
1-0985, by an NSF National Young Investigator Award, by Project Scout under ARPA contract MDA972-
92-J-1032, and by a fellowship from the Computer Measurement Group.

5

Contents

1 Introduction 13
1.1 Distributed Shared Memory : 14
1.2 The C Region Library : 16
1.3 Contributions and Results : 18
1.4 Thesis Roadmap : 18

2 Distributed Shared Memory 19
2.1 Implementation Techniques : 21

2.1.1 Software DSM : 21
2.1.2 Hardware DSM : 23

2.2 Mechanisms for DSM : 24
2.3 Discussion : 25

3 The CRL DSM System 26
3.1 Goals : 26
3.2 Programming Model : 27
3.3 Global Synchronization Primitives : 31
3.4 Memory/Coherence Model : 32
3.5 Discussion : 33

4 CRL Internals 35
4.1 Overview : 35
4.2 Region Identifiers : 35
4.3 Metadata : 36

4.3.1 Common Components : 36
4.3.2 Home-side Components : 38
4.3.3 Remote-side Components : 39
4.3.4 Data Layout : 39

4.4 Mapping and Unmapping : 40
4.5 Caching : 40
4.6 Coherence Protocol : 42

4.6.1 Three-Party Optimization : 43
4.7 Global Synchronization Primitives : 44
4.8 Status : 44

6

4.9 Summary : 45

5 Experimental Platforms 46
5.1 CM-5 : 46

5.1.1 Interrupts vs. Polling : 46
5.1.2 Whither Polling : 47
5.1.3 Communication Performance : : : : : : : : : : : : : : : : : : : 53

5.2 Alewife : 54
5.2.1 Integrated Support for Shared Memory and Message Passing : : : 54
5.2.2 Communication Performance : : : : : : : : : : : : : : : : : : : 55
5.2.3 Status : 56

6 Results 57
6.1 Basic Latencies : 58
6.2 Applications : 60

6.2.1 Blocked LU : 61
6.2.2 Water : 61
6.2.3 Barnes-Hut : 61
6.2.4 Performance : 62

6.3 CRL vs. Shared Memory : 67
6.4 Changing Communication Costs : 69
6.5 Sensitivity Analysis : 71

6.5.1 Modified Alewife CRL Implementation : : : : : : : : : : : : : : 72
6.5.2 Experimental Results : 73

6.6 Summary and Discussion : 83

7 Related Work 86
7.1 Region- and Object-Based Systems : 86
7.2 Other Software DSM Systems : 88
7.3 Comparative Studies : 89

8 Conclusions 90
8.1 Summary : 90
8.2 Goals Revisited : 91
8.3 Future Work : 92

A Coherence Protocol 94
A.1 Protocol States and Events : 94
A.2 Home-Side State Machine : 97
A.3 Remote-Side State Machine : 112
A.4 Continuations and Home-Side ‘Iip’ States : : : : : : : : : : : : : : : : : 124
A.5 Remote-Side ‘Req’ States : 125
A.6 Protocol Message Format : 125
A.7 Atomicity : 126
A.8 Naming Regions : 128

7

A.9 Unexpected Messages : 129
A.10 Two Kinds of Invalidation Messages : 130
A.11 Out-of-Order Message Delivery : 131

B Raw Data 135
B.1 Interrupts vs. Polling : 135
B.2 Global Synchronization: Hardware vs. Software : : : : : : : : : : : : : 139
B.3 Basic CRL Latencies : 140
B.4 Application Characteristics : 145
B.5 Alewife CRL Profiling : 148
B.6 Sensitivity Analysis : 149

8

List of Figures

2-1 System with memory as single, monolithic resource. : : : : : : : : : : : 20
2-2 System with distributed memory. : 20
2-3 DSM implementation alternatives. : 20

3-1 CRL implementation of cons. : 29
3-2 CRL implementation of car and cdr. : : : : : : : : : : : : : : : : : : 30
3-3 CRL implementation of mutual-exclusion locks. : : : : : : : : : : : : : : 31

4-1 Region data layout. : 39
4-2 Implementation of the unmapped region cache (URC). : : : : : : : : : : 41

5-1 Basic structure of the synthetic workload. : : : : : : : : : : : : : : : : : 48
5-2 Communication events used in the synthetic workload. : : : : : : : : : : 49
5-3 Typical synthetic workload performance data. : : : : : : : : : : : : : : : 51
5-4 Performance of ‘poll’ synthetic workload case relative to ‘intr’. : : : : : : 52
5-5 Basic Alewife architecture. : 54

6-1 Absolute running time and speedup for Blocked LU. : : : : : : : : : : : 64
6-2 Absolute running time and speedup for Water. : : : : : : : : : : : : : : : 65
6-3 Absolute running time and speedup for Barnes-Hut. : : : : : : : : : : : : 66
6-4 Breakdown of normalized running time for Alewife CRL version of

Blocked LU. : 68
6-5 Breakdown of normalized running time for Alewife CRL version of Water. 69
6-6 Breakdown of normalized running time for Alewife CRL version of

Barnes-Hut. : 70
6-7 Barnes-Hut performance for larger problem and machine sizes. : : : : : : 72
6-8 Impact of increased message latency on application performance. : : : : : 75
6-9 Impact of decreased bulk transfer bandwidth on application performance. : 76
6-10 Contour plots indicating combined impact of increased communication

costs on Blocked LU. : 78
6-11 Contour plots indicating the combined impact of increased communication

costs on Water. : 79
6-12 Contour plots indicating the combined impact of increased communication

costs on Barnes-Hut (4,096 bodies). : 80
6-13 Contour plots indicating the combined impact of increased communication

costs on Barnes-Hut (16,384 bodies). : : : : : : : : : : : : : : : : : : : 81

9

A-1 HomeExclusive: state transition diagram. : : : : : : : : : : : : : : : : 99
A-2 HomeExclusiveRip: state transition diagram. : : : : : : : : : : : : : : 100
A-3 HomeExclusiveWip: state transition diagram. : : : : : : : : : : : : : : 101
A-4 HomeShared: state transition diagram. : : : : : : : : : : : : : : : : : : 102
A-5 HomeSharedRip: state transition diagram. : : : : : : : : : : : : : : : : 103
A-6 HomeIip: state transition diagram. : 104
A-7 HomeIipSpecial: state transition diagram. : : : : : : : : : : : : : : : : 105
A-8 HomeInvalid: state transition diagram. : : : : : : : : : : : : : : : : : : 106
A-9 RemoteInvalid: state transition diagram. : : : : : : : : : : : : : : : : : 113
A-10 RemoteInvalidReq: state transition diagram. : : : : : : : : : : : : : : : 114
A-11 RemoteShared: state transition diagram. : : : : : : : : : : : : : : : : : 115
A-12 RemoteSharedReq: state transition diagram. : : : : : : : : : : : : : : 116
A-13 RemoteSharedRip: state transition diagram. : : : : : : : : : : : : : : : 117
A-14 RemoteModified: state transition diagram. : : : : : : : : : : : : : : : : 118
A-15 RemoteModifiedRip: state transition diagram. : : : : : : : : : : : : : : 119
A-16 RemoteModifiedWip: state transition diagram. : : : : : : : : : : : : : : 120
A-17 Standard (non-data-carrying) protocol message format. : : : : : : : : : : 126
A-18 The “flush-invalidation” problem. : 128
A-19 The “late invalidation” problem. : 131
A-20 The “early invalidation” problem. : 132
A-21 The “late release” problem. : 133
A-22 The “late invalidation acknowledgement” problem. : : : : : : : : : : : : 133

10

List of Tables

3-1 Summary of the CRL interface. : 27
3-2 Global synchronization functions in CRL. : : : : : : : : : : : : : : : : : 32

4-1 Metadata elements common to both home and remote copies of regions. : 37
4-2 Metadata elements specific to home copies of regions. : : : : : : : : : : : 38
4-3 Metadata elements specific to remote copies of regions. : : : : : : : : : : 39

6-1 Measured CRL latencies, 16-byte regions. : : : : : : : : : : : : : : : : : 58
6-2 Measured CRL latencies, 256-byte regions. : : : : : : : : : : : : : : : : 59
6-3 Static count of source lines and CRL calls for the three applications. : : : 60
6-4 Approximate number of regions used and typical region sizes for the three

applications. : 60
6-5 Application running times. : 62
6-6 Application characteristics when running under CRL. : : : : : : : : : : : 63

A-1 CRL home-side protocol states. : 95
A-2 CRL remote-side protocol states. : 95
A-3 CRL call events. : 95
A-4 CRL home-to-remote protocol messages. : : : : : : : : : : : : : : : : : 96
A-5 CRL remote-to-home protocol messages. : : : : : : : : : : : : : : : : : 96
A-6 HomeExclusive: protocol events and actions. : : : : : : : : : : : : : : 107
A-7 HomeExclusiveRip: protocol events and actions. : : : : : : : : : : : : : 107
A-8 HomeExclusiveWip: protocol events and actions. : : : : : : : : : : : : 107
A-9 HomeShared: protocol events and actions. : : : : : : : : : : : : : : : : 108
A-10 HomeSharedRip: protocol events and actions. : : : : : : : : : : : : : : 109
A-11 HomeIip: protocol events and actions. : : : : : : : : : : : : : : : : : : : 109
A-12 HomeIipSpecial: protocol events and actions. : : : : : : : : : : : : : : 110
A-13 HomeInvalid: protocol events and actions. : : : : : : : : : : : : : : : : 111
A-14 RemoteInvalid: protocol events and actions. : : : : : : : : : : : : : : : 121
A-15 RemoteInvalidReq: protocol events and actions. : : : : : : : : : : : : : 121
A-16 RemoteShared: protocol events and actions. : : : : : : : : : : : : : : : 121
A-17 RemoteSharedReq: protocol events and actions. : : : : : : : : : : : : 122
A-18 RemoteSharedRip: protocol events and actions. : : : : : : : : : : : : : 122
A-19 RemoteModified: protocol events and actions. : : : : : : : : : : : : : : 122
A-20 RemoteModifiedRip: protocol events and actions. : : : : : : : : : : : : 123
A-21 RemoteModifiedWip: protocol events and actions. : : : : : : : : : : : : 123

11

B-1 Synthetic workload performance data, two-message communication events.136
B-2 Synthetic workload performance data, three-message communication events.137
B-3 Synthetic workload performance data, four-message communication events.138
B-4 CM-5 CRL application running times, HW vs. SW synchronization. : : : 139
B-5 Dynamic counts of global synchronization primitives. : : : : : : : : : : : 140
B-6 Events measured by latency microbenchmark. : : : : : : : : : : : : : : : 141
B-7 CM-5 CRL latencies. : 142
B-8 Alewife CRL latencies, with CMMU workarounds. : : : : : : : : : : : : 143
B-9 Alewife CRL latencies, without CMMU workarounds. : : : : : : : : : : 144
B-10 Call event counts for Blocked LU. : 146
B-11 Call event counts for Water. : 146
B-12 Call event counts for Barnes-Hut. : 147
B-13 Message counts for 32 processors. : 147
B-14 Breakdown of Alewife CRL running times. : : : : : : : : : : : : : : : : 148
B-15 Running times for Blocked LU on 16 processors using the modified

Alewife CRL implementation. : 149
B-16 Running times for Blocked LU on 32 processors using the modified

Alewife CRL implementation. : 150
B-17 Running times for Water on 16 processors using the modified Alewife

CRL implementation. : 151
B-18 Running times for Water on 32 processors using the modified Alewife

CRL implementation. : 152
B-19 Running times for Barnes-Hut (4,096 bodies) on 16 processors using the

modified Alewife CRL implementation. : : : : : : : : : : : : : : : : : : 153
B-20 Running times for Barnes-Hut (4,096 bodies) on 32 processors using the

modified Alewife CRL implementation. : : : : : : : : : : : : : : : : : : 154
B-21 Running times for Barnes-Hut (16,384 bodies) on 16 processors using the

modified Alewife CRL implementation. : : : : : : : : : : : : : : : : : : 155
B-22 Running times for Barnes-Hut (16,384 bodies) on 32 processors using the

modified Alewife CRL implementation. : : : : : : : : : : : : : : : : : : 156

12

Chapter 1

Introduction

Distributed systems with communication performance rivaling that of traditional tightly-
coupled multicomputer systems are rapidly becoming reality. In order for these “networks
of workstations” (NOWs) to be a viable route to cost-effective high-performance com-
puting, good programming environments are necessary; such environments must be both
easy to use and capable of delivering high performance to the end user.

The C Region Library (CRL) is a new all-software distributed shared memory (DSM)
system intended for use on message-passing multicomputers and distributed systems.
CRL requires no special compiler, hardware, or operating system support beyond the
ability to send and receive messages. It provides a simple, portable, region-based shared
address space programming model that is capable of delivering good performance on a
wide range of multiprocessor and distributed system architectures. Each region is an
arbitrarily sized, contiguous area of memory; programmers define regions and delimit
accesses to them using annotations.

CRL implementations have been developed for two platforms: the Thinking Machines
CM-5, a commercial multicomputer, and the MIT Alewife machine, an experimental
multiprocessor offering efficient support for both message passing and shared memory.
This thesis presents results for up to 128 processors on the CM-5 and up to 32 processors
on Alewife. In a set of controlled experiments, we demonstrate that CRL is the first
all-software DSM system capable of delivering performance competitive with hardware
DSMs. CRL achieves speedups within 15 percent of those provided by Alewife’s native
support for shared memory, even for challenging applications and small problem sizes.

The rest of this chapter defines and provides further motivation for “good” distributed
shared memory systems (Section 1.1), briefly describes CRL (Section 1.2), and summa-
rizes the contributions and major results of the thesis as a whole (Section 1.3).

13

1.1 Distributed Shared Memory

There is a growing consensus that parallel systems should support a shared address space
or shared memory programming model: programmers should not bear the responsibility
for orchestrating all interprocessor communication through explicit messages. Support
for such distributed shared memory systems can be provided in hardware, software, or
some combination of the two. In general, hardware distributed shared memory systems
allow programmers to realize excellent performance without sacrificing programmability.
Software DSM systems typically provide a similar level of programmability, but trade off
somewhat lower performance for reduced hardware complexity and cost—the hardware
required to implement a message-passing system (upon which a software DSM is built) is
typically less complex and costly than that required to provide aggressive hardware support
for shared memory, especially for systems with hundreds or thousands of processors.

The appeal of a shared-address space programming model over a message-passing
one arises primarily from the fact that a shared-address space programming model frees
the programmer from the onus of orchestrating all communication and synchronization
through explicit message-passing. While such coordination can be managed without
adversely affecting performance for relatively simple applications (e.g., those that com-
municate infrequently or have sufficiently static communication patterns), doing so can
be far more difficult for large, complex applications (e.g., those in which data is shared
at a very fine grain or according to irregular, dynamic communication patterns) [72, 73].
For applications in which the complexity of using a message-passing programming model
remains manageable, one can often realize better performance using message-passing
instead of shared-memory. However, these gains can be relatively modest [11, 16] and
frequently come at the cost of greatly increased programmer effort.

In spite of this fact, message passing environments such as PVM (Parallel Virtual
Machine) [24] and MPI (Message Passing Interface) [55] are often the de facto standards
for programming multicomputers and networks of workstations. This is primarily due to
the fact that these systems are portable. They require no special hardware, compiler, or
operating system support, thus enabling them to run entirely at user level on unmodified,
“stock” systems. DSM systems that lack this ability are unlikely to gain widespread
acceptance as practical vehicles for high-performance computing.

In order to fulfill the promise of parallel and distributed systems as a cost-effective
means of delivering high-performance computation, DSM systems must possess four key
properties: simplicity, portability, efficiency, scalability.

Simplicity: Because DSM systems provide a uniform model for accessing all shared
data, whether local or remote, they are often relatively easy to use. Beyond such
ease of use, however, good DSM systems should exhibit several other forms of sim-
plicity. First, DSM systems should provide simple interfaces that allow them to be
platform- and language-independent. This form of simplicity has fundamental impact
on portability (as discussed below); DSM systems with simple interfaces that are

14

not bound to platform- or language-specific features are more likely to be portable.
Second, DSM systems should be amenable to simple implementations. This form of
simplicity reduces the overhead of designing, building, debugging, and deploying a
production system. Of equal or greater importance, however, is the fact that systems
with simple implementations are far more likely to afford extension, modification, and
customization, whether to improve performance or to explore using them in unforeseen
ways.

Portability: Portability across a wide range of platforms and programming environ-
ments is particularly important, because it obviates the odious task of having to rewrite
large, complex application codes once for each different target platform. In addition
to being portable across “space” (the current generation of parallel and distributed
systems), however, good DSM systems should also be portable across “time” (able
to run future systems). This type of portability is particularly important because it
enables stability; without stability, it is unlikely that DSM systems will ever be an
appealing platform for large, production applications requiring development efforts
measured in tens of man-years.

Efficiency: All parallel systems are capable of delivering the potential performance
of the underlying hardware for some appropriately-limited domain (e.g., applications
that require only trivial interprocessor communication or those for which all com-
munication patterns can be statically identified at compile-time). In order to achieve
widespread acceptance, DSM systems should be capable of providing high efficiency
over as wide a range of applications as possible (especially challenging applications
with irregular and/or unpredictable communication patterns) without requiring Her-
culean programmer effort.

Scalability: In order to provide an appealing platform for high-performance computing,
DSM systems should be able to run efficiently on systems with hundreds (or poten-
tially thousands) of processors. DSM systems that scale well to large systems offer end
users yet another form of stability: the comfort of knowing that applications running
on small- to medium-scale platforms could run unchanged and still deliver good per-
formance on large-scale platforms (assuming sufficient application parallelism). Even
though many production applications may never actually be deployed in large-scale
environments, systems lacking artificial limits that would prevent such deployment
are likely to be a more appealing platform for application development.

The challenge in building good DSM systems system lies in providing all four of these
properties to the greatest extent possible; to not sacrifice too much in one area to excel in
another.

15

1.2 The C Region Library

The fundamental question addressed in this thesis is what hardware support and software
tradeoffs are necessary in order to enable good DSM systems that possess these key
properties. In order to address this question, the thesis presents the design, implementation,
and evaluation of the C Region Library (CRL), a new all-software DSM system intended
for use with message-passing multicomputers and distributed systems.

CRL is referred to as an all-software DSM system because it migrates all shared-
memory functionality out of hardware into software; the only functionality CRL requires
from the platform (i.e., hardware and operating system) upon which it is built is the ability
to send and receive messages. Furthermore, CRL is implemented entirely as a library
against which application programs are linked; CRL requires no special compilers, binary
rewriting packages, program execution environments, or other potentially complex, non-
portable software tools. Because of these features, CRL scores well in the portability
department; porting the original (Thinking Machines’ CM-5 [48]) CRL implementation
to two other platforms (the MIT Alewife machine [1] and a network of Sun workstations
communicating with one another using TCP) proved to be straightforward. In addition,
by eliminating the need for special-purpose hardware to implement DSM functionality,
the implementation effort required to build a system like CRL (or other software-based
systems) is greatly reduced.

In terms of simplicity, CRL also does well. Like other DSM systems, CRL provides
a uniform model for accessing all shared data, whether local or remote, so it is rela-
tively easy to program. In addition, CRL provides a simple programming model that is
system- and language-independent. Although the implementation of CRL used in this
research only provides a C language interface, providing the same functionality in other
programming languages would require little work. Finally, CRL is amenable to simple
implementations: the version of CRL described in this thesis consists of just over 9,200
lines of well-commented C code and supports three platforms with significantly different
communication interfaces. As such, CRL should be prove to be relatively easy to extend,
modify, and customize as the need arises.

Finally, CRL is efficient and scalable. In a set of controlled experiments (using the MIT
Alewife machine), this thesis demonstrates that CRL is capable of delivering application
speedups (on 32 processors) within 15 percent of those those provided by systems with
aggressive hardware support for shared-memory functionality, even for challenging appli-
cations (e.g., Barnes-Hut) and small problem sizes. To achieve these performance levels,
however, CRL requires high-performance communication mechanisms with latency and
bandwidth characteristics closer to those available as (hardware) primitives to designers
of hardware-based DSM systems. Since systems providing this level of communication
performance are not widely available, the thesis also evaluates the impact of changing
communication costs on delivered application performance. This evaluation is accom-
plished both through sensitivity analysis of the high-performance implementation and by
measuring the performance of CRL when running on a platform (Thinking Machines’

16

CM-5) with communication performance similar to that available in current-generation
distributed systems (networks of workstations). While the use of less-efficient commu-
nication mechanisms does lead to lower performance (for the applications and problem
sizes used in this study, speedups approximately 30 to 40 percent smaller), experiments
indicate that acceptable performance on large-scale systems (e.g., 128 processors) may
still be possible for larger, more realistic problem sizes.

The work described in this thesis builds on a large body of research into the construction
of software DSM systems, but these four key properties distinguish CRL from other
software DSM systems. Proper subsets of these features have appeared in previous
systems, but CRL is the first to provide all four in a simple, coherent package. Chapter 7
provides further discussion comparing CRL with other software DSM systems.

In order to achieve this level of simplicity, portability, efficiency, and scalability,
however, CRL requires one compromise: a modest deviation from “standard” shared-
memory programming models. Parallel applications built on top of CRL share data
through regions. Each region is an arbitrarily sized, contiguous area of memory named
by a unique region identifier. Region identifiers comprise a separate address space that is
shared among all processors and is distinct from each processor’s private, local address
space. In order to access data contained in a region, programmers are responsible for
(1) inserting calls to CRL functions that manage translations between region identifiers
and the local address space and (2) delimiting accesses to region data with calls to CRL
functions that initiate and terminate operations.

Annotations of the second sort (delimiting the start and end of accesses to shared data)
are similar to those necessary in aggressive hardware and software DSM implementations
(e.g., those providing release consistency [25]) when writing to shared data. CRL requires
such annotations whether reading or writing to shared data, similar to entry consistency [5].
Experience with the applications described in this thesis indicates that the additional
programming overhead of providing these annotations is quite modest.

Annotations of the first sort (related to managing translations from region identifiers to
local addresses) are necessary because CRL maintains separate local and global address
spaces; these represent a more significant deviation from standard shared-memory models.
These annotations could be eliminated entirely (perhaps at a slight performance penalty
for some applications) by integrating their functionality into the region access functions,
but doing so would not address the more fundamental issue of CRL making an explicit
distinction between local and global address spaces. Addressing this issue will likely
require leveraging off of virtual memory mechanisms or other efficient address transla-
tion techniques; whether this can be done without significantly impacting on simplicity,
portability, and efficiency remains a subject of future research.

17

1.3 Contributions and Results

The primary contributions and results of this thesis are fourfold:

� A detailed description of the design and implementation of CRL, a new all-software
distributed shared memory system; CRL is unique in providing the four key prop-
erties suggested in Section 1.1 in a simple, coherent package.

� The first completely controlled comparison of scalable hardware and software DSM
systems, a comparison in which only the communication interfaces used by the
programming systems are changed; all other system components (e.g., compiler,
processor, cache, interconnection network) remain fixed.

� A demonstration that when built upon efficient communication mechanisms, an all-
software DSM system like CRL can deliver application performance competitive
with hardware-supported DSM systems, even for challenging applications and small
problem sizes. For domains and applications that can tolerate a modest deviation
from “standard” shared memory programming models, these results cast doubt on
the value of providing hardware support for shared memory functionality.

� An analysis of how sensitive CRL’s performance is to increased communication
costs, both higher latency and lower bandwidth. These results indicate that even for
current-generation networks-of-workstations technology, systems like CRL should
be able to deliver reasonable performance, even for relatively challenging applica-
tions.

1.4 Thesis Roadmap

The rest of this thesis is organized as follows. Chapter 2 discusses issues related to DSM
systems, including motivating shared-memory programming models, a brief discussion
of general implementation techniques and issues, and a framework for classifying DSM
systems in terms of three basic mechanisms. Chapter 3 provides an “external” perspective
of CRL: in addition to describing the CRL programming model, this chapter discusses the
goals and context that motivated CRL’s design and implementation. Chapter 4 provides
the complementary “internal” perspective by describing in detail the implementation of
the prototype CRL implementation. Chapter 5 describes the experimental platforms used
in this research. Chapter 6 presents performance results for CRL and compares them with
Alewife’s native shared memory support, both in terms of low-level features and delivered
application performance; the latter sections of this chapter address the impact of increased
communication costs on CRL’s performance. Chapter 7 provides a brief overview of
related work. Finally, Chapter 8 revisits the major points of the thesis, discusses their
implications, and identifies some areas for future work.

18

Chapter 2

Distributed Shared Memory

As discussed in the introduction, one of the goals of this research is to identify what
hardware support is necessary to enable good DSM systems. Before addressing this issue,
it is important to put it in context, by understanding (in broad terms) what kinds of DSM
systems (both hardware and software) have been previously built or proposed and what
the general implementation issues, advantages, and disadvantages in such systems are.
Thus, this chapter discusses issues related to the implementation of DSM systems. The
first section provides a brief overview of general implementation techniques and issues.
The second section presents a framework for classifying DSM systems in terms of three
basic mechanisms.

Before discussing implementation schemes, however, it is important to clarify what is
meant by the term “Distributed Shared Memory”:

Distributed denotes a property of the implementation of a programming system. In
particular, it implies that the physical memory used to implement the shared address
space is not a centralized, monolithic resource (see Figure 2-1). Instead, it is distributed
across distinct memory modules, the number of which scales with the number of
processors in the system (see Figure 2-2). This research assumes systems in which the
numbers of processors and memory modules are always the same, and, in fact, pairs
of memory modules and processors are tightly coupled into single processing nodes.
Other configurations are possible.

Shared memory denotes a property of the programming system as viewed by the end-
user. From the application programmer’s point of view, all user computation in such
a system takes place in a single, global address space that is shared by all threads;
communication between threads is effected by reading and writing locations in that
address space.

19

P P P P

M

shared bus

Figure 2-1. System with memory as single, monolithic resource.

interconnection network

P M P M P M

P MP MP M

Figure 2-2. System with distributed memory.

static
software

dynamic
software

(dynamic)
hardware

FORTRAN−D Ivy
Orca

Stanford DASH

spectrum of DSM implementation alternatives

LimitLESS
Dir1SW

Figure 2-3. DSM implementation alternatives.

20

For the purposes of this thesis, programming systems that implement a shared-address
space by directly mapping operations on the shared-address space into message-passing
constructs (e.g., Split-C [81], Concurrent Smalltalk [29]) are considered to be message-
passing programming systems, not DSM systems.

2.1 Implementation Techniques

This section provides a brief overview of traditional DSM implementation schemes (see
Figure 2-3). The first part addresses software schemes intended for message-passing
multicomputers or networks of workstations. The second discusses schemes in which
DSM functionality is provided by specialized hardware.

2.1.1 Software DSM

A software DSM system is one in which all interprocessor communication is performed
through explicit message passing; any shared-address space functionality is synthesized
in software by compilers or run-time systems.

Generally speaking, there are two broad classes of software DSMs. In the first class,
all message sends and receives are scheduled at compile time (by the compiler). In the
second class of software DSMs, communication is scheduled at run time by the run-time
or operating system in response to program actions. Accordingly, this proposal uses the
terms static software DSM and dynamic software DSM to refer to members of the first and
second class, respectively.

Static Approaches

Static software DSM systems are typified by compilers for FORTRAN-style scientific
codes targeting message-passing multicomputers [9, 41, 51, 64, 79, 87]. These are
typically data-parallel systems with a single thread of control; parallelism can only be
expressed in the form of a large number of similar (possibly identical) operations applied
in parallel to elements of large, dense arrays according to some user-specified iteration
space (parallel loop nest). Inter-iteration dependencies may or may not be respected.

In these systems, storage for each array is partitioned amongst the processing nodes at
compile time according to user-supplied or compiler-derived distributions. In the simplest
schemes, a single partition of each array is used for the duration of an entire application
run; more sophisticated systems allow different partitions for each array within each
parallel loop nest.

Parallelism is typically obtained according to some form of the owner-computes rule:
each operation is executed on the processing node that “owns” the array element modified

21

by that operation, where ownership is determined by whatever array partitions are in effect
for the loop nest in question. The illusion of a shared-address space is provided by the
compiler: for each operation that reads data resident on a remote node, the compiler
schedules appropriate message sends and receives such that the current values of all
necessary data are available before the operation is executed. Because of the owner-
computes rule, no inter-processor communication is required to write the result of each
operation, so the compiler need only worry about scheduling communication for the
remote data read by each operation.

Most compiler optimizations in static software DSM systems focus on reducing com-
munication overhead without unnecessarily throttling parallelism. In practice, such op-
timizations attempt to reduce the total number of messages sends and receives; this is
primarily an artifact of the large fixed overhead of message-based communication in
many current multiprocessor systems. For applications in which the source and desti-
nation of messages can be identified at compile time and communication overhead can
be reduced to acceptable levels, static software DSMs have proven to be quite success-
ful. For applications that do not meet these requirements, the extra cost of resorting to
run-time resolution to determine message endpoints [64] and increased communication
overhead can easily overwhelm any potential benefits due to the exploitation of paral-
lelism. Although recent research has yielded some progress on reducing message-based
communication overhead [81] and supporting efficient execution of certain kinds of data-
dependent communication patterns [50, 67], the applicability of the static software DSM
approach appears to remain fairly limited.

Dynamic Approaches

Dynamic software DSM systems typically support a more general programming model
than their static counterparts, typically allowing multiple independent threads of control
to operate within the shared address space [4, 5, 11, 21, 37, 52, 75]. Given mechanisms for
inter-thread synchronization (e.g., semaphores, barriers), a programmer is able to express
essentially any form of parallelism.

For the most part, these systems utilize a data-shipping paradigm in which threads
of computation are relatively immobile and data items (or copies of data items) are
brought to the threads that reference them. These systems exploit the locality of reference
that frequently exists in individual processors’ address reference patterns by migrating
or replicating data units such that most accesses can be satisfied locally without any
interprocessor communication or synchronization. They differ primarily in the sizes
of data units used (e.g., cache lines, virtual memory pages), the mechanisms used to
implement data replication and migration, and the memory/coherence model they provide
to the programmer [57] (and thus the details of the protocol used to implement coherence).

Systems utilizing a data-shipping paradigm must address the cache coherence problem.
When copies of data units are cached close to processors, the system implementation must
ensure that the effects of memory references (loads and stores) to a data unit from multiple

22

processors match those specified by the memory/coherence model that is to be supported.
For example, in a DSM system that supports a sequentially consistent memory model, a
processor that wants to modify (write to) a data unit may need to obtain an exclusive copy
(by invalidating any copies of the data unit cached on other processors) before performing
the modification.

An alternate approach involves moving computation to the data it references. Systems
organized along these lines avoid the overhead of frequent remote communication by
migrating computation to the node upon which frequently referenced data resides [10,
65]. Implementations utilizing both computation- and data-migration techniques are also
possible [4, 11, 32].

As with static software DSMs, the high fixed overheads of message-based commu-
nication in many current generation systems drive dynamic software DSM implementors
toward optimizations that reduce the total number of message sends and receives. In ad-
dition, because many dynamic software DSM systems assume a relatively low-bandwidth
communication substrate (e.g., conventional local area networking technology), these
systems also often incorporate optimizations aimed at reducing total communication
bandwidth.

Dynamic software DSM systems have proven to be capable of executing a fairly wide
range of application classes efficiently, including many irregular, dynamic codes that
would be difficult to express in the data-parallel style required by most static software
DSM systems, let alone execute efficiently in that style. On the other hand, assuming
similar hardware infrastructure to level the playing field, it is reasonable to expect that
for a limited class of applications (those for which static software DSM approaches yield
extremely efficient code) the application performance delivered by a dynamic software
DSM may lag somewhat behind that provided by a static software DSM.

2.1.2 Hardware DSM

A hardware DSM system is one in which all interprocessor communication is effected
through loads and stores to locations in a shared global address space. Examples include
the NYU Ultracomputer [26], IBM RP3 [62], Stanford DASH [49], and KSR-1 [39]. Other
communication mechanisms (e.g., message passing) are synthesized in software using the
shared-memory interface. Like dynamic software DSMs, hardware DSM systems support
a very general programming model.

Current hardware DSMs typically provide automatic migration and replication of
cache-line sized data units (16 to 128 bytes); support for migration and replication is
provided by specialized hardware. While the data migration in such systems is inherently
dynamic, for applications with completely static communication patterns, sophisticated
compilers can apply prefetching techniques to approximate the behavior of a static DSM
system [58].

23

If only a modest number of processors are to be supported (perhaps up to a few
dozen), the complexity of a hardware DSM implementation can be reduced substantially
through the use of a bus-based organization in which all processor-memory communication
traverses a bus shared by all processing nodes (see Figure 2-1). By snooping all bus
transactions and modifying cache line states appropriately, the caches in each processing
node can kept coherent [22]. While such systems are well-understood and relatively
simple to build, they are not scalable beyond a modest number of processors. Because this
thesis focuses on scalable DSM systems, it assumes that the complexity of implementing
hardware DSM systems is on the order of that required for systems based on scalable,
general-purpose interconnection networks.

As was the case for dynamic software DSM systems, hardware DSMs have proven to be
capable of executing a wide range of application classes efficiently. Compared to dynamic
software DSM systems, their primary advantage appears to by the ability to support
extremely frequent, fine-grained interprocessor communication and synchronization [21].

2.2 Mechanisms for DSM

This section presents a framework for classifying and comparing dynamic software and
hardware DSM systems. The framework identifies three basic mechanisms required
to implement dynamic DSM functionality; systems are classified according to whether
those mechanisms are implemented in hardware or software. Although this classification
scheme is primarily intended for use with DSM systems that employ a data shipping
model, it could likely be generalized for use with other kinds of dynamic software and
hardware DSM systems.

The three basic mechanisms required to implement dynamic DSM functionality are
as follows:

Hit/miss check (processor-side): Decide whether a particular reference can be satisfied
locally (e.g., whether or not it hits in the cache).

Request send (processor-side): React to the case where a reference cannot be satisfied
locally (e.g., send a message to another processor requesting a copy of the relevant
data item and wait for the eventual reply).

Memory-side: Receive a request from another processor, perform any necessary coher-
ence actions, and send a response.

Observing whether these mechanisms are implemented in hardware or software yields
the following breakdown of the spectrum of dynamic DSM systems and implementation
techniques that have been discussed in the literature.

24

All-Hardware In all-hardware DSM systems, all three of these mechanisms are imple-
mented in specialized hardware; the Stanford DASH multiprocessor [49] and KSR-
1 [39] are typical all-hardware systems.

Mostly Hardware As discussed in Section 5.2, the MIT Alewife machine implements a
mostly hardware DSM system—processor-side mechanisms are always implemented
in hardware, but memory-side support is handled in software when widespread sharing
is detected [13]. Dir1SW and its variations [27, 85] are also mostly hardware schemes.

The Stanford FLASH multiprocessor [46] and Wisconsin Typhoon architecture [63]
represent a different kind of mostly hardware DSM system. Both of these systems
implement the request send and memory-side functionality in software, but that soft-
ware runs on a specialized coprocessor associated with every processor/memory pair
in the system; only “memory system” code is expected to be run on the coprocessor.

Mostly Software Many software DSM systems are actually mostly software systems in
which the hit/miss check functionality is implemented in hardware (e.g., by leveraging
off of virtual memory protection mechanisms to provide access control). Typical ex-
amples of mostly software systems include Ivy [52], Munin [11], and TreadMarks [38];
coherence units in these systems are the size of virtual memory pages.

Blizzard [70] implements a similar scheme on the CM-5 at the granularity of individual
cache lines. By manipulating the error correcting code bits associated with every
memory block, Blizzard can control access on a cache-line by cache-line basis.

All-Software In an all-software DSM system, all three of the mechanisms identified
above are implemented entirely in software (e.g., Orca [3]). Several researchers
have recently reported on experiences with all-software DSM systems obtained by
modifying mostly software DSM systems such that the “hit/miss check” functionality
is provided in software [70, 86].

2.3 Discussion

Generally speaking, for applications where static software techniques cannot be effectively
employed, increased use of software to provide shared-memory functionality tends to
decrease application performance because processor cycles spent implementing memory
system functionality might otherwise have been spent in application code. This thesis
demonstrates, however, that given a carefully-designed shared memory interface and high-
performance communication mechanisms, it is possible to implement all shared memory
functionality entirely in software and still provide performance with hardware-based
systems on challenging shared-memory applications.

25

Chapter 3

The CRL DSM System

This chapter provides an “external” perspective of the C Region Library (CRL), describing
both the goals and context that motivated CRL’s design and implementation and the CRL
programming model. This chapter describes CRL in terms of the C language bindings
provided by our current implementation; it would be straightforward to provide similar
bindings in other imperative languages.

In terms of the classification presented in Section 2.2, CRL is an all-software DSM
system. Furthermore, CRL is implemented as a library against which user programs are
linked; no special hardware, compiler, or operating system support is required.

3.1 Goals

Three major goals guided the design and implementation of CRL; these goals can be
thought of as operational interpretations of the key properties (simplicity, portability,
efficiency, and scalability) suggested in the introduction.

� First and foremost, we strove to preserve the essential “feel” of the shared memory
programming model without requiring undue limitations on language features or,
worse, an entirely new language. In particular, we were interested in preserving
the uniform access model for shared data (whether local or remote) that most DSM
systems have in common.

� Second, we were interested in a system that could be implemented efficiently in an
all-software context and thus minimized the functionality required from the under-
lying hardware and operating system. Systems that take advantage of more complex
hardware or operating system functionality (e.g., page-based mostly software DSM
systems) can suffer a performance penalty because of inefficient interfaces for ac-
cessing such features [86].

26

Function Effect Argument
rgn_create Create a new region Size of region to create
rgn_delete Delete an existing region Region identifier
rgn_map Map a region into the local address space Region identifier
rgn_unmap Unmap a mapped region Pointer returned by rgn_map
rgn_rid Returns region identifier of a region Pointer returned by rgn_map
rgn_size Returns size (in bytes) of a region Pointer returned by rgn_map
rgn_start_read Initiate a read operation on a region Pointer returned by rgn_map
rgn_end_read Terminate a read operation on a region Pointer returned by rgn_map
rgn_start_write Initiate a write operation on a region Pointer returned by rgn_map
rgn_end_write Terminate a write operation on a region Pointer returned by rgn_map
rgn_flush Flush the local copy of a region Pointer returned by rgn_map

Table 3-1. Summary of the CRL interface.

� Finally, we wanted a system that would be amenable to simple and lean implemen-
tations in which only a small amount of software overhead sits between applications
and the message-passing infrastructure used for communication.

In light of the our experience with CRL and the results presented in Chapter 6,
Section 8.2 discusses the extent to which CRL meets these goals.

3.2 Programming Model

Table 3-1 summarizes the interface provided by CRL. In the CRL programming model,
communication is effected through operations on regions. Each region is an arbitrarily
sized, contiguous area of memory named by a unique region identifier. The memory
areas representing distinct regions are non-overlapping. New regions can be created
dynamically by calling rgn_create with one argument, the size of the region to create
(in bytes); rgn_create returns a region identifier for the newly created region. Thus
rgn_create can be thought of as the CRL analogue to malloc. (There is no CRL
analogue to realloc, however; once created, regions cannot be dynamically resized.)

A region identifier is a portable and stable name for a region (other systems use the
term “global pointer” for this concept). Region identifiers comprise a separate address
space that is shared among all processors and is distinct from each processor’s private,
local address space. Region identifiers are of abstract type rid_t. In order to ensure
region identifiers can be manipulated (e.g., used as arguments in a procedure call) without
undue overhead, implementations of CRL are expected to employ a compact (scalar)
representation for items of type rid_t.

Before accessing a region, a processor must map it into the local address space using
the rgn_map function. rgn_map takes one argument, a region identifier, and returns
a pointer to the base of the region’s data area. A complementary rgn_unmap function
allows the processor to indicate that it is done accessing the region, at least for the time

27

being. Any number of regions can be mapped simultaneously on a single node, subject
to the limitation that each mapping requires at least as much memory as the size of the
mapped region, and the total memory usage per node is ultimately limited by the physical
resources available. The address at which a particular region is mapped into the local
address space may not be the same on all processors. Furthermore, while the mapping is
fixed between any rgn_map and the corresponding rgn_unmap, successive mappings
on the same processor may place the region at different locations in the local address
space.

Because CRL makes no guarantees about the addresses regions get mapped to, appli-
cations that need to store a “pointer” to shared data (e.g., in another region as part of a
distributed, shared data structure) must store the corresponding region’s unique identifier
(as returned by rgn_create), not the address at which the region is currently mapped.
Subsequent references to the data referenced by the region identifier must be preceded by
calls to rgn_map (to obtain the address at which the region is mapped) and followed by
calls to rgn_unmap (to clean up the mapping). This is illustrated in Figures 3-1 and 3-2,
which show a simple CRL implementation of cons, car, and cdr that could be used to
build shared data structures.

After a region has been mapped into the local address space, its data area can be
accessed in the same manner as a region of memory referenced by any other pointer: no
additional overhead is introduced on a per-reference basis. CRL does require, however,
that programmers group accesses to a region’s data area into operations and annotate
programs with calls to CRL library functions to delimit them. Two types of operations
are available: read operations, during which a program is only allowed to read the data
area of the region in question, and write operations, during which both loads and stores to
the data area are allowed. Operations are initiated by calling either rgn_start_read
or rgn_start_write, as appropriate; rgn_end_read and rgn_end_write are
the complementary functions for terminating operations. These functions all take a single
argument, the pointer to the base of the region’s data area that was returned by rgn_map
for the region in question. An operation is considered to be in progress from the time the
initiating rgn_start_op returns until the corresponding rgn_end_op is called. CRL
places no restrictions on the number of operations a single processor may have in progress
at any one time. The effect of loads from a region’s data area when no operation is in
progress on that region is undefined; similarly for stores to a region’s data area when no
write operation is in progress. Figures 3-1, 3-2, and 3-3 provide examples of how these
functions might be used in practice.

In addition to providing data access information (indicating where programs are
allowed to issue loads and stores to a region’s data area), operations also serve as a
primitive synchronization mechanism in CRL. In particular, write operations are serialized
with respect to all other operations on the same region, including those on other processors.
Read operations to the same region are allowed to proceed concurrently, independent of
the processor on which they are executed. If a newly initiated operation conflicts with
those already in progress on the region in question, the invocation of rgn_start_op
responsible for initiating the operation spins until it can proceed without conflict. As such,

28

typedef struct
{
rid_t car;
rid_t cdr;

} CRLpair;

rid_t CRLpair_cons(rid_t car, rid_t cdr)
{
rid_t rslt;
CRLpair *pair;

/* create a region for the new pair, map it, and initiate a
* write operation so we can fill in the car and cdr fields
*/
rslt = rgn_create(sizeof(CRLpair));
pair = (CRLpair *) rgn_map(rslt);
rgn_start_write(pair);

pair->car = car;
pair->cdr = cdr;

/* terminate the write operation and unmap the region
*/
rgn_end_write(pair);
rgn_unmap(pair);

return rslt;
}

Figure 3-1. CRL implementation of cons.

29

typedef struct
{
rid_t car;
rid_t cdr;

} CRLpair;

rid_t CRLpair_car(rid_t pair_rid)
{
rid_t rslt;
CRLpair *pair;

/* map the pair region and initiate a read operation
* so we can read the value of the car field
*/
pair = (CRLpair *) rgn_map(pair_rid);
rgn_start_read(pair);

rslt = pair->car;

/* terminate the read operation and unmap the region
*/
rgn_end_read(pair);
rgn_unmap(pair);

return rslt;
}

rid_t CRLpair_cdr(rid_t pair_rid)
{
rid_t rslt;
CRLpair *pair;

/* map the pair region and initiate a read operation
* so we can read the value of the cdr field
*/
pair = (CRLpair *) rgn_map(pair_rid);
rgn_start_read(pair);

rslt = pair->cdr;

/* terminate the read operation and unmap the region
*/
rgn_end_read(pair);
rgn_unmap(pair);

return rslt;
}

Figure 3-2. CRL implementation of car and cdr.

30

/* map the region named by rid and acquire
* mutually-exclusive access to it
*/
void *mutex_acquire(rid_t rid)
{
void *rslt;

rslt = rgn_map(rid);
rgn_start_write(rslt);

return rslt;
}

/* release mutually-exclusive access to rgn
* and unmap it
*/
void mutex_release(void *rgn)
{
rgn_end_write(rgn);
rgn_unmap(rgn);

}

Figure 3-3. CRL implementation of mutual-exclusion locks.

traditional shared-memory synchronization primitives like mutual-exclusion or reader-
writer locks can be implemented in a straightforward manner using CRL operations (see
Figure 3-3).

In addition to functions for mapping, unmapping, starting operations, and ending
operations, CRL provides a handful of other functions relating to regions. First, CRL
provides a flush call that causes the local copy of a region to be flushed back to whichever
node holds the master copy of the region (this node is referred to as the home node
for the region; it is discussed further in Chapter 4). By selectively flushing regions,
it may be possible to reduce future coherence traffic (e.g., invalidations) related to the
flushed regions. Flushing a region is analogous to flushing a cache line in hardware
DSM systems. Second, CRL provides two simple functions that can be used to determine
the region identifier and size (in bytes) of a mapped region (rgn_rid and rgn_size,
respectively).

3.3 Global Synchronization Primitives

In addition to the basic region functionality described in the previous section, CRL
provides a modest selection of primitives for effecting global synchronization and com-
munication. These primitives are summarized in Table 3-2.

31

Function Effect
rgn_barrier Participate in a global barrier
rgn_bcast_send Initiate a global broadcast
rgn_bcast_recv Receive a global broadcast
rgn_reduce_dadd Participate in a global reduction (sum)
rgn_reduce_dmin Participate in a global reduction (minimum)
rgn_reduce_dmax Participate in a global reduction (maximum)

Table 3-2. Global synchronization functions in CRL.

rgn_barrier can be used to effect a global synchronization point. rgn_barrier
takes no arguments; it does not return on any node until it has been called on all nodes.

rgn_bcast_send and rgn_bcast_recv provide a means for one (sending)
processor to broadcast information to all other (receiving) processors. The sending pro-
cessor calls rgn_bcast_send with two arguments (the number of bytes to broadcast
and a pointer to a buffer containing the data to be sent). All other processors must call
rgn_bcast_recvwith a size argument matching that provided on the sending proces-
sor and a pointer to an appropriately-sized receive buffer; calls to rgn_bcast_recv
return after all broadcast data has been received locally.

rgn_reduce_dadd, rgn_reduce_dmin, and rgn_reduce_dmax provide
global reduction functionality. In general, the global reduction functions operate as
follows: Each processor calls a reduction function passing an argument value; no calls
return until the reduction function has been called on all processors. Upon return, the
reduction function provides an “accumulation” of the argument values supplied by each
processor according to some associative, binary operator. The reduction functions cur-
rently provided by CRL allow users to compute global sums, minima, and maxima of
double-precision floating-point values.

Extending the set of global synchronization primitives to make it more complete (e.g.,
reductions for other data types) would be straightforward.

3.4 Memory/Coherence Model

The simplest explanation of the coherence model provided by CRL considers entire
operations on regions as indivisible units. From this perspective, CRL provides sequential
consistency for read and write operations in the same sense that a sequentially consistent
hardware-based DSM does for individual loads and stores.

In terms of individual loads and stores, CRL provides a memory/coherence model
similar to entry [5] or release consistency [25]. Loads and stores to global data are
allowed only within properly synchronized sections (operations), and modifications to a
region are only made visible to other processors after the appropriate release operation
(a call to rgn_end_write). The principal difference between typical implementations

32

of these models and CRL, however, is that synchronization objects (and any association
of data with particular synchronization objects that might be necessary) are not provided
explicitly by the programmer. Instead, they are implicit in the semantics of the CRL
interface: every region has an associated synchronization object (what amounts to a
reader-writer lock) which is “acquired” and “released” using calls to rgn_start_op
and rgn_end_op.

3.5 Discussion

CRL shares many of the advantages and disadvantages of other software DSM systems
when compared to hardware DSMs. In particular, the latencies of many communication
operations may be significantly higher than similar operations in a hardware-based system.
Four properties of CRL allow it to offset some of this disadvantage. First, CRL is able to use
part of main memory as a large secondary cache instead of relying only on hardware caches,
which are typically small because of the cost of the resources required to implement them.
Second, if regions are chosen to correspond to user-defined data structures, coherence
actions transfer exactly the data required by the application. Third, CRL can exploit
efficient bulk data transport mechanisms when transferring large regions. Finally, because
CRL is implemented entirely in software at user level, it is easily modified or extended (e.g.,
for instrumentation purposes, in order to experiment with different coherence protocols,
etc.).

The programming model provided by CRL is not exactly the same as any “standard”
shared memory programming model (i.e., that provided by a sequentially-consistent all-
hardware DSM system). The principal differences in the CRL programming model are
twofold:

� CRL requires programmers to explicitly manage translations between the shared
address space (region identifiers) and the local address space in order to allow
access using standard language mechanisms.

� CRL requires programmers to insert annotations (calls to rgn_start_op and
rgn_end_op) delimiting accesses to shared data.

Annotations of the second sort (delimiting accesses to shared data) are similar to
those necessary in aggressive hardware and software DSM implementations (e.g., those
providing release consistency [25]) when writing to shared data. CRL requires such
annotations whether reading or writing to shared data, similar to entry consistency [5]. As
discussed in Section 6.2, experience with the applications described in this thesis indicates
that the additional programming overhead of providing these annotations is quite modest.
Furthermore, with this modest change to the programming model, CRL implementations
are able to amortize the cost of providing the mechanisms described in Section 2.2 entirely

33

in software over entire operations (typically multiple loads and stores) instead of paying
that cost for every reference to potentially shared data.

Annotations of the first sort (related to managing translations from region identifiers to
local addresses) are necessary because CRL maintains separate local and global address
spaces; these represent a more significant deviation from standard shared-memory models.
These annotations could be eliminated entirely (perhaps at a slight performance penalty
for some applications) by integrating their functionality into the region access functions,
but doing so would not address the more fundamental issue of CRL making an explicit
distinction between local and global address spaces. Addressing this issue will likely
require leveraging off of virtual memory mechanisms or other efficient address translation
techniques; whether this can be done without adverse impact on simplicity, portability,
and efficiency remains a subject of future research.

CRL places no restrictions on the number of operations a node may have in progress
at any one time or the order in which those operations must be initiated. As such,
programmers are faced with the same potential opportunities for introducing deadlock as
they would be when using traditional DSM synchronization mechanisms (e.g., mutual-
exclusion or reader-writer locks) in an unstructured manner. It is possible that deadlock
problems could be addressed with some combination of (1) compile-time analysis and
(2) run-time support (e.g., a “debugging” version of the CRL library) that is able to
dynamically detect deadlock when it occurs, but neither of these approaches are employed
in the current CRL implementation.

Finally, it is worth noting that CRL’s integration of data access and synchronization
into a single mechanism is not unlike that provided by monitors, a linguistic mechanism
suggested by Hoare [28] and Brinch Hansen [8], or other linguistic mechanisms that
integrate synchronization and data access (e.g., mutexes in Argus [53], mutex operations
in COOL [15], etc.).

34

Chapter 4

CRL Internals

This chapter describes the general structure of the prototype CRL implementation used in
this thesis. Platform-specific implementation details are discussed in Chapter 5.

4.1 Overview

The prototype CRL implementation supports single-threaded applications in which a sin-
gle user thread or process runs on each processor in the system. Interprocessor synchro-
nization can be effected through region operations, barriers, broadcasts, and reductions.
Many shared memory applications (e.g., the SPLASH application suites [74, 84]) are
written in this style. Although an experimental version of CRL that supports multiple user
threads per processor and migration of threads between processors is operational [31], all
results reported in this thesis were obtained using the single-threaded version.

CRL is implemented as a library against which user programs are linked; it is written
entirely in C. Both CM-5 and Alewife versions can be compiled from a single set of sources
with conditionally compiled sections to handle machine-specific details (e.g., different
message-passing interfaces). In both the CM-5 and Alewife versions, all communication
is effected using active messages [81]. Message delivery is assumed to be reliable but
in-order delivery is not required.

4.2 Region Identifiers

The prototype CRL implementation represents region identifiers using 32-bit unsigned
integers. Each region identifier encodes a 24-bit sequence number and an eight-bit home
node number using a simple, fixed encoding scheme. The home node number indicates
which processor is responsible for coordinating coherence actions for a region. In the
current implementation, the home node for a region is the node it was created on. The

35

sequence numbers are unique on each home node (i.e., distinct regions with the same
home node have distinct sequence numbers); sequence numbers are assigned (in order) at
region creation time. Because the prototype CRL implementation never reuses sequence
numbers, the size of the sequence number field imposes a limit on the number of regions
that can be created on a single node: the use of 24-bit sequence numbers means a node
can create over 16 million regions before exhausting the local sequence number space.
Similarly, the use of an eight-bit home node number limits the maximum number of
processors to 256.

With a fixed encoding scheme, the maximum number of processors can only be
increased at the cost of reducing the size of the sequence number space by the same factor,
and vice versa. These problems could be addressed (to some extent) by either (1) allowing
sequence numbers that are no longer in use to be reused (this would require some means
of determining or remembering which region identifiers are no longer in use) or (2) using
a flexible encoding scheme (in which segments of region identifier space are assigned
to processors dynamically, on demand). However, if the real problem is that 32 bits of
region identifier space is too small, it may make more sense to simply use larger region
identifiers (e.g., 64 bits).

4.3 Metadata

CRL allocates a fixed-size metadata area at the front of each region (or copy of a region)
to hold various coherence and implementation information. Because no effort has been
made to optimize for space, each region’s metadata area is relatively large (104 bytes).
Only a very small amount of the metadata associated with a copy of a region is ever
included in protocol messages regarding the region (four or eight bytes; see Figure A-17),
thus the only significant impact of relatively large metadata areas is in terms of per-region
memory overhead. Tables 4-1, 4-2, and 4-3 provide a breakdown of the metadata area
into individual components.

4.3.1 Common Components

Table 4-1 shows those elements that appear in the metadata area for both home and
remote (non-home) copies of a region. Elements marked with a ‘*’ in the ‘CM-5 only?’
column are only necessary in the CM-5 implementation of CRL.

The first element (region state) contains a pointer to the State data structure that
indicates the current coherence protocol state for the region (see Section 4.6). The second
element (region identifier) contains the region identifier for the region, as discussed in
Section 3.2. The third element (version number) is used to handle problems caused by out-
of-order message delivery (see Section A.11). The fourth element (region size) indicates
the size of the associated region, in bytes.

36

Offset CM-5
(bytes) Only? Description Data Type

0 Region state Pointer to State
4 Region identifier 32-bit unsigned integer
8 Version number 32-bit unsigned integer
12 Region size (bytes) 32-bit unsigned integer
16 * Recv in progress flag 32-bit unsigned integer
20 * Recv type 32-bit unsigned integer
24 * Recv src 32-bit unsigned integer
28 * Recv vers 32-bit unsigned integer
32 Transaction done flag 32-bit unsigned integer
36 Continuation func Pointer to function
40 Continuation arg1 32-bit unsigned integer
44 Continuation arg2 32-bit unsigned integer
48 Continuation arg3 32-bit unsigned integer
52 Read count 32-bit unsigned integer
56 Map count 32-bit unsigned integer
60 * Send count 32-bit unsigned integer
64 Rtable link Pointer to Region
68 * Queue link Pointer to Region

Table 4-1. Metadata elements common to both home and remote copies of regions.

The next four elements (recv in progress flag, recv type, recv src, and recv vers)
are only needed on the CM-5. These fields are used to buffer the scalar components
(message type, source node, and version number) of data-carrying protocol messages (see
Section A.6) until the entire message has arrived; this is necessary because the bulk data
transfer mechanisms used on the CM-5 deliver the scalar and bulk data components of
data-carrying messages at different times.

The first of the next five fields (transaction done flag) is used to indicate the com-
pletion of a two-phase set of protocol actions. The remaining four fields (continuation
func, continuation arg1, continuation arg2, and continuation arg3) are used to store the
“continuation” (function pointer and arguments) that implements the second phase of a
two-phase set of protocol actions. Further details can be found in Section A.4.

The next three fields (read count, map count, and send count) count the number of read
operations in progress locally, the number of times a region has been mapped locally, and
the number of protocol messages containing a copy of the corresponding region’s data are
either currently in progress or pending. The send count field is only used on the CM-5 (to
determine if all pending sends for a region have completed), where it is kept up to date
by incrementing it before initiating a send and having a handler initiated after a send is
completed decrement it. Similar (but slightly more conservative) functionality is achieved
in the Alewife CRL implementation by directly querying the outgoing bulk data transfer
engine if all pending messages have been sent.

The first of the final two fields (rtable link) is used form singly-linked lists of regions
in each bucked of the region table (see Section 4.4). The remaining field (queue link)

37

Offset
(bytes) Field Type

72 Number of pointers 32-bit unsigned integer
76 1st ptr: Node number 32-bit unsigned integer
80 1st ptr: Metadata address Pointer to Region
84 1st ptr: Version number 32-bit unsigned integer
88 1st ptr: Next pointer Pointer to Pointer
92 Blocked msg queue: head Pointer to ProtMsg
96 Blocked msg queue: tail Pointer to ProtMsg
100 (padding)

Table 4-2. Metadata elements specific to home copies of regions.

is only necessary on the CM-5; it is used to construct a FIFO queue of regions that are
waiting to receive bulk data transfer messages (the bulk data transfer mechanism provided
by the CM-5 only allows each node to be in the process of receiving a limited number of
bulk data transfer messages at any given time).

Clearly, even a modest focus on reducing memory overhead could eliminate many of
these fields without any significant performance penalty (e.g., by replacing groups of re-
lated fields with pointers to dynamically-allocated data structures that are only instantiated
when necessary).

4.3.2 Home-side Components

Table 4-2 shows those metadata elements that are specific to home copies of regions.
The first five elements (number of pointers, node number, metadata address, version
number, and next pointer) implement the directory maintained by the home copy of each
region; the directory maintains information about all copies of a region that are cached
on other nodes. The first of these fields (number of pointers) indicates the number of
directory entries; the other four fields (node number, metadata address, version number,
and next pointer) provide storage for the first directory entry; subsequent directory entries
are maintained in a singly-linked list using the ‘next pointer’ fields.

The next two elements (head and tail) are used to implement a FIFO queue of “blocked”
protocol messages, which is discussed further in Section A.9.

The final element (four bytes of padding) is included to ensure that the total size of
the metadata area is double-word aligned, thus ensuring that the start of user data areas
are double-word aligned (user data areas are allocated immediately following metadata
areas; see Section 4.3.4).

Once again, some amount of metadata memory overhead could easily be eliminated
(e.g., by not allocating space for the first directory element in the metadata area) if desired.

38

Offset
(bytes) Field Type

72 Home node number 32-bit unsigned integer
76 Metadata address Pointer to Region
80 Rcvd invalidate flag 32-bit unsigned integer
84 (padding)
88 (padding)
92 (padding)
96 (padding)
100 (padding)

Table 4-3. Metadata elements specific to remote copies of regions.

metadata area user data area

104 bytes

pointer returned by rgn_map

increasing addresses

Figure 4-1. Region data layout.

4.3.3 Remote-side Components

Table 4-3 shows those metadata elements that are specific to remote copies of regions.
The first element (home node number) indicates the home node number for a region.
The second element (metadata address) records the address of the region metadata on the
home node (see Section A.8). The third element (rcvd invalidate flag) is used to “queue”
invalidate messages that cannot be processed immediately (see Section A.9).

The remaining five elements (20 bytes of padding) are included to pad out the size of
the metadata for remote nodes to match that for home nodes. Strictly speaking, this is not
necessary; it is done in the prototype CRL implementation for the sake of simplicity and
uniformity.

4.3.4 Data Layout

The metadata and user data areas for each copy of a region (whether home or remote)
are allocated adjacent to one another. The user data area starts at the end of the metadata
area; the base of the user data area is the “handle” returned by rgn_map when a region
is mapped (see Figure 4-1). The use of such a simple data layout ensures that given the

39

address of a region’s user data area, the corresponding metadata can be located quickly
using a single constant-offset address calculation (which can often by combined with any
offset calculations necessary for accessing particular elements of the metadata).

4.4 Mapping and Unmapping

The information necessary to implement the mapping and unmapping of regions is main-
tained in a region table kept on each node. Each region table is a hash table containing
some number of buckets. Regions are hashed into buckets by applying a simple hash
function to their region identifiers; buckets containing multiple regions do so using a
singly-linked-list organization.

At any given time, a node’s region table contains all regions that are mapped or
cached on that node. In addition, because CRL currently employs a fixed-home coherence
protocol (see Section 4.6), a node’s region table also contains all regions that were created
on that node.

Given the region table data structure, implementing rgn_map is straightforward.
rgn_map examines the local region table to see if a copy of the region in question is
already present. If the desired region is found, minor bookkeeping actions are performed
(e.g., incrementing the count of how many times the region is mapped on the local node),
and a pointer to the region’s user data is returned. If the desired region is not found, the
home node is queried to determine the size of the region (in addition to a small amount
of other auxiliary information), an appropriately-sized area of memory is allocated, the
metadata area initialized, and a pointer to the user data area of the newly allocated region
is returned.

The implementation of rgn_unmap is even simpler: aside from minor bookkeeping
(e.g., decrementing the mapping count), rgn_unmap does nothing beyond calling into
the code that manages caching of unmapped regions, if necessary (see Section 4.5).

The prototype CRL implementation uses fixed-size region tables with 8,192 buckets.
Since each bucket is represented with a single (four-byte) pointer to a region (the linked-
list organization is maintained using a field in each region’s metadata area), region tables
require 32 kilobytes of memory per node.

4.5 Caching

CRL caches both mappings and data aggressively in an attempt to avoid communication
whenever possible. This section describes how caching is implemented.

Whenever a region is unmapped and no other mappings of the region are in progress
locally, it is inserted into a software table called the unmapped region cache (URC); the

40

0 N−1

free slotsoccupied slots

next free slotscan

Figure 4-2. Implementation of the unmapped region cache (URC).

state of the region’s data (e.g., invalid, clean, dirty) is left unchanged. Inserting a region
into the URC may require evicting an existing entry. This is accomplished in three steps.
First, the region to be evicted (chosen using a simple round-robin scheme) is flushed (by
calling rgn_flush). Flushing the region to be evicted ensures that if it has a valid copy
of that’s region data, the home node is informed that the local copy of the data has been
dropped and, if necessary, causes any changes to that data to be written back. Second,
the region is removed from the region table. Third, any memory resources that had been
allocated for the evicted region are freed.

Unmapped regions cached in the URC are not removed from the region table, so
attempts to map such regions can be satisfied efficiently without complicating the im-
plementation of rgn_map described above. However, since the URC is only used to
hold unmapped regions, calls to rgn_map that are satisfied from the URC also cause the
region in question to be removed from the URC.

The URC serves two purposes. First, it allows the caching of data between subsequent
rgn_map/rgn_unmap pairs on the same region. If a region with a valid copy of the
associated data is placed in the URC and the data is not invalidated before the next time
the region is mapped, it may be possible to satisfy subsequent calls to rgn_start_op
locally, without requiring communication with the home node. Second, it enables the
caching of mappings. Even if the data associated with a region is invalidated while the
region sits in the URC (or perhaps was already invalid when the region was inserted
into the URC), caching the mapping allows later attempts to map the same region to be
satisfied more quickly than they might be otherwise. Calls to rgn_map that cannot be
satisfied locally require sending a MsgRgnInfoReq message to the region’s home node
requesting information (e.g., the size and current version number), waiting for the reply
(a MsgRgnInfoAck message), allocating a local copy for the region, and initializing the
protocol metadata appropriately.

Each node has its own URC. As shown in Figure 4-2, each URC is implemented as a
simple linear table of (four-byte) pointers to regions plus two words of bookkeeping data
(scan, which is used to implement the round-robin replacement strategy, and next free

41

slot, which points to the next available URC slot). CRL currently employs a fixed-size
URC with 1024 entries (4 kilobytes of memory per node).

Pointers to regions residing in the URC are kept in a contiguous section of the URC
starting at index 0. When a region is inserted into the URC, the index at which it was
inserted is remembered (in the “Continuation arg3” metadata slot, which is otherwise
never in use for regions residing in the URC); doing so ensures that a region can be
located and deleted from the URC with a minimum of overhead when necessary (e.g.,
when a call to rgn_map is satisfied from the URC). Because any region can reside in any
slot of the URC, it is effectively fully-associative.

Finally, in addition to caching mappings and data in the URC, CRL caches the data
contained in mapped regions. When an application keeps a region mapped on a particular
processor through a sequence of operations, CRL caches the data associated with the
region between operations. Naturally, the local copy might be invalidated because of
other processors initiating operations on the same region. As in hardware DSM systems,
whether or not such invalidation actually happens is effectively invisible to the end user
(except in terms of any performance penalty it may cause).

Cached region data, whether associated with mapped or unmapped regions, is kept in
the user data area. Coherence of cached data is maintained using the protocol described in
the following section. Because region data is cached in this manner, CRL gains the usual
benefits associated with caching in main memory. The high density and low cost of main
memory technology (DRAM) allow effective cache sizes to be quite large, particularly in
contrast to SRAM-based caches that are typically found in hardware DSM systems.

4.6 Coherence Protocol

This section provides an overview of the protocol used by CRL to maintain the coherence
of cached data required by the memory/coherence model described in Section 3.4. A
detailed description of the coherence protocol can be found in Appendix A.

The prototype CRL implementation employs a fixed-home, directory-based invalidate
protocol similar to that used in many hardware (e.g., Alewife [1], DASH [49]) and software
(e.g., Ivy [52], Munin [11]) DSM systems. In this protocol, coherence actions for a each
region are coordinated by a particular home node (in the current CRL implementation, the
home node is always the node where the region was created).

Roughly speaking, any copy of a region, whether on the home node for that region or
some other remote node, can be in one of three states: EXCLUSIVE, SHARED, or INVALID.
For the copy of a region residing on its home node, these states are interpreted as follows:

EXCLUSIVE: This node (the home node) has the only valid copy of the region data.

42

SHARED: Both this node (the home node) and some number of other (remote) nodes
have valid copies of the region data.

INVALID: Some other (remote) node has the only valid copy of the region data (thus this
node does not have a valid copy).

For a copy of a region residing on a remote node, the interpretations of EXCLUSIVE

and SHARED remain the same, but the meaning of INVALID changes slightly:

INVALID: This (remote) node does not have a valid copy of the region data (the state of
the home node indicates where valid copies can be found).

In order to initiate a read operation on a region, the local copy of the region must be in
either the EXCLUSIVE or SHARED state. If the local copy is in the INVALID state, a message
is sent to the home node requesting a shared copy. Upon receiving such a request, if the
copy of the region on the home node is in either the EXCLUSIVE or SHARED state, a reply
containing a (shared) copy of the region data can immediately be sent to the requesting
node (leaving the home node in the SHARED state).

If the copy of the region on the home node is in the INVALID state when a request for a
shared copy arrives, the directory in the home region’s metadata (see Section 4.3.2) is used
to identify the remote node that is holding an exclusive copy of the data, and an invalidate
message for the region is sent to that node. Upon receiving the invalidate message, the
remote node changes the state for the local copy of the region in question to INVALID and
returns an invalidate acknowledgement to the home node. When the acknowledgement
for the invalidate message is received to the home node (possibly including a new copy of
the region data if it had been modified on the remote node), a reply containing a (shared)
copy of the region data can be sent to the original requesting node (again leaving the home
node in the SHARED state).

In order to initiate a write operation on a region, the local copy of the region must
be in the EXCLUSIVE state. If the local copy is in either the SHARED or INVALID state, a
message is sent to the home node requesting an exclusive copy. Once again, in a manner
similar to that described above for read operations, the directory information maintained
on the home node is used to invalidate any outstanding copies of the region in question
(if necessary), then a reply containing a (exclusive) copy of the region data is sent back to
the requesting node (leaving the home node in the INVALID state).

4.6.1 Three-Party Optimization

In the coherence protocol used by the prototype CRL implementation, responses to in-
validate messages are always sent back to a region’s home node, which is responsible
for collecting them and responding appropriately after all invalidate messages have been
acknowledged. Using such a scheme, the critical path of any protocol actions involving
three (or more) nodes involves four messages (request, invalidate, acknowledgement, re-

43

ply). In many situations, a more aggressive (and somewhat more complicated) coherence
protocol could reduce the critical path in such cases to three messages (request, invali-
date, acknowledge) by having invalidate acknowledgements sent directly to the original
requesting node (as is done in DASH). Eliminating long latency events (i.e., messages)
from the critical path of three-party protocol actions in this manner would likely yield at
least a small performance improvement for many applications.

4.7 Global Synchronization Primitives

On Alewife, the global synchronization primitives described in Section 3.3 are imple-
mented entirely in software using message-passing. Broadcasts are implemented using a
binary broadcast tree rooted at each node. Barriers and reductions are implemented in a
scan [6] style: For an n processor system, messages are sent between nodes according to
a butterfly network pattern requiring log2 n stages of n messages each.

On the CM-5, the baseline CRL implementation takes advantage of the CM-5’s hard-
ware support for global synchronization and communication (the control network) to
implement the global synchronization primitives. The performance of the baseline CM-5
CRL implementation has been compared with that of a modified implementation in which
global synchronization primitives are implemented in software (using essentially the same
implementation techniques that are used in the Alewife implementation). The results of
this comparison (shown in Section B.2) indicate that for the applications discussed in this
thesis, use of a software-based implementation typically changes running time by no more
than a few percent (sometimes a slight increase, more often a slight decrease).

4.8 Status

The prototype CRL implementation has been operational since early 1995. It has been used
to run a handful of shared-memory-style applications, including two from the SPLASH-2
suite [84], on a 32-node Alewife system and CM-5 systems with up to 128 processors.
A “null” implementation that provides null or identity macros for all CRL functions
except rgn_create (which is a simple wrapper around malloc) is also available to
obtain sequential timings on Alewife, the CM-5, or uniprocessor systems (e.g., desktop
workstations).

The rgn_delete function shown in Table 3-1 is a no-op in our current CRL im-
plementation. We plan to implement the rgn_delete functionality eventually; the
implementation should be straightforward, but there has not been any pressing need to do
so for the applications we have implemented to date.

A “CRL 1.0” distribution containing user documentation, the current CRL implemen-
tation, and CRL versions of several applications are available on the World Wide Web [33].

44

In addition to the platforms employed in this thesis (CM-5 and Alewife), the CRL 1.0
distribution can be compiled for use with PVM [24] on a network of Sun workstations
communicating with one another using TCP.

4.9 Summary

The preceding sections described the general structure of a prototype CRL implemen-
tation that provides the features and programming model described in Chapter 3. The
prototype implementation is relatively simple, consisting of just over 9,200 lines of well-
commented C code that can be compiled for use on three platforms with significantly
different communication interfaces (Alewife, CM-5, and TCP/UNIX). Aside from the
coherence protocol, the most important components of the prototype implementation are
the region table and unmapped region cache data structures, which together provide a
means of resolving region references (i.e., mapping) and caching shared (region) data.

45

Chapter 5

Experimental Platforms

This chapter describes the experimental platforms used in the thesis research: Thinking
Machines’ CM-5 family of multiprocessors and the MIT Alewife machine.

5.1 CM-5

The CM-5 [48] is a commercially-available message-passing multicomputer with rela-
tively efficient support for low-overhead, fine-grained message passing. Each CM-5 node
contains a SPARC v7 processor (running at 32 MHz) and 32 Mbytes of physical memory.

The experiments described in this thesis were run on a 128-node CM-5 system running
version 7.4 Final of the CMOST operating system and version 3.3 of the CMMD message-
passing library. All application and (CRL) library source code was compiled using gcc
version 2.6.3 with -O2 optimization. All measurements were performed while the system
was running in dedicated mode.

5.1.1 Interrupts vs. Polling

Application codes on the CM-5 can be run with interrupts either enabled or disabled.
If interrupts are enabled, active messages arriving at a node are handled immediately by
interrupting whatever computation was running on that node; the overhead of receiving ac-
tive messages in this manner is relatively high. This overhead can be reduced significantly
by running with interrupts disabled, in which case incoming active messages simply block
until the code running on the node in question explicitly polls the network (or tries to send
a message, which implicitly causes the network to be polled). Running with interrupts
disabled is not a panacea for systems like CRL, however. With interrupt-driven message
delivery, the programmer is not aware of when CRL protocol messages are processed
by the local node. In contrast, if polling is used, the programmer needs to be aware of
when protocol messages might need to be processed and ensure that the network is polled

46

frequently enough to allow them to be serviced promptly. Placing this additional burden
on programmers could have serious negative impact on the ease of use promised by the
shared memory programming model.

The CRL implementation for the CM-5 works correctly whether interrupts are enabled
or disabled. If it is used with interrupts disabled, users are responsible for ensuring the
network is polled frequently enough, as is always the case when programming with
interrupts disabled. For the communication workloads induced by the applications and
problem sizes used in this thesis, however, there is little or no benefit to using polling
instead of interrupt-driven message delivery. This has been verified both through adding
different amounts of polling (by hand) to the most communication-intensive application
(Barnes-Hut) and through the use of a simple synthetic workload that allows message
reception mechanism (interrupts or polling), communication rate, and polling frequency
(when polling-based message delivery is used) to be controlled independently. (Details
about the synthetic workload and results obtained with it are presented in the following
section.) Thus, unless stated otherwise, all CM-5 results presented in this these were
obtained by running with interrupts enabled.

5.1.2 Whither Polling

As described in the previous section, active message delivery on the CM-5 can either be
done in an interrupt-driven or polling-based manner. Generally speaking, the tradeoff
between the two styles of message reception can be summarized as follows: Polling-
based message delivery can be more efficient than interrupt-driven message delivery,
but it requires that each node poll the network sufficiently frequently whenever other
nodes might be sending messages to it. In a system like CRL, where the user is often
unable to identify exactly when communication occurs, applications using polling-based
message delivery must resort to simply polling the network at some constant, hopefully
near-optimal frequency.

What remains unclear, however, even to veteran CM-5 programmers, is what the
optimal polling frequency is, how that frequency depends on the communication workload
induced by applications, and how sensitive delivered application performance is to hitting
the optimal polling rate exactly. Furthermore, it is clear that at the extreme ends of
the communication-rate spectrum, having applications explicitly poll the network may
not be the best strategy, even when done at exactly the optimal rate. For applications
that communicate frequently, the optimal strategy may be to use a polling-based message
delivery model, but rely exclusively on the implicit polls associated with sending messages
on the CM-5 to handle any incoming messages. If messages are being sent frequently
enough, the overhead of any additional explicit polling of the network may do more harm
than good. For applications that communicate very infrequently but at unpredictable
times, the optimal strategy may be use interrupt-driven message delivery—the overhead
of polling often enough (many times without receiving any messages) to ensure prompt
service of any incoming active messages may outweigh any potential savings of receiving

47

int i;
int count;
int limit;

count = 0;
for (i=0; i<NumIters; i++)
{
/* do “useful work” for a while
*/

limit = count + [value];
while (count < limit)
{
if ((count & [mask]) == 0)
{
/* if explicit polling of the network is being used, also poll
* for incoming messages after null_proc returns
*/
null_proc();

}
count += 1;

}

/* initiate a communication event with one or more randomly
* selected peers and wait for it to complete
*/

[...]
}

Figure 5-1. Basic structure of the synthetic workload.

messages using polling instead of interrupts. Indeed, the situation with respect to polling
is murky; basic questions such as how frequently to poll or whether polling should even
be used remain unanswered. The rest of this section describes and presents results form a
simple synthetic workload that attempts to shed light on the subject.

The synthetic workload is designed to cause communication patterns similar to those
that might be induced by a simple DSM system. Specifically, the communication patterns
caused by the synthetic workload are unpredictable, in both time (when communication
happens) and space (who communication happens with). In addition, basic communication
events in the workload are always of a request/reply form (i.e., synchronous), sometimes
involving multiple peer nodes.

48

node peer

request

reply

(a) Two-message event: one peer, request/reply.

node

peer 2

peer 1

forward

reply

request

(b) Three-message event: two peers sequentially.

node

peer 2

peer 1

request 1
reply 1

request 2

reply 2

(c) Four-message event: two peers concurrently.

Figure 5-2. Communication events used in the synthetic workload.

49

Figure 5-1 illustrates the basic structure of the synthetic workload. All processors
execute a large outer loop, each iteration of which consists of computation phase (a simple
inner loop that models some amount of useful work) followed by a communication phase
(one of three possible “communication events” described below).

The computation-to-communication ratio of the workload (i.e., the amount of useful
work between communication events) is determined by how [value] is selected on each
iteration of the outer loop. For the results presented in this section, each [value] is a sample
an exponentially-distributed random variable with a mean selected to yield the desired
amount of useful work between communication events. To eliminate complex calculations
from the middle of the workload loop, [value]s are obtained from a precomputed table
(with NumIters entries).

A running count is tested an updated on each iteration of the inner loop. By using
values of the form 2n � 1 for the [mask] against which count is tested, one can ensure
that null_proc gets called every 2n-th pass through the inner loop. When interrupts
are disabled and the network is explicitly polled to receive messages, a call to the polling
function is inserted after null_proc returns. Thus, the frequency with which the
network is polled can be controlled by varying the value used for [mask].

Figure 5-2 illustrates the three basic types of communication events used in the syn-
thetic workload. Each event is named by the number of messages involved. Two-message
events involve a pair of messages between the invoking node and a single peer in a re-
quest/reply pattern. Three-message events involve three messages between the invoking
node and a pair of peers in a request/forward/reply pattern. Finally, four-message events
involve four messages between the invoking node and a pair of peers where both peers
are simultaneously contacted in a request/reply pattern. While far from exhaustive, these
communication events are intended to be representative of the low-level communication
events that occur in DSM systems.

In all cases, peers are selected at random (again, using a precomputed table). Each
communication event consists of sending the initial message or messages and polling until
the appropriate reply or replies are received. All messages sent between nodes are imple-
mented with a single CMAML_rpc active message. When interrupt-driven message deliv-
ery is used, each communication event is preceded by a call toCMAML disable inter-
rupts (to ensure that interrupts are disabled when CMAML_rpc is called, as is required
for correct operation) and followed by a call to CMAML_enable_interrupts (to
reenable interrupt-driven message delivery).1 Only a single type of communication event
is used in each workload run.

For each combination of computation-to-communication ratio, polling frequency, and
communication event type, the average time per iteration of the outer workload loop
shown in Figure 5-1 (measured over a large number of iterations) is measured for four
variations: a ‘null’ (baseline) case that includes only the inner “useful work” loop (no

1The combination of CMAML rpc and (when interrupt-driven message delivery is used) dis-
abling/reenabling interrupts is used to match the communication behavior of CRL; see Section 5.1.3.

50

� poll
� none
� intr
	 null

|

16
|

64
|

256
|

1024
|

4096
|

16384

|0

|100

|200

|300

|400

 useful work/poll (cycles)

 a
vg

 t
im

e/
o

u
te

r
lo

o
p

 (
µs

ec
)

�

�

�

�

�
� � �

�

�

�
�

� � � � � �
�

� � � � �

� � � � � � � � � � � �

	 	 	 	 	 	 	 	 	 	 	 	

Figure 5-3. Typical synthetic workload performance data (2000 cycles of useful work per
four-message communication events).

messages are sent or received); an ‘intr’ case in which interrupt-driven message delivery is
employed; a ‘none’ case in which interrupts are disabled, but messages are only received
via the implicit polling that occurs when messages are sent; and, finally, a ‘poll’ case in
which interrupts are disabled and the network is explicitly polled as well. Since the first
three of these cases (‘null’, ‘intr’, and ‘none’) do not employ explicit polling for message
reception, the only effect that changing the “polling frequency” (varying the value used
for [mask]) has on them is changing the frequency with which the inner loop test succeeds
and null_proc is called. Thus, other than measurement variations due to experimental
noise, only the behavior of the ‘poll’ case is affected by changing the value used for
[mask].

The synthetic workload was run on a 32-node CM-5 partition running in dedicated
mode for a wide range of parameters (cycles of useful work per communication event
ranging from 125 to 32,000; cycles of useful work per poll ranging from 15 to 20,485).
Figure 5-3 shows a typical sampling of the data thus obtained. As is often the case, polling
too frequently (the left side of the figure) or not frequently enough (the right side of the
figure) leads to poor performance. However, for this communication workload, polling
at the optimal rate (roughly 700 cycles of useful work per poll) leads to performance 22
percent better than relying on interrupt-driven message delivery and 37 percent better than
relying on implicit polling (when messages are sent). Complete results for all parameter
combinations can be found in Section B.1.

51

� poll, 2-msg
� poll, 3-msg
� poll, 4-msg

 intr

|

4
|

8
|

16
|

32
|

64

|0.8

|1.0

|1.2

|1.4

|1.6

|1.8

|2.0

 intr, msg rate (kmsgs/sec)

 p
o

ll
m

sg
 r

at
e

(r
el

at
iv

e
to

 in
tr

)

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

Figure 5-4. Performance of ‘poll’ synthetic workload case relative to ‘intr’ (see text for
explanation).

In terms of sensitivity of performance to polling at exactly the optimal rate, the CM-5
appears to be fairly robust. Over the entire data set collected with the synthetic workload,
the largest performance decrease due to polling at either half or twice the observed optimal
rate was approximately five percent.

Figure 5-4 plots the performance of the ‘poll’ case relative to ‘intr’. The horizontal
axis plots average per-node message injection rate for the ‘intr’ case; the vertical axis
plots the relative performance for the ‘poll’ case (assuming the optimal polling rate).
Each curve represents a set of measurements for which the type of communication event
is kept fixed; each symbol on a curve represents a single experiment. For example, in
the data shown in Figure 5-3, using interrupt-driven message delivery yields an average
per-node message injection rate of approximately 31,000 messages per second. At the
optimal polling rate, using polling-based message delivery results in a message rate of
roughly 39,500 messages per second; 1.27 times the performance in the interrupt-driven
case. Thus, a symbol is placed on the “poll, 4-msg” curve at (31,000, 1.27).

Although somewhat complex, presenting the data in this way is particularly useful for
the task at hand: for an existing application that uses interrupt-driven message delivery,
deciding what the potential performance benefit of switching to a polling-based model
would be. For example, for applications using interrupt-driven message delivery with
per-node message injection rates of no more than approximately 5,000 messages per

52

second, changing to a polling-based message delivery model would probably yield little
or no performance improvement. As can be seen from the data presented in Section 6.2.4,
the applications used in this thesis easily satisfy this criterion, so it is not surprising that
polling-based versions of the applications performed no better (or worse) than the baseline
interrupt-driven versions. For more communication-intensive workloads, however, it is
clear from this data that use of polling-based message delivery can lead to significant
performance improvements (up to 80 percent).

5.1.3 Communication Performance

In a simple ping-pong test, the round-trip time for four-argument active messages (the
size CRL uses for non-data carrying protocol messages) on the CM-5 is approximately
34 microseconds (1088 cycles). This includes the cost of disabling interrupts on the
requesting side2, sending the request, polling until the reply message is received, and then
reenabling interrupts. On the replying side, message delivery is interrupt-driven, and the
handler for the incoming request message does nothing beyond immediately sending a
reply back to the requesting node.

For large regions, data-carrying protocol messages use the CMMD’s scopy func-
tionality to effect data transfer between nodes. scopy achieves a transfer rate of 7 to
8 Mbytes/second for large transfers, but because it requires prenegotiation of a special
data structure on the receiving node before data transfer can be initiated, performance on
small transfers can suffer. To address this problem, CRL employs a special mechanism for
data transfers smaller than 256 bytes (the crossover point between the two mechanisms).
This mechanism packs three payload words and a destination base address into each
four-argument active message; specialized message handlers are used to encode offsets
from the destination base address at which the payload words should be stored in the
message handler. While this approach cuts the effective transfer bandwidth roughly in
half, it provides significantly reduced latencies for small transfers by avoiding the need
for prenegotiation with the receiving node.

Networks of workstations with interprocessor communication performance rivaling
that of the CM-5 are rapidly becoming reality [7, 56, 77, 80]. For example, Thekkath
et al. [78] describe the implementation of a specialized data-transfer mechanism imple-
mented on a pair of 25 MHz DECstations connected with a first-generation FORE ATM
network. They report round-trip times of 45 microseconds (1125 cycles) to read 40
bytes of data from a remote processor and bulk data transfer bandwidths of roughly 4.4
Mbytes/second. Since these parameters are relatively close to those for the CM-5, we
expect that the performance of CRL on the CM-5 is indicative of what should be possible
for implementations targeting networks of workstations using current- or next-generation
technology.

2Disabling interrupts is required when using CMAML rpc to send an active message; CMAML rpc must
be used because CRL’s coherence protocol does not fit into the simple request/reply network model that is
supported somewhat more efficiently on the CM-5.

53

Alewife Machine

Alewife Node

cache

Sparcle network

DRAMFPU

CMMU

Figure 5-5. Basic Alewife architecture.

5.2 Alewife

Alewife is an experimental distributed memory multiprocessor. The basic Alewife ar-
chitecture consists of processor/memory nodes communicating over a packet-switched
interconnection network organized as a two-dimensional mesh (see Figure 5-5). Each
processor/memory node consists of a Sparcle processor [2], an off-the-shelf floating-point
unit (FPU), a 64-kilobyte unified instruction/data cache (direct mapped, 16-byte lines),
eight megabytes of DRAM, the local portion of the interconnection network (a Caltech
“Elko” series Mesh Routing Chip [71]), and a Communications and Memory Management
Unit (CMMU). Because Sparcle was derived from a SPARC v7 processor not unlike that
used in the CM-5 nodes, basic processor issues (instruction set, timings, etc.) are quite
similar on the two machines.

The experiments described in this thesis were run on a 32-node Alewife machine
running a locally-developed minimal, single-user operating system. All application and
library source code was compiled using the Alewife C compiler, which uses a modified
version of ORBIT [44] for code generation. The Alewife C compiler delivers approxi-
mately 90 percent of the performance of gcc -O2 for integer code. Since the Alewife C
compiler does not attempt to schedule floating-point operations optimally, code quality is
somewhat worse with floating-point code.

5.2.1 Integrated Support for Shared Memory and Message Passing

Alewife provides efficient support for both coherent shared-memory and message-passing
communication styles. Shared memory support is provided through an implementation of
the LimitLESS cache coherence scheme [13]: limited sharing of memory blocks (up to
five remote readers) is supported in hardware; higher-degree sharing is handled by trapping

54

the processor on the home memory node and extending the small hardware directory in
software. This organization is motivated by studies indicating that small-scale sharing of
data is the common case [12, 61, 83]; data shared more widely is relatively uncommon.
In general, Alewife’s shared memory system performs quite well, enabling speedups
comparable to or better than other scalable hardware-based DSM systems [1, 49].

In addition to providing support for coherent shared memory, Alewife provides the
processor with direct access to the interconnection network for sending and receiving
messages [45]. Efficient mechanisms are provided for sending and receiving both short
(register-to-register) messages and long (memory-to-memory, bulk data transfer) mes-
sages. In addition, messages combining both types of data can be sent: some elements of
a message can be register-to-register, scalar values, while the rest of the message consists
of bulk data that is transferred directly out of the memory of the sending node into the
network and, upon message reception, directly from the network into the memory of the
receiving node. Using Alewife’s message-passing mechanisms, a processor can send a
message with just a few user-level instructions. A processor receiving such a message will
trap and respond either by rapidly executing a message handler or by queuing the message
for later consideration when an appropriate message handler gets scheduled. Scheduling
and queuing decisions are made entirely in software.

Two non-fatal bugs in the first-run CMMU silicon warrant mention here. First, because
of a timing conflict between the CMMU and the FPU, codes that make significant use of the
FPU are limited to running at 20 MHz instead of the target clock rate of 33 MHz. Because
of this, all Alewife performance results presented in this thesis assume a 20 MHz clock.
Second, in order to ensure data integrity when using the bulk data transfer mechanism, it
is necessary to flush message buffers from the memory system before sending or initiating
storeback on the receiving processor. This overhead cuts the effective peak bandwidth of
the bulk data transfer mechanism from approximately 2.2 bytes/cycle (44 Mbytes/second)
to roughly 0.9 bytes/cycle (18 Mbytes/second). Aside from the clock speed limitation,
neither bug has any impact on the performance of Alewife’s hardware-supported shared
memory mechanisms. Both bugs will be fixed in second-run parts resulting from a CMMU
respin effort.

5.2.2 Communication Performance

For the same simple ping-pong test used on the CM-5, the round-trip time for four-word
active messages on Alewife (using interrupt-driven message delivery on both ends) is
approximately 14 microseconds (280 cycles). Even without correcting for the differences
in clock speed, this is more than a factor of two faster than the CM-5. In the Alewife
CRL implementation, active message latencies are somewhat higher, however, because
all protocol message handlers are effectively transitioned into full-fledged threads that
can be interrupted by incoming messages. This transition prevents long-running handlers
from blocking further message delivery and causing network congestion. Currently, this
transition adds approximately 12.4 microseconds (248 cycles) to the round-trip time, but

55

minor functionality extensions planned for the CMMU respin will make it possible to
reduce this overhead by at least an order of magnitude.

In the Alewife CRL implementation, data-carrying protocol messages are implemented
using messages that consist of a header containing the control portion of the protocol
message (passed as register-to-register, scalar values using the same layout as non-data
carrying protocol messages; see Figure A-17) followed by the data portion of the protocol
message (passed using Alewife’s memory-to-memory bulk data transfer mechanism). As
discussed in the previous section, the effective peak performance delivered by the bulk
data transfer mechanism (including the overhead required to flush message buffers on both
sender and receiver) is approximately 18 Mbytes/second.

5.2.3 Status

A sixteen-node Alewife machine has been operational since June, 1994; this system was
expanded to 32 nodes in November, 1994. A CMMU respin effort is currently underway;
once the second-run CMMU parts are available, plans call for the construction of a
128-node system.

56

Chapter 6

Results

This chapter returns to one of the core issues of this thesis, the question of how much hard-
ware support is necessary to enable good DSM systems capable of delivering performance
competitive with aggressive hardware-based implementations.

This question is addressed in two ways. First, to investigate the importance of pro-
viding hardware support for the three basic mechanisms described in Section 2.2, the per-
formance of CRL is compared to that delivered by Alewife’s native, hardware-supported
shared memory. The applications used in this comparison are described in Section 6.2.
Section 6.3 presents the performance of the Alewife version of CRL on these applica-
tions and compares it with that delivered by Alewife’s native shared memory support.
These results indicate that when built upon aggressive, high-performance communication
mechanisms, CRL is capable of delivering performance within 15 percent of Alewife’s
hardware-supported shared memory, even for challenging applications (e.g., Barnes-Hut)
and small problem sizes.

Second, to investigate the importance of aggressive hardware support in the form of
high-performance communication mechanisms (both at the processor-network interface
and in the network fabric proper), Sections 6.4 and 6.5 evaluate the sensitivity of CRL
performance to increased communication costs. Two approaches are used to perform this
evaluation. First, by comparing the performance of the three applications described in
Section 6.2 running under CRL on both Alewife and the CM-5, the Section 6.4 indicates the
sensitivity of CRL to large changes in the cost of interprocessor communication. Second,
by measuring the impact of inserting additional overhead (in the form of no-op instructions)
into the code paths used for sending and receiving messages, Section 6.5 provides insight
into the “small-scale” sensitivity to changes in communication performance (both latency
and bandwidth).

Section 6.1 sets the context for the application-level results by presenting results from
a simple microbenchmark that measures the latencies of various basic CRL events and
compares them to those provided by Alewife’s native shared memory system.

57

CM-5 Alewife Alewife (native)
Event cycles �sec cycles �sec cycles �sec
Start read hit 79 2.5 47 2.3 — —
End read 99 3.1 51 2.6 — —
Start read miss, no invalidations 1925 60.2 1030 51.5 39 1.9
Start write miss, one invalidation 3620 113.1 1760 88.0 67 3.3
Start write miss, six invalidations 4663 145.7 3288 164.4 769 38.4

Table 6-1. Measured CRL latencies for 16-byte regions (in both cycles and microseconds).
Measurements for Alewife’s native shared memory system are provided for comparison.

Unless stated otherwise, all Alewife CRL results presented in this chapter include the
overhead of flushing message buffers and transitioning message handlers into threads as
discussed in Section 5.2.2. Because this overhead comprises 36 to 49 percent of measured
Alewife CRL latencies, CRL performance on both microbenchmarks and applications
should improve somewhat after the CMMU respin (as discussed further in Section 6.5).

6.1 Basic Latencies

The following simple microbenchmark is used to measure the cost of various CRL events.
64 regions are allocated on a selected home node. Situations corresponding to desired
events (e.g., a start write on a remote node that requires other remote read copies to
be invalidated) are constructed mechanically for some subset of the regions; the time it
takes for yet another processor to execute a simple loop calling the relevant CRL function
for each of these regions is then measured. The time for the event in question is then
computed by repeating this process for all numbers of regions between one and 64 and
then computing the linear regression of the number of regions against measured times; the
slope thus obtained is taken to be the time per event.

Invocations of rgn_map that can be satisfied locally (e.g., because the call was made
on the home node for the region in question, the region is already mapped, or the region
is present in the URC) are termed “hits.” On both Alewife and the CM-5, invocations
of rgn_map that are hits cost between 80 and 140 cycles, depending on whether or not
the region in question had to be removed from the unmapped region cache. Calls to
rgn_map that cannot be satisfied locally (“misses”) are more expensive (roughly 830
cycles on Alewife and 2,200 cycles on the CM-5). This increase reflects the cost of sending
a message to the region’s home node, waiting for a reply, allocating a local copy for the
region, and initializing the protocol metadata appropriately. Invocations of rgn_unmap
take between 30 and 80 cycles; the longer times correspond to cases in which the region
being unmapped needs to be inserted into the unmapped region cache.

Table 6-1 shows the measured latencies for a number of typical CRL events, assuming
16-byte regions. The first two lines (“start read, hit” and “end read”) represent events

58

CM-5 Alewife
Event cycles �sec cycles �sec
Start read miss, no invalidations 3964 123.9 1174 58.7
Start write miss, one invalidation 5644 176.4 1914 95.7
Start write miss, six invalidations 6647 207.7 3419 171.0

Table 6-2. Measured CRL latencies for 256-byte regions (in both cycles and microsec-
onds).

that can be satisfied entirely locally. The other lines in the table show miss latencies for
three situations: “start read, miss, no invalidations” represents a simple read miss to a
remote location requiring no other protocol actions; “start write, miss, one invalidation”
represents a write miss to a remote location that also requires a read copy of the data on
a third node to be invalidated; “start write, miss, six invalidations” represents a similar
situation in which read copies on six other nodes must be invalidated.

Latencies for Alewife’s native shared memory system are provided for comparison.
The first two cases shown here (read miss, no invalidations, and write miss, one invalida-
tion) are situations in which the miss is satisfied entirely in hardware. The third case (write
miss, six invalidations) is one in which LimitLESS software must be invoked, because
Alewife only provides hardware support for up to five outstanding copies of a cache line.
For 16-byte regions (the same size as the cache lines used in Alewife), the CRL latencies
are roughly a factor of 15 larger than those for a request handled entirely in hardware;
this factor is entirely due to time spent executing CRL code and the overhead of active
message delivery.

Table 6-2 shows how the miss latencies given in Table 6-1 change when the region size
is increased to 256 bytes. For Alewife, these latencies are only 130 to 160 cycles larger
than those for 16-byte regions; roughly three quarters of this time is due to the overhead
of flushing larger message buffers (which will be unnecessary after the CMMU respin).
Even so, the fact that the differences are so small testifies to the efficiency of Alewife’s
block transfer mechanism.

Interestingly, these latencies indicate that with regions of a few hundred bytes in
size, Alewife CRL achieves a remote data access bandwidth similar to that provided by
hardware-supported shared memory. With a miss latency of 1.9 microseconds for a 16-
byte cache line, Alewife’s native shared memory provides a remote data access bandwidth
of approximately 8.4 Mbytes/second. For regions the size of cache lines, Alewife CRL
lags far behind. For 256-byte regions, however, Alewife CRL delivers 4.4 Mbytes/second
(256 bytes @ 58.7 microseconds); discounting the overhead of flushing message buffers
and transitioning message handlers into threads increases this to 7.9 Mbytes/second (256
bytes @ 32.4 microseconds). While such a simple calculation ignores numerous important
issues, it does provide a rough indication of the data granularity that CRL should be able
to support efficiently when built on top of fast message-passing mechanisms. Since the
CM-5 provides less efficient mechanisms for bulk data transfer, much larger regions are

59

Blocked LU Water Barnes-Hut
Source lines 1,732 2,971 3,825
rgn_map 27 5 31
rgn_unmap 30 0 29
rgn_start_read 19 11 17
rgn_end_read 19 11 15
rgn_start_write 11 20 22
rgn_end_write 11 20 27
rgn_flush 0 0 0

Table 6-3. Static count of source lines and CRL calls for the three applications.

Blocked LU Water Barnes-Hut
Number of regions used 2,500 500 16,000
Typical region size (bytes) 800 672 100

Table 6-4. Approximate number of regions used and typical region sizes for the three
applications (assuming default problem sizes).

required under CM-5 CRL to achieve remote data access bandwidth approaching that
delivered by Alewife’s hardware-supported shared memory.

6.2 Applications

While comparisons of the performance of low-level mechanisms can be revealing,
end-to-end performance comparisons of real applications are far more important. Three
applications (Blocked LU, Water, Barnes-Hut) were used to evaluate the performance
delivered by the two different versions of CRL and compare it with that provided by
Alewife’s native support for shared memory. All three applications were originally written
for use on hardware-based DSM systems. In each case, the CRL version was obtained by
porting the original shared-memory code directly—regions were created to correspond to
the existing shared data structures (e.g., structures, array blocks) in the applications, and
the basic control flow was left unchanged. Judicious use of conditional compilation allows
a single set of sources for each application to be compiled to use either CRL (on Alewife
or the CM-5) or shared memory (Alewife only) to effect interprocessor communication.
Table 6-3 shows total source line counts (including comments and preprocessor directives)
and static counts of CRL calls for the three applications. Table 6-4 shows the approximate
number of regions used by each application and the typical sizes of said regions.

The shared-memory versions of applications use the hardware-supported shared mem-
ory directly without any software overhead (calls to the CRL functions described in Sec-
tion 3.2 are compiled out). For the sake of brevity, the rest of the thesis uses the term
“Alewife SM” to refer to this case. None of the applications employ any prefetching.

60

6.2.1 Blocked LU

Blocked LU implements LU factorization of a dense matrix; the version used in this study
is based on one described by Rothberg et al. [66]. Unless stated otherwise, the results for
Blocked LU presented in this thesis were obtained with a 500x500 matrix using 10x10
blocks.

In the CRL version of the code, a region is created for each block of the matrix to
be factored; thus the size of each region—the data granularity of the application—is 800
bytes (100 double-precision floating point values). Blocked LU also exhibits a fairly large
computation granularity, performing an average of approximately 11,000 cycles of useful
work per CRL operation. (This figure is obtained by dividing the sequential running time
by the number of operations executed by the CRL version of the application running on a
single processor; see Tables 6-5 and 6-6.)

6.2.2 Water

The Water application used in this study is the “n-squared” version from the SPLASH-2
application suite; it is a molecular dynamics application that evaluates forces and potentials
in a system of water molecules in the liquid state. Applications like Water are typically
run for tens or hundreds of iterations (time steps), so the time per iteration in the “steady
state” dominates any startup effects. Therefore, running time is determined by running
the application for three iterations and taking the average of the second and third iteration
times (thus eliminating timing variations due to startup transients that occur during the
first iteration). Unless stated otherwise, the results for Water presented in this thesis are
for a problem size of 512 molecules.

In the CRL version of the code, a region is created for each molecule data structure;
the size of each such region is 672 bytes. Three small regions (8, 24, and 24 bytes) are
also created to hold several running sums that are updated every iteration (via a write
operation) by each processor. Although the data granularity of Water is still relatively
large, its computation granularity is over a factor of seven smaller than that of Blocked
LU—an average of approximately 1,540 cycles per CRL operation.

6.2.3 Barnes-Hut

Barnes-Hut is also taken from the SPLASH-2 application suite; it employs hierarchical
n-body techniques to simulate the evolution of a system of bodies under the influence of
gravitational forces. As was the case with Water, applications like Barnes-Hut are often
run for a large number of iterations, so the steady-state time per iteration is an appropriate
measure of running time. Since the startup transients in Barnes-Hut persist through the first
two iterations, running time is determined by running the application for four iterations
and taking the average of the third and fourth iteration times. Unless stated otherwise,

61

Blocked LU Water Barnes-Hut
CM-5 Alewife CM-5 Alewife CM-5 Alewife
CRL CRL SM CRL CRL SM CRL CRL SM

sequential 24.73 53.49 53.49 11.74 22.80 22.80 12.82 22.84 22.84
1 proc 25.31 54.67 53.57 13.75 24.16 22.82 24.30 34.80 22.99
2 procs 13.96 28.42 28.48 7.36 12.84 12.36 15.03 19.05 11.74
4 procs 7.74 14.83 14.69 4.01 6.93 6.69 8.20 10.02 6.16
8 procs 4.53 7.89 7.78 2.23 3.68 3.38 4.68 5.42 3.45
16 procs 2.57 4.25 4.20 1.57 2.00 1.91 2.53 2.85 2.17
32 procs 1.79 2.40 2.71 1.13 1.18 1.02 1.49 1.58 1.41

Table 6-5. Application running times (in seconds). All values are averages computed
over three consecutive runs.

the results for Barnes-Hut presented in this thesis are for a problem size of 4,096 bodies
(one-quarter of the suggested base problem size). Other application parameters (∆t and
�) are scaled appropriately for the smaller problem size [74].

In the CRL version of the code, a region is created for each of the octree data structure
elements in the original code: bodies (108 bytes), tree cells (88 bytes), and tree leaves
(100 bytes). In addition, all versions of the code were modified to use the efficient
reduction primitives for computing global sums, minima, and maxima (the CRL versions
of Barnes-Hut use the reduction primitives provided by CRL; the shared memory version
uses similarly scalable primitives implemented using shared memory mechanisms).

Barnes-Hut represents a challenging communication workload. First, communica-
tion is relatively fine-grained, both in terms of data granularity (roughly 100 bytes) and
computation granularity—approximately 436 cycles of useful work per CRL operation, a
factor of roughly 3.5 and 25 smaller than Water and Blocked LU, respectively. Second,
although Barnes-Hut exhibits a reasonable amount of temporal locality, access patterns are
quite irregular due to large amounts of “pointer chasing” through the octree data structure
around which Barnes-Hut is built. In fact, Barnes-Hut and related hierarchical n-body
methods present a challenging enough communication workload that they have been used
by some authors as the basis of an argument in favor of aggressive hardware support for
cache-coherent shared memory [72, 73].

6.2.4 Performance

Table 6-5 summarizes the running times for the sequential, CRL, and shared memory
(SM) versions of the three applications. Sequential running time is obtained by linking
each application against the null CRL implementation described in Section 4.8 and run-
ning on a single node of the architecture in question; this time is used as the basepoint for
computing application speedup. The running times for the CRL versions of applications
running on one processor are larger than the sequential running times. This difference rep-

62

Blocked LU Water Barnes-Hut
Events CM-5 Alewife CM-5 Alewife CM-5 Alewife

1 proc map count (in 1000s) 84.58 84.58 — — 983.60 983.60
operation count (in 1000s) 84.63 84.63 269.32 269.32 992.22 992.22

32 procs map count (in 1000s) 2.81 2.81 — — 30.76 30.76
(miss rate, %) 15.3 15.3 — — 1.1 1.1

operation count (in 1000s) 2.78 2.78 8.68 8.68 31.34 31.22
(miss rate, %) 14.3 14.3 7.7 9.3 4.6 4.6

msg count (in 1000s) 1.65 1.65 2.53 3.03 5.69 5.69

Table 6-6. Application characteristics when running under CRL (see Section 6.2.4 for
description). All values are averages computed over three consecutive runs.

resents the overhead of calls to CRL functions—even CRL calls that “hit” incur overhead,
unlike hardware systems where hits (e.g., in a hardware cache) incur no overhead.

Table 6-6 presents event counts obtained by compiling each application against an
instrumented version of the CRL library and running the resulting binary. The instru-
mented version of the CRL library collected many more statistics than those shown here
(see Section B.4); applications linked against it run approximately 10 percent slower than
when linked against the unmodified library. Table 6-6 shows counts for three different
events: “map count” indicates the number of times regions were mapped (because calls
to rgn_map and rgn_unmap are always paired, this number also represents the num-
ber of times regions were unmapped); “operation count” indicates the total number of
CRL operations executed (paired calls to rgn_start_op and rgn_end_op); and “msg
count” shows the number of protocol messages sent and received. For the 32 processor
results, miss rates are also shown; these rates indicate the fraction of calls to rgn_map
and rgn_start_op that could not be satisfied locally (without requiring interprocessor
communication). All counts are average figures expressed on a per-processor basis.

Map counts and miss rates for Water are shown as ‘—’ because the application’s entire
data set is kept mapped on all nodes at all times; regions are mapped once at program start
time and never unmapped. While this may not be a good idea in general, it is reasonable
for Water because the data set is relatively small (a few hundred kilobytes) and is likely
to remain manageable even for larger problem sizes.

Figure 6-1 shows the performance of the three different versions of Blocked LU (CM-5
CRL, Alewife CRL, Alewife SM) on up to 32 processors. The top plot shows absolute
running time, without correcting for differences in clock speed between the CM-5 (32
MHz) and Alewife (20 MHz). The bottom plot shows speedup; the basepoints for the
speedup calculations are the sequential running times shown in Table 6-5 (thus both
Alewife curves are normalized to the same basepoint, but the CM-5 speedup curve uses
a different basepoint). Figures 6-2 and 6-3 provide the same information for Water and
Barnes-Hut, respectively.

63

| ||0

|10

|20

|30

|40

|50

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32

|0

|5

|10

|15

|20

|25

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

Figure 6-1. Absolute running time (top) and speedup (bottom) for Blocked LU (500x500
matrix, 10x10 blocks).

64

| ||0

|5

|10

|15

|20

|25

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32

|0

|5

|10

|15

|20

|25

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

Figure 6-2. Absolute running time (top) and speedup (bottom) for Water (512 molecules).

65

| ||0

|10

|20

|30

|40

 number of processors

 t
im

e
(s

ec
)

1 2 4 8 16 32

Alewife (SM)

Alewife (CRL)

CM-5 (CRL)

 linear speedup
� Alewife (SM)
� Alewife (CRL)
� CM-5 (CRL)

|

0
|

8
|

16
|

24
|

32

|0

|5

|10

|15

|20

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

Figure 6-3. Absolute running time (top) and speedup (bottom) for Barnes-Hut (4,096
bodies).

66

6.3 CRL vs. Shared Memory

In order to address the question of whether a CRL implementation built on top of high-
performance communication mechanisms is capable of delivering performance competi-
tive with that provided by hardware DSM implementations, we compare the performance
of the Alewife CRL and Alewife SM versions of the three applications.

As can be seen in Figure 6-1, both Alewife CRL and Alewife SM perform well for
Blocked LU (speedups of 22.3 and 19.7 on 32 processors, respectively). This is not par-
ticularly surprising; since Blocked LU exhibits large computation and data granularities,
it does not present a particularly challenging communication workload.

Somewhat surprising, however, is the fact that Alewife CRL outperforms Alewife
SM by almost 15 percent on 32 processors. This occurs because of LimitLESS software
overhead. On 16 processors, only a small portion of the LU data set is shared more widely
than the five-way sharing supported in hardware, so LimitLESS software is only invoked
infrequently. On 32 processors, this is no longer true: over half of the data set is shared
by more than five processors at some point during program execution. The overhead
incurred by servicing some portion of these requests in software causes the performance
of Alewife SM to lag behind that of Alewife CRL.

For Water, a somewhat more challenging application, both versions of the application
again perform quite well; this time, Alewife SM delivers roughly 15 percent better per-
formance than Alewife CRL (speedups of 22.4 and 19.3 on 32 processors, respectively).

This performance difference is primarily due to the fact that the Alewife CRL version
uses three small regions to compute global sums once per iteration; each small region
must “ping-pong” amongst all processors before the sum is completed. Given Alewife
CRL’s relatively large base communication latencies, this communication pattern can limit
performance significantly as the number of processors is increased. Modifying the source
code such that these global sums are computed using CRL’s reduction primitives (as was
already the case for Barnes-Hut) confirms this; doing so yields an Alewife CRL version
of Water that delivers the same speedup at 32 processors as the Alewife SM version of the
code. Because the base communication latencies for Alewife’s native shared memory are
significantly lower than for Alewife CRL, little or no benefit is obtained by applying the
same modification to the Alewife SM version of the code (in which the same global sums
were originally computed into small regions of shared memory protected by spin locks).
One might expect this to change when Alewife systems with more than 32 processors
become available.

For Barnes-Hut, the most challenging application used in this study, Alewife SM
once again delivers the best performance—a speedup of 16.2 on 32 processors—but
Alewife CRL is not far behind with a speedup of 14.5. Thus, while Alewife’s aggressive
hardware support for coherent shared memory does provide some performance benefit,
the performance improvement over Alewife CRL’s all-software approach is somewhat less

67

| ||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

 number of processors

 n
o

rm
al

iz
ed

 r
u

n
n

in
g

 t
im

e

CRL, map

CRL, ops

user

1 2 4 8 16 32

Figure 6-4. Breakdown of normalized running time for Alewife CRL version of Blocked
LU (500x500 matrix, 10x10 blocks).

than one might expect (roughly 12 percent; experiments indicate that this gap decreases
slightly for larger problem sizes).

Finally, in order to understand how different components of CRL contribute to overall
running time, a profiled version of the CRL library was developed. Figures 6-4 through
6-6 show breakdowns of running time for the Alewife CRL versions of each application
that were obtained using the profiled library. Normalized running time (for each bar, 1.0
corresponds to the absolute running time for Alewife CRL on that number of processors)
is divided into three categories: time spent in CRL executing map/unmap code (“CRL,
map”), time spent in CRL starting and ending operations (“CRL, ops”), and time spent
running application code (“user”). “CRL, map” and “CRL, ops” include any “spin
time” spent waiting for communication events (i.e., those related to calls to rgn_map or
rgn_start_op that miss) to complete.

As can be seen in Figure 6-4 the Alewife CRL version of Blocked LU spends very
little time executing CRL code—even on 32 processors, only 4.2 and 2.5 percent of the
total running time is spent in the CRL library executing operation and mapping code,
respectively. Since Blocked LU is a fairly coarsed grained application that achieves good
speedups, this is not surprising.

Figure 6-5 shows the profiling information for Water. As was discussed in Section 6.2.4
above, Water’s entire data set is kept mapped on all nodes at all times, so none of the

68

| ||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

 number of processors

 n
o

rm
al

iz
ed

 r
u

n
n

in
g

 t
im

e

CRL, map

CRL, ops

user

1 2 4 8 16 32

Figure 6-5. Breakdown of normalized running time for Alewife CRL version of Water
(512 molecules).

application running time is spent in the CRL library executing mapping code. Time spent
executing CRL operation code ranges from roughly 5.3 to 19.5 percent on one and 32
processors, respectively. As discussed above, this increase is primarily due to the use of
small regions to compute several global sums and can be addressed effectively by using
scalable reduction primitives instead.

Figure 6-6 shows the profiling information for Barnes-Hut. When running on a single
processor, approximately one third of the total running time is spent executing CRL code;
slightly more than half of this time is spent mapping and unmapping. Not surprisingly,
CRL overhead increases as number of processors is increased: at 32 processors, almost
half of the total running time is spent in CRL, but now slightly less than half of the
overhead is spent mapping and unmapping.

6.4 Changing Communication Costs

The results shown in the previous section demonstrate that when built upon high-per-
formance communication substrates, CRL is capable of delivering performance close to
that provided by hardware-supported shared memory, even for challenging applications
and small problem sizes. Unfortunately, many interesting platforms for parallel and dis-

69

| ||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

|1.4

 number of processors

 n
o

rm
al

iz
ed

 r
u

n
n

in
g

 t
im

e

CRL, map

CRL, ops

user

1 2 4 8 16 32

Figure 6-6. Breakdown of normalized running time for Alewife CRL version of Barnes-
Hut (4,096 bodies).

tributed computing (e.g., networks of workstations) provide communication performance
significantly worse than that found in Alewife.

To gauge the sensitivity of CRL’s performance to increased communication costs,
we compare the behavior of applications running under Alewife CRL and CM-5 CRL.
Although the CM-5 is a tightly-coupled multiprocessor, current-generation network-of-
workstations technology is capable of providing similar communication performance [78],
so the results for CM-5 CRL are indicative of what should be possible for implementations
targeting networks of workstations using current- or next-generation technology.

For Blocked LU, CM-5 CRL delivers respectable performance (a speedup of 13.8 on
32 processors; see Figure 6-1), lagging roughly 30 percent behind the speedup achieved
with Alewife CRL. Because Blocked LU uses relatively large regions, this difference can
be attributed not only to the higher communication latencies on the CM-5 (1088 cycles
for a simple round trip vs. 528 cycles for Alewife) but also to the lower bulk-data transfer
performance (approximately 8 Mbytes/second vs. 18 Mbytes/second for Alewife).

For Water, the performance gap widens, with CM-5 CRL delivering a speedup of 10.4
on 32 processors (46 percent less than Alewife CRL; see Figure 6-2). As was the case for
Water under Alewife CRL, however, this figure can be improved upon by using reductions
to compute the global sums in Water; doing so increases the speedup on 32 processors to
14.1 (37 percent less than the speedup on 32 processors for the same code running under

70

Alewife CRL). The remaining performance gap between Alewife CRL and CM-5 CRL
can be attributed to the smaller computation granularity of Water (approximately 1,540
cycles of useful work per CRL operation). Even given a relatively low miss rate, this
granularity is small enough that the larger miss latencies for CM-5 CRL begin to contribute
a significant portion of the total running time, thus limiting the possible speedup.

In spite of this performance gap, CM-5 CRL performs comparably with existing
mostly software DSM systems. The CM-5 CRL speedup (5.3 on eight processors) for
Water (without reductions) is slightly better than that reported for TreadMarks [38], a
second-generation page-based mostly software DSM system (a speedup of 4.0 on an ATM
network of DECstation 5000/240 workstations, the largest configuration that results have
been reported for)1.

For Barnes-Hut, CM-5 CRL performance for Barnes-Hut lags roughly 41 percent
behind that provided by Alewife CRL (speedups of 8.6 and 14.5 at 32 processors, re-
spectively; see Figure 6-3). As was the case with Water, this is primarily due to small
computation granularity; small enough that even given particularly low map and operation
miss rates (1.2 and 4.7 percent, respectively), the larger miss latencies of CM-5 CRL cause
significant performance degradation.

As was pointed out in Section 6.2.3, the problem size used to obtain the Barnes-
Hut results (4,096 bodies) is one-quarter of the suggested problem size (16,384 bodies).
Furthermore, even the suggested problem size is fairly modest; it is not unreasonable for
production users of such codes (e.g., astrophysicists) to be interested in problems with sev-
eral hundred thousands bodies or more. Because larger problem sizes lead to decreased
miss rates for Barnes-Hut, performance problems due to less efficient communication
mechanisms on the CM-5 tend to decrease with larger problem sizes. Figure 6-7 demon-
strates this fact by plotting the performance of the CM-5 CRL version of Barnes-Hut on up
to 128 processors for both the 4,096 body problem size discussed above and the suggested
problem size of 16,384 bodies. For the larger machine sizes (64, 96, and 128 processors),
the increased problem size enables speedups 40 to 70 percent better than those for 4,096
bodies. Such results indicate that for realistic problem sizes, even the CM-5 CRL version
of Barnes-Hut may be capable of delivering at least acceptable performance.

6.5 Sensitivity Analysis

This section presents results from a set of experiments intended to provide a more detailed
understanding of how sensitive CRL performance is to increased communication costs.
These experiments utilize a modified Alewife CRL implementation that allows commu-
nication performance to be artificially decreased (i.e., higher latency, lower bandwidth)
in a “tunable” fashion. Using the modified Alewife CRL implementation, application

1The SPLASH-2 version of Water used in this thesis incorporates the “M-Water” modifications suggested
by Cox et al. [18].

71

 linear speedup
� CM-5 (CRL, 16k bodies)
� CM-5 (CRL, 4k bodies)

|

0
|

32
|

64
|

96
|

128

|0

|5

|10

|15

|20

|25

|30

 number of processors

 s
p

ee
d

u
p

�

�

�

�

�

�

�

�

�

�

�

�

�
�

Figure 6-7. Barnes-Hut performance for larger problem (16,384 bodies) and machine
sizes (128-node CM-5).

performance can be measured in various reduced-communication-performance scenarios
and compared to that obtained with the baseline Alewife CRL implementation. In this
manner, one can obtain a much better understanding of CRL’s sensitivity to increased
communication costs than was possible with the comparison of Alewife CRL and CM-5
CRL.

6.5.1 Modified Alewife CRL Implementation

The modified Alewife CRL implementation allows communication performance to be
degraded in two ways: by increasing active message latency or decreasing the effective
bandwidth of the bulk data transfer mechanism; both features can be controlled inde-
pendently. Increases in latency affect all active messages; decreased bulk data transfer
performance only impacts those that carry bulk transfer data.

Active message latency is increased by inserting a five-instruction delay loop (three
loop instructions, two no-ops) before every active message send and at the top of every
active message handler. By varying the number of iterations executed each time a delay
loop is encountered (a compile-time constant), the effective latency of all active messages
can be increased by essentially arbitrary amounts. Since delay loops are inserted on both

72

the sending and receiving side, cycles spent in the delay loops are split equally by senders
and receivers.

Bulk data transfer performance is decreased by inserting some number (a compile-time
constant) of no-op instructions into the loops that flush send and receive buffers before
sending and receiving messages that include bulk transfer data. Since each loop iteration
flushes a single 16-byte cache line, each no-op inserted into the flush loops increases the
per-byte bulk transfer cost by 0.125 cycles (1 extra cycle per 16 bytes incurred on both
sending and receiving nodes).

Careful use of conditional compilation ensures that in the zero extra overhead cases
(for both latency and per-byte bulk transfer cost), the resulting code is the same as in the
baseline Alewife CRL implementation.

Artificially increasing message latency and decreasing bulk transfer bandwidth by
increasing the software overheads incurred by senders and receivers effectively simulates
systems in which network interfaces are less and less closely coupled with the processor
core (e.g., on the L2 cache bus, memory bus, or an I/O bus) but the network fabric
proper retains the relatively favorable latency and bandwidth characteristics of Alewife’s
EMRC-based network [71]. It seems likely, however, that systems in which software
overhead constitutes a smaller portion of end-to-end latency (e.g., because of relatively
efficient network interfaces coupled with a less aggressive network fabric) will yield
better application performance than systems with the same end-to-end communication
performance but latencies are dominated by software overhead: roughly speaking, fewer
processor cycles spent in message-delivery overhead means more cycles spent in useful
work. Therefore, one expects that the impact on application performance measured with
the modified Alewife CRL implementation for a particular combination of message latency
and bulk transfer performance is probably somewhat pessimistic for systems that deliver
the same communication performance through a combination of lower software overheads
and less aggressive networking technology.

6.5.2 Experimental Results

The three applications described in Section 6.2 were linked against modified CRL imple-
mentation and run with all combinations of nine message latencies (0, 50, 100, 150, 200,
250, 300, 350, and 400 delay cycles in addition to the base one-way latency of 264 cycles)
and nine per-byte bulk transfer costs (0.000, 0.125, 0.375, 0.625, 0.875, 1.125, 1.375,
1.625, and 1.875 cycles/byte in addition to the base performance of 1.110 cycles/byte).
Average running times over three consecutive runs were measured on 16- and 32-processor
Alewife configurations. For Barnes-Hut, results were obtained for both the default (4,096
body) and suggested (16,384 body) problem sizes. In each case, the figure of merit is not
the measured running time, but how much running time increased over the baseline (zero
extra overhead) case, expressed as a percentage of the baseline running time.

73

Increased Latency

Figure 6-8 shows the effect of increasing the one-way message latency from 264 cycles
to 664 cycles while keeping the bulk transfer performance fixed at the baseline value
(1.110 cycles/byte); the top and bottom plots provide results for 16 and 32 processors,
respectively. For the most part, the qualitative observations that can be made about this
data serve to confirm what might be intuitively expected; some of the quantitative aspects
are rather interesting, however.

First, of these applications, the smaller problem instance of Barnes-Hut is the most
sensitive to increases in message latency. Since the smaller problem instance of Barnes-
Hut is also the application that induces the heaviest communication workload in terms
of per-node message rate (see Table 6-6), this is not surprising. On 32 processors, each
additional 100 cycles of message latency increases running time by roughly 4.4 percent
of the baseline time.

Second, since the larger problem instance of Barnes-Hut induces a lighter communi-
cation workload than the smaller problem instance (as is discussed in Section 6.4), the
larger problem instance is less sensitive to increases in message latency. On 32 processors,
each additional 100 cycles of message latency only increases running time by roughly 2.7
percent of the baseline time. Similarly, the smaller problem instance running on a smaller
system (16 processors) is also less sensitive to increases in message latency.

Third, of these applications, Blocked LU is the least sensitive to increases in message
latency—approximately 4.7 and 2.9 times less sensitive than the smaller Barnes-Hut
problem instance on 16 and 32 processors, respectively. Given that Blocked LU is the
least challenging of these applications in terms of the communication workload it induces,
this is not surprising.

Finally, perhaps the most interesting observation that can be made from the data shown
in these plots has to do with the impact of decreasing message latency instead of increasing
it. As discussed in Section 5.2.2, protocol message handlers on Alewife are effectively
transitioned into full-fledged threads before executing. With the first-run CMMU silicon,
this adds approximately 6.2 microseconds (124 cycles) to the one-way message latency,
but planned functionality extensions in the second-run CMMU parts will make it possible
to effect this transition much more rapidly. Assuming it is reasonable to extrapolate
the curves shown in Figure 6-8 beyond the range of the measurements, eliminating this
overhead entirely (and thus nearly halving the message latency) would only reduce the
running time of the most latency sensitive application (the smaller Barnes-Hut problem
instance running on 32 processors) by five to six percent.

Decreased Bandwidth

Figure 6-9 shows the effect of increasing the bulk transfer costs from 1.110 to 2.975
cycles/byte while keeping the message latency fixed at the baseline value (264 cycles).

74

� Barnes-Hut (4k bodies)
� Barnes-Hut (16k bodies)
� Water
� Blocked LU

|

200
|

300
|

400
|

500
|

600
|

700

|0

|5

|10

|15

|20

 one-way msg latency (cycles)

 in
cr

ea
se

 in
 r

u
n

n
in

g
 t

im
e

(p
er

ce
n

t)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�

(a) 16 processors

� Barnes-Hut (4k bodies)
� Water
� Barnes-Hut (16k bodies)
� Blocked LU

|

200
|

300
|

400
|

500
|

600
|

700

|0

|5

|10

|15

|20

 one-way msg latency (cycles)

 in
cr

ea
se

 in
 r

u
n

n
in

g
 t

im
e

(p
er

ce
n

t)

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) 32 processors

Figure 6-8. Impact of increased message latency on application performance.

75

� Water
� Barnes-Hut (4k bodies)
� Barnes-Hut (16k bodies)
� Blocked LU

|

0.8
|

1.2
|

1.6
|

2.0
|

2.4
|

2.8

|0

|5

|10

|15

|20

 bulk xfer cost (cycles/byte)

 in
cr

ea
se

 in
 r

u
n

n
in

g
 t

im
e

(p
er

ce
n

t)

�

�

�

�

�

�

�

�

�

�
� �

�

�

�

� � �

�
�

� �

�

�

� � �

� � �
�

� � � � �

(a) 16 processors

� Water
� Barnes-Hut (4k bodies)
� Barnes-Hut (16k bodies)
� Blocked LU

|

0.8
|

1.2
|

1.6
|

2.0
|

2.4
|

2.8

|0

|5

|10

|15

|20

 bulk xfer cost (cycles/byte)

 in
cr

ea
se

 in
 r

u
n

n
in

g
 t

im
e

(p
er

ce
n

t)

�

�

�

�

�

� �

�

�

� �
� �

�

�

� �
�

� �
� �

�

�

� �
�

� �
�

�
�

�
�

�
�

(b) 32 processors

Figure 6-9. Impact of decreased bulk transfer bandwidth on application performance.

76

As in Figure 6-8, results are shown both for 16 (top) and 32 processors (bottom). The
intuitive expectations about the effect of changing problem size and number of processors
on latency sensitivity discussed above (roughly, that larger problem sizes and smaller
machine sizes result in lower sensitivity) continue to hold with respect to sensitivity to
changes in bandwidth.

Perhaps the most interesting observation that can be made from this data is that
only Water is particularly sensitive to increased bulk transfer costs: On 32 processors,
increasing the per-byte cost (and thus decreasing the bandwidth) by a factor of 2.7 causes
the running time for Water to increase by nearly 19 percent. This increase occurs because
(1) most of the regions used in Water are relatively large (672 bytes), so data-transfer time
constitutes a significant fraction of the latency for data-carrying protocol messages and (2)
miss rates on those regions are high enough that Water induces a relatively high per-node
message rate. For the other applications, the same increase in per-byte bulk-transfer costs
has a much smaller impact on running time (between 3.6 and 5.3 percent).

As was discussed in Section 5.2.1, the flushing of message buffers required with the
first-run CMMU parts reduces the effective peak bandwidth of Alewife’s bulk data transfer
mechanism from approximately 2.2 to 0.9 bytes/cycle. Once again, a simple extrapolation
can be used to estimate the performance improvement that should be possible when
second-run CMMU parts are available and message buffers need not be flushed. For the
most bandwidth sensitive application (Water, running on 32 processors), the estimated
performance improvement is between six and seven percent.

Combined Effects

Although interesting, Figures 6-8 and 6-9 are limited by the fact that they keep one
parameter (latency or bandwidth) fixed at the baseline value while varying the other.
In contrast, Figures 6-10 through 6-13 show the combined effects of simultaneously
increasing message latency and bulk transfer costs. As with the previous figures, each
figure shows results for both 16 (top) and 32 processors (bottom). The horizontal and
vertical axes of each plot indicate one-way message latency and per-byte bulk transfer
cost, respectively. The body of each plot is a “contour diagram” showing lines of constant
performance impact (measured in percent increase in running time over the baseline
case); minor and major contour intervals of 0.4 and 2 percent are used. In each plot,
small filled circles indicate measured data points; the contour surface is derived using a
simple polynomial interpolation. In addition, an ‘X’ in each plot indicates the point where
communication performance is half as good as the baseline Alewife CRL implementation
(twice the latency, half the bulk transfer bandwidth).

Several observations can be made about this data. The relatively wide spacing of
contour lines in Figure 6-10 confirm the previous observations that Blocked LU is relatively
insensitive to increasing communication costs. In contrast, the close spacing of contour
lines in Figure 6-11 indicate that of the applications used in this study, Water is perhaps the
most sensitive to increasing communication costs. In part, this is probably due to Water’s

77

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2%

4%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) 16 processors

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

p
er

fo
rm

an
ce

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6%

8%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) 32 processors

Figure 6-10. Contour plots indicating combined impact of increased communication
costs on Blocked LU (500x500 matrix, 10x10 blocks).

78

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6%

8%

10%

12%

14%

16%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) 16 processors

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6% 8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

28%
30%

32%

34%
36%
38%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) 32 processors

Figure 6-11. Contour plots indicating the combined impact of increased communication
costs on Water (512 molecules).

79

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6% 8%

10%

12%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) 16 processors

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6% 8%

10%

12%

14%

16%

18%

20%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) 32 processors

Figure 6-12. Contour plots indicating the combined impact of increased communication
costs on Barnes-Hut (4,096 bodies).

80

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6% 8%
10%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) 16 processors

|

200
|

300
|

400
|

500
|

600
|

700

|0.8

|1.2

|1.6

|2.0

|2.4

|2.8

 one-way msg latency (cycles)

 b
u

lk
 x

fe
r

co
st

 (
cy

cl
es

/b
yt

e)

0% 2% 4% 6% 8%

10%

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b) 32 processors

Figure 6-13. Contour plots indicating the combined impact of increased communication
costs on Barnes-Hut (16,384 bodies).

81

use of three small regions to compute global sums, as discussed in Section 6.3; it seems
likely that the modified version of Water where global sums are computed using CRL’s
reduction primitives would exhibit lower sensitivity to increases in message latency.

The extent to which the contour lines in Figure 6-11 deviate from smooth diagonal
lines (as in Figure 6-10) can be attributed to experimental noise and the use of a contouring
interpolation algorithm that guarantees the resulting contour surface passes through all
measured data points. For example, Table B-18 (in Appendix B) shows the raw data
for Water running on 32 processors used to produce Figure 6-11(a). As can be seen
in the table, the standard deviations of the various running times (computed over three
consecutive application runs) range from around one hundred thousand to one million
cycles with a mean value of around 440,000 cycles, approximately 1.9 percent of the
baseline running time of 23.68 million cycles.

To provide insight into the extent to which these data points deviate from a single
plane (which would result in smooth diagonal contour lines), a bilinear regression is used
to obtain a best-fit plane for the same data. Regression errors (the difference between the
value predicted by the regression and the actual measured value) are then computed for
each of the 81 data points. For Water running on 32 processors, the standard deviation of
these regression errors is around 380,000 cycles, approximately 1.6 percent of the baseline
running time. Since this value is somewhat smaller than the average standard deviation of
running times (computed over three measurements) discussed in the previous paragraph,
it seems likely that the kinks and bumps in the contour lines of Figure 6-11 would smooth
out if a larger number of measurements were made at each data point.

A second anomaly occurs along the left edge of the contour plots for Barnes-Hut
(Figures 6-12 and 6-13). In these figures, for bulk transfer costs of two or more cycles per
byte, the initial increase of one-way message latency from the baseline value consistently
results in performance improvements of as much as two percent. This anomaly appears to
be a result of small changes in the cache alignment of key data structures or loops caused by
the insertion of the delay loop code before and after every message send and receive; such
cache alignment effects are a well-known problem with unified, direct-mapped caches
such as those used in Alewife.

This hypothesis was explored by comparing Barnes-Hut running times obtained with
zero extra latency to those obtained with the extra one-way message latency set to the
smallest non-zero amount possible (10 cycles) without changing the alignment of the code
used in the modified CRL implementation. Given the trends observed for the rest of the
Barnes-Hut data, such a small increase in one-way message latency (10 cycles over the
baseline 264 cycles) should result in an increase in running time of approximately half a
percent. Instead, even this small increase in one-way message latency consistently resulted
in as much as a 3.5 percent decrease in running time. Since this anomaly has only been
observed between data points measured for the baseline one-way message latency (where
delay loops are not present in the compiled code) and data points with the minimum amount
of additional latency (where delay loops are present in the compiled code), it seems likely

82

performance differences can be attributed to the small cache alignment changes caused
by adding the delay loops to the compiled code.

In Figures 6-10 and 6-11, contours generally trace a diagonal path from upper left to
lower right, indicating that the applications (Blocked LU and Water) are roughly equally
sensitive to increases in latency and bandwidth. In contrast, the contours shown in
Figures 6-12 and 6-13 (corresponding the smaller and larger problem instances of Barnes-
Hut, respectively) are mostly vertical, confirming the earlier observations that Barnes-Hut
is fairly sensitive to increases in message latency, but relatively insensitive to decreases in
bulk transfer performance.

Finally, it is worth noting that for a system with twice the message latency and half
the bulk transfer bandwidth of the baseline Alewife CRL implementation (which in turn
provides message latency and bandwidth approximately twice and half that of what should
be possible on Alewife with second-run CMMU parts), the largest increase in running time
over the baseline system is only around 20 percent (Water on 32 processors). Given that
all of the problem sizes used in these experiments are relatively modest (even the larger
Barnes-Hut problem instance) and larger problem sizes frequently result in decreased
sensitivity to increased communication costs, this bodes well for the likely usefulness
of systems like CRL on systems with faster processors and less aggressive networking
technology.

6.6 Summary and Discussion

Two major conclusions can be drawn from the results presented in this chapter. First, the
CRL implementation on Alewife demonstrates that given efficient communication mech-
anisms, an all-software DSM system can achieve application performance competitive
with hardware-supported DSM systems, even for challenging applications. For example,
for Barnes-Hut with 4,096 particles, Alewife CRL delivers a speedup on 32 processors
within 12 percent of that for Alewife SM. As discussed above, this gap should narrow
somewhat after the Alewife CMMU respin.

Second, these results indicate the extent to which this level of performance depends
on high-performance communication mechanisms. In particular, they indicate that even
on a system with communication performance half as good as that used to obtain the
baseline Alewife CRL results (and thus roughly one-quarter as good as what should be
possible after the CMMU respin), CRL should still be able to provide performance within
around 30 percent of that provided by Alewife’s hardware supported shared memory.
Further, although communication performance of the CM-5 is not sufficient for CRL to
be competitive with hardware-supported DSMs, it does appear to be sufficient to allow
reasonable speedups on realistic problem sizes.

83

Prefetching

One issue that has not been fully investigated is the extent to which the CRL functions
used to initiate operations provide a performance advantage by fetching an entire region’s
worth of data in a single action. In contrast, the shared memory versions of applications
(in which no prefetching is used) fetch shared data on demand, one cache line at a time.
When only a small fraction of a shared data structure is referenced in a single operation
(or related group of shared memory references by a single thread), fetching data on
a cache-line by cache-line basis may be better than spending the (primarily network)
resources necessary to fetch an entire region or shared data structure. In contrast, when a
large fraction of a region or shared data structure is accessed at once, fetching the entire
region is clearly a better solution. In either case, it is not unreasonable to expect that some
applications may realize improved performance through careful application of prefetching
techniques. For the applications used in this study, however, it is unclear whether or not
employing prefetching in the shared memory versions would yield significant performance
benefits (e.g., Blocked LU is already almost entirely compute-bound; Barnes-Hut consists
primarily of “pointer chasing” code that can be difficult to prefetch effectively).

A simple experiment that might shed some light on this issue would involve modifying
the shared memory versions of applications by inserting prefetch instructions every place
the CRL version of the same application initiates an operation, in each case mimicking
the effect of the rgn_start_op call by obliviously prefetching the entire data structure
being referenced. Unfortunately, obliviously fetching potentially large amounts of data in
this manner without consuming it on the fly interacts poorly with the prefetch mechanisms
provided by Alewife’s shared memory system2, so it has not been possible to perform this
experiment.

Migratory Data

The performance improvement realized by modifying the CRL version of Water to com-
pute global sums using CRL’s reduction primitives instead of small regions that get ping-
ponged amongst nodes point to one weakness of the CRL system: Because the latencies
of basic communication events in CRL (region operations) are quite large, applications
that share small data objects in a migratory fashion (e.g., in a read-modify-write pattern,
like the global sums in Water) may perform poorly, especially when compared to the same
applications running on hardware-supported DSM systems. In the case of Water, this
migratory sharing pattern was easily identified and regular enough that replacing it with
an efficient primitive (a global reduction implemented using message passing) with far
more favorable scalability properties required little work. Although there has been some
work related to optimizing coherence protocols to improve performance on migratory data
in the context of hardware-based DSM systems [20, 76], it remains unclear whether mi-
gratory data sharing will dominate for applications other than those studied in this thesis,

2John D. Kubiatowicz, personal communication, August 1995.

84

and, if so, how frequently can be replaced with carefully selected, efficient message-based
primitives. The extent to which any migratory data problem can be addressed using other
techniques such as function shipping [11] and computation migration [31, 32] probably
also warrants further investigation.

85

Chapter 7

Related Work

CRL builds on a large body of research into the construction of distributed shared memory
systems. However, as discussed in Section 1.1, four key properties distinguish CRL from
other DSM systems: simplicity, portability, efficiency, and scalability. Proper subsets of
these features have appeared in previous systems, but CRL is unique in providing all four
in a simple, coherent package.

This chapter provides a brief overview of research related to CRL; it is divided into
three sections. The first section discusses region- and object-based software DSM systems.
The second section describes other software DSM work, including page-based systems.
Finally, the third section discusses other research that provides comparative results (e.g.,
all-software vs. mostly software, message passing vs. shared memory).

7.1 Region- and Object-Based Systems

Except for the notion of mapping and unmapping regions, the programming interface
CRL presents to the end user is similar to that provided by Shared Regions [68]; the same
basic notion of synchronized access (“operations”) to regions (“objects”) also exists in
other programming systems for hardware-based DSM systems (e.g., COOL [15]). The
Shared Regions work arrived at this interface from a different set of constraints, however:
their goal was to provide software coherence mechanisms on machines that support non-
cache-coherent shared memory in hardware. CRL could be provided on such systems
using similar implementation techniques and defining rgn_map and rgn_unmap to be
null macros.

In [47], Lee describes Concord, a software DSM system that employs a region-like
approach similar to that used in Shared Regions and CRL. Concord is implemented in
the context of a new language (an extension of C called “High C”); applications written
in this new language are compiled to C++ with calls to a runtime library that provides
appropriate communication, coherence, and synchronization facilities. Although it is

86

possible that such a system organization may be useful from the perspective of portability,
the paper does not address this issue. In fact, in addition to not discussing any issues
related to portability, the paper makes no mention of what system primitives are required
from potential target platforms. (Although it is not specifically addressed, the fact that
the paper specifically mentions virtual addresses in several places raises the question of
whether or not Concord requires virtual memory hardware.) By including support for non-
contiguous and dynamically changing coherence units, Concord also presents a somewhat
more complicated interface than CRL. Since no low-level performance measurements of
Concord mechanisms are provided, it is difficult to ascertain what impact this complexity
has on efficiency (i.e., the amount of software overhead above and beyond that required
by the basic communication mechanisms). Finally, since Concord performance results
are only presented for a relatively outdated platform (a 32-processor Intel iPSC/2), it is
unclear how these results compare to similar results measured on other hardware- and
software-based DSM systems.

Chandra et al. [14] propose a hybrid DSM protocol in which region-like annotations
are used to demark access to regions of shared data. Coherence for regions thus annotated is
provided using software DSM techniques analogous to those used by CRL; hardware DSM
mechanisms are used for coherence on all other memory references. All synchronization
must be effected through hardware DSM mechanisms. In contrast, CRL is an all-software
DSM system in which all communication and synchronization is implemented using
software DSM techniques.

Of all other software DSM systems, Cid [60] is perhaps closest in spirit to CRL.
Like CRL, Cid is an all-software DSM system in which coherence is effected on regions
(“global objects”) according to source code annotations provided by the programmer.
Cid differs from the current CRL implementation in its potentially richer support for
multithreading, automatic data placement, and load balancing. To date, Cid has only been
implemented and used on a small cluster of workstations connected by FDDI1. CRL runs
on two large-scale platforms and has been shown to deliver performance competitive with
hardware DSM systems.

Several all-software DSM systems that employ an object-based approach have been
developed (e.g., Amber [17], Concert [35], Orca [3]). Like these systems, CRL effects co-
herence at the level of application-defined regions of memory (“objects”). Any necessary
synchronization, data replication, or thread migration functionality is provided automat-
ically at the entry and exit of methods on shared objects. Existing systems of this type
either require the use of an entirely new object-oriented language [3, 35] or only allow
the use of a subset of an existing one [17]. In contrast, CRL is not language specific; the
basic CRL interface could easily be provided in any imperative programming language.

Scales and Lam [69] have described SAM, a shared object system for distributed
memory machines. SAM is based on a new set of primitives that are motivated by
optimizations commonly used on distributed memory machines. Like CRL, SAM is

1Rishiyur S. Nikhil, personal communication, March 1995.

87

implemented as a portable C library. Informal discussion with Scales indicates that
SAM delivers approximately 35 percent better speedup than CRL for Barnes-Hut when
running on the CM-5 with a problem size of 16,384 bodies. This advantage is enabled
by additional information about communication patterns provided through SAM’s new
communication primitives. SAM’s performance edge comes at a cost, however: Because
the primitives SAM offers are significantly different than “standard” shared memory
models, converting existing shared-memory applications to use SAM is likely to be more
difficult than converting them to use CRL.

Interestingly, the implementation techniques used in CRL (in particular, the coherence
protocol) is quite similar to callback locking [23], an algorithm for maintaining the
coherence of cached data in distributed database systems. Both the CRL protocol and
callback locking allow remote nodes to cache shared or exclusive copies of data items,
which are invalidated (“called back”) by the home node (server responsible for managing
a data item) as necessary to satisfy other requests. Furthermore, similar schemes have also
been used to maintain cache consistency in distributed file systems such as Andrew [30]
and Sprite [59].

7.2 Other Software DSM Systems

TreadMarks [38] is a second-generation page-based (mostly software) DSM system that
implements a release consistent memory model. Unlike many page-based systems, Tread-
Marks is implemented entirely in user space; virtual memory protection mechanisms are
manipulated through library wrappers around system calls into the kernel. Since these
virtual memory mechanisms and associated operating system interfaces are relatively
standard in current commodity workstations, TreadMarks is fairly portable. There are
interesting platforms (e.g., CM-5, Alewife) that lack the support required to implement
TreadMarks, however; we believe that this will continue to be the case. In addition, the
software overhead of systems like this (e.g., from manipulating virtual memory mecha-
nisms and computing diffs) can be large enough to significantly impact delivered applica-
tion performance [21].

Midway is a software DSM system based on entry consistency [5]. As discussed
in Section 3.4, CRL’s programming model is similar to that provided by Midway. An
important difference, however, is that Midway requires a compiler that can cull user-
provided annotations that relate data and synchronization objects from the source code
and provide these to the Midway run-time system. By bundling an implicit synchronization
object with every region, CRL obviates the need for special compiler support of this sort.
Both mostly software and all-software versions of Midway have been implemented [86].
To the best of our knowledge, Midway has only been implemented on a small cluster of
workstations connected with an ATM network.

A number of other approaches to providing coherence in software on top of non-
cache-coherent shared-memory hardware have also been explored [19, 42]. Like the

88

Shared Regions work, these research efforts differ from that described in this thesis both
in the type of hardware platform targeted (non-cache-coherent shared memory vs. message
passing) and the use of simulation to obtain controlled comparisons with cache-coherent
hardware DSM (when such a comparison is provided).

7.3 Comparative Studies

Several researchers have reported results comparing the performance of systems at ad-
jacent levels of the classification presented in Section 2.2 (e.g., all-hardware vs. mostly
hardware [13, 27, 85], mostly software vs. all-software [70, 86]), but to our knowledge,
only Cox et al. [18] have published results from a relatively controlled comparison of
hardware and software DSM systems. While their experiments kept many factors fixed
(e.g., processor, caches, compiler), they were unable to keep the communication substrate
fixed: they compare a bus-based, all-hardware DSM system with a mostly software DSM
system running on a network of workstations connected through an ATM switch. Fur-
thermore, their results for systems with more than eight processors were acquired through
simulation. In contrast, the results presented in this thesis were obtained through con-
trolled experiments in which only the communication interfaces used by the programming
systems were changed. Experimental results comparing hardware and software DSM per-
formance are shown for up to 32 processors (Alewife); software DSM results are shown
for up to 128 processors (CM-5).

Klaiber and Levy [40] describe a set of experiments in which data-parallel (C*)
applications are compiled such that all interprocessor communication is provided through
a very simple library interface. They employ a simulation-based approach to study the
message traffic induced by the applications given implementations of this library for three
broad classes of multiprocessors: message passing, non-coherent shared memory, and
coherent shared memory. In contrast, this thesis shows results comparing the absolute
performance of implementations of CRL for two message-passing platforms and compares
the delivered application performance to that achieved by a hardware-supported DSM.

In terms of comparing message passing and shared memory, most other previous work
has either compared the performance of applications written and tuned specifically for
each programming model [11, 16] or looked at the performance gains made possible
by augmenting a hardware DSM system with message passing primitives [43]. Such
research addresses a different set of issues than those discussed in this thesis, which takes
a distributed shared memory programming model as a given and provides a controlled
comparison of hardware and software implementations.

Finally, Schoinas et al. [70] describe a taxonomy of shared-memory systems that
is similar in spirit to that provided in Section 2.2. Their scheme differs from that in
Section 2.2 in its focus on processor-side actions and emphasis of specific implementation
techniques instead of general mechanisms.

89

Chapter 8

Conclusions

With this chapter, the thesis comes to a close. The first section summarizes the major
results and contributions of the thesis. The second section revisits the goals that drove the
design and implementation of CRL in light of the results and experience reported herein.
Finally, the third section discusses directions for future work.

8.1 Summary

This thesis has presented C Region Library (CRL), a new all-software distributed shared
memory system. The design and implementation of CRL has been described in detail;
of particular importance is CRL’s focus on the key properties of simplicity, portability,
efficiency, and scalability. Although there are modest differences between the program-
ming model provided by CRL and “standard” shared memory models, experience porting
the (originally) shared-memory applications used in this study to CRL suggests that any
additional programming overhead because of these differences is also quite modest.

Using CRL and the MIT Alewife machine as vehicles, the thesis has presented the
first completely controlled comparison of scalable hardware and software DSM systems,
a comparison in which only the communication interfaces used by the programming
systems are changed; all other system components (e.g., compiler, processor, cache,
interconnection network) remain fixed.

The results of this comparison are extremely encouraging, demonstrating that when
built upon efficient communication mechanisms, CRL is capable of delivering perfor-
mance competitive with hardware-based systems: CRL achieves speedups within 15 per-
cent of those provided by Alewife’s native support for shared memory, even for challeng-
ing applications (e.g., Barnes-Hut) and small problem sizes (one-quarter of the suggested
problem size).

Further experimental results show the impact of less efficient communication mech-
anisms on CRL application performance. These results indicate that even doubling

90

communication costs over the baseline Alewife CRL system (which already is slowed
somewhat by software workarounds required for first-run CMMU parts) results in at most
a 20 percent performance degradation. Further, these results indicate that even for the
significantly lower level of communication performance that is possible with current-
generation networks-of-workstations technology, systems like CRL should be able to
deliver reasonable performance, even for relatively challenging applications.

For domains and applications that can tolerate a modest deviation from “standard”
shared memory programming models, these results indicate the substantial promise of all-
software approaches to providing shared memory functionality and suggest that special-
purpose hardware support for shared memory may not be necessary in many cases.

8.2 Goals Revisited

Section 3.1 described three goals that guided the design and development of CRL: (1) pre-
serving the essential “feel” of the shared memory programming model; (2) minimizing the
functionality required from the underlying hardware and operating system, thus enhancing
portability; and (3) developing a simple and lean implementation that eliminates as much
software overhead as possible. We believe the current CRL implementation largely meets
these goals. Experience porting several applications to CRL and judiciously inserting
preprocessor directives so the same sources can be compiled for use with either CRL or
shared memory confirm that CRL preserves the essential “feel” of shared memory. The
implementation meets the all-software criterion: porting CRL to other message passing
environments (e.g., workstations communicating with one another using TCP) has proven
to be straightforward. Finally, the performance results shown in the previous section
validate the notion that CRL is amenable to simple and lean implementations where the
amount of software overhead between applications and the message-passing infrastructure
is kept to a minimum.

As discussed in Section 3.5, the programming model provided by CRL is not exactly
the same as any “standard” shared memory programming model. The primary differences
are two-fold: CRL requires programmers to explicitly manage translations between the
shared address space (region identifiers) and the local address space, and CRL requires
programmers to insert annotations delimiting accesses to shared data. These modest
deviations from standard (i.e., hardware-based) DSM systems are not without reason
or benefit. First, they enable CRL’s simple and portable library-based implementation
style that requires no functionality from the underlying system beyond that necessary for
sending and receiving messages. Second, they allow CRL implementations to amortize the
cost of providing the mechanisms described in Section 2.2 over entire operations (typically
multiple loads and stores) instead of incurring comparable overhead on every reference
to potentially shared memory. Furthermore, annotations similar to those required for
CRL operations are necessary in some aggressive hardware DSM implementations when
writing to shared data (e.g., those providing release consistency). CRL requires such

91

annotations whether reading or writing shared data, similar to the entry consistency model
used in Midway [5]. Based on the experience and results described in this thesis, we feel
that the additional programming overhead caused by these modest deviations are more
than offset by the excellent simplicity, portability, and performance properties of CRL.

8.3 Future Work

A large number of interesting directions for future research follow from the work described
in this thesis.

One limitation of the work presented in this thesis is the relatively small number of
applications used. Clearly, extending these results with other applications would help
improve our understanding of how CRL performs (both when compared to Alewife’s
native shared memory support and in terms of sensitivity to changing communication
costs). It is important to note, however, that the three applications described in Section 6.2
were not hand-picked to show a system like CRL in a favorable light: Water was the most
challenging application used in a previous study involving a sophisticated page-based
mostly software DSM (TreadMarks) [18]; Barnes-Hut and related hierarchical n-body
methods have been advanced as sufficiently important and challenging to serve as a
cornerstone of an argument in favor of aggressive hardware-based DSM systems [72, 73].

As part of an effort to get more applications running under CRL, it would probably be
interesting to investigate the migratory data issue raised in Section 6.6 further by explicitly
looking for applications that might have migratory sharing problems, quantifying the
performance impact of migratory sharing on the CRL versions of said applications, and
(if possible) identifying efficient communication primitives (e.g., reductions) that can be
used to address the problem.

Another interesting direction involves treating CRL as a compiler target for higher-
level programming languages. Such an effort could probably be profitably pursued either
for relatively standard object-oriented languages (e.g., a parallel version of C++) or various
parallel FORTRAN dialects (e.g., FORTRAN-90). Of particular interest would be trying
to combine static and dynamic software DSM approaches in a single system that attempts
to statically identify communication patterns and pre-schedule efficient message-based
communication when possible, but reverts to something like CRL when doing so is not
possible.

Developing a better understanding of the relative merits of all-software and mostly
software DSM systems would be useful. It seems possible that for systems with much
lower-performancecommunication mechanisms (especially in terms of latency) than those
discussed in this thesis, more complex page-based systems like TreadMarks would perform
better than CRL. In contrast, given high performance communication, it seems clear that
the software overhead of higher-complexity systems could severely limit performance in
some cases. Identifying where these regions cross over (if indeed the conjectures are

92

true!) in a space parameterized by latency, bandwidth, and something qualitative along
the lines of “communication pattern” would certainly advance the state of the art. Using
such a result to build hybrid systems that synthesize aspects of both systems to realize
improved performance would be even better.

An implementation of CRL targeting networks of workstations interconnected with
some type of fast local area network would be interesting for several reasons, including
further validation of systems like CRL as practical (portable and efficient) platforms for
parallel computing and as a test workload to drive the development of high performance
network interfaces (both hardware and software).

Finally, two items that would probably make CRL a more appealing platform for (non-
computer-systems hacker) end users but would not be research per se. First, it would be
useful to modify the coherence protocol used by CRL to allow non-fixed (“COMA-style”)
home locations for regions. This relatively straightforward change would allow end users
to essentially ignore issues of initial data placement that arise in systems with fixed-home
protocols. Second, it would be useful to add support for other platforms to the CRL
software distribution. Ultimately, the best demonstration of the viability of a system like
CRL would be to convince real users to use it; support for relatively widely-available
platforms other than the CM-5 (e.g., IBM SP-1 and SP-2, Intel Paragon, etc.) would
certainly make it easier for this to happen.

93

Appendix A

Coherence Protocol

This appendix provides a detailed description of the protocol used by CRL to maintain the
coherence of cached data. The first section describes the protocol states and events. The
second and third sections describe the home- and remote-side protocol state machines,
respectively. The remaining eight sections address various implementation details, includ-
ing continuations, the mechanisms used to provide atomicity between protocol message
handlers and normal threads, and how unexpected and out-of-order protocol messages are
handled. Readers that are not interested in this level of detail may find that skimming this
material (or skipping it entirely) is more useful than a careful, detailed reading.

To simplify the presentation of the protocol, details regarding the detection and correct
handling of out-of-order message delivery are elided from most of the presentation given
here. The techniques used to address out-of-order delivery are discussed in Section A.11;
those interested in further detail are referred to the CRL source code [33].

A.1 Protocol States and Events

The CRL coherence protocol uses eight states apiece in the home-side and remote-state
state machines. These states are described in Tables A-1 and A-2, respectively.

Transitions between protocol states are caused by events. Two kinds of events are
possible: calls, which correspond to user actions on the local processor (e.g., initiating
and terminating operations), and messages, which correspond to protocol messages sent
by other processors. Table A-3 describes the five types of call events used in CRL. In
the current CRL implementation, protocol messages in CRL are always either sent from
a home node to a remote node (for a given region), or vice versa. Protocol messages
related to a particular region are never exchanged between remote nodes. Table A-4
describes the types of protocol messages sent from home nodes to remote nodes (six types
of messages); Table A-5 describes those sent from remote nodes to home nodes (eight
types of messages).

94

State Description
HomeExclusive This node (the home node) has the only valid copy of the region
HomeExclusiveRip Like HomeExclusive, plus one or more read operations are in progress

locally
HomeExclusiveWip Like HomeExclusive, plus a write operation is in progress locally
HomeShared Both the home node and some number of remote nodes have a valid

copies of the region
HomeSharedRip Like HomeShared, plus one or more read operations are in progress

locally
HomeIip An invalidation of remote copies of the region is in progress (to obtain an

exclusive copy)
HomeIipSpecial An invalidation of remote copies of the region is in progress (to obtain a

shared copy)
HomeInvalid A single remote node has a valid copy of the region

Table A-1. CRL home-side protocol states.

State Description
RemoteInvalid This node does not have a valid copy of the region
RemoteInvalidReq Like RemoteInvalid, but a request to obtain a valid copy of the region

has been sent
RemoteShared This node, the home node, and possibly other remote nodes have valid

copies of the region
RemoteSharedReq Like RemoteShared, but a request to obtain an exclusive copy of the

region has been sent
RemoteSharedRip Like RemoteShared, plus one or more read operations are in progress

locally
RemoteModified This node has the only valid copy of the region, and it has been modified
RemoteModifiedRip Like RemoteModified, plus one or more read operations are in progress

locally
RemoteModifiedWip Like RemoteModified, plus a write operation is in progress locally

Table A-2. CRL remote-side protocol states.

Message Description
CallStartRead Initiate a read operation (corresponds to rgn_start_read)
CallEndRead Terminate a read operation (corresponds to rgn_end_read)
CallStartWrite Initiate a write operation (corresponds to rgn_start_write)
CallEndWrite Terminate a write operation (corresponds to rgn_end_write)
CallFlush Flush the region back to the home node (corresponds to rgn_flush)

Table A-3. CRL call events.

95

Message Description
MsgRInvalidate Invalidate a remote copy of a region (to obtain a shared copy)
MsgWInvalidate Invalidate a remote copy of a region (to obtain an exclusive copy)
MsgSharedAckData Acknowledge a request for a shared copy of a region (includes a copy of

the region data)
MsgExclusiveAckData Acknowledge a request for an exclusive copy of a region (includes a copy

of the region data)
MsgModifyAck Acknowledge a request to upgrade a remote copy of a region from shared

to exclusive (does not include a copy of the region data)
MsgModifyAckData Like MsgModifyAck, but includes a copy of the region data

Table A-4. CRL home-to-remote protocol messages.

Message Description
MsgInvalidateAck Acknowledge a message invalidating the local copy of a region (leaves

the local copy invalid, does not include a copy of the region data)
MsgInvalidateAckData Acknowledge a message invalidating the local copy of a region (leaves

the local copy invalid, includes a copy of the region data)
MsgRelease Acknowledge a message invalidating the local copy of a region (leaves a

shared copy valid locally, includes a copy of the region data)
MsgSharedReq Request a shared copy of a region
MsgExclusiveReq Request an exclusive copy of a region
MsgModifyReq Request an upgrade of the local copy of a region from shared to exclusive
MsgFlush Inform the home node that the local copy of a region has been dropped

(does not include a copy of the region data)
MsgFlushData Inform the home node that the local copy of a region has been dropped

(includes a copy of the region data)

Table A-5. CRL remote-to-home protocol messages.

96

A.2 Home-Side State Machine

Figures A-1 through A-8 show the state transition diagrams for the eight home-side
protocol states. In each figure, solid arrows indicate state transitions taken in response
to protocol events; dashed arrows indicate actions taken because of a “continuation” (the
second phase of a two-phase event). Each arrow is labeled with the names of the protocol
events which would cause the corresponding state transition to take place; numbers in
parentheses after an event name indicate one of multiple possible actions which might
happen in response to a protocol event. At the bottom of each figure, two boxes (labeled
Ignore and Queue) indicate which protocol events are either ignored (i.e., have no effect)
or queued for later processing (see Section A.9). Any protocol events that are not shown
in a particular state transition diagram cause a protocol error if they occur; in practice this
should only happen if a user attempts an invalid sequence of operations on a region (e.g.,
a thread that already has a read operation in progress on a particular region attempting to
initiate a write operation on the same region without first terminating the read operation).

Figures A-1 through A-8 show only the state transitions that occur in response to
protocol events. For other effects, such as manipulations of other protocol metadata or
sending protocol messages to other nodes, one should consult Tables A-6 through A-13.
These tables provide pseudocode for the actions taken in response to different protocol
events for each of the eight home-side states. Any events that are not listed for a particular
state cause a protocol error if they occur (as in Figures A-1 through A-8).

Each of Tables A-6 through A-13 consists of three columns. The first and second
columns contain the names of the relevant protocol state and event types, respectively.
The third column contains pseudocode for the actions that should be taken when the
corresponding event occurs in the corresponding state.

Beyond the protocol state, several other components of the home-side protocol meta-
data associated with each region are referenced in Tables A-6 through A-13. These
components are summarized below:

read cnt: This field is used to count the number of local read operations in progress
(simultaneously) for the associated region.

num ptrs: This field is used to count the number of invalidation messages that have not
been acknowledged yet.

tx cont: This field is used to hold the “continuation” (a pointer to a procedure that
implements the second phase) of a two-phase set of actions (e.g., one in which some
number of invalidation messages are sent during the first phase, but the second phase
cannot be run until all invalidations have been acknowledged). This mechanism is only
used in the HomeShared and HomeInvalid states; a “cont:EventType” nomenclature
is used to denote the continuation for events of type EventType.

pointer set: The home-side metadata for a region contains a set of “pointers” to remote
copies (aka the directory for the region); CRL uses a singly-linked list to implement

97

the pointer set. Operations supported on pointer sets include insertion of a new pointer
(insert pointer) and deletion of an existing pointer (delete pointer).

message queue: The home-side metadata for a region contains a FIFO message queue
that is used to buffer protocol messages that cannot be processed immediately upon
reception. Operations supported on message queues include enqueuing a new message
(queue message) and attempting to drain the queue by retrying messages from the head
of the queue until the queue is empty or the message at the head of the queue cannot
be processed (retry queued messages).

Newly created regions (caused by calls to rgn_create) start in the HomeExclusive
state.

98

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

CallStartRead

CallStartWrite

MsgSharedReq

MsgExclusiveReq
MsgModifyReq

CallFlush
MsgRelease

(none)

Figure A-1. HomeExclusive: state transition diagram.

99

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

MsgSharedReq

MsgExclusiveReq
MsgModifyReq

CallFlush
MsgRelease

CallEndRead (1)

CallStartRead
CallEndRead (2)

Figure A-2. HomeExclusiveRip: state transition diagram.

100

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

CallEndWrite

MsgSharedReq
MsgExclusiveReq

MsgModifyReq

CallFlush
MsgRelease

Figure A-3. HomeExclusiveWip: state transition diagram.

101

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

CallStartRead

CallFlush
MsgRelease (none)

CallStartWrite

MsgExclusiveReq
MsgModifyReq (2)

CallStartWrite
MsgExclusiveReq
MsgModifyReq (2)

MsgModifyReq (1)

MsgSharedReq
MsgFlush (2)

MsgFlush (1)

Figure A-4. HomeShared: state transition diagram.

102

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

Ignore

CallEndRead (1)

CallFlush
MsgRelease

MsgFlush (1)

CallStartRead

MsgSharedReq
CallEndRead (2)

MsgFlush (2)

Queue

MsgExclusiveReq
MsgModifyReq

Figure A-5. HomeSharedRip: state transition diagram.

103

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

CallFlush
MsgRelease

MsgSharedReq
MsgExclusiveReq

MsgModifyReq

MsgInvalidateAck
MsgInvalidateAckData

MsgFlush
MsgFlushData

CallStartRead
CallStartWrite

Figure A-6. HomeIip: state transition diagram (see Section A.4 for details).

104

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

QueueIgnore

CallStartRead
CallStartWrite

MsgInvalidateAck
MsgInvalidateAckData

MsgFlush
MsgFlushData
MsgRelease

CallFlush MsgExclusiveReq
MsgModifyReq

MsgSharedReq

Figure A-7. HomeIipSpecial: state transition diagram (see Section A.4 for details).

105

HomeExclusive

HomeExclusiveWip

HomeIip

HomeShared

HomeExclusiveRip

HomeIipSpecial

HomeInvalid

HomeSharedRip

Ignore

CallFlush
MsgRelease

Queue

(none)

CallStartRead
MsgSharedReq

MsgFlush
MsgFlushData

CallStartRead (2)

CallStartWrite

MsgExclusiveReq
MsgModifyReq

MsgSharedReq

CallStartRead (1)CallStartWrite
MsgExclusiveReq

MsgModifyReq

Figure A-8. HomeInvalid: state transition diagram.

106

State Event Actions

HomeExclusive CallStartRead read cnt = 1
state = HomeExclusiveRip

CallStartWrite state = HomeExclusiveWip
CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
state = HomeShared

MsgExclusiveReq send MsgExclusiveAckData
insert pointer
state = HomeInvalid

MsgModifyReq send MsgExclusiveAckData
insert pointer
state = HomeInvalid

MsgRelease do nothing

Table A-6. HomeExclusive: protocol events and actions.

State Event Actions

HomeExclusiveRip CallStartRead read cnt += 1
CallEndRead read cnt -= 1

if (read cnt == 0)
state = HomeExclusive
retry queued messages

CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
state = HomeSharedRip

MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table A-7. HomeExclusiveRip: protocol events and actions.

State Event Actions

HomeExclusiveWip CallEndWrite state = HomeExclusive
retry queued messages

CallFlush do nothing
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table A-8. HomeExclusiveWip: protocol events and actions.

107

State Event/Continuation Actions

HomeShared CallStartRead read cnt = 1
state = HomeSharedRip

CallStartWrite send MsgWInvalidates to remote copies
num ptrs = # of MsgWInvalidates sent
tx cont = cont:CallStartWrite
state = HomeIip
poll until tx cont has been invoked

cont:CallStartWrite state = HomeExclusiveWip
CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
MsgExclusiveReq send MsgWInvalidates to remote copies

num ptrs = # of MsgWInvalidates sent
tx cont = cont:MsgExclusiveReq
state = HomeIip

cont:MsgExclusiveReq send MsgExclusiveAckData
insert pointer
state = HomeInvalid
retry queued messages

MsgModifyReq if (requesting node is the only pointer)
send MsgModifyAck
insert pointer
state = HomeInvalid

else
send MsgWInvalidates to remote copies
num ptrs = # of MsgWInvalidates sent
tx cont = cont:MsgModifyReq
state = HomeIip

cont:MsgModifyReq if (requesting node already has a copy)
send MsgModifyAck

else
send MsgModifyAckData

insert pointer
state = HomeInvalid

MsgFlush delete pointer
if (no more pointers)

state = HomeExclusive
retry queued messages

MsgRelease do nothing

Table A-9. HomeShared: protocol events and actions.

108

State Event Actions

HomeSharedRip CallStartRead read cnt += 1
CallEndRead read cnt -= 1

if (read cnt == 0)
state = HomeShared
retry queued messages

CallFlush do nothing
MsgSharedReq send MsgSharedAckData

insert pointer
MsgFlush delete pointer

if (no more pointers)
state = HomeExclusiveRip

retry queued messages
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table A-10. HomeSharedRip: protocol events and actions.

State Event Actions

HomeIip CallStartRead wait until state != HomeIip
retry CallStartRead

CallStartWrite wait until state != HomeIip
retry CallStartWrite

CallFlush do nothing
MsgInvalidateAck,
MsgInvalidateAckData, num ptrs -= 1
MsgFlush, if (num ptrs == 0)
MsgFlushData invoke tx cont
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message
MsgRelease do nothing

Table A-11. HomeIip: protocol events and actions.

109

State Event Actions

HomeIipSpecial CallStartRead wait until state != HomeIip
retry CallStartRead

CallStartWrite wait until state != HomeIip
retry CallStartWrite

CallFlush do nothing
MsgInvalidateAck,
MsgInvalidateAckData,
MsgFlush,
MsgFlushData invoke tx cont with an arg of 0
MsgRelease invoke tx cont with an arg of 1
MsgSharedReq,
MsgExclusiveReq,
MsgModifyReq queue message

Table A-12. HomeIipSpecial: protocol events and actions.

110

State Event/Continuation Actions

HomeInvalid CallStartRead send MsgRInvalidate to remote copy
tx cont = cont:CallStartRead
state = HomeIipSpecial
poll until tx cont has been invoked

cont:CallStartRead if (tx cont arg == 1)
state = HomeSharedRip

else
state = HomeExclusiveRip

read cnt = 1
retry queued messages

CallStartWrite send MsgWInvalidate to remote copy
tx cont = cont:CallStartWrite
state = HomeIip
poll until tx cont has been invoked

cont:CallStartWrite state = HomeExclusiveWip
CallFlush do nothing
MsgSharedReq send MsgRInvalidate to remote copy

tx cont = cont:MsgSharedReq
state = HomeIipSpecial

cont:MsgSharedReq send MsgSharedAckData
insert pointer
state = HomeShared

MsgExclusiveReq send MsgWInvalidate to remote copy
tx cont = cont:MsgExclusiveReq
state = HomeIip

cont:MsgExclusiveReq send MsgExclusiveAckData
insert pointer
state = HomeInvalid
retry queued messages

MsgModifyReq send MsgWInvalidate to remote copy
tx cont = cont:MsgModifyReq
state = HomeIip

cont:MsgModifyReq send MsgModifyAckData
insert pointer
state = HomeInvalid
retry queued messages

MsgFlush, delete pointer
MsgFlushData state = HomeExclusive
MsgRelease do nothing

Table A-13. HomeInvalid: protocol events and actions.

111

A.3 Remote-Side State Machine

Figures A-9 through A-16 show the state transition diagrams for the eight remote-side
protocol states. These figures are similar to those shown for the home-side state machine
(Figures A-1 through A-8), with two minor differences. First, because “continuations”
are not employed on the remote side (as is discussed further in Section A.5), none of the
remote-side state transition diagrams include dashed arrows. Second, because the remote
side of the CRL protocol only employs a limited form of message queuing (setting a flag
when an invalidation message was received at an inconvenient time; see Section A.9 for
details), the Queue box is instead labeled Set rcvd inv flag.

As was the case in Figures A-1 through A-8 (for the home-side state machine),
Figures A-9 through A-16 show only the state transitions that occur in response to protocol
events. A more complete description of the remote-side state machine (in the form of
psuedocode) can be found in Tables A-14 through A-21.

Each of Tables A-14 through A-21 consists of three columns. The first and second
columns contain the names of the relevant protocol state and event types, respectively.
The third column contains pseudocode for the actions that should be taken when the
corresponding event occurs in the corresponding state.

Beyond the protocol state, two other components of the remote-side protocol meta-
data associated with each region are referenced in Tables A-14 through A-21. These
components are summarized below:

read cnt: This field is used to count the number of local read operations in progress
(simultaneously) for the associated region.

rcvd inv: This field is used to “buffer” an invalidation message that cannot be processed
immediately upon reception because an operation is in progress on the corresponding
region.

Newly allocated remote copies of regions (caused by calls to rgn_map that cannot
be satisfied locally) start in the RemoteInvalid state.

112

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallStartRead
CallStartWrite

CallFlush
MsgRInvalidate
MsgWInvalidate

(none)

Set rcvd_inv flag

Figure A-9. RemoteInvalid: state transition diagram.

113

Set rcvd_inv flagIgnore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

MsgSharedAckData

MsgExclusiveAckData
MsgModifyAckData

MsgRInvalidate
MsgWInvalidate

(none)

Figure A-10. RemoteInvalidReq: state transition diagram.

114

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallStartRead
CallStartWrite

CallFlush
MsgWInvalidate

(none) (none)

Set rcvd_inv flag

Figure A-11. RemoteShared: state transition diagram.

115

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

MsgModifyAck
MsgModifyAckData

MsgWInvalidate
MsgRInvalidate

(none) (none)

Set rcvd_inv flag

Figure A-12. RemoteSharedReq: state transition diagram.

116

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallEndRead (1)

CallEndRead (2)

CallStartRead
CalllEndRead (3)

CallFlush MsgWInvalidate

Set rcvd_inv flag

Figure A-13. RemoteSharedRip: state transition diagram.

117

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallStartRead

CallStartWrite

CallFlush
MsgRInvalidate
MsgWInvalidate

(none) (none)

Set rcvd_inv flag

Figure A-14. RemoteModified: state transition diagram.

118

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallEndRead (1)

CallEndRead (2)

CallStartRead
CallEndRead (3)

CallFlush

MsgRInvalidate

MsgWInvalidate

Set rcvd_inv flag

Figure A-15. RemoteModifiedRip: state transition diagram.

119

Ignore

RemoteInvalid RemoteInvalidReq

RemoteShared

RemoteSharedReq

RemoteSharedRipRemoteModified

RemoteModifiedRip

RemoteModifiedWip

CallEndWrite (1)

CallEndWrite (2)

CallFlush
MsgRInvalidate
MsgWInvalidate

Set rcvd_inv flag

Figure A-16. RemoteModifiedWip: state transition diagram.

120

State Event Actions

RemoteInvalid CallStartRead send MsgSharedReq to home
state = RemoteInvalidReq
poll until reply is received

CallStartWrite send MsgExclusiveReq to home
state = RemoteInvalidReq
poll until reply is received

CallFlush do nothing
MsgRInvalidate,
MsgWInvalidate do nothing

Table A-14. RemoteInvalid: protocol events and actions.

State Event Actions

RemoteInvalidReq MsgSharedAckData read cnt = 1
state = RemoteSharedRip

MsgExclusiveAckData,
MsgModifyAckData state = RemoteModifiedWip
MsgRInvalidate,
MsgWInvalidate do nothing

Table A-15. RemoteInvalidReq: protocol events and actions.

State Event Actions

RemoteShared CallStartRead read cnt = 1
state = RemoteSharedRip

CallStartWrite send MsgModifyReq to home
state = RemoteSharedReq
poll until reply is received

CallFlush send MsgFlush to home
state = RemoteInvalid

MsgWInvalidate send MsgInvalidateAck to home
state = RemoteInvalid

Table A-16. RemoteShared: protocol events and actions.

121

State Event Actions

RemoteSharedReq MsgWInvalidate, send MsgInvalidateAck to home
MsgRInvalidate state = RemoteInvalidReq
MsgModifyAck,
MsgModifyAckData state = RemoteModifiedWip

Table A-17. RemoteSharedReq: protocol events and actions.

State Event Actions

RemoteSharedRip CallStartRead read cnt += 1
CallEndRead read cnt -= 1

if (read cnt == 0)
if (rcvd inv == 0)

state = RemoteShared
else

send MsgInvalidateAck to home
rcvd inv = 0
state = RemoteInvalid

CallFlush do nothing
MsgWInvalidate rcvd inv = 1

Table A-18. RemoteSharedRip: protocol events and actions.

State Event Actions

RemoteModified CallStartRead read cnt = 1
state = RemoteModifiedRip

CallStartWrite state = RemoteModifiedWip
CallFlush send MsgFlushData to home

state = RemoteInvalid
MsgRInvalidate, send MsgInvalidateAckData to home
MsgWInvalidate state = RemoteInvalid

Table A-19. RemoteModified: protocol events and actions.

122

State Event Actions

RemoteModifiedRip CallStartRead read cnt += 1
CallEndRead read cnt -= 1

if (read cnt == 0)
if (rcvd inv == 0)

state = RemoteModified
else

send MsgInvalidateAckData to home
rcvd inv = 0
state = RemoteInvalid

CallFlush do nothing
MsgRInvalidate send MsgRelease to home

state = RemoteSharedRip
MsgWInvalidate rcvd inv = 1

Table A-20. RemoteModifiedRip: protocol events and actions.

State Event Actions

RemoteModifiedWip CallEndWrite if (rcvd inv == 0)
state = RemoteModified

else
send MsgInvalidateAckData to home
rcvd inv = 0
state = RemoteInvalid

CallFlush do nothing
MsgRInvalidate,
MsgWInvalidate rcvd inv = 1

Table A-21. RemoteModifiedWip: protocol events and actions.

123

A.4 Continuations and Home-Side ‘Iip’ States

Figures A-4 and A-8 contain dashed arrows that indicate “continuations.” In the context
of the CRL coherence protocol, a continuation is the second phase of a two-phase set of
protocol actions (e.g., one in which some number of invalidation messages are sent during
the first phase, but the second phase cannot be executed until all invalidations have been
acknowledged).

Each continuation is implemented as a separate procedure. Protocol handlers that
implement the first phase (e.g., sending out invalidation messages) of a two-phase set
of protocol actions are responsible for storing a pointer to an appropriate continuation
in the metadata area before effecting a state transition into an “invalidation in progress”
(‘Iip’) state. In turn, the ‘Iip’ protocol handlers are responsible for collecting invalidation
acknowledgements and invoking the stored continuation after all invalidation messages
have been acknowledged. Thus, the dashed arrows in Figures A-4 and A-8 represent the
transitions out of the ‘Iip’ states. Because these “continuation state transitions” are part
of a two-phase set of protocol actions, they are shown in these figures instead of those for
the ‘Iip’ states.

In the state transition diagram for the HomeIip state (Figures A-6), only a single (loop-
back) state transition arrow is shown. This arrow indicates the action taken in response to
all invalidation acknowledgement messages (and the like) before all acknowledgements
have been received. Upon receiving the last acknowledgement, the stored continuation is
invoked and the appropriate “continuation state transition” is caused (per the dashed ar-
rows in Figures A-4 and A-8). No state transition arrows are shown for the CallStartRead
and CallStartWrite events; when one of these events occurs in the HomeIip state, the
calling procedure is responsible for spinning (and polling for incoming messages) until
the state changes, at which time the appropriate call event is retried.

In the state transition diagram for the HomeIipSpecial state (Figures A-7), no state
transition arrows are shown. This is because the HomeIipSpecial state can only be
entered in cases where a single invalidation message has been sent, so the stored continu-
ation will be invoked immediately upon receipt of the first invalidation acknowledgement
message. Once again, no state transition arrows are shown for the CallStartRead and
CallStartWrite events; these events are handled the same way in the HomeIipSpecial
state that the are in the HomeIip state.

Strictly speaking, the use of continuations is not necessary. They could be eliminated
by introducing a set of new, specialized ‘Iip’ states, one for each continuation. Except for
the actions taken after the last invalidation message is acknowledged, each new ‘Iip’ state
would look essentially identical to the others. Eliminating continuations in this manner
may yield a slight performance improvement by eliminating an indirect jump (procedure
call to a PC loaded from memory) from the critical path of two-phase protocol transitions.
However, for the sake of simplicity, the current CRL implementation does not implement
this optimization.

124

A.5 Remote-Side ‘Req’ States

The “continuation” mechanism used to implement home-side two-phase state transitions
is not used on the remote side of the protocol. Because the only two-phase transitions
on the remote side are those that occur because of a call event on the local node (e.g.,
a CallStartRead or CallStartWrite that cannot be satisfied locally, so a request must
be sent to the home node, and the desired state transition does not occur until after
the corresponding reply has been received), a simpler scheme is employed: processors
invoking call events that require waiting for a reply message spin, polling for incoming
protocol messages until the desired reply has been received.

Since the current CRL implementation only supports single-threaded applications in
which a single user thread or process runs on each processor in the system, this type of
blocking/spinning mechanism is acceptable. In an implementation that supports multiple
user threads per processor in the system, more sophisticated techniques that involve
descheduling the requesting thread until the reply has been received may be necessary.
Competitive schemes [36, 54] in which requesting threads poll for some period of time
in hope of receiving a quick response before being descheduled may also be useful in
multithread implementations.

A.6 Protocol Message Format

Protocol messages that do not include a copy of the region data (“non-data-carrying
protocol messages”) are encoded in the standard five-word format (32-bit words) shown
in Figure A-17 (small enough to fit in a single active message on the CM-5). Protocol
messages that include a copy of the region data (“data-carrying protocol messages”)
include the same information, but the exact format may depend on the particulars of bulk
data transport mechanism available on different platforms.

Since protocol messages are implemented using active messages, the first word of each
protocol message is the program counter (PC) of the procedure that should be invoked
upon message delivery. As discussed in Section A.8, most non-data-carrying protocol
messages are received using a common handler (rgn_msg_stub), but a specialized
handler (rgn_inv_stub) is used for invalidation messages.

The second word of each protocol message is the protocol message type, a small
integer indicating one of the 14 possible types of protocol messages shown in Tables A-4
and A-5. The third word of each protocol message is either the starting address of the
metadata area for the region on the destination node or the region identifier for the region
(see Section A.8). The fourth word of each protocol message is the source node number so
the destination node knows which node sent the message; active message communication
models typically do not provide out-of-band mechanisms for obtaining such information.
Finally, the fifth word of each protocol message contains either a version number for the

125

word 1

word 2

word 3

word 4

version number
(or metadata addr on src node)

protocol message type

src node number

(rgn_msg_stub or rgn_inv_stub)
active message handler PC

word 5

metadata addr on dst node
(or region identifier)

Figure A-17. Standard (non-data-carrying) protocol message format.

region (used to resolve out-of-order message delivery issues; see Section A.11) or the
starting address of the metadata area on the sending node (see Section A.8).

A slightly more compact encoding (four words instead of five) for protocol messages
could be obtained by either (1) packing both the protocol message type and the source
node number into a single word or (2) having specialized active message handlers for
each possible type of protocol message, and thus encode the message type in the active
message handler PC. No pressing need for a more compact encoding has arisen, however,
so the current CRL implementation retains the five-word encoding shown in Figure A-17.

A.7 Atomicity

In order to allow normal threads or processes running on a particular node to achieve
atomicity with respect to handlers for incoming active messages, both the CM-5 and
Alewife platforms allow message delivery to be temporarily disabled (on the CM-5, this
is colloquially known as “disabling interrupts”). On both platforms, however, disabling
message delivery for prolonged periods can lead to increased congestion in the intercon-
nection network, which in turn can cause severe performance degradation. Furthermore,
on some platforms (e.g., the CM-5), the cost of disabling and reenabling message delivery
can be prohibitively high (e.g., 10 microseconds).

126

To address this issue, the prototype CRL implementation employs a special software-
based “incoming message queue” and an associated enabled/disabled flag on each node;
these are used to implement an application-specific form of optimistic active messages [82].
When the incoming message queue is enabled, the “control” portions of incoming protocol
messages (those elements shown in Figure A-17) are placed on this queue for later
processing instead of being acted upon immediately. Thus, non-data-carrying protocol
messages are enqueued in their entirety, but only the “control” (non-data) portions of data-
carrying protocol messages are queued. The data component of data-carrying protocol
messages is always deposited directly in the target region’s user data area, independent of
the state of the incoming message queue.

When a protocol message arrives and the incoming message queue is disabled, the
queue is enabled, the appropriate protocol handler is executed, any messages on the
incoming queue are processed, and then the queue is disabled again. Enabling the incoming
message queue during protocol handler execution is necessary to provide atomicity with
respect to other incoming protocol messages (e.g., on the CM-5, interrupts are disabled
during active message handlers, but incoming active message handlers can still be invoked
if an active message handler attempts to send another active message).

Given this mechanism, a thread or process can easily achieve atomicity with respect to
incoming protocol messages by simply enabling the incoming message queue. After the
code requiring atomicity is complete, the thread or process is responsible for processing
any messages on the incoming message queue and then disabling the queue (as was the
case for protocol handlers).

Care must be taken when draining messages from the incoming message queue and
disabling further queuing that no messages remain in the queue after the process is
complete. A straightforward implementation might require being able to atomically check
that no messages remain in the incoming queue and, if so, disabling the queuing of future
messages. Because achieving such atomicity (by disabling and reenabling interrupts) is
relatively expensive on the CM-5, the CM-5 implementation of CRL employs a more
complex scheme that only requires message delivery to be disabled if the incoming queue
is non-empty. Thus, in cases where atomicity was only required for a brief period of
time and no protocol messages were queued, the CM-5 implementation avoids the cost of
disabling and reenabling interrupts.

By using an incoming message queue on each node, the prototype CRL implementation
can efficiently provide atomicity with respect to incoming message delivery while avoiding
the potentially costly solutions that involve disabling incoming message delivery for
prolonged periods of time.

127

Home

Remote

time
region is evicted
from the URC

MsgFlush

MsgWInvalidate

Figure A-18. The “flush-invalidation” problem.

A.8 Naming Regions

To streamline the handling of protocol messages, most protocol messages “name” the
target region by the base address of the metadata area on the destination node. Remote
regions dedicate a field in the metadata area for the address of the corresponding home
region metadata area (on the home node); home regions maintain this information on a
per-remote-copy basis using a field in the directory entry associated with each remote
copy. Remote nodes obtain the address of the home region metadata area at region
mapping time; it is included in the auxiliary information obtained from the home node
when a mapping is not already present in the region table (as discussed in Section 4.4).
In order to make similar information about remote nodes available to the home node, all
request messages (MsgSharedReq, MsgExclusiveReq, and MsgModifyReq) include
the starting address of the remote region’s metadata area in place of the version number
(see Figure A-17).

Because unmapped regions can be evicted from the unmapped region cache (and
thus the memory that was allocated for them reclaimed), care must be taken to ensure
protocol messages sent by the home node do not contain information that will cause
a protocol handler to incorrectly reference memory that has been reclaimed. Of the
six kinds of home-to-remote protocol messages (see Table A-4), only the invalidation
messages (MsgRInvalidate and MsgWInvalidate) have the potential to cause this type
of problem. As is illustrated in Figure A-18, a region could be evicted from a remote
URC, causing a MsgFlush to be sent to the home node, but the home node could send an
invalidation message before the MsgFlush arrives and is processed. In such a scenario,
the appropriate course of action is to ignore the invalidation message on the remote node,
but the region metadata that might have been used to determine this fact would have
already been reclaimed.

128

To avoid the problem of metadata disappearing before a message can be processed,
invalidation messages in CRL (both MsgWInvalidate and MsgRInvalidate) do not name
the target region by the address of its metadata on the destination node, as is done
with other protocol messages. Instead, invalidation messages use region identifiers to
name their target regions. Further, instead of using the message handler used by all
other protocol messages (rgn_msg_stub), invalidation messages use a special message
handler (rgn_inv_stub). This special handler is responsible for translating the region
identifier contained in the invalidation message into the address of the target region’s
metadata area before proceeding. If a valid translation for the region identifier cannot be
found in the region table, it is assumed that the target region was evicted from the URC
and the invalidation message is (correctly) ignored.

A.9 Unexpected Messages

When protocol messages show up at times when they would be inconvenient or difficult to
handle, they are queued for later processing. Protocol handlers that cause transitions out
of a state in which such messages might have been queued are responsible for processing
as many messages as possible from the head of the queue after entering the new state.

On the home side of the protocol, protocol messages that cannot be processed im-
mediately are placed in a “blocked message queue” associated with every home region
(a singly-linked queue of blocked messages is constructed using a queue head and tail
pointer in the home-side region metadata). Only request messages (MsgSharedReq,
MsgExclusiveReq, and MsgModifyReq) can ever get queued; this occurs if a request
message arrives that conflicts with an operation that is already in progress at the home
node (i.e., MsgExclusiveReq and MsgModifyReq conflict with a read operation; any
request conflicts with a write operation) or an invalidation is currently in progress for
the region (i.e., the home node is the HomeIip state or HomeIipSpecial state). Because
the current CRL implementation only allows each processor in a system to have a single
request in flight, the maximum number of request messages that could be queued in any
one blocked message queue is one less than the total number of processors in the system.

On the remote side of the protocol, the only protocol messages that cannot always be
handled immediately are invalidation messages (MsgWInvalidate and MsgRInvalidate).
In general, this occurs whenever an invalidation message arrives at a remote node where
one or more operations on the target region are already in progress. In such a situation,
the effect of the invalidation message must be delayed until all operations have been
terminated. Message queuing on the remote side of the protocol can be greatly simplified
by taking advantage of the following observation: On any given remote region, at most
one invalidation message will ever need to be queued for later processing. Thus, unlike
the home side of the protocol (where the full generality of a queue is needed to hold a
potentially large number of messages), the “queue” on the remote side can be implemented
with a single flag in the region metadata that indicates whether or not an invalidation

129

message has been received but not acted upon yet. (In Figures A-9 through A-16 and
Tables A-14 through A-21, this flag is referred to as the rcvd inv flag.)

In hardware-based systems, inconvenient or unexpected protocol messages are often
handled by sending a negative acknowledgement (nack) back to the sender. Upon being
nack-ed, the original sender of a protocol message is responsible for resending it. Because
the overhead of receiving an active message can be significant, even in the most efficient
of systems, employing such an approach in CRL could raise the possibility of livelock
situations in which a large number of remote nodes could “gang up” on a home node,
saturating it with requests (that always get nack-ed and thus resent) in such a way that
forward progress is impeded indefinitely. Other solutions to this problem are possible (e.g.,
nack inconvenient requests, but use a backoff strategy when resending nack-ed messages),
but they have not been investigated.

A.10 Two Kinds of Invalidation Messages

In general, invalidation messages that arrive at a remote region when an operation is in
progress simply cause the rcvd inv flag in the remote region’s metadata area to be set, as
described above. In one situation, however, applying this policy can lead to significant
performance degradation by unnecessarily throttling concurrency. The particular situation
in which this might happen is as follows: A region is in the RemoteModifiedRip state on
a remote node (perhaps because that node had a write operation in progress, then initiated
a read operation on the region immediately after terminating the write operation), while
many other nodes are attempting to initiate read operations on the same region (as might
be the case if the region were being used to broadcast information to a collection of other
nodes). According to the CRL programming model (Section 3.2), the new read operations
should be allowed to proceed concurrently with the existing read operation.

In such a situation, the remote node with the operation in progress has a dirty (modified)
copy of the region data, so the home node is in the HomeInvalid state. Thus, when the
first MsgSharedReq message arrived at the home node (or the application code running
on the home node invoked a CallStartRead), an invalidation message would be sent to
the remote node with the read operation in progress and the home node would transition
into the HomeIip state; subsequent MsgSharedReq messages arriving at the home node
would be placed in the blocked message queue for later processing. When the invalidation
message arrives at the remote node, the intended effect is for the dirty data to be written
back to the home node in order to allow the pending read requests to be satisfied. However,
since a read operation is in progress on the remote node receiving the invalidation message,
this intended effect would not happen if the invalidation message only caused the rcvd inv
flag to be set.

To address this difficulty, the CRL coherence protocol employs two kinds of inval-
idation messages: MsgWInvalidate messages that are sent in response to requests for
an exclusive copy of the region data (i.e., for a write operation), and MsgRInvalidate

130

Home

Remote

time

MsgSharedReq

MsgSharedAckMsgWInvalidate

 MsgFlush

Figure A-19. The “late invalidation” problem.

messages that are sent in response to requests for a shared copy (i.e., for a read operation).
In all remote-side protocol states except for RemoteModifiedRip, the same protocol
handlers are used for both kinds of invalidation messages. In the RemoteModifiedRip
state, MsgWInvalidate messages are handled in the usual way (causing the rcvd inv flag
to be set). In contrast, the protocol handler for MsgRInvalidate messages causes (1) a
MsgRelease message to be returned to the home node with a copy of the region data and
(2) a transition into the RemoteSharedRip state (see Figure A-15 and Table A-20). The
MsgRelease message serves two purposes: first, to write back the modified region data
to the home node; and second, to inform the home node that the remote node no longer
has an exclusive copy of the region but did retain a shared copy, thus allowing the other
read operations to proceed concurrently.

A.11 Out-of-Order Message Delivery

In order to handle out-of-order message delivery, a common occurrence when program-
ming with active messages on the CM-5, CRL maintains a 32-bit version number for each
region. Each time a remote processor requests a copy of the region, the current version
number is recorded in the directory entry allocated for the copy and returned along with
the reply message; the current version number is then incremented. By including the
version number for a remote copy of a region in all other protocol messages related to
that copy, misordered protocol messages can be easily identified and either buffered or
dropped, as appropriate. Figures A-19 through A-22 show examples of the four types of
protocol message reordering that can occur.

Figure A-19 shows an example of the “late invalidation” problem. In this situation, the
delivery of an invalidation message is delayed long enough for the target remote node to
(1) drop the copy of the data that was the intended target of the invalidation message and

131

Home

Remote

time

MsgSharedReq

MsgWInvalidate

MsgSharedAckData

Figure A-20. The “early invalidation” problem.

(2) obtain a new copy of the data from the home node; care must be taken to ensure that
the new copy of the data is not invalidated because of the late invalidation message. This
class of reordering problem is solved by comparing the version number included in the
invalidation message with that of the remote copy: invalidation messages that contain a
version number earlier than that stored in the remote region’s metadata are late and should
thus be ignored.

Figure A-20 shows an example of the “early invalidation” problem. In this situation,
the delivery of a reply to a request for a copy of the data is delayed long enough for a
message intended to invalidate that copy of the data to arrive first; care must be taken to
ensure the invalidation message is buffered until appropriate action can be taken. Like the
late invalidation problem, this class of reordering problem is also solved by comparing
the region version number of included in the invalidation message with that of the remote
copy: invalidation messages that contain a version number later than that stored in the
remote region’s metadata are early, so the rcvd inv flag is set. When the reply message
arrives, the state of the remote region is changed to an appropriate operation-in-progress
state (independent of the value of the rcvd inv flag), so the net effect is as if the invalidation
message did not show up until after the reply.

Figure A-21 shows an example of the “late release” problem. In this situation, the
delivery of a MsgRelease message dropping exclusive ownership of a region is delayed
long enough for a MsgFlush message for the same region to arrive at the home node first;
care must be taken to ensure that any release messages that arrive late have no effect on the
protocol state. This class of problems is addressed in two ways. First, instead of using the
HomeIip state to collect invalidation message acknowledgements, protocol handlers that
send MsgRInvalidate messages (in response to which MsgRelease responses might be
sent) cause a transition in the HomeIipSpecial state. MsgRelease messages are only
acted upon when they arrive at a region in the HomeIipSpecial state; in all other protocol
states, MsgRelease messages are dropped without effect. Second, when a MsgRelease

132

Home

Remote

time

MsgRInvalidate

MsgRelease

MsgFlush

Figure A-21. The “late release” problem.

Home

Remote

time

MsgWInvalidate

MsgInvalidateAck

MsgSharedReq

Figure A-22. The “late invalidation acknowledgement” problem.

message does arrive at a region in the HomeIipSpecial state, it is ignored unless the
version number (of region on the sending node) matches that stored in the directory entry.
The combination of these policies ensures that late MsgRelease messages—those that
arrive in states other than HomeIipSpecial or with an incorrect version number—are
correctly ignored.

Finally, Figure A-22 shows an example of the “late invalidation acknowledgement”
problem. This problem occurs when the delivery of a MsgInvalidateAck or MsgInvali-
dateAckData message is delayed long enough that a request message for a new copy of
the region (sent by the same node that sent the invalidation acknowledgement message)
arrives at the home node first. This situation is handled by only allowing each home copy
of a region to have at most one directory entry per remote node. If a protocol handler at-

133

tempts to insert a second directory entry for a particular remote node, the protocol handler
is aborted and the invoking protocol message is queued for later processing.

Another approach to dealing with the “late invalidation acknowledgement” problem
might be to, in essence, do nothing, and simply allow a home region’s directory to (at least
temporarily) contain multiple entries for a remote node (each of which corresponds to a
different “copy” of the region). Since this type of problem is not expected to occur too
frequently, however, the current CRL implementation retains the more conservative (and
somewhat simpler to reason about) approach of allowing at most one directory entry per
remote region.

134

Appendix B

Raw Data

The tables in this appendix contain the raw data used to produce the summary figures and
tables presented in Chapters 5 and 6.

B.1 Interrupts vs. Polling

This section presents the raw performance data obtained using the synthetic workload
described in Section 5.1.2. Table B-1 shows the time per outer loop iteration (in mi-
croseconds) using two-message communication events for a wide range of polling rates
(determined by the amount of useful work per poll) and computation-to-communication
ratios (determined by the amount of useful work per communication event) and each of
of the ‘null’, ‘intr’, ‘none’, and ‘poll’ cases. Tables B-2 and B-3 present the same data for
three- and four-message communication events. All values are averages measured over
10,000 outer loop iterations.

135

Useful work per Useful work per communication event (cycles)
poll (cycles) 125 250 500 1000 2000 4000 8000 16000

15 null 4.3 8.2 16.1 31.8 63.1 125.7 250.6 500.9
intr 40.4 46.4 56.9 76.2 112.1 178.2 305.0 557.5
none 21.9 27.8 40.6 67.3 121.5 230.6 449.3 887.0
poll 38.3 59.0 100.1 182.0 344.8 670.8 1322.1 2626.3

25 null 4.3 8.2 16.0 31.7 63.0 125.6 250.5 501.0
intr 40.2 46.2 56.7 76.3 112.1 178.1 305.0 557.8
none 22.0 27.7 40.5 67.1 121.5 230.2 450.0 886.1
poll 31.5 45.8 73.7 129.2 239.9 461.6 904.3 1791.0

45 null 4.3 8.2 16.0 31.8 63.0 125.7 251.1 502.0
intr 40.3 46.2 56.7 76.2 112.1 178.2 305.4 558.7
none 22.0 27.8 40.4 68.0 122.0 231.3 450.0 886.2
poll 27.1 36.8 56.1 94.0 169.6 320.3 622.0 1225.9

85 null 4.3 8.2 16.0 31.7 63.1 125.8 250.8 500.9
intr 40.2 46.2 56.7 76.2 112.1 178.3 305.2 557.6
none 21.9 27.7 40.6 67.2 121.6 231.6 449.2 888.8
poll 24.6 31.8 45.8 73.6 128.6 238.4 457.3 895.3

165 null 4.3 8.3 16.1 31.9 63.5 126.2 251.8 503.1
intr 40.2 46.2 56.7 76.4 112.3 178.7 306.1 559.7
none 22.0 27.8 41.5 67.4 122.3 231.2 452.0 886.4
poll 23.2 29.3 40.8 63.2 107.3 194.8 368.8 717.3

325 null 4.3 8.2 16.1 31.8 63.2 126.0 251.4 502.4
intr 40.2 46.2 56.7 76.2 112.2 178.5 305.9 558.9
none 22.0 27.7 40.6 68.0 121.5 230.7 448.5 887.9
poll 22.5 28.1 38.5 58.3 96.8 172.5 323.0 623.4

645 null 4.3 8.2 16.0 31.7 62.9 125.6 250.6 500.9
intr 40.0 46.2 56.6 76.1 112.0 178.1 305.1 557.5
none 22.1 27.8 40.5 67.0 121.1 230.3 448.3 883.9
poll 22.1 27.6 37.8 57.1 93.4 163.7 302.2 577.7

1285 null 4.3 8.2 16.0 31.7 63.0 125.6 250.7 501.1
intr 40.2 46.2 56.6 76.2 112.1 178.1 305.2 557.9
none 22.0 27.8 40.6 67.2 121.3 231.1 448.6 885.7
poll 22.1 27.6 38.4 58.4 94.9 163.8 297.6 561.8

2565 null 4.3 8.3 16.0 31.6 62.9 125.4 250.5 500.4
intr 40.2 46.2 56.6 76.2 112.0 178.0 304.9 557.2
none 21.9 27.8 40.4 67.3 122.1 231.1 447.9 886.6
poll 22.1 27.6 39.3 60.8 99.8 170.8 304.8 565.1

5125 null 4.3 8.2 16.0 31.7 63.2 125.7 251.1 502.1
intr 40.2 46.1 56.9 76.3 112.2 178.3 305.5 558.8
none 21.9 27.9 40.4 67.2 122.4 231.1 451.5 888.1
poll 21.9 27.6 40.0 63.7 106.6 183.4 323.3 588.3

10245 null 4.3 8.2 16.2 31.8 63.2 126.0 251.7 502.6
intr 40.0 46.2 56.7 76.3 112.3 178.5 305.9 559.4
none 22.1 27.8 40.5 67.3 121.8 231.5 449.0 889.4
poll 21.9 27.8 40.3 65.5 113.2 199.1 350.7 629.0

20485 null 4.3 8.2 16.0 31.6 62.9 125.3 250.5 500.5
intr 40.2 46.2 56.7 76.2 112.0 177.9 305.0 557.2
none 22.0 27.7 40.5 67.1 121.5 230.3 449.5 885.0
poll 21.9 27.8 40.3 66.1 117.3 212.6 381.2 683.7

Table B-1. Synthetic workload performance data (average time per outer loop iteration,
in microseconds), two-message communication events.

136

Useful work per Useful work per communication event (cycles)
poll (cycles) 125 250 500 1000 2000 4000 8000 16000 32000

15 null 4.3 8.2 16.2 31.9 63.1 125.6 250.9 500.8 1000.4
intr 56.1 62.4 75.0 97.3 136.4 206.6 338.5 593.9 1096.9
none 31.4 38.6 55.1 90.8 163.9 310.9 602.3 1187.4 2367.0
poll 47.7 68.7 110.1 192.3 355.5 681.8 1334.0 2637.2 5241.5

25 null 4.3 8.2 16.1 31.8 63.0 125.6 250.8 501.0 1001.1
intr 56.0 62.3 75.0 97.1 136.3 206.4 338.4 594.3 1097.7
none 31.4 38.5 55.2 90.9 164.3 311.6 602.0 1191.6 2371.2
poll 40.8 55.3 83.5 139.4 250.4 472.0 915.4 1801.6 3572.5

45 null 4.3 8.3 16.1 31.7 63.1 125.7 250.8 501.2 999.0
intr 55.9 62.3 74.9 97.3 136.3 206.7 338.6 594.2 1095.6
none 31.3 38.6 55.2 90.8 164.2 310.0 605.3 1192.0 2365.0
poll 36.4 46.4 65.9 104.3 180.3 331.4 632.5 1234.9 2433.0

85 null 4.3 8.2 16.0 31.6 63.0 125.3 250.5 500.5 1005.3
intr 56.0 62.3 74.9 97.2 136.2 206.3 338.3 593.7 1101.9
none 31.4 38.5 55.1 91.0 163.6 309.2 601.5 1187.3 2378.7
poll 33.7 41.1 55.7 83.9 139.3 249.0 468.0 905.7 1789.8

165 null 4.3 8.3 16.1 31.7 63.1 126.0 251.6 502.7 1002.5
intr 55.9 62.3 74.9 97.3 136.4 206.9 339.3 595.9 1099.1
none 31.3 39.7 55.1 90.7 163.8 309.5 606.1 1195.3 2358.6
poll 32.4 38.7 50.7 73.9 118.6 206.5 380.9 729.2 1422.2

325 null 4.3 8.2 16.2 31.8 63.0 125.5 250.7 500.9 1000.6
intr 56.1 62.3 74.9 97.2 136.1 206.4 338.3 594.1 1097.2
none 31.3 38.5 55.1 90.8 164.2 311.8 604.0 1191.7 2358.5
poll 31.8 37.6 48.9 69.7 109.2 185.6 336.5 636.4 1235.1

645 null 4.4 8.3 16.1 31.7 63.1 125.7 251.0 501.3 1004.8
intr 56.0 62.3 75.1 97.4 136.4 206.7 338.6 594.5 1101.4
none 31.3 38.6 55.3 90.8 164.1 309.9 606.3 1193.3 2375.9
poll 31.6 37.5 49.2 70.1 108.3 180.4 320.5 597.3 1152.0

1285 null 4.4 8.3 16.1 31.7 63.1 125.8 251.1 501.6 1003.0
intr 56.0 62.2 75.1 97.3 136.4 206.9 339.0 594.8 1099.6
none 32.8 38.6 55.3 90.8 164.4 312.6 605.6 1197.2 2366.6
poll 31.5 37.8 50.7 73.1 113.1 185.4 322.4 589.4 1117.9

2565 null 4.4 8.4 16.1 31.9 63.3 126.1 251.8 503.0 1002.2
intr 56.0 62.3 75.0 97.4 136.5 207.1 339.7 596.2 1098.8
none 31.4 38.6 55.4 90.9 165.7 311.4 607.1 1194.1 2372.0
poll 31.3 38.2 52.6 78.5 122.6 199.7 340.7 607.8 1126.1

5125 null 4.4 8.3 16.1 31.8 63.3 126.2 251.7 503.1 1004.9
intr 56.0 62.4 74.9 97.5 136.5 207.2 339.4 596.3 1101.7
none 31.3 38.5 55.4 92.1 164.7 311.9 603.9 1200.0 2369.5
poll 31.4 38.5 54.1 84.8 135.7 221.9 373.5 650.6 1176.6

10245 null 4.3 8.3 16.1 31.7 62.9 125.4 250.2 500.3 1005.0
intr 55.9 62.3 74.9 97.1 136.0 206.2 338.0 593.5 1101.7
none 32.8 38.4 55.1 90.9 162.8 308.6 602.1 1191.0 2366.6
poll 31.4 38.4 54.4 87.3 148.0 249.3 419.7 717.2 1269.7

20485 null 4.4 8.3 16.1 31.9 63.3 126.2 251.8 502.7 1001.6
intr 56.0 62.4 75.2 97.3 136.6 207.2 339.6 595.8 1098.4
none 31.4 38.7 55.3 92.1 165.0 312.1 606.5 1197.4 2368.3
poll 31.3 38.6 55.1 89.6 157.1 278.8 482.6 819.6 1411.8

Table B-2. Synthetic workload performance data (average time per outer loop iteration,
in microseconds), three-message communication events.

137

Useful work per Useful work per communication event (cycles)
poll (cycles) 125 250 500 1000 2000 4000 8000 16000 32000

15 null 4.3 8.2 16.2 31.8 63.0 125.7 250.7 500.7 1001.1
intr 51.4 57.8 70.2 91.9 129.2 198.1 326.9 582.2 1084.1
none 29.5 36.5 52.9 88.2 159.9 305.8 593.0 1174.2 2342.6
poll 44.5 65.0 106.1 187.7 350.8 676.8 1328.1 2631.2 5240.0

25 null 4.3 8.2 16.0 31.7 63.0 125.4 250.5 500.7 1000.4
intr 51.4 57.6 70.2 92.0 129.0 198.0 327.0 582.1 1083.5
none 29.5 36.5 53.0 88.8 159.7 305.0 592.5 1171.6 2327.4
poll 37.8 51.8 79.7 135.2 245.7 466.9 909.9 1795.9 3565.5

45 null 4.3 8.2 16.1 31.8 63.1 125.5 250.6 500.9 999.3
intr 51.3 57.6 70.3 92.1 129.2 198.2 327.2 582.5 1082.4
none 29.4 36.4 53.0 88.3 161.7 305.0 594.0 1166.7 2325.5
poll 33.6 43.1 62.2 100.2 175.5 326.2 627.2 1229.7 2428.8

85 null 4.3 8.3 16.1 31.8 63.2 125.7 250.8 501.0 1006.4
intr 51.3 57.6 70.2 91.9 129.2 198.4 327.3 582.4 1089.7
none 29.5 36.5 53.0 88.0 161.5 304.5 592.1 1172.0 2337.7
poll 31.1 38.0 52.0 79.7 134.7 244.5 463.3 901.2 1786.5

165 null 4.3 8.2 16.1 31.7 63.1 125.4 250.4 500.8 1002.4
intr 51.3 57.6 70.2 92.0 129.1 198.1 326.8 582.2 1085.4
none 29.5 36.4 54.3 88.1 160.4 302.8 591.7 1174.0 2318.7
poll 29.8 35.5 46.8 69.1 112.9 199.8 373.1 720.5 1415.7

325 null 4.3 8.3 16.2 31.7 63.0 125.5 250.5 500.3 1001.6
intr 51.3 57.5 70.3 91.9 129.1 198.0 327.0 581.8 1084.6
none 29.4 38.2 52.8 88.2 160.1 304.9 595.8 1176.0 2332.7
poll 29.5 34.6 44.8 64.6 103.1 178.7 328.7 627.9 1227.9

645 null 4.4 8.4 16.1 31.9 63.2 125.9 251.4 502.3 1005.0
intr 51.4 57.7 70.2 92.0 129.3 198.5 327.9 583.9 1088.0
none 29.4 36.4 53.0 88.2 167.5 306.4 596.7 1181.3 2340.1
poll 31.5 34.8 45.2 64.6 101.2 172.0 311.1 587.9 1140.8

1285 null 4.4 8.3 16.2 31.8 63.1 125.8 251.1 502.0 1003.0
intr 51.4 57.7 70.3 92.0 129.2 198.4 327.7 583.4 1086.2
none 29.4 36.5 52.9 88.2 161.6 306.3 596.0 1177.7 2331.8
poll 29.5 35.4 47.1 67.9 105.2 174.8 309.3 574.3 1101.0

2565 null 4.3 8.3 16.1 31.9 63.2 125.8 251.2 501.8 1002.1
intr 51.4 57.6 70.3 92.1 129.4 198.5 327.7 583.3 1085.3
none 29.4 36.5 53.0 88.8 161.2 305.0 593.1 1175.4 2323.1
poll 29.5 35.9 49.7 73.8 114.6 187.3 322.6 584.4 1099.7

5125 null 4.4 8.3 16.1 31.8 63.3 126.1 251.5 502.9 1004.5
intr 51.5 57.6 70.3 92.1 129.4 198.8 328.1 584.3 1087.7
none 29.5 36.4 53.2 89.0 161.7 306.3 594.4 1180.8 2335.8
poll 29.4 36.3 51.6 80.6 129.1 210.0 352.0 619.5 1135.7

10245 null 4.3 8.2 16.0 31.8 62.9 125.4 250.2 500.0 1005.2
intr 51.4 57.7 70.3 91.8 128.9 197.8 326.7 581.5 1088.4
none 29.4 36.5 52.9 89.2 160.0 305.4 593.1 1170.0 2326.4
poll 29.5 36.3 52.1 85.8 144.0 239.3 397.4 678.8 1211.3

20485 null 4.4 8.3 16.1 31.9 63.2 126.0 251.7 502.9 1001.7
intr 51.4 57.6 70.2 92.1 129.3 198.8 328.1 584.4 1084.9
none 29.4 36.6 53.3 88.6 161.7 305.5 598.6 1181.1 2327.1
poll 29.6 36.3 52.7 87.7 153.4 270.7 463.1 779.2 1337.2

Table B-3. Synthetic workload performance data (average time per outer loop iteration,
in microseconds), four-message communication events.

138

Blocked LU Water Barnes-Hut
HW SW HW SW HW SW

1 proc 25.29 25.29 13.75 13.87 24.29 24.36
2 procs 13.96 13.96 7.36 7.38 14.98 15.02
4 procs 7.74 7.72 4.01 4.02 8.27 8.24
8 procs 4.49 4.43 2.27 2.27 4.66 4.70
16 procs 2.58 2.56 1.59 1.53 2.58 2.59
32 procs 1.75 1.70 1.17 1.05 1.52 1.51

Table B-4. CM-5 CRL application running times (in seconds), HW vs. SW synchroniza-
tion. HW figures obtained with baseline CRL version; SW figures obtained with version
that implements global synchronization primitives in software. All values are averages
computed over three consecutive runs.

B.2 Global Synchronization: Hardware vs. Software

As is discussed in Section 4.7, the baseline CRL implementation for the CM-5 takes
advantage of the CM-5’s hardware support for global synchronization and communication
to implement CRL’s global synchronization primitives. This section presents results from
a set of experiments comparing the performance of the baseline CM-5 implementation
with one in which global synchronization primitives are implemented entirely in software
using active messages.

Table B-4 presents the results from these experiments—absolute running times for
the three applications when hardware (HW) or software (SW) is used to implement
global synchronization primitives. Slight variations (averaging approximately 0.9 percent)
between the HW figures shown in this table and those shown in Table 6-5 for CM-5 CRL
are due to small variations in the running times of the applications; the values shown in
the two tables were obtained in different sets of experiments.

The differences between the two sets of figures (HW and SW) are quite modest. On
the average, the SW running times are approximately 0.9 percent smaller than the HW
ones; eliminating one outlier (Water on 32 processors, where the SW figure is just over
10 percent smaller than the HW one) reduces this overall average to 0.4 percent. Given
that this figure is of the same order of magnitude as the variation between the HW values
in Table B-4 and those for CM-5 CRL shown in Table 6-5, it is entirely possible that the
apparent differences between the HW and SW figures are not statistically significant.

The data in Table B-4 indicates that using software techniques to implement global
synchronization primitives does not have a significant impact on delivered application
performance. The reasons for this are twofold. First, as can be seen in Table B-5, all three
applications invoke the global synchronization primitives relatively infrequently. Even
Blocked LU, the most synchronization-intensive of these applications, only executes 150
barrier synchronizations on 32 processors, corresponding to an average time between
barriers of over 10 milliseconds. Second, in the software implementation of the global

139

Type Blocked LU Water Barnes-Hut
Barrier 150 5 4
Reduction 0 0 6
Broadcast 0 0 0

Table B-5. Dynamic counts of global synchronization primitives (on 32 processors).

synchronization primitives, processors that are waiting for a global synchronization event
to complete are continually polling for incoming messages. Thus, the overhead of re-
ceiving any messages unrelated to the global synchronization that arrive during such an
interval is somewhat lower than when hardware-based global synchronization primitives
are used, where similar messages are delivered in an interrupt-driven style.

B.3 Basic CRL Latencies

This section contains the raw data obtained with the simple latency microbenchmark
described in Section 6.1. Table B-6 describes the 26 different types of events measured
by the microbenchmark. Table B-7 shows the latencies obtained when running the
microbenchmark on the CM-5.

Table B-8 shows the latencies obtained when running the microbenchmark on Alewife
when message buffers are flushed and protocol message handlers are transitioned into
threads (as discussed in Section 5.2.2). These figures represent the latencies actually seen
by CRL applications running on the current Alewife hardware (using first-run CMMU
parts).

Table B-9 shows the latencies obtained by running the microbenchmark on Alewife
when message buffers are not flushed and protocol message handers are not transitioned
into threads. These measurements are therefore indicative of the latencies that should be
seen by CRL applications running on Alewife hardware after the CMMU respin effort is
complete.

140

Event Description

Map miss Map a region that is not already mapped locally and not present in the
URC

Map hit [a] Map a region that is not already mapped locally but is present in the URC
Map hit [b] Map a region that is already mapped locally
Unmap [c] Unmap a region that is mapped more than once locally
Unmap [d] Unmap a region that is only mapped once locally (and insert it into the

URC)

Start read miss, 0 copies Initiate a read operation on a region in the RemoteInvalid state, only the
home node has a valid (exclusive) copy of the region data

Start read miss, 1 copies As above, but both the home node and one other remote region have valid
(shared) copies of the region data

Start read miss, 2 copies As above, but both the home node and two other remote regions have
valid (shared) copies of the region data

Start read miss, 3 copies As above, but both the home node and three other remote regions have
valid (shared) copies of the region data

Start read miss, 4 copies As above, but both the home node and four other remote regions have
valid (shared) copies of the region data

Start read miss, 5 copies As above, but both the home node and five other remote regions have
valid (shared) copies of the region data

Start read miss, 6 copies As above, but both the home node and six other remote regions have valid
(shared) copies of the region data

Start read hit [e] Initiate a read operation on a region in the RemoteShared state
Start read hit [f] Initiate a read operation on a region in the RemoteSharedRip state
End read [g] Terminate a read operation, leaving the region in the RemoteSharedRip

state
End read [h] Terminate a read operation, leaving the region in the RemoteShared

state

Start write miss, 0 inv Initiate a write operation on a region in the RemoteInvalid state, only
the home node has a valid (exclusive) copy of the region data

Start write miss, 1 inv As above, but both the home node and one other remote region have valid
(shared) copies of the region data

Start write miss, 2 inv As above, but both the home node and two other remote regions have
valid (shared) copies of the region data

Start write miss, 3 inv As above, but both the home node and three other remote regions have
valid (shared) copies of the region data

Start write miss, 4 inv As above, but both the home node and four other remote regions have
valid (shared) copies of the region data

Start write miss, 5 inv As above, but both the home node and five other remote regions have
valid (shared) copies of the region data

Start write miss, 6 inv As above, but both the home node and six other remote regions have valid
(shared) copies of the region data

Start write modify Initiate a write operation on a region in the RemoteShared state, no
other remote nodes have a valid copy of the region data

Start write hit Initiate a write operation on a region in the RemoteModified state
End write Terminate a write operation, leaving the region in the RemoteModified

state

Table B-6. Events measured by latency microbenchmark.

141

Region Size (bytes)
Event 16 64 256 1024
Map miss 2244.2 2185.3 2198.1 2225.0
Map hit [a] 106.2 108.2 150.4 135.4
Map hit [b] 74.6 78.7 87.0 94.1
Unmap [c] 27.2 27.5 30.7 33.0
Unmap [d] 76.5 79.7 86.4 89.3
Start read miss, 0 copies 1925.4 2280.6 3963.5 6943.7
Start read miss, 1 copies 2158.4 2479.0 4146.6 7172.8
Start read miss, 2 copies 2160.3 2504.3 4194.9 8278.4
Start read miss, 3 copies 2166.4 2500.8 4174.1 7298.2
Start read miss, 4 copies 2193.0 2526.4 4204.8 7350.1
Start read miss, 5 copies 2218.6 2544.3 5507.2 7378.6
Start read miss, 6 copies 2225.9 2557.1 4222.4 7447.0
Start read hit [e] 79.0 77.8 80.6 81.6
Start read hit [f] 80.6 75.5 78.1 80.3
End read [g] 84.2 79.4 83.2 104.0
End read [h] 98.9 86.7 95.0 96.3
Start write miss, 0 inv 1885.4 2206.1 3909.1 6953.0
Start write miss, 1 inv 3619.8 3950.1 5644.5 8702.4
Start write miss, 2 inv 3894.4 4201.0 5884.5 8965.8
Start write miss, 3 inv 4085.1 4394.9 5901.4 9171.5
Start write miss, 4 inv 4298.6 4570.9 6239.7 9382.1
Start write miss, 5 inv 4466.9 4786.9 6442.6 9581.1
Start write miss, 6 inv 4663.0 4955.2 6647.4 9777.6
Start write modify 1441.3 1402.2 1438.1 1447.4
Start write hit 74.6 72.0 75.8 78.1
End write 89.0 79.7 83.5 87.0

Table B-7. CM-5 CRL latencies (in cycles @ 32 MHz).

142

Region Size (bytes)
Event 16 64 256 1024
Map miss 825.5 833.5 839.9 837.2
Map hit [a] 137.6 137.4 136.5 139.8
Map hit [b] 104.4 107.4 105.5 105.6
Unmap [c] 37.5 39.4 39.8 38.1
Unmap [d] 76.7 77.9 80.2 77.2
Start read miss, 0 copies 1029.9 1054.9 1173.9 1865.3
Start read miss, 1 copies 1123.4 1149.9 1265.2 1958.7
Start read miss, 2 copies 1135.1 1166.0 1277.4 1974.6
Start read miss, 3 copies 1150.5 1175.2 1287.2 1992.1
Start read miss, 4 copies 1164.9 1191.5 1297.4 2001.0
Start read miss, 5 copies 1175.6 1211.0 1308.7 2016.8
Start read miss, 6 copies 1190.3 1216.8 1318.5 2029.6
Start read hit [e] 47.0 45.9 47.2 47.0
Start read hit [f] 51.8 51.1 51.2 50.1
End read [g] 45.1 44.3 44.8 45.0
End read [h] 50.9 51.3 51.6 50.7
Start write miss, 0 inv 1021.6 1041.1 1175.7 1860.4
Start write miss, 1 inv 1759.7 1779.8 1914.4 2601.3
Start write miss, 2 inv 2132.2 2158.4 2291.3 2982.6
Start write miss, 3 inv 2432.1 2451.4 2592.5 3286.4
Start write miss, 4 inv 2704.2 2728.9 2863.5 3560.3
Start write miss, 5 inv 2980.7 3012.7 3139.0 3838.4
Start write miss, 6 inv 3288.4 3309.9 3419.3 4138.6
Start write modify 1052.5 1044.0 1049.8 1045.5
Start write hit 43.7 43.0 42.1 43.7
End write 52.9 53.3 52.5 52.9

Table B-8. Alewife CRL latencies (in cycles @ 20 MHz), with CMMU workarounds.

143

Region Size (bytes)
Event 16 64 256 1024
Map miss 825.2 832.6 834.6 835.0
Map hit [a] 136.6 136.3 136.9 140.9
Map hit [b] 103.9 106.0 105.7 106.1
Unmap [c] 37.6 38.8 39.7 39.5
Unmap [d] 76.7 77.9 79.8 78.8
Start read miss, 0 copies 602.7 593.9 649.0 959.6
Start read miss, 1 copies 699.4 699.6 735.6 1046.2
Start read miss, 2 copies 708.5 705.3 747.6 1061.7
Start read miss, 3 copies 721.0 715.2 756.7 1077.5
Start read miss, 4 copies 732.6 732.9 767.5 1088.5
Start read miss, 5 copies 747.6 750.3 778.0 1104.9
Start read miss, 6 copies 762.1 762.6 790.9 1120.7
Start read hit [e] 50.1 50.1 49.6 51.6
Start read hit [f] 52.6 52.2 51.4 53.1
End read [g] 48.0 46.9 47.1 47.7
End read [h] 53.8 52.9 55.3 54.0
Start write miss, 0 inv 596.2 595.9 644.8 954.8
Start write miss, 1 inv 1002.4 997.2 1044.5 1361.3
Start write miss, 2 inv 1187.8 1183.9 1229.7 1548.5
Start write miss, 3 inv 1376.0 1373.8 1416.7 1736.6
Start write miss, 4 inv 1566.1 1563.0 1603.8 1929.8
Start write miss, 5 inv 1768.0 1772.7 1795.4 2132.4
Start write miss, 6 inv 1994.4 2002.7 2021.3 2358.1
Start write modify 567.2 562.0 562.1 561.0
Start write hit 47.0 46.3 46.9 45.3
End write 56.1 55.6 54.5 55.3

Table B-9. Alewife CRL latencies (in cycles @ 20 MHz), without CMMU workarounds.

144

B.4 Application Characteristics

This section contains the raw data obtained with the instrumented version of the CRL
library described in Section 6.2.4.

Table B-10 shows call event counts for Blocked LU running on one and 32 processors.
The first section of the table indicates how many times rgn_mapwas called and, of those
calls, how many (1) referenced remote regions and (2) were misses. The second section
of the table indicates how many times rgn_start_readwas called and, of those calls,
how many (1) reference remote regions, (2) were misses, and (3) were invoked on a region
in either the HomeIip or HomeIipSpecial state. The third section of the table indicates
how many times rgn_start_writewas called and, like the previous section, provides
further information about how many of the calls referenced remote regions, could not be
satisfied locally (missed), or were invoked on a home region in an ‘Iip’ state. Finally,
the fourth section of the table indicates how many times rgn_flush was called. As
can be seen from Figure 6-3, none of the applications call rgn_flush directly, so any
calls that are counted in this section of the table are because calls to rgn_flush when
evicting regions from the URC (see Section 4.5). Tables B-11 and B-12 show the same
information for Water and Barnes-Hut, respectively.

Table B-13 shows message counts for all three applications running on one and
32 processors. The first and second sections of the table provide counts for home-to-
remote and remote-to-home protocol messages, respectively. The third section of the
table shows the total number of protocol messages and, of those messages, how many
were placed in the incoming message queue upon arriving at their intended destination (see
Section A.7). Finally, the fourth section of the table shows counts for the MsgRgnInfoReq
and MsgRgnInfoAck messages required when calls to rgn_map cannot be satisfied
locally (see Section 4.5).

145

CM-5 Alewife
Event 1 proc 32 procs 1 proc 32 procs
Map 84576 2807 84576 2807
(remote) 0 1286 0 1286
(miss) 0 430 0 430
(unmap) 84576 2807 84576 2807

Start read 41701 1435 41701 1435
(remote) 0 1253 0 1253
(miss) 0 397 0 397
(iip) 0 0 0 0
(end) 41701 1435 41701 1435

Start write 42925 1341 42925 1341
(remote) 0 0 0 0
(miss) 0 0 0 0
(iip) 0 0 0 0
(end) 42925 1341 42925 1341

Flush 0 0 0 0

Table B-10. Call event counts for Blocked LU; all values are per-processor averages
computed over three consecutive runs.

CM-5 Alewife
Event 1 proc 32 procs 1 proc 32 procs
Map — — — —
(remote) — — — —
(miss) — — — —
(unmap) — — — —
Start read 263682 8242 263682 8242
(remote) 0 3970 0 3970
(miss) 0 380 0 514
(iip) 0 0 0 1
(end) 263682 8242 263682 8242
Start write 5640 437 5640 437
(remote) 0 260 0 260
(miss) 0 291 0 290
(iip) 0 0 0 0
(end) 5640 437 5640 437
Flush 0 0 0 0

Table B-11. Call event counts for Water; all values are per-processor averages computed
over three consecutive runs.

146

CM-5 Alewife
Event 1 proc 32 procs 1 proc 32 procs
Map 983598 30763 983598 30763
(remote) 0 27376 0 27378
(miss) 0 344 0 340
(unmap) 983598 30763 983598 30763
Start read 959988 30027 959988 30027
(remote) 0 26908 0 26909
(miss) 0 1135 0 1142
(iip) 0 3 0 4
(end) 959988 30027 959988 30027
Start write 32236 1313 32236 1189
(remote) 0 950 0 826
(miss) 0 301 0 300
(iip) 0 0 0 0
(end) 32236 1313 32236 1189
Flush 0 344 0 340

Table B-12. Call event counts for Barnes-Hut; all values are per-processor averages
computed over three consecutive runs.

Blocked LU Water Barnes-Hut
Msg Type CM-5 Alewife CM-5 Alewife CM-5 Alewife

MsgRInvalidate 0 0 50 99 209 207
MsgWInvalidate 0 0 576 649 872 875
MsgSharedAckData 397 397 378 508 1118 1123
MsgExclusiveAckData 0 0 248 240 88 83
MsgModifyAck 0 0 13 20 148 150
MsgModifyAckData 0 0 0 0 3 3

MsgInvalidateAck 0 0 365 488 852 855
MsgInvalidateAckData 0 0 260 260 228 226
MsgRelease 0 0 0 0 1 1
MsgSharedReq 397 397 378 508 1118 1123
MsgExclusiveReq 0 0 248 240 88 83
MsgModifyReq 0 0 13 20 151 153
MsgFlush 0 0 0 0 113 113
MsgFlushData 0 0 0 0 11 10

total protocol msgs 793 793 2527 3034 4999 5007
(queued) 4 201 30 1067 274 1239

MsgRgnInfoReq 430 430 0 0 344 340
(ack) 430 430 0 0 344 340

Table B-13. Message counts for 32 processors; all values are per-processor averages
computed over three consecutive runs.

147

Total User CRL, ops CRL, map
1 proc 54.67 53.57 0.44 0.66
2 procs 28.42 27.69 0.33 0.41
4 procs 14.83 14.38 0.22 0.23
8 procs 7.89 7.58 0.18 0.13
16 procs 4.25 4.05 0.12 0.08
32 procs 2.40 2.24 0.10 0.06

(a) Blocked LU (500x500 matrix, 10x10 blocks)

Total User CRL, ops CRL, map
1 proc 24.16 22.87 1.29 0.00
2 procs 12.84 12.10 0.74 0.00
4 procs 6.93 6.49 0.44 0.00
8 procs 3.68 3.38 0.30 0.00
16 procs 2.00 1.76 0.24 0.00
32 procs 1.18 0.95 0.23 0.00

(b) Water (512 molecules)

Total User CRL, ops CRL, map
1 proc 34.80 23.57 4.40 6.83
2 procs 19.05 11.85 2.85 4.34
4 procs 10.02 6.03 1.64 2.34
8 procs 5.42 3.15 0.97 1.30
16 procs 2.85 1.57 0.61 0.66
32 procs 1.58 0.82 0.43 0.33

(c) Barnes-Hut (4,096 bodies)

Table B-14. Breakdown of Alewife CRL running times (in seconds).

B.5 Alewife CRL Profiling

Table B-14 shows the breakdown of running times for the three applications obtained
using the profiled version of the CRL library described in Section 6.3. For each application,
the “Total” column shows the total running time (as shown in Table 6-5), the “User” column
shows the total time spent running application code, the “CRL, ops” column shows the
total time spent in the CRL library starting and ending operations, and the “CRL, map”
column shows the total time spent in the CRL library executing map/unmap code. The
“CRL, map” and “CRL, ops” figures include “spin time” spent waiting for communication
events (i.e., those related to calls to rgn_map or rgn_start_op that miss) to complete.

148

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 85.05� 0.01 85.35� 0.01 85.61 � 0.00 85.87 � 0.00 86.13 � 0.00
1.235 85.15� 0.01 85.42� 0.01 85.70 � 0.01 85.94 � 0.01 86.22 � 0.00
1.485 85.30� 0.00 85.64� 0.01 85.92 � 0.01 86.17 � 0.01 86.45 � 0.01
1.735 85.54� 0.00 85.82� 0.01 86.08 � 0.01 86.34 � 0.00 86.61 � 0.01
1.985 85.77� 0.01 86.04� 0.01 86.31 � 0.01 86.56 � 0.01 86.83 � 0.01
2.235 85.95� 0.00 86.20� 0.01 86.47 � 0.01 86.73 � 0.02 86.98 � 0.01
2.485 86.11� 0.01 86.39� 0.00 86.65 � 0.01 86.91 � 0.00 87.19 � 0.01
2.735 86.30� 0.01 86.61� 0.01 86.86 � 0.01 87.13 � 0.00 87.38 � 0.01
2.985 86.50� 0.01 86.73� 0.00 86.99 � 0.01 87.26 � 0.02 87.52 � 0.01

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 86.38 � 0.00 86.65 � 0.00 86.90 � 0.00 87.17 � 0.00
1.235 86.46 � 0.01 86.74 � 0.01 86.98 � 0.01 87.26 � 0.01
1.485 86.70 � 0.00 86.98 � 0.00 87.20 � 0.01 87.50 � 0.01
1.735 86.88 � 0.00 87.13 � 0.02 87.40 � 0.01 87.67 � 0.00
1.985 87.10 � 0.01 87.36 � 0.01 87.61 � 0.01 87.90 � 0.01
2.235 87.25 � 0.01 87.53 � 0.01 87.77 � 0.01 88.06 � 0.01
2.485 87.44 � 0.02 87.70 � 0.01 87.96 � 0.02 88.24 � 0.01
2.735 87.64 � 0.02 87.91 � 0.01 88.16 � 0.01 88.44 � 0.01
2.985 87.76 � 0.01 88.04 � 0.02 88.28 � 0.01 88.54 � 0.01

Table B-15. Running times (in Mcycles @ 20 MHz) for Blocked LU (500x500 matrix,
10x10 blocks) on 16 processors using the modified Alewife CRL implementation.

B.6 Sensitivity Analysis

The tables in this section present the raw data obtained with the modified CRL imple-
mentation in the sensitivity analysis experiments described in Section 6.5. Measurements
for both 16 and 32 processors are provided for Blocked LU (Tables B-15 and B-16),
Water (Tables B-17 and B-18), Barnes-Hut with 4,096 bodies (Tables B-19 and B-20),
and Barnes-Hut with 16,384 bodies (Tables B-21 and B-22).

Each table provides an entry for all combinations of one-way message latencies (264,
314, 364, 414, 464, 514, 564, 614, and 664 cycles) and bulk transfer costs (1.110, 1.235,
1.485, 1.735, 1.985, 2.235, 2.485, 2.735, and 2.985 cycles per byte) that were used. Each
table entry indicates the average running time (in millions of cycles at 20 MHz) computed
over three consecutive runs for the appropriate application and system configuration;
numbers after the� represent the standard deviation of the three measured running times.

149

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 47.97� 0.00 48.32� 0.01 48.69 � 0.01 49.02 � 0.01 49.37 � 0.01
1.235 48.07� 0.01 48.44� 0.00 48.80 � 0.01 49.11 � 0.01 49.45 � 0.01
1.485 48.27� 0.00 48.67� 0.01 49.02 � 0.00 49.34 � 0.01 49.67 � 0.01
1.735 48.51� 0.01 48.90� 0.02 49.25 � 0.02 49.56 � 0.01 49.87 � 0.00
1.985 48.77� 0.00 49.13� 0.01 49.49 � 0.02 49.79 � 0.00 50.09 � 0.02
2.235 49.03� 0.02 49.35� 0.01 49.67 � 0.01 49.99 � 0.02 50.31 � 0.01
2.485 49.23� 0.02 49.59� 0.02 49.92 � 0.01 50.23 � 0.01 50.53 � 0.02
2.735 49.48� 0.01 49.86� 0.03 50.17 � 0.02 50.48 � 0.01 50.82 � 0.01
2.985 49.70� 0.00 50.05� 0.02 50.38 � 0.01 50.68 � 0.02 50.98 � 0.01

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 49.73 � 0.01 50.10 � 0.02 50.47 � 0.01 50.86 � 0.02
1.235 49.79 � 0.01 50.19 � 0.02 50.53 � 0.03 50.93 � 0.03
1.485 50.01 � 0.01 50.36 � 0.02 50.70 � 0.01 51.08 � 0.02
1.735 50.19 � 0.02 50.56 � 0.01 50.91 � 0.02 51.26 � 0.02
1.985 50.42 � 0.01 50.76 � 0.01 51.14 � 0.02 51.45 � 0.01
2.235 50.64 � 0.01 50.97 � 0.01 51.28 � 0.03 51.65 � 0.02
2.485 50.85 � 0.02 51.18 � 0.00 51.53 � 0.01 51.89 � 0.01
2.735 51.10 � 0.02 51.45 � 0.02 51.80 � 0.01 52.11 � 0.01
2.985 51.29 � 0.01 51.63 � 0.01 51.96 � 0.00 52.33 � 0.03

Table B-16. Running times (in Mcycles @ 20 MHz) for Blocked LU (500x500 matrix,
10x10 blocks) on 32 processors using the modified Alewife CRL implementation.

150

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 39.89� 0.04 40.15� 0.04 40.35 � 0.01 40.91 � 0.07 41.13 � 0.03
1.235 40.15� 0.12 40.30� 0.07 40.66 � 0.06 40.98 � 0.04 41.40 � 0.05
1.485 40.51� 0.12 40.74� 0.19 41.13 � 0.19 41.60 � 0.11 41.91 � 0.12
1.735 40.85� 0.27 41.24� 0.23 41.74 � 0.04 42.08 � 0.11 42.35 � 0.32
1.985 41.40� 0.26 41.93� 0.07 42.27 � 0.05 42.63 � 0.07 42.92 � 0.14
2.235 41.93� 0.16 42.40� 0.13 42.85 � 0.13 43.06 � 0.29 43.12 � 0.24
2.485 42.62� 0.11 42.99� 0.13 43.27 � 0.20 43.59 � 0.08 44.21 � 0.28
2.735 43.09� 0.15 43.64� 0.28 44.02 � 0.10 44.36 � 0.26 44.99 � 0.14
2.985 43.62� 0.54 44.61� 0.19 45.27 � 0.36 45.42 � 0.29 45.42 � 0.16

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 41.57 � 0.10 41.91 � 0.12 42.54 � 0.20 42.40 � 0.48
1.235 41.64 � 0.18 41.82 � 0.05 42.42 � 0.26 42.48 � 0.62
1.485 42.20 � 0.21 42.41 � 0.51 42.57 � 0.62 42.92 � 0.61
1.735 42.56 � 0.20 43.06 � 0.60 43.50 � 0.65 43.63 � 0.63
1.985 43.46 � 0.14 43.85 � 0.14 44.21 � 0.17 44.04 � 0.51
2.235 43.45 � 0.25 43.70 � 0.48 44.46 � 0.63 44.60 � 0.52
2.485 44.58 � 0.37 44.93 � 0.32 45.52 � 0.35 45.62 � 0.19
2.735 45.23 � 0.28 45.42 � 0.28 45.64 � 0.22 46.04 � 0.21
2.985 45.83 � 0.20 46.08 � 0.08 46.41 � 0.11 47.00 � 0.63

Table B-17. Running times (in Mcycles @ 20 MHz) for Water (512 molecules) on 16
processors using the modified Alewife CRL implementation.

151

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 23.68� 0.21 23.77� 0.21 24.12 � 0.25 24.83 � 0.21 25.11 � 0.25
1.235 23.84� 0.11 24.40� 0.30 24.34 � 0.17 25.01 � 0.26 25.47 � 0.17
1.485 24.48� 0.16 24.79� 0.37 24.97 � 0.31 25.44 � 0.17 25.68 � 0.52
1.735 24.91� 0.15 25.22� 0.64 25.29 � 0.20 25.90 � 0.23 26.74 � 0.57
1.985 25.62� 0.25 25.83� 0.53 25.87 � 0.38 26.51 � 0.27 26.62 � 0.45
2.235 26.42� 0.22 26.16� 0.23 26.27 � 0.14 27.14 � 0.42 27.41 � 0.24
2.485 26.46� 0.45 26.85� 0.47 27.40 � 0.34 28.00 � 0.39 28.03 � 0.62
2.735 27.17� 0.63 27.78� 0.75 28.13 � 0.47 28.53 � 0.27 29.50 � 0.48
2.985 28.10� 0.47 28.50� 0.53 29.35 � 0.54 29.58 � 0.57 30.03 � 0.23

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 25.69 � 0.35 26.36 � 0.41 26.85 � 0.65 27.57 � 0.81
1.235 25.80 � 0.34 26.70 � 0.40 27.20 � 0.21 27.86 � 0.32
1.485 26.33 � 0.50 26.93 � 0.51 28.20 � 0.54 28.66 � 0.35
1.735 26.74 � 0.62 27.01 � 0.26 28.01 � 0.56 28.80 � 0.59
1.985 27.35 � 0.70 28.47 � 0.54 28.76 � 0.37 29.55 � 0.29
2.235 28.10 � 0.61 28.79 � 0.74 29.68 � 0.98 30.04 � 1.03
2.485 28.84 � 0.27 30.12 � 0.93 30.91 � 0.52 30.95 � 0.84
2.735 30.38 � 0.47 30.16 � 0.55 31.59 � 0.28 31.67 � 0.42
2.985 30.64 � 0.60 31.32 � 1.21 32.55 � 0.80 33.05 � 0.28

Table B-18. Running times (in Mcycles @ 20 MHz) for Water (512 molecules) on 32
processors using the modified Alewife CRL implementation.

152

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 57.76� 0.16 58.29� 0.24 59.15 � 0.20 59.90 � 0.18 60.81 � 0.11
1.235 57.90� 0.16 58.41� 0.18 59.20 � 0.14 60.07 � 0.16 60.90 � 0.12
1.485 57.94� 0.17 58.28� 0.17 59.25 � 0.21 60.03 � 0.22 60.97 � 0.17
1.735 57.68� 0.17 58.51� 0.20 59.36 � 0.23 60.10 � 0.18 60.91 � 0.14
1.985 58.65� 0.17 58.59� 0.19 59.48 � 0.16 60.25 � 0.20 61.17 � 0.18
2.235 59.49� 0.18 58.63� 0.10 59.69 � 0.23 60.41 � 0.25 61.31 � 0.24
2.485 60.19� 0.20 58.78� 0.11 59.64 � 0.17 60.49 � 0.16 61.18 � 0.17
2.735 60.25� 0.26 58.93� 0.18 59.80 � 0.12 60.57 � 0.13 61.53 � 0.26
2.985 60.35� 0.28 59.08� 0.15 59.80 � 0.17 60.73 � 0.15 61.47 � 0.20

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 61.65 � 0.17 62.60 � 0.21 63.24 � 0.16 64.27 � 0.34
1.235 61.64 � 0.22 62.70 � 0.24 63.30 � 0.33 64.37 � 0.27
1.485 61.74 � 0.20 62.63 � 0.22 63.31 � 0.17 64.24 � 0.24
1.735 61.76 � 0.17 62.66 � 0.23 63.44 � 0.15 64.54 � 0.34
1.985 61.96 � 0.24 62.74 � 0.14 63.76 � 0.29 64.51 � 0.22
2.235 62.10 � 0.23 62.89 � 0.22 63.70 � 0.20 64.63 � 0.25
2.485 62.21 � 0.30 62.85 � 0.19 63.89 � 0.22 64.60 � 0.26
2.735 62.36 � 0.36 63.19 � 0.24 64.09 � 0.29 64.85 � 0.35
2.985 62.35 � 0.31 63.24 � 0.37 63.92 � 0.14 64.91 � 0.32

Table B-19. Running times (in Mcycles @ 20 MHz) for Barnes-Hut (4,096 bodies) on 16
processors using the modified Alewife CRL implementation.

153

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 31.86� 0.12 32.54� 0.16 33.22 � 0.14 33.94 � 0.12 34.60 � 0.11
1.235 31.91� 0.07 32.60� 0.13 33.14 � 0.10 34.06 � 0.07 34.58 � 0.15
1.485 32.05� 0.08 32.66� 0.10 33.39 � 0.17 33.91 � 0.11 34.77 � 0.13
1.735 32.00� 0.11 32.72� 0.09 33.37 � 0.14 34.21 � 0.10 34.83 � 0.13
1.985 32.49� 0.07 32.79� 0.13 33.56 � 0.07 34.18 � 0.10 34.84 � 0.09
2.235 32.94� 0.07 32.95� 0.16 33.58 � 0.06 34.30 � 0.15 35.14 � 0.13
2.485 33.43� 0.15 33.01� 0.08 33.73 � 0.19 34.43 � 0.20 35.10 � 0.18
2.735 33.38� 0.16 33.08� 0.09 33.89 � 0.04 34.45 � 0.12 35.37 � 0.18
2.985 33.55� 0.18 33.11� 0.08 33.81 � 0.10 34.58 � 0.15 35.31 � 0.16

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 35.24 � 0.17 36.12 � 0.19 36.64 � 0.10 37.55 � 0.14
1.235 35.41 � 0.13 36.04 � 0.05 36.83 � 0.07 37.67 � 0.09
1.485 35.52 � 0.20 36.26 � 0.15 36.96 � 0.15 37.76 � 0.17
1.735 35.61 � 0.12 36.21 � 0.19 36.99 � 0.18 37.83 � 0.15
1.985 35.59 � 0.13 36.37 � 0.08 36.98 � 0.17 37.91 � 0.23
2.235 35.75 � 0.16 36.50 � 0.20 37.19 � 0.22 38.01 � 0.14
2.485 35.79 � 0.08 36.45 � 0.13 37.28 � 0.11 37.99 � 0.23
2.735 36.01 � 0.23 36.60 � 0.15 37.24 � 0.12 38.28 � 0.21
2.985 36.01 � 0.17 36.77 � 0.20 37.36 � 0.13 38.31 � 0.13

Table B-20. Running times (in Mcycles @ 20 MHz) for Barnes-Hut (4,096 bodies) on 32
processors using the modified Alewife CRL implementation.

154

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 268.27� 0.34 271.19 � 0.82 274.16 � 0.72 277.06� 0.58 281.01 � 0.44
1.235 269.74� 0.38 270.74 � 0.41 274.89 � 0.57 278.10� 0.59 281.32 � 0.72
1.485 270.53� 0.97 271.18 � 0.32 274.66 � 0.41 278.39� 0.98 281.47 � 0.51
1.735 270.27� 0.64 271.89 � 0.42 274.87 � 0.84 278.37� 0.69 281.96 � 0.62
1.985 272.81� 0.57 272.32 � 0.58 275.89 � 0.74 278.53� 0.44 282.38 � 0.66
2.235 275.87� 0.75 272.65 � 0.70 276.26 � 0.67 279.04� 0.37 282.23 � 0.36
2.485 279.29� 0.37 272.72 � 0.59 276.95 � 0.61 279.45� 0.51 283.46 � 0.72
2.735 278.99� 0.08 274.07 � 0.58 277.15 � 0.63 280.93� 0.56 284.25 � 0.70
2.985 278.89� 0.37 274.20 � 0.60 277.56 � 0.67 280.85� 0.42 284.21 � 0.32

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 284.26� 0.63 287.70 � 0.49 290.73� 0.30 293.97� 0.60
1.235 284.53� 0.66 288.12 � 0.37 291.78� 0.52 294.69� 0.74
1.485 284.74� 0.23 288.56 � 0.30 291.36� 0.30 294.41� 0.60
1.735 284.91� 0.64 288.35 � 0.50 292.56� 0.81 295.02� 0.76
1.985 285.66� 0.74 289.14 � 0.55 292.04� 0.70 295.64� 0.65
2.235 286.13� 0.54 289.29 � 0.56 293.26� 0.55 296.18� 0.61
2.485 286.51� 0.58 289.76 � 0.46 293.23� 0.66 296.76� 0.32
2.735 287.14� 0.28 290.79 � 0.73 293.95� 0.47 297.52� 1.03
2.985 287.56� 0.33 290.40 � 0.32 294.02� 0.44 297.12� 0.56

Table B-21. Running times (in Mcycles @ 20 MHz) for Barnes-Hut (16,384 bodies) on
16 processors using the modified Alewife CRL implementation.

155

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 264 314 364 414 464

1.110 138.41� 0.41 139.95 � 0.29 141.75 � 0.29 143.63� 0.20 145.29 � 0.27
1.235 138.44� 0.19 139.86 � 0.25 141.91 � 0.40 143.89� 0.38 145.80 � 0.27
1.485 138.96� 0.32 140.38 � 0.22 142.18 � 0.44 144.18� 0.28 146.11 � 0.28
1.735 138.85� 0.26 140.30 � 0.43 142.13 � 0.36 144.26� 0.42 146.17 � 0.19
1.985 140.60� 0.44 140.63 � 0.20 142.59 � 0.24 144.55� 0.38 146.33 � 0.30
2.235 142.44� 0.25 140.82 � 0.47 142.72 � 0.46 144.53� 0.35 146.85 � 0.45
2.485 144.60� 0.48 140.99 � 0.26 142.87 � 0.24 144.87� 0.32 146.77 � 0.28
2.735 144.41� 0.45 141.49 � 0.33 143.62 � 0.31 145.36� 0.40 147.06 � 0.19
2.985 144.78� 0.34 141.68 � 0.23 143.76 � 0.30 145.20� 0.26 147.49 � 0.27

Bulk Transfer One-way Message Latency (cycles)
Cost (cycles/byte) 514 564 614 664

1.110 147.34� 0.33 149.49 � 0.48 151.42� 0.60 153.00� 0.44
1.235 147.73� 0.33 149.81 � 0.48 151.36� 0.25 153.44� 0.27
1.485 147.82� 0.18 149.93 � 0.29 151.77� 0.36 153.47� 0.34
1.735 147.91� 0.30 149.71 � 0.43 151.91� 0.19 153.59� 0.27
1.985 148.24� 0.50 150.09 � 0.31 152.05� 0.31 153.76� 0.25
2.235 148.54� 0.41 150.39 � 0.36 152.37� 0.48 154.24� 0.25
2.485 148.73� 0.23 150.57 � 0.44 152.66� 0.29 154.37� 0.29
2.735 149.36� 0.39 150.87 � 0.37 152.77� 0.32 154.73� 0.41
2.985 149.30� 0.32 151.05 � 0.28 152.87� 0.49 154.74� 0.30

Table B-22. Running times (in Mcycles @ 20 MHz) for Barnes-Hut (16,384 bodies) on
32 processors using the modified Alewife CRL implementation.

156

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk L. Johnson, David Kranz,
John Kubiatowicz, Beng-Hong Lim, Ken Mackenzie, and Donald Yeung. The MIT
Alewife Machine: Architecture and Performance. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pages 2–13, June 1995.

[2] Anant Agarwal, John Kubiatowicz, David Kranz, Beng-Hong Lim, Donald Yeung,
Godfrey D’Souza, and Mike Parkin. Sparcle: An Evolutionary Processor Design for
Multiprocessors. IEEE Micro, pages 48–61, June 1993.

[3] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A language for Parallel
Programming of Distributed Systems. IEEE Transactions on Software Engineering,
pages 190–205, March 1992.

[4] Henri E. Bal and M. Frans Kaashoek. Object Distribution in Orca using Compile-
Time and Run-Time Techniques. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’93), pages
162–177, September 1993.

[5] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway
Distributed Shared Memory System. In Proceedings of the 38th IEEE Computer
Society International Conference (COMPCON’93), pages 528–537, February 1993.

[6] G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on
Computers, pages 1526–1538, November 1989.

[7] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik, Charles L.
Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-Second Local
Area Network. IEEE Micro, pages 29–36, February 1995.

[8] Per Brinch Hansen. Concurrent Programming Concepts. ACM Computing Surveys,
5(4):223–245, 1973.

[9] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory
Multiprocessors. Journal of Supercomputing, pages 151–169, October 1988.

[10] Martin C. Carlisle, Anne Rogers, John H. Reppy, and Laurie J. Hendren. Early
Experiences with Olden. In Conference Record of the Sixth Workshop on Languages
and Compilers for Parallel Computing, August 1993.

157

[11] John B. Carter. Efficient Distributed Shared Memory Based On Multi-Protocol
Release Consistency. PhD thesis, Rice University, August 1993.

[12] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-
Based Cache-Coherence in Large-Scale Multiprocessors. IEEE Computer, pages
41–58, June 1990.

[13] David L. Chaiken and Anant Agarwal. Software-Extended Coherent Shared Mem-
ory: Performance and Cost. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 314–324, April 1994.

[14] Rohit Chandra, Kourosh Gharachorloo, Vijayaraghavan Soundararajan, and Anoop
Gupta. Performance Evaluation of Hybrid Hardware and Software Distributed
Shared Memory Protocols. In Proceedings of the Eighth International Conference
on Supercomputing, pages 274–288, July 1994.

[15] Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data Locality and Load
Balancing in COOL. In Proceedings of the Fourth Symposium on Principles and
Practices of Parallel Programming, pages 249–259, May 1993.

[16] Satish Chandra, James R. Larus, and Anne Rogers. Where is Time Spent in Message-
Passing and Shared-Memory Programs? In Proceedings of the Sixth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 61–73, October 1994.

[17] Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber System: Parallel Programming on a Network of
Multiprocessors. In Proceedings of the Twelfth Symposium on Operating Systems
Principles, pages 147–158, December 1989.

[18] Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu, Ramakrishnan Ra-
jamony, and Willy Zwaenepoel. Software Versus Hardware Shared-Memory Im-
plementation: A Case Study. In Proceedings of the 21st Annual International
Symposium on Computer Architecture, pages 106–117, April 1994.

[19] Alan L. Cox and Robert J. Fowler. The Implementation of a Coherent Memory
Abstraction on a NUMA Multiprocessor: Experiences with PLATINUM. In Pro-
ceedings of the Twelfth Symposium on Operating Systems Principles, pages 32–44,
December 1989.

[20] Alan L. Cox and Robert J. Fowler. Adaptive Cache Coherency for Detecting Migra-
tory Shared Data. In Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 98–108, May 1993.

[21] Sandhya Dwarkadas, Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Eval-
uation of Release Consistent Software Distributed Shared Memory on Emerging
Network Technology. In Proceedings of the 20th Annual International Symposium
on Computer Architecture, pages 144–155, May 1993.

158

[22] S. J. Eggers and R. H. Katz. Evaluating the Performance of Four Snooping Cache
Coherency Protocols. In Proceedings of the 16th Annual International Symposium
on Computer Architecture, June 1989.

[23] Michael Jay Franklin. Caching and Memory Management in Client-Server Database
Systems. PhD thesis, University of Wisconsin - Madison, July 1993.

[24] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.
PVM 3 User’s Guide and Reference Manual. Technical Report ORNL/TM-12187,
Oak Ridge National Laboratory, May 1993.

[25] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy.
Memory Consistency and Event Ordering in Scalable Shared-Memory Multipro-
cessors. In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, June 1990.

[26] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and M. Snir.
The NYU Ultracomputer – Designing a MIMD Shared-Memory Parallel Machine.
IEEE Transactions on Computers, pages 175–189, February 1983.

[27] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Co-
operative Shared Memory: Software and Hardware for Scalable Multiprocessors.
In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 262–273, October 1992.

[28] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communi-
cations of the ACM, pages 549–557, October 1974.

[29] Waldemar Horwat. Concurrent Smalltalk on the Message-Driven Processor. Tech-
nical Report 1321, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, September 1991.

[30] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satya-
narayanan, Robert N. Sidebotham, and Michael J. West. Scale and Performance in
a Distributed File System. ACM Transactions on Computer Systems, pages 48–61,
February 1988.

[31] Wilson C. Hsieh. Dynamic Computation Migration in Distributed Shared Memory
Systems. PhD thesis, Massachusetts Institute of Technology, Department of Electrical
Engineering and Computer Science, 1995.

[32] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation Migration: En-
hancing Locality for Distributed-Memory Parallel Systems. In Proceedings of the
Fourth Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 239–248, May 1993.

[33] Kirk L. Johnson, Joseph Adler, and Sandeep K. Gupta. CRL 1.0 Soft-
ware Distribution, August 1995. Available on the World Wide Web at URL
http://www.pdos.lcs.mit.edu/crl/.

159

[34] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
Performance All-Software Distributed Sharded Memory. In Proceedings of the
Fifteenth Symposium on Operating Systems Principles, December 1995.

[35] Vijay Karamcheti and Andrew Chien. Concert – Efficient Runtime Support for
Concurrent Object-Oriented Programming Languages on Stock Hardware. In Pro-
ceedings of Supercomputing ’93, pages 598–607, November 1993.

[36] Anna Karlin, Kai Li, Mark Manasse, and Susan Owicki. Empirical Studies of
Competitive Spinning for A Shared-Memory Multiprocessor. In Proceedings of
the Thirteenth Symposium on Operating Systems Principles, pages 41–55, October
1991.

[37] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. Memo: Dis-
tributed Shared Memory on Standard Workstations and Operating Systems. Tech-
nical Report TR93-206, Department of Computer Science, Rice University, June
1993.

[38] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating Systems. In
Proceedings of the 1994 Winter Usenix Conference, pages 115–131, January 1994.

[39] Kendall Square Research. KSR-1 Technical Summary, 1992.

[40] Alexander C. Klaiber and Henry M. Levy. A Comparison of Message Passing and
Shared Memory Architectures for Data Parallel Programs. In Proceedings of the
21st Annual International Symposium on Computer Architecture, pages 94–105,
April 1994.

[41] K. Knobe, J. Lukas, and G. Steele Jr. Data Optimization: Allocation of Arrays to
Reduce Communication on SIMD Machines. Journal of Parallel and Distributed
Computing, pages 102–118, 1990.

[42] Leonidas I. Kontothanassis and Michael L. Scott. Software Cache Coherence for
Large Scale Multiprocessors. In Proceedings of the First Symposium on High-
Performance Computer Architecture, pages 286–295, January 1995.

[43] David Kranz, Kirk Johnson, Anant Agarwal, John Kubiatowicz, and Beng-Hong
Lim. Integrating Message-Passing and Shared-Memory: Early Experience. In
Proceedings of the Fourth Symposium on Principles and Practice of Parallel Pro-
gramming, pages 54–63, May 1993.

[44] David A. Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Yale
University, February 1988. Also available as Technical Report YALEU/DCS/RR-
632.

[45] John Kubiatowicz and Anant Agarwal. Anatomy of a Message in the Alewife
Multiprocessor. In Proceedings of the International Conference on Supercomputing,
pages 195–206, July 1993.

160

[46] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,
Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford FLASH Multi-
processor. In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 302–313, April 1994.

[47] J. William Lee. Concord: Re-Thinking the Division of Labor in a Distributed Shared
Memory System. Technical Report UW-CSE-93-12-05, University of Washington,
December 1993.

[48] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,
Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and
Robert Zak. The Network Architecture of the Connection Machine CM-5. In
Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 272–285, June 1992.

[49] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford Dash Multiprocessor. IEEE Computer,
pages 63–79, March 1992.

[50] Shun-tak Leung and John Zahorjan. Improving the Performance of Runtime Paral-
lelization. In Proceedings of the Fourth Symposium on Principles and Practice of
Parallel Programming, pages 83–91, May 1993.

[51] J. Li and M. Chen. Compiling communication-efficient programs for massively
parallel machines. IEEE Transactions on Parallel and Distributed Systems, pages
361–376, July 1991.

[52] Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Pro-
ceedings of the International Conference on Parallel Computing, pages 94–101,
1988.

[53] Barbara H. Liskov. Distributed Programming in Argus. Communications of the
ACM, pages 300–313, March 1988.

[54] Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive Algorithms
for On-line Problems. In Proceedings of the 20th Annual Symposium on Theory of
Computing, pages 322–333, May 1988.

[55] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
May 1994.

[56] Ron Minnich, Dan Burns, and Frank Hady. The Memory-Integrated Network Inter-
face. IEEE Micro, pages 11–20, February 1995.

[57] David Mosberger. Memory Consistency Models. Operating Systems Review, pages
18–26, January 1993.

161

[58] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. Design and Evaluation of
a Compiler Algorithm for Prefetching. In Proceedings of the Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS V), pages 62–73, Octbober 1992.

[59] Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching in the Sprite
Network File System. ACM Transactions on Computer Systems, pages 134–154,
February 1988.

[60] Rishiyur S. Nikhil. Cid: A Parallel, “Shared-memory” C for Distributed-Memory
Machines. In Proceedings of the Seventh Annual Workshop on Languages and
Compilers for Parallel Computing, August 1994.

[61] Brian W. O’Krafka and A. Richard Newton. An Empirical Evaluation of Two
Memory-Efficient Directory Methods. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 138–147, June 1990.

[62] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.
McAuliffe, E. A. Melton, A. Norton, and J. Weiss. The IBM Research Parallel
Processor Prototype (RP3): Introduction and Architecture. In Proceedings of the
International Conference on Parallel Processing, pages 764–771, August 1985.

[63] Steve K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:
User-Level Shared Memory. In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 325–336, April 1994.

[64] Anne Rogers and Keshav Pingali. Compiling for Distributed Memory Architectures.
IEEE Transactions on Parallel and Distributed Systems, pages 281–298, March
1994.

[65] Anne Rogers, John H. Reppy, and Laurie J. Hendren. Supporting SPMD Execution
for Dynamic Data Structures. In Conference Record of the Fifth Workshop on
Languages and Compilers for Parallel Computing, August 1992. Also appears in
Springer Verlag LNCS 757 (pp. 192-207).

[66] Edward Rothberg, Jaswinder Pal Singh, and Anoop Gupta. Working Sets, Cache
Sizes, and Node Granularity Issues for Large-Scale Multiprocessors. In Proceedings
of the 20th Annual International Symposium on Computer Architecture, pages 14–25,
May 1993.

[67] J. Saltz, R. Mirchandaney, and K. Crowley. Runtime Parallelization and Scheduling
of Loops. IEEE Transactions on Computers, pages 603–612, May 1991.

[68] Harjinder S. Sandhu, Benjamin Gamsa, and Songnian Zhou. The Shared Regions
Approach to Software Cache Coherence on Multiprocessors. In Proceedings of
the Fourth Symposium on Principles and Practices of Parallel Programming, pages
229–238, May 1993.

162

[69] Daniel J. Scales and Monica S. Lam. The Design and Evaluation of a Shared
Object System for Distributed Memory Machines. In Proceedings of the First
USENIX Symposium on Operating Systems Design and Implementation, pages 101–
114, November 1994.

[70] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R.
Larus, and David A. Wood. Fine-grain Access Control for Distributed Shared Mem-
ory. In Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 297–306, October 1994.

[71] Charles L. Seitz and Wen-King Su. A Family of Routing and Communication
Chips Based on the Mosaic. In Proceedings of the 1993 Symposium on Reseach on
Integrated Systems, pages 320–337, January 1993.

[72] Jaswinder Pal Singh, Anoop Gupta, and John L. Hennessy. Implications of Hierar-
chical N-Body Techniques for Multiprocessor Architecture. ACM Transactions on
Computer Systems, pages 141–202, May 1995.

[73] Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Parallel Visualization Algo-
rithms: Performance and Architectural Implications. IEEE Computer, pages 45–55,
July 1994.

[74] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. Computer Architecture News, pages 5–44,
March 1992.

[75] Alfred Z. Spector. Performing Remote Operations Efficiently on a Local Computer
Network. Communications of the ACM, pages 246–260, April 1982.

[76] Per Stenström, Mats Brorsson, and Lars Sandberg. An Adaptive Cache Coherence
Protocol Optimized for Migratory Sharing. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 109–118, May 1993.

[77] Chandramohan A. Thekkath and Henry M. Levy. Limits to Low-Latency Commu-
nication on High-Speed Networks. ACM Transactions on Computer Systems, pages
179–203, May 1993.

[78] Chandramohan A. Thekkath, Henry M. Levy, and Edward D. Lazowska. Separat-
ing Data and Control Transfer in Distributed Operating Systems. In Proceedings
of the Sixth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 2–11, October 1994.

[79] Chau-Wen Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-
Memory Machines. PhD thesis, Rice University, January 1993.

[80] Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-Latency Communi-
cation Over ATM Networks Using Active Messages. IEEE Micro, pages 46–53,
February 1995.

163

[81] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: A Mechanism for Integrated Communication and Com-
putation. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, pages 256–266, May 1992.

[82] Deborah A. Wallach, Wilson C. Hsieh, Kirk L. Johnson, M. Frans Kaashoek, and
William E. Weihl. Optimistic Active Messages: A Mechanism for Scheduling
Communication with Computation. In Proceedings of the Fifth Symposium on
Principles and Practices of Parallel Programming, pages 217–226, July 1995.

[83] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache Invalidation Patterns in
Multiprocessors. In Proceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 243–256,
April 1989.

[84] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24–36, June 1995.

[85] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus,
Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla,
and Steven K. Reinhardt. Mechanisms for Cooperative Shared Memory. In Proceed-
ings of the 20th Annual International Symposium on Computer Architecture, pages
156–167, May 1993.

[86] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Software Write
Detection for a Distributed Shared Memory. In Proceedings of the First USENIX Sym-
posium on Operating Systems Design and Implementation, pages 87–100, November
1994.

[87] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 1988.

164

